0?7,

r
S’ 7
L/

BEA WeDbLogic
Integration-

Developing Adapters

Release 2.1 Service Pack 1
Documen t Date: Januar y 2002



Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Developing Adapters

Part Number Date Software Version

N/A January 2002 2.1 Service Pack 1




Contents

About This Document

What YOou Need t0 KNOW ......c.cociiiiiiiiicice e XVi
B-00CS WED SIE....cuticeiciece et XVii
How to Print the DOCUMENT.........ccoiiiriiiieieriee e xvii
Related INfOrmation...........ccoooviii i XVii
(00T ] (ot AU L PSSRSO Xviii
Documentation CONVENTIONS .........cuveiiieiieieeieiieee e Xviii
1. Introduction to the ADK
SECION ODJECLIVES ...ttt bt s 1-1
What IS the ADK? ..ottt 1-2
Requirements for Adapter Development...........ccccoveveieeieeeeniesinsescnseennens 1-2
What the ADK ProVidesS........ccoviiiiiiiiie et 1-3
What are AGAPLEIS? ...c.veveeeeieieeie et ns 1-3
L Y T= I Ao -1 o] (=] £ 1-4
EVENT AGAPLETS ...ttt et e 1-5
J2EE-Compliant Adapters Not Specific to WebLogic Integration............. 1-5
The DeSIigN-Time GU.....c.cccoveiiiiise s 1-6
The ApPlICAtioN VIBW ......c.coiiiiiiiie et s 1-6
The Packaging FrameWOrK..........ccovviivieiiinesie e 1-7
BefOre YOU BEOIN.....ccvciiieiiric ettt s 1-7

2. Concepts

Run Time Versus Design TiMe .......ccocuiiiiiiiiine e 2-1
RUN-TIME FIrameWOrK .........cccovereirrreriiienreee s 2-2
Design-Time FramewWork ..o s 2-2

EVENES AN0 SEIVICES .....uiiiitiiie ittt bbb s 2-3

Developing Adapters iii



V=] ) 2-3

SBIVICES. .ttt ettt b et bbb e b e et et 2-4
0T o g o P 2-4
The Logging TOOIKIt........cccivrereiceeerse s 2-5
The Logging Framework ... 2-5
Internationalization and Localization.............ccccovvrveeinncccnncccens 2-5
Adapter Logical NAME......ccoiiiiiiiiieceese s 2-6
Where the Adapter Logical Name iS USed ..........cccovieriiincieieennieinenne 2-6

In Adapter Deployment........coceeieiereeeee s 2-7

As an Organizing PrinCiple ... 2-8

As the Return Value for getAdapterLogicalName() ........c..ccoervrenee 2-9
Enterprise Archive (.ear) FileS........cvv i 2-9

3. Tools

SAMPIE AGAPLEL ... 3-1
Why Use the Sample Adapter?.........cccooeveieeisiesie s sese e 3-2
What’s In the Sample Adapter .......cccocvvevceceeiese e 3-2
The GenerateAdapterTemplate ULIlity .........cooeiiiiiiiii e 3-3
ADK JAVAAOC ... et 3-3
ANt-Based BUIld PrOCESS ..o 34
WY USE AN? L.ttt bbb ettt an 3-4
XML TOOIS .ot 35

4. Creating a Custom Development Environment

Adapter SEtUP WOIKSNEET .......c..oieiiciiiice et 4-1
Using Generate AdapterTEMPIALE ........cccooviiiiriiieiee e 4-2
Step 1. Execute GenerateAdapterTemplate.........coovivrevireercivsinnnsinnnnnns 4-2
Step 2. ReDBUTIA the TIee ....ceieiiiie e 4-5
Step 3. Deploy the Adapter to WebLogic Integration.............ccoceeerenennne 4-6

5. Using the Logging Toolkit

[0 oo [T aTo I ] | SR 5-2
Logging Configuration File ... 5-2
[0 o o T aTo I @0 0 ¢1=] o] £ SSS 5-3
MESSAGE CAtEYONIES . vvuvriviierievireesiereeeereerestesesteste e sre e e ee e see e e e sreenesnenees 5-3
MESSAGE PFIOTILY ...ttt e e 5-4

Developing Adapters



Assigning a Priority t0 a Category .......ccovvevvivriesienesinsee e veeeere e 5-5

MESSAGE APPENUETS......eveiiitieierie sttt sttt ettt sb et se e e 5-5
MESSAQE LAYOUL.......eiueeieieieriesiieie et sete et ste e see s et eneenneeneeneas 5-6
Putting the Components TOGEther........cccvvevereriiieeieeseee e 5-7
HOW t0 St UP LOGGING. ... eeuiriiiieiiiiiiniesie sttt e 5-8
Logging Framework ClaSSES ........cvivierieriirieriereeiereeeseseetese e seesseseensesseseees 5-10
com.bea.logging.1LOGOET .....coveiieeieeeiee e 5-10
com.bea.logging.LogCONTEXL ........ooviiriiieiiciieiere e 5-11
com.bea.logging.LOgMaNager........ccccueverveieieeeisesesesese s 5-11
Internationalization and Localization of Log MeSSages.........cccovevererereriennns 5-14
Saving Contextual Information in a Multi-Threaded Component .................. 5-14

Developing a Service Adapter

J2EE-Compliant Adapters Not Specific to WebLogic Integration ................... 6-2
Service Adapters in the Run-Time Environment ............cccoceevviniienencncnenens 6-2
THe FIOW OF EVENES ....cviiiiiic e 6-5
Step 1: Development ConsSiderations ...........ccocvvvvivievenesereenere e 6-6
Step 2: Configuring the Development Environment...........ccoccoeveeieneneseieenens 6-7
Step 2a: Set Up the File StrUCIUIe .....c..ovv e 6-7
Modifying the Directory StruCtUre........c.covvvevivvierie e 6-9
Step 2b: Assign the Adapter Logical Name.........ccccooeeiiiiiiiiicieiee, 6-10
Step 2c: Setting Up the Build ProCess.........cccovvvriererericrniese e e, 6-10
The Manifest File ..o 6-10
build.XmIl COMPONENTS ..o e 6-11
Step 2d: Create the Message BUNdIe..........cccccvvvereveriveiniesie e, 6-23
Step 3: Implementing the SPL.........ccoo i 6-23
HOW t0 USe thiS SECHION ......eiviieiiiieie e 6-23
Basic SPI IMplementation........ccc.cocevevereinsecie e 6-24
ManagedConNECtIONFACIONY ........ccccveieirrere e 6-24
Transaction DemarCation ..........c.cooevererereneieiseeses e e 6-24
ADK IMplementations ..........ccovvrviirererenee e se e see e 6-25
AbstractManagedConnectionFactory Properties Required at
DEPIOYMENT....ceinieiiicti e 6-31
ManagedCONNECTION. .......cciiieiirie ittt 6-32
ADK IMPIementation............corveirienniennene e 6-32

Developing Adapters v



Vi

ManagedConnectioNMetaData..........ccveveireirieeiere e e e seie e 6-33

ADK IMpIemeNntation. ..o 6-33
COoNNECLIONEVENILISIENEN ......cvviiirereieeee e 6-34
ADK IMpIemMEeNtation........ccccvviviviirereriire e 6-34
CoNNECLIONMANAGET .....ccviiiiieeitiie ettt b 6-34
ADK IMpIemEeNtation........ccccovivvviereieriireeeie e s 6-35
ConnectionREQUESEINTO ......ooveiiieiie e 6-35
ADK IMPIementation............ccoceiiiiieiiiereeee e 6-35
LOCAITIANSACLION .....vvirice s 6-35
ADK IMpIementation. ..o 6-36
Step 4: Implementing the CCl ........cooiiiiiiiie e 6-36
How t0 Use this SECLION .......cevirirccre s 6-36
Basic CCI Implementation .............cccoerieiiiiiiienie e 6-37
CONNECTION. ...ttt st st s e e 6-37
ADK IMpIemeNntation........cc.cocivivienererereeiere e 6-38
INEEIACTION ... it 6-38
ADK IMplementation...........ccoceiiieneieeeee s 6-39
Using XCCl to Implement the CCl.......ccovvviiierine e 6-41
DOCUMENTRECOIT. .......cviiiieeii ettt 6-42
IDOCUMENT ...ttt e ene e 6-42
ADK-Supplied XCCI CIaSSES .....ccvrverieeirrarieriieeesesiesieseeseeaaneesenees 6-44
XCCI DeSign Pattern.......cc.cveiiiiiiiieiescee st 6-45
Using Non-XML J2EE-Compliant Adapters ........cocooerereieneneiesieeieaiens 6-45
CONNECLIONFACIONY ....vcvvcviiecie st eenen 6-46
ADK IMplementation ..o 6-47
CoNNECtiONMELADALA ........ccveeeiieeiieieeeee e e 6-47
ADK IMplementation.........c.cccovvviineierieneeeere e 6-47
CONNECLIONSPEC ...ttt bbb e 6-47
ADK IMpIementation ..o 6-48
LG Uot T ] 1 oSSR 6-48
ADK IMplementation ..o 6-49
LOCAITIANSACTION ....viieieeieiiee et e 6-50
RECOND. ... 6-50
ADK IMplementation ..o 6-51
Resource AdapterMetaData. .........cc.vveveieiriiiresiese e 6-52

Developing Adapters



ADK IMplementation.........cccccovvvriiinenenereeres e 6-52

Step 5: Testing the AAPLEN .......ooeiieeeeee e 6-52
USIiNG the TeSt HAIMESS......cvcveiieierieriese et 6-53
Test Case Extensions Provided by the ADK........c.ccceovvvvivivnvninnennnenns 6-53

sample.spi.NonManagedScenarioTeStCase ........c.cccvrererererieriennnn. 6-54
sample.event.OfflineEventGeneratorTestCase ........ccoevvvevvreriereennen, 6-54
sample.client. ApplicationViewClient ...........ccooooviniiiineneicicneee 6-54
Step 6: Deploying the AdAPLer ........ccoiiiiieiie e 6-55

Developing an Event Adapter

Event Adapters in the Run-time Environment ........cc.ccocvvivvvvnnievienesienesenenens 7-2
The FIOW O EVENLS ...t e 7-4
Step 1: Development ConsSiderations ...........ccocvvvvivienenesereenee e 7-5
Step 2: Configuring the Development ENVironment.........coccoevvvveeveneerevnniennns 7-5
Step 2a: Set up the File StruCture ..........cooove i 7-6
Step 2b: Assign the Adapter Logical Name.........cccccocevvvierenecicinsieciennnn, 7-6
Step 2¢: Set Up the BUild ProCess.........ccovvvverenierieiseeise e sese e seeeens 7-6
Step 2d: Create the Message BUNAIE...........ccocooereieiiiiiiieieceece e 7-7
Step 2e: Configure LOGQING . ..vcovereeeere e sesie e 7-7
Create an Event Generation Logging Category .........ccocvvvvvrerervennnn 7-7

Step 3: Implementing the Adapter..........cooiiiii e 7-8
Step 3a: Create an EVENt GENEIALON ........ccvvveiivriieieiee e esee e sree e neeens 7-8
How the Data Extraction Mechanism is Implemented ....................... 7-9

How the Event Generator is Implemented...........ccccoooivininenenennns 7-12

Step 3b: Implement the Data Transformation Method...........c.ccccevvernias 7-18
Step 4: Testing the AdAPLEr .......ccveeececre e e 7-20
Step 5. Deploying the Adapter ... 7-20

Developing a Design-Time GUI

Introduction to Design-Time FOrm ProCessing .......cccoveverervereereeesiveieseennnns 8-2
FOrm Processing ClaSSeS......couuieuereiriieieiesiesie sttt 8-3
ReQUESTHANAIET .......eiiiieiiee e e 8-3
CoNtrollerSErVIEt........covieieee e 8-4
ACLIONRESUIL......ooiiiii s 8-4

Word and I1tS DeSCENANTS. ........cceruererierieie e 8-4

Developing Adapters vii



AbstractinputTagSupport and Its Descendants..........ccccoeevereevenennn 8-5

FOrm Processing SEQUENCE........ccurirereeiiriererie st 8-6
PrErEOUISITES ...vveveeeieeiteeiesiereesieie e e e sne e 8-6
Steps iN the SEQUENCE......ccucveieee e 8-7
DeSIgN-TIME FRALUIES......cueitiiteitiiee ettt ettt 8-9
JAVA SEIVEE PAJES ...ttt e 8-9
JSP TEMPIALES ...t e 8-10
The ADK Tag LiDrary ... s 8-11
JSP Tag ALTIDULES. ..o s 8-12
JavaSCript LIDrary ... 8-14
The APPlICALION VIBW ..ot 8-14
FIlE STIUCTUNE ... 8-14
The FIOW OF EVENLS....c.oiiiiiiciie et s 8-15
Step 1: Development CoNSIAErations ...........coocveereriiinene e 8-17
Step 2: Determining the Screen FIOW........ccccovvveicecicisrc e 8-18
SCreen 1: Logging IN ..o e 8-18
Screen 2. Managing Application VIeWs...........ccocveiiiniiinniencnc e 8-18
Screen 3: Defining the New Application VIeW.........ccocvvvvevierieicvcnnnnnn, 8-19
Screen 4: Configuring the CONNECLION ........ccooviiiiiiiiiire e 8-19
Screen 5: Administering the Application View..........ccccooveiiiiinccnenn 8-19
Screen 6: AddiNg an EVENT.......ccceveiiiiieie e 8-20
SCreen 7: AddiNg @ SEIVICE ....ccueiveiieiierieie et 8-21
Screen 8: Deploying an Application VIeW ..........cccccveiiienincnenciceen, 8-22
Controlling USEI ACCESS.......ecviveririerieriesieiesieeesessesessessessesaessessenens 8-23
Deploying the Application VIEW..........ccoceveiiinineniiinene e 8-23
Saving the Application VIEW ........ccccooeiiiiiiiiincee e 8-23
Screen 9: Summarizing the Application VIiew .........cccccoevecvvivvievericiennnn, 8-23
Step 3: Configuring the Development Environment ............ccccceieieinieiinienn 8-25
Step 3a: Create the Message Bundle ............cooiiiiiiiiiiicnincceee, 8-25
Step 3b: Configure the Environment to Update JSPs Without Restarting the
WEDLOGIC SEIVET ... 8-25
Step 4: Implementing the Design-Time GUI .......ccccoceiiiiiiiiiiicee 8-30
Extend AbstractDesignTimeRequestHandler...........c.coceoeiiiciiiiicnins 8-31
Methods t0 INCIUAE ..o 8-31
Step 4a. Supply the ManagedConnectionFactory Class...........c.cccceeueeenne. 8-32

viii Developing Adapters



Step 4b. Implement initServiceDescriptor().......cccevervvervieriesereneseeens 8-32

Step 4c. Implement inNitEventDesCriptor() .......ocooveeiererirene e 8-33
Step 5: Write the HTIML FOIMS ......ovivcrcie e 8-34
Step 5a: Create the confconn.jsp FOrM ... 8-34
Including the ADK Tag Library........cccccooiiiiiiniinnc e 8-35
Posting the ControllerServiet...........ccoovovveviecciice e 8-35
Displaying the Label for the Form Field............cccoooniiiniininnns 8-36
Displaying the Text Field Size........cccccoviiiiiiini e 8-37
Displaying a Submit Button on the FOrm .........ccocoecvvevvevecincneennn, 8-37
Implementing confConN().......coooereieicce e 8-37
Step 5b: Create the addevent.jsp fOrm ..., 8-37
Including the ADK Tag Library........cccccooveveieiniecsnsie e, 8-38
Posting the ControllerServiet ... 8-38
Displaying the Label for the Form Field............cccoeniiiniiinnnnns 8-38
Displaying the Text Field Size........ccccoovviviivn v 8-39
Displaying a Submit Button on the FOrm .........ccocooeveiininienicene, 8-39
Adding Additional Fields..........ccoooiiiiiniiiii e, 8-39
Step 5¢: Create the addserve.jsp form ..., 8-39
Including the ADK Tag Library........cccccooiiiiiiniinn e 8-40
Posting the ControllerServiet ... 8-40
Displaying the Label for the Form Field..........cccccooeviiviivivicninnenns 8-41
Displaying the Text Field Size........cccccoviiiiiiinii e 8-41
Displaying a Submit Button on the FOrm .........ccocooeveiiininienicnne, 8-41
Adding Additional Fields............ccoovviviiieniniee e, 8-41
Step 5d: Implement Edit Events and Services (optional)..........c.cccceeuneee. 8-42
Update WIi.prOPerties .........cooeiereieiineeie e 8-42
Create edtservc.jsp and addServe.jSP......cvereeeieveeeiesinneseseeseneens 8-43
Implement MEthods ..........cooiiiiinii e 8-44
Step 5e: Write the WEB-INF/web.xml Web Application Deployment
Dol ] o] (o] (ST 8-45
Step 6. Implementing the Look-and-Feel..........cccooiviniinniccnccce, 8-48
Step 7. Testing the Sample Adapter Design-Time Interface.........c.cc.ccooeeuenee. 8-49
FileS and CIASSES .....veviieiieieeieieee e 8-50
RUN T TESTS ... 8-50

Developing Adapters iX



9. Deploying Adapters

Using Enterprise Archive (.ear) FileS.......ccccvviieieriicivie s 9-1
Using Shared .jar Files in an .ear File ..., 9-3
.ear File Deployment DESCIIPLON ....cc.cvcvvrreririeseee s eesie s 9-4
D =T0] (o) AT g o o 1o (=T SRS 9-5
Deploying Adapters by Using the WebLogic Server Administration Console
9-5
Deploying Adapters Manually ...........cccoceveveviirsinie s 9-6
Adapter AULO-regiStration..........ccocovieiiiiii s 9-7
Editing Web Application Deployment DesCriptors.........cccovevvereneneieneeneeenne. 9-8
Deployment Parameters.........cccoveveveeeeeisese e sesie e se e e sneens 9-8
Editing the Deployment DeSCIIPLOrS ......ccuveierererie e 9-9

A. Creating an Adapter Not Specific to WebLogic Integration

USING this SECLION .....eveeieicicecece e A-1
BUilding the Adapter .......c.cveiveicreere e e A-2
Updating the Build PrOCESS .......cccoiiiiiiiiiiiieieiesceiries e A-3
B. XML Toolkit

BT | B T - To SR B-1
IDOCUMENT ...ttt bttt st sb e bt e e e e nbeenbennas B-2
Schema Object Model (SOM) .....c.oiiiiiiiie e B-3
HOW SOM WOTKS ....cooiviiiiiiiieiriieteee e s B-4
Creating the SCheMA. ..o B-5
The Resulting SChema..........ccvoiiiiiiiie e B-8
Validating an XML DOCUMENL......ccccverieeeesesestesieseseesieseeseeneesensnsennens B-10
How the Document is Validated............ccooveriiiniinenene e B-11
Implementing iSValid() ......cccooveeiieiiiiiee e B-11
isValid() Sample Implementation ..........cccccocveivviievivresinecrsesneens B-12

C. Migrating Adapters to WebLogic Integration 2.1

Changes to the Deployment Method ..o C-1
How it’s Done in WebLogic INtegration ..........cccccvevereverecieiecne s C-3
Registering the Design-time Web Application........c..ccocvvvvvvvievcnciene e C-3
Using @ Naming CONVENTION ..........coueiiiriniieineseie e e C-3

Developing Adapters



USING @ TEXE FIlE 1.vveii e C-4
Other Migration ISSUES ........coeiuirieieiieieiceese et C-4

. Adapter Setup Worksheet

Adapter Setup WOIKSNEEL.........ccovirircirrrcrc e D-2
The DBMS Adapter

Introduction to the DBMS AdAPLEr .......cccoieiiieiiieie s E-1

How the DBMS Adapter WOIKS.........ccicervirierieieeiersese st E-2

BefOre YOU BEOIN....c.coiiiiiiriiiieie ettt e e E-3

Accessing the DBMS Adaper ... E-3

A Tour of the DBMS AdapLer........coeiveveiieiiie e sesie e enaens E-4

How the DBMS Adapter Was Developed..........cccooeieiiiiineienie e E-24

Development Reference Documentation ............cccooeeeeririenenenenenieneennns E-24

Step 1: Development Considerations ..........cocvvevererereeneieeresreeresesneseens E-25

Step 2: Implementing the Server Provider Interface Package.................. E-27

ManagedConnectionFactorylmpl..........ccccoeieiinnin i E-28

ManagedConnectionImpl.........cccoceveiieierecee e E-29

ConnectionMetaDatalmpl ............cooiiiiiinine e E-30

LocalTransactionImpl ... E-31

Step 3: Implementing the Common Client Interface Package.................. E-32

ConNECtiONIMPL ... e E-33

INteractionIMpl.........ooooii E-34

INteractionSPECIMPl.....c.coviiceee e E-35

Step 4: Implementing the Event Package..........ccccoovviiiiiii i, E-36

EVENTGENEIALON ...ttt E-36

Step 5: Deploying the DBMS Adapter........ccoovvvieevieenese e e, E-38

Before YOU BEGIN ....oouiiiiiiiiieie et E-38

Step 5a: Update the ra.xml File.........coooiiiii e E-38

Step 5b: Create the .rar File ......cccovvvev i E-39

Step 5c¢: Build the .jar and .ear Files .........ccoooeiiieiiiiciniicicie E-39

Step 5d: Create and Deploy the .ear File ... E-40

How the DBMS Adapter Design-Time GUI was Developed ...........ccccceveneene. E-42

Step 1: Development Considerations ..........ccoceoereeeieienseeieseeesese i E-42

Step 2: Determine Necessary Java Server Pages .......cccovevereeerenieniennens E-43

Developing Adapters xi



Step 3: Create the Message Bundle..........cooveevvviiivcceic i, E-44

Step 4: Implementing the Design-time GUI...........cccccoiviiininicienciene E-44
Step 5: Writing Java Server Pages........ccovververreieeneseeesiesesiesieseeeesvesennes E-45
LOTU IS (o] (I o I o 1SR E-46

Save an ODJECt’S StAe.......ccocvieriie s E-46

Write the WEB-INF/web.xml Web Application Deployment Descriptor

E-46
F. The E-mail Adapter

Introduction to the E-mail AdapLer..........cooie i F-1
How the E-mail Adapter WOIKS .........cccoveieiriiinin e s F-2
Before YOU BEGIN......ccviiiiie ettt F-2
Accessing the E-mail Adapter ... F-3

A Tour of the E-mail AdapLer .......cccveivvvceviie e F-4
How the E-mail Adapter was Developed .........cccoveieiveeiesnsie e F-14
Development Reference Documentation............coceeeveneneieinieicseneniens F-14
Step 1: Development Considerations ..........cceevevevesveienieseseneseeseeseeens F-15
Step 2: Implementing the Server Provider Interface Package.................. F-17
ManagedConnectionFactorylmpl...........ccccooeviinninnenenee e F-18
ManagedCoONNECHION. ......c.vcvieee et F-19
ConnectionMetaDatalmpl ..........ccccoveieieriieeinese e F-20

Step 3: Implementing the Common Client Interface Package ................. F-21
ConNECLIONIMPL ..o F-21
INtEraCtionIMPpl......oov e F-22
InteractionSPecIMpl ..o F-23

Step 4: Implementing the Event Package...........cccovvvvivvevenencricneeennns F-24
EMAIlEVENTMEaDAta ....c.ccveveiveeiie e F-25
EMailPUSNEVENT .......coiiiiiii e F-25
EMailPUShHANIEN ..o e F-26
PUHEVENTGENEIALOL ... .ottt et F-27
PUShEVENTGENEIALOT .......ciiiviceiieiieie sttt F-28

Step 5: Deploying the Adapter .......ccccceeverereeieie s F-29
Before YOU BeGIN....cccieiiiecieieeece ettt e F-29

Step 5a: Update the ra.xml File ... F-29

Step 5b: Create the .rar File.......ccovvveivveiicecc e F-30

Xii Developing Adapters



Step 5¢: Build the .jar and .ear Files .........ccccvvvereviciveinnsinseseeens F-30

Step 5d: Create and Deploy the .ear File ........ccccooeiiiiiininiiiien F-31
Creating the E-mail Adapter Design-Time GUI ......c.cccocvveeviveieieiicinsieeiennnns F-33
Step 1: Development Considerations ..........ccocvvveverereneeneeenesneereseseneens F-34
Step 2: Determine E-mail Adapter Screen FIOW.........c.ccoceoeniiciiiiencnncns F-34
Java Server Pages (JSP) ....covivcvivreiiresieiesieie s F-34
Step 3: Create the Message Bundle...........cccooeiiininiiii e F-35
Step 4: Implementing the Design-time GUI ...........ccocoiiiiiniiiiiiies F-36
E-mail Implementation ..........cccocvveveneieni e F-36
Step 5: Writing Java Server Pages ........coeoeverereiieineenese s F-36
Step 5a: Developers” COMMENTS.........covireierierieie e F-36
Step 5b: Write the WEB-INF/web.xml Web Application Deployment
Dol ] o] (0] P F-37

Index

Developing Adapters xiii



Xiv Developing Adapters



About This Document

Developing Adapters is organized as follows:

“Introduction to the ADK” provides a brief background on the WebLogic
Integration Adapter Development Kit. It discusses service and event adapters,
the design-time GUI, and what to do before you start building an adapter.

“Concepts” discusses of some of the ADK concepts relevant to adapter
development, including events and services, design time versus run time,
logging, and the adapter logical name.

“Tools” describes the ADK tools provided that you can use to build adapters.
These tools include the sample adapter, the GenerateAdapterTemplate utility, the
Ant-based build process, XML tools, and Javadoc.

“Creating a Custom Development Environment” shows how to use the
GenerateAdapterTemplate utility to clone the sample adapter and customize a
development environment for your new adapter.

“Using the Logging Toolkit” describes how to use the ADK logging toolkit to
implement logging. It also includes a discussion of the Apache log4j
specification, which is the core of the ADK logging framework.

“Developing a Service Adapter” shows you how to build an adapter that
supports services. It delineates all of the steps required to successfully create the
adapter and shows relevant code samples where necessary.

“Developing an Event Adapter” shows you how to build an adapter that supports
events. It delineates all of the steps required to successfully create the adapter
and shows relevant code samples where necessary.

“Developing a Design-Time GUI” shows you how to build a graphical user
interface that adapter users need to define, deploy, and test their application
views. It delineates all of the steps required to successfully create the GUI and
shows relevant code samples where necessary.

Developing Adapters XV



“Deploying Adapters” describes the procedures for deploying adapters to
WebLogic Integration. It describes how to deploy an adapter both manually and
from the WebLogic Server Console.

“Creating an Adapter Not Specific to WebL ogic Integration” shows you how to
modify the procedures described in Chapter 6, “Developing a Service Adapter,”
and Chapter 7, “Developing an Event Adapter,” to develop an adapter that can
be used on the WebL ogic Server but not within the confines of WebLogic
Integration.

“XML Toolkit” describes the tools available in WebLogic Integration to
facilitate creating valid XML documents.

“Migrating Adapters to WebL ogic Integration 2.1” describes the changes to the
adapter deployment method from WebL ogic Integration 2.0 and how to register
the design-time Web application under WebL ogic Integration 2.1.

“Adapter Setup Worksheet” is a worksheet that will help you conceptualize the
adapter you are building before you actually begin to code. It will help you
define such components as the adapter logical name and the Java package base
name and help you determine the locales for which you need to localize message
bundles.

“The DBMS Adapter” describes how the ADK was used to build a DBMS
adapter. It also contains a simple task-driven example of how to use the DBMS
adapter.

“The E-mail Adapter” describes how the ADK was used to build an E-mail
adapter. It also contains a simple task-driven example of how to use the E-mail
adapter.

What You Need to Know

XVi

Developing Adapters is designed primarily for use by adapter developers who will use
the ADK to develop service adapters, event adapters, and the design-time GUI that
adapter users employ to create application views.

Developing Adapters



e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://edocs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebL ogic Integration
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at ht t p: / / www. adobe. con .

Related Information

The following resources are also available:

BEA WebLogic Server documentation (ht t p: / / e-docs.beasys.com)

BEA WebLogic Process Integrator documentation (ht t p: / / e-docs.beasys.com)

XML Schema Specification (ht t p: / / www. w3. or g/ TR/ xml schena- 0/ )

The Sun Microsystems, Inc. J2EE Connector Architecture Specification
(http://java. sun. com j 2ee/ connector/)

Developing Adapters Xvii



Contact Us!

Your feedback on the WebLogic Integration documentation is important to us. Send
us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for this
release of WebL ogic Integration.

If you have any questions about this version of WebLogic Integration, or if you have
problems installing and running WebL ogic Integration, contact BEA Customer
Support through BEA WebSupport at www.beasys.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m  The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xviii

The following documentation conventions are used throughout this document.

Convention  Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Developing Adapters



Convention Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#i nclude <iostreamh> void main ( ) the pointer psz
chnmod u+w *

\t ux\ dat a\ ap

. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name ] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Developing Adapters Xix



XX

Convention

ltem

Indicates one of the following in a command line:

m  That an argument can be repeated several times in a command line

m  That the statement omits additional optional arguments

m  That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name ] [-f file-list]...

[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Developing Adapters



CHAPTER

1 Introduction to the
ADK

This guide is the “how to” guide for using the WebLogic Integration Adapter
Development Kit (ADK). It will show you how to develop, test, and deploy event and
service adapters and the design-time user interface.

This section provides information on the following subjects:
m \What is the ADK?

m  What are Adapters?

m  The Design-Time GUI

m Before You Begin

Section Objectives

This section serves as an overview to using the ADK to develop event and service
adapters and a design-time GUI. You will learn:

m  What adapters are and how they are used.
m Prerequisites you must meet before beginning adapter development.

m  Terminology associated with adapter development.

Developing Adapters 1-1



1 Introduction to the ADK

What is the ADK?

The ADK is the tool set for implementing the event and service protocol of BEA
WebLogic Integration; that is, it is a collection of frameworks that support the
development, testing, packaging, and distribution of resource adapters for WebLogic
Integration. Specifically, the ADK is comprised of the following four frameworks:

m Design-time
m  Run-time

m Logging

m Packaging

Requirements for Adapter Development

The ADK addresses three requirements for adapter development:

m Structure: A prominent theme in any integrated development and debugging
environment (IDDE) is development project organization. You want a well
structured development environment so you can immediately begin coding the
adapter. You do not want to spend time designing and organizing a build
process. The ADK provides an organized development environment, build
process, intuitive class names and class hierarchy, and test methodology. Since
the ADK encompasses so many advanced technologies, an incremental
development process (code a little, test a little) is the key to success. The ADK
test process allows the developer to make a simple change and test it
immediately.

m  Minimal Exposure to Peripheral Implementation Details: Peripheral
implementation details are sections of code that are needed to support a robust
software program, but are not directly related to the kernel of the program.
Moreover, peripheral implementation details are sections of code that are needed
to support the framework the software program runs in. For example, the J2EE
Connector Architecture specification requires that the
j avax. resource. cci . | nteracti onSpec implementation class provide getter
and setter methods that follow the JavaBeans design pattern. To support the

1-2 Developing Adapters



What are Adapters?

JavaBeans design pattern, you need to support Pr oper t yChangelLi st ener s and
Vet oabl eChangeli st ener s in your implementation class. You do not want to
have to study the JavaBeans specification to learn how to do this. Rather, you
want to focus on implementing the enterprise information system (EIS)-specific
details of the adapter. The ADK provides base a base implementation for a
majority of the peripheral implementation details of an adapter.

m A Clear Road Map to Success: A key concept in adapter development is the exit
criteria. The exit criteria answers the question: “How do | know | am done with
an implementation?” In other words, you want a clear road map of what needs to
be implemented to complete an adapter. The ADK provides a clear methodology
for developing an adapter. The ADK methodology organizes your thoughts
around a few key concepts: events, services, design time, and run time.

What the ADK Provides

The ADK provides:
m  Run-time support for events and services.

m  An API to integrate an adapter’s user interface into the WebL ogic Integration
Application View Management Console.

The added value provided by the ADK is that adapters can become an integral
part of a single graphical console application that allows business users to
construct integration solutions.

What are Adapters?

Resource adapters—referred to in this document as “adapters”—are software that
connect one application to another when those applications are not originally designed
to communicate with each other. For example, an order entry system built by one
company requires an adapter to communicate with a customer information system
built by another.

By using the ADK, you can create two types of adapters:

Developing Adapters 1-3



1

Introduction to the ADK

m  Service adapters, which consume messages.
m Event adapters, which generate messages.

You can also use the ADK to create J2EE-compliant adapters that are not specific to
Weblogic Integration but still comply with the J2EE Connector Architecture
Specification.

Service Adapters

1-4

Service adapters receive an XML request document from a client and invoke a specific
function in the underlying enterprise information system (EIS). They are consumers of
messages and may or may not provide a response. There are two ways to invoke a
service: asynchronous and synchronous. With an asynchronous service adapter, the
client application issues a service request and then proceeds with its processing. The
client application does not wait for the response. With a synchronous service adapter,
the client waits for the response before proceeding with its processing. BEA WebLogic
Integration supports both of these service adapter invocations, relieving you from
having to provide this functionality.

Service adapters perform the following four functions:
m Receive service requests from an external client.

m Transform the XML request document into the EIS specific format. The request
document conforms to the request XML schema for the service. The request
XML schema is based on metadata in the EIS.

m Invoke the underlying function in the EIS and wait for its response.

m Transform the response from the EIS specific data format to an XML document
that conforms to the response XML schema for the service. The response XML
schema is based on metadata in the EIS.

As with events, the ADK implements the aspects of these four functions that are
generic across all service adapters.

To learn how to develop a service adapter, see Chapter 6, “Developing a Service
Adapter.”

Developing Adapters



What are Adapters?

Event Adapters

Event adapters are designed to propagate information from an EIS into WebLogic
Server. These types of adapters can be described as publishers of information.

There are two basic types of event adapters: in-process and out-of-process. In-process
event adapters execute within the same process as the EIS. Out-of-process adapters
execute in a separate process. In-process and out-of-process event adapters only differ
in how they accomplish the data extraction process.

Event adapters running in a WebL ogic Integration environment perform the following
three functions:

m  Respond to events deemed to be of interest to some external party that occur
inside the running EIS and extract data about the event from the EIS into the
adapter.

m Transform event data from the EIS specific format to an XML document that
conforms to the XML schema for the event. The XML schema is based on
metadata in the EIS.

m Propagate the event to an event context obtained from the application view.

The ADK implements the aspects of these three functions that are generic across all
event adapters. Consequently, you can focus on the EIS specific aspects of their
adapter. This concept is the same as the concept behind Enterprise Java Beans (EJB).
With EJB, the container provides system-level services for EJB developers so they can
focus on implementing business application logic.

To learn how to develop an event adapter, see Chapter 7, “Developing an Event
Adapter.”.

J2EE-Compliant Adapters Not Specific to WebLogic
Integration

These adapters do not contain WebLogic Integration specifics and can be plugged into
any application server that supports the J2EE Connector Architecture specification.
These adapters can be developed by making minor modifications to the procedures

Developing Adapters 1-5



1

Introduction to the ADK

given for developing a service adapter. To learn how to develop an adapter that is not
specific to WebL ogic Integration, see Appendix A, “Creating an Adapter Not Specific
to WebLogic Integration.”

The Design-Time GUI

Along with event and service adapters, the ADKSs design-time framework provides the
tools you will use to build the Web-based GUI that adapter users need to define,
deploy, and test their application views (see “The Application View” below).
Although each adapter has EIS-specific functionality, all adapters require a GUI for
deploying application views. This framework minimizes the effort required to create
and deploy these interfaces, primarily by using these two components:

m A Web application component that allows you to build an HTML-based GUI by
using Java Server Pages (JSP). This component is augmented by tools such as
the JSP templates and tag library and the JavaScript library.

m A deployment helper component, called
Abst r act Desi gnTi meRequest Handl er that provides a simple API for
deploying, undeploying, and editing application views on a WebL ogic Server.

To learn how to develop a design-time GUI, see Chapter 8, “Developing a
Design-Time GUL.”

The Application View

1-6

A key component of application integration component of WebL ogic Integration is the
application view. The application view represents a business-level interface to the
specific functionality in an application. An adapter represents a system-level interface
to all the functionality in the application. An application view is configured for a single
business purpose and contains only the services related to that business purpose. These
services require only business-relevant data to be specified in the request document
and return only business-relevant data in the response document. Under the covers, the
application view combines this business-relevant data with stored metadata necessary
for the adapter. The adapter takes both the business-relevant data and the stored
metadata and executes a system-level function on the application.

Developing Adapters



The Packaging Framework

The application view also represents both events and services that support a business
purpose. This allows the business user to interact with the application view for all
communication with an application. This bidirectional communication is actually
supported by two adapter components (the event adapter and service adapter). The
application view abstracts this fact from the user and presents them with a unified
business interface to the application.

For more information about application views, see “Introduction to Using Application
Integration” in Using Application Integration.

The Packaging Framework

The ADK packaging framework provides a tool set for packaging an adapter for
delivery to a customer. Ideally, all adapters are installed, configured, and uninstalled
the same on a WebLogic Server. Moreover, all service adapters must be J2EE
compliant. The packaging framework makes creating a J2EE adapter archive (. rar)
file, Web application archive (. war ) file, the enterprise archive (. ear) file, and
WebLogic Integration design environment archive easy.

Before You Begin

Before you can actually begin developing an adapter, be sure the WebLogic
Integration is installed on your computer. See Installing BEA WebLogic Integration
and the BEA WebLogic Integration Release Notes for more information.

Developing Adapters 1-7



1 Introduction to the ADK

1-8 Developing Adapters



CHAPTER

2 Concepts

This section describes some of the more important concepts with which you should
become familiar before attempting to develop an adapter or design-time GUI. You will
see additional discussion of all of the following concepts at some point in the
adapter/GUI development procedures.

This section provides information on the following subjects:
m  Run Time Versus Design Time

m  Events and Services

m Logging

m Adapter Logical Name

Run Time Versus Design Time

Adapter activity falls within one of two conceptual entities: run time and design time.
Run time refers to functionality that occurs when adapters execute their processes.
Design time refers to the adapter user’s implementation of an application view; in
essence, design time is the act of creating, deploying, and testing an application view.

Run time and design time are characterized in the ADK by the run-time and
design-time frameworks. The run-time framework is comprised of the tools used when
developing adapters while the design-time framework refers to the tools you will use
to design Web-based user interfaces. Run time and design time are discussed in greater
detail below.

Developing Adapters 2-1



2

Concepts

Run-Time Framework

The run-time framework is the set of tools you will use to develop event and service
adapters. To support event adapter development, the run-time framework provides a
basic, extensible event generator. For service adapter development, the run-time
framework provides a complete J2EE-compliant adapter.

The classes supplied by the run-time framework provide the following benefits:
m  They allow you to focus on EIS specifics rather than J2EE specifics.

m  They minimize the effort needed to use the ADK logging framework.

m They simplify the complexity of J2EE Connector Architecture.

m  They minimize redundant code across adapters.

In addition, the run-time framework provides abstract base classes to help you
implement an event generator to leverage the event support provided by the ADK
environment.

A key component of the run-time framework is the run-time engine, which hosts the
adapter component responsible for handling service invocations and manages:

m physical connections to the EIS
m login authentication
m fransaction management

all in compliance with the J2EE Connector Architecture standard. These features are
provided by WebLogic Server.

Design-Time Framework

2-2

The design-time framework provides the tools you will use to build the Web-based
GUI that adapter users need to define, deploy, and test their application views.
Although each adapter has EIS-specific functionality, all adapters require a GUI for
deploying application views. This framework minimizes the effort required to create
and deploy this GUI, primarily by using these two components:

Developing Adapters



Events and Services

m A Web application component that allows you to build an HTML-based GUI by
using JSPs. This component is augmented by tools such as the JSP templates and
tag library and the JavaScript library.

m A deployment helper component that provides a simple API for deploying,
undeploying, and editing application views on a WebL ogic Server.

The design-time interface for each adapter is a J2EE Web application that is bundled
asa.war file. A Web application is a bundle of . j sp, . ht i , image files, and so on.
The Web application descriptor is web. xm . The descriptor instructs the J2EE Web
container how to deploy and initialize the Web application.

Every Web application has a context. The context is specified during deployment and
identifies resources associated with the Web application under the Web container's doc
root.

Events and Services

Events

The ADK is used to create two types of adapters: event adapters and service adapters.
Within the ADK architecture, services and events are defined as a self-describing
objects (that is, the name indicates the business function) that use XML schema to
define their input and output.

An event is an XML document published by an application view when an event of
interest occurs within an EIS. Clients that want to be notified of events register their
interest with an application view. The application view then acts as a broker between
the target application and the client. When a client has subscribed to events published
by an application view, the application view natifies the client whenever an event of
interest occurs within the target application. When an event subscriber is notified that
an event of interest has occurred, it is passed an XML document that describes the
event. Application views that publish events can also provide clients with the XML
schema for the publishable events.

Developing Adapters 2-3



2 Concepts

Services

Note: The application view represents a business-level interface to the specific
functionality in an application. For more information on this feature, please
refer to Introducing Application Integration.

A service is a business operation within an application that is exposed by the
application view. It exists as a request/response mechanism; that is, when an
application receives a request to invoke a business service, the application view
invokes that functionality within its target application and then returns (or, responds
with) an XML document that describes the results.

To define a service, you will need to determine and define the input requirements,
output expectations, and the content of the interaction specification. A request is
submitted in two parts:

m An interaction specification, containing static “secondary metadata” about the
request.

m Basic input, which identifies the value of any variables; for example, in a DBMS
transaction, the SQL statement is included in the interaction specification and the
value of the variable in the input requirement. The result of the transaction is
considered the output expectation.

Logging

Logging is an essential feature of an adapter component. Most adapters are used to
integrate different applications and do not interact with end users while processing
data. Unlike the behavior of a front-end component, when an adapter encounters an
error or warning condition, it cannot stop processing and wait for an end-user to
respond.

2-4 Developing Adapters



Logging

Moreover, the applications that adapters connect to are typically mission-critical
business applications. For example, an adapter might be required to keep an audit
report of every transaction with an EIS. Consequently, adapter components should
provide both accurate logging and auditing information. The ADKSs logging
framework is designed to handle the needs of both logging and auditing.

The Logging Toolkit

The ADK provides the logging toolkit, which allows you to log localized messages to
multiple output destinations. The logging toolkit leverages the work of the open source
project, Apache Log4j.

The logging toolkit wraps the critical classes within Log4j to provide added
functionality when you are building J2EE-compliant adapters and is provided in the
| ogt ool ki t.jar file.

For information on using the logging toolkit, see Chapter 5, “Using the Logging
Toolkit.”

The Logging Framework

With the ADK, logging of adapter activity is accomplished by implementing the
logging framework. This framework gives you the ability to log internationalized and
localized messages to multiple output destinations. It provides a range of configuration
parameters you can use to tailor message category, priority, format, and destination.

The logging framework uses a categorical hierarchy to allow inheritance of logging
configuration by all packages and classes within an adapter. The framework allows
parameters to be easily modified during run time.

Internationalization and Localization

The logging framework allows you to internationalize log messages. Internationalized
applications are easy to tailor to the idioms and languages of end users around the
world without re-factoring the code. Localization is the process of adapting software

Developing Adapters 2-5



2 Concepts

for a specific region or language by adding locale-specific components and text. The
logging framework uses the internationalization and localization facilities provided by
the Java platform.

Adapter Logical Name

Each adapter created must have an adapter logical name; that is, a unique identifier
that represents an individual adapter and serves as the organizing principle for all
adapters. As such, the adapter logical name is how an individual adapter is identified
and is also used to name the following:

m  message bundle
m logging configuration
m log categories

The adapter logical name is a combination of the vendor name, the type of EIS
connected to the adapter, and the version number of the EIS. By convention, this
information is expressed as vendor_EIS-type_EIS version; for example,
BEA_W.S_SAMPLE_ADK, where:

m BEA WS is the vendor
m  SAMWPLE is the EIS-type

m ADK is the EIS version

Where the Adapter Logical Name is Used

The adapter logical name is used with adapters in the following ways:
m It isused as a convention, although this is not required.

m Itis used during adapter deployment adapter deployment as part of the . war,
.rar,.jar,and. ear filenames.

2-6 Developing Adapters



Adapter Logical Name

m Itisused as an organizing principle, as described in “As an Organizing
Principle” on page 2-8.

m Itisused as a return value to the abstract method get Adapt er Logi cal Name()
in com bea. adapt er . web, as described in “As the Return Value for
getAdapterLogicalName()” on page 2-9.

In Adapter Deployment
The Nanre attribute of the <Connect or Conponent > element must be the adapter

logical name. This is the key application integration uses to associate application views
to a deployed resource adapter, as shown for the sample adapter in Listing 2-1.

Listing 2-1 Name Attribute of the ConnectorComponent Element

<Connect or Conmponent
Nanme="BEA W.S_SAMPLE_ ADK"
Tar get s="nyserver"
URI ="BEA W.S_SAWPLE_ADK. rar"/>

Note: The adapter logical name is used as the name of the . r ar file as a convention,
but is not required in the URI attribute.

When an application view is deployed, it has an associated J2EE Connector
Architecture CCI connection factory deployment. For example, if a user deploys the
abc. xyz application view, WebLogic Integration deploys a new

Connect i onFact ory and binds it to the JNDI location

com bea. w ai . connecti onFactori es. abc. xyz.

connect i onFact oryl nst ance. For efficiency sake, the new connection factory
deployment uses the <r a- | i nk-r ef > setting in the webl ogi c-ra. xnm deployment
descriptor.

The <r a-1i nk-r ef > element allows for the logical association of multiple deployed
connection factories with a single deployed adapter. The specification of the optional
<r a- | i nk-r ef > element with a value identifying a separately deployed connection
factory will result in this newly deployed connection factory sharing the adapter which
had been deployed with the referenced connection factory. In addition, any values

Developing Adapters 2-7



2 Concepts

defined in the referred connection factory’s deployment will be inherited by this newly
deployed connection factory unless specified. The adapter logical name is used as the
value for the <r a- | i nk-r ef > element.

As an Organizing Principle

Table 2-1 lists the areas that use the adapter logical name as an organizing principle.

Table 2-1 Areas that Use the Adapter Logical Name as an Organizing Principle

Area How the Adapter Logical Name is Used

Logging The adapter logical name is used as the base log category name for
all log messages that are unique to the adapter. Consequently, the
adapter logical name is passed as the value for the following
parameters:

m  RootLogContext in W.I _HOVE/ adapt er s/
ADAPTER/ sr ¢/ event r out er / WEB- | NF/ web. xm

m  RootLogContext in W.I _HOVE/ adapt er s/ ADAPTER/
src/rar/ META- I NF/ ra. xnl

m  RootLogContext in W.I _HOVE/ adapt er s/ ADAPTER/
src/rar/ META- | NF/ webl ogi c-ra. xm
m  RootLogContext in W.I _HOVE/ adapt er s/ ADAPTER/
src/ war / VEB- | NF/ web. xm
Where ADAPTER s the name of you adapter; for example:
WLI _HOVE/ adapt er s/ dbns/sr ¢/ war / WEB- | NF/
web. xm

In addition, the adapter logical name is used as the base for the name
of the Log4J configuration file for the adapter; . xni is appended to
the name. For example, the Log4J configuration file for the sample
adapter is BEA_ W.S_SAMPLE_ADK. xni .

2-8 Developing Adapters



Enterprise Archive (.ear) Files

Table 2-1 Areas that Use the Adapter Logical Name as an Organizing Principle

Area How the Adapter Logical Name is Used

Localization The adapter logical name is used as the base name for message
bundles for an adapter. For example, the default message bundle for
the sample adapter is BEA W.S _SAMPLE_ADK. properti es.
Consequently, the adapter logical name is passed as the value for the
following parameters:

m  MessageBundleBase in W.I _HOVE/ adapt er s/
ADAPTER/ sr ¢/ event r out er / VEB- | NF/ web. xmi

m  MessageBundleBase in W.I _HOVE/ adapt er s/
ADAPTER/ src/rar/ META- I NF/ ra. xm

m  MessageBundleBase in W.I _HOVE/ adapt er s/
ADAPTER/ src/ rar/ META- 1 NF/ webl ogi c-
ra.xm

m  MessageBundleBase in W.I _HOVE/ adapt er s/
ADAPTER/ sr c/ war / VEB- | NF/ web. xm

Where ADAPTER is the name of you adapter; for example:

WLI _HOVE/ adapt er s/ dbns/ src/ war / WEB- | NF/
web. xm

As the Return Value for getAdapterLogicalName()

Lastly, the adapter logical name is used as the return value to the abstract method
get Adapt er Logi cal Nanme() on the com bea. adapt er . web.

Abst r act Desi gnTi meRequest Handl er . This return value is used during the
deployment of application views as the value for the Root LogCont ext for a
connection factory.

Enterprise Archive (.ear) Files

The ADK uses Enterprise Archive files—. ear files—for deploying adapters. A single
. ear file contains the . war and . r ar files and the Event Router Web application files
necessary to deploy an adapter. An example of an .ear file is shown in Listing 2-2.

Developing Adapters 2-9



2 Concepts

Listing 2-2 . ear File Structure

adapt er. ear
application. xm
sharedJar. j ar
adapter.jar
adapter.rar

META- | NF
ra. xm
webl ogi c-ra. xm
MANI FEST. MF
desi gnti me. war
VEB- | NF
web. xm
META- | NF
MANI FEST. MF
event rout er. war
WEB- | NF
web. xm
META- | NF
MANI FEST. MF

The . ear file for the sample adapter is shown in Listing 2-3.

Listing 2-3 Sample Adapter . ear File

sanpl e. ear
application.xm
adk.jar (shared .jar between .war and .rar)
bea.jar (shared .jar between .war and .rar)

BEA W.S SAMPLE ADK.jar (shared .jar between .war and .rar)

BEA W.S SAMPLE _ADK.war (Wb application with
META- | NF/ MANI FEST. M- entry O ass- Pat h:
BEA W.S SAMPLE ADK. jar adk.jar bea.jar |log4j.jar
| ogtool kit.jar xcci.jar xmtoolkit.jar)

BEA W.S SAMPLE ADK.rar (Resource Adapter
wi th META- | NF/ MANI FEST. MF entry C ass- Pat h:
BEA W.S SAMPLE ADK.jar adk.jar bea.jar |log4j.jar
| ogtool kit.jar xcci.jar xmtoolkit.jar)

2-10 Developing Adapters



Enterprise Archive (.ear) Files

| og4j .jar (shared .jar between .war and .rar)
logtoolkit.jar (shared .jar between .war and .rar)
Xxcci.jar (shared .jar between .war and .rar)
xmtoolkit.jar (shared .jar between .war and .rar)

Notice that neither the . r ar nor .war filesinclude any shared . j ar files inside of them;
rather, they both refer to the shared . j ar files off the root of the . ear.

For more information on using . ear files to deploy adapters, see Chapter 9,
“Deploying Adapters.”

Developing Adapters 2-11



2 Concepts

2-12 Developing Adapters



CHAPTER

3 Tools

The ADK provides a robust set of tools to assist you in developing adapters and the
design-time GUI.

This section includes information on the following subjects:
m  Sample Adapter

m  The GenerateAdapterTemplate Utility

m  ADK Javadoc

m  Ant-Based Build Process

m XML Tools

Sample Adapter

The ADK contains a sample adapter that provides non-EIS specific code examples to
help you start building an adapter. Do not confuse this sample adapter with the e-mail
and DBMS adapters also included with WebLogic Integration; these adapters are
documented in Appendix E, “The DBMS Adapter,” and Appendix F, “The E-mail
Adapter.” You can find them in W.I _HOVE/ adapt er s/ dbrs and

WLl _HOVE/ adapt ers/ enai | .

Developing Adapters 3-1



3

Tools

Why Use the Sample Adapter?

The purpose of the sample adapter is to free you from much of the coding necessary to
build an adapter. It provides concrete implementations of key abstract classes that only
require customization for your specific EIS. In addition, the ADK provides the
GenerateAdapterTemplate utility with which you can quickly clone the sample adapter
development tree for use by the adapter you are developing. See “The
GenerateAdapterTemplate Utility” on page 3-3.

