
BEA WebLogic
Integration™

Running the B2B
Integration Samples

Release 2.1 Service Pack 1
Document Date: January 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Running the B2B Integration Samples

Part Number Date Software Version

NA January 2002 2.1 Service Pack 1

Running the B2B Integration Samples iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Getting Started
Overview of Samples .. 1-1

Preparing to Run the Samples ... 1-2

Switching the Default Database ... 1-3

WebLogic Integration Domains ... 1-4

Browser Proxy Settings.. 1-4

2. Hello Partner Sample
Overview of the Hello Partner Sample.. 2-1

What the Sample Demonstrates ... 2-1

Hello Partner Sample Scenario Logic .. 2-2

Before Running the Hello Partner Sample .. 2-4

Running the Hello Partner Sample .. 2-4

How the Sample Works... 2-9

Documents Exchanged... 2-9

Request Message from Requestor Role .. 2-10

Reply Message from Replier Role .. 2-10

XML Message Over JMS from Servlet to
Trigger Private Workflow.. 2-10

iv Running the B2B Integration Samples

XML Message Over JMS from Private Workflow to
Servlet with Result ... 2-10

XML Event from Replier Public Workflow to
Replier Private Workflow .. 2-11

XML Event from Replier Private Workflows to
Replier Public Workflows.. 2-11

Requestor Private Workflow .. 2-11

Requestor Public Workflow ... 2-13

Replier Public Workflow.. 2-15

Replier Private Workflow... 2-17

3. Channel Master Sample
Channel Master Sample Overview .. 3-1

Before Running the Channel Master Sample .. 3-3

Running the Channel Master Sample .. 3-4

Workflows Behind the Channel Master Sample ... 3-8

Viewing the SupplierOnePrivate Workflow .. 3-15

Multicast or Broadcast Messages ... 3-23

4. RosettaNet 2.0 Security Sample
Introduction to the RosettaNet 2.0 Security Sample ... 4-2

RosettaNet 2.0 Security Sample Overview ... 4-3

Before Running the RosettaNet 2.0 Security Sample.. 4-4

Running the RosettaNet 2.0 Security Sample ... 4-5

Workflows Behind the RosettaNet 2.0 Security Sample................................... 4-8

A Peek at the Workflows.. 4-11

5. Trading Partner Zeroweight Client Sample
Overview of the Zeroweight Client Sample .. 5-2

Purpose of the Sample .. 5-2

Zeroweight Client Sample Scenario and Diagrams.................................... 5-3

Before Running the Zeroweight Client Sample .. 5-5

Running the Zeroweight Client Sample .. 5-5

Running the B2B Integration Samples v

Creating and Using Zeroweight Clients .. 5-17

Zeroweight Client Source Files.. 5-17

Using the JSP Tag Library ... 5-19

Configuring a Zeroweight Client ... 5-19

Configuring a File-Sharing Client.. 5-20

Edit the WebLogic Integration Configuration File 5-20

Edit the File-Sharing Configuration File .. 5-20

Configuring a Browser Client .. 5-22

Configuring an HTTP Browser Client .. 5-22

Configuring an HTTPS (SSL) Browser Client 5-24

How to Recompile the Sample .. 5-24

6. Messaging API Sample
Overview of the Messaging API Sample .. 6-1

Before Running the Messaging API Sample.. 6-2

Running the Messaging API Sample... 6-3

Tracing the Execution Flow ... 6-6

7. ebXML Sample
Overview of the ebXML Sample .. 7-1

Before Running the ebXML Sample ... 7-3

Running the ebXML Sample... 7-3

How the Sample Works... 7-8

Introduction .. 7-8

Loading the Repository Data.. 7-9

Understanding the Repository Data ... 7-10

Business Protocol Definitions... 7-10

Logic Plug-Ins... 7-11

Trading Partners .. 7-12

Conversation Definitions .. 7-12

Collaboration Agreements .. 7-13

Understanding the Workflows ... 7-14

Using the WebLogic Integration Studio ... 7-14

Understanding the ebXMLConversationInitiator Workflow 7-16

Understanding the ebXMLConversationResponder Workflow........ 7-24

vi Running the B2B Integration Samples

A. JSP Tag Reference
SendmsgTag ... A-2

ChecknewmsgTag .. A-3

CheckallmsgTag... A-4

ReadmsgTag... A-5

DeletemsgTag... A-6

DeleteallmsgTag... A-7

CreatemboxTag .. A-8

RemovemboxTag ... A-9

Running the B2B Integration Samples vii

About This Document

This document describes the business-to-business (B2B) integration samples delivered
with WebLogic Integration. It provides configuration information and instructions for
running and verifying each sample.

This document includes the following topics:

n Chapter 1, “Getting Started,” describes the WebLogic Integration B2B samples,
and discusses basic installation and configuration.

n Chapter 2, “Hello Partner Sample,” demonstrates communication using the
default XOCP messaging protocol.

n Chapter 3, “Channel Master Sample,” demonstrates both point-to-point and
multicast (broadcast) communications using the XOCP business protocol
between WebLogic Integration trading partners.

n Chapter 4, “RosettaNet 2.0 Security Sample,” shows how WebLogic Integration
can be used to implement RosettaNet 2.0 PIP 3A2 and PIP 0A1 using
workflows.

n Chapter 5, “Trading Partner Zeroweight Client Sample,” describes how to
configure and use the browser and file-sharing client samples.

n Chapter 6, “Messaging API Sample,” shows how the WebLogic Integration
Messaging API can be used.

viii Running the B2B Integration Samples

What You Need to Know

This document is intended for independent software vendors (ISVs) who are interested
in extending BEA WebLogic Integration. We assume you are familiar with the BEA
WebLogic Integration platform and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Integration
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Running the B2B Integration Samples ix

Related Information

To learn how to use BEA WebLogic Integration to meet your company’s needs, see
the following documents:

n WebLogic Integration documentation at the following URL:

http://edocs.bea.com

n Sun Microsystems, Inc. Java site at the following URL:

http://java.sun.com/

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate which release of the WebLogic Integration
documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSupport at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

x Running the B2B Integration Samples

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

Running the B2B Integration Samples xi

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Running the B2B Integration Samples

Running the B2B Integration Samples 1-1

CHAPTER

1 Getting Started

The business-to-business (B2B) integration samples are provided to help you
understand how B2B integration functionality works in WebLogic Integration. In
addition, successful installation and setup of the Hello Partner sample provides
verification that you have successfully installed WebLogic Integration and configured
it properly.

This section includes the following topics:

n Overview of Samples

n Preparing to Run the Samples

Overview of Samples

With the exception of the Hello Partner sample, which verifies the successful use of
the XOCP messaging protocol, the samples demonstrate B2B integration solutions to
plausible business problems. The following samples are described in this document:

n Hello Partner Sample—Demonstrates the basic handshake necessary for
communication. The Hello Partner sample uses XOCP, the default messaging
protocol for B2B integration.

n Channel Master Sample—Demonstrates how a large trading partner uses
WebLogic Integration to automate its supply chain. The sample shows both
point-to-point and multicast (broadcast) communications using the XOCP
business protocol between WebLogic Integration trading partners.

1 Getting Started

1-2 Running the B2B Integration Samples

n RosettaNet 2.0 Security Sample—Demonstrates how WebLogic Integration can
be used to implement RosettaNet 2.0 PIP 3A2 and PIP 0A1 using workflows.
This sample uses the WebLogic Integration security features required for
RosettaNet 2.0 support: two-way SSL authentication, digital signatures, data
encryption, and nonrepudiation.

n Trading Partner Zeroweight Client Sample—Illustrates a request-reply scenario
in which two trading partners without a B2B integration installation use the B2B
integration mailbox interface. Two types of zeroweight client communication are
simulated for this demonstration:

l Browser-based client—Uses XML and JMS to prepare, deliver, and collect
information

l File-sharing client—Uses a third-party file-sharing server to exchange
messages

n Messaging API Sample—Shows how the WebLogic Integration Messaging API
can be used. Specifically, it demonstrates the use of two message-delivery
mechanisms available with the Messaging API and the logic plug-in feature of
WebLogic Integration B2B integration.

n ebXML Sample—Demonstrates how WebLogic Integration can be used to
implement an ebXML business transaction between two trading partners, each of
which deploys WebLogic Integration. Specifically, it shows the design and use
of two workflows, one for each trading partner. The workflows choreograph the
exchange of ebXML-based business messages between the trading partners.

Preparing to Run the Samples

Before you can run the B2B samples, you must install WebLogic Integration and
configure the samples. If you have not already done so, complete the following steps:

1. Install WebLogic Integration.

For instructions, see Installing BEA WebLogic Integration. When prompted to
choose an install set, select WebLogic Integration Full Installation With Samples
(the default selection).

Preparing to Run the Samples

Running the B2B Integration Samples 1-3

The WebLogic Integration installer prompts you to specify the databases to
configure for the samples and production domains. The samples database
information is used when you configure the samples.

2. Configure and start the server in the samples domain.

For instructions, see “Configuring and Starting the Samples Domain” in “Getting
Started” in Starting, Stopping, and Customizing BEA WebLogic Integration.

When you execute the RunSamples command as described in “Configuring and
Starting the Samples Domain,” the following actions are performed:

n The samples database is created.

n The sample repository data is bulk loaded into the database.

n WebLogic Server is started and the workflows are imported. A browser is started
and the samples launcher page is displayed.

Note: To display the samples launcher page on a UNIX system, your PATH
environment variable must include the directory in which the Netscape
executable (netscape) resides. For additional Web browser configuration
requirements, see “Web Browser Configuration Requirements” in “WebLogic
Integration Administration and Design Tools” in Starting, Stopping, and
Customizing BEA WebLogic Integration.

Once you have configured the samples and started the server in the samples domain,
any additional steps required to configure a particular sample are provided in the
documentation for that sample. Instructions are provided for both Windows and UNIX
systems.

Switching the Default Database

You can use any supported database with the samples domain. The WebLogic
Database Configuration Wizard can be used to update your samples domain to a new
database. If you would like to update the samples domain to use a new database,
complete the following steps:

1. Use the WebLogic Integration Database Configuration Wizard to switch to the new
database.

1 Getting Started

1-4 Running the B2B Integration Samples

For instructions, see the “Using the Database Configuration Wizard” and
“Specifying a New Database for a Domain” topics in “Customizing WebLogic
Integration” in Starting, Stopping, and Customizing BEA WebLogic Integration.

2. Execute the RunSamples command to configure the new database, start the
samples domain, and display the samples launcher in your Web browser.

For instructions, see “Configuring and Starting the Samples Domain” in “Getting
Started” in Starting, Stopping, and Customizing BEA WebLogic Integration.

WebLogic Integration Domains

As described in “Getting Started” in Starting, Stopping, and Customizing BEA
WebLogic Integration, a domain is a set of interrelated WebLogic Server resources
defined in a single configuration file. A special WebLogic Server domain is set up to
run all WebLogic Integration samples that require only one server. This domain, which
is fully configured after installation, but is not yet populated, resides in the
WLI_HOME/config/samples directory. The Samples domain uses the database chosen
during installation, or when the WebLogic Integration Database Configuration Wizard
was last run as described in “Switching the Default Database.”

For additional information about using the preconfigured domains installed with
WebLogic Integration, see “Getting Started” in Starting, Stopping, and Customizing
BEA WebLogic Integration.

Browser Proxy Settings

If your browser is unable to connect to the URL for the samples launcher, it may be
using a proxy server that prevents you from connecting to your local WebLogic Server.
If this condition exists, the following error message is displayed:

The requested URL could not be retrieved

To bypass the proxy server, change the browser proxy settings so that the browser does
not use the proxy server to access the servlet. The procedure for making this change is
browser-dependent:

Preparing to Run the Samples

Running the B2B Integration Samples 1-5

n For Internet Explorer, choose Tools→Internet Options→Connections→LAN
Settings. The Local Area Network (LAN) Settings Dialog box is displayed.
Select the following option: Bypass proxy server for local addresses.

n For Netscape, choose Edit→Preferences→Advanced→Proxies→View. In the
Exceptions text field, specify your localhost:listening_port. (The value of
listening_port should be the listening port number specified in the
config.xml file.) The default is 7001.

1 Getting Started

1-6 Running the B2B Integration Samples

Running the B2B Integration Samples 2-1

CHAPTER

2 Hello Partner Sample

The Hello Partner sample demonstrates communication using the default messaging
protocol: XOCP. This section discusses the following topics:

n Overview of the Hello Partner Sample

n Before Running the Hello Partner Sample

n Running the Hello Partner Sample

n How the Sample Works

Overview of the Hello Partner Sample

The Hello Partner sample demonstrates business communications between two trading
partners using WebLogic Integration.

What the Sample Demonstrates

The Hello Partner sample demonstrates how two trading partners send business
messages using the XOCP protocol. For each trading partner, the sample demonstrates
the following:

n Public process—A public process that handles communication between the
trading partners is shown. The public process workflows in this sample use the
XOCP protocol to send messages between trading partners.

2 Hello Partner Sample

2-2 Running the B2B Integration Samples

n Private process—A private process for each trading partner that processes
message content is shown.

This sample also illustrates the preferred method of handling trading partner message
traffic. Public processes are used to manage trading partner message traffic, while
private processes are used for message creation, message processing, and links to
outside applications.

Hello Partner Sample Scenario Logic

The Hello Partner sample scenario involves two trading partners: one requestor and
one replier, as shown in Figure 2-1. The following figure shows the high-level
interactions between the different Hello Partner workflows.

Figure 2-1 Interactions Among Hello Partner Workflows

Notes: The public workflows are shaded in gray in the preceding figure.

The following sequence summarizes the main events in this scenario:

1. The RunSamples script is started, with the following results:

a. The sample instance of the WebLogic Server is started.

b. A browser opens and displays the samples launcher page.

c. On the samples launcher page, the Hello Partner link is clicked: the Hello
Partner main HTML page is displayed.

Overview of the Hello Partner Sample

Running the B2B Integration Samples 2-3

2. Values for the integers are selected from the menu. The Click Here to Begin link
is selected. Consequently, the Hello Partner main HTML page sends an HTTP
request to the HelloPartnerServlet. The HTTP request contains the selected
integer values.

3. The HelloPartnerServlet sends an JMS XML event with the integer values.

4. The preceding JMS XML event triggers the RequestorPrivate workflow to start.
The RequestorPrivate workflow composes the MultiplyRequestXML workflow
variable and starts the RequestorPublic workflow, passing in the
MultiplyRequestXML workflow variable. The RequestorPublic workflow then
waits for a response from the replier.

5. The ReplierPublic workflow receives the message and extracts integer values
from the MultiplyRequestXML workflow variable. It puts these values into the
MultiplyInputsXML workflow variable and posts an internal XML event.

6. The ReplierPrivate workflow is triggered by the preceding internal XML event.
The ReplierPrivate workflow multiplies the two integers, places the result in the
MultiplyOutputsXML workflow variable, and post an internal XML event with
the MultiplyOutputsXML workflow variable.

7. The ReplierPublic workflow, which was waiting for the preceding XML event,
creates a MultiplyReplyMessage input message workflow variable and sends it
with a business message.

8. The RequestPublic workflow, which was waiting for the preceding business
message, extracts values from the MultiplyReplyMessage workflow variable,
creates the MultiplyReplyXML workflow variable, and posts it with an internal
XML event.

