"-,'."j:_
s i
2 hea

BEA WebLogic

Personalization Server

Guide to
Building Personalized Applications

Version 4.0
Document Date: May 10, 200

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Guide to Building Personalized Applications

Document Edition Date Software Version

4.5 May 10, 2002 BEA WebLogic Portal 4.0
BEA Weblogic Personalization Server 4.0

Contents

About This Document

What You Need t0 KNOWc.oeiieiieriieiiieieeeee e XVi
€-A0CS WD SILC...eouiieiieiiiiecie ettt ettt st este e e seens XVii
How to Print the DOCUMENL.........cccviiiiiieiieiieeiecieeee e xVvii
LO70) 11Tt A 1 USRS XVviii
Documentation CONVENTIONSc...cververreerierierienieteetenseeeesseesesseessesseessessnes XViii

Overview of Personalization Development

Personalization Server Run-Time Architecture..........ocoooveveriniencenieneenenene. 1-2
AGVISOT ..ttt ettt 1-3
USEr MaANAZEMENT ..cvveiiieeiieiiiiiieetieeteesteeteeteeereesseessseessseesseessaeesesnseens 1-3
Content ManagemeNtc.eeeveerierieriieerieeesreeseeesseeseessseesseesseessnessseene 1-3
Rules Management..........cc.ecuevieieieirineninincne ettt 1-3
Foundation Classes and Utilitiescocuerireineriieniienieieeecere e 1-4

B S I TSRS 1-4

Integration of External COMPONENLScceeeeriiririninininieneneentesieeeneenenene 1-9

SUpPOrt fOr NAtIVE TYPES .eveevrieiieeieiiierieeieeeteeeteesteeve et e ereeeseeessbeesanessneens 1-10

Creating Personalized Applications with the Advisor

What IS the AdVISOI?ccueeeieiieieiieeeeeee e ees 2-2
The Advisor Delivers Content to a Personalized Application 2-2
The Advisor Provides Information About User Classifications................. 2-3
You Can Use the Advisor in One of TWo Ways.......cccccvevverirciercenieneeens 2-4
The WLPS AdviSOr ATrChIteCtUIEcvveiereeeierieeieie e 2-4
Writing Custom Advislets and Registering Them Using the Advislet Registry2-6
Writing a Custom AdVISIet.......c..coeoieiriiinininneceeeee e 2-6
Understanding the Advislet REgIStryocovveevieriieiinieieieecee e 2-7

Guide to Building Personalized Applications iii

Registering a Single AdViSIet.........ccoeieiiiiiniiiiiiieeeeeeeee 2-7

AdVislet Chainingcooeiieriieieiieieee et e e e sae e ae e esaeseeens 2-8
Registering a Compound AdVISIet.........cocovuiereeriierieniienee e 2-8
Creating Personalized Applications
with the AdviSOT JSP Tagsceoeruieiiiieiieieieee e 2-9
Classifying Users with the JSP <pz:div> Tag.......cccocevenenincercncnenne. 2-10
EXAMPIC...ciiiiiiiiiiieiece ettt 2-11
Selecting Content with the <pz:contentQuery> JSP Tag...........ccccue...... 2-11
EXAMPIC...oeiiiieieiieieee ettt 2-11
Matching Content to Users with the <pz:contentSelector> JSP Tag 2-12
EXAMPIC...oeiiiieiieiieieeee et 2-12
Creating Personalized Applications with the Advisor Session Bean 2-13
Classifying Users with the Advisor Session Beancccccvevvencveennene 2-15
Querying a Content Management System
with the Advisor Session Bean..........coccoeveievnininicninincncieieene, 2-16
Matching Content to Users with the Advisor Session Bean..................... 2-17

3. Introducing the Rules Framework

What Is the Rules Manager?..........cccveeveerieiiieniieeie e sieeree e eie e sve e e 3-2
Well-KNOWN ODJECLSevieeiieeieieeeierie ettt eees 3-2
How the Rules Engine WOrKSccceeeviiviiieiieniiiiieie e 34
What Are RUle SetS?oo.oiiiiiieiiiieie e 3-5
Deploying RUIE SetS.......ccccvevieriieiieieeieiieee et 3-6
Classifier RULES.c..oouiiieiiiieee e 3-6

The AND and OR OPerators..........ccuvereeecieerieniienieeerieenvesreeseneenvee e 3-7
Content Selector RUIESccccoeriirieiinieiciicccereeeee e 3-8
Debugging RUIE Setsccccviviieiiiiiiieieciieieeeee e 3-9

What Is the Relationship Between Property Sets and Rules? 3-9

Content Type and Content Selector Rulescccevveeinienenvennnen. 3-9

Configuring the Rules Frameworkccccccceeviiioiiniiniicieeiccie e 3-10
Rules Engine Expression Validation...........cccoecveeeeenieicieenieeeie e 3-10
Rules Engine Error Handling and Reporting............ccoccvevvvienieienirenenne. 3-10
Rules Engine LiStENETScccuvieiieiieiiieiienieesiteeieeiee e eiee e seeeve s 3-11
Rules Engine Expression Caching Optimizations...........cccceeeeveereeevennnen. 3-12
RUIES PAISETcouiiiiiiriiiiiesiere e 3-12

iv Guide to Building Personalized Applications

4. Working with Content Selectors

What Are Content SElECtOrs?coevuirierenieieriee e 4-2
Using Content-Selector Tags and Associated JSP Tags.........cocevveevveerenennenn 4-3
Attributes of the <pz:contentSelector™> Tagccccevveerieereenienieereennnenn 4-3
Identify the Content Selector Definition.........ccccccvevveevieeniiesieeneennnne 4-4

Identify the INDI Home for the Content Management System.......... 4-4

Define the Array That Contains Query Resultscccceevveciieneennnn.. 4-5

Create and Configure the Cache to Improve Performance 4-6
Associated Tags That Support Content Selectorscccecveververervennennen. 4-7
Common Uses of Content-Selector Tags and Associated Tags................. 4-8

To Retrieve and Display Text-Type Documentsccccecererennenee. 4-8

To Retrieve and Display Image-Type Documents..........c..cccceerennne. 4-9

To Retrieve and Display a List of Documents..........ccccceeveerveennrennee. 4-11

To Access a Content-Selector Cache on a Different JSP.................. 4-12

How Content Selectors Select Documents...........cccceevereneneneneeneneneneennes 4-13

5. Using the Expression Package

Introducing the Expression Packageccocovieiiiiiniiiiiiceiee 5-2
What Is the Expression Package?.........ccccceovvveieiieieniniieeeeseee e 5-2

The Package Structure for the Expression Package..........ccccoveevinenncn. 5-3
Assembling and Managing EXpressions.........cooeveeiereenienieninieneeieneeenecenes 5-4
Maintaining Parent-child Relationships........c.ccccecveieninciininccnnnnene. 5-5
Managing the Expression Cache........ccvevveecieeiiiiiieniie e 5-7
Expression Package Operatorsccveeveerieieieenieeniieieeeeeeieesveeveeseneeeeesene s 5-8
Operator Inheritance Hierarchy............cocveeieiieniiecieniniece e 5-8
Basic Language OPEratorsc.eeeeercveerienieeerienieeseenreesseenseeesseessesnnes 5-10
Examples of Basic Language Operatorscccceevveevveenveenieenvennes 5-11

LogICal OPEIAtOrSeevieeieiieeteieeeieieeeee st eee ettt et neeseeeneesseenes 5-11
Examples of Logical EXpressions.........cccecveveeeceeniencieeneesneeeneenenes 5-11

SEENG OPETALOTS ..eevveenriiiiieiieeieetieeteeteeeteeeieestaesaeebeesseesseesssesseesseenns 5-12
Examples of String Operatorseceeveeveeeierieeeenieieneeseeseeneenene 5-13
Mathematical OPEratorscueervveeieerieeiieeieerreeieeseesveeeeesseeesseesseenees 5-13
Examples of Mathematical Operators...........ccceeeeveeeveervenreeneenvennne 5-15
Comparative OPEIALOLScceerververierieieeientieeeseeeeesseesenseeseessesseessesnnes 5-15
Example of Comparative Operators..........cceecveereeerveerieeneeerieenvennnes 5-15

Guide to Building Personalized Applications v

ColleCtion OPETatOrS......cccveerieerieerireriierireeeeeseesreeseessreesseesssesseesseessseens 5-16

Example of Collection Operators...........cccevveereereeeveneeeenieeienereeenees 5-16
Working With EXPreSSIONs.....ccueccuierieerieeniieiienieesieeeieeieesreeveesseeseesseesenas 5-17
The EXpression FACtOrYccovivieeiieniieiieceecie et 5-17
Expression Package ServiCesccovvvverierieniieiesieieeee e 5-17
Unification SETVICE........cevueruiererieriieieieeteie ettt 5-18
OPtMIZALION SEIVICE....vevieeieerieteeeeeierteesiesseesteseeeaesseessesseenseseeeenes 5-18
Validation SeIVICEccuecveviririiriiriinienienteneetereeeee et 5-18
Evaluation SeIviCe........cooieiiririiniiieeeeeeee e 5-19
EXECULION SETVICE...c.eitiiiieiiiieiiciieiieesicettstese st 5-20
Code EXAMPIESveeiiiieiieiiieeie ettt eee s 5-21
Stateful Evaluation of a Simple EXpressionocveveeeceeriencvienieenneenne 5-21
EXAMPIC...oeiiiieieiieieeee ettt 5-21
Stateful Evaluation of an Expression Containing Variables 5-22
EXAMPIC...ciiiiiiiiiiicie ettt et 5-22
Stateless Validation and Evaluation of an Expression
Containing Variables..........ccocoeiiereeieniieieeeiee e 5-23
EXAMPIC...c.eiiiiiiiiiiicict et 5-24
Stateful Validation and Evaluation of an Expression
Containing Variables.........ccoevveriieniienie et seee e 5-25
EXAMPIC...oeiiniieieiieieeeee ettt 5-25
Expression Package Configuration Settings...........ccoecveeverveeiereeneneeneneennnns 5-27

6. Foundation Classes and Utilities

WEDTIOW ...ttt et 6-2
HTTP Handlingocovevvieieiieieeieeeee ettt 6-2
Personalization Request ODJECtccvvvviieriieiiiiiieie ettt 6-2
Default Request Property Set.......cccvevveeiieiieeiie e 6-3
Personalization Session ODJECLcceccvereieciiriierieriieie sttt 6-5
Default Session Property Set.....c.cociecieiiiiiienieeieeeieeie e e 6-5
UBIIIEIES .ttt ettt ettt ettt b et sttt e e s et seeaeebeseesaenan 6-6
(0703 1175311 3 (<] 1< TSRS 6-6
TagSUPPOTTHEIPEToevieiiiecieeeeeeee e e 6-6
PrOfIlEFACtOTY ...vieuvieeeieet ettt ettt et e e e saee s sbeense e 6-7
SESSIONHEIPET ...ttt 6-7

vi Guide to Building Personalized Applications

7. (Creating and Managing Property Sets

OVErvIEW Of PTOPETtY SEtS.....cccvieiiieiiieiieeieeiierie ettt eere e st eire e 7-2
Property Sets Serve as Namespaces for Propertiescccoeveeveeveceennennen. 7-2
Where Property Sets Are USed.......ccveviiiiieniiiiieiieeie e ese e 7-4
Property Definition AttribUtes........cccvevvieriieniieiieieeecee e ee e 7-5

Possible Combinations of Propertiesccocveevvereeieneeeerireieenne. 7-6
Synchronizing Property Sets........ccccevvveerieerieriiienieeeeereesreevee e 7-7

Using the E-Business Control Center............coveeeeiereeieneeiinieneeeeeee e 7-8
Starting the Property Set Editors.........ccooveierircieneeieeeieeeeeeee e 7-10
Using the Property Set EQItorScccuveeviievieerieriieiee et seeree e 7-10

Property Values and Setting the Default Valueccoccecenenenine 7-13
Properties with Boolean or a Single Value and Single Default........ 7-14
Properties with Multiple Values and Single, Multiple,
Of All Defaultsccoeviiiiiiiiiiiee e 7-15
Properties with Date and Time Valuesc..coccvceveneennceccnicnncnnens 7-17
Updating a Registered Custom Event..........cccocevveiiinienenieeceee 7-18
8. Creating and Managing Users

User and Group Profilesccceecvieiiieiieniie ettt 8-2
Property INNEeritancec.ooveevirierieriieie et 8-2
Property Sets and Profilesccveveeniiiiieiieiicieee e 8-4

Security Realms and User Profiles..........cccoecveiieerieeiieiieciie e 8-5
Alternate Security Realms and User Profiles........cccoccvivenincniinnccnnenne. 8-6

Unified User Profiles........ccoeiiiiiiinieiiiiee e 8-8

Anonymous USer Profiles.........ccceecuieiiieciiiiiiieeciecieeee e 8-9

Platform for Privacy Preferences Project (P3P)cccccoevvevivieiieiiieeeeee, 8-10

Creating and Modifying GroupPS..........ccceeeiercieerieenieenieeesieenieeeseeseesseeseveesnes 8-11

Creating GIOUDSeecveeeeieereeniieieeeteesteesteeseessseeseesseessseesssesssessseesssessses 8-11
Adding USErs t0 GIOUPScecverriereirieeniesiieiesieieseeeiesseessessaenseeseenseeeenees 8-14
Removing Users from GroUPS........cceeceerereeiueereeenieenienveeieeseeeeseesveenneas 8-18
Editing Group Property Valuescccoeeveeiieciienieeieecreeieeee e 8-19
DeEleting GIOUPS ...evevveeneieeieieeeieieeieireetesseeee e esesseesaesseesaessaensesseensenseenes 8-22

Creating and Modifying USETSc.cevveerieriierieerieeneeeieeiee e esree e eseneseneas 8-23
Creating USETSeeeieeiieiiieieesieeeseeseieeteeseeesteeseessseesseessseenseesssesnseenseens 8-24
Editing User Property Values.........cccoecveririieniinienieieseeesee e 8-26

Guide to Building Personalized Applications vii

viii

DEltiNg USETS ..eecvviiiieeieeiieiieeieeseeeiteste et eseeeesteeseaesaeeseeeseessneenseeseas 8-29
Deleting User Records That Do Not Exist in the Realm from the

Personalization Database..........c.ccocevererinieiennieineneeneceeeee 8-31
Accessing User and Group Data..........cccoecveviiieniineninieneiieeceeeeeeeecne 8-32
Use JSP Tags to Access User and Group Data...........ccceeverieninienencennn. 8-33
Use APIs to Access User and Group Datacceevveeievenieneniecieeeennn. 8-33
Setting Global Values for a Profile..........cccoovveeeiiiieniieiieciececeeceeeee 8-34
Accessing Properties from an LDAP Server........ccocevvvveneriecienieieneeieiene 8-34
Incorporating Data from Other External Sources........c..coccovervevenenieneieninneen 8-36
Unified User Profile SeCUritycccoevvverierciieiiieeeeie e 8-36
How WebLogic Portal Retrieves User Data from External Sources........ 8-37

Configuring WebLogic Portal To Retrieve User Data from External Sources
8-40
Create an EntityPropertyManager EJB to Represent External Data. 8-40

Deploy a ProfileManager That Can Use the New EntityPropertyManager
8-42

Creating and Managing Content

What Is the Content Manager?ccccceevveriieniieeiieeiieneeeieesee e esiaesveevee e 9-2
Choosing a Content ENginec.ccooueiiiiiniininieiceiceceee e 9-3
Running Queries Against the Content Repositorycccceeveverveiieeceeninnns 9-3
Methods for Retrieving and Displaying Documents............ccocceueveeneenene 9-5
Differences Between Content Management and Document Management. 9-9

Querying the CONtENL..........c.eviererieieeieieeteteee et reeeae e eeeenes 9-10
Structuring @ QUETYvieeueeeieeiiieeieeiee e ettt e eteeerteesaeeere et eesbeesseeenes 9-10
Using Comparison Operators to Construct QUEriescccveveveervervenenenn 9-13
Constructing Queries USING JAVAccvvieiieieniieieeeeiee e 9-14
TSP TaGS woutieitieee ettt ettt ettt et e e et e e s e enba e tbeenbeenraeens 9-15
Using the Document ServIet.........ccceecverieriienieeieeiecieeiee e esee e 9-16

Example 1: Usage in @ JSP......cccoevevieiiiieeceeeeeeeee e 9-17
Example 2: Usage in @ JSP......oooviiiiiiieii e 9-17

Configuring the Content Managercccecveeveeeriesieeneeeiieneeereesveesieesneeens 9-18
Configuring the DocumentManager EJB Deployment Descriptor 9-18
Configuring the PropertySetManager EJB Deployment Descriptor for

Content Managementcocuevueeuerieeieninieneeieeeie e nee e 9-19
Configuring DocumentManager MBeanscccccoceveneiniiienceiencnnene 9-20

Guide to Building Personalized Applications

Attributes of the DocumentManager MBean............ccccoeceevincenennen. 9-21
Editing the DocumentManager MBean in the WebLogic Console .. 9-22

Setting Up Document Connection PoolS.........ccccceevveeciiiiiiieieeniinieeneens 9-23
Attributes for the DocumentConnectionPool MBean....................... 9-23
(0] 015 3 1< USRS 9-24

Setting up WebLogic Connection PoolSccccccueeeieeiiiiiniienieeniieieeeeens 9-26

Web Application Configurationceecuerveeeeerereesescieseeseseesee e 9-28

Using the BulkLoader to Load File-based Content..........c.ccccceveeinenenennennee 9-30

Command-Line USAZe........ccceeriiiiierieniieieeieeseeeveeieesre e saesveeene s 9-30

How the BulkLoader Finds Filesccccovoiiininiininieninciinccccieccens 9-33

How the BulkLoader Finds Metadata Propertiesccccoecveeveeienennnnne. 9-34

Cleaning Up the Database.........c.ccccueeieeriierieeniieiieciieee e esree e 9-35

Loading Internationalized Documentsccoceeeevieneenesieceneeeeeeenes 9-36

Generating Schema Files..........ccvvieiiiieiiniieeecectee e 9-37

10. Working with Ad Placeholders
What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?................ 10-2

Ad Placeholders.couevuiiiiiiiiiiiieinisrcee et 10-2
Types of Queries That Ad Placeholders Run..........c.cccceeevverieennnnnne. 10-3
Types of Documents That Ad Placeholders Displaycccceeuue.... 10-3

Ad Attributes in the Content Management System.............ccceeveevevennenne. 10-4

Ad Placeholder JSP Tagsccceevveeeieiriieeieeieeee ettt 10-8

The <ad:adTarget™> JSP Tag......cccceevieiiierieeiieieete et 10-9

Resolving Ad Query Conflictscoocvveiererienierieie e 10-10

How Ad Placeholders Contain Multiple Queries.........cccceeeverveenieennnns 10-11

How the Ad Conflict Resolver Chooses a QuUery.........cceeeveeeveeeneeennnens 10-12

How an Ad Placeholder Chooses from Ad Query Results..................... 10-13

Creating Ad Placeholder Tags.........cceeveerieiiieiieeieereeeiceee e 10-14
To Create an Ad Placeholder Tagcccooveevveviienieeieecieeieeiee e 10-14
Supporting Additional MIME TYPES......c.ccervererierieriieieeeeieeeeee e 10-18
Create and Compile a Java Class to Generate HTMLc.ccovveunenne 10-18
Register the NeW Classccccecvieciienieiieeiieeieeieeeee e e sve e sneeneenes 10-19
How Placeholders Select and Display AdSccccoveeeveriecieiieieceeeeeeee 10-21
How to Configure Ad Placeholders in an Application..........cccecveecvverevernnnne 10-24

Guide to Building Personalized Applications ix

11. Creating Localized Applications with the Internationalization

Tags

What Is the I18N Framework?ccccocoevirieiiiiiiniiiieeeeeecee e 11-2
Localizing Your JSP ..ot 11-3
<UL 8N:IGEtIMESSAZE™ ...nvivieiieiieeiieitiette ettt ettt eee et naeenes 11-4
<UL8N10CALIZE™ ...t 11-4

The JspMessageBundleccvevereieienieiieieiese e 11-5

How the Localization Tag Worksccccceeeveviievienieieeieie e 11-6
Character ENCOAINGcccvieriiiiiieiieciieiieete ettt 11-7
Displaying More Than One Character Set on a Page...........c..cccu.... 11-7

Default Character Encodingsccoocveveerieviercinieneeeeeee e 11-7
Double-byte character encoding...........ccoevveeeueerienciieneeerieeseeeveennenn 11-9

Steps for Localizing Your Application............ccceveeeenesvecieeienieeeeeennes 11-10
Code EXAMPIES.....ccviveieieieieie ettt 11-12
Using the JSP Internationalization Framework with JavaScript..... 11-12

Using JSP Internationalization Framework with Java Scriptlets 11-13

12. The WebLogic Personalization Server Database Schema

The Entity-Relation Diagramcccoeeeiiriiieniinenieeneee e 12-1
List of Tables Comprising the WebLogic Personalization Server 12-5
The Personalization Server Data Dictionarycceceeveeeerieeeeneneenieneennnns 12-6
The AD_BUCKET Database Tablecccceocerienenieiinieiecencnceneeee 12-6
The AD_COUNT Database Table..........cccocerierienieiinieinieneseeceeee 12-7
The DATA SYNC_APPLICATION Database Table..........cccccccrerrennene. 12-8
The DATA_SYNC _ITEM Database Table........ccccoocuecuerienieceninienennn. 12-9
The DATA_SYNC _SCHEMA URI Database Table...........ccccoeuueneeee. 12-10
The DATA_SYNC_VERSION Database Table..........cccceevveiererrreenenne. 12-11
The DOCUMENT Database Tablecccooevierinieniniiieieiceceee 12-11
The DOCUMENT METADATA Database Table.........cccccocerurreennnne. 12-13
The ENTITLEMENT RULESET Database Table.........cccccccoeeveuennenee. 12-13
The ENTITY Database Table........c.ccoceviiiiiiniiiinienenieiceeceeceee 12-14
The GROUP_HIERARCHY Database Tableccccoecveeeirieniincennnne. 12-15
The GROUP_SECURITY Database Table..........ccccoueceriienenencnennennee 12-15
The MAIL_ADDRESS Database Table..........ccccocevirieninienenieieene 12-16
The MAIL BATCH Database Tablecccccoceevinieninieiiiieiceceee 12-17

Guide to Building Personalized Applications

The MAIL BATCH_ENTRY Database Table........c.cccoceeverinirncannnne. 12-17

The MAIL HEADER Database Tablecccoceeverireineireceeeeeens 12-18
The MAIL MESSAGE Database Table..........cc.cceoenieienieienienencnee, 12-18
The PLACEHOLDER PREVIEW Database Table..........cccccoceeveeneeee. 12-19
The PROPERTY KEY Database Tableccccoveieerieenieeiccieeen 12-19
The PROPERTY VALUE Database Table.........cccceeoeeienieenienenenee. 12-20
The SAMPLE UUP_INFO Database Table..........ccceccevveecvenierenrenenne. 12-21
The SEQUENCER Database Tableccccceevvieeiieniieiieeieeieecieeen 12-22
The USER_GROUP_CACHE Database Table........c.cccceecerieriineannnnne. 12-22
The USER_GROUP HIERARCHY Database Table..........ccccceceruennen. 12-23
The USER_PROFILE Database Tableccceceeeerenieiinieieeeeee 12-24
The USER_SECURITY Database Tableccccceceeririenineniiceenen. 12-24
The WEBLOGIC IS ALIVE Database Tablec.cccceceveneninenennne 12-25
The SQL Scripts Used to Create the Database............ccoevveverierieniesieieeeene, 12-26
SCTIPES 1eutieeitetee e ettt ettt ettt st e etb e e s e e e e et e e beenbeesreeenaennneentes 12-26
Defined CONSLIAINESc.eveteieieiieiriceiinie ettt ettt ettt ere e ebe e enea 12-30

13. Personalization Server JSP Tag Library Reference

UGS e ettt ettt a e a et ae e enn 13-4
<Ad:adTarEt™ ..o 13-4
EXAMPIC ...eiiiiiieieeeeee et 13-5

Content Management..........coeoueeieririenieiiniene sttt eiee e seee e eeeeieene 13-6
O 11 0T 2 1) 015 4 USSR 13-6
251111 o) LTSRS 13-8

3 1155011111 D 1o Te >SS 13-9
EXAMPIE o..eviiiieeiii ettt s 13-10
<CMEPIINEPTOPEILY™ ..ot 13-11
EXAMPIE o..eviiiiieiie et 13-12
COIMEISCLECT™ it et 13-13
251111 o) LT 13-15
<EMESEIECtBYIA™ ..ot 13-16
EXAMPIE c..eviiiiieiii ettt s 13-18
InternationaliZation............coevereierieieiniee et 13-19
<U18NIIOCALIZE™ ... e 13-19
EXaMPIE 1 oot e 13-21

Guide to Building Personalized Applications xi

EXAMPIE 2.ttt e 13-21

<UL 8N:IZEtMESSAZE™evevieniiiieieeitete ettt et see st sea et ee e seesae s e 13-22
EXAMPIC...coiiieiiiiiieiieee et 13-23
Personalization TagS........ccecueeriiiiiieieeie et 13-25
pz Tags and the Internal Cachecccocvvieiirieneiieeceeeeee 13-25
<PZ:CONLENTQUETY ™eeeieiiieiieeeteeieeeveeteestreesteesaeebeessseeseesnneenseenssennns 13-26
EXAMPIC...oouiiiieiiiieie et 13-28
<PZ:CONLENESEIECIOI™ ...ttt 13-29
Specify a Value for contentHomecccoccveeevvenienceeciiniieieeen 13-32
EXAMPIC...oouiiiieiiiieit et 13-33
CPZIAIV ettt et ereenbaseense e 13-34
EXAMPIC...ciiiieiiiiiieiece e 13-34
Plac@hOlderscoueeiieieiieiiee et 13-35
<Phiplaceholder™..........ooiiiiiieieieeeeeee e 13-35
EXAMPIC...oiiiieiiiiiieiieee et 13-36
PrOPETtY SELS...coiiiiiieeiie it 13-37
<pS:ZetPropertyNaAmMEs™cceiiiiiiiiiiieieieesee et 13-37
EXAMPIC...oiiiiieiiiiiieieee et 13-38
<ps:getPropertySetNAMES™cccevviiiiiiiriiriieieecee et 13-39
EXAMPIC...oouiiiiiiiiieie ettt 13-39
<ps:getRestrictedPropertyValues>.........cccocveviienceenie e 13-40
User Management:
Profile Management Tags........cccoeveeverieriieienieiese e 13-42
UM ZEEPTOTIIE™ .. 13-42
EXaMPIE 1.oeiiiiiiiiii e 13-44
EXAMPIE 2.t 13-44
UM ZETPTOPETLY™ .ottt s 13-45
EXAMPIE 1.oeiiiiiiiiiiie e 13-45
EXAMPIE 2.t 13-46
<UM: ZEtPTOPEItY ASSIIING™ ..ot 13-46
EXAMPIC...oeiiiiiiiiiiii e 13-46
<UM:TEMOVEPTOPEITY™ ..ottt 13-47
EXAMPIC...ouiiiieiiiieie et 13-47
SUMESETPTOPEITY™ ..t 13-48
EXAMPIC...oeiiiieiiiieie et 13-48

xii Guide to Building Personalized Applications

User Management:
Group-User Management Tagscccceeeeieniniineenineene e

<UM:addGroupTOGIOUP™cvveeieriieieetieieeee ettt eee e
EXAMPIE o..eviiiiieiii et s
<um:addUSErTOGIOUP™ooeviiiiieieeiie ettt e sae e e
EXAMPIC o.oeieieiieiecteeee et
<UMCTEALEGTOUP™ ...vveeireeieeiiieiieeeteeereesetesereeseesseeenseessseesseenseesnsesnseenes
EXAMPIC o.oeeeiiiieiecteeeee e
UMECTEATEUSEI™ ...ttt et
EXAMPIE o..eviiiiieiii et
<um:getChildGroupNames™cccceeierieieieeieieeeesee e
251111 o) LT
<um:getGroupNamesFOrUSer™..........cccvvveeiieciienieeie e eee e
251111 o) LU
<um:getParentGroupNameE™cccevviiiriiniieiieeieee e
EXAMPIE ...eviiiiieiii et s
<UM: ZetTOPLEVEIGIOUPS™......ooiieieiieeieciieie ettt
251111 o) (<SR P
<UM:ZEtUSEIMAMES™eoiiiiiiiiieeiiieeeieeeettee et eeeeeeeeatee et e esasaeesaeeens
EXAMPIC o.oeieieiiiectee e
<um:getUsernamesFOrGroup™.........ccoceeviiniieiiienieiieenieeieeiee e
EXAMPIE ...oviiiiieiie et s
<UMTEMOVEGTOUP™ ...ttt ettt ettt sbe e e
251111 o) LT
<um:removeGroupFTrOMGTIOUP™ccccievvieiieeiieceecie e eee e
251111 o) LS
<UMETEMOVEUSEI™ ..ttt ettt et
EXAMPIE c..eviiiiieiii et
<um:removeUSerFromGroup™........ccocceevieeieiiiiineenie et
251111 o) LU
User Management: SECUTItY Tagscccevveerieerieeriiienienieesieeeieeeeesveeveesenens
1104 B (07 31 PSRRI
SUMLOZOUL™ ..ottt e
<UMESEtPASSWOIA™ ..o
Personalization ULIItIeS.ccuereeierieieiieieeeeesceee et

Guide to Building Personalized Applications

<es:convertSPecialCRarsS™........cccvvevieiciierieeiie e 13-69

EXAMPIC...oouiiiiiiiiieie et 13-69
CESICOUNEET™ ...ttt et et et ette sttt eae e et sbeesbesetenbesstebeeneenbeeseenbeens 13-70
EXAMPIC...ooiiiiiiiciieiieee ettt e 13-70
CESIALE™ ..ttt s 13-70
EXAMPIC...ciiiieiieiiieieee et 13-71
<eS:fOrEachINATITAY™.......ccoiiieiieieeeeeeee e 13-71
EXAMPIC...oouiiiieiiiieie et 13-71
ESIISINULL L 13-72
EXAMPIC...ecuiiiiiiiiieie et 13-72
<ESINOENUIL ..o 13-72
EXAMPIC...ciiiiiiiiiiieiie ettt 13-73
<ESITANSPOSCATTAY ™ ..ccuveeiniieiieeiiieiteeieestee st et ebeessteesieesabeeaeesaees 13-73
EXAMPIC...oouiiiieiiiieie et 13-73
ESIUTICONTENE ...ttt 13-74
EXAMPIC...oouiiiiiiiiieie ettt 13-74
WEDLOZIC ULIIIEIES ...evveeviierieiiieiere ettt 13-75
SWLICACKE™ . 13-75
SWLIPTOCESS™ ...ttt sttt ettt sttt s 13-76
EXAMPIC...oouiiiiiiiiieit et 13-77
CWLITEPEAL™ ..ottt ettt ettt et e e e e tbesebeeaeesaveessnesnseenes 13-78

Index

xiv Guide to Building Personalized Applications

About This Document

This document explains how to use the BEA WebLogic Personalization Server™ to
create personalized applications for use in an e-commerce site.

This document includes the following topics:

m Chapter 1, “Overview of Personalization Development,” provides developer
components and utilities that enable developers to create personalized
applications. The pieces documented in this guide include the Advisor,
Foundation classes and utilities, and JSP tag reference.

m Chapter 2, “Creating Personalized Applications with the Advisor,” recommends
content and performs several important functions in creating a personalized
application, including searching for content, tying the other core personalization
services together, and matching content to user profiles.

m Chapter 3, “Introducing the Rules Framework,” discusses how the Rules
Management component allows developers to create business rules that turn on
and off content and match content to users according to their profile information.

m Chapter 4, “Working with Content Selectors,” shows how a Business Analyst
(BA) can use content selectors to specify conditions under which WebLogic
Personalization Server retrieves one or more documents.

m Chapter 5, “Using the Expression Package,” illustrates how to use the services of
the Expression Package. Any arithmetic, boolean, relational or conditional
statement can be represented in the Java object model by using an Expression
Package. You can use the Expression Package to dynamically assemble and
evaluate your own business logic.

m Chapter 6, “Foundation Classes and Utilities,” describes the Foundation, a set of
miscellaneous utilities to aid JSP and Java developers in the development of
personalized applications using the WebLogic Personalization Server. Its utilities
include JSP files and Java classes that can be used by JSP developers to gain

Guide to Building Personalized Applications XV

access to functions provided by the server and helpers for gaining access to
Advisor services.

m Chapter 7, “Creating and Managing Property Sets,”discusses how Property Set
Management allows you to create property sets, the schema of personalization
attributes, and the properties that make up property sets.

m Chapter 8, “Creating and Managing Users,” discusses how User Management
joins enterprise data about users with profile data that is used to personalize the
user’s view of the application.

m Chapter 9, “Creating and Managing Content,” documents how the Content
Manager provides content and document management capabilities for use in
personalization services. The Content Manager works with files or with content
managed by third-party vendor tools

m Chapter 10, “Working with Ad Placeholders,” shows how ad placeholders
display documents that advertise products or services (ads) and record customer
reactions to them.

m Chapter 11, “Creating Localized Applications with the Internationalization
Tags,” provides a simple framework that allows access to localized text and
messages. The internationalization (I18N) framework is accessible from JSP
through a small 118N tag library.

m Chapter 12, “The WebLogic Personalization Server Database Schema,”
documents the database schema for the WebLogic Personalization Server.

m Chapter 13, “Personalization Server JSP Tag Library Reference,” describes the
JSP tags included with WebLogic Personalization Server that allow developers
to create personalized applications without having to program using Java.

What You Need to Know

xvi

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an e-commerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with related Web technologies as
described below. The topics in this document are organized primarily around the
development goals and tasks needed to accomplish them, specifically for the:

Guide to Building Personalized Applications

m JavaServer Page (JSP) developer, who creates JSPs using the tags provided or by
creating custom tags as needed.

m System analyst, or database administrator, who writes rules, designs schemas,
optimizes SQL and monitors usage.

m System administrator, who installs, configures, deploys, and monitors the Web
application server.

m Java developer, who extends or modifies the Enterprise Java Bean (EJB)
components that make up the WebLogic Personalization Server engine, if that
level of customization is desired.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Portal documentation
Home page on the e-docs Web site. A PDF version of this document is also available
in the documentation kit on the product CD. Or you can download the documentation
kit from the WebLogic Portal portion of the BEA Download site.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Guide to Building Personalized Applications xvii

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Personalization Server release 4.0.

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSUPPORT at www.bea.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

® Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

xviii

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Guide to Building Personalized Applications

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chmod u+w *
\ 't ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Guide to Building Personalized Applications

xix

XX

Convention

Item

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Guide to Building Personalized Applications

CHAPTER

1

Overview of

Personalization
Development

WebLogic Personalization Server provides developers with the ability to create
personalized applications for e-commerce Web sites. This topic provides a broad
overview of personalization development for Java and JSP developers.

This topic includes the following sections:

m Personalization Server Run-Time Architecture
e Advisor
e User Management
e Content Management
e Rules Management

e Foundation Classes and Utilities
m JSP Tags
m Integration of External Components

m Support for Native Types

Guide to Building Personalized Applications

1-1

1 overview of Personalization Development

Personalization Server Run-Time
Architecture

The WebLogic Personalization Server run-time architecture is designed to support a
variety of personalized applications. These applications can be built on the
portal/portlet infrastructure, on the tags and EJBs supplied by the Advisor, and on
select tags and EJBs supplied by other personalization server components.

The following high-level architecture picture may be used to visualize the
relationships between the components.

Figure 1-1 WebLogic Personalization Server High Level Architecture

Personalized Application
Personalization Server

Advisor

Personalization Engine

Content

User

Foundation Rules Service

Management

Management

J2EE Platform

Application Server (WLS)

1-2 Guide to Building Personalized Applications

Personalization Server Run-Time Architecture

Advisor

The personalized application is one built by the developer to use the personalization
components. It may consist of a set of traditional JSP pages or servlets and/or code that
accesses EJB objects directly.

The Advisor component is the primary interface to the most common operations that
personalized applications will use. It provides access through tags or a single EJB
session bean. Specific functionality provided by the Advisor includes classifying
users, selecting content based on user properties, and querying content management
directly. The Advisor uses the Foundation, User Management, Rules Service, and
Content Management components.

User Management

The User Management component supports the run-time access of users, groups, and
the relationships between them. The notion of property sets is used by the user and
group property access scheme. This component is set up using the User Management
Administration tools and supports access via JSP tags or direct access to EJB objects.
A Unified User Profile may be built by the developer, extending the base user profile,
to provide custom data source access to user property values.

Content Management

The Content Management component provides the run-time API by which content is
queried and retrieved. The functionality of this component is accessible via tags. The
content retrieval functionality is provided using either the provided reference
implementation or third-party content retrieval products.

Rules Management

The Rules Management component is the run-time service that runs the rules that are
built in the E-Business Control Center.

Guide to Building Personalized Applications 1-3

1 overview of Personalization Development

Foundation Classes and Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to Advisor
services.

JSP Tags

The JSP tags included with WebLogic Personalization Server (Table 1-1) allow
developers to create personalized applications without having to program using Java.

Table 1-1 JavaServer Page JSP Tags Overview

Library Tag Description
Ads <ad: adTar get > Queries the content management system
and displays ads.
Content Management <cm get Property> Retrieves the value of the specified content
metadata property.
<cm print Doc> Inlines the raw bytes of a document object

into the JSP output stream.

<cm print Property> Inlines the value of the specified content
metadata property as a string.

<cm sel ect > Selects content based on a search
expression query syntax.

<cm sel ect Byl d> Retrieves content using the content’s
unique identifier.

1-4 Guide to Building Personalized Applications

JSP Tags

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library

Tag

Description

Internationalization

<il

8n:localize>

Defines the language, country, variant, and
base bundle name to be used throughout a
page when accessing resource bundles via
the <i 18n: get message> tag. Also
allows a character encoding and content
type to be specified for a JSP.

<il

8n: get Message>

Used in conjunction with the
<i 18: 1 ocal i ze> tag to retrieve
localized static text or messages.

Personalization

<pz:

cont ent Query>

Provides content based on search
expression query syntax.

<pz:

cont ent Sel ect or >

Provides content based on results of a
content selector rule and subsequent
content query.

<pz:

di v>

Turns a user-provided piece of content on
or off based on the results of a classifier
rule.

Placeholders

<ph:

pl acehol der >

Implements a placeholder, which
describes the behavior for a location on a
JSP page.

Property Sets

<ps:

get Propert yNanes>

Used to get a list of property names given
a property set.

<ps

: get PropertySet Nanmes>

Used to get a list of property sets given a
property set type.

<pS
get
>

Restrict edPropertyVal ues

Used to get a list of restricted property
values given a property set type and
property name.

User Management
(Profile)

<um get Profile>

Retrieves the Unified User Profile object.

<um get Property>

Gets the value for the specified property
from the current user profile in the session.

Guide to Building Personalized Applications 1-5

1 overview of Personalization Development

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

<um get PropertyAsStri ng> Works exactly like the
<um get Pr oper t y> tag above, but
ensures that the retrieved property value is
aString.

<um r enovePr operty> Removes the property from the current
user profile in the session.

<um set Property> Sets a new value for the specified property
for the current user profile in the session.

(Group-User <um addG oupToGr oup> Adds the group corresponding to the
Management) provided chi | dGr oupNane to the group
corresponding to the provided
par ent G oupNarne.

<um addUser ToGr oup> Adds the user corresponding to the
provided user Name to the group
corresponding to the provided
par ent G oupNane.

<um cr eat eG oup> Creates a new group in the realm, and
a corresponding group profile in the
personalization database.

<um cr eat eUser > Creates a new persisted User object with
the specified username and password.

<um get Chi | dG oupNanmes> Returns the names of any groups that are
children of the given group.

<um get G oupNamesFor User > Retrieves a St r i ng array that contains the
group names matching the provided search
expression and corresponding to groups to
which the provided user belongs.

<um get Par ent G oupNane> Retrieves the name of the parent of the
group associated with the provided
gr oupNane. The information is taken
from the realm.

1-6 Guide to Building Personalized Applications

JSP Tags

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library

Tag

Description

<um get TopLevel Groups>

Retrieves an array of group names,
each of which has no parent group.
The information is taken from the
realm.

<um get User nanes>

Retrieves a String array that contains the
usernames matching the provided search
expression.

<um get User nanesFor G oup>

Retrieves a St r i ng array that contains
the usernames matching the provided
search expression and correspond to
members of the provided group.

<um r enoveG oup>

Removes the group corresponding to
the provided gr oupNane.

<um r enoveG oupFr on oup>

Removes a child group from a parent
group.

<um r enoveUser >

Removes the user corresponding to
the provided user nare. It can remove
any type of extended user that has its
profileType set in the database.

<um r enoveUser Fr onar oup>

Removes a user from a group.

(Security)

<um | ogi n>

Authenticates a user/password
combination.

<um | ogout >

Ends the current user's WebLogic Server
session. This tag should be used in
combination with the <um | ogi n> tag.

<um set Passwor d>

Updates the password for the user
corresponding to the provided username.

Guide to Building Personalized Applications 1-7

1 overview of Personalization Development

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag

Description

Personalization Utilities <es:

convert Speci al Char s>

Converts characters which would
normally signify special meaning to
an HTML browser into characters
which can be displayed as intended.

<es:counter> Creates af or | oop construct.

<es: dat e> Gets a date and time formatted string based
on the user’s time zone preference.

<es: for Eachl nArray> Iterates over an array.

<es:isNull> Checks to see if a value is null. If the value
typeisa St ri ng, also checks to see if the
St ring is empty.

<es: not Nul | > Checks to see if a value is not nul | . If the
value typeisa St ri ng, also checks to see
if the St ri ng is not empty.

<es:transposeArray> Transposes a standard [row][column]
array to a [column][row] array.

<es: uri Content > Pulls content from a URL.

WebLogic Utilities <w : cache> Specifies that its contents do not
necessarily need to be updated every
time it is displayed.

<w : process> Provides a attribute-based flow control
construct.
<wl : repeat > Used to iterate over a variety of Java

objects, as specified in the set attribute.

1-8

Guide to Building Personalized Applications

Integration of External Components

Integration of External Components

A range of external components either come already integrated into the WebLogic
Personalization Server, or can be integrated easily by a developer as extensions to the
core components. A specific set of components that are known to be widely useful are
described in Table 1-2. Other custom component integrations are possible given the
JSP and EJB basis for the WebLogic Personalization Server, but the entire range of
possibilities is not addressed here.

Table 1-2 Useful External Components the Personalization Server

External Component

Out-of-the-Box
Support

Methods and Notes

DBMS

Integrated and tested with
Cloudscape, Oracle 8.1.6,
and 8.1.7.

Uses standard WebLogic
Server JDBC connection
pools.

LDAP authentication

Can be set up automatically
using administration tools
and property files.

Uses WebLogic Server
security realms.

LDAP retrieval of user and
group information

Can be set up automatically
using administration tools.

Built into EJB persistence
for User entity bean.

Legacy database of users

None.

Requires Unified User
Profile extension of User
entity bean.

Content Management
engine

Reference implementation
provided.

Provides API/SPI support
from third-party vendors.

Legacy content database

None.

Requires either extension
of Document entity bean or
custom implementation of
content management SPI.

Guide to Building Personalized Applications 1-9

1 overview of Personalization Development

Support for Native Types

WebLogic Personalization Server supports the native types shown in Table 1-3.

Table 1-3 Native Types

Supported Type Java Class Notes

Boolean java.lang.Boolean Comparators: ==, |=

Integer java.lang. Number Comparators: ==, |=, <, >,
<=, >=

Float java.lang.Double Comparators: ==, |=, <, >,
<=, >=

Text java.lang.String Comparators: ==, |=, <, >,
<=, >=, like

Datetime java.sql.Timestamp Comparators: ==, |=, <, >,
<=, >=

UserDefined Defined by developer Comparators: N/A

User-defined properties
may be programmatically
set and gotten, but are not
supported in the tools,
rules, or content query
expressions.

Any property can be a multi-value of a specific single native type as well. This is
implemented as a java.util.Collection. Comparators for multi-values are contains and
containsall, although the rules development tool will only allow the use of contains.
The values possible as part of a multi-value may be restricted to a valid set, using the
Property Set management tools.

1-10 Guide to Building Personalized Applications

CHAPTER

2

Creating Personalized
Applications with the

Advisor

The WLPS Advisor is an easy-to-use and flexible access point for personalization

services—including personalized content, user segmentation and the underlying rules
engine.

This topic includes the following sections:

m What Is the Advisor?

The Advisor Delivers Content to a Personalized Application
The Advisor Provides Information About User Classifications

You Can Use the Advisor in One of Two Ways

m The WLPS Advisor Architecture

Writing a Custom Advislet
Understanding the Advislet Registry
Registering a Single Advislet
Advislet Chaining

Registering a Compound Advislet

m Creating Personalized Applications with the Advisor JSP Tags

Classifying Users with the JSP <pz:div> Tag

Guide to Building Personalized Applications

2-1

2 Creating Personalized Applications with the Advisor

e Selecting Content with the <pz:contentQuery> JSP Tag

e Matching Content to Users with the <pz:contentSelector> JSP Tag

m Creating Personalized Applications with the Advisor Session Bean
e Classifying Users with the Advisor Session Bean
e Querying a Content Management System with the Advisor Session Bean

e Matching Content to Users with the Advisor Session Bean

What Is the Advisor?

Content personalization allows Web developers to tailor applications to users. Based
on data gathered from user profile, Request, and Session objects, the Advisor
coordinates the delivery of personalized content to the end user.

The Advisor Delivers Content to a Personalized
Application

The Advisor delivers content to a personalized application based on a set of rules and
user profile information. It can retrieve any type of content from a Document
Management system and display it in a JSP.

The Advisor ties together all the services and components in the system to deliver
personalized content. The Advisor component includes a JSP tag library and an
Advisor EJB (stateless session bean) that access the WebLogic Personalization
Server’s core personalization services including:

m User Profile Management
m Rules Manager
m Content Management

m Personalization Platform

2-2 Guide to Building Personalized Applications

What Is the Advisor?

The tag library and session bean contain personalization logic to access these services,
sequence personalization actions, and return personalized content to the application. It
is also possible to write your own advisor plug-ins and access them with JSP tags you
create.

This architecture allows the JSP developer to take advantage of the personalization
services using the Advisor JSP tags. In addition, a Java developer can access the
underlying WebLogic Personalization Server personalization features via the public
Adpvisor bean interface. (For more information, see the WebLogic Personalization
Server Javadoc APl documentation.) Think of the Advisor as sitting on top of the core
services to provide a unified personalization API.

The Advisor recommends content for the following items:

m Web content included or excluded as determined by a user’s classification using
rules-based matching against user profile information. For more information
about classifying users, see “Classifying Users with the JSP <pz:div> Tag” on
page 2-10 and “Classifying Users with the Advisor Session Bean” on page 2-15.

® Documents returned by document attribute searches. For more information about
searching for content, see “Selecting Content with the <pz:contentQuery> JSP
Tag” on page 2-11 and “Querying a Content Management System with the
Advisor Session Bean” on page 2-16.

m Documents returned by content selectors using rules-based matching against user
profile information or user’s classification. For more information about
rules-based matching, see “Matching Content to Users with the
<pz:contentSelector> JSP Tag” on page 2-12 and “Matching Content to Users
with the Advisor Session Bean” on page 2-17.

Note: User classification is done in the E-Business Control Center. You will see the
term “customer segmentation” used in the GUI tool to refer to user
classification and classifier rules.

The Advisor Provides Information About User
Classifications

In addition to supplying content to personalized applications, the Advisor can also
provide information about user classifications. For example, an application can ask the
Adpvisor if, based on predefined rules, the current user is classified as a Premier

Guide to Building Personalized Applications 2-3

2 Creating Personalized Applications with the Advisor

Customer or an Aggressive Investor, and take action accordingly. The Advisor
accomplishes this classification by gathering relevant user profile information,
submitting it to the Rules Manager, and returning the classification to the caller.

For more information about classifying users, see “Classifying Users with the JSP
<pz:div> Tag” on page 2-10 and “Classifying Users with the Advisor Session Bean”
on page 2-15.

You Can Use the Advisor in One of Two Ways

m Using the JSP tags. Developers will probably find it easiest to use the JSP tags
when building typical pages. The tags provide ways to switch content on and off
based on user classification, return content based on a static query, and match
content to users based on rules that execute a content query. The JSP tags that
perform these tasks are: <pz: di v>, <pz: cont ent Sel ect or >, and
<pz:content Query>.

m Using the Advisor session bean. The page or application developer may use the
Advisor session bean directly in place of the tags, if desired. The Advisor
session beans provide ways to switch content on and off based on user
classification, return content based on a static query, and match content to users
based on rules that execute a content query.

The WLPS Advisor Architecture

2-4

The Advisor is a stateless session EJB and has a simple interface with a get Advi ce
method on it. The get Advi ce method returns Advi ce objects that contain the detailed
result information that was returned from the personalization services.

The argument to the get Advi ce method is an Advi ceRequest object that contains a
number of name-value pairs that define the inputs to the Advisor. The Advi ceRequest
has an interface very similar to the Ht t pRequest object and allows predefined as well
as custom input parameters to be stored.

Guide to Building Personalized Applications

The WLPS Advisor Architecture

Each incoming Advi ceRequest has a URI associated with it. The Advisor uses the
URI prefix (the part before the colon) to look up an Advislet using the
AdvisletRegistry. Advislets are typically simple Java classes that implement a
personalization function such as user segmentation or content retrieval. The
AdvisletRegistry maintains the deployment mappings from URI prefixes to Advislet

instances.

Note: The relationship between the Advisor and an Advislet is similar to the
relationship between the Server and a servlet (though an Advislet is
independent of HTTP). An Advislet is registered with a prefix with the
Advisor and will be invoked for all incoming Advi ceRequest s with that

prefix.

Figure 2-1 The Advisor Architecture

JSP

J5F Tag

Java Client

i The Advislet Registry maintains a mapping

i fram URI prefixes to implementation class es for
i Advislets, Compound Advislets

i and Advice Transforms.

The registry = described using the

; Fdvigel-regishy. il file,

The Advisor ks a stateless session EJB and
senres 3s dscaleable JZEE entny-point
into the Advisor architecture.

Advisor
Stateless
Session Bean

getAdvice . Business Personalization Sarvices

FddceRagaeny ™| Advise Fdthods

liun)d
Fi

Advislet Repistry

Advislet

Domain- s pecific Advislet contact

{underhying lw-18vel sennes. For example, the

{ Rul dvizlet uzes the Rulesh, to evaluate
irules and rulesets.

Compound Advislet

Advice Trarsforms

Guide to Building Personalized Applications 2-5

2 Creating Personalized Applications with the Advisor

Writing Custom Advislets and Registering
Them Using the Advislet Registry

At the core of the Advisor framework is the Advislet Registry. The Advisor uses the
Advislet Registry to determine which Advislets to invoke in the processing of an
advice request.

The WebLogic Personalization Server provides a number of Advislets which support
the three personalization JSP tags: <pz: cl assi fi er >, <pz: cont ent sel ect or > and
<pz: cont ent quer y>. To extend this functionality or to interface with third-party
systems, you can write a custom Advislet and register it with the Advislet Registry.

Writing a Custom Advislet

2-6

To write a custom Advislet a developer simply has to implement the Advisor interface,
providing implementations of these three methods: get Advi ce,
get Requi redAt tri but es and val i dat eAdvi ceRequest .

When the Advisor receives an Advi ceRequest object, it calls

val i dat eAdvi ceRequest before passing it to the registered Advislet’s get Advi ce
method. The val i dat eAdvi ceRequest method should throw an

Il egal Argunment Except i on if some necessary attributes are missing or malformed.

In addition to the Advislet interface, an Advislet implementation must have a public
constructor with two parameters. The Advisor will use these parameters when it
creates instances of the Advislet.

m The first parameter is of type Advi sor. It contains a reference to the Advisor
creating this Advislet.

m The second parameter is an implementation of the Metadata interface. It contains
the Advislet’s name, description, and version information as specified in the
Advislet Registry.

Note: Unless otherwise indicated, all classes referenced here reside in the
com bea. p13n. advi sor package.

Guide to Building Personalized Applications

Writing Custom Advislets and Registering Them Using the Advislet Registry

A default implementation of Advislet is provided in the Abst r act Advi sl et abstract
class. Simply extend this class, override the get Advi ce method and provide the
required constructor to create your own Advislet.

Understanding the Advislet Registry

We have already discussed how the Advislet Registry associates uri prefixes with
Adpvislet implementations. Once we look inside the Advislet Registry however, the
story becomes a bit more complicated.

In the case of the cont ent query: // URI prefix, all of the work is done by one
Advislet — com bea. p13n. cont ent . advi sl et s. Cont ent Quer yAdvi sl et | npl
However, other prefixes (such as cont ent sel ect or: / /) require a sequence of
Adpvislets to be chained together to produce the required advice. In these cases a
CompoundAdvislet is registered against the uri prefix to shield this complexity from
the user. The specification of which Advislets to register against which uri prefixes is
contained in the advi sl et -r egi stry. xnl file which can be found in the

ej badvi sor. jar EJB JAR file within a WebLogic Personalization Server
application. This file is scoped to the containing application, and therefore may have
different contexts for different applications. An understanding of the contents of this
file is essential to any customization of the Advislet framework.

Registering a Single Advislet

The following is an extract from the advi sl et -regi stry. xnl file:

<l-- run a content query -->
<advi sl et >
<regi stration-key>contentquery</registration-key>
<met adat a>
<nane>Cont ent Quer y</ nane>
<descri ption>
Advi sl et that can retrieve content fromthe Content Managenent
System based on a content query.
</ description>
<aut hor >BEA Syst ens</ aut hor >

</ et adat a>

<i mpl ement ati on-cl ass>com bea. cormer ce. pl atform content. advi sl ets
. Cont ent Quer yAdvi sl et | npl </ i npl enent ati on-cl ass>

Guide to Building Personalized Applications 2-7

2 Creating Personalized Applications with the Advisor

</ advi sl et >

The most important tags are <r egi st rati on- key>and<i npl enent ati on- cl ass>.
In the case of an Advislet, <r egi st r at i on- key> should specify the uri prefix that this
Adpvislet is to be registered against and <i npl enent ati on- cl ass> should specify
the fully qualified class name of the implementing Advislet class. The metadata
information is useful for versioning Advislets and should be included.

Advislet Chaining

Advi ceTr ansf or mobjects are used to chain two Advislets together using a
CompoundAdvislet. An Advi ceTr ansf or m object provides the mapping between the
outputs of one Advislet and the inputs of the next. The AdviceTransform interface
simply specifies one method t r ansf or m(Advi ce input, Advi ceRequest output).
which should be implemented to create the mapping required. Advi ceTr ansf or ns are
also registered in the AdvisletRegistry.

Registering a Compound Advislet

2-8

The following is an extract from the advi sl et -regi stry. xnl file:

<I-- conmpound advislet that calls the rules engi ne and passes
results to the content nanagenent system-->

<conpound- advi sl et >

<regi strati on-key>content sel ector</regi strati on-key>

<met adat a>
<name>Cont ent Sel ect or </ nane>
<descri ption>
Advislet that retrieves Content fromthe Content Managenent
system based on the evaluation of a rule set.
</ description>
<aut hor >BEA Syst ens</ aut hor >

</ met adat a>
<sequence>
<advi ce-transf or ntRul esl nput Tr ansf or nx/ advi ce-t r ansf or e
<advi sl et >unmappedr ul esCl assi fi er | gnor eRul eNane</ advi sl et >
<advi ce-transforne
Cl assi fi er ToCont ent Sel ect or Transf orm

Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor JSP Tags

</ advi ce-transforne
<advi sl et >unmappedr ul esCont ent Sel ect or </ advi sl et >
<advi ce-transforne
Rul esToCont ent Tr ansf orm
</ advi ce-transfornm
<advi sl et >cont ent quer y</ advi sl et >
</ sequence>
</ conpound- advi sl et >

The <sequence> tag specifies the start of the sequence that makes up the compound.
Entries can be either Advislets or AdviceTransforms which can occur in any order. The
Advisor will invoke each element of the sequence in turn before proceeding to the next.
The final Advice object generated will be returned to the user. In this way the
implementation of the Advislet is hidden from the user who does not need to know
whether a simple Advislet or a compound Advislet was used to generate the advice.

Creating Personalized Applications
with the Advisor JSP Tags

The Advisor provides three JSP tags to help developers create personalized
applications. These tags provide a JSP view to the Advisor session bean and allow
developers to write pages that retrieve personalized data without writing Java source
code.

m The <pz: di v> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is t r ue, it turns
the content on; if f al se, it turns the content off.

Note: The system turns on the content by inserting the content residing between
the start and end <pz: di v> tags in the JSP code. This content can include
any valid JSP content, including HTML tags, other JSP tags, and scriptlets.
If the classifier rule returns f al se, the system skips the content between
the start and end <pz: di v> tags.

m The <pz: cont ent Quer y> tag provides content attribute searching for content in
a Content Manager. It returns an array of Cont ent objects that a developer can
handle in numerous ways.

Guide to Building Personalized Applications 2-9

2 Creating Personalized Applications with the Advisor

Note: For more information about how WebLogic Personalization Server
manages content, see Chapter 9, “Creating and Managing Content,” in this

guide.

m The <pz: cont ent Sel ect or > tag recommends content if a user matches the
classification part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in the rule and returns
the content back to the JSP page.

For information about defining a content selector rule, see the topic “Retrieving
Documents with Content Selectors” in the Guide to Using the E-Business Control
Center.

In addition to using JSP tags to create personalized applications, you can work directly
with the Advisor bean. For more information about using the bean, see “Creating
Personalized Applications with the Advisor Session Bean” on page 2-13.

Classifying Users with the JSP <pz:div> Tag

The <pz: di v> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is t r ue, it turns the
content on; if f al se, it turns the content off.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts (BAs) to develop their own classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you
will see classifer rules referred to as “customer segmentation.”