What's In the Sample Adapter

3-2

Specifically the sample adapter contains:

sanpl e.

sanpl e.

sanpl e.

sanpl e.

sanpl e.
sanpl e.
sanpl e.

sanpl e.

sanpl e.

cci . Connecti onl npl

A concrete implementation of the Connect i on interface that represents an
application-level handle used by a client to access the underlying physical
connection.

cci.Interactionl npl
A class that demonstrates how to implement a design pattern using the
Desi gnTi el nt er act i onSpecl npl class.

cci . I nteracti onSpecl npl
An interface that provides a base implementation for you to extend by using
getter and setter methods for the standard interaction properties

client. ApplicationViewd ient
A class that demonstrates how to invoke a service and listen for an event on
an application view.

eis.ElS

ei s. El SEvent

ei s. El SLi st ener

These are classes that represent for demonstration purposes, a simple EIS.

event . Event Gener at or
A concrete extension to Abst r act Pul | Event Gener at or that shows how to
extend the ADK base class to construct an event generator.

event. O fl i neEvent Gener at or Test Case
A class you can use to test the inner workings of your event generator outside
of Weblogic Server.

Developing Adapters



The GenerateAdapterTemplate Utility

sanpl e. spi . ManagedConnect i onFact or yl npl
A concrete extension to Abst r act ManagedConnect i onFact ory that you
can customize for a specific EIS.

sanpl e. spi . ManagedConnect i onl npl
A concrete extension to Abst r act ManagedConnect i on that you can
customize this class for a specific EIS.

sanpl e. spi . Connect i onMet aDat al npl
A concrete extension to Abst r act Connect i onMet aDat a that you can
customize for a specific EIS.

sanpl e. spi . NonManagedScenari oTest Case
A class you can test your SPI and CCI classes in a non-managed scenario.

sanpl e. web. Desi gnTi meRequest Handl er
A concrete extension to Abst r act Desi gnTi neRequest Handl er that shows
how to add an event or service at design time.

Note: For more details on the classes extended by those in the sample adapter, please
refer to the ADK Javadocs.

The GenerateAdapterTemplate Utility

To facilitate using the sample adapter, the ADK provides GenerateAdapterTemplate,
a command-line utility you can use to clone the sample adapter development tree and
create a new adapter development tree. See Chapter 4, “Creating a Custom
Development Environment,” for complete instructions on using this tool.

ADK Javadoc

ADK classes, interfaces, methods, and constructors are defined in the development
kit’s Javadocs. Javadocs are included with the WebLogic Integration installation and
are stored in W.I _HOVE/ adapt er s/ ADAPTER/ docs/ api , where ADAPTER s the name
of the adapter, such as Sample, DBMS, or e-mail; for example,

WLI _HOWE/ adapt er s/ dbns/ docs/ api .

Developing Adapters 3-3



3

Tools

Ant-Based Build Process

The ADK employs a build process based upon Ant, a 100% pure Java-based build tool.
For the ADK, Ant does the following:

Creates a Java archive (. j ar) file for the adapter.
Creates a . war file for an adapter’s Web application.
Creates a . rar file for a J2EE-compliant adapter.

Encapsulate the above listed components into a . ear file for deployment.

Why Use Ant?

3-4

Traditionally, build tools are inherently shell-based. They evaluate a set of
dependencies and then execute commands, not unlike those you would issue on a shell.
While it is simple to extend these tools by using or writing any program for your
operating system, you are also limited to that OS, or at least that OS type (for example,
Unix).

Ant is preferable to shell-based make tools for the following reasons:

Instead of a model where it is extended with shell-based commands, it is
extended using Java classes.

Instead of writing shell commands, the configuration files are XML-based,
calling out a target tree where various tasks get executed. Each task is run by an
object that implements a particular task interface. While this removes some of
the expressive power inherent in being able to construct a shell command, it
gives your application the ability to be cross-platform.

If you want to execute a shell command, Ant has an execute rule that allows
different commands to be executed based on the OS upon which it executing.

For complete instruction on setting up Ant, see “Step 2c: Setting Up the Build Process”
on page 6-10.

Developing Adapters



XML Tools

XML Tools

The ADK ships with two XML development tools, which are considered part of the
metadata support layer for the design-time framework. These tools, which comprise
the XML Toolkit, are:

m XML Schema API—Characterized by the Schema Object Model (SOM, this API
is used to programmatically build XML schemas. The SOM is a set of tools that
extracts many of the common details, such as syntactical complexities of XML
schema operations so that you can focus on its more fundamental aspects.

m XML Document API— Characterized by | Docunent , this API provides the
x-path interface to a document object model (DOM) document.

For instructions on using these tools, refer to Appendix B, “XML Toolkit.”

Also, your installation of WebLogic Integration includes Javadoc on both of these
APIs.

m For SOM, go to W.I _HOVE/ docs/ api docs/ conl bea/ schema

m  For IDocument, go to W.I _HOVE/ docs/ api docs/ conf bea/ docunent

Developing Adapters 3-5



3 Tools

3-6 Developing Adapters



CHAPTER

4 Creating a Custom

Development
Environment

Warning: We strongly recommend that you do not directly alter the sample adapter
included with the ADK. Instead, use the GenerateAdapterTemplate utility
described in this chapter. Modifying the sample adapter by any other
means might result in unexpected and unsupported behavior.

To facilitate using the sample adapter (see “Sample Adapter” on page 3-1), the ADK
provides GenerateAdapterTemplate, a command-line utility you can use to clone the
sample adapter development tree and create a new adapter development tree.

This section provides information on the following subjects:
m Adapter Setup Worksheet

m Using GenerateAdapterTemplate

Adapter Setup Worksheet

The adapter setup worksheet is a questionnaire that will help you identify and collect
critical information about the adapter you are developing. You can find this
questionnaire in Appendix D, “Adapter Setup Worksheet.”

Developing Adapters 4-1



4 Creating a Custom Development Environment

This worksheet is a set of 20 questions that will help you identify critical adapter
information, such as EIS type, vendor, and version, locale and national language of the
deployment, the adapter logical name, and whether or not the adapter supports
services. When you run GenerateAdapterTemplate, you will be prompted to enter this
information. When the information is processed, a custom development tree for your
adapter will be created.

Using GenerateAdapterTemplate

This section describes how to use GenerateAdapterTemplate. You will need to
perform the following steps:

m Step 1. Execute GenerateAdapterTemplate
m  Step 2. Rebuild the Tree

m Step 3. Deploy the Adapter to WebLogic Integration

Step 1. Execute GenerateAdapterTemplate

To use this tool, do the following:

1. Open a command-line from the W.I _HOVE/ adapt er s/ uti | s directory and
execute one the following commands:

e For Windows NT: Gener at eAdapt er Tenpl at e. cnd
e For Unix: Gener at eAdapt er Tenpl at e. sh
The system responds:

W.I _HOWE/ adapt er s/ uti | s>gener at eadapt ert enpl at e

EE I O O S I S I O O O

Wl come! This program hel ps you generate a new adapt er
devel opment tree by cloning the ADK s sanpl e adapter devel opnent
tree.

Do you wish to continue? (yes or no); default="yes':

4-2 Developing Adapters



Using GenerateAdapterTemplate

Select yes by pressing Enter.
The system responds:

Pl ease choose a nane for the root directory of your adapter
devel opnent tree:

Enter a unique, easy-to-remember directory name (for example, di r _nane) and
press Enter.

The system responds:

created directory W.I _HOVE adapt ers/dir_nane

Enter the EIS type for your adapter:

(Where di r _nane is the new directory name.)

Note: If you entered a directory name that already exists, the system will
respond:

WLl _HOWE/ adapt ers/dir_name al ready exists, please choose
a new directory that does not already exist!

Pl ease choose a nanme for the root directory of your adapter
devel oprment tree:

Enter an identifier for the EIS type to which your adapter will be connecting.
Press Enter.

The system responds:
Enter a short description for your adapter:

Enter a short, meaningful description of the adapter you are about to develop and
press Enter.

The system responds:

Enter the major version nunber for your adapter; default="1":

Either press Enter to accept the default or enter the appropriate version number
and then press Enter.

The system responds:

Enter the minor version nunber for your adapter; default='0":

Either press Enter to accept the default or type the appropriate minor version
number and then press Enter.

Developing Adapters 4-3



4

Creating a Custom Development Environment

4-4

10.

11.

The system responds:

Enter the vendor nane for your adapter:
Enter the vendor’s name and press Enter.

The system responds:

Enter an adapter |ogical nane; default="default_nane':

Either press Enter to accept the default or type the adapter logical name you want
to use. Press Enter. The default adapter logical name (* def aul t _name’ ) is based
upon the WebLogic Integration recommended format of vendor

name_El S-t ype_ver si on- nunber.

The system responds:

Enter the Java package base nane for your adapter
(e.g. sanple adapter's is sanple): Java package base nane

Enter the Java package base name in package format and press Enter. Package
format is dot-separated and begins with your URL extension (. com . or g, . edu,
and so on), followed by the company name, then by additional adapter identifiers;
for example, com your _co. adapter. EI S.

The system responds:

The following information will be used to generate your new
adapt er devel opnent environnent:

EI'S Type = ' SAP R/ 3'

Description = 'description'

Maj or Version = '1'

M nor Version = '0'

Vendor = 'vendor _nange'

Adapt er Logi cal Name = 'adapter_| ogi cal _nange'
Java Package Base = 'com j ava. package. base’

Are you satisfied with these values? (enter yes or no or g to
quit);
defaul t="yes':

To confirm the information, press Enter.

The system responds with the appropriate build information.

Developing Adapters



Using GenerateAdapterTemplate

Note: If you enter no, you will be routed back to Step 4. If you enter q (quit), the
application will terminate.

Step 2. Rebuild the Tree

After completing the clone process, change to the new directory and use Ant, the
ADK?’s build tool to rebuild the entire tree. For more information on Ant, see
“Ant-Based Build Process” on page 3-4.

To rebuild the tree by using Ant, do the following:

1. Edit ant Env. cmd (Windows) or ant Env. sh (Unix) in
WLI _HOVWE/ adapt er s/ ADAPTER/ uti | s.

2. Set the following variables to valid paths:

e BEA_HOME - The top-level directory for your BEA products; for example,
c:/ bea.

e W.I _HOME - The location of your WebLogic Integration directory.
e JAVA HOVE - The location of your Java Development Kit.
e W._HOVE - The location of your WebLogic Server directory.

e ANT_HOME - The location of your Ant home, typically
WLl _HOWE/ adapters/utils.

Note: The installer will perform this step for you; however, you should be aware
that these settings control the Ant process.

On Unix, the Ant file in W.I _HOVE/ adapt er s/ uti | s needs to have an
execute permission set. To add the execute permission, type:
chrmod u+x ant. sh.

3. Execute ant Env from the command-line to set the necessary environment
variables for your shell.

4, Execute ant rel ease from the W.I _HOVE/ adapt er s/ ADAPTER/ pr oj ect
directory to build the adapter (where ADAPTER is the name of the new adapter
development root).

Executing ant r el ease will generate the Javadoc for the adapter. You can
view the Javadoc by going to:

Developing Adapters 4-5



4 Creating a Custom Development Environment

W.I _HOWE/ adapt er s/ ADAPTER/ docs/

This file provides environment specific instructions for deploying your adapter
in WebL ogic Integration. Specifically, it provides confi g. xm entries and the

replacements for the path already made. In addition, the file provides mapping

information. You can copy the contents of over vi ew. ht m directly into

confi g. xnl , which will facilitate adapter deployment, as described in “Step 3.
Deploy the Adapter to WebLogic Integration” on page 4-6.

Step 3. Deploy the Adapter to WebLogic Integration

After rebuilding the new adapter, deploy it into WebL ogic Integration. You can deploy
an adapter either manually or from the WebLogic Server Console. See Chapter 9,
“Deploying Adapters,” for complete information.

4-6 Developing Adapters



CHAPTER

S

Using the Logging
Toolkit

Logging is an essential feature of an adapter component. Most adapters are used to
integrate different applications and do not interact with end users while processing
data. Unlike the behavior of a front-end component, when an adapter encounters an
error or warning condition, it cannot stop processing and wait for an end-user to
respond.

With the ADK, you can log adapter activity by implementing a logging framework.
This framework gives you the ability to log internationalized and localized messages
to multiple output destinations. It provides a range of configuration parameters you can
use to tailor message category, priority, format, and destination.

This section contains information on the following subjects:
m Logging Toolkit

m Logging Configuration File

m Logging Concepts

m  How to Set Up Logging

m Logging Framework Classes

m Internationalization and Localization of Log Messages

m Saving Contextual Information in a Multi-Threaded Component

Developing Adapters 5-1



5

Using the Logging Toolkit

Logging Toolkit

The ADKSs logging toolkit allows you to log internationalized messages to multiple
output destinations. The logging toolkit leverages the work of the open source project
Apache Log4j. This product includes software developed by the Apache Software
Foundation (ht t p: / / www. apache. or g).

The logging toolkit is a framework that wraps the necessary Log4j classes to provide
added functionality for J2EE-compliant adapters. It is provided in the

| ogt ool ki t.jar file under: W.I _HOVE/ I i b. This . j ar file depends on DOM,
XERCES, and Log4j. The XERCES dependency is satisfied by webl ogi c. j ar and
xm x. j ar provided in the WebLogic Server distribution. The WebLogic Integration
distribution includes the required version of Log4j, | og4j . j ar, in W.I _HOVE/ | i b.

The Log4j package is distributed under the Apache public license, a full-fledged open
source license certified by the open source initiative. The latest Log4j version,
including full-source code, class files and documentation can be found at the Apache
Log4j Web site (ht t p: / / www. apache. or g).

Logging Configuration File

5-2

Throughout this section, you will see references to and code snippets from the logging
configuration file. This file isan . xni file that is identified by the adapter logical
name; for example, BEA W.S_DBM5_ADK. xn . It contains the base information for the
four logging concepts discussed in “Logging Concepts” on page 5-3 and can be
modified for your specific adapter.

The ADK provides a basic logging configuration file, BEA W.S_SAMPLE_ADK. xni , in
W.I _HOVE/ adapt er s/ sanpl e/ sr c. To modify this file for your adapter, run
GenerateAdapterTemplate. This utility will customize the sample version of the
logging configuration file with information pertinent to your new adapter and place the
customized version in the new adapter’s development environment. For more
information on GenerateAdapterTemplate, see Chapter 4, “Creating a Custom
Development Environment.”

Developing Adapters


http://www.apache.org
http://www.apache.org

Logging Concepts

Logging Concepts

Prior to using the logging toolkit provided with the ADK, you should understand a few
key concepts of the logging framework. Logging has four main components:

m  Message Categories
m  Message Priority
m  Message Appenders
m  Message Layout

These components work together to enable you to log messages according to message
type and priority, and to control at run time how these messages are formatted and
where they are reported.

Message Categories

Categories identify log messages according to criteria you defined and are a central
concept of the logging framework. In the ADK, a category is identified by its name,
such as BEA_ W.S_SAMPLE_ADK. Desi gnTi ne.

Categories are hierarchically defined. That is, any category can inherit properties from
parent categories. The hierarchy is defined thusly:

m A category is an ancestor of another category if its name followed by a dot is a
prefix of the descendant category name.

m A category is a parent of a child category if there are no ancestors between itself
and the descendant category.

For example, BEA W.S_SAMPLE_ADK. Desi gnTi ne is a descendant of
BEA W.S_SAMPLE_ADK, which is a descendant of the root category. For example:

ROOT CATEGORY

|
| - >BEA W.S_SAMPLE_ADK

I
| ->BEA_ W.A SAMPLE. ADK. Desi gnTi e

Developing Adapters 5-3



5

Using the Logging Toolkit

The root category resides at the top of the category hierarchy; it always exists and it
cannot be retrieved by name.

When you create categories, you should name them according to components in their
adapter. For example, if an adapter has a design-time user interface component, the
adapter could have a category, BEA W.S_SAMPLE_ADK. Desi gnTi ne.

Message Priority

5-4

Every message has a priority that indicates its importance. Message priority is
determined by the method on the ILogger interface used to log the message. In other
words, calling the debug method on an ILogger instance generates a debug message.

The logging toolkit supports five possible priorities for a given message, as described
in Table 5-1:

Table 5-1 Logging Toolkit Priorities

Priority Description

AUDI T Indicates an extremely important log message that relates to the business
processing performed by an adapter. Messages with this priority will always
be written to the log output.

ERROR Indicates an error in the adapter. Error messages are
internationalized/localized for the user.

WARN Indicates a situation that is not an error, but could cause problems in the
adapter. A warning message that is internationalized/localized for the user.

I NFO Indicates an informational message that is internationalized/localized for the
user.
DEBUG Indicates a debug message, which are used to determine how the internals of a

component are working and are typically not internationalized.

The BEA_W.S_SAMPLE_ADK category has priority WARN because of the following child
element:

<priority value=" WARN class='com bea. | oggi ng. LogPriority'/>

The class for the priority must be com bea. | oggi ng. LogPriority.

Developing Adapters



Logging Concepts

Assigning a Priority to a Category

You can assign a priority to a category. If a given category is not assigned a priority,
it inherits one from its closest ancestor with an assigned priority; that is, the inherited
priority for a given category is equal to the first non-null priority in the category
hierarchy, starting at the given category and proceeding upwards in the hierarchy
towards the root category.

A log message will be output to the log destination if its priority is higher than or equal
to the priority of its category. Otherwise, the message will not be written to the log
destinations. A category without an assigned priority will inherit one from the
hierarchy. To ensure that all categories can eventually inherit a priority, the root
category always has an assigned priority. A log statement of priority p in a category
with inherited priority g, is enabled if p >= g. This rule assumes that priorities are
ordered as follows: DEBUG < | NFO< WARN < ERROR < AUDI T.

Message Appenders

The logging framework allows an adapter to log to multiple destinations by using an
interface called an appender. Log4j provides appenders for:

m  The console

m Files

m Remote socket servers

m  NT Event Loggers

m  Remote Unix Syslog daemons

In addition, the ADK log toolkit provides an appender that you can specify to output
the log message to your WebL ogic Server log.

A category may refer to multiple appenders. Each enabled logging request for a given
category will be forwarded to all the appenders in that category, as well as the
appenders higher in the hierarchy. In other words, appenders are inherited additively
from the category hierarchy. For example, if a console appender is added to the root
category, then all enabled logging requests will at least print on the console. If in
addition a file appender is added to category “C,” then enabled logging requests for C

Developing Adapters 5-5



5

Using the Logging Toolkit

and C’s children will print to a file and on the console. It is possible to override this
default behavior so that appender accumulation is no longer additive by setting the
additivity flag to false.

Note: If you have also added the console appender to directly to C, you will get two
messages—one from C and one from the root—on the console. This is because
the root category always logs to the console.

Listing 5-1 shows an appender for the WebLogic Server log:

Listing 5-1 Sample Code Showing an Appender for the WebLogic Server Log

<l--

A Wbl ogi cAppender sends | og output to the Weblogic log. If
runni ng outside of

WebLogi c, the appender wites nessages to System out
-

<appender nane="WebLogi cAppender"
cl ass="com bea. | oggi ng. Wbl ogi cAppender "/ >

</ appender >

Message Layout

5-6

By using Log4j, you can also customize the format of a log message. This is
accomplished by associating a layout with an appender. The layout is responsible for
formatting a log message while an appender directs the formatted message to its
destination. The log toolkit typically uses the PatternLayout to format its log messages.
The PatternLayout, part of the standard Log4j distribution, lets you specify the output
format according to conversion patterns similar to the C language pri nt f function.

For example, the PatternLayout with the conversion pattern % 5p%l{ DATE} %{4} %
- 9w will output a message like:

AUDI T 21 May 2001 11:00:57,109 BEA W.S SAMPLE _ADK - adnmi n opened
connection to EI'S

Developing Adapters



Logging Concepts

In the pattern,

m % 5p displays the priority of the message; in the example shown above, this is
AUDI T

m %@{ DATE} displays the date of the message; in the example shown above, this is
21 May 2001 11:00:57, 109

m %{ 4} displays the category for the log message; in the example shown above,
this is BEA W.S_SAMPLE_ADK

The text after the “-” is the message of the statement.

Putting the Components Together

Listing 5-2 declares a new category for the sample adapter, sets its priority, and
declares an appender to output log messages to a file:

Listing 5-2 Sample XML Code for Declaring a New Log Category

<I-

| MPORTANT! I'l ROOT Category for the adapter; making this unique
prevents other adapters fromlogging to your category

-->

<cat egory nanme=' BEA W.S SAMPLE_ADK' cl ass='com bea. | oggi ng.
LogCat egory' >

<l -
Default Priority Level; may be changed at runtine
DEBUG neans | og all nmessages fromthe adapter's code base
I NFO means | og informationals, warnings, errors, and audits
WARN nmeans | og warnings, errors, and audits
ERROR neans log errors and audits
AUDI T nmeans | og audits only
-->

<priority value=" WARN cl ass='com bea. | oggi ng. LogPriority'/>
<appender-ref ref="WblLogi cAppender' />

</ cat egory>

Developing Adapters 5-7



5

Using the Logging Toolkit

Note: You must specify the class as com bea. | oggi ng. LogCat egory.

How to Set Up Logging

5-8

Note: The following procedure assumes that you have cloned a development

environment by running the GenerateAdapterTemplate utility. For more
information on this utility, see Chapter 4, “Creating a Custom Development
Environment.”

Setting up the logging framework for your adapter is a four-step process.

1.

Identify all of the basic components used in the adapter. For example, if your
adapter has an EventGenerator, you might want to have an EventGenerator
component; if it supports a design-time GUI, you will need a design-time
component.

Open the base log configuration file from the cloned adapter. This file is found in
VLI _HOVE/ adapt er s/ ADAPTER/ src¢/ and will have the extension . xmi . For
example, the DBMS adapter configuration file is in

VLI _HOVE/ adapt er s/ dbms/ src. It’s called BEA W.S _DBMS_ADK. xni .

In the base log configuration file, add the category elements for all adapter
components you identified. For each category element, establish a priority.
Listing 5-3 shows how a category for an EventGenerator with a priority of
DEBUG is added.

Listing 5-3 Sample Code Adding an EventGenerator Log Category with a
Priority of DEBUG

<cat egory nanme=' BEA W.S_DBM5_ADK. Event Cener at or'
cl ass=' com bea. | oggi ng. LogCat egory' >
<priority val ue=' DEBUG
cl ass=' com bea. | oggi ng. LogPriority'/>
</ cat egory>

Developing Adapters



How to Set Up Logging

4. Determine the appender and add it to the configuration file. If necessary, add
message formatting information. Listing 5-4 shows how a basic file appender is
added within the <appender > element. Instructions within the <l ayout >
element identify the message format pattern.

Note: In this version of WebLogic Integration, all sample adapters use the
WebLogi cAppender by default.

Listing 5-4 Sample Code Adding a File Appender and Layout Pattern

<l-- A basic file appender -->

<appender nane='Fi | eAppender’
cl ass=' org. apache. Log4j . Fi | eAppender' >

<l-- Send output to a file -->

<param nane='Fi |l e' val ue=' BEA W.S DBVMS_ADK. | og' / >
<l-- Truncate existing -->

<par am nane="Append" val ue="true"/>

<l-- Use a basic LOAJ pattern | ayout -->

<l ayout cl ass='org. apache. Log4j. PatternLayout'>
<par am nanme=' Conver si onPattern' val ue='% 5p %d{ DATE} %{4}
"W - Ydm' />
</l ayout >

</ appender >

At this point, you should review these other configuration files to confirm their
settings:

m W.I|_HOVE/ adapt er s/ ADAPTER/ src/ event rout er/ web-i nf/web. xni ; The
AbstractEventGenerator uses the logging information entered in the base
configuration file to configure the log framework at initialization time.

m W.|_HOVE/ adapt er s/ ADAPTER/ src/rar/ META- I NF/ ra. xml and
webl ogi c-ra. xm ; The Abst r act ManagedConnect i onFact or y uses the
logging information entered in the base configuration file to configure the log
framework at initialization time.

® W.I|_HOVE/ adapt er s/ ADAPTER/ src/ war / web-i nf/ web. xni ; The
Request Handl er (the parent of Abst r act Desi gnTi meRequest Handl er) uses

Developing Adapters 5-9



Using the Logging Toolkit

the logging information entered in the base configuration file to configure the
log framework at initialization time.

In the preceding paths, ADAPTER is the name of your adapter; for example, for the
DBMS sample adapter, the path would be:

W.I _HOWE/ adapt er s/ dbns/ src/ rar/ META- | NF/ ra. xm

Logging Framework Classes

In addition to understanding the basic concepts of the logging framework, you will also
need to understand three main classes provided in the log toolkit:

® com bea. | oggi ng. | Logger
® com bea. | oggi ng. LogCont ext

® com bea. | oggi ng. LogManager

com.bea.logging.ILogger

5-10

This is the main interface to the logging framework. It provides numerous convenience
methods for logging messages.

In “How to Set Up Logging” on page 5-8, you saw how you can configure logging in
the base log configuration file. You can also configure logging programmatically by
implementing the logging methods listed below:

m | ogger.setPriority(“DEBUG); changesthe minimum priority of messages
printed from the current ILogger.

m | ogger.addRunti meDestination (witer); addsan additional appender
used when the container passes its Pri nt Wi t er to the adapter.

m | ogger.warn(“Some message”, true); logs a message with the priority
level WARN, without using the Resour ceBundl e. The boolean indicates that the
string is a message, not a key.

Developing Adapters



Logging Framework Classes

m | ogger.war n(“sonmeKey”); logs a message with the priority level WARN, by
looking it up with “ someKey” in the Resour ceBundl e.

m | ogger.info(“someKey”, anCbj Array); logs a message with the priority
level | NFOby looking up a template with soneKey in the Resour ceBundl e and
filling in the blanks with the elements of anCbj Arr ay.

m | ogger.error(exception); logsamessage with the priority level ERROR, by
passing an exception (Throwable) to this method. It will call get Message() ,
and include a stack trace. All logging methods that take a Throwable as an
argument log a stack trace.

com.bea.logging.LogContext

This class encapsulates information needed to identify an ILogger instance in the
logging framework. Currently, a LogContext encapsulates a log category name and a
locale, such as en_Us. This class is the primary key for uniquely identifying an

| Logger instance in the log manager.

com.bea.logging.LogManager

This class provides a method to allow you to configure the logging framework and
provides access to | Logger instances.

To properly configure the log toolkit for your adapter, the ADK implements the
LogManager 's conf i gur e() method with the arguments shown in Listing 5-5:

Listing 5-5 Sample Code for Configuring the Log Toolkit

public static LogContext
configure(String strLogConfigFile,
String strRoot LogCont ext,
String strMessageBundl eBase,
Local e | ocal e,
Cl assLoader cl assLoader)

Developing Adapters 5-11



5

Using the Logging Toolkit

5-12

Table 5-2 describes the arguments passed by confi gure():

Table 5-2 configure() Arguments

Argument

Description

strLogConfigFile

This file contains the log configuration information for
your adapter. The file should exist on the classpath. We
recommend that you include this file into your adapter's
main . j ar file so that it can be included in the . war
and . r ar files for your adapter. This file should
conform to the Log4j . dt d. The Log4j . dt d file is
provided in the Log4j . j ar in the WebLogic
Integration distribution.

st r Root LogCont ext

This is the name of the logical root of the category
hierarchy for your adapter. For the sample adapter, this
value is BEA W.S_SAMPLE_ADK.

str MessageBundl eBase

This is the base name for the message bundles for your
adapter. It is required by the ADK that you use message
bundles. For the sample adapter, this value is

BEA W.S_SAMPLE_ADK.

| ocal e

This identifies the locale (language and nation). The
logging toolkit organizes categories into different
hierarchies based on locale. For example, if your
adapter supports two locales en_US and f r _CA, the
log toolkit will maintain two category hierarchies, one
for en_US and one for f r _CA.

cl assLoader

This is the d assLoader the LogManager should
use to load resources, such as Resour ceBundl| es and
log configuration files.

Once the configuration is complete, you can retrieve | Logger instances for your
adapter by supplying a LogCont ext object:

Listing 5-6 Sample Code for Supplying a LogContext Object

LogCont ext | ogContext =
java.util.Local e.US);

Developing Adapters

new LogCont ext ("BEA W.S_SAMPLE_ADK",



Logging Framework Classes

| Logger | ogger = LogManager. get Logger (| ogContext);
| ogger . debug("l' m | ogging now ");

The ADK hides most of the log configuration and setup for you. The

com bea. adapt er. spi . Abst r act ManagedConnect i onFact or y class configures

the log toolKkit for service adapters and the Abst r act Event Gener at or configures the
log toolkit for event adapters. In addition, all of the Client Connector Interface (CCI)
and Service Provider Interface (SPI) base classes provided in the ADK provide access
toan | Logger and its associated LogCont ext .

For other layers in the adapter to access the correct | Logger object, there are two
approaches you can take.

Note: “Other layers” refers to layers in an adapter that support the CCI/SPI layer,
such as a socket layer for establishing communication to the EIS.

m  Approach 1: The CCI/SPI layers can pass the LogCont ext object into the lower
layers. This works but also adds overhead.

m  Approach 2: The CCI layer can establish the LogCont ext for the current
running thread at the earliest possible place in the code. The ADK's
com bea. adapt er. cci . Connecti onFact oryl npl class sets the LogCont ext
for the current running thread in the get Connect i on() methods. The
get Connect i on() methods are the first point of contact a client program has
with your adapter. Consequently, lower layers in an adapter can safely access the
LogCont ext for the current running thread by using the code in:

Listing 5-7 Code Accessing LogCont ext for the Current Thread

public static LogContext getLogContext(Thread t)
throws 111 egal StateException, II1egal Argunent Exception

Additionally, we supply a convenience method on the LogManager :
public static |Logger getLogger() throws |11l egal StateException

This method provides an | Logger for the current running thread. There is one
caveat to using this approach: lower layers should not store the LogCont ext or
I Logger as members. Rather, they should dynamically retrieve them from the

Developing Adapters ~ 5-13



5

Using the Logging Toolkit

LogManager. An lllegalStateException is thrown if this method is called before
a LogContext is set for the current running thread.

Internationalization and Localization of Log
Messages

Internationalization (I118N) and localization (L10N) are central concepts to the ADK
logging framework. All logging convenience methods on the | Logger interface,
except the debug methods, allow 118N. The implementation follows the Java
Internationalization standards, using Resour ceBund! e objects to store locale-specific
messages or templates. Sun MicroSystems provides a good online tutorial on using the
118N and L10N standards of the Java language.

Saving Contextual Information in a
Multi-Threaded Component

5-14

Most real-world systems have to deal with multiple clients simultaneously. In a typical
multi-threaded implementation of such a system, different threads will handle different
clients. Logging is especially well suited to trace and debug complex distributed
applications. A common approach to differentiate the logging output of one client from
another is to instantiate a new separate category for each client. This promotes the
proliferation of categories and increases the management overhead of logging.

A lighter technique is to uniquely stamp each log request initiated from the same client
interaction. Neil Harrison described this method in “Patterns for Logging Diagnostic
Messages” in Pattern Languages of Program Design 3, edited by R. Martin, D. Riehle,
and F. Buschmann (CITY: Addison-Wesley, 1997).

Developing Adapters



Saving Contextual Information in a Multi-Threaded Component

To uniquely stamp each request, the user pushes contextual information into the
Nested Diagnostic Context (NDC). The log toolkit provides a separate interface for
accessing NDC methods. The interface is retrieved from the ILogger by using the
method get NDCl nt er f ace() .

NDC printing is turned on in the XML configuration file (with the symbol ). Every
time a log request is made, the appropriate logging framework component includes the
entire NDC stack for the current thread in the log output. The user will not need to
intervene in this process. In fact, the user is responsible only for placing the correct
information in the NDC by using the push and pop methods at a few well-defined
points in the code.

Listing 5-8 Sample Code

public void someAdapt er Met hod(String adient) {
| Logger | ogger = getlLogger();

I Nest edDi agnosti cCont ext ndc = | ogger.get NDCl nterface();

/1 1'"mkeeping track of this client name for all |og nessages
ndc. push("User nane=" + aCient);

/1 method body ...

ndc. pop();

}

A good place to use the NDC is in your adapter's CCI | nt er act i on object.

Developing Adapters ~ 5-15



5 Using the Logging Toolkit

5-16 Developing Adapters



CHAPTER

O Developing a Service
Adapter

Service adapters receive an XML request document from a client and invoke the
associated function in the underlying EIS. They are consumers of messages and may
or may not provide a response. Service adapters perform the following four functions:

They receive service requests from an external client.

They transform the XML request document into the EIS specific format. The
request document conforms to the request XML schema for the service. The
request XML schema is based on metadata in the EIS.

They invoke the underlying function in the EIS and wait for its response.

They transform the response from the EIS specific data format to an XML
document that conforms to the response XML schema for the service. The
response XML schema is based on metadata in the EIS.

This section contains information on the following subjects:

Service Adapters in the Run-Time Environment
The Flow of Events

Step 1: Development Considerations

Step 2: Configuring the Development Environment
Step 3: Implementing the SPI

Step 4: Implementing the CCI

Step 5: Testing the Adapter

Developing Adapters 6-1



6 Developing a Service Adapter

m Step 5: Testing the Adapter

J2EE-Compliant Adapters Not Specific to
WebLogic Integration

The steps outlined in this chapter are directed primarily at developing adapters for use
with WebLogic Integration. You can also use the ADK to develop adapters that can be
used outside of the WebLogic Integration environment by following the steps herein,
but modifying them as described in Appendix A, “Creating an Adapter Not Specific to
WebLogic Integration.”

Service Adapters in the Run-Time
Environment

Figure 6-1 and Figure 6-2 show the processes executed when a service adapter is used
in the run-time environment. Figure 6-1 shows an asynchronous service adapter while
Figure 6-2 shows a synchronous adapter.

6-2 Developing Adapters



Service Adapters in the Run-Time Environment

Figure 6-1 An Asynchronous Service Adapter in the Run-Time Environment

Azynch Azynch Azynch Asynich
" " App Wiew Service Reqguest Message Responze : " Responze
Cligrt A g Bean Responze Gueue Reqguest Message RSEN'CE App View Gueue
Listener Handller Listener eSnonse
rew(Conted, "ah) : : : I | : : :
| created) i | o |
\ I'—O—“I potually eredted UG ) 1 { This is the client's This s a thread This is 8 S |
ome instance and is implementation of dedicated to the Mezsage Listener
| | | accessed via EJB | IMEleMErtatian A Vi g |
- ] the AsynchService PR VIEw that forwards
I I I ate interface. Th I ¥ i : !
remote interface. This R List deployment (only if AsynchService
| | | iz & stateless session | eIpanze LIEensr i bled ¥ |
| | | | Interface. asynch is enabled). Response to an |
| | | | T | AsynchService |
| | | | | | | | | Responzelistener. |
| | | | | | | | |
[ : ey » | | | | i |
| | | | | | | | | |
invoklaServiceAsynchlE"Svm ",IDocumeFl‘rt, listener) : : : : : : :
| | | nkwiliztener) | | | | | |
1 1 1 I 1 1 - 1 1 1
| | | | | | | | |
| | | | cresteGueugReceivermsaligtener) | | L |
| I T T T T T T =1 |
| | | | | | | |
| | | | | receive | | | | |
| | | | | I | |
| invokeServikeAaynoh" a1, "Svel” IDocument) | | | | | |
| | | | | | I | |
| | | | | | | | | |
| | build AsynchServiceReguest | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
| | | | | | | | |
| | A Send(asybchReques{) » | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | retprn asynchREﬂupst | | | |
| | | | | | | | | |
: : : : : extract 441, Svct, IDoc:unJluent : | :
|

| | | | | ! | | |
1 1 1 1 1 1 | new 1 l 1
I I I I I I ; ; > I
1 | 1 1 1 1 ) # o w el | 1
| | | | | | invokeService"Svel", IDPc:ument) » |
| | | | | | | | 1 |
| | | | | | retugn responze IDocyment | |
| | | | | I T ] | |
! ! ! ! ! ! new respoﬁse IDocumert ! | !
| | | | | I + > | |
| | | | | | I | . |
| | | | | | send(phjecitessage(asynchServiceRegponse) o
| | | | | | | | | il
! ! ! ! ! ! ! onMeskage(object meskage) !
| | | | | | |- + t i
| | | | | | | | | |
| | | | | | extract asynchServiceResponze | |
! | | | | | | I | |
| | | | 1 | | | |
| | | opAsyncherviceResponse(asynchServiceResponge) | | |
| | | e T T 1 | | |
| | | | | | | | |
| | | check return §tatus, process document | | | | |
| | | | | | | | | |
| | | | | | | | |
| | | I } } . | | |
| | | | | | | | | -VJ
| | | | | | | | | |
| | | | | | | I | |

Developing Adapters 6-3



6 Developing a Service Adapter

Figure 6-2 Synchronous Service Adapter in the Run-Time Environment

Connec- Iritet-
Cliert App. View A%‘L:I‘fw DI tion CDt'?U'fC' ;ﬁ?orn action Bis
Factory Spec
T T T T T
ew(Conted, " ) 1\ :
created() — ™
1 R This is sctually crested

Thiz contains any
EI= specific
properies and i
the "personalty" of
the service t was

using Home instance This is the workhorse
and iz accessed via object. t defines the

EJB remote interface. behavior of the adapter
Thiz iz a stateless available to the client.

Invoke#ervice("Svﬂ " I:Documentj
¥
| |

|
|
|
InvokeBervice"Swet", IDocument)
I

b
Thiz step takes the

rszurn \Documen*

native EIS
response data

return IDocument)

- p
converts it to XML

!
|
|
|
|
|
|
|
|
| in an IDocument.
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
| |
| i |
\ \ ‘ session EJB. \ placed irto JNDI
| | I | | I | | dur;'ngl App :’ﬁ'ew
eployment.
: : I+nkup(AV1 .>5vc|l|) : } : : Pl
— . .
| | | | Iretrieve deployet] InteractionSped |
1 1 | t t t t Ll
1 1 | " 1 returnlixSpec 1 |
| | | P ™ T T T 1
| | Lo o eS| | | | |
| | | | | | | |
| | lookuyp( 441 -=connFagtory) | | | |
| | » | | | |
| | | | refrieve | | | |
| | | | | | | |
| | | | returnct | | | |
e
| | | | | | | |
1 1 - 1 I 1 1
| | | : | | | |
| | L getConﬂedlon() o | | |
>
: : 1 : loreste or retrievd : :
P
| | | i | | | |
| | " return cn{'nnedlon h | | |
| | | | i | | | | This step effectively
| | L | Aetinteractiont) | ! | | combines the ixSpec
I I I I I (LY || property data and MM
| | I Ireturn interaction | | || data in IDocument into
1 1 [ T T | | I a native EIS data
| | | | executelixSpec, IDocument) | o | stream
| | r T T T =1 |
| | | | | petFunctiontame| |
—_— &
| | | | Data passed to the EIS | I | |
| | | | | function iz & combination of | | metProper‘lyVaIg'es |
| | | | ixSpec property data and | | |
| | | | | the Decumert deta passsd ‘extract.iconveﬂ rata from IDocuant(}{ML) |
| | | I | by the user. Since the data | | I !
| | | | contert required by any I . - |
! ! l I | given function is & constart, functionfngtive data) |
| | | | putting more data into I 1 ]
! ! ! ! ixSpec means less data ! 2D respon$e as native data
| | | || that the user must specity
| | | | | |
| | | | extracticondert from native dbta
| | | | |
| | | | |
| | | | |
| | | | |
| | [ t
| | |
| | |
| | |
| |
|
|
|
|
|
|
|
|
|
|
|

|
1
|
|
|
|
|
|
|
|
|
|
stream and |
|
|
|
|
|
|
|
|
|
|
|

6-4 Developing Adapters



The Flow of Events

The Flow of Events

Figure 6-3 outlines the steps required to develop a Service Adapter.

Figure 6-3 Service Adapter Flow of Events

Devel t C iderations

You wilf!

Determine the EIS and appropriate service
Determine the connection

Determine the security needs

Determine the transaction support

2

Configure D Envi

You will:

Set up file structure

Assign Adapter Logical Mame
Create and update files

Set up the build process

3
Implement the Service Provider Interface

You will:

Implement the interfaces that comprise the SPI
including the

ManagedConnectionFactory

4
Implement the Client Connection Interface
Yoo wilf:
Implement the interfaces that comprise the CCT

including the
Connection interface and the Interaction interface

Test the Adapter

ou witl:
Ernplay the ADK Test Harness to test the
adapter
6
Deploy the Adapter
You will!

Update the RA.KML file
Create the RAR file
Create the EAR file
Deploy the EAR file

Developing Adapters 6-5



6

Developing a Service Adapter

Step 1: Development Considerations

6-6

You will need to consider the items listed below before commencing with service
adapter development. The Adapter Setup Worksheet will provide much of this
information. See Appendix D, “Adapter Setup Worksheet.”

m Determine the EIS and the appropriate service.

You need to identify the EIS and the type of service required for this adapter;
that is, based upon your knowledge of the EIS, you must identify the interface to
the back-end functionality.

m Determine the expensive connection object.

You need to determine the “expensive” connection object required to invoke a
function within the EIS. The expensive connection object is a resource required
to communicate with the EIS and requires the allocation of system resources; for
example, a socket connection or DBMS connection. A valuable asset of J2EE
Connector Architecture is that the application server provides pooling of these
objects. Therefore, you must determine this object for your adapter, as it will
need to be pooled by the application server.

m Determine the security needs.

You need to consider and understand how to pass connection authentication
across the connection request path. To do this, your adapter will need to
implement a connect i onRequest I nf o class. The ADK provides the class
Connect i onRequest | nf oMap to map authorization information, such as
username and password, to the connection to facilitate

Connect i onRequest | nf o implementation.

The ADK conforms to the J2EE Connector Architecture Specification 1.0. For
more information on connection architecture security, please refer to “Security”
in that document. Goto ht t p: / /j ava. sun. conl j 2ee/ to download the
specification.

The J2EE Connector Architecture Specification 1.0 will download as a . pdf
file.

m Determine transaction support.

You need to identify which type of transaction demarcation support to
implement with the adapter:

Developing Adapters



Step 2: Configuring the Development Environment

e Local transaction demarcation

e XA-compliant transaction demarcation

Note: For more information on transaction demarcation support, please see
“Transaction Demarcation” on page 6-24 or:

http://java. sun.conij2ee/ bl ueprints/transacti on_nanagenent/platfo
r i ndex. html

Step 2: Configuring the Development
Environment

This step describes the processes you must complete to prepare your computer for
adapter development.

Note: The steps described below can be completed simply be running the
GenerateAdapterTemplate utility. For more information on using this utility,
see Chapter 4, “Creating a Custom Development Environment.”

Step 2a: Set Up the File Structure

Installing WebL ogic Integration creates the file structure necessary not only to run an
adapter, but also to use the ADK. The ADK files appear under W.I _ HOVE/ adapt er s/ ,
where W.I _HOVE is the directory where you installed WebLogic Integration. You need
to verify that, upon installation, the necessary directories and files appear in your

WLI _HOME directory. The file structure that follows under W.I _HOVE is described in
Table 6-1:

Table 6-1 ADK File Structure

File Path/Filename Description

adapters This directory contains the ADK.

Developing Adapters 6-7



6 Developing a Service Adapter

Table 6-1 ADK File Structure (Continued)

File Path/Filename

Description

adapt er s/ src/ war

All files under this directory should be included in the . war
file for an adapter. This directory contains . j sp files, . ht m
files, images, etc.

adapters/utils

This directory contains a file used by the build process to
timestamp . j ar files.

adapt er s/ dbmns

This directory contains a sample J2EE-compliant adapter built
with the ADK.

adapt er s/ dbns/ docs

This directory should contain the user guide, release notes, and
installation guide for the sample adapter.

adapt er s/ enui |

This directory contains a sample J2EE-compliant adapter built
with the ADK.

adapt er s/ emni | / docs

This directory should contain the user guide, release notes, and
installation guide for the sample adapter.

adapt er s/ sanpl e

This directory contains a sample adapter that you can use to
start developing their own adapter.

adapt er s/ sanpl e/ proj ect

This directory contains the Apache Jakarta Ant build file

bui I d. xm . This file contains build information for
compiling the source code, generating the . j ar, and . ear
files, and for generating Javadoc information. See “Step 2c:
Setting Up the Build Process” on page 6-10 for details on how
to build the adapter.

adapt er s/ sanpl e/ src

This directory contains all the source code for an adapter. It is
up to you to decide to provide source code with your adapter.

adapt er s/ sanpl e/ src/ BEA_W.S_SAWMP
LE ADK. properties

This file contains messages used by the adapter for
internationalization and localization.

adapt er s/ sanpl e/ src/ BEA W.S_
SAMPLE_ADK. xmi

This file provides a basic configuration file for the logging
framework. You should use this file to develop their own
adapter logging configuration file.

adapt er s/ sanpl e/ src/
eventrout er/ WEB- | NF/ web. xmi

6-8 Developing Adapters

This is the configuration file for the event router Web
application.



Step 2: Configuring the Development Environment

Table 6-1 ADK File Structure (Continued)

File Path/Filename

Description

adapt er s/ sanpl e/ src/ rar/ META-
I NF/ ra. xm

This file contains configuration information about a
J2EE-compliant adapter. You should use this file as a guide on
which parameters needed by the ADKSs run-time framework.

adapt er s/ sanpl e/ src/ rar/ META-
| NF/ webl ogi c-ra. xmi

This file contains configuration information about a
J2EE-compliant adapter that is specific to the Weblogic Server
J2EE engine. You should use this file as an example for setting
up the webl ogi c-ra. xmi file for their adapter. It is required
for Weblogic Server.

adapt ers/ sanpl e/ src/ sanpl e

This directory contains the source code for the adapter.

adapt er s/ sanpl e/ src/ war

All files under this directory should be included in the Web
application archive (. war ) file for an adapter. This directory
contains .j sp files, .ht ml files, images, and so on. For more
information on Web applications for Weblogic Server, look
here

adapt er s/ sanpl e/ src/ war / V\EEB-
I NF/ web. xm

This is the Web application descriptor

adapt er s/ sanpl e/ src/ war / VEB- | NF/
webl ogi c. xm

The webl ogi c. xni file contains WebLogic-specific
attributes for a Web Application.

adapt er s/ sanpl e/ src/ ear/ META- | NF
[ application.xn

application. xm isaJ2EE application that contains a
connector and Web application for configuring application
views for the adapter.

Modifying the Directory Structure

When you clone a development tree by using GenerateAdapterTemplate, the file paths
and files under adapt er s/ sanpl e are automatically cloned and updated to reflect the
new development environment. The changes are reflected in the file

W.| _HOVE/ adapt er s/ ADAPTER/ docs/ api / i ndex. ht i (where ADAPTER is the
name of the new development directory). This file also contains code that you can copy
and paste into the conf i g. xn file for the new adapter that will set up WebLogic
Integration to host the adapter.

Developing Adapters 6-9



6

Developing a Service Adapter

Step 2b: Assign the Adapter Logical Name

Next, you need to assign the adapter’s logical name. By convention, this name is
comprised of the vendor name, the type of EIS connected to the adapter, and the

version number of the EIS and is expressed as vendor_EIS-type_EIS version. For
example:

BEA W.S_SAMPLE_ADK

For more information on the adapter logical name, see “Adapter Logical Name” on
page 2-6.

Step 2c: Setting Up the Build Process

The ADK employs a build process based upon Ant, a 100% pure Java-based build tool.
For more information on Ant, please see “Ant-Based Build Process” on page 3-4. For
more information on using Ant, see:

http://jakarta.apache. org/ant/index. htm .

The sample adapter shipped with the ADK (located in

W.I _HOVE/ adapt er s/ sanpl e/ pr oj ect ) contains the file bui | d. xmi . This is the
Ant build file for the sample adapter. It contains the tasks needed to build a
J2EE-compliant adapter. Running the GenerateAdapterTemplate utility to clone a
development tree for your adapter creates a bui | d. xm file specifically for that
adapter. This will free you from having to customize the sample bui I d. xn and will
ensure that the code is correct. For information on using the GenerateAdapterTemplate
utility, see Chapter 4, “Creating a Custom Development Environment.”

The Manifest File

6-10

Among the files created by GenerateAdapterTemplate is MANI FEST. M, the manifest
file. This file contains classloading instructions for each component that uses the file.
A manifest file is created for each / META- | NF directory except ear / META- | NF.

Listing 6-1 shows an example of the manifest file included with the sample adapter.

Developing Adapters



Step 2: Configuring the Development Environment

Listing 6-1 Manifest File Example

Mani fest-Version: 1.0
Created-By: BEA Systens, Inc.
Cl ass-Path: BEA W.S SAMPLE_ADK.jar adk.jar bea.jar |og4j.jar

logtool kit.jar xmtoolkit.jar wl ai-common.jar wai-ejb-client.jar
xcci.jar

The first line of the file contains version information and the second line shows vendor
information. The third line contains the relevant classpath or classloading instructions.
The d ass- Pat h property contains references to resources required by the
component. It identifies the shared . j ar files, which are separated by spaces. You
must ensure that these . j ar files are included in the shared area of the . ear file (see
“Enterprise Archive (.ear) Files” on page 2-9).

Note: When the filename MANI FEST. MF appears in a . war file, it must appear in
uppercase letters. If it does not, Unix will not recognize it and an error will
occur.

build.xml Components

If you open bui | d. xm and review its components, you will better understand how
this file works. This section describes the prominent elements of bui | d. xmi .

Note: The following examples are taken from the sample adapter, not a cloned
version thereof.

1. The first line you encounter:
<proj ect name=' BEA W.S SAMPLE ADK' default="all' basedir=".">
sets the name attribute of the root project element.

2. Listing 6-2 sets the archive file (. j ar, . war, and . r ar) names.

Developing Adapters 6-11



6

Developing a Service Adapter

6-12

Listing 6-2 Setting Archive File Names

<property nanme='JAR FILE val ue=' BEA_ W.S SAMPLE ADK.jar'/>
<property nanme=' RAR_FILE val ue=' BEA W.S SAMPLE ADK.rar'/>
<property name='WAR FI LE val ue=' BEA_ W.S_SAMPLE_ADK_Wb. war' />
<property name=' EVENTROUTER JAR FI LE

val ue=' BEA W.S _SAMPLE _ADK Event Router.jar'/>
<property name=" EVENTROUTER WAR FI LE'

val ue=' BEA W.S_SAMPLE_ADK_Event Rout er.war' />
<property nanme=' EAR_FI LE val ue=' BEA_ W.S _SAMPLE _ADK. ear' />

Listing 6-3 shows a list of standard properties for the ADK. You should not need
to alter them.

Listing 6-3 Standard ADK Properties

<property name=' ADK' value="${W.Il _LIB DI R}/adk.jar'/>
<property name=' ADK_WEB' val ue='${W.l _LIB DI R}/adk-web.jar'/>
<property name=' ADK_TEST' value="${W.l _LIB DIR}/adk-test.jar'/>
<property name=' ADK_EVENTGENERATOR val ue="${W.I _LIB_DI R}/
adk-eventgenerator.jar'/>
<property name=' BEA' value='${W.I _LIB DIR}/bea.jar'/>
<property name=' LOGTOOLKI T' val ue="${W.l _LI B DI R}/
| ogtool kit.jar' />
<property name=' WEBTOOLKI T' val ue="${W.I _LIB DI R}/
webtoolkit.jar'/>
<property name=' WAl _COWON val ue="${W.I _LIB_DI R}/
wl ai - conmon. jar' />
<property name=' WAl _EJB_CLI ENT' val ue=" ${ W.I _LI B_DI R}/
w ai-ejb-client.jar'/>
<property name=' WAl _EVENTROUTER val ue="${W.I _LIB DI R}/
wl ai -eventrouter.jar'/>
<property name=' W.AI _EVENTROUTER _CLI ENT' val ue=" ${W.I _LI B_DI R}/
wl ai -eventrouter-client.jar'/>
<property name=' W.Al _SERVLET_CLI ENT' val ue="${W.I _LIB_DI R}/
w ai-servlet-client.jar'/>
<property name=' XMLTOOLKI T' val ue=" ${W.I _LIB DI R}/
xmtoolkit.jar'/>
<property name=' XCCl' val ue="${W.l _LIB DI R}/xcci.jar'/>

Developing Adapters



Step 2: Configuring the Development Environment

To the list in Listing 6-3, you can add any additional . j ar files and/or classes
that are specific to your adapter.