9. The RequestPrivate workflow, which was waiting for the preceding XML event,
creates the ResultXMLForJSP workflow variable and posts it with an external
XML event.

10. The HelloPartnerServlet receives the XML event, extracts the result of the
multiplication of the two integers from the XML, and displays it in the browser.

2 Hello Partner Sample

2-4 Running the B2B Integration Samples

Before Running the Hello Partner Sample

Before running the Hello Partner sample, complete the following steps:

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the Hello Partner Sample

To run the Hello Partner sample:

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape (netscape) executable resides.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv.sh

d) Run the RunSamples script:

Running the Hello Partner Sample

Running the B2B Integration Samples 2-5

cd samples/bin
RunSamples

Warning: For UNIX systems, the directory in which the netscape executable
resides must be included in your PATH environment variable. If it is not
included, the samples launcher page cannot be displayed.

2. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

The WebLogic Integration repository has already been
created and populated, possibly from a previous run
of this RunSamples script. Do you want to destroy all the
current data in the repository and create and populate the
WebLogic Integration repository, again? Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of the WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of the
WebLogic Server. When you answer Y, the RunSamples script destroys all the
data currently in the repository and loads an unaltered version of the sample data
into the repository. Answer Y only when the current sample data has been altered
or removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of the WebLogic Server as a
background process and the samples launcher page is displayed.

2 Hello Partner Sample

2-6 Running the B2B Integration Samples

Figure 2-2 Samples Launcher Page

3. Click the link for Hello Partner, listed under Sample Applications in the left pane
of the samples launcher page. The Hello Partner sample is displayed in the right
pane.

Running the Hello Partner Sample

Running the B2B Integration Samples 2-7

Figure 2-3 Hello Partner Sample Launcher Page

4. Select two numbers using the radio buttons. Click Start Sample.

2 Hello Partner Sample

2-8 Running the B2B Integration Samples

Figure 2-4 Hello Partner Sample Result Page

5. If you want to run more B2B samples at this time, keep the samples launcher
page open and keep the WebLogic Server running.

If you do not want to run more B2B samples at this time, exit from your browser
and shut down the WebLogic Server by completing the procedure appropriate for
your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples/bin
stopWebLogic

How the Sample Works

Running the B2B Integration Samples 2-9

How the Sample Works

A total of four workflows are used in this sample. Two public workflows manage the
requestor’s and replier’s sides of the XOCP message exchange. One private workflow
connects to the servlet and the requestor’s public workflow; another creates the
replier’s reply data.

The following sections provide an overview of this process and describe each type of
workflow in detail:

n Documents Exchanged

n Requestor Private Workflow

n Requestor Public Workflow

n Replier Public Workflow

n Replier Private Workflow

Documents Exchanged

The following XML documents are used in the Hello Partner sample:

n Request Message from Requestor Role

n Reply Message from Replier Role

n XML Message Over JMS from Servlet to Trigger Private Workflow

n XML Message Over JMS from Private Workflow to Servlet with Result

n XML Event from Replier Public Workflow to Replier Private Workflow

n XML Event from Replier Private Workflows to Replier Public Workflows

The document type definitions (DTDs) for these documents are located in the
%WLI_HOME%\config\samples directory for Window systems and the
$WLI_HOME/config/samples directory for UNIX systems.

2 Hello Partner Sample

2-10 Running the B2B Integration Samples

Request Message from Requestor Role

The following XML message is sent by the requestor. It includes the two numbers to
be multiplied:

<multiply-request>
<integer-one>5</integer-one>
<integer-two>7</integer-two>

</multiply-request>

The message conforms to the multiply-request.dtd.

Reply Message from Replier Role

The following XML message, sent by the replier, contains the multiplication product,
as well as a generated message:

<multiply-reply>
<integer-product>35</integer-product>
<note>Dear RequestorPartner: Here is the product of 7 and 5,

 from ReplierPartner to RequestorPartner.</note>
</multiply-reply>

The message conforms to the multiply-reply.dtd.

XML Message Over JMS from Servlet to Trigger Private Workflow

The following message is sent over JMS by the servlet. Its arrival triggers the
requestor’s private workflow:

<from-multiply-request-jsp-to-workflow light-weight=”false”>
<integer-one>5</integer-one>
<integer-two>7</integer-two>

</from-multiply-request-jsp-to-workflow>

The message conforms to the from-multiply-request-jsp-to-workflow.dtd.

XML Message Over JMS from Private Workflow to Servlet with Result

The following message is sent, over JMS, from the requestor’s private workflow to the
servlet. It contains the product of the multiplication, as well as a text message:

<from-workflow-to-multiply-request-jsp>
<integer-product>35</integer-product>

How the Sample Works

Running the B2B Integration Samples 2-11

<note>Dear RequestorPartner: Here is the product of 7 and 5
 from ReplierPartner to RequestorPartner.</note>
</from-workflow-to-multiply-request-jsp>

The message conforms to the from-workflow-to-multiply-request-jsp.dtd.

XML Event from Replier Public Workflow to Replier Private Workflow

The following XML event contains the request input message with four parameters
(the two multiplication inputs, the name of the requestor, and the name of the replier):

<multiply-inputs>
<integer-one>5</integer-one>
<integer-two>7</integer-two>
<requestor-name>PartnerRequestor</requestor-name>
<replier-name>PartnerReplier</replier-name>

</multiply-inputs>

The message conforms to the multiply-inputs.dtd.

XML Event from Replier Private Workflows to Replier Public Workflows

The following XML event contains the reply output of the private workflow:

<multiply-outputs>
<integer-product>35</integer-product>
<note>Dear RequestorPartner: Here is the product of 7 and 5

 from ReplierPartner to RequestorPartner.</note>
</multiply-outputs>

The message conforms to the multiply-outputs.dtd.

Requestor Private Workflow

The requestor private workflow receives the initial request from the servlet, creates a
message of the appropriate type, and sends it to the public workflow for transmission.
When it receives the reply, it processes the reply message, and sends the results to the
servlet. This process is illustrated by the workflow shown in the following figure.

2 Hello Partner Sample

2-12 Running the B2B Integration Samples

Figure 2-5 Requestor Private Workflow

An XML event received from the servlet triggers the workflow.
The XML event is of the form
<from-multiply-request-jsp-to-workflow>, as
discussed in “XML Message Over JMS from Servlet to Trigger
Private Workflow.” The Start node extracts the conversion
string from XML, creates a <multiply-request>
document, and stores it in a workflow variable.

How the Sample Works

Running the B2B Integration Samples 2-13

Requestor Public Workflow

The Requestor public workflow is initiated by the private workflow. The Requestor
public workflow receives a workflow variable from the private workflow. It then
creates a message with the request XML, sends the message to the Replier, waits for a
response, extracts the response XML from the response message, and then passes the
response to the private workflow for processing. The workflow shown in the following
figure illustrates this process.

The Action node starts the public workflow and passes it a
workflow variable containing the <multiply-request>
document.

The Event node waits for a <multiply-reply> document.
When the <multiply-reply> document is received, the
conversion string is extracted from it. A
<from-workflow-to-multiply-request-jsp>
document is created and sent to the servlet.

A Done node ends the workflow.

2 Hello Partner Sample

2-14 Running the B2B Integration Samples

Figure 2-6 Requestor Public Workflow

This workflow is initiated from the private workflow. The
private workflow passes in the <multiply-request>
document to this workflow. The Start node extracts the
message string and stores it in a workflow variable.

How the Sample Works

Running the B2B Integration Samples 2-15

Replier Public Workflow

The replier public workflow is initiated upon receipt of the requestor’s message. It
receives the message, extracts the request XML from the message, publishes an XML
event containing the request XML to trigger the replier private workflow, receives an
XML event back from the replier private workflow, and sends a message containing
the response XML back to the requestor as a reply. This process is illustrated by the
workflow shown in the following figure.

An Action node sends the <multiply-request>
document, inside an XOCP message, to the replier role,
specifying PartnerReplier as the name of the trading
partner.

An Event node waits for an XOCP reply message from
the replier. When the reply arrives, it extracts the
<multiply-reply> document from the message and
stores it in a workflow variable.

An Action node publishes the <multiply-reply>
document as an XML Event.

A Done node ends the workflow.

2 Hello Partner Sample

2-16 Running the B2B Integration Samples

Figure 2-7 Replier Public Workflow

The workflow is started upon receipt of a
<multiply-request> document. The Start node
extracts the content from the message and stores it in a
workflow variable. The format of the workflow variable
is <multiply-input>, using the values from inside the
<multiply-request> document, and the sender and
replier names from within the message.

An Action node publishes the <multiply-inputs>
document as an XML Event, initiating the private
workflow.

How the Sample Works

Running the B2B Integration Samples 2-17

Replier Private Workflow

The replier private workflow is initiated upon receipt of the XML Event containing the
request XML from the replier public workflow. It receives the request, processes the
data, generates a reply in an XML document, and sends the reply XML back to the
replier public workflow using an XML Event.

An Event node waits for a response, which it receives as
an XML Event containing a <multiply-outputs>
document.

An Action node creates a <multiply-reply> document
based on the <multiply-outputs> document. It stores
the result in an XML workflow variable.

An Action node sends the message containing the
<multiply-reply> document to the requestor, using
XOCP.

A Done node ends the workflow.

2 Hello Partner Sample

2-18 Running the B2B Integration Samples

Figure 2-8 Replier Private Workflow

The workflow is started when an XML Event containing
a document of type <multiply-inputs> is received.
The Start node stores the document in a workflow
variable.

The Action node creates an integer workflow variable
containing the product obtained by multiplying the input
integers from the <multiply-inputs> document.

How the Sample Works

Running the B2B Integration Samples 2-19

The Action node creates a document of type
<multiply-outputs> as a workflow XML variable.
The values from the integer and note workflow variables
in steps 2 and 3 are stored in this document.

The Action node publishes the <multiply-outputs>
document as an XML Event.

A Done node ends the workflow.

2 Hello Partner Sample

2-20 Running the B2B Integration Samples

Running the B2B Integration Samples 3-1

CHAPTER

3 Channel Master
Sample

The Channel Master sample shows how a large trading partner uses WebLogic
Integration to automate its supply chain. The sample demonstrates both point-to-point
and multicast (broadcast) communications using the XOCP business protocol between
WebLogic Integration trading partners.

This section includes the following topics:

n Channel Master Sample Overview

n Before Running the Channel Master Sample

n Running the Channel Master Sample

n Workflows Behind the Channel Master Sample

Channel Master Sample Overview

The following sequence summarizes the communication between the trading partners
for this sample:

1. One trading partner, the channel master buyer, broadcasts a query for pricing and
availability (QPA) of a particular item. In this sample, two supplier trading partners
are listening for queries, so two supplier trading partners receive the query. (A
broadcast communication can be received by many trading partners. In this sample

3 Channel Master Sample

3-2 Running the B2B Integration Samples

only two suppliers are listening, so only two receive the query.) This action
demonstrates broadcast or multicast communication. In the following figure, the
envelopes labeled QPA represent XML messages.

In this case, an XML message containing a query for pricing and availability
(QPA) is passed from one trading partner to another. This illustration is a simple
representation of trading partners. For a more detailed representation, see
“Multicast or Broadcast Messages” on page 3-23.

2. The two suppliers send the buyer reply quotes, each of which contains the price
and availability of the requested item. In this step, the two suppliers have
point-to-point communications with the buyer.

Before Running the Channel Master Sample

Running the B2B Integration Samples 3-3

3. The buyer selects a supplier and sends a purchase order (PO) to that supplier.
This action provides another example of point-to-point communication.

4. The supplier replies with a purchase order acknowledgment message.

Before Running the Channel Master Sample

Before running the Channel Master sample, complete the following steps:

3 Channel Master Sample

3-4 Running the B2B Integration Samples

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the Channel Master Sample

To run the Channel Master sample, complete the following steps:

Note: If the instance of the WebLogic Server started by the RunSamples script is
running, skip to step 3.

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape executable (netscape) resides.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv.sh

d) Run the RunSamples script:

cd samples/bin
RunSamples

Running the Channel Master Sample

Running the B2B Integration Samples 3-5

Note: For UNIX systems, the directory in which the netscape executable
resides must be included in your PATH environment variable. If it is not
included, the samples launcher page cannot be displayed.

2. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

The WebLogic Integration repository has already been created
and populated, possibly from a previous run of this
RunSamples script. Do you want to destroy all the current
data in the repository and create and populate the
WebLogic Integration repository, again?
Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of the WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of the
WebLogic Server. When you answer Y the RunSamples script destroys all the
data currently in the repository and loads an unaltered version of the sample data
into the repository. Answer Y only when the current sample data has been altered
or removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of the WebLogic Server (as a
background process) and the samples launcher page is displayed.

Unlike most of the WebLogic Integration B2B samples, the Channel Master
sample is not started from the samples launcher page. It does, however, require
the sample instance of the WebLogic Server to be running. Until you complete
this procedure, make sure that this instance of WebLogic Server and the browser
with the sample launcher page continue to run.

3. Log in to the WebLogic Integration Worklist using the following information:

l Login: joe

l Password: password

l URL: t3//localhost:7001

The main WebLogic Integration Worklist window is displayed.

4. Run the sample using the WebLogic Integration Worklist.

3 Channel Master Sample

3-6 Running the B2B Integration Samples

a. Expand the drop-down list in the upper-right corner of the Worklist window.
Select ORG.

b. Select the joe tab.

c. From the Worklist menu bar, choose Workflow→Start a Workflow. The Start
Workflow dialog box is displayed.

d. Select the BuyerPrivate workflow. Click OK.

Running the Channel Master Sample

Running the B2B Integration Samples 3-7

e. To verify that the sample has run successfully, look for the following message
in the myserver.log file:

CHANNEL MASTER SAMPLE RAN SUCCESSFULLY!!!

The myserver.log file is located in the
%WLI_HOME%\config\samples\logs directory on a Windows platform and
in the $WLI_HOME/config/samples/logs directory on a UNIX platform.

5. Exit the WebLogic Integration Worklist: From the Worklist menu bar, choose
File→Exit.

6. If you want to run more B2B samples or complete the steps described in
“Viewing the SupplierOnePrivate Workflow” on page 3-15 at this time, keep the
samples launcher page open and keep the WebLogic Server running.

If you do not want to run more B2B samples or complete the steps described in
“Viewing the SupplierOnePrivate Workflow” on page 3-15 at this time, exit
from your browser and shut down the WebLogic Server by completing the
procedure appropriate for your platform:

3 Channel Master Sample

3-8 Running the B2B Integration Samples

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples
stopWebLogic

Workflows Behind the Channel Master
Sample

The following figure shows the high-level interactions between the different Channel
Master workflows.

Figure 3-1 Interactions Among Channel Master Workflows

The following figure is the first of several that trace the execution flow of the Channel
Master sample.

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-9

Figure 3-2 Tracing the Workflows: Steps 1-4

The following sequence provides details about each of the steps indicated by a
corresponding number in Figure 3-2:

1. The user invokes the WebLogic Integration Worklist utility, which starts the
BuyerPrivate workflow.

2. The BuyerPrivate workflow creates the QPA request XML document and stores
it in a workflow variable.

3. The BuyerPrivate workflow starts the CMBuyerQPAPublic workflow.

4. The CMBuyerQPAPublic workflow broadcasts a QPA business message based
on the QPA request document to all the suppliers. This broadcast causes two
instances of the CMSupplierQPAPublic workflows to start: one for the
PartnerSupplierOne trading partner and one for the PartnerSupplierTwo trading
partner.

