
Guide to

V e r s i o n 4 . 0 2
D o c u m e n t D a t e : N o v e m b e r 2 0 0 1

Events and Behavior Tracking

BEA WebLogic Portal™

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Process
Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks
of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Guide to Events and Behavior Tracking

Document Edition Date Software Version

4.02 November 2001 WebLogic Portal 4.0
WebLogic Personalization Server 4.0

Contents

1. Overview of Events and Behavior Tracking
What Are Events?.. 1-2

Behavior Tracking ... 1-2

Standard Events ... 1-3

Session Events.. 1-4

SessionBeginEvent.. 1-4

SessionEndEvent... 1-4

SessionLoginEvent.. 1-5

Registration Event .. 1-5

UserRegistrationEvent .. 1-5

Product Events.. 1-6

ClickProductEvent .. 1-6

DisplayProductEvent .. 1-7

Content Events ... 1-7

ClickContentEvent .. 1-7

DisplayContentEvent .. 1-8

Cart Events ... 1-8

AddToCartEvent ... 1-8

RemoveFromCartEvent .. 1-9

PurchaseCartEvent .. 1-10

Buy Event ... 1-11

BuyEvent... 1-11

Rules Event .. 1-11

RuleEvent.. 1-12

Campaign Events.. 1-12

CampaignUserActivityEvent .. 1-12
Guide to Events and Behavior Tracking iii

DisplayCampaignEvent... 1-13

ClickCampaignEvent .. 1-13

Servlet Lifecycle Events and Servlet Filter Events 1-14

Event Generators ... 1-15

Login and Creation Events ... 1-16

Event Mechanism .. 1-18

Event Sequence.. 1-20

2. Creating Custom Events
Overview of Creating a Custom Event .. 2-2

Writing a Custom Event Class... 2-2

Writing a Custom Event Listener .. 2-5

Installing a Listener Class in the Event Service ... 2-8

Writing a Behavior Tracking Event Class ... 2-9

Configuring Events Buffer Sweeping .. 2-10

Facilitating OffLine Processing.. 2-11

TrackingEvent Base Class Constructor .. 2-16

Installing Behavior Tracking Events... 2-20

XML Creation of Behavior Tracking Events ... 2-21

Custom Behavior Tracking Event Listeners... 2-24

Writing Custom Event Generators ... 2-25

Debugging the Event Service .. 2-26

Registering a Custom Event .. 2-28

3. Persisting Behavioral Tracking Data
Activating Behavior Tracking ... 3-1

Event Properties.. 3-3

Configuring the Behavior Tracking Service in WebLogic Server 3-3

Configuring a Data Source .. 3-4

Data Storage .. 3-5

Relational Databases .. 3-6

Database Directory Paths ... 3-6

Behavior Tracking Database Schema... 3-8

The EVENT Database Table .. 3-9

The EVENT_ACTION Database Table... 3-13
iv Guide to Events and Behavior Tracking

The EVENT_TYPE Database Table.. 3-13

Constraints and Indexes ... 3-14

Scripts .. 3-15

Development Environment Scenario ... 3-15

Production Environment Scenario ... 3-15

Description of Each Script ... 3-16

4. JSP Tag Library Reference for Events and Behavior Tracking
Content .. 4-2

<tr:clickContentEvent> .. 4-3

Example .. 4-3

<tr:displayContentEvent> .. 4-5

Example .. 4-5

Product... 4-6

<trp:clickProductEvent> .. 4-6

Example .. 4-7

<trp:displayProductEvent> .. 4-9

Example .. 4-10

Index
Guide to Events and Behavior Tracking v

vi Guide to Events and Behavior Tracking

About This Document

This document describes events and behavior tracking in BEA WebLogic Portal™ and
BEA WebLogic Personalization Server™.

This document includes the following topics:

n Chapter 1, “Overview of Events and Behavior Tracking,” which describes the
high-level architecture for events and behavior tracking. It also provides detailed
information about each event type.

n Chapter 2, “Creating Custom Events,” describes how to create custom events,
custom behavior tracking events, custom event listeners, and custom behavior
tracking listeners.

n Chapter 3, “Persisting Behavioral Tracking Data,” which describes how to
record behavior tracking data and the database structure for behavior tracking.

What You Need to Know

This document is intended for the following audiences:

n The Commerce Business Engineer (CBE) or JSP content developer, who uses
JSP templates to specify which products and Web site content trigger events.

n The business analyst, who defines the company’s business protocols for its Web
sites. This user may design scenario actions used in campaigns.

n The System Analyst or Database Administrator, who administers databases.

n The Java developer, who creates Java code for custom events.
Guide to Events and Behavior Tracking vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Portal and the
WebLogic Personalization Server documentation Home page on the e-docs Web site
(and also on the documentation CD). You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access the PDFs,
open the WebLogic Portal and WebLogic Personalization Server documentation
Home page, click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following WebLogic Portal and WebLogic Personalization Server documents
contain information that is relevant to using events and behavior tracking.

n Guide to Using the E-Business Control Center.

n Guide to Registering Customers and Managing Customer Services.
viii Guide to Events and Behavior Tracking

Contact Us!

Your feedback on WebLogic Portal and WebLogic Personalization Server
documentation is important to us. Send us e-mail at docsupport@beasys.com if you
have questions or comments. Your comments will be reviewed directly by the BEA
professionals who create and update the WebLogic Portal and WebLogic
Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for
WebLogic Portal and WebLogic Personalization Server Product Version: release.

If you have any questions about this version of WebLogic Portal or WebLogic
Personalization Server, or if you have problems installing and running WebLogic
Portal or WebLogic Personalization Server, contact BEA Customer Support through
BEA WebSUPPORT at www.beasys.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Guide to Events and Behavior Tracking ix

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
x Guide to Events and Behavior Tracking

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Guide to Events and Behavior Tracking xi

xii Guide to Events and Behavior Tracking

1 Overview of Events
and Behavior Tracking

To help personalize campaigns and to effectively analyze customer interactions with a
Web site, you need a comprehensive event tracking and logging system. To fulfill this
requirement, BEA WebLogic Portal and BEA WebLogic Personalization Server
include an Event and Behavior Tracking system. Events identify how a customer is
currently interacting with an e-commerce site and the Behavior Tracking system
records the event information. With these systems you have the ability to specify,
customize, and record selected information. Event data can be used by leading
e-analytics and e-marketing systems to evaluate behavioral and transactional data from
your online customers. With this analysis you can create and enhance personalization
rules, customize product offers, and optimize interactive marketing campaigns. This
topic introduces you to Events and Behavior Tracking and provides a general survey
of the elements that make up this system.

This topic includes the following sections:

n What Are Events?

n Behavior Tracking

n Standard Events

n Event Generators

n Event Mechanism

n Event Sequence
Guide to Events and Behavior Tracking 1-1

1 Overview of Events and Behavior Tracking
What Are Events?

In general, an event is a notification that something has happened in a computer
program. WebLogic Portal and WebLogic Personalization Server provide various
points for generating events. Events provide a detailed and comprehensive view of the
entire customer life cycle across your e-commerce site. These points can be tailored
for your applications.

You can use events with campaigns to enhance promotion of products and services.
Additionally, you can use events to gather intelligence to evaluate the effectiveness of
a campaign. Underlying campaigns are scenarios. Scenarios are executed in the
context of a campaign. Scenarios are a set of rules, called scenario actions, that allow
you to personalize customer experiences on your e-commerce site. For example, if a
customer clicks a Subscribe Me link on your Web site, you may want to send that
customer an e-mail confirming the subscription. Using events and scenarios, you can
choreograph the interactions between customers and your Web site.

With regard to tracking visitor behavior for analysis, the primary interest is in what the
customer saw and what the customer did. Inherent in this investigation is information
about when customers came to the site and when they left it, plus knowledge about
which rules were fired during their visit.

Behavior Tracking

The Event service passes messages to Behavior Tracking. When Behavior Tracking is
turned on, this data is recorded in a relational database. This information can then be
used by data-mining systems to provide Web site customer information for
e-marketing analysis. Behavior Tracking provides the following kinds of information:

n When did customers start, end, or login to their sessions?

n What content or products did customers see?

n What content or products did customers click on?

n What did customers put in their shopping cart?
1-2 Guide to Events and Behavior Tracking

Standard Events
n What did customers buy?

n What rules were triggered?

The information generated from these events allows various kinds of behavior
analyses, such as the following:

n Associations: When one event can be correlated to another event.

n Sequences: When one event leads to another later event.

n Classification: The recognition of patterns and a resulting new organization of
data.

n Clustering: Finding and visualizing groups of facts not previously known.

n Forecasting: Discovering patterns in the data that can lead to predictions about
future customer behavior.

Standard Events

This section provides information about the standard events provided by BEA.
Specifically, it contains a description of each kind of event, what generates the event,
the class where event generation occurs, which product contains the event, and the
elements of the event. Events elements comprise the data that is present within each
event object.

Events are organized into categories. The following list presents each type of event
category along with a brief description of what actions generates the event:

n Session: The start time, end time, and if executed, the login time of the
customer’s session.

n Registration: The customer registers on the e-commerce site.

n Product: The customer is presented with a product or clicks (selects) the
presented product.

n Content: The customer is presented some content, such as an ad, or clicks
(selects) the presented content.
Guide to Events and Behavior Tracking 1-3

1 Overview of Events and Behavior Tracking
n Cart: An item is added, removed, or updated to the customer’s shopping cart.
Also generated when an entire order is purchased.

n Buy: The customer completes the purchase of one or more items.

n Rules: The rules that are fired as a customer navigates a Web site.

n Campaign: The events generated within the context of a campaign.

Session Events

Session events fire at the start time, end time, and if executed, the login time of a
customer’s session.

SessionBeginEvent

SessionEndEvent

Description Occurs when a customer begins interacting with a Web site.

Generator See “Servlet Lifecycle Events and Servlet Filter Events” on page 1-14.

Elements event-date
event-type
session-id
user-id

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when a customer leaves a Web site, or when the customer’s
session has timed out.

Generator See “Servlet Lifecycle Events and Servlet Filter Events” on page 1-14.
1-4 Guide to Events and Behavior Tracking

Standard Events
SessionLoginEvent

Registration Event

Only one registration event exists. It is described in the following table.

UserRegistrationEvent

Elements event-date
event-type
session-id
user-id

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when a customer logs on a Web site.

Generator TrackingEventHelper.dispatchSessionLoginEvent(),
P13NAuthFilter, and/or Input Processor.
See “Login and Creation Events” on page 1-16.

Elements event-date
event-type
session-id
user-id

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when customer registers on a Web site.

Generator TrackingEventHelper.dispatchUserRegistrationEven
t() and/or Input processor.
Guide to Events and Behavior Tracking 1-5

1 Overview of Events and Behavior Tracking
Product Events

These events occur when customer is presented with a product or clicks (selects) the
presented product.

ClickProductEvent

Example Class examples.wlcs.sampleapp.customer.webflow.LoginCu
stomerIP located in
PORTAL_HOME\applications\wlcsApp\wlcs\WEB-INF\sr
c

Elements event-date
event-type
session-id
user-id

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when a customer clicks a product link.

Generator JSP Tag. Also see “Servlet Lifecycle Events and Servlet Filter Events”
on page 1-14.