4. Listing 6-4 sets up the cl asspat h for compiling:

Listing 6-4 Sample for Setting the Classpath

<path id=' CLASSPATH >
<pat hel enent | ocation="${SRC DIR}'/>
<pat hel enent pat h="${ ADK} : ${ ADK_EVENTGENERATOR} :
${ ADK_VEB} : ${ ADK_TEST} : ${ BEA} : ${ LOGTOOLKI T} : ${ WEBTOCLKI T}
:${WLAI _EJB_CLI ENT}: ${ WAl _COMVON} : ${ WAl _EVENTROUTER} :
${XCCl}: ${XM.TOOLKIT}' />
<pat hel ement pat h=" ${ XM_.X_JAR}' / >
<pat hel enent path="${LOAI_JAR}: ${IJUNIT}' />
<pat hel enent pat h=" ${ WEBLOJ C_JAR}: ${ env. BEA_HOVE}' / >
</ pat h>

To this information, you can add code that will produce the following:

e All the binaries and archives for the adapter:

Listing 6-5 Sample of Calling All Binaries and Archives

<target nane='rel ease' depends='all, apidoc'/>
<l-- This target produces all the binaries and archives
or the adapter -->

<target nane='all' depends='ear'/>

e All the binaries and archives for the adapter, as well as the Javadoc:
<target nane='rel ease' depends='all, apidoc'/>

e A version_info file for inclusion into archives, as shown in Listing 6-6:

Listing 6-6 Sample version_info File

<l-- This target produces a version_info file for inclusioninto
archives -->

Developing Adapters ~ 6-13



Developing a Service Adapter

6-14

<target name='version_info'>
<j ava cl assnane=' Gener at eVer si onl nfo' >
<arg line="-d${basedir}' />
<cl asspat h>
<pat hel ement pat h="${W.I _HOVE}/ adapters/utils:
${VEBLOG C JAR} : ${ XMLX_JAR}' / >
</ cl asspat h>
</java>
</target>

5. Listing 6-7 produce the . j ar file for the adapter. This fileset element specifies
what is included into the . j ar file. Run-time aspects of the adapter are included
in the main jar, while additional classes, such as the design-time GUI support
classes, are included in the . war or other jar files.

Listing 6-7 Sample Code Setting . j ar File Contents

<target name='jar' depends='packages, versi on_info' >
<delete file="${LIB_D R /${JAR FILE}' />
<nkdir dir="${LIBDR'/>
<jar jarfile="${LIB_D R /${JAR FILE}' >

6. Listing 6-8 includes the “includes” list from the adapter's source directory. For
the adapter described in these code samples, all the classes in the sanpl e/ cci
and sanpl e/ spi packages are included, as well as the logging configuration file
and message bundles.

Listing 6-8 Sample Code for Including the “Includes” List

<fileset dir="${SRC DR}’
i ncl udes=" sanpl e/ cci/*.cl ass, sanpl e/ spi / *. cl ass,
sanpl e/eis/*. class,*.xm,*. properties'/>

7. Listing 6-9 includes version information about the . j ar file:

Developing Adapters



Step 2: Configuring the Development Environment

Listing 6-9 Setting . j ar File Version Information

<l-- Include version infornmation about the JAR file -->
<fileset dir=" ${basedir}’
i ncl udes='version_info.xm"'/>
</jar>

8. Listing 6-10 produces the J2EE adapter archive (. rar) file. The . rar file should
contain all classes and . j ar files that the adapter needs. This . rar can be
deployed into any J2EE-compliant application server that the adapter depends
upon. This example includes the following targets:

e \ersion information for this . r ar file.

e The depl oynent descri pt or for the adapter.

Listing 6-10 Sample Code for Creating the Connection Architecture . rar File

<target nanme='rar' depends='jar'>
<delete file="${LIB_D R /${RAR FILE}' />
<nkdir dir="${LIB.DR"/>
<jar jarfile="${LIB D R/ ${RAR FILE}"
mani f est ="' ${ SRC_DI R}/ rar/ META- | NF/ MANI FEST. MF' >
<fileset dir="${SRC_D R}/rar'includes="META-INF/ra.xm ,
META- | NF/ webl ogi c-ra. xm ' excl udes=
' META- | NF/ MANI FEST. MF' / >
</jar>
</target>

9. Listing 6-11 produces the J2EE Web application archive (. war ) file. It also
includes code that cleans up the existing environment:

Listing 6-11 Sample Code Producing the . war File

<target nanme='war' depends='jar'>
<l-- C ean-up existing environment -->

<delete file="${LIB D R}/ ${WAR FILE}' />
<copy file="${W.I_HOVE}/ adapt ers/ src/war/VEB-1NF/taglibs/

Developing Adapters ~ 6-15



6 Developing a Service Adapter

adk.tld" todir="${SRC DI R}/war/WEB-|NF/taglibs'/>
<java cl assname=' webl ogi c. j spc' fork="yes' >
<arg line="-d ${SRC_D R}/ war -webapp ${SRC D R}/
war -conpil eAll -depend />
<cl asspat h refid=" CLASSPATH />
</java>

<l-- The first adapter should conpile the conmon ADK JSPs -->

<java cl assnane=' webl ogi c.j spc' fork="yes'>
<arg line="-d ${W.I_HOMVE}/ adapt ers/src/war -webapp
${WLI _HOVE}/ adapt er s/ src/war -conpil eAll
- depend' / >
<cl asspath refid=" CLASSPATH />
</java>

<war warfile=" ${LI B DI R/${WAR FI LE}"
webxm =" ${ SRC_DI R}/ war / \EB- | NF/ web. xni '
mani f est =' ${ SRC DI R}/ war / META- | NF/ MANI FEST. MF' >

<l--

| MPORTANT! Excl ude the WVEB-I NF/ web.xm file from

the WAR as it already gets included via the webxml attribute
above

-->

<fileset dir="${SRC DI R}/war" >
<patternset >
<i ncl ude name="WEB- | NF/ webl ogi c. xm "/ >
<i nclude nane="**/*_htm "/ >
<i nclude name="**/* gif"/>
</ patternset>
</[fileset>

<l--

| MPORTANT! I nclude the ADK design tine franework into the
adapter's design time Wb application.

-->
<fileset dir="${WI_HOVE}/adapters/src/war" >
<patternset >
<i nclude nanme="**/* css"/>
<include name="**/*_htm"/>
<i ncl ude name="**/*_ gif"/>
<i nclude name="**/*_js"/>
</ patternset>
</fileset>
<I'-- Include classes fromthe adapter that support the design
time U -->

6-16 Developing Adapters



Step 2: Configuring the Development Environment

<classes dir="${SRC DIR}' includes='sanpl e/web/*.cl ass' />

<cl asses dir="${SRC_DI R}/ war'includes="**/*.class'/>

<cl asses dir="${W.I_HOVE}/ adapt ers/src/war' includes=
"**[* class' />

<l --

Include all JARs required by the Wb application under the
VEB-INF/lib directory of the WAR file that are not shared in the
EAR

-->

<lib dir="${W.I_LIB D R" includes="adk-web.jar,
webt ool kit.jar'/>

</ war >

</target>

10.

Listing 6-12 includes all . j ar files required by the Web application to be
included in the <I i b> component of the bui | d. xn file.

Listing 6-12 Sample Code to Include . j ar Files Required by Web Application

<lib dir="${WI_LIB_DIR" includes="adk-web.]jar,
webtool kit.jar'/>

11.

Listing 6-13 includes the . ear file.

Listing 6-13 Sample Code to Include . ear File

<target nane='ear' depends='rar, eventrouter_jar,war'>
<delete file="${LIB D R}/ ${EAR FILE}'/>

<I-- include an eventrouter that shares the jars
rather than includes them->

<del ete file=" ${LIB_DI R}/ ${ EVENTROUTER WAR FI LE}' />
<del ete dir="${SRC_DI R}/ eventrouter/VEB-INF/lib' />

<war warfile="${LIB_Dl R/ ${EVENTROUTER WAR FI LE}
"webxm =" ${ SRC_DI R}/ event r out er / VEB- | NF/ web. xmi

Developing Adapters ~ 6-17



6

Developing a Service Adapter

6-18

"mani fest =' ${ SRC_DI R}/ event r out er / META- | NF/
MANI FEST. MF' >

<fileset dir=" ${basedir}' includes="version_info.xm"'/>
<fileset dir="${SRC DI R}/eventrouter" >
<patternset>
<excl ude name="WEB- | NF/ web. xm "/ >
<excl ude nane="META-INF/*.nf"/>
</ patternset>
</fileset>

<lib dir="${LIB_DIR}" includes="${ EVENTROUTER JAR
FILE}' />
<lib dir="${W.I_LIB_D R"includes=
' adk-eventgenerator.jar,w ai -eventrouter.jar,
w ai-servlet-client.jar'/>
</ war >

<jar jarfile="${LIB D R/${EAR FILE}' >
<fileset dir="${basedir}"' includes="version_info.xm"'/>
<fileset dir="${SRC_DI R}/ear' includes=
"application.xm"'/>
<fileset dir="${LIB_D R}"includes="${JAR FI LE},
${RAR FI LE}, ${WAR FI LE}, ${ EVENTROUTER WAR FI LE}"' />
<fileset dir="${W.I_LIB D R}'includes="adk.jar, bea.jar,
| ogtool kit.jar,xcci.jar,xmtoolkit.jar'/>
<fileset dir="${W.I_LIB DI R}'"includes='10g4j.]jar,
w ai -common.jar,Wmai-ejb-client.jar'/>
</jar>

<del ete file='${LI B DI R}/ ${ EVENTROUTER WAR FI LE}' />
<del ete file="${LIB DI R}/ ${ EVENTROUTER JAR FI LE}' />
<delete file='${LIB DIR/${WAR FILE}' />
<delete file='${LIB DIR}/${RAR FILE}'/>

</target>

Within the . ear target, in Listing 6-14, is the EventRouter specific to the . ear
deployment. This event router cannot be deployed by itself. Listing 6-14 shows

how to include the event router.

Listing 6-14 Sample Code for Including . ear -specific EventRouter

<delete file="${LI B DI R}/ ${ EVENTROUTER WAR_FI LE}"' / >
<del ete dir="${SRC DI R}/ eventrouter/ WEB-I NF/lib' />

Developing Adapters



Step 2: Configuring the Development Environment

<war warfile=" ${LIB_DI R}/ ${ EVENTROUTER WAR_FI LE}
"webxm ="' ${ SRC_DI R}/ event r out er / VEB- | NF/ web. xmi
"mani f est =" ${ SRC_DI R}/ event r out er/ META- | NF/
MANI FEST. MF' >

<fileset dir="${basedir}' includes="version_info.xm"'/>
<fileset dir="${SRC_DI R}/eventrouter" >
<patternset >
<excl ude name="WEB- | NF/ web. xm "/ >
<excl ude name="META-I NF/*.nf"/>
</ patternset>
</fileset>

<lib dir="${LIB_DR}"' includes="${ EVENTROUTER_
JAR FILE}' />

<libdir="${WI_LIB D R}
i ncl udes=' adk- event generator.jar,
w ai -eventrouter.jar,wWai-servlet-client.jar'/>

</ war >

Within the . ear target, in Listing 6-14, you will also find all common or shared
jars, as shown in Listing 6-15.

Listing 6-15 Sample Code Showing Inclusion of Common or Shared . j ar Files

<jar jarfile="${LIB DI R}/${EAR FILE}' >

<fileset dir="${basedir}"' includes="version_info.xm"'/>
<fileset dir="${SRC D R}/ear' includes="application.xm"'/>
<fileset dir="${LIB_D R}'includes="${JAR FI LE}, ${ RAR_FI LE},
${WAR_FI LE}, ${ EVENTROUTER_WAR FI LE}' />
<fileset dir="${W.I_LIB D R"includes="adk.jar, bea.jar,
| ogtoolkit.jar, xcci.jar,xmtoolkit.jar"'/>
<fileset dir="${W.I_LIB D R"includes='10g4j.]jar,
w ai -common. jar,wW ai-ejb-client.jar'/>

</jar>

12. Listing 6-16 compiles all the Java source files for this project:

Developing Adapters ~ 6-19



6 Developing a Service Adapter

Listing 6-16 Sample Code for Compiling Java Source

<t arget nane=' packages' >
<echo nessage='Buil ding ${ant.project.nane}..."'/>
<javac srcdir="${SRC DR}' >
<cl asspat h refid=" CLASSPATH />
</javac>
</target>

13. Next, you construct the EventRouter . j ar file, as shown in Listing 6-17.

Listing 6-17 Sample Code Constructing the EventRouter . j ar File

<target name='eventrouter_jar' depends='packages, version_info' >
<del ete file="${LIB_DI R}/ ${ EVENTROUTER JAR FI LE}' />
<jar jarfile="${LI B_D R}/ ${EVENTROUTER JAR FI LE}' >
<fileset dir="${SRC_D R}'

i ncl udes=' sanpl e/ event/*.cl ass' />
<fileset dir=" ${basedir}"

i ncl udes="version_info.xm"'/>
</jar>

</target>

14. Next, you will produce the J2EE . war file, as shown in Listing 6-18. This file is
the event router used for stand-alone deployment.

Listing 6-18 Sample Code Producing the EventRouter Target for Stand-Alone
Deployment

<target name='eventrouter_war' depends='jar,eventrouter_jar'>
<delete file="${LIB_DI R/${ EVENTROUTER_ WAR FI LE}' />
<delete dir="${SRC DI R}/ eventrouter/VWEB-INF/lib'/>
<war warfile=" ${LI B_DI R}/ ${ EVENTROUTER WAR_FI LE}' webxm =
' ${SRC_DI R}/ event r out er / VEB- | NF/ web. xml ' >
<fileset dir="${basedir}' includes="version_info.xm"'/>

<fileset dir="${SRC DI R}/eventrouter' excludes=
" VEB- | NF/ web. xm '/ >

<lib dir="${LIB DIR}" includes='${JAR FI LE},
${ EVENTROUTER JAR FI LE}' / >

6-20  Developing Adapters



Step 2: Configuring the Development Environment

<lib dir="${W.I_LIB D R"includes="adk.j ar,
adk-eventgenerator.jar,bea.jar,logtoolkit.jar,
w ai -common. jar,w ai-ejb-client.jar,wai-
eventrouter.jar,wai-servlet-client.jar,
xmtoolkit.jar'/>

<lib dir="${W.I_LIB_DR" includes="10g4j.jar'/>

</ war >

</target>

15. Listing 6-19 generates the Javadoc.

Listing 6-19 Sample Code for Generating Javadocs

<t arget nanme='api doc' >
<nkdir dir="${DOC DIR}'/>
<j avadoc sourcepath="${SRC DI R}’
destdir="${DOC D R}
packagenanmes=' sanpl e. *'
aut hor="true'
versi on='true'
use='true'
overvi ew=" ${ SRC_DI R}/ overvi ew. ht m '
wi ndowt it e=' WebLogi ¢ BEA W.S_SAMPLE_ADK Adapt er
APl Docurent ati on'
doctitl e=' WebLogi ¢ BEA W.S_SAMPLE_ADK Adapt er
APl Docunentati on'
header =" WebLogi ¢ BEA W.S_SAMPLE_ADK Adapter’
botton¥' Built using the WebLogi c Adapter
Devel opnment Kit (ADK)'>
<cl asspath refid=" CLASSPATH />
</j avadoc>
</target>

16. Listing 6-20 shows the targets that clean the files created by their counterparts:

Listing 6-20 Sample Code for Including Clean-Up Code

<target nanme='clean' depends='clean_rel ease'/>
<target nane='cl ean_rel ease' depends='clean_all, cl ean_api doc' />
<target nane='cl ean_all'depends='cl ean_ear, cl ean_rar, cl ean_war,

Developing Adapters ~ 6-21



6 Developing a Service Adapter

clean_eventrouter_war,clean_test'/>
<target nane='clean_test'>
<del ete fil e=' ${basedir}/BEA W.S SAWPLE ADK. | og'/>
<delete file="${basedir}/ncf.ser'/>
</target>
<target name='clean_ear' depends='clean_jar'>
<delete file="${LIB_DI R}/${EAR FILE}' />
</target>
<target name='clean_rar' depends='clean_jar'>
<delete file="${LIB_DI R}/${RAR FILE}' />
</target>
<target name='clean_war' depends='clean_jar'>
<delete file="${LIB_DIR}/${WAR FILE}' />
<del ete dir="${W.I _HOMVE}/ adapters/src/war/jsp_servliet'/>

</target>

<target name='clean_jar' depends='clean_packages, cl ean_version_
info' >
<delete file="${LI B DI R}/ ${JAR FILE}' />

</target>

<target nanme='clean_eventrouter_jar'>
<del ete file="${LI B_D R}/ ${EVENTROUTER JAR FI LE}' />
</target>
<target name='clean_eventrouter_war' depends='clean_
eventrouter_jar'>
<del ete file=" ${LI B_D R}/ ${ EVENTROUTER WAR FI LE}' />
</target>
<target name='cl ean_version_info' >
<delete fil e=' ${basedir}/version_info.xm"'/>

</target>
<t arget nanme='cl ean_packages' >
<del et e>
<fileset dir="${SRC_D R}' includes="**/*.class'/>
</ del et e>
</target>

<t arget nanme='cl ean_api doc' >
<delete dir="${DOCC_D R}'/>
</target>

</ proj ect>

6-22 Developing Adapters



Step 3: Implementing the SPI

Step 2d: Create the Message Bundle

Step 3:

Any message destined for the end-user should be placed in a message bundle. The
message bundle is simply a . properti es text file that contains key=value pairs that
allow you to internationalize messages. When a locale and national language are
specified at run time, the contents of the message is interpreted, based upon the
key=value pair, and the message is presented to the user in the correct language for his
or her locale.

For instructions on creating a message bundle, please refer to the JavaSoft tutorial on
internationalization at:

http://java. sun. conm docs/ books/tutorial/i18n/index.htm

Implementing the SPI

The Service Provider Interface (SPI) contains the objects that provide and manage
connectivity to the EIS, establish transaction demarcation, and provide a framework
for service invocation. All J2EE-compliant adapters must provide an implementation
for these interfaces in the j avax. r esour ce. spi package.

How to Use this Section

This section (“Step 3: Implementing the SPI”’) contains descriptions of the interfaces
you can use to implement the SPI. A minimum of three interfaces are necessary to
complete the task (see “Basic SPI Implementation” on page 6-24). Each of these are
described in detail, followed by a discussion of how they were extended in the sample
adapter included with the ADK.

Following the three required interfaces, the additional interfaces are described in
detail, including information regarding why you might use them and how they benefit
an adapter.

Developing Adapters ~ 6-23



6 Developing a Service Adapter

Basic SPI Implementation

To implement the SP1 for your adapter, you need to extend at least these three
interfaces:

m ManagedConnect i onFact ory, which supports connection pooling by providing
methods for matching and creating a ManagedConnection instance.

m ManagedConnect i on, which represents a physical connection to the underlying
EIS.

m ManagedConnect i onMet aDat a, which provides information about the
underlying EIS instance associated with a ManagedConnect i on instance.

Ideally, you will implement these interfaces in the order specified above.

In addition to these three interfaces, you can implement any of the other interfaces
described in this step, as your adapter needs dictate.

ManagedConnectionFactory

j avax. resource. spi . ManagedConnect i onFact ory

ManagedConnect i onFact or y instance is a factory of both ManagedConnection and
EIS-specific connection factory instances. This interface supports connection pooling
by providing methods for matching and creating a ManagedConnect i on instance.

Transaction Demarcation

A critical component of the ManagedConnectionFactory is transaction demarcation.
You will need to determine which statements in your program are included in a single
transaction. J2EE defines a transaction management contract between an application
server and an adapter (and its underlying resource manager). The transaction
management contract has two parts, depending of the type of transaction:

m  XA-compliant Transaction

m Local Transaction

6-24  Developing Adapters



Step 3: Implementing the SPI

XA-compliant Transaction

A javax.transaction. xa. XAResour ce-based contract occurs between a
transaction manager and a resource manager in a distributed transaction processing
(DTP) environment. A JDBC driver or a JMS provider implements this interface to
support association between a global transaction and a database or message service
connection.

The XAResour ce interface can be supported by any transactional resource that is
intended for use by application programs in an environment where transactions are
controlled by an external transaction manager; for example a database management
system where an application accesses data through multiple database connections.
Each database connection is enlisted with the transaction manager as a transactional
resource. The transaction manager obtains an XAResour ce for each connection
participating in a global transaction. The transaction manager uses the st art ()
method to associate the global transaction with the resource; it uses the end() method
to disassociate the transaction from the resource. The resource manager associates the
global transaction to all work performed on its data between the st art () and end()
method invocation.

At transaction commit time, the resource managers are informed by the transaction
manager to prepare, commit, or rollback a transaction according to the two-phase
commit protocol.

Local Transaction

A local transaction management contract occurs when an adapter implements the

j avax. resource. spi . Local Tr ansact i on interface to provide support for local
transactions that are performed on the underlying resource manager. These contracts
enable an application server to provide the infrastructure and run-time environment for
transaction management. Application components rely on this transaction
infrastructure to support their component-level transaction model.

For more information on transaction demarcation support, please refer to:

http://java.sun.com/j2ee/blueprints/transaction_management/platform/index.html

ADK Implementations

The ADK provides an abstract foundation for an adapter, the
AbstractManagedConnectionFactory. This foundation provides the following feature:

Developing Adapters ~ 6-25



6

Developing a Service Adapter

Provides basic support for internationalization/localization of exception and log
messages for an adapter.

Provides hooks into the log toolkit.

Provides getter and setter methods for standard connection properties (username,
password, server, connectionURL, port).

Provides access to adapter metadata gathered from a
java. util . Resour ceBundl e for an adapter.

Allows adapter providers to plug in license checking into the initialization
process for the factory. If the license verification fails, then client applications
cannot get a connection to the underlying EIS, thus making the adapter useless.

Provides state verification checking to support JavaBeans-style post-constructor
initialization.

There are several key methods that you must supply implementations for. The
following paragraphs describe these methods.

createConnectionFactory()

6-26

creat eConnect i onFact ory(), shown in Listing 6-21, is responsible for
constructing the factory for application-level connection handles for the adapter. In
other words, clients of your adapter will use the object returned by this method to
obtain a connection handle to the EIS.

If the adapter supports a CCl interface, it is recommended that you return an instance
of com bea. adapt er. cci . Connect i onFact or yl npl or an extension of this class.
The key to implementing this method correctly is to propagate the

ConnectionManager, LogContext, and ResourceAdapterMetaData into the client API.

Listing 6-21 createConnectionFactory() Example

protected Object

cr eat eConnecti onFact or y( Connecti onManager connecti onManager,
String strAdapterNane,
String strAdapterDescription,
String strAdapterVersion,
String strVendor Nane)
t hrows ResourceExcepti on

Developing Adapters



Step 3: Implementing the SPI

createManagedConnection()

checkState()

equals()

cr eat eManagedConnect i on(), shown in Listing 6-22, is responsible for
constructing a ManagedConnection instance for your adapter. The
ManagedConnection instance encapsulates the expensive resources needed to
communicate with the EIS. This method is called by the ConnectionManager when it
determines a new ManagedConnection is required to satisfy a client's request. A
common design pattern with adapters is to open the resources needed to communicate
with the EIS in this method and then pass the resources into a new
ManagedConnection instance.

Listing 6-22 createManagedConnection() Example

publ i c ManagedConnecti on
cr eat eManagedConnect i on( Subj ect subj ect, Connecti onRequest| nfo
i nf o)
t hrows Resour ceException

checkSt at e() gets called by the AbstractManagedConnectionFactory before it
attempts to perform any of its factory responsibilities. Use this method to verify that
all members that need to be initialized before the ManagedConnectionFactory can
perform its SPI responsibilities have been initialized correctly. Implement this method
as shown here:

protected bool ean checkSt at e()

equal s() tests the object argument for equality. It is important to implement this
method correctly as it is used by the ConnectionManager for managing the connection
pools. This method should include all important members in its equality comparison.
Implement this method as shown here:

publ i ¢ bool ean equal s(Obj ect obj)

Developing Adapters  6-27



6 Developing a Service Adapter

hashCode()

hashCode() provides a hash code for the factory. It is also used by the
ConnectionManager for managing the connection pools. Consequently, this method
should generate a hashCode based upon properties that determine the uniqueness of the
object. Implement this method as shown here:

public int hashCode()

matchManagedConnections()

Lastly, the ManagedConnectionFactory must supply an implementation of the

mat chManagedConnect i ons() method. The AbstractManagedConnectionFactory
provides an implementation of the mat chManagedConnect i ons() method that relies
upon the conpar eCr edent i al s() method on AbstractManagedConnection.

In order to provide logic that will match managed connections, you will need to
override Abst r act ManagedConnect i on’s conpar eCr edent i al s() method. This
method is invoked when the ManagedConnectionFactory attempts to match a
connection with a connection request for the ConnectionManager.

Currently, AbstractManagedConnectionFactory’s implementation extracts a
Passwor dCr edent i al from the supplied Subj ect / Connect i onRequest | nf o
parameters. If both parameters are null, this method returns true because it has already
been established that the ManagedConnectionFactory for this instance is correct.
Listing 6-23 shows this implementation;

Listing 6-23 compareCredentials() Implementation

publ i c bool ean conpareCredenti al s( Subj ect subject,
Connecti onRequest I nfo info)
t hrows Resour ceException

{
| Logger | ogger = getlLogger();

Next, you need to extract a PasswordCredential from either the JAAS Subject or the
SPI ConnectionRequestinfo using the ADK’s ManagedConnect i onFact ory. An
example is shown in Listing 6-24:

6-28 Developing Adapters



Step 3: Implementing the SPI

Listing 6-24 Extracting a PasswordCredential

Passwor dCr edential pc = getFactory().
get Passwor dCr edent i al (subj ect, info);
if (pc == null)

| ogger.debug(this.toString() + ": conpareCredentials

In the example shown in Listing 6-24, JAAS Subject and ConnectionRequestinfo are
null, which assumes a match. This method will not get invoked unless it has already
been established that the factory for this instance is correct. Consequently, if the
Subject and ConnectionRequestinfo are both null, then the credentials match by
default; therefore, the result of pinging this connection determines the outcome of the
comparison. Listing 6-25 shows how to programmatically ping the connection.

Listing 6-25 Pinging a Connection

return ping();

bool ean bUser NanmeMat ch = true;
String strPcUser Name = pc. get User Nane() ;
if (mstrUserNane != null)

| ogger. debug(this.toString() + ": conpareCredentials >>> conparing
ny username ["+mstrUserName+"] with client usernane
["+strPcUser Name+"]");

Next, you need to see if the user supplied in either the Subject or the
ConnectionRequestInfo is the same as our user. We do not support re-authentication
in this adapter, so if they do not match, this instance cannot satisfy the request. The
following line of code does that:

bUser NameMat ch = m strUser Nane. equal s(strPcUser Nane) ;

If usernames match, ping the connection to determine if this is still a good connection.
Otherwise, there is no match and no reason to ping. The following line of code does
that:

Developing Adapters ~ 6-29



6

Developing a Service Adapter

return bUser NameMatch ? ping() : false;

Explanation of the Implementation

6-30

Under a managed scenario, the application server invokes the

mat chManagedConnect i ons() method on the ManagedConnectionFactory for an
adapter. The specification does not indicate how the application server determines
which ManagedConnectionFactory to use to satisfy a connection request. The ADKs
AbstractManagedConnectionFactory implements mat chManagedConnect i ons() .
The first step in this implementation is to compare “this” (that is, the
ManagedConnect i onFact or y instance on which the Connect i onManager invoked
matchManagedConnections) to the ManagedConnect i onFact ory on each
ManagedConnect i on in the set supplied by the application server. For each
ManagedConnect i on in the set that has the same ManagedConnect i onFact ory, the
implementation invokes the conpar eCr edent i al s() method. This method allows
each ManagedConnect i on object to determine if it can satisfy the request.

mat chManagedConnect i ons() gets called by the Connect i onManager (as shown in
Listing 6-26) to try to find a valid connection in the pool it is managing. If this method
returns null, then the Connect i onManager will allocate a new connection to the EIS
via a call to cr eat eManagedConnect i on() .

Listing 6-26 mat chManagedConnecti ons() Method Implementation

publ i ¢ ManagedConnecti on
mat chManagedConnecti ons(Set connecti onSet,
Subj ect subj ect,
Connecti onRequest | nfo info)
t hrows Resour ceException

This class uses the following approach to matching a connection:

1. ltiterates over the <code>connect i onSet </ code> for each object in the set (until
a match is found). Then it determines whether to not it’s an
Abst ract ManagedConnecti on.

2. Ifitis, this connection is compared to the ManagedConnect i onFact ory for the
Abst r act ManagedConnect i on from the set.

Developing Adapters



Step 3: Implementing the SPI

3. If the factories are equal, then the conpar eCr edent i al s() method is invoked
on the Abst r act ManagedConnect i on.

4. If this method returns true, then the instance is returned.

AbstractManagedConnectionFactory Properties Required at Deployment

To use the base implementation of Abst r act ManagedConnect i onFact ory, you
need to provide the following properties at deployment time:

Table 6-2 AbstractManagedConnectionFactory Properties

Property Name Property Type Applicable Values Description Default
LogLevel java.lang. St ERROR, WARN, | NFQ, Logs verbosity WARN
ring DEBUG level
LanguageCode java.lang. St  valid ISO Language Code, see  Determines the en
ring http://ww. ics.uci.ed desiredlocale for
u/ pub/ietf/http/relat log messages
ed/ i s0639. t xt
Count ryCode java.l ang. valid ISO Country Code, see Determines the us
String http://ww. chem e. desired locale for
fu-berlin.del log messages
di verse/ doc/ | SO_3166.
ht m
MessageBundl eBase java.l ang. Any valid Java Class name or ~ Determines the none,
String file name message bundle  required
for log messages
LogConfi gFil e java.lang. St  Any valid file name Configures the none,
ring LOG4J system required
Root LogCont ext java.lang. St  Any valid Java String Categorizes log none,
ring messages from required
this connection
factory
Addi ti onal Log java.lang. St  Any valid Java String Adds additional none,
Cont ext ring information to optional

uniquely identify
messages from
this factory

Developing Adapters

6-31



6

Developing a Service Adapter

Other Key ManagedConnectionFactory Features in the ADK

In the ADK sample adapter, the class

sanpl e. spi . ManagedConnect i onFact oryl npl is provided. This class extends
Abst r act ManagedConnect i onFact or y. Use this class as an example of how to
extend the ADK's base class.

For the complete sample adapter ManagedConnectionFactory implementation code
listing, see:

W.I _HOWE/ adapt er s/ sanpl e/ src/ sanpl e/ spi / ManagedConnect i onFact oryl
npl . j ava

ManagedConnection

j avax. resource. spi . ManagedConnecti on

The ManagedConnect i on object is responsible for encapsulating all expensive
resources needed to establish connectivity to the EIS. A ManagedConnect i on
instance represents a physical connection to the underlying EIS. ManagedConnect i on
objects are pooled by the application server in a managed environment.

ADK Implementation

6-32

The ADK provides an abstract implementation of ManagedConnect i on. The base
class provides logic for managing connection event listeners and multiple
application-level connection handles per ManagedConnect i on instance.

When implementing the ManagedConnect i on interface, you need to determine the
transaction demarcation support provided by the underlying EIS. For more
information on transaction demarcation, see “Transaction Demarcation” on page 6-24.

The ADK provides Abst r act ManagedConnect i on, an abstract implementation for
the j avax. resour ce. spi . ManagedConnect i on interface that:

m Provides access to the ADK logging framework.
m  Manages a collection connection event listeners.

m  Provides convenience methods for notifying all connection event listeners of
connection related events.

Developing Adapters



Step 3: Implementing the SPI

m Simplifies clean-up and destruction of a ManagedConnection instance.

The sample adapter that comes with the ADK includes ManagedConnectionimpl,
which extends AbstractManagedConnection. For the complete sample adapter
ManagedConnect i on implementation code listing, see:

WLl _HOVE/ adapt er s/ sanpl e/ src/ sanpl e/ spi / ManagedConnect i onFact oryl
npl . j ava

ManagedConnectionMetaData

j avax. resour ce. spi . ManagedConnect i onMet aDat a

The ManagedConnect i onMet aDat a interface provides information about the
underlying EIS instance associated with a ManagedConnect i on instance. An
application server uses this information to get run-time information about a connected
EIS instance.

ADK Implementation

The ADK provides Abst r act ManagedConnect i onMet aDat a, an abstract
implementation of the j avax. r esour ce. spi . ManagedConnect i onMet aDat a and
j avax. resour ce. cci . Connect i onMet aDat a interfaces that:

m Simplifies exception handling.
m Provides access to an Abst r act ManagedConnect i on instance.
m Allows you to focus on implementing EIS-specific logic.

m Prevents you from having a separate metadata class for the CCI and SPI
implementations.

The sample adapter that comes with the ADK includes Connect i onMet aDat al npl ,
which extends Abst r act ManagedConnect i onMet aDat a. For the complete code
listing, see:

WLl _HOVE/ adapt er s/ sanpl e/ src/ sanpl e/ spi / Connecti onMet aDat al npl . j a
va

Developing Adapters ~ 6-33



6 Developing a Service Adapter

ConnectionEventListener

j avax. resource. spi . Connecti onEvent Li st ener

The Connect i onEvent Li st ener interface provides an event callback mechanism
that enables an application server to receive notifications from a ManagedConnect i on
instance.

ADK Implementation

The ADK provides two concrete implementations of Connect i onEvent Li st ener ;

®m com bea. adapt er. spi . Connect i onEvent Logger, which logs
connection-related events to the adapter's log by using the ADK logging
framework.

m com bea. adapt er. spi . NonManagedConnect i onEvent Li st ener, which
destroys j avax. r esour ce. spi . ManagedConnect i on instances when the
adapter is running in a non-managed environment. This implementation:

e Logs connection-related events using the ADK logging framework.

e Destroys ManagedConnect i on instances when a connection related error
occurs.

In most cases, the implementations provided by the ADK are sufficient; you should not
need to provide your own implementation of this interface.

ConnectionManager

j avax. resource. spi . Connect i onManager

The Connect i onManager interface provides a hook for the adapter to pass a
connection request to the application server.

6-34  Developing Adapters



Step 3: Implementing the SPI

ADK Implementation

The ADK provides a concrete implementation of this interface,

com bea. adapt er. spi . NonManagedConnect i onManager . This implementation
provides a basic connection manager for adapters running in a non-managed
environment. In a managed environment, this interface is provided by the application
server. In most cases, you can use the implementation provided by the ADK.

NonManagedConnect i onManager is a concrete implementation of the

j avax. resour ce. spi . Connect i onManager interface. It serves as the

Connect i onManager in the non-managed scenario for an adapter; it does not provide
any connection pooling or any other quality of service.

ConnectionRequestinfo

j avax. resource. spi . Connect i onRequest | nfo

The Connect i onRequest | nf o interface enables an adapter to pass its own request
specific data structure across the connection request flow. An adapter extends the
empty interface to support its own data structures for a connection request.

ADK Implementation

The ADK provides a concrete implementation of this interface called
Connect i onRequest | nf oMap. This is a concrete implementation of the
j avax. resour ce. spi . Connect i onRequest | nf o interface and provides a

java. util . Map interface to such connection request information as username and
password.

LocalTransaction

j avax. resource. spi . Local Transacti on

The Local Transact i on interface provides support for transactions that are managed

internal to an EIS resource manager, and do not require an external transaction
manager.

Developing Adapters ~ 6-35



6 Developing a Service Adapter

ADK Implementation

Step 4.

The ADK provides an abstract implementation of this interface called

Abst ract Local Tr ansact i on. This implementation allows you to focus on
implementing the EIS-specific aspects of a Local Tr ansact i on. This
implementation;

m  Simplifies exception handling.

m  Allows adapter providers to focus on implementing EIS-specific transaction
logic.

m Prevents you from having a separate metadata class for the CCl and SPI
implementations.

Implementing the CClI

The client interface allows a J2EE-compliant application to connect to and access
back-end systems. The client interface manages the flow of data between the client
application and the back-end system and does not have any visibility into what either
the container or the application server are doing with the adapter. The client interface
specifies the format of the request and response records for a given interaction with the
EIS.

First, you must determine if your adapter must support the J2EE-compliant Common
Client Interface (CCI). Although not a requirement in the current J2EE specification,
it is likely to be a requirement in a later version. Consequently, the ADK focuses on
helping you implement a CCl interface for your adapter.

How to Use this Section

This section (“Step 4: Implementing the CCI”) describes some of the interfaces you
can use to implement the CCI. A minimum of two interfaces are necessary to complete
the task (see “Basic CCI Implementation” on page 6-37). Each of these is described in
detail, followed by a discussion of how they were extended in the sample adapter
included with the ADK.

6-36 Developing Adapters



Step 4: Implementing the CCI

Following the two required interfaces, the additional interfaces are described in detail,
including information regarding why you might use them and what benefit they
provide to an adapter.

Basic CCl Implementation

To implement the CCI for your adapter, you need to extend at least these two
interfaces:

m  Connecti on, which represents an application-level handle that is used by a
client to access the underlying physical connection.

®m | nteraction, which enables a component to execute EIS functions.
Ideally, you will implement these interfaces in the order specified above.

In addition to these interfaces, you can implement any of the other interfaces described
in this step, as your adapter needs dictate. These interfaces are:

m ConnectionFactory
®  Connecti onMet aDat a
m  Connecti onSpec

m | nteractionSpec

m Local Transaction

m Record

®m  Resour ceAdapt er Met aDat a

Connection

j avax. resource. cci . Connecti on

A Connect i on represents an application-level handle that is used by a client to access
the underlying physical connection. The actual physical connection associated with a
Connect i on instance is represented by a ManagedConnect i on instance.

Developing Adapters  6-37



6

Developing a Service Adapter

A client gets a Connect i on instance by using the get Connecti on() method on a
Connect i onFact ory instance. A Connect i on can be associated with zero or more
I nt er act i on instances.

ADK Implementation

The ADK provides an abstract implementation of this interface called
Abst r act Connect i on. This interface provides the following functionality:

m  Access to the ADK logging framework

m  Access to an Abst r act ManagedConnect i on instance

m State management and assertion checking

You will need to extend this class by providing an implementation for:

public Interaction createlnteraction()
t hrows ResourceException

This method creates an interaction associated with this connection. An interaction
enables an application to execute EIS functions. This method:

m Returns: | nt er acti on instance

m  Throws: Resour ceExcept i on - Exception if the create operation fails

Interaction

6-38

j avax.resource. cci.lnteraction

The j avax. resource. cci . | nt eract i on enables a component to execute EIS
functions. An I nt er act i on instance supports the following ways of interacting with
an EIS instance:

m  Anexecut e() method that takes an input Recor d, output Recor d, and an
I nt er acti onSpec. This method executes the EIS function represented by the
I nt eracti onSpec and updates the output Recor d.

m  Anexecut e() method that takes an input Recor d and an I nt er act i onSpec.
This method implementation executes the EIS function represented by the
I nteracti onSpec and produces the output Recor d as a return value.

Developing Adapters



Step 4: Implementing the CCI

An | nteraction instance is created from a connection and is required to maintain its
association with the Connect i on instance. The cl ose() method releases all resources
maintained by the adapter for the interaction. The close of an I nt er act i on instance
should not close the associated Connect i on instance.

ADK Implementation

The ADK provides an implementation of this interface called
Abst ract | nt er act i on. This interface:

m Provides access to the ADK logging framework.
m  Manages warnings.

You must supply a concrete extension to Abst r act | nt er act i on that implements
execut e() . Use at least one of the following versions of execut e() :

execute() Version 1

The execut e() method declared in Listing 6-27 shows an interaction represented by
the I nt er acti onSpec. This form of invocation takes an input record and updates the
output record.

This method:

m Returns true if execution of the EIS function has been successful and output
Recor d has been updated; otherwise it returns false.

m  Throws ResourceException - Exception if execute operation fails.

Listing 6-27 execute() Version 1 Code Example

publ i c bool ean execute(lnteracti onSpec ispec,
Record i nput,
Record out put)
t hrows Resour ceException

The parameters f or execut e() version 1 are:

Developing Adapters ~ 6-39



6

Developing a Service Adapter

Table 6-3 execut e() Version 1 Parameters

Parameters Description

ispec InteractionSpec representing a target EIS data/function module
input Input Record

output Output Record

execute() Version 2

6-40

The execut e() method declared in Listing 6-28 also executes an | nt er act i on
represented by the I nt er act i onSpec. This form of invocation takes an input Recor d
and returns an output Recor d if the execution of the I nt er act i on has been
successful.

This method:

m Returns an output Recor d if execution of the EIS function has been successful;
otherwise it throws an exception.

m  Throws ResourceException - Exception if the execute operation fails.

If an exception occurs, this method will notify its Connect i on, which will take the
appropriate action, including closing itself.

Listing 6-28 execute() Version 2 Code Example

public Record execute(lnteracti onSpec ispec,
Record i nput)
t hrows Resour ceExcepti on

The parameters for execut e() version 2 are:

Developing Adapters



Step 4: Implementing the CCI

Table 6-4 execute() Version 2 Parameters

Parameter Description
ispec InteractionSpec representing a target EIS data/function module
input Input Record

Using XCCl to Implement the CClI

XCCI (XML-CCI) It is a dialect of CCI that uses XML-based record formats to
represent data. It provides the tools and framework for supporting this record format.
There are two primary components of XCCI: Ser vi ces and Docunent Recor ds.

A service represents functionality available in an EIS and is comprised of four
components:

m  Unique Business Name

Every service has a unique business name that indicates its role in an integration
solution. For example, in an integration solution involving a Customer
Relationship Management (CRM) system, you may have a service named
“CreateNewCustomer”. It is important to understand that the service name
should reflect the business purpose of the service; it is an abstraction from the
name of the function(s) your service invokes in the EIS

m Request Document Definition

The request document definition describes the input requirements for a service.
The com bea. docunent . | Docunent Def i ni ti on interface embodies all the
metadata about a document type. It includes the document schema (structure and
usage), and the root element name for all documents of this type. The root
element name is needed because an XML schema can define more than one
possible root element.

m Response Document Definition

The response document definition describes the output for a service.

m  Additional Metadata

Developing Adapters ~ 6-41



6 Developing a Service Adapter

A service is a higher-order component in an integration solution that hides most
of the complexity involved in executing functionality in an EIS. In other words,
a service does not expose many of the details required to interact with the EIS in
its public interface. This implies that some of the information required to invoke
a function in an EIS is not provided by the client in the request. Consequently,
most services need to store additional metadata. In WebLogic Integration, this
additional metadata is encapsulated by an adapter's

j avax. resource. cci . I nteracti onSpec implementation class.

DocumentRecord

IDocument

com bea. connect or. Docunent Recor d

At run time, the XCCI layer expects Document Recor d objects as input to a service and
returns DocumentRecord objects as output from a service. Docunment Recor d
implements the j avax. resour ce. cci . Recor d and the

com bea. docunent . | Docunent interfaces. See “Record” on page 6-50 for a
description of that interface. | Docunent , which facilitates XML input and output from
the CClI layer in an adapter, is described in the following section.

com bea. docunent . | Docunent

An | Docunent is a higher-order wrapper around the W3C Document Object Model
(DOM). The primary value-add of the I Docunment interface is that it provides an XPath
interface to elements in an XML document. In other words, | Document objects are
queryable and updatable using XPath strings. For example, The XML document
shown in Listing 6-29 describes a person named “Bob” and some of the details about
“Bob.”

Listing 6-29 XML Example

<Per son name="Bob" >
<Home squar eFeet ="2000"/ >
<Fani |l y>
<Chil d name="Ji my">
<Stats sex="mal e" hair="brown" eyes="blue"/>
</ Chi | d>
<Chi | d name="Susie">
<Stats sex="femal e" hair="bl onde" eyes="brown"/>

6-42 Developing Adapters



Step 4: Implementing the CCI

</ Chi | d>
</ Fam | y>
</ Per son>

By using | Docurrent , you can retrieve Jimmy's hair color using the code shown in
Listing 6-30:

Listing 6-30 IDocument Data Retrieval Code Sample

Systemout.printIn("Jimry's hair color: " +
person. get Stri ngFron("// Person[ @ane=\"Bob\"]/Fam | y/ Child
[@anme=\"Jinmy\"]/Stats/ @air");

On the other hand, if you used DOM, you would need to enter the code shown in
Listing 6-31:

Listing 6-31 DOM Data Retrieval Code Sample

String strJimmysHairColor = null;
org.w3c. dom El enent root = doc. get Docunent El enent () ;
if (root.get TagNane().equal s("Person") &&
root.getAttribute("name"). equal s("Bob") {
org.w3c. dom NodeLi st list = root.
get El ement sBy TagName( " Fami | y");
if (list.getLength() > 0) {
org.w3c.dom El enent famly = (org.w3c.dom
El ement)list.item(0);

org.w3c. dom NodeLi st childList =
fam |y. get El ement sByTagNanme(" Child");

for (int i=0; i < childList.getLength(); i++) {
org.w3c.dom El enent child = childList.iten(i);

if (child.getAttribute("nanme").equal s("Jimy")) {
org.w3c. dom NodeLi st statsList =

chi | d. get El ement sByTagNanme(" St ats");

if (statsList.getLength() > 0) {
org.w3c.dom El enent stats statsList.iten(0);

strJi mrysHai r Col or stats.getAttribute("hair");

Developing Adapters ~ 6-43



6 Developing a Service Adapter

As you can see, by using | Docunent , you can simplify your code.

ADK-Supplied XCCI Classes

The ADK provides several classes that will help you implement XCCI for your
adapters. This section describes those classes.

AbstractDocumentRecordInteraction

com bea. adapt er. cci . Abstract Docunent Recordl nteraction

This class extends the ADK's abstract base I nt er act i on,

com bea. adapt er . cci . Abstract I nt er acti on. The purpose of this class is to
provide convenience methods for manipulating Docunent Recor ds and to reduce the
amount of error handling the you need to implement. Specifically, this class declares:

protected abstract bool ean execut e(
I nteracti onSpec i xSpec,
Document Recor d i nput Doc,
Docurent Record out put Doc

) throws ResourceException

and

protected abstract Docunent Record execut e(
I nteracti onSpec i xSpec,
Document Recor d i nput Doc

) throws ResourceException

These methods will not be invoked on the concrete implementation until the
parameters have been verified that they are Docunment Recor d objects.

DocumentDefinitionRecord

com bea. adapt er. cci . Docunent Def i ni ti onRecord

6-44  Developing Adapters



Step 4: Implementing the CCI

This class allows the adapter to return an | Docunent Def i ni ti on from its
Docurent Recor dI nt er act i on implementation. This class is useful for satisfying
design-time requests to create the request and/or response document definitions for a
service.

DocumentinteractionSpecimpl

com bea. adapt er. cci . Docunent | nt eract i onSpecl npl

This class allows you to save the request document definition and response document
definition for a service into the | nt er act i onSpec provided to the execute method at
run time. This is useful when the | nt er act i on for an adapter needs access to the
XML schemas for a service at run time.

XCCI Design Pattern

A common design pattern that emerges when using the XCCI approach is to support
the definition of services in the | nt er act i on implementation. In other words, the

j avax.resource. cci . I nteraction implementation for an adapter allows a client
program to retrieve metadata from the underlying EIS in order to define a WebLogic
Integration service. Specifically, this means that the interaction must be able to
generate the request and response XML schemas and additional metadata for a service.
Additionally, the I nt er act i on could also allow a client program to browse a catalog
of functions provided by the EIS. This approach facilitates a thin client architecture for
your adapter.

The ADK provides the com bea. adapt er. cci . Desi gnTi nel nt er act i on-
Specl mpl class to help you implement this design pattern. The

sanpl e. cci. I nteractionl npl class demonstrates how to implement this design
pattern using the Desi gnTi nel nt er act i onSpecl npl class.

Using Non-XML J2EE-Compliant Adapters

The ADK provides a plug-in mechanism for using non-XML adapters with WebLogic
Integration. Not all pre-built adapters use XML as their
j avax. resource. cci . Recor d data type; for example:

m You have developed a J2EE-compliant adapter with a proprietary record format.

Developing Adapters ~ 6-45



6

Developing a Service Adapter

m You purchased a third-party J2EE-compliant adapter that uses a proprietary
record format in the adapter’s CClI layer.

To facilitate implementation of these types of adapters, the ADK provides the

com bea. connect or . | Recor dTr ansl at or interface. At run time, the application
view engine uses an adapter’s | Recor dTr ansl at or implementation to translate
request and response records before executing the adapter’s service.

Since the application integration engine only supports

j avax. resource. cci . Recor d of type com bea. connect or . Document Recor d,
you must translate this proprietary format to a document record for request and
response records. You do not need to rewrite the adapter’s CClI interaction layer. By
inserting a class into the WebLogic Integration engine classpath that implements

| Recor dTr ansl at or, the application view engine will execute the translate methods
in your translator class on each record for request and response.

The requirements and restrictions for implementing this translator class are that there
is a one to one correlation between adapter and the translator. The plug-in architecture
loads the translator class by name, using the full class name of the adapter's

I nteracti onSpec plusthe phrase “RecordTranslator”; for example, if the adapter's
I nt er act i onSpec class hame was com bea. adapt er . dbns. cci .

I nt eracti onSpecl npl , then the engine would load the class com bea. adapt er .
dbns. cci . I nteracti onSpecl npl Recor dTr ansl at or if it was available.

See the Javadoc for com bea. connect or . | Recor dTr ansl at or at
VLI _HOVE/ docs/ api docs/ conl bea/ connect or/ | Recor dTransl at or. ht il fora
description of the methods that must be implemented.

ConnectionFactory

6-46

j avax. resource. cci . Connecti onFactory

Connect i onFact or y provides an interface for getting connection to an EIS instance.
An implementation of the Connect i onFact ory interface is provided by an adapter.

The application code looks up a Connect i onFact or y instance from JNDI namespace
and uses it to get EIS connections.

An implementation class for Connect i onFact ory is required to implement
java.io. Serializableandjavax. resource. Ref erenceabl ei nterf aces to
support JNDI registration.

Developing Adapters



Step 4: Implementing the CCI

ADK Implementation

The ADK provides Connect i onFact or yl mpl , a concrete implementation of the
j avax. resource. cci . Connect i onFact ory interface that provides the following
functionality:

m Access to the ADK logging framework
m  Access to adapter metadata
m Implementation of the get Connect i on() method

Typically, you will not need to extend this class and can use it outright.

ConnectionMetaData

j avax. resource. cci . Connect i onMet aDat a

Connect i onMet aDat a provides information about an EIS instance connected through
a Connection instance. A component calls the method Connect i on. get Met aDat a to
get a Connect i onMet aDat a instance.

ADK Implementation

By default, the ADK provides an implementation of this class via the
com bea. adapt er. spi . Abst ract Connecti onMet aDat a class. You will need to
extend this abstract class and implement its four abstract methods for your adapter.

ConnectionSpec

j avax. resource. cci . Connect i onSpec

Connect i onSpec is used by an application component to pass connection
request-specific properties to the Connect i onFact ory. get Connect i on() method.

It is recommended that you implement the Connect i onSpec interface as a JavaBean
so that it can support tools. The properties on the Connect i onSpec implementation
class must be defined through the getter and setter methods pattern.

Developing Adapters ~ 6-47



6

Developing a Service Adapter

The CCI specification defines a set of standard properties for an Connect i onSpec.
The properties are defined either on a derived interface or an implementation class of
an empty Connect i onSpec interface. In addition, an adapter may define additional
properties specific to its underlying EIS.

ADK Implementation

Since the Connect i onSpec implementation must be a JavaBean, the ADK does not
supply an implementation for this class.

InteractionSpec

6-48

j avax. resource. cci.lnteracti onSpec

An | nteractionSpec holds properties for driving an interaction with an EIS
instance. It is used by an interaction to execute the specified function on an underlying
EIS.

The CCI specification defines a set of standard properties for an I nt er act i onSpec.
An | nt eracti onSpec implementation is not required to support a standard property
if that property does not apply to its underlying EIS.

The I nt er act i onSpec implementation class must provide getter and setter methods
for each of its supported properties. The getter and setter methods convention should
be based on the JavaBeans design pattern.

The | nt er act i onSpec interface must be implemented as a JavaBean in order to
support tools. An implementation class for | nt er act i onSpec interface is required to
implement the java.io.Serializable interface.

The I nt er act i onSpec contains information that is not in Record but helps determine
what EIS function to invoke.

