
BEA
 WebLogic
Integration™

Using the Data Integration
Plug-In
Release 2.1 Service Pack 1
Document Date: January 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using the Data Integration Plug-In

Part Number Date Software Version

N/A January 2002 2.1 Service Pack 1

Contents

1. Understanding the Data Integration Plug-In
Understanding XML Translation .. 1-1
What Is Data Integration?.. 1-3

Design-Time Data Integration Component .. 1-4
Run-Time Data Integration Component... 1-4
Plug-In to Business Process Management Functionality 1-5

Using the Repository ... 1-6

2. Using the Data Integration Plug-In
Data Translation with the Data Integration Plug-In .. 2-1

Translate XML to Binary ... 2-3
Translate Binary to XML ... 2-6

Processing Event Data... 2-8
Enhancing Data Translation Performance... 2-9
Variable Types and the Data Integration Plug-In.. 2-13
Custom Data Types and the Data Integration Plug-In..................................... 2-13
Configuring User Defined Data Types.. 2-13

Using the Format Builder... 2-14
Using the Repository Import Utility... 2-16

Support for WebLogic Server Clustering.. 2-16
Configuring the Data Integration Plug-In for Clustering 2-17

3. Running the WebLogic Integration Sample Applications
Prerequisites .. 3-1
Running the Servlet Sample .. 3-2

What Is Included in the Servlet Sample ... 3-2
How to Run the Servlet Sample ... 3-3
Using the Data Integration Plug-In iii

Step 1. Start the Sample Application Launcher 3-3
Step 2. Configure the Mail Session... 3-7
Step 3. Update the Sample XML Data and Send Message 3-10

Running the EJB Sample ... 3-10
What Is Included in the EJB Sample.. 3-10
How to Run the EJB Sample .. 3-12

Step 1. Import the Workflow Definition ... 3-12
Step 2. Open the Template .. 3-14
Step 3. Start the Workflow.. 3-16
Step 4. Examine the Variable Values.. 3-18

Index
iv Using the Data Integration Plug-In

CHAPTER
1 Understanding the
Data Integration
Plug-In

This document describes the functionality and operation of the data integration
plug-in. The following topics are discussed:

� Understanding the Data Integration Plug-In

� Using the Data Integration Plug-In

� Running the WebLogic Integration Sample Applications

Understanding XML Translation

Within most enterprise application integration (EAI) domains, data translation is an
inherent part of an EAI solution. XML is quickly becoming the standard for
exchanging information between applications; it is invaluable in integrating disparate
applications. Most data transformation engines, however, do not support translations
between binary data formats and XML. The data integration plug-in provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML.
Using the Data Integration Plug-In 1-1

1 Understanding the Data Integration Plug-In
Data that is sent to or received from legacy applications is often platform-specific
information organized in a binary format unique to the machine on which the
information originated. Binary data is not self-describing, so in order to be understood
by an application, information about the format of this data (metadata) must be
embedded within each application that uses binary data from a legacy application.

XML is becoming the standard for exchanging information between applications
because XML embeds a description of the data within the data stream, facilitating the
exchange of data among applications. Although XML can represent complex data
structures, it is easily parsed. As a result, the coupling of applications no longer
depends on the embedding of metadata.

Binary-to-XML translation is the conversion of structured binary data to an XML
document so that the data can be accessed via standard XML parsing methods. You
must create the metadata used to perform the conversion. During the translation
process, each field of binary data is converted to XML according to the metadata
defined for that field. The metadata you specify must include the name of the field, the
data type, the size, and an indication of whether the field is always present or optional.
This description of the binary data is used to translate the data to XML. Figure 1-1
shows how a sample piece of binary data is translated into XML.

Figure 1-1 XML Data Translation of: Tom;Jones;1345;19;

Applications developed on a WebLogic Server platform often use XML as the
standard data format. If you want the data from your legacy system to be accessible to
other applications on a WebLogic Server platform, you may use WebLogic Integration
to translate that data from binary to XML format, or from XML to binary format. If
you need the data to be converted to a particular XML dialect for end use, you must
transform it using an XML data-mapping tool.
1-2 Using the Data Integration Plug-In

What Is Data Integration?
What Is Data Integration?

WebLogic Integration facilitates the integration of data from diverse enterprise
applications by supporting the translation of binary legacy system data to XML and
vice versa. Once legacy data is available as XML, it can be consumed directly by XML
applications, transformed into a specific XML grammar, or used directly to start
workflows in the WebLogic Integration Studio. WebLogic Integration supports non
XML-to-XML translation and vice versa through the use of three data integration
tools:

� Design-Time Data Integration Component

� Run-Time Data Integration Component

� Plug-In to Business Process Management Functionality

A translation is a two-step process. First, create a description of your binary data using
Format Builder, the design-time tool. This task involves analyzing binary data so that
the layout of records in the binary file is accurately reflected in the metadata you create
in Format Builder.