Elements event-date
event-type
session-id
user-id
document-type
document-id
sku
category-id
application-name

Products WebLogic Portal only.
1-6 Guide to Events and Behavior Tracking

Standard Events
DisplayProductEvent

Content Events

These events occur when the customer is presented some content, such as an
advertisement, or clicks the presented content.

ClickContentEvent

Description Occurs when a product is displayed to the customer.

Generator JSP Tag

Elements event-date
event-type
session-id
user-id
document-type
document-id
sku
category-id
application-name

Products WebLogic Portal only.

Description Occurs when a customer clicks some Web site content, such as a link
or banner.

Generator JSP Tag. Also see “Servlet Lifecycle Events and Servlet Filter Events”
on page 1-14.

Elements event-date
event-type
session-id
user-id
document-type
document-id
Guide to Events and Behavior Tracking 1-7

1 Overview of Events and Behavior Tracking
DisplayContentEvent

Cart Events

These events indicate that one or more items are added or removed from a customer’s
shopping cart.

AddToCartEvent

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when content is presented to a customer, usually any content
from a content management system.

Generator JSP Tag

Elements event-date
event-type
session-id
user-id
document-type
document-id

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when an item is added to a customer’s shopping cart.

Generator Pipeline component. Located in
PORTAL_HOME\applications\wlcsApp-project\applica
tion-sync\pipelines.

Example Class examples.wlcs.sampleapp.tracking.pipeline.AddToC
artTrackerPC located in
PORTAL_HOME\applications\wlcsApp\src
1-8 Guide to Events and Behavior Tracking

Standard Events
RemoveFromCartEvent

Elements event-date
event-type
session-id
user-id
sku
quantity
unit-list-price
currency
application-name

Products WebLogic Portal only.

Description Occurs when an item is removed from a customer’s shopping cart.

Generator Pipeline component. Located in
PORTAL_HOME\applications\wlcsApp-project\applica
tion-sync\pipelines

Example Class examples.wlcs.sampleapp.tracking.pipeline.Remove
FromCartTrackerPC located in
PORTAL_HOME\applications\wlcsApp\src

Elements event-date
event-type
session-id
user-id
sku
quantity
unit-price
currency
application-name

Products WebLogic Portal only.
Guide to Events and Behavior Tracking 1-9

1 Overview of Events and Behavior Tracking
PurchaseCartEvent

Description Occurs once for an entire order, unlike the BuyEvent, which occurs
for each line item. This event is useful for campaigns. You can use it
when writing scenario actions to know when your customer makes a
purchase with specific characteristics, such as an order greater than
$100 or the purchase of a particular product.

Generator Pipeline component. Located in
PORTAL_HOME\applications\wlcsApp-project\applica
tion-sync\pipelines.

Example
Class

examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in
PORTAL_HOME\applications\wlcsApp\src

Elements session-id
user-id
event-date
event-type
total-price
order-id
currency
application-name

Products WebLogic Portal only.
1-10 Guide to Events and Behavior Tracking

Standard Events
Buy Event

Only one buy event exists. It is described in the following table.

BuyEvent

Rules Event

Only one rule event exists. It is described in the following table.

Description Occurs when a customer completes the purchase. A BuyEvent occurs
for each line item. A purchase may consist of one or more line items.
A line item may consist of one or more items. For example, although a
particular line item may have quantity of four items, only one
BuyEvent occurs.

Generator Pipeline component

Example Class examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in
PORTAL_HOME\applications\wlcsApp\src

Elements event-date
event-type
session-id
user-id
sku
quantity
unit-price
currency
application-name
order-line-id

Products WebLogic Portal only.
Guide to Events and Behavior Tracking 1-11

1 Overview of Events and Behavior Tracking
RuleEvent

Campaign Events

These events occur when a customer participates in a campaign.

CampaignUserActivityEvent

Description Indicates the rules that were fired as a customer navigates a Web site.

Generator Fired internally from advislets

Elements event-date
event-type
session-id
user-id
ruleset-name
rule-name

Products Specific to WebLogic Personalization Server, available in WebLogic
Portal.

Description Occurs when a customer participates in a campaign. Specifically, this
event is fired whenever one or more scenario actions are true and the
campaign service is activated. You can limit this event to a single
occurrence for a particular scenario. This event is intended for use by
analytic software.

Generator Fired internally from the campaign service

Elements event-date
event-type
session-id
user-id
campaign-id
scenario-id
1-12 Guide to Events and Behavior Tracking

Standard Events
DisplayCampaignEvent

ClickCampaignEvent

Products WebLogic Portal only.

Description Occurs when campaign content, such as an ad, is presented to the
customer. Specifically, this event is fired whenever a campaign
placeholder displays an ad placed in the ad bucket by a campaign. You
can use this event to trigger another campaign. Analytic software uses
this event to determine if a customer saw an ad as a result of a
campaign.

Generator Fired internally from the campaign service

Elements event-date
event-type
session-id
user-id
document-type
document-id
campaign-id
scenario-id
application-name
placeholder-id

Products WebLogic Portal only.

Description Occurs when a campaign item, such as an ad, is clicked on by the
customer. Specifically, this event is fired whenever a customer clicks
a campaign ad that was placed in the ad bucket by a campaign. You can
use this event to trigger another campaign. Analytic software uses this
event to determine if a customer clicked on an ad as a result of a
campaign.

Generator Fired internally from campaign service. Also see “Servlet Lifecycle
Events and Servlet Filter Events” on page 1-14.
Guide to Events and Behavior Tracking 1-13

1 Overview of Events and Behavior Tracking
Servlet Lifecycle Events and Servlet Filter Events

The following events are generated using the Servlet 2.3 API:

n SessionBeginEvent

n SessionEndEvent

These events are defined as part of the Servlet 2.3 lifecycle events. They are listeners
on the session Created() and session Destroyed() events, which are generated by
the servlets defined in the web.xml file. This file is located at:

PORTAL_HOME\applications\wlcsApp\wlcs\WEB-INF

where PORTAL_HOME is the directory in which you installed BEA WebLogic Portal or
BEA WebLogic Personalization Server.

The following events are generated by JSP tags and filtered by the Servlet 2.3
<filter> element:

n ClickContentEvent

n ClickProductEvent

n ClickCampaignEvent

For each Web page displayed, the Web Application servlet checks for the presence of
a click event in the HttpServletRequest. Each page click is then filtered by Web
Application servlet as defined by the Servlet 2.3 filter <element>. The click events are
generated automatically when the <filter> element is called on each invocation of

Elements event-date
event-type
session-id
user-id
document-type
document-id
campaign-id
scenario-id
application-name
placeholder-id

Products WebLogic Portal only.
1-14 Guide to Events and Behavior Tracking

Event Generators
the servlet. The ClickThroughFilter determines which type of event is generated
by checking the event type in the HttpServletRequest. The valid types are defined
at:

PORTAL_HOME\classes\clickthrough-event-types.properties

where PORTAL_HOME is the directory in which you installed BEA WebLogic Portal or
BEA WebLogic Personalization Server.

Event Generators

The standard events supplied by BEA are generated at important points in an
e-commerce site. The components that enable events include Java APIs, JSP tags, JSP
scriptlets, Webflow input processors, Pipeline components, content selectors, and
classification advislets. You can add or customize generators for each of the following
events:

n DisplayContentEvent

n DisplayProductEvent

n ClickContentEvent

n ClickProductEvent

Note: DisplayProductEvent and ClickContentEvent are available in
WebLogic Portal only.

Each of these events are generated by JSP tags. You can use the JSP tags that initiate
these events to specify which products and what content generates these events. For
example, in the wlcsApp E-Commerce Application, the JSP tag for the
DisplayProductEvent is located in the details.jsp.

The tag shown in Listing 1-1 generates an event for any product displayed on a catalog
detail page. If you want to generate an event for one particular product, you can write
a scriptlet that keys off the SKU for that product.
Guide to Events and Behavior Tracking 1-15

1 Overview of Events and Behavior Tracking
Listing 1-1 JSP Tag

<%-- once the product is displayed, fire off a displayProductEvent --%>
<productTracking:displayProductEvent documentId="<%= item.getName() %>"
 documentType="<%= DisplayProductEvent.ITEM_BROWSE %>"
 sku="<%= item.getKey().getIdentifier() %>" />

When you add a JSP tag for an event, you should include a reference to the tag library
descriptor, as shown below:

<%@ taglib uri="productTracking.tld" prefix="productTracking" %>

Notes: For more information about JSP tags, see Chapter 4, “JSP Tag Library
Reference for Events and Behavior Tracking.”

 The details.jsp is located at:

PORTAL_HOME\config\wlcsDomain\wlcsApp\wlcs\commerce\catalog\det

ails.jsp

where PORTAL_HOME is the directory in which you installed WebLogic Portal.

Login and Creation Events

This section discusses different methods for generating login and user registration
events.

You can generate the SessionLoginEvent in either of the following ways:

If you are manually using the <um:login> tag or
weblogic.servlet.security.ServletAuthentication to handle login, use the
com.bea.p13n.tracking.TrackingEventHelper.dispatchSessionLoginEve

nt() method.

If you are directly using j_security_check FORM-based login, register the
com.bea.p13n.servlets.P13NAuthFilter as the <auth-filter> in your Web
Application’s WEB-INF\weblogic.xml file. You do not need to code a JSP or
Webflow Processor.
1-16 Guide to Events and Behavior Tracking

Event Generators
Use the
com.bea.p13n.tracking.TrackingEventHelper.dispatchUserRegistratio

nEvent() method to generate the UserRegistrationEvent. You should generate this
event after the SessionLoginEvent (which should occur during user creation). You can
use either an Input Processor or in a JSP.

If you are using the Portal Webflow framework, the SessionLoginEvent and the
UserRegistrationEvent are generated automatically from the
com.bea.portal.appflow.processor.security.PostLoginProcessor in the
security webflow as needed.
Guide to Events and Behavior Tracking 1-17

1 Overview of Events and Behavior Tracking
Event Mechanism

The Event service is an extensible, general purpose, event construction and
propagation system. As shown in Figure 1-1, an event is generated by a trigger, such
as a JSP tag, which creates the event object, locates the Event service bean, and passes
the event object to the Event service. The Event service works with plug-in listeners
that disseminate events to listeners interested in receiving the events. At creation time,
each event listener returns the list of event types that it wants to receive. When the
Event service receives an event, it checks the type of the event and sends the event to
all listeners that are subscribed to receive that event’s type.

The Event service has two sets of listeners: those that respond to events synchronously
and those that respond to events asynchronously. The synchronous listeners use the
thread of execution that created and transmitted the event to perform actions in
response to that event. Behavior Tracking listeners use only the synchronous listeners.
The asynchronous listeners receive the event from the thread where it was created and
some time later, handles the event in a different thread of execution. The asynchronous
service exists so that long-running event handlers can execute without delaying the
application from a Web site visitor’s perspective.

Whether a particular plug-in listener is installed on the synchronous or the
asynchronous side of the Event service is based on the requirements of the application
and is specified in the application-config.xml file.

