
Guide to

V e r s i o n 4 . 0
D o c u m e n t D a t e : A p r i l 2 0 0 2

Managing Purchases and

BEA WebLogic Portal™

Processing Orders

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server, E-Business Control Center, BEA Campaign
Manager for WebLogic, and BEA WebLogic Portal are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Guide to Managing Purchases and Processing Orders

Document Edition Part Number Date Software Version

4.0.3 N/A April 2002 WebLogic Portal 4.0, Service Pack 1

Guide to Managing Purchases and Processing Orders iii

Contents

About This Document
What You Need to Know ... xii
e-docs Web Site.. xii
How to Print the Document... xiii
Related Information... xiii
Contact Us! .. xiv
Documentation Conventions ...xv

1. Overview of Managing Purchases and Processing Orders
What Are Order Services?... 1-2
High-level Architecture ... 1-3
Development Roles ... 1-5
Next Steps.. 1-5

2. Discounts
Campaign and Stand-Alone Discounts.. 2-1
Introduction to How Discounts Work ... 2-2
Discount Management Service.. 2-3

Definition Parameters... 2-3
Association Service ... 2-5
Price Service.. 2-5
Triggers and Targets Specifications .. 2-6

Two Examples of Using Triggers and Targets 2-7
Consumption Model ... 2-8
How Discounts Are Applied .. 2-9
Priority.. 2-9
How Discounts Are Calculated .. 2-10

iv Guide to Managing Purchases and Processing Orders

Examples ... 2-10
Item Discounts.. 2-11

Form of Discount Rules .. 2-11
Order Rules... 2-13

3. Shopping Cart Management Services
JavaServer Pages (JSPs) .. 3-2

Common JSP Template Elements .. 3-2
shoppingcart.jsp Template.. 3-4

Sample Browser View... 3-5
Location in the WebLogic Portal Directory Structure 3-8
Tag Library Imports .. 3-8
Java Package Imports .. 3-8
Location in Default Webflow.. 3-9
Events .. 3-9
Dynamic Data Display .. 3-11
Form Field Specification... 3-14

Input Processors... 3-15
DeleteProductItemFromShoppingCartIP ... 3-15
EmptyShoppingCartIP.. 3-16
InitShoppingCartIP... 3-16
UpdateShoppingCartQuantitiesIP .. 3-17
UpdateSkuIP... 3-18

Pipeline Components ... 3-19
DeleteProductItemFromSavedListPC .. 3-19
MoveProductItemToSavedListPC.. 3-20
MoveProductItemToShoppingCartPC ... 3-21
RefreshSavedListPC... 3-22
PriceShoppingCartPC... 3-22
AddToCartTrackerPC... 3-23
RemoveFromCartTrackerPC.. 3-24
UpdateShoppingCartQuantitiesTrackerPC... 3-24

4. Shipping Services
JavaServer Pages ... 4-2

Guide to Managing Purchases and Processing Orders v

shipping.jsp Template .. 4-2
Sample Browser View .. 4-2
Location in the WebLogic Portal Directory Structure 4-4
Tag Library Imports .. 4-4
Java Package Imports.. 4-4
Location in Default Webflow ... 4-5
Events.. 4-5
Dynamic Data Display .. 4-5
Form Field Specification... 4-8

selectaddress.jsp Template ... 4-9
Sample Browser View .. 4-9
Location in the WebLogic Portal Directory Structure 4-10
Tag Library Imports .. 4-10
Java Package Imports.. 4-11
Location in Default Webflow ... 4-11
Events.. 4-11
Dynamic Data Display .. 4-12
Form Field Specification... 4-16

addaddress.jsp Template .. 4-17
Sample Browser View .. 4-17
Location in the WebLogic Portal Directory Structure 4-18
Tag Library Imports .. 4-19
Java Package Imports.. 4-19
Location in Default Webflow ... 4-19
Events.. 4-19
Dynamic Data Display .. 4-20
Form Field Specification... 4-20

Input Processors... 4-22
InitShippingMethodListIP.. 4-22
UpdateShippingAddressIP ... 4-23
ValidateAddressIP.. 4-24
ValidateShippingInfoIP.. 4-25

Pipeline Components... 4-26
AddShippingAddressPC... 4-26
CalculateShippingPC ... 4-27

vi Guide to Managing Purchases and Processing Orders

DeleteShippingAddressPC ... 4-28

5. Taxation Services
Introduction to Web Services .. 5-2

Simple Object Access Protocol (SOAP) ... 5-3
Web Services Description Language (WSDL) 5-3

How the Taxation Service Works.. 5-3
JavaServer Pages (JSPs) .. 5-5

selecttaxaddress.jsp Template .. 5-5
Sample Browser View... 5-5
Location in the WebLogic Portal Directory Structure 5-6
Tag Library Imports .. 5-6
Java Package Imports .. 5-7
Location in Default Webflow.. 5-7
Included JSP Templates .. 5-8
Events .. 5-8
Dynamic Data Display .. 5-8
Form Field Specification... 5-11

Input Processors... 5-11
DecideShippingAddressPageIP.. 5-12
UpdateShippingAddressIP ... 5-12

Pipeline Components ... 5-13
TaxCalculateLineLevelPC ... 5-13
TaxCalculateAndCommitLineLevelPC ... 5-14
TaxVerifyShippingAddressPC... 5-15

Integrating with a Taxation Service... 5-15
If the Third-Party Vendor Hosts the Web Service 5-17
If Your Organization Hosts the Web Service... 5-18

6. Payment Services
How the Payment Service Works .. 6-2
JavaServer Pages (JSPs) .. 6-3

payment.jsp Template... 6-4
Sample Browser View... 6-4
Location in the WebLogic Portal Directory Structure 6-5

Guide to Managing Purchases and Processing Orders vii

Tag Library Imports .. 6-5
Java Package Imports.. 6-6
Location in Default Webflow ... 6-6
Included JSP Templates .. 6-6
Events.. 6-7
Dynamic Data Display .. 6-7
Form Field Specification... 6-9

paymentnewcc.jsp Template .. 6-9
Sample Browser View .. 6-10
Location in the WebLogic Portal Directory Structure 6-10
Tag Library Imports .. 6-11
Java Package Imports.. 6-11
Location in Default Webflow ... 6-11
Included JSP Templates .. 6-11
Events.. 6-12
Dynamic Data Display .. 6-12
Form Field Specification... 6-12

paymenteditcc.jsp Template... 6-14
Sample Browser View .. 6-14
Location in the WebLogic Portal Directory Structure 6-15
Tag Library Imports .. 6-15
Java Package Imports.. 6-16
Location in Default Webflow ... 6-16
Included JSP Templates .. 6-17
Events.. 6-17
Dynamic Data Display .. 6-17
Form Field Specification... 6-20

payment_admin.jsp, paymenthistory.jsp, and payment_info.jsp Templates....
6-21
payment_admin.jsp ... 6-21
payment_info.jsp... 6-21
paymenthistory.jsp .. 6-22

Input Processors... 6-22
PaymentAuthorizationIP .. 6-22
UpdatePaymentInfoIP .. 6-23

viii Guide to Managing Purchases and Processing Orders

Pipeline Components ... 6-24
PaymentAuthorizationHostPC ... 6-24
PaymentAuthorizationTerminalPC .. 6-25

Integrating with a Payment Service... 6-26
If the Third-Party Vendor Hosts the Web Service 6-28
If Your Organization Hosts the Web Service... 6-29

Default Payment Services Shipped With WebLogic Portal.............. 6-30
Credit Card Encryption... 6-33

7. Order Summary and Confirmation Services
JavaServer Pages (JSPs) .. 7-2

checkout.jsp Template.. 7-2
Sample Browser View... 7-2
Location in the WebLogic Portal Directory Structure 7-4
Tag Library Imports .. 7-4
Java Package Imports .. 7-5
Location in Default Webflow.. 7-5
Events .. 7-5
Dynamic Data Display .. 7-6
Form Field Specification... 7-11

confirmorder.jsp Template ... 7-11
Sample Browser View... 7-12
Location in the WebLogic Portal Directory Structure 7-13
Tag Library Imports .. 7-13
Java Package Imports .. 7-14
Location in Default Webflow.. 7-14
Events .. 7-14
Dynamic Data Display .. 7-15
Form Field Specification... 7-19

Input Processors... 7-20
Pipeline Components ... 7-20

CommitOrderPC... 7-20
ResetCheckoutPC ... 7-21
PurchaseTrackerPC .. 7-22

Guide to Managing Purchases and Processing Orders ix

8. Extending the Data Model
Data Model Extensions.. 8-2
Persistence Architecture .. 8-3
Adding Run-Time Attributes to Customer Data ... 8-6
Adding Run-Time Attributes to Other Entities ... 8-8
Extending the Schema ... 8-8

Overview of Approach to Extending the WebLogic Portal Schema 8-9
Adding Attributes Against the WLCS_CUSTOMER, WLCS_ORDER,

WLCS_TRANSACTION and WLCS_SHIPPING_METHOD Tables....
8-11

Adding Attributes Against the WLCS_ORDER_LINE Table................. 8-12
Adding Attributes Against the WLCS_CREDIT_CARD and

WLCS_SHIPPING_ADDRESS Tables.. 8-15
Transaction Management .. 8-17

9. Using the Order and Payment Management Pages
Starting the WebLogic Portal Administration Tools... 9-2
Using the Order Management Search Page... 9-4

Searching for an Order by Customer ID .. 9-4
Searching for an Order by Order Identifier Number.................................. 9-6
Searching for an Order by Date Range .. 9-8

Updating Order Status ... 9-12
Changing Order Status ... 9-12

Using the Payment Management Search Page .. 9-13
Searching for a Payment by Customer ID.. 9-14
Searching for a Payment by Status... 9-16
Authorizing, Capturing, and Settling Payments....................................... 9-17

Authorizing the Transaction.. 9-18
Capturing the Transaction... 9-19
Settling the Transaction .. 9-19

10. The Order Processing Database Schema
The Entity-Relation Diagram .. 10-1
List of Tables Comprising the Order Processing Schema............................... 10-4
The Order Processing Data Dictionary.. 10-5

x Guide to Managing Purchases and Processing Orders

The DISCOUNT Database Table... 10-5
The DISCOUNT_ASSOCIATION Database Table 10-6
The ORDER_ADJUSTMENT Database Table 10-7
The ORDER_LINE_ADJUSTMENT Database Table 10-8
The WLCS_CREDIT_CARD Database Table 10-10
The WLCS_CUSTOMER Database Table .. 10-12
The WLCS_ORDER Database Table .. 10-13
The WLCS_ORDER_LINE Database Table ... 10-15
The WLCS_SAVED_ITEM_LIST Database Table 10-17
The WLCS_SECURITY Database Table .. 10-17
The WLCS_SHIPPING_ADDRESS Database Table............................ 10-18
The WLCS_SHIPPING_METHOD Database Table............................. 10-19
The WLCS_TRANSACTION Database Table...................................... 10-21
The WLCS_TRANSACTION_ENTRY Database Table 10-23

The SQL Scripts Used to Create the Database .. 10-24
Scripts ... 10-24

Defined Constraints ... 10-28

Index

Guide to Managing Purchases and Processing Orders xi

About This Document

This document explains how to use the functionality within the BEA WebLogic
Portal� Order services.

This document includes the following topics:

� Chapter 1, �Overview of Managing Purchases and Processing Orders,� which
describes the high-level architecture for managing purchases and processing
orders. It also provides introductory information about its services.

� Chapter 2, �Discounts,� which provides background on how discounts work and
examples of how discounts are applied.

� Chapter 3, �Shopping Cart Management Services,� which describes the JSP
templates, input processors, and Pipelines associated with the shopping cart Web
pages.

� Chapter 4, �Shipping Services,� which describes the JSP templates, input
processors, and Pipelines associated with the shipping Web pages.

� Chapter 5, �Taxation Services,� which describes the Tax Web service, the JSP
templates, input processors, and Pipelines associated with the Tax Web service,
and provides instructions for connecting your enterprise applications to
third-party tax calculation products.

� Chapter 6, �Payment Services,� which describes the Payment Web service, JSP
templates, input processors, and Pipelines associated with the Payment Web
service, and provides instructions for connecting your enterprise applications to
third-party payment processing products.

� Chapter 7, �Order Summary and Confirmation Services,� which describes the
JSP templates, input processors, and Pipelines associated with the order
summary and confirmation Web pages.

xii Guide to Managing Purchases and Processing Orders

� Chapter 8, �Extending the Data Model,� which explains how to extend Order
services.

� Chapter 9, �Using the Order and Payment Management Pages,� which describes
how to find and manage customer orders and modify payment transactions.

� Chapter 10, �The Order Processing Database Schema,� which describes the
database tables used for order processing activities.

What You Need to Know

This document is intended for the following audiences:

� The business engineer (BE) or JSP content developer, who uses JSP templates
and tag libraries to implement interactive Web pages to meet business
requirements. This user also maintains simple configuration files.

� The business analyst (BA), who defines the company�s business protocols
(processes and rules) for a Web site. This user may set pricing policies and
discounts, and may plan promotional advertising.

� The site administrator, who uses the WebLogic Portal administration screens to
configure the site�s rules, portals, property sets, user profiles, content delivery,
and product catalog.

� The Java or EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �e-docs�
Product Documentation page at http://e-docs.bea.com.

Guide to Managing Purchases and Processing Orders xiii

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Portal and WebLogic
Personalization Server documentation Home page on the e-docs Web site (and also on
the documentation CD). You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format. To access the PDFs, open the
WebLogic Portal and WebLogic Personalization Server documentation Home page,
click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following WebLogic Portal documents contain information that is relevant to
using the Order services and understanding how to customize or extend the provided
functionality.

� The Guide to Managing Presentation and Business Logic: Using Webflow and
Pipeline.

� The Guide to Registering Customers and Managing Customer Services.

� The Guide to Building a Product Catalog

xiv Guide to Managing Purchases and Processing Orders

Contact Us!

Your feedback on the WebLogic Portal and WebLogic Personalization Server
documentation is important to us. Send us e-mail at docsupport@bea.com if you have
questions or comments. Your comments will be reviewed directly by the BEA
professionals who create and update the WebLogic Portal and WebLogic
Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Portal and WebLogic Personalization Server 4.0 release.

If you have any questions about this version of WebLogic Portal or WebLogic
Personalization Server, or if you have problems installing and running WebLogic
Portal or WebLogic Personalization Server, contact BEA Customer Support through
BEA WebSUPPORT at www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Guide to Managing Purchases and Processing Orders xv

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

xvi Guide to Managing Purchases and Processing Orders

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Guide to Managing Purchases and Processing Orders 1-1

1 Overview of Managing
Purchases and
Processing Orders

The process customers go through when making a purchase from your Web site is one
of the most common but complex aspects of an e-business. To help you get to market
faster than your competitors, the BEA WebLogic Portal provides out-of-the-box Order
services. These services contains default implementations for the most common
e-business order-related functions, such as shopping cart management, taxation,
payment, and so on. Moreover, these services allows your site designers to customize
the order process without the need for advanced programming skills. Additionally, it
is easily extensible for those with advanced technical knowledge. This topic provides
you with some background information about purchase management and order
processing. It also introduces you to the types of services that are available.

This topic includes the following sections:

� What Are Order Services?

� High-level Architecture

� Development Roles

� Next Steps

1 Overview of Managing Purchases and Processing Orders

1-2 Guide to Managing Purchases and Processing Orders

What Are Order Services?

Order services is a collection of services used to facilitate the online ordering process.
There are services for shipping, payment, and so on. Together, these services handle
all of the tasks necessary to process your customers� orders, from the acceptance of
items in their shopping cart to final order confirmation.

As shown in Figure 1-1, each service consists of one or more JavaServer Pages (JSPs)
templates and the business logic associated with them. Some of these templates may
collect information from your customers, while others will simply display dynamic
data your customer previously supplied. Some JSPs may do both. The logic is
implemented as a combination of input processors and Pipeline components, each of
which can be customized to suit your needs. You can also incorporate the input
processors and Pipeline components you create into the Order services.

Figure 1-1 Structure of Order Services

High-level Architecture

Guide to Managing Purchases and Processing Orders 1-3

Because all the business logic is managed by a Pipeline and accessed within a Pipeline
session, the state of your customer�s ordering experience can be maintained. For
detailed information about Pipelines (including Pipeline components and Pipeline
sessions), see the Guide to Managing Presentation and Business Logic: Using
Webflow and Pipeline.

In addition to the services available for order processing, the WebLogic Portal also
contains services for browsing the product catalog and registration/user processing.
For information on services related to the product catalog, see the Guide to Building a
Product Catalog. For information on services related to registration and user
processing, see the Guide to Registering Customers and Managing Customer Services.

High-level Architecture

Order services is essentially an application that utilizes the Webflow/Pipeline
infrastructure. Before you begin to customize or extend this application, however, it is
important that you have a high-level understanding of how all the JSP templates in this
service work together in the default Webflow. It is also important that you understand
how this functionality works in conjunction with the JSP templates in the Registering
Customers and Managing Customer services.

� For more information about the default Webflow, see the Guide to Managing
Presentation and Business Logic: Using Webflow and Pipeline.

� For more information about the Registering Customers and Managing Customer
services, see the Guide to Registering Customers and Managing Customer
Services.

Figure 1-2 shows the ways in which your customer might move through the JSP
templates in the Order services. It also shows where Registering Customers and
Managing Customer services comes into play. Only customers who have registered
and have a valid username/password combination can browse the order-related pages
(any page in the /order subdirectory). Additionally, customers who have registered
can modify their user profile, check the status of their current order, or even check their
order and payment history in the customer self-service pages (using pages in the /user
subdirectory).

1 Overview of Managing Purchases and Processing Orders

1-4 Guide to Managing Purchases and Processing Orders

Figure 1-2 Default Webflow for Order Processing

Note: All JSP templates include other templates, making it easy for you to create new
pages with the same look and feel.

Development Roles

Guide to Managing Purchases and Processing Orders 1-5

Whether you are customizing or extending this architecture, everything you need to
know about functionality in Order services (including the JSP templates, input
processors, and Pipeline components associated with them) is provided in this
document. This includes detailed information about the database schema, for those
advanced programmers who want to take their e-business site to the next level.

Development Roles

This document is intended for the following audiences:

� The business engineer/JSP content developer, who uses JSP templates and tag
libraries to implement interactive Web pages to meet business requirements. This
user also maintains simple configuration files.

� The business analyst, who defines the company�s business protocols (processes
and rules) for a business-to-consumer Web site. This user may set pricing
policies and discounts, and may plan promotional advertising.

� The site administrator, who uses WebLogic Portal administration screens to
configure the site�s rules, portals, property sets, user profiles, content delivery,
and product catalog.

� The Java/EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files.

Next Steps

Subsequent chapters of this document describe Order services in detail, and provide
you with information you need to customize or extend the default implementations to
meet your requirements. These chapters are as follows:

� �The Order Processing Database Schema�

� �Shopping Cart Management Services�

1 Overview of Managing Purchases and Processing Orders

1-6 Guide to Managing Purchases and Processing Orders

� �Shipping Services�

� �Taxation Services�

� �Payment Services�

� �Extending the Data Model�

� �Order Summary and Confirmation Services�

Campaign and Stand-Alone Discounts

Guide to Managing Purchases and Processing Orders 2-1

2 Discounts

This topic provides background information about discounts. It does not provide
instructions on creating, maintaining, and removing discounts. For instructions on how
to perform these tasks, see Guide to Using the E-Business Control Center.

This topic includes the following sections:

� Campaign and Stand-Alone Discounts

� Introduction to How Discounts Work

� Discount Management Service

� Association Service

� Price Service

� Triggers and Targets Specifications

� Examples

Campaign and Stand-Alone Discounts

There are two ways to use discounts. You can use discounts targeted to specific
customers or have them available to all customers. Discounts targeted to specific
customers are called campaing discounts. Discounts available to all customers are
called stand-alone discounts.

2 Discounts

2-2 Guide to Managing Purchases and Processing Orders

Notes: In Javadoc and API documentation, campaign discounts are referred to as user
discounts and stand-alone discounts are referred to as global discounts.

Discounts are not available if your product license is only for BEA WebLogic
Personalization Server.

Introduction to How Discounts Work

Discounts are based on either items or orders. Item discounts modify the price charged
for one or more items placed in a shopping cart. Order discounts apply to the order
subtotal.

Item discounts are based on the number of items and the properties (SKU and product
category) of each item. A discount is applied when particular quantity and property
conditions are met. The conditions are defined by the discount definition. For example,
when a customer purchases two items where SKU=T123, apply a 15% discount.

Order discounts can be applied to any order or based on the subtotal of the order. For
example, you could apply a 10% discount to every order or only to orders with
subtotals greater than $50. Additionally, you can specify whether to apply order
discounts to the order subtotal or to the shipping cost. For example, you could specify
that an order with a subtotal greater than $100 is discounted by $10 or that the order
will be shipped for free.

Note: When you specify currency amounts for a discount, the type of currency you
use must match the type of currency used for the items in your catalog.

Items that cause a discount to be offered are called trigger items and the items that are
discounted as a result are called target items. Both per item and set-based discounts are
triggered based on the item (SKU), product category, or combination of items and
product category. The discount can be targeted to the same items that triggered the
discount or targeted to other items in the product catalog.

The Discount system is comprised of the Price service, Discount Management service,
and Discount Association service. The Price service applies discounts to the items or
orders in a shopping cart. The Discount Management service defines and maintains a
set of discounts used by the Price service. The Association service is used by
campaigns to determine if a particular customer is eligible for specific discounts.

Discount Management Service

Guide to Managing Purchases and Processing Orders 2-3

These services work together to provide discounts to your customers. Each service is
described in detail in the sections that follow.

Discount Management Service

The Discount Management service defines discounts. Business Analysts or Marketing
Professionals can define discounts in the E-Business Control Center. Discount
definitions include the duration of the discount, the amount of the discount, the type of
discount, the discount limits, and the priority of each discounted item or order.

Definition Parameters

As previously mentioned, discounts are defined in the Discount Management service.
Discounts are defined by the following parameters:

� Discount Name�the name of the discount.

� Duration�the date and time a discount starts and ends.

Notes: Campaign and discount dates are independent from each other. Campaign
dates associate discounts to users. Irrespective of anything a campaigns may
or may not do, the Price service attempts to apply a discount when the current
date and time of the order is within the range of the start and end dates of the
discount.

If you deploy a discount in a different time zone from where the discount was
defined, it will deploy at the concurrent time in the local time zone. For
example, if you set the discount to deploy at 12:00 A.M. Pacific Standard
Time, it will deploy at 3:00 A.M. Eastern Standard Time.

� Discount Types�two types of discounts exist:

� Item�this type applies either to individual items in a customer�s shopping
cart (per item discount) or to a of set items in the customer�s shopping cart
(set-based discount).

� Order�this type applies to a customer�s order subtotal.

2 Discounts

2-4 Guide to Managing Purchases and Processing Orders

� Discount Limits�three types of limits exist:

� Overall Limit�applies to both per item and set-based limits. This limit is the
number of orders to which a discount can be applied for a given customer.

For example, say your store offers a 10% discount on books with an overall
limit of 2. This means that customers can receive the 10% discount for up to
two separate orders containing books. Without an overall limit, customers
would receive the 10% discount on every book order they placed.

� Per Item Trigger Limits�the minimum and maximum cardinality for
selecting trigger items.

Minimum Purchase Requirement�the minimum limit that must be reached
to trigger the discount.

Maximum Limit�the maximum number of items of a particular kind to
which a discount can be applied.

� Per Item Target Limits�specifies the number of items to select for the
target. Target item limitations are up to or exactly N, where N is a value
equal to or greater than 1.

� Set-Based Triggers�specifies the size of the trigger set. Set-based triggers
are specified exactly; the value must be equal to or greater than 1.

� Set-Based Target Limits�specifies the number of items to select for the
target. Target items limitations are up to or exactly N, where N is a value
equal to or greater than 1.

� Discount Priorities�a discount priority is a setting within the E-Business
Control Center that allows you to specify the relative importance of a discount.
The discount priority is a value in the range of 1�20, with 1 being the highest
priority.

� Stand-alone Display Description�applies only to stand-alone discounts. This
feature is available so that JSP developers can show a description of the discount
to customers.

Note: For campaign discounts, the displayed description is maintained in the
association for the user and discount.

� Active/Deactive Flag�this feature allows you to deactivate a discount if a
mistake is found in a discount. This should be used for emergencies only.

Association Service

Guide to Managing Purchases and Processing Orders 2-5

Association Service

The Campaign service uses the Association service to links discounts with particular
customers. Campaigns provides the means to target behavior and associate a behavior
with a discount. For example, in a campaign, when a customer clicks an ad or fills out
a survey, that customer becomes eligible to receive a discount. The customer�s
behavior results in making an association between a discount and the customer. The
Price service uses associations to discount items or orders for particular customers.

The association consists of a Customer ID (CustomerPk), a discount identifier (set and
discount name), and a discount display description. The Association service maintains
a count of uses for each association. The count of uses is the current value of how many
times the customer has used the discount. Stand-alone discounts are also tracked in a
similar manner. When an order is confirmed, the count of uses is updated.

Price Service

The Price service applies the discounts that are defined in the Discount Management
service. The Price service checks with the Association service to determine if a
particular customer is eligible for specific discounts. The Discount Management
service defines which items and what quantities are required for a discount and which
items receive the discounts. The items that qualify for a discount may or may not be
the same as the items that receive the discounts. The application of the discount process
is defined in terms or triggers and targets. The Shopping service uses the Price service
to apply discounts.

2 Discounts

2-6 Guide to Managing Purchases and Processing Orders

Triggers and Targets Specifications

Triggers and targets specify which items are required to activate a discount and which
items are discounted. Recall, that items that cause a discount to be offered are called
trigger items and the items that are discounted as a result are called target items. A
discount can be targeted to the same items that triggered the discount or targeted to
other items in the product catalog.

Both triggers and target specifications must be satisfied in order for a discount to be
applied. The rules for triggers and targets are quite complex. Before introducing these
rules, you should understand triggers and targets in relation to per item discounts and
set-based discounts. Both per item and set-based discounts are triggered based on the
item (SKU), product category, or combination of items and product category.

In a per item discount, each individual trigger item must be paired with items
designated by the target specification. Figure 2-1shows this relationship. Notice that in
both cases the triggers and the targets is the same.

Figure 2-1 Per Item Discount Comparison

In set-based discounts, the set of trigger items as a whole are collectively matched with
items designated by the target specification. Figure 2-2 shows a comparison of per
item and set-based discounts. Both types of discounts have the same number of triggers
and targets. However, the results are quite different: for the set-based discount a
discount is applied but not for the per item discount.

Triggers and Targets Specifications

Guide to Managing Purchases and Processing Orders 2-7

Figure 2-2 Set-based Discount Versus Per Item Discount

Two Examples of Using Triggers and Targets

Example 1: Per Item Discounts

Trigger Specification: Up to 5 bats
Target Specification: 1 baseball

For per item discounts, select the trigger items and for each trigger item, and then pair
each individual trigger item with the items designated by the target specification. If the
target specification is 1 item and 5 trigger items are available, then 5 target items (if
available) will be discounted. To illustrate this, suppose that your target item is a
baseball and your trigger item is your line of baseball bats, all belonging to the same
category. If a customer buys one bat from the bat category, the customer will get a free
baseball, and if a customer buys two bats, two baseballs will be free, and so on up to
five baseballs.

Example 2: Set-based Discounts

Trigger Specification: 5 CDs
Target Specification: 1 CD Wallet

2 Discounts

2-8 Guide to Managing Purchases and Processing Orders

For set-based discounts, select the trigger items that match the pattern described by the
trigger specification, and then select a collection of targets that match the target
specifications. For example, if the target is a single item and the trigger items are any
five items, only 1 target item will be discounted, such as a CD Wallet. For example, if
a customer buys any 5 CDs, the customer will get 1 free CD Wallet. If the customer
buys only 4 CDs, the customer will not get a CD Wallet. If the customer buys 10 CDs,
the customer will get only 1 CD Wallet.

An extensive list of trigger and target examples is in �Examples� on page 2-10. It
shows a number of examples to illustrate the different discount combinations.

Consumption Model

To explain how the discounting operation works, a consumption model is used. Before
describing how the model works, some terminology needs to be clarified. An item is
one particular product represented by its SKU, such as a DVD player where
SKU=T123. A line item is a particular product and its quantity, such as DVD player
where quantity=3 and SKU=T123. The consumption model is based on items. Each
item can be discounted only once; a line item where quantity=N may have up to N
discounts. For example, you could offer a discount where your customers would
receive a 15% price reduction if they buy two or more cases of dog food on each case
up to 10 cases.

The Price Service applies discounts to a pool of items according to the discount
definition. When a discount is applied to a pool of items, the set of items (triggers and
targets) that match the discount definition are removed from the pool. The Price
service continues to apply discounts to the items that match the discount definition and
then remove those items from the pool until it runs out of discounts, or until no more
items lie within the pool, or until no discounts match the remaining items. Recall that
each item can be discounted only once.

The consumption model ensures that the items are consumed as the discount is applied.
No item may be used to trigger two items and no item may be discounted more than
once.

Triggers and Targets Specifications

Guide to Managing Purchases and Processing Orders 2-9

How Discounts Are Applied

The Price service gets stand-alone discounts for every pricing operation. A pricing
operation is the process of examining the contents of a shopping cart or order and
applying the appropriate discounts. Recall that the order discount can be applied to
either the order subtotal or shipping charges. If a customer is specified in the request
to the Price service, that customer�s campaign discounts are applied; the Price service
calls the Association service to get a list of associations for that customer, and then gets
the discounts for those associations.

Discounts are applied in the following manner: The Price service first separates item
discounts from order discounts. It then sorts item discounts by the priority, with 1
being the highest priority. Next, the Price service applies discounts to the set of items
and computes the subtotal (that is, the sum of the line item prices). At this point, the
Price service starts applying the order discounts. It first sorts the order discounts by
priority and then applies them. After all the order discounts are applied, the discount
process is complete.

Priority

Item or order discounts are sorted by priority from 1 to 20, with 1 being the highest
priority. Priority is especially important when two or more discounts refer to a similar
collection of items. More specifically, if trigger and target specifications of two or
more discounts potentially select the same items, the discounts conflict.

If two or more discounts have the same priority, each discount is still eligible for
application. The order in which discounts with the same priority are applied is random.
Recall that each item may be discounted only once. A line item with quantity=3 may
have three discounts applied. The Price service applies all possible discounts.

Note: For best results, you should avoid conflicting discounts by adjusting the
priorities.