Next, you create metadata (a description of the input data) in Format Builder and save
this metadata as a Message Format Language (MFL) document. WebLogic Integration
provides importers, utilities that automatically create message format definitions from
common sources of binary metadata, such as COBOL copybooks.

You can then use the run-time component in WebLogic Integration to translate
instances of binary data to XML. Figure 1-2 shows the event flow for non
XML-to-XML data translation. A plug-in to BPM functionality simplifies the task of
configuring translations.
Using the Data Integration Plug-In 1-3

1 Understanding the Data Integration Plug-In
Figure 1-2 Event Flow for Non XML-to-XML Translation Using Data
Integration

Design-Time Data Integration Component

The design-time data integration component of WebLogic Integration is a Java
application called Format Builder. Format Builder is used to create descriptions of
binary data records. It allows you to describe the layout and hierarchy of the binary
data so that it can be translated to or from XML.

The description you create in Format Builder is saved in an XML grammar called
Message Format Language (MFL). MFL documents contain metadata used at run-time
for data integration. The data integration plug-in to BPM functionality also uses this
metadata to translate an instance of a binary data record to an instance of an XML
document (or vice-versa).

Format Builder also creates a DTD or XML Schema document that describes the XML
document created from a translation.

Run-Time Data Integration Component

The run-time data integration component of WebLogic Integration is a Java class with
various methods that are used to translate data between binary and XML formats. This
Java class can be used in several ways. Specifically, it can be:
1-4 Using the Data Integration Plug-In

What Is Data Integration?
� Deployed in an EJB using WebLogic Server

� Invoked as a business operation from a workflow in the Studio

� Integrated into any Java application

Plug-In to Business Process Management Functionality

The data integration plug-in for business process management (BPM) functionality
supports an exchange of information between applications by making it possible to
translate binary data from legacy systems into XML. The data integration plug-in
provides BPM actions that allow you to perform XML-to-binary and binary-to-XML
translations.

In addition to this data translation capability, the data integration plug-in provides:

� Event data processing in binary format

� In-memory caching of MFL documents and translation object pooling to boost
performance

� A BinaryData variable type to edit and display binary data

� Execution within a clustered WebLogic Server environment.

The following illustration describes the relationship between data integration and BPM
functionality.
Using the Data Integration Plug-In 1-5

1 Understanding the Data Integration Plug-In
Using the Repository

The repository provides a centralized document storage mechanism that supports the
following four document types:

� MFL - Message Format Language documents

� DTD - XML Document Type Definition documents

� XSD - XML Schema documents

� XSLT - XSLT Stylesheet

Start Done
Workflow Task Configured

with Data Integration

Format BuilderXML Document
Repository

Data Integration Plug-In
to BPM

BEA Data
Integration Java

Classes

Translated
XML Document

Input Binary Data
MFL Document Name

MFL
Document

MFL
Document

Optional:
DTD
XML Schema

Actions
1-6 Using the Data Integration Plug-In

Using the Repository
The repository provides access to these document types and allows you to use them in
data integration, business process management, and B2B integration functions. The
repository also includes a batch import utility that allows previously constructed MFL,
DTD, XSD, and XSLT documents to be easily migrated into the repository.
Using the Data Integration Plug-In 1-7

1 Understanding the Data Integration Plug-In
1-8 Using the Data Integration Plug-In

CHAPTER
2 Using the Data
Integration Plug-In

This section provides information about the following topics:

� Data Translation with the Data Integration Plug-In

� Processing Event Data

� Enhancing Data Translation Performance

� Custom Data Types and the Data Integration Plug-In

� Support for WebLogic Server Clustering

Data Translation with the Data Integration
Plug-In

The data integration plug-in provides capabilities for translating non XML documents
into XML, and vice versa, while executing business process management (BPM)
functions. To perform such a translation, complete the following procedure:

1. Start the WebLogic Integration Studio. For instructions on starting and logging on
to the Studio, see Using the Studio Interface.

2. Open the desired template definition and double-click a task. The Task Properties
dialog box is displayed (Figure 2-1).
Using the Data Integration Plug-In 2-1

2 Using the Data Integration Plug-In
Figure 2-1 Task Properties Dialog Box

3. If the selected task contains the data translation action, select it again from the
list, click Update and proceed to step 4. Otherwise, click Add to add a new
action. The Add Action dialog box is displayed (Figure 2-2).

Figure 2-2 Add Action Dialog Box
2-2 Using the Data Integration Plug-In

Data Translation with the Data Integration Plug-In
4. Expand the Integration Actions node; a list of actions is displayed. Expand the
Data Integration item in that list. A list of translation actions is displayed:
Translate XML to Binary and Translate Binary to XML. Select the type of
translation you want to perform.