Note: To edit the application-config.xml file, use the WebLogic Server
Administration console. For more information, see “Installing a Listener Class
in the Event Service” on page 2-8.
1-18 Guide to Events and Behavior Tracking

Event Mechanism
Figure 1-1 Event Mechanism

Event listeners implement the com.bea.p13n.events.EventListener interface.
The interface defines signatures for two public methods:

n public String[] getTypes()
Guide to Events and Behavior Tracking 1-19

1 Overview of Events and Behavior Tracking
n public void handleEvent(Event theEvent)

The first method returns a list of event types that the listener is interested in receiving
from the Event service. For example, if a listener is designed to receive events of type
Foo, the listener returns Foo as an item in the array returned from invoking
getTypes() on the listener. The second method is invoked when an event is passed to
the listener. A listener has no knowledge of whether it is synchronous or asynchronous.

If you wish to create a listener interested in only campaign events, you would list the
listener’s fully-qualified classname in the application-config.xml file in either
the eventService.listeners property or the asynchronousHandler.listeners
property (for synchronous or asynchronous handling, respectively). The listener would
implement the EventListener interface and return the following event types:

{“ClickCampaignEvent”,“DisplayCampaignEvent”,“CampaignUserActiv
ityEvent” }

when its getTypes() method is invoked.

Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.

To edit the application-config.xml file, use the WebLogic Server Administration
console. For more information, see “Installing a Listener Class in the Event Service”
on page 2-8.

After the listener is installed, events of one of these three types arrive through the
listener’s handleEvent(Event theEvent) interface.

The Asynchronous Delivery graphic in Figure 1-1 indicates that the asynchronous
event handler receives events transmitted asynchronously from the synchronous side
of the Event service. It then dispatches events to the pluggable asynchronous listeners
based on the event types each listener is subscribed to receive.

Event Sequence

Figure 1-2 and Figure 1-3 provide a sample of the firing of events. These figures are
intended to give you a sense of the order in which events fire, not a comprehensive
examination of event sequencing.
1-20 Guide to Events and Behavior Tracking

Event Sequence
Figure 1-2 Event Sequence Sample—Part 1
Guide to Events and Behavior Tracking 1-21

1 Overview of Events and Behavior Tracking
Figure 1-3 Event Seqeuence Sample—Part 2
1-22 Guide to Events and Behavior Tracking

2 Creating Custom Events

This topic provides the information necessary to write a custom event. You can create
a custom event for anything you wish to track. For example, you could create an event
that would tell you which pages are displayed for each customer. You could then use
the information to determine how many pages are viewed on average per session and
which pages are the most popular. Additionally, marketing professionals could use this
event when developing scenario actions that are based on the display of particular
pages. To demonstrate how to write a custom event, a simple example is provided.
Each section references and expands the example.

This topic includes the following sections:

n Overview of Creating a Custom Event

n Writing a Custom Event Class

n Writing a Custom Event Listener

n Writing a Behavior Tracking Event Class

n Debugging the Event Service

n To register a custom event, use the Event Editor in the E-Business Control
Center. Registering an event is actually creating a property set for the event. A
step-by-step procedure is available in both the E-Business Control Center online
help and “Creating and Managing Property Sets” in the Guide to Building
Personalized Applications.
Guide to Events and Behavior Tracking 2-1

2 Creating Custom Events
Overview of Creating a Custom Event

The creation of a custom event is a multiple-step process. The following list provides
an overview of the process and references the information not covered in this topic:

n Write the code that defines the event and event listener.

n Install the event using the WebLogic Server Administration console. For more
information, see “Installing a Listener Class in the Event Service” on page 2-8.

n Write the code to generate the event with a JSP tag or an API call.

n Register the event. For more information, see “Registering a Custom Event” on
page 2-28.

n To record the event data to the EVENT table, create an entry for the event in the
EVENT_TYPE table. For more information, see Chapter 3, “Persisting Behavioral
Tracking Data.”

Writing a Custom Event Class

To create a custom event, you first write an event object. This object encapsulates all
the necessary information for correctly interpreting and handling the event when it
arrives at a listener. All custom events must subclass the
com.bea.p13n.events.Event class. This base class handles setting and retrieving
an event’s timestamp and type and provided access to the custom event’s attributes.
Two Event class methods set and retrieve attributes:

setAttribute(String theKey, Serializable theValue)
getAttribute(String theKey)

These methods can be called from the custom event’s constructor to set attributes
specific to the new event. Keep in mind that all objects set as values in the Event object
must be Java serializable. The getTimeStamp() method returns the date of the event’s
creation in milliseconds. The type of an event is accessed using the Event class’s
getType() method. The timestamp and type of an Event object instance can be set
only at creation time in the Event constructor.
2-2 Guide to Events and Behavior Tracking

Writing a Custom Event Class
To illustrate the process of creating a custom event, a simple example is presented
here, called TestEvent. The example is a basic demonstration of how to create an
event subclass. An actual custom event would probably be more elaborate.

A custom event must first have a type. This type should be passed to the superclass
constructor (for example, in the Event class); this type is returned at getType()
invocations on custom-event object instances. For example:

/** Event Type */
public static final String TYPE = "TestEvent";

To properly initialize the Event base class of the custom event object, the value TYPE
is passed to the event constructor. The type of all events must be a simple Java string
object.

After defining the type, you must define the keys that access the attributes stored in the
custom event. These attributes can be given values in the constructor. For example, the
TestEvent class has two properties, userPropertyOne and userPropertyTwo; the
type of the value associated with userPropertyOne is a String and
userPropertyTwo is a Double. The keys are defined as follows:

/**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
public static final String USER_PROPERTY_ONE_KEY =
 "userPropertyOne";

/**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
public static final String USER_PROPERTY_TWO_KEY =
 "userPropertyTwo";

Finally, a constructor brings the event type and the process of setting attributes
together to create an event object. The constructor looks like:

/**
 * Create a new TestEvent
 *
 *
 * @param userPropertyOne some user defined property typed as
 * a String
 * @param userPropertyTwo some user defined property typed as
 * a Double
 */
 public TestEvent(String userPropertyOneValue,
Guide to Events and Behavior Tracking 2-3

2 Creating Custom Events
 Double userPropertyTwoValue)
 {
 /* calls the Event class constructor with this event’s type */
 super(TYPE);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY,
 userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY,
 userPropertyTwoValue);
 }

Putting all the parts together, the entire custom event class is shown in Listing 2-1.

Listing 2-1 TestEvent Class

/* Start TestEvent class */

public class TestEvent
 extends com.bea.p13n.events.Event
{
 /** Event Type */
 public static final String TYPE = "TestEvent";

 /**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
 public static final String USER_PROPERTY_ONE_KEY = "userPropertyOne";

 /**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
 public static final String USER_PROPERTY_TWO_KEY = "userPropertyTwo";

 /**
 * Crate a new TestEvent
 *
 *
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo some user defined property typed as a Double
 */
 public TestEvent(String userPropertyOneValue,
 Double userPropertyTwoValue)
2-4 Guide to Events and Behavior Tracking

Writing a Custom Event Listener
 {
 /* calls the Event class constructor with this event’s type */
 super(TYPE);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);
 }
}
/* End TestEvent class */

The example in Listing 2-1 shows you how to use the fundamental aspects of the
Event base class and the event service. An actual custom event constructor would
probably be more complex. For example, it might check for default values or disallow
null attributes. Additionally, the custom-event object might have more methods or
member data.

Writing a Custom Event Listener

In order to listen for an event, you must define an event listener. All event listeners
must implement the com.bea.p13n.events.EventListener interface and have a
no arguments (default) constructor. This interface specifies two methods that are
fundamental to transmitting events of a given type to interested listeners:

public String[] getTypes()

public void handleEvent(Event ev)

The first method returns the types, in a string array, that the listener is interested in
receiving. The event service dispatches events of a given type to listeners that return
the event’s type in the types array. When the event service has determined that a given
listener has registered to receive the type of the current event, an event of that type is
dispatched to the listener using the handleEvent(Event ev) call.
Guide to Events and Behavior Tracking 2-5

2 Creating Custom Events
When writing a custom event listener, both methods must be implemented from the
EventListener interface. Continuing with the TestEvent example, the
TestEventListener listens for instances of TestEvent that are sent through the
event service. This can be specified as follows:

/** The types this listener is interested in */
private String[] eventTypes = {"TestEvent"};

/**
 The method invoked by the event service to determine the
 types to propagate to this listener.
 */
public String[] getTypes()
{
 return eventTypes;
}

To handle the event, the handleEvent(Event evt) method is implemented as
follows:

/**
 * Handle events that are sent from the event service
 */
public void handleEvent(Event ev)
{
 System.out.println("TestListener::handleEvent " +
 " -> received an event" +
 " of type: " + ev.getType());

 /* Do the work here */

 return;
}

Putting all of these pieces together with a constructor, Listing 2-2 shows a simple event
listener that registers to receive TestEvent objects.

Listing 2-2 Event Listener

 import com.bea.p13n.events.EventListener;
 import com.bea.p13n.events.Event;

 /**
 * TestListener to demonstrate the ease with which listeners can be plugged
 * into the behavior tracking system.
 *
2-6 Guide to Events and Behavior Tracking

Writing a Custom Event Listener
 * This class should be added to the property eventService.listeners
 * in order to receive events. The fully qualified classname must be added
 * to this property; don’t forget to add the ",\" at the end of the previous
 * line or the properties parser will not find the new classname.
 *
 * The types of events that are heard are listed in the eventTypes
 * String array. Add and remove strings of that type as necessary.
 *
 * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
 */
 public class TestListener
 implements EventListener
 {

 private String[] eventTypes = {"TestEvent"};

 public TestListener()
 {
 }

 public String[] getTypes()
 {
 return eventTypes;
 }

 public void handleEvent(Event ev)
 {
 System.out.println("TestListener::handleEvent -> received an event" +
 " of type: " + ev.getType());

 return;
 }
}

As with writing a simple event, writing a simple EventListener is also
straightforward. Any event listener’s internals should be generic; the same
TestEventListener instance may not handle all TestEvent objects. Therefore
TestEventListener should be entirely stateless and should operate on data that is
contained in the event object or stored externally (that is, in a database).

Note: Multiple instances of any listener may execute concurrently.
Guide to Events and Behavior Tracking 2-7

2 Creating Custom Events
Installing a Listener Class in the Event Service

To add or remove listeners to the event service, use the WebLogic Server
Administration Console. To enable Behavior Tracking, you must add Behavior
Tracking as a listener.

Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.

Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

To add a synchronous or asynchronous listener, take the following steps:

Note: Behavior Tracking listeners can only be implemented as synchronous
listeners.

1. In the WebLogic Server Console, navigate to Synchronous or Asynchronous
Listeners tab in the node tree for wlcsDomain as follows:

http://hostname:port/console → wlcsDomain → Deployments →

wlcsApp → Service Configurations → Event Service →

Configuration Tab → Synchronous Listeners or Asynchronous
Listeners

2. Add the synchronous or asynchronous listener to the corresponding fields, as
shown in Figure 2-2.

Figure 2-1 WebLogic Server Administration Console—Event Service
2-8 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
Writing a Behavior Tracking Event Class

A Behavior Tracking event is a special type of event that tracks a customer’s
interactions with an e-commerce site. E-analysis systems use the data gathered from
Behavior Tracking events to evaluate customer behavior. The evaluation is primarily
used for campaign development and optimizing customer experience on a Web site.