3 Channel Master Sample

3-10 Running the B2B Integration Samples

Two CMSupplierQPAPublic workflow instances are started because each
trading partner has a collaboration agreement with the ChannelMasterHub
trading partner that specifies the following: when a workflow receives a business
message with the conversation definition name of CMQPAConversation and the
conversation definition of 1.1, it must use the role name of CMSupplier.

The following listing shows the collaboration agreement between the
ChannelMasterHub and the PartnerSupplierOne trading partner. (For more
information about why the ChannelMasterHub trading partner is necessary, see
“Multicast or Broadcast Messages” on page 3-23.)

Listing 3-1 Collaboration Agreement Section of Import Repository Data File

<collaboration-agreement
name="CMQPAConversation|1.1|PartnerSupplierOne|ChannelMasterHub"
global-identifier="CMQPAConversation|1.1|PartnerSupplierOne|ChannelMasterHub"
version="1.1"
status="ENABLED"
conversation-definition-name="CMQPAConversation"
conversation-definition-version="1.1">
<party
trading-partner-name="PartnerSupplierOne"
party-identifier-name="PartnerSupplierOnePartyId"
delivery-channel-name="PartnerSupplierOneDeliveryChannel"
role-name="CMSupplier"/>

<party
trading-partner-name="ChannelMasterHub"

party-identifier-name="ChannelMasterHubPartyId"
delivery-channel-name="ChannelMasterHubDeliveryChannel"
role-name="CMBuyer"/>

</collaboration-agreement>

This listing is an excerpt from the BulkLoaderData.xml file for the Channel
Master sample. This file is used to import the data needed for the sample into the
WebLogic Integration repository. It is located in the
%WLI_HOME%\samples\ChannelMaster\lib directory on a Windows system
and in $WLI_HOME/samples/ChannelMaster/lib on a UNIX system.
Repository data can also be entered via the WebLogic Integration B2B Console.

A similar collaboration agreement for the PartnerSupplierTwo trading partner, in
the import repository data file, specifies the following: when a workflow
receives a business message with the conversation definition name of

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-11

CMQPAConversation and the conversation definition of 1.1, it must use the role
name of CMSupplier.

The conversation definition for CMQPAConverstion specifies that for the
CMSupplier role, an instance of the CMSupplierQPAPublic workflow should be
started, as shown in the following listing.

Listing 3-2 Conversation Definition in the Import Repository Data File

<conversation-definition
name="CMQPAConversation"
version="1.1"
business-protocol-name="XOCP"
protocol-version="1.1">
<role

name="CMBuyer"
wlpi-template="CMBuyerQPAPublic">
<process-implementation wlpi-org="ORG1" />

</role>
<role

name="CMSupplier"
wlpi-template="CMSupplierQPAPublic">
<process-implementation wlpi-org="ORG1" />

</role>
</conversation-definition>

The following figure shows the execution flow for steps 5-7. Each step is
described in text after the figure.

3 Channel Master Sample

3-12 Running the B2B Integration Samples

Figure 3-3 Tracing the Workflows: Steps 5-7

5. Each instance of the CMBuyerQPAPublic workflow posts an internal XML
event. When the CMSupplierQPAPublic workflow instance for
PartnerSupplierOne posts an internal XML event, this event triggers the

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-13

SupplierOnePrivate workflow to start. When the CMSupplierQPAPublic
workflow instance for PartnerSupplierTwo posts an internal XML event, this
event triggers the SupplierTwoPrivate workflow to start.

The PartnerSupplierOne trading partner triggers only the SupplierOnePrivate
workflow. It does not trigger the SupplierTwoPrivate workflow because the start
node for the SupplierOnePrivate workflow specifies that the workflow should
start only if the triggering event comes from PartnerSupplierOne. For detailed
directions on opening the SupplierOnePrivate workflow and viewing the
conditions in which the SupplierOnePrivate workflow can be started, see
“Viewing the SupplierOnePrivate Workflow” on page 3-15.

6. Both the SupplierOnePrivate and SupplierTwo Private workflows extract variable
information from the QPA request, create QPA XML replies, and then post QPA
XML reply messages as internal XML events.

7. Each instance of the CMSupplierQPAPublic workflow waits for a QPA XML
reply message. Once a reply message is received, the CMSupplierQPAPublic
workflow constructs a business message from the QPA XML reply message and
sends it.

The following figure shows the execution flow for steps 8-16. Each step is
described in text after the figure.

3 Channel Master Sample

3-14 Running the B2B Integration Samples

Figure 3-4 Tracing the Workflows: Steps 8-16

8. The CMBuyerQPAPublic workflow sends an aggregate QPA XML reply
message. The message contains price and availability information from each
supplier.

9. The BuyerPrivate workflow that was waiting for the QPA XML reply begins
execution again and chooses a supplier based on the QPA XML reply message.

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-15

10. The BuyerPrivate workflow creates a purchase order XML document and stores
it in the POXml XML workflow variable.

11. The BuyerPrivate workflow starts the CMBuyerPOPublic workflow.

12. The CMBuyerPOPublic workflow creates and sends the purchase order business
message. Then it waits for the purchase order acknowledgment receipt.

13. The CMSupplierPOPublic workflow extracts the purchase order information
from the passed-in POMessage workflow variable, constructs the POXml XML
workflow variable, posts the XML event, and then waits for the purchase order
acknowledgment. PartnerSupplierTwo offers the best price and availability, so it
is chosen as the supplier.

14. The SupplierTwo Private workflow extracts the variable information from the PO
request, creates a PO XML reply, and then posts the PO XML reply message as
an internal XML event.

15. The CMSupplierPOPublic workflow waits for a purchase order acknowledgment.
Once such an acknowledgment is received, the CMSupplierPOPublic workflow
sends an XML acknowledgment message back to the CMBuyerPOPublic
workflow.

16. The CMBuyerPOPublic workflow waits for a purchase order acknowledgment.
Once such an acknowledgment is received, the CMBuyerPOPublic workflow
extracts information from the incoming XML document and then posts the
purchase order XML acknowledgment document.

17. The BuyerPrivate workflow ends. (This step is not shown in Figure 3-4.)

Viewing the SupplierOnePrivate Workflow

The SupplierOnePrivate workflow accepts XML events only from the
PartnerSupplierOne trading partner. To view the SupplierOnePrivate workflow and to
see how the workflow limits the XML events it accepts, complete the following steps:

Note: If the instance of the WebLogic Server started by the RunSamples script is
running, skip to step 3.

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

3 Channel Master Sample

3-16 Running the B2B Integration Samples

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape executable (netscape) resides.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv.sh

d) Run the RunSamples script:

cd samples/bin
RunSamples

Note: For UNIX systems, the directory in which the netscape executable
resides must be included in your PATH environment variable. If it is not
included, the samples launcher page cannot be displayed.

2. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

The WebLogic Integration repository has already been created
and populated, possibly from a previous run of this
RunSamples script. Do you want to destroy all the current
data in the repository and create and populate the
WebLogic Integration repository, again?
Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of the WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of the
WebLogic Server. When you answer Y, the RunSamples script destroys all the
data currently in the repository and loads an unaltered version of the sample data
into the repository. Answer Y only when the current sample data has been altered

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-17

or removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of the WebLogic Server as a
background process and the samples launcher page is displayed.

3. Start the WebLogic Integration Studio by completing the procedure appropriate
for your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Studio.

l UNIX:

cd $WLINT_HOME/bin
studio

4. Log in to the WebLogic Integration Studio using the following information:

l Login: joe

l Password: password

l URL: t3//localhost:7001

The main WebLogic Integration Studio window is displayed.

5. Expand the drop-down list under Organization (in the left pane) and select
ORG1.

3 Channel Master Sample

3-18 Running the B2B Integration Samples

6. Expand the Templates folder in the left pane. A list of all the templates for the
samples are displayed.

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-19

7. Expand the SupplierOnePrivate folder in the left pane.

8. Complete the following steps to open and view an instance of the
SupplierOnePrivate workflow:

a. Right-click the folder, named with a date, that is listed under the
SupplierOnePrivate.

b. Select Open.

A graphical depiction of the workflow is displayed. It shows the start, task,
decision, and event nodes that make up the SupplierOnePrivate workflow.

3 Channel Master Sample

3-20 Running the B2B Integration Samples

9. Double-click the Start node in the top left corner of the right pane.

The Start Properties dialog box is displayed.

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-21

Before this workflow can be started, the expression defined in the Condition
field of the preceding Start Properties dialog box must be equal to true.

10. Double-click the A+B option to the right of the Condition Field. The Expression
Builder dialog box is displayed.

3 Channel Master Sample

3-22 Running the B2B Integration Samples

The specified expression evaluates the XML message received by the workflow
to determine whether the value of the CMQPARequest TPName node is
PartnerSupplierOne. If it is, the expression is true and the workflow is started.

11. If you want to continue running B2B samples or complete the steps in “Viewing
the SupplierOnePrivate Workflow” on page 3-15, keep the samples launcher page
open and the sample instance of the WebLogic Server running.

If you do not want to continue running B2B samples, shut down the sample
instance of the WebLogic Server and exit from the browser in which you are
running the samples launcher page. To shut down the WebLogic Server,
complete the procedure appropriate for your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples
stopWebLogic

Workflows Behind the Channel Master Sample

Running the B2B Integration Samples 3-23

Multicast or Broadcast Messages

Multicasting, or broadcasting of messages is supported only for the XOCP business
protocol and only when messages are routed through a routing proxy delivery channel
(hub). It is not supported for direct point-to-point communication. Consequently, the
PartnerBuyer trading partner in the sample does not send a message directly to the
PartnerSupplierOne and PartnerSupplierTwo trading partners. Instead, it sends the
messages through the ChannelMasterHub trading partner via the routing proxy
delivery channel. The following figure shows how multicast messages are routed
among trading partners.

Caution: For simplicity, all the trading partners in this sample use the same
WebLogic Server instance. In a production environment, the buyer and
each supplier trading partner runs a separate WebLogic Server instance.

3 Channel Master Sample

3-24 Running the B2B Integration Samples

Running the B2B Integration Samples 4-1

CHAPTER

4 RosettaNet 2.0 Security
Sample

The RosettaNet 2.0 Security sample shows how WebLogic Integration can be used to
implement RosettaNet 2.0 PIP 3A2 and PIP 0A1 using workflows. Specifically, it
shows two trading partners exchanging business messages that conform to the
RosettaNet 2.0 PIP 3A2 standard.

This section includes the following topics:

n Introduction to the RosettaNet 2.0 Security Sample

n RosettaNet 2.0 Security Sample Overview

n Before Running the RosettaNet 2.0 Security Sample

n Running the RosettaNet 2.0 Security Sample

n Workflows Behind the RosettaNet 2.0 Security Sample

4 RosettaNet 2.0 Security Sample

4-2 Running the B2B Integration Samples

Introduction to the RosettaNet 2.0 Security
Sample

RosettaNet is a non-profit consortium of companies that creates, implements, and
promotes open e-business process standards. A RosettaNet Partner Interface Process
(PIP) defines business processes between trading partners. PIP 3A2 provides an
automated process that can be used by trading partners to request and provide product
price and availability information.

The RosettaNet 2.0 Security sample demonstrates the implementation of PIP 3A2. It
also implements PIP 0A1, which provides a mechanism for sending failure
notifications. Finally, the sample demonstrates the WebLogic Integration security
features required for RosettaNet 2.0 support: two-way SSL authentication, digital
signatures, data encryption, and nonrepudiation.

For more information about implementing RosettaNet with WebLogic Integration, see
Implementing RosettaNet for B2B Integration. For more information about using
security with the B2B integration functionality of WebLogic Integration, see
Implementing Security with B2B Integration.

RosettaNet publishes several documents that are helpful in understanding the
RosettaNet 2.0 PIPs used in this sample. The following documents and zip files are
available in the Standards section at the RosettaNet Web site
(http://www.rosettanet.org):

n Understanding a PIP Blueprint—Explains how to read a PIP blueprint. Available
under Supporting Documents in the Standards section.

n PIP 3A2 - Request Quote zip file—Contains PIP 3A2 specification information
and DTDs. Available under Standards, PIPs, Cluster 3: Order Management,
Segment 3A: Quote and Order Entry, PIP 3A2: Request Price and Availability,
Version R1.3.

n PIP 0A1 - Notification of Failure zip file—Contains PIP 0A1 specification
information and DTDs. Available under Standards, PIPs, Cluster 0: RosettaNet
Support, Segment 0A: Administrative, PIP 0A1: Nofication of Failure, Version
R1.3.

RosettaNet 2.0 Security Sample Overview

Running the B2B Integration Samples 4-3

RosettaNet 2.0 Security Sample Overview

The following sequence provides a high-level overview of the communications
between PIP 3A2 trading partners in this sample:

1. A customer trading partner sends a price and availability request to a supplier
trading partner. Such a request might be sent, for example, by a computer
manufacturer (customer trading partner) who wants to know whether a supplier can
provide a certain quantity of memory chips at a particular price. The following
figure shows the request being sent. The envelope in the following figure
represents an XML message that contains the price and availability request.

2. The supplier sends the customer an acknowledgment that it has received the
request for price and availability.

3. The supplier sends the customer a response containing the quantity and the price
at which the supplier will sell the requested item.

4 RosettaNet 2.0 Security Sample

4-4 Running the B2B Integration Samples

4. The customer sends a receipt acknowledgment to the supplier, indicating that it
has received the price and availability response.

Before Running the RosettaNet 2.0 Security
Sample

Before running the RosettaNet 2.0 Security sample, complete the following steps:

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-5

Running the RosettaNet 2.0 Security Sample

Unlike the other B2B samples provided with WebLogic Integration, the RosettaNet
2.0 Security sample does not run in the samples domain and is not started from the
samples launcher page.

To run the RosettaNet 2.0 Security sample, complete the following steps:

1. Go to the WebLogic Integration home directory (the directory in which you
installed WebLogic Integration) by entering the appropriate command, as shown in
the following examples:

l Windows:

cd bea\wlintegration2.1

l UNIX:

cd /home/me/bea/wlintegration2.1

2. Run the setenv script to set the top-level WebLogic Integration environment
variables by entering the appropriate command for your platform:

l Windows:

setEnv

l UNIX:

./setenv.sh

3. Go to the RosettaNet 2.0 Security sample bin directory by entering the
appropriate command for your platform:

l Windows:

cd samples\RN2Security\bin

l UNIX:

cd samples/RN2Security/bin

4. Run the RunRN2Security script with one of the following options: cloudscape,
mssql, oracle, or db2.

The database specified on the command line must match the database that you
entered using the installer for the samples domain.

4 RosettaNet 2.0 Security Sample

4-6 Running the B2B Integration Samples

For example, if oracle was specified for the samples domain, enter:

RunRN2Security oracle

Wait until both instances of the WebLogic Server finish booting before starting
the next step. (The RunRN2Security script starts two instances of WebLogic
Server as background processes.) When the servers finish booting, the following
log message is displayed in your WebLogic Server console window:

RunRN2Security execution successful

Warning: Unlike the other B2B samples, the RosettaNet 2.0 Security sample does
not support the use of the WebLogic Integration Database
Configuration Wizard to switch the database to be used with the
samples domain.

