
BEA
WebLogic
Portal®

Integrating Search
Version: 10.2
Revised: February 2008

Integrating Search with WebLogic Portal iii

Contents

1. Introduction
Introducing Search . 1-1

Search in the Portal Life Cycle . 1-2

Architecture Phase . 1-3

Development Phase. 1-3

Staging Phase . 1-3

Production Phase. 1-3

Getting Started . 1-3

Locating the Autonomy Product. 1-6

Licensing Autonomy Modules . 1-6

Determining the Number of CPUs for Your Search Needs . 1-6

Choosing an Operating System. 1-6

System Requirements . 1-7

Upgrading and Getting Support . 1-7

Disabling Search/ Search Indexing . 1-7

Autonomy Documentation. 1-7

Part I. Architecture

2. Architectural Considerations for Search
Understanding How Search is Implemented . 2-1

Deciding What Information to Index . 2-2

Maximum Amount of Indexed Content . 2-2

iv Integrating Search with WebLogic Portal

Architectural Recommendations . 2-2

Choosing an Operating System . 2-3

Part II. Development

3. Using Search when Developing Your Portal
Preparing to Develop a Portal with Search . 3-1

Configuring Search Capabilities in Your Development Environment. 3-2

Installing Autonomy Portlets . 3-3

Writing Autonomy-based Applications and Portlets . 3-10

Creating Search Portlets for BEA Content Repositories. 3-10

4. Multi-language Searching and Indexing
One Language per Autonomy Server . 4-2

One Language per Repository. 4-2

Mixing Languages Within a Repository . 4-3

Configuring Automatic Language Detection . 4-4

Creating Queries . 4-5

Enterprise Search for Microsoft Word, Excel, and PowerPoint Files in Multibyte Languages
4-7

Settings in omnislave.cfg . 4-7

Settings in AutonomyIDOLServer.cfg. 4-8

GroupSpace Encoding . 4-8

5. Metadata Searching
Introduction . 5-1

Searching for Metadata in Published Content. 5-2

Properties . 5-2

The Search Object . 5-4

Integrating Search with WebLogic Portal v

Limitations . 5-5

Examples . 5-5

Searching for Metadata in Versioned Content. 5-6

Specific Properties for Versions . 5-6

Limitations . 5-6

Supported Attributes. 5-7

Examples . 5-7

Part III. Staging

6. Staging Search Capabilities
Installing Autonomy on Your Target Server . 6-2

Supported Operating Systems . 6-3

Installing Autonomy. 6-3

Updating the Autonomy License . 6-4

Configuring Autonomy on Your Target Server. 6-4

Configuring the Autonomy IDOL Server. 6-5

Configuring the Autonomy DiSH . 6-6

Configuring Agentstore . 6-7

Configuring HTTP Fetch . 6-8

Configuring File System Fetch. 6-8

Setting up BEA Content Management Search. 6-9

Configuring the BEA Content Management Fetch . 6-9

Configuring BEA Repositories for Full-Text Search . 6-10

Configuring the BEA Content Management Fetch When Using a Non-WebLogic Portal
Supported Operating System. 6-14

Staging File System Fetch within a WebLogic Cluster. 6-16

Starting the Autonomy Services . 6-17

Stopping Autonomy Services in Windows 2000. 6-20

vi Integrating Search with WebLogic Portal

Installing Autonomy Service Dashboard . 6-20

Prepare the Dashboard for Installation. 6-21

Deploy the Autonomy Service Dashboard. 6-22

Part IV. Production

7. Using Search in Production
Using the Autonomy Service Dashboard . 7-1

Re-Indexing BEA Content . 7-1

C H A P T E R 1
Introduction
BEA WebLogic Portal® provides a number of advanced search capabilities. You can implement
WebLogic Portal’s search engine to integrate with disparate content management systems,
relational databases such as CRM systems, and external web sites. These sources of information
can be exposed to your portal users via pre-packaged portlets, and developers can also author new
portlets and implement business logic to search content sources.

This chapter includes the following sections:

Introducing Search

Search in the Portal Life Cycle

Getting Started

Disabling Search/ Search Indexing

Autonomy Documentation

Introducing Search
Using the search components included with WebLogic Portal, you can enable your portal to
incorporate data and information from multiple sources such as databases, other web sites, and
file systems.

WebLogic Portal search components work together to aggregate, categorize, and personalize
content from different resources in your enterprise and across the internet. For example, when
Integrating Search with WebLogic Portal 1-1

In t roduct ion
you incorporate search within a knowledge base portal, portal users can search across multiple
support databases and view the results.

Once configured, WebLogic Portal’s search tools continuously index content within the sources
you indicate and maintain a query-able source for your portal users. You can surface this content
through out-of-the-box portlets or write your own portlets to customize search capabilities to suit
your needs.

WebLogic Portal utilizes Autonomy® search for its search functionality. See “Getting Started”
on page 1-3 for an introduction to the Autonomy components.

Search in the Portal Life Cycle
The tasks in this guide are organized according to the portal life cycle. For more information
about the portal life cycle, see the WebLogic Portal Overview Guide. The portal life cycle
contains four phases: architecture, development, staging, and production.

Figure 1-1 shows how search fits into the portal life cycle.

Figure 1-1 How Search Fits into the Four Phases of the Life Cycle

Manage your
search
parameters.

Use WorkSpace Studio to
add search portlets to your
portal.

Configuring search for your
production environment.

Decide which search
tools to use.
1-2 Integrating Search with WebLogic Portal

../overview/index.html

Gett ing S ta r ted
Architecture Phase
During the architecture phase, you determine what enterprise content you want to make available
for your portal and who within your portal environment will be able to search this information.

The following chapter describes tasks within the architecture phase:

Chapter 2, “Architectural Considerations for Search”

Development Phase
During the development phase, you add search portlets to your portal, use the APIs to retrieve
content, and optionally, write portlets to surface search features for your portal users.

The following chapter describes tasks within the development phase:

Chapter 3, “Using Search when Developing Your Portal”

Staging Phase
The staging phase is when you prepare your production environment. During this phase, you
reconfigure your search configuration to match your deployment configuration and enable tools
to configure search when running in a production environment.

The following chapter describes tasks within the staging phase:

Chapter 6, “Staging Search Capabilities”

Production Phase
After you deploy your application and are running in a production environment, you can adjust
how your portal searches for content, including caches and search frequencies.

The following chapter describes tasks within the production phase:

Chapter 7, “Using Search in Production”

Getting Started
WebLogic Portal utilizes Autonomy® search for its search functionality. Search features
provided by Autonomy include the following:

Natural language queries can be input to the IDOL Server and will be processed based on
the words contained in the queries.
Integrating Search with WebLogic Portal 1-3

In t roduct ion
Basic XML Search - basic features to index and search XML documents Natural Language
Support.

Relevance Ranking. Each retrieval operation produces a relevancy score which can be used
in the search results interface

Document Similarity Search – “More Like This” feature using keyword similarity between
documents.

Proximity Controls. Basic Boolean, proximity, and field searches are provided.

Table 1-1 lists the components of Autonomy search tools and what each provides.

Table 1-1 Autonomy Search Components Used with WebLogic Portal

Autonomy Component What It Does:

Autonomy IDOL Server The Intelligent Data Operating Layer (IDOL) server is responsible for
indexing content as well as processing content queries made from
your portal.

For more information about the Autonomy IDOL Server, see the
Autonomy IDOL Server documentation.

Autonomy DiSH The Distributed Service Handler – DiSH, provides the crucial
maintenance, administration, control and monitoring functionality of
the Intelligent Data Operating Layer (IDOL). DiSH delivers a unified
way to communicate with all Autonomy services from a centralized
location.

DiSH can be managed with the Autonomy Service Dashboard. For
more information about the Autonomy DiSH, see the Autonomy
DiSH documentation.

Autonomy Service Dashboard The Autonomy Service Dashboard is an stand-alone front-end web
application that communicates with one or more Autonomy
Distributed Service Handler (DiSH) modules that provide the
back-end process for monitoring and controlling all the Autonomy
child services, such as fetches.

For more information about the Autonomy Service Dashboard, see the
Autonomy DiSH documentation.
1-4 Integrating Search with WebLogic Portal

Gett ing S ta r ted
Autonomy HTTP Fetch HTTP Fetch allows documents from internet or intranet sites to be
aggregated from remote servers and indexed into Autonomy IDOL
server.

For more information about the HTTPFetch, see the Autonomy HTTP
Fetch documentation.

Autonomy ODBC Fetch ODBC Fetch is an Autonomy connector that automatically retrieves
data that is stored in ODBC data sources, imports it into IDX file
format and indexes it into Autonomy IDOL server.

For more information about the ODBC Fetch, see the Autonomy
ODBC Fetch documentation.

Autonomy File System Fetch File System Fetch analyzes file systems on local or network machines
(including Novell, NT, UNIX file systems and Samba-mounted
servers) for new documents to aggregate into the Autonomy IDOL
server. It keeps the IDOL server’s view of the file system in sync so
that files deleted are automatically removed from IDOL server, and
modifications to files are reflected automatically.

Note: If a file name contains any Japanese characters using Shift JIS
encoding, Autonomy will not index them. This means that if
a file with Shift JIS characters in the file name are placed in a
directory to be indexed by the File System Fetch utility, it will
not be indexed by Autonomy and not be returned within the
search results provided by the Enterprise Search portlet.
Therefore, you must rename any files that contain Shift JIS
characters to a name without any Shift JIS characters.

For more information about the File System Fetch, see the Autonomy
File System Fetch documentation.

Autonomy Portlets Autonomy portlets are designed to integrate search functionality with
your portal.

For more information about the Autonomy portlets, see “Installing
Autonomy Portlets” on page 3-3.

For additional documentation on the Autonomy portlets, see
Autonomy Portlets for WebLogic Guide or the Autonomy Portlets
User Guide.

Table 1-1 Autonomy Search Components Used with WebLogic Portal

Autonomy Component What It Does:
Integrating Search with WebLogic Portal 1-5

In t roduct ion
Locating the Autonomy Product
Autonomy is bundled with the WebLogic Portal and WebLogic Platform installers. The files are
located in the <BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10 directory.

Licensing Autonomy Modules
The license model for Autonomy is one portal to one Autonomy IDOL Server. You can install
one instance each on production, development, and a failover instance within your portal
deployment. Licensing is paper-based, and all development instances ship with a full production
version of Autonomy. A production instance of Autonomy is included with the WebLogic Portal
installation.

Note: The evaluation license included with Autonomy allows a document limit of 10,000. On
purchase of WebLogic Portal, you will receive a full Autonomy production license that
provides a 500,000-document limit. For information about updating your Autonomy
license, see “Updating the Autonomy License” on page 6-4.

Determining the Number of CPUs for Your Search Needs
The number of CPUs that you need for a production instance varies with the number and type of
documents you are exposing, as well as the way they are exposed (for example, automated
searching, user driven, and so on).

A single instance of one CPU can potentially support tens of thousands of users and millions of
documents. Contact your BEA or Autonomy sales representative for additional licenses, if
needed.

Choosing an Operating System
During development mode, Autonomy services are automatically started for the operating system
of the host computer, which allows developers to use Autonomy during portal development.

However, when you deploy your portal and install Autonomy within your portal environment,
you will need to install the operating system-specific version of Autonomy on your server on
which you run the Autonomy services. For more information about installing and deploying the
Autonomy services, see Chapter 6, “Staging Search Capabilities.”

Note: Autonomy binary executable files are named with a .exe extension (Windows style) for
all operating systems.
1-6 Integrating Search with WebLogic Portal

Disabl ing Search/ Search Index ing
System Requirements
When configuring Autonomy search for your portal application, please note Autonomy’s system
requirements, see the Autonomy documentation.

