
BEAWebLogic
Portal®

Federated Portals Guide

Version 10.0
Revised: March 2007

BEA WebLogic Portal Federated Portals Guide iii

Contents

1. Introduction
Federation in the Portal Life Cycle . 1-1

Architecture . 1-2

Development . 1-3

Staging . 1-3

Production. 1-3

Getting Started . 1-3

Prerequisites . 1-4

Related Guides . 1-4

Using this Guide . 1-5

2. What are Federated Portals?
Overview . 2-1

Basic Terminology. 2-3

Traditional Portals: Before Federation. 2-3

Federated Portals: A New Paradigm . 2-4

Advantages of Federation . 2-5

Overview. 2-5

Reducing the Cost of Portal Deployment . 2-5

Plug and Play SOA . 2-6

Increasing the Flexibility of Release Schedules . 2-6

Reducing the Cost of Testing Your Portal . 2-6

iv BEA WebLogic Portal Federated Portals Guide

Decreasing Dependencies Among Software Components. 2-6

Promoting Reuse of Portal Components . 2-7

Interoperability. 2-7

3. Federated Portal Architecture
Key Actors in a Federated Portal . 3-1

Federating Books and Pages . 3-3

What is WSRP?. 3-3

Understanding Producers and Consumers. 3-4

Overview . 3-5

WebLogic Portal Producers . 3-6

WebLogic Portal Consumers . 3-10

Cookie Handling . 3-13

Life Cycle of a Remote Portlet . 3-13

Rendering a Remote Portlet . 3-14

Interacting With a Remote Portlet . 3-18

Rendering Versus Interaction . 3-21

Interportlet Communication with Events . 3-22

Retrieving Render Dependencies. 3-23

Summary of Federated Portal Architecture. 3-24

For More Technical Details. 3-26

4. Creating Remote Portlets, Pages, and Books
Introduction . 4-1

What Types of Portlets Can Be Remote? . 4-2

Creating a Remote Portlet . 4-2

Overview . 4-2

Setting Up the Example . 4-3

BEA WebLogic Portal Federated Portals Guide v

Locating and Consuming a Portlet . 4-4

Viewing the Portlet . 4-12

Summary. 4-13

Creating Remote Pages and Books . 4-14

Basic Procedure . 4-14

5. Configuring Remote Portlets
Applying a Look and Feel to a Remote Portlet . 5-1

Modifying Modes and States in a Remote Portlet . 5-2

What are Modes and States?. 5-2

Modes and States in Remote Portlets . 5-3

Changing Modes and States in Remote Portlets. 5-5

Handling Errors in Remote Portlets. 5-6

Configuring an Error Page in Workshop for WebLogic. 5-6

Configuring an Error Page in the .portlet File . 5-7

Setting Preferences on a Remote Portlet . 5-8

What is a Portlet Preference? . 5-9

Portlet Preferences and Remote Portlets . 5-9

Managing Portlet Instances through Registration . 5-12

Using Backing Files with Remote Portlets . 5-13

Setting a Timeout Value on a Remote Portlet . 5-13

Overview . 5-14

Setting Default Timeout Values . 5-14

Setting Timeouts for Individual Remote Portlets . 5-15

Modifying WSRP Markup and Messages . 5-15

Remote Portlet Properties . 5-15

Proxy Portlet Properties . 5-16

Other Portlet Properties . 5-17

vi BEA WebLogic Portal Federated Portals Guide

6. Offering Books, Pages, and Portlets to Consumers
Introduction . 6-1

Offering Portlets on a Producer. 6-2

Offering Books and Pages on a Producer . 6-3

Setting Up the Example . 6-4

Creating a Remoteable Page (or Book) . 6-4

Summary . 6-8

Rules for Creating Remoteable Books and Pages . 6-8

7. Interportlet Communication with Remote Portlets
Introduction . 7-1

Firing and Handling a Minimize Event. 7-2

Setting Up Your Environment . 7-2

Creating the Portlets on the Producer . 7-3

Creating the Consumer Portlets . 7-17

Testing the Application . 7-20

Inside the Remote Portlet File . 7-22

Data Transfer with Custom Events . 7-23

Retrieving the Event on the Producer . 7-24

Firing the Event in the Consumer . 7-28

8. Configuring a WebLogic Server Producer
Introduction . 8-1

Using WSRP in a Basic WebLogic Server Domain . 8-2

Create a WebLogic Server Domain . 8-3

Extend the WebLogic Server Domain . 8-4

Configuring a Web Project . 8-8

Create a Web Project . 8-8

BEA WebLogic Portal Federated Portals Guide vii

Testing the Producer Configuration. 8-10

Create a Server on the Producer . 8-10

Test for a Producer WSDL . 8-10

Create a Portlet in the Producer Web Application . 8-11

Consuming a Producer Portlet . 8-12

Summary. 8-12

9. Publishing to UDDI Registries
What is UDDI? . 9-2

Using UDDI with WebLogic Portal . 9-3

Configure the Producer. 9-3

Configure the Consumer. 9-3

Perform Searches . 9-3

Configuring the Producer . 9-4

What Information is Published? . 9-4

Editing the Configuration File . 9-5

Configuring Third-Party Registries . 9-8

Specifying Access Credentials . 9-9

Creating tModels for Third-Party Registries . 9-9

Pre-Configuring the Business Entity . 9-10

Auto-Configuring the Business Entity . 9-11

Specifying Metadata for Searches . 9-11

Enabling and Disabling UDDI for a Producer . 9-13

Configuring the Consumer . 9-14

Searching for Producers Programatically . 9-15

The UDDI Query API . 9-16

Sample Code. 9-18

viii BEA WebLogic Portal Federated Portals Guide

10.The Interceptor Framework
Introduction . 10-2

Use Cases . 10-2

Basic Steps . 10-3

Designing Interceptors . 10-4

Interceptor Interfaces. 10-5

Context Objects . 10-5

Interfaces . 10-6

Interface Methods . 10-7

Interceptor Method Return Values . 10-8

Configuring Interceptors . 10-10

Order of Method Execution. 10-12

Overview . 10-12

Basic Order Of Execution in a Group . 10-12

How Return Status Affects Execution Order . 10-14

Instance Creation and Reuse . 10-15

Example Chains . 10-15

Implementing an Error-Handling Interceptor . 10-18

Modifying an Error Message . 10-18

Including an Error JSP Page . 10-19

11.Federating User Profiles
Introduction . 11-1

What are User Profiles? . 11-1

User Profiles in Federated Portals . 11-2

Platform for Privacy Preferences (P3P) . 11-3

When to Use this Feature . 11-3

Configuring the Producer . 11-3

BEA WebLogic Portal Federated Portals Guide ix

Configuring Java Portlets . 11-4

Configuring Non-Java Portlets . 11-7

Configuring the Consumer . 11-11

Using a Mapping File . 11-11

Using a Mapping Class. 11-13

Mapping Constants. 11-15

P3P Examples . 11-16

Example: portlet.xml file with P3P Attributes . 11-17

Example: Retrieving P3P User Information in a Java Portlet 11-18

Example: Retrieving User Information in Other Portlets. 11-18

12.Consumer Entitlement
Introduction . 12-1

Configuring a Producer . 12-2

Creating an Application Property Set. 12-2

Editing the Producer Configuration File . 12-3

Defining Consumer Entitlements . 12-5

Registering a Consumer. 12-8

Modifying Registration Properties . 12-9

13.Transferring Custom Data
What is Custom Data Transfer?. 13-1

Custom Data Transfer Interfaces . 13-2

Performing Custom Data Transfer. 13-3

Custom Data Transfer with a Complex Producer. 13-4

Custom Data Transfer in a Simple Producer . 13-23

Transferring XML Data. 13-23

Deploying Your Own Interface Implementations . 13-24

x BEA WebLogic Portal Federated Portals Guide

General Guidelines. 13-24

Implementation Rules . 13-24

14.Other Topics and Best Practices
Support for WSRP Versions . 14-2

Enabling WSRP 2.0 Support for Consumers . 14-2

If You Enable WSRP 2.0 Features for Consumers . 14-3

Decouple Rendering from Interaction. 14-3

Avoid Interportlet Dependencies . 14-4

Avoid Portal Layout Dependencies. 14-5

Avoid Coupling by URL. 14-5

Avoid Accessing Request Parameters in Rendering Code . 14-6

Avoid Moving Producers . 14-6

WebLogic Server Producers . 14-7

Security for Remote Portlets . 14-7

Error Handling. 14-7

On the Producer . 14-8

On the Consumer . 14-8

Interceptors. 14-8

Portlet Programming Guidelines and Best Practices. 14-8

Designing for Performance . 14-9

Performance Guidelines for Producers . 14-9

Performance Guidelines for Consumers . 14-10

Using Local Proxy Mode . 14-11

Why Use Local Proxy Mode? . 14-11

Deployment Configuration . 14-11

How Local Proxy Mode Works . 14-12

When to Use and Not Use . 14-13

BEA WebLogic Portal Federated Portals Guide xi

Monitoring and Logging . 14-14

Using the Monitor Servlet . 14-14

Creating Custom Logs . 14-16

Configuring Session Cookies . 14-16

Using Different Cookie Names . 14-17

Using a System Property . 14-17

Blocking Cookies . 14-17

User Sessions on CWEB Applications . 14-18

Using Multiple Views with Remote Portlets . 14-18

Handling User Identity Changes . 14-19

Editing the WSRP WSDL Template File . 14-19

Configuring a Custom JAX-RPC Handler . 14-19

Configuring a Handler on the Consumer . 14-20

Configuring a Handler on the Producer . 14-21

15.Establishing WSRP Security with SAML
SAML Security Between WebLogic Portal Domains . 15-1

Overview . 15-2

Setting Up the SAML Configuration Example . 15-3

Configuring the Consumer . 15-4

Configuring the Producer . 15-13

Testing the Configuration . 15-19

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions. 15-19

SAML Security Between 9.2 or Later Version Consumers and 8.1x Producers . . 15-20

SAML Security Between 8.1x Consumers and 9.2 or Later Version Producers . . 15-29

Using SAML Security with a Name Mapper . 15-36

Writing a Name Mapper Class . 15-36

Deploying the Mapper Classes. 15-40

xii BEA WebLogic Portal Federated Portals Guide

Configuring the Mapper Classes . 15-40

Allowing Virtual Users . 15-44

16.Configuring User Name Token Security
Configuring the Consumer . 16-1

Configuring the Producer . 16-7

Summary . 16-11

17.Adding Remote Resources to the Library
Introduction . 17-2

Adding a Producer. 17-2

Adding a Remote Portlet to the Portal Library . 17-7

Adding a Remote Page to the Portal Library . 17-11

Adding a Remote Book to the Portal Library . 17-14

18.Managing Federated Portals
Modifying the Consumer Security Configuration. 18-1

Changing the Web Application . 18-1

Modifying Global Credentials . 18-2

Modifying Producer Credentials . 18-3

Modifying the Producer Portlet Registry . 18-4

Changing the Web Application . 18-4

Modifying the Registry Credentials . 18-4

Modifying Producer Registration Properties. 18-5

BEA WebLogic Portal Federated Portals Guide xiii

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal,
BEA WebLogic Server, BEA WebLogic Workshop, BEA Workshop for WebLogic Platform, BEA WebLogic RFID
Mobile SDK, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of
BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise Security,
BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA AquaLogic Interaction Collaboration, BEA
AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic Interaction Publisher,
BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA AquaLogic
BPM Designer, BEA AquaLogic BPM Studio, BEA AquaLogic BPM Enterprise Server – Standalone, BEA AquaLogic
BPM Enterprise Server – BEA WebLogic, BEA AquaLogic BPM Enterprise Server – IBM WebSphere, BEA AquaLogic
BPM Enterprise Server – JBoss, BEA AquaLogic BPM Process Analyzer, BEA AquaLogic Interaction Development Kit,
BEA AquaLogic Interaction JSR-168 Consumer, BEA AquaLogic Interaction Identity Service – Active Directory, BEA
AquaLogic Interaction Identity Service – LDAP, BEA AquaLogic Interaction Content Service – Microsoft Exchange,
BEA AquaLogic Interaction Content Service – Lotus Notes, BEA AquaLogic Interaction Logging Utilities, BEA
AquaLogic Interaction WSRP Consumer, BEA AquaLogic Interaction Portlet Framework – Microsoft Excel, BEA
AquaLogic Interaction .NET Application Accelerator, AquaLogic Interaction Content Service – Documentum, BEA
AquaLogic Interaction Content Service – Windows Files, BEA AquaLogic Interaction Portlet Suite – IMAP, BEA
AquaLogic Interaction Portlet Suite – Lotus Notes, BEA AquaLogic Interaction Portlet Suite – Exchange, BEA
AquaLogic Interaction Portlet Suite – Documentum, BEA AquaLogic Interaction IDK Extension, BEA AquaLogic HiPer
Workspace for BPM, BEA AquaLogic HiPer Workspace for Retail, BEA AquaLogic Sharepoint Console, BEA
AquaLogic Commerce Services, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA
Liquid Data for WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Mobility Server, BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA
WebLogic Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA
WebLogic Real Time, BEA WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic
RFID Enterprise Server, BEA WebLogic Server Process Edition, WebLogic Server Virtual Edition, WebLogic Liquid
Operations Control, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA Workshop for WebLogic
Platform, BEA Workshop for JSF, BEA Workshop for JSP, BEA Workshop for Struts, BEA Workshop Studio, Dev2Dev,
Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT,
BEA Mission Critical Support, BEA Mission Critical Support Continuum, CollabraSuite – BEA Edition, BEA Guardian
and BEA SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA WebLogic Portal Federated Portals Guide 1-1

C H A P T E R 1

Introduction

Federated portals represent an exciting new paradigm for the development, management, testing,
and deployment of portal applications. This new, Service-Oriented Architecture (SOA) based
paradigm offers immediate and significant savings in time and resources to organizations that
develop and manage portals using BEA WebLogic Portal®.

This guide describes how to plan, develop, assemble, and maintain federated WebLogic Portals.
As the following section explains, the tasks described in this guide are organized to reflect the
stages of the portal life cycle: architecture, development, staging, and production.

This chapter includes the following sections:

Federation in the Portal Life Cycle

Getting Started

Federation in the Portal Life Cycle
Like a standard portal, the creation and management of a federated portal flows through a portal
life cycle.

The portal life cycle contains four phases:

Architecture

Development

Staging

Production

In t roduct ion

1-2 BEA WebLogic Portal Federated Portals Guide

The tasks in this guide are organized according to the portal life cycle, which implies best
practices and sequences for creating and updating federated portals. For more information about
the portal life cycle, see the BEA WebLogic Portal Overview. Figure 1-1 shows which types of
federation-related tasks occur at each phase.

Figure 1-1 Federated Portals and the Four Phases of the Portal Life Cycle

Architecture
The architecture part of this guide discusses the basic components of a federated portal. A
federated architecture promises to streamline and improve the way in which your portal

Production –
Deploy your
federated portal in a
production
environment,
making changes as
needed.

Staging – Use the
Administration Portal
to create and configure
federated portals.

Development –
Develop portlets,
books, and pages to
offer to consumers
as remote.

Architecture –
Understand the basics of a federated portal
architecture. This understanding helps you
plan the configuration and development of
your federated portal.

Gett ing S ta r ted

BEA WebLogic Portal Federated Portals Guide 1-3

resources, such as portlets, are developed, deployed, and maintained. By understanding the
technology that lies behind federated portals, you can more effectively plan for the development
of your own federated portal applications.

Federated portal architecture is discussed in Part I Architecture.

Development
The development phase of a federated portal focuses primarily on developing portlets, pages, and
books that will be offered as remote portlets, pages, and books to consumers. Developers need to
be aware of the techniques and best practices for developing remote portlets, pages, and books in
a WebLogic Portal environment.

In the development stage, careful attention to best practices is crucial. Wherever possible, this
guide makes those best practices clear.

Federated portal development is discussed in Part II Development.

Staging
As for all portal development, BEA recommends that you deploy your portal to a staging
environment, where it can be assembled and tested before going live. In the staging environment,
you use the WebLogic Portal Administration Portal to assemble and configure federated portals.
The Administration Portal lets you search for and consume remote portlets, books, and pages. In
the staging environment, you also test your federated portal before propagating it to a live
production system.

Federated portal staging is discussed in Part III Staging.

Production
A production portal is live and available to end users. A portal in production can be modified by
administrators using the Administration Portal. For instance, an administrator might add
additional remote portlets to a portal or otherwise change the contents of a portal.

Federated portal production is discussed in Part IV Production.

Getting Started
This section describes the basic prerequisites to using this guide, lists guides containing related
information and topics, and briefly explains how to use this guide.

In t roduct ion

1-4 BEA WebLogic Portal Federated Portals Guide

This section includes the following topics:

Prerequisites

Related Guides

Using this Guide

Prerequisites
This guide does not assume that you are familiar with federation or its related standards and
technologies, such as WSRP. Whenever possible, this guide provides sufficient background
information or refers to appropriate documents and specifications.

Tip: See “For More Technical Details” on page 3-26 for a list of specifications and white
papers related to WSRP and related technology. This material provides an excellent
background for developers who plan to design and create federated portals.

In general, this guide assumes that you are familiar with the basic operation of the tools used to
create WebLogic portals and desktops, particularly BEA Workshop for WebLogic Platform and
the Administration Portal. The following section, Related Guides, lists other guides that you may
want to refer to before attempting to develop federated portals.

Related Guides
This guide covers topics that are specific to developing and assembling federated portals. In
general, this guide assumes that you are familiar with the basic concepts and tools required for
both portal and portlet development. If you are planning to create federated portals, we
recommend that you review the following guides:

BEA WebLogic Portal Overview

BEA WebLogic Portal Development Guide

BEA WebLogic Portlet Development Guide

Whenever possible, this guide includes cross references to material in these other guides.

Gett ing S ta r ted

BEA WebLogic Portal Federated Portals Guide 1-5

Using this Guide
If you are new to federation we recommend that you begin with the chapters in Part I
Architecture. These chapters provide a detailed overview of federated portals, and describe the
technological components that make up federation.

Part II Development includes the topics that are of primary interest to developers creating portal
components with Workshop for WebLogic. This part includes chapters on creating remote
portlets, establishing interportlet communication with remote portlets, working with producers,
using custom events, and other topics.

Part III Staging and Part IV Production are targeted typically toward users who use the
Administration Portal to assemble and manage federated portals and establish security.

In t roduct ion

1-6 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide

Part I Architecture

Part I, Architecture, includes the following chapters:

Chapter 2, “What are Federated Portals?”

Introduces the concept of a federated portal and discusses the advantages of using
federation.

Chapter 3, “Federated Portal Architecture”

Presents on overview of federated portal architecture. The chapter describes the logical
parts of a federated portal and the underlying technological standards, such as Web
Services for Remote Portlets (WSRP), that make federated portals possible.

In the WebLogic Portal development life cycle, architecture represents the starting point for the
subsequent phases of development, staging, and production.

BEA WebLogic Portal Federated Portals Guide

This part of the Federated Portal Guide presents an architectural overview of federated portals.
The chapters in this part focus on the logical components of federated portals, how these
components interact, and the technologies that make federation possible. By understanding the
architecture of federated portals, and specifically federated portals developed on BEA WebLogic
platforms, developers can more effectively plan their specific implementations of remote features
such as remote portlets.

For more information about the portal life cycle, see the WebLogic Portal Overview.

BEA WebLogic Portal Federated Portals Guide 2-1

C H A P T E R 2

What are Federated Portals?

This chapter presents a brief introduction to federated portals and discusses the advantages of
federated portals and the kinds of problems that federation solves. This chapter includes the
following sections:

Overview

Basic Terminology

Traditional Portals: Before Federation

Federated Portals: A New Paradigm

Advantages of Federation

Overview
A federated portal is a portal that includes remotely distributed resources, including remote
portlets, books, and pages. These remote resources are collected and brought together at runtime
to a portal application called a consumer, which presents the federated portal to end users. Unlike
a non-federated, entirely local portal, in most cases, the individual remote parts of a federated
portal can be maintained, updated, and released independently without redeploying the consumer
portal in which they are surfaced.

Federated portals are:

Distributed – Portlets are deployed on remote systems across the enterprise.

What a re Federated Po r ta ls?

2-2 BEA WebLogic Portal Federated Portals Guide

Decoupled – The portal and its portlets do not depend upon one another. In most cases,
remote portlets can be maintained and deployed separately from the federated portal.

Collaborative – Remote portlets can communicate and share data.

Plug-and-Play – You can easily locate and use remote portlets. Programming is usually
not required to consume remote portlets.

Standards based – WebLogic Portal federated portals are built upon open standards, such
as WSRP, SOAP, WSDL, SAML, UDDI, and WS-Security.

Figure 2-1 illustrates the basic parts of a federated portal: producers and consumers. A producer
is a portal web application that offers remote portlets to other portal web applications, called
consumers. Both producers and consumers implement a web services layer that enable them to
communicate. This web services layer allows producers to offer portlets to consumers on remote
systems. Consumers bring these remote, distributed portlets together at runtime. The remote
portlets themselves can be developed and maintained by different groups of people. If one remote
portlet on a producer is changed, other portlets within a consumer that consumes the updated
portlet are not typically affected. Furthermore, the look and feel of a remote portlet can be made
to be consistent with the federated portal in which is resides. To end users of federated portals,
the remote portlets are indistinguishable from local ones.

Figure 2-1 Federated Portals Consume Remote Portlets from a Producer

Consumer A Consumer B Consumer C

Producer

Bas ic Te rmino logy

BEA WebLogic Portal Federated Portals Guide 2-3

Tip: A federated portal reflects a true Service Oriented Architecture (SOA). BEA defines
SOA as follows: an SOA strategy organizes discrete functions contained in enterprise
applications into interoperable, standards-based services that can be combined and
reused quickly to meet business needs. As you will see, this definition of SOA describes
well the essence of a federated portal.

Basic Terminology
Throughout this guide, the term remote portlet refers to a portlet that is deployed in a consumer
application and that references a portlet deployed in a producer application. Another term for a
remote portlet is a proxy portlet. The term proxy portlet appears in some WebLogic Portal
configuration files. Please note that remote portlet and proxy portlet are synonymous. In a
federated environment, a producer hosts functioning portlets, while consumer applications host
proxy portlets.

Traditional Portals: Before Federation
Before federation, all of a portal’s portlets were deployed within the same web application. This
model works well for a portal’s initial deployment, but as the portal grows the maintenance effort
grows proportionally, as illustrated in Figure 2-2.

Figure 2-2 Non-Federated Portal Maintenance

What a re Federated Po r ta ls?

2-4 BEA WebLogic Portal Federated Portals Guide

Typical portal maintenance includes bug fixes, enhancements, adding new portlets, testing, and
propagating the portal from a development to a staging to a production environment. Larger
portals simply contain more parts, more code, which must be bound within the same portal
application, and which require the coordination of developers, quality assurance engineers,
administrators, and others with each update. For many organizations, the cost of such
maintenance is significant and can include portal downtime. Federation simplifies portal
maintenance.

Federated Portals: A New Paradigm
With a federated portal architecture, separate development teams, perhaps in separate business
units, operating in different geographical locations, can focus on and develop their respective
portlets. These development teams can update, test, and release their portlets independently from
one another. You do not need to redeploy a federated portal every time a portlet deployed in a
producer changes. When a remote portlet is updated in a producer, all of the consumers of that
portlet receive the change immediately and automatically. As illustrated in Figure 2-3, the most
significant benefit of a federated portal architecture is that the maintenance effort for a portal is
greatly reduced compared to a non-federated portal.

Figure 2-3 Federated Portal Maintenance

The next section further discusses the advantages of using a federated portal architecture.

Advantages o f Federat ion

BEA WebLogic Portal Federated Portals Guide 2-5

Advantages of Federation
As explained in the previous section, federation offers significant benefits in portal deployment
and maintenance. This section looks more closely at these and other benefits, and includes these
topics:

Overview

Reducing the Cost of Portal Deployment

Plug and Play SOA

Increasing the Flexibility of Release Schedules

Reducing the Cost of Testing Your Portal

Decreasing Dependencies Among Software Components

Promoting Reuse of Portal Components

Interoperability

Overview
Federation represents more than just a new WebLogic Portal feature. Federation represents a new
paradigm for developers and administrators of portal web applications, particularly moderate to
large-scale portal web applications. Central to this new paradigm are standards, such as Web
Services for Remote Portlets (WSRP), that allow portlets to be decoupled from portals. For more
information on WSRP, see “What is WSRP?” on page 3-3.

Rather than bundling all of a portal’s portlets into a single application, you can deploy portlets in
separate web applications running on remote systems while the federated portal consumes them
using WSRP. Because the federated portal is decoupled from its portlets, you do not need to
redeploy the portal every time a portlet changes. For most WebLogic Portal projects, this
decoupling represents an immediate and significant savings in time and money.

Reducing the Cost of Portal Deployment
Perhaps the most significant benefit of portal federation is this: Federated portals do not have to
be redeployed when their remote portlets are updated.

In a standard portal, all portlets are part of a monolithic enterprise application. If you want to
change a portlet, even make a trivial change, the entire enterprise application must be redeployed.

What a re Federated Po r ta ls?

2-6 BEA WebLogic Portal Federated Portals Guide

Likewise, adding new portlets requires redeployment. Usually, portal redeployment, particularly
of large-scale enterprise portals, involves expensive testing and potential downtime.

In a federated portal, remote portlets are not part of a single enterprise application. Remote
portlets are deployed in separate web applications, typically, on remote systems called producers.
The federated portal consumes these portlets using standard Web Services for Remote Portlet
(WSRP) and Web Services Description Language (WSDL). When you change a portlet, such as
by adding or removing a feature or fixing a bug, the remote portlets that reference it automatically
reflect the change. You do not have to redeploy your enterprise portal application.

Plug and Play SOA
A federated portal is a true example of a plug and play Service Oriented Architecture. In most
cases, a portal administrator can locate a remote portlet and incorporate it into a portal without
enlisting the help of a developer.

Increasing the Flexibility of Release Schedules
Because the portlets and other services in federated portals are distributed, multiple teams can
work on and deploy new features independently of one another. Before federation, different
teams had to synchronize their deployment schedules and their software configurations, such as
service pack releases and software library versions. With federation, independent teams can focus
on producing the best possible software solutions without such tight coupling. Through the
mechanism of web services, developers of federated portals simply consume the software
resources produced by these independent development teams.

Reducing the Cost of Testing Your Portal
Portal administrators can incorporate new remote portlets into a portal by locating a producer and
picking the desired portlets. From the administrator’s standpoint, these remote portlets are fully
tested and ready for use. No coding, testing, or complex configuration is required by the
developers or administrators of the consumer portal.

Decreasing Dependencies Among Software Components
If a portlet relies on specific software libraries, a strong dependency exists that must be managed.
Changes to either the portlet or the library version can create incompatibilities with existing code.
Because remote portlets are developed, tested, deployed, and run on remote systems, a federated
portal that uses remote portlets is isolated from such dependencies.

Advantages o f Federat ion

BEA WebLogic Portal Federated Portals Guide 2-7

Promoting Reuse of Portal Components
A portlet that is exposed through a producer can be reused by any number of consumers with
minimal work and no additional coding. As mentioned previously, with federation, this reuse can
be accomplished without the overhead of integration, deployment, configuration, and testing that
would be required otherwise.

Interoperability
Because federated portals are loosely coupled and standards based, it is possible for a WebLogic
Portal to consume portlets from third-party vendors. Likewise, it is possible for third-party portals
to consume portlets hosted in WebLogic Portal.

What a re Federated Po r ta ls?

2-8 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 3-1

C H A P T E R 3

Federated Portal Architecture

This chapter describes the key actors and logical parts of a federated portal and discusses how
they interact. The information in this chapter informs many of the best practices recommended
for developers of federated portals. It is helpful to review this chapter before reading Chapter 14,
“Other Topics and Best Practices.” In addition, this chapter discusses a key standard technology
upon which federation relies: Web Services for Remote Portlets (WSRP).

This chapter includes these topics:

Key Actors in a Federated Portal

What is WSRP?

Understanding Producers and Consumers

Life Cycle of a Remote Portlet

Interportlet Communication with Events

Summary of Federated Portal Architecture

For More Technical Details

Key Actors in a Federated Portal
The key actors in a federated portal are producers, consumers, and end users, as illustrated in
Figure 3-1.

Federated Po r ta l A rch i tec tu re

3-2 BEA WebLogic Portal Federated Portals Guide

Figure 3-1 Components of a Federated Portal

A consumer is a web application that collects remote portlets and offers them in a unified portal
to end users who use a browser to view and interact with the portal. In addition to federating
portlets, WebLogic Portal lets you federate books and pages. See “Federating Books and Pages”
on page 3-3 for more information.

Typically, a consumer does not include the business logic, data, or user interface parts of a portlet:
it simply collects user interface markup delivered from producers and presents that user interface
to users.

Tip: Although most business logic processing occurs in producer applications, you can write
consumer-side classes called interceptors that let you programmatically examine the
content of a WSRP message and take specific action based on that content. Interceptors
are discussed in Chapter 10, “The Interceptor Framework.”

Consumers are administration-centric. This means that administrators, rather than developers,
typically focus their time on consumers. Administrators locate and consume remote portlets,
manage users, set up entitlements, and so on.

A producer is also a web application, typically running on a remote system from the consumer.
The producer acts as a container for portlets that are offered to consumer portals. The producer is
where the user interface, data, and business logic for remote portlets reside. While a consumer is
administration centric, a producer is application centric. This means that developers write the
actual portlet code and deploy those resources on producers.

Producers Consumer End Users

SOAP/
HTTP

HTTP

Fede ra t ing Books and Pages

BEA WebLogic Portal Federated Portals Guide 3-3

Tip: All WebLogic Portal applications are, by default, both consumers and producers. This
means that every WebLogic Portal application is capable of hosting remote portlets and
consuming them.

For more information on producers and consumers, see “Understanding Producers and
Consumers” on page 3-4.

Federating Books and Pages
WebLogic Portal has extended the WSRP protocol to include the ability to federate books and
pages. This feature is useful if you have large numbers of portlets that you want to federate. You
can group the portlets in books and pages in the producer application, and consume them as a
group, rather than one at a time. For more information, see Chapter 4, “Creating Remote Portlets,
Pages, and Books” and Chapter 17, “Adding Remote Resources to the Library.”

What is WSRP?
Web Services for Remote Portlets (WSRP) is a web services protocol for aggregating content and
interactive web applications from remote sources. WSRP is a key standard that underlies
federated portals. Essentially, WSRP allows remote, distributed portlets to be brought together at
runtime into a unified portal page.

Web Services for Remote Portlets provide both application and presentation logic. This is
different from standard web services, or data-oriented web services, which contain business logic
but lack presentation logic and thus require that every client implement that logic on its own.

While the data-oriented approach works well in many implementations, it is not well suited for
dynamically integrating business applications. For example, to integrate an order status web
service into a commerce portal, you would need to write code to display the results of the status
services into the portal. Using WSRP, with the presentation logic included in the web service, you
can achieve the aggregation of applications and services dynamically. You no longer need to
develop the presentation logic in order to do the integration; you can simply request the order
status service to show up as a portlet inside the commerce portal at a predetermined location.

Tip: OASIS, the Organization for the Advancement of Structured Information Standards, is
responsible for creating the WSRP standard. BEA Systems has been an active member
of the OASIS technical group for WSRP 1.0 and continues to work as part of this
standard effort for future enhancements to the specification. To read more about WSRP,

Federated Po r ta l A rch i tec tu re

3-4 BEA WebLogic Portal Federated Portals Guide

including the full technical specification, go to:

http://www.oasis-open.org/committees/wsrp/

One way to understand WSRP is to compare it with another web protocol, HTTP. The most
familiar use of HTTP is viewing and interacting with remote web applications using a browser.
Using HTTP, browsers communicate with remote HTTP servers to post data (for example, by
submitting forms) and to retrieve markup (typically, HTML). WSRP is a similar protocol
between server and client applications. In WSRP terminology, the server is called a producer. It
hosts services, typically portlets, that clients, or consumers, communicate with.

Like a browser in the HTTP analogy, the consumer retrieves markup and submits user
interactions to the producer. The producer hosts actual portlets while the consumer contains
proxies for those portlets. Consumers use WSRP to collect and present markup from the remote
portlets to end users who interact with that markup. To an end user, a remote or proxy portlet is
indistinguishable from a local portlet.

WSRP consumers are more sophisticated than browsers, however. Unlike browsers, consumers
can:

Offer features like personalization, customization, and security

Handle markup fragments rather than entire HTML documents

Combine markup from different producers into a single page and apply consistent
consumer-specific layouts and styles to that page

In summary, the WSRP protocol defines a set of web services that WSRP producers implement.
Consumers view and interact with these web services; they retrieve user interface fragments from
the producer, display the fragments, and allow users to interact with them. The WSRP protocol
allows consumers to act as clients for applications hosted by producers.

Understanding Producers and Consumers
This section focuses on the producer and consumer implementations for WebLogic Portal. This
section includes these topics:

Overview

WebLogic Portal Producers

WebLogic Portal Consumers

Unders tanding Produce rs and Consumers

BEA WebLogic Portal Federated Portals Guide 3-5

Overview
A producer is a container web application that hosts portlets. Through proxy portlets, consumers
collect and present remote portlets (portlets hosted on producers) to users. All application code
(page flows, backing files, Java classes, controls, EJBs, and so on) resides on the producer.
Consumers only receive fragments of markup from producers which are collected and presented
to users.

Figure 3-2 illustrates the components of a federated portal. Note that the WebLogic Portal WSRP
implementation allows the addition of typical WebLogic Portal services, such as personalization,
customization, and user management. This means that remote portlets are given the same look
and feel and the same levels of portal security as local portlets.

Figure 3-2 Web Services Between Producer and Consumer

Tip: Every WebLogic Portal contains both producer and consumer implementations. That is,
all WebLogic Portals can function as producers and consumers. For an in-depth technical
explanation of the WebLogic Portal producer and consumer implementations, refer to the
technical white paper, Inside WSRP, on the dev2dev web site.

Federated Po r ta l A rch i tec tu re

3-6 BEA WebLogic Portal Federated Portals Guide

WebLogic Portal Producers
WebLogic Portal supports two kinds of producers: simple and complex. Before describing these
two kinds of producers, it is helpful to understand the parts of the WSRP protocol and which
operations must be implemented in a producer (required operations) and which are optional.

Table 3-1 lists the set of required and optional operations defined by the WSRP protocol. Note
that the minimum requirement for a WSRP-compliant producer is to implement the required
service description and markup operations. As you will see, WebLogic Portal simple and
complex producers differ in the kinds of operations they support.

Table 3-1 Required and Optional WSRP Operations

WSRP Protocol Operations Implemented Methods

Required for WSRP 1. Service description operations

2. Markup operations

getServiceDescription()

initCookie()

getMarkup()

performBlockingInteraction()

Optional for WSRP 3. Registration

4. Portlet Management

register()

modifyRegistration()

deregister()

getPortletPropertyDescription()

setPortletProperties()

getPortletProperties()

clonePortlet()

destroyPortlets()

Extensions

(Add new operations to the
WSRP protocol.)

5. Event Handling

6. Render Dependencies

handleEvents()

getRenderDependencies()

Unders tanding Produce rs and Consumers

BEA WebLogic Portal Federated Portals Guide 3-7

Simple Producers
A simple producer supports only some basic features of the WSRP protocol. These basic features
do not require the producer to be deployed in a full WebLogic Portal domain. You can, for
example, deploy a simple producer in a basic WebLogic Server domain.

Tip: For detailed information on configuring a simple producer in a WebLogic Server domain,
see Chapter 8, “Configuring a WebLogic Server Producer”.

A simple producer:

Does not depend upon WebLogic Portal features – A simple producer cannot take
advantage of WebLogic Features features such as user management and personalization.

Does not depend on WebLogic Portal APIs – Again, a simple producer cannot rely on
any WebLogic Portal dependencies.

Does not require registration – Registration allows a producer to associate portlets and
any portlet customization data with the consumer that is interacting with it. The producer
can also use the registration to tailor the scope of the portlets offered to specific consumers.

Does not support event handling – You cannot use the event handling API with a simple
producer.

Despite these limitations, you might want to use a simple producer for the following reasons:

To WSRP-enable non-portal projects, such as WebLogic Server projects

To offer portlets without actually installing WebLogic Portal

The section “Using WSRP in a Basic WebLogic Server Domain” on page 8-2 describes how to
configure a (non-portal) WebLogic Server environment as a WSRP producer so that you can
expose portlets based on Struts or Java Page Flows. The exposed portlets can then be consumed
as remote portlets running in a regular WebLogic Portal Domain.

Complex Producers
A complex producer supports the complete WSRP 1.0 protocol plus some extensions for
interportlet communication, portlet look and feel, and other features. A complex producer also
lets you take advantage of other WebLogic Portal features, such as personalization,
customization, and user management security features. By contrast, simple producers cannot take
advantage of these WebLogic Portal features.

Federated Po r ta l A rch i tec tu re

3-8 BEA WebLogic Portal Federated Portals Guide

By default, all WebLogic Portal applications are complex producers. Portlets that are exposed in
a complex producer can use the APIs and features that are available in any WebLogic Portal
application.

Tip: In some cases, it is inappropriate to use API calls in portlets deployed on a producer. This
is because a producer does not have access to portal artifacts, such as books and pages,
in that are deployed in consumer applications. See Chapter 14, “Other Topics and Best
Practices” for information on best programming practices for portlet development in
producers.

Typically, a complex producer:

Requires registration – Registration allows a producer to associate portlets and any
portlet customization data with the consumer that is interacting with it. By deploying
consumer entitlements, the producer can also use the registration to tailor the scope of the
portlets offered to specific consumers. For detailed information on consumer entitlements,
see Chapter 12, “Consumer Entitlement.” By default, registration is enabled; however, you
can disable registration by setting the <registration required> element in the
/WEB-INF/wsrp-producer-config.xml file to false.

Supports a management interface – By default, the WebLogic Portal management
interface is enabled; however, you can disable the management interface by setting the
<portlet-management required> element to false in the file
/WEB-INF/wsrp-producer-config.xml.

Supports interportlet communication – Extensions that support event handling allow
remote portlets to communicate with one another.

Supports portlet render dependencies – WebLogic Portal allows you to specify certain
dependencies associated with individual portlets, such as Cascading Style Sheets (CSS
files) and script files, such as JavaScript (JS) files.

Summary of Complex and Simple Producers
A complex producer includes the required WSRP interfaces, optional interfaces, and some
extended interfaces. A simple producer implements the required interfaces. A complex producer
requires WebLogic Portal, but a simple producer can be deployed in a basic WebLogic Server
domain. Figure 3-3 illustrates these relationships.

Unders tanding Produce rs and Consumers

BEA WebLogic Portal Federated Portals Guide 3-9

Figure 3-3 Simple and Complex Producers

Table 3-2 compares the capabilities of standard and complex producers.

Table 3-2 Comparison of Producer Features

Feature Complex Producer Simple Producer

Java portlets Yes No

Page flow portlets Yes Yes

Registration Required Not Supported

Support for URL rewriting (producer and consumer) Yes Yes

Support for portal administration Yes No

Support for JSP portlets Yes No

Support for backing files Yes No

Support for JSF portlets Yes Yes

Support for Struts portlets Yes Yes

WebLogic Server

WebLogic Portal
Simple
Producer

Complex Producer
Optional &
Extended
WSRP
Interfaces

Required
WSRP
Interfaces

Federated Po r ta l A rch i tec tu re

3-10 BEA WebLogic Portal Federated Portals Guide

Secure WSRP messages
Securing WSRP messages ensures their confidentiality between just the interested parties. When
a portlet’s messaging is secure, only parties authorized to handle the contents of that portlet’s
messages can see those messages. To secure WSRP messages:

Use SSL on any port through which the Producer will be offered.

Configure the Producer to offer secure portlets by specifying “true” for all secure attributes
in the <service-config> element of the Producer project’s
WEB-INF/wsrp-producer-config.xml file, as shown in Listing 3-1.

Listing 3-1 <service-config> Element Configured for Security

<service-config>

<registration required="true" secure="true"/>

<service-description secure="true"/>

<markup secure="true" rewrite-urls="true" transport="string"/>

<portlet-management required="true" secure="true"/>

</service-config>

If you make any changes to wsrp-producer-config.xml, you will need to redeploy or bounce
the server before the changes become active.

WebLogic Portal Consumers
As previously noted, all WebLogic portals are, by default, able to consume remote portlets. The
WebLogic Portal consumer implementation is closely integrated into the WebLogic Portal
framework.

To consume a remote portlet hosted on a producer, a consumer must ask a producer for
information about the portlets it offers. The consumer first contacts a producer using the
producer’s WSDL URL. This initial contact verifies the availability of the producer and its
services. Next, the consumer asks the producer for a description of the portlets it offers. The
producer responds to the consumer with a SOAP message that describes the portlets and
associated metadata that are offered by the producer. This communication is illustrated in
Figure 3-4.

Unders tanding Produce rs and Consumers

BEA WebLogic Portal Federated Portals Guide 3-11

Figure 3-4 Getting the Service Description for a Producer

You don’t necessarily have to know a WSDL URL to find portlets, books, and pages deployed
on a producer. WebLogic Portal includes a search feature that lets you locate portlets in remote
producers using metadata keywords. The technology that underlies these searches is called a
Universal Description, Discovery and Integration (UDDI) registry. UDDI is a widely recognized
standard technology. The Administration Portal provides lets you search for portlets in a producer
by name, shown in Figure 3-5.