2 Discounts

2-10 Guide to Managing Purchases and Processing Orders

How Discounts Are Calculated

There are three methods for adjusting prices on a product: a percentage off discount, a
fixed off discount, and a fixed price discount. For each discount method, a calculator
(class) exists in the Price service that calculates the new price for an item based on a
value, such as 5% or $5. You can use the E-Business Control Center to set these values.
Each method is defined in the following list:

� Percentage Off Discount�A discount where the price is reduced by a certain
percentage, such as 10% off. The calculator applies the following formula:

newPrice = oldPrice(1 � value), where 0.0 =< value <=1.0 and value is a
property of the discount definition. For example, $90 = $100(1 � .1).

� Fixed Off Discount�A discount where the price of an item is reduced by a set
monetary value such as $5 off. The calculator can never reduce the item price
below zero. The calculator applies the following formula:

newPrice = oldPrice � value, where value is any non-negative monetary value.
For example, $45 = $50 � $5.

� Fixed Price Discount�A discount where the price is reduced to a particular
price. The calculator applies the following formula:

 newPrice = value, where value is any non-negative monetary value. For
example, $12 = $12, where the original price was $15.

You can use a fixed price discount to raise the price of an item.

Note: When you specify currency amounts for a discount, the type of currency you
use must match the type of currency used for the items in your catalog.

Examples

This section provides a number of examples for using triggers and targets for item
discounts and order discounts.

Examples

Guide to Managing Purchases and Processing Orders 2-11

Item Discounts

This section provides information about the form of item discount rules and examples
of the rules. Before the form of the rules can be explained, some terminology needs to
be explained. The following list describes this terminology.

� [Square Brackets] denotes optional elements.

� An asterisk (*) denotes zero or more of the preceding element.

� A <discount modifier> refers to the type of calculation: percentage off, fixed off,
or fixed price.

� When the term �each qualifying item� is used it refers to each qualifier. In the
case of �each set of <x> items� or �the set of all items,� the set becomes the one
qualifying item.

� Attributes are either SKU or category.

Other elements are defined in the context of the discount rule or explanation.

Form of Discount Rules

Discount rules have a particular structure. The form of each part of a discount rule is
presented, along with examples.

General Form

The general form of a discount has the following structure:

<qualifier clause> apply a <discount modifier> discount to <target clause>

Examples

Rule: For all items where SKU=123, apply a 10% discount to each qualifying item.

What It Means: Apply a 10% discount to all items.

Rule: For all items, apply a $5 discount to each qualifying item.

What It Means: Reduce the price of each item by $5.

2 Discounts

2-12 Guide to Managing Purchases and Processing Orders

Qualifier Clause with Property Clauses

The qualifier clause consists of the following forms:

<qualifier phrase> [AND <qualifier phrase>]*

The AND condition allows you to link phrases together.

The complete qualifier phrases consist of the following:

For <qualifier quantity clause> [<property clause> [OR <property clause>]*]

The OR condition allows you to specify conditions based on one set of properties or a
different set of properties.

Per Item Discount with an OR Clause Example

Rule: For all items where Category=ABC or SKU=123, apply a 10% discount to each
qualifying item.

What It Means: Apply a 10% discount to all items that have a SKU of 123 or belong
to category ABC.

Per Item Discount with an AND Clause Example

Rule: For 3 items where Category=ABC and 2 items where SKU=123 items, apply a
$5 fixed price discount to each qualifying item.

What It Means: For 5 items in a shopping cart where 3 items belong to
Category=ABC and 2 items having SKU=123, reduce the price of each qualifying item
by $5.

Other Per Item Discount Examples

Rule: For at least 3 items where SKU=123, apply a $10 fixed off discount to 2 items
where Category=books for each qualifying item.

What It Means: If 5 items with SKU=123 exist and 9 items from the Category=books
exist, 8 of the Category=books items are discounted. If 2 items with SKU=123 exist
and any number of items from the Category=books exists, none of the Category=books
items are discounted.

Rule: For between 3 and 5 items where SKU=123, apply a $10 fixed off discount for
up to 2 items where Category=books for each qualifying item.

Examples

Guide to Managing Purchases and Processing Orders 2-13

What It Means: If 6 items with SKU=123 exist and 14 items from the
Category=books exist, 10 of the Category=books items are discounted. If 4 items with
SKU=123 exist and 12 items from the Category=books exist, 8 of the Category=books
items are discounted. If 2 items with SKU=123 exist and any number of items from the
Category=books exists, none of the Category=books items are discounted.

Set Discounts Examples

Rule: For each set of 2 items where SKU=123, apply a 10% discount to each
qualifying item.

What It Means: Apply a 10% discount to every group of 2 items with SKU=123
selected from the shopping cart. If 5 items with SKU=123 exist, 4 are discounted; if 1
item with SKU=123 exists, none are discounted.

Rule: For each set of 2 items where SKU=123, apply a $10 fixed off discount to 2
items.

What It Means: For every group of 2 items of SKU=123, 2 items (of any kind) are
discounted. If 5 items with SKU=123 exist and 6 other items exist, 4 of the other items
are discounted; if 5 items with SKU=123 exist and 3 other items exist, 2 of the other
items are discounted.

Order Rules

The form of order rules is much more simple than the rules for item discounts. The
following list describes the basic rules.

Rule: For order subtotal >= $50, apply a 10% discount to qualifying order.

What It Means: For any order subtotal greater then $50 apply a 10% to the order
subtotal.

Rule: For order subtotal >= $50 AND order subtotal <= $100 apply a 10% discount to
qualifying item.

What It Means: For any order subtotal between $50 and $100, apply a 10% to the
order subtotal.

Rule: For order subtotal >= $100, apply a 10% discount to shipping.

2 Discounts

2-14 Guide to Managing Purchases and Processing Orders

What It Means: For any order subtotal greater then $100, apply a 10% to the cost of
shipping.

Rule: For order subtotal >= $100 OR order subtotal <= $25 apply a 10% discount to
shipping.

What It Means: For any order subtotal less than $25 or greater than $100 apply a 10%
discount to the shipping costs.

Guide to Managing Purchases and Processing Orders 3-1

CHAPTER

3 Shopping Cart
Management Services

As in a physical store, a shopping cart is the mechanism used to store items that a
customer decides to purchase from your e-business. Implicitly, the cart also stores
various types of information related to these items: a unique identifier, a quantity, a
price, discounts, taxes, and so on. Customers need to be able to manage their shopping
cart by adding and removing items. This topic provides you with information about the
Shopping Cart Management Services, which allow your customers to perform these
activities.

This topic includes the following sections:

� JavaServer Pages (JSPs)

� shoppingcart.jsp Template

� Input Processors

� DeleteProductItemFromShoppingCartIP
� EmptyShoppingCartIP
� InitShoppingCartIP
� UpdateShoppingCartQuantitiesIP
� UpdateSkuIP

� Pipeline Components

� DeleteProductItemFromSavedListPC
� MoveProductItemToSavedListPC
� MoveProductItemToShoppingCartPC
� RefreshSavedListPC

3 Shopping Cart Management Services

3-2 Guide to Managing Purchases and Processing Orders

� PriceShoppingCartPC
� AddToCartTrackerPC
� RemoveFromCartTrackerPC
� UpdateShoppingCartQuantitiesTrackerPC

JavaServer Pages (JSPs)

Order services contains one JavaServer Page (JSP) that allows your customers to
manage their shopping cart. You can choose to utilize this page in its current form, or
adapt it to meet your specific needs. This section describes this page in detail.

Note: For a description of the complete set of JSPs used in the WebLogic Portal Web
application and a listing of their locations in the directory structure, see the
E-Commerce JSP Template Summary.

Common JSP Template Elements

Several elements are common to all JSP commerce templates. The callouts in
Figure 3-1 point out each common element; a description of each element follows the
figure.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-3

Figure 3-1 Common Commerce JSP Template Elements

1. The Commerce Templates header (admin.inc) contains useful information for the
benefit of your development team. The import call is:

<%@ include file="/commerce/includes/admin.inc" %>

2. The page header is created by importing the header.inc template. It is standard
across many of the JSP templates provided by WebLogic Portal. The import call
is:

<%@ include file="/commerce/includes/header.inc" %>

3. The left column is created by importing the leftside.inc template. It is also a
secondary placeholder for advertising. It is standard across many of the JSP
templates provided by WebLogic Portal. The import call is:

3 Shopping Cart Management Services

3-4 Guide to Managing Purchases and Processing Orders

<%@ include file="/commerce/includes/leftside.inc" %>

4. The page footer is created by importing the footer.inc template. It is standard
across many of the JSP templates provided by WebLogic Portal. The import call
is:

<%@ include file="/commerce/includes/footer.inc" %>

shoppingcart.jsp Template

The shoppingcart.jsp template (shown in Figure 3-2 and Figure 3-3) displays the
items currently in a customer�s shopping cart. For each item the customer added to
their cart (that is still actively part of the current purchase), the shoppingcart.jsp
template displays the quantity, the item name, the list price, the actual price, a savings
amount, and a subtotal. Following this information, a total price for the order is
displayed.

The item quantity is shown in an editable field, allowing customers to change the
quantity of the item simply by typing a new quantity and clicking the Update button.
For your customers� convenience, the item name is hyperlinked back to its description
in the product catalog. For each item in the shopping cart, there is also a Delete button
and a Buy Later button. Clicking the Delete button removes the item from the shopping
cart, while clicking the Buy Later button causes the item to be moved from the
Shopping Cart to the Saved Items list. For each item shown in the Saved Items list, the
hyperlinked item name and a brief description are displayed. Additionally, the Delete
and Add to Cart buttons in this section allow your customers to remove the item
altogether or to move it back to their active Shopping Cart.

Notes: To be able to use the features of the Saved Items list, a customer must have
first logged in.

If there are no items in a customer�s shopping cart, the Empty Cart, Update,
and Check Out buttons will not be available.

If the customer is satisfied with the contents of their shopping cart, the customer can
click the Check Out button to begin the checkout process.

Note: If the customer is not logged into your e-commerce site, they will be prompted
to do so before continuing to the next part of the checkout process.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-5

If your customer wants to start over, the customer can click the Empty Cart button to
empty the entire contents of the shopping cart (both active and saved). If your customer
wants to continue shopping, the customer can click the Continue Shopping button to
return to the product catalog.

Sample Browser View

Figure 3-2 and Figure 3-3 show annotated versions of the shoppingcart.jsp
template; the first figure shows the page for a customer who has not logged in, the
second shows the page for a customer who has logged in. The main content area of the
template contains both dynamically generated data and static content. The dynamic
content on shoppingcart.jsp is generated using WebLogic Server and Pipeline JSP
tags, which obtain and display the contents for both the active shopping cart and Saved
Item list. For the shoppingcart.jsp template, the form posts include Empty Cart,
Check Out, Remove, Update, and Continue.

Note: For information on other elements in the shoppingcart.jsp template, see
�Common JSP Template Elements� on page 3-2.

3 Shopping Cart Management Services

3-6 Guide to Managing Purchases and Processing Orders

Figure 3-2 Annotated shoppingcart.jsp Template - Customer Not Logged In

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-7

Figure 3-3 Annotated shoppingcart.jsp Template - Customer Logged In

In Figure 3-3, the following changes occur after the user has logged in:

1. The Login link changes to Logout.

2. A welcome section appears that shows the customer�s name, a link to view that
customer�s profile, and a link to logout.

3. A view history section appears that shows the customer�s order and payment
history.

3 Shopping Cart Management Services

3-8 Guide to Managing Purchases and Processing Orders

Location in the WebLogic Portal Directory Structure

You can find the shoppingcart.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal.

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\shoppingcart.jsp
(Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/shoppingcart.jsp
(UNIX)

Tag Library Imports

The shoppingcart.jsp template uses WebLogic Server and Pipeline JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %>

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications. For more
information about the Pipeline JSP tags, see the Guide to Registering
Customers and Managing Customer Services.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The shoppingcart.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="java.util.*" %>

<%@ page import="java.text.*" %>

<%@ page import="com.beasys.commerce.axiom.units.*" %>

<%@ page import="examples.wlcs.sampleapp.shoppingcart.*" %>

<%@ page import="examples.wlcs.sampleapp.price.service.DiscountPresentation" <%@
page import="examples.wlcs.sampleapp.price.quote.OrderAdjustment" %>

<%@ page import="examples.wlcs.sampleapp.price.quote.AdjustmentDetail" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

<%@ page import="com.beasys.commerce.webflow.PipelineSessionConstants" %>

<%@ page import="com.bea.p13n.appflow.webflow.WebflowJSPHelper" %>

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-9

Location in Default Webflow

Customers can arrive at shoppingcart.jsp template from any product catalog page
by clicking the View Cart button. If the customer is satisfied with the contents of their
shopping cart as shown on this page, the customer can initiate the checkout process by
clicking the Check Out button. If this is the case, the next page is the shipping
information page (shipping.jsp).

Note: If the customer has not yet logged into the site and clicks the Check Out button,
the customer will be prompted to log in at the login.jsp template (prior to
loading the shipping.jsp template). For more information about the
login.jsp template, see the Guide to Registering Customers and Managing
Customer Services.

If customers click a link to an individual product item to review detailed information
about that product item, the next page is the appropriate product catalog page. If they
click on the Update, Empty Cart, Delete, or Save for Later buttons, they are returned
to the shopping cart page (shoppingcart.jsp) after the appropriate input processor
or Pipeline has been executed to record the modification.

This JSP is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

Every time a customer clicks a button to manage the contents of their shopping cart, it
is considered an event. Each event triggers a particular response in the default
Webflow that allows the customer to continue. While this response can be to load
another JSP, it is usually the case that an input processor and/or Pipeline is invoked
first. Table 3-1 provides information about these events and the business logic they
invoke.

Table 3-1 shoppingcart.jsp Events

Event Webflow Response(s)

-- InitShoppingCartIP

-- RefreshSavedList

3 Shopping Cart Management Services

3-10 Guide to Managing Purchases and Processing Orders

Table 3-2 briefly describes each of the Pipelines from Table 3-1. For more information
about individual Pipeline components, see �Pipeline Components� on page 3-19.

Notes: Although the InitShoppingCartIP and RefreshSavedList Pipeline are
associated with the shoppingcart.jsp template, they are not triggered by
events on the page. Rather, both are executed before the shoppingcart.jsp
is viewed. The InitShoppingCartIP input processor creates an empty

button.checkout InitShippingMethodListIP

button.deleteItemFromShoppingCart DeleteProductItemFromShoppingCartIP

button.deleteItemFromSavedList UpdateSkuIP
DeleteProductItemFromSavedList

button.emptyShoppingCart EmptyShoppingCartIP

button.moveItemToSavedList UpdateSkuIP

MoveProductItemToSavedList

button.moveItemToShoppingCart UpdateSkuIP
MoveProductItemToShoppingCart

button.updateShoppingCartQuantities UpdateShoppingCartQuantitiesIP

Table 3-1 shoppingcart.jsp Events

Event Webflow Response(s)

Table 3-2 Shopping Cart Pipelines

Pipeline Description

RefreshSavedList Contains RefreshSavedListPC and is not transactional.

DeleteProductItemFromSavedList Contains DeleteProductItemFromSavedListPC and
PriceShoppingCartPC, and is transactional.

MoveProductItemToSavedList Contains MoveProductItemToSavedListPC and
PriceShoppingCartPC, and is transactional.

MoveProductItemToShoppingCart Contains MoveProductItemToShoppingCartPC and
PriceShoppingCartPC, and is transactional.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-11

shopping cart in preparation for the customer�s shopping experience, while the
RefreshSavedList Pipeline retrieves a customer�s list of previously saved
shopping cart items.

For information about the AddProductItemToShoppingCartPC, a Pipeline
component invoked in a Pipeline prior to display of the shoppingcart.jsp
template, see the �Product Catalog JSP Templates and Tag Library� in the
Guide to Building a Product Catalog.

Dynamic Data Display

One purpose of the shoppingcart.jsp template is to display the data specific to a
customer�s shopping experience for their review. This is accomplished on
shoppingcart.jsp using a combination of WebLogic Server and Pipeline JSP tags
and accessor methods/attributes.

First, the getProperty JSP tag retrieves the SHOPPING_CART and
SAVED_SHOPPING_CART attributes from the Pipeline session. Table 3-3 provides more
detailed information on these attributes.

Listing 3-1 illustrates how these attributes are retrieved from the Pipeline session using
the getProperty JSP tag.

Listing 3-1 Retrieving Shopping Cart Attributes

<webflow:getProperty id="shoppingCart"
property="<%=PipelineSessionConstants.SHOPPING_CART%>"
type="examples.wlcs.sampleapp.shoppingcart.ShoppingCart" scope="session"
namespace="sampleapp_main" />

Table 3-3 shoppingcart.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.SAVED_SHOPPING_CART

examples.wlcs.sampleapp.shopp
ingcart.ShoppingCart

The saved shopping cart
(source of the saved items).

PipelineSessionConstants
.SHOPPING_CART

examples.wlcs.sampleapp.shopp
ingcart.ShoppingCart

The currently active
shopping cart.

3 Shopping Cart Management Services

3-12 Guide to Managing Purchases and Processing Orders

<webflow:getProperty id="savedShoppingCart"
property="<%=PipelineSessionConstants.SAVED_SHOPPING_CART%>"
type="examples.wlcs.sampleapp.shoppingcart.ShoppingCart" scope="session"
namespace="sampleapp_main" />

Note: For more information on the getProperty JSP tag, see the Guide to
Registering Customers and Managing Customer Services.

The data stored within the Pipeline session attributes is accessed by using accessor
methods/attributes within Java scriptlets. Table 3-4 provides more detailed
information about these methods for ShoppingCart (also savedShoppingCart),
while Table 3-5 provides this information for ShoppingCartLine.

Because the getShoppingCartLineCollection() method allows you to retrieve a
collection of the individual lines within a shopping cart, there are also accessor
methods/attributes you can use to break apart the information contained within each
line. Table 3-5 provides information about these methods/attributes.

Table 3-4 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

getShoppingCartLineCollection() A collection of the individual lines in the shopping cart (that is,
ShoppingCartLine).

getTotal In this instance, the total tax specified by the
OrderConstants.LINE_TAX parameter.

Note: The getTotal() method also allows you to
combine different total types. For more
information, see the Javadoc.

Table 3-5 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity() The quantity of the item.

getProductItem() The product item in the shopping cart line.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 3-13

Listing 3-2 provides an example of how these accessor methods/attributes are used
within Java scriptlets.

Note: The ProductItem object is described in the Guide to Building a Product
Catalog.

Listing 3-2 Using Accessor Methods Within shoppingcart.jsp Java Scriptlets

<<td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext" nowrap>

<%-- The i18n tag allows the "currency.properties" file to substitute a display --%>

<%-- currency value (e.g "$") for the returned 3 letter ISO4217 code (e.g. "USD"). --%>

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getProductItem().getMsrp().getCurrency() %>"/>

<%= WebflowJSPHelper.priceFormat(
shoppingCartLine.getProductItem().getMsrp().getValue()) %></div>

</td>

<td align="right" valign="top"><div class="tabletext" nowrap>

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getUnitPrice().getCurrency() %>"/>

<%= WebflowJSPHelper.priceFormat(shoppingCartLine.getUnitPrice().getValue()) %></div>

</td>

<td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext" nowrap>

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getBaseSavings().getCurrency() %>"/>

<%= WebflowJSPHelper.priceFormat(shoppingCartLine.getBaseSavings().getValue())
%></div>

</td>

<td align="right" valign="top"><div class="tabletext" nowrap>

getUnitPrice() The current price for the item at the time it was added to
the shopping cart. May be different from MSRP.

getBaseTotal(int
totalType)

The total before discounts.

Table 3-5 ShoppingCartLine Accessor Methods/Attributes (Continued)

Method/Attribute Description

3 Shopping Cart Management Services

3-14 Guide to Managing Purchases and Processing Orders

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getBaseTotal().getCurrency() %>"/>

<%= WebflowJSPHelper.priceFormat(shoppingCartLine.getBaseTotal().getValue()) %>

</div>

</td>

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

Form Field Specification

Another purpose of the shoppingcart.jsp template is to allow customers to make
changes to their shopping cart using various HTML form fields. These form fields are
also used to pass needed information to the Webflow.

The form fields used in the shoppingcart.jsp template, and a description for each
of them, are listed in Table 3-6.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CATALOG_ITEM_SKU %>) for use in the JSP.

Table 3-6 shoppingcart.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(shoppingcart.jsp), used by
the Webflow.

HttpRequestConstants.
CATALOG_ITEM_SKU

Hidden SKU of the item that the event is to
operate on.

NewQuantity_<SKU>

Where <SKU> is replaced with the
SKU of the item on the shopping cart
line.

Textbox The new quantity for the item in
the shopping cart. It is the only
form field on this page that requires
input from the customer.

Input Processors

Guide to Managing Purchases and Processing Orders 3-15

Input Processors

This section provides a brief description of each input processor associated with the
Shopping Cart Management Services JSP template(s).

Note: For information about the InitShippingMethodListIP input processor, see
the input processors listed in �Shipping Services� on page 4-1.

DeleteProductItemFromShoppingCartIP

Class Name examples.wlcs.sampleapp.shoppingcart.webflow.

DeleteProductItemFromShoppingCartIP

Description Removes the item from the shopping cart.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.

3 Shopping Cart Management Services

3-16 Guide to Managing Purchases and Processing Orders

EmptyShoppingCartIP

r

InitShoppingCartIP

Class Name examples.wlcs.sampleapp.shoppingcart.webflow.

EmptyShoppingCartIP

Description Creates a new shopping cart and stores it in the Pipeline session. The old shopping
cart is discarded.

Required
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS
PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name examples.wlcs.sampleapp.shoppingcart.webflow.

InitShoppingCartIP

Description Initializes the active shopping cart prior to loading the shoppingcart.jsp
template. If the shopping cart already exists, this input processor does nothing.

Required
HTTPServletRequest

Parameters

None

Input Processors

Guide to Managing Purchases and Processing Orders 3-17

UpdateShoppingCartQuantitiesIP

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name examples.wlcs.sampleapp.shoppingcart.webflow.

UpdateShoppingCartQuantitiesIP

Description Validates the quantity fields for each line and sets those quantities in the shopping
cart. If the quantity is zero, it will delete the item from the shopping cart.

Required
HTTPServletRequest

Parameters

NewQuantity_<SKU>

Where <SKU> is replaced with the SKU of the item on the shopping cart line.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS
PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

Removed Pipeline
Session Attributes

None

Validation Verifies that the quantity fields only contain positive integers.

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.

3 Shopping Cart Management Services

3-18 Guide to Managing Purchases and Processing Orders

UpdateSkuIP

Class Name examples.wlcs.sampleapp.shoppingcart.webflow.

UpdateSkuIP

Description Reads the SKU from the HTTP request and places it into the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters are not
available.

Pipeline Components

Guide to Managing Purchases and Processing Orders 3-19

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Shopping Cart Management Services JSP template(s).

Notes: For information about the AddProductItemToShoppingCartPC, invoked
prior to display of the shoppingcart.jsp template, see �the Product Catalog
JSP Templates and Tag Library� in the Guide to Building a Product Catalog.

Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

DeleteProductItemFromSavedListPC

Class Name examples.wlcs.sampleapp.shoppingcart.pipeline.Delete
ProductItemFromSavedListPC

Description Removes the item from the saved list and updates the
WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.Delete
ProductItemFromSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes
are not available.

3 Shopping Cart Management Services

3-20 Guide to Managing Purchases and Processing Orders

MoveProductItemToSavedListPC

Class Name examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Description Removes the item from the shopping cart, adds it to the saved list, and then updates
the WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM
PipelineSessionConstants.QUANTITY

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

Pipeline Components

Guide to Managing Purchases and Processing Orders 3-21

MoveProductItemToShoppingCartPC

Class Name examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToShoppingCartPC

Description Removes the item from the saved list, adds it to the shopping cart with a quantity of
1, and then updates the WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.

pipeline.MoveProductItemToShoppingCartPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

3 Shopping Cart Management Services

3-22 Guide to Managing Purchases and Processing Orders

RefreshSavedListPC

PriceShoppingCartPC

Class Name examples.wlcs.sampleapp.shoppingcart.pipeline.
RefreshSavedListPC

Description Queries the WLCS_SAVED_ITEM_LIST table and refreshes the saved shopping
cart in the Pipeline session. The saved list is only refreshed if the saved shopping
cart does not exist in the Pipeline session.

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
RefreshSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

Class Name examples.wlcs.sampleapp.shoppingcart.pipeline.PriceShoppi
ngCartPC

Description Invokes the Pricing Service to compute the line totals, discounts, shopping cart total
and shopping cart discounts

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Pipeline Components

Guide to Managing Purchases and Processing Orders 3-23

AddToCartTrackerPC

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown if the Pricing Service fails in any way

Class Name examples.wlcs.sampleapp.tracking.pipeline.AddToCartTracke
rPC

Description Fires an AddToCartEvent describing which item was just added to the cart. For
more information about this event, see Event Details in the Guide to Events and
Behavior Tracking.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None

3 Shopping Cart Management Services

3-24 Guide to Managing Purchases and Processing Orders

RemoveFromCartTrackerPC

UpdateShoppingCartQuantitiesTrackerPC

Class Name examples.wlcs.sampleapp.tracking.pipeline.RemoveFromCartT
rackerPC

Description Fires a RemoveFromCartEvent describing which item was just added to the cart.
For more information about this event, see Event Details in the Guide to Events and
Behavior Tracking.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None

Class Name examples.wlcs.sampleapp.tracking.pipeline.
UpdateShoppingCartQuantitiesTrackerPC

Description For each shopping cart line, if more items in the line were selected, fires an
AddToCartEvent; if fewer items in that line were selected, fires a
RemoveFromCartEvent; if the number of items in that line is the same as before,
no event is fired.

Pipeline Components

Guide to Managing Purchases and Processing Orders 3-25

Required Pipeline
Session Attributes

PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

PipelineSessionConstants.UPDATED_QUANTITY_DELTAS

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None

3 Shopping Cart Management Services

3-26 Guide to Managing Purchases and Processing Orders

Guide to Managing Purchases and Processing Orders 4-1

CHAPTER

4 Shipping Services

In Order services, Shipping Services record the shipping information related to a
customer�s order and calculate shipping costs. This topic describes the Shipping
Services in detail, and provides information about how you can customize them to
meet your specific needs.

This topic includes the following sections:

� JavaServer Pages

� shipping.jsp Template

� selectaddress.jsp Template

� addaddress.jsp Template

� Input Processors

� InitShippingMethodListIP

� UpdateShippingAddressIP

� ValidateAddressIP

� ValidateShippingInfoIP

� Pipeline Components

� AddShippingAddressPC

� CalculateShippingPC

� DeleteShippingAddressPC

4 Shipping Services

4-2 Guide to Managing Purchases and Processing Orders

JavaServer Pages

Shipping Services in Order services consist of three JavaServer Pages (JSPs) that you
can use as is, or customize to your own liking. This section describes each of these
pages in detail.

Note: For a description of the complete set of JSPs used in the WebLogic PortalWeb
application and a listing of their locations in the directory structure, see the
E-Commerce JSP Template Summary.

shipping.jsp Template

The shipping.jsp template (shown in Figure 4-1) allows the customer to select and
input shipping details for the order. Shipping details include the shipping method (such
as standard, second day air, and so on), shipping preference (all at once or as items
become available) and any special shipping instructions the customer may want to
specify.

If the customer is satisfied with the shipping details for the order, the customer can
click the Continue button to continue to the next part of the checkout process. If the
customer had forgotten something or wanted to do something else to their order, the
customer can click the Back button instead.

Sample Browser View

Figure 4-1 shows an annotated version of the shipping.jsp template. A discription
of the annotated regions follow the figure.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-3

Figure 4-1 Annotated shipping.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. This region displays dynamic data related to the possible shipping methods. This
is accomplished using a combination of WebLogic Server and Pipeline JSP tags
that obtain and display each shipping method. Along with the other shipping details
described in regions 2 and 3, the form posts the customer's selected shipping
method.

2. This region, called the splitting preference, does not contain dynamic data. There
are only two preferences: wait until the entire order is ready before shipping or
ship the items as they become available. Along with the other shipping details
described in regions 1 and 3, the form posts the customer�s selected splitting
preference.

3. This region of the shipping.jsp template contains a simple input box, allowing
the customer to enter any special instructions with regard to shipping. Again, no
dynamic data is displayed in this region. Along with the other shipping details
described in regions 1 and 2, the form posts any special instructions the customer
specifies.

4 Shipping Services

4-4 Guide to Managing Purchases and Processing Orders

Note: For information on other elements in the shipping.jsp template, see
�Common JSP Template Elements� on page 3-2.

Location in the WebLogic Portal Directory Structure

You can find the shipping.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%applications\wlcsApp\wlcs\commerce\order\

shipping.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

shipping.jsp (UNIX)

Tag Library Imports

The shipping.jsp template uses WebLogic Server and Pipeline JSP tags. Therefore,
the template includes the following JSP tag libraries:

<%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="webflow.tld" prefix="webflow" %>

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications. For more
information about the Pipeline JSP tags, see the Guide to Managing
Presentation and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The shipping.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="java.util.*" %>
<%@ page import="java.text.*" %>
<%@ page import="examples.wlcs.sampleapp.shipping.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>
<%@ page import="com.beasys.commerce.webflow.PipelineSessionConstants" %>

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-5

Location in Default Webflow

The shipping.jsp template follows the page where the customer manages their
shopping cart (shoppingcart.jsp), or any product catalog page where the customer
clicks the View Cart button. The next page allows the customer to select a shipping
address (selectaddress.jsp).

This template is in the sampleapp_order namespace.

Notes: If the customer has not yet logged into the site and clicks the Check Out button
on the shopping cart page, the customer will be prompted to log in at the
login.jsp template prior to loading the shipping.jsp. For more
information about the login.jsp template, see the Guide to Registering
Customers and Managing Customer Services.

For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

The shipping.jsp template presents a customer with two buttons, each of which is
considered an event. Each event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 4-1 provides
information about these events and the business logic they invoke.

Dynamic Data Display

One purpose of the shipping.jsp template is to display information about the
possible shipping methods for the order. This is accomplished on shipping.jsp
using a combination of WebLogic Server JSP tags, Pipeline JSP tags and accessor
methods/attributes.

Table 4-1 shipping.jsp Events

Event Webflow Response(s)

button.back No business logic required. Loads shoppingcart.jsp.

button.continue ValidateShippingInfoIP.

4 Shipping Services

4-6 Guide to Managing Purchases and Processing Orders

First, the getProperty JSP tag retrieves the SHIPPING_METHOD_LIST attribute from
the Pipeline session. Table 4-2 provides more detailed information about this attribute.

Listing 4-1 illustrates how this attribute is retrieved from the Pipeline session.