For information about creating classifier rules with the E-Business Control
Center, see the section “Creating a New Customer Segment” in the topic
“Using Customer Segments to Target High-Value Markets” in the Guide to
Using the E-Business Control Center.

You can also use the Advisor bean directly to classify users. For more
information, see “Classifying Users with the Advisor Session Bean” on page
2-15.

2-10 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor JSP Tags

Example

This example executes the PremierCustomer classifier rule and displays an alert to
premier customers in the HTML page’s output.

<U@taglib uri="pz.tld" prefix="pz" %

<pz:div
rul e="Prem er Cust oner " >

<p>Pl ease check out our new Prem er Custoner bonus program.<p>
</ pz:div>

Selecting Content with the <pz:contentQuery> JSP Tag

Example

The <pz: cont ent Quer y> tag provides content attribute searching for content using a
Content Manager. It returns an array of Cont ent objects that a developer can handle
in numerous ways.

Note: For information about using the <pz: cont ent Quer y> JSP tag, see
“<pz:contentQuery>" on page 13-26. This tag provides similar functionality
to the <cm sel ect > tag.

The following example executes a query against the content management system to
find all content where the author attribute is Hemingway and displays the Docunent
titles found:

<%@ page i nport="com bea. p13n. cont ent. Cont ent Hel per" %
<U@taglib uri="pz.tld" prefix="pz" %

<pz:content Query id="docs"
cont ent Hone="<%=Cont ent Hel per . DEF_DOCUMENT _NMANAGER_HOME %"
query="aut hor = ' Hem ngway'" />

<es:forEachl nArray array="<%docs%" id="aDoc"
type="com bea. p13n. cont ent. Content ">
<l i >The docunent title is: <cmprintProperty id="aDoc"

Guide to Building Personalized Applications ~ 2-11

2 Creating Personalized Applications with the Advisor

nane="Title" encode="htm" />
</ es: forEachl nArray>

Note: For more information about these JSP tags, see “<cm:printProperty>"" on page
13-11 and “<es:forEachInArray>" on page 13-71.

You can also use the Advisor bean directly to select content. For more information, see
“Querying a Content Management System with the Advisor Session Bean” on page
2-16.

Matching Content to Users with the <pz:contentSelector>

JSP Tag

Example

The <pz: cont ent Sel ect or > recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Advisor
executes the query defined in the rule to retrieve content.

Notes: For more information about this tag, see “<pz:contentSelector>" on page
13-29.

For information about creating classifier rules, see the topic “Using Customer
Segments to Target High-Value Markets” in the Guide to Using the E-Business
Control Center.

The following example asks the Advisor for content specific to premier customers and
then displays the Docunent titles as the results.

<%@ page i nport="com bea. p13n. cont ent. Cont ent Hel per" %
<U@taglib uri="cmtld" prefix="cnl %
<U@taglib uri="pz.tld" prefix="pz" %
<U@taglib uri="es.tld" prefix="es" %

<pz: cont ent Sel ect or id="docs"

rul e="Prem er Cust oner Spot | i ght "

cont ent Home="<%-Cont ent Hel per . DEF_DOCUMENT_MANAGER_HOMVE %" />

2-12 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

<es: forEachl nArray array="<%docs%" id="aDoc"
type="com bea. p13n. content. Content ">
The docunent title is: <cmprintProperty id="aDoc"
name="Title" encode="htm" />
</ es: forEachl nArray>
</ ul >

You can also use the Advisor bean directly to match content to users. For more
information, see “Matching Content to Users with the Advisor Session Bean” on page
2-17.

Creating Personalized Applications with the
Advisor Session Bean

Java developers can work directly against the Advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean.

Note: See the WebLogic Personalization Server Javadoc API documentation for
more information about using the session bean to create personalized
applications.

The following steps provide a general overview of the process involved for an
application to get content recommendations from the Advisor.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
AdviceRequest object.

Note: You must provide this method with the uri representing the request. The
Adpvisor uses the uri prefix to determine which Advislet to invoke.

3. Set the required and optional attributes for the AdviceRequest object.

4. Call the Advisor’s get Advi ce method.

Guide to Building Personalized Applications ~ 2-13

2 Creating Personalized Applications with the Advisor

The Advisor calls the best Advislet to make the recommendation. The Advislet
determines the recommendations and the Advisor then passes the resultant
Advi ce object back to the application.

The Advisor uses the Advislet Registry to choose the Advislet to invoke.

5. The personalized application extracts the recommendation from the Advi ce
object and uses it in the application.

When a personalized application requests advice from the Advisor, the Advisor bean
delegates the request to a registered Advislet that can handle the request. The Advisor
uses the uri prefix to determine which registered Advislet will receive the advice
request. The Advislet then makes the recommendations and returns the Advi ce object
back to the Advisor. This design encapsulates all of the advice logic into the Advislet
and allows developers to create custom Advislets for more specialized purposes.

Attributes objects act as parameters for the request. Attributes objects can be set on the
Advi ceRequest object and are associated with a St r i ng object representing the name
of the attribute.

Three Advislets are supplied with the system: Classifier Advislet, ContentQuery
Adpvislet and ContentSelector Advislet. Names for the attributes that need to be set on
the supplied Advislets are defined as static Strings in the Advi ceRequest Const ant s
interface.

Table 2-4 shows the logic the Advisor uses to determine how to map a
recommendation request to an Advislet.

Table 2-4 Mapping a URI Prefix to an Advislet

Uri Prefix Inferred Advislet
classifier Uses a rules-based inference engine to classify a user
based on rules written using the E-Business Control
Center.
cont ent sel ect or m Uses a rules-based inference engine to classify a
user.

m Determines if the user matches the classification.

m Uses a rules-based inference engine to obtain a
content query for the classification.

m Selects content based on the content query obtained.

2-14 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

Table 2-4 Mapping a URI Prefix to an Advislet (Continued)

cont ent query Performs a content attribute search on a specified
content management system.

The following sections demonstrate how to directly access the Advisor to provide the
same functionality as that provided by the JSP tags.

Classifying Users with the Advisor Session Bean

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for a classification. (See the
Javadoc API documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the
com bea. p13n. advi sor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF_NAME
constant found in the EJB Advisor Home interface may be used as the JNDI name
of the Advisor EJB Home.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object. In this case, the URI argument should be
“classifier://”.

3. Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

e HTTP_REQUEST - the request object (retrieved from
com bea. p13n. ht t pRequest . cr eat eP13NRequest (Ht t pSer vl et Reques

t)).

e HTTP_SESSI ON— the session object (retrieved from
com bea. p13n. htt pSessi on. cr eat eP13NSessi on(Ht t pSer vl et Reques

t)).

e USER- the user object (retrieved from
com bea. p13n. user ngnt . Sessi onHel per.get Profil e(Htt pServl et Re

quest)).
e TIME_INSTANT —aj ava. sql . Ti mest anp object representing now.

Guide to Building Personalized Applications 2-15

Creating Personalized Applications with the Advisor

e RULES_RULENAME_TO FI RE — (optional) the name of the segmentation rule
to fire. (For more information about customer segment rules, see Chapter 3,
“Introducing the Rules Framework,” in this guide.)

4. Call the get Advi se method on the Advisor, supplying the newly created

Advi ceRequest .

The Advisor returns an instance of Advi ce. The get Resul t method is called to
obtain the classification object. If a classification object is returned, then the
classification is considered to be t r ue. If the return value is nul | , the
classification is considered to be f al se.

Note: If the optional Advise Request parameter RULES_RULENAME TO FI RE is not

supplied, there may be multiple classifications returned for the user.

Querying a Content Management System
with the Advisor Session Bean

2-16

For content selection requirements beyond what the JSP tags provide, or to use Content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content. (See the Javadoc
API documentation for details.)

Note: Unless otherwise indicated, all classes used here reside in the

1.

com bea. p13n. advi sor package.

Look up and create an instance of the Advisor session bean. The EJB_REF_NAME
constant found in the EJB Advisor Home interface may be used as the JNDI name
of the Advisor EJB Home.

Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object. In this case, the URI argument should be
“cont ent query://”

Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

e CONTENT_MANAGER HOME (required) — the JNDI name to find a content
manager home interface.

e CONTENT_QUERY_STRI NG (required) — the query to run against the system.

Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

e CONTENT_QUERY_SORT_BY (optional) — the order in which to sort the
returned results.

e CONTENT_QUERY_MAX_| TEMS (optional) — the maximum instances to return.

4. Call the get Advi se method on the Advisor, supplying the newly created
Advi ceRequest .

5. The Advisor returns an instance of Advi ce. The get Resul t method is called to
obtain the array of Cont ent objects representing the results of the content query.

Matching Content to Users with the Advisor Session
Bean

For content selection requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content. (See the Javadoc
API documentation for details.)

Note: Unless otherwise indicated, all classes used here reside in the
com bea. p13n. advi sor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF_NAMVE
constant found in the EJB Advisor Home interface may be used as the JNDI name
of the Advisor EJB Home.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object. In this case the uri argument should be
“contentsel ector://”

3. Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

e HTTP_REQUEST — the request object (retrieved from
com bea. p13n. ht t pRequest . cr eat eP13NRequest (Ht t pSer vl et Reques

t)).

e HTTP_SESSI ON- the session object (retrieved from
com bea. p13n. htt pSessi on. cr eat eP13NSessi on(Ht t pSer vl et Reques

t)).

Guide to Building Personalized Applications ~ 2-17

2 Creating Personalized Applications with the Advisor

2-18

USER — the user object (retrieved from
com bea. p13n. user mgnt . Sessi onHel per. get Profil e(Ht t pServl et Re
quest)).

TI ME_I NSTANT —aj ava. sql . Ti mest anp object representing now.

RULES_RULENAME_TO FI RE — (optional) the name of the segmentation rule
to fire. (For more information about customer segment rules, see Chapter 3,
“Introducing the Rules Framework,” in this guide.)

CONTENT_MANAGER_HOME (required) — the JNDI name to find a content
manager home interface.

CONTENT_QUERY_STRI NG (required) — the query to run against the system.

CONTENT_QUERY_SORT_BY (optional) — the order in which to sort the
returned results.

CONTENT_QUERY_MAX_| TEMS (optional) — the maximum instances to return.

4. Call the get Advi se method on the Advisor, which supplies the newly created
Advi ceRequest .

5. The Advisor returns an instance of Advi ce. The getResult method is called to
obtain the array of Cont ent objects representing the recommendation.

Guide to Building Personalized Applications

CHAPTER

3

Introducing the Rules

Framework

Rules Management forms a key part of the personalization process by prescribing a
flexible and powerful mechanism for expressing business rules. The business logic
encompassed by these rules allows robust delivery of personalized content marketed
specifically to each end user type.

This topic includes the following sections:

m What Is the Rules Manager?

Well-known Objects

How the Rules Engine Works
What Are Rule Sets?
Deploying Rule Sets
Classifier Rules

Content Selector Rules

Debugging Rule Sets

m Configuring the Rules Framework

Rules Engine Expression Validation

Rules Engine Error Handling and Reporting
Rules Engine Listeners

Rules Engine Expression Caching Optimizations

Rules Parser

Guide to Building Personalized Applications

3-1

3

Introducing the Rules Framework

What Is the Rules Manager?

WebLogic Personalization Server offers a robust personalization solution through a set
of components that provide edit-time and run-time services for delivering personalized
content to end users while browsing a Web site. These personalization components use
business rules to match users and groups with appropriate content. The logic
encompassed by the rules forms a critical piece of the personalization process.

1. The Rules Management Framework in WebLogic Personalization Server provides
editing, deploying, and run-time capabilities for providing personalized content
based on externalized rules. This component includes two major parts: an edit-time
GUI that allows Business Analysts to define and deploy business rules, and a
run-time service for evaluating defined business rules.

2. The Rules Manager EJB is a scalable, stateless J2EE entry point into the
underlying BEA Rules Engine. It provides the run-time services necessary to
execute the business rules defined in the E-Business Control Center.

Rules are created in the E-Business Control Center. This GUI tool is designed to allow
Business Analysts to develop their own content selector rules and classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you will see
content selector rules called simply “content selectors” and classifier rules referred to
as “customer segments.”

Business rules can by dynamically loaded or modified from the E-Business Control
Center into a running server. This allows the Business Analyst to modify the site’s flow
and logic, and reduces their reliance on programmers.

Well-known Objects

3-2

The Rules Management component uses several well-known objects during the rule
evaluation process:

m Tl ME_I NSTANT: A well-known object in the rule editor, of type
com bea. p13n. xm . schena Ti nel nst ant
that corresponds to the instant of a user request.

Guide to Building Personalized Applications

What Is the Rules Manager?

m User: For each call to the rules engine, a single User object will be provided
for use by the rules. User has a fixed schema, determined dynamically at edit
time by calling the User Management component. Given that the User might
have a Nuner i ¢ schema attribute called age, a valid rule condition might be:
User.age > 35.

m Request : This object is used in the same way as the User object. The Request
properties are defined in a default property set. This object encapsulates the
information that is available from the Ht t pSer vl et Request . (For more
information, see “Default Request Property Set” on page 6-3 in the “Foundation
Classes and Utilities” topic of this guide.)

m Sessi on: This object is used in the same way as the User object. The Sessi on
properties are defined in a default property set. This object encapsulates the
information that is available from the Ht t pSessi on. (For more information, see
the “Default Session Property Set” on page 6-5 in the “Foundation Classes and
Utilities” topic of this guide.)

Guide to Building Personalized Applications 3-3

3 Introducing the Rules Framework

Figure 3-1 The Rules Framework

JSP Client

P13N Tag Library

getAdviceAdvice Request) R
Java Client

¥
Advisor
Framework

RAdvisor

evalugte Ruleset (Object[], Filter)

Rules Advislet

Business Rule
Authoring Tools)

. .
E-Business Control [Stateless Rule Set Evaluation J
Center Rule Set Synchronization
(Server)
{RulesManager Stateless Session EJB)
Save to Filesystem
1 5 Context Cache
Master Data Repository (per EJB instance with the
Fule Set XML Enterprize App)
Documents t
getRule St
k | Rule Set Repository 1 -
Rule & BEA Rules Engine
ule Set R S i s =
Rule $Et . Synchronization AuleSet Cach
Synchronization - - sleset Lache
(Client) [per Enterprise App)

How the Rules Engine Works

The Rules Engine functions by applying a set of rules to objects in working memory.
This working memory is first populated with input from the calling objects, such as the
user profile request session, among other things. In this way, a representation of the
user’s profile exists in working memory before any rules are actually fired.

34 Guide to Building Personalized Applications

What Is the Rules Manager?

Rules can be executed only within a context. The context associates a rule set with
working memory. The context provides an interface to the Rules Engine that controls
the relationship between the rule part of the application and the working memory.

This working memory is operated on by the production rules, which are contained in
rule sets. The left-hand sides (LHS) of these rules are evaluated against the objects in
the working memory. If the patterns on the LHS are matched, then the actions
contained in the right-hand side (RHS) of the rules are performed. Some of these
actions may add new objects into the working memory. For example, if our Classifier
rule tests for USER. age > 45, then we might add anew O assi fi cat i on object into
working memory.

The production system is executed by performing the following operations:

1. Match: Evaluates the LHSs of the rules to determine which are satisfied given the
current contents of working memory.

2. Conflict resolution: Selects one rule with a satisfied LHS. If no rules have
satisfied the LHSs, halts the interpreter.

3. Act: Performs the actions in the RHS of the selected rule.
4. Gotostep 1.

Rules will continue to operate on the working memory until the conflict resolution set
is zero (that is, no more rules can fire).

After the Rules Engine has halted, the rules manager component returns a list of
objects remaining in working memory. A likely scenario will have an object remaining
of the type “Classification” or “ContentQuery.”

The Rules Manager will then iterate over these remaining objects and filter them using
an optional Object filter. The filter can selectively ignore objects or mutate them.

What Are Rule Sets?

The BEA WebLogic Personalization Server provides two rule sets that act as
containers for the rules created in the E-Business Control Center: the global
classifications rule set and the global content selectors rule set.

Guide to Building Personalized Applications 3-5

3

Introducing the Rules Framework

Rules within a rule set may refer to any properties. In general, you should not change
or delete properties if a rule refers to it. Adding properties does not affect existing
rules.

Deploying Rule Sets

Rules sets are represented as XML files that can be read and edited by the E-Business
Control Center. In order to propagate Rule Set changes that have been made in the
E-Business Control Center, the corresponding Rule Set XML documents must be
synchronized with the target application. In order to do so, the Rules Framework takes
advantage of the WebLogic Personalization Server’s Data Synchronization
Framework. For more information about the data synchronization frameset, see the
topic “Synchronizing Application Data” in theDeployment Guide.

When a user decides to deploy Rule Set changes from the E-Business Control Center
to an application, the Data Synchronization Framework propagates Rule Set XML
document updates to a Rules Manager instance within the target application. The Rules
Manager parses the new Rule Set XML document into a binary representation
understood by the BEA Rules Engine, and thereafter, application calls to the Rules
Manager will use the new Rule Sets during rule execution.

It is important to note that the Rules Set XML documents that are managed by a
particular instance of the Rules Manager are scoped to that application. That is,
changes to Rule Sets are only seen by the target application and not by any other
applications.

It is also important to note that changes to Rule Sets are immediate, and unlike
previous WebLogic Personalization Server release, the Rules Manager no longer relies
upon a time-to-live in order to propagate Rule Set changes throughout a cluster.

Classifier Rules

3-6

Classifier rules are created in the E-Business Control Center. For information and
instruction on creating classifier rules (called “customer segments” in the E-Business
Control Center), see the topic “Using Customer Segments to Target High-Value
Markets” in the Guide to Using the E-Business Control Center.

Guide to Building Personalized Applications

What Is the Rules Manager?

Classifier rules dynamically categorize users into groups (user segments). A classifier
rule determines if a user profile meets a set of conditions and places the user in a
category based upon the result. Essentially, if the user profile meets the conditions, it
is classified according to the classifier rule; if it does not meet the classification
conditions, the user profile is not included in the classification group.

The following examples use pseudo-code to illustrate the logic involved in processing
a classifier rule. Note the implicit and between the rule phrases.

This rule classifies a user who is male and is accessing the site between December 1
and December 26:

Cl assifier Ml eChri st nasShopper

If User has the follow ng characteristics:
User.gender == “male” or “M
and Date > 12/1 AND Date < 12/26

This rule classifies a user whose annual income is over one hundred thousand dollars:

Cl assifier Hi ghEarner
If User has the follow ng characteristics:
User.incone > 100000

Classifier rules are the building blocks of more complicated rules. Content selector
rules can use classifier rules as they select personalized content to match a user or
group profile. (See “Content Selector Rules” below.)

Use the <pz: di v> JSP tag to execute a classifier rule in a JSP page. For a complete
listing, see “<pz:div>"" on page 13-34 in the “JSP Tag Library Reference” topic of this
guide.

The AND and OR operators

Figure 3-2 shows an example of clauses ANDed and ORed together. By default, all
clauses in a rule are ANDed together.The OR operator is applied to nested (indented)
child clauses below the OR operator. In that case, the nested statements are ORed, and
ANDed to clauses not nested around them. This simple illustration uses pseudo-code,
and does not represent the actual XML used to represent these rules.

Guide to Building Personalized Applications 3-7

Introducing the Rules Framework

Figure 3-2 AND and OR Example

If Date > l1Z/31/7%

(or]
User.income = 100,000
Time < 1l2:00 AM

These two phrases are ORed.

By default, these clauses are AMNDed.

Content Selector Rules

3-8

Content selectors are created in the E-Business Control Center. For instructions on
using the GUI tool to create content selectors, see the E-Business Control Center
online help. A copy of the information presented in online help is available on the
e-docs Web site—see the topic “Retrieving Documents with Content Selectors” in the
Guide to Using the E-Business Control Center.

Content selector rules invoke rule-based content queries that return content based on
the user profile. This type of rule may use references to classifier rules to define it. It
also produces dynamic queries at runtime to select content from a document collection.

The power of producing dynamic queries that match content with user profiles allows
content selectors to deliver highly customized content to end users. Since content
selector rules can use queries to select content based on run-time parameters, they
allow the system to match personalized content to user profiles.

Note: Although a profile may meet the criteria of a content selector rule, the rule may
not return any content objects. Why? If no content matches the query’s criteria,
the query cannot return a content object.

You can use the <pz: cont ent Sel ect or > JSP tag to invoke content selector rules in
JSP pages. (For a complete listing, see “<pz:contentSelector>" on page 13-29 in the
topic “JSP Tag Library Reference” in this guide.)

For an in-depth look at using content selectors, see Chapter 4, “Working with Content
Selectors,” in this guide.

Guide to Building Personalized Applications

What Is the Rules Manager?

Debugging Rule Sets

Note: The underlying structure of the Rules Engine has been enhanced for
WebLogic Personalization Server release 4.0. If you have created rules and
rule sets in previous versions of this product, please see the Migration Guide
for additional information.

What Is the Relationship Between Property Sets and Rules?

You might notice that a rule set you have used in the past begins to function
incorrectly. This behavior is probably due to a change in the property set with which
the rule set has a relationship.

Rules rely on property sets to provide the properties they use to evaluate user and group
profiles. If a property is modified after a rule that uses it has been created, rules may
contain dangling references to properties that no longer exist or that have been
changed.

As much as possible, you should avoid modifying properties after defining rules that
rely upon them. Since the property set defines the schema for the properties the rules
actupon, any change to the properties the rules use will affect the schema and may alter
the validity of the rules. In general, be careful when modifying or deleting existing
properties.

Note: You can add properties without affecting existing rules.

Content Type and Content Selector Rules

Another problem can occur when you change a content’s metadata types after creating
a content selector rule based on that content type’s metadata. Remember that the
content selector rule relies upon metadata to locate content. If you change content
metadata and a content selector rule references the previous metadata, the rule will not
work correctly.

Guide to Building Personalized Applications 39

3 Introducing the Rules Framework

Configuring the Rules Framework

The various components of the Rules Framework are configured with an external
configuration file called r ul es. properti es. This file resides in the p13n_uti |l . j ar
JAR file (within the cont bea/ p13n/ r ul es directory) that can be found in the root
directory of any WebLogic Personalization Server application. This section explains
each of the configuration properties that can be set in this file.

Note: Changes to the rul es. properti es file are only seen by the application in
which the file resides. That is, this configuration file is scoped to the
application. This makes it possible to configure the Rules Framework
differently for different applications.

Rules Engine Expression Validation

Ifthis property is set to t r ue, the BEA Rules Engine will validate all Rules expressions
(both conditions and actions) exactly one time. This property may be set to t r ue
during development and testing for additional expression validation.

#it

Rul es engi ne expression validation:

#

If this property is set to true, the rul es engine
will validate expressions the first tinme they are
execut ed.

#it

rul es. engi ne. expressi on. val i dat i on=f al se

Rules Engine Error Handling and Reporting

The following two properties determine the type of exceptions that will be propagated
to the user during Rules Engine execution. If the
rul es. engi ne. t hr ow. expr essi on. except i ons parameter is set to f al se, no

3-10 Guide to Building Personalized Applications

Configuring the Rules Framework

exceptions will be propagated, and any condition expression that generates an
exception will evaluate to false. Otherwise, all exceptions, except those listed with the
rul es. engi ne. i gnor abl e. except i ons parameter, will be propagated to the user.

##

Rul es engi ne pattern expression execution error handling:

#

rul es. engi ne. t hrow. expressi on. excepti ons

#

If this property is set to true, pattern expression

execution exceptions will be thrown. OQtherw se, a pattern

expression exception will cause the pattern condition to

evaluate to fal se.

#

Defaults to true.

#

rul es. engi ne. t hrowabl e. exceptions (list of class names)

#

If the previous property is set to true, expression exceptions
wi th enbedded exceptions of a type other than the |listed cl asses
wll be thrown. If no class types are specified, all expression
exceptions will be thrown.

#

Defaults to all exception class types.

#H#

rul es. engi ne. t hr ow. expr essi on. excepti ons=true
rul es. engi ne. i gnor abl e. excepti ons=j ava. | ang. Nul | Poi nt er Excepti on

Rules Engine Listeners

This is an internal property and should not be modified.

##

Rul es engine startup rule event listeners (list of class nanes).
##

rul es. engi ne.startup.|isteners=

Guide to Building Personalized Applications ~ 3-11

3 Introducing the Rules Framework

Rules Engine Expression Caching Optimizations

This is an internal property and should not be modified.

#it
Rul es engi ne expression optim zations:

0 => No expression optimn zations.
1 => Local expression optimzations.
2 => d obal expression optim zations.

Defaults to O.
#

HHHFHHFHHHR

rul es. engi ne. expressi on. opti m zati ons=2

Rules Parser

The following are internal properties and should not be modified.

#i#

Rule Set Parser Node Support d asses

#

This property supports a comm-delinmted |ist of classes

extendi ng the base AST NodeSupport class. Such classes

provide node creation support for rul es-schema nanmespaces

required for constructing the internedi ate AST representing a
given Rul eSet instance.

#

Al NodeSupport subcl asses nmust co-exist peacefully with the
required CoreNodeSupport instance.

#it

par ser. node. support.|ist=\
com bea. p13n. expressi on. i nternal . parser.expression.
Expr essi onNodeSupport, \
com bea. p13n.rul es.internal . parser.w cs. WcsNodeSupport, \
com bea. p13n. cont ent. query. Cont ent Quer yNodeSuppor t

##

Rule Set Parser Transform Visitor C ass

#

This property specifies the ExpressionTranfornVisitor or
subclass to be used for internedi ate AST-to- Rul eSet

transformations.

3-12 Guide to Building Personalized Applications

Configuring the Rules Framework

#
##

parser.transfornme\
com bea. pl3n.rules.internal.parser.w cs. WcsTransfornVi sitor

Guide to Building Personalized Applications ~ 3-13

3 Introducing the Rules Framework

3-14 Guide to Building Personalized Applications

CHAPTER

Working with Content
Selectors

A content selector is one of several mechanisms that WebLogic Portal provides for
retrieving documents from a content management system. A document is a graphic, a
segment of HTML or plain text, or a file that must be viewed with a plug-in. (We
recommend that you store most of your Web site’s dynamic documents in a content
management system because it offers an effective way to store and manage
information.)

Using content selectors, a Business Analyst (BA) can specify conditions under which
WebLogic Portal retrieves one or more documents. For example, a BA can use a
content selector to encapsulate the following conditions: between May 1 and May 10,
if a Gold Customer views this page, find and retrieve any documents that describe
sailing along the Maine coast.

A Business Analyst uses the BEA E-Business Control Center to define the conditions
that activate a content selector and to define the query the content selector uses to find
and retrieve documents. Then, a Business Engineer (BE) uses content selector JSP tags
and a set of other JSP tags to retrieve and display the content targeted by the content
selector.

This topic includes the following sections:

m What Are Content Selectors?

m Using Content-Selector Tags and Associated JSP Tags
m How Content Selectors Select Documents

For a comparison of content retrieval methods available with WebLogic
Personalization Server, see “Methods for Retrieving and Displaying Documents” on
page 9-5.

Guide to Building Personalized Applications 4-1

4 Working with Content Selectors

For a technical discussion of content management in the WebLogic Personalization
Server, see the topic “Creating and Managing Content” in this guide.

What Are Content Selectors?

4-2

Content selectors consist of the following elements:

m A set of conditions that determine when the content selector queries the content
management system. The conditions can use the profile of the customer who is
currently viewing a JSP page, properties from the user or session objects, or the
current date/time. For a complete list of conditions, see the section “Conditions
That Activate Content-Selector Queries,” in the topic “Retrieving Documents
with Content Selectors” in the Guide to Using the E-Business Control Center.

BAs create and modify the set of conditions in the E-Business Control Center.

m A query that searches the content management system for one or more
documents.

BAs create and modify the query in the E-Business Control Center.

m A JSP tag that triggers the content selector to evaluate its conditions. The
content selector JSP tag includes attributes that BEs can use to tune the
performance of the content selection process. BEs use the JSP tags.

m A data object that WebLogic Personalization Server creates to contain the results
of the query. Within the data object, WebLogic Personalization Server creates a
list of individual data items (an array); the contents of each document in the data
object is a separate item in the array. You can access the array only from the
current JSP page, and only for the customer request that created it.

To extend the availability of the data in the array, BEs can add attributes to the
content selector JSP tag that cause WebLogic Portal to store the array in a cache.
BEs can specify whether the scope of the cache applies to the application,
session, page, or request.

To display the documents that are in the array (or the cache), a BE must use the
<es: f or Eachl nArr ay> tag. Depending on the scope of the cache, a

<es: f or Eachl nArr ay> can access a content-selector cache that WebLogic Portal
created for another page and/or for another user.

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

Using Content-Selector Tags and Associated
JSP Tags

To use the content selector features on a given JSP, a BE must add calls to the content
selector JSP tag and a set of associated tags.

This section contains the following subsections:

m Attributes of the <pz:contentSelector> Tag

m Associated Tags That Support Content Selectors

m Common Uses of Content-Selector Tags and Associated Tags

For more information about the tags discussed here, see the topic “Personalization
Server JSP Tag Library Reference” in this guide.

Attributes of the <pz:contentSelector> Tag

While BAs use the E-Business Control Center to configure the dynamic properties of
a content selector, a BE uses attributes of the content selector tag to do the following:

m [dentify the Content Selector Definition

m [dentify the INDI Home for the Content Management System
m Define the Array That Contains Query Results

m Create and Configure the Cache to Improve Performance

For a complete list and description of all content-selector attributes, see
“<pz:contentSelector>" on page 13-29 in the topic “Personalization Server JSP Tag
Library Reference” in this guide.

Guide to Building Personalized Applications 4-3

4 Working with Content Selectors

Identify the Content Selector Definition

The content selector definition that a BA creates in the E-Business Control Center
determines the conditions that activate a content selector and the query that the active
content selector runs.

To refer to this definition, you use the r ul e attribute:
<pz:contentSel ector rule= { definition-name | scriptlet } >

You can use a scriptlet to determine the value of the r ul e attribute based on additional
criteria. For example, you use a content selector in a heading JSP (headi ng. i nc),
which is included in other JSPs. A BA creates different content selectors for each page
that includes headi ng. i nc.

The BE uses a scriptlet in headi ng. i nc to provide a value based on the page that
currently displays the included JSP file. For example,

<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "cs_top_generic" : banner;

%

<tabl e wi dt h="100% border="0" cell spaci ng="0" cel | paddi ng="0" hei ght="108">

<tr><td rowspan="2" wi dt h="147" hei ght="108">
<pz:content Sel ector rul e="<% banner %" ... />

</td>

Identify the JNDI Home for the Content Management System

The content selector tag must use the cont ent Horre attribute to specify the JINDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the Cont ent Hel per class, you must first use the
following tag to import the class into the JSP:

<%@ page i nport="com bea. p1l3n. cont ent. Cont ent Hel per " %

Then, when you use the content selector tag, specify the cont ent Horre as follows:

4-4 Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

<pz: cont ent Sel ect or
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT _MANAGER_HOMVE %"

/>

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

Define the Array That Contains Query Results

You can use the following attributes to configure the array that contains the results of
the content-selector query:

i d, which specifies a name for the array. This attribute is required.

For example, <pz: cont ent Sel ector id="docs" .../>places documents in
an array named docs.

max, which limits the number of documents the content selector places in its
array.

For example, <pz: cont ent Sel ect or nmax="10" .../ > causes the content
selector to stop retrieving documents when the array contains 10 documents.

This attribute is optional and defaults to - 1, which means no maximum.

sort By, which uses one or more document attribute to sort the documents in the
array. The syntax for sort By follows the SQL order by clause syntax.

This attribute is optional. If you do not specify this attribute, the content selector
returns the query results in the order that the content management system returns
them.

For example, <pz: cont ent Sel ect or sortBy="creationDate" .../>
places the documents that were created first at the beginning of the array.

The tag

<pz:content Sel ector sortBy="creationDate ASC, title DESC' .../>
places older documents at the beginning of the array. If any documents were
created on the same day, it sorts those documents counter-alphabetically by title.

Guide to Building Personalized Applications 4-5

4 Working with Content Selectors

Create and Configure the Cache to Improve Performance

4-6

To extend accessibility of retrieved content, and to improve performance, you can
optionally use content-selector attributes to create and configure a cache that contains
the array contents. Without the cache, you can access the content-selector array only
from the current JSP page, and only for the customer request that created it. In addition,
each time a customer requests a JSP that contains the content selector tag, the content
selector must run the query, potentially slowing the overall performance of WebLogic
Personalization Server. To cache the contents of the array, use the following attributes:

m useCache, which determines whether the content selector places the array in a
cache. To activate the cache, set this attribute to t r ue. For example,
<pz: content Sel ector cache="true" ...>.

To deactivate the cache, set the attribute to f al se or do not include it. For
example, the following statements are equivalent:

<pz: content Sel ector cache="false" .../>or

<pz:content Sel ector .../>

m cachel d, which assigns a name to the cache. If you do not specify this attribute,
the cache uses the name of the array (which you must specify with the i d
attribute). If you want to access the cache from a JSP or user session other than
the one that created the array, you must specify a cachel d.

m cacheTi neout , which specifies the number of milliseconds that WebLogic
Personalization Server maintains the cache. The content selector does not re-run
the query until the number of seconds expires.

For example, you create the following tag:
<pz: content Sel ector cache="true" cacheTi neout ="300000" .../>

A customer requests the page that contains this content selector tag. The user
leaves the page but, 2 minutes (120000 milliseconds) later, requests it again. The
content selector evaluates its conditions, but because only 120000 milliseconds
have expired since the content selector created the cache, it does not re-run the
query. Instead, it displays the documents in the cache.

m cacheScope, which determines from where the cache can be accessed. You can
provide the following values for this attribute:

e application. Any JSP page in the Web application that any customer
requests can access the cache.

e sessi on (the default). Any JSP in the Web application that the current
customer requests can access the cache.

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

e page. Only the current JSP that any customer requests can access the cache.

e request. Only the current user request can access the cache. If a customer
re-requests the page, the content selector re-runs the query and recreates the
cache.

Associated Tags That Support Content Selectors

The following JSP tags support content-selector functions:

m <um get Profi | e>, which retrieves the profile of the customer who is currently
viewing the page. A content selector uses the customer profile to evaluate any
conditions that involve customer properties.

For example, if you create a content selector that runs a query for all customers
in the Gold Customer customer segment, the content selector must access the
customer profile to determine if it matches the customer segment.

Even if a content selector does not currently use the customer profile for its
conditions, we recommend that you include the <um get Pr of i | e> tag; its affect
on performance is minimal and with the tag, a BA can add customer-profile
conditions to the content selector without requiring a BE to modify JSPs.

The tag must be located closer to the beginning of the JSP than the content
selector tag.

m <es: f or Eachl nAr r ay>, which iterates through the array that contains the
results of a content-selector query. With this tag, you can use the following to
work with the documents in the array:

e The System out. pri nt| n method to print each item in the array.

e The <cm get Propert y> tag to retrieve one or more attribute of the
documents in the array. You can use the attributes to construct the HTML
that a browser requires to display the documents. For example, you use the
<cm get Proper t y> tag to determine the value of a M ME- t ype attribute. If
the MIME-type of a document in the array is an image, you print the HTML
<i ng> tag with the appropriate attributes.

You can also use attributes of the <pz: cont ent Sel ect or > tag, such as
sor t By, to work with the attributes of documents in the array. For more
information, see “Attributes of the <pz:contentSelector> Tag” on page 4-3.

Guide to Building Personalized Applications 4-7

4 Working with Content Selectors

e The <cm pri nt Property> to print one or more attribute of the documents
in the array. For example, you can use this tag to print a list of document
titles that the content selector retrieves.

Common Uses of Content-Selector Tags and Associated
Tags

The combination of content selector definitions, tag attributes, and associated JSP tags
creates a powerful set of tools for matching documents to customers in specific
contexts. The following tasks are the most common uses of content selectors and
associated tags:

m To Retrieve and Display Text-Type Documents
m To Retrieve and Display Image-Type Documents
m To Retrieve and Display a List of Documents

m To Access a Content-Selector Cache on a Different JSP

To Retrieve and Display Text-Type Documents

Note: This section assumes that the content selector query that the BA created in
E-Business Control Center includes a filter to retrieve only text documents.

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page i nport="com bea. p13n. cont ent. Cont ent Hel per " %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="pz.tld" prefix="pz" %
<U@taglib uri="umtld" prefix="unt %

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um get Profil e>

4-8 Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you use in the next step.

4. Add the following tags, where Spri ngSai | i ng is the name of the content
selector that a BA created in the E-Business Control Center:

<pz:content Sel ector rul e="SpringSailing"

cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT _MANAGER_HOMVE %"
i d="t ext Docs"/ >

<es: forEachl nArray array="<%text Docs%" i d="aText Doc"
type="com bea. pl3n. content. Content">

<p><cm print Doc id="aText Doc"/></p>

</ es: forEachl nArray>

Note: The above tags assume that the content selector query that the BA created
in the E-Business Control Center includes a filter to retrieve only text
documents. To verify the content type before you display it, you can
surround the <% " <P>" + aText Doc + "</ P>" % scriptlet with another
scriptlet. For example:

<% if (aTextDoc.getM neType().contains("text") !=-1)
{
%
<p><cm printDoc id="aTextDoc"/></p>
<%
}
%

5. Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to
expire before deploying any changes. For more information about setting the
page-check interval, see the Performance Tuning Guide.

To Retrieve and Display Image-Type Documents

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

Guide to Building Personalized Applications 4-9

4 Working with Content Selectors

4-10

<%@ page i nport="com bea. p13n. cont ent. Cont ent Hel per " %
<U@taglib uri="pz.tld" prefix="pz" %
<Ug@taglib uri="umtld" prefix="unl %
<U@taglib uri="cmtld" prefix="cni %

. Add the following tag to get the customer profile, if the tag is not already in the

JSP:
<um get Profil e>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you create in the next step.

. Add the following tags, where Spri ngSai | i ng is the name of the content

selector that a BA created in the E-Business Control Center:

<pz: content Sel ector rul e="SpringSailing"
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUVMENT_MANAGER HOMVE %"
i d="1nmageDocs"/ >

<es: forEachl nArray array="<%Il mageDocs%" i d="anl nageDoc"
type="com bea. p13n. content. Content">

<i ng src="ShowDoc/ <cm print Property
i d="anl mageDoc" name="identifier" encode="url"/>"
</ es:forEachl nArray>
Note: The above tags assume that the content selector query that the BA created
in E-Business Control Center includes a filter to retrieve only image

documents. To verify the content type before you display it, you can
surround the <i ng> tag with a scriptlet. For example:

<% if (anl mageDoc .getM nmeType().contains("inmage"))

{
%
<i ng src="ShowDoc/ <cm print Property
i d="anl mageDoc" name="identifier" encode="url"/>">
}
%

Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

expire before deploying any changes. For more information about setting the
page-check interval, see the Performance Tuning Guide.

To Retrieve and Display a List of Documents

1.
2.

Open a JSP in a text editor.

Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<% page i nport="com bea. p13n. cont ent. Cont ent Hel per" % <%@
taglib uri="es.tld" prefix="es" %

<U@taglib uri="pz.tld" prefix="pz" %

<U@taglib uri="umtld" prefix="um %

Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um get Profil e>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you create in the next step.

Add the following tags, where Spri ngSai | i ng is the name of the content
selector that a BA created in the E-Business Control Center:

<pz:content Sel ector rul e="SpringSailing"
cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_NMANAGER _HOME %"
i d="docs"/>

<es:forEachl nArray array="<%docs%" id="aDoc"
type="com bea. p13n. content. Content ">

<l i >The document title is: <cmprintProperty id="aDoc"
nane="Titl e" encode="htm" />

</ es:forEachl nArray>

</ ul >

Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to

Guide to Building Personalized Applications ~ 4-11

4 Working with Content Selectors

expire before deploying any changes. For more information about setting the
page-check interval, see the Performance Tuning Guide.

To Access a Content-Selector Cache on a Different JSP

4-12

1.

In a text editor, open the JSP page that contains the content selector tag. For
example, you want to cache the results of the following tag:
<pz:content Sel ector rul e="SpringSailing" id="docs".../>

Add attributes to the content selector tag as follows:

<pz: content Sel ector rul e="SpringSailing"

cont ent Hone="<%Cont ent Hel per. DEF_DOCUVMENT_MANAGER HOME %"
i d="docs"

useCache="true" cachel d="SpringSailingDocs"
cacheTi meout =" 120000"

cacheScope="application" />

These attributes create a cache that WebLogic Portal maintains for 2 minutes
(120000 milliseconds) and that can be accessed using the name

SpringSai | i ngDocs by any user from any page in the Web application. For
more information about possible values for cacheScope, see “Create and
Configure the Cache to Improve Performance” on page 4-6.

Save and deploy the JSP.
In a text editor, open the JSP from which you want to access the cache.

Use a content-selector tag that is identical to the tag you created in step 2. For
example, on the current JSP, add the following tag:

<pz: content Sel ector rul e="SpringSailing"

cont ent Hone="<%=Cont ent Hel per. DEF_DOCUVENT_MANAGER HOMVE %"

i d="docs"

useCache="true" cachel d="SpringSailingDocs"

cacheTi meout =" 120000"

cacheScope="application" />

Save and deploy the JSP.

Guide to Building Personalized Applications

How Content Selectors Select Documents

How Content Selectors Select Documents

When a user requests a JSP that contains a content selector tag, the following process
occurs:

1. The content selector tag contacts the Advisor.

Note: For information about the Advisor, see Chapter 2, “Creating Personalized
Applications with the Advisor.”
For information about the Rules Engine, see Chapter 3, “Introducing the Rules
Framework.”

2. The Advisor forwards the content-selector request to the Rules Manager via the
Rules Advislet.

3. The Rules Manager finds the corresponding content-selector definition and
invokes the Rules Engine to evaluate the content selector’s conditions.

4. Depending on the conditions that are defined for the content selector, the Rules
Engine refers to any of the following:

e The profile of the user who requested the JSP to determine if the user
matches a customer segment or some other attribute that conditions in the
content selector specify.

e The HTTP Request and/or the HTTP Session attributes

e The system clock to determine if the current time or date matches any time
or date that conditions in the content selector specify.

5. If any of the conditions are met, the Rules Engine returns the content selector’s
query to the Advisor via the Rules Manager.

6. The Advisor forwards the query to the content management system via the
Content Query Advislet.

7. The Advisor stores any query results in an array that only the current JSP can
access. You can specify that the Advisor stores the results in a cache and that the
cache is accessible beyond the current JSP invocation. For more information, see
“Create and Configure the Cache to Improve Performance” on page 4-6.

Note that you must use other tags to display the documents that are in the array.

Guide to Building Personalized Applications 4-13

4 Working with Content Selectors

Figure 4-1 How Content Selectors Select Documents

J5F

< pEicontentielector
name="5pringiailing
id=""Springhocs™ >

Springhocs
array

i _/‘Hx.\

7

Content Manageme

h Systemn .‘
W

Advisor
| F{ulgs Content < 5
Advislet Cluery
Aiyizlet HTTF Request

I
| —
2 5

Fules Manager i HTTF Session

Usar Profile

3
¥

Rules Engine Events Service
Spring3ailing II.’ Event 1
conditions 4 \ hehaviar
+ +
_j% User

aystem Clock

4-14 Guide to Building Personalized Applications

CHAPTER

S

Using the Expression

Package

This topic illustrates how to use the services of the Expression Package. Any

arithmetic, boolean, relational or conditional statement can be represented in the Java
object model by using an Expression Package. You can use the Expression Package to
dynamically assemble and evaluate your own business logic.

This topic includes the following sections:

m Introducing the Expression Package

What Is the Expression Package?

The Package Structure for the Expression Package

m Assembling and Managing Expressions

Maintaining Parent-child Relationships

Managing the Expression Cache

m Expression Package Operators

Operator Inheritance Hierarchy
Basic Language Operators
Logical Operators

String Operators

Mathematical Operators
Comparative Operators

Collection Operators

Guide to Building Personalized Applications

5-1

S Using the Expression Package

Working with Expressions

e The Expression Factory

e Expression Package Services

Code Examples

e Stateful Evaluation of a Simple Expression

e Stateful Evaluation of an Expression Containing Variables

e Stateless Validation and Evaluation of an Expression Containing Variables

o Stateful Validation and Evaluation of an Expression Containing Variables

Expression Package Configuration Settings

Introducing the Expression Package

The Expression Package allows users to dynamically assemble and execute Java-based
expressions. The package defines a set of Java classes that represent various types of
expression operators, and contains services for evaluating expressions consisting of
instances of these operators.

What Is the Expression Package?

The Expression Package includes a base Expression class, a Variable class, and the
following operator classes for operating on Expressions and Variables:

Basic language operators (object creation, method call, etc.)
Logical operators

Comparative operators

Collection operators

Mathematical operators

String operators

5-2 Guide to Building Personalized Applications

Introducing the Expression Package

The Expression Package also includes the following services for operating on
expressions:

®m Uni fi er—prepares an expression for evaluation.

m Val i dat or —validates that an expression is well-formed before evaluation.
m Optini zer—optimizes the structure of an expression before evaluation.

®m Eval uat or —evaluates an expression and returns the result of evaluation.

m Execut or—an aggregate service that combines the unification, validation, and
evaluation processes.

Unlike an expression written directly in Java and executed from within a Java program,
the Expression Package allows you to dynamically assemble and modify expressions
from within your Java programs. An expression may be modified any number of times
both before and after evaluation. When you assemble expressions using the Expression
Package you can also take advantage the advanced features of the Expression Package,
such as expression caching, validation, and optimization.

The Expression Package serves as the foundation of the BEA Rules Engine. The Rules
Engine leverages the package in order to represent and evaluate rule condition and
action expressions. Likewise, you can use the Expression Package to dynamically
assemble and evaluate your own business logic.

The Package Structure for the Expression Package

The Expression Package interfaces and abstract classes can be found in the following
package: com bea. p13n. expressi on

The Expression Package operators are organized in the following packages:
Basic language operators—com bea. p13n. expr essi on. operators

Logical operators—com bea. p13n. expr essi on. oper at ors. | ogi cal

String operators—com bea. p13n. expr essi on. operators. string
Mathematical operators—com bea. p13n. expr essi on. operators. mat h
Comparative operators—com bea. p13n. expr essi on. oper at ors. conparati ve
Collection operators—com bea. p13n. expr essi on. operators. col | ecti on

The Expression Package related classes are packaged in the p13n_uti | . j ar archive.

Guide to Building Personalized Applications 5-3

S Using the Expression Package

Assembling and Managing Expressions

Before you can begin using expressions, you must first learn how to programmatically
assemble them using the various operator classes provided in the Expression Package.

An expression is represented as a tree, where each node is another expression itself or
a plain Java object. Expression trees are assembled in a bottom-up manner; a child
expression or Java object is first created, and then added to a parent expression.

Figure 5-1 illustrates the steps required to build an expression tree.

m The first step in the expression assembly process is to create one or more child
operators or Java objects.

m Next, a parent operator is created by supplying the child operators or Java
objects to the parent operator’s constructor.

m This process of creating subexpressions continues until the entire expression is
assembled.

5-4 Guide to Building Personalized Applications

Assembling and Managing Expressions

Figure 5-1 Building an Expression Tree

Parent
Expression
* *
Child Child
Subexpression 1 * * * Subexpression M

Maintaining Parent-child Relationships

Each of the operator classes defined in the Expression Package extends a common base
class that contains the necessary logic for maintaining parent-child relationships;
therefore, you do not have to worry about maintaining these relationships while
assembling expressions. However, it is possible to modify the structure of an
expression after it has been created.

Table 5-5 shows the operators provided in the Expr essi on interface for adding,
modifying, or removing subexpressions in an expression.

Table 5-5 Methods for Building an Expression Tree

Java Method Description

addSubExpr essi on Adds a child (can be a subexpression) to an expression

object.

Guide to Building Personalized Applications 5-5

S Using the Expression Package

Table 5-5 Methods for Building an Expression Tree

Java Method Description

removeSubExpressi on Removes an object (can be a subexpression) of the

expression object.

set SubExpr essi on Replaces existing object (of an expression) by the

given object (can be a subexpression).

get SubExpr essi on Can be used to access the children of an

expression object.

get Par ent Can be used to access the parent expression of an

expression object.

See the Javadoc API documentation for more information about the
Expr essi on interface.

5-6 Guide to Building Personalized Applications

Assembling and Managing Expressions

Managing the Expression Cache

The expression interface also includes methods to manage the caching of results. The
result of evaluating an expression may be cached in each expression object. When the
cache is enabled for an expression, trying to evaluate the same expression a second
time will return the cached value.

Note: By default, caching is turned off. You may want to keep the cache turned off
for some operators, such as Met hodCal | .

Table 5-6 shows the methods provided in the Expr essi on interface to manage the
caching of results.

Table 5-6 Methods to Manage Caching of Results

Java Method Description

set CacheEnabl ed Can be used to enable or disable the cache for an
expression.

i sCacheEnabl ed Can be used to check if the cache is enabled for an
expression.

i sCached Can be used to check if a result is currently cached for

an expression.

get CachedVal ue Can be used to get the current cached result of

evaluating the expression.

See the Javadoc API documentation for more information about the Expr essi on
interface.

Guide to Building Personalized Applications 5-7

S Using the Expression Package

Expression Package Operators

The following section describes the inheritance hierarchy of the Expression Package
operators and contains detailed information on each operator class:

m Operator Inheritance Hierarchy
m Basic Language Operators

m Logical Operators

m String Operators

m Mathematical Operators

m Comparative Operators

m Collection Operators

Operator Inheritance Hierarchy

Before you start using operator classes, it is important to first understand the operator
inheritance hierarchy.

All operator classes must implement the com bea. p13n. expr essi on. Expr essi on
interface. As explained previously, the Expr essi on interface contains methods for
maintaining result caching and parent-child relationships. Rather than having each
operator implement the methods on the Expr essi on interface directly, each operator
class eventually extends from an abstract base class (Conpl exExpr essi onl npl) that
contains implementations for all Expr essi on methods.

Each operator sub-package contains an abstract base expression class that all operators
within the package extend. For example, the

com bea. p13n. expressi on. operator. | ogi cal package contains an abstract
operator base class Logi cal Oper at or from which all logical operators extend.

Finally, in order to differentiate between unary and binary operators, two interfaces,
com bea. p13n. expr essi on. oper at or . Unar yOper at or and Bi nar yOper at or,
are implemented by the corresponding operator types.

The Operator Inheritance Hierarchy is illustrated in Figure 5-2.

5-8 Guide to Building Personalized Applications

Expression Package Operators

Figure 5-2 Operator Inheritance Hierarchy Diagram

<<Interfaces:
Expression

r———-- —-— - - — = —/ = ____—|
| This class is not published in the Jawvadoc.

|
|| Abstract ComplexExpressionimp! |
| Class -

|

Lo |

Abstract
Class Operator
N / T P

CollectionCperator StringOperator

Abstract
Class

ComparativeOperator MathOperator

LogicaiCperator

Lagicaland Laogicaltot
e AN
Cancrete ~ | Concrete
Class / Class
(Operator) [Operator)
<zInterfaces= <<lnterfaces:
BinaryOperator UnaryOperator

Guide to Building Personalized Applications 5-9

S Using the Expression Package

Basic Language Operators

The com bea. p13n. expr essi on. oper at or package contains basic Java language
operators for branching, dynamic class loading, object creation and introspection, class
and object method calls, and system information retrieval.

An important class in this category is Vari abl e. This class is used to represent Java
variables, and as such, has an associated name and class type. It can be used to build
expressions that contain variables that are bound to values (of an appropriate class)
during the evaluation process (via the Uni fi er service).

Table 5-7 shows the complete list of available operators in this category.

Table 5-7 Miscellaneous Operators

Java Class Description

ClassForName Dynamically loads the class with the given name.
ClassGetName Returns the name of a given class.

If IF operator (i f -t hen- el se in Java)

Instanceof Creates a new instance of a given class.
MethodCall Invokes a method on a given object or class.
ObjectGetClass Returns the class of a given object.
ObjectHashCode Returns the hash code of a given object.
ObjectToString Returns the string representation of a given object.

SystemCurrentTimeMillis

Return the current time in milliseconds according to
the system clock.

SystemGetProperty Returns the value of the system property with a given
name.
Variable Used to represent expression variables. A variable has

an associated name and type and is bound to a value
during evaluation.

5-10 Guide to Building Personalized Applications

Expression Package Operators

Examples of Basic Language Operators

The if-then-else statement:
if (9 >8) then true else fal se;
can be represented as:

new | f (new G eat er Than(new I nteger(9), new Integer(8)),
Bool ean. TRUE, new Bool ean. FALSE) ;

Logical Operators

The com bea. p13n. expr essi on. operat or. | ogi cal package contains all the
operators necessary to construct logical (boolean) expressions.

Table 5-8 contains a list of operators in this package.

Table 5-8 Logical Operators

Java Class Description

LogicalAnd Binary Logical AND operator (&& in Java)
LogicalOr Binary Logical OR operator (| | in Java)
LogicalMultiAnd Logical AND operator (multiple &&in Java)
LogicalMultiOr Logical OR operator (multiple || inJava)
LogicalNot Logical NOT operator (! in Java)

Examples of Logical Expressions

m The boolean condition (t rue && fal se) can be represented as:

new Logi cal And(Bool ean. TRUE, Bool ean. FALSE);

m The boolean condition (true || fal se) can be represented as:

new Logi cal O (Bool ean. TRUE, Bool ean. FALSE) ;

m The boolean condition with more than one ‘&&’ operator and more than two
operands (true && true && true && fal se)can be represented as:

Guide to Building Personalized Applications 5-11

S Using the Expression Package

new Logi cal Mul ti And(new Obj ect []{Bool ean. TRUE, Bool ean. TRUE,
Bool ean. TRUE, Bool ean. FALSE}) ;

String Operators

The com bea. p13n. expressi on. operat or. st ri ng package contains operators
that perform string operations.

Table 5-9 contains a list of operators in this package.

Table 5-9 String Operators

Java Class Description

StringCharAt Returns the character at the specified index within a
string.

StringCompareTolgnoreCase Compares two strings lexicographically, ignoring case
considerations.

StringConcat Concatenates a specified string to the end of another
string.

StringContains Tests if a string contains a given sub-string.

StringEndsWith Tests if a string ends with a specified suffix.

StringEqualsIgnoreCase Compares two strings, ignoring case considerations.

StringLength Returns the length of a string.

StringLike Tests if a string contains a given sub-string, ignoring case
considerations.

StringReplace Returns a new string resulting from replacing all

occurrences of a given character with another given
character in a target string.

StringStartsWith Tests if a string starts with the specified prefix.
StringSubString Returns a new string that is a substring of a given string.
StringToLowerCase Converts all of the characters in a string to lower case.

5-12 Guide to Building Personalized Applications

Expression Package Operators

Table 5-9 String Operators (Continued)

Java Class Description
StringToUpperCase Converts all of the characters in a string to upper case.
StringTrim Removes white space from both ends of a string.

Examples of String Operators

The following statement:

String string = new String(FooBar”);
string. contai ns(“Foo");

can be represented as:

new StringContains(new String (“FooBar”), “Foo”);

Mathematical Operators

The com bea. p13n. expr essi on. oper at or . mat h package contains mathematical
operators that operate on j ava. | ang. Nunber instances. Analogs to all the operations
exposed by the j ava. | ang. Mat h class are provided in this package as well as
operators for addition, subtraction, multiplication, and division.

Table 5-10 contains a list of operators in this package.

Table 5-10 Math Operators

Java Class Description

MathAbs Operator analogous to the j ava. | ang. Mat h. abs() method.
MathAcos Operator analogous to the j ava. | ang. Mat h. acos() method.
MathAdd Mathematical addition.

MathAsin Operator analogous to the j ava. | ang. Mat h. asi n() method.
MathAtan Operator analogous to the j ava. | ang. Mat h. at an() method.
MathAtan2 Operator analogous to the j ava. | ang. Mat h. at an2() method.

Guide to Building Personalized Applications ~ 5-13

S Using the Expression Package

Table 5-10 Math Operators (Continued)

Java Class Description
MathCeil Operator analogous to the j ava. | ang. Mat h. cei | () method.
MathCos Operator analogous to the j ava. | ang. Mat h. cos() method.
MathDivide Mathematical division.
MathExp Operator analogous to the j ava. | ang. Mat h. exp() method.
MathFloor Operator analogous to the j ava. | ang. Mat h. f| oor () method.
MathleeeRemainder Operator analogous to the j ava. | ang. Mat h. | EEEr emai nder ()
method.
MathLog Operator analogous to the j ava. | ang. Mat h. | og() method.
MathMax Operator analogous to the j ava. | ang. Mat h. max() method.
MathMin Operator analogous to the j ava. | ang. Mat h. mi n() method.
MathMultiply Mathematical multiplication.
MathPow Operator analogous to the j ava. | ang. Mat h. pow() method.
MathRandom Operator analogous to the j ava. | ang. Mat h. randon{) method.
MathRint Operator analogous to the j ava. | ang. Mat h. ri nt () method.
MathRound Operator analogous to the j ava. | ang. Mat h. r ound() method.
MathSin Operator analogous to the j ava. | ang. Mat h. si n() method.
MathSqrt Operator analogous to the j ava. | ang. Mat h. sqrt () method.
MathSubtract Mathematical subtraction.
MathTan Operator analogous to the j ava. | ang. Mat h. t an() method.
MathToDegrees Operator analogous to the j ava. | ang. Mat h. t oDegr ees() method.
MathToRadians Operator analogous to the j ava. | ang. Mat h. t oRadi ans() method.
5-14 Guide to Building Personalized Applications

Expression Package Operators

Examples of Mathematical Operators

The arithmetic statement:

int a=1;
int b =2;
int ¢ =3
a+ (b-c);

can be represented as:
Integer a = new Integer(1);
Integer b = new Integer(2);

Integer c new | nt eger(3);
new Mat hAdd(a, new Mat hSubtract (b, c));

Comparative Operators

The com bea. p13n. expr essi on. oper at or. conpar at i ve package contains
operators for performing comparative operations.

Table 5-11 contains a list of operators in this package.

Table 5-11 Comparative Operators

Java Class Description

Equals Tests two objects for equality.