A Behavior Tracking event and its listeners are created in much the same way as the
TestEvent class and TestEventListener examples. A simple example is also
presented here. The example tracking event is called TestTrackingEvent. All
Behavior Tracking events persisted (recorded) to a database for use with BEA
Behavior Tracking are handled by the
com.bea.p13n.tracking.listeners.BehaviorTrackingListener. The
BehaviorTrackingListener extends the
com.bea.p13n.events.EventListener class.

The BehaviorTrackingListener receives and persists Behavior Tracking events
from the event service when it is plugged into one of the listener’s properties in the
application-config.xml file.

Notes: For scalability reasons, you should plug the BehaviorTrackingListener
into the eventService.listeners property.

This listener receives events from the event service and adds them to a buffer that is
intermittently persisted to the Event tables in the database. The frequency of the
sweeping of events from the buffer is controlled by the following properties in the
application-config.xml file:

n MaxBufferSize – Sets the maximum size of the event buffer. Setting this to 0
means all events are persisted as they are received.

n SweepInterval – Sets the interval, in seconds, at which to check the buffers to
see whether events in the buffer must be persisted. Events are persisted when
either the maximum buffer size (MaxBufferSize) is reached or the maximum
time to wait in the buffer (SweepMaxTime) has been exceeded.

n SweepMaxTime – Set the time, in seconds, to wait before forcing a flush to the
database. This is the longest amount of time that an event can exist in any cache.
Guide to Events and Behavior Tracking 2-9

2 Creating Custom Events
You should tune these properties to optimize performance. A buffer sweep should be
performed often enough that writing to the database is not too time consuming but not
so frequent that the operation is wasteful.

Configuring Events Buffer Sweeping

Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.

Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

To configure the sweeping of the events buffer, take the following steps:

1. In the WebLogic Server Console, navigate to Behavior Tracking in the node tree
for wlcsDomain as follows:

http://hostname:port/console → wlcsDomain → Deployments →

wlcsApp → Service Configurations → Behavior Tracking

2. Enter the new buffer values in the appropriate fields, as shown in Figure 2-2.

Figure 2-2 WebLogic Server Administration Console—Behavior Tracking
2-10 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
Facilitating OffLine Processing

For facilitating offline processing of customer interactions with a Web site, Behavior
Tracking events are designed to be persisted to a table in the database, called the EVENT
table. Part of the process of recording data from Behavior Tracking events is creating
an XML representation of the data, which is stored in the xml_definition column of
the EVENT table. You can persist events in an alternate location and table structure as
requirements dictate. This discussion assumes that you are planning to use the BEA
Behavior Tracking event persistence mechanism. Therefore, to persist events in the
provided EVENT table, your custom event must conform to the descriptions in this
section so that it is created and persisted properly.

To formally specify the data comprising a Behavior Tracking event, you need to
develop an XML-XSD schema for the new event. While XSDs are not used internally
to verify the creation of XML, the XML that is created represents the event’s data in
the database. If the event class is properly developed and used, it will conform to the
XML-XSD schema. With an XSD document, development of the constructor and
attribute keys for a Behavior Tracking event follows easily.

To correctly turn a Behavior Tracking event into an XML representation, the Behavior
Tracking event must have several pieces of member data that fully describe an XML
instance document for the schema associated with the event type. This data describes
the namespace and XSD file associated with the event. For example, Listing 2-3 and
Listing 2-4 show the association between the following files:

com.bea.campaign.tracking.events.ClickCampaignEvent and

/lib/schema/ClickCampaignEvent.xsd in
PORTAL_HOME\lib\campaign\ejb\campaign.jar.

For more examples, look at the existing XSD files.

Listing 2-3 ClickCampaignEvent.java

/**
 Event for tracking click of campaign
 */
public class ClickCampaignEvent
 extends ClickEvent
{
 /** The event type */
 public static final String TYPE = "ClickCampaignEvent";
Guide to Events and Behavior Tracking 2-11

2 Creating Custom Events
 /**
 The XML namespace for this event
 */
 private static final String XML_NAMESPACE =
 "http://www.bea.com/servers/commerce/xsd/tracking/clickcampaign";

 /**
 The XSD file containing the schema for this event
 */
 private static final String XSD_FILE = "ClickCampaignEvent.xsd";

 /**
 * Event attribute key name for the campaign id
 * Attribute value is a String
 */
 public static final String CAMPAIGN_ID = "campaign-id";

 /**
 * Event attribute key name for the scenario id
 * Attribute value is a String
 */
 public static final String SCENARIO_ID = "scenario-id";

 /**
 * Event attribute key name for storefront (aka application)
 * Attribute value is a String
 */
 public static final String APPLICATION_NAME = "application-name";

 /**
 * Event attribute key name for item category id
 * Attribute value is a String
 */
 public static final String PLACEHOLDER_ID = "placeholder-id";

 /**
 Suggestions for entry into the documentType data passed to the constructor
 Attribute value is a String
 */
 public static final String BANNER_AD_PROMOTION = "bannerAdPromotion";

 /**
 These are the keys and their order for elements that
 will be present in the XML representing this object
 */
 private static final String localSchemaKeys[] =
 {
 SESSION_ID, USER_ID, DOCUMENT_TYPE, DOCUMENT_ID,
2-12 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
 CAMPAIGN_ID, SCENARIO_ID, APPLICATION_NAME, PLACEHOLDER_ID
 };

 /**
 * Create a new ClickCampaignEvent.
 *
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or
 * equivalent (null if unknown)
 * @param theRequest the http servlet request object
 * @param aDocumentType Document Type for the clicked content (optionally
 * null)
 * @param aDocumentId Document ID for the clicked content (optionally null)
 * @param aCampaignId campaign id for the campaign from which the item was
 * clicked
 * @param aScenarioId scenario id for the scenario (within the campaign)
 * for which the item was clicked
 * @param aApplicationName application name (aka storefront) (optionally
 * null)
 * @param aPlaceholderId a placeholder id
 */
 public ClickCampaignEvent(String theSessionId,
 String theUserId,
 HttpServletRequest theRequest,
 String aDocumentType,
 String aDocumentId,
 String aCampaignId,
 String aScenarioId,
 String aApplicationName,
 String aPlaceholderId)
 {
 super(TYPE,
 theSessionId,
 theUserId,
 XML_NAMESPACE,
 XSD_FILE,
 localSchemaKeys,
 theRequest,
 aDocumentType,
 aDocumentId);

 if(aCampaignId != null) setAttribute(CAMPAIGN_ID, aCampaignId);
 if(aScenarioId != null) setAttribute(SCENARIO_ID, aScenarioId);
 if(aApplicationName != null) setAttribute(APPLICATION_NAME,
 aApplicationName);
 if(aPlaceholderId != null) setAttribute(PLACEHOLDER_ID,
 aPlaceholderId);
 }
Guide to Events and Behavior Tracking 2-13

2 Creating Custom Events
}

Notice the cross-reference between ClickCampaignEvent and the XSD schema.

Listing 2-4 Corresponding XSD Schema

<xsd:schema

targetNamespace="http://www.bea.com/servers/commerce/xsd/tracking
/clickcampaign"

xmlns="http://www.bea.com/servers/commerce/xsd/tracking/clickcamp
aign"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2000/10/XMLSchema
 http://www.w3.org/2000/10/XMLSchema.xsd"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2.1">
 .
 .
 .

The source code for your Behavior Tracking event should also list the keys and their
order for creating an XML instance document from an event object. For an example,
see Listing 2-3. The structure of an XSD document and details on XML namespaces
can be found at http://www.w3.org/XML/Schema. Several XSD schemas for BEA
Behavior Tracking events can be found in /lib/schema at the following location:

PORTAL_HOME\lib\p13n\ejb\events.jar

where PORTAL_HOME is the directory in which you installed BEA WebLogic Portal or
BEA WebLogic Personalization Server.

The namespace and schema are specified as:

/**
 The XML namespace for this event
 */
private static final String XML_NAMESPACE=
 "http://<your URI>/testtracking";
2-14 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
/**
 The XSD file containing the schema for this event
 */
private static final String XSD_FILE="TestTrackingEvent.xsd";

Note: These values are used when creating an instance document to populate the
fields.

The schemaKeys are a list of strings which are keys to the event class’s
getAttribute and setAttribute methods. These keys are used to extract the data
that populate elements in the XML instance document which represent the Behavior
Tracking event. The keys should be listed in an array that consists of string-typed
objects. Their order specifies the order in which they appear in the XML instance
document. In the XSD files that the Behavior Tracking system generates, the order of
the elements is important; an XML file will not validate with an XSD file if elements
are out of order. Elements can be omitted by using the XML numOccurs keyword and
setting the value to zero. For examples of how this is done, see the XSD schemas for
BEA Behavior Tracking events in /lib/schema, at the following location:

PORTAL_HOME\lib\p13n\ejb\events.jar

An example array for the Behavior Tracking version of the TestEvent described
above might appear as:

/**
 These are the keys and their order for elements that
 will be present in the XML representing this object.
 */
private static final String localSchemaKeys[] =
{
 SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY,
 USER_PROPERTY_TWO_KEY
};

The SESSION_ID and the USER_ID are data elements in the localSchemaKeys array
that are useful in implementing a tracking event. The SESSION_ID is the WebLogic
Server session ID that is created for every session object. (For more information, see
the WebLogic Server 6.0 Documentation Center.) The USER_ID field (which may be
null) is the username of the Web site customer associated with the session from which
the event was generated. For some events, a user may not be associated with an event;
as previously mentioned, the numOccurs for the USER_ID field in an XSD file should
be zero. To persist events in the EVENT table, the SESSION_ID must be non-null.
Guide to Events and Behavior Tracking 2-15

2 Creating Custom Events
All Behavior Tracking events must extend the
com.bea.p13n.tracking.events.TrackingEvent class. This class defines three
keys that are useful for setting attributes for all tracking events, as follows:

n TrackingEvent.SESSION_ID

n TrackingEvent.USER_ID

n TrackingEvent.REQUEST.

These keys are used in setAttribute calls made in the TrackingEvent constructor
when setting the SESSION_ID, USER_ID, and REQUEST (an HttPServletRequest
object), respectively. They should also be used to retrieve values associated with each
key when invoking Event.getAttribute (String Key) on event objects that extend
TrackingEvent.

TrackingEvent Base Class Constructor

The TrackingEvent base class has a constructor that is more complicated than the
Event class’s constructor. The Event constructor is invoked by the super(String
eventType) call in the TrackingEvent constructor. The TrackingEvent
constructors are shown in Listing 2-5 and Listing 2-6.

Listing 2-5 Tracking Event Constructor—Example 1

/**
 * Create a new TrackingEvent.
 *
 * @param theEventType the event’s type
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event’s XML
 */
public TrackingEvent(String theEventType,
 String theSessionId,
 String theUserId,
2-16 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
 String theXMLNamespace,
 String theXSDFile,
 String[] theSchemaKeys)

The TrackingEvent constructor shown in Listing 2-6 takes an
HttpServletRequest object.