Ask for Service Description

Metadata and Offered Portlets

Consumer ProducerEstablish Contact with WSDL

Federated Po r ta l A rch i tec tu re

3-12 BEA WebLogic Portal Federated Portals Guide

Figure 3-5 Locating Portlets Deployed on Producers

Using this search tool, you can search for and locate producers and the portlets they offer.

After a consumer receives a producer’s metadata, the metadata is added to the consumer enabling
you to create remote portlets. A remote portlet is a proxy to a portlet hosted on a producer. When
a remote portlet is added to a portal or desktop, the WebLogic Portal framework uses the WSRP
protocol to present the portlet to portal users. To users, remote portlets look and feel just like local
portlets; users are not aware that a given portlet is hosted remotely. Furthermore, remote portlets
inherit the particular styles, layouts, and themes from the portal in which they reside. To the user,
this integration is seamless.

Tip: As noted previously, WebLogic Portal lets you create consumer-side classes called
interceptors. Interceptors let you programmatically examine the content of a WSRP
message and take specific action based on that content. Interceptors are discussed in
Chapter 10, “The Interceptor Framework.”

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-13

Cookie Handling
WebLogic Portal consumers handle cookies by following the prescriptions of RFC2109:

1. A Set-Cookie response header whose NAME is the same as a previous cookie, and whose
Domain and Path attribute values exactly (string) match those of the previous cookie, will
replace the old cookie with the new one.

2. If the Set-Cookie has a value for Max-Age of zero, the (old and new) cookie is discarded.

3. Otherwise cookies accumulate until they expire (resources permitting), at which time they are
discarded.

4. Cookies are sent based on the specified request-host (including request-URI) and should be
sent until they expire.

5. In WSRP, cookies are specific to the portletHandle and the end user on whose behalf the
consumer is invoking the producer and may only be resupplied for this specific pair (the
portletHandle is relaxed to one from a group for cookies returned from initCookie()
when ServiceDescription.requiresInitCookie=perGroup.)

Life Cycle of a Remote Portlet
A remote portlet goes through a well defined life cycle. The steps of this life cycle that are
executed depend on which of the following scenarios is requested:

The portlet is simply being rendered (or re-rendered).

A user is interacting with the portlet (submitting a form, for instance).

An event is fired.

The portlet has render dependencies

It is important to realize that these life cycle phases are decoupled from one another. As explained
later in this section, this decoupling has implications for developers writing portlets hosted on
producers. For example, you cannot expect a portal to receive the same HTTP response or request
for the render phase as it receives for an interaction.

This section does not address the ways in which interceptors can influence the remote portlet life
cycle. Interceptors are consumer-side classes that intercept WSRP messages and allow you to
programatically take specific actions based on the content of those messages. Interceptors are
discussed in Chapter 10, “The Interceptor Framework”.

Federated Po r ta l A rch i tec tu re

3-14 BEA WebLogic Portal Federated Portals Guide

Tip: The information in this section informs many of the best practices for developers
discussed in Chapter 14, “Other Topics and Best Practices.” It is particularly important
for developers creating portlets in a producer to understand the life cycle of a remote
portlet. By understanding this life cycle, you will avoid making unwarranted assumptions
and avoid common mistakes.

This section includes the following topics:

Rendering a Remote Portlet

Rendering occurs independently of user interaction in a remote portlet. The render phase
does not allow a remote portlet’s state to change. It happens, for instance, when a portal
page is refreshed.

Interacting With a Remote Portlet

The interaction phase occurs when a user interacts with a remote portlet, for example, by
submitting a form or clicking a link.

Rendering Versus Interaction

This section summarizes the differences between rendering and interaction.

Interportlet Communication with Events

A third life cycle for remote portlets occurs when events are fired. Events provide the best
mechanism for interportlet communication between remote portlets.

Retrieving Render Dependencies

A fourth life cycle for remote portlets occurs a portlet deployed on a producer includes
render dependencies.

Tip: This section provides an overview of the remote portlet life cycle phases. For an in-depth
technical review of this subject, refer to the BEA white paper, Inside WSRP (on the
dev2dev web site).

Rendering a Remote Portlet
A well defined series of steps occurs whenever a remote portlet is rendered in a consumer portal.
Anytime a portlet needs to be re-rendered in exactly the same state (for example, if the user
simply refreshes a page), the rendering phase is executed. If a user directly interacts with a remote

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-15

portlet, then a different phase, called the interaction phase is triggered. The interaction phase is
discussed in the next section.

With a typical (non-federated) web application, when you send a request to a JSP, for instance,
you receive back the markup for the requested page. In a federated portal, the user is viewing a
page that consists of markup fragments received from portlets hosted on producers (or, possibly
a mix of local portlets and portlets deployed on producers). The consumer’s job is to contact the
producers, retrieve their markup, and render it in a unified portal page.

In Figure 3-6 a portlet exists on a producer, and a proxy for that portlet (a remote portlet) has been
created in a consumer portal. The sequence of steps needed to render the portlet in the consumer
are listed, and discussed in the following sections.

Figure 3-6 Rendering a Remote Portlet

Initial Steps on the Consumer
To render a remote portlet, a consumer must first compose a SOAP message to send to the
producer. These initial steps include:

1. Find producer metadata.

P
ro

xy
 P

or
tl

et

Render

SOAP

1. Find producer
metadata

2. Collect portlet state
3. Collect cookies
4. Create SOAP message

1. Collect cookies
2. Collect session ID
3. Rewrite markup

(optional)
4. Write markup to

response

1. Set up servlet request and
response

2. Establish the session
3. Establish portlet state
4. Enable portal API support

(optional)
5. Enable a URL rewriter

Generate
a markup
fragment

1. Collect markup
2. Collect session ID (if newly

created)

Consumer Side Producer Side

Federated Po r ta l A rch i tec tu re

3-16 BEA WebLogic Portal Federated Portals Guide

The consumer’s first job is to find the metadata for a producer. When a developer or
administrator creates a remote portlet, metadata about each producer is received and stored
internally by WebLogic Portal (on the consumer).

2. Collect the portlet state. The state consists of a view state and a navigational state:

– View state – This includes the mode (view mode or edit mode) and the state
(minimized or maximized).

– Navigational state – For example, if a user has already filled in a form and submitted
it, the navigational state reflects the fact that the user has moved from page one to page
two of the portlet. Knowledge of this state allows remote portlets to be re-rendered
correctly any number of times.

3. Collect all cookies.

Just as a browser acts as a client to a web server, a consumer acts as a client to a producer.
For example, a browser maintains cookies that keep track of sessions on the server. In the
same way, a consumer maintains cookies that keep track of the producer sessions for each
user of the portal. For each user interacting with a consumer, the consumer maintains one
session with each producer.

4. Create a SOAP message.

All of the information gathered by the consumer must be formed into a SOAP message and
sent to the producer.

Initial Steps on the Producer
After the producer receives the SOAP message from the consumer, the producer must take the
following steps to render the requested portlet and return the portlet’s markup to the consumer.

1. Set up servlet request and response objects.

2. Establish a session.

3. Establish the portlet state.

In steps 1, 2, and 3, the producer creates an HTTP environment for the portlet. Because the
producer receives a SOAP request, and not an HTTP request, the producer must take the
information in the SOAP request and recreate the appropriate HTTP environment for the
portlet, including such things as the servlet request and response objects, the session, and
the portlet state.

4. Enable portal API support (optional).

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-17

The producer must decide whether or not to offer complex features. WebLogic Portal has
implemented WSRP extensions and optional interfaces. These extensions and options
allow WebLogic Portal producers to offer features such as user management, entitlements,
portlet preferences, and event handling. In some cases, you may want to deploy a producer
portal without these extra capabilities; therefore, the producer must determine whether or
not to enable them. For more information on simple versus complex producers, see
“Understanding Producers and Consumers” on page 3-4.

5. Create a URL rewriter.

In a traditional web application, URLs in, for instance, JSP pages, always point to the web
server hosting the JSP page. In a federated portlet, URLs must always point back to the
consumer, not to the producer. This is because the producer might, in fact, be inaccessible
to the user clients. The producer may be located behind a firewall, for instance. To properly
manage URLs, the producer contains URL rewriters that know how to create URLs that
are consumer oriented.

Tip: If you are developing portlets in a producer, always be sure to use WebLogic Portal
APIs and tags to create URLs. These APIs and tags know how to generate URLs so
that they function properly in a federated environment. For more information, see
“Avoid Coupling by URL” on page 14-5.

6. Generate markup for the portlet.

At this stage, the producer renders the portlet. The producer may have created a new
session for the portlet or added new cookies. The producer collects all this information and
generates a response to the consumer.

7. Collect markup and the session ID (if one was created), and send this data back to the
consumer.

Final Steps on the Consumer
The consumer receives from the producer markup fragments from the producer. The consumer
must take these fragments and compose them into a portal page that can be displayed to the user.
To do this, the consumer takes these final steps:

1. Collect cookies sent from the producer.

2. Collect the session ID for each portlet.

3. Rewrite markup (optional).

Federated Po r ta l A rch i tec tu re

3-18 BEA WebLogic Portal Federated Portals Guide

4. Write markup to the response.

This cycle repeats each time the portlet is rendered, as long as caching is not enabled on the
consumer.

Interacting With a Remote Portlet
Just as with the rendering life cycle described in the previous section, interaction with a remote
portlet follows a well-defined series of steps. Interaction occurs, for example, when a user
submits a form through a page flow portlet. Typically, a JSP on the producer performs some
background action, such as executing business logic, and prepares a response.

As you will see, the steps taken for remote portlet interaction are similar to those taken for simple
rendering. The differences are highlighted in Figure 3-7 and described in this section.

Tip: It is crucial to understand that the rendering and interaction phases of the remote portlet
life cycle are decoupled. This decoupling has important consequences on how you
develop portlets in a producer. You cannot expect a portal to receive the same HTTP
response or request for the render phase as it receives after an interaction. For more
information on this and other practical advice, see Chapter 14, “Other Topics and Best
Practices.”

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-19

Figure 3-7 Remote Portlet Interaction Life Cycle

Initial Steps on the Consumer
When a user interacts with a remote portlet, the consumer must first compose a SOAP message
to send to the producer. These initial steps include the following. Steps highlighted in bold differ
from the render phase described previously.

1. Find producer metadata.

2. Collect the portlet state.

3. Collect all cookies.

4. Collect request parameters.

Because the user is interacting with the portlet, the request parameters must be collected
and returned to the producer.

5. Create a SOAP message.

All of the information gathered by the consumer must be formed into a SOAP message and
sent to the producer.

P
ro

xy
 P

or
tl

et

Render

SOAP

1. Find producer
metadata

2. Collect portlet state
3. Collect cookies
4. Collect request

parameters
5. Create SOAP message

1. Collect cookies
2. Collect session ID
3. Save portlet state

changes

1. Set up servlet request and
response

2. Establish the session
3. Establish portlet state
4. Enable portal API support

(optional)
5. Enable a URL rewriter

Process

1. Collect changes to portlet state
2. Collect session ID (if newly

created)

Invoke portlet action

request

Consumer Side Producer Side

Federated Po r ta l A rch i tec tu re

3-20 BEA WebLogic Portal Federated Portals Guide

Initial Steps on the Producer
After the producer receives the SOAP message from the consumer, the producer must take the
following steps to invoke the portlets action, generate markup for the requested portlet, and return
the portlet’s markup to the consumer. Steps highlighted in bold differ from the render phase
described previously.

1. Receive the SOAP request from the consumer.

2. Create an HTTP environment for the portlet.

3. Decide whether or not to offer extended features.

4. Create a URL rewriter.

5. Invoke the portlet’s action.

In this step, the actions submitted by the consumer must be replayed on the producer. The
producer is not directly aware of where the request for this action comes from. After the
business logic is executed, a page must be prepared that displays the results of the logic.
For instance, if the user submitted a login form, after a successful login, the portlet must
return another page that tells the user that the login was successful.

6. Collect changes to the portlet state.

After the request is processed, the producer must collect changes to the portlet’s state. This
state is returned to the consumer in the form of a markup fragment that can be collected
and displayed for the end user.

7. Collect the session ID, if a new session was created.

8. Sends the markup back to the consumer.

These steps are the same as for the render phase described previously.

Final Consumer Steps
Steps highlighted in bold differ from the render phase described previously.

1. Collect cookies.

2. Collect the session ID for each portlet.

3. Save portlet state changes.

Portlet state information is maintained on the consumer.

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-21

4. Rewrite markup (optional)

5. Write markup to the response.

This cycle repeats each time the portlet is rendered, as long as caching is not enabled on the
consumer.

Rendering Versus Interaction
Both the rendering and interaction phases are available to any remote portlet. The render phase
is required in cases where the user does not directly interact with a portlet, but the portlet needs
to be refreshed anyway. For instance, if a user interacts with one portlet on a page, she doesn’t
want the other portlets on the page to change or disappear.

Because the render phase is not always driven by a user’s interaction, it is idempotent (the
producer returns the same portlet state that the consumer submits). This makes sense, because if
you simply refresh a page, you do not want to regenerate data from a database. Likewise, in the
render phase, mode and state changes are not allowed.

Tip: Separate rendering and interaction phases are not unique to remote portlets; local portlets
incorporate a rendering and interaction phase as well.

Table 3-3 summarizes the characteristics of these two phases. These two phases are decoupled so
that a portlet’s state can only change if you interact with it. If, for instance, you submit a form
from Portlet A, and then interact with Portlet B in the same portal page, you do not want the state
or view of Portlet A to change when it is refreshed. A portlet’s state must only change if you
interact with it directly. The interaction phase is always driven by user interaction, while the
render phase can happen any number of times and is driven arbitrarily.

Table 3-3 Render Versus Interaction for Remote Portlets

Render Phase Interaction Phase

Focus on presentation (view) Focus on business logic (controller)

May be replayed several times Driven by user interaction

Federated Po r ta l A rch i tec tu re

3-22 BEA WebLogic Portal Federated Portals Guide

Interportlet Communication with Events
To facilitate interportlet communication with events, WebLogic Portal extended the WSRP
protocol to add a third phase in the remote portlet life cycle. This extension allows a portlet to fire
an event during its interaction phase. You can register events with remote portlets; however,
when a proxy portlet receives an event, it cannot process it locally because it is a proxy. The
remote portlet must send the event to the producer for processing. The portlet on the producer
then fires the event and the producer handles it as appropriate.

Note: The WebLogic Portal IPC framework is location independent. This means that the
framework is not concerned with where an event originated. Portlets in consumers and
producers can both listen for and fire events.

Idempotent

• No state/mode changes
• No changes to portlet

preferences
• Cannot redirect the

user

Non-idempotent

• Can ask for mode/state
changes

• Can change portlet
preferences

• Can redirect users

Generates markup Optionally generates markup.

Table 3-3 Render Versus Interaction for Remote Portlets

Render Phase Interaction Phase

L i fe Cyc le o f a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 3-23

Figure 3-8 Event Handling Phase

This phase is similar to the interaction phase. The primary difference is that in the interaction
phase, the portlet gets the user interaction data and in response it changes the navigational state
of the portlet. The portlet can also fire events.

In the event processing phase, the portlet does not receive a user interaction; rather, it always gets
an event fired by another component. In response to the event, the producer can change the state
of the portlet and can generate more events, which are stored in an event chain. If it generates
events, then the cycle repeats.

Retrieving Render Dependencies
WebLogic Portal allows you to specify certain dependencies associated with individual portlets.
Dependencies typically include Cascading Style Sheets (CSS files) and script files, such as
JavaScript (JS) files. Portlet dependencies are configured in an XML file that is referenced in a

P
ro

xy
 P

or
tl

et

Event

SOAP

1. Set up servlet request and
response

2. Establish the session
3. Establish portlet state
4. Enable portal API support

(optional)
5. Enable a URL rewriter
6. Populate event chain

Handle

6. Collect changes to portlet state
7. Collect events.

Invoke event handler(s)

event(s)

Ev
en

t C
ha

in

Ev
en

t C
ha

in

1. Collect cookies
2. Collect session ID
3. Save portlet state

changes
4. Fire events

Event(s)

Consumer Side Producer Side

Federated Po r ta l A rch i tec tu re

3-24 BEA WebLogic Portal Federated Portals Guide

.portlet file. The dependencies file explicitly lists the CSS and script files upon which the
portlet depends.

WebLogic Portal has extended the WSRP protocol to allow remote portlets to retrieve render
dependencies from producers.

Summary of Federated Portal Architecture
In summary, WebLogic Portal applications can act as consumers and/or producers. WebLogic
Portals are configured to handle:

Communication with multiple producers

Federation from producers running WebLogic Server or other non-WebLogic Portal
applications.

Aggregation of remote portlets

Addition of personalization, customization, security management, look and feel, and other
typical WebLogic Portal features to remote portlets

Displaying remote portlets to end users as rendered HTML content

Figure 3-9 shows a sequence diagram depicting the flow of actions between end users,
consumers, and producers. This diagram highlights the notion that a consumer acts as an
intermediary between a producer and an end user.

Summary o f Fede ra ted Por ta l A rch i tec ture

BEA WebLogic Portal Federated Portals Guide 3-25

Figure 3-9 WSRP Sequence Diagram

Federated Po r ta l A rch i tec tu re

3-26 BEA WebLogic Portal Federated Portals Guide

For More Technical Details
If you are interested in learning more about the technical details of the WebLogic Portal
implementation of WSRP, you can refer to the following BEA technical white papers.

Inside WSRP (on the dev2dev web site)

This BEA white paper discusses in detail the messaging that occurs between consumers
and producers and highlights best practices for developers writing portlets that will be
hosted on producers.

WSRP v.1.0 Primer (on the OASIS web site)

The purpose of this document is to provide a tutorial-oriented explanation of the main
concepts of the WSRP 1.0 specification. This document is maintained by OASIS, the
Organization for the Advancement of Structured Information Standards. OASIS is
responsible for creating the WSRP standard. BEA Systems has been an active member of
the OASIS technical group for WSRP 1.0 and continues to work as part of this standard
effort for future enhancements to the specification.

Web Services for Remote Portlets Specification Version 1.0 (on the OASIS web site)

This is the official specification for WSRP version 1.0. This document was also created by
and is maintained by OASIS.

BEA WebLogic Portal Federated Portals Guide

Part II Development

Part II, Development, includes the following chapters:

Chapter 4, “Creating Remote Portlets, Pages, and Books”

Chapter 5, “Configuring Remote Portlets”

Chapter 6, “Offering Books, Pages, and Portlets to Consumers”

Chapter 7, “Interportlet Communication with Remote Portlets”

Chapter 8, “Configuring a WebLogic Server Producer”

Chapter 9, “Publishing to UDDI Registries”

Chapter 10, “The Interceptor Framework”

Chapter 11, “Federating User Profiles”

Chapter 12, “Consumer Entitlement”

Chapter 13, “Transferring Custom Data”

Chapter 14, “Other Topics and Best Practices”

Most of the work required to create federated portals happens in the development phase of the
portal life cycle.

BEA WebLogic Portal Federated Portals Guide

Some of the tasks described in this chapter require you to use Workshop for WebLogic features
to create remote portlets, implement interportlet communication, publish portlets to a UDDI
registry, and create interceptors. Some features, such as interceptors, require Java coding
expertise. Other features, such as user profile mapping, require you to edit configuration files.

For more information about the portal life cycle, see the WebLogic Portal Overview.

BEA WebLogic Portal Federated Portals Guide 4-1

C H A P T E R 4

Creating Remote Portlets, Pages, and
Books

This chapter focuses on how to use Workshop for WebLogic to create and configure remote
portlets, pages, and books. This chapter includes the following sections:

Introduction

What Types of Portlets Can Be Remote?

Creating a Remote Portlet

Creating Remote Pages and Books

Introduction
Before getting started, we recommend that you review the following chapters in the architecture
part of this guide:

Chapter 2, “What are Federated Portals?”

Chapter 3, “Federated Portal Architecture”

.These chapters explain basic concepts such as producers, consumers, and remote portlets, pages,
and books. This chapter assumes you familiar with these concepts.

Note: This chapter is primarily for developers using Workshop for WebLogic to create
consumer portal applications. If you plan to use the WebLogic Portal Administration
Console to create federated portals, see Part III, Staging.

Creat ing Remote Po r t le ts , Pages , and Books

4-2 BEA WebLogic Portal Federated Portals Guide

What Types of Portlets Can Be Remote?
WebLogic Portal applications can consume the following types of portlets:

Page flow portlets

JSP (JavaServer Pages) portlets

JSF (JavaServer Faces) portlets

Struts portlets

Java portlets (supported only for complex producers)

To be consumable, a portlet must be deployed to a web application that is running in a
WSRP-compliant producer. The consumer application must also be capable of contacting the
producer using the producer’s WSDL URL.

Creating a Remote Portlet
This section presents a step-by-step example showing you how to create a remote (proxy) portlet
in a consumer application using Workshop for WebLogic. This section includes the following
topics:

Overview

Setting Up the Example

Locating and Consuming a Portlet

Viewing the Portlet

Summary

Overview
For this example, you will consume a portlet deployed in a producer application. The producer
application in this example is a Portal Web application deployed to a WebLogic Portal Domain.

Tip: For information on working with a producer that is running in a WebLogic Server
domain (as opposed to a WebLogic Portal Domain), see Chapter 8, “Configuring a
WebLogic Server Producer.”

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-3

The basic procedure for creating remote portlets is fairly simple: Workshop for WebLogic
provides a convenient wizard for this purpose. No programming is required. The basic steps
always include:

1. Locating a producer.

2. Selecting a remote portlet on the producer.

3. Consuming the portlet.

Figure 4-1 illustrates the basic parts of a federated portal, where the consumer includes a remote
portlet. A remote portlet is a proxy for a portlet that is deployed in a producer application.

Tip: To an end user, the features of the remote portlet are indistinguishable from the actual
portlet deployed on the producer. It is possible, however, to customize many of the
properties of a proxy portlet, as explained in Chapter 5, “Configuring Remote Portlets.”

Figure 4-1 Remote Portlet in a Consumer

Setting Up the Example
If you want to try the example discussed in this section, you need to run Workshop for WebLogic
and perform the prerequisite tasks outlined in this section.

To set up the example environment, perform the prerequisite tasks outlined in Table 4-1. If you
are not familiar with the specific procedures for these tasks, they are described in detail in the
tutorial Setting Up Your Portal Development Environment.

WebLogic
Portal
Domain

Producer

Portlet
WSRP Local

WebLogic
Portal
Domain

Consumer

Remote
Portlet

Creat ing Remote Po r t le ts , Pages , and Books

4-4 BEA WebLogic Portal Federated Portals Guide

Figure 4-2 shows the Project Explorer after the prerequisite tasks have been completed.

Figure 4-2 Project Explorer After Prerequisite Tasks are Completed

Locating and Consuming a Portlet
1. Be sure you have set up the example environment as explained previously in “Setting Up the

Example” on page 4-3.

2. Open the consumerProject folder in the Project Explorer, right-click on the WebContent
folder, and select New > Portlet.

Table 4-1 Prerequisite Tasks

Task Recommended Name

Create a WebLogic Portal domain. consumerPortalDomain

Create a Portal EAR Project. portalEarProject

Create a BEA WebLogic V10.0 Server. N/A

Associate the EAR project with the server. N/A

Create a Portal Web Project and add it to the EAR. consumerProject

Create a portal. consumer.portal

Portal file

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-5

Tip: If you do not see the Portlet feature on the New menu, be sure to open the Portal
perspective using Window > Open Perspective > Portal.

3. In the New Portlet dialog, enter remoteExample.portlet in the File name field, and click
Finish. The Select Portlet Type dialog appears.

4. In the Select Portlet Type dialog, select Remote Portlet, as shown in Figure 4-3, and click
Next. The Portlet Wizard – Producer dialog box appears.

Figure 4-3 Select Portlet Type Dialog

5. In the Portlet Wizard – Producer dialog, select Find Producer and, in the field provided, enter
the following WSDL URL, as shown in Figure 4-4:

http://wsrp.bea.com/portal/producer?wsdl

You can use another WSDL URL if you want to. Just remember that the pattern for the
URL is as follows:

http://host:port/webAppName/producer?wsdl

Creat ing Remote Po r t le ts , Pages , and Books

4-6 BEA WebLogic Portal Federated Portals Guide

where host is the host and port are the hostname and port number of the server on which
the producer is deployed, and webAppName is the name of the web application in which the
producer’s portlets are deployed.

Tip: If the producer was previously added to the consumer, it will appear in the Select
Producer list, and you can simply choose Select Producer and select the producer
from the list.

Tip: This WSDL URL points to an example producer hosted by BEA. This example
producer hosts several demonstration portlets. WSDL stands for Web Services
Description Language and is used to describe the services offered by a producer. For
more information, see Chapter 3, “Federated Portal Architecture.”

Figure 4-4 Entering the WSDL

6. After entering the WSDL URL, click Retrieve.

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-7

Checkpoint: At this point, the consumer uses the WSDL to locate the producer and learn
about its available portlets. The Producer Details section of the wizard panel now displays
information about the producer, including the number of portlets that are available to the
consumer, as shown in Figure 4-5.

7. Click Register in the Producer Details section of the wizard panel, as shown in Figure 4-5.
The Register dialog appears.

Tip: During registration, the producer stores information about the consumer and returns
a handle to the consumer. Registration is an optional feature described in the WSRP
specification. A WebLogic Portal complex producer implements this option and,
therefore, requires consumers to register before discovering and interacting with
portlets offered by the producer. See “Complex Producers” on page 3-7 for more
information.

Figure 4-5 Producer Details

8. In the Register dialog, enter beaProducer in the Producer Handle field, as shown in
Figure 4-6. This handle identifies the producer on the consumer.

Creat ing Remote Po r t le ts , Pages , and Books

4-8 BEA WebLogic Portal Federated Portals Guide

Figure 4-6 Registering the Producer

9. Click Register. You are returned to the Producer dialog.

Checkpoint: At this point the WSDL data from the producer has been retrieved and is
displayed in the Producer Details panel of the dialog, as shown in Figure 4-7. Note that
four portlets on the producer are available to the consumer.

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-9

Figure 4-7 Registration Information

10. Click Next to proceed.

11. In the Select Portlet from List dialog, select one of the remote portlets from the list of portlets
on the producer, as shown in Figure 4-8. You can pick any one of them.

Registration
Information

Creat ing Remote Po r t le ts , Pages , and Books

4-10 BEA WebLogic Portal Federated Portals Guide

Figure 4-8 Select a Portlet on the Producer

12. Click Next. The Proxy Portlet Details dialog appears. The title of the portlet you selected
appears in the Portlet Title field, as shown in Figure 4-9. You can change this title if you want
to.

Note: If the producer does not require registration, the Producer’s Handle field will appear
editable and unitialized. In this case, you must enter an arbitrary value for the
producer handle before the Create button will be enabled.

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-11

Figure 4-9 The Proxy Portlet Details

13. Click Create.

The new remote portlet shows up in the Project Explorer in the WebContent folder, as shown in
Figure 4-10.

Figure 4-10 Remote Portlet

Portlet File

Creat ing Remote Po r t le ts , Pages , and Books

4-12 BEA WebLogic Portal Federated Portals Guide

Viewing the Portlet
To view the portlet, you need to add it to the consumer portal, as explained in this section.

1. If it is not already open, open the consumerProject/WebContent folder.

2. Double-click the file consumerPortal.portal in WebContent folder. The portal editor appears
in Workshop for WebLogic.

3. Drag the remoteExample.portlet file from the Project Explorer to the portal. The result is
shown in Figure 4-11.

Figure 4-11 Remote Portlet Placed in Portal

4. To test the portal, right-click the portal filename, remoteExample.portlet, in the Project
Explorer, and select Run As > Run On Server. The New Server – Define a Server dialog
appears.

5. In the Run On Server – Define a New Server dialog, be sure the BEA WebLogic v10.0 Server
is selected, and click Finish.

6. The portal containing the remote portlet appears in a browser, as shown in Figure 4-12.

Creat ing a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 4-13

Figure 4-12 Federated Portal

Summary
In this section you added a remote portlet to a WebLogic Portal consumer application. The
consumed portlet is a proxy for a portlet that is deployed in a remote producer application. In
addition to the basic setup steps, this example demonstrated the following tasks:

Discovering the producer using its WSDL URL

Registering the producer

Selecting a portlet from the producer

Adding the remote portlet to a consumer portal

Running a consumer portal

Creat ing Remote Po r t le ts , Pages , and Books

4-14 BEA WebLogic Portal Federated Portals Guide

Creating Remote Pages and Books
The primary advantage of remote books and pages is that they act as containers for other remote
resources. For example, a producer can offer a remote book that contains several remoteable
pages, each of which contain multiple remoteable portlets. When you consume that book, the
remoteable pages and portlets it contains are consumed as well—no additional steps are required.

Tip: The term remoteable refers to a book, page, or portlet that is deployed in a producer
application and that is offered as remote to consumers. Application developers decide
whether or not books, pages, and portlets they create are offered as remote.

For detailed information on creating remoteable pages and books in a producer application, see
Chapter 6, “Offering Books, Pages, and Portlets to Consumers.” If a remote book or page does
not appear as you expect it to, see “Rules for Creating Remoteable Books and Pages” on page 6-8.

Remember that changes you make to a remote book or page are not reflected back to the producer;
therefore, after a remote book or page is modified on the consumer, it can become inconsistent
with the original book, page, or portlet in the producer application.

You can add remote books and pages to your portal as you would any other book or page.

Basic Procedure
The procedure for creating a remote page or book is similar to the procedure for creating a remote
portlet.

Tip: This example explains how to create a remote page. The procedure for creating a remote
book is similar.

1. Select File > New > Other.

2. In the New dialog, select Remote Page (or Remote Book), as shown in Figure 4-13, and click
Next.

Creat ing Remote Pages and Books

BEA WebLogic Portal Federated Portals Guide 4-15

Figure 4-13 Creating a New Remote Page

3. In the New Remote Page dialog, select a folder in which to place the resulting .page file, and
give the file a name, as shown in Figure 4-14, and click Next.

Creat ing Remote Po r t le ts , Pages , and Books

4-16 BEA WebLogic Portal Federated Portals Guide

Figure 4-14 Creating a Remote Page File

4. In the Page Producer dialog, select Find Producer and, in the field provided, enter the WSDL
URL of the producer, as shown in Figure 4-15:

The pattern for the WSDL URL is as follows:

http://host:port/webAppName/producer?wsdl

where host and port are the hostname and port number of the server on which the
producer is deployed, and webAppName is the name of the web application in which the
producer’s remoteable pages and books are deployed.

Tip: If the producer was previously added to the consumer, it will appear in the Select
Producer list, and you can simply choose Select Producer and select the producer
from the list.

5. After entering the WSDL URL, click Retrieve.

Checkpoint: At this point, the consumer uses the WSDL URL to locate the producer and
learn about its available remoteable pages. The Producer Details section of the wizard

Creat ing Remote Pages and Books

BEA WebLogic Portal Federated Portals Guide 4-17

panel now displays information about the producer, including the number of pages that are
available to the consumer, as shown in Figure 4-15.

6. Click Register in the Producer Details section of the wizard panel, as shown in Figure 4-15.
The Register dialog appears.

Figure 4-15 Producer Details

Tip: During registration, the producer stores information about the consumer and returns
a handle to the consumer. Registration is an optional feature described in the WSRP
specification. A WebLogic Portal complex producer implements this option and,
therefore, requires consumers to register before discovering and interacting with
books and pages offered by the producer. See “Complex Producers” on page 3-7 for
more information.

7. In the Register dialog, enter a handle name in the Producer Handle field, as shown in
Figure 4-6. This handle identifies the producer on the consumer.

Creat ing Remote Po r t le ts , Pages , and Books

4-18 BEA WebLogic Portal Federated Portals Guide

Figure 4-16 Registering the Producer

8. Click Register. You are returned to the New Remote Page–Page Producer dialog.

Checkpoint: At this point the WSDL data from the producer has been retrieved and is
displayed in the Producer Details panel of the dialog.

9. Click Next to proceed.

10. In the Select Page from List dialog, select one of the remote pages from the list of pages
offered by the producer, as shown in Figure 4-8, and click Next.

Creat ing Remote Pages and Books

BEA WebLogic Portal Federated Portals Guide 4-19

Figure 4-17 Select a Page on the Producer

11. The Remote Page Details dialog appears. The title of the page you selected appears in the
Page Title field, as shown in Figure 4-9. You can change this title if you want to.

Note: If the producer does not require registration, the Producer’s Handle field will appear
editable and unitialized. In this case, you must enter an arbitrary value for the
producer handle before the Finish button will be enabled.

Creat ing Remote Po r t le ts , Pages , and Books

4-20 BEA WebLogic Portal Federated Portals Guide

Figure 4-18 The Remote Page Details Dialog

12. Click Finish.

The new remote page shows up in the Project Explorer in the folder you selected. The page
appears as a .page file, for example, /WebContent/myRemotePage.page. You can now add the
remote page to your portal. Any remoteable portlets on the page will show up in the remote page
as inlined portlets. For more information on remoteable portlets, pages, and books as remote, see
Chapter 6, “Offering Books, Pages, and Portlets to Consumers.” For information on inlined
portlets, see the Portlet Development Guide.

BEA WebLogic Portal Federated Portals Guide 5-1

C H A P T E R 5

Configuring Remote Portlets

This chapter discusses ways you can modify and configure remote portlets within Workshop for
WebLogic.

This chapter includes the following sections:

Applying a Look and Feel to a Remote Portlet

Modifying Modes and States in a Remote Portlet

Handling Errors in Remote Portlets

Setting Preferences on a Remote Portlet

Using Backing Files with Remote Portlets

Setting a Timeout Value on a Remote Portlet

Modifying WSRP Markup and Messages

Remote Portlet Properties

Applying a Look and Feel to a Remote Portlet
The look and feel of a portlet determines the appearance of a portlet on the portal desktop. A
remote portlet’s look and feel is not linked to a producer, giving you the option of modifying the
portlet’s appearance on the consumer. This capability allows you to match the appearance of the
consumer portal in which the proxy portlet resides.

Conf igur ing Remote Por t l e ts

5-2 BEA WebLogic Portal Federated Portals Guide

Specific procedures for applying a look and feel to a portlet are documented elsewhere. Please
refer to the WebLogic Portal Development Guide for detailed information on these topics:

Creating Look and Feels

Look and Feel Architecture

The Portal User Interface Framework

How Look and Feel Determines Rendering

Style Sheet Class Reference

Creating Skins and Skin Themes

Creating Skeletons and Skeleton Themes

Modifying Modes and States in a Remote Portlet
This section explains how to modify a remote portlet’s modes and states and includes these
topics:

What are Modes and States?

Modes and States in Remote Portlets

Changing Modes and States in Remote Portlets

What are Modes and States?
A portlet’s title bar can contain up to six buttons. These buttons provide convenient functions
called modes and states.

Figure 5-1 shows an example portlet with all of the modes and states enabled.

Modi f y ing Modes and S tates in a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 5-3

Figure 5-1 Portlet with Modes and States

The modes include:

Edit – Activates a custom file that lets you modify the portlet’s content.

Help – Activates a help file.

The states include:

Minimize – Minimizes the portlet.

Maximize – Maximizes the portlet.

Delete – Removes the portlet from the portal.

Float – Displays the portlet in a separate window.

For more detailed information on modes and states, how they work, and how to add and configure
them in portlets, refer to the Portlet User Guide.

Modes and States in Remote Portlets
Table 5-1 describes how states are transferred by default from a portlet deployed on a producer
to its remote proxy in a consumer application. The table also indicates whether or not the state is
editable in the remote portlet.

Minimize Edit Float Delete Maximize Help

Conf igur ing Remote Por t l e ts

5-4 BEA WebLogic Portal Federated Portals Guide

Table 5-2 describe how modes are transferred by default from a portlet deployed on a producer
to its remote proxy in a consumer application. The table also indicates whether or not the mode
is editable in the remote portlet. For instance, if the Help mode is set in the portlet deployed on
the producer, it is also set in the remote proxy; however, you cannot remove it from the remote
proxy. On the other hand, if Help is not set in the portlet deployed on the producer, you are free
to add it to the remote portlet.

Note: Both the help and the edit mode each reference a file that provides appropriate content
for those actions. For example, the help mode references a help file. For these modes to

Table 5-1 Default Behavior of States in Remote Portlets

State of Producer Portlet Default State of Proxy Portlet Is the Proxy Portlets’s State Editable?

Delete = true Delete = true No

Delete = false Delete = false No

Maximize = true Maximize = true No

Maximize = false Maximize = false No

Minimize = true Minimize = true No

Minimize = false Minimize = false No

Float = true Float = true No

Float = false Float = false No

Table 5-2 Default Behavior of Modes in Remote Portlets

State of Producer Portlet Default State of Proxy Portlet Is the Proxy Portlets’s State Editable?

Help = true Help = true No

Help = false Help = false Yes

Edit = true Edit = true No

Edit = false Edit = false Yes

Modi f y ing Modes and S tates in a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 5-5

work in a proxy portlet, the files they reference must exist on the consumer in the same
relative location as they exist on the producer system.

Changing Modes and States in Remote Portlets
All of the modes and states that are available in local portlets are available in their remote proxies.
Note, however, that when you create a remote portlet, it is not possible to edit (add or remove) all
of the modes and states in the remote portlet. In addition, the Float state is always turned off in a
remote portlet by default; however, you are free to add it to the remote portlet in the consumer
application if you wish.

The procedure for changing the default mode and state settings in a remote portlet is the same as
with a local portlet.

1. Double-click the portlet file in the Package Explorer view to open it in the editor.

2. Click in the header portion of the portlet in the editor, as shown in Figure 5-2. This opens the
Portlet Titlebar properties in the Properties view, as shown in Figure 5-3

Figure 5-2 Click in the Header of the Portlet

3. Click on the Portlet Titlebar values to change them.

Click here to Open
the Mode and State
Property Editor

Conf igur ing Remote Por t l e ts

5-6 BEA WebLogic Portal Federated Portals Guide

Figure 5-3 Header Properties View

Handling Errors in Remote Portlets
Under some circumstances, a remote portlet may be unable to access its producer. In this case,
the consumer throws an exception. This section explains how to handle this exception by
displaying an error page.

There are two ways to configure an error page for a remote portlet to be displayed if the remote
portlet is unable to connect to its producer. You can configure the page in Workshop for
WebLogic or in the remote portlet’s XML file.

Tip: For finer control of error handling, consider using interceptors. The interceptor
framework is described in Chapter 10, “The Interceptor Framework.”

This section includes these topics:

Configuring an Error Page in Workshop for WebLogic

Configuring an Error Page in the .portlet File

Configuring an Error Page in Workshop for WebLogic
To configure an error page for a remote portlet using Workshop for WebLogic:

1. In Workshop for WebLogic, display the Outline view for the remote portlet. To do this, select
Window > Show View > Other. In the Show View dialog, select Basic > Outline.

2. In the Outline View, click Proxy Content, as shown in Figure 5-4.

Handl ing Er ro rs in Remote Por t l e ts

BEA WebLogic Portal Federated Portals Guide 5-7

Figure 5-4 Selecting the Proxy Content Node

3. Click the Properties tab to display the Properties view for the Proxy Content. This view
contains one property, Error URI, as shown in Figure 5-5.

Figure 5-5 Entering the Error Filename

4. In the Error URI field, enter (or browse to) the name of the error file you want to associate
with the portlet. The portlet displays this page in the event of an error.

The Error URI specifies a file path that is relative to the project in which the remote portlet
is located.

Configuring an Error Page in the .portlet File
You can also configure an Error URI in a remote portlet’s .portlet file. To do this, open the
.portlet file and add the following element, where the value of the errorUri attribute is the
name of the error file to be displayed:

<netuix:proxyPortletContent errorUri="errorFileName.jsp"/>

The errorURI attribute specifies a file path that is relative to the project in which the remote
portlet is located.

Listing 5-1 shows the complete XML file for a remote portlet, with an example
<netuix:proxyPortletContent> element highlighted in bold.

Conf igur ing Remote Por t l e ts

5-8 BEA WebLogic Portal Federated Portals Guide

Listing 5-1 Remote Portlet XML File

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0
portal-support-1_0_0.xsd">

 <netuix:proxyPortlet
 cacheExpires="300" definitionLabel="portlet_5_1" description=""
 doesUrlTemplateProcessing="true" forkRender="false"
 forkable="false" groupId="Consumer" portletHandle="portlet_5"
 producerHandle="consumerProducer" renderCacheable="true"
 templatesStoredInSession="true" title="Remote Preferences">
 <netuix:titlebar><netuix:maximize/><netuix:minimize/></netuix:titlebar>

<netuix:proxyPortletContent errorUri="error.jsp"/>
 </netuix:proxyPortlet>
</portal:root>

Setting Preferences on a Remote Portlet
Portlet preferences function in remote portlets in much the same way as they do in local portlets.
Just as with local portlets, remote portlets can take advantage of portlet preferences to allow users
to customize the presentation of the portlet.

This section discusses the use of portlet preferences in remote portlets and includes these topics:

What is a Portlet Preference?

Portlet Preferences and Remote Portlets

Managing Portlet Instances through Registration

Note: This section assumes that you are familiar with the concept of a portlet preference and
how to create and configure portlet preferences. If you are unfamiliar with portlet
preferences, see the Portlet Development Guide.