Translate XML to Binary

To perform an XML-to-binary translation:

1. From the Add Action dialog box (Figure 2-2), select Translate XML to Binary. The
Translate XML to Binary dialog box is displayed (Figure 2-3).
Using the Data Integration Plug-In 2-3

2 Using the Data Integration Plug-In
Figure 2-3 Translate XML to Binary Dialog Box

2. Enter data in the fields as described in the following table.
2-4 Using the Data Integration Plug-In

Data Translation with the Data Integration Plug-In
3. Click OK to save the translation information to your workflow.

Table 2-1 Translate XML to Binary Dialog Box Fields

Dialog Box
Area

Field Description

Message Format
Parameters

Name Name of the message format. You can type a name directly in the text
field or click Browse to invoke a list of repository documents from
which you can make a selection.

Description Displays the description of the message format.

Note: This field is used only for displaying text. You cannot edit
text in this field.

Notes Displays the notes attached to the message format.

Note: This field is used only for displaying text. You cannot edit
text in this field.

Message Format
Action Buttons

Browse Allows you to browse MFL documents in the repository.

View Displays the items in the Message Format area so you can verify that
you have selected the correct document type for translation.

Debug Enables or disables debug messaging. When you select this option,
the translation actions are written to the WebLogic Server log file.

Variable
Parameters

Input XML
Variable

Displays the XML workflow variables. Select the variable you want
to use in the translation, or create a new variable as follows:
1. Type a name for your new variable and click OK. A confirmation

message box is displayed.
2. Click Yes to create the new variable.

Assign Result To Displays the binary data workflow variables. Select the variable in
which you want to store the translated information or create a new
variable as follows:
1. Type a name for your new variable and click OK.
2. Click Yes to create the new variable.
Using the Data Integration Plug-In 2-5

2 Using the Data Integration Plug-In
Translate Binary to XML

To perform a binary-to-XML translation:

1. In the Add Action dialog box (Figure 2-2), choose Integration Actions→Data
Integration→Translate Binary to XML. The Translate Binary to XML dialog box
is displayed (Figure 2-4).

Figure 2-4 Translate Binary to XML Dialog Box
2-6 Using the Data Integration Plug-In

Data Translation with the Data Integration Plug-In
2. Enter data in the fields as described in the following table.

3. Click OK to save the translation information to your workflow.

Table 2-2 Binary to XML Dialog Box Fields

Dialog Box
Area

Field Description

Message Format
Parameters

Name Name of the message format. You can type a name directly in the text
field, or click Browse to invoke a list of repository documents from
which you can make a selection.

Description Displays the description of the message format.

Note: This field is used only for displaying text. You cannot edit
text in this field.

Notes Displays the notes attached to the message format.

Note: This field is used only for displaying text. You cannot edit
text in this field.

Message Format
Action Buttons

Browse Allows you to browse MFL documents in the repository.

View Displays the items in the Message Format area so you can verify that
you have selected the correct document type for translation.

Debug Enables or disables debug messaging. When you select this option,
the translation actions are written to the WebLogic Server log file.

Variable
Parameters

Input Binary
Variable

Displays the binary workflow variables. Select the variable you want
to use in the translation, or create a new variable as follows:
1. Type a name for your new variable and click OK. A confirmation

message box displays.
2. Click Yes to create the new variable.

Assign Result To Displays the XML data workflow variables. Select the variable you
want to use to store the translated information, or create a new
variable as follows:
1. Type a name for your new variable and click OK.
2. Click Yes to create the new variable.
Using the Data Integration Plug-In 2-7

2 Using the Data Integration Plug-In
Processing Event Data

The data integration plug-in provides a function that enables binary data to trigger
workflows by converting the binary data to XML or by preprocessing it at the front end
of event processing. This function is referred to as the event handler. The event handler
is executed when JMS messages are published to a topic.

Three JMS properties are required for a message to be preprocessed by the data
integration plug-in:

� WLPIContentType: "binary/x-application/wlxt"

� WLPIPlugin: "com.bea.wlxt.WLXTPlugin"

� WLPIEventDescriptor: MFL_document_name

The first two JMS message properties are constant for all messages addressed to the
event handler. The third property contains the name of the MFL document that
describes the binary data in the message.

Note: The MFL document referenced in the WLPI EventDescriptor must be stored
in the repository.

Listing 2-1 is a sample of code used to build a message that can be processed by the
event handler.

Listing 2-1 Sample Event Handler Code

byte[] bindata = ... the binary data ...
pub = sess.createPublisher(topic);
BytesMessage msg = sess.createBytesMessage();
msg.writeBytes(bindata);
msg.setStringProperty("WLPIPlugin", "com.bea.wlxt.WLXTPlugin");
msg.setStringProperty("WLPIContentType",
"binary/x-application/wlxt");
msg.setStringProperty("WLPIEventDescriptor", “mymfldoc”);
pub.publish(msg);
2-8 Using the Data Integration Plug-In

Enhancing Data Translation Performance
The servlet sample application shows how the message built by this code is processed
by the event handler. See “Running the Servlet Sample” on page 3-2 for information
on running the servlet sample.