Note: The Cloudscape database is not supported on UNIX systems.
The DB2 database is not supported on Windows systems.

5. Start a browser. Load the QPASubmit JSP page by entering the following URL:

http://localhost:7501/QPASubmit.jsp

The QPA (RosettaNet 2.0 PIP 3A2) Submission page is displayed.

Running the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-7

6. Select a Global Product ID, a Product Unit Price, and a Product Quantity. Click
Send QPA.

The following information about the status of the submission and responses to it
are displayed in the browser.

4 RosettaNet 2.0 Security Sample

4-8 Running the B2B Integration Samples

7. If you want to complete the steps described in “A Peek at the Workflows” on
page 4-11 at this time, keep both instances of the WebLogic Server running.

If you do not want to complete the steps described in “A Peek at the Workflows”
on page 4-11 at this time, exit your browser and shut down both instances of the
WebLogic Server by completing the following procedure:

StopRN2Security

Workflows Behind the RosettaNet 2.0
Security Sample

The RosettaNet 2.0 Security sample shows how WebLogic Integration can be used to
implement RosettaNet 2.0 PIP 3A2 and PIP 0A1 using workflows. A public process is
part of a formal contract between trading partners that specifies the content and
semantics of the messages they exchange. The public process between the two public
workflows (PIP3A2_Customer_RN2 and PIP3A2_Supplier_ RN2) is the WebLogic

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-9

Integration implementation of the PIP 3A2 standard. A private process is specific to a
particular business organization and is not visible outside that organization. The public
workflows that implement PIP 3A2 are represented by the shaded rectangles in
Figure 4-1. The private process is represented by the unshaded rectangles in
Figure 4-1.

The following figure shows different interactions between various RosettaNet security
sample workflows.

4 RosettaNet 2.0 Security Sample

4-10 Running the B2B Integration Samples

Figure 4-1 Interactions Among RosettaNet 2.0 Security Workflows

Note: The flow of logic shown in the figure illustrates only the sequence of
workflows that is executed if no errors occur. This sequence does not contain
any error-handling logic. For example, PIP 0A1, the workflow for issuing
failure notifications, is not shown.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-11

Before the flow of execution can start, two instances of the WebLogic Server must be
booted. (One instance for the customer and the other for the supplier.) The flow of
execution for this sample starts at the Browser square in the upper left corner of
Figure 4-1. The following steps trace a portion of the flow of execution:

1. To start the flow of execution, the user launches a browser and loads the
QPASubmit.jsp page.

2. The user then enters values on the JSP page and selects Submit.

3. The selection of Submit triggers an XML document to be sent as a WebLogic
Integration XML event.

4. This event, in turn, triggers the Customer_PrivateWF workflow.

5. The first item in the Customer_PrivateWF workflow is executed.

6. As a result, the first action in the PIP3A2_Cusotmer_RN2 workflow (Send
Business Message with price and availability request) is executed.

To trace the remainder of the execution flow, see Figure 4-1.

A Peek at the Workflows

To peruse the sample private and public workflows, complete the following steps:

1. Go to the WebLogic Integration home directory (the directory in which you
installed WebLogic Integration) by entering the command appropriate for your
platform, as shown in the following examples:

l Windows:

cd bea\wlintegration2.1

l UNIX:

cd /home/me/bea/wlintegration2.1

2. Run the setenv script to set the top-level WebLogic Integration environment
variables by entering the command appropriate for your platform:

l Windows:

setenv

4 RosettaNet 2.0 Security Sample

4-12 Running the B2B Integration Samples

l UNIX:

./setenv.sh

3. Complete this step only if you have not booted two instances of the WebLogic
Server by running the RunRN2Security script as described in “Running the
RosettaNet 2.0 Security Sample” on page 4-5. Boot two instances of the
WebLogic Server by performing the procedure appropriate for your platform and
database, as shown in the following examples:

l Windows:

cd %WLI_HOME%\samples\RN2Security\bin
RunRN2Security oracle

l UNIX:

cd $WLI_HOME/samples/RN2Security/bin
RunRN2Secuirty oracle

Wait until both instances of the WebLogic Server finishes booting before
starting the next step. When the servers finish booting, the following log
message is displayed in your WebLogic Server console window.

RunRN2Security execution successful

4. Start the WebLogic Integration Studio by performing the procedure appropriate
for your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Studio.

l UNIX:

cd $WLINT_HOME/bin
studio

5. Log in to the WebLogic Integration Studio using the following information:

l Login: joe

l Password: password

l URL: t3//localhost:7501

The main WebLogic Integration Studio window is displayed.

6. Expand the drop-down list under Organization (in the left pane) and select
ORG1.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-13

7. Expand the Templates folder in the left pane. A list of all the templates for the
sample is displayed.

8. Expand the Customer_PrivateWF folder in the left pane.

9. Complete the following steps to open and view an instance of the
Customer_PrivateWF workflow:

4 RosettaNet 2.0 Security Sample

4-14 Running the B2B Integration Samples

a. Right-click the folder, named with a date and time, in the Customer_PrivateWF
folder. A menu is displayed.

b. Select Open.

The start, task, decision, and event nodes that make up the Customer_PrivateWF
workflow are displayed.

10. Double-click the Start the Public Workflow task. The Task Properties window is
displayed.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-15

11. Select the Activated tab.

The actions that make up the Start the Public Workflow task are displayed.

12. Double-click Set workflow variable “PIPInput” XML structure to display the Set
Workflow Variable window. This window shows how the PIPInput XML
workflow variable is composed. (In this sample, PIPInput has been composed
already; these steps show how to view it.) PIPInput is a mandatory WebLogic
Integration RosettaNet Input workflow variable. It must be set in the private
workflow before the public workflow is invoked. The format of this variable is
XML that conforms to the RosettaNet PIP DTD for the PIP message being
implemented. In this sample, the XML must conform to the
3A2PriceAndAvailabilityQueryMessageGuidline.dtd. This DTD,
supplied by RosettaNet, defines the content of the first message that the
Customer trading partner passes to the Supplier trading partner. (See step 1 in the
“RosettaNet 2.0 Security Sample Overview” on page 4-3.)

In this sample, the private Customer_PrivateWF workflow sets the contents of
the PIPInput workflow variable and calls the PIP3A2_Customer_RN2 workflow.
The PIP3A2_Customer_RN2 workflow uses the contents of the PIPInput
variable to construct an XML business message. This message is sent to the
PIP3A2_Supplier_RN2 workflow when the Send Business Message Action is
invoked. For a complete list of RosettaNet Template variables, see “RosettaNet
Template Variables” in “Using Workflows with RosettaNet“ in Implementing
RosettaNet for B2B Integration.

13. Expand the following nested nodes in the XML tree:

4 RosettaNet 2.0 Security Sample

4-16 Running the B2B Integration Samples

l Pip3A2PriceAndAvailabilityQuery

l ProductPriceAndAvailabiltyQuery

l ProductPriceAndAvailability

l ProductLineItem

The values of two important nodes are set in the right pane:

l The GlobalPartnerRoleClassificationCode XML node is set to the string
Customer.

l The ProductQuanity node is set to the value of the ProductQuantity
workflow variable. The product quantity (the number of items requested by
the customer) is set on the QPASubmit JSP page and passed to the workflow
through the ProductQuantity workflow variable.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-17

Note: This procedure is just one way of populating the PIPInput variable. The
PIPInput variable can also be populated by reading in values from a file or
by passing in the entire contents of an XML document.

14. Click Cancel in the Set Workflow Variable window.

15. In the Task Properties window, double-click Start Public Workflow on the
Activated tab.

The Start Public Workflow window is displayed.

4 RosettaNet 2.0 Security Sample

4-18 Running the B2B Integration Samples

In this window, parameters are defined for the Start the Public Workflow action
as follows:

l Conversation Name is set to 3A2.

l Conversation Version is set to 1.3.

l Role in Conversation is set to Customer.

In addition, two TP (trading partner) Names, RNBuyer and RNSeller, are
specified in the Parties field. WebLogic Integration uses the conversation name,

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-19

conversation version, conversation role, and the trading partners specified as
parties to locate the appropriate collaboration agreement to use for an action.

For the preceding action, WebLogic Integration searches the active collaboration
agreements in the repository for a collaboration agreement between two trading
partners named RNBuyer and RNSeller that specifies a conversation named
3A2, a conversation version of 1.3, with the role of customer. The following
excerpt from the rn2_peer1_sec.xml file defines the collaboration agreement
that fits the criteria for the preceding Start Public Workflow action.

Listing 4-1 Collaboration Agreement in the Import Repository Data File

<collaboration-agreement
name="RN2|9.9|RosettaNet2|100"
global-identifier="RN2|9.9|RosettaNet2|RNBuyer|RNSeller|102"
version="1.0"
status="ENABLED"
conversation-definition-name="3A2"
conversation-definition-version="1.3">
<party

trading-partner-name="RNBuyer"
party-identifier-name="RNBuyerPID"
delivery-channel-name="RNBuyerChannel"
role-name="Customer"/>

<party
trading-partner-name="RNSeller"
party-identifier-name="RNSellerPID"
delivery-channel-name="RNSellerChannel"
role-name="Product Supplier"/>

</collaboration-agreement>

The collaboration agreement defines the name and version of the conversation
definition to be used between the specified parties. The collaboration agreement
in Listing 4-1 specifies use of the conversation definition name of 3A2 and the
conversation definition version of 1.3 between the RNBuyer trading partner in
the role of Customer and the RNSeller trading partner in the role of Product
Supplier.

Using the name and version of the conversation definition, as well as the
assigned roles, WebLogic Integration can determine which workflow template to
start. The conversation definition in Listing 4-2 specifies that for conversations
named 3A2, with a version number of 1.3, and with a trading partner in the

4 RosettaNet 2.0 Security Sample

4-20 Running the B2B Integration Samples

customer role, an instance of the PIP3A2_Customer_RN2 workflow template
will be started.

Listing 4-2 Conversation Definition in the Import Repository Data File

 <conversation-definition
 name="3A2"
 version="1.3"
 business-protocol-name="RosettaNet"
 protocol-version="2.0">
 <role
 name="Customer"
 wlpi-template="PIP3A2_Customer_RN2">
 <process-implementation wlpi-org="ORG1"/>
 </role>
 <role
 name="Product Supplier"
 wlpi-template="PIP3A2_Supplier_RN2">
 <process-implementation wlpi-org="ORG1"/>
 </role>
 </conversation-definition>

Thus the Start Public Workflow action triggers the PIP3A2_Customer_RN2
workflow, in this sample.

The conversation name and version number defined in the Start Public Workflow
are the PIP name and version defined by RosettaNet for PIP 3A2. These
parameters, along with values specified for the roles and trading partners,
correspond to the conversation name, conversation version, role, and trading
partners that are registered in the repository.

16. Select the Workflow tab.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-21

The template variables to be passed to and received from the public PIP
workflow are defined on the Workflow tab:

l The template variables passed to the public PIP workflow are listed under
Parameters.

l The template variables returned by the public PIP workflow are listed under
Results.

4 RosettaNet 2.0 Security Sample

4-22 Running the B2B Integration Samples

In this sample, the template variable fromDUNS is set by the
Customer_PrivateWF in the Start Public Workflow action. It is passed to the
PIP3A2_Customer_RN2 workflow when the PIP3A2_Customer_RN2 is invoked
by the Customer_PrivateWF workflow. Some template variables for RosettaNet
2.0 are mandatory; others are optional.

The fromDUNS variable, which defines the DUNS number of the sender, is
mandatory. (A DUNS number is a unique nine-digit identifier assigned to a
business entity by Dun & Bradstreet.) The DUNS number specified in the
fromDUNS variable must match the business ID defined in the repository for that
trading partner. For a complete list of RosettaNet template variables, see
“RosettaNet Template Variables” in “Using Workflows with RosettaNet“ in
Implementing RosettaNet for B2B Integration.

PIPOutput is a mandatory template variable that contains the service content of
the received message. It is set by the PIP3A2_Customer_RN2 workflow and is
passed to the Customer_PrivateWF workflow when the PIP3A2_Customer_RN2
workflow returns control back to the workflow that called it:
Customer_PrivateWF.

17. Click Cancel in the Start Public Workflow window.

18. Click Cancel in the Task Properties window.

19. In the left pane of the main Studio window, expand the PIP3A2_Customer_RN2
folder. (The PIP3A2_Customer_RN2 workflow is called from the
Customer_PrivateWF workflow.)

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-23

20. To view the properties of the PIP3A2_Customer_RN2 workflow, right-click the
folder, named with a date and time, in the PIP3A2_Customer_RN2 folder. A
menu is displayed. Select Properties.

21. The Template Definition PIP3A2_Customer_RN2 dialog box is displayed.

22. Select the B2B Integration tab.

The Conversation tab (nested on the B2B Integration tab) is displayed.

4 RosettaNet 2.0 Security Sample

4-24 Running the B2B Integration Samples

The data entered on this tab specifies that the PIP3A2_Customer_RN2 workflow
should be started if a Start Public Workflow action is invoked with the specified
conversation and role.

The conversation name, version, and role defined in this window:

l Match the PIP name, version, and role defined by RosettaNet for PIP 3A2.

l Correspond to the conversation name, version, and role that are registered in
the repository.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-25

23. Click OK.

24. Complete the following steps to open and view a PIP3A2_Customer_RN2
workflow instance:

a. Right-click the folder, named with a date and time, in the
PIP3A2_Customer_RN2 folder. A menu is displayed.

b. Select Open.

The start, task, decision, and event nodes that make up the
PIP3A2_Customer_RN2 workflow are displayed.

The Start node is the first task that is executed in this workflow.

4 RosettaNet 2.0 Security Sample

4-26 Running the B2B Integration Samples

25. Double-click the Send Message task. The Task Properties window is displayed.

26. Select the Activated tab.

Workflows Behind the RosettaNet 2.0 Security Sample

Running the B2B Integration Samples 4-27

The actions that make up the Send Message task are listed on the Activated tab.

27. In the left pane of the Task Properties window, double-click the Send Business
Message action. This action sends an XML business message, which is based on
the contents of the PIPInput XML workflow variable. (This variable was defined
earlier in the private Customer_PrivateWF workflow.)

Note: This step corresponds to step 1 in “RosettaNet 2.0 Security Sample
Overview” on page 4-3.

28. Exit the WebLogic Integration Studio: From the Studio menu bar, choose
File→Exit.

4 RosettaNet 2.0 Security Sample

4-28 Running the B2B Integration Samples

Running the B2B Integration Samples 5-1

CHAPTER

5 Trading Partner
Zeroweight Client
Sample

The Trading Partner Zeroweight Client sample demonstrates two communication
methods used when one or more trading partner hosts no BEA software: browsers and
file sharing. The sample is based on business practice functions and business processes
for a requestor and replier communicating via either a browser or a file-sharing client.