Listing 4-1 Retrieving the Shipping Method Attribute

<webflow:getProperty id="shippingMethodListObject"
property="<%=PipelineSessionConstants.SHIPPING_METHOD_LIST%>"
type="java.util.List" scope="session" namespace="sampleapp_main" />

Note: For more information on the getProperty JSP tag, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

The data stored within this Pipeline session attribute is then accessed by using accessor
methods/attributes within Java scriptlets. Table 4-3 provides more detailed
information about these methods for ShippingMethodValue.

Listing 4-2 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Table 4-2 shipping.jsp Dynamic Data Specification

Attribute Type Description

PipelineSessionConstants
.SHIPPING_METHOD_LIST

List of
examples.wlcs.sampleapp.shipp
ing.ShippingMethodValue

The list of available shipping
methods.

Table 4-3 ShippingMethodValue Accessor Methods/Attributes

Method/Attribute Description

description A description of the shipping method.

identifier Key in the database for the shipping method.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-7

Listing 4-2 Using Accessor Methods Within shipping.jsp Java Scriptlets

<wl:repeat set="<%=shippingMethodList%>" id="shippingMethodValue"
type="ShippingMethodValue" count="100">

<tr>

<td width="1%" valign="top">

<!-- put up a button for each of item -->

<%

if((previousShippingMethodValue != null &&
shippingMethodValue.identifier.equals(previousShippingMethodValue.identifier)) ||

(previousShippingMethodValue == null && defaultShippingMethod == true))

{

shippingMethodCheckedStatus = "CHECKED";

defaultShippingMethod = false;

}

else

{

shippingMethodCheckedStatus = "";

}

%>

<input <%=shippingMethodCheckedStatus%> type="radio"
name="<%=HttpRequestConstants.SHIPPING_METHOD%>"
value="<%=shippingMethodValue.identifier%>">

</td>

<td valign="top">

<div class="tabletext"><%=shippingMethodValue.description%></div>

</td>

</tr>

</wl:repeat>

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

4 Shipping Services

4-8 Guide to Managing Purchases and Processing Orders

Form Field Specification

Other purposes of the shipping.jsp template are to collect information from the
customer and to pass hidden information to the Webflow. The form fields used in the
shipping.jsp template, and a description for each of these form fields, are listed in
Table 4-4.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= HttpRequestConstants.SPLITTING_PREFERENCE_CODE %>) for use
in the JSP.

Table 4-4 shipping.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates whether an event has
been triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(shipping.jsp), used by the
Webflow.

HttpRequestConstants.SHIPPING_METHOD Radio
button

Identifies the shipping method
the customer selects.

HttpRequestConstants.SPLITTING_PREFERENCE_
CODE

Radio
button

String representing the splitting
preference the customer selects.

HttpRequestConstants.SPLITTING_PREFERENCE_
SPLIT_LOCAL

Hidden Choice for letting customers
choose to ship items separately
as they become available.

HttpRequestConstants.SPLITTING_PREFERENCE_
NO_SPLIT_LOCAL

Hidden Choice for letting customers
choose to ship items all at once
when they are all available.

HttpRequestConstants.SPECIAL_INSTRUCTIONS Textbox Any special instructions the
customer specifies.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-9

selectaddress.jsp Template

The selectaddress.jsp template (shown in Figure 4-2) displays a list of shipping
addresses that have previously been associated with the customer. If the customer
clicks the Use button associated with a particular address, that address will be used as
the shipping address and the customer will continue to the next part of the checkout
process.

If the customer wants to delete an address that is shown, the customer can click the
Delete button associated with that address. To add a new shipping address, the
customer can click the Add Address button. To go back to the previous page, the
customer can click the Back button instead.

Sample Browser View

Figure 4-2 shows an annotated version of the selectaddress.jsp template. The
Select Shipping Address region contains dynamically displayed data of the customer�s
saved shipping addresses. This is accomplished using a combination of WebLogic
Server and WebLogic Portal JSP tags that obtain and display the addresses. Posts to
the form can indicate use of a listed address or deletion of a listed address.

Notes: The customer can also initiate entry of a new shipping address from the
selectaddress.jsp template. For more information about the
addaddress.jsp template, see �addaddress.jsp Template� on page 4-17.

For information on other elements in the selectaddress.jsp template, see
�Common JSP Template Elements� on page 3-2.

4 Shipping Services

4-10 Guide to Managing Purchases and Processing Orders

Figure 4-2 Annotated selectaddress.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the selectaddress.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Personalization
Server:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

selectaddress.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

selectaddress.jsp (UNIX)

Tag Library Imports

The selectaddress.jsp template uses existing WebLogic Server and the WebLogic
Portal�s User Management and Personalization JSP tags. It also uses Pipeline JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="um.tld" prefix="um" %>
<%@ taglib uri="es.tld" prefix="es" %>

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-11

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Portal JSP tags, see JSP Tag Reference� in the Guide to Building Personalized
Applications. For more information about the Pipeline JSP tags, see the Guide
to Managing Presentation and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The selectaddress.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="java.util.*" %>
<%@ page import="java.text.*" %>
<%@ page import="com.beasys.commerce.axiom.contact.*" %>
<%@ page import="examples.wlcs.sampleapp.shipping.*" %>
<%@ page import="examples.wlcs.sampleapp.customer.*" %>
<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

Location in Default Webflow

The page prior to the selectaddress.jsp template in the default Webflow is either
the shipping details page (shipping.jsp) or the page where the customer enters a
new shipping address (addaddress.jsp).

If the customer deletes an existing shipping address, the selectaddress.jsp is
reloaded after the appropriate input processor and/or Pipeline has executed. If the
customer is satisfied with selecting an address from the list of choices, they proceed to
the payment information page (payment.jsp).

This template is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

The selectaddress.jsp template presents a customer with several buttons, each of
which is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 4-5
provides information about these events and the business logic they invoke.

4 Shipping Services

4-12 Guide to Managing Purchases and Processing Orders

Table 4-6 briefly describes each of the Pipelines from Table 4-5. For more information
about individual Pipeline components, see �Pipeline Components� on page 4-26.

Dynamic Data Display

One purpose of the selectaddress.jsp template is to display the shipping addresses
a customer previously entered. This is accomplished on selectaddress.jsp using
two of the WebLogic Portal�s User Management JSP tags.

Table 4-5 selectaddress.jsp Events

Event Web Flow Response(s)

button.back No business logic required. Loads
shipping.jsp.

button.addNewShippingAddress No business logic required. Loads
addaddress.jsp.

button.deleteShippingAddress UpdateAddressKeyIP

DeleteShippingAddress

button.useShippingAddress UpdateShippingAddressIP

TaxVerifyShippingAddress

CalculateShippingCost

TaxCalculateLineLevel

Table 4-6 Select Shipping Address Pipelines

Pipeline Description

TaxVerifyShippingAddress Contains TaxVerifyShippingAddressPC and is not
transactional.

CalculateShippingCost Contains CalculateShippingCostPC and is not
transactional.

TaxCalculateLineLevel Contains TaxCalculateLineLevelPC and is not
transactional.

DeleteShippingAddress Contains DeleteShippingAddressPC and is not
transactional.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-13

First, the getProfile JSP tag is used to set the customer profile (context) for which
the shipping addresses should be retrieved, as shown in Listing 4-3.

Listing 4-3 Setting the Customer Context

<um:getProfile
profileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

Next, the getProperty JSP tag is used to retrieve a cached copy of the possible
shipping addresses for the customer from the database, as shown in Listing 4-4.

Listing 4-4 Retrieving the ShippingAddressMap for the Customer

<um:getProperty propertySet="CustomerProperties"
propertyName="shippingAddressMap" id="shippingAddressMap" />

You can now iterate through the shipping addresses contained within the
shippingAddressMap, as shown in Listing 4-5.

Listing 4-5 Iterating Through the Shipping Addresses

<%

Iterator iterator =((Map)shippingAddressMap).keySet().iterator();

while(iterator.hasNext())

{

String addressKey = (String)iterator.next();

Address shippingAddress = (Address)((Map)shippingAddressMap).get(addressKey);

%>

Note: For more information on the WebLogic Portal�s JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

4 Shipping Services

4-14 Guide to Managing Purchases and Processing Orders

Lastly, the data contained within shippingAddress is accessed by using accessor
methods/attributes within Java scriptlets. Table 4-7 provides more detailed
information about these methods for Address.

Listing 4-6 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Table 4-7 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line of the customer�s street address.

getStreet2() The second line of the customer�s street address.

getCity() The city in the customer�s address.

getState() The state in the customer�s address.

getPostalCode() The zip/postal code in the customer�s address.

getCountry() The country in the customer�s address.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-15

Listing 4-6 Using Accessor Methods Within selectaddress.jsp Java Scriptlets

<%

Iterator iterator =((Map)shippingAddressMap).keySet().iterator();

while(iterator.hasNext())

{

String addressKey = (String)iterator.next();

Address shippingAddress = (Address)((Map)shippingAddressMap).get(addressKey);

%>

<table width="90%" border="0" cellpadding="6" cellspacing="0">

<tr>

<td align="left" valign="top" width="40%" nowrap>

<p><%= shippingAddress.getStreet1() %>

<% if(shippingAddress.getStreet2().length() != 0) {%>

<%= shippingAddress.getStreet2() %>

<% } %>

<%= shippingAddress.getCity() %>

<%= shippingAddress.getState() %> <%= shippingAddress.getPostalCode() %>

<%= shippingAddress.getCountry() %>

</td>

<td align="left" valign="top" width="5%" >

<%

String extraParams = HttpRequestConstants.ADDRESS_KEY + "=" + addressKey;

%>

<div class="commentary">

<a href="<webflow:createWebflowURL event="button.deleteShippingAddress"
httpsInd="calculate" namespace="sampleapp_order" extraParams="<%= extraParams %>" />"><img
src="<webflow:createResourceURL resource="/commerce/images/btn_delete.gif" />"
border="0">

</div>

</td>

<td align="left" valign="top" width="5%" >

<div class="commentary">

4 Shipping Services

4-16 Guide to Managing Purchases and Processing Orders

<a href="<webflow:createWebflowURL event="button.useShippingAddress"
httpsInd="calculate" namespace="sampleapp_order" extraParams="<%= extraParams %>" />"><img
src="<webflow:createResourceURL resource="/commerce/images/btn_use.gif" />" border="0">

</div></td>

</tr>

<tr>

<td colspan="3">

<hr size="1">

</td>

</tr>

</table>

<%

}

%>

Form Field Specification

The selectaddress.jsp template does not make use of any form fields.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-17

addaddress.jsp Template

The addaddress.jsp template (shown in Figure 4-3) collects information about a
new shipping address from the customer. This information includes two lines of a
street address (one required), a city, a state, a zip code, and a country (all required).

When the customer clicks the Save button, the shipping address entered on this page
is added to the list of addresses from which customers can select for this and future
orders (selectaddress.jsp). Otherwise, the customer can click the Back button to
return to the previous page.

Sample Browser View

Figure 4-3 shows an annotated version of the addaddress.jsp template. The Add
Shipping Address region provides the customer with a series of form fields for entering
a new shipping address. Required fields are indicated by an asterisk (*). This region
utilizes the states.jsp and countries.jsp template files. The �include� calls in
addaddress.jsp are:
<%@ include file="/commerce/includes/countries.inc" %>

<%@ include file="/commerce/includes/footer.inc" %>

<%@ include file="/commerce/includes/stylesheet.inc" %>

<%@ include file="/commerce/includes/admin.inc" %>

<%@ include file="/commerce/includes/header.inc" %>

<%@ include file="/commerce/includes/leftside.inc" %>

<%@ include file="/commerce/includes/states.inc" %>

Note: For information on other elements in the addaddress.jsp template, see
�Common JSP Template Elements� on page 3-2.

4 Shipping Services

4-18 Guide to Managing Purchases and Processing Orders

Figure 4-3 Annotated addaddress.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the addaddress.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

addaddress.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

addaddress.jsp (UNIX)

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-19

Tag Library Imports

The addaddress.jsp template uses Webflow and Pipeline JSP tags. Therefore, the
template includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>

Note: For more information on the Webflow and Pipeline JSP tags, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The addaddress.jsp template uses Java classes in the following packages and
therefore includes these import statements:
<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%@ page import="com.beasys.commerce.webflow.tags.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="examples.wlcs.sampleapp.customer.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

Location in Default Webflow

The addaddress.jsp template follows the page where the customer selects from a
list of possible shipping addresses (selectaddress.jsp). Once the customer saves
the new address, the customer is returned to the selectaddress.jsp template.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

The addaddress.jsp template presents a customer with two buttons, each of which
is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 4-8
provides information about these events and the business logic they invoke.

4 Shipping Services

4-20 Guide to Managing Purchases and Processing Orders

Table 4-9 briefly describes each of the Pipelines from Table 4-8. For more information
about individual Pipeline components, see �Pipeline Components� on page 4-26.

Dynamic Data Display

No dynamic data is presented on the addaddress.jsp template. However, the
addaddress.jsp template does make use of code similar to that found in the
newaddresstemplate.jsp template. Namely, it uses the same code to indicate when
customers enter incorrect input or fail to provide information for a required field. For
more information about the newaddresstemplate.jsp template, see �About the
Included newaddresstemplate.jsp Template� in the Guide to Registering Customers
and Managing Customer Services.

Form Field Specification

The purpose of the addaddress.jsp template is to allow customers to enter a new
shipping address using various HTML form fields. It is also used to pass needed
information to the Webflow.

The form fields used in the addaddress.jsp template, and a description for each of
these form fields are listed in Table 4-10.

Table 4-8 addaddress.jsp Events

Event Webflow Response(s)

button.back No business logic required. Loads
selectaddress.jsp.

button.addNewShippingAddress ValidateAddressIP

AddShippingAddress

Table 4-9 Add Shipping Address Pipelines

Pipeline Description

AddShippingAddress Contains AddShippingAddressPC and is not
transactional.

JavaServer Pages

Guide to Managing Purchases and Processing Orders 4-21

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_SHIPPING_CITY %>) for use in
the JSP.

Table 4-10 addaddress.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(addaddress.jsp), used by the
Webflow.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS1

Textbox The first line of the shipping street
address.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS2

Textbox The second line of the shipping
street address.

HttpRequestConstants.
CUSTOMER_SHIPPING_CITY

Textbox The city in the shipping address.

HttpRequestConstants.
CUSTOMER_SHIPPING_STATE

Textbox The state in the shipping address.

HttpRequestConstants.
CUSTOMER_SHIPPING_ZIPCODE

Textbox The zip/postal code in the shipping
address.

HttpRequestConstants.
CUSTOMER_SHIPPING_COUNTRY

Textbox The country in the shipping
address.

4 Shipping Services

4-22 Guide to Managing Purchases and Processing Orders

Input Processors

This section provides a brief description of each input processor associated with the
Shipping Services JSP template(s).

InitShippingMethodListIP

Class Name examples.wlcs.sampleapp.shipping.webflow.

InitShippingMethodListIP

Description Obtains a list of all shipping methods from the database and populates the
Pipeline session with a list of ShippingMethodValue objects. This list is
cached, so this input processor does not continuously access the database.
Accessing the list multiple times within one session has no additional effect.

Required
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD_LIST

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if no shopping cart exits.

Input Processors

Guide to Managing Purchases and Processing Orders 4-23

UpdateShippingAddressIP

Class Name examples.wlcs.sampleapp.shipping.webflow.

UpdateShippingAddressIP

Description Updates the shipping address attribute in the Pipeline session based on the
address the customer selects.

Required
HTTPServletRequest

Parameters

HTTPRequestConstants.ADDRESS_KEY

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

4 Shipping Services

4-24 Guide to Managing Purchases and Processing Orders

ValidateAddressIP

Class Name examples.wlcs.sampleapp.shipping.webflow.

ValidateAddressIP

Description Validates the address and places it in the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS1

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS2

HttpRequestConstants.CUSTOMER_SHIPPING_CITY

HttpRequestConstants.CUSTOMER_SHIPPING_STATE

HttpRequestConstants.CUSTOMER_SHIPPING_ZIPCODE

HttpRequestConstants.CUSTOMER_SHIPPING_COUNTRY

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

Exceptions ProcessingException, thrown if the required request parameters or
required Pipeline session attributes are not available.

Input Processors

Guide to Managing Purchases and Processing Orders 4-25

ValidateShippingInfoIP

Class Name examples.wlcs.sampleapp.shipping.webflow.

ValidateShippingInfoIP

Description Places the shipping method, splitting preference, and special instructions into the
Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.SHIPPING_METHOD

HttpRequestConstants.SPLITTING_PREFERENCE

HttpRequestConstants.SPECIAL_INSTRUCTIONS

HttpRequestConstants.SPLITTING_PREFERENCE_CODE

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

PipelineSessionConstants.SPLITTING_PREFERENCE_CODE

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

Exceptions ProcessingException, thrown if the required request parameters or
required Pipeline session attributes are not available.

4 Shipping Services

4-26 Guide to Managing Purchases and Processing Orders

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Shipping Services JSP template(s).

Notes: For information about the TaxVerifyShippingAddressPC and
TaxCalculateLineLevelPC Pipeline components, see Chapter 5, �Taxation
Services.�

Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

AddShippingAddressPC

Class Name examples.wlcs.sampleapp.shipping.pipeline.
AddShippingAddressPC

Description Adds the address to the list of customer shipping addresses stored for the
customer.

Required Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS

PipelineSessionConstants.ADDRESS_KEY

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown when the Pipeline component cannot
update the address information in the database.

Pipeline Components

Guide to Managing Purchases and Processing Orders 4-27

CalculateShippingPC

Class Name examples.wlcs.sampleapp.shipping.pipeline.
CalculateShippingPC

Description Calculates the per-line cost of shipping for each line in the shopping cart. The
implementation only uses a simple per-shipping method cost calculation. When
integrating with a shipping provider, this Pipeline component should be rewritten
to perform more specific cost calculations.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_METHOD

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown if the required request parameters or required
Pipeline session attributes are not available.

4 Shipping Services

4-28 Guide to Managing Purchases and Processing Orders

DeleteShippingAddressPC

Class Name examples.wlcs.sampleapp.shipping.pipeline.
DeleteShippingAddressPC

Description Uses the address key in the Pipeline session to locate the correct customer
shipping address, then removes it from the list.

Required Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS_KEY

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown when the Pipeline component cannot update
the shipping address information in the database.

Guide to Managing Purchases and Processing Orders 5-1

CHAPTER

5 Taxation Services

WebLogic Portal includes a flexible taxation service that lets you connect to a
third-party tax calculation product for determine the accurate tax rates imposed on the
sale or use of each item at the state, country, city, and district levels. This topic
describes the Taxation Service in detail.

This topic includes the following sections:

� Introduction to Web Services

� How the Taxation Service Works

� JavaServer Pages (JSPs)

� selecttaxaddress.jsp Template

� Input Processors

� DecideShippingAddressPageIP

� UpdateShippingAddressIP

� Pipeline Components

� TaxCalculateLineLevelPC

� TaxCalculateAndCommitLineLevelPC

� TaxVerifyShippingAddressPC

� Integrating with a Taxation Service

� If the Third-Party Vendor Hosts the Web Service

� If Your Organization Hosts the Web Service

5 Taxation Services

5-2 Guide to Managing Purchases and Processing Orders

Introduction to Web Services

Web services are stand-alone software components, available over the Internet, that
you can bind into your enterprise applications for immediate functionality. Web
services are self-describing, self-contained, modular applications that can be mixed
and matched with other Web services. You do not need to understand the internal
workings of the Web services. You only need to know how to connect your enterprise
applications to these services.

Web services can be visible or invisible to your site visitors. For example, a visible
Web service can be a stock ticker that appears in a portlet on your site; or, to use two
examples of invisible Web services, used in e-commerce (and shipped with WebLogic
Portal), Web services that facilitate the handling of online payment and taxation for
purchases. This chapter and the next cover these two payment and taxation Web
services.

The main reason that Web services are plug-and-play is because they use standard,
proven Internet technologies such as HTTP, HTML, and XML. The characteristics of
Web services include the following:

� Accessibility via the Web

� Exposure of an XML interface

� Ability to be located via a registry

� Use of XML messages over standard Web protocols

� Support of loosely coupled connections between systems

Ultimately, Web services allow companies and individuals to rapidly and
economically make their services available worldwide.

The following sections describe the core standards of Web services. These standards
are used in the WebLogic Portal Payment and Taxation services.

How the Taxation Service Works

Guide to Managing Purchases and Processing Orders 5-3

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is an XML-based standard for sending and
receiving messages over the Internet, using transports like HTTP. A service request is
embodied in a SOAP message and HTTP posted to a Service Provider. The response
is then synchronously returned via the same HTTP session, embodied in a SOAP
response message.

For more information, go to www.w3.org/TR/SOAP/.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML-based standard that
describes the services a business offers and provides a way for individuals and other
businesses to access those services electronically. In more technical terms, WSDL
describes the programmatic interface of a Web service, allowing companies who use
a Web service to craft the program statements that invoke the Web service.

WSDL is the cornerstone of the Universal Description, Discovery, and Integration
(UDDI) initiative. UDDI is an XML-based registry for businesses worldwide that
enables businesses to list themselves and their services on the Internet. WSDL is the
language used to do this.

How the Taxation Service Works

Figure 5-1 shows the basic architecture of WebLogic Portal�s taxation service. The
key component of this architecture is the Tax Web Service, which is the connection
point between WebLogic Portal and any third-party tax calculation product.

5 Taxation Services

5-4 Guide to Managing Purchases and Processing Orders

Figure 5-1 taxation Service Architecture

Following is a description of each piece of the architecture.

There are two keys to connecting an enterprise application with a Tax Web service:

� Sending the proper SOAP messages from the TaxCalculator EJB to the Tax Web
Service

1 The TaxPC Pipeline component controls the taxation sequence in the Webflow and
instantiates the TaxCalculator EJB.
For information on Webflow, see the Guide to Managing Presentation and
Business Logic: Using Webflow and Pipeline.

2 The TaxCalculator EJB handles the business logic for the tax calculation. The EJB
converts its taxation service calls to XML for transporting SOAP messages to the Tax
Web service.

3 The TaxCalculator EJB in WebLogic Portal sends SOAP messages to the Web
service, where those SOAP messages are converted to the language of the third-party
product�s API.
The third-party taxation service applies taxes to orders and sends calculated tax
amounts or exceptions back to the enterprise application.

Caution: The default Tax Web service that ships with WebLogic Portal
automatically applies a 5% tax to an order. This default
application of taxes is not designed for production use. You must
integrate with your third-party vendor�s tax service to calculate
taxes properly.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 5-5

� In the Tax Web Service, translating the SOAP messages into the language of the
third-party product�s API

For information on connecting an enterprise application to a Web service, see
�Integrating with a Taxation Service� on page 5-15.

JavaServer Pages (JSPs)

The Taxation Services consist of one JavaServer Page (JSP) that you can use as is, or
customize to meet your business requirements. This section describes this page in
detail.

Note: For a description of the complete set of JSPs used in the WebLogic Portal Web
application and a listing of their locations in the directory structure, see the
E-Commerce JSP Template Summary.

selecttaxaddress.jsp Template

In cases where a customer provides a shipping address that does not resolve to a unique
GeoCode (a Tax Web service code that is used to determine taxes based on
jurisdiction), the selecttaxaddress.jsp template (shown in Figure 5-2) allows the
customer to select from a list of more specific shipping addresses.

Sample Browser View

Figure 5-2 shows the selecttaxaddress.jsp template. The Select Tax Jurisdiction
region uses a combination of WebLogic Server and Pipeline JSP tags to obtain and
display a list of more detailed addresses, from which the customer can select.

Note: For information on other elements in the selecttaxaddress.jsp template,
see �Common JSP Template Elements� on page 3-2.

5 Taxation Services

5-6 Guide to Managing Purchases and Processing Orders

Figure 5-2 Annotated selecttaxaddress.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the selecttaxaddress.jsp template file at the following location,
where PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

selecttaxaddress.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

selecttaxaddress.jsp (UNIX)

Tag Library Imports

The selecttaxaddress.jsp template uses existing WebLogic Server and Pipeline
JSP tags. Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="webflow.tld" prefix="webflow" %>

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 5-7

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications. For more
information about the Pipeline JSP tags, see the Guide to Managing
Presentation and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The selecttaxaddress.jsp template uses Java classes in the following packages
and therefore includes these import statements:
<%@ page import="java.util.*" %>

<%@ page import="java.text.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="com.beasys.commerce.ebusiness.shipping.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

<%@ page import="com.beasys.commerce.webflow.PipelineSessionConstants" %>

<%@ page import="com.bea.p13n.appflow.webflow.WebflowJSPHelper" %>

<%@ page import="com.bea.p13n.appflow.webflow.SessionManagerFactory" %>

<%@ page import="com.bea.p13n.appflow.common.PipelineSession" %>

<%@ page import="com.bea.p13n.appflow.common.internal.AppflowConstants" %>

Location in Default Webflow

Note: The selecttaxaddress.jsp template is only displayed if the customer
provides a shipping address that is not specific enough. Otherwise, it is
bypassed.

The page prior to the selecttaxaddress.jsp template in the default Webflow is the
page where the customer selects a shipping address (selectaddress.jsp). After the
customer has selected an address from the list of choices presented on
selecttaxaddress.jsp, they proceed to the payment information page
(payment.jsp).

The template is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

5 Taxation Services

5-8 Guide to Managing Purchases and Processing Orders

Included JSP Templates

The following JSP templates are included in the selecttaxaddress.jsp template:

� header.inc, which creates the top banner.

� admin.inc, which is used on all pages and presents the top red-and-black
banner with links to the main WLCS Administration screen, to this template
index, and to a *.jsp.html file for the current template. You should remove this
from the JSP when you deploy it.

� leftside.inc, which presents quick look-up and a promotional ad; for
authenticated users, it also presents a personalized message to the user, customer
profile link, order history link, and payment history link.

� footer.inc, which creates a horizontal footer at the bottom of the page.

Events

The selecttaxaddress.jsp template presents a customer with two buttons, each of
which is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 5-1
provides information about these events and the business logic they invoke.

Dynamic Data Display

The only purpose of the selecttaxaddress.jsp template is to display variations on
a shipping address that the customer has already entered. This is accomplished on
selecttaxaddress.jsp using a combination of WebLogic Server and Pipeline JSP
tags, and accessor methods/attributes.

First, the getProperty JSP tag retrieves the AVS_SHIPPING_ADDRESSES attribute
from the Pipeline session. Table 5-2 shows more detailed information about this
attribute.

Table 5-1 selecttaxaddress.jsp Events

Event Webflow Response(s)

button.checkout UpdateTaxShippingAddressIP

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 5-9

Listing 5-1 illustrates how this attribute is retrieved from the Pipeline session.

Listing 5-1 Retrieving the Address Selection Attribute

<webflow:getProperty id="addressesObject"
property="<%=PipelineSessionConstants.AVS_SHIPPING_ADDRESSES%>"
type="java.lang.Object" scope="session" namespace="sampleapp_main" />

Note: For more information on the getProperty JSP tag, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

The data stored within this attribute is then accessed by using accessor
methods/attributes within Java scriptlets. Table 5-3 provides more detailed
information on these methods/attributes for Address.

Table 5-2 selecttaxaddress.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants.

AVS_SHIPPING_ADDRESSES

List of
com.beasys.commerce.axiom
.contact.Address

List of the possibilities for the
more detailed shipping
address.

Table 5-3 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line of the street in the shipping address.

getStreet2() The second line of the street in the shipping address.

getCity() The city in the shipping address.

getCounty() The county in the shipping address.

getState() The state in the shipping address.

getPostalCode() The zip/postal code in the shipping address.

getCountry() The country in the shipping address.

5 Taxation Services

5-10 Guide to Managing Purchases and Processing Orders

Since there are multiple addresses, you must also use the WebLogic Server JSP tag to
iterate through each of the addresses, as shown in Listing 5-2.

Listing 5-2 Using <wl> and Accessor Methods in selecttaxaddress.jsp

<wl:repeat set="<%=addressesObject%>" id="address" type="Address" count="100">

<%

String extraParams = HttpRequestConstants.TAX_SHIPPING_ADDRESS + "=" + address.getGeoCode();

%>

<table width="90%" border="0" cellpadding="3" cellspacing="0">

<tr>

<td align="left" valign="top" width="15%">

<a href="<webflow:createWebflowURL event="button.checkout" httpsInd="calculate"

namespace="sampleapp_order" extraParams="<%= extraParams %>" />">

<img border=0 src="<webflow:createResourceURL resource="/commerce/images/btn_use.gif"
/>">

<td align="left" valign="top">

<div class="tabletext"><%= address.getStreet1() %>

<% if(address.getStreet2().length() != 0) { %>

<%=address.getStreet2()%>

<% } %>

County <%= address.getCounty() %>

<%= address.getCity() %>

<%= address.getState() %> <%= address.getPostalCode() %>

<%= address.getCountry() %>

 </div>

</td>

</tr>

</table>

</wl:repeat>

Note: For more information on the WebLogic Server JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

Input Processors

Guide to Managing Purchases and Processing Orders 5-11

Form Field Specification

Besides allowing a customer to select a more detailed shipping address, the
selecttaxaddress.jsp template also passes hidden information to the Webflow.
The form fields used in the selecttaxaddress.jsp template, and a description for
each of these form fields are listed in Table 5-4.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= PipelineSessionConstants.TAX_SHIPPING_ADDRESS %>) for use in
the JSP.

Input Processors

This section provides a brief description of each input processor associated with the
Taxation Services JSP template(s).

Table 5-4 selectataxddress.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(selecttaxaddress.jsp),
used by the Webflow.

PipelineSessionConstants.
TAX_SHIPPING_ADDRESS

Hidden Identifies the more specific address
selected by the customer.

5 Taxation Services

5-12 Guide to Managing Purchases and Processing Orders

DecideShippingAddressPageIP

UpdateShippingAddressIP

Class Name examples.wlcs.sampleapp.tax.webflow.

DecideShippingAddressPageIP

Description Makes the decision about whether to display selecttaxaddress.jsp based
on the number of address variations returned from the Tax Web service. If a
single address is found, this input processor updates the shipping address, returns
successfully, and allows the Webflow to proceed to payment.jsp. Otherwise,
this input processor redirects the Webflow to selecttaxaddress.jsp.

Required
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.AVS_SHIPPING_ADDRESSES

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS (in the case of a
single address)

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name examples.wlcs.sampleapp.shipping.webflow.

UpdateShippingAddressIP

Description Updates the shipping address attribute in the Pipeline session based on the tax
address the customer selects.

Pipeline Components

Guide to Managing Purchases and Processing Orders 5-13

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Taxation Services JSP template(s).