Listing 2-6 Tracking Event Constructor—Example 2

/**
 * Create a new TrackingEvent.
 *
 * @param theEventType the event’s type
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event’s XML
 * @param theRequest the http servlet request object
 */
public TrackingEvent(String theEventType,
 String theSessionId,
 String theUserId,
 String theXMLNamespace,
 String theXSDFile,
 String[] theSchemaKeys,
 HttpServletRequest theRequest)

In the first constructor, shown in Listing 2-5, the only data that is optional (that is, that
can be null) is theUerId; all other data is required so that the tracking event is
correctly persisted to the EVENT table. In the second constructor, shown in Listing 2-6,
the HttpServletRequest object can be passed in from generating locations where
the HttpServletRequest object is available. This object provides the data needed to
fire rules against event instances.
Guide to Events and Behavior Tracking 2-17

2 Creating Custom Events
Note: In order to fire rules on a custom Behavior Tracking event, the
HttpServletRequest and the USER_ID must be non-null. Generally, a
non-null USER_ID means that a customer is logged into a Web site. Rules
cannot be fired on an event with a null-user.

The TestTrackingEvent constructor is shown in Listing 2-7.

Listing 2-7 TestTrackingEvent Constructor

/**
 * Create a new TestTrackingEvent
 *
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo another user defined property typed as a Double
 */
public TestTrackingEvent(String theSessionId,
 String theUserId,
 String userPropertyOneValue,
 Double userPropertyTwoValue)
{
 super(TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE,
 localSchemaKeys);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);

}

This constructor calls the TrackingEvent constructor to populate the required values
and then sets the attributes necessary for this particular Behavior Tracking event type.

The entire TestTrackingEvent is shown in Listing 2-8.
2-18 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
Listing 2-8 TestTracking Event

import com.bea.p13n.tracking.events.TrackingEvent;

/**
 * Test, user-defined behavior tracking event.
 *
 * This event can be persisted to the database.
 *
*/
public class TestTrackingEvent
 extends TrackingEvent
{

 /** Event type */
 public static final String TYPE = "TestTrackingEvent";

 /**
 The XML namespace for this event
 */
 private static final String XML_NAMESPACE="http://<your URI>/testtracking";

 /**
 The XSD file containing the schema for this event
 */
 private static final String XSD_FILE="TestTrackingEvent.xsd";

 /**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
 public static final String USER_PROPERTY_ONE_KEY = "userPropertyOne";

 /**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
 public static final String USER_PROPERTY_TWO_KEY = "userPropertyTwo";

 /**
 These are the keys and their order for elements that
 will be present in the XML representing ths object.
 */
 private static final String localSchemaKeys[] =
 {
 SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY, USER_PROPERTY_TWO_KEY
 };
Guide to Events and Behavior Tracking 2-19

2 Creating Custom Events
 /**
 * Create a new TestTrackingEvent
 *
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo another user defined property typed as a Double
 */
 public TestTrackingEvent(String theSessionId,
 String theUserId,
 String userPropertyOneValue,
 Double userPropertyTwoValue)
 {
 super(TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE,
 localSchemaKeys);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);
 }
}

The TestTrackingEvent, shown in Listing 2-8, correctly sets its own attributes and
sets the attributes in its instantiation of TrackingEvent. This enables correct
population of the XML instance document at the time of its creation. Recall that the
XML instance document represents the TestTrackingEvent in the database’s EVENT
table.

If you want the custom Behavior Tracking event type to be persisted in the database,
the event must be added to the behaviorTracking.persistToDatabase property in
the application-config.xml file. If you are not persisting the event, you do not
need to add the event type to this property.

Installing Behavior Tracking Events

Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.
2-20 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

To install a Behavior Tracking Event listener, take the following steps:

1. In the WebLogic Server Console, navigate to Behavior Tracking in the node tree
for wlcsDomain as follows:

http://hostname:port/console → wlcsDomain → Deployments →

wlcsApp → Service Configurations → Behavior Tracking

2. Enter the name of the event in the Persisted Event Types field, as shown in
Figure 2-3.

Figure 2-3 WebLogic Server Administration Console—Behavior Tracking

XML Creation of Behavior Tracking Events

When persisting Behavior Tracking events to the EVENT table, the bulk of the data must
be converted to XML. The XML document should conform to an XML XSD schema
that you create which specifies the order of the XML elements in the XML instance
document. Additionally, the schema must include the types of elements and their
cardinalities. The process of creating XML from an event object is handled by a helper
class that utilizes variables and constants in a Behavior Tracking event’s class file. All
schema documents use the namespace: “http://www.w3.org/2000/10/XMLSchema”
and all instances of Behavior Tracking schemas use the namespace:
“http://www.w3.org/2000/10/XMLSchema-instance”. The XML created in
Listing 2-9 will conform to the XSD schema.
Guide to Events and Behavior Tracking 2-21

2 Creating Custom Events
Listing 2-9 XSD Document Example

<schema targetNamespace="http://www.bea.com/servers/wlcs3.5/xsd/tracking/buy"
 xmlns:bt="http://www.bea.com/servers/wlcs3.5/xsd/tracking/buy"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="BuyEvent">
 <complexType>
 <sequence>
 <element ref="bt:event_date"/>
 <element ref="bt:event_type"/>
 <element ref="bt:session_id"/>
 <element ref="bt:user_id" minOccurs="0"/>
 <element ref="bt:sku"/>
 <element ref="bt:quantity"/>
 <element ref="bt:unit_price"/>
 <element ref="bt:currency" minOccurs="0"/>
 <element ref="bt:application_name" minOccurs="0"/>
 <element ref="bt:order_line_id"/>
 </sequence>
 </complexType>
 </element>
 <element name="event_date" type="timeInstant"/>
 <element name="event_type" type="string"/>
 <element name="session_id" type="string"/>
 <element name="user_id" type="string"/>
 <element name="sku" type="string"/>
 <element name="quantity" type="double"/>
 <element name="unit_price" type="double"/>
 <element name="currency" type="string"/>
 <element name="application_name" type="string"/>
 <element name="order_line_id" type="long"/>
</schema>

Creation of an event’s representation in XML takes place generically relative to the
event’s type. Consequently, to create an accurate XML instance document, each event
must specify the namespace, event type, elements, and order of its elements. Using the
TestTrackingEvent example, the XML representing an instance of the
TestTrackingEvent is constructed as follows:

Note: Assume that testTrackingEvent is a well-formed instance of a
TestTrackingEvent.

1. Get the event’s type with the testTrackingEvent.getType() call.
2-22 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
2. Get the event’s namespace with the
((TrackingEvent)testTrackingEvent).getXMLNamespace()call.

3. Get the event’s XSD filename with the
((TrackingEvent)testTrackingEvent).getXSDFile() call.

Using the schema keys from the TestTrackingEvent class, values are inserted into
the XML document. Schema key/attribute value pairs correspond to XML elements in
this way:

<schema Key>value</schema Key>

The helper class that creates XML for Behavior Tracking assumes that the elements
inserted into an XML instance document are not deeply nested. Additionally, the
toString() method is used to create a representation of the value object that is
retrieved through the Event classes’s getAttribute(String Key) call. The
contents of the string returned by invoking toString() on the value object must
match the type specified in the event’s schema document. The TestTrackingEvent
retrieves values using the following keys in the order specified in the schemaKeys
array:

n SESSION_ID

n USER_ID

n USER_PROPERTY_ONE_KEY

n USER_PROPERTY_TWO_KEY

The values for these keys are retrieved using the
testTrackingEvent.getAttribute(<schema Key>) call. The order in which
the XML formatted key/value pairs are inserted into the instance document is specified
by the constant schemaKeys array, which is defined and populated in the
TestTrackingEvent class.

The steps assembled to create an XML instance document for the
TestTrackingEvent are presented in Listing 2-10.

Listing 2-10 XML Instance Document Example

<TestTrackingEvent
 xmlns="http://<your URI>/testtracking"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://<your URI>/testtracking
TestTrackingEvent.xsd"
Guide to Events and Behavior Tracking 2-23

2 Creating Custom Events
 >
<event_date>XML time instant formatted event date</event_date>
<event_type>TestTrackingEvent</event_type>
 <session_id>theSessionIdValue</session_id>
 <user_id>theUserIdValue</user_id>
 <userPropertyOne>userPropertyOneValue</userPropertyOne>
 <userPropertyTwo>userPropertyTwoValue</userPropertyTwo>
</TestTrackingEvent>

The XML creation is performed automatically when events arrive at the
com.bea.p13n.tracking.listeners.BehaviorTrackingListener, which
enables Behavior Tracking in WebLogic Portal or WebLogic Personalization Server.
The Behavior Tracking listener is installed by adding it to the <EventService
Listeners="..."> property in the application-config.xml file. For information
on how to install a Behavior Tracking listener, see“Installing Behavior Tracking
Events” on page 2-20.

You must be careful when defining the namespaces, XSD documents, and schema
keys variables in custom Behavior Tracking event classes, especially if they will be
persisted to the EVENT table. The method for creating and storing XML presented in
this discussion exactly follows the variables and constants specified in the event class.
You are free to develop other ways of creating and storing XML; this section is
directed only at the process of persisting XML Behavior Tracking representations in
the BEA EVENT table.

Note: The Event's date is retrieved using the Event class's getTimeStamp() call,
which returns a Java primitive long typed value. That long must be converted
into the type specified for the event_date element in the XSD schema
document. The type in this case is time instant. Event date and event type the
first two elements in all XML instance documents created through the
BehaviorTrackingListener.

Custom Behavior Tracking Event Listeners

To create a custom Behavior Tracking listener, in addition to or instead of the default
BehaviorTrackingListener, follow the example presented in “Writing a Custom
Event Listener” on page 2-5. Add the new event types to the custom listener’s
eventTypes array (for example, TestTrackingEvent). A given listener can listen
2-24 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
for any number of event types that may or may not be Behavior Tracking events. The
custom Behavior Tracking listener can be installed on either the synchronous or
asynchronous side of the event service, whichever is appropriate.

Writing Custom Event Generators

Once events are created, you must set up a mechanism for generating events in the
application. Events may be generated from pipeline components, input processors, JSP
scriptlets, or JSP tags. Some Behavior Tracking events are generated from within
WebLogic Portal or WebLogic Personalization Server software.

After determining the mechanism for generating events, tracking events can be sent to
the event system using the com.bea.p13n.tracking.TrackingEventHelper class.
This class defines helper methods that pass events to the event service. Listing 2-11
shows an example of passing the TestTrackingEvent.