Upgrading and Getting Support
BEA provides front-line support for Autonomy components—contact the BEA Support
Department. BEA Support will contact Autonomy for additional back-line support as needed.
Additional connectors (fetches) and tools are available from Autonomy as well.

Disabling Search/ Search Indexing
To disable search indexing:

1. Start your portal domain.

2. Start the WebLogic Portal Administration Console.

3. Select Content > Content Management from the navigation menu at the top of the console.

4. Select Manage | Repositories.

5. In the resource tree, click the repository for which you want to disable search indexing.

6. In the Summary tab, click Advanced to view the Edit Advanced Properties for Repository
dialog.

7. In the Edit Advanced Properties for Repository dialog, clear the Search Enabled/Search
Indexing Enabled check boxes.

8. When finished making changes, click Save.

Autonomy Documentation
Review this guide to become familiar with how WebLogic Portal uses Autonomy search. For
additional information, see the Autonomy documentation.

The Autonomy documentation is included in your WebLogic Portal installation directory at
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/docs.
Integrating Search with WebLogic Portal 1-7

In t roduct ion
1-8 Integrating Search with WebLogic Portal

Part I Architecture
Part I contains instructions for tasks you should accomplish in the architecture phase. When you
finish the architecture phase, you can proceed to the development phase, and then on to the other
phases.

Part I includes the following chapter:

Chapter 2, “Architectural Considerations for Search”

For a description of the architecture phase of the portal life cycle, see the WebLogic Portal
Overview. The portal life cycle is shown in the following graphic:
Integrating Search with WebLogic Portal

../overview/index.html
../overview/index.html

C H A P T E R 2
Architectural Considerations for Search
During the architecture phase, you determine what enterprise content you want to make available
for your portal and who within your portal environment will be able to search this information.

This chapter includes the following sections:

Understanding How Search is Implemented

Deciding What Information to Index

Architectural Recommendations

Understanding How Search is Implemented
WebLogic Portal uses Autonomy search components to implement search functions such as
allowing portal users to search external web sites, integrated databases, and available file
systems. To do this, you can incorporate search portlets that ship with WebLogic Portal or write
your own. However you decide to implement search, the same tools will be used. You will need
to install and configure these tools before integrating search within your portal.

The Autonomy IDOL server is used to manage the indexes created by the Autonomy fetches you
use. You can use this indexed data in your portal application by using the portlets that come with
WebLogic Portal or you can write your own portlets using the Autonomy API. For more
information about using and developing portlets, see Chapter 3, “Using Search when Developing
Your Portal.”

Figure 2-1 shows a diagram of how Autonomy search tools integrate with WebLogic Portal.
Integrating Search with WebLogic Portal 2-1

Arch i tec tura l Cons iderat ions fo r Search
Figure 2-1 Diagram of a WebLogic Portal Integration with Autonomy Search Tools

Deciding What Information to Index
You can allow portal users to search a variety of information sources from your portal. Before
developing and deploying your portal, you should decide what information sources you want to
index. Consult the respective Autonomy documentation for more details. For example, if you
want to include web sites, see the Autonomy HTTP Fetch Administrator’s Guide.

Maximum Amount of Indexed Content
The Autonomy license that comes with WebLogic Portal allows you to index 500,000 pieces of
content. If you need to index more content than 500,000 items, you will need to obtain a different
license from Autonomy.

Architectural Recommendations
BEA recommends using a separate machine for your Autonomy IDOL Server to ensure the most
processing power to service indexing and query requests from your portal clients. You can also
2-2 Integrating Search with WebLogic Portal

Arch i tec tura l Recommendat ions
install each Autonomy engine (such as HTTP Fetch, File System Fetch and IDOL Server) on a
separate server if you find you need additional resources.

Autonomy recommends a dual-processor server for hosting the IDOL Server and the DiSH
Handler. For complete system requirements, see the Autonomy documentation.

Choosing an Operating System
When you install WebLogic Portal, the Autonomy engine for the target operating system is
included. If you need a version of Autonomy for a different operating system than the operating
system on which you installed WebLogic Portal, you will need to download and install WebLogic
Portal onto the operating system for which you need Autonomy. You can then retrieve the
respective operating system files for Autonomy.

Note: Autonomy binary executable files are named with a .exe extension (Windows style) for
all operating systems.

For example, if you downloaded and installed WebLogic Portal on a Windows server, the
Windows version of Autonomy was included in the download. If you want to install Autonomy
on a Linux server, you need to download and install the Linux version of WebLogic Portal in
order to have the correct version of Autonomy for a Linux machine.

Note: You can also choose to install Autonomy on an operating system different from what is
supported for WebLogic Portal, see “Configuring the BEA Content Management Fetch
When Using a Non-WebLogic Portal Supported Operating System” on page 6-14

For more information about installing and deploying Autonomy services, see Chapter 6, “Staging
Search Capabilities.”
Integrating Search with WebLogic Portal 2-3

Arch i tec tura l Cons iderat ions fo r Search
2-4 Integrating Search with WebLogic Portal

Part II Development
During the development phase, portal developers can add search features to your portal by using
provided portlets or creating their own.

Part II includes the following chapters:

Chapter 3, “Using Search when Developing Your Portal”

Chapter 4, “Multi-language Searching and Indexing”

When you finish the development phase you can proceed to the staging phase. Consider setting
up a common development environment for the development phase and the staging phase. You
might move iteratively between these two phases, developing and then testing what you created.

If you moved on to the production phase and then go back to make changes that affect the
development phase, you must redeploy your portal application in order to view your changes. The
BEA Propagation Utility performs the redeployment; see the WebLogic Portal Production
Operations User Guide for more information.

For a detailed description of the development phase of the portal life cycle, see the WebLogic
Portal Overview. The portal life cycle is shown in the following graphic:
Integrating Search with WebLogic Portal

../prodOps/index.html
../prodOps/index.html
../overview/index.html
../overview/index.html

Integrating Search with WebLogic Portal

C H A P T E R 3
Using Search when Developing Your
Portal
During the development phase, you can add Autonomy portlets to allow your portal users access
to search functions. You can also build your own portlets or customize existing ones.

Note: The Autonomy documentation is included in your WebLogic Portal installation directory
at <BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/docs.

This chapter discusses the following topics:

Preparing to Develop a Portal with Search

Writing Autonomy-based Applications and Portlets

Creating Search Portlets for BEA Content Repositories

Preparing to Develop a Portal with Search
Before you add and create search capabilities within your portal, you need to ensure your
development environment has the necessary tools and the proper settings. Specifically, you need
to add the Autonomy portlets to your web application library, and ensure that search features are
optimized for your environment.

This section includes the following topics:

Configuring Search Capabilities in Your Development Environment

Installing Autonomy Portlets
Integrating Search with WebLogic Portal 3-1

Us ing Search when Deve lop ing Your Por ta l
Configuring Search Capabilities in Your Development
Environment
Running Autonomy’s search services and BEA’s full-text search capabilities while developing
your portal could use unnecessary memory resources. If you do not need to run search capabilities
continuously in your development environment, it is recommended that configure a staging
environment for your Autonomy search features, see “Staging Search Capabilities” on page 6-1.

Optionally, you could also disable search within your development environment. Disabling
search involves disabling BEA’s full-text search as well as turning off Autonomy’s search
services.

Disabling BEA’s Full-Text Search
To disable BEA’s full-text search,

1. Start your portal domain.

2. Start the WebLogic Portal Administration Console.

3. Select Content > Content Management from the navigation menu at the top of the console.

4. Select Manage | Repositories.

5. In the resource tree, click the repository for which you want to disable full-text search.

6. In the Advanced section, click Advanced to view the Edit Advanced Properties for
Repository dialog.

7. In the Edit Advanced Properties for Repository dialog, edit the properties listed in Table 3-1.

8. When finished making changes, click Save.

Table 3-1 Advanced Repository Properties

Advanced Property What it does:

Search Indexing Enabled Allows content to be indexed for portal search. This
enables portal developers to use full-text content search in
any portlets that they develop.

Full-Text Search Enabled Enables users to search the repository using the full-text
of the content.
3-2 Integrating Search with WebLogic Portal

Prepar ing to Deve l op a Por ta l w i th Search
Your modifications display in the Advanced section of the Summary page.

Note: After you make any changes to repository properties, Portal Administration Console
users must log out and log back in to view the changes.

Disabling Autonomy’s Services
You can disable Autonomy’s search services. When you disable Autonomy’s services, the
following features will not be available:

Full Text Search on a BEA repository

Full Text Search within the WebLogic Portal GroupSpace application

Enterprise Search within the WebLogic Portal GroupSpace application

Autonomy portlets

Any application/portlet which uses the Autonomy API

To disable Autonomy’s services:

1. Stop your portal domain.

2. Set the following environment variable on your portal domain server:
CONTENT_SEARCH_OPTION=none

3. Restart your portal domain.

Installing Autonomy Portlets
Several Autonomy portlets ship with WebLogic Portal. In order to use these portlets within your
portal application, you must first install and configure them.

For additional information about configuring these portlets, see the Autonomy Portlets for
WebLogic Administration Guide or the Autonomy Portlets User Guide. These documents are
located in <BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/common/docs.

The portlets are listed in Table 3-2.
Integrating Search with WebLogic Portal 3-3

Us ing Search when Deve lop ing Your Por ta l
Table 3-2 Autonomy Portlets

Portlet What It Provides:

Autonomy2DMap The 2D Cluster Map is used to identify conceptual similarities and
differences between clusters. Also based on JSP, the landscape is
generated from the inter-relationships between clusters and the
documents contained within those clusters. Designed to provide a
single overview of the clusters contained within the data, clusters that
are close together correlate to higher degrees of similarity, whilst
dissimilar clusters are situated further apart. By scrolling over the
ClusterMap automatic titles are generated and assigned to every
cluster. By clicking on the cluster, the results and respective
information can be viewed.

Agent The Agent portlet allows individual users to create their own
personalized information channels, either from Natural Language,
legacy Keywords, Boolean expressions, Parametric Searches or even
simply by example. These agents then monitor all incoming
information and can target and alert useful content on a continual
basis, automatically.

Users begin by customizing the Agent Portlet by setting up 'interest
agents'. This is done by the user describing in plain natural language
what it is they are interested in. The Interest Agent persistently
identifies all relevant content and presents it in a concise personalized
page, complete with URL links. As new information becomes
available the agent will monitor new data submissions ensuring that
the Portlet user is always provided with up-to-date information.
Moreover, as user interests change users are also given the option to
refine their interest by retraining the agents.

Breaking News The Breaking News portlet identifies what's new in the information
space. Taking the cluster analysis from a previous time period and
comparing it to a current one allows automatic identification of new
clusters that weren't previously present, allowing automation of
'breaking news' pages, alerting to new areas of information or new
interest trends in subscriber groups.

Community The Community portlet notifies individual users of any agents that
people in the work community may have set up using the Agent
portlet, which resemble their own personalized agents. This Portlet
brings together the benefits of collaboration, reducing duplicated
effort as well as identifying experts within the organization.
3-4 Integrating Search with WebLogic Portal

Prepar ing to Deve l op a Por ta l w i th Search
Cluster Cluster portlets provide a range of classification Portlets and
visualization tools that can be added to the BEA environment, further
enriching the portal experience.

Autonomy's automatic clustering features identify areas of intense
research, breaking news or emerging trends and market opportunities
based on information found within the knowledge base. Autonomy's
Cluster Portlets can take large sets of document data or user-profile
information and automatically identify the main set of concepts/
themes inherent within the knowledge base.