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

TaxCalculateLineLevelPC

Required
HTTPServletRequest

Parameters

HTTPRequestConstants.TAX_SHIPPING_ADDRESS

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.AVS_SHIPPING_ADDRESSES

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name examples.wlcs.sampleapp.tax.pipeline.
TaxCalculateLineLevelPC

Description Calculates the tax and provides line-level information about the taxability of an item.
This Pipeline component is used to display the tax information to the customer.

5 Taxation Services

5-14 Guide to Managing Purchases and Processing Orders

TaxCalculateAndCommitLineLevelPC

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions None

Class Name examples.wlcs.sampleapp.tax.pipeline.

TaxCalculateAndCommitLineLevelPC

Description Calculates the tax and provides line-level information about the taxability of an item.
The results are logged to the Tax Web service audit file so that correct payment can
be made to taxing jurisdictions, or to generate tax reports.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions None

Integrating with a Taxation Service

Guide to Managing Purchases and Processing Orders 5-15

TaxVerifyShippingAddressPC

Integrating with a Taxation Service

The Tax Web Service that is installed with WebLogic Portal provides a default
framework for handling tax calculations on transactions received from the default
TaxCalculator EJB. The business methods within the TaxCalculator EJB implement a
standard workflow that is associated with the completion of order taxation. (The Tax
Web service, by comparison, is a stateless session EJB wrapped in code that makes it
a Web service.)

Integrating your enterprise applications with the Tax Web Service involves modifying
either the TaxCalculator EJB or the Tax Web Service, depending on who will host the
Web service: your organization or the third-party tax calculation vendor.

Class Name examples.wlcs.sampleapp.tax.pipeline.

TaxVerifyShippingAddressPC

Description Ensures that the shipping address is descriptive enough to properly calculate taxation
for an order based on jurisdiction.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.AVS_SHIPPING_ADDRESSES

Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions TaxSystemException, thrown if processing could not occur due to system level
problems (for example, some data files are missing).
TaxUserException, thrown if processing could not occur due to invalid user input.

5 Taxation Services

5-16 Guide to Managing Purchases and Processing Orders

In either case, it helps to understand the connection relationship between the pieces in
the WebLogic Portal taxation services and the pieces in the Tax Web Service.
Figure 5-3 illustrates the connection between the two.

Figure 5-3 The Relationship Between the Tax Web Service and the
TaxCalculator EJB

Caution: The default Tax Web service that is shipped with WebLogic Portal
automatically applies a 5% tax to an order. This default application of taxes
is not designed for production use. You must integrate with your
third-party vendor�s tax service to calculate taxes properly.

Integrating with a Taxation Service

Guide to Managing Purchases and Processing Orders 5-17

If the Third-Party Vendor Hosts the Web Service

If the third-party vendor hosts the Tax Web Service, the vendor will integrate the Web
service with their product�s API.

Here is what your organization must do to connect to the vendor-hosted Web service:

1. If the vendor has modified any of AVS*.class or Tax*.class files in the Web
service�s tax.jar file, copy those modifications into your enterprise application.
You can find the source code in:

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\tax\

Compile the source files.

2. Make any vendor-required modifications to the TaxCalculator EJB in your
enterprise application so that it makes appropriate SOAP calls to the vendor�s tax
Web service. You can find the source code for the TaxCalculator EJB in the
following files:

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\tax\TaxCalculator*.java

Compile the source files.

3. After you compile your source code, add the class files to the wlcsSample.jar
in the wlcsApp application directory. When you add the class files to the JAR,
make sure you maintain their relative directory structure.

4. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

5. In the WebLogic Server Console for portalServer, select Deployments >
Applications > wlcsApp > Service Configuration > Tax Service Client, and in the
Tax Calculator WSDL field, modify the URL to the tax vendor�s WSDL file.
Click Apply in the Console to apply the new URL. The new URL is written to
the following file: PORTAL_HOME\applications\wlcsApp\META-INF\
application-config.xml.

Note: At startup, WebLogic Server reads the application-config.xml file, so
it knows where to find the Web service.

5 Taxation Services

5-18 Guide to Managing Purchases and Processing Orders

If Your Organization Hosts the Web Service

If your organization hosts the Tax Web Service, we strongly recommend that you
deploy the Web service on a separate instance of WebLogic Server (that is, use a
separate Java Virtual Machine [JVM]) than what your enterprise applications are
running on. This way, your enterprise applications are insulated from failures or
incidents in the Web service.

Here is what you must do if your organization hosts the Tax Web Service:

Caution: These are general, simplified guidelines for integrating with a vendor�s
API. In actual practice, such integration requires close collaboration with
your vendor. We strongly recommend you contact your vendor for
assistance.

1. Obtain your third-party vendor�s tax calculation product API.

2. Modify the TaxWebService EJB (the Web service EJB) so that it translates SOAP
calls into the language of the third-party product�s API. You can find the source
code for the TaxWebService EJB in the following files:

PORTAL_HOME\applications\taxWSApp\src\examples\wlcs\
sampleapp\tax\TaxWebService*.java

Compile the source files.

3. After you have compiled the source code, replace the class files in tax.jar,
located in the taxWSApp directory. When you add the class files to the JAR, make
sure you maintain their relative directory structure.

4. Use the Web service generator (wsgen) on the tax.jar file to build a file called
tax-webservice.war, as shown in Figure 5-3.

For information on using wsgen, see Programming WebLogic Server Web
Services at http://e-docs.bea.com/wls/docs61/webServices/index.html.

5. Make any necessary modifications to the TaxCalculator EJB in the wlcsApp
application so that it makes appropriate SOAP calls to the TaxWebService EJB.
You can find the source code for the TaxCalculator EJB in the following files:

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\tax\TaxCalculator*.java

Compile the source files.

Integrating with a Taxation Service

Guide to Managing Purchases and Processing Orders 5-19

6. After you compile your source code, add the class files to wlcsSample.jar in
the wlcsApp application directory. When you add the class files to the JAR, make
sure you maintain their relative directory structure.

7. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

8. In the WebLogic Server Console for portalServer, select Deployments >
Applications > wlcsApp > Service Configuration > Tax Service Client, and in the
Tax Calculator WSDL field, modify the URL to the WSDL file. Click Apply in
the Console to apply the new URL. The new URL is written to the following file:
PORTAL_HOME\applications\wlcsApp\META-INF\

application-config.xml.

Note: At startup, WebLogic Server reads the application-config.xml file, so
it knows where to find the Web service.

5 Taxation Services

5-20 Guide to Managing Purchases and Processing Orders

Guide to Managing Purchases and Processing Orders 6-1

CHAPTER

6 Payment Services

WebLogic Portal includes a flexible payment service that lets you connect to a
third-party payment product for authorizing and settling orders. The payment service
itself currently allows credit card payments to be made. This topic describes the
Payment Services in detail.

This topic includes the following sections:

� How the Payment Service Works

� JavaServer Pages (JSPs)

� payment.jsp Template
� paymentnewcc.jsp Template
� paymenteditcc.jsp Template
� payment_admin.jsp, paymenthistory.jsp, and payment_info.jsp Templates

� Input Processors

� PaymentAuthorizationIP
� UpdatePaymentInfoIP

� Pipeline Components

� PaymentAuthorizationHostPC
� PaymentAuthorizationTerminalPC

� Integrating with a Payment Service

� If the Third-Party Vendor Hosts the Web Service

� If Your Organization Hosts the Web Service

� Credit Card Encryption

6 Payment Services

6-2 Guide to Managing Purchases and Processing Orders

How the Payment Service Works

For an introduction to Web services, see �Introduction to Web Services� on page 5-2
in Chapter 5, �Taxation Services.�

Figure 6-1 shows the basic architecture of WebLogic Portal�s payment service. The
key component of this architecture is the Credit Card Web Service, which is the
connection point between WebLogic Portal and any third-party payment product.

Figure 6-1 Payment Service Architecture

Following is a description of each piece of the architecture.

1 The PaymentPC Pipeline component instantiates and makes calls to the
CreditCardService EJB.
For information on Pipeline components, see the Guide to Managing
Presentation and Business Logic: Using Webflow and Pipeline.

2 The payment JSPs provide various functions, including form fields and information
that the customer uses to make payment. The payment_admin.jsp, which calls the
CreditCardService EJB, also lets you search transactions and resubmit them if
necessary. On submit, the JSP passes the customer payment data to the
CreditCardService EJB.

3 The CreditCardService EJB handles the business logic for the payment. The EJB
converts payment service calls to XML for transporting SOAP messages to the Credit
Card Web Service.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-3

Because no industry standards exist yet for handling payment tasks (such as
authorization, retry, and settle), third-party payment products have their own APIs
handling these tasks. There are two keys to connecting an enterprise application with
a third-party payment Web service:

� Sending the proper SOAP messages from the CreditCardService EJB in your
enterprise application to the payment Web service

� In the payment Web service, translating the SOAP messages into the language of
the third-party product�s API

For information on connecting an enterprise application to a Web service, see
�Integrating with a Payment Service� on page 6-26.

JavaServer Pages (JSPs)

A primary goal of Order services is to allow you to quickly establish a
fully-functioning e-commerce site. To this end, the Payment Service provides you with
a Java Server Page (JSP) template that you can use as is, or customize to better meet
your needs. This section describes this page in detail.

4 The CreditCardService EJB persists the payment transactions.

5 The CreditCardService EJB in WebLogic Portal sends SOAP messages to the Credit
Card Web Service (a stateless session EJB), where those SOAP messages are
converted to the language of the third-party product�s API.
The third-party payment service processes payments and sends confirmation or
exceptions back to the application.

Caution: The default Payment Web service that ships with WebLogic
Portal always sends payment information through without any
errors, as if it were connected to and approved by a third-party
payment service. This default processing of payment is not
designed for production use. You must integrate with your
third-party vendor�s payment service to process payment
correctly.

6 Payment Services

6-4 Guide to Managing Purchases and Processing Orders

Note: For a description of the complete set of JSPs used in the WebLogic Portal Web
application and a listing of their locations in the directory structure, see the
E-Commerce Summary of JSP Templates documentation.

payment.jsp Template

If a customer has already specified payment information in their user profile, the
payment.jsp template (shown in Figure 6-2) provides the customer with a list of
credit cards (by type and last 4 digits) for selection. Customers wanting to use an
existing credit card can simply click its associated Use button to proceed to the next
part of the checkout process.

Note: For more information about user profiles, see �Customer Profile Services� in
the Guide to Registering Customers and Managing Customer Services.

Customers can also choose to update the information associated with this credit card
by clicking the Update This Card button. If your customer wants to use a credit card
they have never used on your e-commerce site before, the customer can click the Add
Card button to add it to the list (using the paymentnewcc.jsp template). If a customer
wants to go back to the previous page, the customer can click the Back button.

Sample Browser View

Figure 6-2 shows an annotated version of the payment.jsp template. The Payment
region uses a combination of the WebLogic Server and WebLogic Portal JSP tags to
obtain and display the customer's saved credit card(s).

Note: For information on other elements in the payment.jsp template, see
�Common JSP Template Elements� on page 3-2.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-5

Figure 6-2 Annotated payment.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the payment.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

payment.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

payment.jsp (UNIX)

Tag Library Imports

The payment.jsp template uses existing WebLogic Server and WebLogic Portal�s
User Management JSP tags. Therefore, the template includes the following JSP tag
libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="um.tld" prefix="um" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>

6 Payment Services

6-6 Guide to Managing Purchases and Processing Orders

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Portal JSP tags, see �JSP Tag Reference� in the Guide to Building
Personalized Applications.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The payment.jsp template uses Java classes in the following packages and therefore
includes these import statements:
<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%@ page import="com.beasys.commerce.webflow.tags.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

Location in Default Webflow

Customers arrive at payment.jsp from the page where they select their shipping
address (selectaddress.jsp). If they choose to add a new credit card, they will be
directed to the paymentnewcc.jsp template. If the customer chooses to edit one of
the cards that appears in the list, the customer will be directed to the
paymenteditcc.jsp template. After selecting a credit card for payment, customers
move on to the final page in the checkout process, where they can review their order
prior to committing it (checkout.jsp).

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Included JSP Templates

The following JSP templates are included in the payment.jsp template:

� header.inc, which creates the top banner.

� admin.inc, which is used on all pages and presents the top red-and-black
banner with links to the main WLCS Administration screen, to this template

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-7

index, and to a *.jsp.html file for the current template. You should remove this
from the JSP when you deploy it.

� leftside.inc, which presents quick look-up and a promotional ad; for
authenticated users, it also presents a personalized message to the user, customer
profile link, order history link, and payment history link.

� footer.inc, which creates a horizontal footer at the bottom of the page.

Events

The payment.jsp template presents a customer with several buttons, each of which is
considered an event. These events trigger a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-1 provides
information about these events and the business logic they invoke.

Dynamic Data Display

The purpose of the payment.jsp template is to display a list of the customer�s
previously saved credit cards. This is accomplished on the payment.jsp template
using a combination of WebLogic Server and WebLogic Portal JSP tags and accessor
methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the credit cards should be retrieved, as shown in Listing 6-1.

Table 6-1 payment.jsp Events

Event Webflow Response(s)

button.addNewCreditCard No business logic required. Loads
paymentnewcc.jsp.

button.continue AuthorizePaymentIP

button.updatePaymentInfo No business logic required. Loads
paymenteditcc.jsp.

6 Payment Services

6-8 Guide to Managing Purchases and Processing Orders

Listing 6-1 Setting the Customer Context

<um:getProfile

profileKey="<%=request.getRemoteUser()%>"

profileType="WLCS_Customer" />

Next, the getProperty JSP tag is used to retrieve a cached copy of the possible credit
cards for the customer from the database, as shown in Listing 6-2.

Listing 6-2 Retrieving the CreditCardsMap for the Customer

<um:getProperty propertySet="CustomerProperties"
propertyName="creditCardsMap" id="creditCardsMapObject" />

You can now iterate through the credit cards contained within the creditCardsMap
(using the WebLogic Server JSP tag) and display each credit card in the collection
(using a Java scriptlet) as shown in Listing 6-3.

Listing 6-3 Iterating Through and Displaying the Credit Cards

<table>
<wl:repeat

set="<%=((Map)creditCardsMapObject).keySet().iterator()%>"

id="creditCard" type="String" count="100000">

<tr>

<!-- Output the credit card name -->

<td width="50%"><div class="tabletext"><%=creditCard%></div></td>

<!-- The update button -->

<td width="30%" align="right">

<%

String extraParams = HttpRequestConstants.CREDITCARD_KEY + "=" + creditCard;

%>

<a

href="<webflow:createWebflowURL event="button.updatePaymentInfo"
httpsInd="calculate" namespace="sampleapp_order" extraParams="<%= extraParams

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-9

%>" />"><img src="<webflow:createResourceURL
resource="/commerce/images/btn_updatecard.gif" />" border="0">

</td>

<!-- The use button -->

<td width="20%" align="right">

<a

href="<webflow:createWebflowURL event="button.continue"
httpsInd="calculate" namespace="sampleapp_order" extraParams="<%= extraParams
%>" />"><img src="<webflow:createResourceURL
resource="/commerce/images/btn_use.gif" />" border="0">

</td>

</tr>

<tr>

<td colspan="3"><hr size="1"></td>

</tr>

</wl:repeat>
</table>

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Portal JSP tags, see �JSP Tag Reference� in the Guide to Building
Personalized Applications.

Form Field Specification

The payment.jsp template does not make use of any form fields.

paymentnewcc.jsp Template

The paymentnewcc.jsp template (shown in Figure 6-3) allows customers to enter
information about a new credit card, which will be added to their profile. This
information includes the credit card type (VISA, MasterCard, and so on), the name on
the card, the card number, the card expiration date (month and 4-digit year), and the
billing address (including a street address, city, state, zip/postal code, and country).
The customer must click the Save button for the new credit card to be added to the
customer�s list of credit cards.

6 Payment Services

6-10 Guide to Managing Purchases and Processing Orders

Sample Browser View

Figure 6-3 shows an annotated version of the paymentnewcc.jsp template. The New
Credit Card region provides customers with a series of form fields that allow customers
to add a credit card. This region utilizes the form fields defined in the included
newcctemplate.jsp template file, which itself includes the states.jsp and
countries.jsp template files. The import call in paymentnewcc.jsp is:

<%@ include file="/commerce/includes/newcctemplate.jsp” %>

Figure 6-3 Annotated paymentnewcc.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the paymentnewcc.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed Commerce services:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

paymentnewcc.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

paymentnewcc.jsp (UNIX)

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-11

Tag Library Imports

The paymentnewcc.jsp template uses Pipeline and Webflow JSP tags. Therefore, the
template includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>

Note: For more information on the Webflow and Pipeline JSP tags, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The paymentnewcc.jsp template uses Java classes in the following packages and
therefore includes these import statements:
<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%@ page import="com.beasys.commerce.webflow.tags.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

Location in Default Webflow

Customers arrive at the paymentnewcc.jsp template from the page where they are
given the option of selecting a credit card from their profile (payment.jsp). When
customers are finished with this page, customers are returned to the payment.jsp
template so customers can make their selection.

This template is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Included JSP Templates

The following JSP templates are included in the paymentnewcc.jsp template:

� header.inc, which creates the top banner.

6 Payment Services

6-12 Guide to Managing Purchases and Processing Orders

� admin.inc, which is used on all pages and presents the top red-and-black
banner with links to the main WLCS Administration screen, to this template
index, and to a *.jsp.html file for the current template. You should remove this
from the JSP when you deploy it.

� leftside.inc, which presents quick look-up and a promotional ad; for
authenticated users, it also presents a personalized message to the user, customer
profile link, order history link, and payment history link.

� footer.inc, which creates a horizontal footer at the bottom of the page.

� newcctemplate.inc, described in �Customer Registration and Login Services�
in the Guide to Registering Customers and Managing Customer Services.

Events

The paymentnewcc.jsp template presents a customer with a single button, which is
considered an event. This event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-2 provides
information about these events and the business logic they invoke.

Dynamic Data Display

No dynamic data is displayed on the paymentnewcc.jsp template.

Form Field Specification

The purpose of the paymentnewcc.jsp template is to provide form fields that allow
the customer to enter new credit card information. It also passes hidden information to
the Webflow. The form fields used in the paymentnewcc.jsp template, and a
description for each of these form fields, are listed in Table 6-3.

You could add additional fields if your payment service required them.

Table 6-2 paymentnewcc.jsp Events

Event Webflow Response(s)

button.save UpdatePaymentInfoIP

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-13

Table 6-3 paymentnewcc.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(paymentnewcc.jsp), used by
the Webflow.

HttpRequestConstants.
CUSTOMER_CREDITCARD_TYPE

Listbox The type of the customer�s credit
card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_HOLDER

Textbox The name on the credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_NUMBER

Textbox The number of the customer�s
credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_MONTH

Listbox The month of the customer�s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_YEAR

Listbox The year of the customer�s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS1

Textbox The first line in the customer�s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS2

Textbox The second line in the customer�s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_CITY

Textbox The city in the customer�s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_STATE

Listbox The state in the customer�s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ZIPCODE

Textbox The zip/postal code in the
customer�s billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_COUNTRY

Listbox The country in the customer�s
billing address.

6 Payment Services

6-14 Guide to Managing Purchases and Processing Orders

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_CREDIT_CARD_COUNTRY %>) for
use in the JSP.

paymenteditcc.jsp Template

The paymenteditcc.jsp template (shown in Figure 6-4) allows your customers to
modify information about one of the credit cards shown in the credit card list. Editable
information includes the name on the credit card, the expiration date (month and
4-digit year), and the billing address (including street address, city, state, zip/postal
code, and country). The customer must click the Save button to save the modifications
to their credit card.

Sample Browser View

Figure 6-4 shows an annotated version of the paymenteditcc.jsp template. The Edit
Credit Card region provides customers with a series of form fields that allow customers
to edit a credit card. This region utilizes the form fields defined in the included
editcctemplate.jsp template file, which itself includes the states.jsp and
countries.jsp template files. The import call in paymenteditcc.jsp is:

<%@ include file="/commerce/includes/editcctemplate.inc” %>

Note: For information on other elements in the paymenteditcc.jsp template, see
�Common JSP Template Elements� on page 3-2.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-15

Figure 6-4 Annotated paymenteditcc.jsp Template

Location in the WebLogic Portal Directory Structure

You can find the paymenteditcc.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications/wlcsApp\wlcs\commerce\order\

paymenteditcc.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

paymenteditcc.jsp (UNIX)

Tag Library Imports

The paymenteditcc.jsp template uses the existing WebLogic Portal�s User
Management JSP tags, and the Pipeline and Webflow JSP tags. Therefore, the template
includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="um.tld" prefix="um" %>

6 Payment Services

6-16 Guide to Managing Purchases and Processing Orders

Note: For more information on the Webflow and Pipeline JSP tags, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline. For
more information on the WebLogic Portal JSP tags, see �JSP Tag Reference�
in the Guide to Building Personalized Applications.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The paymenteditcc.jsp template uses Java classes in the following packages and
therefore includes these import statements:
<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%@ page import="com.beasys.commerce.webflow.tags.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

Location in Default Webflow

Customers arrive at paymenteditcc.jsp template from the page where they are
given the option of selecting a credit card from their profile (payment.jsp). When
customers are finished with this page, they are returned to the payment.jsp template
so they can make their selection.

This template is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-17

Included JSP Templates

The following JSP templates are included in the paymenteditcc.jsp template:

� header.inc, which creates the top banner.

� admin.inc, which is used on all pages and presents the top red-and-black
banner with links to the main WLCS Administration screen, to this template
index, and to a *.jsp.html file for the current template. You should remove this
from the JSP when you deploy it.

� leftside.inc, which presents quick look-up and a promotional ad; for
authenticated users, it also presents a personalized message to the user, customer
profile link, order history link, and payment history link.

� footer.inc, which creates a horizontal footer at the bottom of the page.

� editcctemplate.inc, described in �Customer Profile Services� in the Guide to
Registering Customers and Managing Customer Services.

Events

The paymenteditcc.jsp template presents a customer with a single button, which is
considered an event. This event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-4 provides
information about these events and the business logic they invoke.

Dynamic Data Display

One purpose of the paymenteditcc.jsp template is to prepare the credit card
information a customer had previously entered, so the editcctemplate.jsp
template can display this information in the payment information form fields. This is
accomplished on the paymenteditcc.jsp template using a combination WebLogic
Portal�s User Management JSP tags and accessor methods/attributes.

Table 6-4 paymenteditcc.jsp Events

Event Webflow Response(s)

button.save UpdatePaymentInfoIP

6 Payment Services

6-18 Guide to Managing Purchases and Processing Orders

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 6-4.

Listing 6-4 Setting the Customer Context

<um:getProfile
profileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

Note: For more information on the WebLogic Portal User Management JSP tags, see
�JSP Tag Reference� in the Guide to Building Personalized Applications.

Next, the getProperty JSP tag is used to obtain the customer�s list of credit cards
(and related billing information), which is then initialized with data from the customer
object, as shown in Listing 6-5.

Listing 6-5 Obtaining the Customer�s Credit Cards and Billing Information

<um:getProperty propertySet="CustomerProperties" propertyName="creditCardsMap"
id="creditCards" />

<%

String creditCardKey =
request.getParameter(HttpRequestConstants.CREDITCARD_KEY);

CreditCard defaultCreditCard = null;

if(creditCardKey != null)

{

defaultCreditCard = (CreditCard)((Map)creditCards).get(creditCardKey);

}

else

{

defaultCreditCard = CreditCardHome.create();

}

Address billingAddress = (Address) defaultCreditCard.getBillingAddress();

%>

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-19

The data stored within the defaultCreditCard and billingAddress objects can
now be accessed by calling accessor methods/attributes within Java scriptlets.
Table 6-5 provides more detailed information about the methods/attributes for the
default credit card, while Table 6-6 provides more information about the accessor
methods/attributes on billingAddress.

Table 6-5 defaultCreditCard Accessor Methods/Attributes

Method/Attribute Description

getType() The credit card type (VISA, MasterCard, AMEX, and so on).

getName() The credit card holder�s name.

getDisplayNumber() The credit card number for display (12 Xs and last 4 digits).

getNumber() The credit card number.

getExpirationDate() The credit card�s expiration date.

Table 6-6 billingAddress Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer�s billing street address.

getStreet2() The second line in the customer�s billing street address.

getCity() The city in the customer�s billing address.

getCounty() The county in the customer�s billing address.

getState() The state in the customer�s billing address.

getPostalCode() The zip/postal code in the customer�s billing address.

getCountry() The country in the customer�s billing address.

6 Payment Services

6-20 Guide to Managing Purchases and Processing Orders

Form Field Specification

Another purpose of the paymenteditcc.jsp template is to provide the form fields for
the customer�s modifications and to pass hidden information to the Webflow. The form
fields used in the paymenteditcc.jsp, and a description for each of these form fields,
are listed in Table 6-7.

You could add additional fields if your payment service required them.

Table 6-7 paymenteditcc.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(paymenteditcc.jsp), used by
the Webflow.

HttpRequestConstants.
CUSTOMER_CREDITCARD_TYPE

Listbox The type of the customer�s credit
card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_HOLDER

Textbox The name on the credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_NUMBER

Textbox The number of the customer�s
credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_MONTH

Listbox The month of the customer�s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_YEAR

Listbox The year of the customer�s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS1

Textbox The first line in the customer�s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS2

Textbox The second line in the customer�s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_CITY

Textbox The city in the customer�s billing
address.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 6-21

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_CREDIT_CARD_COUNTRY %>) for
use in the JSP.

payment_admin.jsp, paymenthistory.jsp, and
payment_info.jsp Templates

Following are descriptions of the payment_admin.jsp, the payment_info.jsp, and the
paymenthistory.jsp.

payment_admin.jsp

The payment_admin.jsp is the main page used for payment administration. All
payment administration functions go through this page. It interfaces with the
CreditCardService EJB for many operations.

payment_info.jsp

The payment_info.jsp provides developer-level information about the Payment JSP
files. This file is, out of the box, only available as a popup from the main admin page
when you click the More Explanation link under the Payment Administration section.

HttpRequestConstants.
CUSTOMER_CREDITCARD_STATE

Listbox The state in the customer�s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ZIPCODE

Textbox The zip/postal code in the
customer�s billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_COUNTRY

Listbox The country in the customer�s
billing address.

Table 6-7 paymenteditcc.jsp Form Fields (Continued)

Parameter Name Type Description

6 Payment Services

6-22 Guide to Managing Purchases and Processing Orders

paymenthistory.jsp

The paymenthistory.jsp lets customers view their payment history by clicking the
Payments link under View History in the left side of the window.

Input Processors

This section provides a brief description of each input processor associated with the
Payment Services JSP template(s).

PaymentAuthorizationIP

Class Name examples.wlcs.sampleapp.payment.webflow.
PaymentAuthorizationIP

Description Retrieves the shopping cart from the Pipeline session, the
CreditCardMapKey from the request, and determines the total price of the
order associated with the shopping cart. Adds the amount and credit card
associated with the key to the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CREDITCARD_KEY

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

Removed Pipeline
Session Attributes

None

Validation Verifies that the credit card key is valid and that it references an existing credit
card.

Input Processors

Guide to Managing Purchases and Processing Orders 6-23

UpdatePaymentInfoIP

Exceptions ProcessingException, thrown for invalid types of CREDITCARD_KEY,
PAYMENT_CREDIT_CARD, or SHOPPING_CART. Also thrown if these
attributes are not available.

Class Name examples.wlcs.sampleapp.customer.webflow.

UpdatePaymentInfoIP

Description Processes the customer's input from paymentnewcc.jsp and
paymenteditcc.jsp. Retrieves the customer name from the Pipeline
session, creates a new CustomerValue object, and sets it in the
Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CUSTOMER_CREDITCARD_TYPE

HttpRequestConstants.CUSTOMER_CREDITCARD_HOLDER

HttpRequestConstants.CUSTOMER_CREDITCARD_NUMBER

HttpRequestConstants.CUSTOMER_CREDITCARD_MONTH

HttpRequestConstants.CUSTOMER_CREDITCARD_YEAR

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS1

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS2

HttpRequestConstants.CUSTOMER_CREDITCARD_CITY

HttpRequestConstants.CUSTOMER_CREDITCARD_STATE

HttpRequestConstants.CUSTOMER_CREDITCARD_ZIPCODE

HttpRequestConstants.CUSTOMER_CREDITCARD_COUNTRY

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.CUSTOMER

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

6 Payment Services

6-24 Guide to Managing Purchases and Processing Orders

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Payment Services JSP templates.

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

PaymentAuthorizationHostPC

Exceptions InvalidInputException, thrown if invalid credit card information
is obtained from the HttpServletRequest.

Class Name examples.wlcs.sampleapp.payment.pipeline.
PaymentAuthorizationHostPC

Description Authorizes a given credit card for a specified amount. Used for host-based
payment models, shown in the weblogiccommerce.properties file as:
HOST_AUTH_CAPTURE

HOST_AUTH_CAPTURE_AVS

HOST_POST_AUTH_CAPTURE

HOST_POST_AUTH_CAPTURE_AVS

Required Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT
PipelineSessionConstants.ORDER_HANDLE (Request scope)

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

Pipeline Components

Guide to Managing Purchases and Processing Orders 6-25

PaymentAuthorizationTerminalPC

JNDI Name None

Exceptions AuthorizationFailureException, thrown when the credit card being
used for authorization is invalid (that is, the number or other associated
information is incorrect).

AuthorizationRejectedException, thrown when the credit card used
for authorization is valid but cannot be authorized (overdrawn, expired, and so
on).

PipelineNonFatalException, thrown when the external payment service
is unavailable. The transaction is recorded for retry.

PipelineException, thrown when there is a configuration error, a general
service error, or a system-level exception from a back-end component.

Class Name examples.wlcs.sampleapp.payment.pipeline.
PaymentAuthorizationTerminalPC

Description Authorizes a given credit card for a specified amount. Used for terminal-based
payment models, shown in your application�s
Meta-inf\application-config.xml file as the following MBean
properties:
AUTO_MARK_AUTO_SETTLE

AUTO_MARK_AUTO_SETTLE_AVS

AUTO_MARK_MANUAL_SETTLE

AUTO_MARK_MANUAL_SETTLE_AVS

MANUAL_MARK_AUTO_SETTLE

MANUAL_MARK_AUTO_SETTLE_AVS

MANUAL_MARK_MANUAL_SETTLE

MANUAL_MARK_MANUAL_SETTLE_AVS

Required Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT
PipelineSessionConstants.ORDER_HANDLE (Request scope)

6 Payment Services

6-26 Guide to Managing Purchases and Processing Orders

Integrating with a Payment Service

The Credit Card Web Service that is installed with WebLogic Portal provides a default
framework for handling authorization, capture, and settlement of credit card
transactions received from the default CreditCardService EJB in the enterprise
application. The business methods within the CreditCardService EJB implement a
standard workflow that is associated with the completion of credit card transactions,
and the current state of the transaction is maintained and each action is journaled. (The
Credit Card Web Service, by comparison, is a stateless session EJB wrapped in code
that makes it a Web service.)