Listing 2-11 Dispatching an Event

/*
 * Create the event
 */
Event theEvent = new TestTrackingEvent("<some session id>",
 "<some user id> ",
 new String("userPropertyOneValue"),
 new Double(3.14));

/*
 * Dispatch the event
 */
TrackingEventHelper.dispatchEvent(theEvent);

To dispatch a TestEvent to the event service, the event service name can be looked
up in the JNDI, and an instance of the EventService bean can be obtained by
invoking the create() method on an EventServiceHome instance. The JNDI name
of the EventServiceHome interface is the classname of the EventServiceHome class
(com.bea.p13n.events.EventServiceHome). Listing 2-12 shows an example.
Guide to Events and Behavior Tracking 2-25

2 Creating Custom Events
Listing 2-12 JNDI Example

import com.bea.p13n.util.helper.JNDIHelper;
import com.bea.p13n.events.Event;
import com.bea.p13n.events.EventServiceHome;
import com.bea.p13n.events.EventService;

import javax.ejb.CreateException;
import javax.rmi.PortableRemoteObject;

/* code here */

 public void demonstrateEventDispatch()
 {
 Event event = <some event instance>;

 try
 {
 EventServiceHome home = (EventServiceHome)
 JNDIHelper.lookup("java:comp/env/ejb/EventService"),
 EventServiceHome.class);
 EventService eventService = home.create();
 eventService.dispatchEvent(event);
 }
 catch(Exception e)
 {
 /*
 Do exception handling here
 */
 }
 }
/* more code here */

Debugging the Event Service

To debug the event service, create a debug.properties file in the following
directory:

%PORTAL_HOME%\debug.properties (Windows)

$PORTAL_HOME/debug.properties (UNIX)
2-26 Guide to Events and Behavior Tracking

Debugging the Event Service
The contents of this file are shown in Listing 2-13.

Listing 2-13 Debugging the Event Service

usePackageNames: on
com.bea.p13n.cache: on

Turns on debug for all classes under events
com.bea.p13n.events: on
com.bea.p13n.events.internal.EventServiceBean: on

Turns on debug for all classes under
com.bea.p13n.tracking: on
com.bea.p13n.tracking.internal persistence: on

Selectively turn on classes
com.bea.p13n.mbeans.BehaviorTrackingListerner: on
com.bea.p13n.tracking.listeners.BehaviorTrackingListerner: on
com.bea.p13n.tracking.SessionEventListerner: on
Guide to Events and Behavior Tracking 2-27

2 Creating Custom Events
Registering a Custom Event

When you create a custom event, you must register the event. Registering a custom
event lets the E-Business Control Center know that the custom event exists.
Registering permits campaign developers using the E-Business Control Center to
create scenario actions that refer to the event. Registering also identifies the event’s
properties.

Caution: Whenever you change the event code, you must update the event
registration. Conversely, whenever you change the event registration, you
must also update the event code. A possible ramification of event
modification is that the scenario actions that refer to the event’s properties
may need to be modified.

Note: You cannot change any of the standard events supplied with WebLogic Portal
or WebLogic Personalization Server.

To register a custom event, use the Event Editor in the E-Business Control Center.
Registering an event is actually creating a property set for the event. A step-by-step
procedure is available in both the E-Business Control Center online help and “Creating
and Managing Property Sets” in the Guide to Building Personalized Applications.
2-28 Guide to Events and Behavior Tracking

Activating Behavior Tracking
3 Persisting Behavioral
Tracking Data

To record how online customers are interacting with your e-commerce site, you can
record event information to a database. These kinds of events are called Behavior
Tracking events. E-analytics and e-marketing systems can then analyze these events
offline to evaluate customer behavior and transactional data. You can use the
knowledge gained from analysis to create and optimize personalization rules, set up
product offers, and develop interactive marketing campaigns. This section describes
the requirements and database schema needed to log event data for analytical use.

This topic includes the following sections:

n Activating Behavior Tracking

n Data Storage

n Constraints and Indexes

n Scripts

Activating Behavior Tracking

Before Behavior Tracking events can be recorded to a database, you must enable the
Behavior Tracking listener. This is accomplished by adding a class to the
application-config.xml file.
Guide to Events and Behavior Tracking 3-1

3 Persisting Behavioral Tracking Data
Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.

Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

To add the Behavior Tracking listener, take the following steps:

1. In the WebLogic Server Console, navigate to Synchronous or Asynchronous
Listeners tab in the node tree for wlcsDomain as follows:

http://hostname:port/console → wlcsDomain → Deployments →

wlcsApp → Service Configurations → Event Service →

Configuration Tab → Synchronous Listeners

2. Add the Behavior Tracking listener
(com.bea.p13n.tracking.listeners.BehaviorTrackingListener) to the
Listen Class to Add field, and then click the Add button. See Figure 3-1.

Figure 3-1 WebLogic Server Administration Console—Event Service

Note: You must configure your database before activating Behavior Tracking. For
information on how to do this, see “Production Environment Scenario” on
page 3-15.
3-2 Guide to Events and Behavior Tracking

Activating Behavior Tracking
Event Properties

This section describes Behavior Tracking properties more fully and details the
mechanism that persists Behavior Tracking event data to the database. Each Behavior
Tracking event property described here can be configured in the WebLogic Server
Administration Console. “Configuring the Behavior Tracking Service in WebLogic
Server” on page 3-3 details how to set these properties.

As previously mentioned, Behavior Tracking events are placed in a buffer and then
intermittently persisted to the Event tables in the database where they can be analyzed
offline. An asynchronous service is used so that long-running event handlers can
execute without delaying the application from a Web site visitor’s perspective.

The buffered Behavior Tracking events are swept into the database using a pool of data
connections. The default Data Source is weblogic.jdbc.jts.commercePool. You
can use a different Data Source. To do this, create and configure the new Data Source
(see “Configuring a Data Source” on page 3-4) and substitute the name of the default
Data Source with the name of the new Data Source in the WebLogic Server
Administration Console.

The particular events that are persisted to the database are specified in the
behaviorTracking.persistToDatabase property. You can view and alter the list
of the persisted events in the WebLogic Server Administration Console. The types in
this list must match the type specified in the event; for example, the
SessionBeginEvent has as its type the string “SessionBeginEvent”.

The frequency of the sweeping of events from the buffer is controlled by the following
properties in the application-config.xml file:

n MaxBufferSize

n SweepInterval

n SweepMaxTime

You should tune these properties to optimize performance. A buffer sweep should be
performed often enough that writing to the database is not too time consuming but not
so frequent that the operation is wasteful.

Configuring the Behavior Tracking Service in WebLogic Server

To configure the various Behavior Tracking properties, take these steps:
Guide to Events and Behavior Tracking 3-3

3 Persisting Behavioral Tracking Data
Warning: For proper operation, the WebLogic Server requires that changes to the
application-config.xml file be made using the WebLogic Server
Administration Console.

Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

1. In the WebLogic Server Console, navigate to the Behavior Tracking Service
(shown in Figure 3-1) in the node tree for wlcsDomain, as follows:

http://hostname:port/console → wlcsDomain → Deployments →

wlcsApp → Service Configurations → Behavior Tracking

Figure 3-2 WebLogic Server Administration Console—Behavior Tracking
Service

2. To change the Data Source, enter the fully-qualified name of the Data Source in
the Data Source JNDI Name field.

3. To change the sweeping of events from the buffer, enter the new buffer values in
the appropriate fields.

4. To specify whether a particular event is persisted, add or remove the event from
the Persisted Event Types list box.

Configuring a Data Source

This section provides a brief description about configuring a new Data Source for a
connection pool used for persisting events.

To configure a new Data Source, take the following steps.
3-4 Guide to Events and Behavior Tracking

Data Storage
Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server Documentation Center.

1. In the WebLogic Server Console, navigate to the Behavior Tracking Service
(shown in Figure 3-1) in the node tree for wlcsDomain, as follows:

http://hostname:port/console → wlcsDomain → Services → JDBC

→ Data Sources → Behavior Tracking

Figure 3-3 WebLogic Server Administration Console—JDBC Data Sources

2. In the right pane, click Configure a new JDBC Data Source.

3. Enter the appropriate values for the new Data Source in the appropriate tabs and
fields.

Data Storage

This section provides an overview of relational databases and the database schemas
and tables that are required for recording Behavior Tracking events.
Guide to Events and Behavior Tracking 3-5

3 Persisting Behavioral Tracking Data
Relational Databases

Relational databases have both logical and physical structures. Logically you may
define one or more databases. Each database may contain one or more tables and
indexes, and each table may have multiple columns and rows. The logical structure of
databases is quite similar between vendors. However, the physical structure of a
database is very vendor-specific. Essentially, the physical structure defines areas on
disk drives where the data is stored. Each database environment uses its own
terminology and implementation for storing data at the operating system level. For
example, Oracle uses the term tablespace and the Microsoft SQL Server uses the term
filegroup.

When a database structure is defined by a database administrator, attention must be
paid to the location of specific tables. Some tables are static in that they do not change
much; some tables are dynamic in that many rows are being added and deleted; and
some tables are read frequently and some rarely. Depending on their behavior, tables
should be placed on different physical locations. Some of the most highly-used tables
in WebLogic Portal and WebLogic Personalization Server are used for Behavior
Tracking. The activity of a single customer moving around your site may generate
multiple table entries. Therefore, it is recommended that you place these tables on the
fastest drives in the computer. Experienced database administrators are aware of many
techniques for monitoring and configuring a database installation for optimal
performance. If you do not have a database administrator working with your
installation and you have a lot of activity on your site, you should bring in a
well-qualified database administer for regular maintenance of your system.

Database Directory Paths

The default database directory paths are:

n %WL_PORTAL_HOME%\db\<db vendor>\<db version>\... (Windows)

n $WL_PORTAL_HOME/db/<db vendor>/<db version>/... (UNIX)

where WL_PORTAL_HOME is the directory in which you installed WebLogic Portal or
WebLogic Personalization Server.

For example, if you are using Oracle 8.1.7 on UNIX, the location would be
$WL_PORTAL_HOME/db/oracle/817/....
3-6 Guide to Events and Behavior Tracking

Data Storage
BEA provides scripts to help set up the database schema needed for recording
Behavior Tracking events, as well as the schema needed for recording data associated
with WebLogic Portal and WebLogic Personalization Server. This data includes
information from orders, catalogs, products, portals, and portlets.

For Oracle databases, the tablespaces created for WebLogic Portal and WebLogic
Personalization Server data are the WLCS_DATA and WLCS_INDEX.

Note: WLCS_DATA and WLCS_INDEX are tablespace names created by BEA scripts. If
you use a particular naming convention, you can rename them.

Behavior tracking uses a tablespace called WLCS_EVENT_DATA. This tablespace stores
all Behavior Tracking tables, indexes, and constraints. Because of the potential for
high volumes of data, this tablespace should be monitored closely.
Guide to Events and Behavior Tracking 3-7

3 Persisting Behavioral Tracking Data
Behavior Tracking Database Schema

Three tables are provided for the Behavior Tracking data. The EVENT table stores all
event data. The EVENT_ACTION table logs actions used by third-party vendors against
the recorded event data, and the EVENT_TYPE table references event types and
categories in the EVENT table. Figure 3-4 shows a logical entity-relation diagram for
the Behavior Tracking Database.

Figure 3-4 Entity-Relation Diagram for the Behavior Tracking Database
3-8 Guide to Events and Behavior Tracking

Data Storage
The EVENT Database Table

Table 3-1 describes the metadata for the EVENT table. This table stores all Behavior
Tracking event data. It is an extremely active table.

See the section “Constraints and Indexes” on page 3-14 for information about the
constraint defined for this table.

The Primary Key is EVENT_ID.

As shown in Table 3-1, the EVENT table has six columns; each column corresponds
to a specific event element. Five of the EVENT table’s columns contain data common
to every event type. The XML_DEFINITION column contains all information from these
five columns plus event data that is unique to each event type. An XML document is
created specifically for each event type. The data elements corresponding to each event
type are captured in the XML_DEFINITION column of the EVENT table. These
elements are listed in Table 3-2.