Set t ing P re fe rences on a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 5-9

What is a Portlet Preference?
Portlet preferences allow portlets to modify, store, and access pre-defined String values. When
these preference values are retrieved by a portlet, they typically affect the way the portlet is
displayed for a given user. For example, a stock portfolio portlet might allow users to specify
which stocks they want to view. Through a user interface, users select or enter which stocks they
want to view in the portlet. The list of stocks is then passed to the server and stored in the database
for that particular user. As long as a portlet preference is modifiable, and an interface is provided
for editing preferences, every user of a portlet can configure his or her own personal view of the
portlet.

A clearly defined API exists for setting and retrieving preferences. Developers can create
preferences in Workshop for WebLogic, and administrators can create and edit preferences using
the WebLogic Portal Administration Console.

Portlet Preferences and Remote Portlets
In a federated configuration, the producer stores and manages portlet preferences. When you
view or modify the preferences in a remote portlet (on a consumer), the consumer must fetch the
preferences from the producer, and modifications must be sent back to the producer where they
are stored.

Note: Portlet preferences are included in the WebLogic Portal implementation of WSRP
producers. Other WSRP producer implementations may not support portlet preferences.

Viewing and Modifying Preferences
You can view and modify the portlet preferences for a remote portlet using the WebLogic Portal
Administration Console. The Administration Console uses the Portlet Management interface of
WSRP to retrieve preferences from the producer and modify them.

Note: It is not possible to create or modify portlet preferences in a remote portlet using
Workshop for WebLogic.

Figure 5-6 shows the interface for creating a portlet preference in the WebLogic Portal
Administration Console. A similar interface exists for editing a preference. For instance, you can
change the default value for a preference, or make it read-only.

Conf igur ing Remote Por t l e ts

5-10 BEA WebLogic Portal Federated Portals Guide

Figure 5-6 Creating a Portlet Preference in the WebLogic Portal Administration Console

Tip: Changes you make to a portlet preference in the Administration Console are scoped
either at the Library level or the instance level. If you modify a portlet preference in the
Library, all subsequent instances of that portlet will include the change. If you modify an
instance (in the Portals folder) only that instance is affected. In other words, if the same
portlet is used in several desktops, a new instance of the portlet is generated for each use.
When you modify an instance of a portlet, only that instance is modified. Note that the
first time a user updates a portlet preference, a new instance of the portlet is created, and
the updated preferences are associated with the new instance. The WSRP registration
interface provides a way for producers to keep track of new portlet instances created for
remote portlets. See “Managing Portlet Instances through Registration” on page 5-12 for
more information.

Working with Preferences Programatically
Portlets can also create, retrieve, and modify preferences programatically by obtaining a
javax.portlet.PortletPreferences object. For instance, a page flow portlet can retrieve an
instance of this object from the PortletBackingContext object in an action method. For
example, the page flow action method shown in Listing 5-2 retrieves from a FormData object a
preference set by a user, sets the preferences in a PortletPreferences object, and stores the
preferences in the database using the store() method.

Set t ing P re fe rences on a Remote Po r t le t

BEA WebLogic Portal Federated Portals Guide 5-11

Listing 5-2 Setting Portlet Preferences in an Action Method

/**
* @jpf:action
* @jpf:forward name="success" path="index.jsp"
*/
protected Forward setColor(ColorForm form) {

//-- Retrieve a preferences object from the context.
PortletBackingContext context =
PortletBackingContext.getPortletBackingContext(getRequest());
PortletPreferences prefs = context.getPreferences(getRequest());

 //-- Set the user’s preference.

try {
 prefs.setValue("color", (String)form.getColor()[0]);
 } catch (ReadOnlyException e) {
 e.printStackTrace();
 }

 //-- Store the user’s preference.

try {
 prefs.store();
 } catch (ValidatorException io) {
 io.printStackTrace();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }

 return new Forward("success");

}

As noted previously, for a remote portlet, preferences are hosted and managed on the producer.
No preference information is ever stored on the consumer.

Additional Usage Notes and Restrictions
This section lists additional information about using portlet preferences in remote portlets.

You cannot add portlet preferences to remote portlets consumed from a simple producer or
from producers that have portal management disabled in the
wsrp-producer-config.xml file.

Conf igur ing Remote Por t l e ts

5-12 BEA WebLogic Portal Federated Portals Guide

Portlets are not allowed to make persistent state changes during rendering. The store()
method in javax.portlet.PortletPreferences throws an IllegalStateException
if a portlet calls the store() method during the render phase of a portlet (that is, during
the execution of the getMarkup operation).

Portlets, whether remote or not, cannot be customized in any way, including the
modification of portlet preferences, in either of these two cases: (a) the portlet is in a
file-based portal (that is, rendered from a .portal file or (b) the user accessing the portlet
is anonymous (not authenticated). Consumer portlets communicate this to the producer by
sending a value of readOnly for the portletStateChange element in the
performBlockingInteraction request.

If the instance of a remote portlet is shared among several users, WebLogic Portal
consumer sends a value of cloneBeforeWrite for the portletStateChange element.
This value indicates to the producer that it must clone the portlet before making changes to
preferences. If a portlet does indeed modify preferences, the producer returns a new
portletHandle to the consumer. This new portletHandle replaces the original
portletHandle.

On subsequent requests, the consumer sends a value of readWrite indicating that the
producer can allow portlets to modify preferences.

Managing Portlet Instances through Registration
As discussed previously, whenever a user customizes a portlet by modifying portlet preferences,
a new instance of the portlet is created. In the case of a remote portlet, the new instance is created
on the producer, and the handle for that instance is returned to the consumer. Of course, as the
number of users increases, the number of unique portlet instances can grow large in the producer
space. If the consumer decides not to use the producer anymore, the producer needs to have a way
of learning this and subsequently removing the portlet instances that are no longer needed. Portlet
registration accomplishes this goal.

WebLogic Portal producers support registration by default for complex producers. If registration
is enabled, consumers must register with a producer before accessing any of the producer’s
portlets. Once registered, the producer returns a registrationHandle to the consumer. The
consumer must supply this handle on all future requests until the consumer is deregistered. When
a consumer deregisters a portlet, the producer removes all of the portlet instances that were
created for that consumer.

Us ing Back ing F i l es w i th Remote Po r t l e ts

BEA WebLogic Portal Federated Portals Guide 5-13

Using Backing Files with Remote Portlets
Backing files let you programatically add functionality to a portlet by implementing (or
extending) a Java class, which enables preprocessing (for example, authentication) prior to
rendering the portal controls. You can attach a backing file to a portlet using the Backing File
property in the Properties View in Workshop for WebLogic.

Backing files let you implement business logic at certain points of a portlet’s lifecycle. In a local
portlet, backing file methods are called in the following order:

init()

handlePostbackData()

preRender()

dispose()

A producer, however, executes backing file methods in an order that reflects the type of consumer
request, as shown in Table 5-3.

For detailed information about backing files, see the Portlet Development Guide. For an example
that uses backing files with remote portlets, see Chapter 13, “Transferring Custom Data.” See
also “Life Cycle of a Remote Portlet” on page 3-13.

Setting a Timeout Value on a Remote Portlet
Occasionally, a producer is slow to respond to a request from a remote portlet. In this case, the
portal application in which the remote portlet is located remains unresponsive until the remote
portlet’s response is received. This section explains how to set timeout values for remote portlets.

This section includes these topics:

Overview

Table 5-3 Order of Backing File Method Execution in a Producer

Consumer Request Order of Backing File Methods Called on the Producer

getMarkup() init(), preRender(), dispose()

performBlockingAction() init(), handlePostbackData(), dispose()

handleEvents() init(), any event handler method, dispose()

Conf igur ing Remote Por t l e ts

5-14 BEA WebLogic Portal Federated Portals Guide

Setting Default Timeout Values

Setting Timeouts for Individual Remote Portlets

Overview
WebLogic Portal provides two timeout settings for remote portlets:

Connection Establishment Timeout – The amount of time a remote portlet will wait for a
connection response from a producer.

Connection Timeout – The amount of time the remote portlet will wait for a response
from a producer to which it is already connected.

You can set a default timeout limit for all remote portlets and a timeout limit for an individual
remote portlet. The timeout set on an individual portlet takes precedence over the default.

The remote portlet connection timeout only works when a consumer is continually connected to
a producer. The timeout is effective only for cases where the producer is slow to respond to a
consumer, not for cases where the producer is physically unavailable (the connection is broken),
or where a new connection is made. In these cases, the operating system’s TCP timeout takes
effect.

Setting Default Timeout Values
To set default timeout values for all remote portlets in a web application, edit one or both of the
elements shown in Listing 5-3. These elements appear in the configuration file
wsrp-producer-registry.xml located in the WEB-INF directory of each portal web
application.

Listing 5-3 Connection Timeout Elements

<connection-establishment-timeout-msecs>-1</connection-establishment-timeout-msecs>

<connection-timeout-msecs>120000</connection-timeout-msecs>

Note: Timeout values are in milliseconds.

Modi f y ing WSRP Markup and Messages

BEA WebLogic Portal Federated Portals Guide 5-15

Setting Timeouts for Individual Remote Portlets
To set a connection establishment and/or a connection timeout for an individual remote portlet,
open the Properties view for the portlet in Workshop for WebLogic and set values for the
Connection Establishment Timeout and Connection Timeout properties, as shown in Figure 5-7.
The timeout values are in milliseconds.

Figure 5-7 Setting Timeout Properties

Modifying WSRP Markup and Messages
The Interceptor Framework is a consumer-side framework that lets you programatically intercept
and modify markup and user interaction-related WSRP messages sent to and received from
producers. The framework exposes a set of interfaces that you can implement. These interfaces
let you examine the content of a WSRP message and take specific action based on that content.
For example, if a producer sends a registration error back to the consumer, an interceptor can
detect that error and display an informative message to the user or, perhaps, automatically return
the information required to complete the registration.

For more information on creating interceptors, see Chapter 10, “The Interceptor Framework.”

Remote Portlet Properties
This section lists and describes the set of Proxy Portlet Properties and other portlet properties that
of interest to federated portal developers. This section includes these topics:

Proxy Portlet Properties

Conf igur ing Remote Por t l e ts

5-16 BEA WebLogic Portal Federated Portals Guide

Other Portlet Properties

Proxy Portlet Properties
Table 5-4 lists the Proxy Portlet Properties. These properties appear in the Properties list for
remote (proxy) portlets.

Table 5-4 Proxy Portlet Properties

Property Value

Connection
Establishment
Timeout

Optional. The number of milliseconds after which this portlet will time out
when establishing an initial connection with its producer.

Connection Timeout Optional. The number of milliseconds after which this portlet will time out
when communicating with its producer. If not specified here, the default value
contained in the file WEB-INF/wsrp-producer-registry.xml is used.

Group ID Read-only (assigned by the producer). If the producer associates this portlet
within a group, the producer-assigned string appears here. Portlets with the same
group ID from the same producer can share sessions.

Invoke Render
Dependencies

Read-only (assigned by the producer). This boolean property allows the
consumer to obtain render dependencies from the producer during the pre-render
life cycle of a proxy portlet.

When a portlet on a producer has a lafDependenciesUri value, the
producer exposes the invokeRenderDependencies boolean in the portlet
description.

The value defaults to false if the attribute is not included in the .portlet
file. The value is read-only, and is initialized from the producer whenever a
proxy portlet is generated from the portlet wizard.

Portlet Handle Read-only (assigned by the producer). The producer’s unique identifier for the
portlet that this proxy references.

Producer Handle Required. The producer’s unique identifier.

Templates Stored in
Session

Read-only (assigned by the producer). Indicates whether the producer stores
URL templates in the user's session on the producer side. This boolean is
meaningful only when URL Template Processing boolean is set to true.

Remote Po r t l e t P roper t i es

BEA WebLogic Portal Federated Portals Guide 5-17

Other Portlet Properties
For a list of additional portlet properties, see the Portlet Development Guide.

URL Template
Processing

Read-only (assigned by the producer). Indicates whether the producer uses
URL templates to create URLs. If true, the consumer supplies URL templates. If
false, the producer rewrites URLs using special rewrite tokens.

User Context Stored
In Session

Read-only (assigned by the producer). This boolean value defaults to false if
the attribute is not included in the .portlet file.

This value is initialized from the producer whenever a proxy portlet is generated
from the portlet wizard.

Table 5-4 Proxy Portlet Properties (Continued)

Property Value

Conf igur ing Remote Por t l e ts

5-18 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 6-1

C H A P T E R 6

Offering Books, Pages, and Portlets to
Consumers

WebLogic Portal producer applications can offer books, pages, and portlets to consumers. This
chapter explains the procedures and best practices involved in making books, pages, and portlets
remoteable.

Tip: In this chapter, we use the term remoteable to refer to a book, page, or portlet that is
deployed in a producer application. To be remoteable, the Offer As Remote property of
the book, page, or portlet must be set to true, as explained in later in this chapter.

This chapter includes these sections:

Introduction

Offering Portlets on a Producer

Offering Books and Pages on a Producer

Rules for Creating Remoteable Books and Pages

Introduction
A complex producer can offer remoteable books, pages, and portlets. When a page or book is
offered as remote from a complex producer application, the nested contents of the page or book
are, by default, also offered as remote. This means that you can group multiple portlets in a page,
for example, and a WebLogic Portal consumer can then consume both the page and its portlets in
one operation.

Offe r ing Books , Pages , and Por t l e ts to Consumers

6-2 BEA WebLogic Portal Federated Portals Guide

Tip: Portlets deployed in a simple application can also be remoteable; however, only complex
producers can offer remoteable books and pages. See Chapter 8, “Configuring a
WebLogic Server Producer” for more information on creating remoteable portlets in a
WebLogic Server application. For information on simple and complex producers, see
“Understanding Producers and Consumers” on page 3-4.

Table 6-1 summarizes which BEA tools you can use to create and consume remote books, pages,
and portlets. Although you can consume remote portlets using Workshop for WebLogic, you
cannot consume remote books and pages. Workshop for WebLogic does not provide a feature for
locating and consuming remote books and pages. If you want to incorporate remote books and
pages into a WebLogic Portal consumer application, you must use the WebLogic Portal
Administration Console, see Chapter 17, “Adding Remote Resources to the Library.”

Offering Portlets on a Producer
By default, all portlets deployed in a WebLogic Portal producer application are available to
consumers as remote portlets. You can, however, specify which portlets are actually available to
consumers by setting the Offer As Remote property in the Properties view for the portlet, as
shown in Figure 6-6.

If you want a portlet to be available to consumers, set Offer As Remote to true (the default). If
you want to hide a portlet from consumers, set Offer As Remote to false.

Table 6-1 List of BEA Tools for Creating and Consuming Remote Resources

Feature Workshop for
WebLogic

Administration
Console

Create remoteable books and pages Yes No

Create remoteable portlets Yes No

Consume remote portlets Yes Yes

Consume remote books and pages No Yes

Offe r ing Books and Pages on a P roducer

BEA WebLogic Portal Federated Portals Guide 6-3

Figure 6-1 Portlet Properties View

For detailed information on creating portlets and setting properties, see the Portlet Development
Guide.

Offering Books and Pages on a Producer
If you want to create books and pages that are accessible to remote consumer applications, you
must use Workshop for WebLogic.

To make a remoteable book or page in Workshop for WebLogic, as the following procedures
explain, you must create the book or page as a standalone .book or .page file. In Workshop for
WebLogic, you can do this by selecting New > File > Other > WebLogic Portal > Book (or
Page).

Tip: For more information on creating and working with pages and books, see the Portal
Development Guide.

This section includes these topics:

Setting Up the Example

Creating a Remoteable Page (or Book)

Summary

Offer As Remote
Property

Offe r ing Books , Pages , and Por t l e ts to Consumers

6-4 BEA WebLogic Portal Federated Portals Guide

Setting Up the Example
If you want to try the example discussed in this section, you need to run Workshop for WebLogic
and perform the prerequisite tasks outlined in this section.

To set up the example environment, perform the prerequisite tasks outlined in Table 6-2. If you
are not familiar with the specific procedures for these tasks, they are described in detail in the
WebLogic Portal tutorial “Setting Up Your Portal Development Environment.”

Figure 6-2 shows the Package Explorer after the prerequisite tasks have been completed.

Figure 6-2 Package Explorer After Prerequisite Tasks are Completed

Creating a Remoteable Page (or Book)

Tip: The procedure for creating a remoteable book is almost identical to the procedure for
creating a page. Rather than reproduce both procedures here, we explain how to create a

Table 6-2 Prerequisite Tasks

Task Recommended Name

Create a WebLogic Portal domain. producerPortalDomain

Create a Portal EAR Project. producerEAR

Create a BEA WebLogic V10.0 Server. N/A

Associate the EAR project with the server. N/A

Create a Portal Web Project and add it to the EAR. producerWebProject

Offe r ing Books and Pages on a P roducer

BEA WebLogic Portal Federated Portals Guide 6-5

remoteable page and, where appropriate, highlight any differences between the two
procedures.

To create a page in a producer application that is accessible to consumer applications:

1. Start Workshop for WebLogic.

2. Create a Portal Web Project, as explained in the previous section.

3. Select File > New > Other.

4. In the New – Select a wizard dialog, open the WebLogic Portal folder, select Page, and click
Next.

Tip: To create a remoteable book, select Book instead of Page.

5. In the New Page dialog, select a parent folder for the new page and enter a name for the page,
as shown in Figure 6-3. In this example, the parent folder is WebContent, and the filename is
myPage.page.

Figure 6-3 New Page Dialog

Offe r ing Books , Pages , and Por t l e ts to Consumers

6-6 BEA WebLogic Portal Federated Portals Guide

6. Click Finish.

Checkpoint: The file myPage.page is added to the Portal Web Project in the folder you
specified, as shown in Figure 6-4.

Figure 6-4 A New Page File

In addition, the page opens in the editor, as shown in Figure 6-5.

Page File

Offe r ing Books and Pages on a P roducer

BEA WebLogic Portal Federated Portals Guide 6-7

Figure 6-5 Page File Displayed in the Editor

7. Click on the border of the page to display the page’s Properties view. If the Properties view is
not currently available, select Window > Show View > Properties.

8. Note that, by default, the Offer As Remote property is set to true for this .page file, as shown
in Figure 6-6. This property setting means that this page, and any books, pages, and portlets
you add to it (according to the rules discussed in “Rules for Creating Remoteable Books and
Pages” on page 6-8) will be visible to consumers if their respective Offer As Remote
properties are also set to true.

Offe r ing Books , Pages , and Por t l e ts to Consumers

6-8 BEA WebLogic Portal Federated Portals Guide

Figure 6-6 Offer As Remote Property

Summary
You can treat the page shown in Figure 6-5 like any other page. You can add books and portlets
to it and you can drag and drop the page into a portal. If you create a remote book, you can add
pages to it, and those pages can in turn contain portlets and other books.

Rules for Creating Remoteable Books and Pages
The key points to remember with respect to making a page (or book) accessible to remote
consumers are:

If you have a book or page that is offered as remote, but none of the book’s or page’s
contents (other books, pages, and portlets) are offered as remote, the book or page will not
be visible to consumers. To be visible, a book or page must be offered as remote and must
contain at least one other entity that is offered as remote.

For example, Figure 6-7 shows a sample configuration. In this configuration, consumers
can locate Book_1. To a consumer, Book_1 contains one page, Page_2. Because Page_1 is
not offered as remote, it will not be visible to consumers, nor will any of its contents.

Offer As Remote
Property

Rules fo r Creat ing Remoteab le Books and Pages

BEA WebLogic Portal Federated Portals Guide 6-9

Figure 6-7 Sample Configuration

Figure 6-8 shows another sample configuration. In this case, Book_1 is offered as remote;
however, it is not visible to consumers. This is because none of its contents are offered as
remote. Page_1 is not offered as remote explicitly and Page_2 is not offered as remote
because it is empty (even though its property is set to true).

Figure 6-8 Sample Configuration

Remoteable books and pages must be created as standalone .book and .page files as
explained previously in “Creating a Remoteable Page (or Book)” on page 6-4.

Changes to remoteable pages and books made on the producer cannot be propagated to
consumers of those pages and books. This means that if you change a remoteable page or
book in a producer application, and that page or book has already been consumed by
consumer applications, the changes will not show up in the consumers.

Portal look and feel elements that are used in .page and .book files must be replicated on
the consumer. This means that look and feel files, such as .layout, .theme, and
supporting JSP files that are used in a remoteable book or page must exist on both the
producer and the consumer.

A backing file placed on a remoteable .book or .page file in a producer application has
no effect when the book or page is consumed.

Book_1 (offered as remote = true)

Page_1 (offered as remote = false)

Portlet_1 (offered as remote = true)

Page_2 (offered as remote = true)

Portlet_2 (offered as remote = true)

Book_1 (offered as remote = true)

Page_1 (offered as remote = false)

Portlet_1 (offered as remote = true)

Page_2 (offered as remote = true)

Offe r ing Books , Pages , and Por t l e ts to Consumers

6-10 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 7-1

C H A P T E R 7

Interportlet Communication with
Remote Portlets

WebLogic Portal supports interportlet communication (IPC) between producers and consumers.
For example, a remote portlet deployed in a producer application can handle a minimize event
fired by a local portlet in a consumer. This chapter presents a detailed example explaining how
to use interportlet communication with remote portlets.

This chapter includes these sections:

Introduction

Firing and Handling a Minimize Event

Inside the Remote Portlet File

Data Transfer with Custom Events

Introduction
WebLogic Portal provides an extension to the WSRP protocol that allows remote portlets to fire
events during the interaction phase of their lifecycle. For detailed information on the WebLogic
Portal IPC architecture for federated portlets, see “Interportlet Communication with Events” on
page 3-22.

Communication between portlets deployed in consumer and producer applications is
bi-directional. Events fired by local portlets can be handled by portlets deployed in a producer,
and vice versa.

The example in this chapter demonstrates one way to implement event handling in a federated
portal. In this example, the event handler is added to the portlet on the producer. When a local

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-2 BEA WebLogic Portal Federated Portals Guide

portlet on the consumer fires an event, the remote portlet on the producer receives the event and
handles it (changes the text displayed in the portlet).

Note: Whenever you implement event handling in a federated environment, remember that you
must add event handlers to portlets in the producer application before you create proxy
portlets in consumers. If you change a producer portlet’s metadata, such as by adding an
event handler, consumers are not notified of that change. The correct procedure is to add
the event handler to the portlet on the producer before you create the remote portlet on
the consumer.

For additional information on IPC in WebLogic Portal, see the Portlet Development Guide.

Firing and Handling a Minimize Event
This section presents a detailed example demonstrating how to use event handling in a remote
portlet. In this example, a remote portlet on the consumer fires an onMinimize event. The
onMinimize event is fired when a portlet is minimized. When the event is fired from a local
portlet in a consumer, the event is handled on the producer. The onMinimize event is one of
several standard events supported by the WebLogic Portal framework. For a complete list of
standard events, see the Portlet Development Guide.

In this example, when the user minimizes the remote portlet on the consumer, the producer
handles the event and changes some text in the portlet.

Tip: Remote portlets can also handle custom events. For detailed information on using custom
events with remote portlets, see “Data Transfer with Custom Events” on page 7-23.

This example includes these steps:

1. Setting Up Your Environment

2. Creating the Portlets on the Producer

3. Creating the Consumer Portlets

4. Testing the Application

Setting Up Your Environment
If you want to try the example discussed in this section, you need to run Workshop for WebLogic
and perform the prerequisite tasks and set up the example environment.

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-3

To set up the example environment, perform the prerequisite tasks outlined in Table 7-1. If you
are not familiar with the specific procedures for these tasks, they are described in detail in the
WebLogic Portal tutorial “Setting Up Your Portal Development Environment.”

Figure 7-1 shows the Package Explorer after the prerequisite tasks have been completed.

Figure 7-1 Package Explorer After Prerequisite Tasks are Completed

Creating the Portlets on the Producer
In this task, you create two JSP files on the producer-side, along with the JSP portlets that surface
these files. You also create a backing file that contains the instructions necessary to complete the
communication between two portlets and add an event handler to one of the portlets. Once you
have created the portlets and attached the backing file, you will test the application in your
browser.

Create the JSP Files and Portlets
To create the JSP files that the portlets deployed on the producer will surface:

Table 7-1 Prerequisite Tasks

Task Recommended Name

1. Create a WebLogic Portal domain. ipcWsrpDomain

2. Create a Portal EAR Project. ipcWsrpPortalEAR

3. Create a BEA WebLogic v10.0 Server. N/A

3. Associate the EAR project with the server. N/A

4. Create a Portal Web Project consumerWeb

5. Create a second Portal Web Project producerWeb

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-4 BEA WebLogic Portal Federated Portals Guide

1. Be sure you have set up the example environment as explained previously in “Setting Up Your
Environment” on page 7-2.

2. In the Package Explorer, double-click the file producerWeb/WebContent/index.jsp. The
JSP file opens in the editor.

3. Replace the body text with the phrase Minimize Me!, as shown in Figure 7-2.

Figure 7-2 aPortlet.jsp in the Editor

4. Save the file as aPortlet.jsp.

5. Right-click aPortlet.jsp in the Package Explorer and select Generate Portlet....

The Portal Details dialog box appears (Figure 7-3). Note that /aPortlet.jsp appears in
the Content URI field.

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-5

Figure 7-3 Portal Details Dialog Box for aPortlet

6. Select Minimizable and Maximizable, and click Create.

The file aPortlet.portlet appears in the producerWeb/WebContent folder in the
Package Explorer.

7. In the same directory, make a copy of aPortlet.jsp, and call the copy bPortlet.jsp.

8. Open bPortlet.jsp in the editor and copy the code from Listing 7-1 into the JSP, replacing
everything from <netui:html> through </netui:html>. This code simply displays text
placed in the request by a backing file, which you will create and attach to the portlet in a
subsequent step.

Listing 7-1 New JSP Code for bPortlet.jsp

<netui:html>

 <% String event = (String)request.getAttribute("minimizeEvent");%>

 <head>

 <title>

 Web Application Page

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-6 BEA WebLogic Portal Federated Portals Guide

 </title>

 </head>

 <body>

 <p>

 Listening for portlet A minimize event:<%=event%>

 </p>

 </body>

</netui:html>

Figure 7-4 shows the completed JSP source file in the editor.

Figure 7-4 Updated JSP Source

9. Save the file.

10. Following the same steps you used previously, generate a portlet from the bPortlet.jsp
file.

Checkpoint: At this point the you have created the following files in the
producerWeb/WebContent folder:

aPortlet.jsp

aPortlet.portlet

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-7

bPortlet.jsp

bPortlet.portlet.

Create the Backing File
In this example, we use a backing file attached to the portlet in the producer to handle the
onMinimize event fired on the consumer.

Tip: For detailed information on backing files, refer to the Portlet Development Guide.

To create the backing file:

1. In producerWeb, right-click the src folder and select New > Folder from the menu. The
Create New Folder dialog box appears.

Tip: Alternatively, instead of a folder, you can create a Java package.

2. Create a folder called backing.

The backing folder appears under producerWeb/src, as shown in Figure 7-5.

Figure 7-5 New Backing File Folder

3. Right-click the backing folder and select New > Class. The New Java Class dialog appears.

4. In the Name field, enter Listening and click Finish. The new Java class appears in the
editor.

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-8 BEA WebLogic Portal Federated Portals Guide

5. Delete the default contents of Listening.java, and copy the code from Listing 7-2 into
Listening.java.

6. Save Listening.java.

Listing 7-2 Backing File Code for listening.java

package backing;

import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.events.Event;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Listening extends AbstractJspBacking

{
static final long serialVersionUID=1L;
private static boolean minimizeEventHandled = false;

 public void handlePortalEvent(HttpServletRequest request,
 HttpServletResponse response, Event event)

 {
 minimizeEventHandled = true;
 }

 public boolean preRender(HttpServletRequest request, HttpServletResponse
 response)
 {
 if (minimizeEventHandled){

 request.setAttribute("minimizeEvent","minimize event handled");
 }else{
 request.setAttribute("minimizeEvent",null);
 }

 // reset
 minimizeEventHandled = false;

 return true;
 }
}

The source should now look like that shown in Figure 7-6.

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-9

Figure 7-6 Listening.java with Updated Backing File Code

Attach the Backing File
Now you will attach the backing file created in the previous section to bPortlet.portlet.

1. In the Package Explorer, double-click bPortlet.portlet to open it.

2. Click on the portlet in the editor to display the portlet’s properties. To be sure you see all the
properties, click on the border of the portlet, as shown in Figure 7-7.

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-10 BEA WebLogic Portal Federated Portals Guide

Figure 7-7 Click to Display All Portlet Properties

Tip: If the Properties view is not visible in your perspective, select Window > Show View
> Properties. If you want to learn more about editing portlet properties, see the
Portlet Development Guide.

3. In the Properties view, type backing.Listening into the Backable Properties > Portlet
Backing File field, as shown in Figure 7-8 and press Return.

Tip: You might need to expand the value column to enter text in the Portlet Backing File
field.

Figure 7-8 Attaching the Backing File in the Properties View

Click here to
display all
properties

Backing File

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-11

4. Save the file.

Add the Event Handler to bPortlet
You now add the event handler to bPortlet.portlet. The handler will be configured to listen
for an event fired by another portlet and execute an action in response to that event. To add the
event handler:

1. Be sure the file bPortlet.portlet is open. If it is not, double-click it in the Package Explorer.

2. Click on the portlet in the editor to display the portlet’s properties, as shown previously in
Figure 7-7.

3. In the Properties view, click in the Event Handlers > Value field. A button labelled with an
ellipses (...) appears, as shown in Figure 7-9.

Figure 7-9 Event Handlers Button

4. Click the Event Handlers button (...) to bring up the Portlet Event Handlers dialog, as shown
in Figure 7-10.

Event Handlers Button

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-12 BEA WebLogic Portal Federated Portals Guide

Figure 7-10 Portlet Event Handlers Dialog Box

5. Click Add Handler and select Handle Portal Event from the drop-down menu.

The Portlet Event Handlers dialog box expands to allow entry of more details, as shown in
Figure 7-11.

Figure 7-11 Event Handler Dialog Box Expanded

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-13

6. Accept the defaults for all fields except Portlet.

7. In the Portlet field, click the ellipses button (...). The Please Choose a File dialog box appears.

8. Select aPortlet.portlet and click OK.

The dialog box closes and aPortlet_1 appears in the Listen to list and the Portlet field, as
shown in Figure 7-12. The label aPortlet_1 is the definition label of the portlet to which the
event handler will listen.

Tip: The definition label is a unique identifier for the portlet. A default value is entered
automatically, but you can change the value. Each portlet must have a unique value.
See the Portlet Development Guide for more information.

Figure 7-12 Adding portlet_1

9. Click the Event drop-down menu to open the list of portal events that the handler can listen
for and select onMinimize, as shown in Figure 7-13.

Figure 7-13 Event Drop-down List

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-14 BEA WebLogic Portal Federated Portals Guide

10. Click Add Action... to open the action drop-down menu and select Invoke BackingFile
Method.

11. Open the Method drop-down menu and enter handlePortalEvent, as shown in
Figure 7-14. This method is defined in the backing file that is attached to bPortlet. The source
code for the backing file was shown previously in Listing 7-2.

Figure 7-14 Adding the Backing File Method

12. Click OK.

The event handler is added. Note that the Value field of the Event Handlers property now
indicates 1 Event Handler.

Note: WebLogic Portal attempts to validate the settings of the Event Handlers dialog. You will
receive an error message if any problems are detected. For detailed information on the
WebLogic Portal validation framework, see the WebLogic Portal Development Guide.

Checkpoint: You added a backing file and an event handler to bPortlet. The event handler is
configured to invoke the handlePortalEvent() method in the backing file when the portlet receives
an onMinimize event fired by aPortlet. In the next task, you test the application to make sure that
the portlets function properly in a local environment. Then, you will create a remote portlet in a
consumer application to test the interportlet communication in a federated portal environment.

Test the Application
Create a portal in the producer application called ipcLocal.portal:

Method name

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-15

1. In the Package Explorer, right-click producerWeb/WebContent and select New > Portal.
The New Portal dialog appears.

2. In the File name field, enter ipcLocal.portal and click Finish. The portal is created and
appears in the editor.

3. Drag both aPortlet.portlet and bPortlet.portlet from the Package Explorer onto the
portal layout, as shown in Figure 7-15.

Figure 7-15 Portal Layout with Portlets Added

4. Save the portal.

5. Run the portal. To do this, right-click ipcLocal.portal in the Package Explorer and select Run
As > Run on Server.

6. In the Run On Server – Define a New Server dialog, click Finish.

The portal renders in the default browser, as shown in Figure 7-16.

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-16 BEA WebLogic Portal Federated Portals Guide

Figure 7-16 ipcLocal Portal in Browser

7. Minimize aPortlet.

Note the content change in bPortlet.

Figure 7-17 ipcLocal Portal with aPortlet Minimized

Summary
You created a portal containing two local portlets. You configured the portlet called bPortlet to
respond to an onMinimize event fired from the portlet called aPortlet. The onMinimize event is
a standard event that all WebLogic Portal portlets can fire. When bPortlet receives an
onMinimize event, a backing file method is called that modifies the text displayed by the portlet.

In the following steps, you will create a federated portal that uses interportlet communication.

Portlet text
has changed

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-17

Creating the Consumer Portlets
In this section, you create two portlets in the consumer application, one a JSP portlet and the other
a remote portlet. The remote portlet consumes the portlet you created previously on the producer,
bPortlet.portlet.

Setting Up the Exercise
Before you continue with this exercise:

1. In the Package Explorer, copy aPortlet.jsp from the producerWeb/WebContent folder and
paste it into the consumerWeb/WebContent folder. For convenience, we reuse this portlet
from the producer application. Its function in the consumer portal is simply to provide a
portlet that you can minimize.

2. Right-click consumerWeb/WebContent/aPortlet.jsp and select Generate Portlet.

3. In the Portlet Details dialog, select Minimizable, Maximizable, and click Create. The new
portlet layout appears in the editor.

Creating the Remote Portlet
To create the remote portlet:

1. Open the consumerWeb folder in the Package Explorer, right-click on the WebContent
folder, and select New > Portlet.

2. In the New Portlet dialog, enter bPrime.portlet in the File name field, and click Finish.

3. In the Select Portlet Type dialog of the Portlet Wizard, pick Remote Portlet, and click Next.

4. In the Producer dialog, select Find Producer.

5. Enter the producer’s WSDL URL in the text field, as shown in Figure 7-18. The WSDL URL
for this example is:

http://host:port/producerWeb/producer?wsdl

for example:
http://localhost:7001/producerWeb/producer?wsdl

Tip: WSDL stands for Web Services Description Language and is used to describe the
services offered by a producer. For more information, see Chapter 3, “Federated
Portal Architecture.”

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-18 BEA WebLogic Portal Federated Portals Guide

6. Click Retrieve.

After a few seconds, the dialog box refreshes, showing the Producer Details, as shown in
Figure 7-18.

Figure 7-18 Find Producer Dialog

7. Click Register.

8. In the Register dialog, enter a name for the producer in the Producer Handle field, and click
Register. You are returned to the Producer dialog.

9. In the Producer dialog, click Next. The Select Portlet from List dialog appears.

10. In the Select Portlet from List dialog, select bPortlet, as shown in Figure 7-19.

WSDL URL

Producer
Details

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-19

Figure 7-19 Select Portlet From List Dialog Box

11. Click Next. The Proxy Portlet Details dialog box appears.

12. Click Create.

The remote portlet appears as bPrime.portlet in the consumerWeb/WebContent folder in
the Package Explorer.

13. Change the portlet’s title to bPrime. To do this, edit the Title field in the portlet’s Properties
view, as shown in Figure 7-20.

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-20 BEA WebLogic Portal Federated Portals Guide

Figure 7-20 Changing the Portlet Title

14. Save the portlet.

Tip: In the Properties view for bPortlet (in the producerWeb/WebContent folder) be sure
the Render Cacheable property is set to false.

Summary
With the completion of the two consumer portlets, you have now created all of the necessary
components to demonstrate interportlet communications between a remote and a local portlet. In
the next step, you will add the consumer portlets to a consumer portal and raise an event on one
portlet that will cause a reaction on the other.

Testing the Application
In this step, you test the consumer application to verify that minimizing aPortlet will change the
content of bPrime (the remote portlet). You create a portal and add the two portlets created in
“Creating the Consumer Portlets” on page 7-17. You then build the application and view the
portal in a browser.

Build the Portal
Create a portal in the consumer application called ipcConsumer.portal:

Title field

F i r ing and Handl ing a Min imize Event

BEA WebLogic Portal Federated Portals Guide 7-21

1. In the Package Explorer, right-click consumerWeb/WebContent and select New > Portal.
The New Portal dialog appears.

2. In the File name field, enter ipcConsumer.portal and click Finish. The portal is created
and appears in the editor.

3. Drag both aPortlet.portlet and bPrime.portlet from the consumerWeb/WebContent
folder onto the portal layout. The result is shown in Figure 7-21.

Figure 7-21 Consumer Portal Layout

4. Save the portal.

Test the Portal
From a user’s perspective, the consumer portal works exactly as if all portlets were local. The user
is not aware that bPrime is a remote portlet hosted in a producer application. To test the consumer
portlet, minimize aPortlet. The remote portlet, bPrime, responds changing the text it displays.

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-22 BEA WebLogic Portal Federated Portals Guide

1. Run the portal. To do this, right-click ipcConsumer.portal in the Package Explorer and
select Run As > Run on Server.

2. In the Run On Server – Define a New Server dialog, click Finish. A browser opens displaying
the ipcConsumer portal, as shown in Figure 7-22.

Figure 7-22 Consumer Portal in a Browser

3. In aPortlet, click the Minimize button. The portlet aPortlet minimizes and the contents of
bPortlet change, as shown in Figure 7-23.

Figure 7-23 Consumer Portal in Browser After Minimize Event

Inside the Remote Portlet File
Listing 7-3 shows an excerpt from the XML content of a .portlet file for the remote portlet
described previously in this chapter, bPrime.portlet. Note that the element

Minimize button

Portlet text
has changed

Data T ransfe r w i th Cus tom Events

BEA WebLogic Portal Federated Portals Guide 7-23

dispatchToRemotePortlet is added as part of the handleEvent definition. This element
indicates that the consumer must dispatch the event to the producer.

Listing 7-3 Excerpt from the bPrime.portlet File

...

<netuix:handleEvent event="onMinimize" eventLabel="handlePortalEvent1"

fromSelfInstanceOnly="false" onlyIfDisplayed="true"

sourceDefinitionLabels="aPortlet_1"> <netuix:dispatchToRemotePortlet/>

</netuix:handleEvent>

...

Data Transfer with Custom Events
Custom events are the recommended method for passing data between portlets deployed in
consumer applications and portlets in remote producer applications. This section outlines a
possible technique for passing data from a consumer to a producer using custom events.

Tip: You can use custom events to pass any serializable Java object or an object that extends
com.bea.wsrp.ext.holders.XmlPayload between federated portlets. XmlPayload is a
WebLogic Portal class that lets you pass XML data between consumers and producers.
See “Transferring XML Data” on page 13-23 for more information. Also, for more
information on the XmlPayload interface, refer to its Javadoc description.

Figure 7-24 illustrates the configuration of the example discussed in this section.

Figure 7-24 Example configuration

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-24 BEA WebLogic Portal Federated Portals Guide

P1 – A portlet on the consumer. This portlet gathers in a form. When the user submits this
form, a custom event is fired. The form data is bundled into a payload object which is
attached to the event object.

P2 – A portlet on the producer. This portlet is configured to listen for the custom event
fired by P1. When the event is received, the portlet unpacks the payload and displays it.

P2' – A remote portlet on the consumer (a proxy for P2).

Retrieving the Event on the Producer
This section illustrates how a portlet on the producer can be configured to handle a custom event
containing a payload. In this case, the portlet is a Java portlet associated with the class shown in
Listing 7-4.

Listing 7-4 Sample Java Portlet Class

import java.io.IOException;

import javax.portlet.PortletException;

import javax.portlet.GenericPortlet;

import javax.portlet.RenderResponse;

import javax.portlet.RenderRequest;

import javax.portlet.ActionResponse;

import javax.portlet.ActionRequest;

import com.bea.netuix.events.Event;

import com.bea.netuix.events.CustomEvent;

public class JavaPortlet extends GenericPortlet {

public void getMessage(ActionRequest request, ActionResponse response,

Event event) {

CustomEvent customEvent = (CustomEvent) event;

String message = (String) customEvent.getPayload();

response.setRenderParameter("message0", message);

}

public void doView(RenderRequest request, RenderResponse response)

throws PortletException, IOException {

Data T ransfe r w i th Cus tom Events

BEA WebLogic Portal Federated Portals Guide 7-25

String message = request.getParameter("message0");

if (message == null) message = "";

response.setContentType("text/html");

response.getWriter().write("<p>Message From Consumer: " +

message + "</p>");

}

}

The getMessage() method retrieves a custom event object. This object contains the payload that
is sent from the consumer to the producer. In the following steps, you will create an event handler
that listens for a custom event and calls the getMessage() method when this event is received.
Note that in this case, the custom event is fired by a portlet deployed to the consumer application.