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions AuthorizationFailureException, thrown when the credit card being
used for authorization is invalid (that is, the number or other associated
information is incorrect).

AuthorizationRejectedException, thrown when the credit card used
for authorization is valid but cannot be authorized (overdrawn, expired, and so
on).

PipelineNonFatalException, thrown when the external payment service
is unavailable. The transaction is recorded for retry.

PipelineFatalException, thrown when there is a configuration error, a
general service error, or a system-level exception from a back-end component.

Integrating with a Payment Service

Guide to Managing Purchases and Processing Orders 6-27

Integrating your enterprise applications with the payment Web service involves
modifying either the CreditCardService EJB and/or the Credit Card Web Service,
depending on who will host the Web service: your organization or the third-party
payment vendor.

In either case, it helps to understand the connection relationship between the pieces in
the WebLogic Portal payment services and the pieces in the Credit Card Web Service.
Figure 6-5 illustrates the connection between the two.

Figure 6-5 The Relationship Between the Credit Card Web Service and the
CreditCardService EJB

Caution: The default payment Web service that is shipped with WebLogic Portal
always sends payment information through without any errors, as if it were
connected to and approved by a third-party payment service. This default
processing of payment is not designed for production use. You must
integrate with your third-party vendor�s payment service to process
payment correctly.

6 Payment Services

6-28 Guide to Managing Purchases and Processing Orders

If the Third-Party Vendor Hosts the Web Service

If the third-party vendor hosts the Credit Card Web Service, the vendor will integrate
the Web service with their product�s API.

Here is what your organization must do to connect to the vendor-hosted Web service:

1. If the vendor has modified any of PS*.class files in the Web service�s
payment.jar file, copy those modifications in your enterprise application. You
can find the source code for these classes in:

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\payment\PS*.java

Compile the source files.

2. Make any vendor-required modifications to the CreditCardService EJB in your
enterprise application so that it makes appropriate SOAP calls to the vendor�s
payment Web service. You can find the source code for the CreditCardService
EJB in the following files:

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\payment\CreditCardService*.java

Compile the source files.

3. After you compile your source code, add the class files to the wlcsSample.jar
in wlcsApp application directory. When you add the class files to the JAR, make
sure you maintain their relative directory structure.

4. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

5. In the WebLogic Server Console for portalServer, select Deployments >
Applications > wlcsApp > Service Configuration > Payment Service Client, and
in the Payment Web Service WSDL field, modify the URL to the payment
vendor�s WSDL file. Click Apply in the Console to apply the new URL. The new
URL is written to the following file:
PORTAL_HOME\applications\wlcsApp\META-INF\

application-config.xml.

Note: At startup, WebLogic Server reads the application-config.xml file, so
it knows where to find the Web service.

Integrating with a Payment Service

Guide to Managing Purchases and Processing Orders 6-29

If Your Organization Hosts the Web Service

If your organization hosts the Credit Card Web Service, we strongly recommend that
you deploy the Web service on a separate instance of WebLogic Server (that is, use a
separate Java Virtual Machine [JVM]) than what your enterprise applications are
running on. This way, your enterprise applications are insulated from failures or
incidents in the Web service.

Here is what you must do if your organization hosts the Credit Card Web Service:

Caution: These are general, simplified guidelines for integrating with a vendor�s
API. In actual practice, such integration requires close collaboration with
your vendor. We strongly recommend you contact your vendor for
assistance.

1. Obtain your third-party vendor�s payment product API.

2. Modify the CreditCardWebService EJB (the Web service EJB) so that it
translates SOAP calls into the language of the third-party product�s API. (See
�Default Payment Services Shipped With WebLogic Portal� on page 6-30.) You
can find the source code for the CreditCardWebService EJB in the following
files:

PORTAL_HOME\applications\paymentWSApp\src\examples\wlcs\
sampleapp\payment\CreditCardWebService*.java

Compile the source files.

3. After you have compiled the source code, replace the class files in payment.jar,
located in the paymentWSApp directory. When you add the class files to the JAR,
make sure you maintain their relative directory structure.

4. Use the Web service generator (wsgen) on the payment.jar file to build a file
called payment-webservice.war, as shown in Figure 6-5.

For information on using wsgen, see Programming WebLogic Server Web
Services at http://e-docs.bea.com/wls/docs61/webServices/index.html.

5. Make any necessary modifications to the CreditCardService EJB in the wlcsApp
application so that it makes appropriate SOAP calls to the CreditCardWebService
EJB. You can find the source code for the CreditCardService EJB in the
following files:

6 Payment Services

6-30 Guide to Managing Purchases and Processing Orders

PORTAL_HOME\applications\wlcsApp\src\examples\wlcs\
sampleapp\payment\CreditCardService*.java

Compile the source files.

6. After you compile the source files, add the class files to wlcsSample.jar in the
wlcsApp application directory. When you add the file to the JAR, maintain its
relative directory structure.

7. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

8. In the WebLogic Server Console for portalServer, select Deployments >
Applications > wlcsApp > Service Configuration > Payment Service Client, and
in the Payment Web Service WSDL field, modify the URL to the payment
WSDL file. Click Apply in the Console to apply the new URL. The new URL is
written to the following file:
PORTAL_HOME\applications\wlcsApp\META-INF\

application-config.xml.

Note: At startup, WebLogic Server reads the application-config.xml file, so
it knows where to find the Web service.

Default Payment Services Shipped With WebLogic Portal

The CreditCardWebService EJB is a stateless session bean that provides services
related to the authorization, capture, and settlement of credit card transactions. The
CreditCardWebService EJB serves as an interface behind which integrations with
various payment solutions can be implemented. The current state of each transaction
is maintained, and each action is journaled, by the CreditCardService EJB in the
wlcsApp application.

Caution: The CreditCardWebService EJB that is shipped with WebLogic Portal is
designed to give you an example of the different payment services you can
use. The default Web service always sends payment information through
without any errors, as if it were connected to and approved by a third-party
payment service. This default processing of payment is not designed for
production use. You must integrate with your third-party vendor�s
payment service to process payment correctly.

General characteristics of transactions are described in the following list:

� Each transaction is initiated with a request to authorize. This authorization
generally results in the creation of a persistent PaymentTransaction. The state

Integrating with a Payment Service

Guide to Managing Purchases and Processing Orders 6-31

of the payment and the key for that PaymentTransaction is returned in a
TransactionResponse as well as service specific information. A handle for
that PaymentTransaction can be obtained from the TransactionResponse.

� In the event that the initial authorization fails due to a failure to connect to the
payment authorization service, it is possible to retry the authorization using the
reauthorize method.

� An authorized transaction can be captured or settled depending on how the
service is configured.

� An entire transaction can be completed in a single AuthorizeAndCapture.

You can configure the Payment service to work with your business model. The
methods/entry points are described in detail in the sections that follow.

Authorize

Use this method in the CreditCardService EJB only for terminal-based payment
models. This entry point validates the credit card number and reserves credit on the
supplied card for the amount specified. When validated, it creates a new entry in the
WLCS_TRANSACTION table that records the incident and sets the state based on the
payment model. The amount of the transaction is deducted from the open to buy in the
customer's credit balance. However, the funds are not transferred to the merchant until
settling.

Note: Merchants who are using a terminal-based processor must perform a capture
and settlement procedure before the funds from the sale are transferred to their
account. This is accomplished by a subsequent call to Capture and/or
Settle, depending on the Auto Mark/Auto Settle processor configuration.

AuthorizeAndCapture

Use this method only for host-based payment models. This entry point validates the
credit card number and reserves credit on the supplied card for the amount specified.
When validated, it creates a new entry in the WLCS_TRANSACTION table that records
the incident and sets the state based on the payment model. The amount of the
transaction is deducted from the open to buy in the customer's credit balance. However,
the funds are not transferred to the merchant until settling.

6 Payment Services

6-32 Guide to Managing Purchases and Processing Orders

Note: Merchants who are using a host-based post-authorization capture processor
must perform a capture and settlement procedure before the funds from the
sale are transferred to their account.

BatchQuery

Use this method to update and reconcile the status of a transaction committed in a
given batch. This entry point determines if a particular transaction has failed, and is
essential for payment processors where the status of an item cannot be determined
correctly from the output fields of a batch-commit message. BatchQuery always
returns success on the query and creates a TransactionEntry to reflect this success.

Note: This method is implemented as a pass through to the underlying service
provider. Subsequently, all return information is service specific. For details
on return codes and results, see your service providers documentation.

QueryTransactions

Use this method to query the Payment server for transactions that match the designated
parameters. You need only to supply non-null values for those parameters that you
want to query against. However, you must supply at least one non-null parameter.
Always returns OK.

Note: This method is implemented as a pass through to the underlying service
provider. Subsequently, all return information is service specific. For details
on return codes and results, see your service provider documentation.

Reauthorize

Use this method only for terminal-based payment models. This method attempts to
authorize a payment transaction that is in the retry state. After authorization attempt,
the payment transaction is updated with the current date and a transaction entry is
added to the payment transaction. The modified payment transaction and any
service-specific results are then returned.

Integrating with a Payment Service

Guide to Managing Purchases and Processing Orders 6-33

ReauthorizeAndCapture

Use this method only for host-based payment models. This method attempts to
authorize a payment transaction that is in the retry state. After authorization attempt,
the payment transaction is updated with the current date and a transaction entry is
added to the payment transaction. The modified payment transaction and any
service-specific results are then returned.

Settle

Use this method only for terminal-based payment models with a manual-settle
processor configuration. This method finalizes a transaction by transferring a portion
of the funds previously captured from the customer�s account to the merchant�s
account. The amount can be less than or equal to the captured amount. Always returns
settle success.

VoidTransaction

This method aborts previously submitted transactions. Returns OK. The following
transactions can be voided:

� HOST_AUTH_CAPTURE transactions in the pending settlement state.

� HOST_POST_AUTH_CAPTURE transactions in the pending settlement state.

� AUTO_MARK_AUTO_SETTLE transactions in the pending settlement state.

� MANUAL_MARK_AUTO_SETTLE transactions in the pending settlement state.

� AUTO_MARK_MANUAL_SETTLE transactions in the captured state.

� MANUAL_MARK_MANUAL_SETTLE transactions in the captured state.

Credit Card Encryption

For information on credit card encryption, see �Credit Card Security Service� in the
Security Guide.

6 Payment Services

6-34 Guide to Managing Purchases and Processing Orders

Guide to Managing Purchases and Processing Orders 7-1

CHAPTER

7 Order Summary and
Confirmation Services

Prior to submitting their order, your customers will want to review an order summary
that includes information about the items they have decided to purchase, as well as
other information (shipping, payment, and tax) related to their order. Following order
submission, it is customary to provide your customers with a confirmation page, which
customers can save and later use to check on the status of their order. The Order
Summary and Confirmation Services allow you to do just that, and this topic describes
how.

This topic includes the following sections:

� JavaServer Pages (JSPs)

� checkout.jsp Template

� confirmorder.jsp Template

� Input Processors

� Pipeline Components

� CommitOrderPC

� ResetCheckoutPC

� PurchaseTrackerPC

7 Order Summary and Confirmation Services

7-2 Guide to Managing Purchases and Processing Orders

JavaServer Pages (JSPs)

This section describes the JavaServer Pages (JSPs) used to implement the Order
Summary and Confirmation Services. You can use them on your own e-commerce site,
or customize them to meet your requirements.

Note: For a description of the complete set of JSPs used in the WebLogic Portal Web
application and a listing of their locations in the directory structure, see the
E-Commerce JSP Template Summary.

checkout.jsp Template

The checkout.jsp template (shown in Figure 7-1) provides a customer with a final
look at all the details of their order, before the customer commits or cancels the order.
Information displayed includes the shipping address, shipping details, a list of the
items ordered (including the item name, short description, quantity, price, and
subtotal), shipping and handling costs, tax costs, and total cost.

Customers must click the Complete Purchase button to commit their order. Customers
wishing to return to the previous page can click the Back button instead.

Sample Browser View

Figure 7-1 shows an annotated version of the checkout.jsp template. A description
of the annotated regions follow the figure.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-3

Figure 7-1 Annotated checkout.jsp Template

7 Order Summary and Confirmation Services

7-4 Guide to Managing Purchases and Processing Orders

The numbers in the following list refer to the numbered regions in the figure:

1. The Final Checkout Review region uses a combination of WebLogic Portal and
Pipeline JSP tags to obtain and display the shipping address, splitting preferences,
and shipping method. This provides the customer with a final look at this shipping
information as it was entered on previous JSP templates.

2. The Order region uses a combination of WebLogic Portal and Pipeline JSP tags
to obtain and display the customer�s current shopping cart. This provides the
customer with a final look at the contents of their shopping cart (including item
name, description, quantity, price, and subtotal), and the discount, shipping, tax,
and total amounts for the entire order.

Location in the WebLogic Portal Directory Structure

You can find the checkout.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

checkout.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

checkout.jsp (UNIX)

Tag Library Imports

The checkout.jsp template uses existing WebLogic Server JSP tags, and WebLogic
Portal�s User Management and Personalization JSP tags. It also uses Pipeline JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="um.tld" prefix="um" %>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %>

For more information on the WebLogic Server JSP tags or the WebLogic Portal JSP
tags, see �JSP Tag Reference� in the Guide to Building Personalized Applications. For
more information about the Pipeline JSP tags, see the Guide to Managing Presentation
and Business Logic: Using Webflow and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-5

Java Package Imports

The checkout.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="java.util.*" %>
<%@ page import="java.text.*" %>
<%@ page import="com.beasys.commerce.axiom.units.*" %>
<%@ page import="com.beasys.commerce.axiom.contact.*" %>
<%@ page import="examples.wlcs.sampleapp.shoppingcart.*" %>
<%@ page import="examples.wlcs.sampleapp.price.service.DiscountPresentation" %>
<%@ page import="examples.wlcs.sampleapp.price.quote.OrderAdjustment" %>
<%@ page import="examples.wlcs.sampleapp.price.quote.AdjustmentDetail" %>
<%@ page import="examples.wlcs.sampleapp.price.quote.AdjustmentType" %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>
<%@ page import="com.beasys.commerce.webflow.PipelineSessionConstants" %>
<%@ page import="com.bea.p13n.appflow.webflow.WebflowJSPHelper" %>

Location in Default Webflow

Customers arrive at the checkout.jsp template from the payment information page
(payment.jsp). If customers choose to commit their order, they will continue to the
order confirmation page (confirmorder.jsp). If customers choose to cancel, they
will be sent back to the payment page (payment.jsp).

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

The checkout.jsp template presents a customer with two buttons, each of which is
considered an event. These events trigger a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 7-1 provides
information about these events and the business logic they invoke.

Table 7-1 checkout.jsp Events

Event Webflow Response(s)

button.back No business logic required. Loads payment.jsp.

7 Order Summary and Confirmation Services

7-6 Guide to Managing Purchases and Processing Orders

Table 7-2 briefly describes each of the Pipelines from Table 7-1. For more information
about individual Pipeline components, see �Pipeline Components� on page 7-20.

Dynamic Data Display

The purpose of the checkout.jsp template is to display the data specific to a
customer�s shopping experience for their final review. This is accomplished on the
checkout.jsp template using a combination of Pipeline and WebLogic Portal JSP
tags and accessor methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 7-1.

Listing 7-1 Setting the Customer Context

<um:getProfileprofileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

Note: For more information on the WebLogic Portal JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

button.purchase CommitOrder

Table 7-1 checkout.jsp Events

Event Webflow Response(s)

Table 7-2 Checkout Review Pipelines

Pipeline Description

CommitOrder Contains CommitOrderPC, AuthorizePaymentPC,
CalculateTaxLineLevelCommitPC, and is transactional.

PurchaseTracker Contains PurchaseTrackerPC, ResetCheckoutPC, and is
not transactional.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-7

Next, the getProperty JSP tag retrieves the SHIPPING_ADDRESS and
SHOPPING_CART attributes from the Pipeline session. Table 7-3 provides more
detailed information on these attributes.

Listing 7-2 illustrates how some of these attributes are retrieved from the Pipeline
session.

Listing 7-2 Retrieving Check Out Attributes

<webflow:getProperty id="shippingMethodValue"
property="<%=PipelineSessionConstants.SHIPPING_METHOD%>"
type="examples.wlcs.sampleapp.shipping.ShippingMethodValue" scope="session"
namespace="sampleapp_main" />

<webflow:getProperty id="shippingAddress"
property="<%=PipelineSessionConstants.SHIPPING_ADDRESS%>"
type="com.beasys.commerce.axiom.contact.Address" scope="session"
namespace="sampleapp_main" />

Table 7-3 checkout.jsp Pipeline Session Attributes

Attributes Type Description

PipelineSessionConstants.
SHIPPING_ADDRESS

com.beasys.commerce.axiom
.contact.Address

The address the order is
being shipped to.

PipelineSessionConstants.
SHIPPING_METHOD

examples.wlcs.sampleapp
.shipping.shippingMethodValue

Identifies the shipping
method the customer
selected.

PipelineSessionConstants.
SHOPPING_CART

examples.wlcs.sampleapp
.shoppingcart.ShoppingCart

The shopping cart that was
ordered.

PipelineSessionConstants.
SPLITTING_PREFERENCE

java.lang.String The splitting preference the
customer selected.

PipelineSessionConstants.
SPECIAL_INSTRUCTIONS

java.lang.String Any special instructions the
customer specifies.

PipelineSessionConstants.
ORDER_ADJUSTMENTS

examples.wlcs.sampleapp
.price.quote.Quote

Adjustments to the order
and order lines.

PipelineSessionConstants.
PAYMENT_CREDIT_CARD

com.beasys.commerce.axiom
.contact.CreditCard

The user�s credit card.

7 Order Summary and Confirmation Services

7-8 Guide to Managing Purchases and Processing Orders

<webflow:getProperty id="shoppingCart"
property="<%=PipelineSessionConstants.SHOPPING_CART%>"
type="examples.wlcs.sampleapp.shoppingcart.ShoppingCart" scope="session"
namespace="sampleapp_main" />

Note: For more information on the getProperty JSP tag, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

For the data stored in the customer profile and retrieved using the getProfile JSP
tag, use the getPropertyAsString JSP tag to display the customer information, as
shown in Listing 7-3.

Listing 7-3 Displaying Data Stored in the Customer�s Profile

<div class="tabletext">

<um:getPropertyAsString propertySet="CustomerProperties"
propertyName="firstName"/> <um:getPropertyAsString
propertySet="CustomerProperties" propertyName="lastName"/>

<%=shippingAddress.getStreet1()%>

<!-- implent street2 using es -->

<% if(shippingAddress.getStreet2().length() != 0) { %>

<%=shippingAddress.getStreet2()%>

<% } %>

<%=shippingAddress.getCity()%>

<%String stateZip = shippingAddress.getState()+ "-" +
shippingAddress.getPostalCode();%>

<%=stateZip%>

<%= shippingAddress.getCountry() %>

</div>

Note: For more information on the WebLogic Portal JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

The data stored within the Pipeline session attributes (retrieved using the
getProperty JSP tag) is displayed by using accessor methods/attributes within Java
scriptlets. Table 7-4 provides more detailed information on these methods/attributes
for Address, ShoppingCart, and ShoppingCartLine.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-9

Because the getShoppingCartLineCollection() method allows you to retrieve a
collection of the individual lines within a shopping cart, there are also accessor
methods/attributes you can use to break apart the information contained within each
line. Table 7-6 provides information about these methods/attributes.

Table 7-4 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer�s street
address.

getStreet2() The second line in the customer�s street
address.

getCity() The city in the customer�s address.

getState() The state in the customer�s address.

getPostalCode() The zip/postal code in the customer�s
address.

getCountry() The country in the customer�s address.

Table 7-5 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

getShoppingCartLineCollection() The individual lines in the shopping cart (that is,
ShoppingCartLine).

getTotal(int totalType) The total amount specified by the totalType parameter.
The relevant parameter is:

ShoppingCartConstants.LINE_TAX

Note: The getTotal() method also allows you to
combine different total types. For more
information, see the Javadoc.

7 Order Summary and Confirmation Services

7-10 Guide to Managing Purchases and Processing Orders

Listing 7-4 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Listing 7-4 Using Accessor Methods/Attributes Within checkout.jsp Java
Scriptlets

<wl:repeat set="<%=shoppingCart.getShoppingCartLineCollection().iterator()%>"
id="shoppingCartLine" type="ShoppingCartLine" count="100000">

<tr>

<td colspan="8" bgcolor="#899ABC"><img src="<webflow:createResourceURL
resource="/commerce/images/shim.gif" />" width="62" height="1"></td>

</tr>

<tr>

<td nowrap valign="top">

<div class="tabletext"><%=
shoppingCartLine.getProductItem().getKey().getIdentifier() %>

</div>

</td>

<td valign="top" bgcolor="#CCCCFF">

<div class="tabletext"><%= shoppingCartLine.getProductItem().getName() %>

</div>

</td>

<td align="center" valign="top">

Table 7-6 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity() The quantity of the item.

getProductItem() The product item in the shopping cart line.

getUnitPrice() The current price for the item at the time it was added to the
shopping cart. May be different from MSRP.

getBaseTotal() The total before discounts.

getDiscountPresentations() Returns an array list of DiscountPresentation objects.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-11

<div class="tabletext"><%= WebflowJSPHelper.quantityFormat(
shoppingCartLine.getQuantity()) %>

</div>

</td>

<td align="right" valign="top" bgcolor="#CCCCFF" nowrap>

<div class="tabletext">

<%-- The i18n tag allows the "currency.properties" file to substitute a display --%>

<%-- currency value (e.g "$") for the returned 3 letter ISO4217 code (e.g. "USD").
--%>

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getUnitPrice().getCurrency() %>"/> <%=
WebflowJSPHelper.priceFormat(shoppingCartLine.getUnitPrice().getValue()) %>

</div>

</td>

<td align="right" valign="top" nowrap><div class="tabletext" nowrap>

<% // Calculate the Subtotal

//double lineTotal = (shoppingCartLine.getQuantity() *
shoppingCartLine.getUnitPrice().getValue());

%>

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getBaseTotal().getCurrency() %>"/> <%=
WebflowJSPHelper.priceFormat(shoppingCartLine.getBaseTotal().getValue()) %>

</div>

</td>

</tr>
...
</wl>

Form Field Specification

The checkout.jsp template does not make use of any form fields.

confirmorder.jsp Template

The confirmorder.jsp template (shown in Figure 7-2) displays the information
about the customer�s order after they have committed it. This information is the same
as that shown in the checkout.jsp template, but also includes an order confirmation

7 Order Summary and Confirmation Services

7-12 Guide to Managing Purchases and Processing Orders

number customers can use to access information about the order in the future. The
confirmorder.jsp template also provides the customer with a Continue Shopping
button that will bring the customer back to the product catalog.

Sample Browser View

Figure 7-2 shows an annotated version of the confirmorder.jsp template. A
description of the annotated regions follow the figure.

Figure 7-2 Annotated confirmorder.jsp Template

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-13

The numbers in the following list refer to the numbered regions in the figure:

1. This region contains the dynamically generated order confirmation number, which
customers can use on subsequent visits to check the status of their order. It is
displayed using Pipeline JSP tags and accessor methods/attributes.

2. This region uses a combination of WebLogic Portal and Pipeline JSP tags to
obtain and display the shipping address, splitting preferences, and shipping
method. Together with the information in region 4 and region 6, this provides the
customer with a record of the shipping information as it was entered on previous
JSP templates.

3. This region uses a combination of WebLogic Portal and Pipeline JSP tags to
obtain and display the customer�s shopping cart. Together with the information in
region 4 and region 5, this provides the customer with a record of their shopping
cart (including item name, description, quantity, price, and subtotal), and the
shipping, tax, and total amounts for the order.

Location in the WebLogic Portal Directory Structure

You can find the confirmorder.jsp template file at the following location, where
PORTAL_HOME is the directory in which you installed WebLogic Portal:

%PORTAL_HOME%\applications\wlcsApp\wlcs\commerce\order\

confirmorder.jsp (Windows)
$PORTAL_HOME/applications/wlcsApp/wlcs/commerce/order/

confirmorder.jsp (UNIX)

Tag Library Imports

The confirmorder.jsp template uses existing WebLogic Server and WebLogic
Portal�s User Management and Personalization JSP tags. It also uses Pipeline JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="um.tld" prefix="um" %>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %>

7 Order Summary and Confirmation Services

7-14 Guide to Managing Purchases and Processing Orders

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Portal JSP tags, see �JSP Tag Reference� in the Guide to Building
Personalized Applications. For more information about the Pipeline JSP tags,
see the Guide to Managing Presentation and Business Logic: Using Webflow
and Pipeline.

These files reside in the lib directory within PORTAL_HOME.

Java Package Imports

The confirmorder.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="java.util.*" %>

<%@ page import="java.text.*" %>

<%@ page import="com.beasys.commerce.axiom.units.*" %>

<%@ page import="com.beasys.commerce.axiom.contact.*" %>

<%@ page import="com.beasys.commerce.axiom.util.helper.*;" %>

<%@ page import="examples.wlcs.sampleapp.order.*" %>

<%@ page import="examples.wlcs.sampleapp.catalog.*" %>

<%@ page import="examples.wlcs.sampleapp.shipping.*" %>

<%@ page import="com.beasys.commerce.util.*; " %>

<%@ page import="com.beasys.commerce.webflow.HttpRequestConstants" %>

<%@ page import="com.beasys.commerce.webflow.PipelineSessionConstants" %>

<%@ page import="com.bea.p13n.appflow.webflow.WebflowJSPHelper" %>

Location in Default Webflow

Customers arrive at confirmorder.jsp template from the final checkout page
(checkout.jsp). The default Webflow does not define a subsequent JSP template.

The template is in the sampleapp_order namespace.

Note: For more information about the default Webflow, see �Overview of Managing
Purchases and Processing Orders� on page 1-1.

Events

There are no events associated with the confirmorder.jsp template.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-15

Dynamic Data Display

The purpose of the confirmorder.jsp template is to display the data specific to a
customer�s shopping experience along with a unique order confirmation number. This
is accomplished on the confirmorder.jsp template using a combination of Pipeline
and WebLogic Portal JSP tags and accessor methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 7-5.

Listing 7-5 Setting the Customer Context

<um:getProfile
profileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

Note: For more information on the WebLogic Portal JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

Next, the getProperty JSP tag retrieves the ORDER_VALUE and SHIPPING_METHOD
attributes from the Pipeline session. Table 7-7 provides more detailed information
about these attributes.

Listing 7-6 illustrates how these attributes are retrieved from the Pipeline session.

Table 7-7 confirmorder.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants.
ORDER_VALUE

List of com.beasys.commerce
.ebusiness.order.OrderValue

List of the orders
available for the
customer.

PipelineSessionConstants.
SHIPPING_METHOD

examples.wlcs.sampleapp
.shipping.ShippingMethodValue

The method being used
to ship the order.

PipelineSessionConstants.
CREDIT_CARD_KEY

java.lang.String The key of the credit
card.

7 Order Summary and Confirmation Services

7-16 Guide to Managing Purchases and Processing Orders

Listing 7-6 Retrieving Order Confirmation Attributes

<webflow:getProperty id="orderValue"
property="<%=PipelineSessionConstants.ORDER_VALUE%>" type="OrderValue"
scope="request" namespace="sampleapp_main" />

<webflow:getProperty id="creditCard"
property="<%=PipelineSessionConstants.CREDITCARD_KEY%>" type="java.lang.String"
scope="session" namespace="sampleapp_main" />

<webflow:getProperty id="shippingMethodValue"
property="<%=PipelineSessionConstants.ORDER_SHIPPING_METHOD%>"
type="examples.wlcs.sampleapp.shipping.ShippingMethodValue" scope="request"
namespace="sampleapp_main" />

Note: For more information on the getProperty JSP tag, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

For the data stored in the customer profile and retrieved using the getProfile JSP
tag, use the getPropertyAsString JSP tag to display the customer information, as
shown in Listing 7-7.

Listing 7-7 Displaying Data Stored in the Customer�s Profile

<um:getPropertyAsString propertySet="CustomerProperties"
propertyName="firstName" />

<um:getPropertyAsString propertySet="CustomerProperties"
propertyName="lastName" />

Note: For more information on the WebLogic Portal JSP tags, see �JSP Tag
Reference� in the Guide to Building Personalized Applications.

The data stored within the Pipeline session attributes (retrieved using the
getProperty JSP tag) is displayed by using accessor methods/attributes within Java
scriptlets. Table 7-8 through Table 7-11 provide more detailed information on these
methods/attributes for Address, ShippingMethodValue, OrderValue, and
Orderline.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-17

Table 7-8 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer�s street address.

getStreet2() The second line in the customer�s street address.

getCity() The city in the customer�s address.

getState() The state in the customer�s address.

getPostalCode() The zip/postal code in the customer�s address.

getCountry() The country in the customer�s address.

Table 7-9 ShippingMethodValue Accessor Methods/Attributes

Method/Attribute Description

description A description of the shipping method.

identifier Key in the database for the shipping method.

Table 7-10 OrderValue Accessor Methods/Attributes

Method/Attribute Description

createdDate The date the customer�s order was created.

identifier Key in the database for the order.

getTotal(int totalType) The total amount specified by the totalType parameter. The
relevant parameter is OrderConstants.LINE_TAX

Note: The getTotal() method also allows you to combine
different total types. For more information, see the
Javadoc.

orderLines A collection of the lines in the shopping cart that make up the
customer�s order.

7 Order Summary and Confirmation Services

7-18 Guide to Managing Purchases and Processing Orders

Because the orderLines attribute allows you to retrieve the individual lines within an
order, it also has accessor methods/attributes you can use to display the information
contained within each line. These methods/attributes are listed in Table 7-11.

Listing 7-8 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Listing 7-8 Using Accessor Methods Within confirmorder.jsp Java Scriptlets

<%--Iterate through order to get all order lines --%>

<wl:repeat set="<%=orderValue.orderLines.iterator()%>" id="orderLine"
type="OrderLine" count="100000">

<tr>

<td valign="top" align="left" nowrap>

<div class="tabletext"><%= orderLine.getProductIdentifier() %></div>

</td>

<td valign="top" align="left">

<div class="tabletext"><%= orderLine.getDescription() %></div>

</td>

<td align="center" valign="top">

price The total price as a money object.