Furthermore, clustering can be used in identifying the 'gap' between
the users interests and the data being provided to the users thereby
allowing 'knowledge/ content gaps' to be eliminated through provision
or aggregation of further content relevant to the community.

Expertise Locator The Expertise Locator portlet allows users to find people who have
been dealing with a specific subject by entering a brief natural
language description of the subject. It returns all agents and profiles
that match this description together with the names of the users who
own the agents or profiles.

Hot News The Hot News Cluster portlet can identify what is most popular or the
main topics/clusters of information or interests found within the
information assets or an organization. This allows the business to
instantly receive a high-level view of the entire knowledge base
providing a catalyst that enables informed decisions to be made faster.

Administration The Administration portlet that enables you to administer and
maintain all Autonomy Portlet settings from a central location.

Profile The Profile portlet brings new documents to users attention based on
each users individual interest and according to their profile. This
Portlet creates a profile on each user based on the concepts of the
documents that the user has been reading within the Autonomy Portlet
suite (Agents, Retrieval, Clustering, Community and so on). Every
time a user opens a new document within the Autonomy Portlet suite,
the user's profile will be update based on the information read.

Table 3-2 Autonomy Portlets

Portlet What It Provides:
Integrating Search with WebLogic Portal 3-5

Us ing Search when Deve lop ing Your Por ta l
After installing the Autonomy portlets, you can use customize them or add them to your portal
without customizing them. If installing the Autonomy portlets in a non-GroupSpace portal
application, you should also configure an additional servlet, see “Enabling Autonomy Portlets in
Non-GroupSpace Portal Applications” on page 3-8.

For more information about working with portlets, see the WebLogic Portal Portlet Development
Guide.

Retrieval Autonomy's Retrieval portlet provides a fully-automated and precise
means of retrieving information. It allows content to be searched in
any language and any format, wherever it is stored, and presented with
hyperlinks to similar information, automatically and in real-time.
Unlike ordinary searches that look for keywords the Autonomy
Retrieval Portlet allows you to enter a natural language query. The
Retrieval Portlet submits the natural language query to one or more
databases that have been set up, in order to find documents that are
related to your query.

Similar People The Similar People portlet notifies a user or other people in the same
organization of other users who have been using the same type of
documents that you have been looking at. This feature helps users
avoid spending time on searching for information that may already be
available.

Spectrograph The Spectrograph portlet displays the relationship between clusters on
successive periods and sets of data. Clusters are presented as a
JSP-based spectrograph, whereby the x-axis represents information
over time (enabling users to visualize how clusters develop over a
given time period), whilst the y-axis represents the range of concepts
defined within the knowledge base.

Moreover, the spectrograph is able to display hot and breaking news
in the same instance. The importance of clusters over time can be seen
through the change of color and width. The color/ intensity of the lines
is an indication of the size of cluster. The brighter colors indicate what
is popular, and the width of the lines is an indication of the quality of
the cluster. Navigation features are identical to the 2D ClusterMap
enabling users to browse clusters with a click of the mouse.

Table 3-2 Autonomy Portlets

Portlet What It Provides:
3-6 Integrating Search with WebLogic Portal

../portlets/index.html
../portlets/index.html

Prepar ing to Deve l op a Por ta l w i th Search
To add these portlets:

Note: These instructions assume you have already created and deployed your portal
application.

1. Locate the AutonomyPortlets.zip file in your WebLogic Portal installation directory. For
example,
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/AutonomyPo
rtlets.zip

2. Extract the contents of the AutonomyPortlets.zip file to a temporary directory of your
choosing. For example, c:/temp/.

3. Add the following to WorkSpace Studio by right-clicking the appropriate folder and then
selecting Paste:

a. Copy the autonomyPiB.jar file to yourEAR/EARContent/APP-INF/lib directory.

b. Copy the portlet folder to your webApp/webContent directory. For example,
<your_projects>/w4WP_workspaces/<project_name>/<yourWebApp>/WebConte
nt/

c. Copy the portalInabox.css file to the <yourWebApp>/webContent/portlets
directory that you added in step b.

d. Copy the AutonomyPortletSettings.usr file to the userprofiles subdirectory of
your Datasync project directory. For example,
<yourDataSyncProject>/src/userprofiles/.

e. Copy the *.properties files in the temporary WEB-INF/classes directory to your web
application’s WEB-INF/classes/ directory. If you don’t have this directory, create it. For
example, <yourWebapp>/WebContent/WEB-INF/classes

4. Move the portlets.cfg file to your domain directory, or if running in a cluster, to a shared
directory outside the application.

This insures that the directory location will be constant regardless of how the application is
deployed.

5. Using a text editor, modify the default-value setting in AutonomyPortletSettings.usr
to point to the portlets.cfg file.

Note: You must use an absolute path to point to the portlets.cfg file.

6. When finished editing, save your changes.
Integrating Search with WebLogic Portal 3-7

Us ing Search when Deve lop ing Your Por ta l
7. Using a text editor, edit the portlets.cfg file and update the following values to point to
your IDOL Server port, if changed: UAPort, ClassPort, and DREPort. Edit other settings if
needed. The AutonomyIDOLServer.cfg is located in the
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/<os>/IDOLserver/ID
OL directory.

For more information about configuring this file, see the Autonomy Portlets for WebLogic
Administration Guide at
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/common/docs.

8. Disable JSP fragment validation:

a. Right-click your web application project and select Properties.

b. In the tree, select Validation - AppXRay.

c. In Validation - AppXRay, deselect Report Java compilation errors in JSP pages, and
then click OK.

d. Click Yes when asked to rebuild the AppXRay database.

9. When finished editing, save changes. If using Autonomy portlets within a non-GroupSpace
portal application, continue to the next section, “Enabling Autonomy Portlets in
Non-GroupSpace Portal Applications”.

Note: To view the portlets, you must add them to your portal application.

Enabling Autonomy Portlets in Non-GroupSpace Portal Applications
Note: If you are using Autonomy portlets within a GroupSpace portal application, disregard

this section.

When operating in a non-GroupSpace portal application, Autonomy portlets require the
DownloadServerFileServlet. You need to register this servlet in your web project by editing the
the web.xml file for your respective web project.

To register this servlet, do the following in WorkSpace Studio:

1. From the Package Explorer, navigate to the respective web.xml file for your web project. For
example, <myWebProject>\WebContent\WEB-INF\web.xml.

2. Right-click your web.xml file and select Open With > XML Editor.

3. Add the following sections to your web.xml file.

a. Register the servlet:
3-8 Integrating Search with WebLogic Portal

Prepar ing to Deve l op a Por ta l w i th Search
<servlet>

<servlet-name>DownloadServerFileServlet</servlet-name>

<servlet-class>com.bea.apps.groupspace.util.DownloadServerFileServlet</servle
t-class>

</servlet>

b. Register the servlet mapping:

<servlet-mapping>

<servlet-name>DownloadServerFileServlet</servlet-name>

<url-pattern>/DownloadServerFileServlet/*</url-pattern>

</servlet-mapping>

c. Register the context parameters:

<context-param>

<param-name>com.bea.apps.groupspace.search.enterprise.IDOLServerHost</p
aram-name>

<param-value>localhost</param-value>

</context-param>

<context-param>
<param-name>com.bea.apps.groupspace.search.enterprise.IDOL_aciPort</par
am-name>

<param-value>9014</param-value>

</context-param>

4. To enable basic authentication for administrators (in lieu of a login portlet):

<security-constraint>
<web-resource-collection>

<web-resource-name>Site</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>Admin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>myrealm</realm-name>
Integrating Search with WebLogic Portal 3-9

Us ing Search when Deve lop ing Your Por ta l
</login-config>
<security-role>

<role-name>Admin</role-name>
</security-role>

5. Save your web.xml file.

6. Re-deploy your application.

Writing Autonomy-based Applications and Portlets
You can create Autonomy-based applications and portlets using the Autonomy APIs. The
Autonomy API is included in the content-management-app-lib shared library within
WorkSpace Studio.

For Autonomy API documentation, review the Autonomy JavaDoc.

Note: Do not execute queries against any IDOL database which is prefixed with WLP_CM_REPO
as these indexes contain information on the BEA content repositories in use for your
portal. If you want to execute queries against BEA’s content management repositories,
you need to use the WebLogic Portal API, see the WebLogic Portal JavaDoc.

Creating Search Portlets for BEA Content Repositories
You can also create portlets that can be used to search WebLogic Portal’s content management
system. To do this, you use the WebLogic Portal Content Search API. You must also install and
configure the BEACMRepoFetch in enable this search capability. WebLogic Portal ships with
this custom fetch, see “Setting up BEA Content Management Search” on page 6-9.

Although you use Autonomy’s APIs to create most search portlets, you must use WebLogic
Portal Content Search API to create portlets that will search the WebLogic Portal content
management system. See the WebLogic Portal JavaDoc for more details.

Table 3-3 Helpful Content Search APIs

Package/Class What it does:

com.bea.content.expression.search This package enables you to build search queries.

FullTextSearchFactory This class enables you to incorporate full-text search on
content within the Virtual Content Repository.
3-10 Integrating Search with WebLogic Portal

../javadoc/index.html

../javadoc/index.html
../javadoc/com/bea/content/expression/Search.html
../javadoc/com/bea/content/expression/FullTextSearchFactory.html

C H A P T E R 4
Multi-language Searching and
Indexing
WebLogic Portal provides several methods for configuring full-text search and indexing in
multiple languages. Each method provides different capabilities. You need to decide on a
per-repository basis which method is desirable. If you decided to change methods later, you also
need to re-index your repository. Note that each document indexed can be associated with only
one language.

The following sections describe each full-text search method and how to configure them:

One Language per Autonomy Server

One Language per Repository

Mixing Languages Within a Repository

Enterprise Search for Microsoft Word, Excel, and PowerPoint Files in Multibyte
Languages

You need to decide on a per-repository basis which approach is desirable. You should also
consult the Autonomy documentation, which is included in your WebLogic Portal installation
directory at
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/docs.
Integrating Search with WebLogic Portal 4-1

Mult i - language Search ing and Index ing
One Language per Autonomy Server
The default configuration for an Autonomy server is one language and one encoding across all
repositories using that server. When you use this configuration for multiple languages, you need
separate Autonomy servers for each language. In this case you need to configure all indexed
content and all full-text queries against that content to use the same LanguageType (language and
encoding).

For example, you could have three repositories accessing a single Autonomy server. All three
repositories must use the same LanguageType, such as FrenchUTF8, and all documents indexed
in each repository would need to be in French. Additionally, all queries on all repositories would
need to be in French language with UTF8 encoding. If you needed two languages, you would
have to set up two Autonomy servers, two repositories, and manually configure the default
language type in each server.

To set a default language type for a server, you edit the DefaultLanguageType in the
[LanguageTypes] section in the server’s configuration file (AutonomyIDOLServer.cfg). For
more information about defining a global default language type, see the IDOL Server
Administration Guide at
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/common/docs.

One Language per Repository
To mix multiple repositories, possibly with different languages, in the same Autonomy server,
you need to specify the language and encoding for each repository. This means that all nodes in
a repository and all queries must use the same language type and encoding. Both the language
type and encoding are defined by the LanguageType. Some examples of language types are
frenchUTF8 (French language, UTF8 encoding), frenchASCII, and russianCYRILLIC. When
you use a language type, such as frenchUTF8, all documents in the French-UTF8 repository
must be in French and all queries in that repository must be in the French language with UTF8
encoding.