To configure the event handler in the producer portlet:

1. In Workshop for WebLogic, create a Java portlet using the class shown in Listing 7-4.

2. In the Package Explorer, double-click the Java portlet file to open the portlet in the editor, as
shown in Figure 7-25.

Figure 7-25 Java Portlet in the Editor

Click here to
display properties

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-26 BEA WebLogic Portal Federated Portals Guide

3. Click the outer border of the portlet to display the portlet’s properties in the Properties view.

4. In the Properties view, click the Event Handlers button, shown in Figure 7-26, to open the
Event Handler dialog box. The Portlet Event Handlers dialog box appears.

Tip: The Portlet Event Handlers dialog box lets you create and configure event handlers
for a portlet. An event handler listens for an event and takes a specified action when
the event is receieved.

Figure 7-26 Event Handlers Button

5. In the Portlet Event Handlers dialog, click Add Handler... and from the pop-up menu, select
Handle Custom Event.

6. Select Any from the Listen To (wildcard) dropdown list.

7. In the Event field (lower-right corner of the dialog) enter a name, such as
messageCustomEvent.

Figure 7-27 shows the completed dialog.

Event Handlers button

Data T ransfe r w i th Cus tom Events

BEA WebLogic Portal Federated Portals Guide 7-27

Figure 7-27 Portlet Event Handlers Dialog: Add Handler

8. Select Add Action... in the Portlet Event Handlers dialog and from the pop-up menu, select
Invoke Java Portlet Method.

9. In the Method field, enter getMessage, as shown in Figure 7-28, and click OK.

Figure 7-28 Portlet Event Handlers Dialog: Add Action

In te rpor t le t Communicat i on wi th Remote Por t le ts

7-28 BEA WebLogic Portal Federated Portals Guide

The Java portlet is now configured to handle a custom event called messageCustomEvent. When
this event is received, the handler calls the getMessage() method in the JavaPortlet class. This
event handler provides the mechanism for interportlet communication between this portlet on the
producer and other portlets, including portlets on a remote consumer.

Firing the Event in the Consumer
A consumer portlet can be configured to fire a custom event, which is then handled on the
producer. Listing 7-5 illustrates code that could be used in a local portlet on the consumer to fire
a custom event and attach a payload to that event.

Listing 7-5 Sample Event-Firing Code

PortletBackingContext context =

PortletBackingContext.getPortletBackingContext(getRequest());

 context.fireCustomEvent("messageCustomEvent", form.getMessage());

return new Forward("success");

Refer to the Javadoc for more information on the fireCustomEvent() method. For more
information on portlet development and event handling, see the Portlet Development Guide.

BEA WebLogic Portal Federated Portals Guide 8-1

C H A P T E R 8

Configuring a WebLogic Server
Producer

By default, WebLogic Portal projects deployed to a WebLogic Portal domain are configured to
function as WSRP producers. If you want to use a Basic WebLogic Server or WebLogic Express
domain as a producer, some configuration is required. This chapter explains how to configure a
Basic WebLogic Server or WebLogic Express domain as a WSRP producer. Portlets deployed to
the server can then be used by consumer applications.

This chapter includes the following topics:

Introduction

Using WSRP in a Basic WebLogic Server Domain

Configuring a Web Project

Testing the Producer Configuration

Introduction
This chapter explains how to configure a basic WebLogic Server domain as a WSRP producer.
The example in this section assumes that you have a functioning Struts module deployed in a
WebLogic Server domain. The goal of this procedure is to create a portlet in a producer that can
be consumed remotely.

By following this procedure, you can expose a Struts application as a remote portlet that a
WebLogic Portal application can consume, as illustrated in Figure 8-1.

Conf igur ing a WebLog ic Se rve r P roducer

8-2 BEA WebLogic Portal Federated Portals Guide

Figure 8-1 WebLogic Server Producer

To configure a WebLogic Server domain to be a WSRP producer involves two steps:

Create a basic WebLogic Server domain.

Extend the domain to include the producer components.

Create or reconfigure a web project to include appropriate WebLogic Portal facets that are
required for the project to host remoteable components, such as Struts applications.

Using WSRP in a Basic WebLogic Server Domain
This section explains how to configure a WebLogic Server domain as a producer. You might do
this if you want to make portlets available to consumers, but do not want to install the full
WebLogic Portal product on your server.

Tip: A producer created in this way is a simple producer. A simple producer is a producer that
offers core WSRP services without requiring a full WebLogic Portal installation. In this
configuration, some advanced features, such as registration and interportlet
communication, are not supported. For more information on simple and complex
producers, see “Understanding Producers and Consumers” on page 3-4.

The basic steps you need to perform to enable a WebLogic Server domain to be a WSRP producer
are:

Create a WebLogic Server Domain

In this step, you use the BEA WebLogic Configuration Wizard to create a WebLogic
Server domain with the appropriate elements.

WebLogic
Server
Domain

Producer

Struts
Portlet

WSRP

WebLogic
Portal
Domain

Consumer

Remote
Portlet

Using WSRP in a Bas ic WebLogic Se rver Domain

BEA WebLogic Portal Federated Portals Guide 8-3

Extend the WebLogic Server Domain

In this step, you use the BEA WebLogic Configuration wizard to extend the WebLogic
Server domain using an extension template. The extension template adds WSRP producer
components to the domain.

Create a WebLogic Server Domain
This section explains how to create a new WebLogic Server domain using the BEA WebLogic
Configuration Wizard. You can then extend the domain to include WSRP producer components.

1. Start the BEA WebLogic Configuration Wizard. To do this, execute the config.cmd (or
config.sh) command in WEBLOGIC_HOME/common/bin.

2. In the Welcome dialog, select Create a new WebLogic domain, and click Next.

3. In the Select Domain Source dialog, select WebLogic Server (the default) and Workshop
for WebLogic Platform, and leave the other checkboxes unselected, as shown in Figure 8-2.

Conf igur ing a WebLog ic Se rve r P roducer

8-4 BEA WebLogic Portal Federated Portals Guide

Figure 8-2 Select Domain Source

4. Complete the rest of the configuration wizard steps to create the WebLogic Server domain.
For detailed information on the configuration wizard, refer to “Creating WebLogic Domains
Using the Configuration Wizard” in the WebLogic Server documentation.

Extend the WebLogic Server Domain
This section explains how to extend your WebLogic Server domain to include the components of
a simple producer.

You extend the domain using an extension template. An extension template defines applications
and services that can be used to extend an existing domain. The extension template you will use
in this example is called wsrp-simple-producer.jar.

1. Start the BEA WebLogic Configuration Wizard. To do this, execute the config.cmd (or
config.sh) command in WEBLOGIC_HOME/common/bin.

Using WSRP in a Bas ic WebLogic Se rver Domain

BEA WebLogic Portal Federated Portals Guide 8-5

2. In the Welcome dialog of the configuration wizard, select Extend an existing WebLogic
domain, as shown in Figure 8-3, and click Next.

Figure 8-3 Extend a Domain

3. In the Select a WebLogic Domain Directory dialog, navigate to the WebLogic Server domain
that you want to extend, select it, as shown in Figure 8-4, and click Next.

Conf igur ing a WebLog ic Se rve r P roducer

8-6 BEA WebLogic Portal Federated Portals Guide

Figure 8-4 Select a Domain Directory

4. In the Select Extension Source dialog, select Extend my domain using an existing extension
template, as shown in Figure 8-5, and click Next.

Using WSRP in a Bas ic WebLogic Se rver Domain

BEA WebLogic Portal Federated Portals Guide 8-7

Figure 8-5 Select Extension Source

5. Click Browse.

6. In the Select a Template dialog, select the following JAR file, as shown in Figure 8-6:

WEBLOGIC_HOME/common/templates/applications/wsrp-simple-producer.jar

Conf igur ing a WebLog ic Se rve r P roducer

8-8 BEA WebLogic Portal Federated Portals Guide

Figure 8-6 Selecting the Template

7. Click OK when you have selected the file.

8. In the configuration wizard, click Next and complete the wizard steps as appropriate. When
you reach the last dialog, click Extend.

Checkpoint: At this point, you have extended the WebLogic Server domain so that it can
function as a simple WSRP producer. Next, you need to configure your web projects.

Configuring a Web Project
After you have a WebLogic Server domain that is configured to function as a WSRP producer,
you also need to enable any web projects that you deploy to function as a WSRP producer in the
domain. After you configure a web project to function as a WSRP producer, portlets you deploy
in that project will be available to consumers.

Create a Web Project
You need to create a web project that is enabled with WSRP producer components. In this
example, we demonstrate how to enable a Dynamic Web Project. This type of project does not
contain any WebLogic Portal components or WSRP producer components by default.

1. Open Workshop for WebLogic.

2. Select File > New > Other.

Conf igur ing a Web P ro jec t

BEA WebLogic Portal Federated Portals Guide 8-9

3. In the New – Select a wizard dialog, open the Web folder and select Dynamic Web Project.
The Dynamic Web Project dialog appears.

4. Enter a name for the project, and click Next. The Select Project Facets dialog appears.

5. In the Select Project Facets dialog, expand the WebLogic Portal node, and select only the
following facets, as shown in Figure 8-7:

– Portal Framework Struts

– WSRP Producer

Figure 8-7 Select Project Facets

6. Click Finish.

Checkpoint: You have created a web project in which you can create portlets that will be visible
to consumers.

Conf igur ing a WebLog ic Se rve r P roducer

8-10 BEA WebLogic Portal Federated Portals Guide

Testing the Producer Configuration
To test the producer configuration, you can do the following:

Create a Server on the Producer

Test for a Producer WSDL

Create a Portlet in the Producer Web Application

Consuming a Producer Portlet

Create a Server on the Producer
If you have not done so, create a WebLogic Server in which to run the application on the
producer:

1. Start Workshop for WebLogic.

2. Select File > New > Other.

3. In the Select dialog, open the Server folder and select Server.

4. Follow the wizard prompts to create the server. Use the WebLogic Server domain that you
configured to function as a WSRP producer and add the WSRP-producer enabled web project
to the server.

5. Start the server.

Tip: For more information on creating a server using Workshop for WebLogic, see the
WebLogic Portal tutorial “Setting Up Your Portal Development Environment.”

Test for a Producer WSDL
The first test to perform is to check that the producer web application returns a WSDL description
when you enter the WSDL URL in a browser.

1. Start WebLogic Server.

2. Enter the WSDL URL for the web project in a browser. For example:

http://localhost:7001/myWebProj/producer?wsdl

Test ing the Produce r Conf igurat ion

BEA WebLogic Portal Federated Portals Guide 8-11

If the server and web application are configured properly, the WSDL file appears in the
browser. Part of a sample WSDL file is shown in Figure 8-8.

Figure 8-8 Sample WSDL File

Checkpoint: If the WSDL file appears in the browser, then the server is functioning as a
producer. You can now create portlets in the web application that can be consumed as remote
portlets in consumer applications.

Create a Portlet in the Producer Web Application
You can use Workshop for WebLogic to create portlets in the web application on the producer.
If you created a Dynamic Web Application, you can create one of the following types of portlets:

Java Page Flow Portlet

Java Server Faces (JSF) Portlet

Struts Portlet

For information on creating these portlet types, see the Portlet Development Guide.

Conf igur ing a WebLog ic Se rve r P roducer

8-12 BEA WebLogic Portal Federated Portals Guide

Consuming a Producer Portlet
Another test you can perform is to try to consume a portlet deployed in the producer from a
WebLogic Portal application.

1. On another machine, create a WebLogic Portal Domain. You can use the WebLogic
Configuration Wizard to do this. If you cannot use another machine, be sure the server’s listen
port does not conflict with the port used by the producer server.

2. Use Workshop for WebLogic to create a Portal Application and associate the application with
the new WebLogic Portal Domain. If necessary, you can obtain a free developer’s version of
Workshop for WebLogic by visiting the BEA website.

3. Create a new Portal Web Project to the application. This application is the consumer
application.

4. Create a portal in the consumer application.

5. Start the server that hosts the consumer.

6. Create a remote portlet in the Portal Web Project you just created. Point the WSDL to the web
application on the producer. For example:

http://producerHost:producerPort/myWebApp/producer?WSDL

Where producerHost:producerPort is the IP address and port number of the machine
hosting the producer, and myWebApp is the name of the context directory for the web
application that contains the producer portlet(s) that you wish to surface. See Chapter 4,
“Creating Remote Portlets, Pages, and Books” for more information.

7. On the consumer, add the remote portlet to the portal and open the portal. The portlet you
created on the producer appears in the portal.

Summary
In this section you tested a configuration where a remote portlet in a consumer references a portlet
that is deployed to a producer running in a basic WebLogic Server domain.

BEA WebLogic Portal Federated Portals Guide 9-1

C H A P T E R 9

Publishing to UDDI Registries

WebLogic Portal provides tools for searching UDDI registries for producers, portlets, books, and
pages. In addition, WebLogic Portal allows you to publish portlets, books, and pages to UDDI
registries.

This chapter explains how to publish portlets, books, and pages, and the producers in which they
are deployed, to UDDI registries. This chapter also discusses an API for performing UDDI
searches programatically.

Tip: The WebLogic Portal Administration Console provides search tools that let you search
UDDI registries for producers and portlets. Before you can use the search features in the
Administration Console, however, you must set up the consumer as explained in this
chapter.

This chapter includes the following sections:

What is UDDI?

Using UDDI with WebLogic Portal

Configuring the Producer

Configuring the Consumer

Searching for Producers Programatically

Publ ish ing to UDDI Reg is t r i es

9-2 BEA WebLogic Portal Federated Portals Guide

What is UDDI?
Universal Description, Discovery, and Integration (UDDI) is a standard mechanism for
describing and locating web services across the internet. Web services, such as WSRP producers,
are typically published to a UDDI registry with associated metadata. Users can search UDDI
registries using keywords to locate producers and the portlets and other services they offer.

Tip: Before the availability of the UDDI registry, a WebLogic Portal developer or
administrator needed to know the WSDL URL address of a specific producer to discover
that producer’s portlets. Now, developers and administrators can search for specific
producers and their resources based on metadata queries; to locate a producer, you do not
necessarily need to know its WSDL URL in advance.

As Figure 9-1 illustrates, metadata from producers, including metadata for portlets, books, and
pages, is published to a UDDI registry. Using keywords, consumers can search UDDI registries
to locate these services and consume them.

Figure 9-1 Overview of UDDI Publishing and Searching

Tip: OASIS, the Organization for the Advancement of Structured Information Standards, is
responsible for creating the UDDI standard. To read more about UDDI, including the full
technical specification, go to:

Using UDDI w i th WebLog ic Po r ta l

BEA WebLogic Portal Federated Portals Guide 9-3

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

Using UDDI with WebLogic Portal
If you want to publish a producer and its resources to a UDDI registry, you need to configure the
producer. Similarly, if you want to be able to search UDDI registries from a WebLogic Portal
consumer application, you need to configure the consumer so that it can locate and use the UDDI
registries.

This section summarizes the main tasks you need to perform to use UDDI registries with
WebLogic Portal:

Configure the Producer

Configure the Consumer

Perform Searches

Configure the Producer
WebLogic Portal applications are not automatically published to UDDI registries. You need to
configure the application to publish its resources. The section “Configuring the Producer” on
page 9-4 explains how to configure a producer so that the producer and its resources (books,
pages, and portlets) appear in one or more UDDI registries.

Configure the Consumer
When a consumer is properly configured, you can search UDDI registries for producers and their
resources both programmatically and interactively using the WebLogic Portal Administration
Console. The section “Configuring the Consumer” on page 9-14 explains how to configure a
consumer so that it can locate and search specific UDDI registries.

Perform Searches
If you are interested in performing programmatic UDDI registry searches from a consumer, see
“Searching for Producers Programatically” on page 9-15. If you are interested in the tools
provided for searching UDDI registries in the Administration Console, see Chapter 17, “Adding
Remote Resources to the Library.”

Publ ish ing to UDDI Reg is t r i es

9-4 BEA WebLogic Portal Federated Portals Guide

Configuring the Producer
This section explains how to publish producers and their resources, such as portlets, pages, and
books, to a UDDI registry. To do this, you need to configure the producer properly.

This section includes the following topics:

What Information is Published?

Editing the Configuration File

Configuring Third-Party Registries

Specifying Access Credentials

Creating tModels for Third-Party Registries

Pre-Configuring the Business Entity

Auto-Configuring the Business Entity

Specifying Metadata for Searches

Enabling and Disabling UDDI for a Producer

What Information is Published?
All portlets, books, and pages with the offerRemote property set to true are automatically
published in the properly configured UDDI registry or registries. For information on setting the
offerRemote property, see “Enabling and Disabling UDDI for a Producer” on page 9-13.

Note: It is possible that empty books and pages will be published to the registry. The books and
pages are resolved on a service description request and empty books/pages are excluded.
Because the registry directly polls the book and page repository and the repository may
contain empty pages/books, the registry might publish empty pages and books.

Note: Publishing occurs asynchronously, and it may take from a few seconds to several minutes
to publish all portlets, pages and books in a producer to the registry. Children of pages
and books are not published automatically to the registry.

Table 9-1 lists the specific types of information that are published to the UDDI registry for each
published component.

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 9-5

Editing the Configuration File
The first step in publishing a producer and its resources is to edit the configuration file
wsrp-producer-portlet-registry-config.xml. To edit the file, you must first copy it to
your web project. To do this, select the Merged Projects view, navigate to the WEB-INF folder of
the producer web application, right-click wsrp-producer-portlet-registry-config.xml,

Table 9-1 Information Published to UDDI Registries

Elements Attributes

Producers • Name (required)
• Description
• Keywords
• WSDL URL of the producer. The developer or administrator

who configures the producer must enter this URL. This URL
is the WSDL URL that the consumer uses to access the
producer.

Portlets (from .portlet files) • Title (required)
• Description
• portletHandle (definition label) as the access URI. This

is a unique value assigned to the portlet by the producer.

Pages (from .page files) • Title (required)
• pageHandle (definition label) as the access URI. This is a

unique value assigned to the page by the producer.

Books (from .book files) • Title (required)
• bookHandle (definition label) as the access URI. This is a

unique value assigned to the book by the producer.

Common data • Words from the title of portlets, books and pages, and the
description of portlets, are used as keywords

• Additional keywords added with netuix:meta tags.
These tags can be embedded in .portal, .book, and
.portlet files.

• A reference to the producer’s business service

Publ ish ing to UDDI Reg is t r i es

9-6 BEA WebLogic Portal Federated Portals Guide

and select Copy To Project. This makes the file available for editing in your project’s WEB-INF
folder.

This file is used to publish a producer and its resources, such as portlets, to specified UDDI
registries. An example configuration file is shown in Listing 9-1. Each of the configuration file’s
elements are listed and defined in Table 9-2. When editing the configuration file, be sure to
complete all of the required elements, as listed in the table.

Note: By default, the <enabled> element of this file is set to false. When you set this element
to true, the producer and all of its books, pages, and portlets are published to the specified
UDDI registries. If you do not want to publish a specific book, page, or portlet, you must
set its offerRemote property to false.

Listing 9-1 Example wsrp-producer-portlet-registry-config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-portlet-registry-config

xmlns="http://www.bea.com/ns/portal/90/wsrp-producer-portlet-registry-config">

 <description>Description goes here</description>

 <!-- Set this to false to prevent this producer from publishing portlets. -->

 <enabled>true</enabled>

 <publish-url>http://localhost:7001/uddi/uddilistener</publish-url>

 <inquiry-url>http://localhost:7001/uddi/uddilistener</inquiry-url>

 <!--credential-alias>registryPublisherComplexProducer</credential-alias-->

 <username>weblogic</username>

 <password>weblogic</password>

 <producer-business-entity>

 <name>Sample Producer</name>

 <description>This is a producer business entity</description>

 <discovery-url>http://localhost:7001/portal_2/index.jsp</discovery-url>

 </producer-business-entity>

 <producer-service>

 <name>Sample Producer</name>

 <description>This producer hosts test portlets for portal_2</description>

 <wsdl-url>http://localhost:7001/portal_2/producer?WSDL</wsdl-url>

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 9-7

 <keyword>skiing</keyword>

 <keyword>hiking</keyword>

 <keyword>camping</keyword>

 <keyword>cycling</keyword>

 </producer-service>

</wsrp-producer-portlet-registry-config>

Table 9-2 describes the configuration file’s elements.

Table 9-2 Elements in the wsrp-producer-portlet-registry-config.xml File

Element Description

<enabled> Set this element to true to publish the producer’s portlets, books,
and pages to the UDDI registry specified by the <publish-url>
element. This element is set to false by default.

<description> You can put any arbitrary text in a description element. This
element is typically used to embed comments in the file.

<publish-url>

<inquiry-url>

(required) UDDI registries typically have two URLs associated
with them. The publish URL allows creation and update of
elements. The inquiry URL allows searches, but does not allow
updating or creating.

<credential-alias>

or
<username>

<password>

(required) To publish producer information to a UDDI registry, you
must have the necessary credentials. There are two ways to specify
these credentials:
• Specify a credential alias using the <credential-alias>

element. Credential aliases are defined in the Administration
Portal. For detailed information on defining a credential alias,
see “Specifying Access Credentials” on page 9-9.

• Specify a user name and password directly. This second method
is not recommended, because it requires a clear text password.

Publ ish ing to UDDI Reg is t r i es

9-8 BEA WebLogic Portal Federated Portals Guide

Configuring Third-Party Registries
To configure a WebLogic Portal application to use a third-party UDDI registry, you need to:

<producer-business-entity> (required) A business entity is the highest level UDDI data
construct. This element specifies the owner of the published web
services. Typically, the name of a company or department is
specified.

The <producer-business-entity> element includes the
following elements:
• <name> (required) — A unique name for the service.
• <description> — A description of the service. Required if

the business entity is auto-configured.
• <discovery-url> — Provides a discovery URL for the

producer. The URL specified here must be a valid URL, and not
a URL template. Required if the business entity is
auto-configured.

See “Pre-Configuring the Business Entity” on page 9-10 and
“Auto-Configuring the Business Entity” on page 9-11 for more
information.

<producer-service> (required) The <producer-service> element defines a
business service. A business service is a UDDI data construct that
specifies entities that offer services, such as WSRP producers.
Business services are owned by business entities.

The <producer-service> entity includes the following
elements:
• <name> (required) — A unique name for the service.
• <description> — A description of the service.
• <wsdl-url> (required) — A publicly available WSDL URL

for the producer.
• <keyword> (optional, recommended) — Keywords are used

by UDDI queries to locate producers. You can define as many
keywords as you like.

Table 9-2 Elements in the wsrp-producer-portlet-registry-config.xml File (Continued)

Element Description

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 9-9

Obtain the correct <publish-url> and <query-url> addresses and add them to the
wsrp-producer-portlet-registry-config.xml configuration file. For information on
this configuration file, see “Editing the Configuration File” on page 9-5.

Obtain the correct credentials to publish to a third-party registry. For detailed information
on defining a credential alias, see “Specifying Access Credentials” on page 9-9.

Create appropriate tModels for the third-party registry. For detailed information on
tModels, see “Creating tModels for Third-Party Registries” on page 9-9.

Specifying Access Credentials
Some registries may offer both publish and inquiry services at the same URL, while some others
use separate URLs for these two services. Consult the specific registry documentation to find out
the actual URLs.

Depending on how the registry enforces access control, you may also need to enter either a set of
credentials or an alias to a credential. The credentials must allow sufficient permission to access
all UDDI publish operations. Again, consult the registry's documentation to find out the access
control policies.

You can set access credentials in the wsrp-producer-portlet-registry-config.xml or
using the WebLogic Portal Administration Console.

For information on the configuration file, see “Configuring the Producer” on page 9-4. For
information on setting credentials through the Administration Console, see “Modifying the
Producer Portlet Registry” on page 18-4.

Creating tModels for Third-Party Registries
Services stored in UDDI registries are categorized and identified by their taxonomies. Basically,
a taxonomy, also called a tModel, is a name/key mapping.

For the purpose of publishing them to UDDI registries, producers, portlets, books, and pages all
have taxonomies, which are defined in XML files. Default taxonomies are provided to describe
producers, portlets, books, and pages for WebLogic Server’s internal UDDI registry. If you want
to use a third party registry, log in to that registry and create a tModel for each taxonomy found
in the internal WebLogic UDDI registry. Consult the documentation provided for the third-party
registry for information on how to create taxonomies for that particular registry.

The internal WebLogic UDDI tModel files are located in:

WEBLOGIC_HOME/portal/lib/wsrp/tModels

Publ ish ing to UDDI Reg is t r i es

9-10 BEA WebLogic Portal Federated Portals Guide

where WEBLOGIC_HOME is the root directory for your WebLogic installation.

Tip: A tModel is a data structure representing a service type (a generic representation of a
registered service) in the UDDI registry. Each business registered with UDDI categorizes
all of its Web services according to a defined list of service types. Businesses can search
the registry's listed service types to find service providers. The tModel is an abstraction
for a technical specification of a service type; it organizes the service type's information
and makes it accessible in the registry database. Another UDDI data structure, the
bindingTemplate organizes information for specific instances of service types. When
businesses want to make their specification-compliant services available to the registry,
they include a reference to the tModelKey for that service type in their
bindingTemplate data.

Each tModel consists of a name, an explanatory description, and a Universal Unique
Identifier (UUID). The tModel name identifies the service, such as, for example, online
order placement. The description supplies additional arbitrary information about the
service. The unique identifier, called a tModelKey, is a series of alphanumeric
characters, such as uuid:4CD7E4BC-648B-426D-9936-443EAAC8AI.

Pre-Configuring the Business Entity
If you pre-configure a business entity directly in the UDDI registry, you can then associate that
entity with a producer using only the name of the business entity. For example, Listing 9-2 shows
a <producer-business-entity> element that identifies a pre-configured business entity. In
this case, the entity with the name “My Portlet Producer” was pre-configured in the UDDI
registry. In this example, the <description> and <discovery-url> elements are not
necessary.

For information on configuring <producer-business-entity> and <producer-service>
entities for a given UDDI registry, consult the documentation for that registry. Typically, you can
also use the JAXR API to programmatically create business entities.

Listing 9-2 Business Entity Description for a Pre-Configured Producer

<producer-business-entity>

<name>My Portlet Producer</name>

</producer-business-entity>

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 9-11

If you pre-configure a business entity, WebLogic Portal requires only the name of the business
entity to use it (as shown in Listing 9-2). Multiple producer web applications can use the same
business entity by using this same name. If you want different producer web applications to use
their own unique business entity, use unique names for your business entities.

Auto-Configuring the Business Entity
WebLogic Portal can automatically create a business entity if you supply the <discovery-url>
element in the wsrp-producer-portlet-registry-config.xml file. For example, the
wsrp-producer-portlet-registry-config.xml file configuration shown in Listing 9-3
allows the business entity to be created automatically.

Listing 9-3 Business Entity Description for an Auto-Configured Producer

<producer-business-entity>

<name>My Portlet Producer</name>

<description>This is my business entity</description>

<discovery-url>http://somehost:port/path</discovery-url>

</producer-business-entity>

When you deploy the web application, the producer first checks the registry to see if a business
entity with the specified name exists. If not, WebLogic Portal creates a new business entity with
the given <name>, <description>, and <discover-url>.

Specifying Metadata for Searches
By adding metadata, such as keywords, to producers, portlets, pages and books, you will improve
the ability of consumers to find those resources in a search. This section discusses how to add
searchable metadata for portlets, books, and pages. For information on adding publishing
producer metadata, see “Adding Producer Metadata” on page 9-11.

Adding Producer Metadata
UDDI searches can locate producers using metadata that has been added to the
wsrp-producer-portlet-registry-config.xml file described previously. Both the <name>
and <description> elements of the <producer-service> element are searchable. In addition,

Publ ish ing to UDDI Reg is t r i es

9-12 BEA WebLogic Portal Federated Portals Guide

you can use the <keyword> element of the <producer-service> element to add metadata, as
shown in Listing 9-4.

Listing 9-4 Specifying Producer Metadata Keywords

<producer-service>

<name>Colorado Producer</name>

<description>

This producer offers portlets related to Colorado.

</description>

<wsdl-url>http://colorado/producer?wsdl</wsdl-url>

<keyword>skiing</keyword>

<keyword>hiking</keyword>

<keyword>camping</keyword>

</producer-service>

Adding Portlet Metadata
UDDI searches can locate portlets by their title and description. When you create a portlet, you
are required to give it a title, and, optionally, you can enter a description. The text of these two
fields is available to UDDI searches. In addition to these tags, you can use the <netuix:meta>
tag to provide searchable metadata. To do this, add a meta tag and specify name and content
attributes. Listing 9-5 shows a sample portlet file with a meta tag that specifies a named item
(activities) with several content attirubtes (hiking, camping, fishing). The separator attribute
simply specifies a character to separate multiple content values.

Listing 9-5 Portlet with Metadata Tags

<?xml version="1.0" encoding="UTF-8"?>
<portal:root

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 9-13

1.0.0 portal-support-1_0_0.xsd">
 <netuix:portlet definitionLabel="index_1" title="Activities">

<netuix:meta name="activities" content="hiking;camping;fishing"
separator=";"/>

 <netuix:titlebar>
 <netuix:maximize/>

<netuix:minimize/>
</netuix:titlebar>

 <netuix:content>
 <netuix:jspContent contentUri="/activities.jsp"/>
 </netuix:content>
 </netuix:portlet>
</portal:root>

Adding Book and Page Metadata
UDDI searches can locate specific books and pages by their title. When you create a book or page,
you are required to give it a title. This title is available to UDDI searches. Just as with portlets,
you can embed the <netuix:meta> tag in .book and .page files to add searchable metadata
keywords. See Listing 9-5 for an example.

Note: Only remoteable .book and .page files can be published to UDDI registries. See
Chapter 6, “Offering Books, Pages, and Portlets to Consumers” for more information on
creating remoteable books and pages.

By default, the <enabled> element of this file is set to false. You must set it to true to publish
the producer.

Enabling and Disabling UDDI for a Producer
You can enable or disable UDDI searching for an entire producer web application or for specific
portlets, books, and pages.

Enabling and Disabling a Producer Web Application for UDDI Searches
You can disable UDDI publishing for an entire web application by setting the <enabled>
element in the wsrp-producer-portlet-registry-config.xml file to false. If this element
is false, then none of the portlets, pages, or books in the web application will be accessible to
UDDI queries. If the element is true, then all portlets, pages, and books in the web application
are published, unless individually disabled using with the offerRemote property.

Publ ish ing to UDDI Reg is t r i es

9-14 BEA WebLogic Portal Federated Portals Guide

The wsrp-producer-portlet-registry-config.xml file is located in the /WEB-INF
directory of each web application in a producer. (To edit this file, you must first copy it from the
J2EE Shared Library in which it is stored into your project.)

Enabling and Disabling Individual Producer Resources for UDDI Searches
The offerRemote property can be set to true or false for any portal resource (portlets, pages,
and books) that can be remote. If true, then the resource is offered as remote, and it can be
discovered and consumed remotely by a consumer. If false, then the resource is hidden from
view from consumers. You can set this property from the Properties view for a portlet, book, or
page, as shown in Figure 9-2.

Figure 9-2 Setting the offerRemote Property

Note: Changing the offerRemote value in no way affects the contents of the registry. If the
offerRemote property is changed to false after the entity has been published, the
producer will not delete the entity from the registry. For example, a portlet may exist in
the registry if it was published, but be unavailable to WebLogic Portal consumers if
offerRemote is set to false.

Configuring the Consumer
In order to use the search tools, either through the API or the WebLogic Portal Administration
Console, you must set up the wsrp-consumer-portlet-registry-config.xml for the
consumer. This file defines the UDDI registry information, such as UDDI inquiry URL, number
of rows to return, and description. A consumer may need to search more than one registry and all
registries must be defined in this file.

Search ing fo r P roducers P rogramat ica l l y

BEA WebLogic Portal Federated Portals Guide 9-15

Note: The wsrp-consumer-portlet-registry-config.xml file is located in the META-INF
directory of the enterprise application. By default, this file is empty. You must configure
this file, as described in this section, or administrators and users will not be able to use
the UDDI search feature. (To edit this file, you must first copy it from the J2EE Shared
Library in which it is stored into your project.)

Listing 9-6 shows an example configuration file. After you configure the consumer, you must
restart the application.

Listing 9-6 wsrp-consumer-portlet-registry-config.xml File

<wsrp-consumer-portlet-registry-config

xmlns="http://www.bea.com/ns/portal/90/wsrp-consumer-portlet-registry-config">

 <description>WLP Tools WSRP Registry Configuration</description>

 <registry>

 <name>defaultRegistry</name>

 <title>Default Registry</title>

 <description>This is the default registry.</description>

 <default>true</default>

 <inquiry-url>http://localhost:7001/uddi/uddilistener</inquiry-url>

 <max-results>500</max-results>

 </registry>

 <registry>

 <name>SecondRegistry</name>

 <title>Second Registry</title>

 <description>Another registry.</description>

 <default>false</default>

 <inquiry-url>http://localhost:8080/uddi/inquiry</inquiry-url>

 <max-results>500</max-results>

 </registry>

</wsrp-consumer-portlet-registry-config>

Searching for Producers Programatically
WebLogic Portal provides two ways to search for producers. If you are working in the staging or
production environments, you can use the WebLogic Portal Administration Console to search for

Publ ish ing to UDDI Reg is t r i es

9-16 BEA WebLogic Portal Federated Portals Guide

producers. WebLogic Portal also exposes an API that lets you search programmatically. You
might use the API if you wanted to write your own search tool.

Note: Empty books and pages do not show up in UDDI searches.

For information on searching for producers in the Administration Console, see Chapter 17,
“Adding Remote Resources to the Library.”

The rest of this section discusses how to use the API to search for producers. This section includes
the following parts:

The UDDI Query API

Sample Code

The UDDI Query API
WebLogic Portal provides an API that you can use to search UDDI registries for producers,
portlets, pages, and books. Typically, this API is used for the development of custom search tools.

The following packages contain the API that you can use to search UDDI registries for producers,
portlets, pages, and books:

com.bea.wsrp.registry

This package contains classes let you get and set configuration information for a UDDI
registry. The classes in this package are described in Table 9-3.

com.bea.wsrp.registry.entries

This package contains classes that represent registry entries, such as producers, portlets,
books, and pages. Methods in these classes let you get and set keywords, titles,
descriptions, and other data elements for these entries. The classes in this package are
described in Table 9-4.

com.bea.wsrp.registry.find

This package contains classes that let you construct and execute UDDI registry queries.
The classes in this package are described in Table 9-5.

The following tables summarize the classes in these three packages. Please refer to the Javadoc
for detailed information on these classes.

Search ing fo r P roducers P rogramat ica l l y

BEA WebLogic Portal Federated Portals Guide 9-17

Table 9-3 com.bea.wsrp.registry.entries Package

Class or Interface Purpose

BaseEntry Represents a producer, portlet, page, or book in the UDDI registry.

RegistryEntry Represents a base class for producer-offered entities (portlets, pages,
and books).

ProducerEntry Represents a producer entry. This class contains the producer’s
metadata including its WSDL URL.

PortletEntry Represents a portlet entry in the UDDI registry.

PageEntry Represents a page entry in the UDDI registry.

BookEntry Represents a book entry in the UDDI registry.

Table 9-4 com.bea.wsrp.registry Package

Class or Interface Purpose

ConnectInfo Contains connection information for a UDDI registry, such as the
inquiry URL and an optional set of properties.

RegistryConfig Represents a UDDI registry’s configuration information, such as the
registry name and inquiry URL.

Table 9-5 com.bea.wsrp.registry.find Package

Class or Interface Purpose

FindRequest Specifies search criteria.

RegistryFinder Finds producers, portlets, pages, and books. Also provides methods
to get details of pre-configured registries.

Publ ish ing to UDDI Reg is t r i es

9-18 BEA WebLogic Portal Federated Portals Guide

Sample Code
The code fragment in Listing 9-7 shows how the API can be used to search for and discover
portlets and producers in a UDDI registry.

Listing 9-7 UDDI Search Code Fragment

import com.bea.wsrp.registry.entries.*;
import com.bea.wsrp.registry.*;
import com.bea.wsrp.registry.find.*;

public class UDDIQuery {

public void doQuery() {

ConnectInfo ci = RegistryFinder.getDefault();
FindRequest fr = new FindRequest();
fr.addName("Hello");
fr.addKeyword("hello");
fr.addKeyword("world");

List<PortletEntry> portlets = registryFinder.findPortlets(fr, connectInfo);

//-- User selects a portlet from the list.

Key producerKey = portletEntry.getProducerKey();
fr = new FindRequest();
fr.setProducerServiceKey(producerKey);
List<ProducerEntry> producers = registryFinder.findProducers(fr, connectInfo);

//-- User selects a producer from the list.

}
}

BEA WebLogic Portal Federated Portals Guide 10-1

C H A P T E R 10

The Interceptor Framework

The Interceptor Framework is a consumer-side framework that lets you programmatically
intercept and modify markup and user interaction-related WSRP messages sent to and received
from producers. This framework exposes a set of interfaces that you can implement. These
interfaces let you examine the content of a WSRP message and take specific action based on that
content. For example, if a producer sends a registration error back to the consumer, an interceptor
can detect that error and display an informative message to the user or, perhaps, automatically
return the information required to complete the registration.

This chapter includes the following topics:

Introduction

Use Cases

Basic Steps

Designing Interceptors

Interceptor Interfaces

Configuring Interceptors

Order of Method Execution

Implementing an Error-Handling Interceptor

The In te rcepto r F ramework

10-2 BEA WebLogic Portal Federated Portals Guide

Introduction
As Figure 10-1 illustrates, interceptors are implemented in the consumer. They intercept and
allow processing of incoming and outgoing WSRP messages passed between the consumer and
one or more producers. Interceptors are associated with specific consumer web applications (web
application scoped). You can also group together several interceptors to accommodate more
complex use cases.

Figure 10-1 Interceptors Run in Consumer Applications

The interceptor framework defines five public interceptor interfaces. To work with interceptors,
you implement one or more of these interfaces and register your implementation classes in a
configuration file called wsrp-consumer-handler-config.xml. This configuration file is web
application-scoped, and resides in the consumer web application’s WEB-INF directory. See
“Configuring Interceptors” on page 10-10 for more information on the configuration file.

To work with interceptors effectively, you must be familiar with basic WSRP operations, such as
getMarkup and performBlockingInteraction. You need to understand the purpose of these
operations and how they fit into the life cycle of proxy portlets. See “Designing Interceptors” on
page 10-4.

The rest of this chapter explains how to use these interfaces and includes detailed examples and
use cases.

Use Cases
If you are a consumer-side developer, you can use the Interceptor Framework for many different
purposes. Some of the most common use cases for interceptors include:

Consumer

Interceptor(s)

Producer(s)Proxy Portlets

Bas ic S teps

BEA WebLogic Portal Federated Portals Guide 10-3

Handling Errors – You can use interceptors to handle errors returned from a producer. For
instance, if a specific producer is not registered, you can trap the registration error and
handle it as you wish. You may display an informative message to the user, or you may
choose to automatically register the producer. An interceptor can also catch an I/O
exception, which can occur if the producer is unavailable. In this case, you might choose to
handle the error by displaying an informative message for the user, prevent future requests
to the producer, or chose to redirect to another producer.

Caching Markup – You can implement an interceptor to cache markup returned from a
producer. This feature allows you to use any external caching system you choose. In
addition, by caching markup on the consumer, you can, in some circumstances, reduce
round-trip communication between the consumer and producer.

Validating Data – You can use interceptors to filter user submitted data. If you detect the
user’s data is invalid, you can display an informational message, or you can prevent the
data from being sent to the producer.

Replacing Markup – An interceptor can filter, replace, modify markup data sent from the
producer. An interceptor can also modify the navigational state of a remote portlet. For
information on navigational state, see “Life Cycle of a Remote Portlet” on page 3-13.

Modifying HTTP Headers – Interceptors can add or remove some kinds of HTTP
headers, and can also inspect response headers. Refer to the Javadoc for details on which
kinds of HTTP headers can be modified by Interceptors.

Basic Steps
This section lists the basic steps involved in creating an interceptor. More detailed information
on each step is available in the other sections of this chapter. The basic steps include:

Determine the purpose of your interceptors. When you know the work you want to
accomplish with interceptors, you can then decide which of the interfaces to implement.
For more information, see “Designing Interceptors” on page 10-4.

Configure the interceptors. After you know the names of your interceptor classes, you
need to specify the interceptor classes in a configuration file. See “Configuring
Interceptors” on page 10-10 for detailed information.

Implement the interceptor interface(s). The interceptor interfaces are discussed in
“Interceptor Interfaces” on page 10-5. For more detailed information on the interceptor
interfaces, you can refer to the Javadoc.

Test the interceptors.

The In te rcepto r F ramework

10-4 BEA WebLogic Portal Federated Portals Guide

Designing Interceptors
When designing interceptors, you must first decide what kind of work you want to perform.
Depending on the task, you can implement one or more of the interfaces. Each interface is
designed to handle a particular type of WSRP operation. For instance, if you are interested in
intercepting form data before it is sent to a producer, you might choose to implement the
IBlockingInteractionInterceptor. If you are handling registration faults, then you might
implement all of the interfaces.