GreaterOrEquals Tests if one object is greater or equal to another object.
GreaterThan Tests if one object is greater than another object.
LessOrEquals Tests if one object is less than or equal to another object.
LessThan Tests if one object is less than another object.

NotEquals Tests two objects for inequality.

Example of Comparative Operators

The comparative statement:

Guide to Building Personalized Applications 5-15

S Using the Expression Package

(9 < 10)
can be represented as:

new LessThan(new I nteger(9), new Integer(10));

Collection Operators

The com bea. p13n. expr essi on. oper at or . col | ect i on package contains
operators that operate on j ava. util . Col | ecti on instances.

Table 5-12 contains a list of operators in this package.

Table 5-12 Collection Operators

Java Class Description

CollectionContains Returns true if a given collection contains a specified
element.

CollectionContainsAll Returns true if a given collection contains all of the

elements in another specified collection.

Example of Collection Operators

The following statement:

Col | ection container = new LinkedList();
bj ect el ement = new Obj ect();

cont ai ner. cont ai ns(el ement);

can be represented as:

new Col | ecti onCont ai ns(new Li nkedLi st(), new Cbject());

5-16 Guide to Building Personalized Applications

Working with Expressions

Working with Expressions

After you have assembled an expression, you are ready to work with it using the
various Expression Package services. These services allow you to prepare an
assembled expression for evaluation, validate that the expression is well-formed,
optimize its structure, and finally, evaluate the expression.

The following information is presented in this section:
m The Expression Factory

m Expression Package Services
e Unification Service
e Optimization Service
e Validation Service
e Evaluation Service

e Execution Service

The Expression Factory

The ExpressionFactory provides methods to create the various Expression Package
services and data structures used by these services.

For example, the following method will create an instance of the Val i dat or service:
Expr essi onFactory. createValidator(null);

For more detail on how to construct the various Expression Package services, see the
Javadoc API documentation.

Expression Package Services

The Expression Package offers services which can be used on any expression that is
built using the operators in the Expression Package.

Guide to Building Personalized Applications 5-17

S Using the Expression Package

Unification Service

The Uni fier is used to unify variables (assign values to variables) present in an
expression. The Uni fi er uses a data structure known as a Uni fi cati onLi st that
stores the variable name and the corresponding value of the variable. Like the

Uni fier,theUnificationLi st instances are created via the Expr essi onFact ory.
The Uni fi er gets the value from the list for a particular variable using the variable
name as a key to search the Uni fi cati onLi st, and binds the retrieved value to the
variable.

See the Javadoc API documentation for more information about the Uni fi er interface
and the Expr essi onFact ory class.

Optimization Service

The Opt i mi zer is used to optimize an expression. The default optimization algorithm
used by the Opti mi zer is shown below.

m Traverse an expression tree and add each unique subexpression to a list.

m [fa subexpression is equal to an expression present in the list, then replace it
with a proxy expression. The proxy expression delegates to the original
expression.

See the Javadoc API documentation for more information about the Opt i mi zer
interface and the Expr essi onFact ory class.

Validation Service

5-18

The Val i dat or is used to validate an expression. The default validation algorithm
used by the Val i dat or is as follows:

For each operand of an operator:
m Get the required type of the operand.

m [fthe operand is an expression, evaluate the expression and compare the type of
the result with the required type; otherwise, assert that the operand is of the
required type.

m [fthe type does not match or an error occurs during the evaluation of an operand
expression, the Val i dat or throws an | nval i dExpr essi onExcepti on . An

Guide to Building Personalized Applications

Working with Expressions

UnboundVar i abl eExcept i on is thrown if any variables in an expression are
not bound to a value.

The Val i dat or can be used in a stateless or stateful mode. In stateless mode, any
expression evaluations necessary to perform validation will be executed in stateless
mode.

For more information about stateless and stateful evaluation modes, see the
“Evaluation Service” section below.

See the Javadoc API documentation for more information about the Val i dat or
interface and the Expr essi onFact or y class.

Evaluation Service

The Eval uat or is used to evaluate an expression. An expression can be evaluated in
stateful or stateless mode:

Stateful mode

In this mode, the value of each variable that appears in the expression is
determined by retrieving the value set within the variable.

In other words, stateful mode relies upon the expression having been previously
unified by a Uni fi er.

When an expression is evaluated in stateful mode and results caching is turned
on, the results of evaluation will be cached within the expression.

Stateless mode

In this mode, the value of each variable that appears in the expression is
determined by looking up a value that is bound to the name of the variable in an
external data structure.

In other words, the evaluation process does not rely upon state associated with
the expression, and as such, does not require the expression to be unified before
evaluation.

The data structure that contains the name-value mappings for variables is known
as a Uni ficationLi st and is associated with the Eval uat or. Like the

Eval uat or, the Uni fi cati onLi st instances can be created using the

Expr essi onFact ory.

Guide to Building Personalized Applications ~ 5-19

S Using the Expression Package

A side effect of stateless mode is that expression evaluation cannot take
advantage of results caching.

You can use of stateful mode in a situation where an expression need only be evaluated
within a single thread of execution. In the case of multithreaded evaluation of a single
expression, you must use stateless mode.

Note: Ifan expression does not contain variables, then there is no difference between
the two evaluation modes.

See the Javadoc API documentation for more information about the Eval uat or
interface and the Expr essi onFact ory class.

Execution Service

Unification

Validation

Evaluation

The Execut or aggregates the Unification Service, Validation Service and Evaluation
Service. The execut e method on an Execut or takesa Uni fi er,aVal i dat or and an
Eval uat or to execute a cycle of unification-validation-evaluation operations.

The algorithm used by the Execut or is shown below:

m Ifthe Uni fi er is not null, unify the expression.

m Ifthe Unifier is null, do not unify the expression.

Note: The Uni fi er should be null in the case where the expression passed to the
Execut or is already unified, or the expression is to be evaluated in stateless
mode.

m Ifthe Val i dat or is not null, validate the given expression.

m [fthe Val i dat or is null, ignore validation.

m [fthe Eval uat or is not null, evaluate the expression in stateful or stateless
mode. (depending on the type of evaluator passed.)

5-20 Guide to Building Personalized Applications

Code Examples

m Ifthe Eval uat or is null, the Execut or throws an
111 egal Argunent Excepti on.

m Return the result.
Note: Ifthe Eval uat or passed is stateless, then the Uni fi er should be null.

See the Javadoc API documentation for more information about the Execut or
interface and the Expr essi onFact or y class.

Code Examples

This section contains examples that illustrate how to construct expressions
programmatically and use the Expression Package services.

This section contains the following four code examples:

m Stateful Evaluation of a Simple Expression

m Stateful Evaluation of an Expression Containing Variables

m Stateless Validation and Evaluation of an Expression Containing Variables

m Stateful Validation and Evaluation of an Expression Containing Variables

Stateful Evaluation of a Simple Expression

Example

A logical expression is constructed and executed in stateful mode. The expression does
not contain any variables.

The source code for creating and executing the expression is shown below:

Expr essi on expression = new Logi cal And(Bool ean. TRUE,
Bool ean. FALSE) ;

Guide to Building Personalized Applications ~ 5-21

S Using the Expression Package

/1 Prepare for creating an executor by creating a stateful

/1 evaluator. Since the expression does not contain variabl es,
// we are not using a validator or a unifier in this exanple,
/1l so we will not create them

/1 null is passed for the environment Map.

Eval uat or eval uator = Expressi onFactory. createEval uator(null);
/1 null is passed for the environment Map.

Execut or executor = ExpressionFactory. createExecutor(null);

/] Execute the above expression by passing null for both the unifier
/1 and validator paraneters.

bj ect result = executor.execute(expression, null, null,
eval uator);

/1 The result should be Bool ean. FALSE.

Stateful Evaluation of an Expression Containing

Variables

Example

An expression containing variables is constructed and evaluated in stateful mode.

The source code for creating and executing the expression in stateful mode is shown
below.

I/l Create a variable that can store an object of type Bool ean
/1 and whose nane is “?bool eanVari abl e”.

Vari abl e bool eanVari abl e = new Vari abl e(“ ?bool eanVari abl e”,
Bool ean. cl ass);

/1 Now, we will use the variable that we created in the above step.

Expr essi on expression = new Logi cal And(Bool ean. TRUE,
bool eanVari abl e) ;

/1 Next, we’ll unify the expression by binding any variabl es
/] present in the expression. In the above case, there is one

5-22 Guide to Building Personalized Applications

Code Examples

/1 variable in the expression so the variable needs to be assigned a
/1 value. This is shown bel ow.

/!l Create a UnificationList to store the variable nane and val ue as
/'l key-val ue pairs.

Uni ficationList unificationList =
Expr essi onFactory. createUni ficationList(null);

Uni fi cati onLi st.addObj ect (“ ?bool eanVari abl e”, Bool ean. FALSE) ;
/Il Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier(null,
uni ficationList);

/'l Prepare for creating an executor by creating a stateful
/1 evaluator. We are not using a validator in this exanple,
/!l so we will not create one.

/1 null is passed for the environment Map.

Eval uat or eval uator = ExpressionFactory. createEval uator(null);
/1 null is passed for environnent Map.

Execut or executor = ExpressionFactory. createExecutor(null);

/| Execute the above expression by passing a unifier and a null
/1 validator.

bj ect result = executor.execute(expression, unifier, null,
eval uator);

/1 The result shoul d be Bool ean. FALSE.

Note: The expression can be unified before calling the execut e method by calling
the uni f y method on the Uni fi er . Once the expression is unified there is no
need to pass a unifier to the execut e method of the executor.

Stateless Validation and Evaluation of an Expression
Containing Variables

An expression containing variables is constructed and evaluated in stateless mode. The
Val i dat or service is also used to validate the expression.

Guide to Building Personalized Applications ~ 5-23

S Using the Expression Package

Example

The source code for creating and executing the expression in stateless mode is shown
below.

/] Create a variable that can store an object of type Bool ean
/1 and whose nane is “?bool eanVari abl e”.

Vari abl e bool eanVari abl e = new Vari abl e(“ ?bool eanVari abl e”,
Bool ean. cl ass);

// Now we will use the variable that we created in the above step.

Expr essi on expression = new Logi cal And(Bool ean. TRUE,
bool eanVari abl e) ;

/1 Next, we'll unify the expression by binding any vari abl es

/] present in the expression. In the above case there is one

/] variable in the expression, so the variabl e needs to be assigned
// a value. This is shown bel ow.

/]l Create a UnificationList to store the variable nane and val ue as
/'l key-val ue pairs.

Uni ficationList unificationList =
Expr essi onFactory. createUnificationList(null);

Uni ficationList.addObj ect (“?bool eanVari abl e”, Bool ean. FALSE) ;

/1 Prepare for creating an executor by creating a statel ess
// evaluator. We are not using a unifier in this exanple,
/l so we will not create one.

// Creating a statel ess evaluator by passing null for the
/1 environment Map and the UnificationList.

Eval uat or eval uator = Expressi onFactory. creat eEval uator(null,
uni ficationList);

/] Creating a stateless validator.

Val i dator validator = ExpressionFactory. createValidator(null,
eval uator);

/1 Creating an executor.
Execut or executor = ExpressionFactory. createExecutor(null);

/] Execute the above expression by passing null for the unifier and
/1 a non-null validator.

5-24 Guide to Building Personalized Applications

Code Examples

bj ect result = executor.execute(expression, null, validator,
eval uat or)

/! The result shoul d be Bool ean. FALSE.

/1 After calling execute nethod, the given expression will not be
/1 nodified by any services that were used above.

/1 The statel ess execution node i s useful if an expression is shared
/1 between nultiple threads.

Stateful Validation and Evaluation of an Expression
Containing Variables

Example

An expression containing variables is constructed and evaluated in stateful mode. The
Val i dat or service is also used to validate the expression.

The source code for creating and executing the expression in a stateful mode is shown
below.

/] Create a variable that can store an object of type Bool ean
/1 and whose nane is “?bool eanVari abl e”.

Vari abl e bool eanVari abl e = new Vari abl e(“?bool eanVari abl e”,
Bool ean. cl ass);

/1 Now we will use the variable that we created in the above step.

Expr essi on expression = new Logi cal And(Bool ean. TRUE,
bool eanVari abl e) ;

/1 Next, we'll unify the expression by binding any variabl es

/1 present in the expression. In the above case, there is one

/1 variable in the expression, so the variabl e needs to be assigned
/1l a value. This is shown bel ow.

/!l Create a UnificationList to store the variable name and val ue
/1 as key-val ue pairs.

Uni ficationList unificationList =
Expr essi onFactory. createUnificationList(null);

Uni fi cati onLi st.addObj ect (“ ?bool eanVari abl e”, Bool ean. FALSE) ;

Guide to Building Personalized Applications 5-25

S Using the Expression Package

5-26

/l Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier(null,
uni ficationList);

/1 Prepare for creating an executor by creating a stateful
I/ evaluator and validator.

/1 null is passed for the environment Map.

Eval uat or eval uator = Expressi onFactory. createEval uator(null);
/1 null is passed for the environment Map.

/l Creating a validator.

Val i dator validator = ExpressionFactory.createValidator(null);
// Creating an executor.

Execut or executor = ExpressionFactory. createExecutor(null);

/| Execute the above expression by passing a unifier and a non-nul |
/1 validator.

bj ect result = executor.execute(expression, unifier, validator,
eval uator);

/1 The result should be Bool ean. FALSE.

Note: The expression can be unified before calling the execut e method by calling
the uni f y method on the Uni fi er . Once the expression is unified there is no
need to pass a unifier to the execute method of the Execut or . The validation
service can be used directly by calling the val i dat e method. The val i dat e
method throws an | nval i dExpr essi onExcept i on if the given expression is
invalid.

Guide to Building Personalized Applications

Expression Package Configuration Settings

Expression Package Configuration Settings

The expr essi on. properti es file contains configuration settings for the Expression
Package and should be modified with care.

This file is archived in p13n_uti | . j ar under the package
com bea. p13n. expressi on.

#it

Expression Conparator null handling

#

If the following property is set to true the Expression
Conparator will return false as the result of conparing
any non-null value to a null, regardl ess of the

conpari son bei ng perforned.

#

Defaults to true.

#t

expr essi on. conpar at or. nul | check=true

##t

Expressi on Conparator equality epsilon.

#

The following property deternines the epsilon value for
numeric equal ity conparisons.

#

Defaults to O.

##t

expr essi on. conpar at or . epsi | on=0. 00001

##t

Expression Introspector Method Array Caching

#

If the following property is set to true the Expression

Introspector will cache the array of Methods inplenmented by a
Java d ass.

#

Defaults to true.

#t

expression.introspector. nmet hod. array. cache=true

Guide to Building Personalized Applications ~ 5-27

S Using the Expression Package

H*

Expression Introspector Method Caching

If the followi ng property is set to true the Expression
Introspector will cache Methods by signature.

Defaults to true.

HHHFHFHHR

HH

expressi on.introspector. nmet hod. cache=true

#i#

Expression Parser Node Support C asses

#

This property supports a comm-delinmted |ist of classes

extendi ng the base AST NodeSupport class. Such classes

provide node creation support for expression-schema nanespaces
required for constructing the internedi ate AST representing a
gi ven Expression instance.

#

Al NodeSupport subcl asses nmust co-exist peacefully with the
required CoreNodeSupport instance.

#it

par ser. node. support.|ist=\

com bea. p13n. expression.internal . parser. expressi on. Expressi onNode
Suppor t

#i
Expression Parser Transform Visitor C ass

This property specifies the ExpressionTranfornVisitor or
subcl ass to be used for internediate AST-to- Expression
transfornmations.

HHHHHH R

#
parser.transfornmr\

com bea. pl3n. expression.internal.parser.expressi on. Expressi onTran
sfornVisitor

5-28 Guide to Building Personalized Applications

CHAPTER

6

Foundation Classes and
Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that JSP developers can use to gain access

to functions provided by the server, and helpers for gaining access to the Advisor

services.

This topic includes the following sections:

Webflow

HTTP Handling

Personalization Request Object
e Default Request Property Set
Personalization Session Object

e Default Session Property Sett
Utilities

e ContentHelper

e TagSupportHelper

e ProfileFactory

SessionHelper

Guide to Building Personalized Applications

6-1

6 Foundation Classes and Utilities

Webflow

The Webflow mechanism externalizes a site’s page flow and separates back-end
processing activities from presentation. Both the flow of pages and the underlying
business processing are configured in centralized XML files, making it easier than ever
to maintain or modify the behavior of your Web site. Out-of-the-box, the Webflow
mechanism comes with a number of components to get you started, but the Webflow
can also be customized or extended to meet your specific objectives. For more
information about the Webflow implementation in the WebLogic Portal and
WebLogic Personalization Server, see the Guide to Managing Presentation and
Business Logic: Using Webflow and Pipeline documentation.

HTTP Handling

Both the <pz: di v> and <pz: cont ent sel ect or > tag implementations send
Ht t pRequest and Sessi on information to the Advisor.

The tags utilize helper classes that transform an Ht t pRequest and Sessi on into
serializable personalization surrogates for their HTTP counterparts. These surrogates
are compatible with the Rules Engine which uses these objects to execute classifier and
content selector rules.

Personalization Request Object

In order to use Ht t pRequest parameters in requests to the rules service, they must be
wrapped in a Personalization Request object (com bea. p13n. htt p. Request)
before they can be set on the appropriate Advi ceRequest . (See the Javadoc API
documentation.) While the Ht t pRequest object can be wrapped by directly calling the
Personalization Request constructor, it is recommend that developers use the

cr eat eP13NRequest helper method on Request for this purpose. See the Javadoc
API documentation for more information.

6-2 Guide to Building Personalized Applications

Personalization Request Object

Caution: The tag implementations for the <pz: di v> and <pz: cont ent Sel ect or >
tags create the Personalization Request surrogate for the Ht t pRequest
before calling the Advisor bean, so JSP developers need not worry about
the details of the Request object. Only developers accessing the Advi sor
bean directly need to wrap the Ht t pRequest object explicitly.

In order to avoid confusing results on get Pr oper t y method calls, developers need to
know the algorithm used in the get Pr oper t y method implementation for determining
the value of the property requested. When the Request ' s get Pr oper t y method is
called (for example, by a rules engine), the system uses the following algorithm to find
the property:

1. The get Property method first looks in the Ht t pRequest ’s attributes for the
property.

2. Ifnot found, get Property looks for the property in the Ht t pRequest
parameters.

3. Ifnot found, get Property looks in the HTTP headers.

4. Ifnot found, get Property looks in the Request methods (get Cont ent Type,
get Local e, etc.).

5. Ifnot found, get Pr operty uses the pr opert ySet parameter to find a property
set for a Request property set name and, if the property set is found, uses the
default value in the schema.

6. Ifnot found, get Property uses the default value passed into the method call.

Default Request Property Set

For Rules developers to write rules for classifier rules that contain conditions based on
an Ht t pRequest , there must be a property set defined for the Ht t pRequest . By
default, WebLogic Personalization Server ships with a default request property set for
the standard Ht t pRequest properties. Developers adding properties to the request
programmatically will need to add those properties to the default property set in order
for them to be available to the E-Business Control Center and the Rules Manager.

Guide to Building Personalized Applications 6-3

6 Foundation Classes and Utilities

The default Request properties include the following:

6-4

Request Property Name Associated Request Method
Request Method request.getMethod()
Request URI request.getRequestURI()

Request Protocol

request.getProtocol()

Servlet Path request.getServletPath()
Path Info request.getPathInfo()

Path Translated request.getPathTranslated()
Locale request.getLocale()

Query String request.getQueryString()
Content Length request.getContentLength()
Content Type request.getContentType()

Server Name

request.getServerName()

Server Port

request.getServerPort()

Remote User

request.getRemoteUser()

Remote Address

request.getRemote Addr()

Remote Host

request.getRemoteHost()

Scheme

request.getAuthType()

Authorization Scheme

request.getScheme()

Context Path

request.getContextPath()

Character Encoding

request.getCharacterEncoding()

Guide to Building Personalized Applications

Personalization Session Object

Personalization Session Object

In order to use HTTP Session parameters in requests to the rules service, they must be
wrapped in a Personalization Sessi on object (com bea. p13n. htt p. Sessi on)
before they can be set on the appropriate Advi ceRequest . (See the Javadoc API
documentation). While the Ht t pSessi on object can be wrapped by directly calling the
Personalization Sessi on constructor, using the cr eat eP13NSessi on helper method
on Sessi on is recommended. See the Javadoc API documentation for more
information.

The tag implementations for the <pz: di v> and <pz: cont ent sel ect or > tags create
the Personalization Session surrogate for the HTTP Session before calling the Advisor
bean, so JSP developers need not worry about the details of the Ht t pSessi on object.
Only developers accessing the Per sonal i zat i onAdvi sor bean directly need to wrap
the Ht t pSessi on object explicitly.

Default Session Property Set

For Rules developers to write rules that contain conditions based on an HTTP session,
there must be a property set defined for the HTTP session. WebLogic Personalization
Server ships with a default session property that contains no values set as a
placeholder. There are no default Sessi on property set values. Developers adding
properties to the session programmatically will need to add those properties to the
default property set in order for them to be available to the E-Business Control Center
and the Rules Manager.

The Personalization Session uses the following algorithm to find a property:
1. Tt first looks in its own cloned HTTP Session properties.

2. If it does not find the property, it locates the property set for the Personalization
Session for the pr opert ySet method parameter.

3. Ifit still does not find the property, it uses the pr opert ySet parameter to find a
property set for the Sessi on property set name and, if the property set is found,
uses the default value in the property set.

Guide to Building Personalized Applications 6-5

6 Foundation Classes and Utilities

4. If it still does not find the property, it uses the default value passed into the
get Propert y method call.

Utilities

You can see more detailed documentation for the utilities listed here in the Javadoc
API documentation.

ContentHelper

Cont ent Hel per simplifies the life of the developer using the Content Management

component. Methods are provided to get an array of content given a search object, to
get the length of a piece of content. Constants for the default Cont ent and Docunent
homes are also provided.

Expr essi onHel per handles dealing with Expr essi on, Criteri a, and Logi cal
objects. It contains methods for parsing query strings into Expr essi ons, joining
Expr essi ons into Logi cal s, normalizing Expr essi ons, changing Expr essi ons,
Logi cal s,and Cri teriainto St ri ngs, and turning Expr essi ons into St ri ng trees
for debugging purposes.

TagSupportHelper

TagSuppor t Hel per (com bea. p13n. servl ets. j sp) provides utility methods for
working with the Advisor. It includes methods for creating Advi ceRequest s and for
retrieving instances of the Advisor Service.

6-6 Guide to Building Personalized Applications

Utilities

ProfileFactory

The Profil eFactory (com bea. p13n. userngnt . profile. Profil eFactory)
utility is used to retrieve user and group profile information. The method
getProfile(String usernanme, String groupnane) will return a

Prof i | eW apper object, which can then be queried for profile properties. If

get Profil e is called with only a username, a Pr of i | eW apper representing that
user's profile will be returned. If it is called with only a groupname, a

Prof il eW apper representing that group's profile will be returned. If it is called with
both a user and group name, the returned ProfileWrapper will represent the user's
profile, with the group's profile acting as an explicit successor. Each call to

get Property on the Profi | ewW apper will use the group as an explicit successor
unless a different successor is provided.

SessionHelper

Sessi onHel per (com bea. p13n. user mgnt . Sessi onHel per) is used as a single

access point to store and retrieve profiles inan HTTP Request or Sessi on. It provides
methods to put a Profi | eW apper in either a request or session using a well-known
variable name, and a method to retrieve a Pr of i | eW apper from a request or session.

When retrieving the Pr of i | eW apper it will first look in the request, and then in the
session. This utility can be used by different parts of an application to make sure that
each component is dealing with the same profile. For example, a login component can
use it to retrieve a profile and put it in the session; and later on a pipeline component
can use it to access that same profile.

Guide to Building Personalized Applications 6-7

6 Foundation Classes and Utilities

6-8 Guide to Building Personalized Applications

CHAPTER

7 Creating and
Managing Property
Sets

Property sets are the schemas for personalization attributes. Using the E-Business
Control Center, you can create property sets and define the properties that make up
these property sets.

This topic includes the following sections:

m Overview of Property Sets
e Property Sets Serve as Namespaces for Properties
e Where Property Sets Are Used

e Property Definition Attributes

m Using the E-Business Control Center
e Starting the Property Set Editors

e Using the Property Set Editors

Guide to Building Personalized Applications 7-1

7 Creating and Managing Property Sets

Overview of Property Sets

A property set is a convenient way to give a name to a group of properties for a spe-
cific purpose. For example, in the sample application you will find a User Profile
property set named Customer Properties. This property set defines around thirty prop-
erties for an e-commerce customer, such as First Name, Last Name, Home Phone,
Email, and Customer Type.

Property sets and property definitions are created in the E-Business Control Center, on
the Site Infrastructure tab. A Property Editor allows you to give a new a property a
name and a description, assign a data type, a selection mode, and a value range, and
create a list of possible values for the property.

Although properties are designed in the EBCC, the value assigned to a property is
created in the application. Properties are generally represented in an application as
fields on a page. To use the Customer Properties property set to collect information
about an e-customer, the application will typically present the thirty properties in a list
or a table, with text boxes provided to fill in specific values for the customer.

Property Sets Serve as Namespaces for Properties

7-2

In the most general sense, a property can be considered a name/value pair. Property
sets serve as namespaces for properties so that properties can be conveniently grouped
and so that multiple properties with the same name can be defined.

For example, you might create a property set called Demographics to describe user
profile properties. The Demographics property set contains properties called Age,
Gender, Income, and so forth. Because property sets create unique namespaces for
properties, another property set can also have a property called Gender, and the two
values will be kept separate.

Guide to Building Personalized Applications

Overview of Property Sets

Figure 7-1 The Demographics Property Set uses the Gender attribute

Fia Tock: Wrdow Help

B
‘Gpaned "Handiness™,
alalx :
| fremagrogtic Proparten] =
- - Lk Proviies ok oo Fesading B s Hhe properties. [
N B progerties: ma o B 5. [
L L | (el ff = Dealype | Saec Vi racge Vil [e
. - Wereded Tesd Gingle Fesecled Fernale, Male
Ueor Profins Errasl _Opft_in Boolssn Single Rescled qrue false
- CustomerProperts | Prelomet_Sieus Ted Sege Resneied Hofempiyed, ol | | B |
Demographics Drugpation Taxd - - I
Harcirasy Incoma_Rarga Tart Fetatn
Eucation Ll .
Mardnl_Srafus
Duades_pd =

Figure 7-2 The Handiness Property Set also uses the Gender attribute

Opensd "Hawliness",
_nsu [E] o B[] G Edtor Ler Frofie: B ol i
ESEES ;
- Psnmﬁmﬂhs El
Apphcatiore aampln_ape
Hawwe Fller (parial reters Luh:‘ﬁnmpmper:;mlmmaw;:n ar i e il -~
L | Selechia.. range Weluns
|E"M| Chereder Tet Sigge Reseoled Wale, Femalo [Nnr_
Hers Profine wpasily Teut Singe Fagbicied Do N ourseHer, A1
CulomePropeds EI—.
Demaographics —

Guide to Building Personalized Applications 7-3

7 Creating and Managing Property Sets

Where Property Sets Are Used

For Portal and Personalization Server purposes, property sets are applied to six major
areas. Of these, five are configured in the E-Business Control Center.

Table 7-13 The Property Set Buttons on the Site Infrastructure Tab

User Profiles

The User Profiles property set type is used for defining the property sets and
properties that apply to user and group profiles. For example, a property set of this
type might be created called “CustomerProperties.” Subsequent property retrieval for
a particular user or group can then be scoped with this property set name to retrieve
the user’s email address. For an in-depth discussion of how property retrieval works
for users and groups, see “Creating and Managing Users” in the Guide to Building
Personalized Applications.

HTTP Requests

An HTTP Request is the information that your browser sends to the server; the server
sends back an HTTP response.

The Request property set type is used for defining the property sets and properties
that apply to HTTP requests. A Request property set type might be called
“myApplicationRequest.” Properties available through this property set can then be
accessed via the Advisor.

HTTP Sessions

A session contains short-lived, stateful information for the time that a browser is
interacting with a server.

The Session property set type is used for defining the property sets and properties that
apply to HTTP sessions. A “Session” property set type might be called
“myApplicationSession.” Properties available through this property set can then be
accessed via the Advisor.

Catalog Structure

The Catalog Structure property set type is used to define custom attributes for product
items and product categories in the Commerce services catalog. These custom
attributes can be used in addition to the default attributes provided by Commerce
services in the catalog database tables. For more information, see the topic “Catalog
Administration Tasks” in the Guide to Building a Product Catalog.

7-4 Guide to Building Personalized Applications

Overview of Property Sets

Table 7-13 The Property Set Buttons on the Site Infrastructure Tab

Events

12

The Events property set type is used to register a custom event. For the purpose of

registering an event, you can consider an event property as a name-value pair. During
the registration of a custom event, you specify the event’s name, description, and one
or more properties. Each property has a range, type of permissible value, and default

value. The information you need to register an event should be available from your
Business Engineer (BE) or Java developer.

Use the tools
associated with
your document

management
system.

Content Management

The Content Management property set type is used for defining the configuration and
run-time use of the content management system. Content Management property sets
cannot be created or manipulated with the Personalization Server Administration
Tools or the E-Business Control Center. Instead, use the tools associated with your
document management system. For more complete information on this subject, see
“Creating and Managing Content” in the Guide to Building Personalized
Applications.

Property Definition Attributes

All properties includes the following information:

Property name—the name of the property, such as Gender. Within a single
property set, all properties must have a unique name. However, property names
can be re-used in different property sets.

Data type—specifies the data type of the property value. The possible values are
Text, Numeric, Floating-Point number (equivalent to Double in Java), Boolean,
and Date/Time.

Selection mode—specifies whether a property is single-valued (has a single
default value) or multi-valued (has a collection of default values).

Value range—specifies whether the defaults are restricted to one specific value,
one or more specific values, or any value.

Optionally, property definitions can also include the following:

Description—a textual description of the property, perhaps describing the
purpose of the property.

Guide to Building Personalized Applications 7-5

7 Creating and Managing Property Sets

m Values—you can assign a list of values from which the user will pick, and you
can designate which of the values is the default.

The following table lists the property definition attributes and values.

Table 7-14 Property Definition Attributes and Values

Property Definition Attribute Attribute Value

Name Text (100 character length maximum)
Description Text (255 character length maximum)
Type m Text

m Numeric — (equivalent to Long in Java)

m Float — Floating-Point Number (equivalent to
Double in Java)

® Boolean

m Date/Time (equivalent to
j ava. sql . Ti nest anp)

Selection Mode Single-valued or multi-valued

Value Range Restricted or unrestricted

Default Value Up to the user — can be nul |

Restricted Values Allowable values if the property is restricted

Possible Combinations of Properties

As the previous list suggests, a combination of property values are possible. The
possible combinations of properties are listed here:

m Boolean: The values for this type of property are either True or False. You can
choose the default. The default value is displayed only in the Enter Property
Values Window, not in the Edit Event Property window. When this data type is
selected, the Selection mode and Value range are unavailable.

m Single, Unrestricted: This type of property has only one value, which is also the
default value.

7-6 Guide to Building Personalized Applications

Overview of Property Sets

m Single, Restricted: This type of property has multiple available values and a
single default value. You can select which value is the default.

An instance of this property can have only one value assigned. For example, the
property Favorite Day of the Week would have seven available values, but an
instance of the property can have only one value (Saturday).

m Multiple, Restricted: This type of property has multiple available values. You
can select one or more values as default values.

An instance of this property can have multiple values assigned. For example, the
property Favorite Days of the Week would have seven available values, and an
instance of the property can have any number of values (Friday, Saturday,
Sunday).

m Multiple, Unrestricted: This type of property has multiple values. You cannot
select any defaults; all values are defaults.

Synchronizing Property Sets

Property sets are meant to be used as application code. Just as you would not normally
deploy new code onto a production server without first testing and staging it, we
recommend that you do not synchronize updates to the property sets onto a live server
once the application itself is deployed into production.

Why would synchronizing to a live server be a problem? If you create a property set
containing a property of a specific type, synchronize it and assign values to that
property for users, then change the type and re-synchronize it, there will be
inconsistent property value data in the database.

Let’s look at an example. Suppose the "Date_of Birth" property in the Demographics
property set was originally a String. Users might have put in values in many different
formats, such as "8/9/1974", "August 9th, 1974", "Aug 9 1974", and so forth. Then you
decide these are too hard to parse and validate, so you make the "Date of Birth"
property a Date/Time type. You redeploy the property set, but now there are values of
the wrong type in the database.

It's up to you, the developer, to do the data conversion to make these properties into the
correct type. Or, if your data is just test or sample data, you can delete the data
altogether and start over.

Guide to Building Personalized Applications 7-7

7 Creating and Managing Property Sets

Using the E-Business Control Center

The E-Business Control Center tools allow you to create and manage sets of typed
properties. Using the Site Infrastructure tab, property sets can be defined to describe
properties for User Profiles, Requests, Sessions, Catalog Structures, and Events.

Note: The Site Infrastructure tab also contains the Webflows/Pipelines tool icon,
which is used to create and edit new pipelines and webflows. Since webflows
and pipelines do not use property sets, these topics will not be covered here.
See the topic “Using the Webflow and Pipeline Editors” in the Guide to Using
the E-Business Control Center documentation.

Figure 7-3 The Site Infrastructure Tab on the E-Business Control Center

Application: sample_app

Mame Filter (partial names allowed)

p—

E DefaultSessionPropertySet

Description

hSite Infrastructure tab

I[iE] st nfrastructure | [F]

7-8 Guide to Building Personalized Applications

Using the E-Business Control Center

Creating a property set is a simple task via the E-Business Control Center. A name for
the set must be provided as well as description, and the type of property set
(“User/Group”, “Session”, or “Request’’) must be chosen.

Once a User/Group property set is created and deployed, property values can be edited
for a particular user or group via the User Management user and group tools. For
“Session” and “Request” properties, the only editable values are the default values set
in the property definitions —run-time values are determined by values in the HTTP
session or HTTP request, respectively.

Guide to Building Personalized Applications 7-9

7 Creating and Managing Property Sets

Starting the Property Set Editors

To begin using the Editors, follow these steps:

1. Start the E-Business Control Center (EBCC). For detailed instructions on starting
the EBCC, see the topic “Starting the E-Business Control Center” in the Guide to
Using the E-Business Control Center documentation.

2. Create a new Web application or open an existing Web application for which you
will be creating or editing a property set.

For detailed instructions on performing these tasks, see “Creating an Application
Structure for E-Business Control Center Data” or “Opening Application Data” in
the Guide to Using the E-Business Control Center documentation.

3. Select the Site Infrastructure tab in the EBCC’s Explorer window, then click any
of the tool icons in the Explorer window (except the Webflows/Pipelines icon.)

Using the Property Set Editors

The property set editors works the same way for all property sets. For these examples,
we will be using the E-Business Control Center to create and modify Event properties.
The examples used here can be used to register a custom event. You can follow the
same procedures to create and modify property sets for Users and Groups, HTTP
Requests, HTTP Sessions, and the Catalog Structure.

To register a custom event, complete the following steps

1. Start the E-Business Control Center and connect it to a server. The Explorer
window opens as shown in Figure 7-4.

Note: For more information on connecting the E-Business Control Center to a
server, see the topic “Connecting to the Server” in the Guide to Using the
E-Business Control Center.

7-10 Guide to Building Personalized Applications

Using the E-Business Control Center

Figure 7-4 E-Business Control Center Window

Bl Explorer [E-Business Control Cente i =] B3
AR

Mame Fiter (partial names allowed)

5y AddTaCartEvent

|55 BuyEvent

|5 ClickCampaignEyvent

5 ClickContertEvent

5 ClickProductEvent

|55 DisplayCampaignEvent
5 RemoveFromCanEvent
55 SessionEndEvent

Description

I[iE] st nfrastructure | [F]

2. Open the Event Editor as follows:

Note: You cannot edit the standard events.

a. In the Explorer window, select the Event icon. A list of events appears in the
Events field.

b. Click the New Button, and then select Event. The Event Editor window appears
as shown in Figure 7-5.

Guide to Building Personalized Applications ~ 7-11

7 Creating and Managing Property Sets

Figure 7-5 Event Editor Window

'ﬁ Editor [UnnamedE vent] M= 3

ame:
|UnnamedEvent |

Description:

Event properties:

3. In the Edit Event Editor window, complete these steps:

a. Inthe Name field, enter a unique name for the event no longer than 100
characters (required).

b. In the Description field, enter a description for the event no longer than 254
characters (required).

c. Click the Save button in the E-Business Control Center system toolbar.

d. To create properties for the event, click the New button. The Edit Event
Property window opens, as shown in Figure 7-6.

7-12 Guide to Building Personalized Applications

Using the E-Business Control Center

Figure 7-6 Edit Event Property Window

kA Edit Event Property: [%]
ame:
Description:
Drata type: “alues:

et~

Selection made:

“alue range:

Restricted w

AdclEdit Values...
OK Cancel

4. In the Edit Event Property window, complete these steps:

a.

c.

f.

In the Name field, enter a unique name for the property no longer than 100
characters (required).

In the Description field, enter a description of the property no longer than 254
characters (required).

In the Data type list, select the data type. If you select Boolean as the data type,
the Selection mode and Value range are no longer available. The default for
Boolean is Single, Restricted.

In the Selection mode list, select either Single or Multiple.
In the Value range list, select whether the value is Restricted or Unrestricted.

Click the Add/Edit Values button.

The type of window that appears depends on the values selected.

Property Values and Setting the Default Value

Depending on the data type, different steps are required for entering values and setting
default values. The following property categories are available:

m Properties with Boolean or a Single Value and Single Default.

Guide to Building Personalized Applications ~ 7-13

7 Creating and Managing Property Sets

m Properties with Multiple Values and Single, Multiple, or All Defaults

m Properties with Date and Time Values

Properties with Boolean or a Single Value and Single Default

7-14

To enter the default value for Boolean property or a property with a single value and a
single default (unrestricted), complete the following steps:

1. Inthe applicable Enter Property Value window (Figure 7-7 or Figure 7-8), perform
one of the following:

e For a Boolean property, select either True or False.

e For a Single Value, Single Default property, enter a value.

Figure 7-7 Enter Property Values Window—Boolean

Erter & Yalue to Add ta the list.

@ True
() False

Figure 7-8 Enter Property Values Window—Single Value, Single Default

Erter & Yalue to Add ta the list.

e

2. Click the OK button.

3. In the Edit Event Property window, click the OK button.

Guide to Building Personalized Applications

Using the E-Business Control Center

Properties with Multiple Values and Single, Multiple,
or All Defaults

To enter multiple property values and set one or more defaults (unrestricted), complete
the following steps:

1. Inthe applicable Enter Property Values window (Figure 7-9 or Figure 7-10), enter
a value, and then click the Add button.

Figure 7-9 Enter Property Values—Multiple Values, Single Default

B Enter Property Yalue B

Erter & Yalue to Add ta the list.

| | Al |

Select the valuels) you want to set as the default.
Walue 1 | Remaove |
Walue 2
Walue 3 Deselect Al

Figure 7-10 Enter Property Values—Multiple Values, Multiple Restricted
Defaults

'ﬁ Enter Property Yalue [%]

Erter & Yalue to Add ta the list.

|Value] | Akl |

Select the valuels) you want to set as the default.
|1 alue 1 | Remove |
[v] value 2

[v] value 3
I] walue 4

Guide to Building Personalized Applications 7-15

7 Creating and Managing Property Sets

Figure 7-11 Enter Property Values—Maultiple Values, Multiple Unrestricted
Defaults

'ﬁ Enter Property Yalue [%]

Erter & Yalue to Add ta the list.

[Mutiple Unrestricted | Add

Select the valuels) you want to set as the default.
Walue 1
Walue 2
Walue 3

2. Repeat the previous step until you have entered all values.

3. To select one or more default values, complete one of the following:
e If you do not want to select a default, go to next numbered step.

e For multiple values with a single default, select the value (radio button) that
you want to set as the default, and then click the OK button.

Note: To remove the default value for a property with multiple values and a
single default, click the Deselect All button.

e For multiple values with multiple restricted defaults, select the value (check
boxes) that you want to set as defaults, and then click the OK button.

Note: For multiple values without restrictions (that is, the Value range is
Unrestricted), you do not need to select any defaults.

4. In the Edit Event Property window, click the OK button.

7-16 Guide to Building Personalized Applications

Using the E-Business Control Center

Properties with Date and Time Values

Properties with date and time values can use all Selection mode and Value range
settings. For more information about these settings, see “Properties with Boolean or a
Single Value and Single Default” and “Properties with Multiple Values and Single,
Multiple, or All Defaults” on page 7-15.

To enter date and time values and set one or more defaults, complete the following
steps:

1. In the Enter Property Values window shown in Figure 7-12, click the drop-down
arrow in the Date list. A calendar appears.

Figure 7-12 Enter Date/Time Values

'ﬁ Enter Property Yalue [%]

Erter & Yalue to Add ta the list.

Apr-23-2001 |=
1212:23PM

Select the valuels) you want to set as the default.
[Mar 22, 2001 12:12:23 PM

2. Select a date from the calendar.

3. Inthe Time field, enter a time.
4. Click the Add button.

5. To add more dates and times, repeat the first four steps until you have entered all
the values.

6. To select one or more default values, complete one of the following:

e [fthe event has a single date and time with a single default (restricted), click
the OK button.

e If the event has multiple dates and times with a single default (restricted),
select the value (radio button) that you want to set as the default, and then
click the OK button.

Guide to Building Personalized Applications ~ 7-17

Creating and Managing Property Sets

e [f'the event has multiple dates and times with multiple defaults (unrestricted),
select the values (check boxes) that you want to set as the default, and then
click the OK button.

7. In the Edit Event Property window, click the OK button.

Updating a Registered Custom Event

7-18

Whenever you make changes to a custom event’s code, you should update that event’s
registration. Updating the registration lets the E-Business Control Center know about
the changes in the custom event and aids campaign developers using the E-Business
Control Center to modify any scenario actions that refer to the event.

To update a custom event, complete the following steps.

1. Start the E-Business Control Center and connect it to a Web server. The Explorer
window opens.

Note: For more information on connecting the E-Business Control Center to a
server, see “Connecting to the Server” in the Guide to Using the
E-Business Control Center documentation.

2. In the Explorer window, select the Event icon. A list of events appears in the
Events field as shown in Figure 7-13.

Note: You cannot edit standard events.

Guide to Building Personalized Applications

Using the E-Business Control Center

Figure 7-13 Explorer Window

[Explorer [E-Business Control Cents o= 3
@] [B-]&]x] &

o tedto: t3/Mocalhost:7501

Mame Fiter (partial names allowed)

N

5 AddTaCartEvent
|5 ClickCampaignEyvent
5 ClickContertEvent
5 ClickProductEvent
|5 Display CampaignEvent
5 PurchaseCartEvent
5 RemoveFromCartEvent
5 SessionEndEvent
|5 SessionLoginEvent
5 UserRegistrationEvent

i PageviewEvent

Description

This event records the pages wiewed by
customers.

I[iE] st nfrastructure | [F]

3. Double-click the custom event that you wish to edit. The Event Editor window
opens as shown in Figure 7-14. The Event properties field displays a list of
existing properties.

Guide to Building Personalized Applications ~ 7-19

7 Creating and Managing Property Sets

Figure 7-14 Event Editor Window

'ﬁ Editor [PageYiewE vent] M= 3

ame:
|PageViewEvent |

Description:

Thiz event records the pages wiewed by the customer.

Event properties:
page_idd
user_jid

session_jd

Edit....
page_type

Delete

i

4. 1In the Event properties field, select the property that you want to edit.

Note: For more information about setting custom event properties, see “Property
Values and Setting the Default Value” on page 7-13.

5. Click the Edit button. The Edit Event Editor window opens as shown in
Figure 7-15.

Figure 7-15 Edit Event Property Window

kA Edit Event Property: [%]
ame:
|page_id |
Description:

’The ID of the page ‘

Drata type: “alues:
| Text w | (group
type

Selection made:

Page
Single -

“alue range:

Restricted w

AdclEdit Values...
OK Cancel

7-20 Guide to Building Personalized Applications

Using the E-Business Control Center

6. To change the Data type, Selection mode, or Value range, select a setting from
the appropriate list box.

Note: If you change the property setting Data type, Selection mode, or Value

range, the associated values will be erased.

7. To add or change values, click the Add/Edit values button. The Enter Property
Value window opens as shown in Figure 7-16.

Figure 7-16 Enter Property Value Window

f.

'ﬁ Enter Property Yalue [%]

Erter & Yalue to Add ta the list.

leyie | Add |

Select the valuels) you want to set as the default.

group | Remove |

type

page Deselect 211

To remove a value, select the value, and then click the Remove button.

To add a value, enter the value, and then click the Add button.
To change a value, select the value, remove it, and then add the new value.
If required, select the default value or values.

To remove the default value for a property with multiple values and a single
default, click the Deselect All button.

Click the OK button. The Enter Property Value window closes.

8. After you have finished updating the properties or values for the event, click the
OK button in the Edit Event Property window.

Guide to Building Personalized Applications ~ 7-21

7 Creating and Managing Property Sets

7-22 Guide to Building Personalized Applications

CHAPTER

3

Creating and Managing
Users

BEA WebLogic Personalization Server applications can store personal information
about customers and display Web site content or offer other services based on
customers’ identities. For example, if you store information about the types of mutual
funds in which your customer invests (conservative, moderate, aggressive), you can
present content, advertisements, and additional fund recommendations that reflect
each customer’s preference.

The first sections of topic provide background information for the following
WebLogic Personalization Server features:

m User and Group Profiles

m Security Realms and User Profiles

m Unified User Profiles

m Anonymous User Profiles

m Platform for Privacy Preferences Project (P3P)

The remaining sections provide instructions for creating and persisting data about your
customers:

m Creating and Modifying Groups

m Creating and Modifying Users

Guide to Building Personalized Applications 8-1

8 Creating and Managing Users

m Accessing User and Group Data
m Setting Global Values for a Profile
m Accessing Properties from an LDAP Server

m Incorporating Data from Other External Sources

User and Group Profiles

A customer profile (or user profile) is a schema that determines which data you collect
and store about a customer. Each piece of data in a customer profile is called a
customer property. Customer properties can range from statically-defined properties,
such as a user's social security number, to dynamically-created and persisted
properties, such as Web-site tracking information for a particular user, or user
preferences entered from a standard input screen.

Property Inheritance

8-2

User and group profiles can both inherit property values through the concept of a
successor profile. If a property is requested from a profile, and no value is found for
that property, the profile’s successor will be queried for the profile. This process will
be repeated recursively until either a value is found, or no more successors are found.

There are two types of successors: implicit and explicit.

An implicit successor is one that is set for a profile. For example, you can retrieve a
user profile’s Prof i | eW apper object and call set Successor () on it, passing in a
group name and a property set name. From that point on, that group will be used as a
successor for the user profile when a property belonging to that property set is
requested. A profile can have one implicit successor per property set, and one for the
default, or null, property set. Properties that are set using a null property set name are
are members of the default property set. To se an implicit successor for the default
property set, you can call Pr of i | eW apper . set Successor () with null for the
property set name argument.

Guide to Building Personalized Applications

User and Group Profiles

Explicit successors are provided at the time of the property query, as an extra
parameter to the get Property() call. For example, calling

get Property("FooPropertySet", "Bar", "SoneG oup") on auser profile will
look for the property called Bar in the FooPr opert ySet , then in the default property
set, and if it is not found in either place it will retrieve the profile for the group called
SonmeG oup and repeat the search with that profile, and any of its implicit successors.
Explicit successors will always be queried before implicit successors.

Users can only have groups as successors, and groups can only have other groups as
successors. By default, when you add a group to a group, the parent becomes the
child’s implicit successor for the default property set. However, since users can
belong to multiple groups, it is up to your application to decide which group to set as
a user’s successor.

The overall property search order, when get Property("Foo", "Bar",
"SomeG oup") is called, is as follows:

1. Look for a property named "Bar " in the "Foo" property set in the current profile.

2. Look for a property named "Bar " in the default property set, in the current
profile.

3. Look for a property named "Bar " in the "Foo" property set in the "SomeG oup"
profile. (This will start the search recursively in the "SomeGr oup" profile.)

4. If there is an implicit successor for the "Foo" property set, look for a property
named "Bar " in the "Foo" property set in that successor’s profile. (Again, this
will start the search recursively in that profile.)

5. If there is an implicit successor for the default property set, look for a property
named "Bar " in the "Foo" property set in that successor’s profile. (Again, this
will start the search recursively in that profile.)

6. If the property is still not found, return the default as defined in the "Foo"
property set.

Guide to Building Personalized Applications 8-3

8 Creating and Managing Users

Property Sets and Profiles

User profiles use property sets to organize the properties that they contain. A property set is
a convenient way to give a name to a group of properties for a specific purpose; a
property set type establishes a set of expectations for how a property set is used.

The sample applications define a property set named CustomerProperties which
belongs to the User Profile property set type. CustomerProperties contains around
thirty properties for an e-commerce customer, such as First Name, Last Name, Home
Phone, Email, and Customer Type.

You create property sets and property definitions in the E-Business Control Center.
You use JSP tags, APIs, or other WebLogic Personalization Server services to set the
value of a property. WebLogic Personalization Server does not support creating a new
property set type.

For more information about property sets, see Chapter 7, “Creating and Managing
Property Sets,” in this guide.

8-4 Guide to Building Personalized Applications

Security Realms and User Profiles

Security Realms and User Profiles

A security realm determines how a user is authenticated and retrieves access control
lists for given names. WebLogic Server supports several types of security realms for
different environments and security needs.

The default WebLogic Personalization Server realm, wicsRealm, stores and retrieves
user IDs and passwords from the user profiles that are stored in the WebLogic
Personalization Server RDMBS repository. (See Figure 8-1.)

Figure 8-1 wlcsRealm and User Properties

RDBMS Repository
\—// Personalization

Services

wlcsRealm
Security Realm

User Profile
U user D
ses B password
Other data: - Use
SSN
credlit card information
user preferences

~___

Guide to Building Personalized Applications 8-5

8 Creating and Managing Users

Alternate Security Realms and User Profiles

8-6

You can use other types of security realms to store and retrieve authentication data
(user IDs, passwords, ACLs) in sources other than the RDBMS repository. For
example, if you already have users and groups defined on a UNIX network, you can
use the UNIX Security Realm to authenticate users and groups using UNIX login IDs
and passwords.

For a list of the types of security realms that WebLogic Server supports, refer to
“Security Fundamentals” in the WebLogic Server Programming WebLogic Security
guide. Also refer to the WebLogic Portal Security Guide.

WebLogic Personalization Server provides two session beans, the User Manager and
G oupManager , as a single point of entry for creating, editing, and removing user and
group data. If you use an alternate security realm, methods in these beans act upon both
the realm and the profile manager components to ensure that they stay synchronized.

For example, Figure 8-2 illustrates using the User Manager to create or remove users.
A Personalization service uses User Manager to create user IDs and passwords in both
the UNIX Realm and the user profile in the RDBMS data repository.

Guide to Building Personalized Applications

Security Realms and User Profiles

Figure 8-2 Synchronizing Security Realms and User Profiles

Personalization
Services

UserManagement
bean

UNIX
Security Realm

create, remove

Uses
User Profile
user D
user D password -+
password
UNIX filesystem e—

RDBMS Repository

In general, if you are using APIs to manage user data, use the User Manager and
G oupManager methods as opposed to manipulating the security realm directly.

If you use a read-only realm such as LDAP Realm, User Manager and G oupManager
cannot create users and groups in the realm. Instead, WebLogic Personalization Server
creates user profiles for users and groups from the read-only realm on-the-fly. For
example, if a user “joe” exists in your LDAP server and you are running the LDAP
realm, the first time Joe’s user profile is requested, the User Manager will see that the
profile does not exist. It will then verify that Joe exists as a user in the LDAP realm,
and will create a new profile record at that point and return it.

If you use a third-party tool to manage user records in an alternate security realm (such
as the administration tool that comes with an LDAP server), the User Manager has no
way to know when users and groups are removed from the realm. This can result in
profile records that belong to users and groups that no longer exist. The User
Management Administration Tools provide a means to clean up these leftover records.
See the section “Deleting User Records That Do Not Exist in the Realm from the
Personalization Database” on page 8-31.

Guide to Building Personalized Applications 8-7

8 Creating and Managing Users

Unified User Profiles

8-8

WebLogic Personalization Server provides the ability to combine user properties from
the WebLogic Personalization Server RDBMS repository with user properties from
other data sources, such as an LDAP server into a single Unified User Profile (UUP).
With the UUP, developers and system users need not worry about the different
underlying data sources of user data. To them there is just one place to go for user
information—the user profile. (See Figure 8-3.)

Figure 8-3 UUP That Combines Several Data Sources

— T,

User Data Store
LOAP
unix
NT
Other

Security
Realm

Weblogic
Personalization Server
Database

+ Authentication
« Listof Users

¢ List of Groups
* group Membership

+ Property Data

BEA Weblogic
Personalization

Server

Corporate
Database

Unified User
Profile

* Existing Property Data

For information on setting up a Unified User Profile that gathers user properties from
an LDAP server, refer to “Accessing Properties from an LDAP Server” on page 8-34.
For information on gathering user properties from other data sources, refer to
“Incorporating Data from Other External Sources” on page 8-36.

Guide to Building Personalized Applications

Anonymous User Profiles

Anonymous User Profiles

Certain scenarios require an unidentified user to be able to use a system. While the
unidentified user is using the system, you may need to have a profile for that user in
order to set and get properties. For instance, a portal Web site might want to let new
users tour the Web site and configure a few things before they actually have an official
login name and password. The anonymous user profile allows for a user profile to be
created for such a user.

An anonymous user profile can be treated just like a user profile for a known user, but
the anonymous user profile only lives for the life of the user session. If the session is
terminated without capturing an identity for the user, any profile information
accumulated during the life of the anonymous user profile is lost. An anonymous user
profile has no successor and will not retrieve default property values from a Property
Set.

The anonymous user profile is available only through JSP tags. An anonymous profile
is created when a <um set Pr opert y> or <um get Property> JSP tagis used before
a <um get Prof i | e> tag has been called. If during a session a persistent user profile
is created for the anonymous user, the <um cr eat eUser > tag can be told to store the
values from the anonymous profile into the new user profile. This is done with the
saveAnonynous tag parameter set to t r ue, as in:

<um creat eUser saveAnonynous="true'">.

Note: Campaigns cannot be used with anonymous users. Campaigns require a user
ID that has two characteristics: the ID must be associated with a user profile,
and that user profile must be saved (persisted). However, the anonymous
profile for a user who is not logged in is a runtime profile (not saved), and not
associated with a user ID.

Personalization features such as <pz:div> and <pz:contentSelector> JSP tags
do work for anonymous users. This is because these features can use a runtime
profile without a user ID.

For more information on these tags, see the section “User Management JSP tags” in
Chapter 13, “Personalization Server JSP Tag Library Reference,” in this guide.

Guide to Building Personalized Applications 8-9

8 Creating and Managing Users

Platform for Privacy Preferences Project

(P3P)

8-10

The Platform for Privacy Preferences Project (P3P) is an emerging industry standard
that is designed to provide an automated way to compare consumers' privacy
preferences with the privacy practices of the Web sites they visit. It lets Web sites
express their privacy practices in a format that can be retrieved automatically and
interpreted easily.

The P3P is a work-in-progress by the World Wide Web Consortium (W3C), a global
group drawn from industry, academia, and privacy groups as well as public policy
organizations. For more information about the World Wide Web Consortium’s
ongoing P3P effort, visit the P3P site at http://www.w3.org/P3P.

Essentially, P3P compliance means that your Web site presents a privacy policy to the
user. As put forth in the P3P specification, a privacy policy is a set of one or more
privacy statements that describe what personal user data a Web site will retrieve, and
how the data is to be used. The P3P specification currently defines three mechanisms
by which a Web site’s privacy policy information can be presented to the end user:

m By publishing the policy reference file at a well-known URL.
For complete information, see the P3P specification, section 2.2.1.
http://www.w3.org/TR/P3P/#mechanism_ref

m By injecting a special header in each HTTP response served up by the Web
server. For complete information, see the P3P specification, section 2.2.2.
http://www.w3.org/TR/P3P/#syntax_ext

m By using an embedded <link> tag in the body of an HTML page.
For complete information, see the P3P specification, section 2.2.3.
http://'www.w3.org/TR/P3P/#syntax_link

BEA Systems applauds the efforts of the World Wide Web Consortium and other
organizations around the world working to empower users to control the use of their
personal information on the Web sites they visit. However, it is important to note that
WebLogic Personalization Server does not in any way enforce P3P compliance—that
option is left up to the Web site developer.

Guide to Building Personalized Applications

Creating and Modifying Groups

Creating and Modifying Groups

This section describes using the WebLogic Portal Administration Tools to complete
the following tasks:

Creating Groups

Adding Users to Groups
Removing Users from Groups
Editing Group Property Values

Deleting Groups

For information on using JSP tags or APIs to create and modify groups, refer to
Chapter 13, “Personalization Server JSP Tag Library Reference,” and to the Javadoc
API documentation for the User Manager and G oupManager EJBs.

Creating Groups

Note: The User Management tools do not allow the creation of a group called

“everyone,” because this is a reserved WebLogic Server group name.

To create groups:

1.

Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon.

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

Guide to Building Personalized Applications 8-11

8 Creating and Managing Users

2. On the WebLogic Portal Administration Tools page, click the User Management
icon. The User Management Home page appears. (See Figure 8-4.)

Figure 8-4 User Management Administration Tools Home Page

BEA WebLogic Portal

create Users create

Gfick Groups to edit and delfete groups, cfick Create Glick Users to edit and delete users, click Create to add
to add new groups. new users.

Realm

click Realm to view and edit the Realm
configuration.

3. On the User Management Home page, click Create in the Groups banner. The
Groups page appears. (Figure 8-5)

Figure 8-5 The Create a Group Page

Search the Group Hierarchy

Click through the group hierarchy to view all groups and levels. To create a group, click
the H that appears at the appropriate level.