Table 7-10 OrderValue Accessor Methods/Attributes (Continued)

Method/Attribute Description

Table 7-11 OrderLine Accessor Methods/Attributes

Method/Attribute Description

getProductIdentifier() The name (identifier) for the shopping cart
item.

getDescription() A description of the shopping cart item.

getQuantity() The quantity of the shopping cart item.

getUnitPrice() The unit price for the shopping cart item.

JavaServer Pages (JSPs)

Guide to Managing Purchases and Processing Orders 7-19

<div class="tabletext"><%= WebflowJSPHelper.quantityFormat(
orderLine.getQuantity()) %></div>

</td>

<td align="right" valign="top" nowrap>

<div class="tabletext">

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
orderLine.getUnitPrice().getCurrency() %>"/> <%=
WebflowJSPHelper.priceFormat(orderLine.getUnitPrice().getValue()) %>

</div>

</td>

<td align="right" valign="top" nowrap>

<%

// Calculate the line subtotal without adjustments/discounts

double orderLineTotal = (orderLine.getQuantity() *
orderLine.getUnitPrice().getValue());

%>

<div class="tabletext">

<i18n:getMessage bundleName="/commerce/currency" messageName="<%=
orderLine.getUnitPrice().getCurrency() %>"/> <%=
WebflowJSPHelper.priceFormat(orderLineTotal) %>

</div>

</td>

</tr>

...

</wl>

For a code example of the ShoppingCart and ShoppingCartLine accessor
methods/attributes, see �Shopping Cart Management Services� on page 3-1.

Form Field Specification

The confirmorder.jsp template does not make use of any form fields.

7 Order Summary and Confirmation Services

7-20 Guide to Managing Purchases and Processing Orders

Input Processors

No input processors are used in the Order Summary and Confirmation Services JSP
template(s).

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Order Summary and Confirmation Services JSP template(s).

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

CommitOrderPC

Class Name examples.wlcs.sampleapp.order.pipeline.CommitOrderPC

Description Reads all the information about a customer�s order from the Pipeline session and
creates an Order entity bean. This is committed to the database in the WLCS_ORDER
and WLCS_ORDER_LINE tables. The OrderValue object for the order is then stored
in the Pipeline session.

Pipeline Components

Guide to Managing Purchases and Processing Orders 7-21

ResetCheckoutPC

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

PipelineSessionConstants.ORDER_CONFIRMATION_NUMBER

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.ORDER_ADJUSTMENTS

PipelineSessionConstants.SHIPPING_METHOD

PipelineSessionConstants.DISCOUNT_IDS

PipelineSessionConstants.GLOBAL_DISCOUNTS_IDS

Updated Pipeline
Session Attributes

PipelineSessionConstants.ORDER_HANDLE (Request scope)
PipelineSessionConstants.ORDER_VALUE (Request scope)
PipelineSessionConstants.ORDER_SHIPPING_METHOD (Request scope)
PipelineSessionConstants.PAYMENT_AUTHORIZATION_ACCOUNT

Removed Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD

Type Java object

JNDI Name None

Exceptions PipelineException, thrown when the required Pipeline session attributes are not
available or if the shopping cart is empty.

Class Name examples.wlcs.sampleapp.order.pipeline.
ResetCheckoutPC

Description Removes all Pipeline session attributes relating to the customer�s checkout process.

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

None

7 Order Summary and Confirmation Services

7-22 Guide to Managing Purchases and Processing Orders

PurchaseTrackerPC

Removed Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SHIPPING_METHOD

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

PipelineSessionConstants.VERAZIP_SHIPPING_ADDRESS

PipelineSessionConstants.PAYMENT_CREDIT_CARD

Type Java object

JNDI Name None

Exceptions None

Class Name examples.wlcs.sampleapp.tracking.pipeline.PurchaseTracker
PC

Description Fires events: first, a PurchaseCartEvent for the entire order that is being
placed; second, one BuyEvent per Order Line (SKU) that is being purchased. For
more information about this event, see Event Details in the Guide to Events and
Behavior Tracking.

Required Pipeline
Session Attributes

PipelineSessionConstants.ORDER_VALUE

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.CATALOG_CATEGORY

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Pipeline Components

Guide to Managing Purchases and Processing Orders 7-23

Type Java Object

JNDI Name None

Exceptions None

7 Order Summary and Confirmation Services

7-24 Guide to Managing Purchases and Processing Orders

Guide to Managing Purchases and Processing Orders 8-1

CHAPTER

8 Extending the Data
Model

This chapter explains how to extend Order services. The following topics are
discussed:

� Data Model Extensions

� Persistence Architecture

� Adding Run-Time Attributes to Customer Data

� Adding Run-Time Attributes to Other Entities

� Extending the Schema

� Overview of Approach to Extending the WebLogic Portal Schema

� Adding Attributes Against the WLCS_CUSTOMER, WLCS_ORDER,
WLCS_TRANSACTION and WLCS_SHIPPING_METHOD Tables

� Adding Attributes Against the WLCS_ORDER_LINE Table

� Adding Attributes Against the WLCS_CREDIT_CARD and
WLCS_SHIPPING_ADDRESS Tables

� Transaction Management

8 Extending the Data Model

8-2 Guide to Managing Purchases and Processing Orders

Data Model Extensions

Registering Customers and Managing Customer services and Order services are two
core components of the WebLogic Portal 4.0. These services implement use-cases that
deal with customer self-registration, customer management, shopping cart experience,
and order processing (including shipping, payment and taxation).

These services implement the most commonly required online commerce scenarios.
However, this does not preclude any extensions that are specific to your commerce
site. You can extend functionality of WebLogic Portal to provide more sophisticated
and specialized commerce scenarios to meet your business needs. The Commerce
services infrastructure of WebLogic Portal supports use-case driven extensibility in the
form of the Webflow and Pipelines. This infrastructure provides you with three forms
of extensibility:

� You can rapidly modify the existing use-case flows by changing the Webflow
and Pipeline configurations.

� You can customize use-cases by adding new input processors and Pipelines.

� You can implement new use-cases by defining new Webflows and Pipelines to
include custom input processors and Pipelines.

For more information on the WebFlow and Pipeline infrastructure, see the Guide to
Managing Presentation and Business Logic: Using Webflow and Pipeline.

One of the common requirements for implementing such extensions is the ability to
access and extend the Commerce services data model and schema. For example, you
may want to customize the checkout process of your commerce site to collect a
promotion code or gift coupon data, and then process the order and payment data
accordingly. Similarly, you may want to capture additional shipping instructions from
your customers. In this case, apart from extending the checkout WebFlow/Pipeline,
you�ll be required to capture, store, and process additional data.

This chapter presents some possible approaches and guidelines for extending the data
model of WebLogic Portal. While this chapter does not guarantee automatic
compatibility of such extensions with future releases of WebLogic Portal, the
approaches discussed in this chapter try to minimize potential problems, by leveraging
the WebFlow/Pipeline infrastructure.

This chapter addresses the following:

Persistence Architecture

Guide to Managing Purchases and Processing Orders 8-3

� The Commerce services persistence architecture.

� Adding run-time attributes to customer and order related entities.

� General approach for extending the data model and the schema.

� Extending the WLCS_CUSTOMER, WLCS_ORDER, WLCS_TRANSACTION
and WLCS_SHIPPING_METHOD tables.

� Extending the WLCS_ORDER_LINE table (the case of one-to-many
associations).

� How to persist and query additional attributes on entities such as customer,
order, and payment transaction.

� How to demarcate transactions with such extensions.

Note: This chapter does not cover extensions to other Commerce services (such as
extensions for building a product catalog). You can periodically check the
WebLogic Portal documentation for future updates on how to extend other
services.

Persistence Architecture

Before we go into the approaches for extending the WebLogic Portal Commerce
services schema, consider the persistence architecture of Commerce services shown in
Figure 8-1. This figure shows the persistence architecture for the Guide to Managing
Presentation and Business Logic: Using Webflow and Pipeline. In this structure, the
JSP, Input Processor, and Pipeline component layers are responsible for implementing
the use-case flow. Specific information on the JSPs, input processors, and Pipeline
components in these layers are discussed throughout this chapter.

8 Extending the Data Model

8-4 Guide to Managing Purchases and Processing Orders

Figure 8-1 Persistence Architecture for Registering Customers and Managing
Customer Services and Order Services

Pipeline components rely on the following WebLogic Portal entity beans for persisting
customer, order, payment, and shipping method data respectively:

� examples.wlcs.sampleapp.customer.Customer

� examples.wlcs.sampleapp.order.Order

� examples.wlcs.sampleapp.payment.PaymentTransaction

� examples.wlcs.sampleapp.shipping.ShippingMethod

For persistence, these entities use the WebLogic Portal tables discussed in the
Chapter 10, �The Order Processing Database Schema.�

The following table describes the mapping between these entities and the
corresponding WebLogic Portal tables.

Persistence Architecture

Guide to Managing Purchases and Processing Orders 8-5

The Pipeline components in the Customer Registration and Order Processing packages
manipulate the above tables via the respective entities. The default deployment
configuration of these beans is such that all business methods are always executed
within a transaction. This is established by setting the <trans-attribute> to
Required in the deployment descriptor. In the default configuration, the Pipelines that
access these beans are transactional (with the isTransactional property set to true
in pipeline.properties). Therefore, all database access occurs under transactions
initiated by the Pipeline infrastructure and the methods on these entities merely
participate in those transactions.

Table Description

Entity: examples.wlcs.sampleapp.customer.Customer

WLCS_CUSTOMER Customer description

WLCS_CREDIT_CARD Credit cards

WLCS_SHIPPING_ADDRESS Shipping address

Entity: examples.wlcs.sampleapp.order.Order

WLCS_ORDER Order description

WLCS_ORDER_LINES Order lines

Entity: examples.wlcs.sampleapp.payment.PaymentTransaction

WLCS_TRANSACTION Transaction description

WLCS_TRANSACTION_ENTRY Transaction entries

Entity: examples.wlcs.sampleapp.shipping.ShippingMethod

WLCS_SHIPPING_METHOD Shipping method description

8 Extending the Data Model

8-6 Guide to Managing Purchases and Processing Orders

Adding Run-Time Attributes to Customer
Data

The simplest possible extension is to add run-time attributes to the entities in the
Customer Registration and the Order Processing packages. In the WebLogic Portal,
run-time attributes can be added on these entities without having to change the
underlying database schema.

Although all the above entities in the WebLogic Portal Commerce services share the
same basic structure, there are some differences in the way you can add run-time
attributes to the customer entity, and the other entities.

The Customer entity of the WebLogic Portal is a component that relies on the Unified
User Profile (UUP) technology of WebLogic Portal. A UUP for customer data allows
the abstraction of a customer to be seamlessly integrated into WebLogic Portal. Apart
from personalization, this approach allows you to use the user management tools of
WebLogic Portal to administer customer data, and maps the customer identity into a
WebLogic Portal-administered groups and the RDMBS security realm. For more
information on unified user profiles, see �Creating and Managing Users� in the Guide
to Building Personalized Applications.

In addition to the information in the previous paragraph, the notion of the unified user
profile can be used to add run-time attributes to customer data without having to
modify the underlying schema.

You can find examples of adding attributes for customer data in the Pipeline
components under the examples.wlcs.sampleapp.customer.pipeline package.
To add attributes to the customer data, the WebLogic Portal Registration Package
provides an abstract Pipeline component
examples.wlcs.sampleapp.customer.pipeline.UpdateUserPC, as shown in
Listing 8-1.

Listing 8-1 Adding Attributes to Customer Data

public void setCustomerProperty(String key, Object value,
Customer customer)

throws java.rmi.RemoteException

Adding Run-Time Attributes to Customer Data

Guide to Managing Purchases and Processing Orders 8-7

This method takes a property name (key), the value of the property (value), and a
reference to the customer entity (customer). For instance, you may use the following
Pipeline component to add a new attribute called preference for a given customer:

public class MyPC extends UpdateUserPC {
public void updateCustomer(PipelineSession pSession,

Customer customer,

CustomerValue customerValue)
throws PipelineFatalException

{

try {
setCustomerProperty("preference", “Loves music”,

customer);
}

}
}

Given a customer, you can use the following snippet in your JSPs to read such run-time
attributes:

<um:getProfile profileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

<!-- Get the “preference” -->

<um:getPropertyAsString propertyName="preference" />

In the above example, the request.getRemoteUser() method returns the login
name of the customer accessing the page. The profileType is a UUP name, and
WebLogic Portal specifies the customer entity as a UUP of type �WLCS_Customer.�
The <um:getPropertyAsString> tag is one of the user management tags to extract
user attributes in JSP pages. For more documentation on user management tags, see
the �JSP Tag Reference Library� in the Guide to Building Personalized Applications.

Before you attempt to consider adding run-time attributes to the customer data, please
bear in mind that this approach is meant only for quickly adding attributes without
changing the schema. WebLogic Portal persists run-time attributes in tables that are
internal to WebLogic Portal. Consequently, you cannot execute SQL level operations
on such data.

8 Extending the Data Model

8-8 Guide to Managing Purchases and Processing Orders

Adding Run-Time Attributes to Other
Entities

For the entities in Order services such as
examples.wlcs.sampleapp.shipping.Order,
examples.wlcs.sampleapp.shipping.PaymentTransaction, and
examples.wlcs.sampleapp.shipping.ShippingMethod, there exists a similar
mechanism for adding run-time attributes. All the entities in the Order services extend
the com.beasys.commerce.foundation.ConfigurableEntity interface, which
provides the following methods for adding and manipulating run-time attributes.

public void setProperty(String key, Object value)
throws java.rmi.RemoteException

Using this method you can set a new property on an entity. You can use the following
method to access the attribute later:

public Object getProperty(String key)
throws java.rmi.RemoteException

This method returns a previously added property.

For more information, including the API, see the JavaDoc.

Extending the Schema

The following are some of the common drivers for extending the Commerce services
schema:

� Extending the schema of the Commerce services to meet your existing schema.

� Enhancing the Commerce services to modify or add new functionality.

Both these drivers manifest in the following:

� Modifying (or sometimes adding) the templates to render and/or collect
additional data from the user interface.

Extending the Schema

Guide to Managing Purchases and Processing Orders 8-9

� Modifying the WebFlow to change the flow of user interaction.

� Extending the Commerce services schema.

Note: Almost all the data in the Order services is meaningful across your business,
so you may want to apply SQL level semantics for creating, updating, and
querying. Depending on the nature and scale of your commerce site, the
Commerce services and your back-end applications may depend on this data.
Any extension to the schema of the Order services cannot be represented with
run-time attributes, as run-time attributes cannot be accessed directly via
standard SQL.

Here is an example scenario. Consider a new attribute called tracking number on your
order. Typically this is an attribute generated after order fulfillment by your back-end
order fulfillment application. You may want to display this tracking number on
WebLogic Portal order history pages for customers to view the tracking information.
This is a domain-specific attribute that can best be persisted in the WLCS_ORDER
table (or another table that you created for this purpose).

In this section, let�s consider the following cases, and discuss approaches that meet the
above needs:

1. Adding attributes against the WLCS_CUSTOMER, WLCS_ORDER,
WLCS_TRANSACTION, and WLCS_SHIPPING_METHOD tables.

2. Adding attributes against the WLCS_ORDER_LINE
WLCS_SHIPPING_ADDRESS, and WLCS_CREDIT_CARD tables.

Note: These two cases are discussed separately because the tables in case 2
participate in a one-to-many association with WLCS_ORDER and
WLCS_CUSTOMER tables in case 1.

Overview of Approach to Extending the WebLogic Portal
Schema

The following figure presents an overview of the approach for extending the
Commerce services schema and not for integrating the Commerce services schema
with your existing schema or for mapping the Commerce services schema onto your
existing schema.

8 Extending the Data Model

8-10 Guide to Managing Purchases and Processing Orders

Figure 8-2 Extending the Data Model

Figure 8-2 demonstrates how a given WebFlow/Pipeline processing can be modified
to process additional data, without modifying existing input processors and Pipeline
components. In Figure 8-2, the blocks with heavy borders are new input processors and
Pipeline components inserted to process the additional data. While the Commerce
services Pipeline components manage the Commerce services data via the Commerce
services entities, the new Pipeline component in the Pipeline may directly access the
data via plain JDBC, or indirectly via another layer of custom entity beans.
Alternatively, the new Pipeline component may also delegate this data access to legacy
data access mechanisms.

As we shall discuss in a later section, depending on whether the additional data should
be processed within the same transaction, within a new transaction, or no transaction
at all, you can split the above Pipeline into more than one Pipeline where each will
have its own transaction setting.

Extending the Schema

Guide to Managing Purchases and Processing Orders 8-11

Adding Attributes Against the WLCS_CUSTOMER,
WLCS_ORDER, WLCS_TRANSACTION and
WLCS_SHIPPING_METHOD Tables

Let�s now consider the case of the customer, order, payment, and shipping method
tables. The general approach is as follows:

Step 1: Design new tables.

For each of the above tables, design new table(s) for the additional attributes with the
same primary key. For instance, for extending order data, consider a new table with
ORDER_ID as the primary key. Although it is tempting to extend the Commerce
services tables for such attributes, we recommend against doing so, as it could lead to
compatibility issues and potential name collision issues with future releases of
Commerce services.

Step 2: Modify corresponding JSP templates.

If the new data is user-entered, modify the corresponding JSP templates to add new
fields in the forms.

Step 3: Implement new input processor.

Implement a new input processor to read validate/preprocess the new data. Since input
processors can be chained against a WebFlow event, adding a new input processor
gives you more flexibility when compared to modifying an existing input processor for
the same input processor chain. After validating the data, add the collected data to the
Pipeline session for further processing in the Pipeline. Depending on whether such data
is required beyond the scope of the current HTTP request or not, use the appropriate
scope (session scope or request scope) while adding data to the Pipeline session.

Step 4: Include the new input processor.

Modify the webFlow.properties to include the new input processor.

Step 5: Implement a new Pipeline component.

8 Extending the Data Model

8-12 Guide to Managing Purchases and Processing Orders

Implement a new Pipeline component to extract the additional data from the Pipeline
session, and write to the new tables. Obtain the primary key from the respective entity.
For example, for storing additional attributes for the order entity, call the
getIdentifier() method on the order entity. This method returns the primary key
for the WLCS_ORDER table for the current order.

Step 6: Obtain a database connection.

To obtain a database connection, use the getConnection() method in the abstract
base class
com.beasys.commerce.foundation.pipeline.CommercePipelineComponent.
You may recall that all Pipeline components extend this abstract class. This method
returns a connection from the commercePool setup in the weblogic.properties
file. However, if you want to use a different connection pool, modify the
commerce.jdbc.pool.url property in the weblogiccommerce.properties file to
point to a different data source wrapping the new connection pool.

Step 7: Include the new Pipeline component.

Modify the pipeline.properties to include the new Pipeline component.

To query for such additional data, you may follow a similar procedure.

Adding Attributes Against the WLCS_ORDER_LINE Table

In the WebLogic Portal Commerce services, an order entity aggregates a collection of
OrderLine objects, with each OrderLine object representing an order line in the
database in the WLCS_ORDER_LINE table, with ORDER_LINE_ID as the primary
key.

These collections are internally based on the Java collections API, with primary keys
generated while storing the order entity.

The following procedure applies in case you want to extend the
WLCS_ORDER_LINE table.

Step 1: Design a new table.

Design a new table for the additional attributes with the same primary key. For
extending the ORDER_LINE table, consider a new table with ORDER_LINE_ID as
the primary key.

Extending the Schema

Guide to Managing Purchases and Processing Orders 8-13

Step 2: Modify the corresponding JSP template.

If the new data is user-entered, modify the corresponding JSP templates to add new
fields in the forms.

Step 3: Implement a new input processor.

Implement a new input processor to read validate/preprocess the new data. The
procedure is similar to that of step 3 of the previous section.

Step 4: Include the new input processor.

Modify the webflow.properties to include the new input processor.

Step 5: Implement a new Pipeline component.

Implement a new Pipeline component to extract the additional data from the Pipeline
session, and write to the new tables. However, since the primary key for the
WLCS_ORDER_LINE table is internal to the Commerce services, examine the code
snippet shown in Listing 8-2 in your new Pipeline component for obtaining the
ORDER_LINE_ID for a given order line.

Listing 8-2 Implementing a New Pipeline Component

String orderId = null;
order.getIdentifier();
String sku = ...; // Get the sku from the corresponding line

// in the shopping cart.
try {

Connection c = getConnection();
String statement = "SELECT ORDER_LINE_ID FROM \

WLCS_ORDER_LINE WHERE ORDER_ID = ? AND PRODUCT_ID = ?";
PreparedStatement preparedStatement = null;
preparedStatement = c.prepareStatement(statement);
preparedStatement.setObject(1, ordereId);
preparedStatement.setObject(2, sku);
ResultSet rs = preparedStatement.executeQuery();
// The result set should now have a row containing
// the ORDER_LINE_ID. Add your custom JDBC here to
// persist the additional data for the order line.

Step 6: Update the deployment descriptor.

8 Extending the Data Model

8-14 Guide to Managing Purchases and Processing Orders

Before you deploy the new Pipeline component, another step has to be perfomed,
which is to update the deployment descriptor of the order entity as follows:

� Unjar the lib\ebusiness.jar into a temporary directory.

� Open the weblogic-ejb-jar.xml file. You can find it under the META-INF
subdirectory from where you unjared.

� In this file, search for the entry shown in Listing 8-3, and add the text marked in
bold.

Listing 8-3 Updating the Deployment Descriptor

<weblogic-enterprise-bean>
<ejb-name>

examples.wlcs.sampleapp.order.Order
</ejb-name>
<persistence-descriptor>

<is-modified-method-name>
isModified

</is-modified-method-name>
<delay-updates-until-end-of-tx>

false
</delay-updates-until-end-of-tx>
</persistence-descriptor>

<reference-descriptor>
...

</reference-descriptor>
<enable-call-by-reference>true</enable-call-by-

reference>
<jndi-name>

examples.wlcs.sampleapp.order.Order
</jndi-name>

</weblogic-enterprise-bean>

� Jar the contents of the temporary directory, and run the EJB compiler to create a
new ebusiness.jar.

� Replace the lib\ebusiness.jar with the newly created ebusiness.jar.

Step 6 ensures that the order and order-line data is available for executing queries in
the new Pipeline component.

Extending the Schema

Guide to Managing Purchases and Processing Orders 8-15

Step 7: Include the new Pipeline component.

Modify the pipeline.properties to include the new Pipeline component.

Adding Attributes Against the WLCS_CREDIT_CARD and
WLCS_SHIPPING_ADDRESS Tables

The following procedure applies in case you want to extend the
WLCS_ORDER_LINE table.

Step 1: Design new tables.

For each of the above tables, design new table(s) for the additional attributes with the
same primary key. For extending the WLCS_CREDIT_CARD table, consider a new
table with CREDIT_CARD_ID as the primary key. Similarly for the
WLCS_SHIPPING_ADDRESS table, consider a new table with
SHIPPING_ADDRESS_ID as the primary key.

Step 2: Modify corresponding JSP templates.

If the new data is user-entered, modify the corresponding JSP templates to add the new
fields in the forms.

Step 3: Add mapKey attribute to the Pipeline Session.

Modify the
examples.wlcs.sampleapp.customer.webflow.UpdatePaymentInfoIP to add
the mapKey attribute to the PipelineSession. Similarly, in the case of shipping
address, add the ShippingAddressMapKey attribute to the PipelineSession in the
examples.wlcs.sampleapp.customer.webflow.UpdateShippingInfoIP.

Step 4: Implement new input processor.

Implement a new input processor to read validate/preprocess the new data.
Reconfigure webflow.properties to include the new input processor.

Step 5: Implement new Pipeline component.

To extract the additional data from the PipelineSession and write to the new tables,
you need to implement a new Pipeline component. However, since the primary keys
for the WLCS_CREDIT_CARD and WLCS_SHIPPING_ADDRESS tables are

8 Extending the Data Model

8-16 Guide to Managing Purchases and Processing Orders

internal to the Commerce services, consider using the code snippet shown in
Listing 8-4 in your new Pipeline component for obtaining the primary keys. Although
this snippet describes the steps for credit card data, the same procedure applies to
shipping address data.

Listing 8-4 Implementing a New Pipeline Component

// Get the customer ID
String customerId = null;
customer.getIdentifier();

// Get the map key for the credit card from the
// pipeline session. Refer to Step 3.
String mapKey = pipelineSession.getAttribute(“mapKey”);
try {
Connection c = getConnection();
String statement = "SELECT CREDIT_CARD_ID FROM \

WLCS_CREDIT_CARD WHERE CUSTOMER_ID = ? AND MAP_KEY = ?";
PreparedStatement preparedStatement = null;
preparedStatement = c.prepareStatement(statement);
preparedStatement.setObject(1, customerId);
preparedStatement.setObject(2, mapKey);

ResultSet rs = preparedStatement.executeQuery();
// The result set should now have a row containing
// the CREDIT_CARD_CARD_ID.
// Add your custom JDBC for your tables here.

Step 6: Modify the deployment descriptor.

Similar to the case of order-line attributes, modify the deployment descriptor for the
Customer entity.

� Unjar the lib\ebusiness.jar into a temporary directory, say for instance, jar
–xvf lib\ebusiness.jar c:\temp\ebusiness.

� Go to c:\temp\ebusiness\META-INF, and open weblogic-ejb-jar.xml file.

� In this file, search for the entry shown in Listing 8-5, and then add the text
marked in bold.

Transaction Management

Guide to Managing Purchases and Processing Orders 8-17

Listing 8-5 Modifying the Deployment Descriptor

<weblogic-enterprise-bean>
<ejb-name>

examples.wlcs.sampleapp.customer.Customer
</ejb-name>
<persistence-descriptor>

<is-modified-method-name>
isModified

</is-modified-method-name>
<delay-updates-until-end-of-tx>

false
</delay-updates-until-end-of-tx>

</persistence-descriptor>
<reference-descriptor>

...
</reference-descriptor>

<enable-call-by-reference>true</enable-call-by-
reference>

<jndi-name>
examples.wlcs.sampleapp.customer.Customer

</jndi-name>
</weblogic-enterprise-bean>

� Jar the contents of the temporary directory, and run the EJB compiler to create a
new ebusiness.jar.

� Replace the lib\ebusiness.jar with the newly created ebusiness.jar.

Step 7: Include new Pipeline component.

Modify the pipeline.properties to include the new Pipeline component.

Transaction Management

In the WebFlow/Pipeline infrastructure, you can declaratively demarcate Pipelines
within transactions. Although the default Pipeline configuration has certain default
settings on the Pipelines, you should reconsider your options while deploying your
extensions on WebLogic Portal.

8 Extending the Data Model

8-18 Guide to Managing Purchases and Processing Orders

Depending on how you�re customizing a use-case flow, consider if the new Pipeline
component should participate in a pre-existing Pipeline. The answer depends on
whether the database access in the new Pipeline component is part of another unit of
work or not.

In cases such as capturing additional order/order line information, add the new Pipeline
component to CommitOrder Pipeline. This is a transactional Pipeline, and therefore
the updates made in the new Pipeline component would happen in the same transaction
as that of the CommitOrder Pipeline.

If the database accessing the new Pipeline component is independent of any existing
Pipelines, define a new Pipeline with the new Pipeline component. Note that you can
chain multiple Pipelines. For instance, consider four Pipeline components A, B, C, and
D. If A, B, and C are required to execute within a single transaction, while D is not,
define two different Pipelines (one consisting of A, B, and C), and the other consisting
of D. Set the first Pipeline to be transactional, and depending on whether D should
execute in its own transaction or no transaction at all, specify the second Pipeline to be
transactional or not.

Guide to Managing Purchases and Processing Orders 9-1

CHAPTER

9 Using the Order and
Payment Management
Pages

Customers who make purchases from your e-commerce site often want access to
information about their current and past orders. If these customers cannot find what
they are looking for using the customer self-service pages or simply prefer the human
contact received by calling your e-business, an administrator of your site can locate
this information for your customers using the Order Management pages. Additionally,
the Order and Payment Management pages allow a site administrator to review and
modify the status of order and payment transactions that have been initiated on the
WebLogic Portal.

The Order and Payment Management pages ship as part of the WebLogic Portal
Administration Tools Web Application. As such, they are not a part of the site that
requires modification. This topic describes how an administrator can use the Order and
Payment Management pages.

This topic includes the following sections:

� Starting the WebLogic Portal Administration Tools

� Using the Order Management Search Page

� Searching for an Order by Customer ID

� Searching for an Order by Order Identifier Number

� Searching for an Order by Date Range

� Updating Order Status

9 Using the Order and Payment Management Pages

9-2 Guide to Managing Purchases and Processing Orders

� Changing Order Status

� Using the Payment Management Search Page

� Searching for a Payment by Customer ID

� Searching for a Payment by Status

� Authorizing, Capturing, and Settling Payments

Starting the WebLogic Portal Administration
Tools

Before you can use the Order and Payment Management pages, you need to start the
server and load the WebLogic Portal Administration Tools page in your Web browser.

To start the server on a Windows system, you can either:

� Run StartPortal.bat from the command line in the PORTAL_HOME directory,
where PORTAL_HOME is the directory where you installed the WebLogic Portal.

� From the Start menu, select Programs → BEA WebLogic E-Business Platform
→ BEA WebLogic Portal 4.0 → Start BEA WebLogic Portal.

To start the server on a UNIX system, run StartPortal.sh from the command line
in the PORTAL_HOME directory, where PORTAL_HOME is the directory where you
installed the WebLogic Portal.

The Administration Tools page (shown in Figure 9-1) is an entry page into all of the
available WebLogic Portal Administration Tools. To load this page, use one of the
following methods:

� Specify the URL for the page
(http://<server>:<port>/<app_name>Tools/index.jsp) in your Web
browser, where <server> is the name of the server running WebLogic Portal
(such as localhost), <port> is the port number that WebLogic Portal is running
on on the server (such as 7501), and <app_name> is the the name of your
enterprise application directory beneath PORTAL_HOME\applications.

Starting the WebLogic Portal Administration Tools

Guide to Managing Purchases and Processing Orders 9-3

� From the Start menu on a Windows system, select Programs → BEA WebLogic
E-Business Platform → BEA WebLogic Portal 4.0 → Administration Tools.

Figure 9-1 WebLogic Portal Administration Tools Page

To look up customers� orders, click the icon shown on the Order Management section
titlebar to load the Order Management Search Page; to look up a customer�s payment
transactions, click the icon shown on the Payment Management section titlebar to load
the Payment Management Search Page.

9 Using the Order and Payment Management Pages

9-4 Guide to Managing Purchases and Processing Orders

Using the Order Management Search Page

The Order Management search page (shown in Figure 9-2) appears when you click the
icon on the Order Management section titlebar. This section explains the three
different searches that are available to an administrator for order management.