Interceptors are designed to handle the following types of WSRP operations. These operations
are wrapped in SOAP messages that are passed between consumers and producers using WSRP:

initCookie and initCookieResponse

getMarkup and getMarkupResponse

performBlockingInteraction and performBlockingInteractionResponse

handleEvents and handleEventsResponse

getRenderDependencies and setRenderDependencies

To use interceptors effectively, you need to be familiar with the purpose of these operations and
how they relate to the life cycle of a proxy portlet. For instance,
performBlockingInteraction requests are sent when a user submits form data in a portlet.

Tip: If you are interested in learning more about WSRP and the preceding types of WSRP
operations, see Inside WSRP (on the dev2dev web site). For a more general overview, see
Chapter 3, “Federated Portal Architecture.”

When designing interceptors, also think about the number of interceptors you need to accomplish
your work. You can associate more than one interceptor with a producer by creating a group of
interceptors. A group is subject to specific rules that govern the order in which methods are
executed. For more information see “Order of Method Execution” on page 10-12.

Tip: Because every request might not have the same data available, it is important to add
proper null-condition checks and take appropriate action if data is missing.

I n te rcepto r In te r faces

BEA WebLogic Portal Federated Portals Guide 10-5

Interceptor Interfaces
This section describes the five public interceptor interfaces, their methods, method return values,
and the context objects that are accessible to the interface methods. This section includes these
topics:

Context Objects

Interfaces

Interface Methods

Interceptor Method Return Values

Context Objects
The interceptor methods receive context objects that you can use to get and set values in the
intercepted SOAP messages. The context object created for each type of interceptor varies
depending on the WSRP operation it represents. For instance, the initCookie context object
does not contain the same information as the context object for the handleEvents operation. For
detailed information on these objects, refer to the Javadoc for the interceptor interfaces. This
section describes the flow in which request and response context objects are created and used by
interceptors.

Before a message is sent to a producer, or after it is received, the interceptor framework creates
an appropriate context object that is passed to the interceptor methods. This object wraps certain
elements related to the message. Using methods of the context object, the interceptor can retrieve
and set these elements. For example, when a user clicks a link in a remote portlet, the interceptor
framework creates a request context object which it then passes to the preInvoke() method of
the interceptors. After passing through the interceptors and possibly being modified, the request
object is used to construct a message that is sent to the producer. Likewise, the interceptor
framework constructs a response context object from an incoming message and passes the object
the appropriate interceptor methods.

As illustrated in Figure 10-2, a request context is passed to the preInvoke() methods of
registered interceptors. The request context contains information related to the portlet. After
processing by one or more interceptors, the interceptor framework creates a message. This
message includes any modifications made by the preInvoke() method.

The In te rcepto r F ramework

10-6 BEA WebLogic Portal Federated Portals Guide

Figure 10-2 Handling a Request Context Object

Similarly, as shown in Figure 10-3, the response context object created from an incoming
message is passed to the postInvoke() method the interceptors that are associated with the
producer that generated the response.

Figure 10-3 Handling a Response Context Object

Finally, as shown in Figure 10-4, the response context object created from an incoming error or
fault message is passed to either the onFault() or onIOFailure() method. Note that in the case
of an onIOFailure, a response SOAP message might not be generated.

Figure 10-4 Handling an Error or Fault

Interfaces
The five public interceptor interfaces are summarized in Table 10-1. These interfaces are in the
com.bea.wsrp.consumer.interceptor package. Javadoc is available for these interfaces.

Request
Context

Interceptor(s)

preInvoke()
Proxy
Portlet

Request
to Producer

Response
Context

Proxy
Portlet

Response
from Producer

Interceptor(s)

postInvoke()

Response
Context

Proxy
Portlet

Faults or Errors
from Producer

Interceptor(s)

onFault()
onIOFailure()

I n te rcepto r In te r faces

BEA WebLogic Portal Federated Portals Guide 10-7

Interface Methods
Each interceptor interface includes the same four methods. Table 10-2 summarizes the
interceptor methods and when each method is called. Possible return values for each method are
discussed in “Interceptor Method Return Values” on page 10-8.

Tip: The following table is a general summary only, and does not include method parameters
or return values. The specific method signatures depend on the interface in which the
method is used. Refer to the Javadoc for a detailed description of each method and its
parameters.

Table 10-1 Interceptor Interfaces

Interface Description

IGetMarkupInterceptor Allows you to intercept and modify a message that is being sent
in a getMarkup message or received in a
getMarkupResponse.

IInitCookieInterceptor Allows you to intercept the initCookie request. This request
is made the first time a consumer displays a proxy portlet for a
given user. The request allows the producer to initialize cookies
and return them to the consumer.

IBlockingInteractionInterceptor Allows you to intercept and modify a
performBlockingInteraction message.

IHandleEventsInterceptor Allows you to intercept a handleEvents request or response.

IGetRenderDependenciesInterceptor Allows you to intercept a getRenderDependencies request
or response. Render dependencies include cascading stylesheet
(CSS) files and scripts, such as JavaScript files, upon which the
proper rendering of the portlet depend. For more information on
render dependencies, see the section “Portlet Appearance and
Features” in the Portlet Development Guide.

The In te rcepto r F ramework

10-8 BEA WebLogic Portal Federated Portals Guide

Interceptor Method Return Values
The following tables list the possible return values for each of the four interceptor methods:

Table 10-3, “Return Values for preInvoke(),” on page 10-9

Table 10-4, “Return Values for postInvoke(),” on page 10-9

Table 10-5, “Return Values for onFault(),” on page 10-9

Table 10-6, “Return Values for OnIOFailure(),” on page 10-10

For more information on return values, see “How Return Status Affects Execution Order” on
page 10-14.

Table 10-2 Interceptor Methods

Method Description

preInvoke() This method is called before creating a SOAP message to send to the
producer. For example, this method is called after a user clicks on a link in a
proxy portlet. One use of this method is to intercept a user’s input data to
verify that it is complete.

postInvoke() This method is called after a producer has processed its request and sent a
response back to the consumer. This method can be used to intercept and
filter the markup returned by the producer.

onFault() This method is called when the producer returns a fault. This method can be
used to examine the error and display an informational message or take
another appropriate action.

onIOFailure() This method is called when the there is an IOException while sending or
receiving a message. This method can be used to display an informational
message or take another appropriate action.

I n te rcepto r In te r faces

BEA WebLogic Portal Federated Portals Guide 10-9

Table 10-3 Return Values for preInvoke()

Return Value Description

Status.PreInvoke.CONTINUE_CHAIN Indicates normal execution.

Status.PreInvoke.ABORT_CHAIN Skips calling preInvoke() methods of
the subsequent interceptors, but sends the
message to the producer.

Status.PreInvoke.SKIP_REQUEST_ABORT_CHAIN Skips calling preInvoke() methods of
the subsequent interceptors and skips
sending the request message to the
producer.

Table 10-4 Return Values for postInvoke()

Return Value Description

Status.PostInvoke.CONTINUE_CHAIN Indicates normal execution.

Status.PostInvoke.ABORT_CHAIN Skips calling postInvoke() methods of the
subsequent interceptors.

Table 10-5 Return Values for onFault()

Return Value Description

Status.OnFault.CONTINUE_CHAIN Indicates normal execution. The consumer will handle
the fault if rest of the interceptors also return
CONTINUE_CHAIN status.

Status.OnFault.ABORT_CHAIN Skips calling onFault() methods of the subsequent
interceptors. The consumer will handle the fault.

The In te rcepto r F ramework

10-10 BEA WebLogic Portal Federated Portals Guide

Configuring Interceptors
The interceptors are configured in wsrp-consumer-handler-config.xml, a web application
scoped configuration file. This configuration file requires two entries: interceptor and
interceptor-group. Both of these entries must be present in the configuration file.

Status.OnFault.RETRY Re-sends the message that caused the fault. The
onFault() methods of the subsequent interceptors are
not called.

Status.OnFault.HANDLED Skips calling onFault() methods of the subsequent
interceptors and assumes that fault has been consumed
by the interceptor. The interceptor is responsible for
providing all response data.

Table 10-6 Return Values for OnIOFailure()

Return Value Description

Status.OnIOFailure.CONTINUE_CHAIN Indicates normal execution. The consumer will
handle the IO failure if the rest of the interceptors
also return CONTINUE_CHAIN status.

Status.OnIOFailure.ABORT_CHAIN Skips calling onIOFailure() methods of the
subsequent interceptors. The consumer will handle
the fault.

Status.OnIOFailure.RETRY Re-sends the message that caused the IO failure.
The onIOFailure() methods of the subsequent
interceptors are not called.

Status.OnIOFailure.HANDLED Skips calling onIOFailure() methods of the
subsequent interceptors and assumes that the IO
failure is consumed by the interceptor. The
interceptor is responsible for providing all response
data.

Table 10-5 Return Values for onFault()

Return Value Description

Conf igur ing In te rcepto rs

BEA WebLogic Portal Federated Portals Guide 10-11

The <interceptor> element specifies the fully qualified interceptor classname and provides an
arbitrary, unique name. The interceptor class must also be in the web application’s class path or
another accessible classpath, such as a system-defined classpath. Each interceptor specified by an
<interceptor> element must be referenced in a group, therefore, you must configure at least
one <interceptor-group>.

The <interceptor> element includes the following elements.

name – A unique name within the scope of a web application.

producer-handle – (Optional) If you specify the handle for a registered producer, the
intereceptor(s) in the group will only be called on messages receieved from or sent to that
producer. If you do not specify a producer handle, then the interceptor(s) in the group will
be called for all producers associated with the consumer.

interceptor-name – The name(s) of the interceptors you want to include in the group.
Use the name(s) specified in the interceptor element(s).

The <interceptor-group> element includes the following elements.

name – A unique name within the scope of a web application.

producer-handle – (Optional) If you specify the handle for a registered producer, the
intereceptor(s) in the group will only be called on messages receieved from or sent to that
producer. If you do not specify a producer handle, then the interceptor(s) in the group will
be called for all producers associated with the consumer.

interceptor-name – The name(s) of the interceptors you want to include in the group.
Use the name(s) specified in the interceptor element(s).

For more information on groups, and the order in which methods in groups are called, see “Order
of Method Execution” on page 10-12.

Listing 10-1 shows a simple configuration, including two interceptors and one group.

Listing 10-1 Configuring Interceptors

<interceptor>

<name>AutoRegisteringInterceptor</name>

<class-name>myInterceptors.AutoRegistrationInterceptor</class-name>

</interceptor>

<interceptor>

The In te rcepto r F ramework

10-12 BEA WebLogic Portal Federated Portals Guide

<name>ErrorMessageCustomizer</name>

<class-name>myInterceptors.ErrorMessageCustomizer</class-name>

</interceptor>

<interceptor-group>

<name>Group_1</name>

<producer-handle>MyProducer</producer-handle>

<interceptor-name>AutoRegistrationInterceptor</interceptor-name>

<interceptor-name>ErrorMessageCustomizer</interceptor-name>

</interceptor-group>

Order of Method Execution
This section discusses the factors that affect the order of method execution in interceptors and
groups of interceptors.

Overview

Basic Order Of Execution in a Group

How Return Status Affects Execution Order

Instance Creation and Reuse

Example Chains

Overview
An interceptor group is a collection of interceptors whose methods are called in a well-defined
order. A group can be associated with a specific producer or not associated with any producer. If
associated with a single producer, then the interceptors in the group will be called only when
requests and responses occur between the consumer and that specific producer. If no producer is
associated with a group, then the group’s interceptors are called when communication occurs
between the consumer and all producers associated with it. For detailed information on
configuring a group, see “Configuring Interceptors” on page 10-10.

Basic Order Of Execution in a Group
This section describes the order in which interceptor methods are called if all methods return a
status value of CONTINUE_CHAIN.

Order o f Me thod Execut ion

BEA WebLogic Portal Federated Portals Guide 10-13

Recall that all interceptors contain four methods: preInvoke(), postInvoke(), onFault(),
and onIOFailure(). In an interceptor chain, all of the preInvoke() methods are executed, then
the postInvoke() methods, the onFault() methods, and finally the onIOFailure() methods.

Figure 10-5 illustrates the order in which methods in an interceptor chain are called for the
following chain definition:

Listing 10-2 Example Interceptor Chain Definition

<interceptor-chain>

<name>Chain-A</name>

<producer-handle>myProducer</producer-handle>

<interceptor-name>Interceptor2</interceptor-name>

<interceptor-name>Interceptor3</interceptor-name>

<interceptor-name>Interceptor3</interceptor-name>

<interceptor-name>Interceptor4</interceptor-name>

</interceptor-chain>

The illustration assumes that all methods return the CONTINUE_CHAIN status. Note that all of the
preInvoke() methods are called first in the order in which the interceptors appear in the chain
configuration, then the postInvoke() methods are called in the reverse order. After all the
postInvoke() methods are called, the onFault() methods are called in the order shown in
Figure 10-5. Finally, the onIOFailure() methods are called in the order shown in Figure 10-5.
If onFault() or onIOFailure() are called, then postInvoke() is not called.

Figure 10-5 Default Method Order in Interceptor Chains

preInvoke()

preInvoke()

preInvoke()

preInvoke()

postInvoke()

postInvoke()

postInvoke()

postInvoke()

onFault()

onFault()

onFault()

onFault()

onIOFalure()

onIOFalure()

onIOFalure()

onIOFalure()

Chain A

1 2 3 4

Interceptor 1

Interceptor 2

Interceptor 3

Interceptor 4

The In te rcepto r F ramework

10-14 BEA WebLogic Portal Federated Portals Guide

Tip: Be aware that you can define interceptors in the configuration file that are associated with
specific producers or not associated with any specific producer. An unassociated
interceptor does not have a <producer-handle> element defined with it. Unassociated
interceptors are always called first for all producer transactions, before the interceptors
that are associated with a specific producer are called. Unassociated interceptors are
called in the order in which they appear in the configuration file. See “Configuring
Interceptors” on page 10-10 for more information.

How Return Status Affects Execution Order
The return status of interceptor methods also affects the order in which interceptor methods are
executed. It’s helpful to think of chains of interceptor methods. It’s easier to understand the way
interceptor chains work if you think of four separate chains: a preInvoke() chain, a
postInvoke() chain, an onFault() chain, and an onIOFailure() chain. If you think of chains
this way, it’s easier to understand the effect of return status on the execution of the chain.

Table 10-7 summarizes the possible return values for interceptor methods and how they affect the
order of execution in a chain.

Table 10-7 Interceptor Method Return Values

Return Value Description

CONTINUE_CHAIN If all methods return a CONTINUE_CHAIN status, interceptors
in a chain are executed in order.

ABORT_CHAIN Skips calling methods of the subsequent interceptors in the
chain, but sends the message on to the producer. A use case for
ABORT_CHAIN is when you trap a registration error. If the
interceptor is able to fix the error, it can then be re-submitted to
the producer.

SKIP_REQUEST_ABORT_CHAIN Skips calling methods of the subsequent interceptors in the
chain and skips sending the request message to the producer. A
use case for SKIP_REQUEST_ABORT_CHAIN is when the
interceptor performs caching. If markup exists in the cache,
there may be no reason to perform further processing and return
a message to the producer.

Order o f Me thod Execut ion

BEA WebLogic Portal Federated Portals Guide 10-15

Note: If ABORT_CHAIN or SKIP_REQUEST_ABORT_CHAIN is returned from preInvoke(), all of
the interceptors will still be called, in reverse order, during the postInvoke() phase.

Instance Creation and Reuse
A new instance of an interceptor implementation class is created for every message before calling
preInvoke(). This same instance is reused to call postInvoke(), onFault(), and
onIOFailure(). This allows you to set and use instance variables within the scope of a request.
For a given instance, all methods are called once; however, preInvoke() and postInvoke()
can be called one more time if the RETRY status is returned by either onFault() or
onIOFailure(). Only one retry is permitted per message.

Example Chains
This section includes several examples that illustrate the flow of method execution in an
interceptor chain. Refer to Table 10-7 for details on interceptor return values referred to in these
examples.

Figure 10-6 illustrates the flow in an interceptor chain when the preInvoke() method is called
on the chain. When a status of ABORT_CHAIN returned, a message is immediately returned to the
producer. The preInvoke() methods of subsequent interceptors in the chain are not called.

HANDLED Skips calling the fault-handling methods of the subsequent
interceptors in the chain and assumes that fault has been
consumed by the interceptor. The interceptor is responsible for
providing markup data inputstream, in the absence of it will
result in rendering “no markup found error” error message in
the portlet.

RETRY Re-sends the message that caused the fault. The fault-handling
methods of the subsequent interceptors in the chain are not
called. Only one retry is permitted per message.

Table 10-7 Interceptor Method Return Values

Return Value Description

The In te rcepto r F ramework

10-16 BEA WebLogic Portal Federated Portals Guide

Figure 10-6 preInvoke() Chain with ABORT_CHAIN Return Value

Figure 10-7 illustrates another example of the flow in an interceptor chain when the
preInvoke() method is called on the chain. When a status of SKIP_REQUEST_ABORT_CHAIN is
returned, no message is sent to the producer. The preInvoke() methods of subsequent
interceptors in the chain are not called.

Figure 10-7 preInvoke() Chain

Figure 10-8 illustrates the flow in an interceptor chain when the onFault() method is called on
the chain. When a status of RETRY is returned, the same message that caused the failure, with
possible modifications inserted by the interceptor, is returned to the producer. The onFault()
methods of subsequent interceptors in the chain are not called. Only one retry is permitted. If the

CONTINUE_CHAIN

CONTINUE_CHAIN

ABORT_CHAIN

(Not Called)

preInvoke()

Interceptor 1

Interceptor 2

Interceptor 3

Interceptor 4

Consumer

Producer

CONTINUE_CHAIN

CONTINUE_CHAIN

SKIP_REQUEST_ABORT_CHAIN

(Not Called)

preInvoke()

Interceptor 1

Interceptor 2

Interceptor 3

Interceptor 4

Consumer

Producer

Order o f Me thod Execut ion

BEA WebLogic Portal Federated Portals Guide 10-17

same fault is returned, the interceptor framework assumes that the error is handled by the
interceptor, and a status of HANDLED is returned.

Figure 10-8 onFault() Chain with RETRY Return Value

Figure 10-9 illustrates the flow in an interceptor chain when the onIOFailure() method is
called on the chain. In this case, the no message is returned to the producer, and the framework
assumes that fault has been consumed by the interceptor. The onIOFailure() methods of
subsequent interceptors in the chain are not called. Only one retry is permitted. The second retry
is not honored, and the fault or exception is passed to a proxy portlet. If the same fault is returned,
the interceptor framework assumes that the error is handled by the interceptor, and a status of
HANDLED is returned.

Figure 10-9 onIOFailure() Chain with HANDLED Return Value

CONTINUE_CHAIN

CONTINUE_CHAIN

RETRY

(Not Called)

onFault()

Interceptor 1

Interceptor 2

Interceptor 3

Interceptor 4

Consumer

Producer

CONTINUE_CHAIN

CONTINUE_CHAIN

HANDLED

(Not Called)

onIOFailure()

Interceptor 1

Interceptor 2

Interceptor 3

Interceptor 4

Consumer

Producer

The In te rcepto r F ramework

10-18 BEA WebLogic Portal Federated Portals Guide

Implementing an Error-Handling Interceptor
This section illustrates two simple interceptor implementations. The first implements the
onFault() method and modifies the error message that is returned to the producer. The second
implements onFault() and redirects portlet to display an error page.

This section includes these sections:

Modifying an Error Message

Including an Error JSP Page

Modifying an Error Message
You can use interceptors to retrieve and modify exceptions thrown from the producer. In
Listing 10-3, the onFault() method retrieves a Throwable from the response. You can design
an onFault() method to examine the exception and take any appropriate action. In this case, the
error message is retrieved, modified, and written back to the IGetMarkupResponseContext
object. The return status HANDLED has the following effects:

If the interceptor is part of a chain, it skips calling subsequent onFault() methods in the
chain.

Returns markup data to the producer. This markup is then displayed in the portlet. If you
do not return markup data to the producer, the portlet displays the message “No Markup
Found Error.”

Listing 10-3 ErrorMessageCustomizer

import com.bea.wsrp.consumer.interceptor.IGetMarkupInterceptor;
import com.bea.wsrp.model.markup.IGetMarkupRequestContext;
import com.bea.wsrp.model.markup.IGetMarkupResponseContext;
import com.bea.wsrp.consumer.interceptor.Status;
import weblogic.xml.util.StringInputStream;

public class ErrorMessageCustomizer implements IGetMarkupInterceptor
{
 public Status.PreInvoke preInvoke(IGetMarkupRequestContext requestContext)
 {
 return Status.PreInvoke.CONTINUE_CHAIN;
 }

 public Status.PostInvoke postInvoke(IGetMarkupRequestContext requestContext,
 IGetMarkupResponseContext responseContext)
 {

Imp lement ing an E r ro r -Handl ing In te rcepto r

BEA WebLogic Portal Federated Portals Guide 10-19

 return Status.PostInvoke.CONTINUE_CHAIN;
 }

 public Status.OnFault onFault(IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext,
Throwable t)

 {
String message = "This Message is Customized by ErrorMessageCustomizer\n";
message = message + t.getMessage();
StringInputStream stringInputStream = new StringInputStream(message);
responseContext.setMarkupData(stringInputStream);

return Status.OnFault.HANDLED;
 }

 public Status.OnIOFailure onIOFailure(IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext, Throwable t)

 {
 return Status.OnIOFailure.CONTINUE_CHAIN;
 }
}

Including an Error JSP Page
In this example, the onFault() method is implemented to include an error JSP page in the
portlet.

Listing 10-4 DisplayErrorPage Class

import com.bea.wsrp.consumer.interceptor.IGetMarkupInterceptor;
import com.bea.wsrp.model.markup.IGetMarkupRequestContext;
import com.bea.wsrp.model.markup.IGetMarkupResponseContext;
import com.bea.wsrp.consumer.interceptor.Status;
import weblogic.xml.util.StringInputStream;
import myClasses.MyError;

public class DisplayErrorPage implements IGetMarkupInterceptor
{

public Status.PreInvoke preInvoke(IGetMarkupRequestContext requestContext)
 {
 return Status.PreInvoke.CONTINUE_CHAIN;
 }

public Status.PostInvoke postInvoke(IGetMarkupRequestContext
requestContext, IGetMarkupResponseContext responseContext)

The In te rcepto r F ramework

10-20 BEA WebLogic Portal Federated Portals Guide

 {

 return Status.PostInvoke.CONTINUE_CHAIN;
 }

 public Status.OnFault onFault(IGetMarkupRequestContext requestContext,
IGetMarkupResponseContext responseContext,
Throwable t)

 {
try

 {

if (t instanceof MyError) {
 responseContext.render(requestContext.getHttpServletRequest(),

requestContext.getHttpServletResponse(),
"/redirectTarget/myTarget.jsp");

} else {

responseContext.render(requestContext.getHttpServletRequest(),
requestContext.getHttpServletResponse(),
"/redirectTarget/defaultTarget.jsp");

}
 }
 catch (ServletException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 return Status.OnFault.HANDLED;
 }

 public Status.OnIOFailure onIOFailure(IGetMarkupRequestContext
requestContext, IGetMarkupResponseContext
responseContext, Throwable t)

 {
 return Status.OnIOFailure.CONTINUE_CHAIN;
 }
}

BEA WebLogic Portal Federated Portals Guide 11-1

C H A P T E R 11

Federating User Profiles

WebLogic Portal enables user profile information to be passed from consumers to producers.
This feature allows many of the Personalization features available in WebLogic Portal to function
in a federated portal. This chapter explains how to work with user profile information in a
federated portal. Before a federated portal can use user profile information, some configuration
is required in both the consumer and producer applications.

This chapter includes the following topics:

Introduction

Configuring the Producer

Configuring the Consumer

Introduction
This section summarizes the purpose of user profile propagation and how WebLogic Portal
propagates user profile data in a federated environment.

What are User Profiles?
A user profile is a collection of property sets that contain user-specific information. WebLogic
Portal provides many features that rely on user profiles. For example, the WebLogic Portal
Personalization features rely on user profiles to deliver customized content to specific types of
users.

Federat ing User P ro f i l es

11-2 BEA WebLogic Portal Federated Portals Guide

For example, you could create a property set in Workshop for WebLogic called human resources
that contains properties such as gender, hire date, and email address. This information can be used
to personalize the user’s experience in your portal. When users log into a portal, the portal can
access the property values and target them with personalized content, e-mails, pre-populated
forms, and discounts based on the Personalization rules you set up.

See the Interaction Guide for more information on personalization. For detailed information on
creating user profiles, see User Management Guide.

User Profiles in Federated Portals
For a WebLogic Portal producer to return personalized content to a consumer, user information
must be conveyed from the consumer to the producer. The basic requirements for using user
profile information in a federated portal include:

On the producer, declare the user properties to request from the consumer. The best
practice is to request only those properties that are required by the portlets that are
deployed on the producer. See “Configuring the Producer” on page 11-3 for more
information.

On the consumer, provide a mapping file, if necessary, that maps the requested user
properties with equivalent properties that exist on the consumer. The consumer uses the
WebLogic Portal Personalization (P13N) API to retrieve the requested user properties on
the consumer. See “Configuring the Consumer” on page 11-11 for more information.

Tip: Once retrieved, the list of the properties required for a specific portlet is stored in the
consumer database for future access.

As shown in Figure 11-1, after a consumer first contacts a producer, the producer responds with
a list of the portlets it offers and with a request for the user information that each portlet requires.

Figure 11-1 Producer Requests User Information from Consumer

List of offered portlets and

Consumer Producer
Ask for Service Description

request for user information

When to Use th is Feature

BEA WebLogic Portal Federated Portals Guide 11-3

If a portlet requires user information, the consumer will attempt to supply that information as part
of the getMarkupRequest() to the producer before the portlet can be rendered, as illustrated in
Figure 11-2. WebLogic Portal uses the P13N API, typically in conjunction with a mapping file,
to retrieve the requested user properties on the consumer.

Figure 11-2 Producer Returns Personalized Content

Platform for Privacy Preferences (P3P)
The WSRP protocol specifies a standard format for storing and exchanging user information.
This format, called Platform for Privacy Preferences (P3P), is an internet standard. You can
configure WebLogic Portal applications to accept user information presented in this format as
well as in the WebLogic Portal user profile format.

See “P3P Examples” on page 11-16 for more information. The P3P specification is available on
the W3C website, www.w3.org/TR/P3P.

When to Use this Feature
Use this feature if the user properties defined on the producer and consumer do not match. When
exactly the same user properties exist on the consumer and producer, you do not need to use this
feature.

Tip: In a production environment, the best practice is to specify a property set and property
name for each user property you want to propagate. Retrieving all properties is inefficient
when only a small subset of properties is needed.

Configuring the Producer
To use user profile information in a federated portal, you need to declare on the producer which
user properties are required by the portlets deployed on the producer. The declared properties are

Personalized content

Consumer Producer
Call getMarkupRequest() with
required user information

Federat ing User P ro f i l es

11-4 BEA WebLogic Portal Federated Portals Guide

marshalled in a response to the consumer and returned to the consumer application, which must
then return the requested user property values when registering the producer.

The procedures for configuring portlets deployed in a producer to use user profile information
differs depending on whether you are configuring Java portlets or non-Java portlets.

This section includes the following topics:

Configuring Java Portlets

Configuring Non-Java Portlets

Configuring Java Portlets
The Java Portlet Specification specifies how Java portlets access user attributes such as the name,
email address, phone number, and other attributes of the user. This section explains how to
specify user attributes for Java portlets deployed in a producer application, and how Java portlets
retrieve user information.

Tip: For detailed information on how user information is accessed by Java portlets, refer to
the User Information section of the Java Portlet Specification.

Configuring the Deployment Descriptor (portlet.xml)
The Java Portlet Specification defines the <user-attribute> element for specifying user
attributes required by a deployed Java portlet. Figure 11-1 shows an excerpt of a portlet.xml
file with user properties specified. The <name> elements specify user attribute names.

Listing 11-1 Specifying User Properties in portlet.xml File

<portlet-app>

...

 <user-attribute>

<name>Employee/Language</name>

</user-attribute>

 <user-attribute>

<name>Employee/Role</name>

</user-attribute>

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 11-5

...

</portlet-app>

See also “Creating Default User Property Sets” on page 11-6.

Retrieving User Information in a Java Portlet
The Java Portlet Specification also specifies how Java portlets retrieve user information from the
portal environment in which they are deployed. The portlet can retrieve a Map object that
contains the user attributes of the user who initiated the request. You can retrieve this Map object
from the request using the PortletRequest.USER_INFO constant.

The example code in Listing 11-2 shows how a Map of user information is retrieved from the
request in a JSP associated with a Java portlet. User property values are retrieved from the Map
using the user property names as keys.

Listing 11-2 Retrieving User Information in a Java Portlet

...

Map<String, Object> props;

 PortletRequest portletRequest = (PortletRequest)

request.getAttribute("javax.portlet.request");

 if (portletRequest != null) {

 props = (Map<String, Object>)

portletRequest.getAttribute(PortletRequest.USER_INFO) ;

 } else {

 props = null ;

 }

 if (props == null) {%>

 <p>Empty Profile</p>

 <%} else {%>

 <p><%= props.get("Employee/Language") %></p>

 <p><%= props.get("Employee/Role") %></p>

 <%}%>

...

Federat ing User P ro f i l es

11-6 BEA WebLogic Portal Federated Portals Guide

Creating Default User Property Sets
Listing 11-3 shows a sample user attribute specified in a portlet.xml file. This section explains
how you can streamline the <user-attribute> property by creating default user property sets.
For example, by creating a default user property called “Employee,” the name attribute in
Listing 11-3 could be shortened to <name>Language</name>.

Listing 11-3 User Attribute Specified in portlet.xml

<user-attribute>
<name>Employee/Language</name>

</user-attribute>

To create a default user property set, first create a weblogic-portlet.xml file in the WEB-INF
directory of your portal web application. You can then use the <user-property-set> attribute
to configure default user property sets.

Listing 11-4 shows how to create a default user property set called “Employee” for all portlets in
the web application:

Listing 11-4 Default Property Set Applied to All Portlets

<portal-container>

 <user-property-set>Employee</user-property-set>

</portal-container>

Listing 11-5 shows how to create a default user property set for a specific portlet:

Listing 11-5 Default Property Set Applied to Specific Portlets

<portlet>

 <name>portletName</name>

 <user-property-set>Employee</user-property-set>

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 11-7

</portlet>

With the default user property set “Employee” specified in weblogic-portlet.xml, you can
then code the <user-attribute> value shown Listing 11-3 as follows in the portlet.xml file.

Listing 11-6 User Attribute

<user-attribute>
<name>Language</name>

</user-attribute>

For more information on the weblogic-portlet.xml file, see “Building Portlets” in the Portlet
Development Guide.

Mapping User Properties
If the user properties on the consumer and producer do not match, you can create a mapping file
on the consumer. A mapping file allows the consumer to retrieve user properties that map to the
properties requested by the producer. For detailed information on mapping user properties, see
“Configuring the Consumer” on page 11-11.

Configuring Non-Java Portlets
This section explains how to specify user attributes for non-Java portlets deployed in a producer
application.

Configuring the Deployment Descriptor File
For non-Java portlets, you specify required user properties in the descriptor file
wsrp-producer-config.xml. This file is located in the WEB-INF directory of your producer
web application. Listing 11-7 shows a sample wsrp-producer-config.xml file. The
<requiredUserProperties> element specifies the required user properties for portlets
deployed in the producer web application (shown in bold type). In the example, the value All
specifies that consumer must supply all available user profile information to the producer. Other
possible values are discussed in this section.

Federat ing User P ro f i l es

11-8 BEA WebLogic Portal Federated Portals Guide

Listing 11-7 Sample wsrp-producer-config.xml File

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-config

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/9.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:uddi="urn:uddi-org:api_v2"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-conf

ig/9.0 wsrp-producer-config.xsd">

 <description></description>

 <service-config>

 <registration required="true" secure="false"/>

 <service-description secure="false" supports-method-get="true"/>

 <markup secure="false" rewrite-urls="true" transport="string"/>

 <portlet-management required="true" secure="false"/>

 </service-config>

 <supported-locales>

 <locale>en</locale>

 <locale>en-US</locale>

 </supported-locales>

 <requiredUserProperties properties="All">

</requiredUserProperties>

</wsrp-producer-config>

The <requiredUserProperties> element contains one attribute, called properties, which
takes one of these three values:

All – Instructs the consumer to send all user profile information. For example:
<requiredUserProperties properties="All">

None – Instructs the consumer to send no user profile information. For example:
<requiredUserProperties properties="None">

Specified – Instructs the consumer to send only specified user profile information. Use
the <specifiedProperties> sub-element to list the user information required by the
portlet. For example:

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 11-9

<requiredUserProperties properties="specified">
<description>These are required properties</description>

 <specifiedProperty name="Employee/name"/>
 <specifiedProperty name="Employee/gender"/>
 <specifiedProperty name="Employee/number"/>
</requiredUserProperties>

The value given for the name property can take one of these forms:

propertySet/propertyName – The name of a property set defined on the producer and
the name of a property in that property set. For example:
<requiredUserProperties properties="specified">
 <specifiedProperty name="Employee/gender"/>
</requiredUserProperties>

propertySet/* – The name of a property set defined on the producer and an asterisk (*),
which specifies that all properties in that property set are required. For example:
<netuix:requiredUserProperties properties="specified">
 <specifiedProperty name="Employee/*"/>
</requiredUserProperties>

p3pName – Specify P3P user properties. For example:
<requiredUserProperties properties="specified">
 <specifiedProperty name="name/given"/>

<specifiedProperty name="gender"/>
</requiredUserProperties>

If no user information is specified in wsrp-producer-config.xml, the behavior is the same as
if a value of None were specified in <requiredUserProperties>.

Retrieving User Information in a Portlet
The code excerpt in Listing 11-8 shows how user properties are retrieved in a portlet’s JSP file
using the P13N tag <profile:getProperty>.

Listing 11-8 Retrieving Values in a Portlet

...

<%

 if (request.getUserPrincipal() != null) {

 %>

 <profile:getProfile profileKey="<%=

Federat ing User P ro f i l es

11-10 BEA WebLogic Portal Federated Portals Guide

request.getUserPrincipal().getName() %>" />

 <%

 } else { %>

 <profile:getProfile profileKey="anonymous" groupOnly="true" />

 <%

 }

 %>

<tr>

<td>Name</td>

<td id="wsrp_date"><profile:getProperty propertySet=

"Employee" propertyName="name"/></td>

</tr>

<tr>

<td>Gender</td>

<td id="wsrp_int_code"><profile:getProperty propertySet=

"Employee" propertyName="gender"/></td>

</tr>

<tr>

...

Handling User Property Extensions
If a WebLogic Portal or non-WebLogic Portal consumer sends extended P3P user profile
information, the portlet can retrieve the extensions as a List object obtained from the
<profile:getProperty> tag. Listing 11-9 shows example code that extracts a List containing
telephone extensions. In this case, the property homeInfo/postal/extensions is an extended
WSRP user property.

Listing 11-9 Retrieving User Profile Extensions

<profile:getProperty propertySet="<%= UserProperty.P3P_PROPERTY_SET_NAME

%>" propertyName="homeInfo/postal/extensions" id="postalExtsObj"/>

 <%

 List<Element> teleExts = (List<Element>) postalExtsObj;

 if (teleExts != null) {

Conf igu r ing the Consumer

BEA WebLogic Portal Federated Portals Guide 11-11

 for (int i = 0 ; i < teleExts.size() ; i++) {

String extStr = teleExts.get(i)

 %>

 <tr> <td>Postal Extension[<%= i %>]</td>

<td colspan="2"

id="postal_extensions[<%=i%>]"><%= extStr %></td> </tr>

 <% }

 }%>

Mapping User Information on the Consumer
Consumers may map the user properties requested by producers to properties that exist on the
consumer. For detailed information on mapping user properties, see “Configuring the Consumer”
on page 11-11.

Configuring the Consumer
In many cases, the user property set and property names that exist on a producer do not match
those on the consumer. Therefore, WebLogic Portal allows you to map these names
appropriately. This section explains how to map property set and property names using a
configuration file or programatically with a mapping class.

This section includes these topics:

Using a Mapping File

Using a Mapping Class

Mapping Constants

Using a Mapping File
Specify user profile mappings in the wsrp-user-property-config.xml file. This file is
located in the WEB-INF directory of the consumer web application.

As shown in Listing 11-10, the element <wsrp-user-property-map-bean> is the top-level
element that can appear in this configuration file. The elements that can fall under
<wsrp-user-property-map-bean> are shown in bold type and include:

Federat ing User P ro f i l es

11-12 BEA WebLogic Portal Federated Portals Guide

<user-property-map> – Creates a producer to consumer mapping that applies to all
producers registered with the consumer.

<producer-user-property-map> – Creates a mapping tied to a specific producer,
indicated with the <producer-handle> element.

<mapper-class-name> – Lets you supply a class that peforms mappings programatically.
You must specify the fully qualified classname of the mapping class. For more information
on creating a mapping class, see “Using a Mapping Class” on page 11-13.

As shown in Listing 11-10, the <producer-user-property-map> element can be used to
create producer-specific mappings directly or with a mapping class.

Listing 11-10 Example wsrp-user-property-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<wsrp-user-property-map-bean
xmlns="http://www.bea.com/ns/portal/90/wsrp-user-property-config">

<!-- Maps ldap/name -> Employee/name for all registered producers -->
<user-property-map>

 <producer-property-name>Employee/name</producer-property-name>
 <consumer-property>ldap/name</consumer-property>
 </user-property-map>

<!-- Specifies a mapper class to apply to all registered producers -->
<mapper-class-name>myClasses.MyUserPropertyMapper1</mapper-class-name>

<!-- User Property Map for specific producer -->
<producer-user-property-map>

 <producer-handle>complexProducer</producer-handle>
 <user-property-map>
 <producer-property-name>Employee/number</producer-property-name>
 <consumer-property>"xxxxxx"</consumer-property>
 </user-property-map>
 </producer-user-property-map>

<!-- Specifies a mapper class for specific producer -->
<producer-user-property-map>

 <producer-handle>complexProducer2</producer-handle>
 <mapper-class-name>myClasses.MyUserPropertyMapper2</mapper-class-name>
 </producer-user-property-map>
</wsrp-user-property-map-bean>

Conf igu r ing the Consumer

BEA WebLogic Portal Federated Portals Guide 11-13

The <producer-property-name> sub-element of <user-property-map> specifies the
propertySet/propertyName pair of the requested producer property, and the
<consumer-property> sub-element specifies the equivalent pair that exists on the consumer.

The <producer-property-name> and <consumer-property> pairs can take the following
forms:

propertySetName/propertyName – The name of a property set and the name of a
property in that property set. For example:

<producer-property-name>propertySetName-A/propertyName-A</producer-property-name>
<consumer-property>propertySetName-B/propertyName-B</consumer-property>

propertySetName/* – The asterisk (*) specifies that all properties in that property set are
mapped. This pattern assumes that the same property names exists in the mapped property
sets on the consumer and the producer.

For example, the following lines map all properties in propertySetName-A on the
producer to propertySetName-B on the consumer.

<producer-property-name>propertySetName-A/*</producer-property-name>

<consumer-property>propertySetName-B/*</consumer-property>

propertyValue – Maps a property name from the producer to a constant value. For
example, the following lines map the property called propertyName-A from the producer
to an arbitrary string constant. In addition to strings, you can specify other types of
constants. For more information, see “Mapping Constants” on page 11-15.

<producer-property-name>propertySetName-A/propertyName-A

</producer-property-name>

<consumer-property>”aStringValue”</consumer-property>

Using a Mapping Class
In addition to using a mapping file to map requested producer properties to consumer properties,
you can create a mapping class to programmatically map and set user property values on the
consumer. To use a mapping class, you need to do the following:

Write the mapping class.

Configure the mapping class in the wsrp-user-properties-config.xml file.

Writing the Mapping Class
To create a mapping class:

Federat ing User P ro f i l es

11-14 BEA WebLogic Portal Federated Portals Guide

1. Extend the com.bea.wsrp.consumer.userproperty.DefaultUserPropertyMapper class.

2. Override the getProducerProperties method to implement the mapping functions that
you want to create. For detailed information on this method, refer to the Javadoc. The mapper
class example in Listing 11-11 sets the gender property for a user based on the user’s name.

Note: Extending DefaultUserPropertyMapper and overriding getProducerProperties is
the simplest and best practice, although it is not required. You can also extend its
abstract base class if you want to.

3. Configure the mapper class in the wsrp-user-property-config.xml file. To do this, add
lines to wsrp-user-property-config.xml that follow the pattern shown in Listing 11-11,
where producerHandle is the unique name that identifies the producer on the consumer, and
myClasses.MyMapperClass is the full classname of the mapper class.