Enhancing Data Translation Performance

The data integration plug-in provides a configuration panel for monitoring and
administering in-memory cache of the MFL document and for enabling or disabling
event handler debugging. Using this panel, you can adjust the in-memory cache and
translation object pool to enhance the performance of your data translations.

Note: You must clear the MFL document in-memory cache in order for any updates
you make to an MFL document to take effect.

To access the configuration panel, follow the steps below. For more information about
the actions specific to business process management, refer to the business process
management documentation.

1. Start the WebLogic Integration Studio. For instructions on starting and logging on
to the Studio, see Using the Studio Interface.

2. Choose Configuration→Plugins. The Plugin Configuration dialog box is
displayed (Figure 2-5).
Using the Data Integration Plug-In 2-9

2 Using the Data Integration Plug-In
Figure 2-5 Plug-In Configuration Dialog Box

3. Select the Data Integration Plug-In and click Update. The Configuration dialog
box for the data integration plug-in is displayed (Figure 2-6).
2-10 Using the Data Integration Plug-In

Enhancing Data Translation Performance
Figure 2-6 Configuration Dialog Box for the Data Integration Plug-In

4. To monitor and enhance translation performance, enter data in the fields
described in the following table.

Dialog Box
Area

Field Description

Start Mode Automatic Opens the data integration plug-in automatically when the Studio is
opened.

Manual Makes the data integration plug-in available from the Studio.

Disabled Disables the use of the data integration plug-in from the Studio.
Using the Data Integration Plug-In 2-11

2 Using the Data Integration Plug-In
The data integration plug-in extends the capabilities for displaying and editing
provided by standard BPM functionality. These capabilities are provided by the Hex
Editor component of Format Tester for displaying and editing binary data.

Data Integration
Object Pool

Preferred Pool Size Defines the maximum number of permanent objects in the pool. Use
the slider to set the pool size to the desired number.

Note: The translation engine creates temporary pool objects if the
demand exceeds the preferred pool size you have set. These
objects are deleted when they are returned to the pool.

Current Size Displays the number of objects currently in the pool.

High Water Mark Displays the largest number of objects in the pool since the server was
started.

MFL Cache MFL Requests Displays the total number of requests for translation of MFL
documents.

Cache Hits Displays the number of requests made while the necessary MFL
document was already in the cache.

Hit Ratio Displays the percentage of requests satisfied by retrieving MFL
documents from the cache, rather than from the database.

MFL Cache
Action Buttons

Refresh Sends a request to the server to update the MFL cache statistics.

Clear Clears the MFL document cache. For all subsequent translation
requests, MFL documents must be loaded from the repository.

Event Handler
Options

Enable Debug
Messaging

Enables or disables debug messaging for the event handler. If enabled,
debug messages are written to the WebLogic Server log file during
translation.

Dialog Box
Area

Field Description
2-12 Using the Data Integration Plug-In

Variable Types and the Data Integration Plug-In
Variable Types and the Data Integration
Plug-In

The data integration plug-in provides a BinaryData variable type that you can use to
edit and display binary data. The BinaryData variable acts as a container for a logical
set of binary data with additional display capabilities. This variable is used by
programs that call the actions provided by the data integration plug-in to pass and
receive binary data. It is also used by the Workflow Instance Monitor to display and
edit the contents of a binary variable.

Custom Data Types and the Data Integration
Plug-In

WebLogic Integration provides a user-defined type feature that allows you to create
custom data types that accommodate your unique data type requirements. The
user-defined type feature allows these custom data types to be plugged in to the data
integration run-time engine. Once a user-defined data type is plugged in, it is
indistinguishable from a built-in data type both in terms of features and functionality.

Configuring User Defined Data Types

User-defined types used by the data integration plug-in are stored in the WebLogic
Integration repository as CLASS documents. At run time, the data integration plug-in
loads user-defined type classes from the repository as required. In addition, the data
integration plug-in exports the MFL and class files required to support the active
template, allowing a template to be imported, intact, on another business process
management instance. Class documents may be placed in the repository using either of
two methods. The following sections describe those methods:
Using the Data Integration Plug-In 2-13

2 Using the Data Integration Plug-In
� Using the Format Builder

� Using the Repository Import Utility

Using the Format Builder

To publish a user-defined type to the repository using the Format Builder, complete the
following procedure:

1. Start the Format Builder by choosing Start→Programs→BEA WebLogic
E-Business Platform→WebLogic Integration 2.1→Format Builder. The Format
Builder main window is displayed.