The supported language types are listed in [LanguageTypes] section in the server’s
configuration file (AutonomyIDOLServer.cfg), which is located in the
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/<os>/IDOLserver/IDOL
directory.
4-2 Integrating Search with WebLogic Portal

Mix ing Languages Wi th in a Repos i to ry
To use this approach, you need to add two properties to the repository configuration. For
example, to use the French language with UTF8 encoding add:

fullTextSearchIndexLanguageType=frenchUTF8

fullTextSearchQueryLanguageType=frenchUTF8

Generally you set these properties to the same value. All queries need use the same
fullTextSearchQueryLanguageType language and encoding.

For instructions on how to add a property to a repository, see “Adding Custom Properties” in
Configuring BEA Repositories in the Content Management Guide.

Note: After you disconnect a repository or make any changes to repository properties, Portal
Administration Console users must log out and log back in to view the changes.

Mixing Languages Within a Repository
If you mix data of multiple language types within a repository, you can use Automatic Language
Detection. This approach provides the greatest flexibility for both repository content and search
options.

Automatic Language Detection identifies the language and encoding of a document when it is
indexed and provides the ability to query data by language and/or encoding. For example you
could specify that you want to find only French and Italian matches; regardless of encoding; or
only Russian matches with UTF8 encoding; or all matches, regardless of language and encoding.

You configure Automatic Language Detection on a per-repository basis. This means you could
have three different repositories with different indexing and querying abilities: two repositories
might use Automatic Language Detection and have a mixture of documents of type frenchUTF8,
englishASCII, and russianCYRILLIC, while the third repository contains only italianUTF8
documents.

Caution: When you configure Automatic Language Detection, any repository using the default
configuration (one language and one encoding across all repositories using that
server), will be automatically configured to use Automatic Language Detection. If
you do not want this behavior, you must specify the language type for each language
and its encoding for those repositories, as described in “One Language per
Repository” on page 4-2.
Integrating Search with WebLogic Portal 4-3

../cm/filesystemArchCM.html

Mult i - language Search ing and Index ing
Configuring Automatic Language Detection
When Automatic Language Detection is set, the server automatically identifies the language and
encoding of a document when it is indexed. For more information about Automatic Language
Detection, see the IDOL Server Administration Guide at
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/common/docs.

Note: Enabling this feature may have an impact on the ability to search for existing content in
Content Management and GroupSpace repositories other than content defined as the
DefaultLanguageType. This is because language reclassification can occur when this
feature is enabled.

To configure Automatic Language Detection on a repository:

1. Set the AutoDetectLanguagesAtIndex to true in the [Server] section of the
AutonomyIDOLServer.cfg file, which is located in the
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/<os>/IDOLserver/ID
OL directory.

2. Do not set a fullTextSearchIndexLanguageType property on the repository; remove if
already set.

3. Optionally, specify the default query language type by adding a property to the repository. For
example:

fullTextSearchQueryLanguageType=frenchUTF8

4. Optionally, specify that results are returned across all languages, not just the language of the
fullTextSearchQueryLanguageType by adding the following property to the repository:

fullTextSearchQueryAnyLanguage=true

5. Re-index your repository content. For information on how to do this, see “Re-Indexing BEA
Content” on page 7-1.

Note: During indexing, if the language type cannot be determined automatically, the
DefaultLanguageType is used. This is a global server setting, not a repository
setting.
4-4 Integrating Search with WebLogic Portal

Mix ing Languages Wi th in a Repos i to ry
Creating Queries
Queries are very flexible; they can be in any language and encoding. For example, you can
construct a query that return results for Japanese documents using UTF-8, Shift_JIS, and EUC-JP
encodings.

Use the following examples to specify the search results from your repositories. For additional
information about these examples, see the WebLogic Portal Javadoc.

Query Text in Same Language and Any Encoding
If the query text is in the language and encoding defined by the
fullTextSearchQueryLanguageType and you want results in the language of
fullTextSearchQueryLanguageType regardless of the encoding, you do not need to create
additional code.

Query Text in Same Language with Specific Encoding
If the query text is in the language and encoding defined by the
fullTextSearchQueryLanguageType and you want the results in the same language as the
fullTextSearchQueryLanguageType with a specific encoding:

params = new AutonomyLanguageParameterSet();

params.setLanguageType("englishASCII");

params.setMatchEncoding("UTF8");

context.setParameter(FullTextSearchLanguageParameterSet.

QUERY_LANGUAGE_PARAMETER_SET_KEY, params);

Query Text in Another Language and Encoding
If the query text is in a language and encoding different from
fullTextSearchQueryLanguageType, you can override the repository
fullTextSearchQueryLanguageType in the ContentContext class. This returns results in the
specified LanguageType language, regardless of encoding:

params = new AutonomyLanguageParameterSet();

params.setLanguageType("englishASCII");

context.setParameter(FullTextSearchLanguageParameterSet.

QUERY_LANGUAGE_PARAMETER_SET_KEY, params);
Integrating Search with WebLogic Portal 4-5

../javadoc/index.html

Mult i - language Search ing and Index ing
Query Across All Languages
If the query text is in one language and encoding and you want to query across all languages:

params = new AutonomyLanguageParameterSet();

params.setLanguageType("englishASCII");

params.setAnyLanguage(true);

context.setParameter(FullTextSearchLanguageParameterSet.

QUERY_LANGUAGE_PARAMETER_SET_KEY, params);

Query Multiple Specific Languages
If the query text is in one language and encoding and you want to query multiple specific
languages:

params = new AutonomyLanguageParameterSet();

params.setLanguageType("englishASCII");

params.setAnyLanguage(true);

params.setMatchLanguageType("frenchASCII+germanUTF8");

context.setParameter(FullTextSearchLanguageParameterSet.

QUERY_LANGUAGE_PARAMETER_SET_KEY, params);
4-6 Integrating Search with WebLogic Portal

Ente rpr ise Search fo r Mic rosof t Word , Exce l , an d PowerPo in t F i l es in Mul t iby te Languages
Enterprise Search for Microsoft Word, Excel, and
PowerPoint Files in Multibyte Languages

You can configure search and indexing for Microsoft Word (.doc), Excel (.xls), and PowerPoint
(.ppt) files in Content Management and GroupSpace communities. In these cases, you need to use
the default configuration for an Autonomy server, that is, one language and one encoding across
all repositories using that server. For more information, see “One Language per Autonomy
Server” on page 4-2.

In addition to using the default Autonomy server configuration, you need to set the encodings for
indexing and searching on the file names as described in this section. Without these encoding
settings, search cannot find the file names based on multibyte encodings. These encoding are set
in the following files:

omnislave.cfg

AutonomyIDOLServer.cfg

web.xml—required only for GroupSpace

Note: The supported language types and encodings are listed in [LanguageTypes] section in
the AutonomyIDOLServer.cfg file, which is located in the
<BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/<os>/IDOLserve
r/IDOL directory.

Settings in omnislave.cfg
You must specify the system’s default encoding in the omnislave.cfg file. This file is located in
the BEA_HOME>/wlserver10.0/cm/thirdparty/autonomy-wlp10/<OS>/filters
directory.

To specify the encoding:

1. In the omnislave.cfg file, remove any FileNameFromCharSet=<encoding> settings from
any sections in which they appear.

2. In the [Configuration] section, add the system’s default encoding. For example:

 FileNameFromCharSet=SHIFTJIS
Integrating Search with WebLogic Portal 4-7

Mult i - language Search ing and Index ing
Settings in AutonomyIDOLServer.cfg
You must specify the DefaultLanguageType and DefaultEncoding settings in the
AutonomyIDOLServer.cfg file. The DefaultEncoding must be same encoding as specified in
omnislave.cfg. And the DefaultLanguageType must be in the corresponding language type to the
encoding specified in omnislave.cfg and the language of document. For example for the Japanese
language with Shift-JIS encoding, you would specify:

[LanguageTypes]

DefaultLanguageType=japaneseSHIFT_JIS

DefaultEncoding=SHIFTJIS

GroupSpace Encoding
You need to also update the groupspace encoding in web.xml to use the same encoding that you
specified in omnislave.cfg. (The web.xml file is located in the WEB-INF directory of the portal
web project.) For example:

<context-param>

<param-name>com.bea.apps.groupspace.search.enterprise.outputEncoding</para

m-name>

<param-value>SHIFTJIS</param-value>

</context-param>

<context-param>

<param-name>com.bea.apps.groupspace.search.enterprise.connectionEncoding</

param-name>

<param-value>shift_jis</param-value>

</context-param>

Note: The setting in AutonomyIDOLServer.cfg and web.xml are not confined to matters of file
name search, but are required to handle multibyte characters in Enterprise Search.

After modifying these files, you must re-index the existing content for the multibyte characters
in filenames. For information on how to do this, see “Re-Indexing BEA Content” on page 7-1.
4-8 Integrating Search with WebLogic Portal

C H A P T E R 5
Metadata Searching
Content Management supports metadata search as well as full-text search. This chapter describes
searching for both published and versioned metadata. Published content is either content from a
repository that does not have library services enabled or content that has completed a workflow
and is a Published state. Versioned content is content in a library services-enabled repository that
is not yet published. Searching for published content returns Nodes while searching for
unpublished content return Versions. For more information about enabling library services, see
Enabling Library Services for a BEA Repository in the Content Management Guide.

Note: Searching for published content and searching for versioned content are mutually
exclusive because these search types use different APIs. and You use
ISearchManager.search to search for published content and
IVersionManager.search to search for versioned content. This means that the search
queries go against different data sources to return the data.

This chapter contains the following sections:

Introduction

Searching for Metadata in Published Content

Searching for Metadata in Versioned Content

Introduction
The metadata search feature uses the content expression language. You use different properties
when searching for metadata in published content and versioned content. The differences are
Integrating Search with WebLogic Portal 5-1

../cm/filesystemArchCM.html#wp1078317

Metadata Search ing
discussed in the relevant sections. A full list of supported properties is available in
com.bea.content.expression in the WebLogic Portal Javadoc.

Searching for Metadata in Published Content
This section describes searching for metadata in published content. The following sections
provide more detail:

Properties

The Search Object

Limitations

Examples

Properties
The following tables describe commonly used properties and operators A full list of supported
properties is available in com.bea.content.expression in the WebLogic Portal Javadoc.

Table 5-1 System Properties

System Property Description and Example

cm_path The Virtual Content Repository path to the content item.
cm_path = 'BEA Repository/books/Ulysses'

cm_uid The unique ID for a content item.
cm_uid = '0003456'

cm_parent_uid The ID of the parent for a content item.
cm_parent_uid = '87543'

cm_createdBy The user who created the content item.
cm_createdBy = 'jjoyce'

cm_modifiedDate The date the content item was last modified.
cm_modifiedDate = '04/01/2008'

cm_nodeName The name of the content item.
cm_nodeName != 'abc'

cm_isHierarchy Deprecated.
5-2 Integrating Search with WebLogic Portal

../javadoc/index.html
../javadoc/index.html

Search ing fo r Metadata in Pub l i shed Content
cm_isContent Deprecated.

cm_objectClass The content type associated with a content item.
cm_objectClass = 'simpleType'

cm_binaryName The file name of the binary value of a content item.
cm_binaryName = 'foo.gif'

cm_binarySize The size of the binary value of a content item (in bytes)
cm_binarySize = '188'

cm_contentType The MIME type for content item binary properties.
cm_contentType = 'image/gif'

cm_objectClassInstance Finds all instances of a given object class and all of its children.
cm_objectClassInstance = 'Product'

cm_value Find any property value on any nodes of a particular value.
cm_value = 'red'

Table 5-2 Operators

Operator Purpose

like Syntax textual like operator.

likeignorecase Syntax textual like (case insensitive) operator.