Table 3-1 The EVENT Table Metadata

Column Name Data Type Null Value Description and Recommendations

EVENT_ID NUMBER NOT NULL A unique, system-generated number used
as the record ID. This field is the table’s
primary key.

EVENT_TYPE VARCHAR(30) NOT NULL A string identifier that shows which event
was fired.

EVENT_DATE DATE NOT NULL The date and time of the event.

WLS_SESSION_ID VARCHAR(254) NOT NULL A unique, WebLogic Server-generated
number assigned to the session.

XML_DEFINITION CLOB NULL An XML document that contains pertinent
event information. It is stored as a CLOB
(Character Large Object).

USER_ID VARCHAR(50) NULL The user ID associated with the session
and event. If the user has not logged in this
column will be null.
Guide to Events and Behavior Tracking 3-9

3 Persisting Behavioral Tracking Data
Table 3-2 XML_DEFINITION Data Elements

Event Data Element

AddToCartEvent event_date
event_type
session_id
user_id
sku
quantity
unit_list_price
currency

 BuyEvent event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name

CampaignUserActivityEvent event_date
event_type
session_id
user_id
campaign_id

ClickCampaignEvent event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name

ClickContentEvent event_date
event_type
session_id
user_id
document_type
3-10 Guide to Events and Behavior Tracking

Data Storage
ClickProductEvent event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

DisplayCampaignEvent event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name

DisplayContentEvent event_date
event_type
session_id
user_id
document_type
document_id

DisplayProductEvent event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

Table 3-2 XML_DEFINITION Data Elements (Continued)

Event Data Element
Guide to Events and Behavior Tracking 3-11

3 Persisting Behavioral Tracking Data
PurchaseCartEvent session_id
user_id
event_date
event_type
total_price
order_id
currency
application_name

RemoveFromCartEvent event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name

RuleEvent event_date
event_type
session_id
user_id
ruleset_name
rule_name

SessionBeginEvent event_date
event_type
session_id
user_id

SessionEndEvent event_date
event_type
session_id
user_id

SessionLoginEvent event_date
event_type
session_id
user_id

Table 3-2 XML_DEFINITION Data Elements (Continued)

Event Data Element
3-12 Guide to Events and Behavior Tracking

Data Storage
The EVENT_ACTION Database Table

Table 3-3 describes the metadata for the EVENT_ACTION table. This table logs
actions used by third-party vendors against the recorded event data. It is a fairly static.

The Primary Key is comprised of EVENT_ACTION and ACTION_DATE.

The EVENT_TYPE Database Table

Table 3-4 describes the metadata for the EVENT_TYPE table. This table references
event types and categories in the EVENT table. This table is static.

UserRegistrationEvent event_date
event_type
session_id
user_id

Table 3-2 XML_DEFINITION Data Elements (Continued)

Event Data Element

Table 3-3 EVENT_ACTION Table Metadata

Column Name Data Type Null Value Description and Recommendations

EVENT_ACTION VARCHAR(30) NOT NULL The event action taken such as BEGIN
EXPORT or END EXPORT. This field is
one of the table’s primary keys.

ACTION_DATE DATE NOT NULL The date and time of the event. This field
is one of the table’s primary keys.

EVENT_ID NUMBER NULL The ID of the event that corresponds with
the event action taken.
Guide to Events and Behavior Tracking 3-13

3 Persisting Behavioral Tracking Data
See the section “Constraints and Indexes” on page 3-14 for information about the
constraint defined for this table.

The Primary Key is EVENT_TYPE.

Note: To record custom events, you must create an entry in this table. If a custom
event does not have a record in this table, you cannot persist it to the EVENT
table.

Constraints and Indexes

There is a single foreign key constraint between the EVENT_TYPE columns in the
EVENT and EVENT_TYPE tables. As previously mentioned, if a custom event does not
have a record in the EVENT_TYPE table, it cannot be persisted to the EVENT table.

Other than Primary Keys on each of the tables, there are only two indexes on the EVENT
table. One index is on the EVENT.EVENT_DATE column and the other index is
comprised of the EVENT.EVENT_TYPE and EVENT.EVENT_DATE columns.

Table 3-4 EVENT_TYPE Table Metadata

Column Name Data Type Null Value Description and Recommendations

EVENT_TYPE VARCHAR(30) NOT NULL A unique, system-generated number used
as the record ID. This field is the table’s
primary key.

EVENT_GROUP VARCHAR(10) NOT NULL The event category group associated with
the event type.

DESCRIPTION VARCHAR(50) NULL A description of the EVENT_TYPE.
3-14 Guide to Events and Behavior Tracking

Scripts
Scripts

BEA provides scripts to create the Behavior Tracking database schema and tables for
Oracle databases. This section provides information about the structures used in both
a development and a production environment.

Development Environment Scenario

In a development environment, you may not want or need separate databases or
tablespaces for recording Behavior Tracking events from the databases or tablespaces
used for WebLogic Portal and WebLogic Personalization Server. Accordingly, you
can include the Behavior Tracking database objects along side the database objects of
these products. The easiest way to accomplish this is to execute the create_all script
found in the event directory of your database installation.

Log into Oracle using SQL*Plus and execute the create_all.sql script in this
location:

%WL_PORTAL_HOME%/db/oracle/817/event/create_all.sql

where WL_PORTAL_HOME is the directory in which you installed WebLogic Portal or
WebLogic Personalization Server.

The create_all scripts in the event subdirectory executes the following scripts:

n drop_event.sql: Drops all the Behavior Tracking database objects.

n create_event.sql: Creates all the Behavior Tracking database objects.

n insert_event_type.sql: Populates the EVENT_TYPE table with base data.

Production Environment Scenario

This scenario is intended for use in an Oracle production environment where multiple
tablespaces and their corresponding elements, such as tables and indexes, can reside in
separate tablespaces and potentially on a different database server than WebLogic
Portal or WebLogic Personalization Server database objects.
Guide to Events and Behavior Tracking 3-15

3 Persisting Behavioral Tracking Data
Before enabling the Behavior Tracking events, complete the following steps:

1. Identify the server and database used for recording Behavior Tracking events.

2. In the WL_PORTAL_HOME/db/oracle/817/event directory where
WL_PORTAL_HOME is the directory in which you installed the WebLogic Portal or
WebLogic Personalization Server:

a. Edit the create_event_tablespaces.sql script to properly define the
tablespace path and data filenames.

b. Execute the create_event_tablespaces.sql to create the tablespaces.

c. Edit the create_event_users.sql to ensure the correct user account will be
created when this script is executed (the account name by default is
WLCS_EVENT).

d. Execute the create_event_users.sql.

3. Using SQL*Plus, connect as the user defined in create_event_users.sql and
execute the script create_all.sql. This script will call drop_event.sql,
create_event.sql, and insert_event_type.sql.

4. Change your Data Source information to point to this host, database instance, and
user account. For more information, see “Event Properties” on page 3-3.

Description of Each Script

The Oracle scripts are described in the following list:

n WL_PORTAL_HOME/db/oracle/817/event/create_all.sql

Executes the following scripts: drop_event.sql, create_event.sql, and
insert_event_type.sql.

n WL_PORTAL_HOME/db/oracle/817/event/create_event.sql

Creates the tables, indexes, and constraints associated with Behavior Tracking
events.

n WL_PORTAL_HOME/db/oracle/817/event/create_event_tablespaces.sql

Creates tablespaces for storage of Behavior Tracking events information.

n WL_PORTAL_HOME/db/oracle/817/event/create_event_users.sql
3-16 Guide to Events and Behavior Tracking

Scripts
Creates the WLCS_EVENT database user and grants the appropriate privileges for
working with the Behavior Tracking event tables.

n WL_PORTAL_HOME/db/oracle/817/event/drop_event.sql

Drops the Behavior Tracking event tables.

n WL_PORTAL_HOME/db/oracle/817/event/insert_event_type.sql

Populates the EVENT_TYPE table with base data.
Guide to Events and Behavior Tracking 3-17

3 Persisting Behavioral Tracking Data
3-18 Guide to Events and Behavior Tracking

CHAPTER
4 JSP Tag Library
Reference for Events
and Behavior Tracking

This tag library contains several tag extensions used in the BEA WebLogic Portal and
BEA WebLogic Personalization Server. Tags in this library are specifically used in the
Events and Behavior Tracking component of the server.

The Events and Behavior Tracking tags allow you specify user behavior that you are
interested in monitoring as users navigate across your site pages. These tags cause
events to be generated which may be subsequently analyzed by third-party analytical
tools.

The Events and Behavior Tracking tags are divided into two general areas: content
tracking and product tracking. Content and product tracking tags can be used in any
personalization or commerce application.
Guide to Events and Behavior Tracking 4-19

4 JSP Tag Library Reference for Events and Behavior Tracking
This topic includes the following sections:

n Content
<tr:clickContentEvent>
<tr:displayContentEvent>

n Product
<trp:clickProductEvent>
<trp:displayProductEvent>

Note: The <tr:> prefix means “track.”
The <trp:> prefix means “track-product.”

Content

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.
4-20 Guide to Events and Behavior Tracking

Content
<tr:clickContentEvent>

The <tr:clickContentEvent> tag (Table 4-1) is used to generate a behavior event
when a user has clicked (through) on an ad impression. This tag will return a URL
query string containing event parameters. It is then used when forming the complete

URL that hyperlinks the content.

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Example

The example below demonstrates a clickthrough example going to the Webflow
servlet. This link will cause a clickthrough content event to be generated and also
display the indicated content. The example shows how to generate a click content
event after the user clicks a product description link. The default Webflow servlet’s
<filter> tag, specified in the application’s web.xml file, generates a call to the
ClickThroughEventFilter.doFilter() method. This method checks for
ClickThroughConstants.EVENT_TYPE in the HttpRequest, and then fires the
click event if it is present.

The ClickThroughConstants.EVENT_TYPE is generated by adding the
<tr:clickContentEvent> tag in the JSP, as shown below:

Table 4-1 <tr:clickContentEvent>

Tag Attribute Req’d Type Description R/C

documentId No String ID of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

R

id No String Page variable which will hold the output of this
tag.

C

userId No String Name of the user that content was retrieved for.
If the optional value is not provided, it will be
set to the value of the
request.getRemoteUser().

R

Guide to Events and Behavior Tracking 4-21

4 JSP Tag Library Reference for Events and Behavior Tracking
<tr:clickContentEvent documentId="<%= documentId %>"
 documentType="<%= documentType %>"
 userId="<%= userId %>"
 id="outputFromTag"
/>

The following associates the desired content with a link that references the output from
the above tag.

<A HREF="<webflow:createWebflowURL event="link.clickContent"
namespace="trackingWebApp_main" extraParams="<%= outputFromTag %>"
/>">Click Here to generate the clickContentEvent.

Note: To redirect the user to another site, use redirect="true" in the
createWebflowURL tag.
4-22 Guide to Events and Behavior Tracking

Content
<tr:displayContentEvent>

The <tr:displayContentEvent> tag (Table 4-2) is used to generate a behavior
event when a user has received (viewed) an ad impression, (typically a gif image).