The standard properties are described in Table 6-5:

Developing Adapters



Step 4: Implementing the CCI

Table 6-5 Standard InteractionSpec Properties

Property Description
Funct i onName Name of an EIS function
I nteractionVerb Mode of interaction with an EIS instance: SYNC_SEND,

SYNC_SEND_RECEI VE, SYNC_RECEI VE

Execut i onTi neout The number of milliseconds an Interaction will wait for an
EIS to execute the specified function

The following standard properties are used to give hints to an interaction instance
about the Resul t Set requirements:

m FetchSize

m FetchDirection

m  MaxFi el dSi ze

® Resul t Set Type

B Resul t Set Concurrency

A CClI implementation can provide additional properties beyond that described in the
InteractionSpec interface.

Note: The format and type of the additional properties is specific to an EIS and is
outside the scope of the CCI specification.

ADK Implementation

The ADK contains a concrete implementation of

j avax.resource. cci .l nteractionSpec called | nt eracti onSpecl npl . This
interface provides a base implementation for you to extend by using getter and setter
methods for the standard interaction properties described in Table 6-5.

Developing Adapters ~ 6-49



6 Developing a Service Adapter

LocalTransaction

Record

j avax. resource. cci . Local Transacti on

The Local Transact i on interface is used for application-level local transaction
demarcation. It defines a transaction demarcation interface for resource manager local
transactions. The system contract level Local Transact i on interface (as defined in
the j avax. resour ce. spi package) is used by the container for local transaction
management.

A local transaction is managed internal to a resource manager. There is no external
transaction manager involved in the coordination of such transactions.

A CClI implementation can (but is not required to) implement the Local Transacti on
interface. If the Local Tr ansact i on interface is supported by a CCl implementation,
then the method Connect i on. get Local Transacti on() should return a

Local Transact i on instance. A component can then use the returned

Local Transact i on to demarcate a resource manager local transaction (associated
with the Connect i on instance) on the underlying EIS instance.

The com bea. adapt er. spi . Abst ract Local Tr ansact i on class also implements
this interface.

For more information on local transactions, see “Transaction Demarcation” on page
6-24.

j avax. resource. cci . Record

Thej avax. resour ce. cci . Recor d interface is the base interface for representing an
input or output to the execut e() methods defined on an Interaction. For more
information on the execut e() methods, see “execute() Version 1” on page 6-39 and
“execute() Version 2” on page 6-40

A MappedRecor d or | ndexedRecor d can contain another Recor d. This means that
you can use MappedRecor d and | ndexedRecor d to create a hierarchical structure of
any arbitrary depth. A basic Java type is used as the leaf element of a hierarchical
structure represented by a MappedRecor d or | ndexedRecor d.

6-50 Developing Adapters



Step 4: Implementing the CCI

The Recor d interface can be extended to form one of the representations shown in
Table 6-6:

Table 6-6 Record Interface Representations

Representation Description

MappedRecord A key-value pair based collection representing a record.
This interface is based on the j ava. util. Map.

I ndexedRecord An ordered and indexed collection representing a
record. This interface is based on the
java.util.List.

JavaBean based representation of  An example is a custom record generated to represent a

an EIS abstraction purchase order in an ERP system.
j avax. resource. cci . This interface extends both java.sql.ResultSet and
Resul t Set javax.resource.cci.Record. A ResultSet represents

tabular data.

Assuming the adapter implements a CCl interface, the next consideration is the record
format for a service. A service has a request record format and a response record
format. The request record provides input to the service and the response record
provides the EIS response.

ADK Implementation

The ADK focuses on helping you implement an XML-based record format in the CCI
layer. To this end, the ADK provides the Docunent Recor d class. In addition, you can
use BEA's schema toolkit to develop schemas to describe the request and response
documents for a service.

The ADK provides Recor dI npl , a concrete implementation of the
j avax. resource. cci . Recor d interface that provides getter and setter methods for
record name and description.

If an adapter provider wants to use an XML-based record format (which is highly
recommended), the ADK also provides the com bea. adapt er. cci . Abst r act
Document Recor dI nt er act i on class. This class ensures that the client passes
DocumentRecord objects. In addition, this class provides convenience methods for
accessing content in a Document Recor d.

Developing Adapters ~ 6-51



6

Developing a Service Adapter

ResourceAdapterMetaData

j avax. resource. cci . Resour ceAdapt er Met aDat a

The interface j avax. r esour ce. cci . Resour ceAdapt er Met aDat a provides
information about capabilities of an adapter implementation. A CCI client uses a
Connect i onFact ory. get Met aDat a to get metadata information about the adapter.
The get Met aDat a() method does not require establishment of an active connection
to an EIS instance. The Resour ceAdapt er Met aDat a interface can be extended to
provide more information specific to an adapter implementation.

Note: This interface does not provide information about an EIS instance that is
connected through the adapter.

ADK Implementation

The ADK provides Resour ceAdapt er Met aDat al npl that encapsulates adapter
metadata and provides getters and setters for all properties.

Step 5: Testing the Adapter

6-52

The ADK provides a test harness that leverages JUnit, an open-source tool for unit
testing. You can find more information on JUnit at:

http://www. j uni t . org

com bea. adapt er . t est . Test Har ness does the following:

m Reads a properties file containing test configuration information.
m |Initializes the log toolkit.

m Initializes JUnit TestSuite.

m Loads test classes and executes them using JUnit.

m  Allows you to test code off-line and outside of Weblogic Server.

Developing Adapters



Step 5: Testing the Adapter

Using the Test Harness

To use the test harness in the ADK, complete the following steps:

1. Create aclass that extendsj uni t . f r amewor k. Test Case. The class must provide
a static method named suite that returns a new j uni t . f ramewor k. Test Sui t e.

2. Implement test methods; name of methods should begin with “test”.

3. Create/alter the t est . properti es in the project directory (if you clone the
sample adapter, then your adapter will already have a base t est . properti es in
the project directory). The properties file should contain any configuration
properties needed for your test case.

4. Invoke the test using Ant. Your Ant bui | d. xm file will need a test target that
invokes the com bea. adapt er . t est . Test Har ness class with the properties
file for your adapter. For example, the sample adapter uses the Ant target shown
in Listing 6-32:

Listing 6-32 Ant Target Specified in the Sample Adapter

<target nane='test' depends='packages' >
<j ava cl assname=' com bea. adapter.test. Test Har ness' >
<arg val ue=' - DCONFI G_FI LE=t est. properties'/<cl asspath
refid=" CLASSPATH / >
</java>

This target invokes the JVM with main class
com bea. adapt er. t est . Test Har ness using the classpath established for the
sample adapter and passes the command-line argument:

- DCONFI G_FI LE=t est . properties

Test Case Extensions Provided by the ADK

The sample adapter ships with two basic Test Case extensions:

m sanpl e. spi . NonManagedScenari oTest Case

Developing Adapters ~ 6-53



6

Developing a Service Adapter

sanpl e. event. O fl i neEvent Gener at or Test Case

sample.spi.NonManagedScenarioTestCase

NonManagedScenar i oTest Case allows you to test your SPI and CCI classes in a
non-managed scenario. Specifically, this class tests the following:

Initialization of the ManagedConnect i onFact ory implementation
Serialization/De-serialization of the ManagedConnect i onFact ory instance
Opening a connection to the EIS

Closing a connection to the EIS; you can make sure all associated resources are
getting closed when a connection is closed

sample.event.OfflineEventGeneratorTestCase

sanpl e. event . O f| i neEvent Gener at or Test Case allows you to test the inner
workings of your event generator outside of Weblogic Server. Specifically, this class
tests the following for the event generator:

It simulates the event router and instantiates a new instance of the adapter's
event generator.

It passes the t est . properti es to the event generator for initialization; this
allows you to test your initialization logic.

It refreshes the event generator randomly; this allows you to test your
set upNewTypes() and r enoveDeadTypes() methods.

It receives event postings and displays them to the log file for the adapter.

sample.client. ApplicationViewClient

6-54

sanpl e. client. ApplicationVi ewnd i ent offers an additional way of test your
adapter. This class is a Java program that demonstrates how to invoke a service and
listen for an event on an application view. The Ant bui | d. xml provides the “client”
target to allow you to use the Appl i cati onVi ewCl i ent program. Executing ant

cl i ent will provide the usage for the program. To see an example of

sanpl e. client. ApplicationViewdient.java, goto W.I _HOVE adapt ers/
sanpl e/ src/ sanmpl e/ client.

Developing Adapters



Step 6: Deploying the Adapter

Note: sanple.client. ApplicationViewd ient isnotintegrated with the test
harness.

Step 6: Deploying the Adapter

After implementing the SPI and CCI interfaces for an adapter, and then testing it,
deploy it into WebLogic Integration. You can deploy an adapter either manually or
from the WebLogic Server Console. See Chapter 9, “Deploying Adapters,” for
complete information.

Developing Adapters ~ 6-55



6 Developing a Service Adapter

6-56 Developing Adapters



CHAPTER

{ Developing an Event
Adapter

Event adapters propagate information from an EIS into the WebL ogic Integration
environment. These types of adapters can be described as publishers of information.
All WebL ogic Integration event adapters perform the following three functions:

They respond to “events” that occur inside the running EIS and extract data
about the event from the EIS into the adapter.

They transform event data from the EIS specific format to an XML document
that conforms to the XML schema for the event. The XML schema is based on
metadata in the EIS.

They propagate the event into the WebL ogic Integration environment by using
the event router.

WebLogic Integration implements the aspects of these three functions that are generic
across all event adapters. You only need to focus on the EIS specific aspects of your
adapter.

This section contains information on the following subjects:

Event Adapters in the Run-time Environment

The Flow of Events

Step 1: Development Considerations

Step 2: Configuring the Development Environment
Step 3: Implementing the Adapter

Step 4: Testing the Adapter

Developing Adapters 7-1



7 Developing an Event Adapter

m Step 5. Deploying the Adapter

Event Adapters in the Run-time
Environment

The behavior of an Event in the run-time environment is depicted in Figure 7-1.

7-2 Developing Adapters



Event Adapters in the Run-time Environment

Figure 7-1 Event Adapters in the Run-time Environment

Hote
Evert Router/Evert Generatar are in &
Wizh app within (possibly) separate app

Client's customer
implementation of

EvertlListner interface

return listengt

SErYErYM
EvertFar-
" ; Ewvert- JS wearding- Event- Evert- ElI=
Cliert App. iew JNDI Listener Topic Message- Generator Router (Trigger)
Listener
T T T
I newi"Av1") } :
L
return avl | |
[ |
| e 1
|
|

|

|

L

|

L
-

1 Creates a JMS

|
1 1
addEvantListenerievent type, listener)
—_— 1

Meszsagelistener that
will forweard messages
as everts to & given

EvertListner

T
|
|
|
|
|
|
|
|
|
|
!

lapkup topic for | |
¥ retrigve

h

|
| ]
| return A1 topic
| T

IJ
Eetum A topic: |
|
|
T
|
1
|

¥

select™ from EVENT

newrlistener)
return meglistener
T

t
| ermpty rasult set
I

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r
|
-
i

i

WAt

o

4'

: ingert happens;
frigaer fires
|

| | |
createSubscriberditar ype=eventiype, msoListaner
T 1 1

insertinto EVEMT
{table, tignerType, 1D

This iz really
called aysinst a
TopicSession and
taking the topic,
but this is simpler
to drawy

Thiz setz up a fitter o that
only eventzof the desired
type get sent to the given

T
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
Meszagelistener. This : | :
type iz in & JMS header
figld that wil be sert by : for (gach new colurp) insert into
|
|
|
|
|
|
|

the event router E\u’EN‘T_DATA (d, calumniMame, data)

Ewverit iz crested using

[EventDefinition
Select ™ frdm EVERT
T

stored when
EventRouter called
the refresh) method

>

1 row wnH‘ new data

|
|
|
|
|
|
|
|
|
|
|
|
|
:
]

|

|

1

|

{ 1
| crealI |Event ohject 1 :
Evert iz filed in with | :l | |
column data from | | | |
EYENT_DATA, one fill in event with new data |
| | |

|

|

|

row=ong column of

inserted row

|
| |
|

ostEventieven
: pootren

EvertRouter looks
up recipiert list
based upon the

IEvertDefintion for

the posted event

|
publishfObjectMessage (event)
e t

|

|

|

r T
onMedsage(ohjectmdssage)

i

eldract event

onEvent{event)

4 To allow fikering, evert type

name is =t as JMS header
figld on publish

pracess avent

______:____

Developing Adapters 7-3



7 Developing an Event Adapter

The Flow of Events

Figure 7-2 outlines the steps required to develop an Event Adapter.

Figure 7-2 Event Adapter Flow of Events

Devel C iderations

ow will:
Determine event types
Determine extraction mechanisms

Configure D Envir
You wel:

Set up file structure

Assign Adapter Logical Name
Create and update files

Set up the build process

Create the message bundle
Configure logging

3
Implement the Adapter
You wilt!
Implement the data extraction mechanism
Implement the data transformation method
Implement IEventGenerator

4
Deploy the Adapter

You weil:

Add EventRouterServlet and web.xml file to
the EventRouter WAR file

Create the EventRouter WaR file

Create the EAR file

Deploy the EAR file

Test the Adapter
ow will
Employ the ADK Test Harness to test the
adapter

7-4 Developing Adapters



Step 1: Development Considerations

Step 1: Development Considerations

These are the items you need to consider before commencing with event adapter
development. The Adapter Setup Worksheet will provide much of this information.
See Appendix D, “Adapter Setup Worksheet.”

1. Determine the event types.
You need to identify what exactly comprises the event:
e What will its contents be?
e How will it be defined in the XML schema?

e What will trigger it?

2. Determine the data extraction method.
Next, you need to decide which method of data extraction will be used:
e “Push,” wherein the EIS notifies the adapter of an event.
e “Pull,” where the adapter polls the EIS and pulls event data from it.

Use the pull method when your adapter needs to poll the EIS to determine a
change-of-state. Use a push event when you want to implement an event
generation that works more like a publish/subscribe model.

Step 2: Configuring the Development
Environment

This step describes the processes you must complete to prepare your computer for
adapter development.

Developing Adapters 7-5



/

Developing an Event Adapter

Step 2a: Set up the File Structure

The file structure necessary to build an event adapter is the same as that required for
service adapters. See “Step 2a: Set Up the File Structure” in Chapter 6, “Developing a
Service Adapter.”

Step 2b: Assign the Adapter Logical Name

Next, you need to assign the adapter’s logical name. By convention, this name is
comprised of the vendor name, the type of EIS connected to the adapter, and the
version number of the EIS and is expressed as vendor_EIS-type_EIS version. For
example, BEA W.S_SAMPLE_ADK, where:

m BEA WS is the vendor
m  SAMWPLE is the EIS-type

m ADK is the EIS version

Step 2c¢: Set Up the Build Process

7-6

WebLogic Integration employs a build process based upon Ant, a 100% pure
Java-based build tool. For more information on Ant, please see “Ant-Based Build
Process” on page 3-4. For more information on using Ant, go to:

http://jakarta. apache. org/ ant/i ndex. ht m

The sample adapter shipped with WebLogic Integration (located in

W.I _HOVE/ adapt er s/ sanpl e) contains the file bui | d. xm (located in

W.I _HOVE/ adapt er s/ sanpl e/ pr oj ect) . This is the Ant build file for the sample
adapter. It contains the tasks needed to build a J2EE-compliant adapter. Running the
GenerateAdapterTemplate utility to clone a development tree for your adapter creates
abuild.xm file specifically for that adapter. This will free you from having to
customize the sample bui I d. xm and will ensure that the code is correct. For
information on using the GenerateAdapterTemplate utility, see Chapter 4, “Creating a
Custom Development Environment.”

Developing Adapters



Step 2: Configuring the Development Environment

For more information on the build process, see “Step 2c: Setting Up the Build
Process,” in Chapter 6, “Developing a Service Adapter.”

Step 2d: Create the Message Bundle

Any message destined for the end-user should be placed in a message bundle. The
message bundle is simply a . pr oper ti es text file that contains key=value pairs that
allow you to internationalize messages. When a locale and national language are
specified at run time, the contents of the message is interpreted, based upon the

key=value pair, and the message is presented to the user in the correct language for his
or her locale.

For instructions on creating a message bundle, please refer to the JavaSoft tutorial on
internationalization at:

http://java. sun. conidocs/ books/tutorial/il8n/index.htm

Step 2e: Configure Logging

The final step in configuring your development environment is to configure logging.
Before you begin, read more about logging in Chapter 2, “Concepts.” Logging is
accomplished using the logging tool Log4j, developed as part of the Apache Jakarta

project. For information on using this tool, please see Chapter 5, “Using the Logging
Toolkit.”

Create an Event Generation Logging Category

For event adapters, you will need to create a logging category specifically for event
generation (for more information on logging categories, see “Message Categories” on
page 5-3). Edit the logging configuration file for the specific adapter

(adapt er _| ogi cal _name. xm in W.I _HOVE/ adapt er s/ ADAPTER/ src/ where
ADAPTER is the adapter you are building) by adding the code in Listing 7-1.

Developing Adapters 7-7



7 Developing an Event Adapter

Step 3:

Listing 7-1 Sample Code Creating an Event Generation Logging Category

<cat egory nanme=' BEA W.S SAMPLE ADK. Event Generator' cl ass='com bea
| oggi ng. LogCat egory' >

</ cat egory>

You must replace BEA W.S_SAMPLE_ADK with your adapter logical name.

By not setting any specific parameters for this category, it will inherit all of the parent
category’s property settings. In this example, the parent category is
BEA W.S_SAMPLE_ADK.

Implementing the Adapter

Implementing an event adapter is a two-step process. You need to:

m Create an event generator. This process implements the data extraction method
(that is, will you extract data by a push or a pull mechanism) and the
| Event Gener at or interface. This interface is used by the event router to drive
the event generation process.

m Implement the data transformation method.

This section shows you how to accomplish these tasks.

Step 3a: Create an Event Generator

Event generation provides an adapter with a mechanism to either receive notification
from an EIS or poll an EIS for the specific occurrence of an event. The event
generation provided by the WebL ogic Integration engine is very powerful in that a
single event generator can support multiple types of events. An event type is defined
by the configuration properties for an event.

7-8 Developing Adapters



Step 3: Implementing the Adapter

Typically event properties are defined by the properties associated with an event at
design time. When configuring an event adapter, the adapter may have one or more
Web pages that it uses to collect event properties. These properties are saved with the
application view descriptor and passed back to the event at run time. The WebLogic
Integration engine uses the properties and the source application view to determine
how to route back to the listeners. For instance, two separate deployments of the same
event generator with identical properties will result in only a single

I Event Def i ni ti on being created by the WebLogic Integration engine. Whereas, a
single | Event Def i ni ti on will be created for every deployment of a single event
adapter where the properties are different. It is the responsibility of the event generator
to determine which | Event Def i ni ti on to use in the routing process. This is typically
done based on property values and specific event occurrences.

The | Event Def i ni ti on objects are used by your implementation of the event
generator to route specific events back to their listener. As discussed before, the
WebL ogic Integration engine will create | Event Def i ni ti on objects for deployed
application views containing events. You will use the IEventDefinition objects to
extract specific properties regarding the deployment of an application view, or to
access schema and routing objects. You need to employ these attributes when routing
an event.

How the Data Extraction Mechanism is Implemented

WebLogic Integration supports two mechanisms for data extraction:

m Push event generation. A state change is recognized when the object generating
events pushes a notification to the event generator. When the Push Event
generator receives the event, the WebLogic Integration engine then routes to a
deployed application view. The push event generator uses a publish/subscribe
model.

m Pull event generation, which is used when polling is necessary to accomplish the
determination of a state having changed. A process continually queries an object
until it has determined a change in state, at which point it creates an event,
which the BEA WebLogic Integration engine then routes to a deployed
application view.

Developing Adapters 7-9



/

Developing an Event Adapter

The “Pull” Mechanism

7-10

The mechanism relies on a polling technique to determine if an event has taken place.
To implement a Pull scenario you must derive your event generator from the
Abst ract Pul | Event Gener at or inthe com bea. adapt er. event package.

Note: adk-eventgenerator.jar file must be included in your . war make file.
adk- event gener at or . j ar contains the ADK base classes required to
implement an event generator.

The ADK supplies several abstract methods in the Abst r act Pul | Event Gener at or
that you must override in your implementation. These methods are described in
Table 7-1.

Table 7-1 AbstractPullEventGenerator Methods

Met hod Descri ption

post Event s() The post Event s() method is called from the run method in the
Abstract Pul | Event Gener at or at an interval that is
determined by the Event Router configuration files. The
post Event s() method is where you add any polling and
routing code. The post Event s( ) method is the control method
for the rest of your event generation, message transformation, and
routing code.

set upNewTypes() The set upNewTypes() method is used to preprocess any
| Event Def i ni ti on object being deployed. Only valid new
| Event Def i ni ti on objects are passed to the
set upNewTypes() method.

renoveDeadTypes() TherenoveDeadTypes() method is used to handle any clean
up required for | Event Def i ni ti on objects that are being
un-deployed. The WebLogic Integration engine calls
renoveDeadTypes() when application views with associated
events are being un-deployed.

dolnit() dol ni t () is called while the event generator is being
constructed. During the initialization process the event generator
can use pre-defined configuration values to setup the necessary
state or connections for the event generation process.

Developing Adapters



Step 3: Implementing the Adapter

Table 7-1 AbstractPullEventGenerator Methods (Continued)

Met hod Description

doC eanUpOnQui t () dod eanUpOnQui t () is called before ending the thread
driving the event generation process. Use this method to free any
resources allocated by your event generation process.

The “Push” Mechanism

The Push scenario uses notification to trigger the routing of an event. To implement
the Push scenario you must derive your event generator from the

Abst r act PushEvent Gener at or class in the com bea. adapt er . event package.
There are several other supporting classes included in the event package. These classes
are described in Table 7-2.

Note: adk- event gener at or. j ar must be included in your . war make file.

adk- event gener at or . j ar contains the WebLogic Integration base classes
required to implement an event generator.

Table 7-2 AbstractPushEventGenerator Classes

Class Description

Abst r act PushEvent Gener at or The Abst r act PushEvent Gener at or class
contains the same abstract and concrete methods
as the Abst ract Pul | Event Gener at or.
These methods are intended to be used in the same
manner as the
Abst ract Pul | Event Gener at or
implementation. See Table 7-1 for a list of these
methods and responsibilities.

Developing Adapters 7-11



7 Developing an Event Adapter

Table 7-2 AbstractPushEventGenerator Classes (Continued)

Class

Description

| PushHandl er

The | PushHandl er is an interface provided
primarily to abstract the generation of an event
from the routing of an event; however, it is not
required to implement a Push scenario. The

I PushHandl er is intended to be tightly coupled
with the PushEvent Gener at or . Itis the
PushEvent Gener at or that will initialize,
subscribe, and clean up the PushHandl er
implementation. The | PushHandl er provides a
simple interface to abstract the generation logic.
The interface provides methods to initialize,
subscribe to Push events, and clean up resources.

PushEvent

The PushEvent is an event object derived from
java.util.Event Obj ect. The PushEvent

is intended to wrap an EIS notification and be sent
toany | PushEvent Li st ener objects.

Event Met aDat a

The Event Met aDat a class is intended to wrap
any data necessary for event generation. The
Event Met aDat a class is passed to the

| PushHandl er on initialization. To see a
sample usage for these objects refer to the e-mail
sample code.

How the Event Generator is Implemented

An event generator implementation typically follows this flow of control:

m dol nit(); This method creates and validates connections to the EIS.

m setupNewTypes(); This method processes | Event Defi niti on objects
creating any required structures for processing.

m post Event s() ; This method iteratively invokes one of the two data extraction

mechanisms:

e Push: Poll the EIS for an event. If the event exists, determine which
| Event Def i ni ti on objects will receive the event. Transform event data into

7-12 Developing Adapters



Step 3: Implementing the Adapter

an | Docunent object using the associated schema. Route the | Docunent
object using the | Event associated with the | Event Def i ni t i on object.

e Pull: When notified of an event the post Event s() method will extract the
event data from the PushEvent object and transform the event data to an
| Docunent object. The | Document object is created based on the schema
associated with the event adapter. When the | Docunment contains the
necessary event data it is routed to the correct | Event Def i ni t i on objects.

m renoveDeadTypes(); This method removes the dead | Event Defi ni ti on
objects from any data structures being used for event processing. Free any
resources associated. | Event Def i ni ti on objects are considered “dead” when
the application view is undeployed.

m  doC eanUpOnQuit (); This method removes any resources allocated during
event processing.

The following is a series of code samples that implement an event generator with a Pull
mechanism.

Listing 7-2 shows the class declaration for the sample adapter’s (Pull) event generator.

Note: The Abstract Pul | Event Gener at or implements the Runnabl e interface,
which enables it to run on its own thread.

Listing 7-2 Sample Code Implementing a Pull Data Extraction Mechanism

public class Event Generat or
ext ends Abstract Pul | Event Gener at or

Sample EventGenerator

Listing 7-3 shows the simple constructor for an event generator. You must invoke the
parent’s constructor so that the parent’s members get initialized correctly. The listing
then shows how the dol ni t () method receives configuration information from the
map variable and validates the parameters. The sample contains any parameters
associated with the event generator at design time.

Developing Adapters ~ 7-13



/

Developing an Event Adapter

7-14

Listing 7-3 Sample Constructor for an EventGenerator

publ i ¢ Event Generator ()

super () ;

protected void dolnit(Mp map)
throws java.l ang. Exception
{

| Logger | ogger = getlLogger();

m strUserNane = (String)map. get("UserNane");
if (mstrUserName == null || mstrUserNane.length() == 0
{

String strErrorMsg =
| ogger . get | 18NMessage( " event _gener at or_no_User Nane") ;
| ogger.error(strErrorMg);

throw new |11 egal Stat eException(strErrorMsg);

}
m strPassword = (String)map. get (" Password");

if (mstrPassword == null || mstrPassword.|ength() == 0)
{

String strErrorMsg = | ogger. getl| 18NMessage
("event _generator_no_Password");
| ogger.error(strErrorMg);
throw new || | egal St at eExcepti on(strErrorMg);

post Event s() is called from the run method of our parent class, as shown in

Listing 7-4. This method polls the EIS to determine when a new event occurs. This
method will be invoked at a fixed interval, which is defined in the web. xni file for the
event router.

Listing 7-4 Sample Code Implementing post Event s() Method

protected void post Events(| Event Router router)
throws java.l ang. Exception
{

| Logger | ogger = getlLogger();

Developing Adapters



Step 3: Implementing the Adapter

// TODO a real adapter would need to call into the EISto
/1 determne ifany new events occured since the last tine

/1 this nethod was i nvoked. For the sake of exanple, we'll just
/] post a single event every tine this nmethod gets invoked...
/1 event data will be the current tinme on the

/1 The system formatted according to the event definition...
/1 we'll look for several event types...

Iterator event Typeslterator = getEvent Types();
if (eventTypeslterator.hasNext())

{
do

{

/1 The event router is still interested in this type of event

| Event Definition eventDef = (I EventDefinition)
event Typeslterator. next();
| ogger . debug(" Generating event for " + eventDef.getNane());

/]l Create a default event (just blank/default data)
| Event event = eventDef.createDefaul tEvent();
/l Get the format for the event

java.util.Map event PropertyMap = event Def.
get PropertySet ();
String strFormat = (String)eventPropertyMap. get
("Format");
i f( logger.isDebugEnabl ed() )
| ogger . debug("Format for event type '"+event Def.
get Name()+""' is '""+strFormat+""'");
j ava. text. Si npl eDat eFor mat sdf =
new j ava. t ext. Si npl eDat eFor mat (str Format) ;
| Docunent payl oad = event. get Payl oad();
payl oad. set Stringl nFirst("/Systenfime", sdf.format(new
Date())):

/l let's log an audit nessage for this...
try
{
| ogger.audit(toString() + ": postEvents >>> posting event
["+payl oad. toXM_()+"] to router");

catch (Exception exc)

Developing Adapters ~ 7-15



/

Developing an Event Adapter

{
}

/1 This call actually posts the event to the | Event Rout er

| ogger . war n( exc) ;

rout er. post Event (event) ;
} while (eventTypeslterator. hasNext());

}

}// end of postEvents

A real adapter would need to call into the EIS to determine if any new events occurred
since the last time this method was invoked. You can see a concrete example of this in
the DBMS adapter included with the ADK. Refer to the post Event () method in
Event Gener at or . j ava, which is in:

W.I _HOWE/ adapt er s/ dbns/ src/ com bea/ adapt er / dbns/ event /

Adding New Event Types

7-16

set upNewTypes() gets called during refresh to handle any new event types. This
allows us to perform any setup we need to handle a new type. The parent class has
already sanity-checked the I i st Of NewTypes() and logged it; so you don't need to do
that here.

Listing 7-5 Sample Code Showing the Template for set upNewTypes()

protected void setupNewTypes(java.util.List |istO NewTypes)

Iterator iter = |listOf NewTypes.iterator();
while (iter.hasNext())

| EventDefinition event Type = (I EventDefinition)iter.next();

}
}

Developing Adapters



Step 3: Implementing the Adapter

Removing Event Types for Application Views that are Undeployed

removeDeadTypes() is called during refresh to handle any event types for application
views that have been undeployed. You will need to perform a cleanup process to
ensure that this event type is no longer handled, such as closing resources needed to
handle this specific event type. Listing 7-6 shows how r enoveDeadTypes() is
implemented.

Listing 7-6 Sample Code Showing the Template for r enoveDeadTypes()

protected void renmpveDeadTypes(java. util.List |istCf DeadTypes)

Iterator iter = |listOfDeadTypes.iterator();
while (iter.hasNext())

{
| EventDefinition event Type = (I EventDefinition)iter.next();

Removing Resources

Finally, dod eanUpOnQui t () gets called when the event generator is shutting down,
This method removes any resources allocated during event processing. The sample
adapter stubs in this method. The template for implementing this method is shown in
Listing 7-7.

Listing 7-7 Sample Code Showing doCleanUpOnQuit() Method Call

protected void doC eanUpOnQuit ()
throws java.l ang. Exception

| Logger | ogger = getlLogger();
| ogger . debug(this.toString() + ": doCl eanUpOnQuit");

}

Developing Adapters ~ 7-17



/

Developing an Event Adapter

Step 3b: Implement the Data Transformation Method

7-18

Data transformation is the process of taking data from the EIS and transforming it into
an XML schema that can be read by the application server. For each event, a schema
will define what the XML output looks like. This is accomplished by using the Soviand
I Docunent class libraries. The following code listings show the data transformation
sequence:

m Listing 7-8 shows the code used to transform data from the EIS into XML
schema.

m Listing 7-9 shows the XML schema created by the code in Listing 7-8.
m Listing 7-10 shows the valid XML document created by the schema shown in

Listing 7-9.

Listing 7-8 Sample Code for Transforming EIS Data into XML Schema

SOvSchema schema = new SOMSchena() ;

SOMEl erent  root = new SOVEl enent (" SENDI NPUT") ;
SOMConpl exType mai |l Type = new SOMConpl exType();
root . set Type(mai |l Type);

SOvBequence sequence = mai |l Type. addSequence() ;
SOMVElI enent to = new SOVEl enment ("TO'");

to.setM nCccurs("1");

to. set MaxQOccur s( " unbounded") ;

sequence. add(to);

SOMVEl enent from = new SOVEl enent (" FROM') ;
fromsetM nCccurs("1");

from set MaxCccurs("1");

sequence. add(from;

SOMEl emrent cc = new SQOVEl enent (" CC");

cc.setM nCccurs("1");

cc. set MaxQccur s("unbounded") ;

sequence. add(cc);

SOMElI emrent bcc = new SOVEl enent (" BCC') ;

bcc. set M nCccurs("1");

bcc. set MaxCccur s( " unbounded") ;

sequence. add(bcc);

SOMVEl enent subj ect = new SOVEl enent (" SUBJECT") ;
subj ect.set M nCccurs("1");

subj ect . set MaxCccurs("1");

sequence. add(bcc);

SOMEl erent  body = new SOVEIl enent (" BODY") ;

Developing Adapters



Step 3: Implementing the Adapter

if (tenplate == null)
{ body.set M nCccurs("1");
body. set MaxCccurs("1");
}el se
{ Iterator iter = tenplate.getTags();
if (iter.hasNext())
{ SOMConpl exType bodyConpl ex = new SOMConpl exType()
body. set Type(bodyConpl ex) ;
SOVAI I all = new SOVAI I ();
while (iter.hasNext())
{ SOMVEl enent eNew = new SOVEl ement ((String)iter.next());
al | . add(eNew);
Y}/l endwhil e
bodyConpl ex. set Group(al | );
Y}/ /lendif
}//endif
sequence. add( body) ;
schema. addEl enent (root)

Listing 7-9 XML Schema Created by Code in Listing 7-8

<xsd: schema xml ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<xsd: el ement name="SENDI NPUT" >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement name="TO' naxCccurs="unbounded"
type="xsd: string"/>
<xsd: el ement nane="FROM' type="xsd:string"/>
<xsd: el ement name="CC' nmaxCccur s="unbounded"
type="xsd: string"/>
<xsd: el ement name="BCC' naxCccurs=
"unbounded" type= "xsd:string"/>
<xsd: el enent name="BCC' nmaxCccur s="unbounded"
type="xsd: string"/>
<xsd: el ement nane="BODY" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

Developing Adapters ~ 7-19



7 Developing an Event Adapter

Listing 7-10 Valid XML Document Created by Schema in Listing 7-9

</ xsd: schema>
<?xm version="1.0"?>
<! DOCTYPE SENDI NPUT>
<SENDI NPUT>

<TQ >

<FRQV >

<CC/ >

<BCC/ >

<BCC/ >

<BODY/ >

</ SENDI NPUT> <xsd: schema
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

Step 4: Testing the Adapter

You can test the adapter by using the adapter test harness provided with WebLogic
Integration. See “Step 5: Testing the Adapter,” in Chapter 6, “Developing a Service
Adapter,”for a complete description of this tool and instructions for using it.

Step 5. Deploying the Adapter

After rebuilding the new adapter, deploy it into WebLogic Integration. You can deploy
an adapter either manually or from the WebLogic Server Console. See Chapter 9,
“Deploying Adapters,” for complete information.

7-20 Developing Adapters



CHAPTER

8 Developing a
Design-Time GUI

The ADKSs design-time framework provides the tools you will use to build the
web-based GUI that adapter users need to define, deploy, and test their application
views. Although each adapter has EIS-specific functionality, all adapters require a
GUI for deploying application views. The design-time framework minimizes the effort
required to create and deploy these interfaces, primarily by using these two
components:

A web application component that allows you to build an HTML-based GUI by
using Java Server Pages (JSP). This component is augmented by tools such as
the JSP templates and tag library and the JavaScript library.

The abst r act Desi gnTi meRequest Handl er class, which provides a simple
API for deploying, undeploying, copying, and editing application views on a
WebLogic Server.

This section includes information on the following subjects:

Introduction to Design-Time Form Processing
Design-Time Features

File Structure

The Flow of Events

Step 1: Development Considerations

Step 2: Determining the Screen Flow

Step 3: Configuring the Development Environment

Developing Adapters 8-1



8

Developing a Design-Time GUI

m Step 4: Implementing the Design-Time GUI
m  Step 5: Write the HTML Forms

m Step 6. Implementing the Look-and-Feel

Introduction to Design-Time Form
Processing

8-2

There are a variety of approaches to processing forms using Java Servlets and JSPs.
The basic requirements of any form processing approach are:

1. Display an HTML form.

To accomplish this task, you must:
e Generate the form layout using HTML.
e Indicate to the user which fields are mandatory.

e Prepopulate fields with defaults, if any.

. When the user submits the form data, validate the field values in the HTTP

request.
To accomplish this task, you must:
e Supply logic to determine if all mandatory fields have a value.

e For each value submitted, validate it against a set of constraints; for example,
seeing if an age field is a valid integer between 1 and 120.

. If any field values are invalid, the form must be redisplayed to the user with an

error message next to each erroneous field on the form. The error message should
be localized for the user's preferred locale if the web application supports
multiple locales. In addition, the user's last input should be redisplayed so they do
not have to re-input any valid information. The web application should continue
with Step 2 and loop as many times as needed until all fields submitted are valid.

Developing Adapters



Introduction to Design-Time Form Processing

4. Once all fields have passed coarse-grained validation, the form data must be
processed. While processing the form data, an error condition may be
encountered that does not relate to individual field validation, such as a Java
exception. The form will need to be re-displayed to the user with a localized error
message at the top of the page. As with step 3, all input fields should be saved so
the user does not have to re-enter any valid information.

To accomplish this task, the web application developer must:
e Determine which object or method implements the form processing API.

e Determine how and when to advance the user to the next page in the web
application.

5. If the form processing succeeds, the next page in the web application is displayed
to the user.

Form Processing Classes

As you can imagine, or have experienced, implementing all these steps for every form
in a web application is quite a tedious and error prone development process. The ADK
design-time framework simplifies this process by using a Model-View-Controller
paradigm. There are five classes involved in the form processing mechanism:

RequestHandler

com bea. web. Request Handl er

This class provides HTTP request processing logic. This class is the model component
of the MV C-based mechanism. This object is instantiated by the Cont r ol | er Ser vl et
and saved in the HTTP session under the key handl er . The ADK provides the

com bea. adapt er . web. Abst r act Desi gnTi meRequest Handl er . This abstract
base class implements functionality needed to deploy an application view that is
common across all adapters. You will need to extend this class to supply adapter/EIS
specific logic.

Developing Adapters 8-3



8

Developing a Design-Time GUI

ControllerServlet

ActionResult

com bea. web. Control | er Servl et

This class is responsible for receiving an HTTP request, validating each value in the
request, delegating the request to a Request Handl er for processing, and determining
which page to display to the user. The Control | er Ser vl et uses Java reflection to
determine which method to invoke on the Request Handl er . The

Control | er Servl et looks for an HTTP request parameter named doAct i on to
indicate the name of the method that implements the form processing logic. If this
parameter is not available, the Cont r ol | er Ser vl et does not invoke any methods on
the Request Handl er.

The Control I er Ser vl et is configured in the web. xni file for the web application.
The Control | er Ser vl et is responsible for delegating HTTP requests to a method on
a Request Handl er. You do not need to provide any code to use the

Cont rol | er Servl et . However, you must supply the initial parameters listed in
Table 8-5.

com bea. web. Acti onResul t

Acti onResul t encapsulates information about the outcome of processing a request.
Also provides information to the Cont r ol | er Ser vl et to help it determine the next
page to display to the user.

Word and Its Descendants

8-4

com bea. web. val i dati on. Word

All fields in a web application require some validation. The

com bea. web. val i dati on. Wor d and its descendants supply logic to validate form
fields. If any fields are invalid, the Wor d object uses a message bundle to retrieve an

internationalized/localized error message for the field. The ADK supplies the custom
validators described in Table 8-1.

Developing Adapters



Introduction to Design-Time Form Processing

Table 8-1 Custom Validators for Word Object

Validator

Description

I nt eger

Determines if the value for a field is an integer within a
specified range.

Fl oat / Doubl e

Determines if the value for a field is a floating point value
within a specified range.

Identifier

Determines if the value for a field is a valid Java identifier.

Perl 5 Regul ar
Expr essi on

Determines if the value for a field matches a Perl 5 regular
expression.

URL Determines if the supplied value is a valid URL

Enwi | Determines if the supplied value contains a list of valid e-mail
addresses.

Dat e Determines if the supplied value is a valid date using a

specified date/time format

AbstractinputTagSupport and Its Descendants

Submit Tag

com bea. web. t ag. Abstract | nput TagSupport

The tag classes provided by the Web toolkit are responsible for:

m  Generating the HTML for a form field and pre-populating its value with a

default, if applicable.

m Displaying a localized error message next to the form field if the supplied value

is invalid.

m Initializing a com bea. web. val i dat i on. Wr d object and saving it in web
application scope so that the validation object is accessible by the
Cont rol | er Servl et using the form field's name.

Additionally, the ADK provides a submit tag, such as:

<adk: submt name='xyz_submit' doAction='xyz'/>

Developing Adapters 8-5



8 Developing a Design-Time GUI

This tag ensures the doAct i on parameter is passed to the ControllerServlet in the
request. This results in the Cont rol | er Ser vl et invoking the xyz() method on the
registered Request Handl er .

Form Processing Sequence

This section discusses the sequence in which forms are processed. Figure 8-1 shows
how forms are processed.

Prerequisites

Before forms can be processed, the following must occur:

1. When a JSP containing a custom ADK input tag is being written to the HTTP
response object, the tag ensures that it initializes an instance of
com bea. web. val i dati on. Wor d and places it into the web application scope,
keyed by the input field name. This makes the validation object available to the
Control | er Servl et sothat it can perform coarse-grained validation onan HTTP
request prior to submitting the request to the Request Handl er . For example,

<adk:int name='age' mnlnclusive="1 naxlnclusive= 120
required="true' />

2. The HTML for this tag will be generated when the JSP engine invokes the
doSt art Tag() method on an instance of
com bea. web. t ag. | nt eger TagSupport . The | nt eger TagSupport instance
will instantiate a new instance of com bea. web. val i dati on. | nt eger Wr d and
add it to web application scope under the key age. Consequently, the
Control | er Servl et can retrieve the | nt eger Wor d instance from its
Ser vl et Cont ext whenever it needs to validate a value for age. The validation
will ensure that any value passed for age is greater than or equal to one and less
than or equal to 120.

3. Lastly, the HTML form must also submit a hidden field named doAct i on. The
value of this parameter is used by the Cont r ol | er Ser vl et to determine the
method on the Request Handl er that can process the form.

Following these prerequisites, the JSP form appears as shown in Listing 8-1:

8-6 Developing Adapters



Introduction to Design-Time Form Processing

Listing 8-1 Sample JSP Form

<f or m net hod=' POST'

Age: <adk:int name='

<adk: subm t

</forner

required="true'/>

name=' processAge_submit'

age'

action='controller'>

m nl ncl usi ve="1"

max| ncl usi ve=' 120’

doActi on=' processAge' />

Steps in the Sequence

Wieh Application
End User

The sequence diagram shown in Figure 8-1 illustrates the transactions that occur
during form processing.

Figure 8-1 Ul Form Processing Sequence Diagram

Cantroller Serviet Irteger Irr.treger Fequest Action display. thanks i
Serviet Context War ad Handler Result j=p Anks J5p
Support

T T T T T T T T

| | | | | | | |

| | | | | | | |

| | Initislike and put in appl scope | | | |

| | e | | | |

| | | | | | | |
HTTR POST | I“‘ zeti"age”, new Integeriiord) 1 : : : :
age=10@(do.&c‘tioa‘|= | : : | | | |
processige) | | | | | | | |
I | | 1 | | 1 |

I getrage™ | | | | | | |

| getC"age") » | | | | | | |

| | | | | | | |

| . | | | | | |

I "a"daiem . ! I | | I |

| | | | | | | |

| ; . u ; ; | | | |

| imvioke the IprocessAge method using Java Reflection O | | |

! ! ! ! el processAée, ! !

! l ! ! rue, null, "thanks" ! l

| | | | —H | |

| | | I | | | |

! ! etNt%x‘tActlon returns “thanks" ! ! ! !

1 | g % I »l I I

| | | | | | |

| | rediredt to display jsp Wrth dodction=thamks | | |

b t t t t t | |

| | | | | | |

| ! | ! ! I 5P incude !

I I I I I ™

| | | | | |

| | | I I |

Developing Adapters

8-7



8

Developing a Design-Time GUI

8-8

The sequence is as follows:

1.
2.

10.

User submits the form with age=10, doAct i on=pr ocessAge.
Control | er Servl et retrieves the age field from the HTTP request.

Control | er Servl et retrieves a com bea. web. val i dat i on. Wor d object from
its Ser vl et Cont ext using key age. The object is an instance of
com bea. web. val i dati on. | nt eger Wor d.

Control | er Servl et invokes the val i dat e() method on the Wor d instance and
passes 10 as a parameter.

The Word instance determines that the value 10 is greater than or equal to 1 and
is less than or equal to 120. The Word instance returns true to indicate that the
value is valid.

The Control | er Servl et retrieves the Request Handl er from the session or
creates it and adds it to the session as handl er.

The Control I er Ser vl et uses the Java Reflection API to locate and invoke the
processAge() method on the Request Handl er. An exception is generated if
the method does not exist. The method signature is:

public ActionResult processAge(H tpServl et Request request)
throws Exception

The Request Handl er processes the form input and returns an ActionResult
object to indicate the outcome of the processing. The Acti onResul t contains
information used by the Cont rol | er Ser vl et to determine the next page to
display to the user. The next page information should be the name of another JSP
or HTML page in your web application; for example, t hanks would display the
t hanks. j sp page to the user.

The the ActionResult is a success, then the Cont r ol | er Ser vl et redirects the
HTTP response to the display page for the web application. In the ADK, the

display page is typically display.jsp.

The di spl ay. j sp includes the JSP indicated by the cont ent parameter; for
example, t hanks. j sp, and displays it to the user.

Developing Adapters



Design-Time Features

Design-Time Features

Design-time development has its own features, different from those associated with
run-time adapter development. This section describes those features.

Java Server Pages

A design-time GUI is comprised of a set of ten Java Server Pages. JSPs are simply
HTML pages that call Java servlets to invoke some transaction. To the user, the JSP
looks just like any other web page.

The JSPs that comprise a design-time GUI are:

Table 8-2 Design-Time GUI JSPs

Filename Description

di splay.jsp The display page, also called the Adapter Home Page; this page
contains the HTML necessary to create the look-and-feel of the
application view.

I ogin.jsp The Adapter Design-Time Login page.

confconn.jsp

The Confirm Connection page; this page provides a form for the
user to specify connection parameters for the EIS.

appvwadmi n. j sp

The Application View Administration page; this page provides
a summary of an undeployed application view.

addevent.j sp

The Add Event page; this page allows the user to add a new
event to the application view.

addservc.j sp

The Add Service page; this page allows the user to add a new
service to the application view.

edtevent.jsp

The Edit Event page is an optional page that allows users to edit
events.

edtservec.jsp

The Edit Service page is an optional page that allows users to
edit services.

Developing Adapters 8-9



8 Developing a Design-Time GUI

Table 8-2 Design-Time GUI JSPs (Continued)

Filename Description

depappvw. j sp The Deploy Application View page; this page allows the user to
specify deployment properties.

appvwsum j sp The Summary page; this page displays the following
information about an application view:

m  Deployed State; that is, whether the application view is
deployed or undeployed

m  Connection Criteria

m  Deployment Information (pooling configuration, log level,
and security)

m  List of Events
m List of Services

For a discussion on how to implement these JSPs, please refer to “Step 2: Determining
the Screen Flow” on page 8-18.

JSP Templates

The design-time framework provides a set of JSP templates for rapidly assembling a
web application to define, deploy, and test a new application view for an adapter. A
template is an HTML page that is dynamically generated by a Java Servlet based on
parameters provided in the HTTP request. Templates are used to minimize the number
of custom pages and custom HTML needed for a web application. The templates
supplied by the ADK provide three primary features for adapter developers.

m  The ADK design-time templates provide most of the HTML forms needed to
deploy an application view. In most cases, you will only have to supply three
custom forms:

e One to collect the EIS-specific connection parameters.
e A ssecond to collects the EIS-specific information needed to add an event.

e Athird to collect the EIS-specific information needed to add a service. In
addition, you can supply a custom JSP for browsing a metadata catalog for
an EIS.

8-10 Developing Adapters



Design-Time Features

m The templates also leverage the internationalization and localization features of
the Java platform. The content of every page in the web application is stored in a
message bundle. Consequently, the web interface for an adapter can be quickly

internationalized.

m  The templates centralize look-and-feel into a single location.

Refer to “JSP Templates” on page 8-10 for a complete list of JSP templates provided
by the ADK.

The ADK Tag Library

The JSP tag library helps to develop user-friendly HTML forms and abstracts
complexity from the adapter page developers. Custom tags for form input components
allow page developers to seamlessly link to the validation mechanism. Custom tags are
provided for the following HTML input tags:

Table 8-3 ADK JSP Tags

Tag Description

adk: check box Determines if the checkbox form field should be checked when a
form is displayed,; this tag does not perform validation.

adk: cont ent Provides access to a message in the message bundle.

adk: dat e Verifies the user's input is a date value that meets a specific format.

adk: doubl e Verifies the user's input is a double value.

adk: emai | Verifies the user's input is a vaADKIid list of e-mail addresses (one
or more).

adk: f 1 oat Verifies the user's input is a float value.

adk:identifier Verifies the user's input is a valid Java identifier.

adk: i nt Verifies the user's input is an integer value.

adk: | abel Displays a label from the message bundle.

adk: passwor d Verifies the user's input in a text field against a Perl 5 regular

expression and marks the input with an asterisk (*).

Developing Adapters 8-11



8

Developing a Design-Time GUI

Table 8-3 ADK JSP Tags (Continued)

Tag Description
adk: submi t Links the form to the validation mechanism.
adk: t ext Verifies the user's input against a Perl 5 regular expression.

adk: t ext area

Verifies the user's input into a text area matches a Perl 5 regular
expression.

adk: url

Verifies the user's input is a valid URL.

JSP Tag Attributes

You can customize the JSP tags by applying the attributes listed in Table 8-4:

Table 8-4 JSP Tag Attributes

Tag Requires Optional Attributes
Attributes

adk: i nt, nane - field name def aul t - default value on page display

adk: 1 oat, nax| engt h - maximum length of value

adk: doubl e ] , .
si ze - display size
m nl ncl usi ve - value supplied by user must be greater than
or equal to this value
max| ncl usi ve - value supplied by user must be less than or
equal to this value
m nExcl usi ve - value supplied by user must be strictly
greater than this value
maxExcl usi ve - value supplied by user must be strictly less
than this value
r equi r ed - (default is false, not required)
at t rs - additional HTML attributes

8-12 Developing Adapters



Design-Time Features

Table 8-4 JSP Tag Attributes (Continued)

Tag

Requires
Attributes

Optional Attributes

adk:

dat e

nane - field name

def aul t - default value on page display

max| engt h - maximum length of value

si ze - display size

requi r ed - (default is false, field is not required)
at trs - additional HTML attributes

| eni ent -should the date formatter be lenient in its parsing?
default is false

f or mat - the expected format of the user's input, default is
“mm/dd/yyyy”

adk:
adk:
adk:

emai |,
url,
identifier

nane - field name

def aul t - default value on page display

max| engt h - maximum length of value

si ze - display size

requi r ed - (default is false, field is not required)
at t r s - additional HTML attributes

adk:
adk:

t ext,
password

nane - field name

def aul t - default value on page display

max| engt h - maximum length of value

si ze - display size

requi r ed - (default is false, field is not required)
at trs - additional HTML attributes

pattern -aPerl 5 regular expression

adk:

text area

nane - field name

def aul t - default value on page display

requi r ed - (default is false, field is not required)
at t r s - additional HTML attributes

pattern -aPerl 5 regular expression

r ows - number of rows to display

col umms - number of columns to display

Note:

For more information on tag usage, see adk. t | d in:

WLI _HOWE/ adapt er s/ src/ war/ VEB- | NF/ t agl i bs

Developing Adapters ~ 8-13



8 Developing a Design-Time GUI

JavaScript Library

The ADK provides JavaScript for opening and closing child windows.

The Application View

The application view represents a business-level interface to the specific functionality
in an application. For more information, see “The Application View” on page 1-6.

File Structure

The file structure necessary to build a design-tim GUI adapter is the same as that
required for service adapters. See “Step 2a: Set Up the File Structure” on page 6-7. In
addition to the structure described there, you should also be aware that:

m The design-time interface for each adapter is a J2EE web application that is
bundled as a . war file.

m A web application is a bundle of . j sp, . ht M and image files.

m  The Web application descriptor is
WLI _HOVE/ adapt er s/ ADAPTER/ sr ¢/ war / WEB- | NF/ web. xm . This descriptor
instructs the J2EE web container how to deploy and initialize the web
application.

8-14  Developing Adapters



The Flow of Events

The Flow of Events

Figure 8-2 outlines the steps required to develop a design-time GUI.