= Syntax textual equals operator.

!= Syntax textual not equals operator.

&& Syntax textual and logical operator.

in() Syntax textual in operator.

! [negate] Syntax textual not operator.

|| Syntax textual or logical operator.

> Syntax textual greater than operator.

Table 5-1 System Properties

System Property Description and Example
Integrating Search with WebLogic Portal 5-3

Metadata Search ing
The Search Object
You can search for metadata in a content repository using the com.bea.content.search object.
The search object takes in an expression that the API processes and return search results as
com.bea.content.Node objects. Listing 5-1 shows an example of a simple search.

Listing 5-1 Simple Search Example

ISearchManager searchManager = ContentManagerFactory.getSearchManager();

Search search = new Search(“cm_nodeName != null”);

search.setSortCriteria("cm_objectClass, cm_nodeName");

ISortableFilterablePagedList<Node> nodes =

searchManager.search(context, search);

< Syntax textual less than operator.

contains Syntax textual contains operator.

containsall() Syntax textual contains all operator.

containsany() Syntax textual contains any operator.

toProperty('<propertyName>') Use for special characters in property names such as spaces,
backslash, and so on.

Table 5-3 Wildcards

Wildcard Description Example

* Supports any characters. cm_NodeName like “ab*” matches “abcde”, “ab”,
“ab234”, “abc”, and so on.

_ Supports one character. cm_nodeName like “ab_” matches “abc”, “abd”, “ab2”,
and so on.

Table 5-2 Operators

Operator Purpose
5-4 Integrating Search with WebLogic Portal

Search ing fo r Metadata in Pub l i shed Content
The search manager API also supports various other types of searches like idSearch. For more
information, see the WebLogic Portal Javadoc.

Limitations
When using the BEA repository, metadata search results on implicit properties cannot be sorted.
To sort the returned data you must use postSearchSort method in the ISearchManager API.
That method is slower than native sorting, which is done using the search.setSortCriteria
method.

Examples
The expression language supported by search is based on a simple, easy to use grammar. It
supports a rich set of operations, and easily allows building complex queries using nested
expressions. To look at the various data types, such as strings, dates, numbers, and booleans
supported by the expression language, For more information, see the WebLogic Portal Javadoc.

Table 5-4 Examples

Example Description

cm_nodeName = 'hello' Returns all the nodes matching the name “hello”.

cm_nodeName = 'hello' || cm_nodeName =
'world'

Finds any node name that has the name “hello” or
“world”.

cm_nodeName = 'hello' && city =
'boston'

Find any node name of name “hello” and city of
“boston”.

cm_nodeName = 'hello' && (color =
'red' || color = 'blue')

Use the brackets (and) to find nested expressions.
Nesting follows a left to right order of evaluation.
This expression finds all nodes named hello, and
whose color property is either “red” or “blue”.

Complex Nesting Examples

cm_nodeName = 'hello' &&
((city = 'boston' || city =
'boulder') && (color = 'red'))

Finds any node named “hello” and whose color
property is “red” and whose city property is either
“boulder” or “boston”.

!(cm_nodeName = 'hello' && city =
'boston')

The negation ! operator returns an inverse result.
In this example, all the nodes that do not have the
name “hello” and the city “boston” are returned.
Integrating Search with WebLogic Portal 5-5

../javadoc/index.html
../javadoc/index.html

Metadata Search ing
Searching for Metadata in Versioned Content
This chapter describes searching for metadata search in versioned content. It contains the
following sections:

Limitations

Supported Attributes

Examples

Specific Properties for Versions

Limitations
Search for versioned content has some limitations because the tables that store versioned data can
be in a different data store than the ones that store published data. This means that you cannot
search for both published and versioned metadata with SQL queries. Therefore some properties
are not supported when searching on versioned content. Here’s a list of unsupported properties:

cm_isContent

cm_isHierarchy

Property Description and Example

cm_version The version number of the content.
cm_version = '6'

cm_versionComment Text describing the changes to the version.
cm_versionComment = 'Updates from Marketing'

cm_checkedOut Version is checked out.
cm_checkedOut = 'false'

cm_assignedToUser The user to which the node is assigned.
cm_assignedToUser = 'rjordan'

cm_role The role to which the node is assigned.
cm_role = 'Admin'

cm_latestVersion The latest version of the content.
cm_latestVersion = 'true'
5-6 Integrating Search with WebLogic Portal

Search ing fo r Metadata in Vers ioned Content
cm_objectClass

cm_path

cm_createdBy

cm_objectClassInstance

cm_parent_uid

cm_createdDate

Paths set via setSearthPaths in the Search object throw an error when that search
object is used in a versioned system search.

Searching for versioned content and searching for published content are mutually exclusive
because these search types use different APIs.

Supported Attributes
Attributes that retain their meaning from searching on versioned content are:

Examples
Table 5-6 shows some examples for searching versioned content (content used in a workflow).

Table 5-5 Supported Attributes for Versioned Content Search

Attribute Description

cm_nodeName Search for node name.

cm_uid Search for node by UID (User Identifier).

cm_value Search for any value in versioned data

cm_lifeCycleStatus Searching for nodes in any workflow state. For example,
cm_lifeCycleStatus = '3' (Ready for Approval).
Integrating Search with WebLogic Portal 5-7

Metadata Search ing
Table 5-6 Searching Versioned Content

Example Description

name = 'matt' && (age = 33 || age =
13)

Returns node versions matching the name “matt”
and age of “13” or “33”.

cm_version = '1' && city =
'calcutta'

Returns the first version of nodes and city of
“calcutta”.

cm_versionComment =
'DevUpdates' && product = 'portal'

Returns node versions that equal comments with
“DevUpdates” for the “portal” product.

cm_modifiedBy = 'weblogic' &&
product = 'portal'

Finds node versions modified by “weblogic” for
the “portal” product.

cm_lifeCycleStatus > 0 && article =
'development'

Returns node versions in any workflow state and
articles about “development”.

cm_nodeName = 'matt_2' &&
city = 'calcutta'

Returns node versions matching the name “matt_2”
and city of “calcutta”.

cm_checkedOut = true Finds node versions that are checked out.

cm_assignedToUser != null Returns versioned nodes that are assigned to users.

cm_value > 30 || cm_binaryName =
null

Finds node versions for any property with a value
greater than “30” or whose file name of a binary
value is unknown or undefined.

cm_role in ('weblogic','Admin') &&
cm_value > 30

Finds node versions that have roles in “weblogic”
and “Admin” and any property with a value greater
than “30”.

cm_version = '5' Returns node versions with a version number of
“5”.

age > 10 && (city in
('calcutta','boulder') || cm_role =
'Admin')

Finds node versions with an age value greater than
“10” and city of “calcutta” and “boulder” or role
assigned to “Admin”.

cm_uid = '2051' && city = 'boulder' Finds node versions with node ID “2051” and city
of “boulder”

cm_nodeName = 'foo' &&
cm_latestVersion = true

Returns the latest version of nodes named “foo”.
5-8 Integrating Search with WebLogic Portal

Part III Staging
During the staging phase of the portal life cycle, you configure your search engine according to
the configuration of your portal cluster where you will deploy your portal application.

Part III includes the following chapter:

Chapter 6, “Staging Search Capabilities”

If you moved on to the Production phase and then go back to make changes that affect the
development phase, you must redeploy your portal application in order to view your changes. The
BEA Propagation Utility performs the redeployment; see the BEA WebLogic Portal Production
Operations User Guide for more information.

For a detailed description of the staging phase of the portal life cycle, see the BEA WebLogic
Portal Overview. The portal life cycle is shown in the following graphic:
Integrating Search with WebLogic Portal

../prodOps/index.html
../prodOps/index.html
../overview/index.html
../overview/index.html

Integrating Search with WebLogic Portal

C H A P T E R 6
Staging Search Capabilities
When you move to a production environment, you must configure Autonomy to match the portal
environment you use.

This involves editing the configuration files for the search components you are using, deploying
the Autonomy Service Dashboard, and configuring Autonomy fetches to search for information
according to parameters you set.

Note: The Autonomy documentation is included in your WebLogic Portal installation directory
at <BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/docs.

The tasks covered in this chapter assume a typical Autonomy configuration running in a
WebLogic Portal cluster. Consult the Autonomy documentation if you want to create a more
complex configuration, such as running HTTPFetch on a separate server.

Figure 6-1 provides an example of a typical production environment.
Integrating Search with WebLogic Portal 6-1

Stag ing Search Capabi l i t i es
Figure 6-1 Example of WebLogic Portal Cluster Using Autonomy

This chapter discusses the following topics:

Installing Autonomy on Your Target Server

“Updating the Autonomy License”

Configuring Autonomy on Your Target Server

Setting up BEA Content Management Search

Staging File System Fetch within a WebLogic Cluster

Starting the Autonomy Services

Installing Autonomy Service Dashboard

Installing Autonomy on Your Target Server
You need to install the appropriate Autonomy engines for your server’s operating system.

When you installed WebLogic Portal, the Autonomy engine for the target operating system was
included. If you need a version of Autonomy for a different operating system than the operating
system on which you installed WebLogic Portal, you will need to download and install WebLogic
6-2 Integrating Search with WebLogic Portal

Ins ta l l ing Autonomy on Your Targe t Server
Portal onto the operating system for which you need Autonomy. You can then retrieve the
respective operating system files for Autonomy.

Note: Remember that due to licensing restrictions, you can only run one Autonomy IDOL
Server.

For example, if you downloaded and installed WebLogic Portal on a Windows server, the
Windows version of Autonomy was included in the download. If you want to install Autonomy
on a Linux server, you need to download and install the Linux version of WebLogic Portal in
order to have the correct version of Autonomy for a Linux machine.

Supported Operating Systems
WebLogic Portal makes available versions of Autonomy that are compatible with operating
systems that WebLogic Portal also supports. However, you may run Autonomy on separate
server that uses an operating system that WebLogic Portal does not support. For more
information about the supported configurations for Autonomy, see the Autonomy
documentation.

Note: To obtain Autonomy files for a non-WebLogic Portal supported operating system,
contact your Autonomy representative. For more information about configuring
Autonomy on a non-WebLogic supported operating system, see “Configuring the BEA
Content Management Fetch When Using a Non-WebLogic Portal Supported Operating
System” on page 6-14.

Installing Autonomy
To install Autonomy:

1. Create a directory on your target server for the Autonomy components.

2. From your WebLogic Portal installation, navigate to the Autonomy distribution for your
target operating system. For example,
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/<operatingsystem>
.

3. Copy the entire directory from your installation directory to the target directory on your target
server.
Integrating Search with WebLogic Portal 6-3

Stag ing Search Capabi l i t i es
Updating the Autonomy License
This section explains how to update the default Autonomy license with a production license. The
default license allows 10,000 documents to be indexed, while the production license allows
500,000 documents to be indexed.

To update your Autonomy license:

1. Stop all Autonomy Services. To do this, call the autonomy.cmd script with the stop
parameter. See “Starting the Autonomy Services” on page 6-17.

2. In the IDOLserver/DiSH directory, do the following:

a. Delete the uid and license directories.

b. Run the command: AutonomyDiSH.exe -revokelicense

3. In the IDOLserver/IDOL directory, do the following:

a. Delete the uid directory.

b. In the content, agentstore, category, and community directories under
IDOLserver/IDOL, delete the uid and license directories.

4. Create a backup of the existing IDOLserver/DiSH/licensekey.dat file to prevent
overwriting it.

5. Copy the production license file (licensekey.dat) into IDOLserver/DiSH.

6. Restart the Autonomy Services. See “Starting the Autonomy Services” on page 6-17.

7. Verify that the new license is accepted by reviewing the license.log files in the above
directories and verify that the license now allows 500,000 documents, rather than the
evaluation license limit of 10,000 documents. To do this, search in
IDOLserver\IDOL\logs\content_application.log for the string “This license allows
500000 documents to be indexed”.