2. Choose Repository→Log In. The WebLogic Integration Repository Login
window is displayed.

3. Enter the user ID specified for the server users in the User Name field. (The
default is wlipisystem.)

4. Enter the password specified for the server users in the Password field. (The
default is wlpisystem.)

5. Enter the name of the server and the number of the associated port in the
Server[:port] field.

Note: The WebLogic Integration Repository Login window allows you to make
up to three login attempts. If you are unsuccessful after three attempts, a
2-14 Using the Data Integration Plug-In

Configuring User Defined Data Types
login failure message is displayed. If you fail to login three times, choose
Repository→Log In to repeat the login procedure.

6. Click Connect. If your login attempt is successful, the Login window is closed
and the Format Builder Title bar displays the server name and port number
entered in the WebLogic Integration Repository Login window. A menu of active
repository items is displayed. Select the one you want to access

7. Choose Tools→User Defined Types. The Add/Remove User Defined Types
dialog box is displayed.

Once a connection to the repository is established, the Add/Remove User
Defined Types dialog box displays the status of each registered user-defined type
and allows for the publication of each such type to the repository. The status of
each user-defined type in the repository is indicated by an icon, in the form of a
ball, before each entry in the Installed Types area of the dialog box.

The color of the icon before each name of a user-defined type indicates the
status of that type:

� Green - The user-defined type has been published to the repository.

� Yellow - The user-defined type has been published to the repository, but the
local version of the class differs from the repository version.

� Red - The user-defined type does not exist in the repository.
Using the Data Integration Plug-In 2-15

2 Using the Data Integration Plug-In
8. From the list of installed types, select the class you want to publish and click
Publish. The icon for the selected entry should become green, indicating that the
class was successfully placed in the repository.

Using the Repository Import Utility

To use the repository import utility to import Java class files, including user-defined
types complete the following procedure:

1. Create a wlxt-repository.properties file in the CLASSPATH. The content of
this file should be as follows:

wlxt.repository.url=<server url>

For example:

wlxt.repository.url=t3://localhost:7001

2. Type the following command to pass the class filename on the Import command
line.

java com.bea.wlxt.repository.Import <filename>

For example, the following command imports all the class files in the current
directory:

java com.bea.wlxt.repository.Import *.class

Note: Any Java class file may be imported into the repository using the repository
import utility, as well as User Defined Types. This capability is useful if a
user-defined type relies on additional class files that do not extend the
com.bea.wlxt.bintype.Bintype class.

Support for WebLogic Server Clustering

The data integration plug-in can operate successfully in a clustered WebLogic Server
environment. In a clustered environment, the plug-in administrator is connected to
only one node of the cluster at any given time. Any commands issued by the
administrator must be propagated to the other nodes in the cluster.
2-16 Using the Data Integration Plug-In

Support for WebLogic Server Clustering
Communication among the various servers in a cluster is handled through a JMS topic.
The topic is used for communication to different nodes in a cluster in a WebLogic
Integration environment.

Configuring the Data Integration Plug-In for Clustering

If you want to take advantage of the clustering capability, you must configure the data
integration plug-in as follows:

1. Create a JMS topic on one of the servers in the cluster. The JNDI name of this topic
must be as follows:

com.bea.wlxt.cluster.BroadcastTopic

Note: For more information about creating JMS topics, see the WebLogic Server
documentation.

2. Open the config.xml file in a text editor. This file can be found in the
config\samples\ directory under your WebLogic Integration installation.

Note: The config directory contains separate subdirectories for each domain
you have created. Each subdirectory contains its own config.xml file.
Make sure you open the correct file.

3. Locate the <Application> section for business process management and add the
following lines anywhere in this section:

<EJBComponent Name=”wlxt-cluster”
DeploymentOrder=”99”
Targets=”[server_name]”
URI=”wlxtmb.jar”
/>

4. Save the config.xml file.

Note: You must restart the server in order for the change to the config.xml file to
be recognized.
Using the Data Integration Plug-In 2-17

2 Using the Data Integration Plug-In
2-18 Using the Data Integration Plug-In

CHAPTER
3 Running the WebLogic
Integration Sample
Applications

The data integration software includes two sample applications designed to illustrate
the integration of business process management (BPM) in WebLogic Integration. This
section describes these samples and give you step-by-step instructions for running
them. The following topics are discussed:

� Prerequisites

� Running the Servlet Sample

� Running the EJB Sample

Prerequisites

The instructions presented in this section are based on the assumption that you have a
good working knowledge of WebLogic Integration, and that you understand how data
integration and the WebLogic Integration process engine work. In addition, you should
have successfully installed WebLogic Integration and run a sample workflow before
you try to run the sample applications.
Using the Data Integration Plug-In 3-1

3 Running the WebLogic Integration Sample Applications
Running the Servlet Sample

This sample application implements a Web archive file (WLPI_sample.war) that
installs a servlet. The servlet accepts requests for conversion of binary data to XML. It
is accessed via a browser and responds by displaying the generated XML data. In
addition, the application posts the data to the WebLogic Integration event topic in
either XML or binary format. The data may then be used to start a workflow.