Group Hierarchy
Top Level Groups

® adminEligible

» Systemadministrator
®» Delegatedadministrator
» wics_customer

B fyitek

H Add a subgroup to top level

8-12 Guide to Building Personalized Applications

Creating and Modifying Groups

4. Within the Group Hierarchy tree view, expand the hierarchy as needed to display
the add icon (+) at the level you wish to add the group. (Figure 8-6)

Figure 8-6 Expand the Group Hierarchy To Display the Add Icon (+)

Search the Group Hierarchy

Click through the group hierarchy to view all groups and levels. To create a group, click
the H that appears at the appropriate level.

Group Hierarchy
Top Level Groups

» sdminEligible
» Systemadministrator
» Delegatedadministrator
» wlcs_customer
Q Avitek
» Approver
» CustomerService
<4 Financialadvisar
HAdd a subgroup to "Financialadvisor”
» Investar
HAdd a subgroup to "Avitek"

5. Click on the plus sign. The Create a Group page appears.

6. Enter the name of the new group in the Group Name field. (Figure 8-7)
Figure 8-7 Enter the Name of the New Group

/} 1 Create New Group below ‘FinancialAdvisor®
-~
~ L\ Enter the appropriate information then click Create.

Group

Name: BeanCounters

& &

7. Click Create. A success or failure message appears.

8. Click Back to return to the Create a Group page, or click Create to enter another
new group name at the same level (step 6.)

Guide to Building Personalized Applications 8-13

8 Creating and Managing Users

9. On the Create a Group page, click Finished to return to the User Management
Home Page.

After you create a group, you can then personalize it by overriding the default property
values. (The default property values are set up in the E-Business Control Center. For
more information, see Chapter 7, “Creating and Managing Property Sets,” in this
guide.)

Adding Users to Groups

To add users to groups:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon.

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. On the WebLogic Portal Administration Tools page, click the User Management
icon. The User Management Home page appears. (See Figure 8-4.)

8-14 Guide to Building Personalized Applications

Creating and Modifying Groups

3. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears. (Figure 8-8)

Figure 8-8 Search for a Group Page

Groups finished i

Search for Groups

Click through the group hierarchy
to find a group, ar search for the Group Name:

group by name. Once found, you ’ @
can click the group title link to edit

it, aor click X' to delete the group.

Group Hierarchy
Top Level Groups

AdminEligible X
Systemadministrator X
Delegatedadministrator X
wlcs customer X

P fvitek §

=

4. To locate the appropriate group, do one of the following:

a.

To locate the group by name, enter the group name in the Group Name field,
then click Search.

To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

Guide to Building Personalized Applications 8-15

8 Creating and Managing Users

8-16

5. Select the group. The Group Properties view appears. (Figure 8-9)

Figure 8-9 Group Properties View

finished

Groups: BeanCounters

Select a property set to view for this group: @

Group Name Information
Group Mame: BeanCounters

Properties

Add/Remove Users From Group

6. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove

Users tool appears. (Figure 8-10)

Figure 8-10 Add/Remove Users Page

\twljk Add/Remove Group Search Results

Search for the user you want to add or remave from this group. The search results and current
group users will appear at the bottom of the page. To add a user, select the user name and
click the right arrow. To remove a user, select the user name and click the left arrow. You must
click the "save" button to commit any changes to the group before performing a new search or
leaving this page.

= S afefclofelefofulifa],
nJolelofrfs|rfulyfuwlx]x]z]

Search Results: Group Search Results:

Username:

democustomer dangreen
demopal demo

demopa?
demogal
demoga?
demogal

[« ¥

DO

Guide to Building Personalized Applications

Creating and Modifying Groups

To locate a user, do one of the following:

a.

Note:

To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

To see a list of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

Only users already entered in the database are available in these lists. To add
new users to the database, see “Creating Users” on page 8-24.

7. Select the username, or a group of names, from the Search Results field.
(Figure 8-11)

Figure 8-11 Use Left-Arrow to Move User Names into a Group

Search Results: Group Search Results:

democustomer
demopal
demopa?

8. Click the left-to-right directional arrow. The username(s) appears in the Group
Search Results field.

9. Click Save to commit the selected name(s) to the Group. You must click Save
before beginning a new search.

10. Click Back to return to the Group Properties view.

Note:

The search applies to both list boxes.

Guide to Building Personalized Applications 8-17

8 Creating and Managing Users

Removing Users from Groups

8-18

To remove users from groups:

1.

Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon.

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

On the WebLogic Portal Administration Tools page, click the User Management
icon. The User Management Home page appears. (See Figure 8-4.)

On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears. (Figure 8-8)

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

Select the group. The Group Properties view appears. (Figure 8-9)

Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears. (Figure 8-10)

To locate a user, do one of the following:

a. Tolocate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. Toseealist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

Guide to Building Personalized Applications

Creating and Modifying Groups

6. Select the username, or a group of usernames, from the Group Search Results
field. (Figure 8-12)

Figure 8-12 Use Right-Arrow to Move Usernames Out of a Group

Search Results: Group Search Results:

democustomer dangreen
demopal
demopa?
demogal
demoga?
demogal

7. Click the right-to-left directional arrow. The username(s) is removed from the
Group Users field and appears in Search Results.

8. Click Save to remove the username(s) from the Group.

9. Click Back to return to the Group Properties view.

Editing Group Property Values

To edit group property values:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon.

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. On the WebLogic Portal Administration Tools page, click the User Management
icon. The User Management Home page appears. (See Figure 8-4.)

Guide to Building Personalized Applications ~ 8-19

8 Creating and Managing Users

3. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears. (Figure 8-8)

To locate the appropriate group, do one of the following:

a.

To locate the group by name, enter the group name in the Group Name field,

then click Search.

To locate the group within the Group Hierarchy, navigate the Group Hierarchy

tree view.

4. Select the group. The Group Properties view appears. (Figure 8-9)

5. Select or search for a property set to view for this group. The group’s default

property values appear if no other property set has been accessed during the tools

session.

Note:

Default property values are created using the E-Business Control Center. For
specific instructions on property set management, see Chapter 7, “Creating

and Managing Property Sets.”

6. Click Search. The Edit Default Properties page appears. (Figure 8-13)

Figure 8-13 Edit Default Properties Page

Groups: Avitek finished
Select a property set to view for this group:
IStockPortaI 'l

Group Name Information
Group Mame: Avitek

Properties
Developer (Boolean, Single, Restricted)
15 the visitor a developer or not

true v false

PreferredLanguage (Text, Single, Restricted)
The preferred language of the developer
v lava C++

visual Basic C

SkillLevel (Text, Single, Restricted)
The skill level of a developer
Low High

v Medium

Add/Remove Users From Group

8-20 Guide to Building Personalized Applications

Creating and Modifying Groups

7. Click Edit on the appropriate Property bar. The associated Edit Property Values
page appears. (Figure 8-14)

Figure 8-14 Edit Property Values Page

-r Property Set: StockPortal

Property: PreferredLanguage {Type: Text, Single, Restricted)

W Edit Property Yalues

Select the value you want to set as default. When you are done, click Save.
& Java © CH+
0 wisual Basic oo

& &

8. Change the values on the Edit Property Values page.

Note: Non-default property sets and properties that were not configured through the
Site Infrastructure tab in the E-Business Control Center are not editable here.

9. Click Save.
10. Click Back to return to the Group Properties view.
11. To edit other properties, return to step 5.

12. If you click the Reset button on the Property bar (instead of Edit as we did in step
7.), the property is set to null for that user. This will have one of three results:

m First, if the property has a default value, the group will have that default
value. Note that the default value is not copied into the group's settings.
The group's value is just set to null so that the default value will be
returned when get Property() is called for that property. If the default
value changes, calling get Propert y() will return the new default
value.

m Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

m Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Guide to Building Personalized Applications ~ 8-21

8 Creating and Managing Users

Deleting Groups

To delete groups:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon.

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. On the WebLogic Portal Administration Tools page, click the User Management
icon. The User Management Home page appears. (See Figure 8-4.)

3. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group tool appears. (Figure 8-15)

Figure 8-15 Search for a Group To Delete

Groups finished

Search for Groups

Click through the group
hierarchy to find a group, or
search for the group by Group Name:

name, Once found, you can ’ @
click the group title link to

edit it, or click X' to delete
the group.

Group Hierarchy
Top Level Groups

AdminEligible X
Systemadministrator X
Delegatedadministrator X
wlcs customer X
< pwitek X
Approver X
CustomerService X
@ Financialadvisor X'

BeanCounters ¥

8-22 Guide to Building Personalized Applications

Creating and Modifying Users

4.
5.

a. To locate the group to delete by name, enter the group name in the Group Name
field, then click Search. The group name must be entered exactly.

b. To locate the group to delete within the Group Hierarchy, navigate the Group
Hierarchy tree view.

Click the X to the right of the group name.

A confirmation box appears. (Figure 8-16)

Figure 8-16 Confirmation Box: Group Successfully Deleted

6.

Groups finished

Group ‘BeanCounters’ successfully deleted.

Click Finished to return to the User Management Home Page.

Creating and Modifying Users

This section describes using the WebLogic Portal Administration Tools to complete
the following tasks:

Creating Users
Editing User Property Values
Deleting Users

Deleting User Records That Do Not Exist in the Realm from the Personalization
Database

For information on using JSP tags or APIs to create and modify users, refer to
Chapter 13, “Personalization Server JSP Tag Library Reference,” and to the Javadoc
API documentation for the User Manager and G oupManager EJBs.

For information on how customers can create and modify their own user profiles, refer
to the Guide to Registering Customers and Managing Customer Services.

Guide to Building Personalized Applications 8-23

8 Creating and Managing Users

Creating Users

8-24

Note: The administration tools do not allow the creation of a user with username
“system” or “guest”, as these are reserved WebLogic Server terms.

To create users:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon. (See
Figure 8-17.)

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

Figure 8-17 User Management Icon on the WebLogic Portal Administration
Tools

The User Managemert Ican on the Portal Administration Home Page

o® “"‘

o H
" /
2, 1164

AC

A

BEA WebLogic Portal

Click the icons {.) to latgch the administration tools. To get ° See the Rersonalization

. . N N Advizor for tags and tips
more help as you work with the tools, click ? to view online help, or to help you create a
the book icon to view the develgper's guide.

sample application,
User Management Catalog Management

Administer users and groups and thelr Create and administer catalog content and
associated properdies more explanation... structure mmore explanation...

Guide to Building Personalized Applications

Creating and Modifying Users

2. The User Management Home page appears. (Figure 8-18)

Figure 8-18 User Management Home Page

BEA WebLogic Portal

create Users create

Click Groups to edit and delete groups, click Create
to add new gQroups.

GClick Users to edit and delete users, click Greate to add
new users.

Realm

Click Realm to view and edit the Realm
configuration.

3. On the User Management Home page, click Create in the Users banner. The
Create New Users page appears. (Figure 8-19)

Figure 8-19 Create New Users Page

/} 1 Create New Users
~.

L\ Enter the appropriate information then click Create, New users will display in the list below.

Username:

Password:

* * *

VYerify Password:

User Type:

WLCS Customer

& &

4. Enter the username in the Username field.

Note: Limit username to 25 characters.
5. Enter the password associated with the Username in the Password field.

6. In the Verify Password field, re-enter the password provided in step 5.

Note: Characters in password fields appear as asterisks.

Guide to Building Personalized Applications 8-25

8 Creating and Managing Users

7. From the User Type list, select a profile type. The user will be an instance of this
profile type. This allows the system to access explicit properties in a Unified
Profile type, and ensures proper data cleanup when the user is removed.

8. Click Create. The new user appears at the bottom of the page.
Alternatively, click Back to return to the User Management Home page without
creating the new user.

Note: The WLCS RDBMSrealm allows mixed case user creation. (For example:
User, user.)

After you create a user, you can then personalize it by overriding the default property
values. (The default property values are set up in the E-Business Control Center. For
more information, see Chapter 7, “Creating and Managing Property Sets,” in this

guide.)

Editing User Property Values

8-26

Note: Explicit properties of UUP are only editable from the administration tools if a
property set is created that mirrors those properties.

To edit user property values:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon. (See
Figure 8-17.)

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. The User Management Home page appears. (Figure 8-18)

Guide to Building Personalized Applications

Creating and Modifying Users

3. On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears. (Figure §-20)

Figure 8-20 Search for a User

Search for a User Or See a List of All Users that Start with...

Enter a user name then click Search. EEEEEEEE
wename: [&9 NEADODEANMEIREA

&

Search Results
Click a title link to edit a user. You can delete a user by clicking its associated Delete icon.
Result for "bob*"

bobsmith X

To locate a user, do one of the following:

a. Tolocate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

4. Select the user. The User Property view appears.

5. Inthe drop-down list, select a property set to view for this user.

Note: Default property values are created using the E-Business Control Center. For
specific instructions on property set management, see Chapter 7, “Creating
and Managing Property Sets.”

Guide to Building Personalized Applications 8-27

8 Creating and Managing Users

6. Click Search. The User Properties view appears. (Figure §8-21)

Figure 8-21 User Properties View

User Information
Username: democustomer

Properties

Developer (Boolear e, Restricted)

15 the visitor a developer or not

true v false
PreferredLanguage { 1gle, Restricted)

The preferred language of the developer
LRETE Ctt

Wisual Basic

SkillLevel Single,
The skill level of a developer
Low High

¥ Medium

e wlos_customer
= BYErYONe @
7. Click Edit on the appropriate Property bar. The associated Edit Property Values

page appears. (Figure 8-22)

Figure 8-22 Edit Property Values

i Property Set: StockPortal

Property: SkillLevel {Type: Text, Single,
Restricted)

5 Edit Property Yalues
LS

Select the value you want to set as default. When you
are done, click Save.

0 Low High

OO

8. Change the user’s values at the Edit Property Values page.

& Medium

8-28 Guide to Building Personalized Applications

Creating and Modifying Users

9. Click Save. A message appears indicating whether or not the edit was successful.
Alternatively, click Back to return to the User Properties view without saving
your changes.

10. Click Back to return to the User Properties view.

11. Return to step 4 and edit other properties as necessary.

Note: If you click the Reset button on the Property bar (instead of Edit as we did in
step 6), the property is set to null for that user. This will have one of three
results:

m First, if the property has a default value, the user will have that default
value. Note that the default value is not copied into the user's settings.
The user's value is just set to null so that the default value will be
returned when getProperty() is called for that property. If the default
value changes, calling getProperty() will return the new default value.

m Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

m Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Deleting Users

To delete users:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon. (See
Figure 8-17.)

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. The User Management Home page appears. (Figure 8-18)

Guide to Building Personalized Applications 8-29

8 Creating and Managing Users

3. On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears. (Figure 8-23)

Figure 8-23 Search for a User to Delete

Search for a User Or See a List of All Users that Start with...

Enter a user name then click Search. EEEEEEEE
wemame: [€9 NADBNDENODBRA

&

Search Results
Click a title link to edit a user. You can delete a user by clicking its associated Delete icon.
Result for "B"

bobsmith

>

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

4. Click the X to right of the username to delete the user. A confirmation dialog box
appears.

5. Click OK to confirm the deletion and return to the Search for Users page.

8-30 Guide to Building Personalized Applications

Creating and Modifying Users

Deleting User Records That Do Not Exist in the Realm
from the Personalization Database

When users are deleted from the realm, they might leave behind orphan profile records
in your personalization database. This will only happen if the users are deleted directly
from the realm, and not through the User Manager session bean. For example, a user
might be deleted from an LDAP realm through the LDAP server’s admin tool. To
delete user profile records that no longer exist in the realm from the Personalization
database:

1. Start the WebLogic Portal Administration Tools for your application. On the
Administration Tools home page, click the User Management icon. (See
Figure 8-17.)

For more information, see “WebLogic Portal Administration Tools” in the
WebLogic Portal Architectural Overview.

2. n the User Management Home page, click Realm in the Realm banner. The
Realm Configuration window appears. (Figure 8-24)

Figure 8-24 The Realm Configuration Window

oo,
o®c%,

e
2 hea BEA WebLogic Portal

Realm Configuration

Groups
There are 12 group profiles currently defined.

There are 26 user profiles currently defined.

3. Two banners, Groups and Users, are displayed.

4. Click the Cleanup button on the Users banner for a count of orphaned user profile
records and an opportunity to delete them.

Guide to Building Personalized Applications ~ 8-31

8 Creating and Managing Users

5. Click the Cleanup button on the Groups banner for a count of orphaned group
profile records and an opportunity to delete them. (Figure §-25)

Figure 8-25 The Realm Window Offers An Opportunity to Clean Up Orphans

Realm Configuration

Clean Up Groups
- Groups found in the personalization database but not found in the realm are called misconfigured
a groups. Clicking "Clean Up" will remove these groups and all of their profile information from the
database.

Mo misconfigured groups exist.

SD

6. When finished, click Back to return to the Realm Configuration window.

7. Click Finished, to return to the User Management Administration Tools Home
page.

Accessing User and Group Data

Some WebLogic Personalization Server services, such as content selectors, access user
and group data without requiring your intervention. If your business needs require
additional use of your user and group data, you can do the following:

m Use JSP Tags to Access User and Group Data
m Use APIs to Access User and Group Data

8-32 Guide to Building Personalized Applications

Accessing User and Group Data

Use JSP Tags to Access User and Group Data

WebLogic Personalization Server provides JSP tag libraries that you can use to access
user and group profile information, as well as create and delete users and groups, and
manage user-group relationships.

For a complete list of user and group management JSP tags, refer to Chapter 13,
“Personalization Server JSP Tag Library Reference.”

Use APIs to Access User and Group Data

The User Manager and Gr oupManager session EJBs provide user management
functionality in a WebLogic Personalization Server-specific context. Services
provided by the EJBs include:

m Creating/removing users

m Creating/removing groups

®m Adding users to groups/removing users from groups

m Adding groups to groups/removing groups from groups
m Retrieving usernames corresponding to a group

m Retrieving group names corresponding to a user

For a complete list of User Manager and Gr oupManager services, see the
UserManager and GroupManager Javadoc API documentation.

As discussed in “Alternate Security Realms and User Profiles” on page 8-6, the
User Manager and G oupManager are intended as a single entry point to both the
security realm and the personalization database. All methods on these session beans
delegate to either the realm, the profile components, or both when appropriate. This
enables the developer to use a custom security realm implementation and have it
integrate seamlessly with the WebLogic Personalization Server.

In addition to User Manager and Gr oupManager, you can instantiate and use the
lightweight Pr of i | eW apper object to access a user or group profile. A

Prof i | eW apper can access the correct ProfileManager session bean(s) based on the
identity it was initialized with. If it was initialized with both a user and group name,

Guide to Building Personalized Applications 8-33

8 Creating and Managing Users

the group will be used as an explicit successor for all getProperty methods that do not
take an explicit successor. For more information about Pr of i | eW apper , refer to the
Javadoc API documentation.

Setting Global Values for a Profile

Profile properties can also belong to the “default”, or null, property set, by passing in
a null value when setting the property. Doing this will mean that the property cannot
be validated or recognized by the E-Business Control Center, but it provides a way to
set global values for a profile. When a property is requested, the profile first looks for
a value with that name in the given property set, and if it is not found, it looks in the
default property set. For example, a user profile can have the property Age defined in
the default property set, and as long as there is no property called Age in another
property set, calling get Property(x, "Age") will always return that value for any
property set x.

Accessing Properties from an LDAP Server

8-34

The WebLogic Portal sample applications include a default property set named
“ldap,” which can retrieve properties from an LDAP server. Before you use this prop-
erty set with the sample applications or with your own application, you must do the
following:

1. If you have already deployed the application on a WebLogic Portal instance, stop
the server.

2. Deploy the | dapprofil e. j ar component within your application as described
in “Add JAR Files” under “Assembling and Deploying Enterprise Applications”
in the Deployment Guide.

3. Start the server and deploy the application.

Guide to Building Personalized Applications

Accessing Properties from an LDAP Server

4. Start the WebLogic Server Administration Console for the active domain, and do

the following:

a. In the left pane, click Deployments — EJB — ldapprofile.

b. Right-click this node.

c. Select Edit Descriptor.

d. When the descriptor comes up in a new window, navigate to
| dapprofile.jar — EJBJar — Enterprise Beans — Sessions
— LdapPropertyManager — Env Entries.

5. This will list the connection variables, and their default values as shown in
Table 8-15. You will need to edit these values to match your LDAP server’s

configuration.

Table 8-15 Edit These Values to Match Your LDAP Server’s Configuration

Connection Variables

Description

confi g/ server URL

The URL of your LDAP server.

confi g/ princi pal

The name of the principal to use when connecting to
your LDAP server, usually “admin” or something
similar.

confi g/ principal Credenti al

The Password of the principal defined above.

confi g/ user DN

The location of users in your LDAP directory.

confi g/ groupDN

The location of groups in your LDAP directory

config/usernanmeAttribute

The attribute used to describe usernames in your
LDAP directory, usually “uid”. This will be used to
map WLS usernames to LDAP usernames.

confi g/ groupnaneAttri bute

The attribute used to describe group names in your
LDAP directory, usually “cn”. This will be used to
map WLS group names to LDAP group names.

6. After editing these values, persist them by navigating to the root
| dapprofil e.jar node and clicking Persist.

7. Restart the server.

Guide to Building Personalized Applications 8-35

8 Creating and Managing Users

Incorporating Data from Other External
Sources

This section describes how to create a Unified User Profile that incorporates user data
from external data sources in addition to or instead of LDAP servers, such as a legacy
system or another database (See Figure 8-3).

This section includes the following subsections:
m How WebLogic Portal Retrieves User Data from External Sources

m Configuring WebLogic Portal To Retrieve User Data from External Sources

Note: If you want to incorporate user data only from an LDAP server, you do not
need to complete the steps in this section. Instead, refer to “Accessing
Properties from an LDAP Server” on page 8-34.

Unified User Profile Security

8-36

A Unifed User Profile is not a custom WebLogic security realm. User passwords are
set in the WebLogic security realm, not in the user profile with other user properties.
When User Manager . set Passwor d() is called, it delegates to the WebLogic security
realm, not to a Pr of i | eManager . However, the Unified User Profile and the
WebLogic security realm are closely associated, because the User Manager is the
synchronization point between the Unified User Profile and the WebLogic security
realm. For example, the User Manager . cr eat eUser () method delegates to the
security realm to create the user there, and then to a Pr of i | eManager to create the
user profile using the cr eat eUni quel d() method of one or more

Enti t yPropertyManager s. All user management operations should be performed
through the User Manager instead of directly through the security realm in order to
keep the security realm and the user profile in sync.

See User Manager in the WebLogic Portal Javadoc at
http://e-docs.bea.com/wlp/docs40/interm/javadoc.htm.

For information on writing a custom security realm, go to
http://e-docs.bea.com/wls/docs61/security/prog.html#1041025.

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

How WebLogic Portal Retrieves User Data from External

Sources

This section provides background information for completing the tasks that are
described in “Configuring WebLogic Portal To Retrieve User Data from External
Sources” on page 8-40.

To retrieve user data from a non-LDAP, external source, WebLogic Portal does the
following (See Figure 8-26):

1.

A JSP tag, API, or WebLogic Portal service invokes the Prof i | eFact ory and
passes auser ID as a parameter. The Pr of i | eFact ory returns a Pr of i | eW apper
object for the user.

Prof i | eW apper is a lightweight object that is used to access a user or group
profile. For more information, refer to the Javadoc API documentation.

For example, you use the Post Logi nProcessor Webflow component to
retrieve user information on a specific JSP. When a customer accesses the JSP,
Post Logi nProcessor invokes the Profi | eFact ory.

See “Initializing the Customer Profile” in the Guide to Developing Campaign
Infrastructure.

The JSP tag, API, or WebLogic Portal service calls the
get Property("propertySet", "propertyNane") method of the
Profil eWapper.

Profi | eW apper calls the get Pr of i | eManager method of the User Manager.

User Manager is the synchronization point between user profile support and the
WebLogic Server security realm. The User Manager handles user creation and
deletion by delegating to various Pr of i | eManager s. The User Manager has a
registry of Pr of i | eTypes that map a Pr of i | eType name to a particular
deployment of a Pr of i | eManager . For more information about the Java objects,
refer to the Javadoc API documentation.

The get Prof i | eManager method does the following:
a. Retrieves the user's type from the WebLogic Portal RDBMS repository.

You can specify a user’s type when you create a user, (the cr eat eUser ()
method takes a user type as a parameter), and WebLogic Portal stores the

Guide to Building Personalized Applications 8-37

8 Creating and Managing Users

8-38

type designation in its RDBMS repository. After you create a user, you
cannot change the type.

b. Looks in the User Manager deployment descriptor to find a Pr of i | eManager
that corresponds to the user type. If the user does not have a type, User Manager
returns the default Pr of i | eManager.

c. Returns a Profi | eManager.

Prof i | eManager is a stateless session bean used to access profile values. It
coordinates property inheritance and the mapping of properties to different data
sources.

User Manager and Prof i | eManager are both configurable through deployment
descriptors: you should never have to modify/extend them by writing code.

Profi | ewW apper calls the get Property("propertySet",
"propertyNane", "username") method of the Profi | eManager from the
previous step.

The get Pr oper t y method does the following:

a. Looks in the Prof i | eManager deployment descriptor for an
Enti t yPropertyManager mapping that matches the
propertySet/propertyName. If there is no such mapping, it looks for a mapping
that matches the propertySet. If there is no such mapping, it finds the default
EntityPropertyManager.

b. Returns an Enti t yPr oper t yManager.

Enti t yPropertyManager is responsible for reading/writing properties to/from
a datasource.

. The Enti t yPr opert yManager retrieves the property from its data source.

Enti t yPropertyManager returns the value to Pr of i | eManager, which returns
it to Pr of i | eW apper, which returns it to the client. If the
Enti t yPropertyManager returns null, the Pr of i | eManager invokes successor
searches (described in “Property Inheritance” on page 8-2).

. If the successor searches return null, the Pr oper t ySet Manager is used to get the

default value for the property for the given property set. The
Pr opert ySet Manager returns the value to the Pr of i | eManager, which returns
it to the Pr of i | eW apper, which returns it to the client.

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

Note: You should use the WebLogic Portal Administration Tools to create a
property set definition containing your UUP properties. This UUP

property set can be used to provide default property values—default

properties that are also required by the Portal personalization tools. For
example, the tool for creating customer segments needs to know which
properties (and which types of properties) are available for defining a

customer segment.

Figure 8-26 How WebLogic Portal Retrieves Data From an External Source

WebLogic Portal Service

I I
1 2

A ¥

ProfileWrapper
for user

UserManager

I
3

¥

PRR—

ProfileManager
for user type

! I
6 4
;
]

¥

EntityPropertyManager
for property set

|
5

External Data Source

Note: The retrieval of default property values from the property set metadata in the
portal schema is not shown in this figure.

A Unified User Profile is not a custom WebLogic security realm. For information on

Unified User Profile security, see “Unified User Profile Security” on page 8-36.

Guide to Building Personalized Applications

8-39

8 Creating and Managing Users

Configuring WebLogic Portal To Retrieve User Data from
External Sources

To retrieve user data from external sources, complete the following tasks:
1. Create an EntityPropertyManager EJB to Represent External Data

2. Deploy a ProfileManager That Can Use the New EntityPropertyManager

Create an EntityPropertyManager EJB to Represent External Data

8-40

To incorporate data from an external source, you must first create a stateless session
bean that implements the methods of the

com bea. p13n. property. EntityPropertyManager remote interface.

Enti t yPropertyManager is the remote interface for a session bean that handles the
persistence of property data and the creation and deletion of profile records if
appropriate.

In addition, the stateless session bean should include a home interface and an
implementation class. For example:

M/Ent it yPr opertyManager
ext ends com bea. pl3n. property. EntityPropertyManager

M/Enti t yPr opert yManager Hone
ext ends com bea. pl3n. property. EJBHone

Your implementation class can extend the Ent i t yPr oper t yManager | npl class.
However the only requirement is that your implementation class is a valid
implementation of the MyEnt i t yPr oper t yManager remote interface. For example:

M/Enti t yPropert yManager | npl ext ends
com bea. pl3n. property.internal.EntityPropertyManager| npl

or

M/Enti t yPropert yManager | npl ext ends
j avax. ej b. Sessi onBean

We recommend the following guidelines for your new EJB:

® Your custom Enti t yPropert yManager is not a default
Enti tyPropertyManager. A default Enti t yPropertyManager is used to

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

get/set/remove properties in the Portal schema. Your custom
Enti t yPropertyManager does not have to support the following methods. It
can throw j ava. | ang. Usuppor t edOper at i onExcept i on instead:

get Dynami cProperties
get Enti t yNames

get HomeNane

get PropertylLocat or
get Uni quel d

If you want to be able to use the Portal framework and tools to create and
remove users in your external data store then you must support the

creat eUni quel d() and renoveEnti ty() methods. However, your custom
EntityPropertyManager is not the default Enti t yPr opert yManager so your
createUniqueld method does not have to return a unique number. It must create
the user entity in your external data store and then it can return any number, such
as -1.

The following recommendations apply to the EntityPropertyManager methods
that you must support:

get Property() — Use caching. You should support the get Pr operti es
method to retrieve all properties for a user at once, caching them at the same
time. Your get Pr oper t y method should use get Properti es.

set Property() — Use caching.

renoveProperties(),renmoveProperty() — After these methods are called
then a call to getProperty should return null for the property. Remove properties
from the cache too.

Your implementations of the get Property(), set Property(),
renoveProperty(), and r enovePr operti es() methods must include any
logic necessary to connect to the external system.

If you want to cache property data, the methods must be able to cache profile
data appropriately for that system. (See the com bea. p13n. cache package.)

If the external system contains read-only data, any methods that modify profile
data must throw a j ava. | ang. Unsuppor t edOper at i onExcept i on.
Additionally, if the external data source contains users that are created and
deleted by something other than WebLogic Personalization Server, your

Guide to Building Personalized Applications 8-41

8 Creating and Managing Users

creat eUni quel d and r enoveEnt i t y methods can simply throw an
Unsupport edOper at i onExcept i on.

m To avoid class loader dependency issues, make sure that your EJB resides in its
own package.

m For ease of maintenance, place the compiled classes of your custom
Enti t yPropertyManager bean in your own JAR file (instead of modifying an
existing WebLogic Portal JAR file).

Before you deploy your JAR file, follow the steps in the next section.

Deploy a ProfileManager That Can Use the New EntityPropertyManager

8-42

A “user type” is a mapping of a Pr of i | eType name to a particular Pr of i | eManager .
This mapping is done in the User Manager EJB deployment descriptor.

To access the data in your new Ent i t yPr opert yManager EJB, you must do one of
the following:

m In most cases you will be able to use the default deployment of
Prof i | eManager, the User Pr of i | eManager. You will modify the
User Prof i | eManager ’s deployment descriptor to map a property set and/or
properties to your custom Ent i t yPr opert yManager . If you support the
creat eUni quel d() and renoveEnti t y() methods in your custom
Enti t yPropertyManager, you can use WebLogic Portal Administration Tools
to create a user of type “User” with a profile that can get/set properties using
your custom Ent i t yPr oper t yManager . For more information, refer to
“Modifying the Existing ProfileManager Deployment Configuration” on page
8-43.

m In some cases you may want to deploy a newly configured Pr of i | eManager
that will be used instead of the User Pr of i | eManager. This new
Prof i | eManager is mapped to a Prof i | eType in the deployment descriptor for
the User Manager . If you support the cr eat eUni quel d() and r enoveEnti ty()
methods in your custom Ent i t yPr oper t yManager, you can use the WebLogic
Portal Administration Tools (or API) to create a user of type “MyUser” (or
whatever you name it) that can get/set properties using the customized
deployment of the Pr of i | eManager that is, in turn, configured to use your
custom Ent i t yPr oper t yManager . For more information, refer to “Configuring
and Deploying a New ProfileManager” on page 8-47.

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

Prof i | eManager is a stateless session bean that manages access to the profile values
that the Ent i t yPr opert yManager EJB retrieves. It relies on a set of mapping
statements in its deployment descriptor to find data. For example, the

Profi | eManager receives a request for the value of the Dat eCf Bi rt h property,
which is located in the Per sonal Dat a property set. Pr of i | eManager uses the
mapping statements in its deployment descriptor to determine which

Enti t yPropertyManager EJB contains the data.

Modifying the Existing ProfileManager Deployment Configuration

If you use the existing User Pr of i | eManager deployment to manage your user
profiles, perform the following steps to modify the deployment configuration.

Under most circumstances, this is the method you should use to deploy your UUP. An
example of this method is the deployment of the custom Ent i t yPr opert yManager
for LDAP property retrieval, the LdapPr oper t yManager . The classes for the
LdapPr oper t yManager are packaged in Idapprofile.jar. (See “Accessing Properties
from an LDAP Server” on page 8-34.) The deployment descriptor for the

User Prof i | eManager EJB is configured to map the “ldap” property set to the
LdapPr oper t yManager . The User Pr of i | eManager is deployed in userngnt . j ar.

1. Back up the user ngnt . j ar file in your enterprise application root directory.
2. From usermgnt . j ar, extract META- | NF/ ej b-j ar. xm and open it for editing.

3. Inejb-jar.xnl, find the following element:
<l-- map all properties in property set Idap to | dap server -->
<env-entry>
<env-entry-name>Pr opert yMappi ng/ | dap</ env-entry- name>
<env-entry-type>java.l ang. Stri ng</env-entry-type>
<env-entry-val ue>LdapPr opert yManager </ env-entry-val ue>
</ env-entry>

and add an <env- ent r y> element after this to map a property set to your custom
Entit yPropertyManager like this:

<l-- map all properties in UUPExanpl e property set to
MyEnti t yPropertyManager -->

<env-entry>

<env-ent ry-name>Pr opert yMappi ng/ UUPExanpl e</ env-ent ry- name>

Guide to Building Personalized Applications 8-43

8 Creating and Managing Users

<env-entry-type>java.lang. String</env-entry-type>
<env-entry-val ue>M/Enti t yPropertyManager </ env-entry-val ue>

</ env-entry>

4. Inejb-jar.xm, find the following element:
<l-- an |dap property manager -->
<ej b-ref>
<ej b-ref - name>ej b/ LdapPr opert yManager </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<hone>com bea. p1l3n. property. EntityPropertyManager Hone</ hone>
<r enpt e>com bea. p13n. property. EntityPropertyManager </ r enot e>
</ejb-ref>

and add a <ej b- r ef > element after this to map a reference to an EJB that
matches the name from the previous step with ej b/ prepended like this:

<l-- an exanpl e property manager -->
<ej b-ref>
<ej b-ref - name>ej b/ MyEnt i t yPropert yManager </ ej b-r ef - nanme>
<ej b-ref-type>Sessi on</ej b-ref-type>
<hone>exanpl es. user ngnt . MyEnt i t yPropert yManager Horre</ horme>
<r enpt e>exanpl es. userngnt . MyEnt i t yPr opert yManager </ r enot e>
</ejb-ref>
The home and remote class names match the classes from your EJB JAR file for

your custom Ent i t yPr opert yManager.

5. Ifyour Entit yPropertyManager implementation handles creating and
removing profile records, you must also add Creator and Remover entries. For
example:

<env-entry>
<env-entry-nane>Creator/ Creator 1</ env-entry- nanme>
<env-entry-type>java.l ang. String</env-entry-type>
<env-entry-val ue>MyEnti t yPropertyManager </ env-entry-val ue>
</ env-entry>

<env-entry>

8-44 Guide to Building Personalized Applications

Incorporating Data from Other External Sources

<env-entry-name>Renover/ Renover 1</ env- ent ry- nane>

<env-entry-type>java.lang. Stri ng</env-entry-type>

<env-entry-val ue>M/Enti t yPropertyManager </ env-entry-val ue>
</ env-entry>

This instructs the User Pr of i | eManager to call your custom

Enti t yPropertyManager when creating or deleting user profile records. The
names “Creator1” and “Removerl” are arbitrary. All Creators and Removers will
be iterated through when the User Pr of i | eManager creates or removes a user
profile. The value for the Creator and Remover matches the ej b- r ef - nane for
your custom Ent i t yPropert yManager without the ej b/ prefix.

From usermgmt.jar, extract META- | NF/ webl ogi c- €] b-j ar. xm and open it for
editing.
In webl ogi c- ej b-j ar. xn , find the following elements:
<webl ogi c-ent erpri se- bean>

<ej b- name>User Pr of i | eManager </ ej b- nanme>

<r ef erence-descri pt or>

<ej b-reference-description>
<ej b-ref - name>ej b/ Enti t yPr oper t yManager </ ej b-r ef - nane>

<j ndi - name>${ APPNAME} . BEA_per sonal i zati on.
EntityPropertyManager </j ndi - nane>

</ ej b-reference-description>

and add an ejb-reference-description to map the ej b- r ef for your custom
EntityPropertyManager to the JNDI name. This JNDI name must match the
name you assigned in webl ogi c- ej b-j ar. xnl in the JAR file for your
customer Ent i t yPr oper t yManager. It should look like this:

<webl ogi c-ent erpri se- bean>
<ej b- nanme>User Prof i | eManager </ ej b- nane>
<r ef erence-descri pt or>
<ej b-reference-description>
<ej b-ref-name>ej b/ Enti t yPropert yManager </ ej b-r ef - nane>

<j ndi - name>${ APPNAME} . BEA per sonal i zat i on.
EntityPropertyManager </j ndi - nane>

</ ej b-reference-description>

Guide to Building Personalized Applications 8-45

8 Creating and Managing Users

8-46

10.

11

12.

<ej b-ref erence-descri ption>

<ej b-ref - name>ej b/ MyEnt i t yPr opert yManager
</ ej b-ref - name>

<j ndi - name>${ APPNAME} . BEA per sonal i zat i on.
M/Ent i t yPropertyManager </ j ndi - nane>

</ ej b-reference-description>

Note the ${ APPNAVE} string substitution variable. The WebLogic EJB container
automatically substitutes the enterprise application name to scope the JNDI
name to the application.

Update usermgmt.jar for your new deployment descriptors. You can use the
j ar uf command to update the modified META- | NF/ deployment descriptors.

Edit META- | NF/ appl i cati on. xm for your enterprise application to add an
entry for your custom Ent i t yPr oper t yManager EJB module like this:
<nodul e>

<ej b>UUPExanpl e. j ar </ ej b>
</ modul e>
If you are using an application-wide cache, you can manage it from the
WebLogic Server Administration Console if you add a <Cache> tag for your

cache to the META- | NF/ appl i cat i on- confi g. xm deployment descriptor for
your enterprise application like this:

<Cache
Name=" UUPExanpl eCache"
Ti meToLi ve="60000"

/>

For information on using com bea. p13n. cache. Cache, see “Using Caches” in
the Performance Tuning Guide.

. Verify the modified user ngnt . j ar and your custom Ent i t yPr oper t yManager

EJB JAR archive are in the root directory of your enterprise application and start
your server.

Use the WebLogic Server Administration Console to verify your EJB module is
deployed to the enterprise application and then use the console to add your server
as a target for the EJB module. You need to select a target to have your domain's
config. xnl file updated to deploy your EJB module to the server.

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

13. Use the E-Business Control Center to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom
EntityPropertyManager inej b-jar.xm for the User Prof i | eManager (in
user ngnt . j ar). You could also map specific property names in a property set to
your custom Ent i t yPr opert yManager.

Note: Be sure to synchronize the new data to your server after the property set is
created.

14. Your new Unified User Profile type is ready to use. You can use the WebLogic
Portal Administration Tools to create a user of type “User,” and it will use your
UUP implementation when the “UUPExample” property set is being modified.
When you call cr eat eUser (" bob", "password") or creat eUser ("bob",
"password", null) onthe User Manager, several things will happen:

e A user named “bob” is created in the security realm.

e A WebLogic Portal Server profile record is created for Bob in the WebLogic
Portal RDBMS repository.

e Ifyou set up the Creator mapping, the User Manager will call the default
Prof il eManager deployment (User Prof i | eManager) which will call your
custom Ent i t yPropert yManager to create a record for Bob in your data
source.

e Retrieving Bob's profile will use the default Pr of i | eManager deployment
(User Prof i | eManager), and when you request a property belonging to the
“UUPExample” property set, the request will be routed to your custom
Enti t yPropertyManager implementation.

Configuring and Deploying a New ProfileManager

If you are going to deploy a newly configured Pr of i | eManager instead of using the
default Pr of i | eManager (User Prof i | eManager) to manage your user profiles,
perform the following steps to modify the deployment configuration. In most cases,
you will not have to use this method of deployment. Use this method only if you need
to support multiple types of users that require different Pr of i | eManager
deployments—deployments that allow a property set to be mapped to different custom
EntityPropertyManager s based on Profi | eType.

An example of this method is the deployment of the custom

Cust omer Pr of i | eManager in cust omer . j ar . The Cust oner Prof i | eManager is
configured to use the custom Ent i t yPr oper t yManager

(Cust oner Pr oper t yManager) for properties in the “CustomerProperties” property

Guide to Building Personalized Applications 8-47

8 Creating and Managing Users

8-48

set. The User Manager EJB in user ngnt . j ar is configured to map the
“WLCS_Customer” ProfileType to the custom deployment of the Pr of i | eManager,
Cust oner Pr of i | eManager .

1. Back up the user ngnt . j ar file in your enterprise application root directory.
2. From userngnt . j ar, extract META- | NF/ ej b-j ar. xml and open it for editing.

3. Inejb-jar.xn, copy the entire <sessi on> tag for the User Pr of i | eManager
and configure it to use your custom implementation class for your new
deployment of Pr of i | eManager.

In addition, you could extend the User Pr of i | eManager hone and r enot e
interfaces with your own interfaces if you want to repackage them to correspond
to your packaging (for example.,

exanpl es. usermgnt . MyPr of i | eManager Hone,

exanpl es. user ngnt . MyPr of i | eManager). However, it is sufficient to replace
the bean implementation class:

<sessi on>
<ej b- name>MyPr of i | eManager </ ej b- nane>

<hone>com bea. p13n. userngnt . profil e. Profil eManager Hone
</ hone>

<r enpt e>com bea. p13n. userngnt. profile. Profil eManager
</ renot e>

<ej b- cl ass>exanpl es. user mgnt . MyPr of i | eManager | npl
</ ej b-cl ass>

<sessi on-type>St at el ess</ sessi on-type>

<transaction-type>Cont ai ner</transaction-type>

<l-- map all properties in UUPExanpl e property
set to MyEntityPropertyManager -->

<env-entry>
<env-entry-nanme>Pr opert yMappi ng/ UUPExanpl e</ env- entry- nane>
<env-entry-type>java.l ang. String</env-entry-type>
<env-entry-val ue>M/Enti t yPropertyManager </ env-entry-val ue>

</ env-entry>

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

<l-- register a Creator for MyEntityPropertyManager -->
<env-entry>
<env-entry- name>Creat or/ Cr eat or 1</ env- ent ry- nane>
<env-entry-type>java. |l ang. String</env-entry-type>
<env-entry-val ue>M/Ent i t yPropert yManager </ env-entry-val ue>
</ env-entry>
<l-- register a Renmover for MyEntityPropertyManager -->
<env-entry>
<env-entry- name>Renover/ Renpver 1</ env- ent ry- nane>
<env-entry-type>java. |l ang. String</env-entry-type>
<env-entry-val ue>M/Ent i t yPropert yManager </ env-entry-val ue>

</ env-entry>

<l-- the default property manager -->

<ej b-ref>
<ej b-ref - name>ej b/ Enti t yPr oper t yManager </ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ejb-ref-type>

<hone>com bea. pl3n. property. Entit yPropertyManager Hone
</ home>

<r enot e>com bea. p13n. property. EntityPropertyManager
</renot e>

</ejb-ref>
<l-- ny custom property manager -->
<ej b-ref>
<ej b-ref - name>ej b/ MyEnt i t yPr opert yManager </ ej b-r ef - name>
<ej b-ref-type>Sessi on</ejb-ref-type>
<hone>exanpl es. userngnt . Enti t yPropertyManager Hone</ hone>
<r enot e>exanpl es. userngnt . Enti t yPropert yManager </ r enot e>
</ ejb-ref>
<l-- property set mmnager -->

<ej b-ref>

Guide to Building Personalized Applications ~ 8-49

8 Creating and Managing Users

<ej b-r ef - name>ej b/ Pr opert ySet Manager </ e] b-r ef - name>

<ej b-ref -type>Sessi on</ej b-ref-type>

<honme>com bea. p13n. property. PropertySet Manager Honme</ hone>

<r enot e>com bea. pl3n. property. PropertySet Manager </ r enot e>
</ejb-ref>
<l-- group profile manager, which is the user's successor -->
<ej b-ref>

<ej b-r ef - name>ej b/ G- oupPr of i | eManager </ ej b- r ef - nanme>

<ej b-ref-type>Sessi on</ej b-ref-type>

<honme>com bea. p13n. usernmgnt . profi | e. Profi | eManager Hone
</ hone>

<r enot e>com bea. pl3n. userngnt. profil e. Profil eManager
</ renot e>

<ej b-1i nk>GroupPr of i | eManager </ ej b-1i nk>

</ejb-ref>

<security-rol e-ref>

<description>This ref declares the Adm nistrative role
for this bean</description>

<r ol e- name>Syst emAdni nRol e</ r ol e- nane>
<rol e-1ink>Syst emAdmi nRol e</rol e-|ink>
</security-role-ref>
<security-rol e-ref>

<description>This ref declares the Adm nistrative role
for this bean</description>

<r ol e- name>Del egat edAdm nRol e</r ol e- nane>
<rol e-1ink>Del egat edAdm nRol e</rol e-1i nk>
</security-role-ref>
</ sessi on>

You must create an <env- ent r y> element to map a property set to your custom
Enti t yPropertyManager. You must also create a <ej b-r ef > element to map a
reference to an EJB that matches the name from the Pr oper t yMappi ng with

ej b/ prepended. The hone and r enot e class names for your custom

8-50 Guide to Building Personalized Applications

Incorporating Data from Other External Sources

EntityPropertyManager match the classes from your EJB JAR file for your
custom Ent i t yPropert yManager.

Also, if your Ent i t yPr oper t yManager implementation handles creating and
removing profile records, you must also add Creator and Remover entries. This
instructs your new Pr of i | eManager to call your custom

Enti t yPropertyManager when creating or deleting user profile records. The
name suffixes for the Creator and Remover, “Creator]” and “Removerl”, are
arbitrary. All Creators and Removers will be iterated through when your

Profi | eManager creates or removes a user profile. The value for the Creator
and Remover matches the <ej b-r ef - nane> for your custom

Enti t yPropertyManager without the ej b/ prefix.

. Inejb-jar.xm , youmust add an <ej b-r ef > to the User Manager EJB section
to map your Pr of i | eType to your new deployment of the ProfileManager like
this:

<ej b-ref>
<ej b-ref - name>ej b/ Prof i | eType/ UUPExanpl eUser </ ej b-r ef - name>
<ej b-ref -type>Sessi on</ej b-ref-type>
<honme>com bea. p13n. userngnt . profil e. Profil eManager Hone</ hone>
<r enot e>com bea. p1l3n. userngnt . profil e. Profil eManager </ r enot e>
</ ejb-ref>

The <ej b- r ef - name> must start with ej b/ Prof i | eType/ and must end with
the name that you want to use as the profile type as an argument in the
creat eUser () method of User Manager.

. From user ngnt . j ar, extract META- | NF/ webl ogi c- ej b-j ar. xm and open it
for editing.

. Inwebl ogi c- ej b-j ar. xnl , copy the weblogic-enterprise-bean tag for the
User Prof i | eManager and configure it for your new Pr of i | eManager
deployment:

<webl ogi c- ent er pri se- bean>
<ej b- name>MyPr of i | eManager </ ej b- nane>
<r ef erence-descri pt or>
<ej b-ref erence-descripti on>

<ej b-ref-name>ej b/ Enti t yPropert yManager </ ej b-r ef - nane>

Guide to Building Personalized Applications ~ 8-51

8 Creating and Managing Users

8-52

<j ndi - nanme>${ APPNAME} . BEA per sonal i zat i on.
EntityPropertyManager </ j ndi - nane>

</ ej b-reference-descripti on>
<ej b-ref erence-description>
<ej b-ref - name>ej b/ Propert ySet Manager </ ej b- r ef - nane>

<j ndi - name>${ APPNAME} . BEA_per sonal i zat i on.
Pr opert ySet Manager </ j ndi - name>

</ ej b-reference-descripti on>
<ej b-ref erence-description>

<ej b-ref - name>ej b/ MyEnt i t yPr opert yManager
</ ej b-r ef - name>

<j ndi - name>${ APPNAME} . BEA_per sonal i zat i on.
MEni ti tyPropertyManager </j ndi - nane>

</ ej b-reference-descripti on>
</ reference-descriptor>

<j ndi - name>${ APPNAME} . BEA per sonal i zati on.
MyPr of i | eManager </ j ndi - nane>

</ webl ogi c-ent erpri se-bean>

You must create an <ej b- r ef er ence- descri pti on> to map the <ej b-r ef >
for your custom Ent i t yPr oper t yManager to the JNDI name. This JNDI name
must match the name you assigned in webl ogi c- ej b-j ar. xn in the JAR file
for your custom Ent i t yPr opert yManager .

Note the ${ APPNAVE} string substitution variable. The WebLogic Server EJB
container automatically substitutes the enterprise application name to scope the
JNDI name to the application.

In webl ogi c- ej b-j ar. xm , copy the <t ransacti on-i sol ati on> tag for the
User Profi | eManager and configure it for your new Pr of i | eManager
deployment:

<transacti on-isol ati on>

<i sol ati on-1 evel >5TRANSACTI ON_READ COWM TTED
</isol ation-1evel >

<nmet hod>
<ej b- name>MyPr of i | eManager </ ej b- nane>

<net hod- nane>* </ net hod- nane>

Guide to Building Personalized Applications

Incorporating Data from Other External Sources

10.

11.

12

13.

</ met hod>
</transaction-isol ati on>
Create a temporary user ngnt . j ar for your new deployment descriptors and
your new Pr of i | eManager bean implementation class (and r enot e and hone

interfaces if you are replacing those). This temporary EJB JAR archive should
not have any container classes in it. Run ej bc to generate new container classes.

Edit META- | NF/ appl i cati on. xml for your enterprise application to add an
entry for your custom Ent i t yPr oper t yManager EJB module like this:
<modul e>

<ej b>UUPExanpl e. j ar </ ej b>
</ modul e>
If you are using an application-wide cache, you can manage it from the
WebLogic Server Administration Console if you add a <Cache> tag for your

cache to the META- | NF/ appl i cati on- confi g. xn deployment descriptor for
your enterprise application like this:

<Cache
Narme=" UUPExanpl eCache"
Ti meToLi ve="60000"
/>
For information on using com bea. p13n. cache. Cache, see “Using Caches” in

the Performance Tuning Guide.

Verify the modified user mgnt . j ar and your custom Ent i t yPr oper t yManager
EJB JAR archive are in the root directory of your enterprise application and start
your server.

. Use the WebLogic Server Administration Console to verify your EJB module is

deployed to the enterprise application, then use the WebLogic Server
Administration Console to add your server as a target for the EJB module. You
must select a target to have your domain's confi g. xnl file updated to deploy
your EJB module to the server.

Use the E-Business Control Center to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom

Enti t yPropertyManager inej b-j ar. xm for the User Pr of i | eManager (in
user mgnt . j ar). You could also map specific property names in a property set to
your custom Ent it yPr opertyManager.

Guide to Building Personalized Applications 8-53

8 Creating and Managing Users

Note: Be sure to synchronize the new data to your server after the property set is
created.

14. Your new Unified User Profile type is ready to use. You can use the WebLogic
Portal Administration Tools to create a user of type “UUPExampleUser,” and it
will use your UUP implementation when the “UUPExample” property set is
being modified. That is because you mapped the Pr of i | eType using an
<ej b-ref > in your User Manager deployment descriptor,
ej b/ Profi | eType/ UUPExanpl eUser . Now, when you call
createUser ("bob", "password", "UUPExanpl eUser") on the
User Manager, several things will happen:

e A user named “bob” is created in the security realm.

e A WebLogic Portal Server profile record is created for Bob in the WebLogic
Portal RDBMS repository.

e Ifyou set up the Creator mapping, the User Manager will call your new
Profi | eManager deployment, which will call your custom
Enti t yPropertyManager to create a record for Bob in your data source.

e Retrieving Bob's profile will use your new Pr of i | eManager deployment,
and when you request a property belonging to the “UUPExample” property
set, the request will be routed to your custom Ent i t yPr oper t yManager
implementation.

8-54 Guide to Building Personalized Applications

CHAPTER

9

Creating and Managing
Content

The Content Manager provides content and document management capabilities for use

in personalization services. The Content Manager works with files or with content

managed by third-party vendor tools.

This topic includes the following sections:

m What Is the Content Manager?

Choosing a Content Engine
Running Queries Against the Content Repository

Methods for Retrieving and Displaying Documents

Differences Between Content Management and Document Management

® Querying the Content

Structuring a Query

Using Comparison Operators to Construct Queries
Constructing Queries Using Java

JSP Tags

Using the Document Servlet

m Configuring the Content Manager

Configuring the DocumentManager EJB Deployment Descriptor

Configuring the PropertySetManager EJB Deployment Descriptor for
Content Management

Guide to Building Personalized Applications

9-1

9 Creating and Managing Content

Configuring DocumentManager MBeans
Setting Up Document Connection Pools
Setting up WebLogic Connection Pools

Web Application Configuration

m Using the BulkLoader to Load File-based Content

Command-Line Usage

How the BulkLoader Finds Files

How the BulkLoader Finds Metadata Properties
Cleaning Up the Database

Loading Internationalized Documents

Generating Schema Files

What Is the Content Manager?

9-2

The Content Manager run-time subsystem provides access to content through tags and
EJBs. The Content Management tags allow a JSP developer to receive an enumeration
of Content objects by querying the content database directly using a search expression
syntax. The Content Manager component works alongside the other components to
deliver personalized content, but does not have a GUI-based tool for edit-time
customization.

Guide to Building Personalized Applications

What Is the Content Manager?

Choosing a Content Engine

The content engine behind the Cont ent Manager can be set up to be the reference
implementation that BEA provides out-of-the-box, or a third-party content engine.

For sites with limited content personalization needs and existing metatagged HTML,
WebLogic Personalization Server includes a command-line utility called the
BulkLoader. The BulkLoader can parse a directory of HTML files and store their URL
address and metadata attributes in a JDBC store. The BulkLoader automatically
creates the schema for these attributes.

For customers who have larger amounts of content and want more control over the
publishing and tagging of content, BEA partners with third-party vendors to add
flexibility to the WebLogic Personalization Server. Third-party content engines
provide robust, content-creation management solutions while the Content Manager
personalizes and serves the content to the end user.

Running Queries Against the Content Repository

The Content Management component supports querying that returns content from a
content repository using several methods:

m Search for content by metadata—Boolean logic searching evaluates content
that matches a metadata/operator/value criteria.

m Retrieve content by ID—the system allows retrieval of raw bytes of content
data—either in blocks or in its entirety—through the content’s known identifier.

® Query content metadata by ID—the system, through the known identifier of a
content piece, can query the metadata describing the content piece. Several
metadata attributes provide information about the content. The query language
maps some attribute names onto explicit attributes of the Cont ent or Docunent
objects the query searches. Queries searching for Cont ent objects support the
following case-sensitive explicit attribute names:

e identifier: Corresponds to the unique St ri ng identifier of the Cont ent (that
is, the get | denti fi er method).

e mimeType: Corresponds to the St ri ng MIME type of the Cont ent (that is,
the get M meType method).

Guide to Building Personalized Applications 9-3

9 Creating and Managing Content

m Queries searching for Docunent objects support the following additional
case-sensitive explicit attribute names:

Note:

size: Corresponds to the Long size of the document in bytes (that is, the
get Si ze method). Documents without file bytes will have a size of 0 or less.

version: Corresponds to the | nt eger version number of the document (that
is, the get Ver si on method).

author: Corresponds to the St ri ng identifier of the author of the document
(that is, the get Aut hor method).

creationDate: Corresponds to the Ti nest anp of when the document was
created (that is, the get Ti mest anp method).

modifiedBy: Corresponds to the St ri ng identifier of the individual who last
modified the document (that is, the get Modi f i edBy method).

modifiedDate: Corresponds to the Ti mest anp of when the document was last
modified (that is, the get Modi f i edDat e method).

lockedBy: Corresponds to the St ri ng identifier of the individual who has the
document locked (that is, the get LockedBy method).

description: Corresponds to the St ri ng description of the document (that is,
the get Descri pti on method).

comments: Corresponds to any St ri ng comments about the document (that
is, the get Conment s method).

All other attribute names in queries are considered implicit metadata
properties.

m Get content schema by name—the document management system (DMS)
contains a set of named schemas that describe a set of non-standard metadata
attributes. Each piece of content in the DMS is associated with one of these
schemas and each schema specifies valid attributes

m Get content schema names—a user can query the system for a list of all
schema names a DMS supports.

Note:

See “Querying the Content” on page 9-10 for more information about queries.

9-4 Guide to Building Personalized Applications

What Is the Content Manager?

Methods for Retrieving and Displaying Documents

WebLogic Personalization Server provides several methods for retrieving documents
from a content management system and displaying them on your Web site.

A document is a graphic, a segment of HTML or plain text, or a file that must be
viewed with a plug-in. We recommend that you store most of your web site’s dynamic
documents in a content management system because it offers an effective way to store
and manage information.

Note: Campaigns cannot be used with anonymous users. Campaigns require a user
ID that has two characteristics: the ID must be associated with a user profile,
and that user profile must be saved (persisted). However, the anoymous profile
for a user who is not logged in is a runtime profile (not saved), and not
associated with a user ID.

Personalization features such as <pz:div> and <pz:contentSelector> JSP tags
do work for anonymous users. This is because these features can use a runtime
profile without a user ID,

Table 9-16 compares the methods of content retrieval that WebLogic Personalization
Server provides.

Guide to Building Personalized Applications 9-5

9 Creating and Managing Content

Table 9-16 Methods for Retrieving and Displaying Documents

Use This Method... When You Want To...
Content selectors and m Use a centrally maintained infrastructure for matching Web site
<pz: cont ent Sel ect or > tags content with events, customer profiles, or customer segments.