Figure 9-2 The Order Management Search Page

Searching for an Order by Customer ID

After a customer places an order on your e-commerce site, they may call to learn more
about their order. One of the ways in which an administrator of the site can search is
by using the customer�s login ID. Simply enter the customer�s ID into the appropriate
form field and click the Search button. A text message appears at the top of the page,
indicating how many orders were found for the search. The actual results appear below
the search fields in an Order List, as shown in Figure 9-3.

Using the Order Management Search Page

Guide to Managing Purchases and Processing Orders 9-5

Figure 9-3 Sample Results for Order Search by Customer ID

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 9-4). To return
to the main Administration Tools page instead, click the Back button.

9 Using the Order and Payment Management Pages

9-6 Guide to Managing Purchases and Processing Orders

Figure 9-4 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.

Searching for an Order by Order Identifier Number

Another way in which an administrator of the site can search for a customer�s order is
by using the customer�s Order Identifier number. This number is specified on the
customer�s order confirmation page after they submit an order to your system. Simply
enter the customer�s Order Identifier number into the appropriate form field and click
the Search button. A text message appears at the top of the page, indicating how many
orders were found for the search. The actual results appear below the search fields in
an Order List, as shown in Figure 9-5.

Using the Order Management Search Page

Guide to Managing Purchases and Processing Orders 9-7

Figure 9-5 Sample Results for Order Search by Order Identifier Number

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 9-6). To return
to the main Administration Tools page instead, click the Back button.

9 Using the Order and Payment Management Pages

9-8 Guide to Managing Purchases and Processing Orders

Figure 9-6 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.

Searching for an Order by Date Range

Another way in which an administrator of the site can search for a customer�s order is
by using a date range. Date ranges must be specified using the Calendar Date Selection
Tool, shown in Figure 9-7.

Using the Order Management Search Page

Guide to Managing Purchases and Processing Orders 9-9

Figure 9-7 The Calendar Date Selection Tool

After clicking the Save button, the date, hour, minute and time zone you select with the
Calendar Date Selection Tool appears in the From and To form fields, and you can now
just click the Search button.

Note: The results for searches by date range are inclusive. That is, if you search for
orders placed between July 22, 2000 and August 24, 2000, results will include
orders placed on July 22 and orders placed on August 24.

A text message appears at the top of the page, indicating how many orders were found
for the search. The actual results appear below the search fields in an Order List, as
shown in Figure 9-8.

9 Using the Order and Payment Management Pages

9-10 Guide to Managing Purchases and Processing Orders

Figure 9-8 Sample Results for Order Search by Date Range

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 9-9). To return
to the main Administration Tools page instead, click the Back button.

Using the Order Management Search Page

Guide to Managing Purchases and Processing Orders 9-11

Figure 9-9 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.

9 Using the Order and Payment Management Pages

9-12 Guide to Managing Purchases and Processing Orders

Updating Order Status

This section tells you how to change the status of an order and how to tailor the order
status to your business.

Changing Order Status

The Order Status Page (shown in Figure 9-10) appears after you click the hyperlinked
Order Identifier number on the Order List page. This section describes how to change
the status of an order.

Figure 9-10 Sample Order Status Page

To change the status of an order, click the drop-down arrow on the Order Status list,
select the new status, and then click the OK button. After a new status is entered, new
entries appear in the Order Status list. These entries reflect the sequence of order status.
For example, the initial Order Status list might contain the following:

� Authorized

� Cancelled

Using the Payment Management Search Page

Guide to Managing Purchases and Processing Orders 9-13

� Rejected

If you change the order status to Authorized, the Order Status list might contain the
following options:

� Backordered

� Cancelled

� Shipped

Using the Payment Management Search
Page

The Payment Management search page (shown in Figure 9-11) appears when you click
the icon on the Payment Management section titlebar. This section explains the three
different searches and transaction modification activities that are available to an
administrator for payment management.

9 Using the Order and Payment Management Pages

9-14 Guide to Managing Purchases and Processing Orders

Figure 9-11 The Payment Management Search Page

Searching for a Payment by Customer ID

After a customer places an order on your e-commerce site, they may call to find out
the status of their payment. One of the ways in which an administrator of the site can
search is by using the customer�s login ID. Simply enter the customer�s ID into the
appropriate form field and click the Search button. A text message appears at the top
of the page, indicating how many payments were found for the search. The actual
results will appear below the search fields in the Payment Transaction History, as
shown in Figure 9-12.

Using the Payment Management Search Page

Guide to Managing Purchases and Processing Orders 9-15

Figure 9-12 Sample Results for Payment Search by Customer ID

For a detailed explanation of the Payment Transaction History fields and further
payment management activities, refer to �Authorizing, Capturing, and Settling
Payments� on page 9-17.

To perform another search, type your query in the form field. To return to the main
Administration Tools page instead, click the Back button.

9 Using the Order and Payment Management Pages

9-16 Guide to Managing Purchases and Processing Orders

Searching for a Payment by Status

Another way that an administrator of the site can search is by using a payment status
(Authorized, MarkedForSettle, PendingSettle, Settled, Rejected, and Retry). Simply
select the status from the Status pull-down menu and click the Search button. A text
message appears at the top of the page, indicating how many payments were found for
the status. The actual results will appear below the search fields in the Payment
Transaction History, as shown in Figure 9-13.

Figure 9-13 Sample Results for Payment Search by Status

Using the Payment Management Search Page

Guide to Managing Purchases and Processing Orders 9-17

For a detailed explanation of the Payment Transaction History fields and further
payment management activities, refer to �Authorizing, Capturing, and Settling
Payments� on page 9-17.

To perform another search, type your query in the form field. To return to the main
Administration Tools page instead, click the Back button.

Authorizing, Capturing, and Settling Payments

The Payment Transaction History section (which appears in the lower portion of the
Payment Management search page after a search is performed) shows information
about each payment transaction, including the date, the transaction ID, the payment
amount, the payment status, and a masked version of the credit card that was used to
complete the transaction.

Table 9-1 provides a description for each of the possible payment status values.

In order for a merchant to obtain the funds associated with a payment transaction, the
transaction must be authorized, captured, and settled. Depending on the status of the
transaction, a text field and associated button may appear at the end of the line in the
Payment Transaction History section, making it possible to manually change the state
of the transaction.

Table 9-1 Payment Status Values

Status Description

Authorized The transaction has been successfully authorized, and is awaiting
capture and settlement.

MarkedForSettle The transaction has been batched for settlement (captured).

PendingSettle The transaction settlement process has been initiated.

Settled The transaction has been settled.

Rejected Authorization for the transaction was rejected.

Retry The transaction has been recorded, but authorization was either
unsuccessful or has been deferred.

9 Using the Order and Payment Management Pages

9-18 Guide to Managing Purchases and Processing Orders

Authorizing the Transaction

If the status of the order is set to Retry, an Authorize button will appear at the end of
the line (as shown in Figure 9-14).

Figure 9-14 Payment Transaction History With Authorize Button

Pressing this button will cause the WebLogic Portal product to connect to the Payment
Web service, and to reserve credit from the customer�s account on behalf of the
merchant. A transaction is placed in the Retry state if you have configured the server
to defer authorization of payments, or if the Payment Service was unavailable due to a
system failure. In such cases, the business will not fulfill the order until the status on
the associated payment transaction has been set to Authorized.

Using the Payment Management Search Page

Guide to Managing Purchases and Processing Orders 9-19

Authorization will change the state of the transaction in different ways, depending on
the payment model in use. In a soft goods scenario (AUTO_MARK_AUTO_SETTLE
or HOST_AUTH_CAPTURE), the transaction will transition directly to the
PendingSettle state and remain there until it is settled.

Capturing the Transaction

If the payment model is one of the MANUAL_MARK_* or
HOST_AUTH_POST_AUTH models and has been authorized, it is now necessary to
capture that transaction. To capture the transaction, specify the amount that is to be
captured in the text field, and click the Capture button. Capturing the funds associated
with an order generally takes place after the order has been fulfilled. In some cases, the
amount of the transaction may be less than the total original amount that was
authorized. This is true in cases where the order was partially shipped.

Settling the Transaction

If a transaction has been captured and if the WebLogic Portal product has been
configured for a *_MANUAL_SETTLE payment model, the transaction will be
assigned the MarkedForSettle state. To settle the transaction, specify the amount that
is to be settled in the text field, and click the Settle button. The amount may only be
less than or equal to the capture amount.

Note: The WebLogic Portal will not set transactions to a Rejected status. This state
is provided so that it may be set by third-party order management systems in
the event that a payment transaction is considered unrecoverable.
Additionally, the current implementation of the Administration Tools does not
allow you to query the state of a Rejected transaction or move it to the Settled
state.

9 Using the Order and Payment Management Pages

9-20 Guide to Managing Purchases and Processing Orders

Guide to Managing Purchases and Processing Orders 10-1

CHAPTER

10 The Order Processing
Database Schema

This topic describes the database schema for Managing Purchases and Processing
Orders services. Understanding this schema will be helpful to those who may be
customizing or extending the technologies provided in the product.

This topic includes the following sections:

� The Entity-Relation Diagram

� List of Tables Comprising the Order Processing Schema

� The Order Processing Data Dictionary

� The SQL Scripts Used to Create the Database

� Defined Constraints

The Entity-Relation Diagram

Figure 10-1 shows the logical Entity-Relation diagram for the WebLogic Portal order
and discount tables in the WebLogic Portal database. See the subsequent sections in
this chapter for information about the data type syntax.

10 The Order Processing Database Schema

10-2 Guide to Managing Purchases and Processing Orders

Figure 10-1 Entity-Relation Diagram for the Order and Discount Tables

The Entity-Relation Diagram

Guide to Managing Purchases and Processing Orders 10-3

Explanations for the columns in each table are provided in the remainder of this topic.

10 The Order Processing Database Schema

10-4 Guide to Managing Purchases and Processing Orders

List of Tables Comprising the Order
Processing Schema

The Commerce services order management system is comprised of the following
tables:

� The DISCOUNT Database Table

� The DISCOUNT_ASSOCIATION Database Table

� The ORDER_ADJUSTMENT Database Table

� The ORDER_LINE_ADJUSTMENT Database Table

� The WLCS_CREDIT_CARD Database Table

� The WLCS_CUSTOMER Database Table

� The WLCS_ORDER Database Table

� The WLCS_ORDER_LINE Database Table

� The WLCS_SAVED_ITEM_LIST Database Table

� The WLCS_SECURITY Database Table

� The WLCS_SHIPPING_ADDRESS Database Table

� The WLCS_SHIPPING_METHOD Database Table

� The WLCS_TRANSACTION Database Table

� The WLCS_TRANSACTION_ENTRY Database Table

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-5

The Order Processing Data Dictionary

In this section, the schema tables are arranged alphabetically as a data dictionary.

Note: Even though the following documentation references �foreign keys� to
various tables, these constraints do not currently exist in this release of
Commerce services. However, they will be in place in future versions of
Commerce services and we want you to be aware of these relationships now.

The DISCOUNT Database Table

Table 10-1 describes the metadata for the Commerce services DISCOUNT table. This
table stores stores one or more discount records for every DISCOUNT_SET record.

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is DISCOUNT_ID.

Table 10-1 DISCOUNT

Column Name Data Type Null Value Description and Recommendations

DISCOUNT_ID NUMBER(15) NOT NULL PK�a unique, system-generated number
to be used as the record ID.

APPLICATION_NAME VARCHAR(100) NOT NULL FK�foreign key to the DISCOUNT_SET
table.

DISCOUNT_TYPE VARCHAR(10) NOT NULL The type of discount offered. It is used for
an order or for an order line item.

DISCOUNT_NAME VARCHAR(254) NOT NULL The name of the discount.

IS_GLOBAL NUMBER(1) NOT NULL A flag showing whether or not this
discount can be used globally.

PRIORITY NUMBER(3) NOT NULL The level of priority this discount has over
other discounts.

10 The Order Processing Database Schema

10-6 Guide to Managing Purchases and Processing Orders

The DISCOUNT_ASSOCIATION Database Table

Table 10-2 describes the metadata for the Commerce services
DISCOUNT_ASSOCIATION table. This table associates each customer with a
discount and maintains information regarding the times the customer has used each
discount.

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is DISCOUNT_ASSOCIATION_ID.

ALLOWED_USERS NUMBER(10) NOT NULL The number of times the discount may be
used.

MODIFIER VARCHAR(254) NOT NULL Describes the actual discount to be
applied. This is XML.

DISCOUNT_RULE CLOB NOT NULL The method used to select items for
discount. This is XML.

START_DATE DATE NOT NULL The starting date and time of the discount

END_DATE DATE NOT NULL The ending date and time of the discount.

IS_ACTIVE NUMBER(1) NOT NULL A flag that determines whether the
discount is active or not. Active=1, Not
active=0

DESCRIPTION VARCHAR(254) NULL The discount description.

DISPLAY_DESCRIPTION VARCHAR(254) NULL The discount description used for display
purposes only.

Table 10-1 DISCOUNT (Continued)

Column Name Data Type Null Value Description and Recommendations

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-7

The ORDER_ADJUSTMENT Database Table

Table 10-3 describes the metadata for the Commerce services
ORDER_ADJUSTMENT table. This table is used to maintain information about a
discount taken at the order level (for example, $20.00 off any order between 1/1/02 and
1/31/02.)

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is ORDER_ADJUSTMENT_ID.

Table 10-2 DISCOUNT_ASSOCIATION

Column Name Data Type Null Value Description and
Recommendations

DISCOUNT_ASSOCIATION_ID NUMBER(15) NOT NULL PK�a unique, system-generated number
to be used as the record ID.

CUSTOMER_ID VARCHAR(20) NOT NULL FK�foreign key to the
DISCOUNT_SET table.

DISCOUNT_ID NUMBER(15) NOT NULL FK�foreign key to the
DISCOUNT_SET table.

USE_COUNT NUMBER(10) NOT NULL The number of times the discount has
been used.

DISPLAY_DESCRIPTION VARCHAR(254) NULL The discount description used for display
purposes only.

Table 10-3 ORDER_ADJUSTMENT

Column Name Data Type Null Value Description and Recommendations

ORDER_ADJUSTMENT_ID NUMBER(15) NOT NULL PK�a unique, system-generated number
to be used as the record ID.

ORDER_ID VARCHAR(20) NOT NULL FK�foreign key to the DISCOUNT_SET
table.

10 The Order Processing Database Schema

10-8 Guide to Managing Purchases and Processing Orders

The ORDER_LINE_ADJUSTMENT Database Table

Table 10-4 describes the metadata for the Commerce services
ORDER_LINE_ADJUSTMENT table. This table is used to maintain information
about a discount taken at the order line item level (for example, 10% off SKU �Power
Drill�).

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is ORDER_LINE_ADJUSTMENT_ID.

ADJUSTMENT_TYPE VARCHAR(20) NULL The type of adjustment being made to the
order line item (e.g., order line discount,
shipping discount, etc.)

COMPUTATION VARCHAR(254) NOT NULL The number of times the discount has been
used.

ADJUSTMENT_AMOUNT NUMBER(16,4) NOT NULL The discount description used for display
purposes only.

DISCOUNT_ID NUMBER(15) NULL FK�foreign key to the DISCOUNT table.

DISPLAY_DESCRIPTION VARCHAR(254) NULL The description used for display purposes
only. Depending on the nature of the
discount, the DISPLAY_DESCRIPTION
is generated from either the Discount
service or Campaign service.

CREATION_DATE DATE NOT NULL The date and time the order adjustment
was created.

MODIFIED_DATE DATE NULL The date and time the order adjustment
record was last modified.

Table 10-3 ORDER_ADJUSTMENT (Continued)

Column Name Data Type Null Value Description and Recommendations

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-9

Table 10-4 ORDER_LINE_ADJUSTMENT Table Metadata

Column Name Data Type Null Value Description and Recommendations

ORDER_LINE_ADJUSTME
NT_ID

NUMBER(15) NOT NULL PK�a unique, system-generated number
to be used as the record ID.

ORDER_LINE_ID NUMBER(15) NOT NULL A unique identifier for each line in a
customer�s shopping cart. This field is the
table�s primary key and cannot be NULL.
All other fields in the WLCS_ORDERLINE
table can be NULL.

ADJUSTMENT_TYPE VARCHAR(20) NULL The type of adjustment being made to the
order line item (e.g., order line discount,
shipping discount, etc.)

ADJUSTMENT_AMOUNT NUMBER(16,4) NOT NULL The dollar amount of the adjustment.

ADJUSTMENT_QUANTITY NUMBER(16,4) NOT NULL The quantity amount for the adjustment.

ADJUSTED_UNIT_PRICE NUMBER(16,4) NOT NULL The adjusted unit price of the specific line
item.

COMPUTATION VARCHAR(254) NOT NULL The computation for determining
ADJUSTED_UNIT_PRICE.

CREATION_DATE DATE NOT NULL The date and time the adjustment record
was created.

MODIFIED_DATE DATE NULL The date and time the adjustment record
was last modified.

DISCOUNT_ID NUMBER(15) NULL FK�a foreign key to the discount used
from the DISCOUNT table.

DISPLAY_DESCRIPTION VARCHAR(254) NULL The adjustment description used for
display purposes.

10 The Order Processing Database Schema

10-10 Guide to Managing Purchases and Processing Orders

The WLCS_CREDIT_CARD Database Table

Table 10-5 describes the metadata for the Commerce services
WLCS_CREDIT_CARD table. This table is used to store information related to a
customer�s credit card(s) in the order processing database.

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is CREDIT_CARD_ID.

Table 10-5 WLCS_CREDIT_CARD Table Metadata

Column Name Data Type Null Value Description and
Recommendations

CREDIT_CARD_ID NUMBER(15) NOT NULL A unique identifier for the credit card.
This field is the table�s primary key and
cannot be NULL. All other fields in the
WLCS_CREDIT_CARD table can be
NULL.

CC_NUMBER VARCHAR(200
)

NULL The customer�s credit card number. This
is encrypted if is.encryption.
enable is set to true
in the weblogiccommerce.
properties file.

CC_TYPE VARCHAR(20) NULL The customer�s credit card type, such as
VISA or MasterCard.

CC_EXP_DATE DATE NULL The expiration date on the customer�s
credit card.

CC_NAME VARCHAR(50) NULL The credit card holder�s name.

CC_DISPLAY_NUMBER VARCHAR(20) NULL The version of the credit card number
that is displayed (all Xs except last
4-digits).

CC_COMPANY VARCHAR(50) NULL The name of the credit card company.

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-11

BILLING_GEOCODE VARCHAR(2) NULL The code used by the TAXWARE
system to identify taxes for the order
based on jurisdiction.

BILLING_STREET1 VARCHAR(30) NULL The first line in the customer�s billing
address.

BILLING_STREET2 VARCHAR(30) NULL The second line in the customer�s billing
address.

BILLING_CITY VARCHAR(30) NULL The city in the customer�s billing
address.

BILLING_STATE VARCHAR(40) NULL The state in the customer�s billing
address.

BILLING_COUNTRY VARCHAR(40) NULL The country in the customer�s billing
address.

BILLING_POBOX VARCHAR(30) NULL The post office box in the customer�s
billing address.

BILLING_COUNTY VARCHAR(50) NULL The county in the customer�s billing
address.

BILLING_POSTAL_CODE VARCHAR(10) NULL The postal (ZIP) code in the customer�s
billing address.

BILLING_POSTAL_CODE_TYPE VARCHAR(10) NULL Format or type of postal code, generally
determined by country (such as ZIP code
in the United States).

CUSTOMER_ID VARCHAR(20) NULL A unique identifier for the customer.

MAP_KEY VARCHAR(60) NULL Key that maps multiple credit cards with
a single customer.

Table 10-5 WLCS_CREDIT_CARD Table Metadata (Continued)

Column Name Data Type Null Value Description and
Recommendations

10 The Order Processing Database Schema

10-12 Guide to Managing Purchases and Processing Orders

The WLCS_CUSTOMER Database Table

Table 10-6 describes the metadata for the Commerce services WLCS_CUSTOMER
table. This table is used to store information about the customer in the order processing
database.

The Primary Key is CUSTOMER_ID.

Table 10-6 WLCS_CUSTOMER Table Metadata

Column Name Data Type Null Value Description and
Recommendations

CUSTOMER_ID VARCHAR(20) NOT NULL A unique identifier for the customer.
This field is the table�s primary key and
cannot be NULL. All other fields in the
WLCS_CUSTOMER table can be NULL.

CUSTOMER_TYPE VARCHAR(20) NULL A label for the customer (such as
preferred, standard, or business).

FIRST_NAME VARCHAR(30) NULL The customer�s first name.

LAST_NAME VARCHAR(30) NULL The customer�s last name.

MIDDLE_NAME VARCHAR(30) NULL The customer�s middle name.

TITLE VARCHAR(10) NULL The customer�s preferred title, such as
Mr., Mrs., or Ms.

SUFFIX VARCHAR(10) NULL The customer�s preferred suffix, such as
Jr.or Sr.

EMAIL VARCHAR(80) NULL The customer�s email address.

HOME_PHONE VARCHAR(15) NULL The customer�s home phone number.

BUSINESS_PHONE VARCHAR(20) NULL The customer�s business phone number.

FAX VARCHAR(15) NULL The customer�s fax number.

MAILING_GEOCODE VARCHAR(2) NULL The code used by the TAXWARE
system to identify taxes for the order
based on jurisdiction.

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-13

The WLCS_ORDER Database Table

Table 10-7 describes the metadata for the Commerce services WLCS_ORDER table.
This table is used to store information about a customer�s specific order in the order
processing database.

Note: The Commerce services product does not populate the
SHIPPING_AMOUNT, SHIPPING_CURRENCY, PRICE_AMOUNT, or
PRICE_CURRENCY columns.

The Primary Key is ORDER_ID.

MAILING_STREET1 VARCHAR(30) NULL The first line in the customer�s street
address.

MAILING_STREET2 VARCHAR(30) NULL The second line in the customer�s street
address.

MAILING_CITY VARCHAR(30) NULL The city in the customer�s address.

MAILING_STATE VARCHAR(40) NULL The state in the customer�s address.

MAILING_COUNTRY VARCHAR(40) NULL The country in the customer�s address.

MAILING_POBOX VARCHAR(30) NULL The post office box in the customer�s
address.

MAILING_COUNTY VARCHAR(50) NULL The county in the customer�s address.

MAILING_POSTAL_CODE VARCHAR(10) NULL The postal (ZIP) code in the customer�s
address.

MAILING_POSTAL_CODE_TYPE VARCHAR(10) NULL Format or type of postal code, generally
determined by country (such as ZIP code
in the United States).

Table 10-6 WLCS_CUSTOMER Table Metadata (Continued)

Column Name Data Type Null Value Description and
Recommendations

10 The Order Processing Database Schema

10-14 Guide to Managing Purchases and Processing Orders

Table 10-7 WLCS_ORDER Table Metadata

Column Name Data Type Null Value Description and
Recommendations

ORDER_ID VARCHAR(20) NOT NULL A unique identifier for the order. This
field is the table�s primary key and
cannot be NULL. All other fields in the
WLCS_ORDER table can be NULL.

CUSTOMER_ID VARCHAR(20) NULL A unique identifier for the customer.

TRANSACTION_ID VARCHAR(25) NULL A unique identifier for the transaction.

STATUS VARCHAR(20) NULL The status of the order.

ORDER_DATE DATE NULL The date the order was placed.

SHIPPING_METHOD VARCHAR(40) NULL The method by which the order is to be
shipped.

SHIPPING_AMOUNT NUMBER(16,4
)

NULL The shipping amount for the order.

SHIPPING_CURRENCY VARCHAR(10) NULL The currency associated with the
shipping amount.

PRICE_AMOUNT NUMBER(16,4
)

NULL The price of the order.

PRICE_CURRENCY VARCHAR(10) NULL The currency associated with the price.

SHIPPING_GEOGODE VARCHAR(2) NULL The code used by the TAXWARE
system to identify taxes for the order
based on jurisdiction.

SHIPPING_STREET1 VARCHAR(30) NULL The first line in the customer�s
shipping address.

SHIPPING_STREET2 VARCHAR(30) NULL The second line in the customer�s
shipping address.

SHIPPING_CITY VARCHAR(30) NULL The city in the customer�s shipping
address.

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-15

The WLCS_ORDER_LINE Database Table

Table 10-8 describes the metadata for the Commerce services WLCS_ORDER_LINE
table. This table is used to store information about each line of a customer�s shopping
cart in the order processing database.

See the section �� on page 10-25 for information about the constraint defined for this
table.

SHIPPING_STATE VARCHAR(40) NULL The state in the customer�s shipping
address.

SHIPPING_COUNTRY VARCHAR(40) NULL The country in the customer�s shipping
address.

SHIPPING_POBOX VARCHAR(30) NULL The post office box in the customer�s
shipping address.

SHIPPING_COUNTY VARCHAR(50) NULL The county in the customer�s shipping
address.

SHIPPING_POSTAL_CODE VARCHAR(10) NULL The postal (ZIP) code in the
customer�s shipping address.

SHIPPING_POSTAL_CODE_TYPE VARCHAR(10) NULL Format or type of postal code,
generally determined by country, such
as ZIP code in the United States.

SPECIAL_INSTRUCTIONS VARCHAR(254
)

NULL Any special shipping instructions
associated with the order.

SPLITTING_PREFERENCE VARCHAR(254
)

NULL The splitting preferences for the
customer�s order.

ORDER_SUBTOTAL NUMBER(16,4
)

NULL The sum of all the
TOTAL_LINE_AMOUNT columns in
the WLCS_ORDER_LINE table for that
specific order.

Table 10-7 WLCS_ORDER Table Metadata (Continued)

Column Name Data Type Null Value Description and
Recommendations

10 The Order Processing Database Schema

10-16 Guide to Managing Purchases and Processing Orders

The Primary Key is ORDER_LINE_ID.

Table 10-8 WLCS_ORDER_LINE Table Metadata

Column Name Data Type Null Value Description and Recommendations

ORDER_LINE_ID NUMBER(15) NOT NULL A unique identifier for each line in a
customer�s shopping cart. This field is the
table�s primary key and cannot be NULL.
All other fields in the WLCS_ORDERLINE
table can be NULL.

QUANTITY NUMBER(16,4) NULL The quantity of the item in the shopping
cart.

PRODUCT_ID VARCHAR(40) NULL An identification number for the item in
the shopping cart.

TAX_AMOUNT NUMBER(16,4) NULL The tax amount for the order.

TAX_CURRENCY VARCHAR(10) NULL The currency associated with the tax
amount.

SHIPPING_AMOUNT NUMBER(16,4) NULL The shipping amount for the order.

SHIPPING_CURRENCY VARCHAR(10) NULL The currency associated with the shipping
amount.

UNIT_PRICE_AMOUNT NUMBER(16,4) NULL The unit price amount for the item.

UNIT_PRICE_CURRENCY VARCHAR(10) NULL The currency associated with the unit
price.

MSRP_AMOUNT NUMBER(16,4) NULL The MSRP amount for the item.

MSRP_CURRENCY VARCHAR(10) NULL The currency associated with the MSRP
amount.

DESCRIPTION VARCHAR(254) NULL The name of the item that is part of the
order.

ORDER_ID VARCHAR(20) NULL A unique identifier for the order.

TOTAL_LINE_AMOUNT NUMBER(16,4) NULL The total discounted price for the line item.
UNIT_PRICE_AMOUNT (less any
discount) times the QUANTITY.

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-17

The WLCS_SAVED_ITEM_LIST Database Table

Table 10-9 describes the metadata for the Commerce services
WLCS_SAVED_ITEM_LIST table. This table is used to store information about the
customer�s saved shopping cart items in the order processing database.

There is no Primary Key.

The WLCS_SECURITY Database Table

Table 10-10 describes the metadata for the Commerce services WLCS_SECURITY
table. This table is used to persist public and private keys for encryption and decryption
purposes in the order processing database. This table is meant for internal use by the
Commerce services product.

There is no Primary Key.

Table 10-9 WLCS_SAVED_ITEM_LIST Table Metadata

Column Name Data Type Null Value Description and Recommendations

CUSTOMER_ID VARCHAR(20) NULL A unique identifier for the customer.

SKU VARCHAR(40) NULL A unique identifier (the Stock Keeping
Unit or SKU) for a product item.

Table 10-10 WLCS_SECURITY Table Metadata

Column Name Data Type Null Value Description and Recommendations

ID NUMBER(5) NULL A unique identifier for the key pair. This
field is the table�s primary key and cannot
be NULL.

PUBLIC_KEY VARCHAR(2000) NULL The public key to be used for
encryption/decryption of credit cards.

PRIVATE_KEY VARCHAR(2000) NULL The private key to be used for
encryption/decryption of credit cards.

10 The Order Processing Database Schema

10-18 Guide to Managing Purchases and Processing Orders

The WLCS_SHIPPING_ADDRESS Database Table

Table 10-11 describes the metadata for the Commerce services
WLCS_SHIPPING_ADDRESS table. This table is used to store information related to
a customer�s shipping address(es) in the order processing database.

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is SHIPPING_ADDRESS_ID.

Table 10-11 WLCS_SHIPPING_ADDRESS Table Metadata

Column Name Data Type Null Value Description and
Recommendations

SHIPPING_ADDRESS_ID NUMBER(15) NOT NULL A unique identifier for the shipping
address. This field is the table�s
primary key and cannot be NULL. All
other fields in the
WLCS_SHIPPING_ADDRESS table
can be NULL.

MAP_KEY VARCHAR(60) NULL Key that maps multiple shipping
addresses with a single customer.

SHIPPING_GEOCODE VARCHAR(2) NULL The code used by the TAXWARE
system to identify taxes for the order
based on jurisdiction.

SHIPPING_STREET1 VARCHAR(30) NULL The first line in the customer�s
shipping address.

SHIPPING_STREET2 VARCHAR(30) NULL The second line in the customer�s
shipping address.

SHIPPING_CITY VARCHAR(30) NULL The city in the customer�s shipping
address.

SHIPPING_STATE VARCHAR(40) NULL The state in the customer�s shipping
address.

SHIPPING_COUNTRY VARCHAR(40) NULL The country in the customer�s
shipping address.

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-19

The WLCS_SHIPPING_METHOD Database Table

Table 10-12 describes the metadata for the Commerce services
WLCS_SHIPPING_METHOD table. This table is used to store information about the
shipping method in the order processing database.

The Primary Key is PK_IDENTIFIER.

SHIPPING_POBOX VARCHAR(30) NULL The post office box in the customer�s
shipping address.

SHIPPING_COUNTY VARCHAR(50) NULL The county in the customer�s
shipping address.

SHIPPING_POSTAL_CODE VARCHAR(10) NULL The postal (zip) code in the
customer�s shipping address.