Listing 11-11 Example Mapper Class

package com.bea.portlet.qa.wsrp.userprops;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import com.bea.p13n.property.EntityPropertyCache;
import com.bea.wsrp.consumer.userproperty.DefaultUserPropertyMapper;
import com.bea.wsrp.consumer.userproperty.RequiredUserProperties;
import com.bea.wsrp.consumer.userproperty.UserProperty;

public class TestUserPropertyMapper extends DefaultUserPropertyMapper {
 private final static Set<String> MALE_NAMES = new HashSet<String>() ;
 private final static Set<String> FEMALE_NAMES = new HashSet<String>() ;

 static {
 final String[] maleNames = {"Nate","Nathan","Eric","Subbu","Scott"};
 MALE_NAMES.addAll(Arrays.asList(maleNames)) ;
 final String[] femaleNames = {"Mandy","Geeta","Jenn","Jen","Jenny"} ;
 FEMALE_NAMES.addAll(Arrays.asList(maleNames)) ;
 }

 /**
 * Map set the user's gender if user.name.given is set
 * @param requiredProperties the properties requested by the producer
 * @param map A map where the key is the producer's name and
 * the value is the consumer's name
 * @param profile the User's profile on the consumer
 * @return the properties mapped to the producer
 */

Conf igu r ing the Consumer

BEA WebLogic Portal Federated Portals Guide 11-15

 public Collection<UserProperty> getProducerProperties(
 RequiredUserProperties requiredProperties,
 Map<String, String> map,
 EntityPropertyCache profile) {

 final Collection<UserProperty> properties =
 super.getProducerProperties(requiredProperties, map, profile) ;
 if (requiredProperties.isPropertyRequired("HR", "gender")) {
 final String givenName = (String) getProperty(profile, "HR", "name.given") ;
 if (MALE_NAMES.contains(givenName)) {
 addUserProperty(properties, "HR", "gender", "M") ;
 } else if (FEMALE_NAMES.contains(givenName)) {
 addUserProperty(properties, "HR", "gender", "F") ;
 }
 }
 return properties ;
 }
}

Configuring the Mapping Class
You need to declare mapping classes in the wsrp-user-properties-config.xml file. To do
this, use the <mapper-class-name> element. This element takes a fully qualified classname as
its property, as shown in the following example:

<mapper-class-name>myClasses.MyMapperClass</mapper-class-name>

You can place this element directly under the <wsrp-user-property-map-bean> element or
the <producer-user-property-map> element. For detailed information on the configuration
file, see “Using a Mapping File” on page 11-11.

Mapping Constants
In addition to mapping user properties to user properties, you can map user properties to constant
values. You can map to constants in the configuration file or in a mapper class. Listing 11-12
shows part of a wsrp-user-properties-config.xml file where a property called long is
mapped to a constant of type long, which is enclosed in /L delimiters.

Listing 11-12

...

<user-property-map>

 <producer-property-name>map/long</producer-property-name>

Federat ing User P ro f i l es

11-16 BEA WebLogic Portal Federated Portals Guide

 <consumer-property>/L42/L</consumer-property>

 </user-property-map>

...

Table 11-1 includes the full set of constant delimiters.

If you create a mapping class, you can specify constants using the delimiters shown in Table 11-1
or use the constants defined in the com.bea.wsrp.consumer.userproperty.UserProperty
interface. For details on this interface, refer to the Javadoc.

P3P Examples
This section recasts some of the examples given previously in this chapter to show how to use
P3P attributes instead of WebLogic Portal user attributes. This section includes the following
examples:

This section includes these examples:

Example: portlet.xml file with P3P Attributes

Example: Retrieving P3P User Information in a Java Portlet

Example: Retrieving User Information in Other Portlets

Table 11-1 Constant Delimiters

Type Delimiter Example

String ” ”Hello World”

Boolean /B /Btrue/B

Long /L /L42/L

Double /D /D3.14159/D

Date /T /T1975-09-27T14:38:11-07:00/T

P3P Examples

BEA WebLogic Portal Federated Portals Guide 11-17

Example: portlet.xml file with P3P Attributes
The portlet.xml file is a standard deployment descriptor for Java portlets. Listing 11-13 shows a
portlet.xml file that includes P3P attributes. For more information on this file, see
“Configuring Java Portlets” on page 11-4.

P3P attribute names always begin with the prefix user, and by convention, a dot (.) separator is
used to separate elements of a name (for example: user.name.given). For a complete set of
names used by Java portlets, refer to the Java Portlet Specification.

Listing 11-13 Specifying User Properties in portlet.xml File

<portlet-app>

…

<user-attribute>

<description>User Given Name</description>

<name>user.name.given</name>

</user-attribute>

<user-attribute>

<description>User Last Name</description>

<name>user.name.family</name>

</user-attribute>

<user-attribute>

<description>User eMail</description>

<name>user.home-info.online.email</name>

</user-attribute>

<user-attribute>

<description>Company Organization</description>

<name>user.business-info.postal.organization</name>

</user-attribute>

...

</portlet-app>

Federat ing User P ro f i l es

11-18 BEA WebLogic Portal Federated Portals Guide

Example: Retrieving P3P User Information in a Java Portlet
The example code in Listing 11-14 shows how a Map of user information is retrieved from the
request in a JSP associated with a Java portlet. Note that standard P3P user property names, such
as user.bdate, are used in the file.

Listing 11-14 Retrieving User Information in a Java Portlet

...

Map<String, Object> props;

 PortletRequest portletRequest = (PortletRequest)

request.getAttribute("javax.portlet.request");

 if (portletRequest != null) {

 props = (Map<String, Object>)

portletRequest.getAttribute(PortletRequest.USER_INFO) ;

 } else {

 props = null ;

 }

 if (props == null) {%>

 <p>Empty Profile</p>

 <%} else {%>

 <p><%= props.get("user.bdate") %></p>

 <p><%= props.get("user.business-info.telecom.telephone.intcode")

%></p>

 <%}%>

...

Example: Retrieving User Information in Other Portlets
The code excerpt in Listing 11-15 shows how P3P properties are retrieved in a portlet’s JSP file
using the P13N tag <profile:getProperty>. WebLogic Portal recognizes the constant
com.bea.wsrp.consumer.userproperty.UserProperty.P3P_PROPERTY_SET_NAME to be
the set of standard P3P user properties.

P3P Examples

BEA WebLogic Portal Federated Portals Guide 11-19

Listing 11-15 Retrieving P3P Values in a non-Java Portlet

<%@ page import = "com.bea.wsrp.consumer.userproperty.UserProperty" %>

...

<%

 if (request.getUserPrincipal() != null) {

 %>

 <profile:getProfile profileKey="<%= request.getUserPrincipal().getName() %>"

/>

 <%

 } else { %>

 <profile:getProfile profileKey="anonymous" groupOnly="true" />

 <%

 }

 %>

<tr>

<td>Date</td>

<td id="wsrp_date"><profile:getProperty propertySet=

"<%= UserProperty.P3P_PROPERTY_SET_NAME %>" propertyName="bdate"/></td>

</tr>

<tr>

<td>Int Code</td>

<td id="wsrp_int_code"><profile:getProperty propertySet=

"<%= UserProperty.P3P_PROPERTY_SET_NAME %>" propertyName=

"businessInfo/telecom/telephone/intcode"/></td>

</tr>

...

Federat ing User P ro f i l es

11-20 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 12-1

C H A P T E R 12

Consumer Entitlement

Consumer entitlement allows producers to decide which portlets to offer to consumers based on
registration properties.

This chapter includes these topics:

Introduction

Configuring a Producer

Registering a Consumer

Modifying Registration Properties

Introduction
WSRP allows consumers to pass information to producers during registration. Through the User
Management features of WebLogic Portal, you can create roles based on this registration
information. The roles, in turn, can be used to entitle specific portlets for specific consumers. This
feature allows producers to control which portlets are offered to specific consumers.

To entitle consumers based on registration properties:

1. Define one or more application-defined property sets using Workshop for WebLogic. See
“Creating an Application Property Set” on page 12-2.

2. Modify the wsrp-producer-config.xml configuration file for each portal web application
on the producer. See “Editing the Producer Configuration File” on page 12-3.

Consumer Ent i t l ement

12-2 BEA WebLogic Portal Federated Portals Guide

3. Define user entitlements based on the application-defined property set(s). See “Defining
Consumer Entitlements” on page 12-5.

No configuration is required by consumers. All of the configuration takes place on the producer.
Once the producer is properly configured, required registration information is sent to the
consumer in response to a service description request. The consumer simply prompts the user to
enter the registration information requested by the producer through either the WebLogic Portal
Administration Console or Workshop for WebLogic.

A typical use case for consumer entitlements is to provide one consumer access to a set of portlets
and another consumer access to another set of portlets. For example, suppose your company has
several partners. The administrator of the producer could create a registration property with a set
of unique values. The administrator could then give each partner their own unique registration
property value. When partners register the producer, they are required to enter their value as a
registration property, which entitles them to receive a specific set of portlets.

Configuring a Producer
This section explains how to configure a producer to entitle consumers based on registration
properties.

Tip: You can only define consumer entitlements in a complex producer. For information on
complex producers, see “Understanding Producers and Consumers” on page 3-4.

The basic steps include:

Creating an Application Property Set

Editing the Producer Configuration File

Defining Consumer Entitlements

Creating an Application Property Set
The first step in creating entitlements for consumers based on registration properties is to create
one or more Application-Defined Property Sets using Workshop for WebLogic. These property
sets are used to specify the values a consumer must supply to a producer at registration time.

Conf igur ing a P roducer

BEA WebLogic Portal Federated Portals Guide 12-3

Tip: Application-Defined Property Sets must be created in a Datasync project. For detailed
information on creating Application-Defined Property Sets, see the Interaction
Management Guide.

For example, if you create a property set containing a set of identification keywords. When the
producer receives the registration information from the consumer, it can evaluate the keyword it
receives and, based on a visitor entitlement, return a specific set of portlets. If the user registers
with a different keyword, a different set of portlets could be returned.

The property sets you create appear in Workshop for WebLogic in the datasync project’s
src/propset folder. Figure 12-1 shows a sample propset folder containing two property sets.

Figure 12-1 Application-Defined Property Sets

Editing the Producer Configuration File
After you create property sets containing consumer registration properties and optional default
values, you need to make the producer aware of these property sets. To do this, you must edit the
configuration file wsrp-producer-config.xml. Only the property sets listed in this
configuration file are sent to consumers for registration. This configuration file includes a
<registration> element. This element includes the <property-uri> element, which
specifies paths to each of the property sets you defined for that producer. By default, a producer

Application-Defined
Property Sets

Consumer Ent i t l ement

12-4 BEA WebLogic Portal Federated Portals Guide

includes a path /wsrpregistrationproperties. You can either put .propset files in that
directory or create other directories as needed and list them in the <property-uri> element.

Tip: By default, the wsrp-producer-config.xml file is stored in a J2EE Shared Library. To
edit the file, you must first copy it from the J2EE Shared Library to your workspace. To
do this, switch to the Merged Projects view in Workshop for WebLogic. In the WEB-INF
directory of the producer web application, right-click the wsrp-producer-config.xml
file (it appears in an italic font) and select Copy to Project. The configuration file is then
copied from the J2EE Shared Library to your file system, where you can edit it. Any local
changes you make to the file take precedence over the J2EE Shared Library version.

Listing 12-1 shows a sample <registration> element in a wsrp-producer-config.xml file.
A directory called /wsrpregistrationproperties is created and configured by default in the
wsrp-producer-config.xml file. Any property sets placed in this directory are automatically
sent to the consumer as registration properties. In addition, all property sets in the /wsrp directory
will be sent to the consumer as registration properties. The paths specified in the
<property-uri> element are relative to the META-INF/data directory of each producer web
application. Note that the directory name /wsrp is an example only; you can create property sets
under any directory name you choose. If you do not provide specific property sets using
<property-uri> elements, WebLogic Portal imports all Application-Defined Property Sets for
registration properties.

Listing 12-1 Registration Element

<service-config>
 <registration required="false" secure="false">

 <property-uri>/wsrpregistrationproperties</property-uri>
<property-uri>/wsrp</property-uri>

 </registration>
 <service-description secure="false" supports-method-get="true"/>
 <markup secure="false" rewrite-urls="true" transport="string"/>
 <portlet-management required="true" secure="false"/>
 </service-config>

The isStrict keyword is a <registration> keyword that causes registration to fail in a
specific case, as specified in Table 12-1.

Conf igur ing a P roducer

BEA WebLogic Portal Federated Portals Guide 12-5

The isStrict keyword is part of the <registration> element. The isStrict keyword is
show in bold type in Listing 12-2.

Listing 12-2 isStrict Keyword

<service-config>

<registration required="true" secure="false" isStrict=”true”>

<property-uri>/wsrpregistrationproperties</property-uri>

 <property-uri>/wsrp</property-uri>

</registration>

</service-config>

Defining Consumer Entitlements
After you have created property sets for consumer registration and added them to the
wsrp-producer-config.xml file, you can create visitor entitlements based on the property
sets.

In the WebLogic Portal Administration Console, you can define Role Expressions for consumer
registration. Figure 12-2 shows the Role Expressions tab selected for a Visitor Role called role1.

Table 12-1 isStrict Keyword

Value of isStrict Explanation

isStrict = true Causes registration to fail if both of these are true:
• a consumer provides a property value for a registration

property that has a restricted set of values defined and
• the provided value(s) do not fall within the restricted set of

values.

isStrict = false (Default) If the consumer sends a value that lies outside of the
set of values associated with a registration property set, the
user can register, but the registration value(s) are not saved. In
this case, entitled portlets that require these values will not be
offered to the consumer.

Consumer Ent i t l ement

12-6 BEA WebLogic Portal Federated Portals Guide

Figure 12-2 Role Expressions Tab

The role expressions are used to dynamically determine whether or not a consumer belongs to a
visitor entitlement role. Individual portlets can then be offered based on membership in that role.

To create a visitor entitlement in the Administration Console:

1. Creating a visitor role.

2. Defining one or more consumer registration expressions in the role.

3. Entitling specific portlets based on the role.

For example, you can define a role with the following Role Expression: If the property p1 equals
red, blue, or green, then consumer is considered to be a role member. The producer then returns
all portlets that are entitled for that role to the consumer. Figure 12-3 shows the Add Conditions
dialog in the WebLogic Portal Administration Console. This dialog is used to define Role
Expressions. When creating entitlements for consumer registration, select The Consumer’s
registration has these values from the Type of condition drop-down menu.

Conf igur ing a P roducer

BEA WebLogic Portal Federated Portals Guide 12-7

Figure 12-3 Setting Registration Properties

Detailed information on setting up visitor entitlements is beyond the scope of this guide. See the
Security Guide for information on this topic.

To entitle a portlet with a consumer registration role:

1. In the Administration Console, select the portlet you want to entitle.

2. Select the Entitlements tab.

3. Click Add Role.

4. Use the Add Role dialog to select the role to add to the portlet, and click Save. The Entitle
Capabilities to Resource dialog appears, as shown in Figure 12-4.

Note: Only the View option listed under the Consumer Capabilities column applies to
consumer registration entitlements. If you select View in the Consumer Capabilities
column, the only other capability you can set is the View capability under the Capabilities
column. In this way, you can enable the portlet for viewing as both a local and a remote
portlet. The other options listed under Capabilities (Edit, Remove, Minimize, and
Maximize) are disabled for consumer registrations.

Consumer Ent i t l ement

12-8 BEA WebLogic Portal Federated Portals Guide

Figure 12-4 Entitling Capabilities to Resource Dialog

Registering a Consumer
When you register a consumer with a producer that has been configured to request registration
properties, the producer asks the consumer to provide values for those properties. In Workshop
for WebLogic, the set of extended registration properties and optional default values are added to
the Register dialog, which appears when you attempt to create a remote portlet. On each
subsequent request by the consumer, the producer retrieves these registration properties and uses
them to make entitlement decisions.

Figure 12-5 shows the registration dialog for a producer that requires registration properties. In
this example, two properties are requested: reg1 and reg2. The property values entered by the user
are sent to the producer. The producer retrieves the values and stores them. On subsequent
requests, the producer compares the stored registration values to the registration values it
requires. If the registration values are accepted, the producer uses them to determine to which role
the consumer belongs. Once the consumer’s role is established, the producer returns only entitled
portlets to the consumer.

Modi fy ing Reg is t rat i on P roper t i es

BEA WebLogic Portal Federated Portals Guide 12-9

Figure 12-5 Register Dialog

Tip: When you register a producer, the consumer sends a getServiceDescription request
to the producer. The producer’s response includes the <registration> element. This
element includes a list of the types of registration properties the producer requires. The
consumer then populates the registration dialog with the appropriate fields. The user fills
out these fields and submits them with the registration request. For information on
getServiceDescription and other WSRP operations, see Chapter 3, “Federated Portal
Architecture.”

Modifying Registration Properties
Using the WebLogic Portal Administration Console, you can modify the registration properties
for a producer that has already been registered with a consumer. When the consumer re-registers
the producer, some portlets that were previously in use might not be available or some additional
portlets might be available to the consumer. For detailed information on modifying the
registration properties for a producer using the Administration Console, see “Modifying Producer
Registration Properties” on page 18-5.

Consumer Ent i t l ement

12-10 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 13-1

C H A P T E R 13

Transferring Custom Data

WebLogic Portal supports a relatively simple technique for passing custom data between
consumers and producers. A set of interfaces is provided that let you attach arbitrary data to
request and response objects. This chapter explains how to use these interfaces to achieve custom
data transfer and includes detailed examples.

This chapter includes the following topics:

What is Custom Data Transfer?

Custom Data Transfer Interfaces

Performing Custom Data Transfer

Transferring XML Data

Deploying Your Own Interface Implementations

What is Custom Data Transfer?
Custom data transfer allows portlet developers to exchange arbitrary data between producers and
consumers. The primary use cases for custom data transfer are:

To send and receive data that WebLogic Portal does not usually send or receive.

To send and receive data that the WSRP protocol does not allow.

Note: It is recommend that you use this technique only after trying other techniques for data
transfer. The preferred technique for transferring data between producers and consumers

Transfe r r ing Custom Data

13-2 BEA WebLogic Portal Federated Portals Guide

is to use custom events. For more information, see “Data Transfer with Custom Events”
on page 7-23.

Some example use cases for custom data transfer include:

You are a portal developer building a portal with a set of location-sensitive portlets
deployed on one or more producers. You would like to supply a zip code to each of these
portlets in a request so that each portlet can use this zip code to generate location-aware
markup.

You want to send arbitrary data such as theme or style information or user profile data to
portlets.

Custom data transfer allows you to easily resolve these situations and many others like them. The
technique for using custom data transfer is straightforward, and involves these primary tasks:

1. Create one or more “holder” classes that implement the interfaces listed in the following
section, “Custom Data Transfer Interfaces.” A serializable default implementation of the
interfaces, called SimpleStateHolder is provided with WebLogic Portal.

2. Place a serializable holder object in a request or response object, as appropriate. For example,
in a consumer application, you can set a holder object as a request parameter and retrieve it
in the producer application. See “Custom Data Transfer with a Complex Producer” on
page 13-4 for a detailed example of this technique.

Both simple producers and complex producers can take advantage of this feature.

Custom Data Transfer Interfaces
The following interfaces enable the transfer of data between producers and consumers. To
perform custom data transfer, implementations of these interfaces must be deployed on both the
consumer and producer.

“Performing Custom Data Transfer” on page 13-3 includes a detailed example demonstrating
how to use these interfaces. For more information on these interfaces, refer to their Javadoc
descriptions.

Note: These interfaces are not supported for events and render depencencies requests.

com.bea.wsrp.ext.holders.InteractionRequestState
Allows the consumer to send some arbitrary data to the producer when an interaction
(such as a form submission) occurs.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-3

com.bea.wsrp.ext.holders.InteractionResponseState
Allows the producer to return some arbitrary data to the consumer after an interaction
occurs.

com.bea.wsrp.ext.holders.MarkupRequestState
Allows the consumer to send some arbitrary data to the producer when a portlet is being
refreshed.

com.bea.wsrp.ext.holders.MarkupResponseState
Allows the producer to return some arbitrary data to the producer after portlet is rendered.

com.bea.wsrp.ext.holders.XmlPayload
Transfers XML data between consumers and producers. You can place an instance of this
class directly in request and response objects. For more information, see “Transferring
XML Data” on page 13-23.

Tip: If you do not want to create your own implementations of these interfaces, the
serializable com.bea.wsrp.ext.holders.SimpleStateHolder class provides a default
implementation. The examples in this chapter use SimpleStateHolder to pass custom
data.

Performing Custom Data Transfer
This section presents examples that illustrate how to use custom data transfer between consumers
and producers. Both examples use the serializable com.bea.wsrp.ext.holders.SimpleStateHolder
class, which implements the five interfaces listed previously in “Custom Data Transfer
Interfaces” on page 13-2. This class provides a default implementation of the above interfaces
that lets you exchange simple name-value pairs of data.

The examples include:

Custom Data Transfer with a Complex Producer

This example demonstrates custom data transfer between a consumer and a complex
producer.

Custom Data Transfer in a Simple Producer

This example demonstrates custom data transfer between a consumer and a simple
producer.

Transfe r r ing Custom Data

13-4 BEA WebLogic Portal Federated Portals Guide

Custom Data Transfer with a Complex Producer
This example explains how to transfer data from a consumer to a complex producer. For
information on complex producers, see “WebLogic Portal Producers” on page 3-6.

Example Overview
In this example, a backing file in the consumer application packages arbitrary data in a
com.bea.wsrp.ext.holders.SimpleStateHolder object. This object is attached to a request using the
setAttribute() method. The producer retrieves the data from the request and places it in a JSP
page. The modified page is then displayed by the consumer application.

The example consists of these steps:

1. Setting Up the Example

2. Creating the Producer JSP and Portlet

3. Federating zipTest.portlet to the Consumer

4. Creating a Backing File

5. Testing the Consumer Application

Setting Up the Example
If you want to try the example discussed in this chapter, you need to run Workshop for WebLogic
and perform the prerequisite tasks listed in Table 13-1. For detailed information on performing
these basic setup tasks, see the WebLogic Portal tutorial Setting Up Your Portal Development
Environment.

Table 13-1 Prerequisite Tasks

Task Recommended Name

Create a Portal domain. wsrpPortalDomain

Create a Portal EAR Project. wsrpPortalEAR

Create a BEA WebLogic v10.0 Server. N/A

Associate the EAR project with the server. N/A

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-5

Figure 13-1 shows the Package Explorer after the prerequisite tasks have been completed.

Figure 13-1 Package Explorer After Prerequisite Tasks are Completed

We also assume that you know how to view and edit portlet properties in the Properties view. For
information, see the WebLogic Portal Portlet Development Guide.

Creating the Producer JSP and Portlet
With the example environment in place, create a JSP file on the producer and a portlet to surface
that file. Code placed in the JSP file retrieves a SimpleStateHolder object from the request,
retrieves its data payload, and displays the data.

1. Be sure you have set up the example environment as explained previously in “Setting Up the
Example” on page 13-4.

2. Right-click producerProject/WebContent in the Package Explorer and select New > JSP.
The New JavaServer Page dialog appears.

3. In the dialog, enter zipTest.jsp in the File name field, and click Finish.

4. Replace the entire contents of the JSP source file with the code in Listing 13-1.

Create a Portal Web Project and add it to the EAR. consumerProject

Create a second Portal Web Project and add it to the EAR. producerProject

Table 13-1 Prerequisite Tasks (Continued)

Task Recommended Name

Transfe r r ing Custom Data

13-6 BEA WebLogic Portal Federated Portals Guide

Listing 13-1 Code to Get State from the Request

<%@ page import ="com.bea.wsrp.ext.holders.SimpleStateHolder,

 com.bea.wsrp.ext.holders.MarkupRequestState"%>

<%

 SimpleStateHolder state = (SimpleStateHolder)

 request.getAttribute(MarkupRequestState.KEY);

 String zip = (String) state.getParameter("zipCode");

%>

<%=zip%>

Figure 13-2 shows the editor with the new source code.

Figure 13-2 New JSP Source for zipTest.jsp

5. Save the file.

Tip: Later in this example, you will add a backing file to the proxy portlet in the consumer
web application. This backing file creates the SimpleStateHolder object, adds some
data to it, and puts the object into the request that is sent from the consumer to the
producer. For more information on SimpleStateHolder, refer to its Javadoc
description.

6. In the Package Explorer view, open the producerProject/WebContent folder. Right-click
zipTest.jsp in the WebContent folder and select Generate Portlet...

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-7

The Portlet Details dialog box appears. Note that zipTest.jsp already appears in the
Content Path field, as shown in Figure 13-3.

Figure 13-3 Portlet Details with zipTest.jsp Included

7. In the State checkbox, select Minimizable and Maximizable, and click Create.

The portlet zipTest.portlet appears in the Package Explorer, as shown in Figure 13-4.

Figure 13-4 New JSP Portlet

Portlet

Transfe r r ing Custom Data

13-8 BEA WebLogic Portal Federated Portals Guide

Federating zipTest.portlet to the Consumer
Next, create a remote portlet in the consumer application to surface in zipTest.portlet from
the producer:

1. Be sure that WebLogic Server is running. If not, select the Servers tab. Make sure the BEA
WebLogic Server v10.0 is selected, and click the Start button, as shown in Figure 13-5.

Figure 13-5 Click the Start Button to Start the Server

2. In the Package Explorer, open the consumerProject folder.

3. Right-click the WebContent folder, and select New > Portlet.

Tip: The Portlet selection only appears on the New menu if you are using the Portal
perspective. Switch to the Portal perspective if Portlet does not appear on the menu.

The New Portlet dialog box appears, as shown in Figure 13-6.

Start Button

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-9

Figure 13-6 New Portlet Dialog

4. In the New Portlet dialog, select WebContent as the parent folder, enter zipPrime.portlet
in the File name field, and click Finish.

The Select Portlet Type dialog box appears as shown in Figure 13-7.

Parent folder

Transfe r r ing Custom Data

13-10 BEA WebLogic Portal Federated Portals Guide

Figure 13-7 Select Portlet Type Dialog

5. Select Remote Portlet and click Next. The Portlet Wizard – Producer dialog box appears.

6. In the Portlet Wizard – Producer dialog, select Find Producer and, in the field provided, enter
the following WSDL URL, as shown in Figure 13-8:

http://localhost:7001/producerProject/producer?wsdl

Tip: Of course, the host name localhost is only appropriate if the producer is running on
the same server as the consumer. We co-located the consumer and producer to
simplify the presentation of this example. Typically, producers and consumers do not
run in the same server.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-11

Figure 13-8 The WSDL URL

7. After entering the WSDL URL, click Retrieve.

Tip: WSDL stands for Web Services Description Language and is used to describe the
services offered by a producer. For more information, see “WebLogic Portal
Consumers” on page 3-10.

After a few moments, the Portlet Wizard – Producer dialog box refreshes, and registration
information appears in the Producer Details panel, as shown in Figure 13-9.

Tip: Registration is an optional feature described in the WSRP specification. A WebLogic
Portal complex producer implements this option and, therefore, requires consumers
to register before discovering and interacting with portlets offered by the producer.
See “Complex Producers” on page 3-7 for more information.

Transfe r r ing Custom Data

13-12 BEA WebLogic Portal Federated Portals Guide

Figure 13-9 Producer Retrieved

8. Click Register. The Register dialog appears.

9. In the Register dialog, enter myProducer in the Producer Handle field, as shown in
Figure 13-10, and click Register. The handle is stored on the consumer and is used to identify
the producer.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-13

Figure 13-10 The Register Dialog

10. In the Portlet Wizard – Producer dialog, click Next. The Select Portlet from List dialog box
appears.

11. From the portlet list, select zipTest, as shown in Figure 13-11.

Transfe r r ing Custom Data

13-14 BEA WebLogic Portal Federated Portals Guide

Figure 13-11 Select Portlet from List Dialog Box

12. Click Next. The Proxy Portlet Details dialog box appears, as shown in Figure 13-12.

Selected
portlet

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-15

Figure 13-12 Proxy Portlet Details Dialog Box

13. Click Create.

The new portlet appears in the Editor, as shown in Figure 13-13.

Transfe r r ing Custom Data

13-16 BEA WebLogic Portal Federated Portals Guide

Figure 13-13 New Remote Portlet zipPrime.portlet in the Editor

Creating a Backing File
In this step, you will create a backing file called CustomDataBacking.java in the consumer
application. Then, you will attach the backing file to the remote portlet you created previously,
zipPrime.portlet.

Tip: A backing file is a Java class that adds functionality to a portlet. For information on
backing files, see the Portlet Development Guide.

1. In the Package Explorer tree, open the consumerProject folder, right-click the src folder, and
create a new folder called backing.

The src/backing folder appears in the Package Explorer, as shown in Figure 13-14.

Tip: Alternatively, instead of a folder, you can create a Java package.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-17

Figure 13-14 backing Folder

2. Right-click the backing folder and select New > Class. The New Java Class dialog appears,
as shown in Figure 13-15.

Figure 13-15 New Java Class Dialog

Class name

Transfe r r ing Custom Data

13-18 BEA WebLogic Portal Federated Portals Guide

3. In the Name field, enter CustomDataBacking and click Finish. The new Java source file
appears in the editor.

4. Replace the entire contents of the Java source file with the code in Listing 13-2.

Listing 13-2 Adding an Instance of SimpleStateHolder

package backing;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.wsrp.ext.holders.MarkupRequestState;
import com.bea.wsrp.ext.holders.SimpleStateHolder;

public class CustomDataBacking extends AbstractJspBacking
{

private static final long serialVersionUID = 1L;

 public boolean preRender(HttpServletRequest request,
 HttpServletResponse response)
 {
 SimpleStateHolder state = new SimpleStateHolder();
 state.addParameter("zipCode", "80501");
 request.setAttribute(MarkupRequestState.KEY, state);

return true;
 }
}

5. Save the file. The completed backing file is shown in Figure 13-16.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-19

Figure 13-16 CustomDataBacking.java in the Editor

Tip: The backing file implements the AbstractJspBacking.preRender() method. This
method is called before the request is sent to the producer. The implementation
attaches a SimpleStateHolder object containing custom data to the request. This
object will be retrieved on the producer where the data is extracted and displayed in
the remote portlet.

6. Double-click zipPrime.portlet to display it in the editor.

7. Add the backing file to zipPrime.portlet. To do this, enter the full classname of the
backing file in the Backing File field in the Properties view:

backing.CustomDataBacking

Figure 13-17 shows the class name after it has been added.

Transfe r r ing Custom Data

13-20 BEA WebLogic Portal Federated Portals Guide

Figure 13-17 Adding a Backing File

Testing the Consumer Application
With the consumer application components in place, you can now test the configuration. If the
test is successful, the zip code 80501, provided by the backing file, will appear in the remote
portlet when it is rendered.

To test the application:

1. In the Package Explorer, right-click consumerProject/WebContent and select New >
Portal. The New Portal dialog appears.

2. In the File name field, enter zipTest.portal and click Finish.

The portal is created and appears in the editor, as shown in Figure 13-18.

Per fo rming Custom Data T ransfe r

BEA WebLogic Portal Federated Portals Guide 13-21

Figure 13-18 zipTest.portal in the Editor

3. Drag the remote portlet zipPrime.portlet from Package Explorer view into the portal. (You
can place it in either the left or right column; in Figure 13-19, it is in the right-hand column).

Transfe r r ing Custom Data

13-22 BEA WebLogic Portal Federated Portals Guide

Figure 13-19 zipTest.portlet Added to zipTest.portal

4. Save the portal.

5. Run the portal. To do this, right-click zipTest.portal in the Package Explorer and select Run
As > Run on Server.

6. In the Run On Server – Define a New Server dialog, click Finish.

The portal appears in the Workshop for WebLogic browser. The custom data sent from the
consumer displays in the portlet, as shown in Figure 13-20.

Transfe r r ing XML Data

BEA WebLogic Portal Federated Portals Guide 13-23

Figure 13-20 zipTest.portal Successfully Rendered

Custom Data Transfer in a Simple Producer
The previous section, “Custom Data Transfer with a Complex Producer” on page 13-4, explains
how to transfer data between a WebLogic Portal consumer application and a complex producer
running in a WebLogic Portal domain. You can also transfer data between a WebLogic Portal
consumer and a simple producer running in a WebLogic Server domain.

Tip: For a detailed discussion of complex and simple producers, see “WebLogic Portal
Producers” on page 3-6.

To use custom data transfer with a simple producer:

1. Properly configure a simple producer running in a WebLogic Server domain. The procedure
for doing this is explained in Chapter 8, “Configuring a WebLogic Server Producer.”

2. Use the Custom Data Transfer interfaces listed in “Custom Data Transfer Interfaces” on
page 13-2 to set and retrieve data in request and response objects. Follow the same basic
procedure described for complex producers in “Custom Data Transfer with a Complex
Producer” on page 13-4.

Transferring XML Data
Use an implementation of the com.bea.wsrp.ext.holders.XmlPayload interface to transfer XML
data (objects of type Element) between consumers and producers. You can place an instance of
this class directly in request and response objects. For more information on the XmlPayload
interface, refer to its Javadoc description.

Listing 13-3 shows sample code that uses XmlPayload.

Custom data

Transfe r r ing Custom Data

13-24 BEA WebLogic Portal Federated Portals Guide

Listing 13-3 XmlPayload Example

//-- Create an Element object to send.

Element xml = ...

XmlPayload payload = new XmlPayload(xml);

httpRequest.setAttribute(MarkupRequestState.KEY, payload);

Deploying Your Own Interface Implementations
This section discusses guidelines for implementing the custom data transfer interfaces listed in
“Custom Data Transfer Interfaces” on page 13-2.

General Guidelines

Implementation Rules

General Guidelines
The implementation must be serializable.

The same class version of the implementation must be deployed on both the producer and
consumer. If the versions are different, the implementations must make sure to have the
same serialVersionUID for all versions.

Sending large amounts of data may have performance implications.

Tip: The com.bea.wsrp.ext.holders.SimpleStateHolder class provides a default
implementation of the four data transfer interfaces. This class lets you exchange simple
name-value pairs of data. For detailed information on the methods of this class, refer to
its Javadoc description.

Implementation Rules
Whether a consumer or producer can send custom data depends on the type of request. These
rules apply:

Consumers can always send InteractionRequestState. There are no exceptions.

Deploy ing Your Own In te r face Implementat ions

BEA WebLogic Portal Federated Portals Guide 13-25

Producers can always return InteractionResponseState. There are no exceptions.

Consumers can send MarkupRequestState only when there is a need to refresh the
portlet. For example, if caching is enabled on the remote portlet, consumer may not always
send a request to the producer to generate markup.

Consumers cannot return MarkupResponseState if any the following options are enabled:

– Returning markup as an attachment

– Local proxy

In both the cases, the producer invokes the portlet (typically JSPs) after creating the SOAP
response, which is too late to update the SOAP response.

Transfe r r ing Custom Data

13-26 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 14-1

C H A P T E R 14

Other Topics and Best Practices

This chapter focuses on best practices for developing portlets in a producer. By following the
practices described in this chapter, you will help to ensure that remote portlets created in
consumers function properly. We recommend that you review Chapter 3, “Federated Portal
Architecture” before reading this chapter.

This chapter the following sections:

Support for WSRP Versions

Decouple Rendering from Interaction

Avoid Interportlet Dependencies

Avoid Portal Layout Dependencies

Avoid Coupling by URL

Avoid Accessing Request Parameters in Rendering Code

Avoid Moving Producers

WebLogic Server Producers

Security for Remote Portlets

Error Handling

Portlet Programming Guidelines and Best Practices

Designing for Performance

Other Top ics and Best P rac t i ces

14-2 BEA WebLogic Portal Federated Portals Guide

Using Local Proxy Mode

Monitoring and Logging

Configuring Session Cookies

User Sessions on CWEB Applications

Using Multiple Views with Remote Portlets

Handling User Identity Changes

Editing the WSRP WSDL Template File

Configuring a Custom JAX-RPC Handler

Support for WSRP Versions
WebLogic Portal supports the core features of WSRP 2.0, primarily to enable and assist with
WSRP propagation. For details on WSRP propagation, see the section “WSRP Propagation” in
the Production Operations Guide.

By default, WSRP 2.0 support is disabled for consumers. This section explains how to enable
WSRP 2.0 support for WebLogic Portal consumers and discusses the supported WSRP 2.0
features.

Enabling WSRP 2.0 Support for Consumers
By default, WebLogic Portal consumers only support WSRP 1.0 features that are implemented
by producers. If the producer offers any WSRP 2.0 features, WebLogic Portal consumers ignore
them by default. To change this default, so that WebLogic Portal consumers can process WSRP
2.0 messages from producers, you can pass the following system property to the WebLogic
Server Java startup command for the server on which the consumer is running:

-Dcom.bea.wsrp.consumer.preferred.version=2.0

For detailed information on modifying the Java startup command, see the WebLogic Server
instructions “Specifying Java Options for a WebLogic Server Instance”.

Note: Enabling WSRP 2.0 support for consumers, as described in this section, is not generally
recommended. If you enable WSRP 2.0 for consumers, features such as inter-portlet
communication and SOAP with attachments are not available. The following section, “If
You Enable WSRP 2.0 Features for Consumers,” describes supported features in more
detail.

Decoup le Render ing f rom Inte ract ion

BEA WebLogic Portal Federated Portals Guide 14-3

If You Enable WSRP 2.0 Features for Consumers
This section describes the WSRP 2.0 features that are and are not supported by WebLogic Portal
consumers if you choose to enable WSRP 2.0 support, as described in the previous section
“Enabling WSRP 2.0 Support for Consumers.”

Only basic WSRP 2.0 features are supported.

Optional WSRP 2.0 features, such as events, shared render parameters, copy portlets, and
resource serving are not currently supported.

As noted previously, if you enable WSRP 2.0 for consumers, features such as inter-portlet
communication and SOAP with attachments are not available.

Leasing is not supported.

Import and export of portlets is supported whether or not WSRP 2.0 is enabled for
consumers. Import and export support the propagation of federated (WSRP) portals. For
details on WSRP propagation, see the section “WSRP Propagation” in the Production
Operations Guide.

Decouple Rendering from Interaction
As explained in “Life Cycle of a Remote Portlet” on page 3-13, the rendering and interaction
phases of a remote portlet’s life cycle are decoupled. As a result, you cannot expect a portlet to
receive the same HTTP response or request for the render phase as it receives for an interaction.

A portlet that is being rendered must not expect to receive form data in the request object. This is
because the request may have been submitted some time ago and is being rendered now, and you
may not have the same data.

If you want to maintain data between requests, you need to store that data locally, typically in the
session. For instance, if you are processing and order ID, you can store that ID locally.

If you are using page flows, data is automatically passed forward. However, if you are using
backing files with a remote portlet, you need to make sure that data is stored in the session,
because you won’t get back the same request object.

To avoid problems, keep the following points in mind:

Portlets will not get the same servlet request for the interaction and render phases, even
after the first rendering after an interaction.

Other Top ics and Best P rac t i ces

14-4 BEA WebLogic Portal Federated Portals Guide

Decouple rendering from interaction processing. A portlet should be able to render itself as
many times as necessary without depending on the user’s interaction directly. Store
interaction changes for future rendering. Note that WebLogic Portal stores state
automatically for page flows.

Use JSP tags with render parameters.

Use HTTP session for backing files.

Avoid Interportlet Dependencies
Rather than create explicit dependencies between portlets, use events to communicate between
portlets. For example, suppose that on a portal page, there is a portlet for collecting orders and a
portlet for displaying the status of all orders. When an order is taken, data is stored in the database,
and the data is then displayed in the order status portlet, as shown in Figure 14-1.

Figure 14-1 Interportlet Dependencies

In this scenario, a strong dependency is created between the collect order and the order status
portlets. The Collect Order portlet needs to somehow communicate some information (the order
ID) to the Order Status portlet. Storing the ID in the session or other common state between the
portlets creates a strong dependency between the Collect Order and Order Status portlets.
Depending on the implementation of the portlets, if one of them is changed or replaced, the
changes will necessarily affect the other portlet.

To avoid this dependency, use events to communicate between portlets. In this example, if an
event is used to communicate order information to the order status portlet, the order status portlet
does not have to care about where the order came from. The order status portlet just handles an
event, retrieving, for example, an order ID from the event’s payload.

For more information on how event handling occurs in WebLogic federated portals, see
“Interportlet Communication with Events” on page 3-22.

Avo id Po r ta l Layout Dependenc ies

BEA WebLogic Portal Federated Portals Guide 14-5

Use events to communicate between remote portlets.

Use event names for dependencies.

Avoid using sourceDefinitionLabels on events.

Avoid Portal Layout Dependencies
Some portals are built with inherent portal layout dependencies. For example, a login portlet
might be designed to function differently if it is on a human resources page versus a finance page.
In other words, when an interaction takes place, the portlet tries to find out what page it is on
before taking action. This practice closely couples the portlet to the Portal Framework elements,
such as pages, books, or desktops on the consumer.

This scenario does not work in a federated portal, because the producer does not know what page
layouts exist on the consumer. Avoid this scenario when possible. If it is required, deploy those
portlets locally on the consumer, or use shared components where possible and create alternative
layouts that are offered through separate portlets.

Avoid Coupling by URL
If you embed URLs in your portlets, such as in links, you may find that your portlets work as
expected when they are running locally. However, when you move those portals to a federated
environment, the links no longer work. For example, in the following code fragment, a developer
is invoking the action of a page flow portlet on the same portal using string manipulation. In a
federated portal, this sort of construction will not work. Typically, this sort of programming arises
because of reverse engineering, where a developer looks at and copies how links are created.

String url = ”http://mydomain.com/portal/portal.portal?”;

url = url + ”myportlet_actionOverride=login”;

url = url + ”...”;

Likewise, the following resource URL will not work in a federated portal because it includes an
explicitly specified link to a document. Because the document doesn’t exist on the consumer, the
consumer doesn’t know what to do with it:

Download

Common URL problems found in federated portals include the following. These problems stem
from the fact that remote portlets do not follow the same URL structure as portlets in a local
environment.