Business Engineers develop the infrastructure, then Business
Analysts use the E-Business Control Center to define and modify
conditions under which content selectors query the content
management system for documents.

m Retrieve any type of content that your content management system
contains (and that a browser supports).

m Display each document that a content-management query returns.
Content selectors store the results of a query in an array. You can use
other JSP tags to display some or all of the documents that are in the
array.

m Place the results of the query in a cache.

Content selectors require you to determine the MIME-type of the
documents and to supply the appropriate HTML that the browser
requires to display them.

<pz: cont ent Quer y> tag m Run a static, narrowly-defined query to display a document only in
a specific JSP.

You must modify each occurrence of this tag if you want to modify its
query. If you want this tag to display contents for specific customers or
in response to an event, you must surround it with additional tags that
evaluate the display condition.

9-6 Guide to Building Personalized Applications

What Is the Content Manager?

Table 9-16 Methods for Retrieving and Displaying Documents (Continued)

Use This Method...

When You Want To...

Ad placeholders and
<ph: pl acehol der > tags

m Use a centrally maintained infrastructure for matching advertising
documents with events, customer profiles, or customer segments.
Business Engineers develop the infrastructure, then Business
Analysts use the E-Business Control Center to define and modify the
queries that each placeholder can run.

m Run queries as part of a scenario action in a campaign (available
only with Campaign services).

m Use a single infrastructure to support multiple, concurrent
advertising agenda. Ad placeholders use an Ad Conflict Resolver to
select a single query if multiple agenda request to run multiple
queries in the same location at the same time.

®m Automatically generate the HTML that the browser requires to
display the query results.

Without customization, ad placeholders support only HTML, image,

and Shockwave documents.

<ad: adTar get > tag

m Make sure that a specific ad query runs in a specific location.

®m Automatically generate the HTML that the browser requires to
display the query results.

The <ad: adTar get > tag is not part of the infrastructure for supporting
multiple advertising agenda. It cannot run a query as part of a scenario
action. You must modify each occurrence of this tag if you want to
modify its query. If you want this tag to display contents for specific
customers or in response to an event, you must surround it with
additional tags that evaluate the display condition.

Without customization, the <ad: adTar get > tag supports only
HTML, image, and Shockwave documents.

<cm pri nt Doc> tag,

or any of these methods:

Docurent . get Cont ent ()
Docunent Manager . get Cont ent B
I ock()

m Use the content management system’s document ID to include
non-personalized content in a HTML-based page.

The tag does not generate HTML to support the content it retrieves; it
inserts the document into the JSP page exactly as it is stored in the
content management system. Business Engineers must modify each
occurrence of this tag if you want to change the document that it
retrieves.

Guide to Building Personalized Applications 9-7

9 Creating and Managing Content

Table 9-16 Methods for Retrieving and Displaying Documents (Continued)

Use This Method...

When You Want To...

<cm get Property>tag,
or the method
Cont ent . get Property()

m Retrieves the value of the specified content metadata property into a
variable specified by r esul t | d. Ifr esul t | d is not specified, the
value will be inlined into the page, similar to the
<cm print Propert y> tag. This tag operates on any
ConfigurableEntity, not just the Content object. However, it does
not support ConfigurableEntity successors.

<cm print Property>tag
or the method
Cont ent . get Property()

m Display the value of a document attribute as a string. You can use
this tag to display the value of any content object’s attribute, not just
document-type objects in a content management system.

<cm sel ect > tag,
or the method
Cont ent Manager . get Cont ent ()

m Use a query to include non-personalized content in a HTML-based
page.
m Place the results of the query in a cache.

The tag does not generate HTML to support the content it retrieves; it
inserts the document into the JSP page exactly as it is stored in the
content management system. Business Engineers must modify each
occurrence of this tag if you want to change the document that it
retrieves.

<cm sel ect Byl d> tag,
or the method
Cont ent Manager . get Cont ent ()

m Use the content management system’s document ID to include
non-personalized content in a HTML-based page.

m Place the document in a cache.

The tag does not generate HTML to support the content it retrieves; it
inserts the document into the JSP page exactly as it is stored in the
content management system. Business Engineers must modify each
occurrence of this tag if you want to change the document that it
retrieves.

9-8 Guide to Building Personalized Applications

What Is the Content Manager?

Differences Between Content Management and
Document Management

Cont ent objects include metadata about the content. Metadata provides a means to
query and match content with users by allowing the system to retrieve content based
on the metadata that describes the content. In general, some kind of content
management system provides services such as retrieval of content and content
authoring services including creation, editing, versioning, and workflow.

Document s are a specialized type of Cont ent that provide two methods for retrieval:
a metadata-searching mechanism and retrieval of the pure bytes of the document's file.
Docurnrent s should include additional explicit metadata properties related to the file
and its versioning, including its size, name, path, author, and version. A document
management system usually provides document-based services for documents that
reside in the system’s repository.

WebLogic Personalization Server provides the entire Cont ent object model; however,
it only provides the Docunment object as a concrete implementation (subclass) of the
Cont ent class.

Guide to Building Personalized Applications 9-9

9 Creating and Managing Content

Querying the Content

There are several way to query the document management system. To query the
system, you construct a query expression, then pass the expression to any one of these:

m JSP tags

m ContentHelper

m ContentManager
m ContentHome

For more information, see the Javadoc API documentation

Structuring a Query

9-10

WebLogic Personalization Server queries use a syntax similar to the SQL string syntax
that supports basic Boolean-type comparison expressions, including nested
parenthetical queries. In general, the template for use includes a metadata property
name, a comparison operator, and a literal value. The basic query uses the following
template:

attribute_name conparison_operator literal _val ue

Note: For more information about the query syntax, see the Javadoc API
documentation for
com bea. pl3n. cont ent. expr essi on. Expr essi onHel per.

Several constraints apply to queries constructed using this syntax:

m String literals must be enclosed in single quotes.
e ‘'\WeblLogic Server’
e ‘football’
m Date literals can be created via a simplistic t oDat e method that takes one or two

St ri ng arguments (enclosed in single quotes). The first, if two arguments are
supplied, is the Si npl eDat eFor mat format string; the second argument is the

Guide to Building Personalized Applications

Querying the Content

date string. If only one argument is supplied, it should include the date string in
‘MM/dd/yyyy HH:mm:ss z’ format.

e toDate('EE dd MW yyyy HH mmss z', ‘Thr 08 Nov 2001
16:56: 00 MDT")

e toDate('02/23/2005 13:57:43 MsT')
Use the t oPr oper t y method to compare properties whose names include spaces
or other special characters. In general, use t oPr oper t y when the property name

does not comply with the Java variable-naming convention that uses
alphanumeric characters.

e toProperty (‘M Property’) = ‘Content’

To include a scope into the property name, use either scope. pr opert yNane or
the t oPr oper t y method with two arguments.

e toProperty (‘myScope’, ‘nyProperty’)
Note: The reference document management system ignores property scopes.

Use \ along with the appropriate character(s) to create an escape sequence that
includes special characters in string literals.

e toProperty (‘M Property\’s Contents’) = ‘Content’

Additionally, use Java-style Unicode escape sequences to embed non-ASCII
characters in string literals.

e Description like * *\ u65e5\ u672c\ u8a9e*’

Note: The query syntax can only contain ASCII and extended ASCII characters
(0-255).

Note: Use Expressi onHel per.toStringLiteral toconvertan arbitrary
string to a fully quoted and escaped string literal which can be put in a

query.

The now keyword—only used on the literal value side of the expression—refers
to the current date and time.

Boolean literals are either t rue or f al se.

Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms (for
example, 1. 24e4 and 1. 24E- 4).

Guide to Building Personalized Applications ~ 9-11

9 Creating and Managing Content

® An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression.

e ! (keywords contains ‘football’) || (size >= 256)

m The Boolean and operator is represented by the literal &&.

e author == 'janmes’ && age < 55

m The Boolean or operator is represented by the literal | | .

e creationDate > now || expireDate < now
The following examples illustrate full expressions:
Example 1:

((color='red && size <=1024) || (keywords contains ‘red &&
creationDate < now))

Example 2:

creationbDate > toDate (‘ M dd/yyyy HH mm ss’, ‘2/22/2000 14:51:00")
&& expireDate <= now &% m netype like ‘text/*’

9-12 Guide to Building Personalized Applications

Querying the Content

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. Table 9-17 summarizes the comparison
operators available for each metadata type. (For more information about the native
types supported in WebLogic Personalization Server, see “Support for Native Types”
on page 1-10.)

Table 9-17 Comparison Operators Available for Each Metadata Type

Operator Type Characteristics

Boolean (==, |=) Boolean attributes support an equality check against Bool ean. TRUE or
Bool ean. FALSE.

Numeric (==, I=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than
checks against a j ava. | ang. Nunber.

Text (==, |=,>, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus
lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (that is, the | i ke
operator), similar to the SQL LIKE operator or DOS prompt file matching. In
this situation, the wildcards will be * (asterisk) to match any string of
characters and ? (question mark) to match any single character. Interval
matching (for example, using []) is not supported. To match * or ? exactly,
the quote character will be \ (backslash).

Datetime (==, !=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than
checks against a j ava. sql . Ti mest anp.

Multi-valued Comparison Multi-valued attributes support a cont ai ns operator that takes an object of

Operators (contains, containsall) | the attribute's subtype and checks that the attribute's value contains it.
Additionally, multi-valued attributes support a cont ai nsal | operator,
which takes another collection of objects of the attribute's subtype and checks
that the attribute's value contains all of them.

Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute's collection of values. Any value that
matches the operator and operand should return t r ue. For example, if the

multi-valued text attribute keywor ds has the values BEA, Computer, and

WebLogic and the operand is BEA, then the < operator returns t r ue (BEA is
less than Computer), the > operator returns f al se (BEA is not greater than
any of the values), and the == operator returns t r ue (BEA4 is equal to BEA).

Guide to Building Personalized Applications ~ 9-13

9 Creating and Managing Content

Table 9-17 Comparison Operators Available for Each Metadata Type (Continued)

Operator Type Characteristics
User Defined Comparison Currently, no operators can be applied to a user-defined attribute.
Operators

Note: The search parameters and expression objects support negation of expressions
via a bit flag (!).

Note: The reference document management system has only single-value Text and
Number properties. All implicit properties are single-value Text.

Constructing Queries Using Java

To construct queries using Java syntax instead of using the query language supplied
with the Content Management component, see the Javadoc API documentation for
com bea. pl3n. cont ent. expr essi on. Expr essi onHel per.

The Cont ent Manager session bean is the primary interface to the functionality of the
Content Management component. Using a Cont ent Manager instance, content is
returned based on a com bea. p13n. cont ent . expr essi on. Sear ch object with an
embedded com bea. p13n. expr essi on. Expr essi on, which represents the
expression tree.

In the expression tree, the following caveats apply for it to be valid for the
ContentManager:

m Each branch node can only be of the type:

com bea. p13n. expressi on. operator. | ogi cal . Logi cal And,

com bea. pl3n. expressi on. operator. | ogical . Logical O,

com bea. pl3n. expressi on. operator. | ogical.Logical MilitAnd, or
com bea. p13n. expressi on. operator. | ogical . Logical MultiO.

Any other branch node type is invalid.
m Each leaf node can only be of the type:

com bea. pl3n. expressi on. operat or. conparati ve. Equal s,

com bea. p13n. expressi on. operat or. conparati ve. G eat er O Equal s,
com bea. p13n. expressi on. operat or. conpar ati ve. G eat er Than,
com bea. pl3n. expressi on. operat or. conparati ve. LessOr Equal s,

9-14 Guide to Building Personalized Applications

Querying the Content

JSP Tags

com bea. p13n.
com bea. p13n.
com bea. p13n.
com bea. p13n.

expressi on.
expressi on.
expressi on.
expressi on.

operator.
operator.
operator.
operator.

conparati ve. LessThan,

conpar ati ve. Not Equal s,

string. StringLi ke,

col | ection. Col | ecti onCont ai ns, or

combea. p13n. expr essi on. operator. col | ection. Col | ecti onsCont ai nsAl |

Any other branch node type is invalid.

m Any valid branch or leaf node may be contained in a
com bea. p13n. expr essi on. operator. | ogi cal . Logi cal Not node.

m In each leaf node, the left-hand-side will always be a
com bea. p13n. cont ent . expr essi on. Propert yRef node, which must
contain St ri ngs for get PropertySet () and get PropertyName().

m The right-hand-side of these leaf nodes can be aj ava. util . Col | ecti on,
String, orjava.sql.Ti mestanp:

Long, Doubl e,
p13n.
p13n.
p13n.
p13n.
p13n.
p13n.
p13n.

com bea.
com bea.
com bea.
com bea.
com bea.
com bea.
com bea.

expr essi
expr essi
expr essi
expr essi
expr essi
expr essi
expr essi

m The right-hand-side of
com bea. p13n. expressi on
be a St ri ng. Anything else is invalid.

m The right-hand-side of
com bea. p13n. expressi on

Al'l leaf nodes can be aj ava.

on.
on.
on.
on.
on.
on.
on.

operator.
operator.
operator.
operator.
operator.
operator.
operator.

. operator.

.operator.
util. Coll

conpar ati ve. Equal s,

conpar ati ve. Not Equal s,

conpar ati ve. G eat er Or Equal s,
conpar ati ve. Gr eat er Than,
conparati ve. LessO Equal s,
conparati ve. LessThan, or

col | ection. Col | ecti onCont ai ns

string. StringLi ke leaf nodes can

col I ection. Col | ecti onsCont ai ns
ect i on. Anything else is invalid.

The Content Management component includes the following four JSP tags. These tags
allow a JSP developer to include non-personalized content in a HTML-based page.
Note that none of the tags support or use a body.

m The <cm sel ect > tag uses only the search expression query syntax to select

content.

Guide to Building Personalized Applications ~ 9-15

9 Creating and Managing Content

m The <cm sel ect Byl d> tag retrieves content using the content’s unique
identifier.

m The <cm pri nt Propert y> tag inlines the value of the specified Content
metadata property as a string.

m The <cm pri nt Doc> tag inlines the raw bytes of a Document object into the JSP
output stream.

See Chapter 13, “Personalization Server JSP Tag Library Reference,” for more
information on any of these tags.

Using the Document Serviet

9-16

The Content Management component includes a servlet capable of outputting the
contents of a Docunent object. This servlet is useful when streaming the contents of
an image that resides in a content management system or to stream a document’s
contents that are stored in a content management system when an HTML link is
selected. The servlet supports the following Request/URL parameters:

Table 9-18 Request Parameters Supported by the Document Servlet

Request Parameter Required Description

contentHome Maybe If the cont ent Home initialization
parameter is not specified, then this is
required and will be used as the INDI name
of the DocumentHome. If the
cont ent Hore initialization parameter is
specified, this is ignored.

contentld No The string identifier of the Document to
retrieve. If not specified, the servlet looks in
the PATH_| NFO,

blockSize No The size of the data blocks to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

The servlet only supports Docunent s, not other subclasses of Cont ent . It sets the
Cont ent - Type to the Docunent ' s mimeType and, the Cont ent - Lengt h to the
Docurent ' s size, and correctly sets the Cont ent - Di sposi ti on, which should
present the correct filename when the file is saved from a browser.

Guide to Building Personalized Applications

Querying the Content

Example 1: Usage in a JSP

This example searches for news items that are to be shown in the evening, and displays
them in a bulleted list.

<cm sel ect sortBy='"creationDate ASC, title ASC'

query="type = ‘News' && tinmeCfDay = ‘Evening && mneType |like
‘text/* "id="newslList"/>

<es: forEachl nArray array="<%newsLi st %" i d="newslteni
type="com bea. p13n. cont ent . Cont ent ">

<l i ><a href="ShowDoc/ <cm pri nt Property id="newslten!
name="i dentifier" encode="url"/>"><cm print Property
i d="newsl tem' name="titl e" encode="htm "/ ></ a>

</ es: forEachl nArray>

</ ul >

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and
displays the image in a bulleted list.

<cm sel ect max="5" sort By="nanme" id="list"

query=" KeyWrds like ‘*birds* && minmeType like ‘inage/*" "
cont ent Hone="j ava: conp/ env/ ej b/ M\yDocunment Manager "/ >

<es: forEachl nArray array="<%list%" id="i ng"
type="com bea. pl3n. content. Content” >

<inmg src="/ ShowDoc/ <cm printProperty id="i ng"
name="i dentifier"

encode="ur| "/ >?cont ent Hone=<es: convert Speci al Char s
string="j ava: conp/ env/ ej b/ MyDocunent Manager "/ >">

<es: forEachl nArray>

</ ul >

Guide to Building Personalized Applications ~ 9-17

9 Creating and Managing Content

Configuring the Content Manager

The DocumentManager EJB deployment descriptor handles the EJB portion of the
Content Management component configuration. The DocumentManager also needs to
be integrated into the PropertySetManager EJB deployment descriptor so that content
property sets are exposed to the system. The DocumentManager EJB accesses a
document connection pool, which is defined in an application’s

META- | NF/ appl i cation-confi g. xm file. Optionally, the Docunent Manager EJB
can access a document connection pool configured via the WLS console.

For Web Applications to correctly access the Content Management Component, some
additional configuration is required in the Web Application deployment descriptor.

For more information, see the Deployment Guide.

Configuring the DocumentManager EJB Deployment
Descriptor

9-18

The DocumentManager EJB understands the following environment settings in its
deployment descriptor:

m Docunent Manager MBeanNanme—specifies the Name of the Docunent Manager
MBean to use to configure this Docurment Manager.

e In the application’s appl i ati on-confi g. xnl file, a <Docunent Manager >
entry must exist with a Nane attribute equal to the value specified in the
deployment descriptor. If this is not specified in the deployment descriptor, it
defaults to “default”.

m Docurent Connect i onPool Name—specifies the Name of the
Docurent Connect i onPool MBean for the document connection pool this
Docunent Manager should use.

e In the application’s appl i cati on-config. xnl file, a
<Docunent Connect i onPool > entry must exist with a Nare attribute equal
to the value specified in the deployment descriptor.

Guide to Building Personalized Applications

Configuring the Content Manager

e Ifthe Docunment Connect i onPool Nare attribute of the Docunent Manager
MBean this is configured to use is set, then the value in the deployment
descriptor is ignored.

j dbc/ docPool —specifies the J2EE resource reference to the
j avax. sql . Dat aSour ce that this Docunent Manager should use to access a
document connection pool.

Ifj dbc/ docPool is specified in the deployment descriptor, then:
e Docunent Connect i onPool Nane is ignored, and

e Any Docunment Connect i onPool MBeans in the application’s
appl i cation-config.xm file are also ignored.

Pr oper t yCase—specifies how the Docunent Manager modifies the incoming
property name.

e [fthe Propert yCase attribute of the Docunent Manager MBean this is using
is set, the value in the deployment descriptor is ignored.

e [fthis is lower, all property names are converted to lowercase.
e If this is upper, all property names are converted to uppercase.
e If this is anything else or not specified, property names are not modified.

Use lower or upper depending upon the document connection pool
implementation being used. For the document reference implemenation, do not
specify the Pr opert yCase.

Configuring the PropertySetManager EJB Deployment
Descriptor for Content Management

In the PropertySet Manager EJB deployment descriptor, add the following
environment settings:

r eposi t or y/ CONTENT—specifies the fully qualified class name of

com bea. p13n. property. PropertySet Reposi tory implementation. Use
com bea. p13n. content. PropertySet Reposi t oryl npl to integrate with the
Content Management component.

Guide to Building Personalized Applications ~ 9-19

9 Creating and Managing Content

m ej b/ Cont ent Manager s/ [type] — the
com bea. p13n. cont ent. PropertySet Reposi t oryl npl looks for all
environment entries starting with ej b/ Cont ent Manager s. It expects these to be
J2EE EJB references to Cont ent Manager s (or subclasses).

To integrate a Cont ent Manager or Docunent Manager with the
Propert ySet Manager, add an EJB reference here. For example,
ej b/ Cont ent Manager s/ Docunent is mapped to the standard
Documnent Manager .

Alternatively, you can set the JNDI Nane attribute the Docunent Manager MBean to
the JNDI Home name of the Docunent Manager (see page 22 for a definition of this
attribute). The ${ APPNANVE} construct can be used in the value; it will be replaced by
the current J2EE application name. The

com bea. p13n. cont ent . PropertySet Reposi t oryl npl will automatically pick
up those Docunent Manager s and the J2EE EJB reference is not required.

Configuring DocumentManager MBeans

The Docunment Manager implementation uses Docunent Manager MBeans to maintain
the configuration for the Docunment Manager . A deployed Docunent Manager finds
which Docunent Manager MBean to use from the Docunent Manager MBeanNane
EJB deployment descriptor setting. That value must correspond to the Name attribute
of a Docunent Manager MBean in the application.

To configure a Docunent Manager MBean, you can modify the application’s
META- | NF/ appl i cation-config.xm file to add or change the following XML:

<Docunent Manager
Nanme="def aul t"
Docunent Connect i onPool Nanme="def aul t"
Pr opertyCase="none"
Met adat aCachi ng="true"
Met adat aCacheNane="docunent Met adat aCache"
User | dl nCacheKey="f al se"
Cont ent Cachi ng="t rue"
Cont ent CacheNane="docunent Cont ent Cache"
MaxCachedCont ent Si ze="32768"
>
</ Docunent Manager >

9-20 Guide to Building Personalized Applications

Configuring the Content Manager

Attributes of the DocumentManager MBean

The attributes are as follows:

Docurnent Connect i onPool Name—specifies the name of the
Docunent Connect i onPool MBean the Docunent Manager should use. (See the
section, “Setting Up Document Connection Pools” on page 9-23.)

Pr oper t yCase—specifies how the Docunent Manager modifies the incoming
property name.

e I[fthis is lower, all property names are converted to lowercase.
e If this is upper, all property names are converted to uppercase.
e If this is anything else or not specified, property names are not modified.

Use lower or upper depending upon the document connection pool
implementation being used. For the document reference implementation, do not
specify the Pr opert yCase.

Met adat aCachi ng—specifies whether the Docunent Manager should cache
Document metadata from searches. Use t r ue to have the DocumentManager
cache search results in the com bea. p13n. cache. Cache specified by

Met adat aCacheNane; otherwise, use f al se. This defaults to t r ue.

Met adat aCacheNane—specifies the name of the com bea. p13n. cache. Cache
to use if Met adat aCachi ng is set to t r ue. This defaults to
docunent Met adat aCache.

User | dl nCacheKey—specifies whether the user’s identifier should be used as
part of the key when caching document metadata or content. This defaults to
true. If using the WebLogic Personalization Server reference implementation
document management system, set this to f al se.

Cont ent Cachi ng—specifies whether the Docunent Manager should cache
document content (that is, the bytes of the document). Use t r ue to have the
Docunent Manager caches document content bytes; otherwise use f al se. This
defaults to t r ue.

Cont ent CacheName—specifies the name of the com bea. p13n. cache. Cache
to use if Cont ent Cachi ng is set to t r ue. This defaults to
docunent Cont ent Cache.

Guide to Building Personalized Applications ~ 9-21

9 Creating and Managing Content

m MaxCachedCont ent Si ze—specifies the maximum size of a document’s content
bytes that the Docunent Manager will cache, if ContentCaching is t r ue. This

defaults to 32768 (32K).

JNDI Nane — Specifies the INDI home name of the Docunent Manager EJB that
is connected to this MBean. The ${ APPNAME} construct can be used in the value
it will be replaced by the current J2EE application name. This is used by the
com bea. p13n. cont ent .Pr oper t ySet Reposi t or yl npl to tie document
property set information into the Pr oper t ySet Manager .

Editing the DocumentManager MBean in the WebLogic Console

Once a Docunent Manager MBean has been initially configured in the

appl i cation-config. xnl file, it can be edited via the WebLogic Server

Administration Console, as show in Figure 9-1 below.

Figure 9-1 Using the WLS Console to Edit the Document Manager MBean

wlcsApp > Document Manager Service

connected to: localhost: 7501 active domain: wlcsDormain Oct 12, 2001 1

Configuration

Document Connection Pool Name: |dafault

Property Case: [none =]

Metadata Caching Enabled? i

Metadata Cache Name: |documenttetadataCachie
Is User ID in the Cache Key? I

Content Caching Enabled? i

Content Cache Name: |documentContentCache
Maximum Size of Cached Content: [32768

Apply]

9-22 Guide to Building Personalized Applications

Configuring the Content Manager

Setting Up Document Connection Pools

The Docunent Manager implementation uses connection pools to a specialized JDBC
driver to handle searches. A deployed Docurent Manager finds the document
connection pool to use via either the Docunent Connect i onPool Nane attribute of its
Docunent Manager MBean or the Docunent Connect i onPool Nane EJB deployment
descriptor setting. That value must correspond to a Docunment Connect i onPool
MBean.

To configure a Docunent Connect i onPool MBean, modify the application’s
META- | NF/ appl i cati on-confi g. xnl file to add or change the following XML:

<Docunent Connect i onPool Nane="def aul t"
Dri ver Nanme="com bea. p13n. cont ent. docunent . j dbc. Dri ver"
URL="] dbc: beasys: docngnt : com bea. p13n. cont ent. docunent . r ef .
Ref Docunent Pr ovi der"
Properti es="j dbc. dat aSour ce=webl ogi c. j dbc. pool . commer cePool ;
schemaXM.=D: / bea/ W portal 4. 0/ dnsBase/ doc- schemas;
docBase=D: / bea/ wl portal 4. 0/ dnsBase"
Initial Capacity="20"
MaxCapaci t y="20"
Capaci tyl ncrement =" 0"

/>

Attributes for the DocumentConnectionPool MBean

The attributes are as follows:

m Driver Name—specifies the JDBC driver class name to use. This should be set
to com bea. p13n. cont ent . docunent . j dbc. Dri ver.

m URL—specifies the JDBC URL to use.

e For the WebLogic Personalization Server’s reference implementation

document management system, this should be set to:
j dbc: beasys: docngnt : com bea. p13n. cont ent. docunent . r ef . Ref Doc
unent Provi der.

e For a different Document Provider, use:
j dbc: beasys: docngnt : <cl assnhane>,
where <cl assnane> is the fully qualified class name of the implementation
of com bea. p13n. cont ent . documnent . spi . Docunent Pr ovi der.

Guide to Building Personalized Applications ~ 9-23

9 Creating and Managing Content

Properties

Proper ti es—This is the semi-colon separated list of nane=val ue pairs which
will be passed to the Docunent Pr ovi der specified in the URL. See the
“Properties” section below for a list of properties the reference implementation
understands.

I ni tial Capacit y—specifies the initial number of connections to create when
the document connection pool is started.

MaxCapci t y—specifies the maximum number of connections this pool will ever
create and maintain.

Capaci t yl ncr enent —specifies the number of connections the pool will create
whenever it needs to create an available connection.

Logi nTi neout —specifies the amount of time to wait for a connection: after this
time expires, an exception is thrown. Use 0 or less to have the pool not timeout,
which is the default.

d assPat h—Specifies the semicolon -separated list of additional directories and
JARs the connection pool should use use when attempting to load the Dri ver
and the Docunent Provi der classes. All paths are assumed to be relative to the
application directory.

The WebLogic Personalization Server reference implementation Docunent Pr ovi der
understands the following Properti es:

j dbc. dat aSour ce—specifies the INDI name of the j avax. sql . Dat aSour ce
to use to get database connections. This datasource should be connected to the
database that contains the DOCUMENT and DOCUMENT _METADATA tables.

j dbc. ur | —specifies the JDBC URL to connect to.
Ifj dbc. dat aSour ce is specified, this is ignored.

j dbc. dri ver —specifies the JDBC driver class to load.
Ifj dbc. dat aSour ce is specified, this is ignored.

j dbc. i sPool ed—Iftrue,orifjdbc. url starts withj dbc: webl ogi c: pool
orjdbc: webl ogic:jts,orifjdbc. dat aSour ce is specified, then assumes the
connection is pooled and won't cache it. If anything else, assumes the connection
is not pooled and will maintain one connection.

9-24 Guide to Building Personalized Applications

Configuring the Content Manager

m j dbc. supportsLi keEscapeCd ause—specifies whether the underlying
database supports the SQL LI KE ESCAPE clause. If this is not specified, the
connection will be queried.

m j dbc. docBase—specifies under which base directory the documents are stored.
Assumes all paths coming from the database are relative to this directory.

m j dbc. schemaXM.—specifies the path to the directory containing XML files
following the doc-schemas DTD which contain the property set information. The
system will recurse through the directory, loading all files ending in . xni .

m jdbc.isolationLevel :—configures the transaction isolation level to set on the
database connections. This can be one of the following:
READ_COWM TTED,
READ_UNCOWM TTED,
SERI AL| ZABLE,
REPEATABLE_READ, or
NONE.
If not specified, it defaults to SERI ALI ZABLE.

For further details, see the Javadoc API documentation for
j ava. sqgl . Connecti on.

m j dbc. col um. <col Nanme>: —Specifies an additional column to the
DOCUMENT table. The value is the comma-separated list of property names
that map onto that column. This can be specified multiple times. This should be
used in conjunction with the the - col utmMap and/or - col unm arguments to the
BulkLoader. If the same property is mapped to more than one column, the result
is indeterminate.

Editing a DocumentConnectionPool MBean in the WebLogic
Console
Once a DocumentConnectionPool MBean has been initially configured in the

application-config.xml, it can be edited via the WebLogic Server Administration
Console, as shown in Figure 9-2.

Guide to Building Personalized Applications 9-25

9 Creating and Managing Content

Figure 9-2 Using the WLS Console to Edit a DocumentConnectionPool MBean

‘.CI‘.:

wlcsApp > Document Connection Pool Service ﬂ ? ’

active dornain:

Configuration

& Driver Name: |com bea.p13n.content document jdbe Drive

7 Initial Capacity of Pool: T

? Capacity Increment; o

? Maximum Capacity of Pool: 20 |

2 Is Shrinking Enabled? r

? Login Timeout (seconds): [0 |

? JDBC URL: 1jdbc:beasys:docmgmtcom.beam3n.conte

? JDBC Propetties: schemafML=C:/bea-wla6l/wlportald.0/ dmsEa |
Enter properties one per line in the |docBase=C:/hea-wls6l/wlportald. 0/ dmsEase
format of hame=value. jdbe.dataSource=weblogic. jdbc. pool. comme

4] | .’J—J

Apply J Apply and Restart I

[Mote: The Document Connection Pool must be restarted befare changes will take affect.]

Setting up WebLogic Connection Pools

If you map jdbc/docPool in your Docurment Manager EJB deployment descriptor, you
will need to configure the WebLogic JDBC connection pool and data source.

Figure 9-3 shows how you can create a JDBC connection pool and configure the
connection settings through the WebLogic Server Administration Console. The URL
field is the same as the URL field in the Docunent Connect i onPool MBean above.
The Dri ver C assnane is the same as the Driver field above. The Properties field is
the same as the Properties field above.

9-26 Guide to Building Personalized Applications

Configuring the Content Manager

Figure 9-3 Creating and Configuring a JDBC Connection Pool

wicgsDomaln> JODEC Connection Pools> tdocPool

Create a JDBC connection pool
on the General tah.

4% Name docP ool
&% URL idbcheasysdocmamtcom bea
&F Driver Clasgname: [combeaplin contentdocument
schemax@ML=C: /bea/wlportald.o | Configure the connection settings
AT Properties nsBase/doc-schemas on the Connections tah.
s (hey=value): jdbc. datajource=weblogic. jdbo_ |
pool.conmercePool =
&4F ACLName [
AT Password chaice
AP Initial Capacity: 1
A% Maximum Capacity: 1
&% Capacity Increment; 1
4,7 Login Delay Seconds: 0 seconds
/% Refresh Period: 0 minutes
&% I Supports Local Transaction
AT 0 Allow Shrinking
AP Shrink Petiod: 15 minutes
&% Prepared Statement Cache Size: [10
Apply

Then, you can configure the data source connected to the connection pool, as show in
Figure 9-4.

Guide to Building Personalized Applications ~ 9-27

9 Creating and Managing Content

Figure 9-4 Configuring the Data Source

wlcsDomain> JOEC Data Sources> docPool ﬂ =
Connected to localhost: 7501 Active Domain: wicsDomain Oct 12, 2001
Configuration Targets Motes
A2 Name: docPool
M2 JNDI Name: [weblogicjdbe poal dacPaal
A7 Pool Name: [docPool

A2 I~ Row Prefetch Enabled

&2 Row Prefetch Size: |43

AP Stream Chunk Size: [255 bytes

Apply !

The JNDI name selected here will be used in the j dbc/ docPool resource reference in
the Docunent Manager EJB deployment descriptor.

For more information about using the WebLogic Server Administration Console for
configuring and managing JDBC connection pools, see the topic “JDBC Connection
Pool” in the WebLogic Server documentation.

You do not need to do this if you configure the Docunent Connect i onPool MBean.
If you choose to use a WLS connection pool, you will need be certain that your
Docunent Pr ovi der implementation and all classes that it references are available in
the system CLASSPATH of your server. Otherwise, you will most likely receive errors
on startup. For more information about the CLASSPATH environment variable, see
“Setting Environment Variables” under “Starting and Shutting Down the Server” in
the Deployment Guide.

Web Application Configuration

To correctly access the various pieces of the Content Management component, you
will need to configure EJB references to ej b/ Cont ent Manager and
ej b/ Docunent Manager . Additionally, you need to have the

9-28 Guide to Building Personalized Applications

Configuring the Content Manager

com bea. p13n. content . servl et s. ShowDocSer vl et mapped into your Web
Application. It is suggested to map it to the / ShowDoc/ * URL in your Web
Application. In your Web Application’s VEB- | NF/ web. xn , you can add:

<servl et >
<servl et - name>ShowDocSer vl et </ servl et - nane>
<servl et-class> com bea. p13n. content. servl ets. ShowDocSer vl et
</ servl et-cl ass>

<!-- Make showdoc al ways use the | ocal ejb-ref Docunent Vhager -->

<i nit-paranr

<par am nane>cont ent Home</ par am nanme>

<par am val ue>j ava: conp/ env/ ej b/ Docunment Manager </ par am val ue>
</init-paranr

</servl et>

<ser vl et - mappi ng>
<ser vl et - nane>ShowbDocSer vl et </ ser vl et - name>
<url - pattern>/ ShowDoc/ *</url - pattern>

</ servl et - mappi ng>

This will allow the ShowDoc/ URI under your Web Application’s context root (for
example, / W cs/ ShowDoc) to be sent to the ShowDocSer vl et . The cont ent Hone
<i ni t - par an® will cause that ShowDoc Ser vl et to always use the

ej b/ Docunent Manager EJB reference; you can take this out to allow
ShowDocSer vl et to obey any cont ent Hone request parameters.

To access the Content Management tag libraries, you will need to:

m Copythecm taglib.jar file in the Web Application’s WEB- | NF/ | i b directory.
(It can be copied from W._PORTAL_HOVE/ | i b/ p13n/ web.)

m Make sure thatcm t | d is mapped to/ WEB- I NF/li b/cm taglib.jar ina
<t agl i b> entry in your Web Application’s WEB- | NF/ web. xm file.

For more information, see the Deployment Guide and the web. xml and webl ogi c. xmi
files in W._PORTAL_HOME/ appl i cati ons.

Guide to Building Personalized Applications ~ 9-29

9 Creating and Managing Content

Using the BulkLoader to Load File-based
Content

WebLogic Personalization Server provides no run-time tools to load metadata
information from a content database. However, the server provides a command-line
utility, the BulkLoader, that descends a directory hierarchy, parses the HTML-style
<met a> tags, reverses the metadata content contained within the <net a> tags into
schema information, and loads the resulting documents into the reference
implementation database.

The BulkLoader is a command-line application that is capable of loading document
metadata into the reference implementation database from a directory and file
structure. The BulkLoader parses the document base and loads all the document
metadata so that the Content Management component can search for documents. The
BulkLoader supports all document types, not just HTML documents.

Command-Line Usage

The BulkLoader class allows a number of command-line switches:

java com bea. pl3n. content. docunent.ref.| oader. Bul kLoader
[-/+verbose] [-/+recurse] [-/+delete] [-/+metaparse] [-/+cleanup]
[-/+hidden] [-/+inheritProps] [-/+truncate] [-/+ignoreErrors]
[- schemaNane <nane>] [-encoding <encodi ng>] [-conmm tAfter <num docs>]
[-properties <nane>] -conPool <nane> [-schema <nanme>] [+schems]
[-match <pattern>] [-ignore <pattern>] [-htnl Pat <pattern>]
[-d <dir>] [-ndext <ext>] [--]

[files... directories...] [-filter <filter class>] [+filters]
[-columMap <file.properties>]
[-col um <col umNanme>=<pr opNan®, ... >] [+col ums]

Table 9-19 The BulkLoader’s Command-line Switches

-ver bose Emits verbose messages.
+ver bose Runs quietly [default].
-recurse Recurses into directories [default].

9-30 Guide to Building Personalized Applications

Using the BulkLoader to Load File-based Content

Table 9-19 The BulkLoader’s Command-line Switches

+recur se Does not recurse into directories.

-del ete Removes document from database.

+del ete Inserts documents into database [default].

- met apar se Parses HTML files for <nmet a> tags [default].

+net apar se

Does not parse HTML files for <met a> tags.

- cl eanup If specified, this only performs a table cleanup using the - d argument as the
document base. (All files will need to be under that directory.)

+cl eanup Turns off table cleanup (do a document load) [default].

- hi dden Specifies to ignore hidden files and directories [default].

+hi dden Specifies to include hidden files and directories.

-inheritProps

Specifies to have metadata properties be inherited when recursing [default].

+i nherit Props

Specifies to have metadata properties not be inherited when recursing.

-truncate Attempts to truncate data values if they are too large for the database
(controlled via | oader . properties).
+truncate Does not attempt to truncate data values [default].

-ignoreErrors

Ignores any errors while loading a document (errors will still be reported).

+i gnoreErrors

Stops processing on any error [default].

-htm Pat <pattern>

Specifies a pattern for determining which files are HTML files when
determining whether to do the <net a> tag parse. This can be specified
multiple times. If none are specified, *. ht mand *. ht Ml are used.

-properties <nane>

Specifies the location of the loaddocs.properties file that should contain the
connect i onPool definition. This file may contain

j dbc. col um. <col utmName>=<pr opname> entries similar to the
-col utmMap argument.

-conPool <nane>

Specifies the connect i onPool name from the properties file from which
the BulkLoader should get the connection information.

-schema <nane>

Specifies the path to the schema file the BulkLoader will generate
(defaults to docunent - schema. xm).

+schema

If specified, then no schema file will be created.

Guide to Building Personalized Applications ~ 9-31

9 Creating and Managing Content

Table 9-19 The BulkLoader’s Command-line Switches

-schenmaNanme <nane>

Specifies the name of the schema generated by the BulkLoader.
Defaults to “LoadedData”.

-encodi ng <nane>

Specifies the file encoding to use. Defaults to your system’s default encoding.
(See your JDK documentation for the valid encoding names.)

-commt After <nunp

Commits the JDBC transaction after this many documents are loaded.
Defaults to: only at the end of the full load.

-mat ch <pattern>

Specifies a file pattern the BulkLoader should include. This can be specified
multiple times. If none are specified, all files and directories are included.

-ignore <pattern>

Specifies a file pattern the BulkLoader should not include. This can be
specified multiple times.

-d <dir>

Specifies the docBase that non-absolute paths will be relative to.
If not specified, ". " (current directory) is used.

-ndext <ext>

Specifies the filename extension for metadata property files. The value
should starts with a ". " (defaults to . nd. properties).

-filter <filter class>

Specifies the class name of a Loader Fi | t er to run files through. This can
be specified multiple times to add to the list of Loader Filters.

+Hilters Clears the current list of Loader Filters. (This will clear the default filters as
well.)

-- Everything after this is considered a file or directory.

- col utmMap Specifies a properties file containing the

<file.properties>

j dbc. col umm. <col umNane>=<pr opnane, . . . > list of additional
columns to the DOCUMENT table (see - col umm). This cannot be used to
override behavior for standard columns.

-col um Specifies an additional column to the DOCUMENT table and the property

<col utmmName>=<pr opNane, | namesthatmap onto the column. This cannotbe used to override behavior for
.> standard columns.

+col ums Clears any configured additional columns.

9-32 Guide to Building Personalized Applications

Using the BulkLoader to Load File-based Content

How the BulkLoader Finds Files

The following sequence describes how the BulkLoader locates files:

1.

The BulkLoader starts by looking at the list of files and directories specified from
the command line.

e Ifno files or directory are specified, it uses only the docBase specified by
the - d option. It then loops over the list of files and directories.

e Ifit finds a directory and +r ecur se is specified, then it stops.

e Ifit finds a directory and recursion is turned on (the default or with
-r ecur se), then the BulkLoader loops over the files and directories
contained within that directory.

Note: If the file or directory is not an absolute path, then it is assumed to be
relative to the docBase specified by the -d option.

To determine if the BulkLoader should process a file or directory, it checks to see
if the file is marked as a hidden file.

Note: Ifitis a hidden file (or directory) and the +hi dden option was not
specified, then the file or directory is ignored.

If the file or directory does not exist or is not readable by the user executing the
BulkLoader, a warning is displayed and the file or directory is ignored.

If the file or directory is a file, then it is loaded.

If the loaded object is a directory and recursion is enabled, then the files and
directories under the directory are retrieved by filtering against the -mat ch and
-i gnor e options.

Note: The -mat ch and -i gnor e options only apply to files and directories not
listed on the command line; in other words, they apply only to those found
by recursing into a directory. The patterns specified with the -nat ch and
-i gnor e options (and the -ht m Pat options, for that matter) should be
DOS-style patterns: '*' matches any set of characters, '?' matches any one
character. Sets of characters (for example, [aceg]) are not supported.

If the subfile or directory name matches any of the patterns specified by a
-i gnor e option, the subfile or directory is ignored.

If the subfile or directory is a directory, then it is included.

Guide to Building Personalized Applications 9-33

9 Creating and Managing Content

8. If the subfile or directory is a file and no -nat ch options were specified, then it
will be included; if at least one -mat ch option is supplied, then the filename must
match at least one of -mat ch patterns.

Note: Files with an extension matching the extension specified by -ndext
(.md.properties by default) are always ignored.

How the BulkLoader Finds Metadata Properties

9-34

As the BulkLoader is finding files and directories, it will also attempt to load metadata
property files. Whenever the BulkLoader encounters a directory that it will process, it
looks for a file called di r . <ndext > where <ndext > is the extension specified by the
- mdext option. Therefore, the default filename it looks forisdi r. nd. properties.If
this file exists and is readable by the user, the BulkLoader loads it as a Java-style
properties file of name=val ue properties. If the directory is actually a subdirectory
entered because +r ecur se was not specified and the +i nheri t Pr ops option is not
specified, then the properties from di r . md. properti es will be added to the
properties from the parent directories. All files in the directory gain these metadata
properties.

When the BulkLoader finds a file which is to be included and loaded, it looks for a file
whose name is the original filename appended with the - ndext extension. So, by
default, if the file is called i mage. gi f, the BulkLoader looks for a file called

i mage. gi f. nd. properti es. If that file exists and is readable, the BulkLoader loads

those properties into the directory's properties (and possibly the parent directories’ as
well).

Next, if the file is an HTML file and the +met apar se option was not specified, then
the BulkLoader will parse the HTML, looking for <net a>tags and <t i t | e> tags. The
BulkLoader determines if a file is an HTML file by using the filename patterns
specified by the - ht ml Pat options. If no - ht ni Pat patterns are specified, then *. ht m
and *. ht nl are used. The BulkLoader will load into the file’s properties any <nmet a>
tags that contain name and content values found anywhere in the file (not just in the
HTML head section). Additionally, it will pull the title from the <ti tl e></titl e>
and setitas “title”.

Finally, the BulkLoader will pass the file to the | oadPr operti es method of each
registered LoaderFilter (the - f i | t er option). The LoaderFilter may assign additional
metadata to the file. When the BulkLoader starts up, it looks for a

cond bea/ p13n/ cont ent / docunment / r ef / | oader /| oader . properti es fileinthe

Guide to Building Personalized Applications

Using the BulkLoader to Load File-based Content

classpath. From that, it looks for a | oader . def Fi | t er s property. This is the
colon-separated list of Loader Fi | t er class names the BulkLoader should always
load. Unless that file is modified, the BulkLoader will load an | mageLoader Fi | t er,
which will pull the width and height from *. gi f, *. j pg, *. png, and *. xbmimage
files.

In summary, the BulkLoader gathers metadata for a document from the following
sources (in this order):

1. The parent directories di r . nd. properti es file.

2. The file's directory's di r . md. properti es file.

3. The file's. md. properti es file.

4. Ifthe file is an HTML file, then it uses <met a> tags.
5. The list of LoaderFilters.

From there, the ID of the document in the database will be the file path, relative to the
docBase specified by the -d option. If the file path is not relative to the docBase, then
it will be relative to the path from the command line. The file size will be retrieved
from the file. The mi meType will be determined by the file's extension. The

nmodi fi edDat e in the database will become the current time (since that is when the
document is being modified in the database).

Cleaning Up the Database

If the -cl eanup option is specified, the BulkLoader will not actually load any
documents. Instead, it will attempt to clean up and update the database tables. It will
first query the database, looking for any metadata entries that do not have
corresponding document entries. For each of those, it will create a document entry. It
will then go over each document entry and update the size, modified date, and possibly
the MIME type (if the MIME type is not in the database) based upon the files in the
docBase specified with the -d option.

Guide to Building Personalized Applications 9-35

9 Creating and Managing Content

Loading Internationalized Documents

9-36

The BulkLoader accepts a - encodi ng <enc> option. When this is specified, the
BulkLoader will use that encoding to open all HTML files to find <net a> tags.

For example, if the files under the Unicode files directory were saved in the Unicode
encoding, you could do:

java com bea. pl13n. content. docunent.ref.| oader. Bul kLoader -verbose
-properties | oaddocs. properties -conPool commercePool -schena
drmsBase\ schermas\ uni code-files. xm -d dnsBase uni code-files

-encodi ng Uni code. When - encodi ng is specified, the generated schema XML file
will be in the UTF-8 encoding (since some metadata property names might not be
ASCII), which the run-time engine can read in. (Note: UTF-8 is a superset of ASCII
and can be mostly read by common text editors.)

When - encodi ng is specified, all HTML files the BulkLoader encounters will be
opened with the specified encoding. Therefore, either the encoding must be a superset
of all the files’ encodings (for example, ISO8859 1 is a superset of ASCII, where as
Unicode is not) or the BulkLLoader might not be able to correctly pull out the <net a>
tag information. It is recommended to either save all documents in a single encoding
or to run the BulkLoader against only certain directories at a time (for example, put all
the Big5 files in one directory).

The list of available encoding names is contained in the documentation for your JDK,
or the documentation for the tool which created the file. If you are not creating files
containing non-ASCII characters, this should not affect you. If you want to check if the
BulkLoader is correctly parsing your HTML file, you can use the

com bea. p13n. cont ent. docunent . r ef . | oader . Met aPar ser class.

For example:

java com bea. pl3n. content.docunent.ref.| oader. Met aPar ser

uni code. ht m uni code would print out the <met a> tags found in the uni code. ht m
file, assumed to be Unicode encoded. Of course, any non-ASCII character probably
will not print correctly to your console window, but you can tell what it thinks it found.

Guide to Building Personalized Applications

Using the BulkLoader to Load File-based Content

Generating Schema Files

Additionally, the BulkLoader supports a - schemaName <name> argument which
controls the name of the schema in the generated XML file; this in turn affects the
name of the Content Property Sets which appear in the rules editor. If not specified, it
defaults to “LoadedData.”

After loading all the documents on the list, if the +schema option is not specified, the
BulkLoader will output a XML file containing the schema information and following
the doc-schemas DTD. The BulkLoader will output a single schema which contains
entries for all the metadata attributes it finds over the entire load.

If +schema i s specified, then no schema file will be created.

Guide to Building Personalized Applications 9-37

9 Creating and Managing Content

9-38 Guide to Building Personalized Applications

CHAPTER

10 working with Ad

Placeholders

An ad placeholder is one of several mechanisms that WebLogic Portal provides for
retrieving documents from a content management system. A document is a graphic, a
segment of HTML or plain text, or a file that must be viewed with a plug-in. (We
recommend that you store most of your Web site’s dynamic content as documents in a
content management system because it offers an effective way to store and manage
information.)

Ad placeholders are intended to display documents that advertise products or services
(ads) and to record customer reactions to them. You can use a single set of ad
placeholders to support multiple advertising projects that change over time. If you use
WebLogic Portal, you can use ad placeholders to display ads for campaigns.

A Business Analyst (BA) uses the BEA E-Business Control Center to define the
behavior of an ad placeholder. Then, a Business Engineer (BE) creates ad placeholder
JSP tags in JSPs.

Similar to ad placeholders, the <ad: adTar get > JSP tag also provides services for
displaying ads. However, as described later in this topic, the <ad: adTar get > JSP tag
provides a subset of the ad placeholder services.

This topic includes the following sections:

m What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?
m Resolving Ad Query Conflicts

m Creating Ad Placeholder Tags

m Supporting Additional MIME Types

m How Placeholders Select and Display Ads

m How to Configure Ad Placeholders in an Application

Guide to Building Personalized Applications ~ 10-1

10 Working with Ad Placeholders

To learn more about using a content management system with WebLogic Portal, refer
to Chapter 9, “Creating and Managing Content,” in this guide. For a comparison of
content retrieval methods available with WebLogic Portal, refer to “Methods for
Retrieving and Displaying Documents” on page 9-5.

What Are Ad Placeholders, Ad Attributes,
and Placeholder Tags?

This section describes the following items:

m Ad Placeholders

m Ad Attributes in the Content Management System
m Ad Placeholder JSP Tags

m The <ad:adTarget> JSP Tag

Ad Placeholders

10-2

An ad placeholder is a named entity that contains one or more queries. When a
customer requests a JSP that contains an ad placeholder tag, the placeholder selects a
single ad query to run and generates the HTML that the browser requires to display the
results of the query.

For example, you want to display ads in the top banner of your Web site’s home page.
You define an ad placeholder and create ad queries for the placeholder. Then you
create an ad placeholder JSP tag in the top banner of the home page. When a customer
requests the home page, the placeholder selects a query, runs the query, and displays
the results in the banner.

This section includes the following subsections:
m Types of Queries That Ad Placeholders Run

m Types of Documents That Ad Placeholders Display

Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Types of Queries That Ad Placeholders Run

Ad placeholders can run a default query or a query that is associated with a specific
scenario in a campaign.

You create default ad queries when you define the ad placeholder in the E-Business
Control Center. A placeholder runs a default query each time a customer loads a page
that includes the placeholder. For example, you define a default query for a top banner
placeholder and the placeholder runs the query each time a customer loads a page with
the top banner.

You create scenario queries when you define scenario actions in the E-Business
Control Center. (Scenario actions specify a list of actions to take in response to a chain
of events.) A placeholder contains a scenario query only if a customer or an event
triggers the scenario action. For example, you create a scenario that does the following:

When a customer places a handsaw product in the shopping cart, the scenario places
an ad for miter boxes in the ad placeholder on the shopping cart page. When the
customer requests the shopping cart page, the shopping cart ad placeholder runs the
query for miter box ads and displays the results.

You can prevent a placeholder from running default queries if any scenario actions
have specified a query for the placeholder, or you can allow the Ad Conflict Resolver
to choose a default query or a scenario query. For more information, refer to
“Resolving Ad Query Conflicts” on page 10-10 in this guide.

Types of Documents That Ad Placeholders Display

Placeholders use a document’s MIME-type attribute to generate the appropriate
HTML tags that the browser requires. By default, ad placeholders generate the
appropriate HTML tags only for the following MIME types:

e XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

e Images. For this type of document, a placeholder generates an <i ng> tag
with attributes that the browser needs to display the image. If you want
images to be clickable, you must specify the target URL and other
link-related information as ad attributes in your content management system.

e Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to
display the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in used to display the file. In your content

Guide to Building Personalized Applications 10-3

10

Working with Ad Placeholders

management system, you can specify attributes for the <OBJECT> and
<EMBED> tags.

For information on setting up placeholders to support additional MIME types, refer to
“Supporting Additional MIME Types” on page 10-18 in this guide.

Ad Attributes in the Content Management System

10-4

Ad placeholders use a set of document attributes that you define in your content
management system to support the following features:

m Choosing a single document if a query returns multiple documents
m Making an image ad clickable
m Supplying movie preferences for a Shockwave file

For information about associating attributes with documents, refer to the
documentation for your content management system. If you use the reference
BulkLoader, refer to Chapter 9, “Creating and Managing Content,” in this guide.

Table 10-20 describes the adWei ght attribute, which you can associate with XHTML,
image, and Shockwave documents.

Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Table 10-20 Attributes for All Document Types

Attribute Name

Value Type

Description and Recommendations

adWeight

Integer

Provides an integer that is used to select a document if a query
returns multiple documents. Assign a high number to ads that you
want to have a greater chance of being selected. For more
information, refer to “How an Ad Placeholder Chooses from Ad
Query Results” on page 10-13 in this guide.

The default value for this attribute is 1.

Note: Inthe E-Business Control Center, you can assign a priority
to a query for a scenario action. The priority, which bears
no relation to the ad\Wei ght attribute, gives a greater or
lesser chance that a placeholder runs a query. The
adWei ght attribute is used to choose an ad after a query
has run. For more information, refer to “How the Ad
Conflict Resolver Chooses a Query” on page 10-12 in this

guide.

Table 10-21 describes attributes in addition to the adWei ght attribute that you can
associate with image files.

Table 10-21 Attributes for Image Files

Attribute Name

Value Type

Description and Recommendations

adTargetUrl

String

Makes an image clickable and provides a target for the clickthrough,
expressed as a URL. The Events Service records the clickthrough.

Use either adTar get Ur | , adTar get Cont ent , or adMapNane,
depending on how you want to identify the destination of the ad
clickthrough.

adTargetContent

String

Makes an image clickable and provides a target for the clickthrough,
expressed as the content management system’s content ID. The
Events Service records the clickthrough.

Use either adTar get Ur | , adTar get Cont ent , or adMapNane,
depending on how you want to identify the destination of the ad
clickthrough.

Guide to Building Personalized Applications 10-5

10 Working with Ad Placeholders

Table 10-21 Attributes for Image Files (Continued)

Attribute Name Value Type Description and Recommendations

adMapName String Makes an image clickable, using an image map to specify one or
more targets.
The value for this attribute is used in two locations:
m In the anchor tag that makes the image clickable,

 <i ng> </ a>

m In the map definition, <map nane=val ue>
Use either adTar get Ur | , adTar get Cont ent , or adMapNarnre,
depending on how you want to identify the destination of the ad
clickthrough.
If you specify a value for adMapNane, you must also specify a
value for adMap.

adMap String Supplies the XHTML definition of an image map.
If you specify a value for adMap, you must also specify a value for
adMapNane.

adWinTarget String Displays the target in a new pop-up window, using JavaScript to
define the pop-up window.
The only value supported for this attribute is newwi ndow.

adWinClose String Specifies the name of a link that closes a pop-up window. The link
appears at the end of the window content.
For example, if you provide “Close this window” as the value for
this attribute, then “Close this window” appears as a hyperlink in the
last line of the pop-up window. If a customer clicks the link, the
window closes.

adAltText String Specifies a text string for the al t attribute of the <i ng> tag. If you
do not include this attribute, the <i nmg> tag does not specify an al t
attribute.

adBorder Integer Specifies the value for the bor der attribute of the <i mg> tag. If

you do not include this attribute, the bor der attribute is given a
value of " 0" .

10-6 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Table 10-22 describes attributes in addition to the adWei ght attribute that you can
associate with Shockwave files. Ad placeholders and the <ad: adTar get > tag format
these values as attributes of the <OBJECT> tag, which Microsoft Internet Explorer on
Windows uses to display the file, and the <EMBED> tag, which browsers that support
the Netscape-compatible plug-in used to display the file.

For more information about these attributes, refer to your Shockwave developer

documentation.

Table 10-22 Attributes for Shockwave Files

Attribute Name Value Type

Description and Recommendations

swfLoop

String

Specifies whether the movie repeats indefinitely (t r ue) or stops
when it reaches the last frame (f al se).

Valid values are t r ue or f al se. If you do not define this attribute,
the default value is t r ue.

swfQuality

String

Determines the quality of visual image. Lower qualities can result in
faster playback times, depending on the client’s Internet
connection.

Valid values are | ow, hi gh, aut ol ow, aut ohi gh, best .

swiPlay

String

Specifies whether the movie begins playing immediately on loading
in the browser.

Valid values are t r ue or f al se. If you do not define this attribute,
the default value is t r ue.

swfBGColor

String

Specifies the background color of the movie. This attribute does not
affect the background color of the HTML page.

Valid value syntax is #RRGGBB.

swfScale

String

Determines the dimensions of the movie in relation to the area that
the HTML page defines for the movie.

Valid values are showal | , nobor der,exact fit.

swfAlign

String

Determines whether the movie aligns with the center, left, top, right,
or bottom of the browser window.

If you do not specify a value, the movie is aligned in the center of
the browser.

Valid values are | ,t ,r, b.

Guide to Building Personalized Applications 10-7

10 Working with Ad Placeholders

Table 10-22 Attributes for Shockwave Files (Continued)

Attribute Name Value Type Description and Recommendations
swfSAlign String Determines the movie’s alignment in relation to the browser
window.

Valid values are | ,t,r, b, tl tr, bl br.

swiBase String Specifies the directory or URL used to resolve relative pathnames in
the movie.

Valid values are . (peri od), di rectory-nane, URL.

swifMenu String Determines whether the movie player displays the full menu.

Valid values are t r ue or f al se.

Ad Placeholder JSP Tags

An ad placeholder JSP tag refers to the placeholder definition that you create in the
E-Business Control Center. Then it displays the results of the query that the
placeholder runs. You can create multiple placeholder tags that refer to a single
placeholder definition. (See Figure 10-1.)

For more information about placeholder tags, refer to <ph:placeholder> in Chapter 13,
“Personalization Server JSP Tag Library Reference,” in this guide.