This section includes the following topics:

n Overview of the Zeroweight Client Sample

n Before Running the Zeroweight Client Sample

n Running the Zeroweight Client Sample

n Creating and Using Zeroweight Clients

n How to Recompile the Sample

5 Trading Partner Zeroweight Client Sample

5-2 Running the B2B Integration Samples

Overview of the Zeroweight Client Sample

Most B2B integration conversations involve two trading partners that have both
installed BEA WebLogic Integration. Browser and file-sharing clients provide a way
to communicate with trading partners who have not installed BEA software. The
Zeroweight Client sample demonstrates communication between a requestor trading
partner using a browser client, and a replier trading partner using a file-sharing client.

Purpose of the Sample

The Zeroweight Client sample demonstrates how business communication can take
place between a requestor and one or more repliers that do not have WebLogic
Integration installations. This communication is accomplished using two types of
zeroweight clients that are configured in a remote or host B2B integration installation:

n Browser client—Uses JSP served up by predefined WebLogic Integration
business processes to initiate a conversation, and to send and receive messages.
The Web host facilitates communication via JSP delivered, on demand, to the
browser client. The browser client uses the WebLogic Integration JSP tag
libraries to send and check messages through the B2B integration mailbox
interface.

n File-sharing client—The requestor puts a message in a preconfigured mailbox
located on the Web host. The replier uses a file-sharing client provided by
WebLogic Integration to transfer messages between its mailboxes and
file-sharing directories. The party using a file-sharing client in the conversation
must have a pre-existing FTP installation.

In this sample, a business operation called by the replier’s private workflow gets a
request from a preconfigured directory, creates a reply based on the request, and puts
the reply into a preconfigured output directory. An actual FTP server is not used; the
sample uses the business operation to simulate an FTP server.

Overview of the Zeroweight Client Sample

Running the B2B Integration Samples 5-3

Zeroweight Client Sample Scenario and Diagrams

The Zeroweight Client sample scenario involves two trading partners (one requestor
and one replier) who communicate via a remote WebLogic Integration installation that
is preconfigured to handle zeroweight clients. The requestor sends a request for
multiplication of two integer numbers. The replier performs the multiplication and
returns the product to the requestor.

Use the browser of your choice on any machine other than the one on which you are
running the samples instance of WebLogic Integration. As a result, the requestor does
not have a local WebLogic Integration installation. Instead, it uses a browser to access
the JSPs that reside on a remote installation of WebLogic Integration.

The JSPs create mailboxes and send XML requests using the JSP tag libraries provided
by WebLogic Integration. The same JSPs are also used to check messages in the
requestor’s mailbox, and to delete messages from the requestor’s and replier’s
mailboxes.

Note: The default configuration of the Zeroweight Client sample specifies that the
samples instance of WebLogic Integration, the browser client, and the FTP
Client run on the same machine. In a production deployment of the Zeroweight
Client sample, however, WebLogic Integration, the browser client, and the
FTP client run on different machines.

The replier also has no WebLogic Integration installation. It uses a third-party FTP
server application to communicate with some trading partners. It may also use a
proprietary mechanism for handling messages. The replier communicates with the
requestor via a file-sharing client.

The Zeroweight Client sample demonstrates the following events:

1. Requestor’s private workflow is triggered by an XML event sent from a JSP tag in
the browser client.

2. Replier’s public workflow is triggered by a reply placed in the replier’s out
mailbox by the file-sharing client.

3. Requestor’s message and replier’s message are put in the appropriate mailboxes.

In the Zeroweight Client sample, four preconfigured mailboxes are used. Each trading
partner uses one inbox and one outbox, as follows:

5 Trading Partner Zeroweight Client Sample

5-4 Running the B2B Integration Samples

n Requestor using a browser client uses BrowserTP1_Inbox and
BrowserTP1_Outbox.

n Replier using a file-sharing client uses FtpTP1_Inbox, and FtpTP1_Outbox.

Figure 5-1 Zeroweight Client Deployment

Workflows

Browser
Client

WebLogic
Collaborate

INOUT

JSP INOUT

FTP
Client

Request XM
L

R
eply XM

L

Request X
ML

Rep
ly

XML

Before Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-5

Before Running the Zeroweight Client
Sample

Before running the Zeroweight Client sample, complete the following steps:

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the Zeroweight Client Sample

To run the Zeroweight Client sample, complete the following steps:

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape executable (netscape) resides.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

5 Trading Partner Zeroweight Client Sample

5-6 Running the B2B Integration Samples

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv.sh

d) Run the RunSamples script:

cd samples/bin
RunSamples

Warning: For UNIX systems, the directory in which the netscape executable
resides must be included in your PATH environment variable. If it is not
included, the samples launcher page cannot be displayed.

2. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

The WebLogic Integration repository has already been
created and populated, possibly from a previous run
of this RunSamples script. Do you want to destroy all the
current data in the repository and create and populate the
WebLogic Integration repository, again? Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of WebLogic
Server. When you answer Y, the RunSamples script destroys all the data
currently in the repository and loads an unaltered version of the sample data into
the repository. Answer Y only when the current sample data has been altered or
removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of WebLogic Server as a
background process and the samples launcher page is displayed.

Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-7

3. In the left pane, click the link for the Trading Partner Zeroweight Client
application under Sample Applications. The Zeroweight Client Main Page is
displayed in the right pane.

5 Trading Partner Zeroweight Client Sample

5-8 Running the B2B Integration Samples

.

4. Launch the file-sharing client by completing the steps appropriate for your
platform:

l Windows:

cd %WLI_HOME%\samples\bin
startFSClient.cmd

l UNIX:

cd $WLI_HOME/samples/bin
startFSClient

Note: If you start the file-sharing client before the first JSP is loaded, you get a
repeated Mailbox not found exception. These exceptions can be ignored
because mailboxes are created when the main JSP is loaded for the first
time. Once the mailboxes are created, these exceptions no longer appear.

Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-9

5. Click Start Sample. The following window is displayed.
.

5 Trading Partner Zeroweight Client Sample

5-10 Running the B2B Integration Samples

6. Select the following option: Go to the request input page. The Request for
Multiplication page is displayed.

7. Now send a message to BrowserTP1_Outbox, manually, by completing the
following steps:

a. Select two integers.

b. Click Send Multiplication Request.

Note: As a side effect of this step, SendmsgTag and the wrapper Mailbox API are
tested.

Your display is updated, as shown in the following figure.

Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-11

5 Trading Partner Zeroweight Client Sample

5-12 Running the B2B Integration Samples

8. To check the replies that have arrived in your incoming mailbox, click Check all
replies. A list of replies is displayed.

Note: When the list of replies is checked, CheckallmsgTag is checked, too.

If no replies are found, the following message is displayed.

Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-13

9. To delete all messages from the incoming and outgoing mailboxes of all
participating trading partners (which, in the sample, are the mailboxes for
BrowserTP1and FtpTP1), complete the following steps:

a. Click Delete all messages in all mailboxes. A list of all the messages in all the
B2B integration mailboxes is displayed.

5 Trading Partner Zeroweight Client Sample

5-14 Running the B2B Integration Samples

b. Click Delete all messages in all mailboxes again. The total number of messages
deleted is displayed.

Note: As a side effect of this procedure you also test DeleteallmsgTag.

10. To delete a particular message from a mailbox, complete the following steps:

a. In the Check All Replies window (shown in step 6), select a message.

b. Click Delete.

The Delete One Reply window confirms that the message has been deleted
successfully.

Running the Zeroweight Client Sample

Running the B2B Integration Samples 5-15

Note: As a side effect of this procedure, you also test DeletemsgTag.

11. To view details about messages, complete the following steps:

a. Click the link labeled Check all replies.

b. Select the message in the Message ID column that you want to view. The View
Reply Detail window is displayed.

5 Trading Partner Zeroweight Client Sample

5-16 Running the B2B Integration Samples

12. If you want to run more B2B samples at this time, keep the samples launcher
page open and keep the WebLogic Server running.

If you do not want to run more B2B samples at this time, exit from your browser
and shut down the WebLogic Server by completing the procedure appropriate
for your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples
stopWebLogic

Creating and Using Zeroweight Clients

Running the B2B Integration Samples 5-17

Creating and Using Zeroweight Clients

This section provides the following information about creating and configuring
zeroweight clients:

n Zeroweight Client Source Files

n Using the JSP Tag Library

n Configuring a Zeroweight Client

Zeroweight Client Source Files

WebLogic Integration delivers all the source files you need to create your own
zeroweight clients. The Zeroweight Client sample shares B2B integration information
with the Hello Partner sample.

The following table lists all the files delivered specifically for the Zeroweight Client
sample.

Source
Directory

Subdirectories
and Files

Contents

WLI_HOME\samples\zeroweightClient\src\wlcsamples\zeroClient

Contains the source files for the business operation and its helper, both of which are called
by workflow instance.

WLI_HOME\config\samples

LwcFileSync.dtd DTD file for LwcFileSync.xml

LwcFileSync.xml File read by the file-sharing client. You must modify the
following sections for your environment:

n url

n wlcfilesync name

n directoryin

n directoryout

5 Trading Partner Zeroweight Client Sample

5-18 Running the B2B Integration Samples

WLI_HOME\samples\zeroClient\lib

Contains original copies of the LwcFileSync.dtd and LwcFileSync.xml files in
WLI_HOME\config\samples.

WLI_HOME\samples\bin\

n startFSClient.cmd

n startFSClient

Script that starts the file-sharing client that is responsible for
the following tasks:

n Transferring a request from the replier’s in mailbox to
its file-sharing directory

n Transferring a reply from the replier’s out directory to
its out mailbox

WLI_HOME\config\samples\zeroClient\

ftpDir\ Directory created for the execution of the Zeroweight Client
sample. Contains two directories (FtpTP1_indir and
FtpTP1_outdir) that simulate the in and out directories
on the file-sharing client. Names are hard-coded for the
sample.

Note: This directory and its subdirectories are created at
run time.

web\ Contains the files for the Web application, such as *.jpg
and *.jsp files.

lwcWebApp\ Contains the JSP tag library description file, and the
web.xml file used by the Zeroweight Client Web
application.

WLI_HOME\samples\zeroClient\src\wlcsamples\zeroClient\

tags\ Contains the reference implementation of the B2B
integration JSP tag libraries. Used for message management
by com.bea.lwclient.LwcMailbox.

Source
Directory

Subdirectories
and Files

Contents

Creating and Using Zeroweight Clients

Running the B2B Integration Samples 5-19

Using the JSP Tag Library

The JSP tag library uses a wrapper to address the WebLogic Integration Messaging
API. The JSP tag library is used with predefined workflows to interact with a mailbox,
as shown in Figure 5-2.

Figure 5-2 Mailbox Scenario Using the JSP Tag Library

The mailbox shown here supplements the repository. The tag library accesses the
mailbox as needed. The repository may also store mailbox messages.

Error handling is based on standard Java exception and error handling via the Mailbox
API classes and JSP delivered to the browser client.

For a complete listing of the JSP tags, see Appendix A, “JSP Tag Reference.”

Configuring a Zeroweight Client

This section is provided only for users who want to move the browser client or the
file-sharing client to a machine other than the one on which the samples instance of
WebLogic Integration is running. If you move a client in this way, follow the
appropriate procedure in this section to configure your remote zeroweight client.

If you are running the Zeroweight Client sample and the samples instance of
WebLogic Integration on the same machine, skip this section.

This section provides procedures for the following tasks:

n Configuring a File-Sharing Client

n Configuring a Browser Client

5 Trading Partner Zeroweight Client Sample

5-20 Running the B2B Integration Samples

Configuring a File-Sharing Client

A zeroweight client is a process that WebLogic Integration runs in a dedicated Java
Virtual Machine. As such, it needs no security mechanisms. WebLogic Integration can
serve any number of zeroweight clients that are defined in the LwcFileSync.xml
configuration file. For additional information, see “Edit the File-Sharing
Configuration File” later in this section.

Edit the WebLogic Integration Configuration File

Add the zeroweight trading partner configuration information listed in Listing 5-1 to
the configuration file for B2B integration: config.xml.

Listing 5-1 File-Sharing Client Configuration

<StartupClass
 ClassName="com.bea.lwclient.Startup"
 Name="LwcStartup"
 Targets="myserver"
/>

You can edit the configuration file in any of the following domains.

Edit the File-Sharing Configuration File

To configure a zeroweight client, define it in LwcFileSync.xml. The file-sharing
client configuration in LwcFileSync.xml must conform to LwcFileSync.dtd.

Domain Pathname

Samples domain WLI_HOME\config\samples\config.xml

WLIDOMAIN (supported
production domain)

WLI_HOME\config\eaidomain\config.xml

EAIDOMAIN (supported
production domain)

WLI_HOME\config\wlidomain\config.xml

Creating and Using Zeroweight Clients

Running the B2B Integration Samples 5-21

Note: LwcFileSync.dtd must reside in the directory from which the file-sharing
client is started.

Listing 5-2 provides a sample DTD file. Replace the values shown in bold with values
that are appropriate for your zeroweight client installation.

Listing 5-2 Sample LwcFileSync.dtd

<!-- This DTD describes file sharing client configuration file -->
<!ELEMENT wlcfilesyncconfig (wlcfilesync*) >

<!-- maxThreads The upper limit for number of threads permissible -->
<!-- in thread pool at a given point in time -->
<!ATTLIST wlcfilesyncconfig maxThreads CDATA #REQUIRED>

<!-- minThreads The lower limit for number of threads permissible -->
<!-- in thread pool at a given point in time -->
<!ATTLIST wlcfilesyncconfig minThreads CDATA #REQUIRED>

<!-- maxIdleTime The maximum time interval thread could be idle -->
<!-- else removed from the pool -->
<!ATTLIST wlcfilesyncconfig maxIdleTime CDATA #REQUIRED>

<!-- pollInterval Time interval defining wait interval before polling -->
<!ATTLIST wlcfilesyncconfig pollInterval CDATA #REQUIRED>

<!-- url Weblogic URL used for JNDI lookup -->
<!ATTLIST wlcfilesyncconfig url CDATA #REQUIRED>

<!-- debug flag used to turn debugging on/off -->
<!ATTLIST wlcfilesyncconfig debug (TRUE | FALSE) "FALSE">

<!-- The following element is used to configure details of LWTP -->
<!ELEMENT wlcfilesync EMPTY>

<!-- LWTP name -->
<!ATTLIST wlcfilesync name CDATA #REQUIRED>

<!-- path of the incoming directory on local file system -->
<!ATTLIST wlcfilesync directoryin CDATA #REQUIRED>

<!-- path of the outgoing directory on local file system -->
<!ATTLIST wlcfilesync directoryout CDATA #REQUIRED>

5 Trading Partner Zeroweight Client Sample

5-22 Running the B2B Integration Samples

Listing 5-3 provides a sample XML file in which file-sharing clients are defined as
zeroweight trading partners. Replace the strings shown in bold with values
appropriate for your zeroweight client installation.

Listing 5-3 Sample LwcFileSync.xml

<?xml version="1.0"?>
<!DOCTYPE wlcfilesyncconfig SYSTEM "LwcFileSync.dtd">
<wlcfilesyncconfig maxThreads="9"
 minThreads="3"
 maxIdleTime="5000"
 pollInterval="2000"
 url="t3://localhost:7001"
 debug="FALSE">
<wlcfilesync name="FtpTP1"
 directoryin="<WLI_HOME>/ftpDir/FtpTP1_indir"
 directoryout="<WLI_HOME>/ftpDir/FtpTP1_outdir"/>
</wlcfilesyncconfig>

Configuring a Browser Client

WebLogic Integration supports two methods of configuring a browser client,
depending on the security paradigm to be used: HTTP and HTTPS, or SSL. The
following sections provide instructions for these methods:

n Configuring an HTTP Browser Client

n Configuring an HTTPS (SSL) Browser Client

Configuring an HTTP Browser Client

To configure an HTTP zeroweight client, you must edit the web.xml file. To turn on
security for a browser client, complete the following procedure:

1. The JSP developer responsible for the HTML user interface for trading partner
zeroweight client Web applications uses the sendmsg tag and provides the
following mandatory argument : security = ON or OFF.