What Is Included in the Servlet Sample

The servlet sample application resides in the \samples\di\ subdirectory of the
directory in which WebLogic Integration is installed. The following table describes the
files included in the Servlet sample application.

Table 3-1 Servlet Sample Application Files

Directory File Description

\wlpi\source WLPI_sample.java Source code for the servlet used to display HTML files
on the screen and to translate binary data to XML. This
XML may be placed, optionally, on the JMS topic.

\wlpi SampleData.mfl Message Format Language description of the sample
binary data file used to start the sample workflow.

\wlpi SampleData.data Sample data file used as input when the sample
workflow is started.

\wlpi DI_ServletSample.jar Exported workflow used in the sample. This workflow
is imported automatically when you configure the
samples as described in “Step 1. Start the Sample
Application Launcher” on page 3-3.

\wlpi Makefile Make file for building the sample source to a .jar file.

\wlpi build.cmd Command that builds the .jar file from source.

\wlpi\images bealogo.jpg BEA logo displayed on the HTML page rendered by the
sample servlet.
3-2 Using the Data Integration Plug-In

Running the Servlet Sample
How to Run the Servlet Sample

To run the servlet sample, complete the procedure in this section. For instructions
about the tasks specific to WebLogic Server and BPM functions, see the BEA
documentation at e-docs.bea.com.

Step 1. Start the Sample Application Launcher

For first-time users:

Run the RunSamples script by completing the procedure appropriate for your
platform:

� Windows

\wlpi\WEB-INF hello.html HTML page used by the sample servlet to obtain input
data from the user.

\wlpi\WEB-INF web.xml J2EE configuration file defining deployment
information for the sample servlet.

\wlpi\WEB-INF weblogic.xml BEA configuration file defining WebLogic-specific
information for the sample servlet.

wlpi\WEB-INF\lib cos.jar Utility libraries used in the execution of the sample
code.

wlpi\WEB-INF\lib HtmlScreen.jar Utility libraries used in the execution of the sample
code.

Under WebLogic Integration Home Directory

config\samples\
applications

WLPI_sample.war Web archive file containing all executable sample code
and configuration files. This file is automatically
deployed to the WebLogic Integration application
directory upon installation.

Table 3-1 Servlet Sample Application Files

Directory File Description
Using the Data Integration Plug-In 3-3

3 Running the WebLogic Integration Sample Applications
1. Choose Start→BEA WebLogic E-Business Platform→WebLogic Integration
2.1→Samples→Run Samples. All samples are configured all and the samples
launcher is displayed. It takes several minutes to configure all samples. Figure 3-1
shows the Sample Application Launcher.

Figure 3-1 Sample Application Launcher

2. Select the Data Integration Servlet Sample. “Data Integration Servlet Sample
Page” on page 3-5 shows the Data Integration Servlet Sample page.
3-4 Using the Data Integration Plug-In

Running the Servlet Sample
Figure 3-2 Data Integration Servlet Sample Page

� UNIX

1. Make sure your PATH environment variable includes the directory in which the
Netscape executable (netscape) resides. If it is not included, the samples launcher
page cannot be displayed.

2. Go to the WebLogic Integration home directory (the directory in which you
installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

3. Run the setenv script to set the top-level WebLogic Integration environment
variables:

. setenv.sh
Using the Data Integration Plug-In 3-5

3 Running the WebLogic Integration Sample Applications
4. Run the RunSamples script:

cd samples/bin
RunSamples

5. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

The WebLogic Integration repository has already been created
and populated, possibly from a previous run of this
RunSamples script. Do you want to destroy all the current
data in the repository and create and populate the
WebLogic Integration repository, again?
Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of the WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of the
WebLogic Server. When you answer Y the RunSamples script destroys all the
data currently in the repository and loads an unaltered version of the sample data
into the repository. Answer Y only when the current sample data has been altered
or removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of the WebLogic Server (as a
background process) and the samples launcher page is displayed.

If you have already configured samples:

Start the server and display the Samples Launcher by completing the procedure
appropriate for your platform:

� Windows

1. Choose Start→BEA WebLogic E-Business Platform→WebLogic Integration
2.1→Samples→Start Server.

2. Choose Start→BEA WebLogic E-Business Platform→WebLogic Integration
2.1→Samples→Samples Launcher.

3. Select the Data Integration Servlet Sample.

� UNIX
3-6 Using the Data Integration Plug-In

Running the Servlet Sample
1. Go to the bin directory in the samples domain. For example, if you installed the
product in the default location, enter the following:

cd BEA_Home/wlintegration2.1/samples/bin

2. Start the server by entering:

. ./startServer

3. When the following message is displayed, the startServer script has
completed successfully:

StartServer execution successful

4. Start a Web browser using the following URL:

http://localhost:7001/index.html

The Samples Launcher Web page is displayed.

Step 2. Configure the Mail Session

This step is optional if you have already configured your mail host. You may want to
perform it anyway, to verify your configuration.