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Example

The example below shows a code snippet of processing that would follow a
<cm:select> call. For each document returned but not displayed in this example, the
<tr:displayContentEvent> tag generates an event and passes the document’s ID
and type.

<%@ taglib uri="tracking.tld" prefix="tr" %>

.

.

.

<es:forEachInArray id="nextRow" array="<%=headlines%>"

 type="com.bea.p13n.content.Content">

 <es:notNull item="<%=nextRow%>">

 <tr:displayContentEvent

 documentId="<%=nextRow.getIdentifier()%>"

 documentType="<%=headingProp%>"/>

 </es:notNull>

</es:forEachInArray>

Table 4-2 <tr:displayContentEvent>

Tag Attribute Req’d Type Description R/C

documentId No String ID of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

R

Guide to Events and Behavior Tracking 4-23

4 JSP Tag Library Reference for Events and Behavior Tracking
Product

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<trp:clickProductEvent>

The <trp:clickProductEvent> tag (Table 4-3) is used to generate a behavior event
when a user has clicked (through) on a product impression. This tag will return a URL
query string containing event parameters. It is then used when forming the complete
URL that hyperlinks the content.

At least one of sku, categoryId, or documentId is required.

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Table 4-3 <trp:clickProductEvent>

Tag Attribute Req’d Type Description R/C

applicationName No String The webApp or application name, if applicable.
Can be used to separate data when multiple
storefronts are hosted on the same server (or
persisted to the same database).

R

categoryId No String or
Category
object

Category of the product associated with the
content displayed, if applicable.

R

documentId Yes String Name of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

4-24 Guide to Events and Behavior Tracking

Product
Example

The example below demonstrates a clickthrough example going to the Webflow
servlet. This link will cause a clickthrough content event to be generated and also
display the indicated content. This example shows how to generate a
ClickProductEvent having a document ID using the product name
(productItem.getName()) and SKU of the product’s identifier.

<%@ taglib uri="productTracking.tld" prefix="trp" %>

.

.

.

<%

detailsUrl = WebflowJSPHelper.createWebflowURL(pageContext,

"itemsummary.jsp", "link(" + detailsLink + ")",

"&" + HttpRequestConstants.CATALOG_ITEM_SKU + "=" +

productItem.getKey().getIdentifier() + "&" +

HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +

category.getKey().getIdentifier() + "&" +

HttpRequestConstants.DOCUMENT_TYPE + "=" + detailsLink, true);

%>

<trp:clickProductEvent

 id="url"

 documentId="<%= productItem.getName() %>"

 sku="<%= productItem.getKey().getIdentifier() %>" />

<%

documentType No String Type or category of the item that is displayed (if
applicable).

R

sku No String or
ProductItem
object

ID of the product associated with the content
item that is displayed, if applicable.

R

userId No String Name of the user that content was retrieved for.
If the optional value is not provided, it will be
set to the value of the
request.getRemoteUser().

R

Table 4-3 <trp:clickProductEvent> (Continued)

Tag Attribute Req’d Type Description R/C
Guide to Events and Behavior Tracking 4-25

4 JSP Tag Library Reference for Events and Behavior Tracking
detailsUrl = detailsUrl + "&" + url;

%>

<a href="<%= detailsUrl %>">
4-26 Guide to Events and Behavior Tracking

Product
<trp:displayProductEvent>

The <trp:displayProductEvent> tag (Table 4-4) is used to generate a behavior
event when a user has received (viewed) a product impression, (typically a gif image).

At least one of sku, categoryId, or documentId is required.

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Table 4-4 <trp:displayProductEvent>

Tag Attribute Req’d Type Description R/C

applicationName No String The webApp or application name, if applicable.
Can be used to separate data when multiple
storefronts are hosted on the same server (or
persisted to the same database).

R

categoryId No String or
Category
object

Category of the product associated with the
content displayed, if applicable.

R

documentId No String Name of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

Suggestions:
DisplayProductEvent.CATEGORY_BRO
WSE

DisplayProductEvent.ITEM_BROWSE

DisplayProductEvent.CATEGORY_VIE
W

DisplayProductEvent.BANNER_AD_PR
OMOTION

R

sku No String or
ProductItem
object

ID of the product associated with the content
item that is displayed, if applicable.

R

Guide to Events and Behavior Tracking 4-27

4 JSP Tag Library Reference for Events and Behavior Tracking
Example

The example below shows a code snippet of processing that would follow the retrieval
of a catalog item. The <tr:displayProductEvent> tag generates an event and
passes the document’s ID, type and SKU number of the product item.

<%@ taglib uri="productTracking.tld" prefix="trp" %>

.

.

.

<trp:displayProductEvent

 documentId="<%= item.getName() %>"

 documentType="<%= DisplayProductEvent.ITEM_BROWSE %>"

 sku="<%= item.getKey().getIdentifier() %>" />
4-28 Guide to Events and Behavior Tracking

Index

A
activating behavior tracking 3-1
adding a JSP tag 1-16
Administration Console for

WebLogic Server 1-18,
1-20, 2-8, 2-10, 2-21, 3-2,
3-4, 3-5

ads 1-13

B
base class constructor 2-16
Behavior Tracking

JSP tags 4-1
properties 3-3
scripts 3-15

behavior tracking
creating custom 2-9
database schema 3-8
defined 1-2
listeners 1-18
uses 1-3

C
clickthroughs 4-3, 4-7
CLOB 3-9
connection pools 3-4
content management system 1-8
creating a custom event type 2-3
creating custom events 2-2

custom behavior tracking listeners
2-24

custom event
attributes 2-3
example code 2-3

customer support contact
information ix

D
data storage 3-5
database administrator 3-6
Database Directory Paths 3-6
database instance 3-16
debugging the event service 2-26
dispatching an event 2-25
documentation, where to find it viii

E
e-analytics and e-marketing systems

1-1
entity-relation diagraom 3-8
event

base class 2-5
coding listeners 2-6
database tables 3-9
defining listeners 2-5
example class 2-9
example of custom 2-1
mechanism 1-18

EVENT table 3-9
Guide to Events and Behavior Tracking I-1

event types
AddToCartEvent 1-8
BuyEvent 1-11
CampaignUserActivityEvent

1-12
ClickCampaignEvent 1-13
ClickContentEvent 1-6, 1-7
ClickProductEvent 1-6
DisplayCampaignEvent 1-13
DisplayContentEvent 1-8
DisplayProductEvent 1-7
RemoveFromCartEvent 1-9
RuleEvent 1-12
SessionBeginEvent 1-4
SessionEndEvent 1-4
SessionLoginEvent 1-5
UserRegistrationEvent 1-5

event(s)
buffer 2-10, 3-3
Buy 1-11
buy 1-11
Campaign 1-12
campaign 1-12, 1-20
Cart 1-8
catalog generated 1-15
categories 1-3
Content 1-7
content 1-7
creating custom 2-2
custom 2-1
debugging 2-26
defined 1-2
JSP tags, importing 4-2, 4-3
listener types 1-18
objects 2-2
persisting 3-1
product 1-6
properties 3-3
registration 1-5
relationship to scenario actions

2-28

Rules 1-11
rules 1-11, 1-16
sequence 1-20
session 1-4
shopping cart 1-8
tags 4-1
triggers 1-15

EVENT_ACTION table 3-8, 3-13
EVENT_TYPE table 3-8, 3-13
events and scenarios 1-2

F
facilitating offline processing 2-11

H
host 3-16

J
JNDI

Data Source 3-4
JNDI example 2-26
JNDI name 2-25
JSP tag libraries 1-16, 4-1, 4-5, 4-6,

4-9
JSP tags 1-16

L
listeners

adding and removing 2-8
adding behavior tracking 3-2
asynchronous 1-18, 1-20, 2-8,

3-2
behavior tracking 3-1
class 1-19
installing 2-8
synchronous 1-18, 2-8, 3-2
I-2 Guide to Events and Behavior Tracking

N
namespace 2-21

P
persistence 2-11
persisting behavior tracking data

3-1
personalization rules 1-1, 1-2
placeholders 1-13
printing product documentation viii
promotion of products and services

1-2

R
related information viii
relational databases 3-6

S
schemas

database 3-5
XML 2-21
XML-XSD 2-11
XSD 2-15

Servlet 2.3 1-14
servlets, Webflow 4-3, 4-7
SQL scripts 3-6, 3-15, 3-16
support

technical ix

T
tablespaces 3-6, 3-15
TestEvent class 2-4
tracking event constructor 2-16

U
user accounts 3-16

W
Web Application servlet 1-14
Webflow servlet 4-3, 4-7
writing custom event classes 2-2
writing custom event listeners 2-5
writing custom event triggers 2-25

X
XML 2-23

creating document 2-24
creation of behavior tracking

events 2-21
document 3-9
instance document 2-15, 2-23
namespaces 2-14
representation of data 2-11
XSD schema 2-21

XML instance document 2-22
XML_DEFINITION data elements

3-10
XML-XSD schema 2-11
XSD schemas 2-15
Guide to Events and Behavior Tracking I-3

	1 Overview of Events and Behavior Tracking
	What Are Events?
	Behavior Tracking
	Standard Events
	Session Events
	SessionBeginEvent
	SessionEndEvent
	SessionLoginEvent

	Registration Event
	UserRegistrationEvent

	Product Events
	ClickProductEvent
	DisplayProductEvent

	Content Events
	ClickContentEvent
	DisplayContentEvent

	Cart Events
	AddToCartEvent
	RemoveFromCartEvent
	PurchaseCartEvent

	Buy Event
	BuyEvent

	Rules Event
	RuleEvent

	Campaign Events
	CampaignUserActivityEvent
	DisplayCampaignEvent
	ClickCampaignEvent

	Servlet Lifecycle Events and Servlet Filter Events

	Event Generators
	Login and Creation Events

	Event Mechanism
	Event Sequence

	2 Creating Custom Events
	Overview of Creating a Custom Event
	Writing a Custom Event Class
	Writing a Custom Event Listener
	Installing a Listener Class in the Event Service

	Writing a Behavior Tracking Event Class
	Configuring Events Buffer Sweeping
	Facilitating OffLine Processing
	TrackingEvent Base Class Constructor
	Installing Behavior Tracking Events

	XML Creation of Behavior Tracking Events
	Custom Behavior Tracking Event Listeners
	Writing Custom Event Generators

	Debugging the Event Service
	Registering a Custom Event

	3 Persisting Behavioral Tracking Data
	Activating Behavior Tracking
	Event Properties
	Configuring the Behavior Tracking Service in WebLogic Server
	Configuring a Data Source

	Data Storage
	Relational Databases
	Database Directory Paths
	Behavior Tracking Database Schema
	The EVENT Database Table
	The EVENT_ACTION Database Table
	The EVENT_TYPE Database Table
	Constraints and Indexes

	Scripts
	Development Environment Scenario
	Production Environment Scenario
	Description of Each Script

	4 JSP Tag Library Reference for Events and Behavior Tracking
	Content
	<tr:clickContentEvent>
	Example

	<tr:displayContentEvent>
	Example

	Product
	<trp:clickProductEvent>
	Example

	<trp:displayProductEvent>
	Example

	Index