Configuring Autonomy on Your Target Server
You need to modify your Autonomy configuration to match your production environment and the
parameters of your cluster. This includes modifying the respective configurations of the search
tools you are using to account for security concerns and their network location.

You also need to configure the types of information you want to include in your searches.
6-4 Integrating Search with WebLogic Portal

Conf igur ing Autonomy on Your Targe t Server
Note: For out-of-the-box implementation, you can set CONTENT_SEARCH_OPTION=full in the
startWebLogic script and add the necessary properties to the repository.

Table 6-1 lists the location of the configuration files you need to modify.

This section includes the following topics:

Configuring the Autonomy IDOL Server

Configuring the Autonomy DiSH

Configuring Agentstore

Configuring HTTP Fetch

Configuring File System Fetch

Configuring the Autonomy IDOL Server
The Intelligent Data Operating Layer (IDOL) server is responsible for indexing content as well
as processing queries. For more information about the IDOL server, see the Autonomy IDOL
Server documentation.

To configure the IDOL server for your production environment modify the
AutonomyIDOLServer.cfg file. The file is located
//autonomy/IDOLserver/IDOL/AutonomyIDOLServer.cfg.

To configure the Autonomy IDOL server:

1. Open the AutonomyIDOLServer.cfg file in a text editor.

Table 6-1 Autonomy Components and Their Respective Configuration Files

Autonomy Component Configuration File You Need to Modify

DiSH Server //IDOLserver/DiSH/AutonomyDiSH.cfg

IDOL Server //IDOLserver/IDOL/AutonomyIDOLServer.cfg

Agent Stores for the IDOL
Server

//IDOLserver/IDOL/agentstore/agentstore.cfg

HTTP Fetch //HTTPFetch/HTTPFetch.cfg

File System Fetch //FileSystemFetch/FileSystemFetch.cfg
Integrating Search with WebLogic Portal 6-5

Stag ing Search Capabi l i t i es
2. In the [License] section, edit the LicenseServerACIPort to match the port on which
DiSH is running, if you changed this port.

3. In the [Service] section, enter the port number by which service commands can be sent to
DiSH. By default this is 20003. Note that this port must not be used by any other service.

4. In the [Server] section,

– Edit the client list settings (IndexClients, AdminClients) for security as required.

– Edit the IndexPort and Port (ACI) settings as needed.

5. In the [Paths] section, edit the Modules and TemplateDirectory to point to the location
of these directories on the target system. These must be absolute paths.

6. Locate and edit all other directory or file path settings and adjust to point to the new location
(for example, the [NT_V4] Library). These must be absolute paths.

7. In the [Database] section, create and remove Autonomy databases as required for your
needs. Consult the Autonomy documentation for managing databases.

8. When finished, save your changes.

Configuring the Autonomy DiSH
The Distributed Services Handler (DiSH) is used to manage Autonomy components. You can
access DiSH functions through the Autonomy Service Dashboard or use Autonomy’s ACI
interface. For more information about the Autonomy DiSH, see the Autonomy DiSH
documentation.

To configure DiSH, you can use a text editor to modify the autonomyDiSH.cfg file. The
autonomyDiSH.cfg file is located in the
//autonomy/IDOLserver/IDOL/AutonomyIDOLDiSH.cfg directory.

To configure Autonomy DiSH:

1. Open the autonomyDiSH.cfg file in a text editor.

2. In the [Service] section, edit the ServicePort setting if needed to avoid port conflicts.

3. In the [Server] section, edit the following:

– Modify the AdminClients as required for establishing security as needed.

– Modify the Port setting if needed to avoid port conflicts.

4. In the [Email] section, make modifications as defined by your company’s SMTP setup.
6-6 Integrating Search with WebLogic Portal

Conf igur ing Autonomy on Your Targe t Server
5. In the [ChildServices] section, remove the setting for the BEACMRepoFetch service.

6. Remove the [BEACMRepoFetch] section.

7. In the [IDOLServer], [HTTPFetch] and [FileSystemFetch] sections, modify each path
to ensure the executable files use the location on the target server. These paths must be
absolute.

8. If you changed the Service Port or ACI port (or plan on doing so in the agentstore.cfg
file), you need to adjust these settings to match.

9. When finished, save your changes.

Configuring Agentstore
Agents provide the facilities to find and monitor information from a configurable list of internet
and intranet sites, news feeds, chat streams and internal repositories that you want to enable your
portal users to search.

For more information about using agents, see the Autonomy IDOL Server Guide.

To configure the Agentstore for your cluster, edit the agentstore.cfg file. The file is located
//IDOLserver/IDOL/agentstore/agentstore.cfg.

To configure agentstore:

1. Open the agentstore.cfg file in a text editor.

1. Modify [License], [Service] and [Server] settings as required for port conflicts and
security.

2. Locate and replace all file and directory settings and adjust to point to the new location. The
paths must be absolute.

– In the [Paths] section, change the TemplateDirectory to point to the new location.

– In the [Logging] section, change the LogDirectory and the LogArchiveDirectory
to point to the new location.

– In the [LanguageTypes] section, change the LanguageDirectory to point to the new
location.

3. When finished, save your changes.
Integrating Search with WebLogic Portal 6-7

Stag ing Search Capabi l i t i es
Configuring HTTP Fetch
HTTP Fetch is responsible for crawling specified websites and passes the content to the
IDOLServer for indexing.You need configure this fetch and create HTTP fetch jobs that you
need.

You do this by editing the HTTPFetch.cfg file. It is located
//autonomy/HTTPFetch/HTTPFetch.cfg

To configure the HTTP Fetch:

1. Open the HTTPFetch.cfg in a text editor.

1. The [Service] section determines which machines are permitted to use and control the
HTTPFetch service via the service port. Modify the port and client security control as
required.

Note: If you modify the port settings in this file, you need to update the HTTPFetch port
settings in the AutonomyDiSH.cfg file.

2. The [Default] section contains the default settings that apply to all the jobs that you define
in [Spider]section. If you changed the IndexPort in the AutonomyIDOLserver.cfg file,
you need to modify the IndexPort setting to match.

3. When finished, save your changes.

4. Create HTTP Fetch jobs as required (to spider and index the websites you want to search).
For information about creating fetch jobs, see the Autonomy HTTPFetch documentation.

Configuring File System Fetch
File System Fetch polls specified areas of a filesystem and, when content changes are found,
imports the content and passes the content to the IDOLServer for indexing.

To control how files are imported from an internal location (for example, from a computer on
your network), you need to configure File System Fetch and then create the fetch jobs you need.

The File System Fetch configuration file is located:
//autonomy/FileSystemFetch/FileSystemFetch.cfg

Use a text editor to edit the FileSystemFetch.cfg file to match your production environment.

To configure File System Fetch:
6-8 Integrating Search with WebLogic Portal

Se t t ing up BEA Content Management Search
1. Modify the [Server] and [Service] sections to change ports, if needed, and to control
security. If you modify the port information in this file, you need to also update the settings
related to File System Fetch in the AutonomyDiSH.cfg file.

2. In the [Default] section, modify the IndexPort to match the IndexPort set in
AutonomyIDOLserver.cfg, if necessary.

3. When finished, save your changes.

4. Create File System Fetch jobs as required (to spider and index certain file system locations)
for your needs. For information about creating fetch jobs, see the Autonomy File System
Fetch documentation.

If deploying WebLogic Portal in a cluster environment, you need to ensure that each machine in
your cluster can access the content indexed by File System Fetch, see “Staging File System Fetch
within a WebLogic Cluster” on page 6-16.

Setting up BEA Content Management Search
To set up full-text search for your BEA repositories, you must configure the BEA Content
Management fetch and then enable your BEA repositories for full-text search.

This section includes the following topics:

Configuring the BEA Content Management Fetch

Configuring the BEA Content Management Fetch When Using a Non-WebLogic Portal
Supported Operating System

Staging File System Fetch within a WebLogic Cluster

Configuring the BEA Content Management Fetch
The BEA content management fetch enables full-text search for BEA repositories. For each
managed server in your WebLogic Portal cluster, you need to configure the BEA content
management fetch.

To configure the content management fetch:

1. Set an environment variable called CONTENT_SEARCH_OPTION and assign it a value of
minimal.
Integrating Search with WebLogic Portal 6-9

Stag ing Search Capabi l i t i es
2. Edit the BEACMRepoFetch.cfg file located in
//operating_system_directory/internal/BEACMRepoFetch/BEACMRepoFetch.cfg.
This file configures the settings for the full-text search of BEA repositories.

– Modify [Server] and [Default] settings to change port numbers and client security
as required.

– Modify [Default] DreHost settings to point to the hostname or IP address of the
server which is running the IDOLServer.

– Modify [Default] IndexPort to match the IndexPort setting in the
AutonomyIDOLServer.cfg file on the remote server.

3. When finished, save your changes.

WARNING: Do not modify any other settings within this file.

Configuring BEA Repositories for Full-Text Search
After you have configured the BEA Content Management Fetch, you need to enable your BEA
repositories to take advantage of full-text search. This ensures your BEA repositories can locate
the Autonomy IDOL server.

This section includes the following topics:

Adding Autonomy Properties to your BEA Repository

Editing Full-Text Search Properties

Adding Autonomy Properties to your BEA Repository
You need to define Autonomy properties for your BEA repositories within the Virtual Content
Repository using the Portal Administration Console. These properties ensure that your BEA
repositories can locate the Autonomy services.

Table 6-2 lists the Autonomy properties you need to add.
6-10 Integrating Search with WebLogic Portal

Se t t ing up BEA Content Management Search
Table 6-2 Autonomy Properties for BEA Repositories

Property Definition

search.staging.area You need to set this property ONLY if you are using
using a shared drive to index content. For more
information, see “Configuring the BEA Content
Management Fetch When Using a Non-WebLogic
Portal Supported Operating System” on page 6-14.

When setting this property, you must use the system
default file delimiter or the data will not be properly
indexed, as shown in the following examples:
• Windows:

search.staging.area=\..\..\cm\thi
rdparty\autonomy-wlp10\internal\B
EACMRepoTemp

• UNIX:
search.staging.area=/../../cm/thi
rdparty/autonomy-wlp10/internal/B
EACMRepoTemp

Note: This path is appended to the <BEA_HOME>
directory and therefore needs to be relative
to that directory. When you set this path, be
sure to start the path with a file separator
character and use slashes appropriate for
your operating system. Also be sure all
directories in the path from
wlserver_10.0 exist.

The default directory is:
/cm/thirdparty/autonomy-wlp10/intern
al/BEACMRepoTemp

search.engine.host This is the hostname for the machine on which the
IDOL server resides.

search.index.port This is the Autonomy index port.

This value needs to match the
[Server]IndexPort setting in the
AutonomyIDOLServer.cfg file. See
“Configuring the Autonomy IDOL Server” on
page 6-5 for information about this file.
Integrating Search with WebLogic Portal 6-11

Stag ing Search Capabi l i t i es
Note: After you make any changes to repository properties, Portal Administration Console
users must log out and log back in to view the changes.

To add a property to a repository:

1. From the main menu of the Portal Administration Console, select Content > Content
Management.

2. In the resource tree, click Repositories to view the Manage | Repositories tree.

3. In the Manage | Repositories resource tree, select the BEA Repository to which you want to
add a property.

4. In the Properties section on the Summary tab, click Add Property.

5. In the Add Property dialog, enter the name and value for your property. Enter each property
included in Table 6-2.

6. Click Save.

A summary of the new repository information is displayed in the Summary tab.