Developing Adapters ~ 8-15



8 Developing a Design-Time GUI

Figure 8-2 Design-Time GUI Development Flow of Events

D | C iderations

You wit

Determine the adapters to be supported
Determine browsing

Determine scherma generation
Determine testing prereguisites

Determine the Screen Flow

o will

Decide, based upon best practices, the
sequence in which JSPs will be displayed during
designtime

Configure the Dev

vow will:

Create and update files

Create the message bundle

Configure the environment to update ISP
pages without restarting WeblLogic Server

4
Impl t the Design-time GUI

ou will:

Supply the ManagedConnectionFactory class

Implernent addservel)

Implernent addevent)

5
Write the HTML Forms

You will:

Create confconn.jsp

Creste addevent.jsp

Create addservc.sp

Creste display.jsp

wirite the web application deployment
descriptar file

3]
Implement the Look and Feel
vou Wil
Implement display.jsp to ensure a consistent
look-and-feel

8-16 Developing Adapters



Step 1: Development Considerations

Step 1: Development Considerations

These are the items you need to consider before commencing with design-time GUI
development:

m Determine the adapters to be supported.

Will this GUI support event adapters? Service adapters? Both?

m Determine browsing.

The EIS must supply functions to access the event/service catalog. If the EIS
does not supply these, the user can’t browse the catalogs. If the EIS does supply
them, we recommend the following design principle: a call from the design-time
Ul to get metadata from the EIS is really no different than a call from a run-time
component. Both execute functions on the back-end EIS.

Consequently, you need to leverage your run-time architecture as much as
possible to provide the design-time metadata features. You should invoke
design-time specific functions that use a CCI Interaction object. The sample
adapter included with the ADK provides an example/framework of this
approach. You can find the sample adapater in W.I _HOVE/ adapt er s/ sanpl e.

m Determine schema generation.

How will the adapter generate the request/response schema for a service? Will it
make a call to the EIS or use some other methodology? Generally, the adapter
needs to call the EIS to get metadata about a function or event. The adapter then
transforms the EIS metadata into XML schema format. To make this happen,
you need to invoke the SOM API. Again, the sample adapter provides
instructions for implementing the SOM API. For more information on this API,
see “The ADK Tag Library” on page 8-11.

m Determine the testing prerequisites.
Will some sort of service testing be supported? If so, you need to provide:

e A class that transforms the XML response schema into an HTML form. For
an example, see:

WLI _HOWE/ adapt er s/ dbns/ docs/ api / conif bea/ adapt er/ dbms/ util s/ c
| ass-use/ Test For nBui | der. ht mi

Developing Adapters ~ 8-17



8 Developing a Design-Time GUI

Step 2:

Screen 1:

Screen 2.

e AJSP namedt est form j sp that invokes the transformation and displays
the HTML form. To see an example of this file, go to
W.I _HOVE/ adapt er s/ dbns/ src/ war/ .

Determining the Screen Flow

Next, you need to determine the order in which the JSPs will appear when the user
displays the application view. This section describes the basic, required screen flow for
a successful application view. Note that these are minimum requirements, as you can
add more screens to the flow to meet your specific needs.

Logging In

The application view is a secure system, therefore, the user will need to log in before
he or she can implement the view. The Application View Console - Logon page thus
must be the first page the user sees.

To use this page, the user supplies a valid username and password. That information is
then validated to ensure that the user is a member of the adapter group in the default
WebLogic Server security realm.

Note: The security for the Application View web application is specified in the
VLI _HOVE/ adapt er s/ ADAPTER/ sr ¢/ war / WEB- | NF/ web. xni file, which is
shipped in the wi ai . war file.

Managing Application Views

Once the user successfully logs in, the Application View Management Console page
appears. This page lists the folders that contain the application views, the status of
these folders, and any action taken on them. From this page, the user can either view
existing application views or add new ones.

m To view an existing application view, the user clicks the appropriate folder and
drills down to the desired application view. The user then selects the application

8-18 Developing Adapters



Step 2: Determining the Screen Flow

Screen 3:

Screen 4:

Screen 5:

view and the Application View Summary page appears (appvwsum j sp; See
“Screen 9: Summarizing the Application View” on page 8-23).

m To add a new application view, the user clicks Add Application View, which will
display the Define New Application View page.

Defining the New Application View

The Define New Application View page (def appvw. j sp) allows the user to define a
new application view in any folder in which the client is located. To do this, the user
needs to provide a description that associates the application view with an adapter.
This form provides text boxes for entering the application view name and description
and a drop-down list box displaying adapters with which the user can associate the
application view.

Once the new adapter is defined, the user selects OK and the Configure Connection
page appears.

Configuring the Connection

If the new application view is valid, the user will need to configure the connection.
Therefore, once the application view is validated, the next screen in the flow should be
the Configure Connection Parameters page (conf conn. j sp). This page provides a
form for the user to specify connection parameters for the EIS. Since connection
parameters are specific to every EIS, this page is different across all adapters.

When the user submits the connection parameters, the adapter attempts to open a new
connection to the EIS using the parameters. If successful, the user is forwarded to the
next page, Application View Administration.

Administering the Application View

With a new application view created, the user will need a way of administering it.
Therefore, the next screen in the flow should be the Application View Administration
page (appvwadni n. j sp). This page provides a summary of an undeployed application
view. Specifically, it shows the following:

Developing Adapters ~ 8-19



8 Developing a Design-Time GUI

m Connection criteria

The connection criteria section provides a link that returns the user to the
Configure Connection page so that he or she can change connection parameters.

m List of events
For each event on the application view, the user can do the following:
e View the XML schema.

e Remove the event. When the user chooses to remove the event, the system
confirms this before removing the event.

e Provide event properties.

m List of services
For each service on the application view, the user can do the following:
e View the request XML schema.
e View the response XML schema.

e Remove the service. When the user chooses to remove the service, the
system will confirm that choice before removing the event.

e Provide service properties.

In addition to providing a list of events and a list of services on the application view,
the page provides a link to add a new event or service.

Screen 6: Adding an Event

The user will obviously need to add new events to an application view. Therefore, the
Application View Administration page contains a link to the Add Event page
(addevent . j sp). This page allows the user to add a new event to the application view.

The following rules apply to a new event:

m Every event must have a unique name.

e The event name can only contain a-z, A-Z, 0-9, and underscore (_) and must
begin with a letter. Spaces, dots, commas, and so on are not allowed.

e The length of the name cannot exceed 256 characters.

8-20 Developing Adapters



Step 2: Determining the Screen Flow

e The event name must be unique to the application view. If the user specifies
an event name that is not unique, the form will reload with an error message
indicating that the event is already defined.

m  Optionally, the user can specify a description for the event. This description
cannot exceed 2048 (2K) characters.

m In addition to name and description, every event has EIS specific parameters.
The collection of EIS-specific parameters define an event type for the adapter.

m Optionally, some adapters provide a mechanism for browsing the event catalog
for an EIS.

After adding and saving a new event, the user will be returned to the Application View
Administration page.

Screen 7: Adding a Service

As with events, the user will also need to add new services to an application view.
Therefore, the Application View Administration page contains a link to the Add
Service page (addser vc. j sp). This page allows the user to add a new service to the
application view.

The following rules apply to a new event:

m Every service must have a unique name.

e The service name can only contain a-z, A-Z, 0-9, and underscore (_) and
must begin with a letter. Spaces, dots, commas, and so on are not allowed.

e The length of the name cannot exceed 256 characters.

e The service name must be unique to the application view. If the user
specifies a service name that is not unique, the form will reload with an error
message indicating that the service is already defined.

m  Optionally, the user can specify a description for the service. This description
cannot exceed 2048 (2K) characters.

m In addition to name and description, every service has EIS specific parameters.
The collection of EIS specific parameters define an service type for the adapter.

Developing Adapters ~ 8-21



Developing a Design-Time GUI

m Optionally, some adapters provide a mechanism for browsing the service catalog
for an EIS.

After adding and saving a new service, the user will be returned to the Application
View Administration page.

Screen 8: Deploying an Application View

8-22

Once the user adds at least one service or event, he or she can deploy the application
view. Deploying an application view makes it available to process events and services.
If the user chooses to deploy the application view, he or she will be forwarded to the
Deploy Application View page (depappvw. j sp).

This screen allows the user to specify deployment properties. The user can specify:
m  Connection pooling parameters

e Minimum pool size: must be greater than or equal to 0.

e Maximum pool size: must be greater than or equal to one.

e Target fraction of maximum pool size: must be greater than zero and less
than one.

e Allow Pool to Shrink: is the connection pool allowed to shrink?

m Logging level: The user can specify one of four logging levels
e Log all messages
e Log informationals, warnings, errors, and audit messages
e Log warnings, errors, and audit messages

e Log errors and audit messages

m  Security: The user can access a form to apply security restrictions for the
application view by clicking on the link that reads Restrict Access. This creates a
child window.

Developing Adapters



Step 2: Determining the Screen Flow

Controlling User Access

The user can grant or revoke a user's access privileges by specifying a user or group
name in the form provided. Each application view has two types of access: read and
write.

m  Read access allows the user to execute services and subscribe to events.

m  Write access allows the user to deploy/edit/undeploy the application view.

Deploying the Application View

The user deploys the application view by clicking the deploy button. He or she must
decide whether or not the application view should be deployed persistently. Persistent
deployment means that the application view will be redeployed whenever the
application server is restarted.

Saving the Application View

Screen 9:

The user can save an undeployed application view and return to it later via the
Application View Management Console. This process assumes that all deployed
application views are saved in the repository. In other words, deploying an unsaved
application view will automatically save it.

Summarizing the Application View

Upon successful application view deployment, the user will be forwarded to the
Application View Summary page (appvwsum j sp). This page provides the following
information about an application view:

m Deployed state: Deployed or Undeployed
e If the application view is deployed:

The page will show a link to undeploy the application view. If the user
chooses the Undeploy link, a child window will ask the user to confirm his
choice to undeploy the application view. If the user confirms, the application
view will be undeployed and the summary page will be redisplayed.
Undeployed application views are still saved in the repository. This allows
the user to edit or remove the application view.

Developing Adapters ~ 8-23



8

Developing a Design-Time GUI

8-24

If the adapter supports the testing of events, the Summary page displays a
test link for each event. Testing of events is not directly supported by the
ADK. Also, if the adapter supports the testing of services, the summary page
will display a test link for each service. The ADK demonstrates one possible
approach to testing services by providing the t est ser vc. j sp and
testrslt.|sp files. You are free to use these pages to devise your own
service testing strategy.

e If the application view is not deployed:

The page will show a Link to Deploy the application view. If the user
chooses the Deploy link, the application view will be deployed and the
application view summary page will reload.

The page will show a link to edit the application view. If the user chooses the
Edit link, a child window ask the user to confirm his or her choice to edit the
application view. If the user confirms the choice to edit, the Application
View Administration page appears.

The page will show a link to remove the application view. If the user chooses
the Remove link, a child window will ask the user to confirm his or her
choice to remove the application view from the ADK repository. If the user
confirms, the application view will be deleted from the WebL ogic Integration
repository and the user will be redirected to the adapter main page.

m Connection criteria
m Deployment information (pooling configuration, log level, and security)

m List of events: For each event, there will be a link to view the schema and, if
supported, to test the event. The user cannot remove events from this page; they
must choose to edit first.

m List of services: For each service, the page will contain a link to view the request
schema and the response schema, and, if supported, to test the service. The user
cannot remove services from this page; they must undeploy and edit first.

Developing Adapters



Step 3: Configuring the Development Environment

Step 3: Configuring the Development
Environment

This step describes the processes you must complete to prepare your computer for
design-time GUI development.

Step 3a: Create the Message Bundle

Next, you need to create the message bundle. Any message destined for the end-user
should be placed in a message bundle. This bundle is simply a. properti es text file
that contains key=value pairs that allow you to internationalize messages. When a
locale and national language are specified at run time, the contents of the message is
interpreted, based upon the key=value pair and the message is presented to the user in
the correct language for his or her locale.

For instructions on creating a message bundle, please refer to the JavaSoft tutorial on
internationalization at:

http://java. sun. conm docs/ books/tutorial/i18n/index.htm

Step 3b: Configure the Environment to Update JSPs
Without Restarting the WebLogic Server

The design-time Ul is deployed as a J2EE web application from a . war file. A . war
file issimply a . j ar file with a web application descriptor in WEB- | NF/ web. xni in
the . j ar file. However, the . war file does not allow the J2EE Web container in
WebLogic Server to re-compile JSP’s on the fly. Consequently, you normally have to
restart WebL ogic Server just to change a JSP file. Since this goes against the spirit of
JSP, the ADK suggests the following workaround to enable you to update JSPs without
restarting WebLogic Server:

Developing Adapters ~ 8-25



8 Developing a Design-Time GUI

1. Construct a valid . war file for your adapter’s design-time Ul. For the sample
adapter, this is accomplished by using Ant. Listing 8-2 shows the target that
produces the J2EE . war file:

Listing 8-2 Sample Code Showing Target that Creates a .war File

<target name='war' depends='jar'>
<l-- Clean-up existing environnment -->

<delete file="${LIB_D R/ ${WAR FILE}' />
<del ete dir="${SRC DI R}/ war/WEB-INF/lib'/>
<del ete dir="${SRC_DI R}/ war/VEB- | NF/ cl asses' />

<war warfile=" ${LIB_D R /${WAR FI LE}"
webxm =" ${ SRC DI R}/ war / VEB- | NF/ web. xm ' >
<fileset dir="${PRQIECT_DI R}' includes="version_info.xm"'/>

<l --

| MPORTANT! Excl ude the WEB-INF/ web.xm file fromthe WAR
as it already gets included via the webxm attribute above

-->
<fileset dir="${SRC DI R}/ war' excludes="WEB-| N~/ web. xm ' />
<l--

| MPORTANT! I nclude the ADK design tine franework into the
adapter's design time Wb application.

-->
<fileset dir="${ROOT}/adk/src/war'/>

<!-- Include classes fromthe adapter that support the design
time U -->

<cl asses dir="${SRC_DI R}' includes="sanpl e/ web/*.class'/>
<l--

Include all JARs required by the Wb application under
the VEB-INF/lib directory of the WAR file

-->
<lib dir="${LIB_DR" includes="${JAR FILE}'/>

<lib dir="${WA _LIB_ DR
i ncl udes="adk. j ar, adk-web. j ar, bea.j ar,
| ogtool kit.jar,webtoolkit.jar,w ai-conmon.jar,
W ai-ejb-client.jar,xcci.jar,xmtoolkit.jar'/>

8-26 Developing Adapters



Step 3: Configuring the Development Environment

<lib dir="${RESOURCE DI R}/l o0g4j' includes='log4j.jar'/>
<lib dir="${RESOCURCE_DI R}/ OROVat cher-1.1.0a" includes=
"oromatcher.jar' />
<lib dir=" ${RESOURCE DI R}/xm "' includes='xerces_dpl.jar'/>
<lib dir="${RESOURCE_DI R}/ xm " includes='xalan.jar'/>
</ war >

<l-- Unjar the WAR into a tenp directory; for devel opment -->

<unjar src="${LIB_DI R}/ ${WAR FILE}' dest="${LIB DI R}/
BEA W.S_SAMPLE _ADK_Wéb' />

</target>

This Ant target constructs a valid . war file for the design-time interface in the
PRQIECT_ROOT/ | i b directory, where PROJECT_ROOT is the location under the
WebLogic Integration installation where the developer is constructing the
adapter; for example, the DBMS adapter is being constructed in:

WLI _HOWE/ adapt er s/ DBMS

In addition, this target performs an “unjar” operation in the / 1 i b directory. This
extracts the . war into a temporary directory. This is the key to having WebL ogic
Server recompile JSPs without restarting.

Next, load your web application into WebLogic Server and configure the
development environment. Do the following:

. To load your web application into WebLogic Server, you can use the WebLogic
console, but we recommend that you edit the confi g. xm file for your domain;
for example:

BEA HOVE/ W server 6. 1/ confi g/ mydonai n/ confi g. xm .

Note: If you choose to edit your confi g. xm file, you will need to add an
<appl i cat i on> element under the domain element:

Replace BEA W.S_SAMPLE_ADK_Wéb with your adapter’s logical name.

Replace W.I _HOVE with the location of your WebLogic Integration installation;
replace PRQJIECT_ROOT with the directory name of your adapter development
tree, as shown in Listing 8-3.

Developing Adapters ~ 8-27



8 Developing a Design-Time GUI

Listing 8-3 Sample Code Showing Name of Adapter Development Tree

<Appl i cation Depl oyed="true" Nane="BEA WS SAVMPLE_ADK Web"
Pat h="W.| _HOVE\ adapt er s\ PRQJECT_ROOT\ | i b" >

<WebAppConponent Name="BEA W.S SAMPLE_ADK_Wéb"
Ser vl et Rel oadCheckSecs="1" Targets="nyserver" URI =
"BEA W.S_SAMPLE_ADK_Web"/ >

</ Appl i cati on>

Note: If you run GenerateAdapterTemplate, the information in Listing 8-3 will
be automatically updated. You can then open W.I _HOVE/ adapt er s/
ADAPTER/ sr ¢/ over vi ew. ht i and copy and paste it as your
config. xm entry.

The key is the URI attribute of the <webAppConponent > element. Notice that it
points to BEA_W.S_SAMPLE_ADK_Wéb and not BEA W.S_SAMPLE_ADK_\\b. war .
This is the temporary directory that you created when you created the . war file.
It contains your extracted . war file contents. WebLogic Server will watch this
directory for JSP changes.

5. To change a JSP, do not change it in the temporary directory; change it from the
src/ war directory and then rebuild the war target. Remember, when the . war
file is created, it is also extracted into the directory WebLogic Server is watching.
WebLogic Server will pick up the changes to the specific JSP only. The watch
interval used by WebLogic Server is set by the pageCheckSeconds in
VEB- | NF/ webl ogi c. xm . Listing 8-4 shows how this is done:

Listing 8-4 Sample Code Showing How to Set the Watch Interval

<j sp-descri ptor>

<j sp- par an»
<par am nane>conpi | eConmand</ par am nanme>
<param val ue>/j dk130/ bi n/ j avac. exe</ par am val ue>

</ j sp- par anp

<j sp- par an>
<par am nane>keepgener at ed</ par am nanme>
<par am val ue>t r ue</ par am val ue>

</ j sp- par anp

<j sp- par an»
<par am nane>pageCheckSeconds</ par am nane>

8-28 Developing Adapters



Step 3: Configuring the Development Environment

<par am val ue>1</ par am val ue>
</ j sp- paranp
<j sp- par an®
<par am nane>ver bose</ par am nanme>
<par am val ue>t rue</ param val ue>
</ j sp- parane
</j sp-descri ptor>

This approach also tests whether your . war file is being constructed correctly.

6. Finally, you should precompile JSPs when the server starts. This saves you from
having to load every page before knowing if they will compile correctly. To
enable precompilation you will need to have webl ogi c¢. xm from the sample
adapter and the following element in your
W.I _HOVE/ adapt er s/ ADAPTER/ sr ¢/ war / WEB- | NF/ web. xmi file. Listing 8-5
shows how this is done:

Listing 8-5 Sample Code Showing How to Enable Precompilation of JSPs

<cont ext - par an>
<par am nane>webl ogi c. j sp. preconpi | e</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

You can also pre-compile your JSPs using the WebL ogic JSP compiler when you build
your . war target using Ant. This is accomplished by performing the tasks outlined in
Listing 8-6 and described here:

m The first task creates the directory where WebLogic Server looks for JSP servlet
classes at run time. Please note one caveat to using this approach: you have to
specify the target server name. Consequently, it may not suffice as a deployment
strategy.

m  The second task invokes the JSP compiler j spc, provided in WebLogic Server.
This task pre-compiles all the JSPs for your web application and places them in
the W.I _HOMVE/ adapt er s/ ADAPTER/ | i b/ BEA W.S_SAMPLE_ADK_Wéb/

VEEB- | NF/ _t mp_war _nyserver _ nyserver_BEA W.S SAMPLE_ADK_ Wb
directory for your web application (this directory does not exist until you build

Developing Adapters ~ 8-29



8 Developing a Design-Time GUI

Step 4.

the adapter specified in ADAPTER. Consequently, this allows you to ensure your
JSPs will compile every time you build your adapter.

Listing 8-6 Sample Code Showing an Alternate Way to Enable Precompilation
of JSPs

<nkdir dir="${LI B_D R}/BEA_ W.S_SAMPLE_ADK_Wéb/
VEEB- | NF/ _t mp_war _mnyserver _nyserver _BEA W.S SAMPLE_ADK_ Wb/
jsp_servlet'/>

<l--

This preconpiles the JSPs in the Web application during the build.
However, this will only prevent WebLogic frompreconpiling if the
target server is 'nyserver'. If the user is using any other target
server nane, the JSP pages will be re-preconpil ed when the server
starts

-->

<java cl assname=' webl ogi c. j spc' fork='yes' >
<arg line="-d ${LIB_DI R}/ BEA W.S_SAMPLE_ADK_Weéb/ VEEB- | NF/
_tmp_war _nyserver _nyserver _BEA W.S SAMPLE_ADK Wb -webapp
${LIB_D R}/ BEA W.S_SAMPLE ADK Wb -conpil eAll -contextPath
BEA W.S SAMPLE_ADK Wb -depend -keepgenerated' />
<cl asspath refid=" CLASSPATH />
</java>

For more information on precompiling JSPs, see:

http://e-docs. bea. com wl s/ docs61/j sp/ reference. ht m #preconpil e

Implementing the Design-Time GUI

7

Implementing the steps described in “Introduction to Design-Time Form Processing
on page 8-2 for every form in a web application is a tedious and error prone
development process. The design-time framework simplifies this process when you
are using a Model-View-Controller paradigm.

8-30 Developing Adapters



Step 4: Implementing the Design-Time GUI

To implement the design-time GUI, you need to implement the

Desi gnTi meRequest Handl er class. This class accepts user input from a form and
performs a design-time action. To implement this class, you must extend the

Abst r act Desi gnTi meRequest Handl er provided with the ADK; see the Javadoc for
this class for a detailed overview of the methods provided by this object.

Extend AbstractDesignTimeRequestHandler

The Abst r act Desi gnTi meRequest Handl er provides utility classes for deploying,
editing, copying, and removing application views on the WebL ogic Server. It also
provides access to an application view descriptor. The application view descriptor
provides the connection parameters, list of events, list of services, log levels, and pool
settings for an application view. The parameters are shown on the Application View
Summary page.

At a high-level, the Abst r act Desi gnTi meRequest Handl er provides an
implementation for all actions that are common across adapters. Specifically, these
actions are:

m Define the application view.

m Configure the connection.

Note: The ADK provides the method to process connection parameters to obtain
a CClI connection but does not supply the conf conn. j sp. See “Step 5a:
Create the confconn.jsp Form” on page 8-34 for instructions on creating
this form.

m Deploy the application view.
m Provide application view security.
m Edit the application view.

m  Undeploy the application view.

Methods to Include

To ensure these actions, you must supply the following methods when you create the
concrete implementation of Abst r act Desi gnTi meRequest Handl er :

B initServiceDescriptor();

Developing Adapters ~ 8-31



8 Developing a Design-Time GUI

This method adds a service to an application view at design time (see “Step 4b.
Implement initServiceDescriptor()” on page 8-32).

m initEventDescriptor();

This method adds an event to an application view at design time (see “Step 4c.
Implement initEventDescriptor()” on page 8-33).

You also need to provide in every concrete implementation of
Abst r act Desi gnTi meRequest Handl er the following two methods:

m protected String get AdapterLogi cal Nane();

This method returns the adapter logical name and is used to deploy an
application view under an adapter logical name.

m protected O ass get ManagedConnecti onFactoryd ass();

This method returns the SPI ManagedConnect i onFact ory implementation
class for the adapter.

Step 4a. Supply the ManagedConnectionFactory Class

To supply the ManagedConnect i onFact or y class, you need to implement the
following method:

protected d ass get ManagedConnecti onFactoryd ass();

This method returns the SPI ManagedConnect i onFact or y implementation class for
the adapter. This class is needed by the Abst r act ManagedConnect i onFact ory
when attempting to get a connection to the EIS.

Step 4b. Implement initServiceDescriptor()

For service adapters, you need to implement i ni t Ser vi ceDescri pt or () so that the
adapter user can add services at design time. This method is implemented as shown in
Listing 8-7:

8-32 Developing Adapters



Step 4: Implementing the Design-Time GUI

Listing 8-7 initServiceDescriptor() Implementation

protected abstract void initServiceDescriptor(ActionResult result,
| Servi ceDescri ptor sd,
Ht t pSer vl et Request request)
throws Exception

This method is invoked by the Abst r act Desi gnTi neRequest Handl er* s

addser vc() implementation. It is responsible for initializing the EIS-specific
information of the | Servi ceDescri pt or parameter. The base class implementation
of addser vc() handles the error handling, etc. The addser vc() method is invoked
when the user submits the addservc JSP.

Step 4c¢. Implement initEventDescriptor()

For event adapters, you will need to implement i ni t Event Descri pt or () so that the
adapter user can add events at design time. This method is implemented as shown in
Listing 8-8:

Listing 8-8 i nit Event Descri ptor () Implementation

protected abstract void
i nitEventDescriptor(ActionResult result,
| Event Descri ptor ed,
Ht t pSer vl et Request request)
t hrows Exception;

This method is invoked by the Abst r act Desi gnTi neRequest Handl er' s
addevent () implementation. It is responsible for initializing the EIS-specific
information of the | Servi ceDescri pt or parameter. The base class implementation
of addevent () handles such concepts as error handling. The addevent () method is
invoked when the user submits the addevent JSP. You should not override addevent ,
as it contains common logic and delegates EIS-specific logic to

i nit Event Descriptor().

Developing Adapters ~ 8-33



8

Developing a Design-Time GUI

Note: When adding properties to a service descriptor, the property names must
follow the bean name standard otherwise the service descriptor does not
update the InteractionSpec correctly.

Step 5: Write the HTML Forms

The final step to implementing a design-time GUI is to write the various forms that
comprise the interface.

m  See “Java Server Pages” on page 8-9 for a list and description of the necessary
forms.

m  See “Step 2: Determining the Screen Flow” on page 8-18 for the specific details
of each form.

The following sections describe how to actually code these forms and include a sample
of that code.

Step 5a: Create the confconn.jsp Form

8-34

This page provides an HTML form for users to supply connection parameters for the
EIS. You are responsible for providing this page with your adapter’s design-time web
application. This form posts to the Cont r ol | er Ser vl et with doAct i on=conf conn.
This implies that the Request Handl er for your design-time interface must provide the
following method:

public ActionResult confconn(HttpServl et Request request) throws
Excepti on

The implementation of this method is responsible for using the supplied connection
parameters to create a new instance of the adapter’s ManagedConnect i onFact ory.
The ManagedConnect i onFact or y supplies the CCI Connect i onFact ory, which is
used to obtain a connection to the EIS. Consequently, the processing of the confconn
form submission verifies that the supplied parameters are sufficient for obtaining a
valid connection to the EIS.

The confconn form for the sample adapter is shown in Listing 8-9:

Developing Adapters



Step 5: Write the HTML Forms

Listing 8-9 Coding confconn.jsp

<%@taglib uri="/WVEB-INF/taglibs/adk.tld prefix="adk' %
<f orm net hod=" POST' action='controller'>
<t abl e>
<tr>
<t d><adk: | abel nanme='user Nane' required="true'/></td>
<t d><adk: t ext nane='user Name' neaxl| ength="30" size=
'8'/></td>
</tr>
<tr>
<t d><adk: | abel name='password' required="true'/></td>
<t d><adk: password nanme=' password' naxl engt h=" 30’
size='8"/></td>
</[tr>
<tr>
<td col span='2' ><adk: subm t nane=' conf conn_subm t'
doActi on=' confconn'/></td>
</tr>
</tabl e>
</fornp

The following paragraphs describe the contents of Listing 8-9.

Including the ADK Tag Library

The line:
<v@taglib uri="/WEB-INF/taglibs/adk.tld prefix="adk' %

instructs the JSP engine to include the ADK tag library. These tags are listed in
Table 8-3.

Posting the ControllerServlet

The line:

<f or m nmet hod=' POST' action='controller'>

Developing Adapters ~ 8-35



8

Developing a Design-Time GUI

instructs the form to post to the Control | er Servl et. The Control | er Servl et is
configured in the web. xni file for the web application and is responsible for
delegating HTTP requests to a method on a Request Handl er. You do not need to
provide any code to use the Cont r ol | er Ser vl et ; however, you must supply the
initial parameters, described in Table 8-5:

Table 8-5 Control | er Ser vl et Parameters

Parameter Description

MessageBund| eBase This property specifies the base name for all message bundles
supplied with an adapter. The ADK always uses the adapter
logical name for its sample adapters. However, you are free to
choose your own naming convention for message bundles.
Notice that this property is also established in the r a. xm .

Di spl ayPage This property specifies the name of the JSP that controls screen
flow and look-and-feel. In the sample adapter, this page is
di spl ay. j sp.

LogConfi gFil e This property specifies the log4j configuration file for the
adapter.

Root LogCont ext This property specifies the root log context. Log context helps

categorize log messages according to modules in a program.
The ADK uses the adapter logical name for the root log context
so that all messages from a specific adapter will be categorized
accordingly.

Request Handl er Cl ass  This property provides the fully qualified name of the request
handler class for the adapter. In the sample adapter, this value
is “sample.web.DesignTimeRequestHandler”. See below for
details on implementing a DesignTimeRequestHandler.

Displaying the Label for the Form Field

8-36

The line:
<adk: | abel name='user Nanme' required="true'/>

displays a label for a field on the form. The value that is displayed is retrieved from the
message bundle for the user. The “required” attribute indicates if the user must supply
this parameter to be successful.

Developing Adapters



Step 5: Write the HTML Forms

Displaying the Text Field Size

The line:
<adk:text name='userNane' maxlength='"30" size='8'/>

sets a text field of size 8 with maximum length (max length) of 30.

Displaying a Submit Button on the Form

The line:
<adk: subm t name='confconn_subm t' doAction='confconn'/>

displays a button on the form that allow the adapter user to submit the input. The label
on the button will be retrieved from the message bundle using the conf conn_submi t
key. When the form data is submitted, the Cont rol | er Ser vl et will locate the

conf conn method on the registered request handler (see the Request Handl er Cl ass
property) and pass the request data to it.

Implementing confconn()

The Abst r act Desi gnTi meRequest Handl er provides an implementation of the
conf conn() method. This implementation leverages the Java Reflection API to map
connection parameters supplied by the user to setter methods on the adapter's
ManagedConnect i onFact ory instance. You only need to supply the concrete class
for your adapter's ManagedConnect i onFact or y by implementing this method:

public C ass get ManagedConnecti onFact oryd ass()

Step 5b: Create the addevent.jsp form

This form allows the user to add a new event to an application view. This form is EIS
specific. The addevent . j sp form for the sample adapter is shown in Listing 8-10:

Listing 8-10 Sample Code Creating the addevent.jsp Form

<%@taglib uri="/WVEB-INF/taglibs/adk.tld prefix="adk' %
<f or m net hod=' PCST' action='controller'>

Developing Adapters ~ 8-37



8 Developing a Design-Time GUI

<t abl e>
<tr>
<t d><adk: | abel nanme='event Name' required="true'/></td>
<t d><adk: t ext name='event Name' nax| engt h="100'
si ze='50'/></td>
</tr>
<tr>
<td col span='2' ><adk: subnmi t name=' addevent _subnit’
doActi on=" addevent'/></td>
</tr>
</t abl e>
</forme

The following paragraphs describe the contents of addevent . j sp:

Including the ADK Tag Library
The line:
<y@taglib uri="/WEB-INF/taglibs/adk.tld prefix=" adk' %

instructs the JSP engine to include the ADK tag library. These tags are described in
Table 8-3.

Posting the ControllerServlet

The line:
<f or m nmet hod=' POST" action='controller'>

instructs the form to post to the Control | er Servl et. The Control | er Servl et is
configured in the web. xni file for the web application and is responsible for
delegating HTTP requests to a method on a Request Handl er. You do not need to
provide any code to use the Cont r ol | er Ser vl et ; however, you must supply the
initial parameters, as described in Table 8-5, “ControllerServlet Parameters.”

Displaying the Label for the Form Field

The line:

<adk: | abel name='event Nane' required="true'/>

8-38 Developing Adapters



Step 5: Write the HTML Forms

displays a label for a field on the form. The value that is displayed is retrieved from the
message bundle for the user. The “required” attribute indicates if the user must supply
this parameter to be successful.

Displaying the Text Field Size

The line:
<adk:text name='event Name' naxl ength='100" size='50"/>

sets a text field of size 50 with maximum length (max length) of 100.

Displaying a Submit Button on the Form

The line:
<adk: submt name='addevent _subm t' doAction='addevent'/>

displays a button on the form that allow the adapter user to submit the input. The label
on the button will be retrieved from the message bundle using the addevent _subni t
key. When the form data is submitted, the Cont r ol | er Ser vl et will locate the
addevent () method on the registered request handler (see the

Request Handl er Cl ass property) and pass the request data to it.

Adding Additional Fields

You must also add any additional fields that the user requires for defining an event. See
the DBMS or e-mail adapters for examples of forms with multiple fields.

Step 5c¢: Create the addservc.jsp form

This form allows the user to add a new service to an application view. This form is
EIS-specific. The addser vc. j sp form for the sample adapter is shown in
Listing 8-11:

Developing Adapters ~ 8-39



8 Developing a Design-Time GUI

Listing 8-11 Coding addservc.jsp

<U@taglib uri="/WEB-INF/taglibs/adk.tld prefix="adk' %
<form nmet hod=' POST" action='controller'>
<t abl e>
<tr>
<t d><adk: | abel nanme='servi ceNanme' required="true'/>
</td>
<t d><adk: t ext name='servi ceNanme' nmax| engt h=" 100"
size='50"/></td>
</[tr>
<tr>
<td col span=' 2' ><adk: submi t name=' addservc_subm t'
doActi on="addservc'/></td>
</[tr>
</t abl e>
</forme

Including the ADK Tag Library

The line:
<U@taglib uri="/WEB-INF/taglibs/adk.tld prefix="adk' %

instructs the JSP engine to include the ADK tag library. The ADK tag library supports
the user-friendly form validation provided by the ADK. The ADK tag library provides
the tags described in Table 8-3.

Posting the ControllerServlet

The line:
<f or m nmet hod=' POST' action='controller'>

instructs the form to post to the Control | er Servl et. The Control | er Servl et is
configured in the web. xni file for the web application and is responsible for
delegating HT TP requests to a method on a Request Handl er. You do not need to
provide any code to use the Cont r ol | er Ser vl et ; however, you must supply the
initial parameters as described in Table 8-5, “ControllerServlet Parameters.”

8-40 Developing Adapters



Step 5: Write the HTML Forms

Displaying the Label for the Form Field
The line:

<adk: | abel nane='servcNanme' required="true'/>

displays a label for the form field. The value that is displayed is retrieved from the
message bundle for the user. The “required” attribute indicates if the user must supply
this parameter to be successful.

Displaying the Text Field Size

The line:
<adk:text name='event Name' naxl ength='100" size='50"/>

sets a text field of size 50 with maximum length (max length) of 100.

Displaying a Submit Button on the Form

The line:
<adk: submt name='addservc_subm t' doAction='addservc'/>

displays a button on the form that allow the adapter user to submit the input. The label
on the button will be retrieved from the message bundle using the addser vc_subnmi t
key. When the form data is submitted, the Cont rol | er Ser vl et will locate the
addser vc method on the registered Request Handl er (see the

Request Handl er Cl ass property) and pass the request data to it.

Adding Additional Fields

You must also add any additional fields that the user requires for defining a a service.
See the DBMS or e-mail adapters for examples of forms with multiple fields.

Developing Adapters ~ 8-41



8

Developing a Design-Time GUI

Step 5d: Implement Edit Events and Services (optional)

If you want to give adapter users the capability of editing events and services during
design time, you will need to edit the wi ai . properti es file, create the

edtservc. j sp and edt event . j sp forms, and implement some specific methods.
This step describes those tasks.

Note: This step is optional. You do not need to provide users with these capabilities.

Update wlai.properties

8-42

First, update the system properties in wi ai . pr opert i es for the sample adapter by
making the following changes to that file:
m  Add the following properties:

edtservc_title=Edit Service

edtservc_description=0n this page, you edit service
properties.

edt event _descripti on=0n this page, you edit event
properties.edtevent _title=Edit Event

gl ossary_descri pti on=Thi s page provides definitions for
comonl y

used terns.

service_subm t _add=Add

servi ce_| abel _servi ceDesc=Descri ption:
service_submt_edit=Edit

servi ce_| abel _servi ceName=Uni que Servi ce Nane:
event _subm t _add=Add

event _| abel _event Desc=Descri pti on:
event _| abel _event Name=Uni que Event Nane:
event _submit_edit=Edit

event Lst _| abel _edi t=Edi t

servicelLst | abel _edit=Edit

event _does_not _exi st=Event {0} does not exist in application
view {1}.

Developing Adapters



Step 5: Write the HTML Forms

servi ce_does_not _exi st=Service {0} does not exist in
Application View {1}.

no_write_access={0} does not have wite access to the
Application View.

m  Remove the following properties:
addservc_subm t _add=Add
addevent _| abel _event Desc=Descri pti on:
addservc_| abel _servi ceNanme=Uni que Servi ce Nane:
addevent subm t _add=Add

pi ngTabl e_i nval i d=The ping table cannot be reached. Please
enter a valid table in the existing database to ping.

pi ngTabl e=Pi ng Tabl e
addevent _| abel _event Nanme=Uni que Event Name:

addservc_| abel _servi ceDesc=Descri pti on:

After updating wi ai . pr oper ti es, compare the files to ensure sure that they are
synchronized.

Create edtservc.jsp and addservc.jsp

These Java server pages are called in order to provide editing capabilities. The main
difference between the edit JSPs and the add JSP files is the loading of descriptor
values. For this reason, the DBMS and e-mail adapters use the same HTML for both
editing and adding.

These HTML files are statically included in the JSP page. This saves duplication of
JSP/HTML and properties. The descriptor values are mapped into the controls
displayed on the edit page. From there, you can submit any changes.

In order to initialize the controls with values defined in the descriptor, call the

| oadEvent / Ser vi ceDescri pt or Properties() method on the

Abst r act Desi gnTi meRequest Handl er . This method sets all of the service's
properties into the Request Handl er . Once these values are set, the Request Handl er
maps the values to the ADK controls being used in the JSP file. The default
implementation of | oadEvent / Ser vi ceDescri pt or Properti es() uses the
property name associated with the ADK tag to map the descriptor values. If you used
values other than the ADK tag names to map the properties for a service or event,
override these methods to provide the descriptor to the ADK tag-name mapping.

Developing Adapters ~ 8-43



8 Developing a Design-Time GUI

Initialize the Request Handl er prior to the resolution of HTML. This initialization
should only take place once. Listing 8-12 shows the code used to load the
edtevent.j sp:

Listing 8-12 Sample Code Used to Load edt event . j sp

i f(request.getParaneter("eventName") != null){
handl er. | oadEvent Descri pt or Properti es(request);

}

The edt servc. j sp should submit to edt ser vc. For example:

<adk: submit nane='edtservc_submt' doAction='edtservc'/>
The edt event . j sp should submit to edt event . For example:

<adk: submit nane='edtevent _submt' doAction='edtevent'/>
See the DBMS and e-mail adapters for specific examples. Go to either
W.I _HOVE/ adapt er s/ dbns/ src/ war

or

W.I _HOVE/ adapt er s/ emai | / src/ war

Implement Methods

Finally, implement the methods described in Table 8-6.

Table 8-6 Methods to Implement with edt servc. j sp and edt event .. j sp

Methods Description
| oadSer vi ceDescri pt or Properties These methods load the Request Handl er with the ADK
and tag-to-value mapping. If the developer uses the same values

| oadEvent Descri ptor Properties

to name the ADK tag and load the Service/Event Descriptor,
then the mapping is free. Otherwise, the developer must
override these methods in their

Desi gnt i neRequest Handl er to provide these
mappings.

8-44  Developing Adapters



Step 5: Write the HTML Forms

Table 8-6 Methods to Implement with edt servc. j sp and edt event . j sp (Continued)

Methods

Description

bool ean support sEditabl eServices()
and
bool ean support sEditabl eEvent s()

These two methods are used as markers. If they returnt r ue,
the edit link is displayed on the Application View
Administration page. Override in the

Desi gnt i neRequest Handl er is provided.

edi t Servi ceDescri ptor
and
edi t Event Descri pt or

These methods are used to persist the edited service or event
data. These methods extract the ADK tag values from the
request and add them back into the Service or Event
Descriptor. In addition, these methods handle any special
processing for the schemas associated with the event or
service. If the schemas need modification, they should be
updated here. Once the values read in from the request are no
longer needed, they should be removed from the

Request Handl er .

See the sample adapters for an example of how these methods are implemented.

Step 5e: Write the WEB-INF/web.xml Web Application

Deployment Descriptor

You will need to create a WEB- | NF/ web. xml web application deployment descriptor
for your adapter. When you clone an adapter from the sample adapter by using
GenerateAdapterTemplate, a web. xni file for that adapter will be automatically

generated.

The important components of this file are described in Listing 8-13 through

Listing 8-17:

Listing 8-13 web.xml Servlet Components

<servl et >

<servl et -nane>control |l er</servl et - nane>
<servl et -cl ass>com bea. web. Control | er Servl et </ servl et-cl ass>

<i nit-paranpr

<par am nane>MessageBund| eBase</ par am nane>

Developing Adapters ~ 8-45



8

Developing a Design-Time GUI

<par am val ue>BEA W.S_SAMPLE_ADK</ par am val ue>
<descri ption>The base nanme for the nessage bundl es
for this adapter. The ControllerServlet uses this
nane and the user's locale information to
determ ne whi ch nessage bundle to use to
di spl ay the HTM. pages. </description>
</init-paranr

<init-paranpr

<par am nane>Di spl ayPage</ par am nane>
<param val ue>di spl ay. j sp</ par am val ue>
<description>The nanme of the JSP page

that includes content pages and provides
the | ook-and-feel tenplate. The ControllerServlet
redirects to this page to let it determ ne what to
show t he user. </ description>
</init-paranpr

<init-paranp

<par am nane>LogConfi gFi | e</ par am nanme>
<par am val ue>BEA W.S_SAMPLE_ADK. xm </ par am val ue>
<description>The nane of the sanple adapter's
LOXAJ configuration file.</description>
</init-paranpr
<i nit-paranp

<par am nanme>Root LogCont ext </ par am nane>
<par am val ue>BEA W.S_SAMPLE_ADK</ par am val ue>
<description>The root category for |og nessages
for the sanple adapter. Al |o0og nessages created
by the sanple adapter will have a context starting
with this value.</description>
</init-paranr

<init-paranp

<par am nane>Request Handl er d ass</ par am nanme>

<par am val ue>sanpl e. web. Desi gnTi mreRequest Handl er
</ param val ue>
<description>Cl ass that handl es design
time requests</description>
</init-paranpr

<init-paranp
<par am nane>Debug</ par am nane>
<par am val ue>on</ par am val ue>

<descri ption>Debug setting (on|off,

off is
def aul t) </ descri pti on>
</init-paranpr

8-46 Developing Adapters



Step 5: Write the HTML Forms

<| oad- on- st art up>1</| oad- on- st art up>
</servlet>

This component shown in Listing 8-14 maps the Cont r ol | er Ser vl et to the name
“controller”. This action is important because the ADK JSP forms assume the
Control | er Servl et is mapped to the logical name “controller”.

Listing 8-14 web. xml Control | er Ser vl et Mapping Component

<ser vl et - mappi ng>
<servl et - name>control | er</ servl et - name>
<url-pattern>controller</url-pattern>
</ servl et - mappi ng>

This component shown in Listing 8-15 declares the ADK tag library:

Listing 8-15 web. xmi ADK Tab Library Component

<taglib>

<taglib-uri>adk</taglib-uri>

<taglib-1ocati on>/ WEB- | NF/ t agl i bs/ adk. tl d</taglib-1|ocation>
</taglib>

This component shown in Listing 8-16 declares the security constraints for the web
application. Currently, the user must belong to the adapter group:

Listing 8-16 web. xm Security Constraint Component

<Security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Adapt er Securi t y</ web- r esour ce- name>
<url-pattern>*. jsp</url-pattern>
</ web-resource-col | ecti on>

Developing Adapters ~ 8-47



8 Developing a Design-Time GUI

<aut h- constrai nt >
<r ol e- nane>adapt er </ r ol e- nane>
</ aut h-constrai nt >

<user - dat a- constrai nt >
<transport-guar ant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>

This component shown in Listing 8-17 declares the login configuration:

Listing 8-17 web. xnml Login Configuration Component

<l ogi n-confi g>
<aut h- met hod>FORMWK/ aut h- met hod>
<r eal m name>def aul t </ r eal m nane>
<f orm | ogi n- confi g>
<f orm | ogi n- page>/1 ogi n. j sp</ f orm | ogi n- page>
<formerror-page>/1ogin.jsp?error</formerror-page>
</ forml ogi n-confi g>

</ ogi n-confi g>

<security-role>
<r ol e- name>adapt er </ r ol e- nane>
</security-rol e>

Step 6. Implementing the Look-and-Feel

An important programming practice you should observe when developing a
design-time GUI is to implement a consistent look-and-feel across all pages in the
application view. The look-and-feel is determined by di spl ay. j sp. This page is
included with the ADK and provides the following for the design-time web
application:

m Establishes the look-and-feel template for all pages.

8-48 Developing Adapters



Step 7. Testing the Sample Adapter Design-Time Interface

m Includes other JSPs based on the content HTTP request parameter. If the
cont ent HTTP request parameter is not supplied, di spl ay. j sp must include
mai n. j sp.

m  Registers the error page for Java exceptions as er r or . j sp from the ADK.
To implement a look-and-feel across a set of pages, do the following:

1. Usedi spl ay. j sp from the sample adapter as a starting point. See
W.I _HOVE/ adapt er s/ sanpl e/ src/ war / WVEB- | NF/ web. xmi for an example.

2. Using HTML, alter the look-and-feel markup in this page to reflect your own
look-and-feel or company identity standards.

3. Somewhere in your HTML markup, be sure to include:
<%pageCont ext . i ncl ude(sbPage.toString()); %

This code is a custom JSP tag used to include other pages. This tag uses the JSP
scriptlet “sbPage. t oSt ri ng() ” to include an HTML or JSP into the display
page. sbPage.toString() evaluates to the value for the HTTP request
parameter content at run time.

Step 7. Testing the Sample Adapter
Design-Time Interface

A test driver has been created to verify the basic functionality of the sample adapter
design-time interface. The test driver is based on HTTP Unit (a framework for testing
web interfaces which is available from ht t p: / / www. ht t puni t. org). HTTP Unitis
related to the JUnit test framework (available from ht t p: / / www. j uni t . or g).
Versions of both HTTP Unit and JUnit are included with WebLogic Integration.

The test driver executes a number of tests. It creates application views, add both events
and services to application views, deploy and undeploy application views, and test
both events and services. The test driver removes all application views after
completely successfully.

Developing Adapters ~ 8-49



8

Developing a Design-Time GUI

Files and Classes

All of the test cases are contained in the Desi gnTi meTest Case class or its parent
class, Adapt er Desi gnTi meTest Case. Desi gnTi neTest Case (located in the

sanpl e. web package and the W.I _HOVE/ adapt er s/ sanpl e/ src/ sanpl e/ web
folder) contains the tests specific to the sample adapter.

Adapt er Desi gnTi meTest Case (located in the com bea. adapt er . web package and
the WLI _HOME/ | i b/ adk-web. j ar file) contains tests that apply to all adapters and
several convenience methods.

Run the tests

8-50

To the design-time interface, use this procedure:

1.

Start WebL ogic Server with the sample adapter deployed. Next, change the current
working folder to the specific project folder and execute the set env command
script, as shown in the following steps.

Go to W.I _HOVE and, at the command prompt, enter set env.

The set env command script creates the necessary environment for the next step.
Go to the sample adapter’s web folder by entering at the command prompt:

cd W.| _HOVE/ adapt er s/ sanpl e/ pr oj ect

Edit the desi gnTi neTest Case. proper ti es file. Change the line containing the
list of test cases to execute so that it includes web. Desi gnTi meTest Case. The
line should read:

test. case=web. Desi gnTi neTest Case

Near the end of the file, you might need to change two entries, username and
password. Specify the username and password that the test driver should use to
connect to WebL ogic Integration.

After editing the t est . properti es file, start WebLogic Server.

Run the tests by entering at the command prompt:

ant designti net est

Developing Adapters



CHAPTER

O Deploying Adapters

Once you have created an adapter, you must deploy it by using an Enterprise Archive
(. ear) file. An. ear file simplifies this task by deploying all adapter components in a
single step. You can deploy an . ear file either from the WebLogic Server
Administration Console or manually, by manipulating the confi g. xm file.

This section contains information about the following subjects:
m Using Enterprise Archive (.ear) Files

m Deploying Adapters

m Editing Web Application Deployment Descriptors

Using Enterprise Archive (.ear) Files

Each adapter is deployed from a single Enterprise Archive (. ear) file. An . ear file
contains a design-time Web application . war file, an adapter . r ar file, an adapter
.jar file, and any shared . j ar files required for deployment. Optionally, it can also
include an event router Web application file. The . ear file should be structured as
shown in Listing 9-1.

Listing 9-1 .ear File Structure

adapt er. ear
application. xm
sharedJar.jar
adapter.jar
adapter.rar

Developing Adapters 9-1



9 Deploying Adapters

META- | NF
ra.xm
webl ogi c-ra. xm
MANI FEST. MF
desi gnti me. war
VEB- | NF
web. xml
META- | NF
MANI FEST. MF
event rout er. war
VEB- | NF
web. xm
META- | NF
MANI FEST. MF

The . ear file for the sample adapter is shown in Listing 9-2.

Listing 9-2 .ear File for the Sample Adapter

sanpl e. ear
appl i cation. xm
adk.jar (shared .jar between .war and .rar)
bea.jar (shared .jar between .war and .rar)
BEA W.S SAMPLE _ADK. jar (shared .jar between .war and .rar)

BEA W.S SAMPLE ADK. war (Web application with
META- | NF/ MANI FEST. MF entry C ass- Pat h:
BEA W.S SAMPLE ADK.jar adk.jar bea.jar |log4j.jar
logtool kit.jar xcci.jar xmtoolkit.jar)

BEA W.S SAMPLE _ADK.rar (Resource Adapter with
META- | NF/ MANI FEST. M- entry d ass- Pat h:
BEA W.S SAMPLE_ADK. jar adk.jar bea.jar log4j.jar
logtool kit.jar xcci.jar xmtool kit.jar)

| og4j .jar (shared .jar between .war and .rar)
| ogtool kit.jar (shared .jar between .war and .rar)
Xxcci.jar (shared .jar between .war and .rar)
xmtoolkit.jar (shared .jar between .war and .rar)

9-2 Developing Adapters



Using Enterprise Archive (.ear) Files

Notice that neither the . rar nor. war file includes the shared . j ar files; them; rather,
Instead, both types of files refer to the shared . j ar files by using the
<mani f est . cl asspat h> attribute.

Using Shared .jar Files in an .ear File

The design-time application uses an adapter’s SPI classes in an unmanaged scenario.
Consequently, an adapter’s SPI and CCI classes should be contained in a shared . j ar
file that resides in the same directory as the . ear file. To allow the . war and . r ar
classloaders to access the classes in the shared . j ar, you must specify, in the

MANI FEST. MF files, a request for inclusion of the shared . j ar files. For more
information about MANI FEST. FM see either “The Manifest File” on page 6-10 or
“Understanding the Manifest” at the following URL:

http://devel oper.java. sun. conf devel oper/ Books/ JAR/ basi cs/ mani f est
.ht i

The BEA W.S_SAMPLE _ADK. rar and BEA W.S SAMPLE_ADK. war files contain
META- | NF/ MANI FEST. MF, as shown in Listing 9-3:

Listing 9-3 Manifest File Example

Mani f est-Version: 1.0
Created-By: BEA Systens, Inc.

Cl ass-Path: BEA W.S SAMPLE_ADK.jar adk.jar bea.jar |log4j.jar
logtoolkit.jar xcci.jar xmtoolkit.jar

Note: The name of the file, MANI FEST. MF, is spelled in all uppercase. If it is not
spelled correctly, it is not recognized on a UNIX system and an error occurs.

Developing Adapters 9-3



9

Deploying Adapters

.ear File Deployment Descriptor

9-4

Listing 9-4 shows the deployment descriptor, which declares the components of an
. ear file. In this case, these components include the design-time . war , event router
.war, and adapter . r ar modules.