SHIPPING_POSTAL_CODE_TYPE VARCHAR(10) NULL Format or type of postal code,
generally determined by country,
such as ZIP code in the United
States.

CUSTOMER_ID VARCHAR(20) NULL A unique identifier for the customer.

Table 10-11 WLCS_SHIPPING_ADDRESS Table Metadata (Continued)

Column Name Data Type Null Value Description and
Recommendations

Table 10-12 WLCS_SHIPPING_METHOD Table Metadata

Column Name Data Type Null Value Description and Recommendations

PK_IDENTIFIER VARCHAR(20) NOT NULL A unique identifier for the shipping
method. This field is the table�s primary
key and cannot be NULL. All other fields in
the WLCS_SHIPPING_
METHOD table can be NULL.

CARRIER VARCHAR(40) NULL The carrier being used to ship the order,
such as UPS or FedEx.

10 The Order Processing Database Schema

10-20 Guide to Managing Purchases and Processing Orders

METHOD VARCHAR(40) NULL The method by which the order is to be
shipped, such as Air, 2nd Day Air, or
Parcel Post.

AVERAGE_SHIPPING_TIME NUMBER NULL The average number of days it will take the
order to arrive.

PRICE_VALUE NUMBER(16,4) NULL The amount it will cost to ship the order.

PRICE_CURRENCY VARCHAR(10) NULL The currency associated with the
PRICE_VALUE column, such as dollars,
pounds, or lira.

WEIGHT_LIMIT NUMBER(16,4) NULL The weight limit for the shipment.

RESTRICTIONS VARCHAR(254) NULL Any restrictions associated with the
shipment.

DESCRIPTION VARCHAR(254) NULL A description of the shipping method, such
as FedEx Overnight or Standard.

PO_BOX_ALLOWED NUMBER NULL Specifies whether or not the shipment can
be left at a post office box.

SIGNATURE_REQUIRED NUMBER NULL Specifies whether or not a signature is
required upon receipt of the shipment.

SATURDAY_DELIVERY NUMBER NULL Specifies whether or not the shipment can
be delivered on Saturday.

INTERNATIONAL_DELIVERY NUMBER NULL Specifies whether or not international
delivery is an option.

SIZE_LIMIT NUMBER(16,4) NULL The size limit for the shipment.

PACKAGING_TYPE VARCHAR(50) NULL The packaging type for the shipment.

Table 10-12 WLCS_SHIPPING_METHOD Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-21

The WLCS_TRANSACTION Database Table

Table 10-13 describes the metadata for the Commerce services
WLCS_TRANSACTION table. This table is used to store data for every payment
transaction in the order processing database.

See the section �� on page 10-25 for information about the constraint defined for this
table.

The Primary Key is TRANSACTION_ID.

Table 10-13 WLCS_TRANSACTION Table Metadata

Column Name Data Type Null Value Description and Recommendations

TRANSACTION_ID VARCHAR(25) NOT NULL A unique identifier for the transaction.
This field is the table�s primary key and
cannot be NULL. All other fields in the
WLCS_
TRANSACTION table can be NULL.

BATCH_ID VARCHAR(15) NULL A unique identifier of a batch submitted for
settlement, as returned by the Payment
Web service. This field need not be
populated for other external payment
services.

TRAN_DATE DATE NULL The date of the transaction (that is, date on
which the transaction was first started).

TRAN_STATUS VARCHAR(20) NULL The current status of the transaction
(Settled, Authorized, MarkedForSettle,
PendingSettle, Retry, or Settled).

TRAN_AMOUNT NUMBER(16,4) NULL The most recent amount applied to the
transaction. MarkForSettle amounts can be
different from the authorization amount.

TRAN_CURRENCY VARCHAR(30) NULL The currency of the transaction.

10 The Order Processing Database Schema

10-22 Guide to Managing Purchases and Processing Orders

CC_NUMBER VARCHAR(200) NULL The customer�s credit card number. This is
encrypted if is.encryption.enable
is set to true in the
weblogiccommerce.properties
file.

CC_TYPE VARCHAR(20) NULL The customer�s credit card type, such as
VISA or MasterCard.

CC_EXP_DATE DATE NULL The expiration date on the customer�s
credit card.

CC_NAME VARCHAR(50) NULL The credit card holder�s name.

CC_DISPLAY_NUMBER VARCHAR(20) NULL The version of the credit card number that
is displayed (displays all Xs except last
4-digits).

CC_COMPANY VARCHAR(50) NULL The name of the credit card company.

GEOCODE VARCHAR(2) NULL The code used by the TAXWARE system
to identify taxes for the order based on
jurisdiction.

STREET1 VARCHAR(30) NULL The first line in the customer�s street
address.

STREET2 VARCHAR(30) NULL The second line in the customer�s street
address.

CITY VARCHAR(30) NULL The city in the customer�s address.

STATE VARCHAR(40) NULL The state in the customer�s address.

COUNTRY VARCHAR(40) NULL The country in the customer�s address.

POBOX VARCHAR(30) NULL The post office box in the customer�s
address.

DESCRIPTION VARCHAR(30) NULL Any additional data. Can be NULL.

COUNTY VARCHAR(50) NULL The county in the customer�s address.

Table 10-13 WLCS_TRANSACTION Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

The Order Processing Data Dictionary

Guide to Managing Purchases and Processing Orders 10-23

The WLCS_TRANSACTION_ENTRY Database Table

Table 10-14 describes the metadata for the Commerce services
WLCS_TRANSACTION_ENTRY table. This table is used to store (log) the different
states a payment transaction has passed through in the order processing database.

See �� on page 10-25 for information about the constraint defined for this table.

The Primary Key is TRANSACTION_ENTRY_ID.

POSTAL_CODE VARCHAR(10) NULL The postal (ZIP) code in the customer�s
address.

POSTAL_CODE_TYPE VARCHAR(10) NULL Format or type of postal code, generally
determined by country, such as Zip code in
the United States.

Table 10-13 WLCS_TRANSACTION Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

Table 10-14 WLCS_TRANSACTION_ENTRY Table Metadata

Column Name Data Type Null Value Description and Recommendations

TRANSACTION_ENTRY_ID NUMBER(25) NOT NULL A unique identifier for the transaction
entry. This field is the table�s primary key
and cannot be NULL. All other fields in the
WLCS_TRANSACTION_ENTRY table can
be NULL.

TRAN_ENTRY_SEQUENCE VARCHAR(30) NULL Represents the running count per
transaction.

TRAN_ENTRY_DATE DATE NULL The date of the log entry.

TRAN_ENTRY_STATUS VARCHAR(20) NULL The status of the transaction when this
entry was made.

TRAN_ENTRY_AMOUNT NUMBER(16,4) NULL The amount of the transaction when the log
entry was made.

TRAN_ENTRY_CURRENCY VARCHAR(30) NULL The currency of the transaction.

10 The Order Processing Database Schema

10-24 Guide to Managing Purchases and Processing Orders

The SQL Scripts Used to Create the Database

The database schemas for WebLogic Portal and WebLogic Personalization Server are
all created by executing the create_all script for the target database environment.

Scripts
Regardless of your database, execute one of the following to generate the necessary
database objects for the modules desired (WebLogic Portal, WebLogic
Personalization Server, Commerce services, Campaign services and Sample Portal):

� PORTAL_HOME\db\create_all.bat (Windows)

� PORTAL_HOME/db/create_all.sh (UNIX)
The following are the various directories underneath
WL_COMMERCE_HOME/db
(as seen in a UNIX environment):
PORTAL_HOME/db/cloudscape/351
PORTAL_HOME/db/oracle/817

Note: In this documentation,PORTAL_HOME is used to designate the directory where
the product is installed.

Each of the databases supported have the same number of scripts in
each of their subdirectories. The scripts are listed and described in
Table 10-15 below.

TRANSACTION_ID VARCHAR(25) NULL A unique identifier for the transaction.

Table 10-14 WLCS_TRANSACTION_ENTRY Table Metadata (Continued)

Column Name Data Type Null Value Description and Recommendations

The SQL Scripts Used to Create the Database

Guide to Managing Purchases and Processing Orders 10-25

Table 10-15 The Scripts Supporting the Databases

Script Name Description

create_all.bat Windows script used to connect to the database and create the
necessary database objects for the modules desired (e.g.,
WebLogic Portal, WebLogic Personalization Server, Commerce
services, Campaign services and Sample Portal)

create_all.sh Unix script used to connect to the database and create the
necessary database objects for the modules desired (e.g.,
WebLogic Portal, WebLogic Personalization Server, Commerce
services, Campaign services and Sample Portal)

campaign_create_fkeys.sql SQL script used to create all foreign keys associated with the
Campaign services.

campaign_create_indexes.sql SQL script used to create all indexes associated with the
Campaign services.

campaign_create_tables.sql SQL script used to create all tables associated with the Campaign
services.

campaign_create_triggers.sql SQL script used to create all database triggers associated with the
Campaign services.

campaign_create_views.sql SQL script used to create all views associated with the Campaign
services.

campaign_drop_constraints.sql SQL script used to drop all constraints (other than foreign keys)
associated with the Campaign services.

campaign_drop_fkeys.sql SQL script used to drop all foreign key constraints associated with
the Campaign services.

campaign_drop_indexes.sql SQL script used to drop all indexes associated with the Campaign
services.

campaign_drop_tables.sql SQL script used to drop all tables associated with the Campaign
services.

campaign_drop_views.sql SQL script used to drop all views associated with the Campaign
services.

p13n_create_fkeys.sql SQL script used to create all foreign keys associated with the
WebLogic Personalization Server.

p13n_create_indexes.sql SQL script used to create all indexes associated with the
WebLogic Personalization Server.

10 The Order Processing Database Schema

10-26 Guide to Managing Purchases and Processing Orders

p13n_create_tables.sql SQL script used to create all tables associated with the WebLogic
Personalization Server.

p13n_create_triggers.sql SQL script used to create all database triggers associated with the
WebLogic Personalization Server.

p13n_create_views.sql SQL script used to create all views associated with the WebLogic
Personalization Server.

p13n_drop_constraints.sql SQL script used to drop all constraints (other than foreign keys)
associated with the WebLogic Personalization Server.

p13n_drop_fkeys.sql SQL script used to drop all foreign key constraints associated with
the WebLogic Personalization Server.

p13n_drop_indexes.sql SQL script used to drop all indexes associated with the WebLogic
Personalization Server.

p13n_drop_tables.sql SQL script used to drop all tables associated with the WebLogic
Personalization Server.

p13n_drop_views.sql SQL script used to drop all views associated with the WebLogic
Personalization Server.

portal_create_fkeys.sql SQL script used to create all foreign keys associated with the
WebLogic Portal.

portal_create_indexes.sql SQL script used to create all indexes associated with the
WebLogic Portal.

portal_create_tables.sql SQL script used to create all tables associated with the WebLogic
Portal.

portal_create_triggers.sql SQL script used to create all database triggers associated with the
WebLogic Portal.

portal_create_views.sql SQL script used to create all views associated with the WebLogic
Portal.

portal_drop_constraints.sql SQL script used to drop all constraints (other than foreign keys)
associated with the WebLogic Portal.

portal_drop_fkeys.sql SQL script used to drop all foreign key constraints associated with
the WebLogic Portal.

portal_drop_indexes.sql SQL script used to drop all indexes associated with the WebLogic
Portal.

Table 10-15 The Scripts Supporting the Databases (Continued)

Script Name Description

The SQL Scripts Used to Create the Database

Guide to Managing Purchases and Processing Orders 10-27

portal_drop_tables.sql SQL script used to drop all tables associated with the WebLogic
Portal.

portal_drop_views.sql SQL script used to drop all views associated with the WebLogic
Portal.

sample_portal_create_fkeys.sql SQL script used to create all foreign keys associated with the
Sample Portal.

sample_portal_create_indexes.sq
l

SQL script used to create all indexes associated with the Sample
Portal.

sample_portal_create_tables.sql SQL script used to create all tables associated with the Sample
Portal.

sample_portal_create_triggers.s
ql

SQL script used to create all database triggers associated with the
Sample Portal.

sample_portal_create_views.sql SQL script used to create all views associated with the Sample
Portal.

sample_portal_drop_constraints.
sql

SQL script used to drop all constraints (other than foreign keys)
associated with the Sample Portal.

sample_portal_drop_fkeys.sql SQL script used to drop all foreign key constraints associated with
the Sample Portal.

sample_portal_drop_indexes.sql SQL script used to drop all indexes associated with the Sample
Portal.

sample_portal_drop_tables.sql SQL script used to drop all tables associated with the Sample
Portal.

sample_portal_drop_views.sql SQL script used to drop all views associated with the Sample
Portal.

wlcs_create_fkeys.sql SQL script used to create all foreign keys associated with the
Commerce services.

wlcs_create_indexes.sql SQL script used to create all indexes associated with the
Commerce services.

wlcs_create_tables.sql SQL script used to create all tables associated with the Commerce
services.

wlcs_create_triggers.sql SQL script used to create all database triggers associated with the
Commerce services.

Table 10-15 The Scripts Supporting the Databases (Continued)

Script Name Description

10 The Order Processing Database Schema

10-28 Guide to Managing Purchases and Processing Orders

Defined Constraints

Various constraints are defined and used in the Order database schema. These
constraints can be found in the following scripts:

 wlcs_create_fkeys.sql�contains the Foreign Keys

 wlcs_create_tables.sql�contains the Check Constraints

wlcs_create_views.sql SQL script used to create all views associated with the Commerce
services.

wlcs_drop_constraints.sql SQL script used to drop all constraints (other than foreign keys)
associated with the Commerce services.

wlcs_drop_fkeys.sql SQL script used to drop all foreign key constraints associated with
the Commerce services.

wlcs_drop_indexes.sql SQL script used to drop all indexes associated with the Commerce
services.

wlcs_drop_tables.sql SQL script used to drop all tables associated with the Commerce
services.

wlcs_drop_views.sql SQL script used to drop all views associated with the Commerce
services.

Table 10-15 The Scripts Supporting the Databases (Continued)

Script Name Description

Defined Constraints

Guide to Managing Purchases and Processing Orders 10-29

Table 10-16 Constraints Defined on Order Database Tables

Table Name Constraints

DISCOUNT_ASSOCIATION Column�CUSTOMER_ID
Constraint�FK1_DISC_ASSOC
Constraint Type�FOREIGN KEY
Ensures that each CUSTOMER_ID references an existing
WLCS_CUSTOMER via the CUSTOMER_ID column.

Column�DISCOUNT_ID
Constraint�FK2_DISC_ASSOC
Constraint Type�FOREIGN KEY
Ensures that each DISCOUNT_ID references an existing DISCOUNT
via the DISCOUNT_ID column.

WLCS_CREDIT_CARD Column�CUSTOMER_ID
Constraint�FK1_CREDIT_CARD
Constraint Type�FOREIGN KEY
Ensures that each CUSTOMER_ID references an existing
WLCS_CUSTOMER via the CUSTOMER_ID column

WLCS_ORDER_LINE Column�ORDER_ID
Constraint�FK1_ORDER_LINE
Constraint Type�FOREIGN KEY
Ensures that each ORDER_ID references an existing WLCS_ORDER via
the ORDER_ID column.

 ORDER_ADJUSTMENT Column�DISCOUNT_ID
Constraint�FK1_ORDER_ADJ
Constraint Type�FOREIGN KEY
Ensures that each DISCOUNT_ID references an existing DISCOUNT
via the DISCOUNT_ID column.

ORDER_LINE_ADJUSTMENT Column�DISCOUNT_ID
Constraint�FK1_ORDER_L_ADJ
Constraint Type�FOREIGN KEY
Ensures that each DISCOUNT_ID references an existing DISCOUNT
via the DISCOUNT_ID column

WLCS_SHIPPING_ADDRESS Column�CUSTOMER_ID
Constraint� FK1_SHIP_ADDR
Constraint Type�FOREIGN KEY
Ensures that each CUSTOMER_ID references an existing
WLCS_CUSTOMER via the CUSTOMER_ID column.

10 The Order Processing Database Schema

10-30 Guide to Managing Purchases and Processing Orders

WLCS_TRANSACTION_ENTRY Column�TRANSACTION_ID
Constraint�FK1_TRANS_ENTRY
Constraint Type�FOREIGN KEY
Ensures that each TRANSACTION_ID references an existing
WLCS_TRANSACTION via the TRANSACTION_ID column.

DISCOUNT Column�IS_GLOBAL
Constraint� CC1_DISCOUNT
Constraint Type�CHECK
Ensures the value of the IS_GLOBAL column is either 0 (false) or 1
(true).

Column�IS_ACTIVE
Constraint� CC2_DISCOUNT
Constraint Type�CHECK
Ensures the value of the IS_ACTIVE column is either 0 (false) or 1
(true).

Table 10-16 Constraints Defined on Order Database Tables (Continued)

Table Name Constraints

Guide to Managing Purchases and Processing Orders

Index

A
accessor method(s)

attributes of 3-12
ShoppingCart 3-12
ShoppingCartLine 3-12

addaddress.jsp 4-17
adding run-time attributes 8-6, 8-8
Administration Tools page

loading 9-2
sample page 9-3

association service 2-5
attributes

accessor method 3-12
authorizing transactions 9-18

B
browsing the product catalog 1-3
business logic 1-2, 3-9

C
Calendar Date Selection Tool

about 9-8
campaign dates and discount dates 2-3
capturing transactions 9-19
checkout process 3-4
checkout.jsp 7-2
comparison of per item and set-based

discounts 2-6
confirmorder.jsp 7-11

consumption model of discounts 2-8
credit card encryption 6-33
Customer ID

searching for a payment by 9-14
searching for an order by 9-1, 9-4

customer support contact information 1-xiv

D
data dictionary 10-5
database schema 1-5, 10-1
database table

DISCOUNT 10-5
ORDER_LINE_ADJUSTMENT 10-8
WLCS_CREDIT_CARD 10-10
WLCS_CUSTOMER 10-12
WLCS_ORDER 10-13
WLCS_ORDER_LINE 10-15
WLCS_SAVED_ITEM_LIST 10-17
WLCS_SECURITY 10-17
WLCS_SHIPPING_ADDRESS 10-18
WLCS_SHIPPING_METHOD 10-19
WLCS_TRANSACTION 10-21
WLCS_TRANSACTION_ENTRY

10-23
database tables

DISCOUNT 10-5
DISCOUNT_ASSOCIATION 10-6
ORDER_ADJUSTMENT 10-7
ORDER_LINE_ADJUSTMENT 10-8
WLCS_CREDIT_CARD 10-10

Guide to Managing Purchases and Processing Orders

WLCS_ORDER 10-13
WLCS_ORDER_LINE 10-15
WLCS_SAVED_ITEM_LIST 10-17
WLCS_SECURITY 10-17
WLCS_SHIPPING_ADDRESS 10-18
WLCS_SHIPPING_METHOD 10-19
WLCS_TRANSACTION 10-21
WLCS_TRANSACTION_ENTRY

10-23
WLCS_USTOMER 10-12

date
range

searching for an order by 9-2, 9-8
default Webflow 1-3
discount

deactivating 2-4
definitions 2-3
limits 2-4
management service 2-3
parameters 2-3
priorities 2-4
rules 2-11

DISCOUNT Database Table 10-5
DISCOUNT_ASSOCIATION Database

Table 10-6
discounts

background information 2-1
calculators 2-10
campaign 2-1
consumption model 2-8
fixed off 2-10
fixed price 2-10
global 2-1
percentage off 2-10
priority 2-9

documentation, where to find it 1-xii
dynamic data display

checkout.jsp 7-6
confirmorder.jsp 7-15
payment.jsp 6-7
paymenteditcc.jsp 6-17

selectaddress.jsp 4-12
selecttaxaddress.jsp 5-8
shipping.jsp 4-5
shoppingcart.jsp 3-11

E
encryption, credit card 6-33
entity beans 8-4
entity-relation diagram 10-1
event(s)

addaddress.jsp 4-19
checkout.jsp 7-5
payment.jsp 6-7
paymenteditcc.jsp 6-17
paymentnewcc.jsp 6-12
selecttaxaddress.jsp 5-8
shipping.jsp 4-5
shoppingcart.jsp 3-9

G
getShoppingCartLineCollection() 7-9

H
high-level architecture 1-3

I
inactivating a discount 2-4
input processors

DecideShippingAddressPageIP 5-12
DeleteProductItemFromShoppingCartIP

3-15
EmptyShoppingCartIP 3-16
InitShippingMethodListIP 4-22
InitShoppingCartIP 3-16
PaymentAuthorizationIP 6-22
UpdatePaymentInfoIP 6-23
UpdateShippingAddressIP 4-23, 5-12
UpdateShoppingCartQuantitiesIP 3-17

Guide to Managing Purchases and Processing Orders

UpdateSkuIP 3-18
ValidateAddressIP 4-24
ValidateShippingInfoIP 4-25

J
Java scriptlets 3-12
JavaServer Page (JSP) templates

addaddress.jsp 4-17
checkout.jsp 7-2
confirmorder.jsp 7-11
Managing Purchases and Processing

Orders 1-2
payment.jsp 6-4
paymenteditcc.jsp 6-14
paymentnewcc.jsp 6-9
selecttaxaddress.jsp 5-5
shoppingcart.jsp 3-4

JSP tags
getPipelineProperty 3-11, 5-8
getProfile 4-13, 6-7, 6-18
getProperty 4-13, 6-8, 6-18

L
license 2-2

M
Managing Purchases and Processing Orders

about 1-2
structure of 1-2

O
Order Identifier number

searching for an order by 9-2, 9-6
Order List

about 9-5
Order Management page

loading Administration Tools page 9-2
search page 9-4

order processing data dictionary 10-5
order processing schema 10-4
Order Status page 9-5
order(s)

search
by Customer ID 9-1, 9-4
by date range 9-2, 9-8
by Order Identifier number 9-2, 9-6

ORDER_ADJUSTMENT Database Table
10-7

ORDER_LINE_ADJUSTMENT Database
Table 10-8

P
Payment Transaction History

about 9-14
payment Web service 6-1
payment(s)

search
by Customer ID 9-14
by status 9-16

status 9-17
payment.jsp 6-4
paymenteditcc.jsp 6-14
paymentnewcc.jsp 6-9
persistence architecture 8-3
Pipeline components

AddShippingAddressPC 4-26
AddToCartTrackerPC 3-23
CalculateShippingPC 4-27
CommitOrderPC 7-20
DeleteProductItemFromSavedListPC

3-19
DeleteShippingAddressPC 4-28
MoveProductItemToSavedListPC 3-20
MoveProductItemToShippingCartPC

3-21
PaymentAuthorizationHostPC 6-24
PaymentAuthorizationTerminalPC 6-25
PriceShoppingCartPC 3-22

Guide to Managing Purchases and Processing Orders

PurchaseTrackerPC 7-22
RefreshSavedListPC 3-22
RemoveFromCartTrackerPC 3-24
ResetOrderCheckoutPC 7-21
TaxCalculateAndCommitLineLevelPC

5-14
TaxCalculateLineLevelPC 5-13
TaxVerifyShippingAddressPC 5-15
UpdateShoppingCartQuantitiesTracker

PC 3-24
price service 2-5
pricing operation 2-9
printing product documentation 1-xiii
product license 2-2

R
registrating customers and managing

customer services 1-3
related information 1-xiii
retrieving Pipeline session attributes

shopping cart 3-11

S
schema extension 8-8
scriptlets, Java 3-12
search

order
by Customer ID 9-1, 9-4
by date range 9-2, 9-8
by Order Identifier number 9-2, 9-6

payment
by Customer ID 9-14
by status 9-16

security, credit card encryption 6-33
selectaddress.jsp 4-9
selecttaxaddress.jsp 5-5
services, order-related 1-1
settling transactions 9-19
Shipping Services

about 4-1
addaddress.jsp template 4-17
selectaddress.jsp template 4-9
shipping.jsp template 4-2

shipping.jsp 4-2
shopping cart

managing 3-1
Shopping Cart Management Services 3-1
shoppingcart.jsp 3-4
Simple Object Access Protocol (SOAP) 5-3
SOAP 5-3
SQL Scripts 10-24
StartCommerce.bat 9-2
StartCommerce.sh 9-2
starting the WebLogic Commerce Server

Administration Tools 9-1, 9-2
status

of payments
searching by 9-16
values for 9-17

support
technical 1-xiv

T
target items 2-2
taxation Web service 5-1, 5-15
time zones 2-3
transactions

authorizing 9-18
capturing 9-19
managing 8-17
settling 9-19

trigger items 2-2

U
Unified User Profile (UUP) technology 8-6
use-cases 8-2

Guide to Managing Purchases and Processing Orders

W
ways to use discounts 2-1
Web service

payment 6-1
payment, integrating with 6-26
taxation 5-1
taxation, integrating with 5-15

Web Services Description Language
(WSDL) 5-3

Web services, about 5-2
Webflow/Pipeline infrastructure 1-3
WebLogic Commerce Server

Administration Tools
starting 9-1, 9-2

WebLogic Commerce Server schema
extension 8-8

WLCS_CREDIT_CARD Database Table
10-10

WLCS_CUSTOMER Database Table 10-12
WLCS_ORDER Database Table 10-13
WLCS_ORDER_LINE Database Table

10-15
WLCS_SAVED_ITEM_LIST Database

Table 10-17
WLCS_SECURITY Database Table 10-17
WLCS_SHIPPING_ADDRESS Database

Table 10-18
WLCS_SHIPPING_METHOD Database

Table 10-19
WLCS_TRANSACTION Database Table

10-21
WLCS_TRANSACTION_ENTRY

Database Table 10-23
WSDL 5-3

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of Managing Purchases and Processing Orders
	What Are Order Services?
	High-level Architecture
	Development Roles
	Next Steps

	2 Discounts
	Campaign and Stand-Alone Discounts
	Introduction to How Discounts Work
	Discount Management Service
	Definition Parameters

	Association Service
	Price Service
	Triggers and Targets Specifications
	Two Examples of Using Triggers and Targets
	Consumption Model
	How Discounts Are Applied
	Priority
	How Discounts Are Calculated

	Examples
	Item Discounts
	Form of Discount Rules

	Order Rules

	3 Shopping Cart Management Services
	JavaServer Pages (JSPs)
	Common JSP Template Elements
	shoppingcart.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	DeleteProductItemFromShoppingCartIP
	EmptyShoppingCartIP
	InitShoppingCartIP
	UpdateShoppingCartQuantitiesIP
	UpdateSkuIP

	Pipeline Components
	DeleteProductItemFromSavedListPC
	MoveProductItemToSavedListPC
	MoveProductItemToShoppingCartPC
	RefreshSavedListPC
	PriceShoppingCartPC
	AddToCartTrackerPC
	RemoveFromCartTrackerPC
	UpdateShoppingCartQuantitiesTrackerPC

	4 Shipping Services
	JavaServer Pages
	shipping.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	selectaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	addaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	InitShippingMethodListIP
	UpdateShippingAddressIP
	ValidateAddressIP
	ValidateShippingInfoIP

	Pipeline Components
	AddShippingAddressPC
	CalculateShippingPC
	DeleteShippingAddressPC

	5 Taxation Services
	Introduction to Web Services
	Simple Object Access Protocol (SOAP)
	Web Services Description Language (WSDL)

	How the Taxation Service Works
	JavaServer Pages (JSPs)
	selecttaxaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	DecideShippingAddressPageIP
	UpdateShippingAddressIP

	Pipeline Components
	TaxCalculateLineLevelPC
	TaxCalculateAndCommitLineLevelPC
	TaxVerifyShippingAddressPC

	Integrating with a Taxation Service
	If the Third-Party Vendor Hosts the Web Service
	If Your Organization Hosts the Web Service

	6 Payment Services
	How the Payment Service Works
	JavaServer Pages (JSPs)
	payment.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	paymentnewcc.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	paymenteditcc.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	payment_admin.jsp, paymenthistory.jsp, and payment_info.jsp Templates
	payment_admin.jsp
	payment_info.jsp
	paymenthistory.jsp

	Input Processors
	PaymentAuthorizationIP
	UpdatePaymentInfoIP

	Pipeline Components
	PaymentAuthorizationHostPC
	PaymentAuthorizationTerminalPC

	Integrating with a Payment Service
	If the Third-Party Vendor Hosts the Web Service
	If Your Organization Hosts the Web Service
	Default Payment Services Shipped With WebLogic Portal

	Credit Card Encryption

	7 Order Summary and Confirmation Services
	JavaServer Pages (JSPs)
	checkout.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	confirmorder.jsp Template
	Sample Browser View
	Location in the WebLogic Portal Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	Pipeline Components
	CommitOrderPC
	ResetCheckoutPC
	PurchaseTrackerPC

	8 Extending the Data Model
	Data Model Extensions
	Persistence Architecture
	Adding Run-Time Attributes to Customer Data
	Adding Run-Time Attributes to Other Entities
	Extending the Schema
	Overview of Approach to Extending the WebLogic Portal Schema
	Adding Attributes Against the WLCS_CUSTOMER, WLCS_ORDER, WLCS_TRANSACTION and WLCS_SHIPPING_METHO...
	Adding Attributes Against the WLCS_ORDER_LINE Table
	Adding Attributes Against the WLCS_CREDIT_CARD and WLCS_SHIPPING_ADDRESS Tables

	Transaction Management

	9 Using the Order and Payment Management Pages
	Starting the WebLogic Portal Administration Tools
	Using the Order Management Search Page
	Searching for an Order by Customer ID
	Searching for an Order by Order Identifier Number
	Searching for an Order by Date Range

	Updating Order Status
	Changing Order Status

	Using the Payment Management Search Page
	Searching for a Payment by Customer ID
	Searching for a Payment by Status
	Authorizing, Capturing, and Settling Payments
	Authorizing the Transaction
	Capturing the Transaction
	Settling the Transaction

	10 The Order Processing Database Schema
	The Entity-Relation Diagram
	List of Tables Comprising the Order Processing Schema
	The Order Processing Data Dictionary
	The DISCOUNT Database Table
	The DISCOUNT_ASSOCIATION Database Table
	The ORDER_ADJUSTMENT Database Table
	The ORDER_LINE_ADJUSTMENT Database Table
	The WLCS_CREDIT_CARD Database Table
	The WLCS_CUSTOMER Database Table
	The WLCS_ORDER Database Table
	The WLCS_ORDER_LINE Database Table
	The WLCS_SAVED_ITEM_LIST Database Table
	The WLCS_SECURITY Database Table
	The WLCS_SHIPPING_ADDRESS Database Table
	The WLCS_SHIPPING_METHOD Database Table
	The WLCS_TRANSACTION Database Table
	The WLCS_TRANSACTION_ENTRY Database Table

	The SQL Scripts Used to Create the Database
	Scripts

	Defined Constraints

	Index