1. Click on WebLogic Server under Administration Consoles on the Samples
Launcher. The WebLogic Server Administration Console is displayed.

2. From the navigation tree, choose Services→Mail→wlpiMailSession.

3. Enter the appropriate information to configure your mail host. Make sure that
mail.host=mailserver. The following figure shows an example of the
Configuration tab in the Mail Session window.
Using the Data Integration Plug-In 3-7

3 Running the WebLogic Integration Sample Applications
Figure 3-3 Configuration Tab in the Mail Sessions Window

4. Select the Targets tab.

5. Move the name of your mail server name from the Available column to the
Chosen column, as shown in the following figure.
3-8 Using the Data Integration Plug-In

Running the Servlet Sample
Figure 3-4 Server Tab in the Mail Sessions Window

6. Click Apply.
Using the Data Integration Plug-In 3-9

3 Running the WebLogic Integration Sample Applications
Step 3. Update the Sample XML Data and Send Message

1. In a text editor, open the file \samples\di\wlpi\SampleData.data. Replace
the text user@nowhere.com with a valid e-mail address that can be used by the
workflow to deliver an e-mail message.

2. In the Input File field on the Sample Application Launcher page, navigate to the
following data file:

\samples\di\wlpi\SampleData.data

The file specified must reside on the local system, which is not necessarily the
one on which the server is running. If the file is not on the local system, an error
message is displayed.

3. Click Submit. A short e-mail message is sent to the address you supplied in the
data file.

Running the EJB Sample

This sample simulates a dataflow from an HR system to a payroll system, initiated by
the entry of payroll data. Employee data is obtained from a legacy payroll system in
which binary data is used. The data is translated to XML so that a calculation to
determine the employee’s pay information can be performed. The result of the
calculation is translated back to binary format and sent on to the payroll system.

What Is Included in the EJB Sample

The following table describes the files included in the EJB sample application. This
application resides in the \samples\di\ejb directory.
3-10 Using the Data Integration Plug-In

Running the EJB Sample
Table 3-2 EJB Sample Application Files

Directory File Description

\ejb Makefile Make file for building the sample source to a .jar file.

WLXTExample.jar Sample workflow exported from data integration.

HR.mfl MFL file for binary data returned from the sample HR
Bean.

Payroll.mfl MFL file for binary data passed for the sample Payroll
Bean.

Autopay.cmd Windows NT command script for initiating the
workflow from the command line.

Autopay.sh UNIX shell script for initiating the workflow from a
command line.

build.cmd Builds wlxtejb.jar from source.

\ejb\source Payroll.java Sample EJBs representing the legacy payroll system.

PayrollHome.java

PayrollBean.java

HR.java Sample EJBs representing the legacy HR system.

HRHome.java

HRBean.java

AutoPay.java Program that places a preformatted message on the
Event topic to start the sample workflow.

HexDump.java Utility class used by the sample EJBs.

EmployeeRecord.java Employee data class used by the sample HR EJB.

Under WebLogic Integration Home Directory

config\samples\
lib

WLXTEJB.jar Executables for the sample application.
Using the Data Integration Plug-In 3-11

3 Running the WebLogic Integration Sample Applications
How to Run the EJB Sample

To run the EJB sample, complete the steps described in the following sections.

Step 1. Import the Workflow Definition

1. Start the WebLogic Integration Studio. For information on starting and logging on
to the Studio, see Using the Studio Interface in Using the WebLogic Integration
Studio.

2. Choose Tools→Import Package. The Import: Select File dialog box is displayed
(Figure 3-5).

Figure 3-5 Import: Select File Dialog Box

3. Click Browse, select the definition file called WLXTExample.jar, and click
Open. Click Next, the Import: Select Components to Import dialog box is
displayed (Figure 3-6).
3-12 Using the Data Integration Plug-In

Running the EJB Sample
Figure 3-6 Import: Select Components to Import

4. Make sure that the Activate workflows after import check box is selected, and
that all components are selected. Click Import. The Import: Review Import
Summary dialog box is displayed (Figure 3-7).
Using the Data Integration Plug-In 3-13

3 Running the WebLogic Integration Sample Applications
Figure 3-7 Import: Review Import Summary

5. Confirm that the correct components are listed. If they are not, click Back and
select the components again. If the list of components is correct, click Close. You
are now ready to open the template.

Step 2. Open the Template

1. In the navigation tree, expand the WLXT Example template imported in the previous
step. Right-click the template definition 1-1-00-12:00-AM.

2. Select Open. The workflow created for this sample application is displayed
(Figure 3-8).
3-14 Using the Data Integration Plug-In

Running the EJB Sample
Figure 3-8 Workflow for WebLogic Integration Example
Using the Data Integration Plug-In 3-15

3 Running the WebLogic Integration Sample Applications
Step 3. Start the Workflow

You can start the workflow created in the sample in either of two ways:

� From the WebLogic Integration Worklist

� From the Command Line

Once you start the workflow, you can use the Studio to monitor the simulated flow of
data between the HR system and the payroll system.