Listing 9-4 Deployment Descriptor for the .ear File

<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DID J2EE
Application 1.3//EN
"http://java.sun.com dtd/application_1_3.dtd >

<appl i cati on>
<di spl ay- name>BEA W.S_SAMPLE_ADK</ di spl ay- nane>
<description>This is a J2EE application that contains a sanple
connector, Wb application for configuring
application views for the adapter, and an
event router Wb application.</description>
<nmodul e>
<connect or >BEA_W.S_SAMPLE_ADK. r ar </ connect or >
</ nodul e>
<nmodul e>
<web>
<web- uri >BEA W.S SAMPLE_ADK. war </ web- uri >
<cont ext -root >BEA W.S_SAMPLE_ADK_Web</ cont ext - r oot >
</ web>
</ nodul e>
<nmodul e>
<web>
<web- uri >BEA W.S SAMPLE_ADK Event Rout er .
.war </ web-uri >
<cont ext - root >BEA_ W.S_SAMPLE_ADK _
Event Rout er </ cont ext - r oot >
</ web>
</ nmodul e>
</ application>

Note: The adapter . j ar files must be included in the system classpath.

You can deploy the adapter via the WebLogic Server Administration Console or by
adding an application component to conf i g. xm . These procedures are described in
“Deploying Adapters” on page 9-5.

Developing Adapters



Deploying Adapters

You must also configure the event router Web application using the WebLogic Server
Administration Console. For more information, see “Editing Web Application
Deployment Descriptors” on page 9-8.

Deploying Adapters

You can deploy adapters by either of the following methods:

m By using the WebLogic Server Administration Console

m By manually editing conf i g. xm

This section provides procedures for both methods.

Deploying Adapters by Using the WebLogic Server
Administration Console

To configure and deploy an adapter from the WebLogic Server Administration
Console, complete the following procedure:

1.
2.

Open the WebLogic Server Administration Console.

In the navigation tree (in the left pane), choose Deployments — Applications.
The Applications page is displayed.

Select Configure a new application.

The Configure a new Application page is displayed.

Enter values in the following fields:
e Inthe Name field, enter the logical name of the adapter.
e In the Path field, enter the path for the appropriate . ear file.

e Inthe Deployed field, make sure that the check box is selected.

Click Apply to create the new entry.

Developing Adapters 9-5



9

Deploying Adapters

6. Select Configure Components.
7. Set the target for each component individually.

When you install an application (or application component) via the WebLogic Server
Administration Console, you also create entries for that application or component in
the configuration file for the relevant domain (/ conf i g/ DOMAI N_NAME/ confi g. xni
where DOMAI N_NANE is your domain). WebLogic Server also generates JMX
Management Beans (MBeans) that enable you to configure and monitor the
application and application components.

Deploying Adapters Manually

9-6

To deploy the adapter manually, you must first modify the confi g. xm file. Within
the <Appl i cat i on> element, you must set the Depl oyed= val ue to true and specify
the logical name of the adapter with the Name= val ue parameter setting. Additionally,
you must:

m  Set the pathname for the . ear file.
m Specify the appropriate connector component and Web application components.

Listing 9-5 shows how the confi g. xm file is modified to deploy the sample adapter.
In this listing, the path directive points to the . ear file and each component describes
the URI of its own deployment.

Listing 9-5 Sample Code for Deploying an Adapter by Using config.xml

<I-- This deploys the EAR file -->

<Appl i cation Depl oyed="true" Nane="BEA W.S SAVPLE_ADK"
Pat h="W.| _HOVE/ adapt ers/ sanpl e/ | i b/ BEA_ W.S SAMPLE ADK. ear ">
<Connect or Conponent Nanme="BEA W.S SAVPLE_ADK"
Targets="nyserver" URI ="BEA W.S SAMPLE_ADK.rar"/>
<WebAppConponent Name="BEA W.S SAMPLE_ADK Event Rout er"
Targets="nyserver" URlI ="BEA W.S SAMPLE_ADK
Event Rout er . war "/ >

<WebAppConponent Name="BEA W.S SAMPLE_ADK Wéb"
Target s="nyserver" URl ="BEA W.S_SAMPLE_ADK_Wb. war "/ >
</ Appl i cati on>

Developing Adapters



Deploying Adapters

Note: You must replace W.I _HOVE with the correct path for the WebLogic

Integration root directory for your environment.

Once confi g. xnl is updated, deploy the adapter by completing the following
procedure:

1.

Add the adapter . j ar file(s) to the classpath and restart WebLogic Server. This
step is required because WebL ogic Server does not currently load an . ear file with
a single classloader.

Restart the server.

Add the adapter group to the default WebLogic Server security realm using the
WebLogic Server Administration Console at the following URL:
http://<host>: <port >/

Add a user to the adapter group using the WebLogic Server Administration
Console. Save your changes.

To configure and deploy application views, go to:

http://<host>: <port>/w ai

In this URL, replace <host > with the name of your server and <por t > with the
listening port. For example:

http://1ocal host: 7001/ W ai

Now complete the procedures provided in “Defining Application Views” in
Using Application Integration.

Note: You will be prompted to log in by supplying a username and password.
Use the password you added earlier.

Adapter Auto-registration

WebLogic Integration uses an automatic registration process during adapter
deployment. To implement the automatic registration process, use one of the
procedures provided in “Registering the Design-time Web Application” on page C-3.

Developing Adapters 9-7



9 Deploying Adapters

Editing Web Application Deployment
Descriptors

For some adapters, you may need to change the deployment parameters of the Event
Router Web application. For the DBMS adapter, for example, you might need to
change the data source used by its event generator.

This section explains how to use the Deployment Descriptor Editor provided by the
WebLogic Server Administration Console to edit the following Web application
deployment descriptors:

m web. xmi

® webl ogi c. xni

Deployment Parameters

You can change any parameter of the Event Router Servlet. These parameters are:
m event Gener at or O assNane
m userlD

® password

m dat aSource

m jdbcDriverd assNane

m dbURL

m dbAccessFl ag

m event Cat al og

® event Schenma

®  Root LogCont ext

®  Addi tional LogCont ext

m lLogConfigFile

m LoglLevel

9-8 Developing Adapters



Editing Web Application Deployment Descriptors

m  MessageBundl eBase
® LanguageCode
m  CountryCode

m sl eepCount

Editing the Deployment Descriptors

To edit the Web application deployment descriptors, complete the following
procedure:

1. Open the WebLogic Server Administration Console in your browser by accessing
the following URL.:

http://host: port/consol e

In this URL, replace host with the name of the computer on which WebLogic
Server is running, and por t , with the number of the port on which WebLogic
Server is listening. For example:

http://1ocal host: 7001/ consol e

2. Inthe left pane, expand two nodes: the Deployments node and the Web
Applications node below it.

3. Right-click the name of the Web application for which you want to edit the
deployment descriptors. From the drop-down menu select Edit Web Application
Descriptor. The WebLogic Server Administration Console is displayed in a new
browser.

The Console consists of two panes. The left pane contains a navigation tree
composed of all the elements in the two Web application deployment
descriptors. The right pane contains a form for the descriptive elements of the
web. xm file.

4. To edit, delete, or add elements in the Web application deployment descriptors,
expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit. The following nodes are available:

e The WebApp Descriptor node contains the elements of the web. xm
deployment descriptor.

Developing Adapters 9-9



9

Deploying Adapters

9-10

The WebApp Ext node contains the elements of the webl ogi c. xml
deployment descriptor.

5. To edit an existing element in one of the Web application deployment
descriptors, complete the following procedure:

a.

C.

d.

Navigate the tree in the left pane, clicking parent elements until you find the
element you want to edit.

Click the name of the appropriate element. A form is displayed in the right pane
with a list of either the attributes or the subelements of the selected element.

Edit the text in the form in the right pane.
Click Apply.

6. To add a new element to one of the Web application deployment descriptors,
complete the following procedure:

a.

C.

d.

Navigate the tree in the left pane, clicking parent elements until you find the
name of the element you want to create.

Right-click the name of the appropriate element and select Configure a New
Element from the drop-down menu. A form is displayed in the right pane.

Enter the element information in the form in the right pane.

Click Create.

7. To delete an existing element from one of the Web application deployment
descriptors, complete the following procedure:

a.

Navigate the tree in the left pane, clicking parent elements until you find the
name of the element you want to delete.

Right-click the name of the appropriate element and select Delete Element from
the drop-down menu. A confirmation page is displayed.

Click Yes on the Delete confirmation page to verify that you want to delete the
element.

8. Once you have made all your changes to the Web application deployment
descriptors, click the root element of the tree in the left pane. The root element is
either the name of the Web application *. war archive file or the name that is
displayed for the Web application.

Developing Adapters



Editing Web Application Deployment Descriptors

9. Click Validate if you want to ensure that the entries in the Web application
deployment descriptors are valid.

10. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebL ogic Server memory.

Developing Adapters 9-11



9 Deploying Adapters

9-12 Developing Adapters



APPENDIX

A Creating an Adapter

Not Specific to
WebLogic Integration

The procedures for developing J2EE-compliant adapters outlined in Chapter 6,
“Developing a Service Adapter,” and Chapter 7, “Developing an Event Adapter,”
primarily pertain to adapters developed for use with WebLogic Integration. By making
modifications to the steps described in that chapter, you can build an adapter compliant
with the J2EE Connector Architecture specification but not WebLogic
Integration-specific. This section describes those modifications.

This section contains information on the following subjects:
m Using this Section
m Building the Adapter

m  Updating the Build Process

Using this Section

This section shows you how to modify the steps for developing a J2EE-compliant
adapter in order to build one that is not specifically designed to run with WebLogic
Integration. Each of the steps in this section will refer back to one of the steps described

Developing Adapters A-1



A Creating an Adapter Not Specific to WebLogic Integration

in Chapter 6, “Developing a Service Adapter,” and describe how to modify that step.
You should understand each of these steps thoroughly before proceeding with the
modifications described below.

Building the Adapter

This procedure assumes that you have installed WebLogic Integration as described in
Installing BEA WebLogic Integration.

1. Determine the development considerations as described in “Step 1: Development
Considerations” in Chapter 6, “Developing a Service Adapter.” Ignore the final
bullet point that refers to transaction support. This is because WebLogic Server
does not support local or XA transactions.

2. Run GenerateAdapterTemplate, as described in Chapter 4, “Creating a Custom
Development Environment.”

3. Assign the adapter logical name, as described in “Step 2b: Assign the Adapter
Logical Name” on page 6-10.

4. Implement the SPI, as described in “Basic SPI Implementation” on page 6-24
You must extend the following classes:

e Abstract ManagedConnect i onFact or y (see “ManagedConnectionFactory”
on page 6-24).

e Abstract ManagedConnect i on (see “ManagedConnection” on page 6-32).

e Abstract Connect i onMet aDat a (see “ManagedConnectionMetaData” on
page 6-33).

As you implement these classes, note the following:
e WebLogic Server does not support adapters that use transactional semantics.

e Do not implement the Connect i onManager interface, as the adapters you
are developing here are managed adapters; that is, they are designed to plug
into WebL ogic Server.

5. Extend Abst r act Connect i onFact ory.

A-2 Developing Adapters



Updating the Build Process

Updating the Build Process

In addition to the steps described in “Building the Adapter” on page A-2 you need to
modify the bui I d. xmi file to create an adapter not specific to WebLogic Integration.
To update the build process, do the following:

1. Inyour code editor, open the ADK’s bui | d. xni file.

2. Refer to “Step 2c: Setting Up the Build Process” on page 6-10. This step includes
the section “build.xml Components” on page 6-11 that breaks down the
bui | d. xni file into separate code listings.

3. Locate Listing 6-11 and Listing 6-12.

4. Remove everything in those listings from bui | d. xn .

Developing Adapters A-3



A Creating an Adapter Not Specific to WebLogic Integration

A-4 Developing Adapters



APPENDIX

B XML Toolkit

The XML Toolkit provided with BEA WebL ogic Integration’s Adapter Development
Kit helps you develop valid XML documents to transmit information from an EIS to
the application on the other side of the adapter. It incorporates many of the operations
required for XML manipulation into a single location, relieving you of these often
tedious chores.

This section contains information on the following subjects:
m Toolkit Packages
m IDocument

m  Schema Object Model (SOM)

Toolkit Packages

The XML Toolkit is comprised primarily of these two Java packages:
® com bea. docunent

® com bea. schema

These packages are in the xm t ool ki t . j ar file, which is installed with the ADK
when you install WebLogic Integration. They include complete Javadoc for each class,
interface, and method. To see the Javadoc, go to:

WLl _HOVE/ docs/ api docs/ i ndex. ht mi

Where W.I _HOME is the folder where WebL ogic Integration is installed.

Developing Adapters B-1



B XML Toolkit

IDocument

com bea. docunent . | Docunent

An| Docurent isacontainer that combines the W3C Document Object Model (DOM)
with an XPath interface to elements in an XML document. This combination makes
| Docunent objects queryable and updatable simply by using XPath strings. These
strings eliminate the need to parse through an entire XML document to find specific
information by allowing you to specify just the elements you want to query and return
the values of those queries.

For example, The XML document shown in Listing B-1 describes a person named
“Bob” and some of the details about “Bob.”

Listing B-1 XML Example

<Per son name="Bob" >
<Home squar eFeet ="2000"/ >
<Fam | y>
<Child nane="Ji my">
<Stats sex="mal e" hair="brown" eyes="blue"/>
</ Chi | d>
<Chi | d name="Susie">
<Stats sex="fenal e" hair="bl onde" eyes="brown"/>
</ Chi | d>
</ Fam | y>
</ Per son>

Now, let’s say you want to retrieve Jimmy's hair color from the <chi | d> element.
Were you to use DOM, you would need to use the code shown in Listing B-2:

Listing B-2 DOM Data Retrieval Code Sample

String strJimysHairColor = null;
org.w3c. dom El enent root = doc. get Docunent El enent () ;
if (root.get TagNane().equal s("Person") && root.getAttribute("nane").
equal s("Bob") {
org. w3c. dom NodeLi st |ist = root.getEl enent sByTagNane("Fanily"); if

B-2 Developing Adapters



Schema Object Model (SOM)

(list.getlLength() > 0) {
org.w3c.dom El enent family = (org.w3c.domEl enent)list.iten(0);
org.w3c. dom NodeLi st childList = fam |y. get El enent sByTagNane ("Child");
for (int i=0; i < childList.getLength(); i++) {
org.w3c.dom El enent child = childList.iten(i);
if (child.getAttribute("nanme").equals("Jimy")) {
or g. w3c. dom NodelLi st statsList = child.
get El ement sByTagNane(" Stats") ;
if (statsList.getLength() > 0) {
org.w3c. dom El enent stats = statsList.iten(0);
strJimmysHairCol or = stats.getAttribute("hair");

}
}
}
}
}
However, by using IDocument, you can retrieve Jimmy’s hair color by creating the
XPath string that seeks exactly that information, as shown in Listing B-3:
Listing B-3 IDocument Data Retrieval Code Sample
Systemout.printIn("Jimy's hair color: " + person.getStringFrom

("//Person[ @ame=\"Bob\"] /Fanmily/Child[ @anme=\"Jimy\"]/Stats/ @air");

As you can see, by using | Docunent , you can simplify the code necessary to query
and find information in a document.

Schema Object Model (SOM)

SoMis an interface for programmatically building XML schemas. An adapter calls into
an EIS for specific request/response metadata, which then needs to be programatically
transformed into an XML schema. SOwmis a set of tools that extracts and validates many
of the common details—such as syntactical complexities of schema—so that you can
focus on its more fundamental aspects.

Developing Adapters B-3



B

XML Toolkit

How SOM Works

B-4

An XML schema s like a contract between the EIS and an application on the other side
of the adapter. This contract specifies how data coming from the EIS must appear in
order for the application to manipulate it. A document (that is, an XML-rendered
collection of metadata from the EIS) is considered valid if it meets the rules specified
in the schema, regardless of whether or not the document’s XML is correct. For
example, if a schema required a name to appear in a <name> element and that element
required two child elements, <fi r st name> and <I ast nane>, to be valid the
document from the EIS would have to appear in the form shown in Listing B-4 and
the schema would have to appear as it does in Listing B-5.

Listing B-4 Document Example

<name>
<firstnane>Joe</firstnane>
<l ast name>Sni t h</ | ast nanme>
</ name>

Listing B-5 Schema Example

<schena>
<el erent nane="nane" >
<conpl exType>
<sequence>
<el ement nane="firstnane" />
<el enent nane="I| ast nane" />
</ sequence>
</ conpl exType>
</ el ement >
</ schema>

No other form of <name></ name>, for example:

<nane>Joe Sm t h</ nanme>

would be valid, even though the XML is correct.

Developing Adapters



Schema Object Model (SOM)

Creating the Schema

You can create an XML schema programatically by using the classes and methods
provided with SOM The benefit to this tool is that you only need to populate the
variables in the program components to tailor a schema for your needs. For example,
the following code examples create a schema that validates a purchase order document.
Listing B-6 sets up the schema and adds the necessary elements.

Listing B-6 Purchase Order Schema

i nport com bea. schena. *;
i mport com bea. schema. t ype. SOMType;

public class PurchaseOrder

{

public static void main(String[] args)

{
System out. println(getSchema().toString());
}
public static SOMSchema get Schema()
{

SOVBchenma po_schena = new SOMschema();

po_schema. addDocunent ati on(" Purchase order schena for
Exanpl e. com \ nCopyri ght 2000 Exanple.com\nAll rights
reserved.");

SOMEl emrent  pur chaseOrder =
po_schema. addEl enent (" pur chaseOrder");

SOMEl ement conment = po_schenma. addEl enent (" coment ") ;

SOMConpl exType usAddress =
po_schema. addConpl exType(" USAddr ess") ;

SOVBequence seq2 = usAddress. addSequence();

/1 adding an object to a SOMSchema defaults to type="string"
seq2. addEl enment (" nanme") ;

seq2. addEl ement ("street");

seq2. addEl ement ("city");

seq2. addEl ement ("state");

seq2. addEl ement (" zi p", SOMIype. DECI MAL) ;

Developing Adapters B-5



B

XML Toolkit

B-6

Attributes can be set in the same way that elements are created. Listing B-7 sets these
attributes. To correctly set these attributes, you must maintain their addressibility.

Listing B-7 Setting the Attributes of Parent Attributes

SOVAttribute country_attr = usAddress. addAttribute("country",
SOMType. NMTOKEN) ;
country_attr.setUse("fixed");
country_attr.setVal ue("US");

Like conpl exTypes, si npl eTypes can be added to the root of the schema.
Listing B-8 shows how to do this.

Listing B-8 Adding simpleTypes to the Schema Root

SOVBI npl eType skuType = po_schena. addSi npl eType(" SKU") ;

SOVRestriction skuRestrict = skuType.addRestriction
(SOMType. STRI NG ;

skuRestrict.setPattern("\\d{3}-[A-Z]{2}");

SOMConpl exType poType =
po_schema. addConpl exType(" Pur chaseOr der Type") ;

pur chaseOr der. set Type(poType);
poType. addAttri but e("orderDate", SOMIype. DATE);

The addSequence() method of a SOMConpl ex Ty pe object returns a SOMBequence
reference, allowing you to modify the element that was added to the element. In this
way, as shown in Listing B-9, objects are added to the schema.

Listing B-9 Implementing addSequence() to Modify an Element

SOVBequence poType_seq = poType. addSequence();
poType_seq. addEl enent ("shi pTo", usAddress);
poType_seq. addEl ement ("bi || To", usAddress);

Developing Adapters



Schema Object Model (SOM)

Attributes of an element within a schema can be set by calling the setter methods of the
SOMEI ement object. For example, Listing B-10 shows the implementation of
set M nQccurs() and set MaxQOccurs() .

Listing B-10 Implementing set M nCccur s() and set MaxCccur s()

SOMVEl ement  conmrent Ref = new SOVEl enent (conment ) ;
coment Ref . set M nCccur s(0);
poType_seq. add( comment Ref ) ;
SOMEl ement poType_itens = poType_seq. addEl enent ("itens");

SOMConpl exType itenilype = po_schena. addConpl exType("Itens");
SOMBequence seq3 = iteniType. addSequence();
SOMEl enent i tem = new SOVEl enent ("itent');
itemsetM nCccurs(0);
item set MaxCccurs(-1);
seq3. add(item;
SOMConpl exType t = new SOMConpl exType();
item set Type(t);
SOVBequence seq4 = t.addSequence();
seq4. addEl enent (" product Nange") ;
SOMEl emrent quantity = seqg4. addEl enent ("quantity");
SOVEI npl eType st = new SOVSI npl eType() ;
quantity.set Type(st);
SOVRestriction restrict =
st.addRestri cti on( SOMIype. PCSI Tl VEI NTEGER) ;
restrict.set MaxExcl usi ve("100");

In this example, the items element for Pur chaseOr der Type was created before | t ens
type; therefore, you must create the reference and set the type once the Items type
object is available by using the code shown in Listing B-11:

Listing B-11 Setting the Type Once the Items Type Object is Available

poType_i tens. set Type(itenilype);

Developing Adapters B-7



B XML Toolkit

Finally, you need to add an element to the schema. Adding an element to a can be done
either by implementing the addEl ermrent () method of SOMSequence or the add()
method from a previously created SOVEI enent . Listing B-12 shows both of these
methods.

Listing B-12 Adding an Element to the Schema

seq4. addEl ement (" USPrice", SOMIype. DECI MAL) ;

SOMVEl ement  conmrent Ref 2 = new SOVEl enent (comment ) ;
coment Ref 2. set M nCccur s(0);
seq4. add( comment Ref 2) ;

SOMEl enent  shi pDat e = new SOVEl enent ("shi pDate", SOMIype. DATE);
shi pDat e. set M nCccurs(0);
seq4. add(shi pDate);

t.addAttribute("partNunt', skuType);

return po_schens;

}
}

The Resulting Schema

Execution of this code shown in Listing B-6 through Listing B-12 creates the schema
shown in Listing B-13.

Listing B-13 XML Schema Definition Document

<?xm version="1.0" ?>

<! DOCTYPE schema (View Source for full doctype...)>

<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2000/ XM_Scherma" >
<xsd: annot ati on>

<xsd: docunent ati on>Pur chase order schema for Exanpl e.com
Copyri ght 2000 Exanple.com All rights
reserved. </ xsd: docunent ati on>

</ xsd: annot at i on>

B-8 Developing Adapters



Schema Object Model (SOM)

<xsd: si npl eType nanme="SKU' >
<xsd: annot at i on>
</ xsd: annot at i on>
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}" />
</xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType name="Pur chaseCOr der Type" >
<xsd: sequence>
<xsd: el ement type="USAddress" nane="shi pTo" />
<xsd: el ement type="USAddress" nane="bill To" />
<xsd: el ement ref="coment" mi nCccurs="0" />
<xsd: el ement type="Itens" nane="itens" />
</ xsd: sequence>

<xsd:attribute name="orderDate" type="xsd:date" />
</ xsd: conpl exType>

<xsd: conmpl exType name="Itens">
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" nanme="itent
m nCccur s="0">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el enent type="xsd:string"
name="product Narme"/ >
<xsd: el enent nane="quantity">
<xsd: si npl eType>
<xsd:restriction base=
"xsd: positivel nteger">
<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el enent >
<xsd: el enent type="xsd: deci mal" nane=
"USPrice" />
<xsd: el enent ref="comrent"
m nCccurs="0" />
<xsd: el ement type="xsd: date"
name="shi pDate" m nCccurs="0" />
</ xsd: sequence>
<xsd: attribute name="partNuni' type="SKU"' />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="USAddr ess" >
<xsd: sequence>

Developing Adapters B-9



B XML Toolkit

<xsd: el enent type="xsd:string" nane="nane" />
<xsd: el ement type="xsd:string" nane="street" />
<xsd: el enent type="xsd:string" nane="city" />
<xsd: el enent type="xsd:string" nane="state" />
<xsd: el enent type="xsd: nunber" nane="zip" />

</ xsd: sequence>

<xsd:attribute name="country" use="fixed" val ue="US"
type="xsd: NMTOKEN' />
</ xsd: conpl exType>
<xsd: el enent type="PurchaseO der Type" nane="purchaseOrder" />
<xsd: el enent type="xsd:string" nane="comment" />
</ xsd: schenma>

Validating an XML Document

The schema shown in Listing B-13 is then used to validate a document sent from the
EIS. For example, the document described in Listing B-14 passes schema validation
based upon the schema we just created.

Listing B-14 Validated XML Document

<?xm version="1.0" ?>
<! DOCTYPE PurchaseOrder (View Source for full doctype...)>

<pur chaseOrder orderDate="1/14/00">
<shi pTo Country="US">
<nanme>Bob Jones</ nane>
<street>1000 S. 1st Street</street>
<ci ty>Denver</city>
<st at e>CO</ st at e>
<zi p>80111</ zi p>
</ shi pTo>

<bi |l To Country="US">
<nane>Bob Jones</ nane>
<street>1000 S. 1st Street</street>
<ci ty>Denver</city>
<st at e>CO</ st at e>
<zi p>80111</ zi p>
</bill To>

<coment >None</ conment >

B-10  Developing Adapters



Schema Object Model (SOM)

<itens>
<i tem part Num=" 123- AA" >
<product Name>Washer </ pr oduct Nanme>
<quantity>20</quantity>
<USPri ce>0. 22</ USPri ce>
<comment >Only shi pped 10</conmment >
<shi pDat e>1/ 14/ 00</ shi pDat e>
</itemr
<item part Num="123- BB" >
<pr oduct Name>Scr ew</ pr oduct Name>
<quantity>10</quantity>
<USPri ce>0. 30</ USPri ce>
<conmment >None</ conmment >
<shi pDat e>1/ 14/ 00</ shi pDat e>
</itemr
</items>
</ pur chaseOr der >

How the Document is Validated

SOM can be used to validate XML DOM documents by using the SOvschema method
i sVal i d().SOVEl ement has a corresponding i sval i d() method for validating an
element instead of the DOM document. The i sval i d() method determines if
document or element is valid, and if not, compiles a list of the errors. If the document
is valid, i sval i d() returns true and the list of errors is empty.

Implementing isValid()

Listing B-15 shows two ways to implement i sval i d() . Refer to the Javadoc for
i sval i d() for complete API information. Go to:

WLl _HOVE/ docs/ api docs/ comf bea/ SOMBchena. ht m

Listing B-15 Examples of i sval i d() Implementation

publ i ¢ bool ean isValid(org.w3c.dom Docunent doc,
java.util.List errorlList)
publ i c bool ean isValid(lDocunent doc,
Li st errorlList)

Developing Adapters  B-11



B

XML Toolkit

The parameters in Listing B-14 are:
m doc - The document instance to be validated
m errorlList - Alistof errors found in the document, doc

i sval i d() returns a boolean value of true if the document is valid with respect to this
schema. If the document is not valid with respect to the schema, i sval i d() returns
false and the errorList is populated.

errorListisajava. util . Li st for reporting errors found in the document, doc. The
error list is cleared before validating the document. Therefore, the list implementation
used must support the cl ear () method. Ifisvalid() returns false, the error list is
populated with a list of errors found during the validation procedure. The items in the
list are instances of the class com bea. schema. SOWal i dat i onExcepti on. If

i sVal i d() returnstrue, errorLi st isempty.

isValid() Sample Implementation

B-12

Listing B-16 shows an example of ani sVval i d() implementation.

Listing B-16 Sample Code Implementing i sVal i d()

SOvBchema schema = .. .;

| Docunment doc = Docunent Factory. creat eDocunent (new Fi | eReader (f));
java. util.LinkedList errorList = new java.util.LinkedList();
bool ean valid = schena.isValid(doc, errorList);...

if (! valid){
System out. println("Docurment was invalid. Errors were:");
for (lterator i = errorList.iterator; i.hasNext();)

{

Systemout. println(((SOwalidati onException) i.next).
toString());

Developing Adapters



APPENDIX

C Migrating Adapters to

WebLogic Integration
2.1

Migrating an adapter developed under WebLogic Integration 2.0 to WebLogic
Integration 2.1 is a simple process. The actual deployment method has been greatly
simplified by reducing from three to one the actual number of files you need to create
and deploy. Additionally, an auto-registration process has been added to eliminate the
need to manually register an adapter.

This section contains information on the following subjects:
m Changes to the Deployment Method
m Registering the Design-time Web Application

m  Other Migration Issues

Changes to the Deployment Method

To migrate an adapter, you need to change how the adapter is deployed. In WebLogic
Integration 2.0, an adapter had the following deployable units:

m . rar file, which contains the J2EE-compliant adapter.

Developing Adapters C-1



C Migrating Adapters to WebLogic Integration 2.1

C-2

To create and deploy the . r ar file for WebLogic Integration 2.0, the adapter
developer bundled class files, the logging configuration, and message bundle(s)
intoa.jar file. This.j ar file and META- I NF/ r a. xmi was then bundled into
.rar file. The adapter developer then deployed the . r ar file into the
J2EE-compliant container in the application server. The deployment procedure
was different on every server.

Design-time . war file, which is a Web application for the design-time
component of the adapter.

To construct a valid . war file for an adapter's design time Ul, the adapter
developer used the Ant build process. Within the process, an Ant target
constructs a valid . war file for the design-time interface in the
PRQIECT_ROOT/ | i b directory. PROQIECT_ROOT is the location under the
WebLogic Integration 2.1 installation where the developer is constructing the
adapter; for example:

W.I _HOVE/ adapt er s/ sanpl e

In addition, this target performs an “unjar” operation in the / | i b directory. This
extracts the . war into a temporary directory. This is the key to having WebL ogic
Integration recompile JSPs without restarting.

Event router . war file, which is a Web application containing the event
generator for an adapter.

To make the event router . war file, the adapter developer included in it the
following . j ar files:

e |ogdj.jar

e W ai-conmon.jar

e wWai-ejb-client.jar

e W ai-eventrouter.jar

e wWai-servlet-client.jar
e |ogtoolkit.jar

e adk-eventgenerator.jar

The adapter developer also added any other . j ar file upon which the event
generator is dependent. These are specified in the <event r out er > target in the
bui I d. xn file

Developing Adapters



Registering the Design-time Web Application

How it’'s Done in WebLogic Integration

In WebL ogic Integration 2.1, all components are contained in asingle . ear file, which
is deployed either manually or by using the WebLogic Integration Console. For more
information on deploying adapters by using . ear files, see Chapter 9, “Deploying
Adapters.” For more information on . ear files, see Chapter 2, “Concepts.” Refer to
Listing 2-2 and Listing 2-3.

Additionally, the bui | d. xmi file has been updated to facilitate the use of . ear files.
Refer to “build.xml Components” on page 6-11 for a detailed description of the
WebLogic Integration bui | d. xm file.

Registering the Design-time Web
Application

In addition to the deployment unit changes, WebLogic Integration uses a different
mechanism to register the design-time Web application context for an adapter.

In WebLogic Integration 2.0, users were required to make an entry into the

w ai . properti es file to register their adapter’s design-time Web application into the
Application View Management Console. This allowed the end user to associate the
adapter with a new application view. This step has been replaced in WebLogic
Integration by an automatic registration process during adapter deployment. To use
the automatic registration process, use one of these procedures:

m Using a Naming Convention

m Using a Text File

Using a Naming Convention

The preferred approach is to use a naming convention for the design-time Web
application and connector deployment.

Developing Adapters C-3



C Migrating Adapters to WebLogic Integration 2.1

When deploying an . ear file into WebLogic Integration, identify the file in
confi g. xm by using the adapter logical name as the file name. Listing C-1 shows an
example how to do this.

Listing C-1 Adding the Adapter Logical Name to conf i g. xni

<Appl i cation Depl oyed="true" Name="ALN'
Pat h="W.| _HOVE/ adapt er s/ ADAPTER/ | i b/ ALN. ear " >
<Connect or Corponent Nane="ALN' Target s="nyserver"
URI ="ALN.rar"/ >
<WebAppConponent Name="ALN_Event Router" Targets="nyserver"
URI =" ALN_Event Rout er. war"/ >
<WebAppConponent Narme="ALN Web" Targets="nyserver"
URI =" ALN_Weéb. war "/ >
</ Appl i cation>

where ALN is the adapter logical name. You must use the adapter logical name as the
value for the Name attribute on the <Connect or Conponent > element. If you name the
design-time Web application deployment as ALN_Web, the design-time Web
application will automatically be registered into the Application View Management
Console during deployment. The DBMS, e-mail, and sample adapters use this
convention.

Using a Text File

Alternatively, you can include a text file named webcont ext . t xt in the root of your
. ear file. webcont ext . t xt should contain the context for the design-time Web
application for your adapter. This file must be encoded in UTF-8 format.

Other Migration Issues

The following are additional changes you need to make to enable an adapter built with
WebLogic Integration 2.0 deployable in WebLogic Integration 2.1.

C-4 Developing Adapters



Other Migration Issues

Add a manifest file (VANI FEST. MF) to
WL _HOVE/ adapt er s/ ADAPTER/ sr ¢/ war / META- | NF for each . war file.

Delete the file di spl ay. j sp from W.I _HOVE/ adapt er s/ ADAPTER/ src/ war/ .
This file has been added to the ADK for WebL ogic Integration 2.1.

Delete the method debugDocunent (String strMessage, | Logger | ogger,
| Docunent doc) . This method has been added to the ADK for WebL ogic
Integration 2.1

Developing Adapters C-5



C Migrating Adapters to WebLogic Integration 2.1

C-6 Developing Adapters



APPENDIX

D Adapter Setup
Worksheet

Use the worksheet beginning on the following page to help you identify and collect
critical information about the adapter you are developing. The answers to the questions
posed on the worksheet will help you conceptualize the adapter you are building before
you actually began to code. They will help you define such components as the adapter
logical name and the Java package base name and help you determine the locales for
which you need to localize message bundles. If you are using the
GenerateAdapterTemplate utility, the answers you provide on this worksheet are
essential to its success.

Developing Adapters D-1



D Adapter Setup Worksheet

Adapter Setup Worksheet

D-2

Before you begin developing an adapter, answer as many of the following questions as
you can. Questions preceded by an asterisk (*) are required to use the
GenerateAdapterTemplate utility.

1.

N o g s~ w DN

10.

11.

12.

13.

*What is the name of the EIS for which you are developing an adapter?
*What is the version of the EIS?

*What is the type of EIS; for example, DBMS, ERP, etc.?

*Who is the vendor name for this adapter?

*What is the version number for this adapter?

*What is the adapter logical name?

Does the adapter need to invoke functionality within the EIS?

If so, then your adapter needs to support services.

What mechanism/API is provided by the EIS to allow an external program to
invoke functionality provided by the EIS?

What information is needed to create a session/connection to the EIS for this
mechanism?

What information is needed to determine which function(s) will be invoked in the
EIS for a given service?

Does the EIS allow you to query it for input and output requirements for a given
function?

If so, what information is needed to determine the input requirements for the
service?

For all the input requirements, which ones are static across all requests? Your
adapter should encode static information into an InteractionSpec object.

For all the input requirements, which ones are dynamic per request? Your adapter
should provide an XML schema that describes the input parameters required by
this service per request.

Developing Adapters



Adapter Setup Worksheet

14. What information is needed to determine the output requirements for the service?

15. Does the EIS provide a mechanism to browse a catalog of functions your adapter
can invoke? If so, your adapter should support browsing of services.

16. Does the adapter need to receive notifications of changes that occur inside the
EIS? If so, then your adapter needs to support events.

17. What mechanism/API is provided by the EIS to allow an external program to
receive notification of events in the EIS? The answer of this question will help
determine if a pull or a push mechanism is developed.

18. Does the EIS provide a way to determine which events your adapter can support?
19. Does the EIS provide a way to query for metadata for a given event?

20. What locales (language/country) does your adapter need to support?

Developing Adapters D-3



D Adapter Setup Worksheet

D-4 Developing Adapters



APPENDIX

E The DBMS Adapter

This section contains information on the following subjects:

m Introduction to the DBMS Adapter

m How the DBMS Adapter Works

m How the DBMS Adapter Was Developed

m  How the DBMS Adapter Design-Time GUI was Developed

Introduction to the DBMS Adapter

The DBMS adapter is a J2EE-compliant adapter built with the ADK. It provides a
concrete example for adapter providers of how one might use the ADK to construct an
adapter. A relational database was used as the EIS of an adapter because it allows
adapter providers to focus on the adapter/ADK specifics, rather than become
bogged-down in understanding a particular proprietary EIS.

The DBMS adapter gives you (developers and business analysts) a concrete example
of an adapter, including a JSP-based GUI, to help you understand the possibilities that
are at your disposal using the ADK to build adapters. If you are a business analyst, you
might enjoy running through the interface to get a better understanding of an

“application view”, “service”, and “event” as shown in “How the DBMS Adapter
Works” on page E-2.

If you are an adapter developer, you will also want to review “How the DBMS Adapter
Was Developed” on page E-24 and “How the DBMS Adapter Design-Time GUI was
Developed” on page E-42 the code, and Javadoc to gain insight into how you can
extend and use the classes of the ADK to build a J2EE-compliant adapter.

Developing Adapters E-1



E  The DBMS Adapter

The DBMS adapter satisfies the following requirements:

m Provides a GUI that allows end-users to connect to a Cloudscape, Oracle,
SQLServer, Sybase, or DB2 database.

m  Uses the classes and tools of the ADK.
m  Allows users to create application views with events and services.
m  Allow users to test events and services.

m Provides a GUI that enables users to browse the catalogs, schemas, tables, and
columns of the underlying database from the GUI.

m  Supports the creation of services that perform selects, inserts, deletes, and
updates against the database (EIS).

The DBMS adapter is a sample adapter. The adapter is not supported as a product
component in a production environment. Because the adapter is intended as an
example, rather than a production-ready adapter, it does not include a full set of
features and has the following limitations:

m The adapter is unable to execute complex queries.

m The adapter is unable to execute Stored Procedures.

How the DBMS Adapter Works

E-2

This section provides you with an opportunity to see how the DBMS adapter works
before you start developing one of your own. If you are a business analyst, you might
enjoy running through the interface to get a feel for how the adapter works. The
example in this section shows how to create a service that inserts a customer in the
underlying database, and then demonstrates how an event is generated to notify others
that this action has taken place.

This section contains information on the following subjects:
m Before You Begin

m  Accessing the DBMS Adapter

Developing Adapters



How the DBMS Adapter Works

m A Tour of the DBMS Adapter

Before You Begin

Make sure the following tasks have been performed before you try to access the DBMS
adapter:

m Install the WebL ogic Integration. For more information, see Installing BEA
WebLogic Integration.

m Set up the ADK Ant-Based Make Process (see “Step 2c¢: Setting Up the Build
Process” on page 6-10).

m Ensure that the DBMS adapter has been deployed so that the design-time GUI is
accessible. For more information, see Installing BEA WebLogic Integration.

Accessing the DBMS Adapter

To access the DBMS adapter:
1. Open a new browser window.

2. Open the URL for your system’s Application View Management Console and
enter:

http:// <HOSTNAMVE>: 7001/ W ai
The Application Integration Console - Logon page displays.

Developing Adapters E-3



E  The DBMS Adapter

Figure E-1 Application View Console - Logon

Application Yiew Console - Logon

Please supply a valid Weblogic username and password.,

L=sarname I
Password I

Lagin |

A Tour of the DBMS Adapter

This section provides you with a short tour through the DBMS Adapter. Before you
begin, you need to open the DBMS adapter Application View Console - Logon page
on your browser. For information about accessing the DBMS adapter, see “Accessing
the DBMS Adapter” on page E-3.

E-4 Developing Adapters



How the DBMS Adapter Works

Figure E-2 Application View Console - Logon

Application VYiew Console - Logon

Flease supply a walid Weblogic username and passward.

Username I
Password I
Login |

1. To log on to the Application View Management Console, enter your WebLogic
Username and Password, then click Login. The Application View Management
Console displays.

Developing Adapters E-5



E  The DBMS Adapter

E-6

Figure E-3 Application View Management Console

Application View Management Console :'hea

Folder: Root Tl

MName Status Action

Add Application View

2. Click Add Application View. The Define New Application View page displays.
When you create the application view, you provide a description that associates
the application view with the DBMS adapter.

For detailed information about application views and about defining application
views, see “Defining an Application View” in Using Application Integration.

Developing Adapters



How the DBMS Adapter Works

Figure E-4 Define New Application View Page

Define New Application View

This page allows you to define a new application view

Folder; Root

Application Yiew Name:* I‘

Description: ﬂ

H
Associated adapters: —Mone— ﬂ
Cancel

3. To define an application view:

a. Inthe Application View Name field, enter AppVi ewTest .

The name should describe the set of functions performed by this application.
Each application view name must be unique to its adapter. Valid characters
are anything except “.”, “#’, \", ‘+’, ‘&7, “,”, *”7, *””, and a space.

b. Inthe Description field, enter a brief description of the application view.

c. From the Associated Adapters list, choose the DBMS adapter to use to create
this application view.

d. Click OK. The Configure Connection Parameters page appears.

Developing Adapters E-7



E  The DBMS Adapter

Figure E-5 Configure Connection Parameters Page

Configure Connection Parameters #

(S HEA RN O, this page, you supply parameters to connect to your DBMS

Weblogic User Name* admin
Weblogic Password®

Data Source Name {JNDI)* IWLA\_DalaSDurce

Continue |

4. At the Configure Connection Parameters page, you define the network-related
information necessary for the application view to interact with the target EIS.
You need to enter this information only once per application view:

a. Enter your WebLogic User Name and WebL ogic Password.
b. Inthe Data Source Name (JNDI) field, enter WAl _Dat aSour ce.

c. Click Continue. The Application View Administration page displays.

The Application View Administration page summarizes the connection
criteria and, once events and services are defined, you can view the schemas
and summaries and also delete an event or service from this page.

E-8 Developing Adapters



How the DBMS Adapter Works

Figure E-6 Application View Administration Page for AppViewTest

Anpl

o 0y |

View Administration for AppViewTest P

z

, hea
G ¥ Logou
This page allows you to add events and/or services to an application view.

Description: A Wiew to an App¥iew _Edit

Gonnection Criteria

Additional Log Category: AppYiewTest

Root Log Category: BEA_WLS_DBMS_ADK
Password: SECUrity

Message Bundle Base: BEA_WLS_DBMS_ADK
Log Configuration File: BEA_WLS_DBMS_ADK.xml
Username: system

Data Source Name: WLAI_DataSource
Reconfigure connection parameters for AppViewTest

Events Aclel

Services Add

Save | F

Now that you have created an application view, you are ready to add a service to
it. To add the service you must supply a name for the service, provide a
description and enter the SQL statement.

You can use the browse link to browse the DBMS adapter database schemas and
tables and specify the database table CUSTOMER_TABLE.

To add a service:

a. Onthe Application View Administration page, click Add in the Services group.
The Add Service page displays.

Developing Adapters E-9



E  The DBMS Adapter

Figure E-7 Add Service Page

Add Service

p jc Consols

On this page, yvou a0d services to your application view.

Unigue Service Name:*

il Description: =

SOL Statement: * d

Add Browse DEMS..,

Syntax Help: 1. Use fully gualified table name (i.e.
catalog.schema.table); 2. to gather user input, bracket the column
name and type as follows: "[ColumnName ColumnType]”. Hint: browse
to cut & paste ColumnName and ColumnType into your sql.

b. Inthe Unique Service Name field, enter InsertCustomer.
c. Inthe Description field, enter a description of the service.

d. Click Browse DBMS to view the table and column structure of the database. If
you are writing a complex query, you may leave the Browse window open in
order to cut and paste table or column names into your query.

E-10  Developing Adapters



How the DBMS Adapter Works

Figure E-8 Browse DBMS Page

"“""F
: hea
z116d

Browse DBMS

DBMS Schemas For Cataloqg:

=
gl

=

s
i

e. Inthe DBMS Schemas for Catalog page, click APP.

Figure E-9 Browse DBMS Table Types Page

Browse DBMS

DBMS Table Types:

SYSTEM TABLE
TABLE
YIEWY

f. Inthe DBMS Table Types page, click TABLE.

Developing Adapters  E-11



E  The DBMS Adapter

Figure E-10 DBMS Browse Tables Page

rd e
r
Zhea

Browse DBMS

Tables For: .APP
Table Name:
SYSALIASES
SYSCHECKS
SYSCOLUMMNES
SYSCOMNGLOMERATES
SYSCOMNSTRAINTS
SYSDEPEMDS
SYSERRORS

SYSFILES
SYSFOREIGHEEYS
SYSIDECTYPEINFO
SYSKEYS
SYSSCHEMAS
SYSSTATEMENTS
SYSTABLES
SYSTRIGGERS
SYEVIEWS
ACLEMTRIES
ACTIVECOLLABORATOR
ACTIVECOMYDEF
ACTIVECOMYERSATION
ACTIVECOMYSTATE

g. Inthe Tables list for APP page, click CUSTOMER_TABLE. The Browse
window now displays the column names and column types.

E-12  Developing Adapters



Figure E-11 Browse DBMS for Table Page

o
2 .
L4 hﬂﬂ

Browse DBMS

DBMS Columns For Table: CUSTOMER_TABLE

How the DBMS Adapter Works

Columniame: CalumnType: CalumnSize:
FIRSTNAME VARCHAR 32
LASTNAME VARCHAR 32
MIDDLENAME VARCHAR 32
Doe DATE 10
ADDRESS1 VARCHAR 32
ADDRESSZ VARCHAR 32
ADDRESSE VARCHAR 32
POSTALCODE YARCHAR 11
CITY YARCHAR 32
STATE YARCHAR 32
COUNTRY YARCHAR 32
FHONE YARCHAR 15
FAK YARCHAR 15
EMAIL YARCHAR 64
Close Window

h. Click Close Window to close to close the window to return to the Add Service

Page.

This window is included in the tour to introduce you to the functionality and
it is not necessary to select any text for this exercise.

In the Service Page, add the following information into the SQL Statement
field:

Insert into APP. CUSTOVER TABLE (FI RSTNAVE, LASTNAMVE, DOB)
VALUES ([ FI RSTNAVE VARCHAR], [LASTNAME VARCHAR], [DOB
DATE] )

Click Add. The Application View Administration page is displayed.

For additional information about adding services, see “Defining an
Application View” in the Using Application Integration.

Developing Adapters  E-13



E  The DBMS Adapter

6. Add an event to your application view. In order to add an event, you must
provide a unique event name and a description. Then you must specify the
database table upon which a trigger should be added for the event. You must also
specify if it is an insert, update or delete event.

You can use the Browse DBMS link to browse the DBMS database schemas and
tables and to specify the database table. Then you can automatically populate the
field with the selected table name.

To add an event:

a. Inthe Application View Administration page, click Add in the Events field.
The Add Event page displays.

Figure E-12 Add Event Page

Add Event

On this page, you add events to your spplication view.

Unigue Event Name:* |

Description: I=|

=

Browse DBMS..,

Syntax Help... CLOUDSCARPE: APP.TABLENAME, ORACLE: SCHEMA TABLENAME, MS SQLSERVER:
catalog.schema.tablename, SYBASE: catalog.schema.tablename

Tahle Name: * I

Please Select The Type Of & Insert Event
Event To Create:

" Update Event

© Delete Event

b. Inthe Unique Event Name field, enter Cust oner I nser t ed.
c. Inthe Description field, enter a description of the event.

d. Click the Browse DBMS link to view the table and column structure of the
database.

Developing Adapters



How the DBMS Adapter Works

Figure E-13 Browse DBMS Tables Page

ALLENTRIED
ACTIVECOLLARORATOR
ACTIYECONYDEF
ACTIVECONYERSATION
ACTIVECOMYSTATE
ACTIVECPA
ACTIVECSPACE
ACTIVEHUB
ACTIVEMESSAGE
ACTIVEMESEAGEDAT &
ACTIYEMESSAGEENYELOPE
ACTIVEMESSAGESTORE
ACTIVEMESSAGETOKEN
ACTIVEPAYLOAD
ACTIVEPROCESS
ACTIVEROLE
ACTIYEROLEDEF
ACTIVEWFINSTANCE
ACTIVEWLCID
ADDRESSEDMESSAGE
BUSINESSCALENDAR
BUSINESSOPERATION
BUSINESS PROCESS
BUSINESE PROTOCOL DEFIMITION
o}

CERTIFICATE
COMTAINED OBJECT
CPACOLLABORATORMAR
CPACONYERSATIONMAR
CPACSPACEMAR
CUSTOMER TABLE
CHML BINDING

P TUERY SRR

5‘__‘_3?_"’)")")"’1")"’)")")"’)’)’)’5’)’)’5’)’)”)’)’)’3’)”)’)’)’5’)’)’5’

e}

e. Select the CUSTOMER TABLE radio button, and click Fill table name with

selected table.

Developing Adapters

E-15



E  The DBMS Adapter

Figure E-14 Add Event Page

e,

Add Event

On this page, vou add events to your spplication view,

Unique Bvent Name:* Customerlnserted

Add Event

D Description: This event will he fired if a =
custower is inserted into the
CUSTOMER_TAELE.

H

Table Name: * APP.CUSTOMER_TABLE Brovwse DBMS. .,

Syntax Help... CLOUDSCAPE: APP TABLENAME, ORACLE: SCHEMA.TABLENAME, MS SQLSERVER:
catalog.schema.tablename, SYBASE: catalog.schema tablename

Please Select The Type Of @ Insert Event
Event To Create:
€ Update Event

" Delete Event

f. Select the Insert Event radio button.

g. When finished, click Add. The Application View Administration page displays.

E-16  Developing Adapters



How the DBMS Adapter Works

Figure E-15 Application View Administration Page for AppViewTest

%

Application View Administration for AppViewTest :’h /
L Ea

ol G Logout

This page allows you to add events and/or services to an application view,

Description: & View to an Appview Edit

Connection Criteria

Additional Log Gategory: AppviewTest

Root Log Category: BEA_WLS_DBMS_ADK

Password: security

Message Bundle Base: BEA_WLS_DBMS_ADK

Log Gonfiguration File: BEA_WLS_DBMS_ADK. #ml

Username: system

Data Source Name: WLAI DataSource

Reconfigure connection parameters for AppYiewTest

Events Al

CustomerInserted Edit Remove Event View Summary View Ewent Schema

Services Add

InsertCustomer Edit Remove Service View Summars Yiew RequestSchems Wiew Response Schems

Continug Save | §

7. Prepare to deploy the application view. The Application View Administration
page provides you with a single location for confirming the content of your
application view before you save it or deploy it. In this page, you can view the
following:

e Confirm or edit the description of the application view.
e Confirm or reconfigure Connection Criteria for the application view.
e Delete services and events.

e Save the application view so you can return to it later or deploy the
application view to the server.

After verifying the application view parameters, click Continue. The Deploy
Application View to Server page displays.

8. Deploy the Application View. In order to deploy the application view, you must
provide several parameters such as enabling asynchronous service invocation,
providing the event router URL, and changing the connection pool parameters,
among other parameters.

Developing Adapters  E-17



E  The DBMS Adapter

Figure E-16 Display Application View to Server Page

Deploy Application View AppViewTest to Server ,'Ile_-a

Ap A 0le oy}

Required Service Parameters
e e Rty Enable asynchronous service invocation? 7w

Required Event Parameters

Event Router URL* F Ihﬂp'mnca\hnsl?DDW/‘DbmsEveanDutervaentRnuter

Connection Pool Parameters

Use these parameters to configure the connection pool used hy this application view

Winimurn Pool Size* |1_
Maximum Poal Size* lm_
Target Fraction of Maximum Pool Size® lr
Allow Paol to Shrink? ~

Log Gonfiguration

Set the log verbosity level for this application view,

Log warnings. errors. and audit messages j
Configure Security

Restrict Access to AppYiewTest using J2EE Securit

Deploy | % W peplay persistently? ¥ Save | 9

To deploy the application view:
a. Make sure the Enable Asynchronous Service Invocation check box is selected.

b. Inthe Event Router URL field, enter:
http://1 ocal host: 7001/ DonsEvent Rout er / Event Rout er
c. For the Connection Pool Parameters, accept the default values:
Minimum Pool Size - 1
Maximum Pool Size - 10
Target Fraction of Maximum Pool Size - 0.7

Allow Pool to Shrink - checked

d. Inthe Log Configuration field, select Log warnings, errors, and audit messages.

E-18  Developing Adapters



How the DBMS Adapter Works

e.

Make sure the Deploy persistently? box is checked.

f. Click the Restrict Access link. The Application View Security page displays.