Editing Full-Text Search Properties
You need to ensure that all full-text functions are enabled for each BEA repository you want to
enable to use full-text search.

Table 6-3 lists the advanced full-text search repository properties and how they are used.

search.query.port This is the port setting that is used by the IDOL
server.

This value needs to match the [Server]Port
setting in the AutonomyIDOLServer.cfg file.
See “Configuring the Autonomy IDOL Server” on
page 6-5 for information about this file.

search.urlconnection.timeout When Autonomy database commands are issued
using HTTP to the search indexing port and the
search engine port, this time-out setting is specifies
the HTTP connection time-out, in milliseconds. The
default time-out is 180000 (180 seconds).

Table 6-2 Autonomy Properties for BEA Repositories

Property Definition
6-12 Integrating Search with WebLogic Portal

Se t t ing up BEA Content Management Search
To edit full-text search repository properties:

1. Select Content > Content Management from the navigation menu at the top of the console.

2. Select Manage | Repositories.

3. In the resource tree, click the repository you want to modify to view its Summary tab.

4. In the Advanced section, click Advanced to view the Edit Advanced Properties for
Repository dialog.

5. In the Edit Advanced Properties for Repository dialog, ensure that each property in Table 6-3
is enabled.

6. When finished making changes, click Save.

Your modifications display in the Advanced section of the Summary page.

Note: After you disconnect a repository or make any changes to repository properties, Portal
Administration Console users must log out and log back in to view the changes.

Troubleshooting Full-Text Search for BEA Content Management Repository
Use the following to check full-text search in your Autonomy configuration:

Verify that the Autonomy processes are running: AutonomyDiSH.exe, content.exe, and so
on.

Verify that the data is indexed in Autonomy. To view all data in Autonomy, use
http://localhost:9014/action=list.

Table 6-3 Required Settings for Full-Text Search

Advanced Property What it does:

Search Enabled Enables users to search the repository using metadata.

Search Indexing Enabled Allows content to be indexed for portal search. This
enables portal developers to include full-text content
search or metadata search in any portlets that they
develop.

Full-Text Search Enabled Enables users to search the repository using the full-text
of the content within the repository.
Integrating Search with WebLogic Portal 6-13

Stag ing Search Capabi l i t i es
Verify that the repository configuration settings are enabled:

– cm_fireRepositoryEvents=true

– search-is-enabled=true

– search-indexing-is-enabled=true

– fulltext-search-is-enabled=true

Verify that the ObjectClass is marked searchable.

Verify that ObjectClass property definitions are marked searchable.

Note: For more information about ObjectClass, see the WebLogic Portal JavaDoc.

Verify that the CONTENT_SEARCH_OPTION is configured to start Autonomy. This option is
in the domain/bin/startWebLogic script.

Scan the Autonomy log files (files ending in .log) for warnings and errors. These files are
under <BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/... directory.

Verify that indexed data is being written to the FileSystemFetch directory specified via the
search.staging.area repository configuration property. The default tree is under
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/internal/BEACMRep
oTemp.

Configuring the BEA Content Management Fetch When
Using a Non-WebLogic Portal Supported Operating System
If you run Autonomy on an operating system that is not also supported by WebLogic Portal, you
must configure BEA content management search differently. You must create a shared filesystem
that can be written to by WebLogic Portal and also accessed by Autonomy’s server.

Figure 6-2 provides an example of a remote Autonomy installation using a shared file system.
6-14 Integrating Search with WebLogic Portal

../javadoc/index.html

Se t t ing up BEA Content Management Search
Figure 6-2 Example Remote Autonomy Installation on a non-WebLogic Portal supported operating system.

To configure BEA Content Management search:

1. Stop all Autonomy services.

1. Create a shared directory where shared_drive is the name of your shared drive.

2. On the Autonomy host, mount shared_drive.

3. For each managed server in your cluster, mount shared_drive.

WLP

Managed Node

Shared File

System

WLP

Administration Server

WLP

WLP WLP

Managed Node

Managed NodeManaged Node

Write to BEA CM Repository

Read by

WLP Cluster

(Solaris 10 on x86 or AMD)

BEACMRepoFetch

(Solaris 10 on SPARC)

Autonomy Host
Integrating Search with WebLogic Portal 6-15

Stag ing Search Capabi l i t i es
Note: Mount shared_drive with the same exact mapping on each managed server.

4. On each managed server, set the CONTENT_SEARCH_OPTION environment variable to none.
This prevents Autonomy from starting the content management search.

5. Using the WebLogic Portal Administration Console, define a repository property called
search.staging.area with a value of shared_drive. For more information on setting
other Autonomy properties, see “Staging File System Fetch within a WebLogic Cluster” on
page 6-16.

6. Use a text editor to modify the
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/<operating_system
_directory>/internal/BEACMRepoFetch/BEACMRepoFetch.cfg file to point to the
shared_drive you have created. This will ensure that BEA content gets indexed.

– In the [BEACMImport] section, set the DirectoryPathCSVs variable to match the
directory of your shared_drive/binary

– In the [BEACMRepoIDXImport] section, set the DirectoryPathCSVs variable to
match the location of your shared_drive/nonbinary .

7. Restart Autonomy services. See the autonomy.sh or autonomy.cmd file in
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10 for a sample start
script.

Staging File System Fetch within a WebLogic Cluster
When you deploy WebLogic Portal in a cluster environment, each machine in the cluster must be
able to access information and content that is indexed by Autonomy fetches. For example, both
BEA repositories and Autonomy’s File System Fetch use filesystems to store indexed content.
You should configure each machine in your cluster to be able to access these filesystems.

Note: The BEA Content Management Fetch does not require these steps, see “Setting up BEA
Content Management Search” on page 6-9

File System Fetch is used to index content that resides in a filesystem. When indexing, unless
otherwise configured, the DREREFERENCE property is set to the complete path of the file.
Therefore, with default queries, the link to return the actual content (file) will be the path to the
file. Within a server cluster, each node in the cluster must have access to the filesystem on which
the document resides.

1. Create a shared filesystem that is accessible by both the host machine upon which File System
Fetch resides and also accessible by each node in your WebLogic Portal cluster. The mapping
6-16 Integrating Search with WebLogic Portal

Star t ing the Autonomy Serv ices
to the path where the files reside must be the same for each node in the cluster and the
FileSystemFetch host.

2. Place the files to be imported/indexed into the shared drive as required.

3. Configure the FileSystemFetch job to import/index the contents of the shared drive using the
mapping from the above step. For more information about configuring File System Fetch, see
the Autonomy File System Fetch documentation.

Note: When returning query results to the browser and displaying a link to access/download the
file, pass the DREREFERENCE property (which will contain the fully qualified path/file
name) through a servlet which will stream the file to the browser. For more information
about indexing and queries, see the Autonomy IDOL Server Guide and the Autonomy
JavaDoc.

Starting the Autonomy Services
You must configure the start script that is used to start Autonomy services on your server. You
can either copy these to your target server and modify as required, based on your target directory
or you can create similar scripts to meet your needs.

The Autonomy start script depends on two environment variables that should be set on your
portal domain server: WL_ and CONTENT_SEARCH_OPTION.

WL_ must be set to the weblogic directory in your BEA WebLogic installation

CONTENT_SEARCH_OPTION is used to indicate that level to which Autonomy will run.

– full indicates to run the Autonomy DiSH engine and have it start all configured
children

– minimal indicates to only run the BEACMRepoFetch engine for use within the BEA
repositories (this is the minimal production configuration when using BEA repositories)

– none disables all Autonomy services.

You call this script with either start or stop as a parameter.

1. Review the autonomy.cmd/sh files that reside in the
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10 directory. Listing 6-1
shows an example script.

2. Modify as necessary. Be sure to map the Autonomy shared library directories and ensure that
the AutonomyDiSH.exe is started.
Integrating Search with WebLogic Portal 6-17

Stag ing Search Capabi l i t i es
Listing 6-1 Example Autonomy Start Script

setlocal

if "%WL_%" == "" goto :NO_WL_

if "%1" == "" goto :USAGE

cd %WL_%\cm\thirdparty\autonomy-wlp10\win32

if "%1" == "start" (

 echo Cleaning up license and uid files

 rmdir /s /q HTTPFetch\license >nul 2>&1

 rmdir /s /q IDOLserver\DiSH\license >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\content\license >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\agentstore\license >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\category\license >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\community\license >nul 2>&1

rmdir /s /q HTTPFetch\uid >nul 2>&1

 rmdir /s /q internal\BEACMRepoFetch\uid >nul 2>&1

 rmdir /s /q IDOLserver\DiSH\uid >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\uid >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\content\uid >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\agentstore\uid >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\category\uid >nul 2>&1

 rmdir /s /q IDOLserver\IDOL\community\uid >nul 2>&1

 rmdir /s /q FileSystemFetch\uid >nul 2>&1

echo Starting Autonomy with CONTENT_SEARCH_OPTION =

%CONTENT_SEARCH_OPTION%

 if "%CONTENT_SEARCH_OPTION%" == "full" (

 if not exist IDOLserver\DiSH\AutonomyDiSH.exe (

@echo Unable to locate the Autonomy DiSH executable. Cannot start

the search engine.

goto :_the_end

)

 cd IDOLserver\DiSH

 %WL_%\server\bin\beaexecg.exe -hidewindow -command:"AutonomyDiSH.exe"

 @echo Autonomy Distributed Search Handler engine started.

)
6-18 Integrating Search with WebLogic Portal

Star t ing the Autonomy Serv ices
 if "%CONTENT_SEARCH_OPTION%" == "minimal" (

 if not exist internal\BEACMRepoFetch\BEACMRepoFetch.exe (

@echo Unable to locate the BEACMRepoFetch executable. Cannot start

the search engine.

goto :_the_end

)

 cd internal\BEACMRepoFetch

 %WL_%\server\bin\beaexecg.exe -hidewindow -command:"BEACMRepoFetch.exe"

 @echo Autonomy BEACMRepoFetch engine started.

)

 goto :_the_end

)

if "%1" == "stop" (

 @REM taskkill depends on the path to WBem. Adding it here

 @REM just to ensure that it exists on the system path.

 set PATH=%SystemRoot%\System32\Wbem;%PATH%

 if "%CONTENT_SEARCH_OPTION%" == "minimal" (

 taskkill /F /T /IM BEACMRepoFetch* >nul

 @echo Autonomy BEACMRepoFetch engine stopped.

)

 if "%CONTENT_SEARCH_OPTION%" == "full" (

 taskkill /F /T /IM AutonomyDiSH* >nul

 @echo Autonomy processes stopped.

)

 goto :_the_end

)

goto :USAGE

:NO_WL_

@echo The environment variable WL_ is not set. Cannot start Autonomy DiSH.

goto _the_end

:USAGE

@echo Usage: "autonomy.cmd [start|stop]"

pause

goto _the_end
Integrating Search with WebLogic Portal 6-19

Stag ing Search Capabi l i t i es
:_the_end

endlocal

3. Run your script.

4. Verify that the services are running. On Windows, use the TaskManager application and view
the Processes tab. If using Unix, use the ps command to view a list of services that are
currently running. The following services should be running:

– content.exe

– category.exe

– community.exe

– agentstore.exe

– AutonomyIDOLserver.exe,

– AutonomyDiSH.exe

– HTTPFetch.exe

– FileSystemFetch.exe.

5. Inspect the log files for each of the services to verify that there were no errors such as port
conflicts, license restrictions, and so on.