Other Top ics and Best P rac t i ces

14-6 BEA WebLogic Portal Federated Portals Guide

Creating links to page flow actions, images, or files through string manipulation.

Directly adding parameters to URL strings.

Getting a page flow action name from the outer request.

It is important that you let the WebLogic Portal Framework create URLs for you using the proper
set of JSP tag libraries and utility classes. Use the following tags and classes:

netui tags

page flow tags

struts tags

render tags

GenericURL class

All of these tags go through the WebLogic Portal URL rewriters and will work properly in a
federated environment.

It is important to realize that there are inherent differences between remote portlets and local
portlets. Developers must not expect that all correctly functioning local portlets will function
properly as remote portlets, although in many cases they do.

Avoid Accessing Request Parameters in Rendering Code
When you deploy a local portlet, the portlet can access the request parameters from the portal’s
request and the request attributes set by other portlets on the same page. If you implement a
portlet to depend on such request parameters and attributes, the portlet will not function correctly
in a WSRP environment. In a WSRP environment, remote portlets are running on remote
systems; the HTTP request received by a remote portlet on a producer is not the same as the one
that is received by the consumer portal.

Avoid Moving Producers
When you add producers and create remote portlets, the producer registry
(WEB-INF/wsrp-producer-registry.xml) and the portal framework database tables contain
specific information about the producer, such as its WSDL address and the addresses of ports
described in the WSDL. If you propagate or move the producer from one environment to another,
this data becomes invalid. In this case, consumers whose proxy portlets reference the producer’s
portlets will no longer be able to find them.

WebLog ic Se rve r P roducers

BEA WebLogic Portal Federated Portals Guide 14-7

Note: Currently, WebLogic Portal only supports a shared registration model, where staging and
production environments share the same producer registration handle. For more
information on shared registration and propagating WSRP producers, see the Production
Operations Guide.

You can update the database entries for a producer programmatically. The following class
provides methods to get and update producer information:

com.bea.wsrp.consumer.management.producer.ProducerManager

Refer to the Javadoc for information on this class.

WebLogic Server Producers
In some cases, you may want to expose portlets with WSRP from a producer environment that
does not include any WebLogic Portal components. For example, you may be running a Struts
Web application in a Basic WebLogic Server Domain, or a Java Page Flow application in a Basic
WebLogic Workshop Domain. In either case, WebLogic Portal is not part of the server
configuration. For detailed information on using a non-portal server domain to host remote
portlets, see Chapter 8, “Configuring a WebLogic Server Producer.”

If you are using a Portal Web application as your producer, all the portal artifacts are available in
the web application; however, for any WSRP producer that is not a Portal Web application, you
cannot use portal features such as property sets. If you need to access portal features in your
producer, use a Portal Web application.

Security for Remote Portlets
To secure messages, implement SSL on any port through which the producer will be offered. For
detailed information on configuring single sign-on security for federated portals, see:

Chapter 15, “Establishing WSRP Security with SAML” – Discusses how to configure
SAML security between WebLogic Portal domains. This chapter also covers cross version
compatibility: security between WebLogic Portal 9.2 and 8.1x domains.

Chapter 16, “Configuring User Name Token Security” – User Name Token, or UNT, is an
alternative to SAML and provides the same basic single sign-on capability as SAML
provides.

Error Handling
This section gives an overview of error handling techniques for federated portals.

Other Top ics and Best P rac t i ces

14-8 BEA WebLogic Portal Federated Portals Guide

On the Producer
To prevent stack traces from appearing, handle errors on the producer side and provide a suitable
business message.

On the Consumer
In Workshop for WebLogic, with a remote portlet open:

1. Click the portlet in the editor to display the Properties view.

2. Enter a path for the error page (JSP or HTML page).

Interceptors
You can use interceptors to handle errors returned from a producer. For instance, if a specific
producer is not registered, you can trap the registration error and handle it as you wish. For
detailed information on using interceptors, see Chapter 10, “The Interceptor Framework.”

Portlet Programming Guidelines and Best Practices
This section discusses guidelines and best practices for developing remote portlets.

Requests and Sessions

If two or more remote portlets share session data, host them on the same producer. You
cannot assume that session information will be shared by portlets hosted on different
systems.

Look and Feel

– Let portlets use standard style attributes and specify those attributes on the portal skins.
For information on look and feel, see the Portal Development Guide.

Backing Files

– You can use backing files on the consumer side (remote-portlet) to take some action
based on session / request objects or property sets. For information on backing files, see
the Portlet Development Guide.

Caching WSRP Portlets

– Producer – Use <wl:cache> or p13nCache wherever possible.

Des ign ing fo r Pe r fo rmance

BEA WebLogic Portal Federated Portals Guide 14-9

– Consumer (remote-portlet) – Use the RenderCacheable attribute if you want to cache
the remote portlet’s rendered HTML. However, this is a session scoped cache and is not
configurable.

For more information on caching, see the “Portlet Caching” section of the Portlet
Development Guide.

Designing for Performance
To ensure optimal performance of your producers and consumers, we recommend the following
performance tuning guidelines on the producer and the consumer.

Performance Guidelines for Producers
This section lists several ways to improve the performance of producer applications.

Reorder Authentication Providers
One way to improve performance on the producer is to make sure the SAML Authentication
Provider is deployed in front of other authentication providers. To reorder the providers:

1. Log in to the WebLogic Server Administration Console.

2. Select Security Realms in the Domain Structure tree.

3. In the Realms table, select the active security realm used by the producer application.

4. In the Settings page, select the Providers tab.

5. In the Change center, click Lock & Edit.

6. Below the Authentication Providers table, click Reorder.

7. In the list of providers, use the arrow buttons to move SAMLAuthenticator to the top of the
list, and click OK.

8. In the Change center, click Activate Changes.

Enable Attachment Support
Enable attachment support by adding <markup transport="attachment"/> to
WEB-INF/wsrp-producer-config.xml, as shown in Listing 14-1.

Other Top ics and Best P rac t i ces

14-10 BEA WebLogic Portal Federated Portals Guide

Listing 14-1 Enabling Attachment Support

<?xml version="1.0" encoding="UTF-8"?>

wsrp-producer-config

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-conf

ig/8.0

wsrp-producer-cnfig.xsd">

 <service-config>

 <registration required="false" secure="true"/>

 <service-description secure="true"/>

 <markup secure="true" rewrite-urls="true" transport="attachment"/>

 <portlet-management required="false" secure="true"/>

 </service-config>

Other Techniques
Let the producer create correct URLs by using consumer-supplied URL templates. This is
the default practice.

Use caching. For more information on caching, see the section “Portlet Caching,” in the
Portlet Development Guide.

Enable multi-threaded (forked) rendering. For more information, see the section “Parallel
Portlet Rendering,” in the Portlet Development Guide.

Performance Guidelines for Consumers
Accept the default behavior to enable caching for remote portlets.

Enable forked rendering for remote portlets.

Set connection timeout. See “Setting a Timeout Value on a Remote Portlet” on page 5-13
for detailed information on setting timeouts.

Disable logging by undeploying MessageMonitor servlet from WEB-INF/web.xml.

Us ing Loca l P roxy Mode

BEA WebLogic Portal Federated Portals Guide 14-11

Using Local Proxy Mode
Local proxy support allows co-located producer and consumer web applications to short-circuit
network I/O and “SOAP over HTTP” overhead. When you enable this feature, the consumer tries
to determine if the producer is deployed on the same server and, if it discovers that the producer
is so deployed, it uses a local proxy to send requests to the producer. If the producer is not
deployed on the same server, the consumer uses the default remote proxy. Remote producers can
still be invoked as usual even when the local proxy support is enabled.

This section describes how to implement local proxy support. It includes information on the
following subjects:

Why Use Local Proxy Mode?

Deployment Configuration

How Local Proxy Mode Works

When to Use and Not Use

Why Use Local Proxy Mode?
Local proxy mode provides a number of advantages over the default remote proxy when you are
working with co-located consumers and producers. Among the most significant advantages of
local proxy mode are:

Avoids local network I/O.

Avoids serialization and deserialization of SOAP.

Invokes remote portlets using the same execute thread.

Writes portlet markup directly to the response without intermediate buffers.

Enables large file uploads without causing OutOfMemoryErrors.

Additionally, by enabling local proxies, customers can take advantage of the decoupling benefits
of WSRP without incurring its performance overhead.

Deployment Configuration
To take advantage of local proxy support:

Other Top ics and Best P rac t i ces

14-12 BEA WebLogic Portal Federated Portals Guide

1. Deploy the producer and consumer web applications on the same server. These applications
could be in the same enterprise application or across different enterprise applications.

2. Enable local proxy support by setting <enable-local-proxy> to true in
WEB-INF/wsrp-producer-registry.xml in the consumer web application, as shown in
Listing 14-2:

Listing 14-2 Setting <enable-local-proxy> to ”true”

<wsrp-producer-registry

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-

 registry/8.0 wsrp-producer-registry.xsd">

 <!-- Upload limit (in bytes) -->

 <upload-read-limit>1048576</upload-read-limit>

 <!-- Timeout (in milli seconds) -->

 <connection-timeout-secs>120000</connection-timeout-secs>

 <!-- Enable local proxy -->

 <enable-local-proxy>true</enable-local-proxy>

...

</wsrp-producer-registry>

You can also enable local proxy support by setting a system property
com.bea.wsrp.proxy.LocalProxy.enabled = true. If this system property is set to true, it
will override the <enable-local-proxy> setting in
WEB-INF/wsrp-producer-registry.xml.

Local proxy support is disabled by default in web application templates.

How Local Proxy Mode Works
Figure 14-2 compares the layers of operations involved when local proxy support is enabled (top
flow diagram) and when it is not (bottom flow diagram). In the local proxy case, there is no
network or SOAP related overhead and the servlet API is used for communication.

Us ing Loca l P roxy Mode

BEA WebLogic Portal Federated Portals Guide 14-13

Figure 14-2 Local Versus Remote Proxy Flow Diagrams

Note: It is a recommended practice to enable local proxy mode when you deploy JSR-168
portlets using the JSR-168 Import Utility. As far as performance and complexity are
concerned, there is no difference between the way JSR-168 portlets and WSRP local
proxy interoperate in WebLogic Portal versus other vendors. For more information on the
import utility, see the section “Deploying JSR-168 Portlets in a WAR File” in the
Production Operations Guide.

Table 14-1 summarizes the evolution of the WebLogic Portal local proxy architecture.

When to Use and Not Use
As powerful a tool as local proxy support is, you should only use it when it will benefit your
application. The most common reasons for using local proxy support are:

Table 14-1 Evolution of Local Proxy Architecture for WebLogic Portal

Version Local Proxy Architecture

WLP 8.1x Exchange XmlBeans between consumer and producer.

WLP 9.2 Convert POJOs into XmlBeans while sending data from the consumer
to the producer.

WLP 10.0 Exchange POJOs between the consumer and the producer.

Other Top ics and Best P rac t i ces

14-14 BEA WebLogic Portal Federated Portals Guide

When portlets are deployed in self-contained web applications on the same server. The
local proxy support provides isolated portlet deployment. In this mode, each portlet web
application can be deployed as a WSRP producer. Portlets can therefore be loaded by
separate class loaders and have their own servlet context and session. Portlet web
applications can be deployed/undeployed without affecting the portal web application.

When you don’t need advanced monitoring software between the producer and consumer.

On the other hand, you should not use local proxy support when interoperating with non-BEA
producers and consumers.

Monitoring and Logging
You can monitor activity between producers and consumers by using the message monitor servlet
installed with Workshop for WebLogic. You can also create custom logs to display specific
information about WSRP sessions.

This section contains information on these subjects:

Using the Monitor Servlet

Creating Custom Logs

Using the Monitor Servlet
To monitor the response and request headers, as well as the action SOAP messages that are passed
between producers and consumers:

1. Ensure that the producer and consumer applications whose communication you want to
monitor are running.

2. Open a new browser and enter the following URL:
host:port/webProject_name/monitor

Where:

host:port is the host and port you want to monitor. This can be the host and port of either
the producer or consumer server.

webProject_name is the web project you want to monitor.

For example:

http://localhost:7001/wsrpMonitorTest/monitor

Moni to r ing and Logg ing

BEA WebLogic Portal Federated Portals Guide 14-15

The monitor appears in the browser. Click Enable to start monitoring. Click Refresh to see the
latest transactions. Click Clear to remove all messages from the browser window.

Figure 14-3 Message Monitor Functions

Tip: The monitor does not display new transactions until you click Refresh.

Each time the remote portlet communicates with the producer, a request and response message
headers appear on the monitor screen, as shown in Figure 14-4.

Figure 14-4 Monitor Appearing in a Browser

By clicking Show, you can display the content of the request or the response, as shown in
Figure 14-5. Click Hide to close the message content.

Other Top ics and Best P rac t i ces

14-16 BEA WebLogic Portal Federated Portals Guide

Figure 14-5 Message Content

Creating Custom Logs
To create custom logs, we recommend that you use the Interceptor Framework described in
Chapter 10, “The Interceptor Framework.”

You can also create custom logs that display particular information about a WSRP session by
using Logger and Handler objects instantiated by WebLogic Server. You can use these objects to
create your own message handlers and subscribe them to loggers. For example, if you want the
remote portlet to listen for the messages that the producer generates, you can create a handler and
subscribe it to a logger in the producer. For detailed information on using Logger and Handler
objects, see the WebLogic Server topic, “Filtering WebLogic Server Log Messages.”

Configuring Session Cookies
This section describes three techniques for preventing the loss of the consumer session when
resource requests are made to a remote portlet. These techniques include:

Using Different Cookie Names

Using a System Property

Conf igur ing Sess i on Cook i es

BEA WebLogic Portal Federated Portals Guide 14-17

Blocking Cookies

Using Different Cookie Names
If you have a remote portlet that contains images, WebLogic Portal sends cookies and other
headers from the producer to the browser when an image resource is requested. Note that when
resource requests are made to a portlet in a producer, it is possible for the user’s browser to drop
or lose the consumer session. This situation occurs when the producer and consumer are
configured to include only the default path (“/”) in the session cookies, which causes the browser
to replace the Set-Cookie header set by the consumer with the Set-Cookie header set by the
producer.

To prevent this potential loss of the consumer session, open weblogic.xml, and configure your
web applications to include the domain name and web application path for session cookies. This
technique prevents the cookie names from overlapping. Please refer to session-descriptor in the
WebLogic Server document “weblogic.xml Deployment Descriptor Elements” for details on how
to set the domain name and path.

Using a System Property
In most cases, using different cookie names solves the problem of lost consumer sessions
following resource requests. In some cases, however, this solution does not work. One such use
case is when single sign-on is used with the producer and consumer running in the same domain.
In this case, identical cookie names are required. For cases where using different cookie names
does not work, set the following system property:
wlp.resource.proxy.servlet.block.response.headers=true

By enabling this system property, WebLogic Portal prevents a Set-Cookie header from being
sent back to the user’s browser. This property prevents the consumer’s cookie from being
overwritten by the producer’s cookie on the browser when a resource is returned. Using this
technique, you can keep the cookie names the same for both the producer and consumer
applications, which is required for single sign-on.

Blocking Cookies
To block cookies to the browser, set <resource-cookies> to block-all in
WEB-INF/wsrp-producer-registry.xml in the consumer web application, as shown in
Listing 14-3. When this element is set to block-all, the resource proxy servlet does not transfer
any cookies from the producer resource to the browser. Cookies are not blocked by default. The
default setting is block-none.

Other Top ics and Best P rac t i ces

14-18 BEA WebLogic Portal Federated Portals Guide

Listing 14-3 Blocking Cookies to the Browser

<wsrp-producer-registry

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-

 registry/8.0 wsrp-producer-registry.xsd">

 <!-- Upload limit (in bytes) -->

 <upload-read-limit>1048576</upload-read-limit>

 <!-- Timeout (in milli seconds) -->

 <connection-timeout-secs>120000</connection-timeout-secs>

 <!-- Enable local proxy -->

 <enable-local-proxy>true</enable-local-proxy>

<!-- Block cookies to the browser -->

 <resource-cookies>block-all</resource-cookies>

...

</wsrp-producer-registry>

User Sessions on CWEB Applications
User sessions on CWEB applications might be lost if session cookies between producers and
consumers overlap. To prevent this, open weblogic.xml, configure your web applications to
include the domain name and web application path for session cookies. Please refer to
session-descriptor in the WebLogic Server document “weblogic.xml Deployment Descriptor
Elements” for details on how to set the domain name and path.

Using Multiple Views with Remote Portlets
Whenever multiple views of a remote portlet are created, links in the portlets can be inconsistent
and not work properly. Typically, multiple views occur when a remote portlet uses the popup
mechanism in a page flow, or when a user floats a remote portlet using the portlet Float button.

Handl ing Use r Ident i t y Changes

BEA WebLogic Portal Federated Portals Guide 14-19

If a WebLogic Portal producer is set up to use consumer-supplied URL templates, the producer
caches those templates in a session created on the producer. However, when multiple views of a
portlet are created either through the page flow popup mechanism, or through a Float button, the
cached templates may not be valid for the current view.

You can correct the inconsistent links using one of these methods:

Disabling the caching of templates for your remote portlets. To do this, in the .portlet
file for each remote portlet that is affected, change the value of the
templatesStoredInSession element to false.

Configure the producer to require consumer rewriting. To do this, set the rewrite-urls
element to FALSE in the wsrp-producer-config.xml file.

Handling User Identity Changes
If the user’s identity changes while a request generated from the portal is in progress, remote
portlets can behave inconsistently. Typically, this occurs when the portal desktop includes a
portlet or other mechanism for logging in and logging out a user. If the user identity changes, any
user-specific data loaded by the portal can become invalid. In the case of remote portlets, such
data includes their persistent state. When user identity changes, the consumer portal can send
incorrect persistent state data to producers.

To avoid this problem, be sure to always use a browser redirect call immediately after a login or
logout. The browser redirect ensures that data loaded by the portal is valid for the request.

Editing the WSRP WSDL Template File
You can customize the producer-generated WSDL. For example, you might want the WSDL to
point to a proxy server other than the default one. To customize the default WSDL, you can edit
the WEB-INF/beehive-url-template-config.xml file. The easiest way to edit this file is to
copy it to your workspace in Workshop for WebLogic. To do this, locate the file in the Merged
Projects view in Workshop. Right-click the file and select Copy to Workspace. The template file
uses URL templates. See Javadoc for the GenericURL class for information on configuring URL
templates.

Configuring a Custom JAX-RPC Handler
This section explains how to configure custom JAX-RPC handlers on the WSRP consumer or
producer. Custom handlers can be used to intercept and process the outbound SOAP requests and

Other Top ics and Best P rac t i ces

14-20 BEA WebLogic Portal Federated Portals Guide

inbound SOAP responses. For example, handlers can inspect the incoming and outgoing
messages, change the messages before they make it to the end point, log information, and so on.
This section only explains how to configure and register a handler, not how to write a handler
class.

Tip: The handler class must implement the javax.xml.rpc.handler.Handler interface or extend
javax.xml.rpc.handler.GenericHandler.

This section includes these topics:

Configuring a Handler on the Consumer

Configuring a Handler on the Producer

Configuring a Handler on the Consumer
Edit the file WEB-INF/wsrp-consumer-handler-config.xml to add a custom handler the
consumer. The easiest way to edit this file is to copy it to your workspace in Workshop for
WebLogic. To do this, locate the file in the Merged Projects view in Workshop. Right-click the
file and select Copy to Workspace.

Listing 14-4 shows an example configuration file:

Listing 14-4 Event Handler Configuration

<wsrp-consumer-handler-config

xmlns="http://www.bea.com/ns/portal/90/wsrp-consumer-handler-config">

 <description>Description goes here</description>

 <soap-handler>

 <name>ProducerHandlesFilter</name>

 <description>Producer Handles Filter test handler</description>

 <!-- List of producer handles to deploy to, if none are specified ALL

producers will have this handler -->

 <producer-handle>NoOpProducer1</producer-handle>

<handler-class>com.bea.wsrp.qa.consumer.handlers.ProducerHandlesFilter

</handler-class>

Conf igur ing a Custom JAX-RPC Handle r

BEA WebLogic Portal Federated Portals Guide 14-21

 <!-- If true, the handler will run before the SAML token is added. -->

 <pre-security>true</pre-security>

 <!-- init parameters if needed -->

 <init-parameter>

 <name>param1</name>

 <value>value1</value>

 </init-parameter>

 <init-parameter>

 <name>param2</name>

 <value>value2</value>

 </init-parameter>

 <!-- Specify which ports to add the handler to. -->

 <port-name

xmlns:wsrp="urn:oasis:names:tc:wsrp:v1:wsdl">wsrp:WSRPServiceDescriptionService

</port-name>

 <port-name

xmlns:wsrp="urn:oasis:names:tc:wsrp:v1:wsdl">wsrp:WSRPBaseService</port-name>

 <port-name

xmlns:wsrp="urn:oasis:names:tc:wsrp:v1:wsdl">wsrp:WSRPRegistrationService

</port-name>

 <port-name

xmlns:wsrp="urn:oasis:names:tc:wsrp:v1:wsdl">wsrp:WSRPPortletManagementService

</port-name>

 <port-name

xmlns:wsrp="urn:oasis:names:tc:wsrp:v1:wsdl">wsrp:WLP_WSRP_Ext_Service

</port-name>

 <soap-role>someRoleHere</soap-role>

 </soap-handler>

Configuring a Handler on the Producer
On the producer edit the file WEB-INF/webservices.xml as defined by the JAX-RPC
specification.

Other Top ics and Best P rac t i ces

14-22 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide

Part III Staging

Part III, Staging, includes the following chapters:

Chapter 15, “Establishing WSRP Security with SAML”

Chapter 16, “Configuring User Name Token Security”

Chapter 17, “Adding Remote Resources to the Library”

In the staging phase of the portal life cycle, you use the WebLogic Portal Administration Console
to create portal desktops, manage users and groups, and perform other administration tasks. You
can add producers and consume portlets, books, and pages that are deployed in producers. In a
staging environment, you build and test all of your portal’s components before moving the portal
to production.

BEA WebLogic Portal Federated Portals Guide

If you are developing federated portals, you perform most of the security configuration in the
staging environment using the WebLogic Portal Administration Console and WebLogic Server
Administration Console.

For more information about the portal life cycle, see the WebLogic Portal Overview.

BEA WebLogic Portal Federated Portals Guide 15-1

C H A P T E R 15

Establishing WSRP Security with SAML

This chapter discusses how to configure the security realms of WebLogic Portal producers and
consumers running in different domains. In the first part of this chapter, we explain the
configuration that is required when both the producer and consumer are running in WebLogic
Portal version 9.2 or later domains. In the second part of this chapter, the case of mixed domains
is discussed, where the producer and consumer can be running in either WebLogic Portal 8.1x or
9.2 or later domains.

This chapter includes the following sections:

SAML Security Between WebLogic Portal Domains

SAML Security Between WebLogic Portal 8.1x and 9.2 or Later Versions

Using SAML Security with a Name Mapper

Allowing Virtual Users

SAML Security Between WebLogic Portal Domains
This section explains the procedure for configuring WSRP security using custom SAML tokens
when the producer and consumer are running in different WebLogic Portal version 9.2 or later
domains. Use the procedure described in this section to configure security on production systems
where custom SAML tokens are required.

Note: By default, with no previous configuration, WebLogic Portal 9.2 and later domains share
a common key. This allows you to quickly create, for demonstration or testing purposes,

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-2 BEA WebLogic Portal Federated Portals Guide

federated portals that require user authentication without undergoing the configuration
procedure described in this section.

WARNING: It is recommended that you do not use the default key described in the previous
note in a production environment. Using this default setting allows any consumer
to connect to your producer.

This section includes these topics:

Overview

Setting Up the SAML Configuration Example

Configuring the Consumer

Configuring the Producer

Testing the Configuration

Overview
In a typical scenario, consumer and producer applications are running in separate WebLogic
Portal 9.2 or later domains, as shown in Figure 15-1.

Figure 15-1 Basic Use Case

By default, WebLogic Portal specifies SAML as the default security token type for WSRP. If you
are running in a demonstration or development environment, no further configuration is required.
However, for a production environment it is recommended that you perform the SAML
configuration described in this section.

Consumer Producer

WSRP

Domain A Domain B

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-3

Setting Up the SAML Configuration Example
This section describes an example federated portal application where the producer and consumer
are running in different WebLogic Portal 9.2 or later domains. This example provides a basis for
discussing how to configure SAML security between these domains.

The portal shown in Figure 15-2 includes a local portlet on the left and a remote (proxy) portlet
on the right. The local portlet is a login portlet. When a user logs in successfully, the producer
portlet displays the user’s name. As you will see, however, unless SAML security is properly
configured, an error results when a user logs in to the portal.

Figure 15-2 Consumer Portal Before User Login

As you can see in Figure 15-2, the proxy portlet renders without error before a user logs in. It isn’t
until a user attempts to log in that a SAML message is sent, resulting in an error.

Checkpoint: This section described an example federated portal where the consumer and
producer are running in separate WebLogic Portal domains. In the following sections, we explain
how to configure the consumer and producer so that the SAML token sent from the consumer is
accepted by the producer.

Proxy Portlet

Local Portlet

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-4 BEA WebLogic Portal Federated Portals Guide

Configuring the Consumer
To correct the error shown in the previous section, you need to configure both the consumer and
the producer. This section discusses the consumer configuration.

Generate a Key

Tip: Anytime you generate a new key, you must copy the keystore to the entire cluster.

This section explains how to generate a key on the consumer using the keytool utility, a Java
utility distributed by Sun Microsystems that manages private keys and certificates. For detailed
information on keytool, refer to the Sun Microsystems website.

Note: By default, the consumer has a keystore that the server uses for its SSL key. The default
keystore is called DemoIdentity.jks. If you are using a different keystore, then modify
the one that you are currently using.

1. On the consumer, open a command window and CD to the WEBLOGIC_HOME/server/lib
directory.

2. Run the keytool command to generate a new key, as shown in Figure 15-3. For example, the
following command generates a key called testalias.
keytool -genkey -keypass testkeypass -keystore DemoIdentity.jks
-storepass DemoIdentityKeyStorePassPhrase -keyalg rsa -alias testalias

The options used in the example keytool command include the following:

Command parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-keypass Specifies the password to be used with the new key.

-keystore Specifies the name of the keystore. A keystore stores keys and certificates.
The default keystore, DemoIdentity.jks, is implemented as a file that
protects private keys with a password.

-storepass Specifies the password for the keystore.

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-5

Figure 15-3 Generating a Key

Export the Key
Export the key from the consumer server. In the same command window that you used to generate
the key, in the same directory, run the keytool command with the -export option, as shown in
Figure 15-4. For example, the following command generates a key file called testalias.der.

keytool -export -keypass testkeypass -keystore DemoIdentity.jks -storepass

DemoIdentityKeyStorePassPhrase -alias testalias -file testalias.der

-keyalg Specifies the encryption algorithm for the keystore. You must use rsa for
the key algorithm. If you use another algorithm, you will receive an error
when the consumer sends a SAML message.

-alias Specifies a name for the generated key.

Command parameter Description

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-6 BEA WebLogic Portal Federated Portals Guide

Figure 15-4 Exporting the Certificate

Modify the Consumer’s Security Realm
This section explains the procedure for configuring the consumer to use the key that you
generated.

Tip: A security realm is a container for the mechanisms–including users, groups, security
roles, security policies, and security providers–that are used to protect WebLogic
resources. You can have multiple security realms in a WebLogic Server domain, but only
one can be set as the default (active) realm. The default is called myrealm.

1. Log in to the WebLogic Server Administration Console on the consumer. To do this, open a
browser and enter the following URL:

http://serverIP:port/console

where serverIP is the IP address of the server on which the consumer application is
running, and port is the server’s port number. For example:
http://localhost:7001/console

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-7

Figure 15-5 WebLogic Server Administration Console Login Dialog

2. In the Administration Console, select Security Realms in the Domain Structure window, as
shown in Figure 15-6.

Figure 15-6 Selecting Security Realms

3. Select a security realm. The default security realm is called myrealm, as shown in
Figure 15-7.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-8 BEA WebLogic Portal Federated Portals Guide

Figure 15-7 Selecting a Security Realm

4. Select the Providers tab and then the Credential Mapping tab, as shown in Figure 15-8.

Figure 15-8 Selecting the Credential Mapping Tab

5. Select SAMLCredentialMapper, as shown in Figure 15-9.

Tip: The SAML Credential Mapper provider acts as a producer of SAML security
assertions, allowing WebLogic Server to act as a source site for using SAML for
single sign-on.

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-9

Figure 15-9 Selecting the SAMLCredentialMapper

6. Select Provider Specific, as shown in Figure 15-10.

Figure 15-10 Selecting the Provider Specific Tab

7. In the Change Center window, select Lock and Edit, as shown in Figure 15-11. This function
blocks other users from making Administration Console changes and enables you to edit the
SAMLCredentialMapper settings.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-10 BEA WebLogic Portal Federated Portals Guide

Figure 15-11 Locking the Console

8. Edit the Issuer URI, as shown in Figure 15-12. This unique URI tells the producer the origin
of the SAML message and allows the producer to match the consumer with the key. Typically,
the consumer’s URL is used in this string to guarantee that it is unique. For example:

http://www.bea.com/demoConsumer

Figure 15-12 Issuer URI

9. Enter the Signing Key Alias and Signing Key Pass Phrase, as shown in Figure 15-13. These
are the values you used when you generated the keystore. In this example they were:

Provider Field Value

Signing Key Alias testalias

Signing Key Pass Phrase testkeypass

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-11

Figure 15-13 Additional Provider Fields

Tip: It is recommended that you set the Default Time To Live to 120 seconds, the Cred
Cache Min Viable TTL to 10 seconds, and the Default Time To Live Offset to 0.
Then, select the Management tab and in the relying party configuration, set the
Assertion Time To Live Offset to the difference between the clock times of the
consumer and producer (consumer time minus producer time).

10. Click Save.

11. In the Change Center window, click Activate Changes, as shown in Figure 15-14.

Figure 15-14 Activating Changes

Checkpoint: At this point, the SAML credential mapper provider on the consumer is configured
to use the keystore you generated. If you were to try to log in to the login portlet, you would
receive an error, as shown in Figure 15-15. This is because the producer does not yet recognize
the new key sent from the consumer. In the next steps, you will configure the producer to accept
the key sent from the consumer.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-12 BEA WebLogic Portal Federated Portals Guide

Figure 15-15 Login Results in an Error in the Producer Portlet

Tip: If you scroll the portal to the right, you will see that the error message says “The SAML
token is not valid,” as shown in Figure 15-16:

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-13

Figure 15-16 Error Message

Configuring the Producer
This section explains how to configure the producer. To do this, you import the certificate into
the SAML asserter, and configure the asserting party properties.

Import the Certificate
1. Copy the key file (testailias.der) that you generated on the consumer to the producer

using any method you want, such as FTP or SMB. You can place the file in any directory on
the destination machine.

2. Open the WebLogic Server Administration Console on the producer machine and log in.

3. Select Security Realms.

4. Select a security realm, such as myrealm.

5. Select the Providers tab.

6. Select the Authentication tab.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-14 BEA WebLogic Portal Federated Portals Guide

7. Select SAMLIdentityAsserter, as shown in Figure 15-17. An identity asserter allows
WebLogic Server to establish trust by validating a user.

Figure 15-17 Selecting the Identity Asserter

8. Click the Management tab, and click Certificates, as shown in Figure 15-18.

Figure 15-18 Selecting the Certificates Tab

9. In the Certificates dialog, click New, as shown in Figure 15-19.

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-15

Figure 15-19 Creating a New Certificate

10. In the Alias field, enter a name for the certificate, as shown in Figure 15-20. It is a good
practice to use the same name you used when you created the certificate. In this example, the
name of the alias is testalias.

11. In the Certificate File Name field, enter the path to the certificate file, as shown in
Figure 15-20.

Figure 15-20 Entering Certificate Properties

12. Click Finish. If there are no problems, the following message is displayed:

The certificate has been successfully registered.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-16 BEA WebLogic Portal Federated Portals Guide

Configure the Asserting Party Properties
1. On the Management tab, click Asserting Parties.

Tip: The WsrpDefault asserting party is set up for the producer’s default WSRP key. If the
consumer and producer applications were running on the same server, the WSRP key
of the consumer would be accepted by the producer. It is a good practice to delete the
WsrpDefault party for an application that is in production.

2. In the Asserting Parties table, click New, as shown in Figure 15-21.

Figure 15-21 Creating a New Asserting Party

3. In the Profile pulldown menu, select WSS/Sender Vouches, as shown in Figure 15-22.

4. In the Description field, enter a name to identify the asserting party, as shown in Figure 15-22.
For example: demoConsumer.

SAML Secur i t y Be tween WebLog ic Po r ta l Domains

BEA WebLogic Portal Federated Portals Guide 15-17

Figure 15-22 Asserting Party Properties

5. Enable the new asserting party. To do this, click the Partner ID link for the asserting party.
In this example, the link is ap_0002 for the asserting party called demoConsumer, as shown
in Figure 15-23.

Figure 15-23 Selecting the New Asserting Party

6. Set the asserting party values, as listed in Table 15-1 and shown in Figure 15-24.

Table 15-1 Asserting Party Values

Parameter Value

Enabled Select the checkbox (true).

Target URL default

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-18 BEA WebLogic Portal Federated Portals Guide

Figure 15-24 Asserting Party Values

Issurer URI Use the same one that you configured on the consumer. In this example, it
is http://bea.com/demoConsumer

Signature Required Select the checkbox (true).

Assertion Signing
Certificate Alias

Use the same one that you configured on the consumer. In this example it
is testalias.

Table 15-1 Asserting Party Values (Continued)

Parameter Value

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-19

7. Click Save.

If there were no problems, the message, Settings updated successfully, appears.

Testing the Configuration
1. On the consumer, log into the portal application with a valid user name and password (for

example, weblogic/weblogic). You will see the user name appear in the proxy portlet. This
indicates that the SAML message was passed from the consumer to the producer, and that the
producer recognized and accepted it.

Figure 15-25 Successful Test

SAML Security Between WebLogic Portal 8.1x and 9.2 or
Later Versions

Producer and consumer applications developed with WebLogic Portal 9.2 or later versions are
compatible with producers and consumers developed with WebLogic Portal 8.1x. That is, a portal
developed with WebLogic Portal 9.2 or later versions can consume portlets deployed in a
WebLogic Portal 8.1x domain. Similarly, portlets exposed in a WebLogic Portal 9.2 or later
producer can be consumed by an 8.1x consumer. These two use cases are summarized in
Figure 15-26.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-20 BEA WebLogic Portal Federated Portals Guide

Figure 15-26 Compatibility Use Cases

This section discusses addresses both of these use cases. The following topics are discussed:

SAML Security Between 9.2 or Later Version Consumers and 8.1x Producers

SAML Security Between 8.1x Consumers and 9.2 or Later Version Producers

SAML Security Between 9.2 or Later Version Consumers and
8.1x Producers
This section explains how to achieve SAML-based security compatibility between a WebLogic
Portal 9.2 or later version consumer and an 8.1x producer, as summarized in Figure 15-27.

Figure 15-27 Compatibility Use Case

Tip: By default, with no configuration changes made to either side, WSRP between a 9.2 or
later version consumer and 8.1x producer works. That is, a 9.2 or later version consumer
can consume a portlet from an 8.1x producer with no configuration changes. However,
if you want to use your own key for the 9.2 or later version consumer, you need to follow
the procedure outlined in this section.

8.1x Consumer 9.2 Producer

WSRP

9.2 Consumer 8.1x Producer

WSRP

9.2 Consumer 8.1x Producer

WSRP

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-21

The portal shown in Figure 15-28 includes a local portlet on the left and a remote (proxy) portlet
on the right. The remote portlet is deployed in an 8.1x producer. The local portlet is a login
portlet. Before SAML security is properly configured, when a user logs in, the name that is
returned is null.

Figure 15-28 Consumer Portal Before User Login

Configuring the Consumer
The following sections explain how to configure the consumer with a key that can sign the SAML
assertion sent to the producer. The basic tasks include:

Generating a key

Changing the consumer’s name

Modifying the consumer’s security realm

Generate a Key
This section explains how to generate a key on the consumer using the keytool utility, a Java
utility distributed by Sun Microsystems that manages private keys and certificates. For detailed
information on keytool, refer to the Sun Microsystems website.

Proxy Portlet

Local Portlet

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-22 BEA WebLogic Portal Federated Portals Guide

1. On the consumer, open a command window and CD to the WEBLOGIC_HOME/server/lib
directory.

2. Run the keytool command to generate a new key, as shown in Figure 15-29. For example, the
following command generates a key called consumer92key.

keytool -genkey -alias consumer92key -keystore wsrpKeystore.jks
-storepass password -keypass consumer92pass

The options used in the example keytool command include the following:

Command parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-alias Specifies a name for the generated key.

-keystore Specifies the name of the keystore. A keystore stores keys and certificates.
The default keystore, wsrpKeystore.jks, is implemented as a file that
protects private keys with a password.

-storepass Specifies the password for the keystore.

-keypass Specifies the password to be used with the new key.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-23

Figure 15-29 Generating a Key

Change the Consumer’s Name
1. Copy the wsrp-consumer-security-config.xml from the J2EE Shared Library to your

project. To do this in Workshop for WebLogic, open the Merged Projects view, find the file
in the WEB-INF directory of your consumer web application. Right-click the file and select
Copy to Project. For more information on copying files from J2EE Shared Libraries, see the
Production Operations Guide and the Portal Development Guide.

2. Edit the file wsrp-consumer-security-config.xml in the WEB-INF directory of your
consumer web application. Change the <consumer-name> element from wsrpConsumer to
another arbitrary name. For example, change:
<consumer-name>wsrpConsumer<consumer-name>

to
<consumer-name>consumer9x<consumer-name>

3. Restart the consumer application’s server so that the change to the configuration file takes
effect.

Checkpoint: If you try to log in to the remote portlet again, you will receive an error, as shown
in Figure 15-30. This error is caused by the fact that the producer cannot find the key that was
sent from the consumer. The next step is to configure the security realm for the consumer domain.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-24 BEA WebLogic Portal Federated Portals Guide

Figure 15-30 Login Error

Modify the Consumer’s Security Realm
1. Log in to the WebLogic Server Administration Console on the consumer. The URL for the

console is:
http://servername:portnumber/console

where servername is your server’s IP name, and portnumber is the server’s port. For
example:
http://localhost:7001/console

2. Click the Security Realms link in the Domain Structure window, as shown in Figure 15-31.

Figure 15-31 Selecting Security Realms

3. Select myrealm (or the name of the security realm you are using) and then select the
Credential Mappings tab.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-25

4. In the Credential Mappings tab, select PKI, as shown in Figure 15-32.

Tip: PKI, or public key infrastructure, allows the exchange of data through the use of a
public and a private cryptographic key pair that is obtained and shared through a
trusted authority. For more information, see “Configure Credential Mapping
Providers,” in the WebLogic Server documentation.

Figure 15-32 Select PKI

5. In the PKI Credential Mappings table, click New to create a new credential.

6. In the Create New Security Credential dialog, click Next without entering any remote
resource attribute information.

Tip: By leaving the remote resource attributes blank, the credential will be accepted by all
producers. If you want to specify a producer, enter the appropriate information in this
dialog.

7. In the Create a New Security Credential Map Entry dialog, enter the following in the Local
User field:
consumerName__81_COMPAT

where consumerName is the consumer name you entered previously in the
wsrp-consumer-security-config.xml file. (Note that the name is followed by a
double underscore.)

For this example, the correct value for Local User is: consumer9x__81_COMPAT.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-26 BEA WebLogic Portal Federated Portals Guide

8. Select the User radio button.

9. In the Keystore Alias field, enter the alias you used for the key that you generated previously.
In this example, the alias is consumer92key.

10. In the Password field, enter the key password you used when you generated the key. In this
example, the password is consumer92pass.

11. Click Finish. Figure 15-33 shows the new principal name added to the PKI Credential
Mappings: consumer92__81_COMPAT.

Figure 15-33 List of PKI Credential Mappings

12. Export the key from the consumer’s keystore. Use the keytool utility to export the key that
you created previously. You will use this key in the next set of steps to configure the
WebLogic Portal 8.1x producer. For example:
keytool -export -alias consumer92key -keystore wsrpKeystore.jks
-storepass password -keypass consumer92pass -file consumer92.der

Checkpoint: In the previous steps, you associated this consumer, consumer92, to a key to sign
the SAML assertion. If you now try to log in to the remote portlet, the previously seen error does
not appear. This means that the consumer is now properly associated with a key. However, now
after logging in, the user name is null, as shown in Figure 15-34. This is because this consumer
is not yet known to the producer. The next set of steps demonstrate how to configure the
WebLogic Portal 8.1x producer to accept the WebLogic Portal 9.2 or later version consumer’s
key.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-27

Tip: It is interesting to note an important difference between the behavior of a WebLogic
Portal 9.2 or later version producer and a WebLogic Portal 8.1x producer. If a WebLogic
Portal 9.2 or later version producer cannot verify what the consumer is sending, you will
receive an error. If a WebLogic Portal 8.1x producer cannot verify what the consumer is
sending, the producer ignores this condition and continues with an anonymous user. In
addition, if an 8.1x consumer sends an unverifiable message to a 9.2 or later version
producer, the producer likewise ignores the condition and continues with an anonymous
user.