9. Set permissions for the application view. You can grant or revoke read and write
access for a user or a group.

Figure E-17 Application View Security Page

Application View Security P

10.

Choose an Action: C Grant © Rewoke

Specify a User or Group: I

© Read (Invoke Service or Register for Event)

Permissian: ) ) .
 write (Deploy/Undeploy/Edit App view)

|Prin|:ipa|s with Read Access Granted |Prin|:ipa|s with Read Access Revoked
* everyone no person/group specified

|Prin|:ipa|s with Write Access Granted |Prin|:ipa|s with Write Access Revoked
* everyone no person/group specified

To set permissions for the application view:

d.

e.

For Choose an Action, select the Revoke radio button.
In the Specify a User or Group, enter Jdoe.

For Permission: select the Write (Deploy/Undeploy/Edit App View) radio
button.

Click Done. The Deploy Application View Page displays.
Click Deploy.

Once the application view is deployed, the Summary for Application View page
displays all relevant information about the deployed application view. Use the
Summary for Application View page to view schemas, event and service
summaries, test services and events and undeploy the application view.

Developing Adapters  E-19



E  The DBMS Adapter

E-20

Figure E-18 Summary for Application View Page

Summary for Application View AppViewTest .

Summary

This page shows the events and services defined for the AppViewTest application view.

Name: sppiiewTest
Description: & View ta an AppView
Status: Deployed

Available actions Undeploy

Connection Security Deploy Events and Services

GustomerInserted Test Wiew Summary Wiew Event Schema

Services

InsertCustomer

Test Wiew Summary Yiew Request Schema Wiew Response Schema

11. Test an event. To ensure that the application view is working correctly, you can
test the events and services in the application view. You can test an event by
invoking a service or by manually creating the event. The user can also specify
how long the application should wait to receive the event.

a. Inthe Events group, on the Customerinserted line, click Test. The Test Event
page displays.

Developing Adapters



How the DBMS Adapter Works

Figure E-19 Test Event Page
Test Event: CustomerInserted ,‘hexa

This page allows you to test an event, You may create the event by invoking & service, or by manually creating the
avent,

If you want to use a service invocation to create an event, select the Service option below, and select the
service to invoke. Optionally, you can create the event manually using any tools your EIS provides (for example
an interactive SQL tool for the DBMS adapter used to insert a new row to create an insert event).

How do you want to create the event?

& Service | InserCustomer ¥

€ Manual

How long should we wait to receive the event?

Time (in milliseconds):

b. Inthe Test Event page, select the Service radio button, and select
InsertCustomer in the Service menu.

c. Inthe How long should we wait to receive the event? field, enter 6000.

d. Click Test. The Test Service page appears.

Developing Adapters  E-21



E  The DBMS Adapter

E-22

Figure E-20 Test Service Page

Test Service: InsertCustomer

'Il 7
sole ogou
Flaase Al in any inputs to the service query and click Test
Test Service: InsertCustomer on application view 'App¥iewTest"
insert into APP,CUSTOMER_TABLE (FIRSTMAME, LASTMAME, DOB) YALUES ([FIRSTMAME YARCHAR], [LASTHNAME
WARCHAR], [DOB DATE])

Input
FIRSTNAME text
LASTNAME text

DOB

Test

date (yyyy-hM-ad hhirmmiss), e.g. 2001-10-05 04:52:29-05:00

e. Inthe FIRSTNAME field, enter a first name.

f. Inthe LASTNAME field, enter a last name.

g. Inthe DOB field, enter a date of birth. The correct format is specified to the
right of the edit box.

Click Test. The Test Result page displays to show the contents of the XML

documents representing the event you generated and the response generated by
the application view.

Developing Adapters



How the DBMS Adapter Works

Figure E-21 Test Result Page
Test Result for Customerinserted -

This page shows the results from testing & event.

Generated event of type CustomerInserted on application view App¥YiewTest

<?¥ml wversion="1.0"2> =
<!DOCTYPE CUSTCMER TABLE.insert:
<CUSTOMER_TAELE. insert:>
<ADDRESS1></ADDRESS 1>
<ADDRESS2></ADDRESS2 >
<ADDRESS3></ADDRESS3 >
<CITY></CITY>
<COUNTRY></COUNTRY>
<DOB»2001-09-12 06:07:15</DOB>
<EMATL></EMATIL:
<FAE»</FLE>
<FIRSTNAME>Jane</F IRSTHANE:
<LASTHNAME>Doe</LASTNAME:
<MIDDLENAME></MIDDLENAME>
<PHONE:></ PHONE> =l

Input to service InsertCustomer on application view App¥iewTest

<?¥ml version="1.0"2> J
<!DOCTY¥PE Inputs>
<Input>
<FIRSTHMAME>Jane</F IRSTNAME:>
<LASTNAME>Doe</LASTNAME >
<DOB»2001-10-05 04:27:24-05:00</D0E>
</ Input>

H

Output from service InsertCustomer on application view AppViewTest

<?xml version="1.0"72> J
<!DOCTYPE RowsAffected:

Developing Adapters  E-23



E  The DBMS Adapter

How the DBMS Adapter Was Developed

This section describes each interface used to develop the DBMS adapter. The ADK
provides many of the necessary implementations required by a Java Connector
Architecture-compliant adapter; however, since some interfaces cannot be fully
implemented until the EIS and its environment are defined, the DBMS adapter was
created to illustrate the detail-specific or concrete implementation of the abstract
classes provided in the ADK.

The process of creating the DBMS adapter is comprised of the following steps:
m Development Reference Documentation

m Step 1: Development Considerations

m  Step 2: Implementing the Server Provider Interface Package

m Step 3: Implementing the Common Client Interface Package

m Step 4: Implementing the Event Package

m  Step 5: Deploying the DBMS Adapter

Development Reference Documentation

You can review the Javadoc and code for the methods defined in the steps that follow
in this section to see how the implementations provided by the ADK were leveraged.
You can find the Javadoc for this implementation in:

W.I _HOVE/ adapt er s/ dbns/ docs/ api /i ndex. ht m
You can find the code listing for this package in:

W.I _HOWE/ adapt er s/ dbns/ src/ com bea/ adapt er / dbns/ spi

Note: W.I _HOME is the drive or home directory where WebLogic Integration is
installed.

E-24  Developing Adapters



How the DBMS Adapter Was Developed

Step 1: Development Considerations

The Adapter Setup Worksheet (see Appendix D, “Adapter Setup Worksheet,”) is
available to help adapter developers identify and collect critical information about an
adapter they are developing before they begin coding. For the DBMS adapter, the
worksheet questions are answered as follows:

Note: Questions preceded by an asterisk (*) are required to use the
GenerateAdapterTemplate utility.

1. *What is the name of the EIS for which you are developing an adapter?
Cloudscape, SQLServer, Oracle, Sybase, or DB2 databases.
2. *What is the version of the EIS?
Cloudscape 3.5.1, MSSQLServer 7.0, Oracle 8.1.6, Sybase 11.9.2, or DB2 7.2
3. *What is the type of EIS; for example, DBMS, ERP, etc.?
DBMS
4. *What is the vendor name for this adapter?
BEA
5. *What is the version number of this adapter?
None - Sample Only
6. *What is the adapter logical name?
BEA_WLS_DBMS_ADK
7. Does the adapter need to invoke functionality within the EIS?
Yes
If so, then your adapter needs to support services.
Yes

8. What mechanism/API is provided by the EIS to allow an external program to
invoke functionality provided by the EIS?

JDBC

Developing Adapters  E-25



E  The DBMS Adapter

E-26

10.

11.

12.

13.

14.

15.

16.

What information is needed to create a session/connection to the EIS for this
mechanism?

Database URL, driver class, user name, password

What information is needed to determine which function(s) will be invoked in the
EIS for a given service?

Function name, executeUpdate, executeQuery

Does the EIS allow you to query it for input and output requirements for a given
function?

Yes, you can browse data structures.

If so, what information is needed to determine the input requirements for the
service?

SQL

For all the input requirements, which ones are static across all requests? Your
adapter should encode static information into an InteractionSpec object.

SQL

For all the input requirements, which ones are dynamic per request? Your
adapter should provide an XML schema that describes the input parameters
required by this service per request.

The input requirements would change depending on the SQL expression for the
service

What information is needed to determine the output requirements for the service?

n/a

Does the EIS provide a mechanism to browse a catalog of functions your adapter
can invoke? If so, your adapter should support browsing of services.

Yes

Does the adapter need to receive notifications of changes that occur inside the
EIS? If so, then your adapter needs to support events.

Yes

Developing Adapters



How the DBMS Adapter Was Developed

17. What mechanism/API is provided by the EIS to allow an external program to
receive notification of events in the EIS? The answer of this question will help
determine if a pull or a push mechanism is developed.

None. The DBMS adapter was built on the WebLogic Integration event
generator using a pull mechanism.

18. Does the EIS provide a way to determine which events your adapter can support?

Yes

19. Does the EIS provide a way to query for metadata for a given event?
Yes

20. What locales (language/country) does your adapter need to support?

Multiple

Step 2: Implementing the Server Provider Interface
Package

To implement the DBMS adapter Server Provider Interface (SPI) and meet the
J2EE-compliant SPI requirements, the classes in the ADK were extended to create the
following concrete classes:

Table E-1 SPI Class Extensions

This concrete class... Extends this ADK class...
ManagedConnect i onFact oryl npl Abst r act ManagedConnecti onFact ory
ManagedConnect i onl npl Abst r act ManagedConnecti on
Connect i onMet aDat al npl Abst ract Connect i onMet aDat a

Local Transacti onl npl Abst ract Local Transacti on

These classes provide connectivity to an EIS and establish a framework for event
listening and request transmission, establish transaction demarcation, and allow
management of a selected EIS.

Developing Adapters  E-27



E  The DBMS Adapter

ManagedConnectionFactorylmpl

The first step in implementing an SPI for the DBMS adapter was to implement the
ManagedConnect i onFact ory interface. A ManagedConnect i onFact ory supports
connection pooling by providing methods for matching and creating a
ManagedConnect i on instance.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abst r act ManagedConnect i on

Fact ory, an implementation of the Java Connector Architecture interface

j avax. resour ce. spi . ManagedConnect i onFact or y. The DBMS adapter extends
this class in com bea. adapt er . dbns. spi . ManagedConnect i onFact or yl npl .
Listing E-1 shows the derivation tree for ManagedConnect i onFact or yl npl .

Listing E-1 com.bea.adapter.dbms.spi.ManagedConnectionFactorylmpl

j avax. resource. spi . ManagedConnect i onFact ory

| -->com bea. adapt er. spi . Abstract ManagedConnect i onFact ory

| -->com bea. adapt er . dbrrs. spi . ManagedConnect i onFact or yl npl

Developers’ Comments

E-28

The ManagedConnect i onFact or y is the central class of the Java Connector
Architecture SPI package. The ADKSs Abst r act ManagedConnect i onFact ory
provides much of the required implementation for the methods declared in Sun
MicroSystems’ interface. To extend the ADKs

Abst r act ManagedConnect i onFact or y for the DBMS adapter, the key

creat eConnecti onFact ory() and cr eat eManagedConnecti on() methods were
implemented. Overrides for equal s(), hashcode(), checkSt at e() were also
written to provide specific behaviors for the databases supported by the DBMS
adapter.

There are private attributes about which the superclass has no knowledge. When
creating your adapters, you must provide setter/getter methods for these attributes. The
abstract cr eat eConnect i onFact or y() method is implemented to provide an
EIS-specific Connect i onFact or y using the input parameters.

Developing Adapters



How the DBMS Adapter Was Developed

Additionally, cr eat eManagedConnect i on() is the main factory method of the class.
It checks to see if the adapter is configured properly before doing anything else. It then
implements methods of the superclass to get a connection and a password credential
object. It then attempts to open a physical database connection; if this succeeds, it
instantiates and returns a ManagedConnect i onl npl (the DBMS adapter
implementation of ManagedConnect i on), which is given the physical connection.

Other methods are getter/setter methods for member attributes.

ManagedConnectionimpl

A ManagedConnect i on instance represents a physical connection to the underlying
EIS in a managed environment. ManagedConnect i on objects are pooled by the
application server. For more information, read about how the ADK implements the
Abst r act ManagedConnect i on instance in “ManagedConnection” on page 6-32.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abst r act ManagedConnect i on, an
implementation of the J2EE interface j avax. r esour ce. spi . ManagedConnect i on.
The DBMS adapter extends this class in com bea. adapt er . dbms.

spi . ManagedConnect i onl npl . Listing E-2 shows the derivation tree for
ManagedConnecti onl npl .

Listing E-2 com.bea.adapter.dbms.spi.ManagedConnectionimpl

j avax. resource. spi . ManagedConnecti on

| -->com bea. adapt er. spi . Abstract ManagedConnect i on

| -->com bea. adapt er . dbns. spi . ManagedConnect i onl npl

Developers’ Comments

This class is well documented in the Javadoc comments since the
ManagedConnect i on is a crucial part of the Java Connector Architecture SPI
specification. You should focus on our implementation of the following methods:

Developing Adapters  E-29



E  The DBMS Adapter

B java.l ang. obj ect. get Connecti on(j avax. security. auth. Subj ect
subj ect, javax.resource. spi.ConnectionRequestlInfo
connecti onRequest | nf 0)

m protected void destroyPhysical Connecti on(j ava. | ang. Obj ect
obj Physi cal Connecti on)

m protected void destroyConnectionHandl e(j ava. | ang. Obj ect
obj Handl e)

® bool ean conpareCredenti al s(javax. security. auth. Subj ect subject,
j avax. resource. spi . Connecti onRequest I nfo i nf o)

The pi ng() method is used to check whether the physical database connection (not
our cci.Connect i on) is still valid. If an exception occurs, pi ng() is very specific
about checking the type so that a connection is not needlessly destroyed.

Other methods are EIS specific or are simply required setter/getters.

ConnectionMetaDatalmpl

The ManagedConnect i onMet aDat a interface provides information about the
underlying EIS instance associated with a ManagedConnect i on instance. An
application server uses this information to get run-time information about a connected
EIS instance. For more information, read about how the ADK implements the

Abst r act Connect i onMet aDat a instance in “ManagedConnection” on page 6-32.

Basic Implementation

E-30

The ADK provides com bea. adapt er . spi . Abst r act Connect i onMet aDat a, an
implementation of the J2EE interface j avax. r esour ce. spi . ManagedConnect i on
Met aDat a. The DBMS adapter extends this class in com bea.

adapt er . dbns. spi . Connect i onMet aDat al npl . Listing E-3 shows the derivation
tree for Connect i onMet aDat al npl .

Listing E-3 com.bea.adapter.dbms.spi.ConnectionMetaDatalmpl

j avax. resource. spi . ManagedConnect i onMet aDat a

| -->com bea. adapt er. spi . Abstract Connecti onMet abDat a

I
| -->com bea. adapt er . dbrs. spi . Connect i onMet aDat al npl

Developing Adapters



How the DBMS Adapter Was Developed

Developers’ Comments

The ADKs Abst r act Connect i onMet aDat a implements the following:
H javax.resource. cci.Connecti onMet aDat a

B javax.resource. spi . ManagedConnecti onMet aDat a

This implementation of the Connect i onMet aDat a class uses a Dat abaseMet aDat a
object. Since the ADK's abstract implementation was used, you must provide
EIS-specific knowledge when implementing the abstract methods in this class.

LocalTransactionIimpl

The Local Transact i on interface provides support for transactions that are managed
internal to an EIS resource manager and do not require an external transaction
manager. For more information, read about how the ADK implements the

Abst ract Local Transact i on instance in “LocalTransaction” on page 6-35.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abstract Local Transacti on, an
implementation of the J2EE interface j avax. r esour ce. spi . Local Transacti on.
The DBMS adapter extends this class in com bea. adapt er . dbms.

spi . Local Transact i onl npl . Listing E-4 shows the derivation tree for
Local Transacti onl npl .

Listing E-4 com.bea.adapter.dbms.spi.LocalTransactionlmpl

j avax. resource. spi . Local Transacti on

| -->com bea. adapt er. spi . Abstract Local Transacti on

| -->com bea. adapt er . dbrs. spi . Local Transact i onl npl

Developing Adapters  E-31



E  The DBMS Adapter

Developers’ Comments

This class utilizes the ADKSs abstract superclass which provides logging and event
notification. The superclass implements both the CCI and SPI Local Transaction
interfaces provided by Sun. The DBMS adapter's concrete class implements the three
abstract methods of the superclass:

m doBegi nTx()
m doCommit Tx()
® doRol | backTx()

Step 3: Implementing the Common Client Interface
Package

To implement the DBMS adapter Common Client Interface (CCI) and meet the
J2EE-compliant CCI requirements, ADK classes to create the following concrete
classes were extended:

Table E-2 CCI Class Extensions

This concrete class... Extends this ADK class...
Connect i onl npl Abst ract Connect i on
Interactionl npl Abstract|nteraction

I nteracti onSpecl npl I nteracti onSpecl npl

These classes provide connectivity to and access back-end systems. The client
interface specifies the format of the request and response records for a given
interaction with the EIS.

Note: Although implementing the CCl is optional in the Java Connector
Architecture 1.0 specification, it is likely to be required in the future. For your
reference, the DBMS adapter provides a complete implementation.

E-32  Developing Adapters



How the DBMS Adapter Was Developed

Connectionimpl

A Connect i on represents an application-level handle that is used by a client to access
the underlying physical connection. The actual physical connection associated with a
Connection instance is represented by a ManagedConnect i on instance. For more
information, read about how the ADK implements the Abst r act Connect i on instance
in “Connection” on page 6-37.

Basic Implementation

The ADK provides com bea. adapt er . cci . Abst r act Connecti on, an
implementation of the J2EE interface j avax. r esour ce. cci . Connecti on. The
DBMS adapter in by implementing com bea. adapt er . dbns. cci .

Connect i onl npl . Listing E-5 shows the derivation tree for Connect i onl npl .

Listing E-5 com.bea.adapter.dbms.cci.Connectionimpl

j avax. resource. cci . Connecti on

| -->com bea. adapt er. cci . Abstract Connecti on

| -->com bea. adapt er . dbns. cci . Connecti onl npl

Developers’ Comments

The Connect i onl npl class is the DBMS adapter's concrete implementation of the
j avax. resource. cci . Connection interface. It extends the ADKs
AbstractConnection class. The actual physical connection associated with a
connection instance is represented by a ManagedConnect i on instance.

A client gets a connection instance by using the get Connecti on() method on a
Connect i onFact ory instance. A connection can be associated with zero or more
interaction instances. The simplicity of this concrete class is a testament to the power
of extending the ADK's base classes.

Developing Adapters  E-33



E  The DBMS Adapter

Interactionimpl

The I nt er act i on enables a component to execute EIS functions. An interaction
instance is created from a connection and is required to maintain its association with
the Connect i on instance. For more information, read about how the ADK implements
the Abst ract | nt er act i on instance in “Interaction” on page 6-38.

Basic Implementation

The ADK provides com bea. adapt er . cci . Abstract|nteraction, an
implementation of the J2EE interface j avax. resour ce. cci . I nteracti on. The
DBMS adapter extends this class in com bea. adapt er . dbns. cci .

I nteractionl npl . Listing E-6 shows the derivation tree for I nt er acti onl npl .

Listing E-6 com.bea.adapter.dbms.cci.Interactionimpl

j avax.resource. cci.lnteraction

| -->com bea. adapt er. cci . Abstract|nteraction

| -->com bea. adapt er. dbmrs. cci . I nteracti onl npl

Developers’ Comments

This is the concrete implementation of the ADKs Interaction object. As expected, the
methods are EIS-specific implementations of Java Connector Architecture/ADK
required methods.

Both versions of the Java Connector Architecture's

j avax. resource. cci . | nt eracti onExecut e() method (the central method of this
class) were implemented. The main logic for the execut e() method has the following
signature: publ i ¢ Record execute(lnteractionSpec i spec, Record input).
This method return the actual output record from the interaction, so it is the one that is
called more often.

E-34  Developing Adapters



How the DBMS Adapter Was Developed

The second implementation is provided as a convenience method. This form of
execut e() has the following signature: publ i ¢ bool ean
execute(lnteractionSpec ispec, Record input, Record output).The
second implementation’s logic returns a boolean, which indicates only the success or
failure of the interaction.

InteractionSpecimpl

An | nteractionSpecl npl holds properties for driving an interaction with an EIS
instance. An | nt er act i onSpec is used by an interaction to execute the specified
function on an underlying EIS.

The CCI specification defines a set of standard properties for an InteractionSpec, but
anl nteracti onSpec implementation is not required to support a standard property if
that property does not apply to its underlying EIS.

The I nt er act i onSpec implementation class must provide getter and setter methods
for each of its supported properties. The getter and setter methods convention should
be based on the Java Beans design pattern. For more information, read about how the
ADK implements the I nt er act i onSpecl npl instance in “InteractionSpec” on page
6-48.

Basic Implementation

The ADK provides com bea. adapt er. cci . I nt er acti onSpecl npl , an
implementation of the J2EE interface j avax. r esour ce. cci . I nt er act i onSpec.
The DBMS adapter extends this class in com bea. adapt er . dbms.

cci . I nteracti onSpecl npl . Listing E-7 shows the derivation tree for

I nteracti onSpecl npl .

Listing E-7 com.bea.adapter.dbms.cci.InteractionSpecimpl

j avax. resource. cci. |l nteractionSpec

| -->com bea. adapter. cci.lnteracti onSpecl npl

| -->com bea. adapt er . dbns. cci . I nteracti onSpecl npl

Developing Adapters  E-35



E  The DBMS Adapter

Developers’ Comments

An implementation class for InteractionSpec interface is required to implement the
java.io. Serializabl e interface. | nt er act i onSpec extends the ADK

I nt eracti onSpec in order to add setter/getter methods for the String attribute

m sql . The getter/setter methods should be based on the Java Beans design pattern as
specified in the Java Connector Architecture 1.0 specification.

Step 4: Implementing the Event Package

This package contains only one class: the DBMS adapter Event Gener at or Wor ker . It
does the work for the event generator for the DBMS adapter.

EventGenerator
The Event Gener at or class implements the following interfaces:
® com bea.w ai . event. | Event Gener at or

® java.l ang. Runnabl e

Basic Implementation

The DBMS adapter event generator extends the ADK's

Abst ract Pul | Event Gener at or because a database cannot “push” information to the
event generator; you therefore need to “pull” or actually “poll” the database for
changes about which you are interested in being notified. Listing E-8 shows the
derivation tree for Event Gener at or .

Listing E-8 EventGenerator

com bea. adapt er. event . Abst ract Event Gener at or

| -->com bea. adapt er . event . Abstract Pul | Event Gener at or

| -->com bea. adapt er . dbrrs. event . DonmsEvent Gener at or Wor ker

E-36  Developing Adapters



How the DBMS Adapter Was Developed

Developers’ Comments

This concrete implementation of the ADK's Abst r act Pul | Event Gener at or
implements the abstract methods:

m protected abstract void postEvents(lEventRouter router) throws
Exception

B protected abstract void setupNewTypes(List |istOf NewTypes)
B protected abstract void renmoveDeadTypes(List |istCO DeadTypes).

It also overrides the following methods:
m void dolnit(Map nap)
m void doC eanUpOnQuit().

These methods are EIS specific and are used to identify an event within the context of
the EIS while interacting with the database to create and remove event definitions and
events. Additionally, these methods create and remove the actual triggers on the
database that are fired when an event occurs.

The key method of the class is post Event s() . It creates the | Event objects of the
data taken from rows in the EVENT table of the database. This method takes an

| Event Rout er as an argument. After creating an | Event using the

| Event Def i ni ti onobject'scr eat eDef aul t Event () method, it populates the event
data, and the event is propagated to the router by calling

rout er. post Event (event ). Once the event is sent to the router, the method deletes
the row of event data from the database.

The method set upNewTypes( ) creates new event definitions, making sure that the
appropriate trigger is created for the database. For each event definition, the method
creates a trigger information object that describes the catalog, schema, table,
triggerType, and trigger key that the event definition represents. A map of trigger keys
is kept so that triggers are not redundantly added to the database. If the map doesn't
contain the new key, the trigger text for the database is generated.

The method r enoveDeadTypes() also creates a trigger information object; however,
it also checks if one or more event types match it. All event definitions that match this
trigger are removed from the map, and then the trigger is removed from the database.

Developing Adapters  E-37



E  The DBMS Adapter

Step 5: Deploying the DBMS Adapter

After implementing the SPI, CCI and event interfaces, deploy the adapter. To deploy
the adapter, use the procedures outlined in this section:

m Before You Begin

m Step 5a: Update the ra.xml File

m  Step 5b: Create the .rar File

m  Step 5c: Build the .jar and .ear Files

m Step 5d: Create and Deploy the .ear File

Before You Begin

Before deploying the adapter into WebLogic Integration, do the following:

m Determine the location of the adapter on your computer; that is,
WLI _HOVE/ adapt er s/ dbrs where W.I _HOME is the location of your WebLogic
Integration installation. This location is referred to as ADAPTER_ROOT hereafter.

m  Make sure the DBMS adapter’s . j ar and . ear files are built, as described in
“Step 5: Deploying the DBMS Adapter.”

Step 5a: Update the ra.xml File

The DBMS adapter provides the ra. xmi file in the adapter’s . rar file

(META- 1 NF/ r a. xni ). Since the DBMS adapter extends the

Abst act ManagedConnect i onFact or y class, the following properties were provided
inthera. xn file:

m LoglLevel

® |anguageCode

m CountryCode

®  MessageBundl eBase
m lLogConfigFile

®  Root LogCont ext

E-38  Developing Adapters



How the DBMS Adapter Was Developed

m  Addi tional LogCont ext

The DBMS adapter requires these additional declarations:

Table E-3 ra. xml Properties

Property Example
User Name The username for DBMS adapter login.
Password The password for username.

Dat aSour ceNane The name of the JDBC connection pool.

You can view the complete ra. xm file for the DBMS adapter in:

WLI _HOWE/ adapt er s/ dbns/ src/rar/ META- | NF/

Step 5b: Create the .rar File

Class files, logging configuration, and message bundle(s) should be bundled into a
.j ar file, which should then be bundled along with META- I NF/ r a. xml intothe. r ar
file. The Ant bui | d. xml file demonstrates how to properly construct this . rar file.

Step 5c: Build the .jar and .ear Files

To build the . j ar and . ear files, use this procedure:

1. Edit ant Env. crd (Windows) or ant Env. sh (Unix) in
W.I _HOVE/ adapt er s/ uti | s. You must set the following variables to valid paths:

e BEA HOME - The top-level directory for your BEA products.

e W.I _HOME - The location of your Application Integration directory.
e JAVA HOVE - The location of your Java Development Kit.

e W._HOVE - The location of your WebLogic Server directory.

e ANT_HOME - The location of your Ant home, typically
WLl _HOWE/ adapters/utils.

2. Execute ant Env from the command-line to set the necessary environment
variables for your shell.

Developing Adapters  E-39



E  The DBMS Adapter

3. Change directories to W.I _HOVE/ adapt er s/ dbns/ pr oj ect .
4. Execute ant rel ease from the W.I _HOVE/ adapt er s/ dbns/ pr oj ect directory
to build the adapter.

Step 5d: Create and Deploy the .ear File

To create and deploy the . ear file, thus deploying the DBMS adapter, use this
procedure:

1. First, declare the adapter's . ear file in your domain’s confi g. xm file, as shown
in Listing E-9:

Listing E-9 Declaring the DBMS Adapter’s . ear File

<I-- This deploys the EAR file -->

<Appl i cati on Depl oyed="true" Name="BEA WS DBMs_ ADK"
Pat h="W.l _HOVE/ adapt er s/ dbns/ | i b/ BEA_ W.S_DBM5_ADK. ear " >

<Connect or Conponent Name="BEA W.S DBMS_ADK" Targets="nyserver"
URI ="BEA W.S DBMS ADK.rar"/>

<WebAppConponent Name="DbnsEvent Router” Targets="nyserver"
URI =" BEA W.S DBMS ADK Event Rout er. war"/ >

<WebAppConponent Name="BEA WS DBM5 ADK Wb" Targets="nmnyserver"
URI =" BEA_ W.S_DBMs_ADK_Wéb. war "/ >

</ Appl i cation>

Note: Replace W.I _HOVE with the correct path to the WebLogic Integration root
directory for your environment.

2. Addthe.jar file(s) for the adapter to the WebLogic Server classpath. At this
time, WebL ogic does not support shared . j ar filesinan . ear file; in other
words, the Web applications and the adapters do not share a common classloader
parent. Consequently, you need to place the shared . j ar files in your adapter on
the system classpath.

3. Restart WebLogic Server.

E-40  Developing Adapters



How the DBMS Adapter Was Developed

4. Once the server restarts, add the adapter group to the default WebL ogic security
realm by using the WebLogic Server Console Web application. To do this,
navigate to ht t p: / / <host >: <por t >/ consol e where <host > is the name of
your server and <por t > is the listening port; for example:

http://1ocal host: 7001/ consol e

5. After you have added the adapter group, add a user to the adapter group using the
WebLogic console Web application and save your changes.

6. To configure and deploy application views, navigate to
http://<host >: <port>/w ai , where <host > is the name of your server and
<por t > is the listening port; for example:

http://1ocal host: 7001/ W ai
The Application View Console - Logon is displayed.

Application Yiew Console - Logon

Please supply a valid WweblLogic username and password.

LIsername I
Password I
Login |

7. Log on to WebLogic Integration by entering your username and password in
appropriate fields.

8. Configure and deploy the application views by using the procedures described in
“Defining Application Views” in Using Application Integration.

Developing Adapters  E-41



E  The DBMS Adapter

How the DBMS Adapter Design-Time GUI
was Developed

The design-time GUI is the user interface that allows the user to create application
views, add services and events and deploy the adapter if it is hosted in the WebLogic
Integration. This section discusses some specific design time issues that were
considered during the development of the DBMS adapter.

The process of creating the DBMS adapter design-time GUI is comprised of the
following steps:

m  Step 1: Development Considerations

m Step 2: Determine Necessary Java Server Pages

Step 3: Create the Message Bundle

Step 4: Implementing the Design-time GUI

Step 5: Writing Java Server Pages

Step 1: Development Considerations

Some of the important development considerations regarding the design-time GUI for
the DBMS adapter included:

m Determine the database(s) that were going to be supported.
m Determine browsing depth.
m Determine the DBMS schema generation.

m Determine if the adapter should support testing of services and events.

E-42  Developing Adapters



How the DBMS Adapter Design-Time GUI was Developed

Step 2: Determine Necessary Java Server Pages

The DBMS adapter uses the ADKSs Java Server Pages (JSPs) for a design-time GUI;
however, additional JSPs have been added to provide adapter-specific functionality. A
description of the additional JSPs is in Table E-4:

Table E-4 Additional ADK JSPs

Filename

Description

addevent.j sp

The Add Event page allows a user to add a new event to the
application view.

addservice.jsp

The Add Service page allows the user to add a new service to the
application view.

browse. j sp

The Browse page handles the flow logic and display for the
Browse window of the DBMS adapter. Although this
functionality was developed specifically for this adapter, it
illustrates a fairly common interaction between the design-time
interface and the underlying adapter.

It uses the Desi gnTi meRequest Handl er (handler) of the
DBMS adapter, which extends the ADK's
AbstractDesignTimeRequestHandler. The best way to
understand the browse functionality of the DBMS adapter is to
deploy the adapter and use your Web browser to access the
design-time framework.

confconn.jsp

The Confirm Connection page provides a form for a user to
specify connection parameters for the EIS.

testformjsp

The Testform page is included (<jsp:include
page="testform.jsp'/>) in the ADK's testsrvc.jsp page. It accesses
the InteractionSpec for this interaction and displays the SQL for
the service on screen. It then creates a form for gathering
required user input to test a service.

It does this by getting the Request Docunent Def i ni ti on
from the handler's application view and then passing it along
with the . j sp Writer to a utility class,
com.bea.adapter.dbms.utils. TestFormBuilder, which actually
creates the required form.

Developing Adapters ~ E-43



E  The DBMS Adapter

Step 3: Create the Message Bundle

To support the internationalization of all text labels, messages and exceptions, the
DBMS adapter uses a message bundle based on a text property file. The property file
uses copied name value pairs from the BEA W.S_SAMPLE_ADK property file, and new
entries were added for properties specific to the DBMS adapter.

The message bundle for the DBMS adapter is contained in
WLI_HOME/ adapt er s/ dbns/ sr ¢ directory, which was installed with the ADK.
Please refer to BEA W.S_DBMS_ADK. pr oper ti es in the directory above.

For additional instructions on creating a message bundle, refer to the JavaSoft tutorial
on internationalization at:

http://java. sun.conm docs/ books/tutorial/il8n/index.htnl

Step 4: Implementing the Design-time GUI

To implement the design-time GUI, you need to create a

Desi gnTi meRequest Handl er class. This class accepts user input from a form and
provides methods to perform a design-time action. For more information on the

Desi gnTi meRequest Handl er, see “Step 4: Implementing the Design-Time GUI” on
page 8-30.

The DBMS adapter public class Desi gnTi meRequest Handl er extends
Abst r act Desi gnTi meRequest Handl er and it provides the methods shown in
Table E-5:

Table E-5 Methods for the DBMS Adapter Design-time GUI

Method Description

browse(java.l ang. String dbtype, Handles the back-end behavior for the “Browse”

com bea. connect or. Docunent Recor d functionality of the addevent . j sp and

i nput) addservc. j sp.

get Adapt er Logi cal Nare() Returns the adapter's logical name and helps parent when

deploying application views, etc.

E-44  Developing Adapters



How the DBMS Adapter Design-Time GUI was Developed

Table E-5 Methods for the DBMS Adapter Design-time GUI (Continued)

Method

Description

get ManagedConnecti onFact oryd ass()

Returns the adapter's SPI ManagedConnectionFactory
implementation class, used by parent to get a CCI
connection to the EIS.

supportsServi ceTest ()

Indicates that this adapter design time supports the testing
of services.

i nitServiceDescriptor(Acti onResult
result, |ServiceDescriptor sd,
Ht t pSer vl et Request request)

Initializes a service descriptor which involves creating the
request and response schemas for the service. A typical
approach is to execute an Interaction against the EIS to
retrieve metadata and transform it into an XML schema.

Consequently, the CCl interface provided by the adapter
was used. This method is called from the “addsrvc”
method of the AbstractDesignTimeRequestHandler.

i ni t Event Descri ptor (ActionResult
result, |EventDescriptor ed,
Ht t pSer vl et Request request)

Initializes an event descriptor. The event descriptor
provides information about an event on an application
view. Subclasses will need to supply an implementation of
this method.

If events are not supported, then the implementation
should throw an UnsupportedOperationException. This
method will not be called (by the
AbstractDesignTimeRequestHandler) until the event
name and definition have been validated and it is
confirmed that the event does not already exist for the
application view.

Cet Dat abaseType()

This method is used to determine the type of dbms being
used. At present WebLogic Integration supports
Cloudscape, Oracle, Microsoft SQL Server, Sybase, and
DB2.

Step 5: Writing Java Server Pages

The following issues are relevant for the DBMS adapter, and you may encounter them
as you develop your own adapter.

m  Custom JSP Tags

Developing Adapters  E-45



E  The DBMS Adapter

m Save an Object’s State

m  Write the WEB-INF/web.xml Web Application Deployment Descriptor

Custom JSP Tags

The Java Server Pages are displayed within the di spl ay. j sp; thus di spl ay. j sp is
the first. j sp that needs to be written. The ADK provides a library of custom JSP tags,
which are used extensively throughout the Java server pages of the ADK and DBMS
adapter. They provide the ability to add validation, to save field values when the user
clicks away, and a number of other features.

Save an Object’s State

You may also need to save an object’s state as you write the JSPs. There are a number
of ways to save an object’s state when building your adapter using the ADK. The
Abst r act Desi gnTi meRequest Handl er maintains an

Appl i cationVi ewDescri pt or of the application view being edited. This is often the
best place to save state. Calls to the handler are fast and efficient.

You can also ask the Abst r act Desi gnTi meRequest Handl er for a Manager Bean,
using its convenience methods: get Appl i cat i onVi emvanager () ;

get SchemaManager () ; and get NanespaceManager () , to retrieve information from
the repository about an application view. This is more time-consuming but may be
necessary on occasion. Since it is a JSP, you can also use the session object, although
everything put in the session must explicitly implement the j ava. i o. seri al i zabl e
interface.

Write the WEB-INF/web.xml Web Application Deployment Descriptor

E-46

Write the VEB- | NF/ web. xm Web application deployment descriptor. In most cases,
you should use the adapter’s web. xn file as a starting point and modify the necessary
components to fit your needs. To see the web. xmi file for this adapter, go to:

W.I _HOVE/ adapt er s/ dbns/ src/ war / VEEB- | NF/ web. xm
For detailed information, see the BEA WebLogic Server product documentation at:

http://edocs. bea. com

Developing Adapters



APPENDIX

F The E-mail Adapter

Note: The E-mail Adapter is deprecated as of this release of WebLogic Integration,
and will be removed from the product in a future release.

This section contains information on the following subjects:
m Introduction to the E-mail Adapter

m  How the E-mail Adapter Works

m How the E-mail Adapter was Developed

m Creating the E-mail Adapter Design-Time GUI

Introduction to the E-mail Adapter

The e-mail adapter is a J2EE-compliant adapter built with the WebLogic Integration
ADK. The purpose of the e-mail adapter is to provide a way for any application to send
notice in case of system failure or process completion. This notification is directed
using e-mail, which could be configured to target multiple addresses or even a pager.
A single templated message could be created for numerous errors allowing the adapter
to plug in replaceable parameters and send the notification.

The e-mail adapter provides sample implementations of both a services and events.
The event implementation provides sample code for both push and pull event generator
paradigms. The service implementation enables the client to send and e-mail message
with a minimum of information. Service-specific data is information required to send
an e-mail message, such as source address, target addresses, subject, and the body of a
message.

Developing Adapters F-1



F  The E-mail Adapter

The e-mail adapter gives you (developers and business analysts) a concrete example
of an adapter, including a JSP-based GUI, to help you understand the possibilities that
are at your disposal using the ADK to build adapters. If you are a business analyst, you
may enjoy running through the interface to get a better understanding of an

“application view”, “service”, and “event” as shown in “How the E-mail Adapter
Works” on page F-2.

If you are an adapter developer, you will also want to review “How the E-mail Adapter
was Developed” on page F-14 and “Creating the E-mail Adapter Design-Time GUI”
on page F-33, the code, and Javadoc to gain insight into how you can extend and use
the classes of the ADK to build a JCA-compliant adapter.

How the E-mail Adapter Works

This section provides you with an opportunity to have a look at the e-mail adapter
before you start developing an adapter of your own. If you are a business analyst, you
may enjay running through the interface to get a feel for how the adapter works. The
example in this section shows how to create an application view for sending or
receiving e-mails. This section contains information on the following subjects:

m Before You Begin
m  Accessing the E-mail Adapter

m A Tour of the E-mail Adapter

Before You Begin

Make sure the following tasks have been performed before you try to access the e-mail
adapter:

m Install WebLogic Integration. For more information, see Installing BEA
WebLogic Integration.

m  Set up the ADK Ant-Based Make Process. For more information, see “Step 2c:
Setting Up the Build Process” on page 6-10.

F-2 Developing Adapters



How the E-mail Adapter Works

m Ensure that the e-mail adapter has been deployed so that the design-time GUI is
accessible. For more information, see the Installing BEA WebLogic Integration.

Accessing the E-mail Adapter

To access the e-mail adapter:
1. Open a new browser window.

2. Open the URL for your system’s Application View Management Console.
http:// <HOSTNAMVE>: 7001/ W ai
The Application Integration Console - Login page displays.

Figure F-1 Application Integration Console - Login

prl i

Application Integration Console - Login ey
sl : Zhea

Please supply a valid Weblogic username and password.

Usemamel
Password |
Login |

Developing Adapters F-3



F  The E-mail Adapter

A Tour of the E-mail Adapter

This section provides you with a short tour through the e-mail adapter. Before you
begin, you need to have the e-mail adapter Login page up on your browser. For
information about accessing the e-mail adapter, see “Accessing the E-mail Adapter”
on page F-3.

Figure F-2 Application Integration Console - Login

-' s :
s .
2 116d

Application Integration Console - Login

Please supply a valid Weblogic username and password,

Usemamel
Password |
Lagin |

1. To log on to the Application Integration Console - Login screen, enter your
WebLogic Username and Password and click Login. The Application View
Management Console displays.

F-4 Developing Adapters



How the E-mail Adapter Works

Figure F-3 Application View Management Console

“"'f

Application View Management Console ho
o 9 hea

Logau

Folder: Root =i

Marme Status Action

Add Application View

2. Click Add Application View. The Define New Application View page displays.
When you create the application view, you provide a description that associates
the application view with the e-mail adapter.

For detailed information about application views and about defining application
views, see “Defining an Application View” in Using Application Integration.

Developing Adapters F-5



F  The E-mail Adapter

F-6

Figure F-4 Define New Application View Page

Define New Application View v

This page allows you to define a new application view

Folder: Eoot

Application View MName: *® [

Description: =l
=

Associated Adapters: [-Tone— =l

%I Cancel

3. To define an application view:

a. Inthe Application View Name field, enter TestAppView.

The name should describe the set of functions performed by this application.
Each application view name must be unique to its adapter. Valid characters
are anything except “.”, “#’, \’, “+7, ‘&, ), *”7, ", and a space.

b. Inthe Description field, enter a brief description of the application view.

c. From the Associated Adapters list, choose the e-mail adapter to use to create
this application view.

d. Click OK. The Configure Connection Parameters page displays.

Developing Adapters



How the E-mail Adapter Works

Figure F-5 Configure Connection Parameters Page

Configure Connection Parameters 4

User Mame*
Password*

Conrect String® |

Connectto Server

4. At the Configure Connection Parameters page, you define the network-related
information necessary for the application view to interact with the target EIS.
You need to enter this information only once per application view:

a. Enter your e-mail User Name and e-mail Password.
b. Enter the e-mail service URL in the Connect String field.

c. Click Continue. The Application View Administration page displays.

The Administration page summarizes the connection criteria, and once events
and services are defined, you can view the schemas and summaries and also
delete an event or service from this page.

Developing Adapters F-7



F  The E-mail Adapter

Figure F-6 Application View Administration Page for appViewTest

Joor,
Application View Administration for appViewTest1 g .
% hea
e ¢ gou
Config LRGN THis page allows you to add events and/or services to an application view,
Administration
Description: test app view _Edit
Connection Criteria
Additional Log Category: appViewTestl
connectionURL: denver beasys.com
Root Log Category: BEA_WLS_EMAIL_ADK
Password: gumboman
Message Bundle Base: BEA_WLS_EMAIL ADK
Log Configuration File: BES_WLS_EMAIL ADK. xml
Username: espear
Reconfigure connection parameters for appYiewTestl
Events Add
Services Add

Save | 7

5. Now that you have created an application view, you are ready to add a service. To
add a service:

a. Inthe Administration page, click Add in the Services field. The Add Service
page displays.

F-8 Developing Adapters



How the E-mail Adapter Works

Figure F-7 Add Service Page

addservc_title

Wehl
addserve_description

Unique Service Name®* [

Description =1

BCC

Subject
Message Text

& Text =1
o Termplate

Add Service

b. In the serviceName field, a meaningful name for the service.

c. Inthe serviceDesc field, enter a user description for the service.
d. Inthe To field, enter a list of target e-mail addresses.

e. Inthe From field, enter the source e-mail address.

f. Inthe CC filed, enter a list of e-mail addresses to receive a copy.

g. Inthe BCC field, enter a list of e-mail addresses to receive a blind copy,
delimited by a semicolon.

h. Inthe Subject Field, enter the subject of the e-mail.

i. Select the Text radio button to send a plain text message. Select Template to
define replaceable parameters.

The body type can be either text or template. A template can contain tags for
replaceable parameters.

Developing Adapters F-9



F  The E-mail Adapter

j. Inthe open text field, enter the text of the message.

The e-mail body can contain replaceable parameters if the type is template,
otherwise it will contain a text message.

k. Click Add Service. The Administration page displayed.

6. Now that you have created an application view, you are ready to add an event to
it. To add an event:

a. Inthe Administration page, click Add in the Event field. The Add Event page
for the event type appears; in this case, that is Configure Mailbox.

Figure F-8 Add Event Page for Configure Mailbox

Configure Mailbox

bLogic Console

Assign an event name and selecr the type of contents expectad.

Event Name*
=
Description
=
Mailboxes* MailBox -
public_html
& IMAP wacation.dir
o pOP3 wacation.pag

wacation.msg
.autoresp.sched  [x|

Add Event

b. Inthe eventName field, enter a meaningful name for the event.
c. Inthe eventDesc field, enter a description of the event.

d. Select either the IMAP or POP3 radio button. When configuring an event you
can use either the POP3, or IMAP access protocols depending on the type of
event generator you wish to deploy. Use IMAP if you are trying to deploy the
Push event generator. Use POP3 to deploy the Pull event generator. When
IMAP is selected you can select a folder to listen to. POP3/Pull supports the use
of a single folder, the INBOX folder.

e. Scroll to select a folder to query for mail.

f. Click Add Event. The Application View Administration page displays.

F-10  Developing Adapters



How the E-mail Adapter Works

Figure F-9 Application View Administration Page for appViewTest

PR

Application View Administration for appViewTest] -~ s
% bea
Application Vie onsole \ ic Conzole SEy ogout|

BLLCNICRSUULESTUI 7His page allows you to add events and/or services to an application view.
Administration

Description: test app view _Edit

Connection Criteria

Additional Log Category: appWiewTestl

connectionURL ; denver.beasys. com

Root Log Category: BEA_WLS_EMAIL_ADK

Password: gumboman

Message Bundle Base: BEA_WLS EMAIL ADK

Log Configuration File: BEA_ WIS EMATL ADK, xmil

Username: espeaar

Reconfigure connection parameters for appYiewTest1

Events Add

eventOne Edit Remove Event Yiew Summary View Event Schema

Services Add

Edit Remove Service View Summary VYiew Request Schems Miew Response

eMailServiceOne

Continue Save | 7

Schema

7. Prepare to deploy the application view. The Application View Administration
page provides you with a single location for confirming the content of your
application view before you save it or deploy it. In this page, you can view the
following:

e Confirm or edit the description of the application view.
e Confirm or reconfigure Connection Criteria for the application view.
e Delete services and events.

e Save the application view so you can return to it later or deploy the
application view to the server.

After verifying the application view parameters, click Continue. The Deploy
Application View to Server page displays.

Developing Adapters ~ F-11



F  The E-mail Adapter

F-12

Figure F-10 Deploy Application View to Servers Page

Deploy Application View appViewTest] to Server

Deploy Application View

On this page you deploy your application view to the application server,

Required Service Parameters

Enable asynchronous service
invocation?

Required Event Parameters

Event Router URL* F [http:/localho st7001/E mailEventRouterEventFiouter

Connection Pool Parameters

Use these parameters to configure the connection pool used by this application
view

Minimum Pool Size* 1
Maximum Poal Size* 10

Target Fraction of Maximum Pool X
Size* o1

Allow Poal to Shrink? =3
Log Configuration
Set the log verbosity level for this application view,

|Lng warnings, errors, and audit messages j
Configure Security

Restrict Access to appViewTest] using J2EF Securit

Deploy | 9 = Deploy persistently?®  Save | 7

8. Deploy the Application View. In order to deploy the application view, you must
provide several parameters such as enabling asynchronous service invocation,
providing the event router URL, and changing the connection pool parameters,
among other parameters.

To deploy the application view:

a. Make sure the Enable Asynchronous Service Invocation check box is
unchecked.

b. Inthe Event Router URL field, enter
http://<HOSTNAME>: <PORT>/ Emai | Event Rout er / Event Rout er

¢. For the Connection Pool Parameters, accept the default values:

Minimum Pool Size - 1

Maximum Pool Size - 10

Target Fraction of Maximum Pool Size - 0.1

Developing Adapters



How the E-mail Adapter Works

Allow Pool to Shrink - checked

d. Inthe Log Configuration field, set the log verbosity level to Log warnings,
errors, and audit messages.

e. Make sure the Deploy persistently? box is checked.

f. Click Deploy.

Figure F-11 Application View Summary Page

Summary for Application View appViewTestl I

Sumrmary This page shows the events and services defined for the appView Testl application view.

Name: appViewTestl

Description: test app view

Status: Deployed

Available actions Undeploy

Connection Security Deploy Events and Services.

Connection Criteria

Log Level: DEBUG

Additional Log Category: appviewTestl
connectionURL: denver beasys.com

Root Log Category: BEA_WLS_EMAIL_ADK
Password: gurmboran

Message Bundle Base: BEA_WLS_EMATL_ADK
Log Configuration File: BEA_WLS_EMAIL_ADK xml
Username: espear

9. Once the application view is deployed, the summary page displays all relevant
information about the deployed application view. Click the appropriate tab on the
Summary page to view schemas, event and service summaries, test services and
events. You can also undeploy the application view by clicking Undeploy.

Developing Adapters ~ F-13



F  The E-mail Adapter

How the E-mail Adapter was Developed

This section describes each interface used to develop the e-mail adapter. The ADK
provides many of the necessary implementations required by a J2EE-compliant
adapter; however, since some interfaces cannot be fully implemented until the EIS and
its environment are defined, the e-mail adapter was created to illustrate the
detail-specific or concrete implementation of the abstract classes provided in the ADK.

The process of creating the e-mail adapter is comprised of the following steps:
m Development Reference Documentation

m Step 1: Development Considerations

m  Step 2: Implementing the Server Provider Interface Package

m Step 3: Implementing the Common Client Interface Package

m Step 4: Implementing the Event Package

m Step 5: Deploying the Adapter

Development Reference Documentation

You can review the Javadoc and code for the methods defined in the steps that follow
in this section to see how the implementations provided by the ADK were leveraged.

m You can find the Javadoc for this implementation in:
WLI _HOVE/ adapt er s/ dbns/ docs/ api /i ndex. ht m
m You can find the code listing for this package in:
W.I _HOVE/ adapt ers/ enmi | / src/

inthe/cci,/event,and/spi directories

Note: W.I _HOME is the drive or home directory where WebLogic Integration is
installed.

F-14  Developing Adapters



How the E-mail Adapter was Developed

Step 1: Development Considerations

The “Adapter Setup Worksheet” is available to help adapter developers identify and
collect critical information about an adapter they are developing before they begin
coding. For the e-mail adapter, the worksheet questions are answered as follows:

Note: Questions preceded by an asterisk (*) are required to use the
GenerateAdapterTemplate utility.

1. *What is the name of the EIS for which you are developing an adapter?
e-mail API

2. *What is the version of the EIS?
n/a

3. *What is the type of EIS; for example, DBMS, ERP, etc.?
e-mail API

4. *Who is the vendor name of this adapter?
BEA

5. *What is the version number for this adapter?
None - Sample Only

6. *What is the adapter logical name?
BEA_WLS_EMAIL

7. Does the adapter need to invoke functionality within the EIS?
Yes
If so, then your adapter needs to support services.

Yes

8. What mechanism/API is provided by the EIS to allow an external program to
invoke functionality provided by the EIS?

It is an API.

9. What information is needed to create a session/connection to the EIS for this
mechanism?

Developing Adapters ~ F-15



F  The E-mail Adapter

F-16

10.

11.

12.

13.

14.

15.

16.

17.

Need to acquire a session, and from the session you can get a transport object.
The transport will be used to send mail.

What information is needed to determine which function(s) will be invoked in the
EIS for a given service?

Javadoc for e-mail APL.

Does the EIS allow you to query it for input and output requirements for a given
function?

No

If so, what information is needed to determine the input requirements for the
service?

n/a

For all the input requirements, which ones are static across all requests? Your
adapter should encode static information into an InteractionSpec object.

To, From, CC, BCC, Subject, Body, Type

For all the input requirements, which ones are dynamic per request? Your
adapter should provide an XML schema that describes the input parameters
required by this service per request.

To, From, CC, BCC, Subject, Body, Type
What information is needed to determine the output requirements for the service?

Success or failure of a send call if in error. Need to extract the error and any
e-mail addresses in the error.

Does the EIS provide a mechanism to browse a catalog of functions your adapter
can invoke? If so, your adapter should support browsing of services.

No

Does the adapter need to receive notifications of changes that occur inside the
EIS? If so, then your adapter needs to support events.