10-8 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Figure 10-1 Multiple Tags Using a Single Definition

JSP 1

<ph:placeholder name="top-bhanner":> | Editor[Flaceaclder: top banne-]

e [E

Eazriation:

\u/ arehniee nnthe main panz nf -he cnmmerce sereer -rinplales |i|
CIBTALIE A
Ad Search [Lizplry Foiceity
Al Search 1 slzrmal Mete.

hlzime:

—‘lup-bul 1ier |
Tave ~ENCEl

[
(@ Do not displae detautt sds if ads plsced by 5 campaicn 3gply

Keep detault acs nroalion along with ads placed v & camoaion

JSP 2

<ph:placeholder name="top-bhanner":>

@
The <ad:adTarget> JSP Tag

The <ad: adTar get > JSP tag is an additional mechanism for selecting and displaying
ads. Use <ad: adTar get > if it is essential that a specific query run in a specific
location.

Like an ad placeholder, <ad: adTar get > can do the following:

m Generate the HTML that a browser requires to display the types of documents
that are described in “Types of Documents That Ad Placeholders Display” on
page 10-3.

m Use the document attributes that are described in “Ad Attributes in the Content
Management System” on page 10-4.

Guide to Building Personalized Applications 10-9

10 Working with Ad Placeholders

m Use the Ad Service to choose an ad if a query returns multiple documents, as
described in “How an Ad Placeholder Chooses from Ad Query Results” on page
10-13.

However, the <ad: adTar get > is unlike ad placeholders in the following ways:

m [t contains its own query; it does not refer to a definition that a BA creates in the
E-Business Control Center. If you want to change the query, you modify the tag
in the JSP.

m A campaign scenario cannot specify a query to run in an <ad: adTar get > tag.
Scenarios can only use ad placeholders to run queries.

m Because it contains only a single query, it does not need to use the Ad Conflict
Resolver as described in “How the Ad Conflict Resolver Chooses a Query” on
page 10-12.

For a more information about <ad: adTar get >, refer to Chapter 13, “Personalization
Server JSP Tag Library Reference,” in this guide.

Resolving Ad Query Conflicts

A placeholder can contain many ad queries: you can define multiple default queries
and multiple scenarios can send queries to a placeholder. To determine which ad query
to run, a placeholder uses the Ad Conflict Resolver.

In addition, an ad query can return multiple documents. To determine which ad to
display, a placeholder uses the adWei ght document attribute.

This section includes the following subsections:

m How Ad Placeholders Contain Multiple Queries

m How the Ad Conflict Resolver Chooses a Query

m How an Ad Placeholder Chooses from Ad Query Results

If you need to make sure that a given ad query runs in a specific location, use an
<ad: adTar get > tag, which can contain only a single query. For more information,
refer to “The <ad:adTarget> JSP Tag” on page 10-9 in this guide.

10-10 Guide to Building Personalized Applications

Resolving Ad Query Conflicts

How Ad Placeholders Contain Multiple Queries

In addition to containing default queries, an ad placeholder can contain queries that
scenarios define. Depending on customers’ profiles and the events that customers
trigger, a placeholder can contain different queries for different customers. (See
Figure 10-2.)

Figure 10-2 Different Ad Queries for Different Customers

For Customer 7 For Customer Y

J-’fF'Ian::ehnIn:ier.f_ f ,n"F'Ian::ehnlder.f_ f

Default Cluery 1 Default Cluery 1

Default Cluery 2 Default Cluery 2

» » »
Scenario A Scenario B Scenario A
Cluery AT Cluery B1 Cluery A2
Cuers B2

For example, you create placeholder L at the top of a portlet to display ads for any of
the following products:

m Handsaws and miter boxes. You want ads for handsaws and miter boxes to
display for any customer, anonymous or authenticated. When you define
placeholder L, you include default queries for ads about handsaws and miter
boxes.

m Electric drills. You want ads for electric drills, which are part of the Hardware
2001 campaign, to display when a Bronze Customer or Gold Customer logs in.
When you define the Hardware 2001 campaign, you include a scenario that
places ad queries for electric drills in placeholder L when a Bronze Customer or
Gold Customer logs in.

m Circular saws. You want ads for circular saws, which are part of the Hardware
2001 campaign, to display when a Gold Customer logs in. When you define the
Hardware 2001 campaign, you define a scenario that recognizes when a Gold

Guide to Building Personalized Applications 10-11

10 Working with Ad Placeholders

Customer logs in. For that scenario, you specify an action that places ad queries
for pneumatic hammers in placeholder L.

When the Bronze Customer Pat Gomes logs in and accesses the portlet, WebLogic
Portal adds queries for handsaws (which applies to all customers) and electric drills
(which applies to Bronze Customers) to ad placeholder L. Then it uses the Ad Conflict
Resolver to determine which ad query to run.

How the Ad Conflict Resolver Chooses a Query

10-12

When you define an ad placeholder in the E-Business Control Center, you can assign
a priority to the default ad queries; when you define scenario actions that specify ad
queries, you can assign a priority to the scenario’s ad query. The priority affects the
probability that an ad query will run relative to other ad queries in the placeholder.

For example, ad placeholder L contains three ad queries:

m Campaign Ad query X, which has a medium priority. The Ad Conflict Resolver
gives all medium-priority ads 2 points

m Default Ad Y, which has a low priority and receives 1 point
m Default Ad Z, which also has a low priority and receives 1 point

The total number of points in ad placeholder L is 4. To determine which of the three ad
queries to run, the Ad Conflict Resolver does the following:

1. Itcreates 4 slots in the ad placeholder. The number of slots corresponds to the total
number of points currently in the ad placeholder.

2. It places campaign ad query X, which has 2 points into 2 slots. Each of the other
ad queries, with 1 point, gets a single slot:

a. Slot 1 = campaign ad query X
b. Slot 2 = campaign ad query X
c. Slot 3 = default ad query Y
d. Slot 4 = default ad query Z

3. It generates a random number between 1 and 4, which is equal to the number of
slots in the ad placeholder.

Guide to Building Personalized Applications

Resolving Ad Query Conflicts

4. Tt matches the generated number with a slot in the placeholder. Because

campaign ad query X occupies two of four slots, it has a 50% chance of being
run. Default ad queries Y and Z each have a 25% chance of being run.

If a query does not find any documents, the placeholder chooses another query
and runs it.

If the campaign associated with ad query X ends, then the total number of points in ad
placeholder L is reduced to 2. To determine which ad query to run, the Ad Conflict
Resolver does the following:

1.

It creates two slots in the ad placeholder and assigns ad query Y and ad query Z
each to a single slot.

It generates a random number between 1 and 2.

It matches the generated number with a slot in the placeholder. Now, each ad
query has a 50% chance of running.

How an Ad Placeholder Chooses from Ad Query Results

Depending on how broadly you define an ad query and on the number of documents
in your content management system, an ad query could return multiple documents. In
your content management system, you can add the adWei ght attribute to documents
that display as ads.

If a placeholder or <ad: adTar get > query returns multiple documents, the ad
placeholder or the <ad: adTar get > tag does the following:

1.

It determines the adWei ght values for all documents that the query returns and
adds them together.

For example, an ad query returns the following three ads:
e AdX, with an adWei ght value of 2
e AdY, with an adWei ght value of 1
e AdZ, with an adWei ght value of 1

The total weight for the documents that the query returns is 4.

It creates 4 slots, corresponding to the total weight in the query.

Guide to Building Personalized Applications 10-13

10 Working with Ad Placeholders

3. It places ad X, with a weight of 2 into 2 slots. Each of the other ads, with weights
of 1, gets a single slot:

a. Slotl=adX
b. Slot2=ad X
c. Slot3=adyY
d. Slot4=adZ

4. Tt generates a random number between 1 and 4, which is equal to the total weight
in the query.

5. It matches the generated number with a slot. Because ad X occupies two of four
slots, it has a 50% chance of being displayed. Ads Y and Z each have a 25%
chance of being displayed.

Creating Ad Placeholder Tags

After a BA uses the E-Business Control Center to create ad placeholders, a BE creates
ad placeholder tags in the Web site’s JSPs. The placeholder definition determines the
behavior of the placeholder tag.

You can create placeholders in JSPs that directly display content to a customer (for
example, i ndex. j sp) or in JSPs that are included in other JSPs (for example,
headi ng. j sp).

To Create an Ad Placeholder Tag

1. In a text editor, open a JSP.

2. Import the tag library by adding the following tag near the top of the JSP:
<Y@taglib uri="ph.tld" prefix="ph" %

3. Find the location in which the Business Analyst wants to display the ad.

4. Use the following syntax to create the placeholder tag:

10-14 Guide to Building Personalized Applications

Creating Ad Placeholder Tags

<ph: placehol der= “{ pl acehol der-name | scriptlet }” >

where pl acehol der - nane refers to the name of an existing placeholder
definition (see Figure 10-3) or where scri pt | et returns the name of an existing
placeholder. The name can be either the URI of the placeholder definition file
(for example, "/ pl acehol der s/ t op- banner. pl a") or just the placeholder
filename without the . pl a extension ("t op- banner " in this example).

Figure 10-3 Placeholder Names Must Match

<ph:placeholder name="top-hanner™: |Editar [Pacshokler: too baorer|
=Criation
\—/— wrrbnlde cncbie main aage nf the commeree server templates |i|
Cietaul Acls:
Ar Zesrch Lispiay Priorty
2.4 Searzh 1 hormal hes..

Marre:

_|-lU|:J-lJt1II 1= |
SEvE Cancz

im0 D not dizplsy defautt ads iF sz paced by 5 caTpsiyn appy

(1 {eep defautt ads in rotation alorg wih ads placzd by a campaign

Listing 10-1 shows an example from the heading include file of the wlcsApp reference
application

(PORTAL_HOWVE\ appl i cati ons\ W csApp\ w cs\ commer ce\ i ncl udes\ headi ng. i
nc).

Guide to Building Personalized Applications 10-15

10 Working with Ad Placeholders

All JSP files in the wics reference Web application include headi ng. i nc to create
consistency in the top banner. Instead of requiring that the banner on each page use the
same placeholder, the placeholder in headi ng. i nc uses a scriptlet to determine the
value of the nane attribute. A JSP can use the default value for the nane attribute
(which is cs_t op_generi c), or it can define a variable named banner and specify a
placeholder name as the value for the variable.

Listing 10-1 Using a Scriptlet for the Placeholder Name

<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "/placehol ders/cs_top_generic.pla" : banner;

<tabl e wi dt h="100% border="0" cell spacing="0" cel | paddi ng="0" hei ght="108">

<tr>
<td rowspan="2" w dth="147" hei ght="108">
<img src="<webfl ow creat eResour ceURL
resour ce="/commer ce/ i mages/ header _| ogo. gi f"/>" wi dt h="147" hei ght="108">
</td>

<td col span="7" hei ght="75" align="center" valign="m ddl e">

<ph: pl acehol der nane="<% banner %" />

</td>

Figure 10-4 illustrates how WebLogic Portal renders the placeholder in the mai n. j sp
file, which is the home page for the wlcs reference Web application.

10-16 Guide to Building Personalized Applications

Creating Ad Placeholder Tags

Figure 10-4 Placeholder in the wlcs Web Application

From heading. inc <ph:placeholder name="ts_top_generic"s

Conmerce Terplat

Experiéme
: campaigns!
Hame fiwarch Vi Gan. Lonin

"__J Copyrght © 1999-7001,
(]
EEA Suatems o,

For more information about the <ph: pl acehol der > tag, refer to Chapter 13,
“Personalization Server JSP Tag Library Reference,” in this guide.

Guide to Building Personalized Applications 10-17

10 Working with Ad Placeholders

Supporting Additional MIME Types

To display an ad, placeholders refer to a document’s MIME type and then generate the
HTML tags that a browser requires for the specific document type. For example, to
display an image-type document, an ad placeholder must generate the <i ng> tag that
a browser requires for images. By default, ad placeholders can generate the appropriate
HTML only for the following MIME types:

m XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

m Images. For this type of document, a placeholder generates an <i ng> tag with
attributes that the browser needs to display the image. If you want images to be
clickable, you must specify the target URL and other link-related information as
ad attributes in your content management system.

m Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to display
the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in use to display the file. In your content management
system, you can specify attributes for the <OBJECT> and <EMBED> tags.

If you are familiar with basic Java programming, you can write classes that enable
placeholders to generate HTML for additional MIME types. To support additional
MIME types, you must complete the following tasks:

m Create and Compile a Java Class to Generate HTML

m Register the New Class

Create and Compile a Java Class to Generate HTML

To generate the HTML that the browser requires to display the MIME type, create and
compile a Java class that implements the com bea. p13n. ad. AdCont ent Pr ovi der
interface. For information on this interface, refer to WebLogic Portal Javadoc.

After you compile the class, you must make sure the class is available to the
application. One way to do this is to add the class appropriately to one of the deployed
jar files, such as pl acehol der. j ar or your own jar file. Another way to make the

10-18 Guide to Building Personalized Applications

Supporting Additional MIME Types

class available to the applicaticatoin is to save it under a directory that is specified in
the system’s CLASSPATH environment variable. For example, create a
W._PORTAL_HOVE/ cl asses directory and add it to the set-environmment script. For
more information about the CLASSPATH environment variable, refer to “Setting
Environment Variables,” under “Starting and Shutting Down the Server” in the
Deployment Guide.

Register the New Class

After you save the class in a directory that is in your classpath, you must notify
WebLogic Portal of its existence:

1.

Stop the WebLogic Portal instance that is running your application. For
information on stopping a server, refer to “Starting and Shutting Down a Server”
in the Deployment Guide.

Create a backup copy of
PORTAL_HOVE/ appl i cati on/ your - appl i cati on/ META-| NF/ appl i cation-c
onfig. xm

Open appl i cati on-confi g. xnl in a text editor and find the <AdSer vi ce>
element.

Add the following as a subelement of <AdSer vi ce>:

<AdCont ent Pr ovi der
Nane="M ME-t ype"
Provi der =" nane- of - your - cl ass”
Properties="optional -properties-for-your-class"
>

</ AdCont ent Pr ovi der >

Provide the following values for the attributes of the AdCont ent Pr ovi der
element:

e Nane. The name of the MIME type that you want to support.

e Provi der. The name of the compiled Java file. If you saved the file below a
directory that your CLASSPATH environment variable names, you must
include the file’s pathname, starting one directory level below the directory
in classpath.

Guide to Building Personalized Applications 10-19

10 Working with Ad Placeholders

e Properties. Any additional properties or parameters want to pass to your
object.

For example, if you added W._PORTAL_HOVE/ ¢l asses to the system classpath,
save your class to support AVI files as
W._PORTAL_HOME/ cl asses/ mycl asses/ M neAvi . cl ass.

Alternately, if you had an already deployed JAR of your own EJBs called
nmySer vi ces. j ar (which is listed in the application's

META- | NF/ appl i cati on. xnl file), add nycl asses/ M neAvi . cl ass to that
JAR file.

To register your classname, add a subelement to the AdSer vi ce element as
illustrated in Listing 10-2.

Listing 10-2 Add An AdContentProvider Element

<AdServi ce
Name="w csApp"
Di spl ayFl ushSi ze="10"
Renderi ng="com bea. p13n. ad. AdCont ent Pr ovi der Base"
Event Tr acker =" com bea. canpai gn. AdTr acki ng"
AdC i ckThr uURI =" Add i ckThr u"
ShowDoc URI =" ShowbDoc"

<AdCont ent Pr ovi der
Nane="t ext "
Pr ovi der =" com bea. p13n. ad. r ender. Text Cont ent Pr ovi der"
Properties=""

>

</ AdCont ent Pr ovi der >

<AdCont ent Pr ovi der
Narme="i mage"
Pr ovi der =" com bea. p13n. ad. r ender . | nageCont ent Provi der"
Properti es="Add i ckThr uURI =AdC i ckThr u; ShowbocURI =ShowDoc"
>
</ AdCont ent Pr ovi der >

<AdCont ent Pr ovi der
Nanme="appl i cati on/ x- shockwave-fl ash"
Pr ovi der =" com bea. p13n. ad. r ender . ShockwaveCont ent Pr ovi der "
Pr operti es=" ShowbDocURlI =Showboc"

>

</ AdCont ent Pr ovi der >

10-20 Guide to Building Personalized Applications

How Placeholders Select and Display Ads

<AdCont ent Pr ovi der
Nane="vi deo/ x- msvi deo"
Provi der ="mycl asses. M neAvi "
Properties=""

>

</ AdCont ent Pr ovi der >

</ AdServi ce>

5. Save your modifications to appl i cati on-confi g. xni .

6. Restart WebLogic Portal.

How Placeholders Select and Display Ads

Placeholders use the following process to select and display ads in a given JSP (see
Figure 10-5):

1. Any of the following activities place ad queries in an ad placeholder:

e You use the E-Business Control Center to define default queries for a
placeholder.

e As part of carrying out a campaign action, the Campaign Service adds
queries to the placeholder.

2. When a user requests a JSP that contains a placeholder, if the ad placeholder
contains more than one ad query, the Ad Service calls the Ad Conflict Resolver
to select an ad query.

For more information, refer to “How the Ad Conflict Resolver Chooses a
Query” on page 10-12 in this guide.

3. The Ad Service does the following:

a. It forwards the query to the content management system. If the query returns
more than one ad, the ad placeholder uses the adWei ght attribute of each ad to
determine which one to retrieve.

Guide to Building Personalized Applications 10-21

10 Working with Ad Placeholders

b. Ifthe ad is associated with an active campaign, it determines whether the
campaign has fulfilled its goal of displaying the ad a specific number of times.
If the ad has already been displayed the specified number of times, the Ad
Service selects another ad.

c. Itsends data to the Events Service indicating that the placeholder has displayed
the ad.

For more information, refer to “How an Ad Placeholder Chooses from Ad Query
Results” on page 10-13 in this guide, and “Campaign Service Properties” under
“The Server Configuration” in the Deployment Guide.

4. The ad placeholder renders the ad content and places it in the JSP at the location
of the placeholder tag.

5. Ifa customer clicks on the ad, the Ad Service redirects the URL and notifies the
Event Service that a customer clicked the ad.

10-22 Guide to Building Personalized Applications

How Placeholders Select and Display Ads

Figure 10-5 How Placeholders Display Ads

Campaign Service

Hardware 2001

B

1 1

L ¥

E-Business
Control
Center

Ad Placeholder L

Campaign guery 1
Campaign query 2
Default query 3

JSP

== ph: L =

4t
T

Events Service

3...

A Conflict
Fesolver

| i
2 4
: I
Ad Service
|

Content Management
h System ’l

Guide to Building Personalized Applications

10-23

10 working with Ad Placeholders

How to Configure Ad Placeholders in an
Application

For the <ph: pl acehol der > and <ad: adTar get > tags to work correctly, you will
need the following configuration:

m EJB references to ej b/ Pl acehol der Ser vi ce, ej b/ AdBucket Ser vi ce, and
ej b/ Docunent Manager must be specified in the Web Application’s web. xni
and webl ogi c. xmi files.

m The com bea. p13n. ad. servl ets. Add i ckThr uSer vl et must be mapped to
/ AdCl i ckThru/ * in the Web Application’s web. xni file.

m The com bea. p13n. content . servl ets. ShowDocSer vl et must be mapped to
/ ShowDoc/ * in the Web Application’s web. xmi file.

For more information, see the Deployment Guide.
Also, refer to the web. xm and webl ogi c. xm files in
W._PORTAL_HOWVE/ appl i cati ons/ portal /st ockportal / VWEB- | NF.

10-24 Guide to Building Personalized Applications

CHAPTER

11 Creating Localized

Applications with the
Internationalization
Tags

This topic includes the following sections:
m What Is the 18N Framework?

m Localizing Your JSP
e <il8n:getMessage>
e <il8n:localize>
e Character Encoding
e Steps for Localizing Your Application

e Code Examples

Guide to Building Personalized Applications 11-1

11 Creating Localized Applications with the Internationalization Tags

What Is the 118N Framework?

11-2

WebLogic Personalization Server, WebLogic Portal, Commerce services and
Campaign services use the Internationalization Framework provided in WebLogic
Server. Developers who are building server-side components, such as EJBs, pipeline
components, or inline processors, will find the information about logging and text
formatting in the WebLogic Server documentation WebLogic Server particularly
useful.

Note: For detailed information about the WebLogic Server Internationalization
Framework, see the topic “Using the BEA WebLogic Server
Internationalization Tools and Utilities” in the BEA WebLogic Server product
documentation.

For localizing JavaServer Pages (JSPs), the WebLogic Personalization Server provides
a simple framework that allows access to localized text labels and messages. The
WebLogic Personalization Server’s internationalization (I18N) framework is
accessible from JSPs through a small 118N tag library. An example is shown in
Figure 11-1. The JSP extension tag library provides the following services:

1. Retrieves a static text label from a resource bundle (implemented as a properties
file).

2. Retrieves a message from a resource bundle (implemented as a properties file).

3. Initializes a page context with a particular language, country, and variant for label
and message retrieval throughout a page.

4. Properly sets the content type (text/HTML) and character encoding for a page.

The Internationalization Framework makes it possible to dynamically retrieve all the
strings that the user sees from the <i 18n: get Message> tag, and avoid embedding
strings statically (that is, avoid hard-coding them) in your JSP page.

Guide to Building Personalized Applications

Localizing Your JSP

Figure 11-1 An Example of Internationalization Code

Before Internationalization
<html>

<body>

Hello! }Hard coded text
< /body-

</htmls

After Internationalization

<%[taglib uri="ilfn.tld” prefixX="ildn" %>
<%

/4 Definition of a single language preference
String language = "en”;
5>

<il8n:localize langquage="<%=lanquages=""
bundleName="1il8nExanpleResourcebBundle™ /=
<htmlz>

<hody>

<il8n:getMessage nessagelName="gresting’ />
< /hody>

</htmlx

Localizing Your JSP

:|~ Points to a tag library

I-Scriptlet defines language

77 This tag sets the language

and encoding for the page.
- Page biodsy

This tag gets the text out of
J the resource bundle, instead
of hard coding,

The conventions used in the 18N tag library are based on the more general
conventions used to internationalize Java applications. To understand the conceptual
foundations for the <i 18n: get Message>tag, see the Javadoc for

j ava. t ext . MessageFor mat in the Sun Microsystems, Inc. Java 2 SDK, Standard
Edition documentation. To better understand the ideas that served as the foundation for
these tags, study the Javadoc for j ava. uti| . Resour ceBundl e and

java.util.Local e.

The following tags are included in the 118N framework:

<i 18n: get Message>

<i 18n:1ocalize>

Guide to Building Personalized Applications 11-3

11 Creating Localized Applications with the Internationalization Tags

<i18n:getMessage>

This tag retrieves a localized label or message (based on the absence/presence of an
ar gs attribute). The tag optionally takes a bundle name, language, country, and variant
to aid in locating the appropriate properties file for resource bundle loading.

This tag is used in the localization of JSP pages. All pages that have an
internationalization requirement should use this tag.

For more information about the <i 18n: get Message> tag, see Chapter 13,
“Personalization Server JSP Tag Library Reference.”

<i18n:localize>

11-4

This tag allows you to specify a language, country, variant, and resource bundle name
to use throughout a page when accessing resource bundles via the

<i 18n: get Message> tag. This is a convenient way to specify these attributes once, so
that you do not have to specify them again each time you use <i 18n: get Message> to
retrieve localized static text or messages.

Note: Changes to the resource bundles will not be recognized until the server is
restarted.

The <i 18n: | ocal i ze> tag also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded. If you intend to display text in more than one language, pick a
character set that encompasses all the languages on the page.

When an HTML page is included in an enclosing page (for example, as portlets are
included in portal pages), only the outermost page can use the <i 18n: | ocal i ze> tag.
This is because the <i 18n: | ocal i ze> tag sets the encoding for the page, and the
encoding must be set in the parent (outermost) page before any bytes are written to the
response’s output stream. Therefore, be careful that the encoding for the parent page
is sufficient for all the content on that page as well as any included pages. The child
(included) pages may continue to use the <i 18n: get Message> tag. However, if the
included pages are using text from their own bundle, they must provide the

bundl eName parameter to the <i 18n: get Message> tag.

Guide to Building Personalized Applications

Localizing Your JSP

Note: If your page contains only dynamic strings (strings retrieved using the
<i 18n: get Message t ag>), then do not use the <i 18n: | ocal i ze> tag in
conjunction with the <%@ page cont ent Type="<sonet hi ng>" > page
directive defined in the JSP specification. The directive is unnecessary if you
are using the <i 18n: | ocal i ze> tag, and can result in inconsistent or wrong
cont ent Type declarations.

For more information about the <i 18n: | ocal i ze> tag, see Chapter 13,
“Personalization Server JSP Tag Library Reference.”

The JspMessageBundle

The <i 18n: get Message> tag uses an implementation similar to that of
java.util.ResourceBundle, but it is slightly modified. Unlike a ResourceBundle, the
<i 18n: get Message> tag looks only for properties files (like the
PropertyResourceBundle) within the ServletContext (on the doc path). This means that
you can keep properties files containing localized text relative to the associated JSP
page, instead of having to have them on the CLASSPATH.

Another difference is that the resource bundles (properties files) used by

<i 18n: get Message> are specified using the "/ " character instead of the ". ". For
instance, the path to a JspMessageBundle might look like this:

/j sp/ ordersysteni pl aceOrder.

If a bundle name is specified, then it can be specified absolutely or relatively. Absolute
paths are treated as such if they begin with a "/ ". Paths not beginning with "/ " are
searched for relative to the JSP page's location.

If no bundle name is specified, then bundle name defaults to the name of the JSP page.
For instance, if you have a JSP page called placeOrder.jsp, then <i 18n: get Message>
would look in the same directory for a pl aceOr der . properti es file to serve as the
resource bundle for the placeOrder.jsp page.

When <i 18n: get Message>is searching for a resource bundle, it uses

pageCont ext . get Ser vl et Cont ext (). get Resour ceAsSt r ean() to load the
resource bundle. Therefore, <i 18n: get Message>searches the web application for the
property file rather than searching CLASSPATH. If no message bundle can be found,
a MissingResourceException occurs.

Guide to Building Personalized Applications 11-5

11 Creating Localized Applications with the Internationalization Tags

How the Localization Tag Works

The <i 18n: | ocal i ze> tag first examines all provided attributes and default
attributes, and then performs the following three steps:

1. Determines the base bundle name.

If a base bundle name is not provided, the bundle name defaults to the name of
the JSP page.

For example, if the name of the JSP page is pl aceOr der . j sp, then the default
bundle name would be pl aceOr der. On the file system, it would look for
pl aceOrder. properties.

2. Determines the language to use.

The tag will first look for resource bundles that correspond to the language
parameter passed in to the tag.

If no match between bundle and language is found, then the tag will try to find a
match between resource bundles and languages defined in the request header.

If a match can be made, the first language that matches is the language that is
used.

If no language is specified, the default is U.S. English (en_US).

If no message bundle can be found, then language is set to nothing ("") and
"UTF-8" encoding will be used unless otherwise specified.

3. Determines which character encoding (charset) to use.

If character encoding is not specified, a charset appropriate for the language
determined in step 2 is chosen.

If a character encoding is specified, then that will be the charset used by the
page, regardless of what language was chosen in step 2.

Once the charset is determined, it is specified for the page by calling the
set Cont ent Type() method on the servlet response. A call to
set Cont ent Type() might look like this:

response. set Content Type("text/htm ; charset=I SO 8859-1");

11-6 Guide to Building Personalized Applications

Localizing Your JSP

Character Encoding

When specifying the encoding, it is important to note that some encodings may not be
supported for your particular operating system, virtual machine, or client browsers. To
see what Sun Microsystems, Inc. supports in the J2SE package, see
http://www.java.sun.com.

If for any reason an encoding for a language cannot be determined and none is
specified, UTF-8 encoding is used.

Displaying More Than One Character Set on a Page

In general, it is best is to leave the charset parameters unspecified since this is more
flexible and fault tolerant. An exception might be when two languages (such as Greek
and Japanese) need to be displayed in the same page. In that case, you can set the
charset to "UTF-8".

For a page with multiple charsets to display correctly, the end users must have the
appropriate fonts installed on their machines. If a font cannot be found, non-printable
characters will typically display in place of the missing characters. (Non-printable
characters often look like rows of empty boxes.)

Default Character Encodings

Table 11-23 shows how the <i 18n: | ocal i ze> tag maps languages to character
encodings. These are the default settings.

You can override these defaults by providing any charset tag parameter you choose.
For example, in the table below, the default charset for Japanese is Shift JIS, but you
could pass in x-sjis, EUC_JP, or is0-2022-jp instead. Or, as another example, to use
Chinese Taiwan locale in place of Chinese, override GB2312 with Big5.

Table 11-23 Default Character Encodings

Language Language Character
Code Name Encoding

ar Arabic ISO-8859-6
be Byelorussian ISO-8859-5

Guide to Building Personalized Applications 11-7

11 Creating Localized Applications with the Internationalization Tags

bg Bulgarian 1SO-8859-5
ca Catalan ISO-8859-1
cs Czech ISO-8859-2
da Danish ISO-8859-1
de German ISO-8859-1
el Greek 1SO-8859-7
en English 1SO-8859-1
es Spanish ISO-8859-1
et Estonian ISO-8859-1
fi Finnish ISO-8859-1
fr French ISO-8859-1
hr Croatian ISO-8859-2
hu Hungarian 1SO-8859-2
is Icelandic ISO-8859-1
it Italian ISO-8859-1
iw Hebrew 1SO-8859-8
ja Japanese Shift JIS
ko Korean EUC_KR
1t Lithuanian ISO-8859-2
v Latvian (Lettish) ISO-8859-2
mk Macedonian ISO-8859-5
nl Dutch ISO-8859-1
no Norwegian ISO-8859-1
pl Polish ISO-8859-2

11-8 Guide to Building Personalized Applications

Localizing Your JSP

pt Portuguese ISO-8859-1
ro Romanian ISO-8859-2
ru Russian ISO-8859-5
sh Serbo-Croatian ISO-8859-5
sk Slovak ISO-8859-2
sl Slovenian ISO-8859-2
sq Albanian I1SO-8859-2
sr Serbian ISO-8859-5
sV Swedish ISO-8859-1
th Thai TIS620

tr Turkish ISO-8859-9
uk Ukrainian ISO-8859-5
zh Chinese GB2312
other UTEF-8

Double-byte character encoding

The Internationalization property files in the WebLogic Personalization Server are
standard Java property files, and as such, they do not accept non-ASCII characters.
Non-ASCII characters must be converted to Unicode escapes before being embedded
into these files. The native2ascii tool can be used to convert property files to and from

other character encodings.

On Windows, the native2ascii tool is found in the bin directory of the JDK.

For more information about Java property files and the native2ascii tool, see

http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html

For more information about Unicode escapes, see:

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#100850

Guide to Building Personalized Applications 11-9

11 Creating Localized Applications with the Internationalization Tags

Example

To write “Hello World!” in English, the contents of the property file
hel | oWor | d_en. properti es would look like this:

hel | oWorl d=Hel | o Worl d!

To write “Hello World!” in Japanese, the contents of the property file
hel | owWorl d_j a. properties would look like this:

hel | oWor | d=\ u3053\ u3093\ u306b\ u3061\ u306f\ u3001\ u4el6\ u754c\ u306e
\ u4eba\ u3005\ uf f 01

This Unicode will render “Hello World!” in Japanese characters like this:
CAlCBIE, HROAS

Note: Japanese consists of Kanji and other character sets called Hiragana and
Katakana. In this example, "Hello" is written in Hiragana and "World" is
written in Kanji.

Steps for Localizing Your Application

11-10

1. Familiarize yourself with the documentation for the Internationalization <i 18n: *>
tags in Chapter 13, “Personalization Server JSP Tag Library Reference.”. For
sample code, see Figure 11-1 “An Example of Internationalization Code” on page
11-3.

2. Include the <i 18n: | ocal i ze> tag in all outermost pages with an
internationalization requirement. The tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded.

For example:
<y@taglib uri="i18n.tl1d" prefix="i 18n" %

<i 18n: 1 ocal i ze | anguage="<%l anguage%"

Note: When JSP pages are being included inside an enclosing page, only the
enclosing page can use the <i 18n: | ocal i ze> tag.

Guide to Building Personalized Applications

Localizing Your JSP

3. Move all text that must be localized (including image URLs that must be

localized) to property files that serve as resource bundles. Provide a resource
bundle (property file) for each language you plan to support. One resource bundle
per JSP page per language is the recommended approach.

Note: Changes to the property files will not be recognized until the server is

6.

restarted.

For example: Use <i 18n: get Messaage nessageNane="greeting"/ > instead
of hardcoding “Welcome!”

(Optional.) Specify a directory path for the property files (resource bundles). The
bundle location must be specified relative to the JSP location, or absolutely,
under the document root. This step is optional; if nothing is provided,the tag will
look for the properties file where the JSP exists.

Refer to all localized text in a JSP page by using the <i 18n: get Message> tag. If
a bundle name is specified, make sure that the <i 18n: get Message> tag is
referring to the correct resource bundle location (relative or absolute path).

For example:

If the JSP is in publ i c_ht nl \ nypage. j sp, then the bundle location could be
(absolute) "/ nypage/ t ext _us. properties" or

(relative) "t ext _us. properties".

Test the page for all languages that you support. Make sure that the localized text
and images display correctly and that the page layout is correct.

Guide to Building Personalized Applications 11-11

11 Creating Localized Applications with the Internationalization Tags

Code Examples

The following examples show how to use the JSP internationalization framework with
JavaScript and Java scriptlets.

Using the JSP Internationalization Framework with JavaScript

This example displays a JavaScript dialog with a localized message in it.

<U@taglib uri="i18n.tld" prefix="i18n" %

<%

String | anguage="en";

%

<i 18n: 1 ocal i ze | anguage="<%I anguage%"

bundl eNane="i 18nJavaScr i pt Exanpl eResour ceBundl e"/ >

<script |anguage="JavaScript">
function popDial og() {
al ert ("<i 18n: get Message nessageNane="greeting"/>")

}

</script>

<htm >

<body>

Cick here to see |ocalized
text!

</ body>

</htm >

11-12 Guide to Building Personalized Applications

Localizing Your JSP

Using JSP Internationalization Framework with Java Scriptlets

This example gets a localized message, and uses that message in two Java scriptlets.
One scriptlet prints to system out, the other inlines it into the page.

<U@taglib uri="i18n.tld" prefix="i1l8n" %

<%

String | anguage="en";

%

<i 18n: 1 ocal i ze | anguage="<%l anguage%"

bundl eName="i 18nJavaScri pt Exanpl eResour ceBundl e"/ >

<htm >

<body>

<i 18n: get Message nmessageNane="greeting" id="theGeeting"/>
<p>

<%"Local i zed text for 'greeting': " + theGeeting%

<p>

<%

Systemout.println("Localized text for 'greeting': " +
theG eeting);

%

</ body>
</htm >

Guide to Building Personalized Applications 11-13

11 Creating Localized Applications with the Internationalization Tags

11-14 Guide to Building Personalized Applications

CHAPTER

12 The WebLogic

Personalization Server
Database Schema

This topic documents the database schema for the WebLogic Personalization Server.
This topic includes the following sections:

The Entity-Relation Diagram

List of Tables Comprising the WebLogic Personalization Server
The Personalization Server Data Dictionary

The SQL Scripts Used to Create the Database

Defined Constraints

The Entity-Relation Diagram

Figure 12-1 shows the logical Entity-Relation diagram for the WebLogic
Personalization Server database. See the subsequent sections in this topic for
information about the data type syntax.

Figure 12-1 Entity-Relation Diagram for the WebLogic Personalization Server

Guide to Building Personalized Applications ~ 12-1

12 The WebLogic Personalization Server Database Schema

12-2

ENTITY

&, ENTITY_ID: Number

ENTITY_MAME: String (AK1.1)
ENTITY _TYPE: String (AK1.2)
CREATION_DATE: Datetime
MODIFIED_DATE: Datetime

PROPERTY_KEY

@, PROPERTY_KEY_ID: Number

PROPERTY_NAME: String (4K1.1)

MODIFIED_DATE: Datetime
PROPERTY_SET_NAME: String (AK1.2 [E1.2)
PROPERTY_SET_TYPE: String (AK1.3 IE1.1)

PROPERTY VALUE

‘
| CREATION_DATE: Datetime
|
|
|
|

PROPERTY _KEY_ID: Murnber (FI) (IE1.1,IE2.2)
ENTITY _ID: Mumber (Fk) (IE2.1)
PROPERTY_TYPE: Murnber

CREATION_DATE: Datetirne

MODIFIED_DATE: Datetirne
BOOLEAN_WALUE: Murnber
DATETIME_WALUE: Datetime
DOUBLE_WALUE: Murnber

LONG_VALUE: Mumber

TEXT_WALUE: String
BLOB_wALUE: Blob

€, PROPERTY_VALUE_ID: Number
L

WEBLOGIC_IS_ALIVE
&, NAME: String

ENTITLEMENT RULESET

DOCUMENT

&, |D: String

DOCUMENT_SIZE: Mumber (IE1.1)
WERSION: Number

AUTHOR: String
CREATION_DATE: Datetirne
LOCKED_BY: String
MODIFIED_DATE: Datetirne (1E3.1)
MODIFIED_BY: String
DESCRIPTION: String
COMMENTS: String

MIME_TYPE: String (IEZ.1)

@, APPLICATION_NAME: String
€, RULESET_URI: String

SAMPLE_UUP_INFO

&, USER_NAME: String

USER_IMFO: Clob

MODIFIED_DATE: Datetime
CREATION_DATE: Datetime

RULESET_DOCUMENT: Clob

Guide to Building Personalized Applications

DOCUMENT METADATA
(& 1D: String (FK)
‘@3\; MAME: String (IE2.1)

STATE: String (IE3.1)
WALUE: String

SEQUENCER
€, SEQUENCE_NAME: String

CURRENT_WALUE: Mumber
1S_LOCKED: Mumber

The Entity-Relation Diagram

USER_SECURITY GROUP_SECURITY

&, USER_ID: Mumber €, GROUP_ID: Mumber
USER_MNAME: String (AK1.1) GROUP_MAME: String (AK1.1])
PASSWORD: String CREATION_DATE: Datetirme
CREATION_DATE: Datetime MODIFIED_DATE: Datetime
MODIFIED_DATE: Datetime

USER_GROUP_CACHE

&, USER_MNAME: String
&, GROUP_MAME: String

USER_GROUP_HIERARCHY
i& GROUP_ID: Murber (FK) (Ak1.2]

&, USER_ID: Number (FK) (&kK1.1) USER_PROFILE -
| €, USER_MAME: String

CREATION_DATE: Datetime _
MODIFIED DATE: Datetime PROFILE_TYPFE: String
- y CREATION_DATE: Datetime

PP
GROUP_HIERARCHY

€, PARENT_GROUP_ID: Number (FK) {4k1.2)
‘& CHILD_GROUP_ID: Mumber (FK) (411,13

CREATION_DATE: Datetime
MODIFIED_DATE: Datetime

DATA _SYNC_APPLICATION
€, APPLICATION_ID: Mumber
APPLICATION_NAME: String (AK1.1)

CREATION_DATE: Datetime
MODIFIED_DATE: Datetime

DATA_SYNC_SCHEMA URI
€, SCHEMA_URI_ID: Mumber
— —] SCHEMA_URI: String (AK1.1)

CREATION_DATE: Datetime
MODIFIED_DATE: Datetime

DATA SYNC _VERSION

&, VERSION_MAJOR: Murmber
&, WVERSION_MINOR: Nurnber

CREATION_DATE: Datetime
MODIFIED_DATE: Datetime
BUILD_MUMBER: Number
WYERSION_DESCRIPTION: String

*»r - — — — —

DATA _SYNC ITEM
€, DATA_SYNC_ITEM_ID: MNumber

|
|
APPLICATION_ID: Number (FK) (IE3.1) |
|
|
|

SCHEMA_URI_ID: Murnber (FI) (IE4.1)
WYERSION_MAJOR: Mumber (Fk) (IES.1)
WERSION_MINOR: Mumber (FK) (IES.Z)
ITEM_CHECKSUM: Number

Lg CREATION_DATE: Datetime
MODIFIED_DATE: Datetirne —
HML_MODIFIED_DATE: Datetirne (IE2.1)
HML_CREATION_DATE: Datetirne (1IE1.1)
HML_DEFIMITION: Clab

ITEM_URI: String (AK1.1)
ITEM_AUTHOR: String

ITEM_MNAME: String
ITEM_DESCRIPTION: String

Guide to Building Personalized Applications ~ 12-3

12 The WebLogic Personalization Server Database Schema

MAIL_BATCH
&, BATCH_ID: Mumber

BATCH_NAME: String

MAIL_BATCH_ENTRY

(€, BATCH_ID: Number (FK)
€, MESSAGE_ID: Number (FI)

MAIL_MESSAGE
&, MESSAGE_ID: Mumber

FROM_ADDRESS: String
SUBJECT: String
MESSAGE_TEXT: Clob

MAIL_HEADER l MtIL ADDRESS

&, HEADER_ID: Murnber &, MAIL_ADDRESS_ID: Murnber
MESSAGE_ID: Number (FKJ(E1.1) MESSAGE_ID: Mumber (FK)
HEADER_MAME: String ADDRESS: String
HEADER_VALUE: String SEND_TYPE: String

12-4 Guide to Building Personalized Applications

List of Tables Comprising the WebLogic Personalization Server

List of Tables Comprising the WebLogic
Personalization Server

The WebLogic Personalization Server is comprised of the following tables. In
this list, the tables are sorted by functionality:

Ads and Placeholders tables
The AD BUCKET Database Table
The AD COUNT Database Table
The PLACEHOLDER PREVIEW Database Table

Data Synchronization tables
The DATA SYNC_APPLICATION Database Table
The DATA _SYNC _ITEM Database Table
The DATA_SYNC_SCHEMA URI Database Table
The DATA SYNC_VERSION Database Table

Documentation Management tables
The DOCUMENT Database Table
The DOCUMENT METADATA Database Table

Mail tables
The MAIL ADDRESS Database Table
The MAIL BATCH Database Table
The MAIL BATCH_ENTRY Database Table
The MAIL HEADER Database Table
The MAIL MESSAGE Database Table

User Management tables
The GROUP_HIERARCHY Database Table
The GROUP_SECURITY Database Table
The USER_GROUP_CACHE Database Table
The USER_GROUP HIERARCHY Database Table
The USER_PROFILE Database Table
The USER_SECURITY Database Table

Guide to Building Personalized Applications ~ 12-5

12 The WebLogic Personalization Server Database Schema

Common tables used by both WebLogic Personalization Server and WebLogic
Portal

The ENTITLEMENT RULESET Database Table Database Table

The ENTITY Database Table

The PROPERTY_ KEY Database Table

The PROPERTY_ VALUE Database Table

The SAMPLE UUP_INFO Database Tablee

The SEQUENCER Database Table

The WEBLOGIC IS ALIVE Database Table

The Personalization Server Data Dictionary

In this section, the WebLogic Personalization Server schema tables are arranged
alphabetically as a data dictionary.

Note: Even though the following documentation references “foreign keys” to
various tables, these constraints do not currently exist in this release of
WebLogic Personalization Server. However, they will be (available in future
releases) in place in future versions of WebLogic Personalization Server and
we want you to be aware of these relationships now.

The AD BUCKET Database Table

Table 12-1 describes the AD BUCKET table. This table maintains content queries for
ads.

The Primary Key is AD_BUCKET_I D.

Table 12-24 AD_BUCKET Table Metadata

Column Name Data Type Null Value Description and Recommendations

AD BUCKET_I D NUMBER(15) NOT NULL PK—a unique, system-generated number
used as the record identifier.

USER_NAVE VARCHAR (200) NOT NULL The user’s name associated with the ad.

12-6 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 12-24 AD BUCKET Table Metadata

Column Name Data Type Null Value Description and Recommendations

PLACEHOLDER _XM._REF VARCHAR(254) NOT NULL The location identifier of the XML-based
placeholder definition file.

APPL| CATI ON_NAVE VARCHAR(100) NOT NULL The name of the application for which the
ad has been scoped.

CONTEXT_REF VARCHAR(254) NULL The scenario unique identifier.

CONTAI NER_REF VARCHAR(254) NULL The campaign unique identifier.

CONTAI NER_TYPE VARCHAR(50) NULL Identifies the service associated with the
CONTAI NER_REF.

EI GHT NUVBER(15) NULL A weighted scheme used in prioritizing
one placeholder over another.

VI EW_COUNT NUMBER(15) NULL Disabled. Reserved for future use.

EXPI RATI ON_DATE DATE NULL The date and time the ad expires or
becomes invalid.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

AD_QUERY CLOB NULL The actual content query.

The AD_COUNT Database Table

Table 12-2 describes the AD_COUNT table. This table tracks the number of times the

ads are displayed and clicked though.

The Primary Key is comprised of AD_| D, CONTAI NER_REF, and APPLI CATI ON_NAME.

Guide to Building Personalized Applications

12-7

12 The WebLogic Personalization Server Database Schema

Table 12-25 AD_COUNT Table Metadata

Column Name Data Type Null Value Description and Recommendations

AD_I D VARCHAR(254) NOT NULL A unique, system-generated number used
as the record identifier.

CONTAI NER_REF VARCHAR(254) NOT NULL The campaign unique identifier.

APPL| CATI ON_NAMVE VARCHAR(100) NOT NULL The name of the application for which the
ad clicks or views were scoped

DI SPLAY_COUNT NUMBER(15) NOT NULL The number of times the ad has been

displayed.

CLI CK_THROUGH_COUNT NUMBER(15) NOT NULL

The number of times the ad has been
clicked on.

The DATA_ SYNC APPLICATION Database Table

Table 12-3 describes the DATA SYNC APPLICATION table. This table holds the
various applications available for the data synchronization process..

The Primary Key is APPLI CATI ON_I D.

Table 12-26 DATA_SYNC_APPLICATION Table Metadata

Column Name Data Type Null Value

Description and Recommendations

APPLI CATION_I D NUMBER(15) NOT NULL

PK - A unique, system-generated number
used as the record identifier.

APPLI CATI ON_NAVE VARCHAR(100) NOT NULL

The deployed J2EE application name.
(This should match the name in the
WebLogic Server console.)

CREATI ON_DATE DATE NOT NULL

The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL

The date and time this record was last
modified.

12-8 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The DATA_SYNC ITEM Database Table

Table 12-4 describes the DATA_SYNC _ITEM table. This table stores all the data

items to be synchronized.

For information on defined constraints in this table, see “Defined Constraints” on page

12-30.

The Primary Key is DATA_SYNC_| TEM | D.

Table 12-27 DATA_SYNC_ITEM Table Metadata

Column Name Data Type Null Description and Recommendations
Value
DATA_SYNC I TEM I D NUMBER(15) NOT NULL PK - A unique, system-generated number used
as the record identifier.
APPLI CATI ON_I D NUMBER(15) NOT NULL FK -—to
DATA_SYNC_APPL| CATON. APPLI CATI ON
1D
SCHEMA URI _I D NUMBER(15) NOT NULL FK-to
DATA_SYNC_SCHEMA URI . SCHEMA URI _
I D
VERSI ON_MVAJOR NUMBER(15) NOT NULL FK-to
DATA_SYNC VERSI ON. VERSI ON_MAJOR
VERSI ON_M NOR NUMBER(15) NOT NULL FK-to
DATA_SYNC _VERSI ON. VERSI ON_M NOR
| TEM_CHECKSUM NUMBER(15) NOT NULL A generated number representing the contents
of the XML_DEFI NI TI ON column.
CREATI ON_DATE DATE NOT NULL The date and time this record was created.
MODI FI ED_DATE DATE NOT NULL The date and time this record was last modified.
XML_MODI FI ED_DATE DATE NOT NULL The date and time the XML file was last
modified.
XM_._CREATI ON_DATE DATE NOT NULL The date and time the XML file was created.

Guide to Building Personalized Applications ~ 12-9

12 The WebLogic Personalization Server Database Schema

Table 12-27 DATA_SYNC_ITEM Table Metadata (Continued)

Column Name Data Type Null Description and Recommendations
Value

XM__DEFI NI TI ON CLOB NOT NULL The XML representation of the data item to be
synchronized.

I TEM_URI VARCHAR(254) NOT NULL The path on the file system of the data item to
be synchronized.

| TEM_AUTHOR VARCHAR(200) NULL Metadata info—the o/s login.

| TEM_NAVE VARCHAR(100) NULL Metadata info—the full path to the item.

| TEM DESCRI PTI ON VARCHAR(254) NULL Metadata info—a general description of the

item to be synchronized.

The DATA_ SYNC SCHEMA_URI Database Table

Table 12-5 describes the DATA SYNC SCHEMA_URI table. This table holds
information pertaining to each of the governing schemas used by various documents.

The Primary Key is SCHEMA_URI _I D.

Table 12-28 DATA_SYNC_SCHEMA_URI Table Metadata

Column Name Data Type Null Value Description and Recommendations
SCHEMA URI _I D NUMBER(15) NOT NULL PK - A unique, system-generated number
used as the record identifier.
SCHEVA_URI VARCHAR(254) NOT NULL The governing schema of the document.
CREATI ON_DATE DATE NOT NULL The date and time this record was created.
MODI FI ED_DATE DATE NOT NULL The date and time this record was last

modified.

12-10 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The DATA_SYNC VERSION Database Table

Table 12-6 describes the DATA SYNC_VERSION table. This table is not being used
currently. It is reserved for future use and is expected to accommodate data
synchronization versioning. As a result, this table only holds one record.

The Primary Key is comprised of both VERSI ON_MAJOR and VERSI ON_M NOR.

Table 12-29 DATA_SYNC_VERSION Table Metadata

Column Name Data Type Null Value Description and Recommendations

VERSI ON_MVAJOR NUMBER(15) NOT NULL The current record has a value of zero.

VERSI ON_M NOR NUMBER(15) NOT NULL The current record has a value of zero.

CREATI ON_DATE DATE NOT NULL The date and time the record was created.

MODI FI ED_DATE DATE NOT NULL The date and time the record was last
modified.

BU LD_NUMBER NUMBER(15) NULL The build number associated with the
version.

VERS| ON_DESCRI PTI ON VARCHAR(30) NULL A description of the particular sync

version.

The DOCUMENT Database Table

Table 12-7 describes the DOCUMENT table. This table is used to store information
pertinent to each document used within the WebLogic Personalization Server.

The Primary Key is | D.

Table 12-30 DOCUMENT Table Metadata

Column Name Data Type Null Value Description and Recommendations

I D VARCHAR(254) NOT NULL The identifier of the document. This
specifies the relative path (case sensitive
using forward slashes) to the actual file.

Guide to Building Personalized Applications 12-11

12 The WebLogic Personalization Server Database Schema

Table 12-30 DOCUMENT Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

DOCUMENT_SI ZE NUMBER(15) NOT NULL The size of the document in bytes.

VERSI ON NUMBER(15) NULL The version of the document.

AUTHOR VARCHAR(50) NULL The author’s name of this document.

CREATI ON_DATE DATE NULL The date this document was created in the
system.

LOCKED_BY VARCHAR(50) NULL This column identifies who has this
document locked for edits or updates.

MODI FI ED_DATE DATE NULL The date and time this record was last
modified.

MODI FI ED_BY VARCHAR(50) NULL This column stores the name of the
individual who last modified the document
record.

DESCRI PTI ON VARCHAR(2000) NULL A description of the document.

COWENTS VARCHAR(2000) NULL An area to store miscellaneous notes about
the document.

M ME_TYPE VARCHAR(100) NOT NULL This column identifies which MIME type

(or file type) is associated with this
document. This is supposed to be MIME
1.0.

12-12 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The DOCUMENT METADATA Database Table

Table 12-8 describes the DOCUMENT METADATA table. This table is used to store
user-defined properties associated with each document.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Key is comprised of both | D and NAME.

Table 12-31 DOCUMENT_METADATA Table Metadata

Column Name Data Type Null Value Description and Recommendations

I D VARCHAR(254) NOT NULL The document identifier. This is a foreign
key to the | D column of the DOCUMENT
table.

NAVE VARCHAR(240) NOT NULL The metadata name for the document.

STATE VARCHAR(50) NULL The current state of this metadata property.
This is used by Interwoven and can be set
to null.

VALUE VARCHAR(2000) NULL The value to be associated with the
metadata name (NAME).

The ENTITLEMENT_RULESET Database Table

Table 12-9 describes the ENTITLEMENT RULESET table. This table stores the
access decision rules used by the Entitlements Engine.

The Primary Key is comprised of both APPLI CATI ON_NAME and RULESET_URI .

Table 12-32 ENTITLEMENT_RULESET Table Metadata

Column Name Data Type Null Value Description and Recommendations
APPL| CATI ON_NAME VARCHAR(100) NOT NULL PK — A unique application name within a
J2EE server.

Guide to Building Personalized Applications 12-13

12 The WebLogic Personalization Server Database Schema

Table 12-32 ENTITLEMENT_RULESET Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

RULESET_URI VARCHAR(254) NOT NULL The URI used to identify an entitlement
access decision rule.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

RULESET_DOCUMENT CLOB NULL The XML document describing an access

decision rule.

The ENTITY Database Table

Table 12-10 describes the ENTITY table. Any ConfigurableEntity within the system
will have an entry in this table.

The Primary Key is ENTI TY_I D.

Table 12-33 ENTITY Table Metadata

Column Name Data Type Null Value Description and Recommendations

ENTI TY_I D NUVMBER(15) NOT NULL PK - A unique, sequence-generated
number used as the record identifier.

ENTI TY_NAME VARCHAR(200) NOT NULL The name of the ConfigurableEntity.

ENTI TY_TYPE VARCHAR(100) NOT NULL Defines what type of ConfigurableEntity
this is.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

12-14 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The GROUP_HIERARCHY Database Table

Table 12-11 describes the PARENT CHILD GROUP table. This table stores
relationship information between groups.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Key is comprised of both PARENT_GROUP_| Dand CHI LD_GROUP_I D.

Table 12-34 GROUP_HIERARCHY Table Metadata

Column Name Data Type Null Value Description and Recommendations

PARENT_GROUP_I D NUMBER(15) NOT NULL The parent group identifier. This column is
a foreign key to the ENTI TY_| D column
in the ENTI TY table.

CHI LD_GROUP_I D NUMBER(15) NOT NULL The child group identifier. This column is
a foreign key to the ENTI TY_I D column
in the ENTI TY table.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.
MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

The GROUP_SECURITY Database Table

Table 12-12 describes the GROUP_SECURITY table. This table stores relationship
information between groups.

The Primary Key is GROUP_I D.

Table 12-35 GROUP_SECURITY Table Metadata

Column Name Data Type Null Value Description and Recommendations

GROUP_I D NUMBER(15) NOT NULL PK — a unique, system-generated number
used as the record identifier.

Guide to Building Personalized Applications 12-15

12 The WebLogic Personalization Server Database Schema

Table 12-35 GROUP_SECURITY Table Metadata

Column Name Data Type Null Value Description and Recommendations
GROUP_NAME VARCHAR(200) NOT NULL The name of the group.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.
MODI FI ED_DATE DATE NOT NULL The date and time this record was last

modified.

The MAIL_ADDRESS Database Table

Table 12-13 describes the metadata for the E-Business Control Center
MAIL_ADDRESS table. This table stores all of the address info for e-mail purposes.

For information on defined constraints in this table, see “Defined Constraints” on page

12-30.

The Primary Key is MAI L_ADDRESS_| D.

Table 12-36 MAIL_ADDRESS Table Metadata

Column Name Data Type Null Value Description and Recommendations

MAI L_ADDRESS | D NUMBER(15) NOT NULL PK—a unique, system-generated number
to be used as the record | D.

MESSAGE | D NUMBER(15) NOT NULL FK—foreign key to the MAI L_ MESSAGE
table.

ADDRESS VARCHAR(254) NOT NULL Stores the various e-mail addresses on the
distribution list.

SEND_TYPE VARCHAR(4) NOT NULL Determines how the ADDRESS should be

included on the distribution. Possible
values are TO, CC, or BCC.

12-16 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The MAIL_BATCH Database Table

Table 12-14 describes the metadata for the E-Business Control Center MAIL BATCH
table. This table establishes a batch for each mailing.

The Primary Key is BATCH_| D.

Table 12-37 MAIL_BATCH Table Metadata

Column Name Data Type Null Value Description and Recommendations

BATCH | D NUMBER(15) NOT NULL PK—a unique, system-generated number
to be used as the record | D.

BATCH_NAMVE VARCHAR(254) NOT NULL The name of the mail message batch.

The MAIL BATCH _ENTRY Database Table

Table 12-15 describes the metadata for the E-Business Control Center
MAIL BATCH_ENTRY table. This table is used to correlate the mail batch with the
specific mail message.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Keys are BATCH | D and MESSAGE_| D.

Table 12-38 MAIL_BATCH_ENTRY Table Metadata

Column Name Data Type Null Value Description and Recommendations

BATCH_I D NUMBER(15) NOT NULL PK and FK—a unique, system-generated
number to be used as the record | D.

MESSACE_| D NUMBER(15) NOT NULL PK and FK—foreign key to the
MAI L_MESSAGE table.

Guide to Building Personalized Applications 12-17

12 The WebLogic Personalization Server Database Schema

The MAIL_HEADER Database Table

Table 12-16 describes the metadata for the E-Business Control Center
MAIL HEADER table. This table contains all of the header information specific to the
e-mail message.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Key is HEADER | D.

Table 12-39 MAIL_HEADER Table Metadata

Column Name Data Type Null Value Description and Recommendations

HEADER | D NUVMBER(15) NOT NULL PK—a unique, system-generated number
to be used as the record | D.

MESSAGE_| D NUVBER(15) NOT NULL FK—foreign key to the MAI L_ MESSAGE
table.

HEADER _NAVME VARCHAR(50) NULL The name of the mail message header.

HEADER VAL UE VARCHAR(254) NULL The value of the mail message header.

The MAIL_MESSAGE Database Table

Table 12-17 describes the metadata for the E-Business Control Center
MAIL MESSAGE table. This table contains the specifics of the mail message (e.g.,
the subject line, text, etc.).

The Primary Key is MESSAGE_|I D.