Creating and Using Zeroweight Clients

Running the B2B Integration Samples 5-23

The workflow template developers can also turn security on and off by invoking
the wlcsamples.zeroClient.LwcBizOp.putMessage() method. This method
also accepts a string as its last argument for SECURITY. To turn security on or
off, the developer passes one of the following arguments: ON or OFF.

2. The person who deploys the hosted Web application modifies
WLI_HOME\samples\zeroweightClient\web\lwcWebApp\web.xml, adding
security constraints for all the users with permission to use the application.

For example, to provide a new user with the security privileges required to use
the Web application lwcWebApp.war, add the following code:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>lwcWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>newpartner</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

 <security-role>
 <role-name>newpartner</role-name>
 </security-role>

3. Make sure the user named newpartner is a valid WebLogic Server user. You
can assign this username through either the WebLogic Server Administration
Console or the WebLogic Integration B2B Console. For details, see the BEA
WebLogic Server Administration Guide or Administering B2B Integration,
respectively.

4. Using the B2B Console, map newpartner user must be mapped to a valid
trading partner zeroweight client in two steps:

a. Create a trading partner zeroweight client.

b. Map the user’s identification to the appropriate trading partner record.

For details, see Administering B2B Integration.

5 Trading Partner Zeroweight Client Sample

5-24 Running the B2B Integration Samples

5. Using the WebLogic Integration Studio, create a collaboration agreement
between newpartner and the B2B integration hub. For details, see Using the
WebLogic Integration Studio.

Configuring an HTTPS (SSL) Browser Client

To configure a zeroweight HTTPS (SSL) client, perform the following steps:

1. Configure certificates on both the browser and the B2B integration nodes.

2. Create a WebLogic Server user called newpartner, who can run the browser on
behalf of a trading partner zeroweight client. You can create this user through
either the WebLogic Server Administration Console or the WebLogic Integration
B2B Console.

3. Using the B2B Console, create the trading partner zeroweight client.

4. Map newpartner to the appropriate trading partner record.

5. Using the WebLogic Integration B2B Console, create a collaboration agreement
between the zeroweight client and the B2B integration hub. For details, see
Administering B2B Integration.

How to Recompile the Sample

If you have made any changes to the sample you must recompile it before you can run
it. To recompile your modified sample, complete the following procedure:

1. Set the required environment variables by entering the commands appropriate for
your platform:

l Windows:

cd %WLIHOME%\bin
setenv

l UNIX:

cd $WLI_HOME/bin
./setenv.sh

How to Recompile the Sample

Running the B2B Integration Samples 5-25

2. Go to the following directory:

cd samples\zeroweightClient\project

3. Execute the following command:

ant all

5 Trading Partner Zeroweight Client Sample

5-26 Running the B2B Integration Samples

Running the B2B Integration Samples 6-1

CHAPTER

6 Messaging API Sample

The Messaging API sample shows how the WebLogic Integration Messaging API can
be used. Specifically, it demonstrates the use of two message-delivery mechanisms
available with the Messaging API and the logic plug-in feature of WebLogic
Integration B2B.

This section includes the following topics:

n Overview of the Messaging API Sample

n Before Running the Messaging API Sample

n Running the Messaging API Sample

Overview of the Messaging API Sample

WebLogic Integration supports two methods of sending business messages:

1. Using application workflows created in the WebLogic Integration Studio. The
application workflows contain actions that send business messages. The
RosettaNet 2.0 Security and Channel Master samples are examples of workflow
applications that send business messages.

2. Using a Java application that invokes the WebLogic Integration Messaging API
to send business messages.

This sample uses the second method.

The WebLogic Integration Messaging API supports two message-delivery
mechanisms:

6 Messaging API Sample

6-2 Running the B2B Integration Samples

n Synchronous—The sending application waits until the published message is
delivered to the destination(s). The messaging system returns control to the
application once the outcome of the activity of publishing the message is known.
The application waits until a time-out occurs or the status of the activity
becomes known, whichever happens first.

n Deferred Synchronous—Control returns to the application after a message is
published. An XOCPMessageToken object is returned to the application, which
the application can later access to check the status of message delivery.

The sample demonstrates the use of both the synchronous and deferred synchronous
message delivery mechanisms.

The Messaging API sample contains three trading partners (Partner1, Partner2, and
Partner3) that send business messages. The Messaging API sample contains four Java
source code files: MdmTp1Servlet.java, MdmTp2Servlet.java,
MdmTp3Servlet.java, and WaiterPlugin.java.

For more information about the WaiterPlugIn.java code, see “Tracing the
Execution Flow” on page 6-6.

Before Running the Messaging API Sample
Before running the Messaging API sample, complete the following steps:

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

This file. . . Contains the source code for the . . .

MdmTp1Servlet.java Partner1 trading partner

MdmTp2Servlet.java Partner2 trading partner

MdmTp3Servlet.java Partner3 trading partner

WaiterPlugIn.java Hub filter logic plug-In

Running the Messaging API Sample

Running the B2B Integration Samples 6-3

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools" in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the Messaging API Sample

To run the Messaging API sample, complete the following steps:

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape (netscape) executable resides.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/me/bea/wlintegration2.1

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv.sh

d) Run the RunSamples script:

cd samples/bin
RunSamples

Warning: For UNIX systems, the directory in which the netscape executable
resides must be included in your PATH environment variable. If it is not
included, the samples launcher page cannot be displayed.

2. If the RunSamples script detects that the configuration section of the
RunSamples script has been run before, the following prompt is displayed:

6 Messaging API Sample

6-4 Running the B2B Integration Samples

The WebLogic Integration repository has already been
created and populated, possibly from a previous run
of this RunSamples script. Do you want to destroy all the
current data in the repository and create and populate the
WebLogic Integration repository, again? Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting the
sample instance of the WebLogic Server.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots the sample instance of the
WebLogic Server. When you answer Y the RunSamples script destroys all the
data currently in the repository and loads an unaltered version of the sample data
into the repository. Answer Y only when the current sample data has been altered
or removed and you want a fresh or unaltered version of the sample data in the
repository.

Now the RunSamples script starts an instance of the WebLogic Server as a
background process and the samples launcher page is displayed.

Running the Messaging API Sample

Running the B2B Integration Samples 6-5

3. Click the link for the Messaging API under Sample Applications, in the left pane
of the samples launcher page. A menu of options for the Messaging API sample
is displayed in the right pane.

4. Click Join Partner3 spoke.

5. Click Join Partner2 spoke.

6. Click Join Partner1 spoke and send request.

If the Messaging API sample is executed successfully, the following output is
displayed at the bottom of the right pane:

Partner1 process flow:
Starting XOCPAppplication... done.
Creating conversation : verifierConversation:1.0:
requestor_Partner1_1001029696695_341001029696695...done.
send string for Message 1 = FIRST MESSAGE

6 Messaging API Sample

6-6 Running the B2B Integration Samples

Sending message 1 using synchronous deferred delivery method to Partner 2
Sending a second message before checking for acknowledgment on the first
send string for Message 2 = SECOND MESSAGE
Sending message 2 using synchronous delivery method to Partner 3
success status for message 2
Waiting for Message 2 response... done.
Processing reply for Message 2:
Received string for Message 2 = partner3 -- second message
Verification for Message 2 SUCCESS

Doing something else... done
Waiting acknowledgment for Message 1... Acknowledgment received
Success status for message 1
Waiting for Message 1 response... done
Processing reply:
Received string for Message 1 = partner2 -- first message
Verification for Message 1 SUCCESS

Terminating conversation:verifierConversation:1.0:
requestor_Partner1_1001029696695_341001029696695
success
Shutting down session... done.

7. If you want to run more B2B samples at this time, keep the samples launcher
page open and keep the sample instance of the WebLogic Server running.

If you do not plan on running more B2B samples at this time, shut down the
instance of the WebLogic Server by completing the procedure appropriate for
your platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples
stopWebLogic

Tracing the Execution Flow

The following steps trace the execution flow of the Messaging API sample:

1. The RunSamples script is started, with the following results:

Running the Messaging API Sample

Running the B2B Integration Samples 6-7

a. The sample instance of the WebLogic Server is started.

b. A browser opens and displays the samples launcher page.

c. On the samples launcher page, the Messaging API link is clicked: the
Messaging API sample page is displayed. This page in turn, displays three
options: Join Partner3 spoke, Join Partner2 spoke, and Join Partner1 spoke and
send request.

2. The Join Partner3 spoke option is selected, with the following results:

a. An HTTP request is posted to the MdmTp3 servlet.

b. MdmTp3, in turn, invokes the doPost method from MdmTp3Servlet.java.

c. doPost method starts trading partner Partner3’s XOCPApplication.

3. The Join Partner2 spoke option is selected, with the following results:

a. An HTTP request is posted to the MdmTp2 servlet.

b. MdmTp2 in turn, invokes the doPost method from MdmTp2Servlet.java.

c. The doPost method starts trading partner Partner2’s XOCPApplication.

4. The Join Partner1 spoke and send request option is selected, with the following
results:

a. An HTTP request is posted to the MdmTp1 servlet.

b. MdmTp1, in turn, invokes the doPost method from MdmTp1Servlet.java.

c. The doPost method starts trading partner Partner1’s XOCPApplication.

d. The doPost sends the first message, triggering a series of messages among the
three trading partners (Partner1, Partner2, and Partner3). All three trading
partners in this sample register with the WebLogic Integration repository to use
the VerifierHubChannel delivery channel and to participate in the
verifierConversation conversation. Partner1 is registered with the repository in
the role of requester. Partner2 and Partner3 are registered in the role of replier.

The following figure shows the sequence in which these business messages are
most likely to be sent and received. (The exact sequence is timing related and
depends on the thread scheduling of the Java virtual machine.)

6 Messaging API Sample

6-8 Running the B2B Integration Samples

Figure 6-1 Interactive Diagram of the Flow of Messages Among Trading
Partners

Running the Messaging API Sample

Running the B2B Integration Samples 6-9

The following sequence provides details about each of the steps indicated by a
corresponding letter in Figure 6-1:

a. Partner1 sends a message with the text FIRST MESSAGE to Partner2. This
message is sent deferred synchronously. Consequently, Partner1 does not wait
or block for a return from Partner2, but it continues executing tasks.

The nonblocking aspect of the message is represented in the Interaction
diagram (Figure 6-1) by Partner1’s Object lifeline. When Partner initially
becomes active, the representation of Partner1’s lifeline changes from a
dashed line (indicating an inactive state) to a narrow rectangle (indicating an
active state). The lifeline remains active after Partner1 sends the first
message. By remaining active, Partner1 can do other tasks, such as sending
another message, as shown in the next step.

All the messages sent in this sample are routed through the hub. A logic
plug-in called WaiterPlugIn has been added to the filter chain of the hub.
When messages are routed though the hub, the process method of the
WaiterPlugIn class is executed. The process method checks the target
recipient of the outgoing message. If the target recipient is Partner2,
process sleeps for 15 seconds. Otherwise, it sends the message
immediately. In the example shown in Figure 6-1, the first message, which
was sent by Partner1 to Partner2, is delayed by 15 seconds.

b. While the first message is still being processed, Partner1 sends the second
message, with the text SECOND MESSAGE, to Partner3. This message is sent
synchronously. Consequently, Partner1 must block or wait until Partner3
returns before Partner1 can process other tasks.

c. Notice how this blocking of Partner1 is represented in Figure 6-1. Because the
second message is synchronous, the representation of Partner1’s lifeline
changes from a narrow rectangle (indicating an active state) to a dashed line
(indicating an inactive state) after Partner1 sends the second message. The
change to an inactive state means that Partner1 must block or wait until the
message is sent and acknowledged by Partner3 before it can become active and
start doing other tasks again.

The second message and all the reply messages of this sample are routed
through the hub, where the process method of WaiterPlugIn is executed
on them. Each of these messages passes through the hub without delay
because the recipient of the message is not Partner2. Routing of these
messages through the hub filter logic plug-in is not shown in Figure 6-1.

6 Messaging API Sample

6-10 Running the B2B Integration Samples

d. After the first message is delayed in the hub for 15 seconds, the hub routes it to
Partner2.

e. Control is returned to Partner1 after the synchronous send to Partner3
completes. At this point Partner1 becomes active again, as shown by the change
in its lifeline, in Figure 6-1, from a dashed line (representing an inactive state)
to a narrow rectangle (representing an active state).

f. Partner1verifies that the first message was received by Partner2.

g. Partner3 takes the text of the second message, converts it to lowercase, and adds
the prefix partner 3-- to it. It then sends the modified message back to
Partner1.

h. Partner2 takes the text of the first message, converts it to lowercase, and adds
the prefix partner 2-- to it. It then sends the modified message back to
Partner1.

5. The results are displayed by Partner1 on an HTML page. This step is not
represented in Figure 6-1.

Running the B2B Integration Samples 7-1

CHAPTER

7 ebXML Sample

The ebxML sample demonstrates how two trading partners exchange business
messages using the ebXML business protocol. The ebXML sample application is
provided in the \samples\ebxml directory of your WebLogic Integration installation.

This section includes the following topics:

n Overview of the ebXML Sample

n Before Running the ebXML Sample

n Running the ebXML Sample

n How the Sample Works

Overview of the ebXML Sample

WebLogic Integration supports the ebXML business protocol for the exchange of
business messages in e-business transactions. The ebXML sample demonstrates how
two workflows are used to manage an ebXML-based conversation between two
trading partners, each of which deploys WebLogic Integration.

The workflows in the sample are named ebXMLConversationInitiator and
ebXMLConversationResponder. They choreograph the exchange of ebXML
messages for trading partners, in the roles of initiator and participant, in a query price
and availability (QPA) conversation. The sample provides a Java Server Page (JSP)
you can use to initiate the QPA process and to display QPA request and response data.

7 ebXML Sample

7-2 Running the B2B Integration Samples

The following figure illustrates the data flow between the trading partners involved in
this sample QPA business transaction.

Figure 7-1 Data Flow in the QPA Business Process

The following sequence provides a high-level overview of the communications
between the trading partners in this sample:

1. As the buyer, you use the Web form provided to select a product, a unit price for it
and the quantity you want. The JSP containing the Web form sends an XML
message to a JMS queue and triggers the buyer’s
(ebXMLConversationInitiator) workflow.

2. The buyer’s workflow sends a query price and availability (QPA) message, with
the product details you selected, to the supplier trading partner. The QPA
message is in ebXML format.

The ebXML message sent by the buyer’s workflow
(ebXMLConversationInitiator) triggers the supplier’s workflow
(ebXMLConversationResponder) for this conversation.