Stopping Autonomy Services in Windows 2000
On a Windows 2000 host, content management full-text search requires the PsKill utility to be
installed and available in the PATH. PsKill is required to properly shut down the full-text search
processes when the domain is shut down. The PsKill utility can be found at:
http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/PsKill.mspx.

After installing it, run the PsKill command once to accept the license. Make sure it exists on your
system PATH, and then restart the server. The scripts can now properly shut down the full-text
search processes.

Installing Autonomy Service Dashboard
The Autonomy Service Dashboard is an stand-alone front-end web application that allows
administrators to manage all Autonomy modules and child services running locally or remotely.
6-20 Integrating Search with WebLogic Portal

http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/PsKill.mspx

Ins ta l l i ng Autonomy Serv i ce Dashboard
The Dashboard communicates with one or more Autonomy Distributed Service Handler (DiSH)
modules that provide the back-end process for monitoring and controlling all the Autonomy child
services, such as fetches.

You deploy the Autonomy Service Dashboard as a portal application within your enterprise
application using the WebLogic Server Console. Before deploying the dashboard, you must
modify the configuration to match your production environment.

For complete documentation on how to use the Autonomy Service Dashboard, see the Autonomy
DiSH documentation.

This section includes the following topics:

Prepare the Dashboard for Installation

Deploy the Autonomy Service Dashboard

Prepare the Dashboard for Installation
Before you deploy the Autonomy Service Dashboard, you need to edit the location configuration
to match the new deployment location. The default location that is used is:
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/lib/.

To prepare the Autonomy Service Dashboard for installation:

1. Copy the autonomyservicedashboard.cfg to its new location.

2. Edit the configuration information to match the new location by editing the web.xml file for
the Autonomy Service Dashboard.

a. Create a temporary directory to use when completing your edits. For example,
c:/temp/working

b. Copy the autonomyservicedashboard.war to your working directory.

c. Using a compression utility such as WinZip or JavaJar, unzip the
autonomyservicedashboard.war.

d. Configure the WEB-INF/web.xml file by editing the <context-param> value to match
the new location of the autonomyservicedashboard.war file. The default location is
<BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/lib.

e. Save the C:/working/META-INF/web.xml file.
Integrating Search with WebLogic Portal 6-21

Stag ing Search Capabi l i t i es
3. In the C:/temp/working directory, re-zip or re-compress the
autonomyservicedashboard.war file. Overwrite the existing
autonomyservicedashboard.war file with the new file of the same name that contains
your modified web.xml file. Be sure to keep the files in their original directory structure,
including the META-INF directory.

4. Copy the autonomyservicedashboard.war file you just created back to the location where
you want to locate the Autonomy Service Dashboard. For example,
<BEA_HOME>/wlserver_10.0/portal/thirdparty/autonomy-wlp10/common/lib/.

Deploy the Autonomy Service Dashboard
You should deploy the Autonomy Service Dashboard in the same domain as is used by your
portal cluster. However it needs to be deployed as a stand-alone application rather than part of
your portal application.

Note: You can also deploy the Autonomy Service Dashboard into another web application
container, such as Tomcat.

After you deploy the Autonomy Service Dashboard, you can use the default username of admin
and the default password of admin to log in.

To deploy the Autonomy Service Dashboard:

1. From the WebLogic Portal domain where you wish to deploy the Autonomy Service
Dashboard, run the WebLogic Server Console.

2. In the Domain Structure section, select Deployments. This displays a list of the deployed
components.

3. In the Change Center section, click Lock & Edit.

4. In the Summary of Deployments section, click Install.

5. Navigate to the location of the autonomyservicedashboard.war file and select it.

6. Click Next.

7. Select Install this deployment as an application and click Next.

8. Make changes as required

9. Click Finish.

10. In the Summary of Deployments section, review any messages or errors displayed.
6-22 Integrating Search with WebLogic Portal

Ins ta l l i ng Autonomy Serv i ce Dashboard
11. In the Change Center section, click Activate Changes.

12. Verify that the autonomyservicedashboard deployment is prepared.

13. Mark the check box next to the autonomyservicedashboard deployment and click Start >
Servicing all requests.

14. In the Start Application Assistant, click Yes.

15. Navigate to the Autonomy Service Dashboard to verify that is it deployed. The default URL
is: http://localhost:7001/autonomyservicedashboard.

16. Using the default login (admin) and password (admin), log in to the Autonomy Service
Dashboard.

17. Configure the Autonomy Service Dashboard to point to your DiSH implementation (use the
same server and port settings that you used when you edited the autonomyDiSH.cfg file in
“Configuring the Autonomy DiSH” on page 6-6.

For complete documentation on how to use the Autonomy Service Dashboard, see the
Autonomy DiSH documentation.

18. Ensure that the IP address of the computer(s) running the Autonomy Service Dashboard are
configured in the AdminClient settings of the services. For information on how to configure
these settings, see the Autonomy IDOL Server documentation.
Integrating Search with WebLogic Portal 6-23

Stag ing Search Capabi l i t i es
6-24 Integrating Search with WebLogic Portal

Part IV Production
This section contains guidelines and procedures to manage search configurations after you have
deployed your portal and are running in production mode.

Part IV contains instructions for tasks you should accomplish in the production phase and
includes the following chapter:

Chapter 7, “Using Search in Production”

For a description of the Production phase of the portal life cycle, see the BEA WebLogic Portal
Overview. The portal life cycle is shown in the following graphic:
Integrating Search with WebLogic Portal

../overview/index.html
../overview/index.html

Integrating Search with WebLogic Portal

C H A P T E R 7
Using Search in Production
After you have deployed your portal, you can manage your search services.

Note: The Autonomy documentation is included in your WebLogic Portal installation directory
at <BEA_HOME>/wlserver_10.0/cm/thirdparty/autonomy-wlp10/common/docs.

This chapter includes the following sections:

Using the Autonomy Service Dashboard

Re-Indexing BEA Content

Using the Autonomy Service Dashboard
You can either use using the Autonomy Service Dashboard. The Autonomy Service Dashboard
allows you to access the Autonomy DiSH server which monitors the performance of Autonomy’s
search services.

You can also monitor services using Autonomy’s ACI interface. For more information about
monitoring search services, see the Autonomy DiSH documentation.

Re-Indexing BEA Content
You can re-index BEA content at any time. For example, you may need to re-index BEA content
if your indexes get corrupted (power outage, hardware problems, and so on).

WebLogic Portal provides a script that you can use to re-index BEA content. You can either use
command line arguments or a .properties file to indicate the content you want to index.
Integrating Search with WebLogic Portal 7-1

Us ing Search in P roduct ion
Note: WebLogic Server must be running when re-indexing content.

To re-index content, do the following:

1. From any managed server in your cluster, navigate to the index_cm_data.cmd/sh script. It
is located in the <BEA_HOME>/wlserver_10.0/cm/bin directory.

Tip: You can view help for re-indexing content by typing index_cm_data -help.

2. Optionally, if using the cm_indexer.properties file, modify the properties file to match
the parameters of your configuration. Listing 7-2 provides an example of the
cm_indexer.properties file.

3. Run the script. Table 7-1 provides a complete listing of the command line arguments and their
descriptions. If no arguments are set, the cm_indexer.properties is assumed and used. See
Listing 7-2 for an example of a cm_indexer.properties file. If using command line
arguments, see Listing 7-3 for an example.

Listing 7-1 Example of Using the cm_indexer.properties File

C:\bea\weblogic100\cm\bin\index_cm_data

Listing 7-2 Sample cm_indexer.properties File

Set verbose to true if you want to view any error messages.

verbose=true

#Use username and passowrd that is used to access the portal application.

user=weblogic

password=weblogic

#Use the t3 protocol to refer to the WebLogic Server URL

url=t3://localhost:7001

#Indicate the name of the repository

repository=Shared Content Repository

#Indicate the name of the portal application

application=portalApp

#Optionally, indicate which content types you want to index.
7-2 Integrating Search with WebLogic Portal

Re- Index ing BEA Content
type=

#Indicate the repository path of the content you want to index.

path=/Shared Content Repository

Listing 7-3 Example of Using Command Line Arguments:

C:\bea1204\weblogic100\cm\bin\index_cm_data -verbose -user weblogic

-password weblogic -url t3://localhost:7001 -repository myRepo -application

myPortalApp -path \myRepo

Table 7-1 Command Line Arguments for the cm_index_data Script

Argument Description

verbose Set verbose to true to view error messages.

user The user name.

password The user password.

url The URL of the WebLogic Server. For example, when running the
CM_INDEX_DATA script for the local machine, this URL should be:
t3://localhost:7001.

Note that you should use the T3 protocol, not HTTP.

repository Name of the repository you want to index.

application Name of the portal application that uses the repository.

type Optional. Indicate which content type you want to index.

path The path of the repository or repository folders you want to index. For
example, if you want to index the entire repository use
path=/RepositoryName. If you want to index a particular folder
within the repository, use path=/RepositoryName/FolderName.
Integrating Search with WebLogic Portal 7-3

Us ing Search in P roduct ion
7-4 Integrating Search with WebLogic Portal

	Contents
	Introduction
	Introducing Search
	Search in the Portal Life Cycle
	Architecture Phase
	Development Phase
	Staging Phase
	Production Phase

	Getting Started
	Locating the Autonomy Product
	Licensing Autonomy Modules
	Determining the Number of CPUs for Your Search Needs
	Choosing an Operating System
	System Requirements
	Upgrading and Getting Support

	Disabling Search/ Search Indexing
	Autonomy Documentation

	Part I Architecture
	Architectural Considerations for Search
	Understanding How Search is Implemented
	Deciding What Information to Index
	Maximum Amount of Indexed Content

	Architectural Recommendations
	Choosing an Operating System

	Part II Development
	Using Search when Developing Your Portal
	Preparing to Develop a Portal with Search
	Configuring Search Capabilities in Your Development Environment
	Installing Autonomy Portlets

	Writing Autonomy-based Applications and Portlets
	Creating Search Portlets for BEA Content Repositories

	Multi-language Searching and Indexing
	One Language per Autonomy Server
	One Language per Repository
	Mixing Languages Within a Repository
	Configuring Automatic Language Detection
	Creating Queries

	Enterprise Search for Microsoft Word, Excel, and PowerPoint Files in Multibyte Languages
	Settings in omnislave.cfg
	Settings in AutonomyIDOLServer.cfg
	GroupSpace Encoding

	Metadata Searching
	Introduction
	Searching for Metadata in Published Content
	Properties
	The Search Object
	Limitations
	Examples

	Searching for Metadata in Versioned Content
	Specific Properties for Versions
	Limitations
	Supported Attributes
	Examples

	Part III Staging
	Staging Search Capabilities
	Installing Autonomy on Your Target Server
	Supported Operating Systems
	Installing Autonomy

	Updating the Autonomy License
	Configuring Autonomy on Your Target Server
	Configuring the Autonomy IDOL Server
	Configuring the Autonomy DiSH
	Configuring Agentstore
	Configuring HTTP Fetch
	Configuring File System Fetch

	Setting up BEA Content Management Search
	Configuring the BEA Content Management Fetch
	Configuring BEA Repositories for Full-Text Search
	Configuring the BEA Content Management Fetch When Using a Non-WebLogic Portal Supported Operating System

	Staging File System Fetch within a WebLogic Cluster
	Starting the Autonomy Services
	Stopping Autonomy Services in Windows 2000
	Installing Autonomy Service Dashboard
	Prepare the Dashboard for Installation
	Deploy the Autonomy Service Dashboard

	Part IV Production
	Using Search in Production
	Using the Autonomy Service Dashboard
	Re-Indexing BEA Content