Table 12-40 MAIL_MESSAGE Table Metadata

Column Name Data Type Null Value Description and Recommendations

MESSAGE_| D NUMBER(15) NOT NULL PK—a unique, system-generated number
to be used as the record | D.

FROM_ADDRESS VARCHAR(254) NULL Identifies who is sending the message.

12-18 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 12-40 MAIL_MESSAGE Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations
SUBJECT VARCHAR(128) NULL Stores the mail message subject.
MESSAGE _TEXT CLOB NULL Holds the content of the mail message.

The PLACEHOLDER_PREVIEW Database Table

Table 12-18 describes the PLACEHOLDER PREVIEW table. This table is used as a
mechanism to hold the placeholder for previewing purposes only.

The Primary Key is PREVI EW | D.

Table 12-41 PLACEHOLDER_PREVIEW Table Metadata

Column Name Data Type Null Value Description and Recommendations

PREVI EW | D NUMBER NOT NULL PK—a unique, system generated number
used as the record identifier.

XM__DEFI NI TI ON CLOB NULL The representation of the expression to be
previewed.

The PROPERTY_KEY Database Table

Table 12-19 describes the PROPERTY KEY table. Any property assigned to a
ConfigurableEntity has a unique PROPERTY ID. This identifier and associated
information is stored here.

The Primary Key is PROPERTY_KEY_| D.

Table 12-42 PROPERTY_KEY Table Metadata

Column Name Data Type Null Value Description and Recommendations

PROPERTY_KEY_I D NUMBER(15) NOT NULL PK—a unique, system-generated number
used as the record identifier.

Guide to Building Personalized Applications 12-19

12 The WebLogic Personalization Server Database Schema

Table 12-42 PROPERTY_KEY Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

PROPERTY_NAVME VARCHAR(100) NOT NULL The name of the property.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

PROPERTY_SET_NAME VARCHAR(100) NULL The name of the property set.

PROPERTY_SET_TYPE VARCHAR(100) NULL The type the property set.

The PROPERTY_ VALUE Database Table

Table 12-20 describes the PROPERTY VALUE table. This table stores property
values for boolean, datetime, float, integer, text, and user-defined properties.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Key is PROPERTY_VALUE_|I D.

Table 12-43 PROPERTY_VALUE Table Metadata

Column Name Data Type Null Value Description and Recommendations
PROPERTY_VALUE_| D NUMBER(15) NOT NULL PK — a unique, system-generated number
used as the record identifier.
PROPERTY_KEY_I D NUMBER(15) NOT NULL FK - to
PROPERTY_KEY. PROPERTY_KEY_| D
ENTI TY_I D NUMBER(15) NOT NULL FK—to ENTI TY. ENTITY_I D
PROPERTY_TYPE NUMBER(1) NOT NULL Valid entries are:

0=Boolean, 1=Integer, 2=Float, 3=Text,
4=Date and Time, 5=User-Defined
(BLOB)

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

12-20 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 12-43 PROPERTY_VALUE Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

BOCOLEAN_VALUE NUVBER(1) NULL The value for each boolean property
identifier.

DATETI ME_VALUE DATE NULL The value for each date and time property
identifier.

DOUBLE_VALUE NUMBER NULL The value associated with each float
property identifier.

LONG_VALUE NUMBER(20) NULL The value associated with the integer
property.

TEXT_VALUE VARCHAR(254) NULL The value associated with the text
property.

BLOB_VALUE BLOB NULL The value associated with the user-defined
property.

The SAMPLE_UUP INFO Database Table

Table 12-21 describes the SAMPLE UUP_INFO table. This is an example of how to
use the Unified Profile Types.

The Primary Key is USER_NAME.

Table 12-44 SAMPLE_UUP_INFO Table Metadata

Column Name Data Type Null Value Description and Recommendations
USER_NAME VARCHAR(100) NOT NULL A username.
USER_| NFO CLOB NOT NULL User data stored in XML representation.

Guide to Building Personalized Applications 12-21

12 The WebLogic Personalization Server Database Schema

The SEQUENCER Database Table

Table 12-22 describes the SEQUENCER table. The SEQUENCER table is used to
maintain all of the sequence identifiers (for example,
property meta data_id sequence, and so on) used in the application.

For information on defined constraints in this table, see “Defined Constraints” on page
12-30.

The Primary Key is SEQUENCE_NANE.

Table 12-45 SEQUENCER Table Metadata

Column Name Data Type Null Value Description and Recommendations

SEQUENCE_NAME VARCHAR(50) NOT NULL PK — A unique name used to identify the
sequence.

CURRENT_VALUE NUMBER(15) NOT NULL The current value of the sequence.

I'S_LOCKED NUMBER(1) NOT NULL This flag identifies whether or not the

particular SEQUENCE_| Dhas been locked
for update. This column is being used as a
generic locking mechanism that can be
used for multiple database environments.

The USER_GROUP_CACHE Database Table

Table 12-23 describes the USER_ GROUP_CACHE table. In the event of a deep group
hierarchy, this table will flatten the group hierarchy and enables quick group
membership searches.

Note: The startup process GroupCache is disabled by default. This table will only be
used if enabled.

12-22 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 12-46 USER_GROUP_CACHE Table Metadata

The Primary Key is comprised of both USER_NAME and GROUP_NANE.

Column Name Data Type Null Value Description and Recommendations
USER_NAME VARCHAR(200) NOT NULL A user’s name.
GROUP_NANME VARCHAR(200) NOT NULL A group name.

The USER_GROUP_ HIERARCHY Database Table

Table 12-24 describes the USER_ GROUP HIERARCHY table. This table allows you
to store associated users and groups.

For information on defined constraints in this table, see “Defined Constraints” on page

12-30.

The Primary Key is comprised of both GROUP_I D and USER I D.

Table 12-47 USER_GROUP_HIERARCHY Table Metadata

Column Name Data Type Null Value Description and Recommendations
GROUP_I D NUVBER(15) NOT NULL FK - to USER_SECURI TY. USER_| D
USER I D NUMBER(15) NOT NULL FK —to GROUP_SECURI TY. GROUP_I D
CREATI ON_DATE DATE NOT NULL The date and time this record was created.
MODI FI ED_DATE DATE NOT NULL The date and time this record was last

modified.

Guide to Building Personalized Applications 12-23

12 The WebLogic Personalization Server Database Schema

The USER_PROFILE Database Table

Table 12-25 describes the USER_PROFILE table. This table stores all user
login/password combinations.

The Primary Key is USER_NAME.

Table 12-48 USER_PROFILE Table Metadata

Column Name Data Type Null Value Description and Recommendations
USER_NAME VARCHAR(200) NOT NULL PK - The name of the user.
PROFI LE_TYPE VARCHAR(100) NOT NULL A type of profile associated with the user

(such as WL.CS_Cust oner).

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

The USER_SECURITY Database Table

Table 12-26 describes the USER_SECURITY table. This table holds all the user
records for security authentication of the rdbms realm.

The Primary Key is USER_| D.

Table 12-49 USER_SECURITY Table Metadata

Column Name Data Type Null Value Description and Recommendations

USER | D NUMBER(15) NOT NULL PK—a unique, system-generated number
used as the record identifier.

USER_NAME VARCHAR(200) NOT NULL The user’s name.

PASSWORD VARCHAR(50) NULL The user’s password.

CREATI ON_DATE DATE NOT NULL The date and time this record was created.

MODI FI ED_DATE DATE NOT NULL The date and time this record was last
modified.

12-24 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WEBLOGIC IS ALIVE Database Table

Table 12-27 describes the WEBLOGIC IS ALIVE table. This table is used by the
JDBC connection pools to insure the connection to the database is still alive.

The Primary Key is NAME.

Table 12-50 WEBLOGIC_IS_ALIVE Table Metadata

Column Name Data Type Null Value Description and Recommendations

NAME VARCHAR(100) NOT NULL Used by the JDBC connection pools to
insure the connection to the database is still
alive.

Guide to Building Personalized Applications 12-25

12 The WebLogic Personalization Server Database Schema

The SQL Scripts Used to Create the Database

The database schemas for WebLogic Portal and WebLogic Personalization Server are
all created by executing the cr eat e_al | script for the target database environment.

Scripts

Regardless of your database, execute one of the following to generate the necessary
database objects for the modules desired (WebLogic Portal, WebLogic Personalization
Server, Commerce services, Campaign services and Sample Portal):

m P13N_HOME\ db\create_all.bat (Windows)

m P13N_HOVE/ db/create_al |l .sh (UNIX)

The following are the various directories underneath
W._COMVERCE_HOME/ db

(as seen in a UNIX environment):

P13N_HOVE/ db/ cl oudscape/ 351
P13N_HOVE/ db/ or acl e/ 817

Note: In this documentation,P13N_HOVE is used to designate the directory where the
WebLogic Personalization Server product is installed.

Each of the databases supported have the same number of scripts in
each of their subdirectories. The scripts are listed and described in
Table 12-51 below.

Table 12-51 The Scripts Supporting the Databases

Script Name

Description

create_all. bat Windows script used to connect to the database and create the

necessary database objects for the modules desired (e.g.,
WebLogic Portal, WebLogic Personalization Server, Commerce
services, Campaign services and Sample Portal)

12-26 Guide to Building Personalized Applications

The SQL Scripts Used to Create the Database

Table 12-51 The Scripts Supporting the Databases (Continued)

Script Name

Description

create_all.sh

Unix script used to connect to the database and create the
necessary database objects for the modules desired (e.g.,
WebLogic Portal, WebLogic Personalization Server, Commerce
services, Campaign services and Sample Portal)

canpai gn_creat e_f keys. sql

SQL script used to create all foreign keys associated with the
Campaign services.

canpai gn_creat e_i ndexes. sql

SQL script used to create all indexes associated with the
Campaign services.

canpai gn_create_tabl es. sql

SQL script used to create all tables associated with the Campaign
services.

canpai gn_create_triggers. sql

SQL script used to create all database triggers associated with the
Campaign services.

canpai gn_creat e_vi ews. sql

SQL script used to create all views associated with the Campaign
services.

canpai gn_drop_constraints. sql

SQL script used to drop all constraints (other than foreign keys)
associated with the Campaign services.

canpai gn_drop_f keys. sql

SQL script used to drop all foreign key constraints associated with
the Campaign services.

canpai gn_dr op_i ndexes. sql

SQL script used to drop all indexes associated with the Campaign
services.

canpai gn_drop_t abl es. sql

SQL script used to drop all tables associated with the Campaign
services.

canpai gn_drop_vi ews. sql

SQL script used to drop all views associated with the Campaign
services.

pl3n_creat e_f keys. sql

SQL script used to create all foreign keys associated with the
WebLogic Personalization Server.

pl3n_creat e_i ndexes. sql

SQL script used to create all indexes associated with the
WebLogic Personalization Server.

pl3n_create_tables. sql

SQL script used to create all tables associated with the WebLogic
Personalization Server.

pl3n_create_triggers. sql

SQL script used to create all database triggers associated with the
WebLogic Personalization Server.

Guide to Building Personalized Applications = 12-27

12 The WebLogic Personalization Server Database Schema

Table 12-51 The Scripts Supporting the Databases (Continued)

Script Name

Description

pl3n_create_vi ews. sql

SQL script used to create all views associated with the WebLogic
Personalization Server.

pl13n_drop_constraints. sql

SQL script used to drop all constraints (other than foreign keys)
associated with the WebLogic Personalization Server.

p13n_drop_fkeys. sql

SQL script used to drop all foreign key constraints associated with
the WebLogic Personalization Server.

p13n_drop_i ndexes. sql

SQL script used to drop all indexes associated with the WebLogic
Personalization Server.

pl13n_drop_t abl es. sql

SQL script used to drop all tables associated with the WebLogic
Personalization Server.

p13n_drop_vi ews. sql

SQL script used to drop all views associated with the WebLogic
Personalization Server.

portal _create_fkeys. sql

SQL script used to create all foreign keys associated with the
WebLogic Portal.

portal _create_indexes. sql

SQL script used to create all indexes associated with the
WebLogic Portal.

portal create_tabl es. sql

SQL script used to create all tables associated with the WebLogic
Portal.

portal create_triggers.sql

SQL script used to create all database triggers associated with the
WebLogic Portal.

portal _create_views. sql

SQL script used to create all views associated with the WebLogic
Portal.

portal _drop_constraints. sql

SQL script used to drop all constraints (other than foreign keys)
associated with the WebLogic Portal.

portal _drop_fkeys. sql

SQL script used to drop all foreign key constraints associated with
the WebLogic Portal.

portal _drop_i ndexes. sql

SQL script used to drop all indexes associated with the WebLogic
Portal.

portal _drop_tables. sql

SQL script used to drop all tables associated with the WebLogic
Portal.

portal _drop_views. sql

SQL script used to drop all views associated with the WebLogic
Portal.

12-28 Guide to Building Personalized Applications

The SQL Scripts Used to Create the Database

Table 12-51 The Scripts Supporting the Databases (Continued)

Script Name

Description

sanpl e_portal _create_fkeys. sql

SQL script used to create all foreign keys associated with the
Sample Portal.

sanpl e_portal _create_i ndexes. sq
I

SQL script used to create all indexes associated with the Sample
Portal.

sanpl e_portal _create_tables. sql

SQL script used to create all tables associated with the Sample
Portal.

sanpl e_portal _create_triggers.s
ql

SQL script used to create all database triggers associated with the
Sample Portal.

sanpl e_portal _create_vi ews. sql

SQL script used to create all views associated with the Sample
Portal.

sanpl e_portal _drop_constraints.
sql

SQL script used to drop all constraints (other than foreign keys)
associated with the Sample Portal.

sanpl e_portal _drop_fkeys. sql

SQL script used to drop all foreign key constraints associated with
the Sample Portal.

sanpl e_portal _drop_i ndexes. sql

SQL script used to drop all indexes associated with the Sample
Portal.

sanpl e_portal _drop_tabl es. sql

SQL script used to drop all tables associated with the Sample
Portal.

sanpl e_portal _drop_vi ews. sql

SQL script used to drop all views associated with the Sample
Portal.

wl cs_create_fkeys. sql

SQL script used to create all foreign keys associated with the
Commerce services.

wl cs_creat e_i ndexes. sql

SQL script used to create all indexes associated with the
Commerce services.

wl cs_create_tabl es. sql

SQL script used to create all tables associated with the Commerce

services.

wl cs_create_triggers. sql

SQL script used to create all database triggers associated with the

Commerce services.

wl cs_create_views. sql

SQL script used to create all views associated with the Commerce

services.

wl cs_drop_constraints. sql

SQL script used to drop all constraints (other than foreign keys)
associated with the Commerce services.

Guide to Building Personalized Applications 12-29

12 The WebLogic Personalization Server Database Schema

Table 12-51 The Scripts Supporting the Databases (Continued)

Script Name Description

W cs_drop_fkeys. sql SQL script used to drop all foreign key constraints associated with

the Commerce services.

w cs_drop_i ndexes. sql SQL script used to drop all indexes associated with the Commerce

services.

w cs_drop_tabl es. sql SQL script used to drop all tables associated with the Commerce

services.

w cs_drop_vi ews. sq SQL script used to drop all views associated with the Commerce

services.

Defined Constraints

Various constraints are defined and used in the WebLogic Personalization Server
database schema. These constraints can be found in the following scripts:

p13n_creat e_f keys. sql —contains the Foreign Keys

pl3n_creat e_t abl es. sql —contains the Check Constraints

12-30 Guide to Building Personalized Applications

Defined Constraints

Table 12-52 Constraints Defined on WebLogic Personalization Server Database Tables

Table Name

Constraints

DATA_SYNC | TEM

Column—APPLICATION ID

Constraint—FK1 SYNC ITEM

Constraint Type—FOREIGN KEY

Ensures that each DATA_SYNC_| TEMreferences an existing
DATA_SYNC_APPLI CATI ONvia the APPLI CATI ON_I D column.

Column—SCHEMA URI ID

Constraint—FK2 SYNC ITEM

Constraint Type—FOREIGN KEY

Ensures that each DATA_SYNC_| TEMreferences an existing
DATA_SYNC_SCHEMA URI via the SCHEMA_URI _| D column.

Columns—VERSION MAIJOR and VERSION MINOR
Constraint—FK3 SYNC _ITEM

Constraint Type—FOREIGN KEY

Ensures that each DATA_SYNC_| TEMreferences an existing
DATA_SYNC_VERSI ON via the VERSI ON_MVAJCR,

VERSI ON_M NOR columns.

DOCUMENT_METADATA

Column—ID

Constraint— FK1 DOCUMENT MD

Constraint Type—FOREIGN KEY

Ensures that each DOCUMENT_METADATA references an existing
DOCUMENT via the | D column.

GROUP_HI ERARCHY

Column—PARENT GROUP_ID

Constraint—FK1 GROUP HRCHY

Constraint Type—FOREIGN KEY

Ensures that each PARENT GROUP_HI ERARCHY references an
existing GROUP_SECURI TY via the GROUP_I D column.

Column—CHILD GROUP_ID

Constraint—FK2 GROUP HRCHY

Constraint Type—FOREIGN KEY

Ensures that each CHl LD_GROUP_HI ERARCHY references an
existing GROUP_SECURI TY via the GROUP_I D column.

MAI L_ADDRESS

Column—MESSAGE ID

Constraint—FK1 MAIL ADDRESS

Constraint Type—FOREIGN KEY

Ensures that each MAI L_ADDRESS references an existing
MAI L_MESSACE via the MESSAGE_| D column.

Guide to Building Personalized Applications 12-31

12 The WebLogic Personalization Server Database Schema

Table 12-52 Constraints Defined on WebLogic Personalization Server Database Tables

Table Name

Constraints

MAl L_BATCH_ENTRY

Column—BATCH_ID

Constraint—FK1 MB_ENTRY

Constraint Type—FOREIGN KEY

Ensures that each MAI L_BATCH_ENTRY references an existing
MAI L_BATCH via the BATCH_I D column.

Column—MESSAGE 1D

Constraint—FK2 MB_ENTRY

Constraint Type—FOREIGN KEY

Ensures that each MAI L_BATCH_ENTRY references an existing
MAI L_MESSAGE via the MESSAGE_| D column.

MAI L_HEADER

Column—FK1_MAIL HEADER
Constraint—FK1 MAIL HEADER

Constraint Type—FOREIGN KEY

Ensures that each MAlI L_HEADER references an existing
MAI L_MESSACE via the FK1_MAI L_HEADER column.

USER_GROUP_HI ERARCHY

Column—USER _ID

Constraint—FK1 USER G HRCHY

Constraint Type—FOREIGN KEY

Ensures that each USER_GROUP_HI ERARCHY references an
existing USER_SECURI TY via the USER | D column.

Column—GROUP_ID

Constraint—FK2 USER G HRCHY

Constraint Type—FOREIGN KEY

Ensures that each USER_GROUP_HI ERARCHY references an
existing GROUP_SECURI TY via the GROUP_I D column.

12-32 Guide to Building Personalized Applications

Defined Constraints

Table 12-52 Constraints Defined on WebLogic Personalization Server Database Tables

Table Name

Constraints

PROPERTY_VALUE

Column—ENTITY ID

Constraint—FK1 PROP_VALUE

Constraint Type—FOREIGN KEY

Ensures that each PROPERTY_VALUE references an existing
ENTI TY via the ENTI TY_I D column.

Column—PROPERTY _KEY ID

Constraint—FK2 PROP_VALUE

Constraint Type—FOREIGN KEY

Ensures that each PROPERTY_VALUE references an existing
PROPERTY_KEY via the PROPERTY_KEY_I D column.

Column—BOOLEAN_VALUE
Constraint—CC1_PROP_VALUE

Constraint Type—CHECK

Ensures the value of the BOOLEAN_VALUE column is either O (false)
or 1 (true).

SEQUENCER

Column—IS_LOCKED

Constraint—CC1_SEQUENCER

Constraint Type—CHECK

Ensures the value of the | S_LOCKED column is either 0 (false) or 1
(true).

Guide to Building Personalized Applications 12-33

12 The WebLogic Personalization Server Database Schema

12-34 Guide to Building Personalized Applications

CHAPTER

13 Personalization Server

JSP Tag Library
Reference

The JSP tags included with WebLogic Personalization Server allow developers to
create personalized applications without having to program using Java.

Note: The es: prefix stands for e-services. The pz: prefix stands for
personalization.

This topic includes the following sections:

m Ads
<ad:adTarget>

m Content Management
<cm:getProperty>
<cm:printDoc>
<cm:printProperty>
<cm:select>
<cm:selectByld>

m Internationalization
<i18n:localize>
<il18n:getMessage>

m Personalization Tags
pz Tags and the Internal Cache
<pz:contentQuery>
<pz:contentSelector>
<pz:div>

Guide to Building Personalized Applications ~ 13-1

13 Personalization Server JSP Tag Library Reference

Placeholders
<ph:placeholder>

Property Sets
<ps:getPropertyNames>
<ps:getPropertySetNames>
<ps:getRestrictedProperty Values>

User Management: Profile Management Tags
<um:getProfile>

<um:getProperty>

<um:getProperty AsString>
<um:removeProperty>

<um:setProperty>

User Management: Group-User Management Tags
<um:addGroupToGroup>
<um:addUserToGroup>
<um:createGroup>
<um:createUser>
<um:getChildGroupNames>
<um:getGroupNamesForUser>
<um:getParentGroupName>
<um:getTopLevel Groups>
<um:getUsernames>
<um:getUsernamesForGroup>
<um:removeGroup>
<um:removeGroupFromGroup>
<um:removeUser>
<um:removeUserFromGroup>

User Management: Security Tags
<um:login>

<um:logout>

<um:setPassword>

Utility Tags: Personalization Utilities
<es:convertSpecialChars>
<es:counter>

<es:date>

<es:forEachInArray>

<es:isNull>

13-2 Guide to Building Personalized Applications

<es:notNull>
<es:transposeArray>
<es:uriContent>

Utility Tags: WebLogic Utilities
<wl:cache>

<wl:process>

<wl:repeat>

Guide to Building Personalized Applications 13-3

13 Personalization Server JSP Tag Library Reference

Ads

The Ad tag queries the content management system and displays ads.

Use the following code to import the utility tag library:
<U@taglib uri="ad.tld" prefix="ad" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ad:adTarget>

The <ad: adTar get > (Table 13-53) uses the Ad Service to send an ad query to the
content management system. Unlike the <ph:placeholder> tag, the query in the
<ad: adTar get > tag does not compete with other queries in an ad placeholder.

Use this tag if you need to make sure that a given ad displays to customers in a specific
location. Depending on how narrowly you construct the query, you might have to
remove or modify this tag when you want to display a different ad.

If the ad query returns more than one ad, the Ad Service uses the adWei ght attribute
of each ad to determine which ad to display.

Table 13-53 <ad:adTarget>

Tag Attribute

Req’d Type Description R/C

query

Yes String Contains a query that the Ad Service uses R
to find content. Use the query syntax
described in the Javadoc API
documentation for
com beasys. comrerce. util . Expr
essi onHel per

13-4 Guide to Building Personalized Applications

Ads

Table 13-53 <ad:adTarget> (Continued)

Tag Attribute Req’d Type Description R/C

height No int Specifies the height (in pixels) that the R
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

width No int Specifies the width (in pixels) that the R
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

Example

This example picks one of the ads in the ad group “Car” and renders it in a space
measuring 200 x 400 pixels.

<U@taglib uri="ad.tld" prefix="ad" %

'<ad: adTarget query="group == 'ads'" />

Guide to Building Personalized Applications 13-5

13 Personalization Server JSP Tag Library Reference

Content Management

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. The

cm sel ect and cm sel ect byi d tags support content caching for content searches.
Note that none of the tags support or use a body.

To import the Content Management JSP tags, use the following code:
<U@taglib uri="cmtld" prefix="cni %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<cm:getProperty>

The <cm get Proper t y>tag (Table 13-54) retrieves the value of the specified content
metadata property into a variable specified by r esul t | d. It does not have a body. If
resul t1d is not specified, the value will be inlined into the page, similar to the

<cm print Propert y> tag. This tag operates on any ConfigurableEntity, not just the
Content object. However, it does not support ConfigurableEntity successors.

Table 13-54 <cm:getProperty>

Tag Attribute Required Type Description R/C
id No String The JSP script variable name which R
contains the Content instance from which
to get the properties.
entity No ConfigurableEntity ~Specifies the R

com.beasys.commerce.foundation.
ConfigurableEntity object from which to
get the property. If this is specified and
non-null,i d isignored. Otherwise, i d will
be used.

13-6 Guide to Building Personalized Applications

Content Management

Table 13-54 <cm:getProperty> (Continued)

Tag Attribute Required Type

Description R/C

name Yes String

The name of the property to print. R

scope No String

The scope name for the property to get. If R
not specified, null is passed in, which is
what Document objects expect.

resultld no String

The name of the JSP script variable which C
will be populated with the value of the
property. If this is not specified, then the
value of the property will be inlined into

the body of the JSP. If this is specified,

then encode, def aul t, maxLengt h,

dat eFor mat , and nunfor mat are

ignored.

resultType no String

The Java type of the property. If thisisnot C
specified, then j ava. | ang. Obj ect is
used.

encode No String

Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and
becomes ").

m Ifurl, then it is encoded to
x-www-form-urlencoded format via
the java.net. URLEncoder.

m If none or unspecified, no encoding is
performed.

default No String

The value to print if the property is not R
found or has a null value. If this is not
specified and the property value is null,
nothing is printed.

maxLength No String, int

The maximum length of the property’s R
value to print. If specified, values longer
than this will be truncated.

Guide to Building Personalized Applications 13-7

13 Personalization Server JSP Tag Library Reference

Table 13-54 <cm:getProperty> (Continued)

Tag Attribute Required Type Description R/C

failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

Tr ue: Throws an exception. You can
handle the exception in the code, let the
page proceed to the normal error page, or
let the application server handle it less
gracefully.

dateFormat No String The java.text.SimpleDateFormat string to R
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
defaultt oSt r i ng method is used.

numFormat No String The java.text.DecimalFormat string touse R
to print the property, if it is a
java.lang.Number. If the property is not a
Number, this is ignored. If this is not set,
the Number's default t oSt r i ng method
is used.

Example

Get the String value of the nane property from the Content object stored at doc and
place it in the cont ent Nane variable:

<U@taglib uri="cmtld" prefix="cnl %

<cm get Property resul tld="content Nanme" resultType="String"
i d="content" nane="nanme" />

<es: notNull item" <% cont ent Nane%" >

The nanme is not null.

</ es: not Nul | >

13-8 Guide to Building Personalized Applications

Content Management

<cm:printDoc>

The <cm pri nt Doc>tag (Table 13-55) inlines the raw bytes of a Docunent object into
the JSP output stream. This tag does not support a body and only supports Docunent
objects. It does not differentiate between text and binary data.

Table 13-55 <cm:printDoc>

Tag Attribute Required Type Description R/C

id No String The JSP script variable name which contains R
the Content instance from which to get the
properties.

blockSize No String, int The size of the blocks of data to read. The R

default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

start No String, int Specifies the index in the bytes where to start R
reading. Defaults to 0.

end No String, int Specifies the index in the bytes where to stop R
reading. The default is to read to the end of
the bytes.

encode No String Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

m Ifurl, then it is encoded to
x-www-form-urlencoded format via the
java.net. URLEncoder.

m Ifnone or unspecified, no encoding is
performed.

document No Document Specifies the R
com.bea.p13n.content.document.Document
to use. If this is specified and non-null, i d
will be ignored. Otherwise, i d will be used.

Guide to Building Personalized Applications 13-9

13 Personalization Server JSP Tag Library Reference

Table 13-55 <cm:printDoc> (Continued)

Tag Attribute Required Type Description R/C
failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP

processing errors gracefully and prints

nothing if an error occurs.

Tr ue: Throws an exception. You can handle

the exception in the code, let the page

proceed to the normal error page, or let the

application server handle it less gracefully.
baseHref No String The URL of the document’s BASE HREF. R

This can be either an absolute URL or a

relative URL.

Note: IfbaseHref is provided, then the <cm pri nt Doc> tag will output a starting
<BASE HREF> using the value of the baseHr ef parameter. If baseHr ef is
not a fully complete URL, the missing parts will be filled in based upon the
URL of the outermost page.

Additionally, if baseHr ef is provided, then, after printing the document, the
<cm pri nt Doc> tag will output a <BASE HREF> based upon the URL of the
outermost page.

Example

To get a Document object from an i d in the r equest attributes and inline the
Document's text (which might contain relative links):

<U@taglib uri="cmtld" prefix="cni %

<% String contentld = request.getParanmeter("contentld"); %

<cm sel ect Byl d contentld="<%content!|d%" id="doc" />

<cm printDoc id="doc" bl ockSi ze="1000" baseHref="/ShowbDocServl et"
/>

13-10 Guide to Building Personalized Applications

Content Management

<cm:printProperty>

The <cm pri nt Proper t y>tag (Table 13-56) inlines the value of the specified content
metadata property as a string. It does not have a body. This tag operates on any

Conf i gur abl eEnti ty, not just the Cont ent object. However, it does not support
Confi gurabl eEnti ty successors.

Table 13-56 <cm:printProperty>

Tag Attribute Required Type Description R/C
id No String The JSP script variable name which contains R
the Content instance from which to get the
properties.
name Yes String The name of the property to print. R
entity ConfigurableEnti Specifies the R
No ty com.beasys.commerce.foundation.

ConfigurableEntity object from which to get
the property. Ifthis is specified and non-null,
i d is ignored. Otherwise, i d will be used.

scope No String The scope name for the property to get. [fnot R
specified, null is passed in, which is what
Document objects expect.

encode No String Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

m Ifurl, then it is encoded to
x-www-form-url encoded format via the

java.net. URLEncoder.
m If none or unspecified, no encoding is
performed.
default No String The value to print if the property is not found R

or has a null value. If this is not specified and
the property value is null, nothing is printed.

Guide to Building Personalized Applications 13-11

13 Personalization Server JSP Tag Library Reference

Table 13-56 <cm:printProperty> (Continued)

Tag Attribute Required Type Description R/C

maxLength No String, int The maximum length of the property’s value R
to print. If specified, values longer than this
will be truncated.

failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

Tr ue: Throws an exception. You can handle
the exception in the code, let the page
proceed to the normal error page, or let the
application server handle it less gracefully.

dateFormat No String The java.text.SimpleDateFormat string to R
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
defaultt oSt r i ng method is used.

numFormat No String The java.text.DecimalFormat stringtouseto R
print the property, if it is a java.lang. Number.
If the property is not a Number, this is
ignored. If this is not set, the Number's
defaultt oSt r i ng method is used.

Example

To have a text input field’s default value be the first 75 characters of the subject of a
Cont ent object stored at doc:

<U@taglib uri="cmtld" prefix="cni %

<form action="j avascri pt:voi d(0)">
Subj ect: <input type="text” size="75" nanme="subject”
val ue="<cm printProperty id="doc” name="Subject” nmaxLength="75"
encode="htm "/>" >

</ fornm

13-12 Guide to Building Personalized Applications

Content Management

<cm:select>

This tag uses only the search expression query syntax to select content. It does not
support or use a body. After this tag has returned the <es: f or Eachl nAr r ay> tag (see
“<es:forEachInArray>" on page 13-71,) zero can be used to iterate over the array of
Cont ent objects. This tag (Table 13-57) supports generic Cont ent via a

Cont ent Manager interface.

Table 13-57 <cm:select>

Tag Attribute Required Type

Description R/C

contentHome No String

The JNDI name of the ContentManager EJB R
Home to use to find content. The object in

INDI at this name must implement a

cr eat e method which returns an object

which implements the ContentManager
interface. If not specified, the system

searches the default content home.

max No String, long

Limits the maximum number of content R
items returned. If not present, or zero or less,
it returns all of the content items found.

sortBy No String

A list of document attributes by whichtosort R
the content. The syntax follows the SQL

order by clause. The sort specification is

limited to a list of the metadata attribute

names and the keywords ASC and DESC.

Examples:
sortBy="creationDate”
sortBy="creationDate ASC, title DESC”

Guide to Building Personalized Applications 13-13

13 Personalization Server JSP Tag Library Reference

Table 13-57 <cm:select> (Continued)

Tag Attribute

Required

Type

Description

R/C

failOnError

No

String, Boolean

This attribute can have one of two values:

Fal se (default value): Handles JSP
processing errors gracefully and returns an
empty array if an error occurs.

Tr ue: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

id

Yes

String

The JSP script variable name that will
contain the array of Content objects after this
tag finishes.

query

String

A content query string used to search for
content.

Example: query="mimetype contains 'text’
&& author="Proulx""

expression

No

Expression

The
com.beasys.commerce.foundation.expressio
n.Expression object to use to search for
content. If this is null or not specified, then
quer y must be specified. Otherwise,

query is ignored.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi meout settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key. If not specified, the i d attribute of the
tag is used.

13-14 Guide to Building Personalized Applications

Content Management

Table 13-57 <cm:select> (Continued)

Tag Attribute Required Type

Description R/C

cacheTimeout No String, long

The time, in milliseconds, for which the R
cached Content is valid. If more than this
amount of time has passed since the Content

was cached, the cached Content will be

cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default = -1.

cacheScope No String

Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:

m application

m session (the default)
m page

m request

contextParams No String or

java.util. Map

Additional search parameters to pass tothe R
ContentManager. Some ContentManager
implementations may support this.

readOnly Ignored

This attribute is deprecated and no longer
used. When found, it is ignored.

Example

To find the first five text Cont ent objects that are marked as news items for the
evening using the ContentCache, and print out the titles in a list:

<U@taglib uri="cmtld" prefix="cm %

<cm sel ect

cont ent Honme="<%=Cont ent Hel per . DEF_CONTENT_MANAGER_HOVE%" nmax="5"
useCache="true" cacheTi meout ="300000" cachel d="Eveni ng News"

Guide to Building Personalized Applications 13-15

13 Personalization Server JSP Tag Library Reference

sort By="creati onDate ASC, title ASC' query="
type = ‘News’ && tineOfDay = ‘Evening’ && m netype |like
‘text/* " id="newsList"/>

<es: forEachl nArray array="<%newsLi st %" id="newsltent
t ype="com bea. pl3n. cont ent. Content ">
<cmprintProperty id="newslten! nane="Title"
encode="htm " />
</ es: forEachl nArray>
</ ul >

<cm:selectByld>

The <cm sel ect Byl d> tag (Table 13-58) retrieves content using the Content’ s
unique identifier. This tag does not have a body. This tag is basically a wrapper around
the sel ect tag. It works against any Cont ent object which has a string-capable
primary key.

Table 13-58 <cm:selectByld>

Tag Attribute Required Type Description R/C

contentHome No String The INDI name of the ContentManager EJB R
Home to use to find content. The object in
JNDI at this name must implement a
cr eat e method which returns an object that
implements the ContentManager interface. If
not specified, the system searches the default

content home.
contentld Yes String The string identifier of the piece of content. R
onNotFound No String If the content object specified by R

cont ent | d cannot be found, this controls

the behavior. If this is set, then an Exception
will be thrown with the value as the message;
if this is not set, the tag will return nul | .

13-16 Guide to Building Personalized Applications

Content Management

Table 13-58 <cm:selectByld> (Continued)

Tag Attribute

Required

Type

Description

R/C

failOnError

No

String, Boolean

This attribute can have one of two values:

Fal se (default value): Handles JSP
processing errors gracefully and returns null
if an error occurs.

Tr ue: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

String

The JSP script variable name that contains
the Content object after this tag finishes. If
the Content object with the specified
identifier does not exist, it contains null.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi meout settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key.

If not specified, the i d attribute of the tag is
used.

cacheTimeout

String, long

Guide to Building Personalized Applications

The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default = -1.

13-17

13 Personalization Server JSP Tag Library Reference

Table 13-58 <cm:selectByld> (Continued)

Tag Attribute Required Type Description R/C

cacheScope No String Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:
m application
m session (the default)

m page
m request
contextParams No String or Additional search parameters to pass tothe R
java.util. Map ContentManager. Some ContentManager

implementations may support this.

readOnly Ignored This attribute is deprecated and no longer
used. When found, it is ignored.

Example

To fetch the Docunent (using ContentCaching) with an identifier of 1234 and inline
its content:

<U@taglib uri="cmtld" prefix="cnl %

<cm sel ect Byl d

cont ent Honme="<%=Cont ent Hel per. DEF_CONTENT_MANAGER_HOVEY%>"
contentld="contentportlet/sportsl. htnt

i d="doc" useCache="true" cacheTi neout ="300000" cachel d="1234" />
<cm printDoc id="doc" />

13-18 Guide to Building Personalized Applications

Internationalization

Internationalization

These tags are used in the localization of JSP pages that have an internationalization
requirement.

Use the following code to import the utility tag library:
<%@taglib uri="i1l8n.tld" prefix="i1l8n" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<i18n:localize>

This tag allows you to define the language, country, variant, and base bundle name to
be used throughout a page when accessing resource bundles via the
<i 18n: get message> tag.

This tag (Table 13-59) also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded.

Note: When an HTML page is included in a larger page, only the larger page can use
the <i 18n: | ocal i ze>tag. This is because the <i 18n: | ocal i ze> tag sets the
encoding for the page, and the encoding must be set in the parent (including)
page before any bytes are written to the response’s output stream. The parent
page must set an encoding that is sufficient for all the content on that page as
well as any included pages.

Note: The preferred approach is to retrieve all strings dynamically from the
<i 18n: get Message> tag, and avoid embedding strings statically (that is,
avoid hard-coding them) in your JSP page.

If your page contains only dynamic strings (strings retrieved using the
<i 18n: get Message t ag>), then do not use the <i 18n: | ocal i ze> tag in
conjunction with the <%@ page cont ent Type="<sonet hi ng>" > page

Guide to Building Personalized Applications 13-19

13 Personalization Server JSP Tag Library Reference

directive defined in the JSP specification. The directive is unnecessary if you
are using the <i 18n: | ocal i ze> tag, and can result in inconsistent or wrong
cont ent Type declarations.

If you must mix static strings and dynamic strings on the same page, then you
will need to use the page directive. Ensure that the character set specified by
the <i 18n: | ocal i ze> tag is compatible with the character set specified in the
page directive.

Table 13-59 <il8n:localize>

Tag Attribute Required Type Description R/C

bundleName No

String The base name of the MessageBundleisused R
to retrieve localized text for a JSP page.

language No

String A String—two character ISO Language R

or Code—denoting the user's preferred

String [] language, or a String[] containing a list of
preferred language codes for a user, with
stronger preferences indexed lower (earlier)
in the array.

country No

String The two character ISO Country Code fora R
country. For example, this code would be
used to look for a MessageBundle containing
text localized to English speaking users in
the U.S. as opposed to English speaking
users in the U.K.

variant No

String A String representing a locale's variant. The R
variant is used when localization demands a
more specific locale than can be denoted by
having just language and a country.

locale No

java.util.Locale Instead of specifying language, country,and R
variant as Strings, aj ava. util . Local e
object can be provided. If provided, the
values in the Locale's language, country, and
variant fields will negate any of the other
language, country, and variant values passed
to the tag as Strings.

13-20 Guide to Building Personalized Applications

Internationalization

Table 13-59 <il8n:localize> (Continued)

Tag Attribute Required Type Description R/C
charset No String The name of the character encoding set to R
use for this page. Defaults to "UTF-8" if no
encoding can be determined for the chosen
language, otherwise an encoding appropriate
for the chosen language is used.
contentType No String The type of content contained in the page, R
defaults to "text/html".
Example 1
<U@taglib uri="i18n.tld" prefix="i1l8n" %
<%
/1 Definition of a single |anguage preference
String | anguage = "en";
%
<i 18n: 1 ocal i ze | anguage="<%l anguage%"
bundl eNanme="i 18nExanpl eResour ceBundl e"/ >
<htm >
<body>
<i 18n: get Message nessageNane="greeting"/>
</ body>
</htnl >
Example 2

<U@taglib uri="i18n.tld" prefix="i1l8n" %

<%
/1 Array that defines two | anguages preferences - English and
/1 Spanish in that order of preference.

Guide to Building Personalized Applications 13-21

13 Personalization Server JSP Tag Library Reference

String[] | anguages = new String[] { "en", "es" };

%

<i 18n:1 ocal i ze | anguage="<%I anguages%"

bundl eNane="i 18nExanpl eResour ceBundl "/ >

<htm >

<body>

<i 18n: get Message nessageNane="greeting"/>
</ body>

</htm >

<i18n:getMessage>

This tag (Table 13-60) is used in conjunction with the <i 18: | ocal i ze>tag to retrieve
localized static text or messages from a JspMessageBundle.

Table 13-60 <il8n:getMessage>

Tag Attribute Required Type Description R/C

id No String Holds the value of the label (or message) in C
the JSP page.

messageName Yes String The key for the message bundle. R

messageArgs No Object [] The arguments to the message bundle. [fno R

args are provided, it is assumed that static
text (not a message) is to be returned.

For example, {"Wednesday", "78"}; might
be used to construct the message “Today is
Wednesday, and the temperature is 78
degrees Fahrenheit.”

bundleName No String If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute unless it is desired to
use a different bundle for a particular tag
invocation

13-22 Guide to Building Personalized Applications

Internationalization

Table 13-60 <il8n:getMessage> (Continued)

Tag Attribute Required Type Description R/C
language No String If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different language for a particular tag
invocation.
country No String If properly initialized in the R
<i 18n:1 ocal i ze> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different country for a particular tag
invocation.
variant No String If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different variant for a particular tag
invocation.
locale No java.util.Locale If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different locale (language, country, and
variant) for a particular tag invocation.
Example
JSP File
This code produces this output:
Welcome To This Page! 14 out of 100 files have been saved.
<%@taglib uri="i18n.tld" prefix="i1l8n" %
<%
/1 Definition of a single |anguage preference
String | anguage = "en";
Guide to Building Personalized Applications 13-23

13 Personalization Server JSP Tag Library Reference

/1 Creation of nmessage argunents
oj ect[] args = new Object[]

new | nt eger (14),

new | nt eger (100)
b
%
<i 18n: 1 ocal i ze | anguage="<%l anguage%"
bundl eNane="i 18nExanpl eResour ceBundl "/ >
<htm >
<body>
<i 18n: get Message nessageNane="greeting"/>
<i 18n: get Message nessageNane="nessage" messageAr gs="<%args%"/>
</ body>
</htm >

Property file

Here are the entries in the property file named

"i 18nExanpl eResour ceBundl e. properties":
greeting=Welcome To This Page!
message={0} out of {1} files have been saved.

13-24 Guide to Building Personalized Applications

Personalization Tags

Personalization Tags

The <pz:div> tag, <pz:contentSelector> tag, and <pz:contentQuery> tag use the
Advisor to classify the user, select content, and retrieve content, respectively.

To import the Personalization JSP tags, use the following code:
<U@taglib uri="pz.tld" prefix="pz" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

This section contains the following:
m pz Tags and the Internal Cache
m <pz:contentQuery>

m <pz:contentSelector>

m <pz:div>

pz Tags and the Internal Cache

Content search cont ext Par ams were added in WebLogic Portal 4.0 to support
per-search configuration attributes. These included the ability to determine whether to
use the internal cache. The <cm sel ect > and <cm sel ect Byl d> tags were updated
to support setting the contextParams, but the pz tags do not have this capability. In
order to control whether a <pz: cont ent Sel ect or > uses the internal cache, use the
following approach.

Add the following to a <pz: cont ent * > tag:
cont ext Par ans="sonmeNanme=soneVal ue"

A runtime expression like the following should be used:
cont ext Par ans=' <%" aName=aVal ue bNane=bVal ue cName=cVal ue" %'

Guide to Building Personalized Applications 13-25

13 Personalization Server JSP Tag Library Reference

<pz.contentQuery>

The <pz: cont ent Quer y> tag (Table 13-61) performs a content attribute search for
content in a content manager. If the useCache attribute is set to t r ue, the results of a
content management query will be cached. The tag only has a begin tag and does not
have a body or end tag. It returns an array of Cont ent objects returned from the content
manager as the result of executing the content query.

Personalization content tags required for JSP developers to access the Cont ent object
returned might include:

An object array iterator tag. This tag provides a way to iterate over the Cont ent objects
in the array. Use the <es: f or Eachl nAr r ay> tag to iterate over an array of Obj ect s.
(See “<es:forEachInArray>" on page 13-71 for more information.)

m Content access tags. Content tags access metadata attributes in the content,
retrieve content, and put it into the HTTP response output stream. (See the
section “Content Management” on page 13-6 for more information.)

Table 13-61 <pz:contentQuery>

Tag Attribute Required Type Description R/C

max No String, long Limits the maximum number of content R
items returned. If not present, it returns all of
the content items found.

sortBy No String A list of document attributes by whichtosort R
the content. The syntax follows the SQL
order by clause. The sort specification is
limited to a list of the metadata attribute
names and the keywords ASC and DESC.

Examples:
sortBy="creationDate"
sortBy="creationDate ASC, title DESC"

query Yes String A content query string used to search for R
content.

Example:
query= “mimetype contains ‘text’ &&
author=‘Proulx’”

13-26 Guide to Building Personalized Applications

Personalization Tags

Table 13-61 <pz:contentQuery> (Continued)

Tag Attribute

Required

Type

Description

R/C

contentHome

Yes

String

The JNDI name of the ContentManager EJB
Home. The object in the JNDI at this name
must implement a cr eat e method which
returns an object which implements the
ContentManager interface.

For more information, see the section
“Specify a Value for contentHome” on
page 13-32.

String

The array variable name that contains the
content objects found. If no content is found,
the variable is assigned an empty array (not
null) of Content objects.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi nmeout settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key. If not specified, the i d attribute of the
tag is used.

cacheTimeout

String, long

Guide to Building Personalized Applications

The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default = -1.

13-27

13 Personalization Server JSP Tag Library Reference

Table 13-61 <pz:contentQuery> (Continued)

Tag Attribute Required Type Description

R/C

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <j sp: useBean>.

Possible values:

m application. Any JSP page in the
web application that any customer
requests can access the cache.

m sessi on (the default). Any JSP in the
web application that the current
customer requests can access the cache.

m page. Only the current JSP that any
customer requests can access the cache.

m request . Only the current user request
can access the cache. If a customer
re-requests the page, the content selector
re-runs the query and recreates the
cache.

Example

<%@ page i nport="bea. pl3n. content. ContentHel per" %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="cmtld" prefix="cnl %
<U@taglib uri="pz.tld" prefix="pz" %

<pz:contentQuery i d="docs"
cont ent Hone=" <%Cont ent Hel per. DEF_DOCUMENT_MANAGER HOVEY>"
query="aut hor = 'Hem ngway'" />

<es:forEachl nArray array="<%docs%" i d="aDoc"
t ype="com bea. pl3n. cont ent. Content " >
<l i>The docunent title is: <cmprintProperty id="aDoc"
name="Titl e" encode="htm" />
</ es: forEachl nArray>

13-28 Guide to Building Personalized Applications

Personalization Tags

<pz:contentSelector>

The <pz: cont ent Sel ect or > tag (Table 13-62) allows arbitrary personalized content
to be recommended based on a content selector rule.

A content selector rule first evaluates a set of conditions that you define in the
E-Business Control Center (for example, whether or not a user fits a specified
classification). If the conditions evaluate to true, content is retrieved from the Content
Manager based on a content query defined in the E-Business Control Center.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts to develop their own customer segments. Because
the Business Analysts are not exposed to the concept of rules, you will see
content selector rules called simply “content selectors” and classifier rules
referred to as “customer segmentation.”

To cache the results of the content selector rule, set the useCache attribute to t r ue. If
the cache has not timed out, subsequent calls to the contentSelector tag will return the
cached results without re-evaluating the content query.

The <pz: cont ent Sel ect or > tag only has a begin tag and does not have a body or
end tag. It returns an array of Cont ent objects returned from the Content Manager as
a result of executing the content query.

Tags possibly required for JSP developers to access the Cont ent objects returned
might include:

®m An object array iterator tag. This tag provides a way to iterate over the Cont ent
objects in the array. Use the <es: f or Eachl nAr r ay> tag to iterate over an array
of (bj ect s.

m Content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See the
section “Content Management” on page 13-6 for more information.)

Table 13-62 <pz:contentSelector>

Tag Attribute

Req’d Type Description R/C

rule

Yes String The name of the content selector in the R
content selector definitions created in the
E-Business Control Center.

Guide to Building Personalized Applications 13-29

13 Personalization Server JSP Tag Library Reference

Table 13-62 <pz:contentSelector> (Continued)

Tag Attribute Req’d Type Description

R/C

contentHome Yes String The JNDI name of the ContentManager
EJB Home. The object in the JNDI at this
name must implement a cr eat e method
which returns an object which implements
the ContentManager interface.
For more information, see the section
“Specify a Value for contentHome” on
page 13-32.

max No String, long Limits the maximum number of content
items returned. If not present, or if equal to
-1L, it returns all of the content items
found.

sortBy No String A list of document attributes by which to
sort the content. The syntax follows the
SQL order by clause. The sort
specification is limited to a list of the
metadata attribute names and the

keywords ASC and DESC.

Examples:

sortBy="creationDate”
sortBy="creationDate ASC, title DESC”

query No String A content query string used to search for
content. This query overrides any query
that a Business Analyst creates in the
E-Business Control Center.

Example: query="mimetype contains 'text'
&& author='Salinger""

id Yes String The array variable name that contains the
content objects found. If no content is
found, the variable is assigned an empty
array (not null) of Content objects.

13-30 Guide to Building Personalized Applications

Personalization Tags

Table 13-62 <pz:contentSelector> (Continued)

Tag Attribute Req’d Type

Description R/C

useCache No String, Boolean

Determines whether Content is cached. R
This attribute can have one of two values:

Fal se (default value): The Content cache
is not used. If f al se (not specified), the
cacheld, cacheScope and cacheTimeout
settings are ignored.

Tr ue: Content cache is used.

cacheld No String

The identifier name used to cache the R
Content. Internally, the cache is

implemented as a Map; this will become

the key. If not specified, thei d attribute of

the tag is used.

cacheTimeout No String, long

Guide to Building Personalized Applications

The time, in milliseconds, for which the R
cached Content is valid. If more than this
amount of time has passed since the

Content was cached, the cached Content

will be cleared, retrieved, and placed back

into the cache.

Use -1 for no-timeout (always use the
cached Content). Default =-1.

13-31

13 Personalization Server JSP Tag Library Reference

Table 13-62 <pz:contentSelector> (Continued)

Tag Attribute Req’d Type Description

R/C

cacheScope No String

Specifies the lifecycle scope of the content

cache. Similar to <j sp: useBean>.

Possible values:

appl i cati on. Any JSP page in the
web application that any customer
requests can access the cache.

sessi on (the default). Any JSP in the
web application that the current
customer requests can access the
cache.

page. Only the current JSP that any
customer requests can access the
cache.

request . Only the current user
request can access the cache. If a
customer re-requests the page, the
content selector re-runs the query and
recreates the cache.

R

Specify a Value for contentHome

13-32

The content selector tag must use the cont ent Horre attribute to specify the JINDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the Cont ent Hel per class, you must first use the
following tag to import the class into the JSP:

<%@ page i nport="com bea. p1l3n. cont ent. Cont ent Hel per " %

Then, when you use the content selector tag, specify the cont ent Horre as follows:

<pz: cont ent Sel ect or

cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_MANAGER HOME %"

/>

Guide to Building Personalized Applications

Personalization Tags

Example

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

<% page i nport="com bea. p13n. cont ent. Cont ent Hel per" %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="cmtld" prefix="cm %
<U@taglib uri="pz.tld" prefix="pz" %
<v@taglib uri="umtld" prefix="um %

<um get Profile profil eKey="bob"
profileld="nyProfile" scope="session"/>
<pz:content Sel ector rul e="PrenierCust omer Spot | ight"
cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_NMANAGER_HOME %"
i d="docs" />

<es: forEachl nArray array="<%docs%" id="aDoc"
type="com bea. p13n. content. Content ">
The docunent title is: <cmprintproperty id="aDoc"
name="Title" encode="htm" />
</ es:forEachl nArray>
</ ul >

Note: The sort By attribute, when used in conjunction with the max attribute, works
differently for explicit (system-defined) and implicit (user-defined) attributes.
If you sort on explicit attributes (i denti fier, m neType, size,
version, author, creationDate, nodifiedBy, nodifiedDate,
| ockedBy, description, or conments) the sort is done on the database;
therefore if you combine max="10" and sor t By, the system will perform the
sort and then get the first 10 items. If you sort on implicit attributes, the sort is
done after the max have been selected.

For more information about using this tag, see the section “Using Content-Selector
Tags and Associated JSP Tags” in Chapter 4, “Working with Content Selectors,” in
this guide.

Guide to Building Personalized Applications 13-33

13 Personalization Server JSP Tag Library Reference

<pz:.div>

The <pz: di v>tag (Table 13-63) allows a piece of content to be conditionally included
as a result of a classifier rule being executed by the rules engine. If the user’s profile
matches the classification specified in the E-Business Control Center, then the
conditional content is included. This tag has a begin tag, a body, and an end tag. The
tag returns a list of Gl assi fi cat i on objects that the user belongs to.

Table 13-63 <pz:div>

Tag Attribute Required Type Description R/C

rule Yes String The name of the classifier rule in the R
customer segment definitions created in the
E-Business Control Center.

id No String A collection that contains the Classification C
objects that apply to the user for the given
classifier rule.

Example

<U@taglib uri="pz.tld" prefix="pz" %
<Ug@taglib uri="umtld" prefix="unl %

<um get Profile profil eKey="bob"
profileld="nyProfile" scope="session"/>
<pz:div id="classifications” rule="Prem erCustomer">

<%
/1if the user is classified as a Prem er Custonmer, a list with one
entry shoul d be returned//

java.util.lterator iterator=classifications.iterator();
while (iterator.hasNext())
{

com bea. pl3n.user. Cassification
classification=(C assification) iterator.next();
out.println (classification.getNane());

%

<p>Pl ease check out our new Prem er Custonmer bonus program <p>
</ pz:div>

13-34 Guide to Building Personalized Applications

Placeholders

Placeholders

The placeholder tag is a named location on a JSP. You use the E-Business Control
Center to define the behavior of a placeholder.

Use the following code to import the utility tag library:
<%@taglib uri="ph.tld" prefix="ph" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ph:placeholder>

The <ph: pl acehol der > tag (Table 13-64) implements a placeholder, which
describes the behavior for a location on a JSP page.

You use the E-Business Control Center to define a placeholder. For more information,
see the topic “Displaying Ads” in the Guide to Using the E-Business Control Center.

Multiple placeholder tags can refer to the same placeholder. Each instance of a
placeholder tag invokes its placeholder definition separately. If the placeholder
definition specifies multiple queries, each placeholder tag instance can display
different ads, even though each instance shares the same definition.

When WebLogic Personalization Server receives a request for a JSP that contains an
ad placeholder, the placeholder tag contacts the Ad Service, a session EJB that invokes
business logic to determine which ad to display. For more information, see the section
“How Placeholders Select and Display Ads” in Chapter 4, “Working with Content
Selectors,” in this guide.

For information on a related tag, see <ad: adTar get >.

Guide to Building Personalized Applications 13-35

13 Personalization Server JSP Tag Library Reference

Table 13-64 <ph:placeholder>

Tag Attribute Req’d Type

Description

R/C

name Yes String

A string that refers to a placeholder
definition.

height No int

Specifies the height (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specity this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

width No int

Specifies the width (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

Example

This example displays the ad specified in the Mai nPageBanner placeholder.

<U@taglib uri="ph.tld" prefix="ph" %

.<p.h: bl acehol der name="/pl acehol der s/ Mai nPageBanner. pl a"/ >

13-36 Guide to Building Personalized Applications

Property Sets

Property Sets

The Property Set tags allow access to the list of available properties and property sets.
Property sets are manipulated through the E-Business Control Center.

Use the following code to import the utility tag library:
<U@taglib uri="ps.tld" prefix="ps" %

All Property Sets tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page
i nport="com bea. pl3n. property.servlets.jsp.taglib. PropertySet TagC
onstants" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ps:getPropertyNames>

The <ps: get Proper t yNanes> tag (Table 13-65) is used to get a list of property
names given a property set.

Table 13-65 <ps:getPropertyNames>

Tag Attribute Required Type Description R/C

propertySetName Yes String The name of the property set to add the new R
search.

propertySetType Yes String Type of property set to search. R

id Yes String The i d of the variable to hold the list of C

property names, as a String array.

Guide to Building Personalized Applications 13-37

13 Personalization Server JSP Tag Library Reference

Table 13-65 <ps:getPropertyNames> (Continued)

Tag Attribute Required Type Description R/C

result no String The identifier of an Integer variable that will C
be created and initialized with the result of
the operation.
Possible values:
Query is successful:
Propert ySet TagConst ant s. PROPER
TY_SEARCH_OK
Problem getting the list of property names:
Propert ySet TagConst ant s. PROPER
TY_SEARCH _FAI LED
Property set named by pr oper t ySet Nane
and proper t ySet Type could not be
found:
PropertySet TagConst ant s. | NVALI
D_PROPERTY_SET

Example

<U@taglib uri="ps.tld" prefix="ps" %

<%@ page i nport=

"com bea. pl3n. property.servlets.jsp.taglib.PropertySet TagConst ant
<% String nyPropertySet ="Denographics"; %

<p> ------- ps: get PropertyNames -------------

<ps: get Propert yNanes propertySet Name="<% nyPropertySet %"
propertySet Type="USER" id="propertyNanmes" result="nyResult"/>

<% for (int i=0; i<propertyNanes.|length; i++)
out.println(propertyNames[i] + "
");

%

13-38 Guide to Building Personalized Applications

Property Sets

<ps:getPropertySetNames>

The <ps: get Proper t ySet Nanes> tag (Table 13-66) is used to get a list of property
sets given a property set type.

Table 13-66 <ps:getPropertySetNames>

Tag Attribute Required Type Description R/C
propertySetType Yes String Type of property set to search. R
id Yes String The identifier of the variable to hold the list C

of property names, as a String array.

result No String The identifier of an Integer variable that will C
be created and initialized with the result of
the operation.