Yes. Need to provide examples of both types of events.

What mechanism/API is provided by the EIS to allow an external program to
receive notification of events in the EIS? The answer of this question will help
determine if a pull or a push mechanism is developed.

Developing Adapters



How the E-mail Adapter was Developed

Can either poll a folder for new messages or add a listener (IMAP) to a folder
for new messages.

18. Does the EIS provide a way to determine which events your adapter can support?

No

19. Does the EIS provide a way to query for metadata for a given event?

Some

20. What locales (language/country) does your adapter need to support?

English

Step 2: Implementing the Server Provider Interface
Package

To implement the e-mail adapter Server Provider Interface (SPI) and meet the
J2EE-compliant SPI requirements, the classes in the ADK were extended to create the
following concrete classes:

Table F-1 SPI Class Extensions

This concrete class... Extends this ADK class...
ManagedConnect i onFact oryl npl Abst ract ManagedConnecti onFact ory
ManagedConnect i onl npl Abst r act ManagedConnecti on
Connect i onMet aDat al npl Abst ract Connect i onMet aDat a

These classes provide connectivity to an EIS could be used to establish transaction
demarcation, and allow management of a selected EIS.

Developing Adapters ~ F-17



F  The E-mail Adapter

ManagedConnectionFactorylmpl

The first step in implementing an SPI for the e-mail adapter was to implement the
ManagedConnect i onFact ory interface. A ManagedConnect i onFact ory supports
connection pooling by providing methods for matching and creating a
ManagedConnect i on instance.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abst r act ManagedConnect i on

Fact ory, an implementation of the Java Connector Architecture interface

j avax. resource. spi . ManagedConnecti onFact ory. The e-mail adapter extends
this class in enai | . spi . ManagedConnect i onFact or yl npl . Listing F-1shows the
derivation tree for ManagedConnect i onFact or yl npl .

Listing F-1 com bea. adapt er. emai | . spi . ManagedConnect i onFact or yl npl

j avax. resource. spi . ManagedConnect i onFact ory

| -->com bea. adapt er. spi . Abstract ManagedConnect i onFact ory

| -->enmi | . spi . ManagedConnect i onFact or yl npl

Developers’ Comments

F-18

ManagedConnect i onFact ory creates physical connections to an underlying EIS for
the application server. A physical connection is encapsulated by a
ManagedConnect i on instance.

ManagedConnect i onFact or yl npl is a factory for both managed connections and
adapter specific connect i onFact or y instances. The e-mail adapter has a simple
implementation for this factory object. Four methods were implemented from the base
classes, two of which are abstract. The abstract methods are

creat eConnecti onFact ory() and cr eat eManagedConnect i on() . Both of these
implementations return adapter-specific object instances. The concrete methods
overridden by the e-mail adapter include checkSt at e() and hashCode(). The
implementation of check St at e() validates the connection parameters required for
the adapter to acquire a physical connection. The implementation of hashCode() is
also based on connection parameters specific to the e-mail adapter.

Developing Adapters



How the E-mail Adapter was Developed

ManagedConnection

A ManagedConnect i on instance represents a physical connection to the underlying
EIS in a managed environment. ManagedConnect i on objects are pooled by the
application server. For more information, read about how the ADK implements the
Abst r act ManagedConnect i on instance in “ManagedConnection” on page 6-32.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abst r act ManagedConnect i on, an
implementation of the J2EE interface j avax. r esour ce. spi . ManagedConnect i on.
The e-mail adapter extends this class in enai | . spi . ManagedConnect i onl npl .
Listing F-2 shows the derivation tree for ManagedConnect i onl npl .

Listing F-2 com bea. adapt er. emai | . spi . ManagedConnect i onl npl

j avax. resour ce. spi . ManagedConnecti on

| -->com bea. adapt er . spi . Abstract ManagedConnect i on

| -->emuai | . spi . ManagedConnect i onl npl

Developers’ Comments

The ManagedConnectionImpl represents the physical connection to the EIS. The
e-mail adapter overrides what is probably the minimum required functionality of the
base classes. There are two abstract methods and two concrete methods that the e-mail
adapter implements: get Connect i on() and cr eat eMet aDat a() .

The method get Connect i on() is used to wrap the current ManagedConnection with
a Connect i onl npl and return it to the caller. The value for myCr edenti al s is
compared with the connect i onRequest | nf o passed. If they match, the current
ManagedConnect i on is wrapped with a Connect i onl npl . The cr eat eMet aDat a()
method simply instantiates and returns a Connect i onMet aDat al npl .

The other two methods, dest r oyPhysi cal Connecti on() and

conpar eCr edent i al s(), are overridden because they are either too simple or empty
in the base class. These are both concrete methods in the base class. The method
dest r oyPhysi cal Connecti on() is adapter specific; this method is used to free
resources associated with acquiring a physical connection.

Developing Adapters ~ F-19



F  The E-mail Adapter

The conpar eCr edent i al s() method is used by mat chManagedConnect i ons()
method in the ManagedConnectionFactory. The mat chManagedConnect i ons()
method tries to associate a request for connection with an existing connection
matching the same criteria. The criteria is defined in the compar eCr edent i al s()
method. Usernames are used by the e-mail adapter as the criteria.

ConnectionMetaDatalmpl

The ManagedConnect i onMet aDat a interface provides information about the
underlying EIS instance associated with a ManagedConnect i on instance. An
application server uses this information to get run-time information about a connected
EIS instance. For more information, read about how the ADK implements the

Abst r act Connect i onMet aDat a instance in “ConnectionMetaData” on page 6-47.

Basic Implementation

The ADK provides com bea. adapt er . spi . Abst r act Connect i onMet aDat a, an
implementation of the J2EE interface j avax. r esour ce. spi . ManagedConnect i on
Met aDat a. The e-mail adapter extends this class in

emai | . spi . Connect i onMet aDat al npl . Listing F-3 shows the derivation tree for
Connect i onMet aDat al npl .

Listing F-3 com bea. adapt er . emai | . spi . Connect i onMet aDat al npl

j avax. resource. spi . ManagedConnect i onMet aDat a

| -->com bea. adapt er. spi . Abstract Connecti onMet abDat a

I
| -->enmi | . spi . Connecti onMet aDat al npl

Developers’ Comments

F-20

The Connect i onMet aDat al npl class provides metadata for an EIS. The metadata
implementation describes very specific data required by the application server. The
e-mail adapter provides an implementation for the abstract methods declared in the
base class. These methods provide product name, product version, user name, and max
connections allowed.

Developing Adapters



How the E-mail Adapter was Developed

Step 3: Implementing the Common Client Interface
Package

To implement the e-mail adapter Common Client Interface (CCI) and meet the
J2EE-compliant CCI requirements, classes in the ADK to create the following
concrete classes were extended

Table F-2 CCI Class Extensions

This concrete class... Extends this ADK class...
Connecti onl npl Abst ract Connecti on

I nteractionl npl Abstractlnteraction

I nteracti onSpecl npl I nteracti onSpecl npl

These classes provide connectivity to and access back-end systems. The client
interface specifies the format of the request and response records for a given
interaction with the EIS.

Note: Although implementing the Common Client Interface (CCI) is optional in the
Java Connector Architecture 1.0 specification, it is likely to be required in the
future. To be prepared, the e-mail adapter provides a complete
implementation.

Connectionimpl

A Connect i on represents an application-level handle that is used by a client to access
the underlying physical connection. The actual physical connection associated with a
Connect i on instance is associated with a ManagedConnect i on instance. For more
information, read about how the ADK implements the Abst r act Connect i on instance
in “Connection” on page 6-37.

Developing Adapters ~ F-21



F  The E-mail Adapter

Basic Implementation

The ADK provides com bea. adapt er. cci . Abst r act Connecti on, an
implementation of the J2EE interface j avax. r esour ce. cci . Connecti on. The
e-mail adapter extends this class in emai | . cci . Connect i onl npl . Listing F-4 shows
the derivation tree for Connect i onl npl .

Listing F-4 com bea. adapter. emai |l . cci.Connecti onl npl

j avax. resource. cci . Connecti on

| -->com bea. adapt er. cci . Abstract Connecti on

| -->emai | . cci . Connecti onl npl

Developers’ Comments

The Connect i onl npl class is an application-level handle used to access EIS-level
resources and functionality. For the e-mail adapter the implementation is simple.
Derived-functionality was used for all methods except the cr eat el nt er acti on()
method. This method is an abstract method provided in the connection interface, and
unless you have specific needs, this is usually the only method that needs to be
defined/overridden. For implementation, you need to return an application-level
interaction object.

Interactionimpl

The I nt er act i on enables a component to execute EIS functions. An I nt er acti on
instance is created from a connection and is required to maintain its association with
the Connect i on instance. For more information, read about how the ADK implements
the Abst ract | nt er act i on instance in “Interaction” on page 6-38.

Basic Implementation

F-22

The ADK provides com bea. adapt er. cci . Abstract | nteraction, an
implementation of the J2EE interface j avax. resour ce. cci . I nteracti on. The
e-mail adapter extends this class in emai | . cci . | nt eracti onl npl . Listing F-5
shows the derivation tree for | nt er act i onl npl .

Developing Adapters



How the E-mail Adapter was Developed

Listing F-5 com bea. adapter. enmail.cci.|nteracti onl npl

j avax. resource. cci.lnteraction

| -->com bea. adapter. cci.Abstractlnteraction

| -->emai |l .cci.lnteractionl npl

Developers’ Comments

An | nteraction enables a component to execute EIS functions. The

I nteractionl mpl class wraps EIS-specific functionality. Using the

Connect i onl npl , you can use the physical EIS connection to provide
application-level interfaces to the EIS. This is probably where you will spend most of
your time.

The two execut e() methods process according to the method being called and either
return an output document in the parameter list or as a result of the call. The last
method is cl ose(). The cl ose() method is used to free resources created in the
execution of an EIS call. The execut e() method creates an e-mail message based on
data from both the I nt er act i onSpecl npl and the input Docunent Recor d. The data
extracted is used to populate a M neMessage object and is transported according to the
internet address data contained. If an error is encountered it is returned in the output
Docunent Recor d.

InteractionSpecimpl

An | nteractionSpecl npl holds properties for driving an interaction with an EIS
instance. An | nt er act i onSpec is used by an interaction to execute the specified
function on an underlying EIS.

The CCI specification defines a set of standard properties for an I nt er act i onSpec,
but an I nt er acti onSpec implementation is not required to support a standard
property if that property does not apply to its underlying EIS.

The I nt er act i onSpec implementation class must provide getter and setter methods
for each of its supported properties. The getter and setter methods convention should
be based on the JavaBeans design pattern. For more information, read about how the
ADK implements the I nt er act i onSpecl npl instance in “InteractionSpec” on page
6-48.

Developing Adapters ~ F-23



F  The E-mail Adapter

Basic Implementation

The ADK provides com bea. adapt er. cci . I nt er acti onSpecl npl , an
implementation of the J2EE interface j avax. resour ce. cci . I nt er act i onSpec.
The e-mail adapter extends this class in emai | . cci . I nteracti onSpecl npl .
Listing F-6 shows the derivation tree for I nt er act i onSpecl npl .

Listing F-6 com bea. adapt er. emai | . cci . I nt er acti onSpecl npl

j avax. resource. cci.lnteracti onSpec

| -->com bea. adapt er.cci.Interacti onSpecl npl

| -->enmi |l . cci.lnteracti onSpecl npl

Developers’ Comments

The I nt eracti onSpecl npl class provides properties used in the request to a service.
In the case of the e-mail adapter the properties are specific to an e-mail message; for
example: “To”; “From”; “Subject” etc. The I nt er act i onSpecl npl is very much
adapter specific. The data required to fulfill a request varies according to the request,
and there are no abstract methods that need to be implemented.

Step 4: Implementing the Event Package

Some utility classes were created to help with implementation. These classes were
extended from the ADK classes to the create the following concrete classes:

Table F-3 Event Class Extensions

This concrete class... Extends the ADK class...
Emai | Event Met aDat a Event Met aDat a

Emai | PushEvent PushEvent

Emai | PushHandl er j ava. | ang. Obj ect

F-24  Developing Adapters



How the E-mail Adapter was Developed

Table F-3 Event Class Extensions

This concrete class... Extends the ADK class...
Pul | Event Gener at or Abst ract Pul | Event Gener at or
PushEvent Gener at or Abst ract PushEvent Gener at or

EmailEventMetaData

The ADK provides com bea. adapt er . event . Event Met aDat a, an implementation
of the j ava. | ang. Obj ect . The e-mail adapter extends this class by implementing
emai | . event. Emai | Event Met aDat a. Listing F-7 shows the derivation tree for
Enai | Event Met aDat a.

Listing F-7 Emai | Event Met aDat a

com bea. adapt er. event . Event Met aDat a

| -->emai | . event. Emai | Event Met aDat a

Developers’ Comments
The Emai | Met aDat a is used to pass information between the event generator and the
handler.

EmailPushEvent

The ADK provides com bea. adapt er . event . PushEvent , an implementation of the
java. util.Event Qbj ect. The e-mail adapter extends this class by implementing
emai | . event. Emai | PushEvent . Listing F-8 shows the derivation tree for

Enai | PushEvent .

Listing F-8 Emai | PushEvent

java.util.Event Obj ect

Developing Adapters ~ F-25



F  The E-mail Adapter

| -->com bea. adapt er . event . PushEvent

| -->emai | . event. Emai | PushEvent

Developers’ Comments

The Emai | PushEvent is used to send notification from the handler to the event
generator.

EmailPushHandler

The Emai | PushHandl er extends implements | PushHandl er and is the point of
contact for the E-mail EIS. Listing F-9 shows the derivation tree for
Emai | PushHandl er .

Listing F-9 Emai | PushHander

com bea. adapt er. event . | PushHandl er

| -->enmi | . event. Enai | PushHandl er

Developers’ Comments

F-26

The Emai | PushHandl er implements the ADK interface | PushHandl er . The handler
interface is provided to abstract EIS event generation from event routing functionality.
This is not enforced since the interfaces provided are not required to implement the
Push functionality.

The EmailPushHandler implements three interfaces:
m  MessageCountListener

m  Runnable

m  [PushHandler

The only method implemented outside of the scope of the interface methods is
veri fyConnection(). TheverifyConnection() method validates the connection
to the EIS. It does nothing more than check to see if it is connected to the server.

Developing Adapters



How the E-mail Adapter was Developed

One method of interest is the r un() method. A thread was implemented in order to poll
the folder for message count. Sun MicroSystems’ implementation of the IMAP access
protocol does not send natification without this polling, so this it does not provide good
example of push generation. However, the idea is to show how to separate the
generation functionality from the routing functionality. The rest of the implementation
is fairly straightforward and follows the interfaces implemented.

PullEventGenerator

The ADK provides com bea. adapt er. event . Abst r act Pul | Event Gener at or , an
implementation of the j ava. | ang. Obj ect . The e-mail adapter extends this class in
emai | . event . Pul | Event Gener at or . Listing F-10 shows the derivation tree for
Pul | Event Gener at or .

Listing F-10 Pul | Event Gener at or

com bea. adapt er. event . Abstract Event Gener at or

| -->com bea. adapt er. emai | . event . Abstract Pul | Event Gener at or

| -->emai | . event. Pul | Event Gener at or

Developers’ Comments

The E-mail Pull event generator is a POP3-only event generator. The reason for this is
that POP3 does not allow notifications to be received when a listener is added to the

Inbox folder. In order to deploy the Pul | Event Gener at or you need to modify some
of the properties contained in the Emai | Event Rout er web. xni file. Once you have
the correct properties, the Emai | Event Rout er . war file can be created using the ANT
build process.

The E-mail Pul | Event Gener at or supports a single event type, which is the
notification of an e-mail being received in the Inbox folder using the POP3 access
protocol. As such, the e-mail event generator probably doesn’t need to implement
set upNewTypes() and r emoveDeadTypes() ; however, the event engine will give
notification when event types are removed.

Developing Adapters ~ F-27



F  The E-mail Adapter

Other than the implementation of set upNewTypes() and r emoveDeadTypes(), the
only other abstract method is post Event s() . The post Event s() method is the
fulcrum to the event generation process. This is where you would add EIS-specific
implementations. The e-mail event generator uses the post Event s() method to read
from the Inbox and route new messages to any listeners.

One other method of interest is the dod eanUpOnQui t () method. This method
provides a place to free any resources allocated in the event generation process. The
e-mail event generator uses dod eanUpOnQui t () to free the mail store and release the
mail session.

PushEventGenerator

The ADK provides com bea. adapt er . event . Abst r act Pul | Event Gener at or , an
implementation of the j ava. | ang. Obj ect . The e-mail adapter extends this class in
emai | . event . PushEvent Gener at or . Listing F-11 shows the derivation tree for
PushEvent Gener at or .

Listing F-11 PushEvent Gener at or

com bea. adapt er. event . Abst ract Event Gener at or

| -->com bea. adapt er. emai | . event . Abstract PushEvent Gener at or

| -->emmi | . event . PushEvent Gener at or

Developers’ Comments

F-28

The E-mail Push event generator is an IMAP only event generator. It is a sample of the
push event paradigm. Where the Pull Event Generator uses a thread to continuously
poll for an event, the push methodology listens for an event to have been posted. If you
look closely at the push event implementation, you will see that it uses a thread to
process events in the Emai | PushEvent Handl er . A thread is not necessary to
implement the push event. A separate thread was used to implement the push
generator.

Additionally, three other classes were used in the push implementation. These are:
B Enai | PushHandl er

® Emai | PushEvent

Developing Adapters



How the E-mail Adapter was Developed

m Emai |l Met aDat a

The Emai | PushHandl er serves to abstract the push event generation functionality
from the event routing. The Emai | PushEvent is used to send notification from the
handler to the event generator. The Emai | Met aDat a is used to pass information
between the event generator and the handler. If you look closely at the

PushEvent Gener at or code, you will find that it knows almost nothing of the EIS. It
uses the set NewTypes() and r enoveDeadTypes() to create the array it needs to
process events, and it uses post Event s() to process notifications.

Step 5: Deploying the Adapter
After implementing the SPI, CCI and event interfaces, the adapter was deployed. To
deploy the adapter:
m Update thera. xm file
m Create the .rar file

m Create and deploy the . ear file

Before You Begin

Before deploying the adapter into WebLogic Integration, do the following:

m Determine the location of the adapter on your computer; that is,
WLl _HOVE/ adapt er s/ emai | where W.I _HOME is the location of your WebLogic
Integration installation. This location is referred to as ADAPTER_ROOT hereafter.

m  Make sure the e-mail adapter’s . j ar and . ear files are built, as described in
“Step 5c: Build the .jar and .ear Files.”

Step 5a: Update the ra.xml File

The e-mail adapter provides the ra. xni file in the adapter’s . rar file

(META- I NF/ ra. xml ). Since the e-mail adapter extends the
AbstactManagedConnectionFactory class, the following properties were provided in
thera. xm file:

m LoglLevel

Developing Adapters ~ F-29



F  The E-mail Adapter

® LanguageCode

® CountryCode

® MessageBundl eBase

m LogConfigFile

®  Root LogCont ext

®  Addi tional LogCont ext

The e-mail adapter requires additional declarations, listed in Table F-4:

Table F-4 RA. XML Properties

Property Example
UserName The username for e-mail adapter login.
Password The password for username.
ConnectionURL URL to the e-mail server.

See “Editing Web Application Deployment Descriptors™ on page 9-8 for instructions
on updating these declarations. You can view the complete ra. xmi file for the e-mail
adapter in;

W.I _HOVE/ adapt ers/ enmi | / src/ rar/ META- | NF/

Step 5b: Create the .rar File

Class files, logging configuration, and message bundle(s) should be bundled into a
.j ar file, which should then be bundled along with META- | NF/ ra. xml intothe. rar
file. The Ant bui | d. xni file demonstrates how to properly construct this . r ar file.

Step 5c: Build the .jar and .ear Files

To build the . j ar and . ear files, use this procedure:

1. Editant Env. crd (Windows) or ant Env. sh (Unix) in
WLI _HOVE/ adapt er s/ uti | s. You must set the following variables to valid paths:

e BEA HOME - The top-level directory for your BEA products.

F-30  Developing Adapters



How the E-mail Adapter was Developed

e \W.I _HOME - The location of your Application Integration directory.
e JAVA HOVE - The location of your Java Development Kit.
e W._HOVE - The location of your WebLogic Server directory.

e ANT_HOME - The location of your Ant home, typically
W.I _HOVE/ adapters/utils.

2. Execute ant Env from the command-line to set the necessary environment
variables for your shell.

3. Change directories to W.I _HOVE/ adapt er s/ emai | / pr oj ect .

4. Execute ant rel ease from the W.I _HOVE/ adapt er s/ emai | / pr oj ect
directory to build the adapter.
Step 5d: Create and Deploy the .ear File

To create and deploy the . ear file, thus deploying the e-mail adapter, use this
procedure:

1. First, declare the adapter's . ear file in your domain’s confi g. xm file, as shown
in Listing F-12:

Listing F-12 Declaring the E-mail Adapter’s . ear File

<l-- This deploys the EAR file -->

<Application Depl oyed="true" Nanme="BEA W.S EMAI L_ADK"
Pat h="W.| _HOVE/ adapters/email/lib/ BEA W.S_EMAI L_ADK. ear " >

<Connect or Conponent Name="BEA W.S EMAI L_ADK"
Targets="mnyserver" URI ="BEA W.S EMAIL_ADK.rar"/>

<WebAppConponent Name="Emai | Event Rout er" Target s="nyserver"
URI =" BEA_ W.S_EMAI L_ADK_Event Rout er . war "/ >

<WebAppConponent Nanme="BEA W.S EMAI L_ADK Web"
Targets="nyserver" URlI ="BEA W.S_EMAI L_ADK Web. war"/ >

</ Appl i cation>

Developing Adapters ~ F-31



F  The E-mail Adapter

F-32

Note: Replace W.I _HOVE with the correct path to the WebLogic Integration root
directory for your environment.

. Addthe . j ar file(s) for the adapter to the WebLogic server classpath. At this

time, WebL ogic does not support shared . j ar filesinan . ear file; in other
words, the Web applications and the adapters do not share a common classloader
parent. Consequently, you need to place the shared . j ar files in your adapter on
the system classpath.

Restart the WebLogic Server.

. Once the server restarts, add the adapter group to the default WebL ogic security

realm by using the WebLogic Server Console Web application. To do this,
navigate to ht t p: / / <host >: <port >/ consol e, where <host > is the name of
your server and <por t > is the listening port; for example:

http://1ocal host: 7001/ consol e

. After you have added the adapter group, add a user to the adapter group using the

WebLogic console Web application and save your changes.

. To configure and deploy application views, navigate to

http://<host>: <port>/W ai , where <host > is the name of your server and
<por t > is the listening port; for example:

http://1ocal host: 7001/ w ai
The Application View Console - Logon is displayed.

Developing Adapters



Creating the E-mail Adapter Design-Time GUI

Application View Console - Logon

Please supply a valid Weblogic username and password,

Lsermname I
Password I
Lagin |

7. Log on to WebLogic Integration by entering your username and password in
appropriate fields.

8. Configure and deploy the application views by using the procedures described in
“Defining Application Views” in Using Application Integration.

Creating the E-mail Adapter Design-Time
GUI

The design-time GUI is the user interface that allows the user to create application
views, add services and events and deploy the adapter if it is hosted in the WebLogic
Integration. This section discusses some specific design-time issues that were
considered during the development of the e-mail adapter.

The process of creating the e-mail adapter design-time GUI is comprised of the
following steps:

m Step 1: Development Considerations

Developing Adapters ~ F-33



F  The E-mail Adapter

m Step 2: Determine E-mail Adapter Screen Flow
m  Step 3: Create the Message Bundle
m Step 4: Implementing the Design-time GUI

m Step 5: Writing Java Server Pages

Step 1: Development Considerations

Some of the important development considerations regarding the design-time GUI for
the e-mail adapter included:

m Determine the e-mail server that will be supported
m Determine the e-mail schema generation

m Determine if the adapter should support testing of service and events.

Step 2: Determine E-mail Adapter Screen Flow

You should consider the order in which the Java server pages will appear when the user
displays the application view.

Java Server Pages (JSP)

The e-mail adapter uses the ADK’s Java server pages for a design-time GUI; however,
additional JSPs have been added to provide adapter-specific functionality. A
description of the additional JSPs is in table Table F-5:

Table F-5 Additional ADK JSPs

Filename Description

addevent . j sp The Add Event page allows a user to add a new event to the
application view.

addservc. j sp The Add Service page allows the user to add a new service to the
application view.

F-34  Developing Adapters



Creating the E-mail Adapter Design-Time GUI

Table F-5 Additional ADK JSPs (Continued)

Filename

Description

confconn.jsp

The Confirm Connection page provides a form for a user to
specify connection parameters for the EIS.

edtevent.jsp

The Edit Event page is an optional page that allows users to edit
events.

edtservc.jsp

The Edit Service page is an optional page that allows users to
edit services.

event . htnl

Thisisastatic. ht m file that contains the forms necessary for
editing an event. This file is statically included into

edt event . j sp, which saves duplication of JSP/HTML
coding and properties.

service. htm

Thisisastatic. ht m file that contains the forms necessary for
editing a service. This file is statically included into

edt servc. j sp, which saves duplication of JSP/HTML
coding and properties.

Step 3: Create the Message Bundle

To support the Internationalization of all text labels, messages, exceptions, and so on,
the e-mail adapter uses a message bundle based on a text property file. The property
file uses copied name value pairs from the BEA_ W.S_SAMPLE_ADK property file, and
new entries were added for specific to the e-mail adapter.

The message bundle for the e-mail adapter is contained in
WLI_HOME/ adapt er s/ emai | / sr ¢ directory, which was installed with the ADK.
Please refer to BEA_ W.S_EMAI L_ADK. proper ti es in the directory above.

For additional instructions on creating a message bundle, please refer to the JavaSoft
tutorial on internationalization at:

http://java. sun. conidocs/ books/tutorial/il8n/index.htm

Developing Adapters ~ F-35



F  The E-mail Adapter

Step 4: Implementing the Design-time GUI

To implement the design-time GUI, you need to create a
Desi gnTi meRequest Handl er class. This class accepts user input from a form and
performs a design-time action.

For more information, see “Step 4: Implementing the Design-Time GUI” on page
8-30.
E-mail Implementation

The E-mail Desi gnTi neRequest Handl er class extends
Abst r act Desi gnTi meRequest Handl er and provides these methods:

Method Description

addevent (j avax. servlet. http. H t pServl et Adds an event to the application view.

Request request)

addservc(j avax. servlet.http. HtpServl et Adds a service to the application view.

Request request)

get Adapt er Logi cal Nanme() Returns my adapter's logical name and
helps parent when deploying application
views, etc.

getManagedConnectionFactoryClass() Returns my adapter's SPI

ManagedConnectionFactory implementation
class, used by parent to get a CCI connection
to my EIS.

Step 5: Writing Java Server Pages

Step 5a: Developers’ Comments
1. Your JSPs will be displayed within your di spl ay. j sp; thus di spl ay. j sp is the

first .jsp file that you need to copy. Use the display at the di spl ay. j sp in the
example adapters (DBMS and e-mail) of the ADK as a starting point.

F-36  Developing Adapters



Creating the E-mail Adapter Design-Time GUI

2. The ADK provides a library of custom . j sp tags, which are used extensively
throughout the Java server pages of the ADK and e-mail adapter. They provide
the ability to add validation, to save field values when the user clicks away, and a
number of other features.

Saving an Object’s State When Using the ADK

There are a number of ways to save an object’s state when building your adapter using
the ADK. The Abst r act Desi gnTi meRequest Handl er maintains an

Appl i cati onVi ewDescr i pt or of the application view being edited. This is often the
best place to save state. Calls to the handler are fast and efficient. You can also ask the
Abst r act Desi gnTi meRequest Handl er for a manager bean, using its convenience
methods: get Appl i cati onVi ewManager (), get SchemaManager (), and

get NamespaceManager (), to retrieve information from the repository about an
application view. This is more time-consuming but may be necessary on occasion.
Since it is a JSP, you can also use the session object, although everything put in the
session must explicitly implement the j ava. i 0. seri al i zabl e interface.

Step 5b: Write the WEB-INF/web.xml Web Application Deployment Descriptor

Write the VEB- | NF/ web. xmi  Web application deployment descriptor. In most cases,
you should use the adapter's web. xn file as a starting point and modify the necessary
components to fit your needs. You can see the code for the web. xni file for the e-mail
adapter by going to:

WLl _HOVE/ adapt er s/ emai | / src/ war / VEEB- | NF/ web. xm

Developing Adapters ~ F-37



F  The E-mail Adapter

F-38  Developing Adapters



Index

Symbols

.ar file 2-9, 2-10, 2-11
Jar file 2-11

Jar file 2-9, 2-11

.war file 2-9
<eventrouter> C-2

A

abstract base class 2-2
AbstractConnection 6-38
AbstractConnectionFactory A-2
AbstractConnectionMetaData A-2
AbstractDesignTimeRequestHandler 1-6, 8-
31, 8-33, 8-37

abstractDesignTimeRequestHandler 8-1
AbstractDocumentRecordInteraction 6-44
AbstractinputTagSupport 8-5
Abstractinteraction 6-39
AbstractLocalTransaction 6-36
AbstractManagedConnection 6-33, 6-38, A-2
AbstractManagedConnectionFactory A-2
AbstractManagedConnectionMetaData 6-33
AbstractPullEventGenerator 7-10, 7-11, 7-13
AbstractPushEventGenerator 7-11
ActionResult 8-4
adapter 1-4, 1-6

event 1-5, 1-7

service 1-7
Adapter Logical Name 7-6
adapter logical name 2-6, 4-4, 5-2, A-2

Adapter Setup Worksheet 7-5
adapter setup worksheet 4-1
adapter, deploying 2-9
addevent.jsp 8-37
addservc 8-33
addservc.jsp 8-39
ADK 1-2
ADK tag library 8-38, 8-40
adk-eventgenerator.jar 7-10, 7-11, C-2
Ant 3-4, 4-5, 6-53, 7-6, 8-27

why use 3-4
ant release 4-5
ANT_HOME 4-5, E-39, F-31
antEnv 4-5
antEnv.cmd 4-5
antEnv.sh 4-5
Apache Project 2-5, 5-2, 7-7
Apache Software Foundation 5-2
appender 5-5, 5-9
Application Integration 1-3
application view 1-5, 1-6, 1-7, 2-3, 8-1, 8-31,

8-37

application view descriptor 8-31
Application View Management Console 1-3
application view security 8-31
Application View Summary page 8-31
assertion checking 6-38
avaScript library 2-3

Developing Adapters 1-1



B

BEA HOME 4-5, E-39, F-30
build.xml 6-53, 7-6, C-2

C

category
ancestor 5-3
assigning a priority to 5-5
child 5-3
hierarchy 5-4
naming 5-4
parent 5-3
properties 5-3
referring to multiple appenders 5-5
root 5-4
CCl 6-33, 6-36, 6-37, 6-41, 6-42, 6-48, 6-50,
6-51, 6-52, 6-54, 6-55, 8-31, 8-34
chmod u+x ant 4-5
classes
abstract 3-2
com.bea.adapter.cci.Abstract
DocumentRecordInteraction 6-51
com.bea.adapter.cci.AbstractDocumentReco
rdinteraction 6-44
com.bea.adapter.cci.AbstractInteraction 6-44
com.bea.adapter.cci.DesignTimelnteraction
Speclmpl 6-45
com.bea.adapter.cci.DocumentDefinitionRe
cord 6-44
com.bea.adapter.cci.ServicelnteractionSpecl
mpl 6-45
com.bea.adapter.event 7-11
com.bea.adapter.spi.AbstractConnectionMet
aData 6-47
com.bea.adapter.spi.ConnectionEventLogge
r6-34
com.bea.adapter.spi.NonManagedConnectio
nEventListener 6-34
com.bea.adapter.spi.NonManagedConnectio
nManager 6-35

1-2 Developing Adapters

com.bea.adapter.test. TestHarness 6-52, 6-53

com.bea.connector.DocumentRecord 6-42

com.bea.document.IDocument 6-42, B-2

com.bea.web.ActionResult 8-4

com.bea.web.ControllerServlet 8-4

com.bea.web.RequestHandler 8-3

com.bea.web.tag.AbstractinputTagSupport
8-5

com.bea.web.tag.IntegerTagSupport 8-6

com.bea.web.validation.IntegerWord 8-6, 8-
8

com.bea.web.validation.Word 8-4, 8-5, 8-6

Common Client Interface

confconn.jsp 8-31, 8-34

config.xml 4-6

Connection 6-37

connection 6-39

ConnectionEventListener 6-34

ConnectionFactory 6-46

ConnectionFactory.getMetaData 6-52

ConnectionFactorylmpl 6-47

ConnectionManager 6-34, 6-35, A-2

ConnectionMetaData 6-47

ConnectionRequestinfo 6-35

ConnectionSpec 6-47, 6-48

ControllerServlet 8-4, 8-6, 8-8, 8-34, 8-35, 8-
36, 8-38, 8-40

Creating a Custom Development
Environment 4-1

customer support contact information xviii

D

Data Extraction 7-9
data extraction 7-5
data transformation 7-8, 7-18
DbmsEventGeneratorWorker.java 7-16
deployment descriptor 8-45
deployment helper 1-6, 2-3
design time 2-1, 8-32

GUI 1-6



designtime

GUI 1-6
design-time GUI 1-1
DesignTimelnteractionSpecimpl 6-45
DesignTimeRequestHandler 8-31
Developing an Event Adapter 7-1
display.jsp 8-48, 8-49
DisplayPage 8-36
Document Object Mode
documentation, where to find it xvii
DocumentDefinitionRecord 6-44
DocumentRecord 6-42, 6-44
DocumentRecordInteraction 6-45
DOM 5-2, 6-42, 6-43, B-2

E

Enterprise Adapter Archive file 2-9
enterprise information system (EIS) 1-4
Enterprise Java Beans (EJB) 1-5
error.jsp 8-49

Event Generator 7-8, 7-9, 7-10, 7-12
event generator 2-2, 7-8

event listener 6-32

event router 6-54

EventGenerator 7-13, 7-17
EventMetaData 7-12

EventRouter 7-8, 7-14, C-2
exception handling 6-36
ExecutionTimeout 6-49

F

form processing 8-2
classes 8-3
prerequisites 8-6
sequence 8-6, 8-7
framework 1-2
designtime 1-2, 1-6, 3-5, 8-1
logging 1-2, 2-2, 2-5, 2-6, 5-1, 5-3, 6-32,
6-34, 6-38, 6-39, 6-47

packaging 1-2, 1-7
runtime 1-2, 2-1, 2-2
FunctionName 6-49

G

GenerateAdapterTemplate 3-2, 3-3, 4-1, 4-2,
5-2, 7-6, 8-45, A-2

GenerateAdapterTemplate.cmd 4-2

GenerateAdapterTemplate.sh 4-2

GUI 1-1

118N 5-14

IDocument 3-5, 6-42, 6-43, 6-44, 7-13, B-2,
B-3

IDocumentDefinition 6-45

IEventDefinition 7-9, 7-10, 7-12, 7-13

ILogger 5-4

IndexedRecord 6-50, 6-51

input requirement 2-4

installer 4-5

Interaction 6-37, 6-38, 6-45

interaction 6-39

interaction specification 2-4

InteractionSpec 6-38, 6-40, 6-45, 6-48

InteractionSpecimpl 6-49

InteractionVerb 6-49

internationalization 6-23, 7-7, 8-4

IPushHandler 7-12

J

J2EE Connector Architecture Specification
Xvii

Jakarta project 7-7

Java 2-6

Java exception 8-3, 8-49

Java package base name 4-4

Java Reflection 8-8, 8-37

Developing Adapters 1-3



Java Server Page. see JSP

java.io.Serializable 6-46

java.util.Map 6-35

JAVA_HOME 4-5, E-39, F-31

JavaBean 6-47, 6-48

Javadoc 3-3, 4-5, 6-21

JavaScript library 1-6

javax.resource.cci.Connection 6-37

javax.resource.cci.ConnectionFactory 6-46

javax.resource.cci.ConnectionMetaData 6-
33, 6-47

javax.resource.cci.ConnectionSpec 6-47

javax.resource.cci.Interaction 6-38, 6-45

javax.resource.cci.InteractionSpec 6-48, 6-
49

javax.resource.cci.LocalTransaction 6-50

javax.resource.cci.Record 6-42, 6-50, 6-51

javax.resource.cci.ResourceAdapterMetaDat
a 6-52

javax.resource.Referenceableinterfaces 6-46

javax.resource.spi 6-23, 6-50

javax.resource.spi.ConnectionEventL istener
6-34

javax.resource.spi.ConnectionManager 6-34,
6-35

javax.resource.spi.ConnectionRequestinfo 6-
35

javax.resource.spi.LocalTransaction 6-35

javax.resource.spi.ManagedConnection 6-34

javax.resource.spi.ManagedConnectionMeta
Data 6-33

JNDI 6-46

JSP 1-6, 2-3, 8-1, 8-6, 8-8, 8-33, 8-35, 8-49

JSP template 1-6

JSP templates 2-3

JUnit 6-52

junit.framework.TestCase 6-53

junit.framework.TestSuite 6-53

1-4 Developing Adapters

L

L10N 5-14
label, displaying for a form field 8-36, 8-38,
8-41
local transaction 6-50
localization 6-23, 7-7, 8-4, 8-5
LocalTransaction 6-35, 6-50
log categories 2-6
Log4j 2-5, 5-2, 5-6
log4j 5-2, 7-7
log4j.jar C-2
LogConfigFile 8-36
Logging 2-4, 5-1
logging 5-2, 7-7
appender 5-3
appenders 5-5
AUDIT 5-4
categories 5-3
category 7-7
concepts 5-2
DEBUG 5-4
ERROR 5-4
INFO 5-4
internationalization 2-5, 5-1, 5-2, 5-4, 8-
4
localization 2-5, 5-1, 5-4, 8-4
message layout 5-3
priorities 5-4
priority 5-3, 5-4
WARN 5-4
logging configuration file 5-2
logging toolkit 2-5, 5-2
logtoolkit.jar C-2

M

main.jsp 8-49

ManagedConnection 6-24, 6-33, 6-34, 6-37

ManagedConnectionFactory 6-24, 6-54, 8-
32,8-34,8-37

ManagedConnectionlmpl 6-33



ManagedConnectionMetaData 6-24, 6-33

ManagedConnectionMetaDatalmpl 6-33

manifest 6-10

manifest file 6-10

MappedRecord 6-50, 6-51

Message Bundle 6-23, 7-7

message bundle 2-6, 6-23, 8-39

message bundles 8-36

MessageBundleBase 8-36

metadata 3-5, 6-33, 6-36, 6-41, B-3
secondary 2-4

N

namespace 6-46
NDC 5-15
NonManagedScenarioTestCase 6-54

0]

output expectation 2-4
overview.html 4-6

P

package format 4-4

PatternLayout 5-6

printing product documentation xvii
priority 5-4

Pull data extraction 7-5

pull data extraction 7-8, 7-9, 7-10, 7-13
Push data extraction 7-5

push data extraction 7-8, 7-9, 7-11, 7-12
PushEvent 7-12, 7-13

R

ra.xml 8-36
Record 6-38, 6-48, 6-50
Recordimpl 6-51
Related Information
J2EE Connector Architecture

Specification xvii

XML Schema Specification xvii
related information xvii
Request Document Definition 6-41
RequestHandler 8-3, 8-4, 8-6, 8-8, 8-34, 8-

36, 8-38

RequestHandlerClass 8-36
resource adapter, see adapter
ResourceAdapterMetaData 6-52
ResourceAdapterMetaDatalmpl 6-52
Response Document Definition 6-41
RootLogContext 8-36
Runtime 2-1
runtime 2-5, 8-49
run-time engine 2-2

S

Sample Adapter 3-1
sample adapter 3-1, 3-2, 3-3, 4-1, 6-33
sample.client.ApplicationViewClient 6-54,
6-55
sample.event.EventGenerator 3-3
sample.event.OfflineEventGeneratorTestCas
e 6-54
sample.spi.ConnectionMetaDatalmpl 3-3
sample.spi.ManagedConnectionFactorylmpl
3-3
sample.spi.ManagedConnectionimpl 3-3
sample.spi.NonManagedScenarioTestCase
6-53, 6-54
sample.web.DesignTimeRequestHandler 3-3
Schema Object Model
see CCI
see DOM
see SOM
see SPI
service
synchronous 1-4
service descriptor 8-34
Service Provider Interface

Developing Adapters I-5



SOM 3-5
SPI1 6-33, 6-36, 6-54, 6-55, 8-32, A-2
State management 6-38
submit button, displaying on a form 8-37, 8-
39, 8-41
support
technical xviii

T
tag library 2-3

test harness 7-20

test.properties 6-53, 6-54

TestSuite 6-52

text field, displaying size 8-37, 8-39, 8-41
transaction 2-4

transaction, local A-2

transaction, XA A-2

U

Unique Business Name 6-41

\Y

validation 8-3
validator 8-4, 8-5

W

web application 2-3, 3-4, 8-2, 8-36, 8-45
security constraints 8-47

web application descriptor 2-3

web.xml 2-3, 7-14, 8-4, 8-36, 8-38, 8-45, 8-

49

login configuration component 8-48
security constraint component 8-47

WebLogic 6.0 5-2

WebLogic Integation A-2

WebLogic Server xvii, 5-5, A-2

WebLogic Server 6.0 A-2

WL_HOME 4-5, E-39, F-31

1-6 Developing Adapters

WLAI_HOME 4-5, E-39, F-31
wlai-common .jar C-2
wlai-gjb-client.jar C-2
wlai-eventrouter.jar C-2
wlai-servlet-client.jar C-2
Word 8-4, 8-8

X

XA transaction A-2

XCCI 6-41, 6-44, 6-45
design pattern 6-45
DocumentRecords 6-41
Services 6-41

XERCES 5-2

XML 2-3
document 6-42, 7-18, B-2
request document 1-4
schema 1-4, 1-5, 2-3, 3-5, 6-45, 7-1, 7-5,

7-18, B-3

XML Schema Specification xvii

XML Tools 3-5

XPath 6-42, B-2



	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to the ADK
	Section Objectives
	What is the ADK?
	Requirements for Adapter Development
	What the ADK Provides

	What are Adapters?
	Service Adapters
	Event Adapters
	J2EE-Compliant Adapters Not Specific to WebLogic Integration

	The Design-Time GUI
	The Application View

	The Packaging Framework
	Before You Begin

	2 Concepts
	Run Time Versus Design Time
	Run-Time Framework
	Design-Time Framework

	Events and Services
	Events
	Services

	Logging
	The Logging Toolkit
	The Logging Framework
	Internationalization and Localization

	Adapter Logical Name
	Where the Adapter Logical Name is Used
	In Adapter Deployment
	As an Organizing Principle
	As the Return Value for getAdapterLogicalName()


	Enterprise Archive (.ear) Files

	3 Tools
	Sample Adapter
	Why Use the Sample Adapter?
	What’s In the Sample Adapter

	The GenerateAdapterTemplate Utility
	ADK Javadoc
	Ant-Based Build Process
	Why Use Ant?

	XML Tools

	4 Creating a Custom Development Environment
	Adapter Setup Worksheet
	Using GenerateAdapterTemplate
	Step 1. Execute GenerateAdapterTemplate
	Step 2. Rebuild the Tree
	Step 3. Deploy the Adapter to WebLogic Integration


	5 Using the Logging Toolkit
	Logging Toolkit
	Logging Configuration File
	Logging Concepts
	Message Categories
	Message Priority
	Assigning a Priority to a Category

	Message Appenders
	Message Layout
	Putting the Components Together

	How to Set Up Logging
	Logging Framework Classes
	com.bea.logging.ILogger
	com.bea.logging.LogContext
	com.bea.logging.LogManager

	Internationalization and Localization of Log Messages
	Saving Contextual Information in a Multi-Threaded Component

	6 Developing a Service Adapter
	J2EE-Compliant Adapters Not Specific to WebLogic Integration
	Service Adapters in the Run-Time Environment
	The Flow of Events
	Step 1: Development Considerations
	Step 2: Configuring the Development Environment
	Step 2a: Set Up the File Structure
	Modifying the Directory Structure

	Step 2b: Assign the Adapter Logical Name
	Step 2c: Setting Up the Build Process
	The Manifest File
	build.xml Components

	Step 2d: Create the Message Bundle

	Step 3: Implementing the SPI
	How to Use this Section
	Basic SPI Implementation
	ManagedConnectionFactory
	Transaction Demarcation
	ADK Implementations
	AbstractManagedConnectionFactory Properties Required at Deployment

	ManagedConnection
	ADK Implementation

	ManagedConnectionMetaData
	ADK Implementation

	ConnectionEventListener
	ADK Implementation

	ConnectionManager
	ADK Implementation

	ConnectionRequestInfo
	ADK Implementation

	LocalTransaction
	ADK Implementation


	Step 4: Implementing the CCI
	How to Use this Section
	Basic CCI Implementation
	Connection
	ADK Implementation

	Interaction
	ADK Implementation

	Using XCCI to Implement the CCI
	DocumentRecord
	IDocument
	ADK-Supplied XCCI Classes
	XCCI Design Pattern

	Using Non-XML J2EE-Compliant Adapters
	ConnectionFactory
	ADK Implementation

	ConnectionMetaData
	ADK Implementation

	ConnectionSpec
	ADK Implementation

	InteractionSpec
	ADK Implementation

	LocalTransaction
	Record
	ADK Implementation

	ResourceAdapterMetaData
	ADK Implementation


	Step 5: Testing the Adapter
	Using the Test Harness
	Test Case Extensions Provided by the ADK
	sample.spi.NonManagedScenarioTestCase
	sample.event.OfflineEventGeneratorTestCase
	sample.client.ApplicationViewClient


	Step 6: Deploying the Adapter

	7 Developing an Event Adapter
	Event Adapters in the Run-time Environment
	The Flow of Events
	Step 1: Development Considerations
	Step 2: Configuring the Development Environment
	Step 2a: Set up the File Structure
	Step 2b: Assign the Adapter Logical Name
	Step 2c: Set Up the Build Process
	Step 2d: Create the Message Bundle
	Step 2e: Configure Logging
	Create an Event Generation Logging Category


	Step 3: Implementing the Adapter
	Step 3a: Create an Event Generator
	How the Data Extraction Mechanism is Implemented
	How the Event Generator is Implemented

	Step 3b: Implement the Data Transformation Method

	Step 4: Testing the Adapter
	Step 5. Deploying the Adapter

	8 Developing a Design-Time GUI
	Introduction to Design-Time Form Processing
	Form Processing Classes
	RequestHandler
	ControllerServlet
	ActionResult
	Word and Its Descendants
	AbstractInputTagSupport and Its Descendants

	Form Processing Sequence
	Prerequisites
	Steps in the Sequence


	Design-Time Features
	Java Server Pages
	JSP Templates
	The ADK Tag Library
	JSP Tag Attributes

	JavaScript Library
	The Application View

	File Structure
	The Flow of Events
	Step 1: Development Considerations
	Step 2: Determining the Screen Flow
	Screen 1: Logging In
	Screen 2. Managing Application Views
	Screen 3: Defining the New Application View
	Screen 4: Configuring the Connection
	Screen 5: Administering the Application View
	Screen 6: Adding an Event
	Screen 7: Adding a Service
	Screen 8: Deploying an Application View
	Controlling User Access
	Deploying the Application View
	Saving the Application View

	Screen 9: Summarizing the Application View

	Step 3: Configuring the Development Environment
	Step 3a: Create the Message Bundle
	Step 3b: Configure the Environment to Update JSPs Without Restarting the WebLogic Server

	Step 4: Implementing the Design-Time GUI
	Extend AbstractDesignTimeRequestHandler
	Methods to Include

	Step 4a. Supply the ManagedConnectionFactory Class
	Step 4b. Implement initServiceDescriptor()
	Step 4c. Implement initEventDescriptor()

	Step 5: Write the HTML Forms
	Step 5a: Create the confconn.jsp Form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Implementing confconn()

	Step 5b: Create the addevent.jsp form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Adding Additional Fields

	Step 5c: Create the addservc.jsp form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Adding Additional Fields

	Step 5d: Implement Edit Events and Services (optional)
	Update wlai.properties
	Create edtservc.jsp and addservc.jsp
	Implement Methods

	Step 5e: Write the WEB-INF/web.xml Web Application Deployment Descriptor

	Step 6. Implementing the Look-and-Feel
	Step 7. Testing the Sample Adapter Design-Time Interface
	Files and Classes
	Run the tests


	9 Deploying Adapters
	Using Enterprise Archive (.ear) Files
	Using Shared .jar Files in an .ear File
	.ear File Deployment Descriptor

	Deploying Adapters
	Deploying Adapters by Using the WebLogic Server Administration Console
	Deploying Adapters Manually
	Adapter Auto-registration

	Editing Web Application Deployment Descriptors
	Deployment Parameters
	Editing the Deployment Descriptors


	A Creating an Adapter Not Specific to WebLogic Integration
	Using this Section
	Building the Adapter
	Updating the Build Process

	B XML Toolkit
	Toolkit Packages
	IDocument
	Schema Object Model (SOM)
	How SOM Works
	Creating the Schema
	The Resulting Schema
	Validating an XML Document
	How the Document is Validated
	Implementing isValid()
	isValid() Sample Implementation



	C Migrating Adapters to WebLogic Integration 2.1
	Changes to the Deployment Method
	How it’s Done in WebLogic Integration

	Registering the Design-time Web Application
	Using a Naming Convention
	Using a Text File

	Other Migration Issues

	D Adapter Setup Worksheet
	Adapter Setup Worksheet

	E The DBMS Adapter
	Introduction to the DBMS Adapter
	How the DBMS Adapter Works
	Before You Begin
	Accessing the DBMS Adapter
	A Tour of the DBMS Adapter

	How the DBMS Adapter Was Developed
	Development Reference Documentation
	Step 1: Development Considerations
	Step 2: Implementing the Server Provider Interface Package
	ManagedConnectionFactoryImpl
	ManagedConnectionImpl
	ConnectionMetaDataImpl
	LocalTransactionImpl

	Step 3: Implementing the Common Client Interface Package
	ConnectionImpl
	InteractionImpl
	InteractionSpecImpl

	Step 4: Implementing the Event Package
	EventGenerator

	Step 5: Deploying the DBMS Adapter
	Before You Begin
	Step 5a: Update the ra.xml File
	Step 5b: Create the .rar File
	Step 5c: Build the .jar and .ear Files
	Step 5d: Create and Deploy the .ear File


	How the DBMS Adapter Design-Time GUI was Developed
	Step 1: Development Considerations
	Step 2: Determine Necessary Java Server Pages
	Step 3: Create the Message Bundle
	Step 4: Implementing the Design-time GUI
	Step 5: Writing Java Server Pages
	Custom JSP Tags
	Save an Object’s State
	Write the WEB-INF/web.xml Web Application Deployment Descriptor



	F The E-mail Adapter
	Introduction to the E-mail Adapter
	How the E-mail Adapter Works
	Before You Begin
	Accessing the E-mail Adapter
	A Tour of the E-mail Adapter

	How the E-mail Adapter was Developed
	Development Reference Documentation
	Step 1: Development Considerations
	Step 2: Implementing the Server Provider Interface Package
	ManagedConnectionFactoryImpl
	ManagedConnection
	ConnectionMetaDataImpl

	Step 3: Implementing the Common Client Interface Package
	ConnectionImpl
	InteractionImpl
	InteractionSpecImpl

	Step 4: Implementing the Event Package
	EmailEventMetaData
	EmailPushEvent
	EmailPushHandler
	PullEventGenerator
	PushEventGenerator

	Step 5: Deploying the Adapter
	Before You Begin
	Step 5a: Update the ra.xml File
	Step 5b: Create the .rar File
	Step 5c: Build the .jar and .ear Files
	Step 5d: Create and Deploy the .ear File


	Creating the E-mail Adapter Design-Time GUI
	Step 1: Development Considerations
	Step 2: Determine E-mail Adapter Screen Flow
	Java Server Pages (JSP)

	Step 3: Create the Message Bundle
	Step 4: Implementing the Design-time GUI
	E-mail Implementation

	Step 5: Writing Java Server Pages
	Step 5a: Developers’ Comments
	Step 5b: Write the WEB-INF/web.xml Web Application Deployment Descriptor



	Index