3. The supplier’s workflow processes the QPA and sends a response, also in ebXML
format, to the buyer trading partner.

4. The buyer’s workflow (ebXMLConversationInitiator) receives the QPA
response ebXML message and writes it to an XML file. A JSP parses the XML
and displays the QPA response in the buyer’s Web browser.

This step marks the end of the QPA business process.

Before Running the ebXML Sample

Running the B2B Integration Samples 7-3

Before Running the ebXML Sample

Before running the ebXML sample, complete the following steps:

1. Follow the instructions in “Preparing to Run the Samples” on page 1-2.

2. Make sure the proxy settings on your browser do not prevent you from
connecting to the sample WebLogic Server. For more information, see “Web
Browser Configuration Requirements” in “WebLogic Integration Administration
and Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Running the ebXML Sample

To run the ebXML sample:

1. Run the RunSamples script by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Run Samples.

l UNIX:

a) Make sure your PATH environment variable includes the directory in which
the Netscape (netscape) executable file resides.

Warning: On a UNIX system, if the pathname of the netscape executable
file is not specified in your PATH environment variable, the samples launcher
page cannot be displayed.

b) Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration). For example:

cd /home/bea/wlintegration2.1

7 ebXML Sample

7-4 Running the B2B Integration Samples

c) Run the setenv script to set the top-level WebLogic Integration
environment variables:

. setenv

d) Run the RunSamples script:

cd samples/bin
RunSamples

2. If the RunSamples script detects that its configuration section has already been
run, the following prompt is displayed:

The WebLogic Integration repository has already been
created and populated, possibly from a previous run
of this RunSamples script. Do you want to destroy all the
current data in the repository and create and populate the
WebLogic Integration repository, again? Y for Yes, N for No

If you answer N to this question, the RunSamples script skips the steps for
creating and populating the repository and runs only the step for booting
WebLogic Server in the sample domain.

If you answer Y to this question, the RunSamples script recreates and
repopulates the repository, and then it boots WebLogic Server in the sample
domain. When you answer Y, the RunSamples script destroys all the data
currently in the repository and loads an unaltered version of the sample data into
the repository. Answer Y in the following circumstances:

l If you used the service pack upgrade installer to upgrade your WebLogic
Integration installation, and this is the first time you run the ebXML sample.
(The ebXML sample is a new sample for this service pack—you must run
the RunSamples script to populate the repository with the data necessary to
run it.)

l When the current sample data has been altered or removed and you want a
fresh or unaltered version of the sample data in the repository.

Now the RunSamples script starts an instance of WebLogic Server as a
background process and the samples launcher page is displayed.

Running the ebXML Sample

Running the B2B Integration Samples 7-5

Figure 7-2 Samples Launcher Page

3. Click the ebXML Sample link, listed under Sample Applications in the left pane
of the samples launcher page. The ebXML sample is displayed in the right pane.

7 ebXML Sample

7-6 Running the B2B Integration Samples

Figure 7-3 ebXML Sample Launcher Page

4. Select values in the Product ID, Product Unit Price, and Product Quantity fields
on this form, and click Submit.

An ebXML-based QPA message is sent to the supplier trading partner.

5. The supplier trading partner processes the QPA message and sends a response
ebXML message to you (the buyer trading partner).

The response is displayed in your Web browser.

Running the ebXML Sample

Running the B2B Integration Samples 7-7

Figure 7-4 Response Message

6. If you want to run more WebLogic Integration samples at this time, keep the
samples launcher page open and keep WebLogic Server running.

If you do not want to run more samples at this time, exit from your browser and
shut down WebLogic Server by completing the procedure appropriate for your
platform:

l Windows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Stop Server.

l UNIX:

cd $WLI_HOME/config/samples/bin
stopWebLogic

7 ebXML Sample

7-8 Running the B2B Integration Samples

How the Sample Works

This section includes the following topics:

n Introduction

n Loading the Repository Data

n Understanding the Repository Data

n Understanding the Workflows

Introduction

The configuration data to support this sample application is bulk loaded into the
WebLogic Integration repository when you run the RunSamples script during the
sample setup (see “Running the ebXML Sample” on page 7-3). WebLogic Integration
allows you to bulk load configuration data or enter it through the WebLogic Integration
B2B Console. You do not need to run the B2B Console when you run the ebXML
sample, but you can use it to view the repository data after the data is bulk loaded for
the sample.

Two workflows provided in this sample choreograph the exchange of ebXML-based
business messages in a QPA conversation. These workflows manage the sender and
receiver sides of the ebXML message exchange.

An exhaustive discussion of how to configure your B2B integration environment is
beyond the scope of this document. However, this section briefly describes the
WebLogic Integration repository data that is used in the sample application. This
section also describes the implementation of the workflows on the sender side and
receiver side of the sample ebXML business transaction. Key workflow design
elements, tasks, and events are highlighted.

How the Sample Works

Running the B2B Integration Samples 7-9

Loading the Repository Data

The data required by the sample for integrating the trading partners is bulk loaded into
the WebLogic Integration repository when you run the RunSamples script during the
sample setup (see “Running the ebXML Sample” on page 7-3).

The RunSamples script loads the repository with the B2B configuration data contained
in the following XML files:

n SystemRepData.xml—located in the \dbscripts directory in your WebLogic
Integration installation directory, for example:

D:\bea\wlintegration2.1\dbscripts

The SystemRepData.xml file contains system data. The elements used by this
sample include:

l Business protocol definitions

l Logic plug-ins

n BulkLoaderData.xml—located in the \samples\ebxml\lib directory in your
WebLogic Integration installation directory, for example:

D:\bea\wlintegration2.1\samples\ebxml\lib

This BulkLoaderData.xml file contains data specific to the ebXML sample. It
describes the following elements:

l Trading partners

l Conversation definitions

l Collaboration agreements

7 ebXML Sample

7-10 Running the B2B Integration Samples

Understanding the Repository Data

This section highlights important information about the following data elements that
are bulk loaded to the WebLogic Integration repository for the ebXML sample
application:

n Business Protocol Definitions

n Logic Plug-Ins

n Trading Partners

n Conversation Definitions

n Collaboration Agreements

Data from the SystemRepData.xml file and BulkLoaderData.xml file are imported
into the WebLogic Integration repository to support the sample application. When you
create ebXML applications, you can bulk load configuration data or enter it through
the WebLogic Integration B2B Console. You can also access and configure
bulk-loaded data using the B2B Console. For information about configuring the
WebLogic Integration data required for e-business transactions, see “Getting Started”
in Implementing ebXML for B2B Integration.

Business Protocol Definitions

The SystemRepData.xml file contains definitions for all the business protocols
supported by WebLogic Integration including ebXML.The following excerpt from the
SystemRepData.xml file shows the ebXML business protocol definition.

Listing 7-1 ebXML Business Protocol Definition

<business-protocol-definition
 name="ebXML"
 business-protocol-name="ebXML"
 protocol-version="1.0"
 endpoint-type="PEER">

<java-class>com.bea.b2b.protocol.ebxml.EBXMLProtocol
</java-class>

How the Sample Works

Running the B2B Integration Samples 7-11

<decoder>EBXML-Decoder</decoder>
 <encoder>EBXML-Encoder</encoder>
</business-protocol-definition>

Logic Plug-Ins

Logic plug-ins are Java classes that intercept and process business messages at run
time. Each business protocol is associated with standard router and filter logic
plug-ins. The SystemRepData.xml file contains logic plug-in data for the XOCP,
RosettaNet, cXML, and ebXML business protocols. This sample uses the ebXML
logic plug-ins only:

n ebXML Encoder—The encoder forwards the message to the B2B transport
service.

n ebXML Decoder—The decoder processes the ebXML headers, identifies the
sending trading partner, enlists the sending trading partner in a conversation,
prepares a reply to return to the sender, and forwards the message to the B2B
scheduling service.

The following excerpt from the SystemRepData.xml file shows the ebXML Encoder
and Decoder logic plug-ins.

Listing 7-2 ebXML Logic Plug-In Definition

<logic-plugin
 name="EBXML-Decoder"
 type="decoder">
 <java-class>com.bea.b2b.protocol.ebxml.EBXMLDecoder
 </java-class>
</logic-plugin>
<logic-plugin
 name="EBXML-Encoder"
 type="encoder">
 <java-class>com.bea.b2b.protocol.ebxml.EBXMLEncoder
 </java-class>
</logic-plugin>

7 ebXML Sample

7-12 Running the B2B Integration Samples

Trading Partners

The ebXML sample scenario involves two business partners: a buyer and a supplier.
In the WebLogic Integration environment, a trading partner must be configured for
each business partner. In this case, two trading partners are configured in the
BulkLoaderData.xml file: ebXML–sender and ebXML–receiver. For configuration
elements, attributes, and subelements associated with these trading partners, see the
following file: WLI_HOME\samples\ebxml\lib\BulkLoaderData.xml.

Conversation Definitions

The BulkLoaderData.xml file contains the conversation definition for the
ebXML-based Query Price and Availability (QPA) conversation in this sample. The
conversation definition is named ebxmlQPA. It contains two roles: Initiator and
Participant. For the ebXML business protocol, all conversation definitions reference
two roles with predefined names: Initiator and Participant.

The following listing is an excerpt from the BulkloaderData.xml file. It defines the
ebXMLQPA conversation.

Listing 7-3 Conversation Definition in the BulkLoaderData.xml File

<conversation-definition
 name="ebxmlQPA"
 version="1.0"
 business-protocol-name="ebXML"
 protocol-version="1.0">
 <role
 name="Initiator">
 </role>
 <role
 name="Participant">
 </role>
</conversation-definition>

How the Sample Works

Running the B2B Integration Samples 7-13

Collaboration Agreements

The BulkLoaderData.xml file contains the collaboration agreement used by the
ebxml-sender and ebxml-receiver trading partners for this sample. The following
figure illustrates the relationships between trading partners, parties to the collaboration
agreement, and roles defined for the conversation in this sample application.

Figure 7-5 Collaboration Agreement Between Trading Partners in a QPA
Conversation

The following listing is an excerpt from the BulkloaderData.xml file. It shows the
elements of the ebxml-QPA-CA collaboration agreement.

Listing 7-4 Collaboration Agreement in the BulkLoaderData.xml File

<collaboration-agreement
 name="ebxml-QPA-CA"
 version="1.0"
 status="ENABLED"
 global-identifier="sachin/172.16.15.113:2423d2:
 ea8fe66b8f:-8000"
 conversation-definition-name="ebxmlQPA"
 conversation-definition-version="1.0">
 <party
 trading-partner-name="ebxml-sender"
 party-identifier-name="sender-party"
 delivery-channel-name="sender-dc"
 role-name="Initiator"/>
 <party
 trading-partner-name="ebxml-receiver"
 party-identifier-name="receiver-party"
 delivery-channel-name="receiver-dc"
 role-name="Participant"/>
</collaboration-agreement>

7 ebXML Sample

7-14 Running the B2B Integration Samples

Understanding the Workflows

Two workflows manage the exchange of ebXML messages by the two trading
partners, in the roles of initiator and participant, in this sample QPA conversation. The
workflows, named ebXMLConversationInitiator and
ebXMLConversationResponder, are loaded to the WebLogic Integration repository
when you run the RunSamples script during the sample setup (see “Running the
ebXML Sample” on page 7-3).

This section contains the following topics:

n Using the WebLogic Integration Studio

n Understanding the ebXMLConversationInitiator Workflow

n Understanding the ebXMLConversationResponder Workflow

Using the WebLogic Integration Studio

The WebLogic Integration Studio allows you to design new workflows and monitor
running workflows using a familiar flowchart paradigm. You are not required to run
the Studio when you run the ebXML sample, but you may find it useful for viewing
the details of any workflow or workflow node, and for learning how nodes are defined
and configured for this sample.

Launch the Studio by completing the procedure appropriate for your platform:

n To launch the Studio on a Windows system, do one of the following:

l Use menus, as follows:

a. Choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Studio.

b. Log on to the Studio (user: wlpisystem; password: wlpisystem).

l Invoke the Studio script from the command line, as follows:

a. Open a command window.

b. Go to the WebLogic Integration home directory (the directory in which
you installed WebLogic Integration) and run the setenv script to set the
top-level WebLogic Integration environment variables.

How the Sample Works

Running the B2B Integration Samples 7-15

For example:

cd \bea\wlintegration2.1
setEnv.cmd

c. Go to the bin directory in the directory where you installed WebLogic
Integration. For example, if WebLogic Integration is installed in the default
location, enter the following:

 cd \bea\wlintegration2.1\bin

d. Execute the studio command by entering:

 studio

e. Log on to the Studio (user: wlpisystem; password: wlpisystem).

n To launch the Studio on a UNIX system, complete the following tasks:

a. Go to the bin directory in the directory where you installed WebLogic
Integration. For example, if WebLogic Integration is installed in the default
location, enter the following:

cd BEA_Home/wlintegration2.1/bin

b. Start the Studio application by entering:

. ./studio

c. Log on to the Studio (user: wlpisystem; password: wlpisystem).

After you launch the Studio, you can view a workflow template and its properties by
completing the following procedure:

1. In the left pane of the Studio, make sure ORG1 is selected in the Organization field.

2. In the left pane, double-click the Templates folder to display a list of workflow
templates.

3. Expand the Templates folder to display the list of workflow template definitions.
The template definitions of interest for this sample application are
ebXMLConversationInitiator and ebXMLConversationResponder. They
are imported, via the workflow.jar file, when you configure the sample, as
described in “Running the ebXML Sample” on page 7-3.

7 ebXML Sample

7-16 Running the B2B Integration Samples

4. Right-click a template definition, and select Open to open the workflow template
in the Studio.

Note: You can also expand a particular workflow template definition to display
folders containing the Tasks, Decisions, Events, Joins, Starts, Dones, and
Variables for that workflow template definition.

5. Double-click any node in the Studio to display the Properties dialog box for that
node.

See Using the WebLogic Integration Studio for complete details about the Studio tools
and functionality.

Understanding the ebXMLConversationInitiator Workflow

This section describes the workflow that manages the buyer side of the QPA
conversation in the ebXML sample scenario. The following figure shows the
ebXMLConversationInitiator workflow template in the Studio.

Figure 7-6 ebXMLConversationInitiator Workflow Template

How the Sample Works

Running the B2B Integration Samples 7-17

The following sections define the key tasks and events at the nodes in the
ebXMLConversationInitiator workflow template, shown in the preceding figure.

n Start

n Build XML Message Attachment

n Send ebXML Message

n Receive ebXML Response

n Write Out Binary Attachment

n Respond to JSP

n Done

Start

A QPA request is created as XML, based on your input to the HTML Web form (see
Figure 7-3) when you run the sample. The XML is sent, via a JSP
(ebXML_Sample.jsp), to a JMS queue.

The ebXML_Sample.jsp file can be found in the following directory in your
WebLogic Integration installation:

\config\samples\applications\DefaultWebApp_myserver

The Start node is designed to start this ebXMLConversationInitiator workflow
when an XML event is received from the JMS queue. The Start Properties dialog box
for the Start node is displayed in the following figure.

7 ebXML Sample

7-18 Running the B2B Integration Samples

Figure 7-7 Start Properties Dialog Box

Note the following property settings displayed in the preceding figure:

n Event→XML Event is selected as the start method. By designing this start node
with the Event→XML Event option, you make sure that the workflow starts
when an XML document arrives on a JMS queue.