From the WebLogic Integration Worklist

To start the sample workflow from the WebLogic Integration Worklist:

1. Start the WebLogic Integration Worklist and choose Workflow→Start a Workflow.

2. Select WLXT Example. Click OK.

Figure 3-9 WLXT Example Worklist

3. Right-click the Enter Payroll Data task and select Execute. The Enter Payroll
Data dialog box is displayed (Figure 3-10).
3-16 Using the Data Integration Plug-In

Running the EJB Sample
Figure 3-10 Enter Payroll Data

4. Enter the payroll data and click OK. The task and the workflow are started.

Note: For this example, only the numbers 1 through 4 are valid as employee
numbers. You can enter any value, however, as the period ending date and
the number of hours worked.

From the Command Line

To start the sample workflow from a command-line prompt:

1. In a text editor, open the script (Autopay.cmd on Windows NT systems or
Autopay.sh on Unix systems) and check the location of the WebLogic
Integration process engine. By default, the location is localhost and the
number of the port is 7001.

2. Change the location information to match the host and port for your system.

3. Set the environment variable WL_HOME to the pathname of the directory in which
WebLogic Server is installed on your system. For example:

set WL_HOME=c:\bea\wlserver6.1

4. Set the environment variable WLI_HOME to the pathname of the directory in which
WebLogic Integration is installed on your system. For example:

set WLI_HOME=c:\bea\wlintegration2.1
Using the Data Integration Plug-In 3-17

3 Running the WebLogic Integration Sample Applications
5. Run the command script for your system (Windows NT or UNIX), passing the
same parameters shown in Figure 3-10. For example:

Autopay 1 2000-11-30 60

The workflow is started.

Step 4. Examine the Variable Values

To monitor the sample dataflow, complete the following procedure:

1. In the Studio, display the Workflow Instances dialog box. For information on
monitoring workflows, see Monitoring Workflows in Using the WebLogic
Integration Studio.

2. Right-click the desired workflow instance and, from the pop-up menu, select
Variables. The Workflow Variables dialog box is displayed.

3. Examine each variable and verify that it is set to the values entered in “Step 3.
Start the Workflow” on page 3-16.
3-18 Using the Data Integration Plug-In

Index

B
BinaryData variable 2-13

C
cache hits 2-12
clustering

configuring XML translator plug-in 2-17
WebLogic Server 2-16

com.bea.wlxt.cluster.BroadcastTopic 2-17
config.xml file 2-17
current size of pool 2-12

D
data translation 2-1
debug messaging 2-12
design-time component 1-4

E
EJB sample

files 3-10
event data

processing 2-8

H
high-water mark 2-12
hit ratio 2-12

I
import

repository 2-16

M
mail session

configuring 3-3, 3-7
message format language (MFL) 1-4
mfl requests 2-12

P
performance

enhancing 2-9
pool

current size 2-12
high water mark 2-12
preferred size 2-12

pool size 2-12
processing event data 2-8

R
refresh 2-12
repository

using 1-6
repository import utility 2-16
run-time component 1-4
run-time plug-in to business process

management functionality 1-5
Using the Data Integration Plug-In I-1

S
servlet sample

included files 3-2
running 3-3

U
user-defined data types

configuring 2-13

W
WebLogic Server clustering 2-16
WLXTExample.jar file 3-12
wlxt-repository.properties file 2-16
workflow

starting 3-16
workflow definition

importing 3-12
I-2 Using the Data Integration Plug-In

	1 Understanding the Data Integration Plug-In
	Understanding XML Translation
	What Is Data Integration?
	Design-Time Data Integration Component
	Run-Time Data Integration Component
	Plug-In to Business Process Management Functionality

	Using the Repository

	2 Using the Data Integration Plug-In
	Data Translation with the Data Integration Plug-In
	Translate XML to Binary
	Translate Binary to XML

	Processing Event Data
	Enhancing Data Translation Performance
	Variable Types and the Data Integration Plug-In
	Custom Data Types and the Data Integration Plug-In
	Configuring User Defined Data Types
	Using the Format Builder
	Using the Repository Import Utility

	Support for WebLogic Server Clustering
	Configuring the Data Integration Plug-In for Clustering

	3 Running the WebLogic Integration Sample Applications
	Prerequisites
	Running the Servlet Sample
	What Is Included in the Servlet Sample
	How to Run the Servlet Sample
	Step 1. Start the Sample Application Launcher
	Step 2. Configure the Mail Session
	Step 3. Update the Sample XML Data and Send Message

	Running the EJB Sample
	What Is Included in the EJB Sample
	How to Run the EJB Sample
	Step 1. Import the Workflow Definition
	Step 2. Open the Template
	Step 3. Start the Workflow
	Step 4. Examine the Variable Values

	Index