Figure 15-34 User Name is Null

Configure the WebLogic Portal 8.1x Producer
This section explains how to configure the WebLogic Portal 8.1x producer. To do this, you
import the key into the producer’s keystore.

Import the Certificate

1. Copy the previously exported certificate to the system on which the producer application is
deployed, using whichever method is appropriate for your system, such as FTP or SMB. You
can put this file anywhere on the destination machine.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-28 BEA WebLogic Portal Federated Portals Guide

2. In a command window, CD to the root directory of the producer’s domain. For example:
BEA_HOME/weblogic81/user_projects/domains/portalDomain

3. Import the key using the keytool utility. For example:
keytool -import -keystore wsrpKeystore.jks -file c:\consumer92.der
-storepass password -alias consumer9x -keypass consumer92pass

Note: The alias argument must match the consumer name you used when you created the
key on the consumer. In this example, that name is consumer9x.

4. Restart the server in which the producer application is deployed.

Test the Configuration
After the producer server is restarted, you can once again test the remote portlet in the consumer
application. When you log into the portal, you will see that the remote portlet now recognizes the
user as logged in, as shown in Figure 15-35.

Figure 15-35 Successful Configuration

Summary
The preceding example demonstrated how to configure SAML security between a WebLogic
Portal 9.2 or later version consumer and a WebLogic Portal 8.1x producer. In the next example,
you will see the reverse: configuring SAML security between a WebLogic Portal 8.1x consumer
and a WebLogic Portal 9.2 or later version producer.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-29

SAML Security Between 8.1x Consumers and 9.2 or Later
Version Producers
This section explains how to achieve security compatibility between a WebLogic Portal 8.1x
consumer and an 9.2 or later version producer, as summarized in Figure 15-36.

Figure 15-36 Compatibility Use Case

The basic steps include:

Configure the 8.1x Consumer

Configure the 9.2 or Later Version Producer

Configure the 8.1x Consumer
This section explains how to configure the 8.1x consumer. The basic steps include generating a
key and configuring the WSRP Consumer Security Service in the WebLogic Administration
Portal.

Generate a Key
This section explains how to use the keytool utility to generate a key on the consumer. Keytool,
a Java utility distributed by Sun Microsystems, manages private keys and certificates. For
detailed information on keytool, refer to the Sun Microsystems website.

1. If you have not already done this, generate a key. To do this, CD to the root directory of the
WebLogic Portal 8.1x consumer application’s domain and use the keytool utility to generate
the key. For example:
BEA_HOME/weblogic81/user_projects/domains/portal

keytool -genkey -keystore wsrpKeystore.jks -alias consumer8xkey
-storepass password -keypass consumer8xpass

The options used in the example keytool command include the following:

8.1x Consumer 9.2 Producer

WSRP

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-30 BEA WebLogic Portal Federated Portals Guide

2. Log in to the version 8.1x WebLogic Administration Portal on the consumer application’s
server. To start the Administration Portal from Workshop for WebLogic, select Portal >
Portal Administration. Or, enter the following URL in a browser:

http://localhost:7001/applicationName/login.jsp

where applicationName is the name of the WebLogic Portal consumer application.

Command parameter Description

keytool A Java tool used to generate a key.

-genkey Instructs the keytool to generate a key.

-keystore Specifies the name of the keystore. A keystore stores keys and certificates.
The default keystore, wsrpKeystore.jks, is implemented as a file that
protects private keys with a password.

-alias Specifies a name for the generated key.

-storepass Specifies the password for the keystore.

-keypass Specifies the password to be used with the new key.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-31

Figure 15-37 WebLogic Administration Portal Sign In Page

3. In the Administration Portal, select Service Administration.

4. In the Application Configuration Settings tree, select WSRP Consumer Security Service, as
shown in Figure 15-38.

Figure 15-38 Selecting WSRP Consumer Security Service

5. In the Configuration Settings dialog, enter a name for the consumer, the Certificate Alias that
you used when you generated the consumer key, and the Certificate Private Key Password
that you used when you generated the key, as shown in Figure 15-39 and click Update.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-32 BEA WebLogic Portal Federated Portals Guide

Figure 15-39 Entering Security Service Parameters

6. Export the key using the keytool utility. To do this, CD to the consumer’s domain root
directory, and enter the appropriate keytool command. For example:
keytool -export -alias consumer8xkey -keystore wsrpKeystore.jks -file
consumer81.der

Configure the 9.2 or Later Version Producer
This section explains how to configure the producer. To do this, you must configure the
producer’s PKI credential mappings to include the consumer’s certificate.

1. Copy the exported key to the WebLogic Portal 9.2 or later version producer’s root domain
directory using an appropriate method, such as FTP or SMB. You can put this file anywhere
on the destination machine.

2. Use the keytool utility to import the key into the 9.2 or later version producer’s keystore. For
example:
keytool -import -keystore wsrpKeystore.jks -file consumer81.der -alias
consumer8xkey -keypass consumer8xpass

3. Log in to the WebLogic Server Administration Console on the producer server.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-33

4. Click the Security Realms link in the Domain Structure window, as shown in Figure 15-31.

Figure 15-40 Selecting Security Realms

5. Select myrealm (or the name of the security realm you are using) and then select the
Credential Mappings tab.

6. In the Credential Mappings tab, select PKI, as shown in Figure 15-32.

Tip: PKI, or public key infrastructure, allows the exchange of data through the use of a
public and a private cryptographic key pair that is obtained and shared through a
trusted authority. For more information, see “Configure Credential Mapping
Providers,” in the WebLogic Server documentation.

Figure 15-41 Select PKI

7. In the PKI Credential Mappings dialog, click New, as shown in Figure 15-42.

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-34 BEA WebLogic Portal Federated Portals Guide

Figure 15-42 Creating a New PKI Credential Mapping

8. In the Creating the Remote Resource for the Security Credential Mapping dialog, leave all
fields blank and click Next.

Tip: By leaving the fields blank, this indicates that the credential is recognized for all
consumers. If you want to restrict the credential to a specific consumer, you can fill
in the required information.

9. In the Create a New Security Credential Map Entry dialog, enter the following information:

– Select the Certificate radio button (true).

– In the Principal Name field, enter consumerName__81_COMPAT, where consumerName
is the name of the consumer. In this example, the name is consumer8x.

– Select the User radio button.

– In the Keystore Alias field, enter the alias you used when you imported the keystore. In
this example, it is consumer8xkey.

– In the Password field, enter the key password you used when you imported the
keystore. In this example, it is consumer81pass.

Figure 15-43 shows the completed dialog.

SAML Secur i t y Between WebLog ic Por ta l 8 .1x and 9 .2 o r Late r Ve rs ions

BEA WebLogic Portal Federated Portals Guide 15-35

Figure 15-43 Entering PKI Credential Mappings Parameters

10. Click Finish. The PKI Credential Mappings table reappears and shows that the new certificate
has been added, as shown in Figure 15-44.

Figure 15-44 New Certificate Added to the Producer

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-36 BEA WebLogic Portal Federated Portals Guide

Testing the Configuration
To test the configuration, log in to the consumer portal. As shown in Figure 15-45, the user name
weblogic appears in the proxy portlet. This indicates success: the user was logged in
successfully on the producer.

Figure 15-45 Successful Test

Using SAML Security with a Name Mapper
A name mapper is a class that maps one user name to another. Use a name mapper when the
producer and consumer have different names for the same user. This section explains how to
write and configure a name mapper class on both the consumer and the producer.

If you want to use a name mapping class on the producer or the consumer, the basic steps include:

Writing a Name Mapper Class

Deploying the Mapper Classes

Configuring the Mapper Classes

Writing a Name Mapper Class
WebLogic Portal provides two user name mapping interfaces:

Us ing SAML Secur i t y w i th a Name Mapper

BEA WebLogic Portal Federated Portals Guide 15-37

weblogic.security.providers.saml.SAMLCredentialNameMapper

Implement this interface on the consumer to map a user name on the consumer to a new
name. See “Implementing SAMLCredentialNameMapper on the Consumer” on page 15-37
for an example.

weblogic.security.providers.saml.SAMLIdentityAssertionNameMapper

Implement this interface on the producer to map a user name sent from the consumer to a
user name on the producer. See “Implementing SAMLIdentityAssertionNameMapper on
the Producer” on page 15-38 for an example.

Implementing SAMLCredentialNameMapper on the Consumer
Implement SAMLCredentialNameMapper on the consumer to provide name mapping on the
consumer. Listing 15-1 shows an example implementation of SAMLCredentialNameMapper.

The mapSubject() method gets a Subject (user) and returns a SAMLNameMapperInfo object.
The method provides logic to test the user name and replace it with a new user name. This new
user name is then returned in a SAMLNameMapperInfo object, which is then passed to the
producer.

For detailed information on this interface, see the Javadoc.

Listing 15-1 Example SAMLCredentialNameMapper Implementation

package com.bea.wsrp.qa.security;

import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;
import weblogic.security.providers.saml.SAMLCredentialNameMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.WLSGroup;

public class CustomSAMLNameMapperImpl implements SAMLCredentialNameMapper {

private String nameQualifier = null;

public CustomSAMLNameMapperImpl (){ }

/************ SAMLCredentialNameMapper implementation**************/

public synchronized void setNameQualifier(String nameQualifier)

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-38 BEA WebLogic Portal Federated Portals Guide

{
this.nameQualifier = nameQualifier;

}

public SAMLNameMapperInfo mapName (String name, ContextHandler handler)
{

return new SAMLNameMapperInfo(nameQualifier, name, null);
}

public SAMLNameMapperInfo mapSubject (Subject subject, ContextHandler handler)
{

// Provider checks for null Subject...
Set groups = subject.getPrincipals(WLSGroup.class);
String userName = null;

userName = SubjectUtils.getUsername(subject);
if (userName == null || userName.equals("")) {

System.out.println("mapSubject: Username string is null or
empty, returning null");
return null;

}

if (userName.equals("testUser"))
{

userName = "testUser_Mapped";
}

// Return mapping information...
return new SAMLNameMapperInfo(nameQualifier, userName, groups);

}
}

Implementing SAMLIdentityAssertionNameMapper on the Producer
Implement SAMLIdentityAssertionNameMapper on the producer to provide name mapping.
Listing 15-2 shows an example implementation of SAMLIdentityAssertionNameMapper. In this
example, if you log in on the consumer as testUser_Mapped, the name mapper class retrieves
that user name on the producer and logs you in as testUser_Producer.

The mapNameInfo() method gets a SAMLNameMapperInfo object from the consumer. This
object contains the name with which the user logged in on the consumer. The method provides
logic to test the user name from the consumer and replace it with a user name on the producer.

For detailed information on this interface, see the Javadoc.

Us ing SAML Secur i t y w i th a Name Mapper

BEA WebLogic Portal Federated Portals Guide 15-39

Listing 15-2 Example SAMLIdentityAssertionNameMapper Implementation

package com.bea.wsrp.qa.security;

import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;
import weblogic.security.providers.saml.SAMLIdentityAssertionNameMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.WLSGroup;

public class CustomSAMLNameMapperImpl implements SAMLIdentityAssertionNameMapper
{

private String nameQualifier = null;

public CustomSAMLNameMapperImpl (){ }

/************ SAMLIdentityAssertionNameMapper implementation**************/

public String getGroupAttrName ()
{

return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAME;
}

public String getGroupAttrNamespace ()
{

return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAMESPACE;
}

public Collection mapGroupInfo(SAMLNameMapperInfo info, ContextHandler handlr)
{

return info.getGroups();
}

public String mapNameInfo(SAMLNameMapperInfo info, ContextHandler handler)
{

String userName = info.getName();

if (userName == null || userName.equals("")) {
System.out.println("mapNameInfo: Username string is null or
empty, returning null");
return null;

}

if (userName.equals("testUser_Mapped"))
{

userName = "testUser_Producer";
}

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-40 BEA WebLogic Portal Federated Portals Guide

return userName;
}

}

Deploying the Mapper Classes
Whether you are implementing a mapper class on the producer or the consumer, the class must
be in the server’s classpath. For information on adding classes to the server classpath, refer to the
WebLogic Server topic “Adding Startup and Shutdown Classes to the Classpath.”

Configuring the Mapper Classes
You need to use the WebLogic Server Administration Console add the mapper classes to the
security realm of the producer and/or consumer.

Adding a Mapper Class to the Producer
To add a mapper class to the producer:

1. Open the WebLogic Server Administration Console on the producer machine and log in.

2. Select Security Realms from the Domain Structure tree.

3. Select a security realm, such as myrealm.

4. Select Providers.

5. Select SAMLIdentityAsserter, as shown in Figure 15-17. An identity asserter allows
WebLogic Server to establish trust by validating a user.

Us ing SAML Secur i t y w i th a Name Mapper

BEA WebLogic Portal Federated Portals Guide 15-41

Figure 15-46 Selecting the Identity Asserter

6. Click the Management tab.

7. In the Asserting Parties table, click the Partner ID link for the asserting party you want to
use. In this example, the link is ap_0002 for the asserting party called demoConsumer, as
shown in Figure 15-23.

Figure 15-47 Selecting the New Asserting Party

8. In the Configuration tab, enter the full classname of the mapper class in the Name Mapper
Class field, as shown in Figure 15-48. For example:

com.bea.wsrp.qa.security.CustomSAMLNameMapperImpl

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-42 BEA WebLogic Portal Federated Portals Guide

Figure 15-48 Entering the Name Mapper Class

9. Click Save.

Adding a Mapper Class to the Consumer
To add a mapper class to the producer:

1. Open the WebLogic Server Administration Console on the consumer machine and log in.

2. Select Security Realms from the Domain Structure tree.

3. Select a security realm, such as myrealm.

4. Select the Providers tab.

Figure 15-49 Selecting the Credential Mapping Tab

5. Select SAMLCredentialMapper, as shown in Figure 15-50.

Us ing SAML Secur i t y w i th a Name Mapper

BEA WebLogic Portal Federated Portals Guide 15-43

Figure 15-50 Selecting the SAMLCredentialMapper

6. Select Management tab.

7. Select the Relying Parties link for the relying party you want to use. For example, the relying
party shown in Figure 15-51 is rp_00001.

Tip: For more information on relying party configuration, see the WebLogic Server topic,
“Configuring a Relying Party.”

Figure 15-51 Select the Relying Party

8. In the Name Mapper Class field, enter the full classname of the mapper class, as shown in
Figure 15-52. For example:

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-44 BEA WebLogic Portal Federated Portals Guide

com.bea.wsrp.qa.security.CustomSAMLNameMapperImpl

Figure 15-52 Entering the Name Mapper Class

9. Click Save.

Allowing Virtual Users
You can configure the producer to automatically create a new user if it does not recognize the
user name sent from the consumer. This feature is useful if you do not want to manually create a
unique user name on the producer for every user who might log in from a consumer application.
You can use this feature as long as the producer is configured to recognize the consumer’s SAML
token, as explained previously in this chapter.

To configure the producer to allow virtual users:

1. Log in to the WebLogic Server Administration Console.

1. Navigate to the SAMLIdentityAsserter Configuration tab. For instructions on navigating to
this tab, see “Adding a Mapper Class to the Producer” on page 15-40.

2. Check the Allow Virtual Users checkbox.

3. Click Save.

Al low ing V i r tua l Users

BEA WebLogic Portal Federated Portals Guide 15-45

Figure 15-53 All Virtual Users

Es tab l i sh ing WSRP Secur i t y w i th SAML

15-46 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 16-1

C H A P T E R 16

Configuring User Name Token Security

User Name Token, or UNT, is an alternative to SAML and provides the same basic single sign-on
capability as SAML provides. User Name Token lets you map the local user on the consumer to
a user on the producer. This chapter explains how to configure User Name Token security for a
federated portal.

This chapter includes the following sections:

Configuring the Consumer

Configuring the Producer

Configuring the Consumer
On the consumer, you need to set up credential mappings. Credential mapping is the process
whereby a legacy system’s database is used to obtain an appropriate set of credentials to
authenticate users to a target resource. In WebLogic Server, a Credential Mapping provider is
used to provide credential mapping services and bring new types of credentials into the
WebLogic Server environment. For more information on credential mapping, see the WebLogic
Server topic, “Credential Mapping Providers.”

1. Log in to the WebLogic Server Administration Console on the consumer. The URL for the
console is:
http://servername:portnumber/console

where servername is your server’s IP name, and portnumber is the server’s port. For
example:

Conf igur ing User Name Token Secur i t y

16-2 BEA WebLogic Portal Federated Portals Guide

http://localhost:7001/console

2. Click the Security Realms link in the Domain Structure window, as shown in Figure 16-1.

Figure 16-1 Selecting Security Realms

3. Select myrealm (or the name of the security realm you are using).

4. Select the Credential Mappings tab.

5. Select the Default link to open the Default Credential Mappings dialog, as shown in
Figure 16-2.

Conf igu r ing the Consumer

BEA WebLogic Portal Federated Portals Guide 16-3

Figure 16-2 Default Credential Mappings Dialog

6. Click New.

7. In the Create a New Security Credential Mapping dialog, shown in Figure 16-3, complete the
fields listed below.

Conf igur ing User Name Token Secur i t y

16-4 BEA WebLogic Portal Federated Portals Guide

Figure 16-3 Completed Dialog

– Protocol – The protocol for the remote resource, such as HTTP or HTTPS.

– Remote Host – The name of the remote resource. For example: myproducer

– Remote Port – The port number of the remote resource. For example: 7001

– Remote Path – The path of the remote resource. You need to enter the markup path for
the producer. Be sure to begin the path with a “/”. For example:

/myProducerWebProject/producer/wsrp-1.0/markup

/myProducerWebProject/producer/wsrp-1.0/portletManagement

/myProducerWebProject/producer/wsrp-1.0/registration

/myProducerWebProject/producer/wsrp-wlp-ext-1.0/markup

/myProducerWebProject/producer/wsrp-1.0/serviceDescription

Conf igu r ing the Consumer

BEA WebLogic Portal Federated Portals Guide 16-5

To obtain this path, you can enter the WSDL address of the producer in a browser. For
example, if the producer web application is called myProducerWebApp, the WSDL URL
is:

http://producerHost:producerPort/myProducerWebApp/producer?wsdl

where producerHost is the host name of the producer server and producerPort is the
port number of the producer server.

The producer’s WSDL definition appears in the browser. Locate the service description,
and copy the markup path, as shown in Figure 16-4.

Figure 16-4 Finding the Markup Port

8. Click Next.

9. In the Create a New Security Credential Map Entry dialog, enter the local (consumer) user
name and the user name on the producer to which you want to map that local name. Also,
enter the password for the user name on the producer, as shown in Figure 16-5.

Note: The local user you enter must exist on the consumer. If the user does not exist, you
need to create it using the User Management feature of the WebLogic Portal
Administration Console.

Tip: The local user name and the user name on the producer can be the same name or
different names.

Conf igur ing User Name Token Secur i t y

16-6 BEA WebLogic Portal Federated Portals Guide

Figure 16-5 Specify User Mapping

10. Click Finish. The new mapping appears in the Default Credential Mappings table, as shown
in Figure 16-6.

Figure 16-6 Default Credential Mappings

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 16-7

Checkpoint: You have configured a credential mapping on the consumer. The next step is to
configure the producer to recognize that mapping.

Configuring the Producer
On the producer, you need to set up authentication.

Tip: The WebLogic Authentication provider allows you to manage users and groups in one
place, the embedded LDAP server. Note that the Administration Console refers to the
WebLogic Authentication provider as the Default Authenticator. For more information
on authentication, see the WebLogic Server topic, “Configure Authentication and
Identity Assertion Providers.”

1. Log in to the WebLogic Server Administration Console on the consumer. The URL for the
console is:
http://servername:portnumber/console

where servername is your server’s IP name, and portnumber is the server’s port. For
example:
http://localhost:7001/console

2. Click the Security Realms link in the Domain Structure window, as shown in Figure 16-1.

Figure 16-7 Selecting Security Realms

3. Select myrealm (or the name of the security realm you are using).

4. Select the Providers tab.

5. Select the Authentication tab.

Conf igur ing User Name Token Secur i t y

16-8 BEA WebLogic Portal Federated Portals Guide

6. Select DefaultAuthenticator, as shown in Figure 16-8.

Tip: If the DefaultAuthenticator selection is not present, you need to add it and restart the
server.

Figure 16-8 Select the DefaultAuthenticator

7. In the Configuration tab, select Provider Specific.

8. Select the Enable Password Digest checkbox, as shown in Figure 16-9. You must select this
checkbox to enable the WebLogic Authentication Provider to store the password in a two-way
encrypted (reversible) form.

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 16-9

Figure 16-9 Enable Password Digests

9. Select the Users and Groups tab.

10. Select Users.

Note: The existing user name and password will not work.

11. Click New, as shown in Figure 16-10. The Create a New User dialog appears.

Conf igur ing User Name Token Secur i t y

16-10 BEA WebLogic Portal Federated Portals Guide

Figure 16-10 Create a New User

12. In the Create a New User dialog, complete the Name and Password fields.

13. Select DefaultAuthenticator from the pulldown menu, as shown in Figure 16-11, and click
OK. Note that you must use the DefaultAuthenticator for users on the producer. The user you
create must match the user you mapped to when you configured the consumer (as explained
previously).

Conf igur ing the P roducer

BEA WebLogic Portal Federated Portals Guide 16-11

Figure 16-11 Create a New User Dialog

Summary
The User Name Token security feature lets you set up single sign-on between consumers and
producers. The User Name Token method is an alternative to SAML, which is the default security
for WebLogic Portal consumers and producers.

DefaultAuthenticator
is required.

Conf igur ing User Name Token Secur i t y

16-12 BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 17-1

C H A P T E R 17

Adding Remote Resources to the
Library

The WebLogic Portal Administration Console lets you locate producers and add their remote
resources to the Portal Resources Library. Remote resources can include books, pages, and
portlets. When a remote resource is added to the Library, it becomes available to you to
incorporate into a portal desktop.

Tip: This chapter assumes that you are familiar with the Portal Resources Library and how to
use it to assemble WebLogic Portal desktops. For detailed information on the Library and
on assembling portals using the Administration Console, see the Portal Development
Guide. This chapter also assumes you are familiar with basic federated portal concepts
and terms, such as producer, consumer, and WSDL. For detailed information on
federated portals, see Chapter 2, “What are Federated Portals?” and Chapter 3,
“Federated Portal Architecture.”

This chapter explains how to locate producers and incorporate their remote resources into the
Portal Resources Library. The chapter includes these sections:

Introduction

Adding a Producer

Adding a Remote Portlet to the Portal Library

Adding a Remote Page to the Portal Library

Adding a Remote Book to the Portal Library

Adding Remote Resources t o the L ib rar y

17-2 BEA WebLogic Portal Federated Portals Guide

Introduction
You can use the WebLogic Portal Administration Console to locate remote producers, discover
the resources they offer, and add them to the Portal Resources Library. After a remote resource,
such as a book, page, or portlet, is added to the Library, you can add the resource to a desktop just
as you would a local book, page, or portlet.

The primary advantage of remote books and pages is that they act as containers for other remote
resources. For example, a producer can offer a remote book that contains several remoteable
pages, each of which contain multiple remoteable portlets. When you consume that book, the
remoteable pages and portlets it contains are consumed as well, with no additional steps.

Tip: The term remoteable refers to a book, page, or portlet that is deployed in a producer
application and that is offered as remote. Producer application developers decide whether
or not books, pages, and portlets they create are offered as remote. For detailed
information on creating remoteable pages and books in a producer application, see
Chapter 6, “Offering Books, Pages, and Portlets to Consumers.”

After you consume a remote book or page, an administrator can edit it using the Administration
Console. For example, an administrator can add other portlets, books, or pages to the remote book
or page. Remember that such changes are not reflected back to the producer; therefore, after a
remote book or page is modified on the consumer, it can become inconsistent with the original
book, page, or portlet in the producer application.

To add remote books, pages, and portlets to the Library:

1. Locate and add the producer in which the remote resources are deployed.

2. If necessary, register the producer.

3. Add remote books, pages, and portlets to your Portal Resources Library.

After the remote resources are in the Library, you add them to your portal desktop as you would
any other book, page, or portlet.

Adding a Producer
To consume remote resources, such as portlets, books, and pages that are deployed in a producer,
you need to first add the producer to your Portal Resources Library. After you add a
WSRP-compliant producer to the Portal Resources Library, you can make that producer’s
remoteable resources available for consumption by your portal.

Adding a P roducer

BEA WebLogic Portal Federated Portals Guide 17-3

Tip: In the WebLogic Portal Administration Console, producer registrations are scoped to
individual consumer web applications. Because there can be multiple consumer web
applications in an enterprise application, it is possible that a given producer will need to
be registered multiple times within an enterprise application (that is, registered for each
consumer web application in which it is used).

To locate and register a producer using the Administration Console:

1. Expand the Library node in the Portal Resources tree and select Remote Producers, as shown
in Figure 17-1.

Figure 17-1 Selecting Remote Producers

2. In the Browse Remote Producers window, select Add Producer, as shown in Figure 17-2.
The Add Producer wizard appears.

Figure 17-2 Select Add Producer

Adding Remote Resources t o the L ib rar y

17-4 BEA WebLogic Portal Federated Portals Guide

3. In the Add Producer wizard, select a producer. To do this, pick from one of the following
options, as shown in Figure 17-3, and click Search.

Figure 17-3 Find Producer

– Provide Producer WSDL URL – This option lets you specify a producer directly by
entering its WSDL URL. For example:

http://myhost:7001/producerWebProject/producer?wsdl

– Producer Name or Metadata Contains – This option lets you search for producers by
name or with metadata associated with the producer. Metadata includes keywords and
description text that were entered when the producer was added to the UDDI registry.
The WebLogic Portal default UDDI registry is searched unless you specify a different
one by selecting it from the Search In dropdown menu.

– Portlets from Producer Contain – This option lets you search for portlets by name.
This information is located through a UDDI registry. The WebLogic Portal default
UDDI registry is searched unless you specify a different one by selecting it from the
Search In dropdown menu. This search returns a list of portlets that contain the search
string in their names.

Tip: The previousl two options are only available if you have configured the consumer to
use the UDDI search features. For information on configuring the consumer for
UDDI, see Chapter 9, “Publishing to UDDI Registries.”

Checkpoint: Search results are displayed in the Producer(s) Found list.

Adding a P roducer

BEA WebLogic Portal Federated Portals Guide 17-5

4. Select the producer you wish to add from the Producer(s) Found list, as shown in Figure 17-4.

Figure 17-4 Selecting a Producer

5. If you want to view a list of portlets hosted by the producer, select the View producer’s
portlets before adding producer checkbox, as shown in Figure 17-5.

Figure 17-5 View Producer’s Portlets Checkbox

6. Click Next.

7. If the View Producer Portlets dialog appears, click Next. This dialog, shown in Figure 17-6,
appears only if you selected the View producer’s portlets before adding producer
checkbox. This dialog simply lists the portlets hosted by the selected producer to help you
decide if you want to add the producer or not.

Adding Remote Resources t o the L ib rar y

17-6 BEA WebLogic Portal Federated Portals Guide

Figure 17-6 View Producer’s Portlets

8. In the Enter Producer Properties dialog, enter a name for the producer, as shown in
Figure 17-7. This name is used by the consumer to identify the producer.

Figure 17-7 Enter Producer Name

9. In the Register dialog, enter the registration information, if any is required.

Adding a Remote Po r t le t t o the Por ta l L ib ra ry

BEA WebLogic Portal Federated Portals Guide 17-7

Tip: During registration, the producer stores information about the consumer and returns
a handle to the consumer. Registration is an optional feature described in the WSRP
specification. A WebLogic Portal complex producer implements this option and,
therefore, requires consumers to register before discovering and interacting with
portlets offered by the producer. See “Complex Producers” on page 3-7 for more
information.

10. Click Next. The Summary dialog appears, as shown in Figure 17-8.

Figure 17-8 Summary Dialog

11. Click Finish.

Checkpoint: Now that you have located and added a producer, you can view and select portlets,
books, and pages to add to the consumer from that producer, as explained in the following
sections.

Adding a Remote Portlet to the Portal Library
If you have added a producer that contains a remoteable portlet, you can add that portlet to your
Portal Resources Library. After the remote portlet is added to the Library, you can incorporate
the portlet into a page in your portal desktop.

There are two ways to incorporate remote portlets into a portal using the Administration Console:

Adding Remote Resources t o the L ib rar y

17-8 BEA WebLogic Portal Federated Portals Guide

Add a remote page that contains one or more remote portlets. For details adding remote
pages, see “Adding a Remote Page to the Portal Library” on page 17-11.

Add a remote portlet directly. This method is described in this section.

To add a remote portlet to your Portal Resources Library directly:

1. Open the WebLogic Portal Administration Console.

2. If you haven’t done so, locate and add the producer that contains the remote portlet(s) that you
want to add to your portal. The procedure for adding a producer is explained in “Adding a
Producer” on page 17-2.

3. In the Portal Resources tree, open the Library > Remote Producers folder, and select the
producer that contains the remote portlet that you want to use, as shown in Figure 17-9.

Figure 17-9 Selecting a Producer

4. In the producer window click the Selected Portlets tab, as shown in Figure 17-10.

Figure 17-10 Selected Portlets Tab

5. In the Browse Selected Portlets panel, click Add Portlet, as shown in Figure 17-11.

Adding a Remote Po r t le t t o the Por ta l L ib ra ry

BEA WebLogic Portal Federated Portals Guide 17-9

Tip: If the producer offers a large number of portlets, use the Search feature to narrow the
selections. For instance, you can search for all portlets that begin with “a,” and only
those portlets will show up in the Browse Selected Portlets table.

Figure 17-11 Add Portlet Button

6. In the Add Portlets dialog, select the remote portlet(s) that you want to add to the Library, and
click Add to move the selected portlets to the Portlets To Add column, as shown in
Figure 17-12.

Figure 17-12 Selecting Portlets to Add

Adding Remote Resources t o the L ib rar y

17-10 BEA WebLogic Portal Federated Portals Guide

7. After moving the portlet to the Portlets To Add column, click Save. The portlets you added
appears in the Library under the Portlets folder, as shown in Figure 17-13.

Figure 17-13 Remote Portlets Added to the Library

The added portlets also appear in the Browse Selected Portlets table in the Selected Portlets tab,
as shown in Figure 17-14.

Figure 17-14 Table Displays Added Portlets

Tip: When you add a remote portlet to the Library, it is placed in the Portlets folder. This is
the same folder where local portlets appear. WebLogic Portal treats the remote portlet
exactly as if it were a local portlet.

Checkpoint: You can now add the portlet to a page in your desktop. For details on adding Library
resources to a desktop, see the WebLogic Portal Development Guide.

Remote Portlets

Add ing a Remote Page to the Po r ta l L ib ra ry

BEA WebLogic Portal Federated Portals Guide 17-11

Adding a Remote Page to the Portal Library
If you have added a producer that contains a remoteable page, you can add that page to your Portal
Resources Library. After the remote page is added to the Library, you can incorporate it into your
portal desktop as if it were a local page.

This section explains how to add a remote page to your Portal Resources Library.

Tip: To be remoteable, the page’s Offer As Remote property must have been set to true when
it was created and the page must include some content. A remote page can contain any
combination of remote books and portlets. Books and portlets contained within a remote
page must be offered as remote. By default, books, pages, and portlets are offered as
remote. For more information on creating remoteable books and pages in a producer
application, see Chapter 17, “Adding Remote Resources to the Library.”

1. Open the WebLogic Portal Administration Console.

2. If you haven’t done so, locate and add the producer that contains the remote page(s) that you
want to add to your portal. The procedure for adding a producer is explained in “Adding a
Producer” on page 17-2.

3. In the Portal Resources tree, open the Library > Remote Producers folder, and select the
producer that contains the remote page that you want to use, as shown in Figure 17-15.

Figure 17-15 Selecting a Producer

4. In the producer window, click the Selected Pages tab, as shown in Figure 17-16.

Adding Remote Resources t o the L ib rar y

17-12 BEA WebLogic Portal Federated Portals Guide

Figure 17-16 Selected Pages Tab

5. In the Browse Pages section, click Add Page, as shown in Figure 17-17.

Figure 17-17 Add Page Button

6. In the Add Page dialog, select the remote page that you want to add to the Library, and click
Add Page. In Figure 17-18, the remote page is called Page 1.

Add ing a Remote Page to the Po r ta l L ib ra ry

BEA WebLogic Portal Federated Portals Guide 17-13

Figure 17-18 The Add Page Dialog

Checkpoint: The remote page is added to the Library, as shown in Figure 17-24. You can now
add the page to a desktop. For details on adding Library resources to a desktop, see the WebLogic
Portal Development Guide.

Figure 17-19 Remote Page Added to Library

Remote Page

Adding Remote Resources t o the L ib rar y

17-14 BEA WebLogic Portal Federated Portals Guide

Adding a Remote Book to the Portal Library
If you have added a producer that contains a remoteable book, you can add that book to your
Portal Resources Library. After the remote book is added to the Library, you can incorporate it
into your portal desktop as if it were a local book.

Tip: To be remoteable, the book’s Offer As Remote property must have been set to true when
it was created, and the book must include some content. A remote book can contain any
combination of remote pages and portlets. Pages and portlets contained within a remote
page must be offered as remote. By default, books, pages, and portlets are offered as
remote. For more information on creating remoteable books and pages in a producer
application, see Chapter 17, “Adding Remote Resources to the Library.”

This section explains how to add a remote book to your Portal Resources Library.

1. Open the WebLogic Portal Administration Console.

2. If you haven’t done so, locate and add the producer that contains the remote book(s) that you
want to add to your portal. The procedure for adding a producer is explained in “Adding a
Producer” on page 17-2.

3. In the Portal Resources tree, open the Library > Remote Producers folder, and select the
producer that contains the remote book that you want to use, as shown in Figure 17-20.

Figure 17-20 Selecting a Producer

4. In the producer window, click the Selected Books tab, as shown in Figure 17-21.

Add ing a Remote Book to the Po r ta l L ib ra ry

BEA WebLogic Portal Federated Portals Guide 17-15

Figure 17-21 Selected Books Tab

5. In the Browse Books section, click Add Book, as shown in Figure 17-22.

Figure 17-22 Add Book Button

6. In the Add Book dialog, select the remote book that you want to add to the Library, and click
Add Book. In Figure 17-23, the remote book is called My Remote Book.

Adding Remote Resources t o the L ib rar y

17-16 BEA WebLogic Portal Federated Portals Guide

Figure 17-23 The Add Book Dialog

Checkpoint: The remote book is added to the Library, as shown in Figure 17-24. You can now
add the book to a desktop. For details on adding Library resources to a desktop, see the WebLogic
Portal Development Guide.

Figure 17-24 Remote Book Added to Library

Remote Book

BEA WebLogic Portal Federated Portals Guide

Part IV Production

Part IV, Production, includes the following chapter:

Chapter 18, “Managing Federated Portals”

In the production phase of the portal life cycle, your portal is live. In this phase, you can perform
some management functions, such as adding users. In a federated portal, you can add and remove
remote portlets, and perform most of the tasks described in Part III, Staging.

In the production phase, most of your work is done using the WebLogic Portal Administration
Console. For more information about the portal life cycle, see the WebLogic Portal Overview.

BEA WebLogic Portal Federated Portals Guide

BEA WebLogic Portal Federated Portals Guide 18-1

C H A P T E R 18

Managing Federated Portals

This chapter discusses operations you typically perform to a federated portal that is in production.
This chapter includes the following topics:

Modifying the Consumer Security Configuration

Modifying the Producer Portlet Registry

Modifying Producer Registration Properties

Modifying the Consumer Security Configuration
Through the Service Administration panel of the WebLogic Portal Administration Console, you
can modify the following consumer security settings. These settings are configured in the file
WEB-INF/wsrp-consumer-security-config.xml associated with the consumer web
application.

You can perform the following modifications:

Changing the Web Application

Modifying Global Credentials

Modifying Producer Credentials

Changing the Web Application
This section lets you change the consumer web application for the security configuration you
want to modify. To change the web application:

Managing Federated Por ta ls

18-2 BEA WebLogic Portal Federated Portals Guide

1. In the Administration Console, select Configuration Settings > Service Administration.

2. In the Resource Tree, select WSRP > Consumer Security.

3. To change the web application, click Change Web Application. The Change Web
Application dialog appears.

4. To search for a consumer web application, enter the full or partial name of the application to
find in the Search for Webapps field, and click Search. Any web applications that are
currently deployed to the server that match the search criteria are displayed in the dialog. The
search is case sensitive.

5. Select the web application you want to change to, and click Save.

Modifying Global Credentials
You can edit the user name and password for the security credential that is used for all producers
associated with this consumer. This change modifies the security credential that is managed by
the server.

1. In the Administration Console, select Configuration Settings > Service Administration.

2. In the Resource Tree, select WSRP > Consumer Security.

3. Click Edit in the Global Credentials section. The Edit Credentials for All Producers dialog
appears.

4. Enter the new user name and password.

5. Decide whether to check the Is Consumer Credential checkbox, as explained below, and click
Save.

The Is Consumer Credential checkbox determines how the admin user is logged into the producer
when destroyPortlets is called.

Unchecked (default behavior in WebLogic Portal 8.1 and later versions)

– The admin user's user name and password are sent to the producer through basic
authentication (unsecure).

– The user name and password must match the admin user on the producer.

Checked

– The admin user's credentials are sent to the producer securely via SAML or User Name
Token (UNT).

Modi f y ing the Consumer Secur i t y Conf igurat i on

BEA WebLogic Portal Federated Portals Guide 18-3

– The user name and password must match the admin user on the consumer.

– Will interoperate with WebLogic Portal 9.2 (SAML or UNT) and 8.1 (SAML only)
producers.

The second (checked) method is the preferred configuration because it is secure.

Modifying Producer Credentials
You can edit the user name and password credentials associated with a specific producer.

1. In the Administration Console, select Configuration Settings > Service Administration.

2. In the Resource Tree, select WSRP > Consumer Security.

3. Click the producer handle for the producer whose credentials you want to change.

4. In the dialog, enter the new user name and password.

5. Decide whether to check the Is Consumer Credential checkbox, as explained below, and click
Save.

The Is Consumer Credential checkbox determines how the admin user is logged into the producer
when destroyPortlets is called.

Unchecked (default behavior in WebLogic Portal 8.1 and later versions)

– The admin user's user name and password are sent to the producer through basic
authentication (unsecure).

– The user name and password must match the admin user on the producer.

Checked

– The admin user's credentials are sent to the producer securely via SAML or User Name
Token (UNT).

– The user name and password must match the admin user on the consumer.

– Will interoperate with WebLogic Portal 9.2 (SAML or UNT) and 8.1 (SAML only)
producers.

The second (checked) method is the preferred configuration because it is secure.

Managing Federated Por ta ls

18-4 BEA WebLogic Portal Federated Portals Guide

Modifying the Producer Portlet Registry
Through the Service Administration panel of the WebLogic Portal Administration Console, you
can modify the following producer portlet registry settings. These settings are configured in the
file WEB-INF/wsrp-producer-portlet-registry-config.xml associated with a producer
web application. This file is used to publish a producer and its resources, such as portlets, to
specified UDDI registries.

Tip: For detailed information on configuring UDDI registries, see Chapter 9, “Publishing to
UDDI Registries.”

You can perform the following modifications:

Changing the Web Application

Modifying the Registry Credentials

Changing the Web Application
To edit the producer portlet registry for a producer, you must first select a producer web
application.

1. In the Administration Console, select Configuration Settings > Service Administration.

2. In the Resource Tree, select WSRP > Producer Portlet Registry.

3. To change the web application, click Change Web Application. The Change Web
Application dialog appears.

4. To search for a producer web application, enter the full or partial name of the application to
find in the Search for Webapps field, and click Search. Any web applications that are
currently deployed to the server that match the search criteria are displayed in the dialog. The
search is case sensitive.

5. Select the web application you want to change to, and click Save.

Modifying the Registry Credentials
You can edit the credentials (user name and password) of the UDDI registry to which the current
web application's portlets are published. This change modifies the security credential that is
managed by the server.

Modi f y ing Producer Reg is t ra t i on P roper t i es

BEA WebLogic Portal Federated Portals Guide 18-5

1. In the Administration Console, select Configuration Settings > Service Administration.

2. In the Resource Tree, select WSRP > Producer Portlet Registry.

3. Click Edit in the Credentials section. The Edit Credentials for WSRP Producer Registry
Service dialog appears.

4. Enter the new user name and password, and click Save.

Modifying Producer Registration Properties
Using the WebLogic Portal Administration Console, you can modify the registration properties
for a producer that has already been registered with a consumer. When the consumer re-registers
the producer, some portlets that were previously in use might not be available or some additional
portlets might be available to the consumer.

For detailed information on using user profile properties with federated portals, see Chapter 11,
“Federating User Profiles.”

To modify a producer’s registration properties, do the following:

1. In the WebLogic Portal Administration Console, select Portal > Portal Management.

2. In the Portal Resources Library tree, select Remote Producers, and then select the producer
whose properties you want to modify.

3. In the Summary tab, select Registration Details.

4. In the Modify Producer Registration dialog, edit the values you want to change, and click
Modify Registration.

Managing Federated Por ta ls

18-6 BEA WebLogic Portal Federated Portals Guide

Figure 18-1 Modify Producer Registration Dialog