Possible values:

Query is successful:

Pr opert ySet TagConst ant s. PROPER
TY_SET_SEARCH K

Problem getting the list of property names:
Pr opert ySet TagConst ant s. PROPER
TY_SET_SEARCH_FAI LED

Property set named by pr oper t ySet Nanme
and pr oper t ySet Type could not be
found:

Pr opert ySet TagConst ant s. | NVALI
D_PROPERTY_SET

Example

<U@taglib uri="ps.tld" prefix="ps" %

<ps: get PropertySet Names pr opertySet Type="USER'
i d="userPropertySets" result="nyResult" />

Guide to Building Personalized Applications 13-39

13 Personalization Server JSP Tag Library Reference

<ps.getRestrictedPropertyValues>

The <ps: get Rest ri ct edPr opert yVal ues> tag (Table 13-67) returns a list of
restricted values for a specific property definition, converted into Strings. These val-
ues will be returned as an array of Strings.

Table 13-67 <ps:getRestrictedPropertyValues>

Tag Attribute Required Type Description R/C

propertySetName Yes String The name of the property set containing the R
property.

propertySetType Yes String Type of property set containing the property. R

propertyName Yes String The name of the property to inspect. R

id Yes String The identifier of the variable to hold the list C

of property names, as a String array.

result No String The identifier of an Integer variable that will C
be created and initialized with the result of
the operation.
Possible values:

Query is successful:
PropertySet TagConst ant s.
PROPERTY_SEARCH K

Problem accessing the property:
Propert ySet TagConst ant s.
PROPERTY_SEARCH_FAI LED

Property set named by pr opertySet -
Nane and pr opert ySet Type could not
be found:

Pr opert ySet TagConst ant s.

| NVALI D_PROPERTY_SET

The requested property is not restricted.:

Pr opert ySet TagConst ant s.
PROPERTY_NOT_RESTRI CTED

13-40 Guide to Building Personalized Applications

Property Sets

Example
<U@taglib uri="ps.tld" prefix="ps" %

<% page i nport =

"com bea. pl3n. property.servlets.jsp.taglib. PropertySet TagConst ant
5"

%

<p> ---- ps:getRestrictedPropertyVal ues -----

Possi bl e val ues for PreferredLanguage:

<ps:getRestrictedPropertyVal ues propertySet Nane="Denogr aphi cs"
propertySet Type="USER' propertyNanme="PreferredLanguage"
i d="val ues" result="nyResult"/>

<% if (nmyResult.intValue() ==
Propert ySet TagConst ant s. PROPERTY_SEARCH CK)

for (int i=0; i<values.length; i++) {
%<l i ><%val ues[i] %
<%}
}
%
</ ul >

Guide to Building Personalized Applications 13-41

13 Personalization Server JSP Tag Library Reference

User Management:
Profile Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<9@taglib uri="umtld" prefix="unt %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i mport="com bea. pl3n.userngnt.servlets.jsp.taglib.User Managenent Ta
gConst ant s" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:getProfile>

13-42

The <um get Prof i | e> tag (Table 13-68) retrieves the profile corresponding to the
provided profile key and profile type. The tag has no enclosed body. The retrieved
profile can be treated as a com bea. p13n. userngnt . profile. Profil eWapper.
Along with the profile key and profile, an explicit successor key and successor type
can be specified, as specified by the pr of i | eType attribute. This successor will then
be used, along with the retrieved profile, in subsequent invocations of the

<um get Pr oper t y> tag to ensure property inheritance from the successor. If no
successor is retrieved, standard Conf i gur abl eEnt i t y successor search patterns will
apply to retrieved properties.

Guide to Building Personalized Applications

User Management: Profile Management Tags

Table 13-68 <um:getProfile>

Tag Attribute

Required

Type

Description

R/C

profileKey

Yes

String

A unique identifier that can be used to
retrieve the profile which is sought.

Example: “<%=username%o>"

successorKey

String

A unique identifier that can be used to
retrieve the profile successor.

Example: “<%=defaultGroup%>"

scope

String

The HTTP scope of the retrieved profile.
Pass "r equest " or "sessi on" asthe
values.

Defaults to sessi on.

groupOnly

No

String

Specifies to retrieve a group profile named
by the pr of i | eKey, rather than a user
profile. No successor will be retrieved when
this value is t r ue.

Defaults to f al se.

profileld

No

String

A variable name from which the retrieved
profile is available for the duration of the
JSP’s page scope.

successorld

No

String

A variable name from which the retrieved
successor is available for the duration of the
JSP’s page scope.

Guide to Building Personalized Applications

13-43

13 Personalization Server JSP Tag Library Reference

Table 13-68 <um:getProfile> (Continued)

Tag Attribute Required Type Description R/C

result No String A variable name from which the result of the C
operation is available.
Possible values:
Success:
User Managenent TagConst ant s. GET
_PROFI LE_CK
Error encountered:
User Managenent TagConst ants. GET
_PROFI LE_FAI LED
User Managenent TagConst ant s. NO_
SUCH_PROFI LE
User Managenent TagConst ant s. NO_
SUCH_SUCCESSCR

Example 1
This example shows a profile being retrieved with no successor specified, and an
explicitly-supplied sessi on scope.
<g@taglib uri="umtld" prefix="unt %
'<um getProfile profil eKey="bob" profil eType="AcneUser"
profileld="nyProfile" scope="session"/>

Example 2

This example shows a default user profile type being retrieved with a default successor
type, and an explicitly-supplied r equest scope.

<U@taglib uri="umtld" prefix="unl %

<um get Profile profil eKey="bob" successorKey="engi neeri ng"
scope="request"/>

13-44 Guide to Building Personalized Applications

User Management: Profile Management Tags

<um:getProperty>

The <um get Pr oper t y>tag (Table 13-69) retrieves the property value for a specified
property set-property name pair. The tag has no enclosed body. The value returned is
an Obj ect . In typical cases, this tag is used after the <um get Pr of i | e> tag is invoked
to retrieve a profile for session use. The property to be retrieved is retrieved from the
session profile. If the <um get Pr of i | e> tag has not been used upon invoking the
<um get Pr oper t y> tag, the specified property value is retrieved from the
Anonymous User Profile. For more information, see Chapter 8, “Creating and
Managing Users,” in this guide.

Table 13-69 <um:getProperty>

Tag Attribute

Required Type Description R/C

propertySet

No String The Property Set from which the property’s R
value is to be retrieved.

Example: “Demographics”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

propertyName

Yes String The name of the property to be retrieved. R
Example: “Date_of Birth”

id

No String Ifthe i d attribute is supplied, the value of C
the retrieved property will be available in the
variable name to which i d is assigned.
Otherwise, the value of the property is
inlined.

Example 1

<U@taglib uri="umtld" prefix="um %

<um get Property id="nyBi rthDate" propertySet="Denographics"
propertyNanme="Date_of _Birth"/>
My birthday is <%nyBirthDat e%.

Guide to Building Personalized Applications 13-45

13 Personalization Server JSP Tag Library Reference

Example 2

My birthday is <um getProperty propertySet="Denographics"
propertyNane="Date_of _Birth"/>.

<um:getPropertyAsString>

The <um get Propert yAsSt ri ng> tag (Table 13-70) works exactly like the
<um get Proper t y> tag above, but ensures that the retrieved property value is a
St ri ng. The following example shows a multi-valued property which returns a
Col | ecti on, but presents a list of favorite colors.

Table 13-70 <um:getPropertyAsString>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property’s R
value is to be retrieved.

Example: “Demographics”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

propertyName Yes String The name of the property to be retrieved. R
Example: “Date_of Birth”

id No String If the i d attribute is supplied, the value of C
the retrieved property will be available in the
variable name to which i d is assigned.
Otherwise, the value of the property is
inlined.

Example

<U@taglib uri="umtld" prefix="unl %

<um get PropertyAsString i d="nyBirthDate"

13-46 Guide to Building Personalized Applications

User Management: Profile Management Tags

propertySet =" Denogr aphi cs” propertyName="Date_of _Birth"/>
My birthday is <%nyBirthDat e%.

<um:removeProperty>

The <um renmovePr operty> tag (Table 13-71) removes the specified property from
the current session’s profile or from the Anonymous User Profile. The tag has no
enclosed body. Subsequent calls to <um get Pr oper t y> for a removed property would
result in the default value for the property as prescribed by the property set, or from the
Profile’s successor.

Table 13-71 <um:removeProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property's R
value is to be retrieved.

Example: “Demographics”

Note: The property is removed from the
profile's default (unscoped)
properties if no property set is
provided.

propertyName Yes String The name of the property to be removed. R

Example: “Income Range”

Example

<U@taglib uri="umtld" prefix="um %

<um renoveProperty propertySet="<%thePropertySet %"
propertyNane=" <%t hePr oper t yName%"/ >

Guide to Building Personalized Applications 13-47

13 Personalization Server JSP Tag Library Reference

<um:setProperty>

The <um set Proper t y> tag (Table 13-72) updates a property value for either the
session’s current profile, or for the Anonymous User Profile. This tag has no enclosed
body.

Table 13-72 <um:setProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set in which the property’s R
value is to be set.

Example: “Demographics”
Note: The property is set for the profile’s

default (unscoped) properties if no
property set is provided.

propertyName Yes String The name of the property to be set. R

Example: “Gender”

value Yes Object The new property value. R

result No String The name of an Integer object to whichthe C
result of the set property operation is
assigned.

Success:

User Managenent TagConst ant s. SET
_PROPERTY_OK

Error encountered:

User Managenent TagConst ant s. SET
_PROPERTY_FAI LED

Example

<U@taglib uri="umtld" prefix="unl %

<% String nmyGender = request.getParaneter("gender"); %
<um set Property propertySet="Denographi cs" propertyNanme="GCender"
val ue=" <% nyCender %"/ >

13-48 Guide to Building Personalized Applications

User Management: Group-User Management Tags

User Management:
Group-User Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<U@taglib uri="umtld" prefix="um %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i mport="com bea. pl3n. userngnt. servl ets.sp.tags. User Managenent TagC
onstants" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:addGroupToGroup>

The <um addG oupToG oup> tag (Table 13-73) adds the group corresponding to the
provided chi | dG oupNane to the group corresponding to the provided gr oupNare.

Since a group can only have one parent, any previous database records which reflect
the group belonging to another parent will be destroyed. Both the parent group and the

child group must previously exist for proper tag behavior. The tag has no enclosed
body.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security.real m RDBVBReal m).

Guide to Building Personalized Applications 13-49

13 Personalization Server JSP Tag Library Reference

Table 13-73 <um:addGroupToGroup>

Tag Attribute Required Type Description R/C

childGroupName Yes String The name of the child group. R
Example: “<%=childGroupName%>"

parentGroupName No String The name of the parent group. R

Example: “<%=parentGroupName%>"

result Yes String The name of an Integer variable to whichthe C
result of the add group to group operation is
assigned.

Possible values:
Success:

User Managenent TagConst ant s. ADD
_GROUP_XK
Error encountered:

User Managenment TagConst ant s. ADD
_GROUP_FAI LED

Example

<U@taglib uri="umtld" prefix="unt %

<um addG oupToG oup chi | dG oupName="<%-chi | dG oupNanme%"
par ent G oupNanme="<%par ent G oupNane%" result="result”/>

<um:addUserToGroup>

The <um addUser ToG oup> tag (Table 13-74) adds the user corresponding to the
provided user nane to the group corresponding to the provided gr oupNane. Both the
specified user and the specified group must previously exist for proper tag behavior.
The tag has no enclosed body.

13-50 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security.real m RDBVSReal m).

Table 13-74 <um:addUserToGroup>

Tag Attribute Required Type Description R/C
username Yes String The name of the user to be added to the R
group.

Example: “<%=username%>"

groupName Yes String The name of the group to which the useris R
being added.

Example: “<%=groupName%>"

result Yes String The name of an Integer variable to whichthe C
result of the add user to group operation is
assigned.

Possible values:
Success:

User Managenent TagConst ant s. ADD
_USER_OK

Error encountered:
User Management TagConst ant s. ADD
_USER_FAI LED

Example

<U@taglib uri="umtld" prefix="um %

<um addUser ToGr oup user Nanme=" <% user Nane%"
gr oupNane="<%-gr oupNane%" result="result”/>

Guide to Building Personalized Applications 13-51

13 Personalization Server JSP Tag Library Reference

<um:createGroup>

The <um cr eat eG oup> tag (Table 13-75) creates a new group in the realm, and a
corresponding group profile in the personalization database. This tag has no enclosed
body.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m).

Table 13-75 <um:createGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the new group. R

Example: “<%=groupName%>"

id No String A variable name to which the created Group C
object is available for the duration of the
page’s scope.

parentName No String The name of the group to set as the parent of R
the new group.

result Yes String The name of an Integer variable to whichthe C
result of the create group operation is
assigned.

Possible Values:

Success:

User Managenent TagConst ant s. CRE
ATE_GROUP_OX

Error encountered:

User Managemnent TagConst ant s. CRE
ATE_GROUP_FAI LED

A group with the specified group name
already exists:

User Managenent TagConst ant s. GRO
UP_EXI STS

13-52 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Example

<U@taglib uri="umtld" prefix="um %

<um creat egroup groupNane="<%gr oupNane%"” result="result”/>

<um:createUser>

The <um cr eat eUser > tag (Table 13-76) creates a new user profile. This tag has no
enclosed body. Although classified as a Group-User management tag, this tag can be
used in conjunction with run-time activities, in that it will persist any properties
associated with a current Anonymous User Profile if specified.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m).

Table 13-76 <um:createUser>

Tag Attribute Required Type Description R/C

username Yes String The name of the new user. R
Example: “<%=username%>"

password Yes String The password for the new user. R
Example: “<%=password%>"

profileType No String Specifies the extended type of user (for R
example, WLCS_Customer) to create a user
of that type.

saveAnonymous No String Whether to persist current anonymous user R
profile attributes in the newly-created user’s
profile.

Defaults to f al se.
Example: “f al se”

Guide to Building Personalized Applications 13-53

13 Personalization Server JSP Tag Library Reference

Table 13-76 <um:createUser> (Continued)

Tag Attribute Required Type Description R/C

id No String A variable name to which the created User C
object is available for the duration of the
page’s scope.

result Yes String The name of an Integer variable to whichthe C
result of the create user operation is
assigned.

Possible values:

Success:
User Managemnent TagConst ant s. CRE
ATE_USER K

Error encountered.:
User Managenent TagConst ant s. CRE
ATE_USER_FAI LED

A user with the specified username already
exists:

User Managemnent TagConst ant s. USE
R _EXI STS

Example

<9U@taglib uri="umtld" prefix="unt %

<um cr eat eUser user Nane="<%user nane%" passwor d="<% passwor d" %
result="result"/>

13-54 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:getChildGroupNames>

The <um get Chi | dGr oupNanes> tag (Table 13-77) returns the names of any groups
that are children of the given group.

Table 13-77 <um:getChildGroupNames>

Tag Attribute Required Type Description R/C
groupName Yes String The name of the group to search for child R
groups.
id Yes String The name of the identifier which will be C
assigned the String array of child group
names.
Example

<U@taglib uri="umtld" prefix="um %

<um get Chi | dG oupNanes gr oupNanme="SomeG oup”
i d="chi | dr enOf SomeG oup” />

Guide to Building Personalized Applications 13-55

13 Personalization Server JSP Tag Library Reference

<um:getGroupNamesForUser>

The <um get Gr oupNanmesFor User > tag (Table 13-78) retrieves a St ri ng array that

contains the group names corresponding to groups to which the provided user

immediately belongs. This tag has no enclosed body.

Table 13-78 <um:getGroupNamesForUser>

Tag Attribute Required Type Description R/C

username Yes String The name of the user whose matching groups R
are sought.
Example: “<%=username%>"

id Yes String A variable name to which the resultant group C
names are assigned.
Example: “myGroups”

Example

<U@taglib uri="umtld" prefix="unt %

<um get G oupNanesFor User user Nane="<%user nane%" id="nmyG oups”/ >

13-56 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:getParentGroupName>

The <um get Par ent G oupNane> tag (Table 13-79) retrieves the name of the parent
of the group associated with the provided gr oupNare. The information is taken from
the realm. This tag has no enclosed body.

Table 13-79 <um:getParentGroupName>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group whose parent group R
name is sought.

Example: “<%=groupName%>"

id Yes String A variable name to which the name of the C
parent is available for the duration of the
page’s scope.

Example: “parentGroupName”

Example

<v@taglib uri="umtld" prefix="um %

<um get Par ent G oupNanme gr oupNane="<%-gr oupNane%"
i d=" par ent G oupNane"/ >

Guide to Building Personalized Applications 13-57

13 Personalization Server JSP Tag Library Reference

<um:getTopLevelGroups>

The <um get TopLevel G oups>tag (Table 13-80) retrieves an array of group names,
each of which has no parent group. The information is taken from the realm. This tag

has no enclosed body.

Table 13-80 <um:getTopLevelGroups>

Tag Attribute Required Type Description R/C
id Yes String A variable name to which the top-level C
G oup objects are available for the duration
of the page’s scope.
Example: “topLevelGroups”
Example

<U@taglib uri="umtld" prefix="unt %

<um get TopLevel Groups i d="topLevel G oups”/ >

<um:getUsernames>

The <um get User nanes> tag (Table 13-81) retrieves a St r i ng array that contains the
usernames matching the provided search expression. The search expression supports
only the asterisk (*) wildcard character, and is case insensitive. As many asterisks as
desired may be used in the search expression. This tag has no enclosed body.

Table 13-81 <um:getUsernames>

Tag Attribute Required Type

Description R/C

searchExp No String

The search expression to apply to the user R
name search. Defaults to “*’

Example: “t*”

13-58 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 13-81 <um:getUsernames> (Continued)

Tag Attribute Required Type Description R/C
userLimit No String The maximum number of users to be R
(representing returned from the search. (String which has a
an Integer) particular | nt eger . val ueCf .) Defaults
to 100.

Ifuser count exceeds userLimit, the length of
the array in i d is truncated to the length of
userLimit.

Example: “500”

id Yes String A variable name to which the resultant user C
names are assigned.

Example: “myUsers”

result No String The name of an Integer variable to which the C
result of the get User nanmes operation is
assigned.

Possible values:

Success:
User Managenent TagConst ant s. USE
R_SEARCH OK

General error:
User Managenent TagConst ant s. USE
R_SEARCH_FAI LED

Note: The USER_SEARCH FAI LED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
User Managenent TagConst ant s. USER_SEARCH_FAI LED, but the length
returned by the array in i d will be zero.

Example

<U@taglib uri="umtld" prefix="um %

<um get User nanmes userLim t="500" searchExp="t*" id="nyUsers"/>
<USystemout.printin("l found " + nyUsers.length + " users."); %

Guide to Building Personalized Applications 13-59

13 Personalization Server JSP Tag Library Reference

<um:getUsernamesForGroup>

The <um get User nanesFor Gr oup> tag (Table 13-82) retrieves a St ri ng array that
contains the usernames matching the provided search expression and correspond to
members of the provided group. The search expression supports only the asterisk (*)
wildcard character, and is case insensitive. As many asterisks as desired may be used
in the search expression. This tag has no enclosed body.

Table 13-82 <um:getUsernamesForGroup>

Tag Attribute Required Type Description R/C

searchExp No String The search expression to apply to the user R
name search.

Defaults to " *".

Example: "t *"

groupName Yes String The name of the group whose matching R
members are sought.

Example: “engineering”

userLimit No String The maximum number of users to be R
(representing returned from the search. (String which has a
an Integer) particular | nt eger . val ueCf .) Defaults
to 100.

Ifuser count exceeds userLimit, the length of
the array in id is truncated to the length of
userLimit.

Example: “500”

id Yes String A variable name to which the resultant user C
names are assigned.

Example: “myUsers”

13-60 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 13-82 <um:getUsernamesForGroup> (Continued)

Tag Attribute Required Type Description R/C
result No String The name of an Integer variable to whichthe C
result of the get usernames for group
operation is assigned.
Possible values:
Success:
User Managenent TagConst ant s. USE
R _SEARCH OK
General error:
User Managenent TagConst ant s. USE
R_SEARCH_FAI LED
Note: The USER_SEARCH FAI LED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
User Managenent TagConst ant s. USER_SEARCH_FAI LED, but the length
returned by the array in i d will be zero.
Example

<v@taglib uri="umtld" prefix="um %

<um get User nanmesFor Gr oup gr oupName="engi neeri ng" userLin t="500"
sear chExp="t*" id="nyUsers"/>

<USystemout.printin("l found " + nyUsers.length + " users in ny
group."); %

Guide to Building Personalized Applications 13-61

13 Personalization Server JSP Tag Library Reference

<um:removeGroup>

The <um r enoveG oup> tag (Table 13-83) removes the group corresponding to the
provided gr oupNane. This tag has no enclosed body.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m).

Table 13-83 <um:removeGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group to be removed. R

Example: “<%=groupName%>"

result Yes String The name of an Integer variable to whichthe C
result of the remove group operation is
assigned.

Possible Values:

Success:

User Managenent TagConst ant s. REM
OVE_GROUP_XK

Error encountered:

User Managenent TagConst ant s. REM
OVE_GROUP_FAI LED

Example

<U@taglib uri="umtld" prefix="unt %

<um renoveG oup groupName="<%gr oupName%" result="result”/>

13-62 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:removeGroupFromGroup>

The <um r enoveG& oupFr onGr oup> tag (Table 13-84) removes a child group from a
parent group.

Table 13-84 <um:removeGroupFromGroup>

Tag Attribute Required Type Description R/C

childGroupName Yes String The name of the child group to remove from R
its parent.

parentGroupName Yes String The name of the parent group from whichthe R

child group will be removed.

result Yes String The name of an Integer variable to whichthe C
result of the remove group from group
operation is assigned.

Possible values:
Success:

User Management TagConst ant s. REM
OVE_GROUP_OK

Failure:
User Managenent TagConst ant s. REM
OVE_GROUP_FAI LED

Example

<U@taglib uri="umtld" prefix="um %

<um r emove& oupFr ontr oup par ent G oupNanme=" SormeG oup”
chi | dG oupNanme="Chi | dG oupToRenove" result="nyResult" />

Guide to Building Personalized Applications 13-63

13 Personalization Server JSP Tag Library Reference

<um:removelUser>

The <um r enpveUser > tag (Table 13-85) removes the user corresponding to the
provided user nane. It can remove any type of extended user that has its profileType
set in the database. This tag has no enclosed body.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m).

Table 13-85 <um:removeUser>

Tag Attribute Required Type Description R/C

username Yes String The username of the user to be removed. R

Example: “<%=username%>"

result Yes String The name of an Integer variable to whichthe C
result of the remove user operation is
assigned.

Possible values:

Success:

User Managenent TagConst ant s. REM
OVE_USER_X

Error encountered:

User Managenent TagConst ant s. REM
OVE_USER_FAI LED

Example

<U@taglib uri="umtld" prefix="unl %

<um renoveUser user Name="<%usernane%"” result="result”/>

13-64 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:removeUserFromGroup>

The <um r enoveUser Fr onGr oup> tag (Table 13-86) removes a user from a group.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m).

Table 13-86 <um:removeUserFromGroup>

Tag Attribute Required Type Description R/C

username Yes String The username of the user to remove fromthe R
given group.

groupName Yes String The name of the group from which the given R
user will be removed.

result Yes String The name of an Integer variable to whichthe C
result of the remove user from group
operation is assigned.

Possible values:
Success:

User Managenent TagConst ant s. REM
OVE_USER_ X
Failure:

User Managenent TagConst ant s. REM
OVE_USER_FAI LED

Example

<U@taglib uri="umtld" prefix="um %

<um r enoveUser Fr on3 oup user name="User ToRenove"
gr oupNanme="SoneG oup" result="nyResult" />

Guide to Building Personalized Applications 13-65

13 Personalization Server JSP Tag Library Reference

User Management: Security Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<U@taglib uri="umtld" prefix="unt %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i mport="com bea. pl3n. userngnt.servlets.jsp.taglib.User Managenent Ta
gConst ant s" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:login>

The <um | ogi n> tag (Table 13-87) provides weak authentication (username,
password) against the current security realm, and sets the authenticated user as the
current WebLogic user. This tag has no enclosed body.

Note: The login tag requires a user nanme parameter and a passwor d parameter to be
present in the HTTP request.

13-66 Guide to Building Personalized Applications

User Management: Security Tags

Table 13-87 <um:login>

Tag Attribute Required Type Description R/C

result Yes String The name of an Integer variable to whichthe C
result of the login operation is assigned.

Possible values:

Success:

User Managenent TagConst ant s. LOG
IN_CK

General error when performing
authentication:

User Managenent TagConst ant s. LOG
I N_ERROR

Authentication failed because of invalid
username/password combination:

User Managenent TagConst ant s. LOG
I N_FAI LED

<um:logout>

The <um | ogout >tag (Table 13-88) ends the current user's WebLogic Server session.
This tag should be used in combination with the <um | ogi n> tag.

Table 13-88 <um:logout>

Tag Attribute Required Type Description R/C

No attributes

Guide to Building Personalized Applications 13-67

13 Personalization Server JSP Tag Library Reference

<um:setPassword>

The <um set Passwor d> tag (Table 13-89) updates the password for the user
corresponding to the provided username.

Note: This tag should only be invoked when the current realm is an implementation
of webl ogi c. security. acl . Manageabl eReal m This interface is
implemented by the default WebLogic Personalization Server realm
(com bea. p13n. security. real m RDBVSReal m). In addition, the user
object used by the current realm must implement
webl ogi c. security. acl. Credenti al Changer.

Table 13-89 <um:setPassword>

Tag Attribute Required Type Description R/C
username Yes String The username of the user whose passwordis R
to be changed.
password Yes String The new user password. R
result Yes String The name of an Integer variable to whichthe C
result of the set password operation is
assigned.

Possible values:

Success:
User Managemnent TagConst ant s. SET
_PASSWORD K

Failure:
User Managenent TagConst ant s. SET
_PASSWORD FAI LED

13-68 Guide to Building Personalized Applications

Personalization Utilities

Personalization Utilities

The <es: j spt agl i b> tag contains generic tags you can use to create JSP pages.

Use the following code to import the utility tag library:
<U@taglib uri="es.tld" prefix="es" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<es:convertSpecialChars>

The <es: convert Speci al Char s> (Table 13-90) tag converts characters which
would normally signify special meaning to an HTML browser into characters which
can be displayed as intended.

For example, the following sentence must be converted because it uses the '<' and ">
characters, which signify tag opening and closing to the browser:
Enter <filename> here:

Table 13-90 <es:convertSpecialChars>

Tag Attribute Required Type Description R/C
string Yes String The string to be converted. R
Example

This example allows a string containing a less-than sign to be rendered in HTML.

<U@taglib uri="es.tld" prefix="es" %

<es: convert Speci al Chars string="<thisString>"/>

Guide to Building Personalized Applications 13-69

13 Personalization Server JSP Tag Library Reference

<es:counter>

The <es: count er > tag (Table 13-91) is used to create a f or loop.

Table 13-91 <es:counter>

Tag Attribute Required Type Description R/C
type No String The type of the counter. Possible values are R
i nt orl ong. Defaultisi nt.
id Yes String A unique name for the variable. R
minCount Yes Int The start position for the loop. R
maxCount Yes Int The end position for the loop. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:counter id="iterator" m nCount="0" naxCount="10">
<% System out.println(iterator); %

</ es: count er >

<es:date>

The <es: dat e> tag (Table 13-92) is used to get a date- and time-formatted String
based on the user's time zone preference.

Table 13-92 <es:date>

Tag Attribute Required

Type

Description

R/C

timeZoneld No

String

Defaults to the time zone on the server.

13-70 Guide to Building Personalized Applications

Personalization Utilities

Table 13-92 <es:date>

Tag Attribute Required Type Description R/C

formatStr No String A date and time format string that adheresto R
the java.text.SimpleDateFormat. The default
value is MM dd/ yyyy HH: mmss: z.

Example

<U@taglib uri="es.tld" prefix="es" %

<es:date format Str="MVWM dd yyyy" tinmeZonel d="MsT" />

<es:forEachInArray>

The <es: f or Eachl nAr r ay> tag (Table 13-93) is used to iterate over an array.

Table 13-93 <es:forEachInArray>

Tag Attribute Required Type Description R/C
id Yes String The variable for each value in the array. R
type Yes String The type of each value in the array. R
array Yes Object [] The array to iterate over. R
counterld No String The position in the array. R
Example
<es:forEachlnArray id="item' array="<%itenms%" type="String"
counterld="i">
<% Systemout.printin("items[" +i + "]: " +item;%

</ es: forEachl nArray>

Guide to Building Personalized Applications 13-71

13 Personalization Server JSP Tag Library Reference

<es:isNull>

The <es: i sNul | > tag (Table 13-94) is used to check if a value is null. In the case of
a String, the <es: i sNul | >tagis used to check if the St ri ng is null or has a value.
An empty string will cause i sNul | to be f al se. (An empty string is not null.)

Table 13-94 <es:isNull>

Tag Attribute Required Type Description R/C
item Yes Object The variable to evaluate. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:isNull itenF"<%val ue%" >
Error: the value is null.
</es:isNull>

<es:notNull>

The <es: not Nul | >tag (Table 13-95) is used to check if a value is not null. In the case
of a String, the <es: not Nul | > tag is used to check if the St ri ng is not null or has a
value. An empty string will cause not Nul | to be t r ue. (An empty string is treated as
a value.)

Table 13-95 <es:notNull>

Tag Attribute Required Type Description R/C

item Yes Object The variable to evaluate. R

13-72 Guide to Building Personalized Applications

Personalization Utilities

Example

<U@taglib uri="es.tld" prefix="es" %

<es:notNull itenm"<%val ue%">
The value is not null.
</ es: not Nul | >

<es:transposeArray>

The <es: t ransposeAr r ay> tag (Table 13-96) is used to transpose a standard
[row][column] array to a [column][row] array.

Table 13-96 <es:transposeArray>

Tag Attribute Required Type Description R/C
id Yes String The variable that holds the [c][r] array. R
type Yes String The type of variable in the [r][c] array, such R
as String.
array Yes Object[][] The variable that holds the [r][c] array. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:transposeArray id="byCol umRow' array="<%byRowCol um%"
type="String">

</ es:transposeArray>

Guide to Building Personalized Applications 13-73

13 Personalization Server JSP Tag Library Reference

<es:uriContent>

The <es: uri Cont ent >tag (Table 13-97) is used to pull content from a URL. It is best
used for grabbing text-heavy pages.

Table 13-97 <es:uriContent>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the downloaded R
content of the URI.

uri Yes String The fully qualified URI from which to get R
the content.

Example

<U@taglib uri="es.tld" prefix="es" %

<es:uriContent id="uriContent"
uri="http://ww. beasys. confi ndex. htm ">
<%

out.print(uriContent);
%>
</ es:uri Content >

Note: Ifyoucombine HTML pages with relative URL’s, you must fully qualify them
to the correct host in each URL, or else images (on other resources) may not
be retrieved properly by the browser.

13-74 Guide to Building Personalized Applications

WebLogic Utilities

WebLogic Utilities

The <wl : j spt agl i b> tag library contains custom JSP extension tags which are
supplied as a part of the WebLogic Server platform.

To import the WebLogic Utilities JSP tags, use the following code:
<%@taglib uri="weblogic.tld" prefix="w" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

Note: See Javadoc API documentation for further descriptions of the <wl : > tags.

<wl:cache>

The <wl : cache> tag specifies that its contents do not necessarily need to be updated
every time it is displayed.

Table 13-98 <wl:cache>

Tag Attribute Required Type Description R/C

timeout No Integer Controls the time-to-live of the data, orhow R
often the data must be updated independent
of all other controls. This value is in seconds.

scope No String Controls the time-to-live of the data, orhow C
often the data must be updated independent
of all other controls. This value is in seconds

name No String Uniquely identifies this cache. [f youdonot C
specify a name a random name will be
generated.

Guide to Building Personalized Applications 13-75

13 Personalization Server JSP Tag Library Reference

Table 13-98 <wl:cache>

Tag Attribute Required Type Description R/C

size No Integer The maximum number of entries that canbe R
in the cache. It defaults to an unlimited
cache. It is only relevant for when there is an
associated key.

vars No String In addition to caching the transformed output C
of the cache, you can also cache calculated
values within the block. These variables are
specified exactly the same way as the cache
keys. This type of caching is called Input
caching.

key No String Specifies a comma separated list of values C
accessible from the current page that the data
depends on. These values act as additional
keys into the cache.

async No String If the async parameter is set to t r ue, the C
cache will be updated asynchronously, if
possible. The user that initiates the cache hit
sees the old data.

<wl:process>

The <wl : pr ocess> tag (Table 13-99) is used for query attribute-based flow control.
By using a combination of the four attributes, you can selectively execute the
statements between the <wl : pr ocess> and </ W : pr ocess> tags.

Table 13-99 <wl:process>

Tag Attribute Required Type Description R/C
name No String The name of a query attribute. R
notName No String The name of a query attribute. R
value No String The value of a query attribute. R
notValue No String The value of a query attribute. R

13-76 Guide to Building Personalized Applications

WebLogic Utilities

Statements between the <wl : pr ocess> tags will be executed according to the matrix

below:
Attribute Value notValue Neither "value'" nor
"notValue"
name Named attribute isequal ~Named attribute does Name attribute’s value
to the value. not equal the value. is not null.
not Name notName attribute’s

value is null.

Example

<%@taglib uri="weblogic.tld" prefix="w" %

<w : process name="| ast BookRead" val ue="A Man in Full">

<l-- This section of code will be executed
if | ast BookRead exists and the val ue of |astBookRead is
"A Man in Full" -->

</W : process>

Guide to Building Personalized Applications 13-77

13 Personalization Server JSP Tag Library Reference

<wl:repeat>

The <wl : r epeat > tag (Table 13-100) is used to iterate over a variety of Java objects,
as specified in the set attribute.

Table 13-100 <wl:repeat>

Tag Attribute Required Type

Description

R/C

set No Object

The set of objects that includes:
Enumerations

Iterators

Collections

Arrays

Vectors

Result Sets

Result Set MetaData
Hashtable keys

count No Int

Iterate over first "count" entries in the set.

id No String

Variable to contain current object being
iterated over.

type No String

Type of object that results from iterating
over the set you passed in. Defaults to
Object. This type must be fully qualified.

13-78 Guide to Building Personalized Applications

Index

A

AD BUCKET Database Table 12-6
AD_ COUNT Database Table 12-7
adding
user to group 8-14
adviselet
mapping an Advise request 2-14
Advisor
architecture 2-3
description 2-2
functionality 1-3
JSP tags
creating personalized applications
2-9
reference 13-25
using 2-4
mapping an Advise request to an advislet
2-14
overview 1-3
providing information about user
classifications 2-3
using Advisor session bean 2-4
Advisor session bean 2-13
classifying users 2-15
creating personalized applications 2-13
matching content 2-17
selecting content 2-16
anonymous user profile 8-9
application
creating 2-13

Basic language operators 5-10
BulkLoader 9-30

C

character encoding 11-7
default settings 11-7
diplaying more than one charset per page
11-7
charset
displaying more than one on a page 11-7
multiple 11-7
parameters 11-7
class
expression 5-2
operator 5-2
variable 5-2
classes, Java 10-18
classifier rule
introduction 3-6
classifying user
with Advisor session bean 2-15
with JSP tag 2-10
classpath, setting 10-19
CLOBs 12-19
<cm:getProperty>
description 1-4
reference 13-6
<cm:printDoc>
description 1-4

Guide to Building Personalized Applications I-1

reference 13-9
<cm:printProperty>

description 1-4

reference 13-11
<cm:selectByld>

description 1-4

reference 13-16
<cm:select>

description 1-4

reference 13-13
Collection Operators 5-16
Comparative Operators 5-15
comparison operators in query 9-13
component, external 1-9
configuring

Content Management system 9-18

DocumentSchema EJB 9-18
constructing query 9-14
contact information 1-xviii
content

loading with BulkLoader 9-30

managing

(versus document management) 9-9

managing (property set) 7-5
Content Management

about 1-3

JSP tags descriptions 1-4

JSP tags reference 13-6
Content Management system

configuring 9-18

description 9-2
content selector rule 3-8
content, matching

with Advisor session bean 2-17

with JSP tag 2-12
content, selecting

with Advisor session bean 2-16
ContentHelper utility 6-6
creating

group 8-11

user §8-24

I-2 Guide to Building Personalized Applications

customer support 1-xviii

D

DATA_SYNC _ APPLICATION Database
Table 12-8
DATA_SYNC ITEM Database Table 12-9
DATA_SYNC SCHEMA URI Database
Table 12-10
DATA_SYNC_ VERSION Database Table
12-11
database
deleting user record 8-31
database schema tables
Ads and Placeholders tables 12-5
common to WLCS and WLPS 12-6
Data Synchronization tables 12-5
Documentation Management tables 12-5
Mail (email) tables 12-5
User Management tables 12-5
database tables
AD BUCKET 12-6
AD COUNT 12-7
DATA _SYNC_APPLICATION 12-8
DATA _SYNC ITEM 12-9
DATA _SYNC SCHEMA URI 12-10
DATA_SYNC_VERSION 12-11
DOCUMENT 12-11
DOCUMENT METADATA 12-13
ENTITLEMENT RULESET 12-13
ENTITY 12-14
GROUP_HIERARCHY 12-15
GROUP_SECURITY 12-15
MAIL ADDRESS 12-16
MAIL BATCH 12-17
MAIL BATCH-ENTRY 12-17
MAIL HEADER 12-18
MAIL MESSAGE 12-18
PLACEHOLDER PREVIEW 12-19
PROPERTY KEY 12-19
PROPERTY_ VALUE 12-20

SAMPLE UUP_INFO 12-21
SEQUENCER 12-22
USER_GROUP_CACHE 12-22
USER_GROUP_ HIERARCHY 12-23
USER_PROFILE 12-24
USER_SECURITY 12-24
WEBLOGIC IS _ALIVE 12-25
debugging rulesheet 3-9
deleting
group 8-22
record from database 8-31
user 8-29
Diagram, Entity-Relation 12-1
DOCUMENT Database Table 12-11
document servlet 9-16
DOCUMENT METADATA Database
Table 12-13
documentation, where to find it- 1-xvii
DocumentSchema EJB, configuring 9-18

E
editing
group property 8-19
user property 8-26
ENTITLEMENT RULESET Database
Table 12-13
ENTITY Database Table 12-14
Entity-Relation Diagram 12-1
environment variables 10-19
<es:convertSpecial Chars>
reference 13-69
description 1-8
<es:counter>
description 1-8
reference 13-70
<es:date>
description 1-8
reference 13-70
<es:forEachInArray>
description 1-8

reference 13-71
<es:isNull>
description 1-8
reference 13-72
<es:notNull>
description 1-8
reference 13-72
<es:transposeArray>
description 1-8
reference 13-73
<es:uriContent>
description 1-8
reference 13-74
event(s)
entering default values 7-13
entering property values 7-13
Event Editor 7-11
property values
Boolean 7-14
date/time 7-17
default 7-15
multiple values 7-15
single value, single default 7-14
updating registration 7-18
Executor 5-20
Expression Cache 5-7
Expression class 5-2
Expression Package 5-1
Expression Package Operators 5-8
Expression Package services 5-17
ExpressionFactory 5-17
expressions 5-4, 5-17
external component 1-9
Content Management engine 1-9
DBMS 1-9
LDAP 1-9
legacy database 1-9

F

Foundation Classes and Utilities

Guide to Building Personalized Applications

I-3

about 1-4
described 6-1

G

<il8n:getMessage>
description 1-5
reference 13-22
group
adding user §-14
creating 8-11
deleting 8-22
editing property 8-19
removing user 8-18
Group component 8-2
group profile property set 7-4
GROUP_HIERARCHY Database Table
12-15
GROUP_SECURITY Database Table 12-15
Group-User Management
JSP tags descriptions 1-6
JSP tags reference 13-49

H

HTTP handling 6-2
HTTP request property set 7-4
HTTP session property set 7-4

<il8n:getMessage>
JspMessageBundle 11-5
localizing JSP pages 11-4
<il8n:localize>
description 1-5
how it works 11-6
localizing JSP pages 11-4
reference 13-19
Internationalization
code example 11-3

14 Guide to Building Personalized Applications

framework 11-2

included framework tags 11-3
JSP tags descriptions 1-5

JSP tags reference 13-19
localizing your application 11-10
non-ASCII characters 9-11

J

Java classes 10-18

JavaServer Page (JSP)
localizing 11-3
tags provided with Advisor 2-9

JSP extension tag library 11-2

JSP tag
Adpvisor, reference 13-25
Content Management 13-6
creating personalized application 2-9
included with WLPS 1-4
matching content 2-12
overview 1-4
Profile Management 13-42
security 13-66

JSP tags 9-15

JspMessageBundle 11-5

L

LDAP 8-7
loading
content with BulkLoader 9-30
localizing
how the tag works 11-6
your application steps 11-10
your JSP 11-3
Logical Operators 5-11

M

MAIL ADDRESS Database Table 12-16
MAIL BATCH Database Table 12-17

MAIL BATCH_ENTRY Database Table
12-17
MAIL HEADER Database Table 12-18
MAIL MESSAGE Database Table 12-18
managing
rule (details) 3-2
user 8-1
matching content
with Advisor session bean 2-17
with JSP tag 2-12
Mathematical Operators 5-13
MIME types ?7—-10-20

N

native types 1-10
boolean 1-10
comparators 1-10
datetime 1-10
float 1-10
integer 1-10
Java classes 1-10
text 1-10
UserDefined 1-10

0

object
Request 3-3, 6-2
Session 3-3, 6-5
User 3-3
operator class 5-2
Operator Inheritance Hierarchy 5-8
operators
basic language 5-10
collection 5-16
comparative 5-15
logical 5-11
mathematical 5-13
string 5-12
operators, logical 5-11

Optimizer 5-18

P
package, expression 5-1
page directive 11-5, 13-19
Parent-child Relationships 5-5
Personalization Request object 6-2
Personalization Session object 6-5
Personalization Utilities

JSP tags descriptions 1-8

JSP tags reference 13-69
personalized application

creating 2-13

JSP tags 2-9
PLACEHOLDER PREVIEW Database

Table 12-19

printing product documentation 1-xvii
profile

for user 8-8

property set 7-4

user (anonymous) 8-9
Profile Management 13-42
property

editing for group 8-19

editing for user 8-26

Request 6-3

Session 6-5
Property Inheritance 8-36
property set

and rulesheet 3-9

content management 7-5

HTTP request 7-4

HTTP session 7-4

overview 7-2

user and group profile 7-4
Property Sets

JSP tags descriptions 1-5

JSP tags reference 13-37
PROPERTY_ KEY Database Table 12-19
PROPERTY_ VALUE Database Table 12

Guide to Building Personalized Applications

-20

I-5

<ps:getPropertyNames>
description 1-5
reference 13-37
<ps:getPropertySetNames>
description 1-5
reference 13-39
<ps:getRestrictedPropertyValues>
description 1-5
reference 13-40
<pz:contentQuery>
creating personalized applications 2-9
description 1-5
reference 13-26
selecting content 2-11
<pz:contentSelector>
creating personalized applications 2-10
description 1-5
matching content 2-12
matching content to users 2-12
Personalization Request object 6-3
reference 13-29
<pz:div>
classifying users 2-10
creating personalized applications 2-9
description 1-5
Personalization Request object 6-3
reference 13-34

Q

query
comparison operators 9-13
constructing 9-14
structuring 9-10

R
realm
WebLogic 8-5
record, deleting from database 8-31
removing

I1-6 Guide to Building Personalized Applications

user from group 8-18
Request

object 6-2

property 6-3
request

property set 7-4
Request object 3-3
Request Property Set

associated request methods 6-4

described 6-3

request property names 6-4
rule

classifier 3-6

content selector 3-8
Rules Management

about 1-3

component 3-2
rulesheet

and property set 3-9

debugging 3-9

description 3-5

S

SAMPLE UUP_INFO Database Table
12-21
Security
JSP tags descriptions 1-7
JSP tags reference 13-66
selecting content
with Advisor session bean 2-16
with JSP tag 2-11
with Personalization Advisor Session
Bean 2-11
SEQUENCER Database Table 12-22
servlet, document 9-16
Session
object 6-5
property 6-5
session
property set 7-4

session bean, Advisor
classifying user 2-15

creating personalized application 2-13

matching content 2-17
selecting content 2-16
Session object 3-3
Session Property Set 6-5
SQL Scripts 12-26
String Operators 5-12
structuring query 9-10
successor profile 8-2
support
for native types 1-10
technical 1-xviii

T
tags, JSP 9-15

U

<um:addGroupToGroup>
description 1-6
reference 13-49
<um:addUserToGroup>
description 1-6
reference 13-50
<um:createGroup>
description 1-6
reference 13-52
<um:createUser>
description 1-6
reference 13-53
<um:getChildGroupNames>
description 1-6
reference 13-55
<um:getGroupNamesForUser>
description 1-6
reference 13-56
<um:getParentGroupName>
description 1-6

reference 13-57
<um:getProfile>
description 1-5
reference 13-42
<um:getPropertyAsString>
description 1-6
reference 13-46
<um:getProperty>
description 1-5
reference 13-45
<um:getTopLevelGroups>
description 1-7
reference 13-58
<um:getUsernamesForGroup>
description 1-7
reference 13-60
<um:getUsernames>
reference 13-58
<um:login>
description 1-7
reference 13-66
<um:logout>
description 1-7
reference 13-67
<um:removeGroup>
description 1-7
<um:removeGroupFromGroup>
description 1-7
reference 13-63
<um:removeGroup>
reference 13-62
<um:removeProperty>
description 1-6
reference 13-47
<um:removeUser>
description 1-7
<um:removeUserFromGroup>
description 1-7
reference 13-65
<um:removeUser>
reference 13-64

Guide to Building Personalized Applications

I-7

<um:setPassword>
description 1-7
reference 13-68
<um:setProperty>
description 1-6
reference 13-48
Unification Service 5-18
Unifier 5-18
user
adding to group 8-14
creating 8-24
deleting 8-29
deleting record from database 8-31
editing property 8-26
profile 8-8
profile property set 7-4
profile, anonymous 8-9
removing from group 8-18
User component 8-2
User Management
Group-User Management tags 13-49
overview 1-3
Profile
JSP tags descriptions 1-5
Profile Management tags 13-42
Security tags 13-66
User object 3-3
user, classifying
with Advisor session bean 2-15

USER_GROUP_CACHE Database Table

12-22

USER_GROUP HIERARCHY Database

Table 12-23
USER_PROFILE Database Table 12-24

USER_SECURITY Database Table 12-24

utility
ContentHelper 6-6
personalization 13-69
WebLogic 13-75

I-8 Guide to Building Personalized Applications

v

Validator 5-18
Variable class 5-2

W
WebLogic
realm 8-5
WebLogic Personalization Server (WLPS)
external components 1-9
native types supported 1-10
run-time architecture 1-2
schema 12-1
schema tables 12-5
WebLogic Utilities
JSP tags descriptions 1-8
JSP tags reference 13-75
WEBLOGIC IS ALIVE Database Table
12-25
<wl:cache>
description 1-8
<wl:process>
description 1-8
reference 13-76
<wl:repeat>
description 1-8
reference 13-78

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Personalization Development
	Personalization Server Run-Time Architecture
	Advisor
	User Management
	Content Management
	Rules Management
	Foundation Classes and Utilities

	JSP Tags
	Integration of External Components
	Support for Native Types

	2 Creating Personalized Applications with the Advisor
	What Is the Advisor?
	The Advisor Delivers Content to a Personalized Application
	The Advisor Provides Information About User Classifications
	You Can Use the Advisor in One of Two Ways

	The WLPS Advisor Architecture
	Writing Custom Advislets and Registering Them Using the Advislet Registry
	Writing a Custom Advislet
	Understanding the Advislet Registry
	Registering a Single Advislet
	Advislet Chaining
	Registering a Compound Advislet

	Creating Personalized Applications with the Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Example

	Selecting Content with the <pz:contentQuery> JSP Tag
	Example

	Matching Content to Users with the <pz:contentSelector> JSP Tag
	Example

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Querying a Content Management System with the Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	3 Introducing the Rules Framework
	What Is the Rules Manager?
	Well-known Objects
	How the Rules Engine Works
	What Are Rule Sets?
	Deploying Rule Sets
	Classifier Rules
	The AND and OR operators

	Content Selector Rules
	Debugging Rule Sets
	What Is the Relationship Between Property Sets and Rules?
	Content Type and Content Selector Rules

	Configuring the Rules Framework
	Rules Engine Expression Validation
	Rules Engine Error Handling and Reporting
	Rules Engine Listeners
	Rules Engine Expression Caching Optimizations
	Rules Parser

	4 Working with Content Selectors
	What Are Content Selectors?
	Using Content-Selector Tags and Associated JSP Tags
	Attributes of the <pz:contentSelector> Tag
	Identify the Content Selector Definition
	Identify the JNDI Home for the Content Management System
	Define the Array That Contains Query Results
	Create and Configure the Cache to Improve Performance

	Associated Tags That Support Content Selectors
	Common Uses of Content-Selector Tags and Associated Tags
	To Retrieve and Display Text-Type Documents
	To Retrieve and Display Image-Type Documents
	To Retrieve and Display a List of Documents
	To Access a Content-Selector Cache on a Different JSP

	How Content Selectors Select Documents

	5 Using the Expression Package
	Introducing the Expression Package
	What Is the Expression Package?
	The Package Structure for the Expression Package

	Assembling and Managing Expressions
	Maintaining Parent-child Relationships
	Managing the Expression Cache

	Expression Package Operators
	Operator Inheritance Hierarchy
	Basic Language Operators
	Examples of Basic Language Operators

	Logical Operators
	Examples of Logical Expressions

	String Operators
	Examples of String Operators

	Mathematical Operators
	Examples of Mathematical Operators

	Comparative Operators
	Example of Comparative Operators

	Collection Operators
	Example of Collection Operators

	Working with Expressions
	The Expression Factory
	Expression Package Services
	Unification Service
	Optimization Service
	Validation Service
	Evaluation Service
	Execution Service

	Code Examples
	Stateful Evaluation of a Simple Expression
	Example

	Stateful Evaluation of an Expression Containing Variables
	Example

	Stateless Validation and Evaluation of an Expression Containing Variables
	Example

	Stateful Validation and Evaluation of an Expression Containing Variables
	Example

	Expression Package Configuration Settings

	6 Foundation Classes and Utilities
	Webflow
	HTTP Handling
	Personalization Request Object
	Default Request Property Set

	Personalization Session Object
	Default Session Property Set

	Utilities
	ContentHelper
	TagSupportHelper
	ProfileFactory
	SessionHelper

	7 Creating and Managing Property Sets
	Overview of Property Sets
	Property Sets Serve as Namespaces for Properties
	Where Property Sets Are Used
	Property Definition Attributes
	Possible Combinations of Properties
	Synchronizing Property Sets

	Using the E-Business Control Center
	Starting the Property Set Editors
	Using the Property Set Editors
	Property Values and Setting the Default Value
	Properties with Boolean or a Single Value and Single Default
	Properties with Multiple Values and Single, Multiple, or All Defaults
	Properties with Date and Time Values
	Updating a Registered Custom Event

	8 Creating and Managing Users
	User and Group Profiles
	Property Inheritance
	Property Sets and Profiles

	Security Realms and User Profiles
	Alternate Security Realms and User Profiles

	Unified User Profiles
	Anonymous User Profiles
	Platform for Privacy Preferences Project (P3P)
	Creating and Modifying Groups
	Creating Groups
	Adding Users to Groups
	Removing Users from Groups
	Editing Group Property Values
	Deleting Groups

	Creating and Modifying Users
	Creating Users
	Editing User Property Values
	Deleting Users
	Deleting User Records That Do Not Exist in the Realm from the Personalization Database

	Accessing User and Group Data
	Use JSP Tags to Access User and Group Data
	Use APIs to Access User and Group Data

	Setting Global Values for a Profile
	Accessing Properties from an LDAP Server
	Incorporating Data from Other External Sources
	Unified User Profile Security
	How WebLogic Portal Retrieves User Data from External Sources
	Configuring WebLogic Portal To Retrieve User Data from External Sources
	Create an EntityPropertyManager EJB to Represent External Data
	Deploy a ProfileManager That Can Use the New EntityPropertyManager

	9 Creating and Managing Content
	What Is the Content Manager?
	Choosing a Content Engine
	Running Queries Against the Content Repository
	Methods for Retrieving and Displaying Documents
	Differences Between Content Management and Document Management

	Querying the Content
	Structuring a Query
	Using Comparison Operators to Construct Queries
	Constructing Queries Using Java
	JSP Tags
	Using the Document Servlet
	Example 1: Usage in a JSP
	Example 2: Usage in a JSP

	Configuring the Content Manager
	Configuring the DocumentManager EJB Deployment Descriptor
	Configuring the PropertySetManager EJB Deployment Descriptor for Content Management
	Configuring DocumentManager MBeans
	Attributes of the DocumentManager MBean
	Editing the DocumentManager MBean in the WebLogic Console

	Setting Up Document Connection Pools
	Attributes for the DocumentConnectionPool MBean
	Properties

	Setting up WebLogic Connection Pools
	Web Application Configuration

	Using the BulkLoader to Load File-based Content
	Command-Line Usage
	How the BulkLoader Finds Files
	How the BulkLoader Finds Metadata Properties
	Cleaning Up the Database
	Loading Internationalized Documents
	Generating Schema Files

	10 Working with Ad Placeholders
	What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?
	Ad Placeholders
	Types of Queries That Ad Placeholders Run
	Types of Documents That Ad Placeholders Display

	Ad Attributes in the Content Management System
	Ad Placeholder JSP Tags
	The <ad:adTarget> JSP Tag

	Resolving Ad Query Conflicts
	How Ad Placeholders Contain Multiple Queries
	How the Ad Conflict Resolver Chooses a Query
	How an Ad Placeholder Chooses from Ad Query Results

	Creating Ad Placeholder Tags
	To Create an Ad Placeholder Tag

	Supporting Additional MIME Types
	Create and Compile a Java Class to Generate HTML
	Register the New Class

	How Placeholders Select and Display Ads
	How to Configure Ad Placeholders in an Application

	11 Creating Localized Applications with the Internationalization Tags
	What Is the I18N Framework?
	Localizing Your JSP
	<i18n:getMessage>
	<i18n:localize>
	The JspMessageBundle
	How the Localization Tag Works

	Character Encoding
	Displaying More Than One Character Set on a Page
	Default Character Encodings
	Double-byte character encoding

	Steps for Localizing Your Application
	Code Examples
	Using the JSP Internationalization Framework with JavaScript
	Using JSP Internationalization Framework with Java Scriptlets

	12 The WebLogic Personalization Server Database Schema
	The Entity-Relation Diagram
	List of Tables Comprising the WebLogic Personalization Server
	The Personalization Server Data Dictionary
	The AD_BUCKET Database Table
	The AD_COUNT Database Table
	The DATA_SYNC_APPLICATION Database Table
	The DATA_SYNC_ITEM Database Table
	The DATA_SYNC_SCHEMA_URI Database Table
	The DATA_SYNC_VERSION Database Table
	The DOCUMENT Database Table
	The DOCUMENT_METADATA Database Table
	The ENTITLEMENT_RULESET Database Table
	The ENTITY Database Table
	The GROUP_HIERARCHY Database Table
	The GROUP_SECURITY Database Table
	The MAIL_ADDRESS Database Table
	The MAIL_BATCH Database Table
	The MAIL_BATCH_ENTRY Database Table
	The MAIL_HEADER Database Table
	The MAIL_MESSAGE Database Table
	The PLACEHOLDER_PREVIEW Database Table
	The PROPERTY_KEY Database Table
	The PROPERTY_VALUE Database Table
	The SAMPLE_UUP_INFO Database Table
	The SEQUENCER Database Table
	The USER_GROUP_CACHE Database Table
	The USER_GROUP_HIERARCHY Database Table
	The USER_PROFILE Database Table
	The USER_SECURITY Database Table
	The WEBLOGIC_IS_ALIVE Database Table

	The SQL Scripts Used to Create the Database
	Scripts

	Defined Constraints

	13 Personalization Server JSP Tag Library Reference
	Ads
	<ad:adTarget>
	Example

	Content Management
	<cm:getProperty>
	Example

	<cm:printDoc>
	Example

	<cm:printProperty>
	Example

	<cm:select>
	Example

	<cm:selectById>
	Example

	Internationalization
	<i18n:localize>
	Example 1
	Example 2

	<i18n:getMessage>
	Example

	Personalization Tags
	pz Tags and the Internal Cache
	<pz:contentQuery>
	Example

	<pz:contentSelector>
	Specify a Value for contentHome
	Example

	<pz:div>
	Example

	Placeholders
	<ph:placeholder>
	Example

	Property Sets
	<ps:getPropertyNames>
	Example

	<ps:getPropertySetNames>
	Example

	<ps:getRestrictedPropertyValues>

	User Management: Profile Management Tags
	<um:getProfile>
	Example 1
	Example 2

	<um:getProperty>
	Example 1
	Example 2

	<um:getPropertyAsString>
	Example

	<um:removeProperty>
	Example

	<um:setProperty>
	Example

	User Management: Group-User Management Tags
	<um:addGroupToGroup>
	Example

	<um:addUserToGroup>
	Example

	<um:createGroup>
	Example

	<um:createUser>
	Example

	<um:getChildGroupNames>
	Example

	<um:getGroupNamesForUser>
	Example

	<um:getParentGroupName>
	Example

	<um:getTopLevelGroups>
	Example

	<um:getUsernames>
	Example

	<um:getUsernamesForGroup>
	Example

	<um:removeGroup>
	Example

	<um:removeGroupFromGroup>
	Example

	<um:removeUser>
	Example

	<um:removeUserFromGroup>
	Example

	User Management: Security Tags
	<um:login>
	<um:logout>
	<um:setPassword>

	Personalization Utilities
	<es:convertSpecialChars>
	Example

	<es:counter>
	Example

	<es:date>
	Example

	<es:forEachInArray>
	Example

	<es:isNull>
	Example

	<es:notNull>
	Example

	<es:transposeArray>
	Example

	<es:uriContent>
	Example

	WebLogic Utilities
	<wl:cache>
	<wl:process>
	Example

	<wl:repeat>