Note: Contrast this start method to that defined for Start Node in the
ebXMLConversationResponder workflow (see “Start” on page 7-25).

n In the Document Type/Root Element field, QPARoot is the root element in the
XML message that triggers this workflow.

How the Sample Works

Running the B2B Integration Samples 7-19

n The Variables tab contains variables initialized from the incoming event data.

The Start node extracts the message using XPath expressions, and stores the data
in workflow variables: ProductID, ProductQuantity, and
ProductUnitPrice.

Build XML Message Attachment

The outXMLAttach workflow variable is set at this task node. It holds the QPA
Request XML message (ebXMLQPARequest) that will be sent to the supplier’s
workflow (ebXMLConversationResponder) as part of the ebXML message payload.
(For details, see the next node in this workflow.)

Send ebXML Message

An action defined at this task node sends the first ebXML message in the QPA
conversation. Because the ebXMLConversationInitiator workflow is designed for
an ebXML-based conversation, this task node uses the Send ebXML Message action
(provided by the ebXML plug-in to BPM).

You can define a Send ebXML Message action in the Studio as follows:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Add→ebXML Actions→Send ebXML Message.

The Send ebXML Message dialog box is displayed.

To view the Send ebXML Message properties specified for this sample node:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Activated.

3. Double-click Send ebXML Message to display the Send ebXML Message dialog
box shown in the following figure.

7 ebXML Sample

7-20 Running the B2B Integration Samples

Figure 7-8 Send ebXML Message Dialog Box

Note the following Send ebXML Message properties in the preceding figure:

n New or Related Conversation—You must select either New Conversation or
Related Conversation. In this case, New Conversation is selected because this
action is designed to send an ebXML message to start a new conversation. For
information about using the Related Conversation option, see “Send ebXML
Response” on page 7-27.

n Conversation Name—After you select the New Conversation option, you must
select the conversation in which the message is sent. In this case, the ebxmlQPA
conversation is selected. The ebxmlQPA conversation definition is loaded in your
WebLogic Integration repository when you configure this sample (see
“Conversation Definitions” on page 7-12).

n Sender Business ID—After you select the New Conversation option, you must
specify a business ID for the sender of the message. In this case, the value is
static (ebxml-sender-id), but it can also be a dynamically evaluated value via
the expression builder.

Note: Quotes are required around the static value in this field.

n Recipient Business ID—After you select the New Conversation option, you must
specify a business ID for the recipient of the message. In this case, the value is
static (ebxml-receiver-id), but it can also be a dynamically evaluated value
via the expression builder.

Note: Quotes are required around the static value in this field.

How the Sample Works

Running the B2B Integration Samples 7-21

n Message Payload—Specify a type (XML or binary) and an associated variable
for each message attachment. You may provide entries for zero or more
payloads. In this case, there is one attachment, the type is XML, and the variable
is the outXMLAttach variable set at the previous node (Build XML Message
Attachment).

The message is sent asynchronously at this node. That is, in the Actions→Activated tab
in the Task Properties dialog box, the following actions are specified in the order
shown:

1. Send ebXML Message

2. Mark task “Send ebXML Message” done

Receive ebXML Response

The workflow waits, at this event node, for a specific ebXML event from the
ebXMLConversationResponder workflow. Note that ebXML Event is selected in the
Event Properties dialog box, displayed in the following figure.

Figure 7-9 Event Properties Dialog Box

7 ebXML Sample

7-22 Running the B2B Integration Samples

When the ebXML event is received, the message envelope is stored in an envelope
variable (inEnvelope, in this case), and the payload is stored in XML or binary
variables, as appropriate. In this case, there are two attachments in the payload: one
XML and one binary. They are assigned to the inXMLAttach and inBinAttach
variables, respectively.

Write Out Binary Attachment

This task node first defines a Set Workflow Variable action that extracts the name of
the image file from the incoming QPA Response XML document
(ebXMLQPAResponse), and assigns that name to the imageFileName workflow
variable. The Set Workflow Variable action performs these tasks by using the
following XPath expression:

XPath("/ebXMLQPAResponse/ImageFileName/text()", $inXMLAttach))

Subsequently, an action that uses a business operation
(ebXMLSavePictureToWebApp) is defined at this node. This action saves the binary
attachment from the incoming ebXML message to the following location in your
WebLogic Integration installation:

\config\samples\applications\DefaultWebApp_myserver\

The local file is consumed by a JSP. (See the description of the Respond to JSP node
later in this section.)

To see the business operations defined for this sample, choose
Configuration→Business Operations from the Studio task menu. The Business
Operations dialog box containing a list of business operations is displayed.
Double-click any business operation to see more information about it. You can find the
Java class for the ebXMLSavePictureToWebApp business operation in the following
location in your WebLogic Integration installation:

\samples\ebxml\src\ebxmlsamples\util\EBXMLBizOp.java

Respond to JSP

This task node defines a Post XML Event action. (You can define such an action for a
node by double-clicking the node to display the Task Properties dialog box, then
choosing Add→Integration Actions→Post XML Event.)

How the Sample Works

Running the B2B Integration Samples 7-23

This action posts the XML from the response message (the inXMLAttach variable
defined at the previous node) as an internal XML event. The JMS queue to which the
XML event is posted is defined in the Destination tab, which is shown in the Post XML
Event dialog box.

The Post XML Event dialog box for this node is displayed in the following figure.

Figure 7-10 Post XML Event Dialog Box: Destination Tab

In the preceding figure, note that JMS Queue is selected in the Destination field. This
means that the message is posted to an internal queue that has been configured in
WebLogic Server. You can enter a static JNDI name for the queue enclosed by
quotation marks, or you can enter an expression that will determine the queue name at
run time. In this case, the JNDI name of the internal JMS queue is
com.bea.wlpi.EventQueueExt.

The XML message from the JMS queue is consumed by the ebXML_Sample.jsp file,
which displays the contents of the QPA response message in your browser when you
run the sample, as shown in Figure 7-4.

The ebXML_Sample.jsp file can be found in the following directory in your
WebLogic Integration installation:

\config\samples\applications\DefaultWebApp_myserver

7 ebXML Sample

7-24 Running the B2B Integration Samples

Done

Marks the end of the workflow. An ebXML-based conversation ends when the
exchange of ebXML messages is complete for both trading partners.

Contrast this behavior to that of the XOCP business protocol. WebLogic Integration
supports an XOCP conversation management service, meaning that the workflow
responsible for initiating the conversation also ends the conversation and sends an
end-of-conversation message to each workflow in the conversation. (See “Ending
Collaborative Workflows” in Creating Workflows for B2B Integration.)

In the case of an XOCP conversation, to define a conversation termination property,
you select the Custom option on the Done node in the workflow that initiated the
conversation. You do not end ebXML-based conversations in this way, however. Note,
for example, that the Custom option for this Done node is not selected.

Understanding the ebXMLConversationResponder Workflow

This section describes the workflow that manages the supplier side of the QPA
conversation in this ebXML sample scenario. The following figure shows the
ebXMLConversationResponder workflow template in the Studio.

Figure 7-11 ebXMLConversationResponder Workflow Template

How the Sample Works

Running the B2B Integration Samples 7-25

The following sections define the key tasks and events at the nodes in the
ebXMLConversationResponder workflow template, shown in the preceding figure.

n Start

n Perform Message Processing

n Send ebXML Response

n Done

Start

This ebXMLConversationResponder workflow is designed for a trading partner in
the participant role in an ebXML-based conversation. This workflow is started when
it receives an ebXML message from a trading partner. The Studio provides an
ebXML-specific option in the Start node to support the design of a workflow for the
participant role in an ebXML-based conversation. The following figure shows the Start
Properties dialog box.

Figure 7-12 Start Properties Dialog Box

7 ebXML Sample

7-26 Running the B2B Integration Samples

Note the following property settings displayed in the preceding figure:

n The ebXML business protocol-specific start method is selected: the Event option
is selected and ebXML Message is specified as the Event. Note that by
designing this start node with the ebXML Message option specified, the
workflow starts upon receipt of an ebXML message from a trading partner.

Note: Contrast this start method to that defined for Start Node in the
ebXMLConversationInitiator workflow (see “Start” on page 7-17).

n The ebxmlQPA conversation is specified in the Conversation Name field. The
workflow starts upon receipt of an ebXML message in this conversation.

n The inEnvelope variable is specified in the Envelope Variable field. When the
ebXML message is received, the message envelope is stored in this workflow
variable.

n Specify a type (XML or binary) and an associated variable for each message
attachment. You may provide entries for zero or more payloads. In this case,
there is one attachment, the type is XML, and the associated variable is
inXMLAttach.

Perform Message Processing

This task node processes the incoming ebXML message. Actions are defined to set
workflow variables, and to perform business operations.

XPath expressions extract the product ID, quantity, and unit price from the incoming
QPA ebXML message, and assign the data to the following workflow variables:
ProductID, ProductQuantity, and ProductUnitPrice.

The following business operations are performed at this node:

1. ebXMLGetQPAReply—Creates the XML QPA response document, using the
values extracted at this node for product ID, quantity, and unit price. The response
document is assigned to the XML variable outXMLAttach.

2. ebXMLGetPictureForProductID—Takes, as input, the product ID, and returns
the filename of an image file containing a picture of the specified product.

3. file to binary—Reads the binary data in the image file data in the file
location returned by the ebXMLGetPictureForProductID business operation.
The resulting binary data is assigned to the outBinAttach variable.

How the Sample Works

Running the B2B Integration Samples 7-27

To see the business operations defined for this sample, choose
Configuration→Business Operations from the Studio task menu. The Business
Operations dialog box is displayed. It shows a list of business operations. Double-click
any business operation to see more information about it.

You can find the Java classes for the ebXMLGetQPAReply and
ebXMLGetPictureForProductID business operations in the following location in
your WebLogic Integration installation:

\samples\ebxml\src\ebxmlsamples\util\EBXMLBizOp.java

You can find the Java class for the file to binary business operation in the
following location in your WebLogic Integration installation:

\samples\wlis\src\examples\wlis\common\Utils.java

Send ebXML Response

At this task node an action is defined for sending an ebXML message in response to
the ebXML message received by this trading partner in the QPA conversation. Because
the ebXMLConversationResponder workflow is defined for an ebXML-based
conversation, this task node uses the Send ebXML Message action (provided by the
ebXML plug-in to BPM).

You can define a Send ebXML Message action in the Studio as follows:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Add→ebXML Actions→Send ebXML Message to display the
Send ebXML Message dialog box.

To view the Send ebXML Message properties specified for this sample node:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Activated.

3. Double-click Send ebXML Message to display the Send ebXML Message dialog
box shown in the following figure.

7 ebXML Sample

7-28 Running the B2B Integration Samples

Figure 7-13 Send ebXML Message Dialog Box

Note the following properties for this ebXML sample task node in the preceding
figure:

n New or Related Conversation—You must select either New Conversation or
Related Conversation. In this case, Related Conversation is selected because this
action is designed to send an ebXML message in response to a message received
from a trading partner.

When Related Conversation is selected, you do not need to specify the
conversation name, sender business ID, or recipient business ID because the
system obtains these attributes from the previous message exchange. For
information about using the New Conversation option, see “Send ebXML
Message” on page 7-19.

n Message Payload—Specify a type (XML or binary) and an associated variable
for each message attachment. You may provide entries for zero or more
payloads. In this case, there are two attachments. The first attachment is an XML
file, and the associated variable is outXMLAttach; the second attachment is a
binary file, and the associated variable is outBinAttach. Data was assigned to
both variables at the previous node (Perform Message Processing).

How the Sample Works

Running the B2B Integration Samples 7-29

Done

Marks the end of the workflow. For information about Done nodes in workflows that
exchange ebXML messages, see the description of the Done node for the
ebXMLConversationInitiator workflow in “Done” on page 7-24.

7 ebXML Sample

7-30 Running the B2B Integration Samples

Running the B2B Integration Samples A-1

APPENDIX

A JSP Tag Reference

A Java Server Pages (JSP) tag library is provided for trading partner zeroweight
clients. It uses a wrapper to address the WebLogic Integration Messaging API. Error
handling uses standard Java exception and error handling via WebLogic Integration
Messaging API classes and JSP pages delivered to the zeroweight client.

This section provides reference information for the following JSP tags:

n SendmsgTag

n ChecknewmsgTag

n CheckallmsgTag

n ReadmsgTag

n DeletemsgTag

n DeleteallmsgTag

n CreatemboxTag

n RemovemboxTag

A JSP Tag Reference

A-2 Running the B2B Integration Samples

SendmsgTag

Passes a business message to a mailbox for outgoing mail; provides message
persistence for reliability.

Syntax SendMsgTag (String mboxName, String sender, String message, String
URL, String security)

Returns Returns Message has been sent successfully if the message was successfully
sent to the JSP page in which SendMsgTag is embedded.

Variables

Example sendmsg mboxname="<%=outboxName_browserTP1%>"
sender="<%=SENDER%>" message="<%=domAsStr%>" url="<%=url%>"
security="ON"/>

Variable Description

String mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

String message Message content.

String sender Mailbox address for the sender. This may be an e-mail address or
an FTP server address.

String URL URL for the hosting trading partner.

String security Value may be ON or OFF.

Running the B2B Integration Samples A-3

ChecknewmsgTag

Checks for new messages in the mailboxes for incoming and outgoing mail. Does not
check for stored messages (see CheckallmsgTag).

Syntax ChecknewmsgTag (String mboxName)

Returns If the mailbox is empty, returns No new message found in mailbox. If the mailbox
contains one or more new messages, the messages are displayed in HTML format.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-4 Running the B2B Integration Samples

CheckallmsgTag

Checks all messages in the mailbox, including stored messages.

Syntax CheckallmsgTag (String mboxName)

Returns If there are messages in the mailbox, they are displayed in HTML format. If the
mailbox is empty, returns No message found in mailbox.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

Running the B2B Integration Samples A-5

ReadmsgTag

Gets details about a specific message from the mailbox.

Syntax ReadmsgTag (String mboxName, String msgId)

Returns Message details are displayed in HTML format.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

msgID Unique message identifier.

A JSP Tag Reference

A-6 Running the B2B Integration Samples

DeletemsgTag

Deletes a specified message from the mailbox.

Syntax DeletemsgTag (String mboxName, String msgID)

Returns Returns Message with messageID msgID deleted successfully.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

msgID Unique message identifier.

Running the B2B Integration Samples A-7

DeleteallmsgTag

Deletes all messages from the mailbox.

Syntax DeleteallmsgTag (String mboxName)

Returns Returns All messages were deleted successfully when successful.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-8 Running the B2B Integration Samples

CreatemboxTag

Creates a mailbox.

Syntax CreatemboxTag (String mboxName)

Returns Returns no message.

Variable

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

Running the B2B Integration Samples A-9

RemovemboxTag

Removes a specific mailbox.

Syntax RemovemboxTag (String mboxName)

Returns Returns Mailbox removed successfully.

Variables

Variable Description

mboxName Name of the mailbox. To run the sample, use one of the
following names for the appropriate mailbox:

n For incoming mail: trading_partner_name_Inbox

n For outgoing mail: trading_partner_name_Outbox

A JSP Tag Reference

A-10 Running the B2B Integration Samples

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Getting Started
	Overview of Samples
	Preparing to Run the Samples
	Switching the Default Database
	WebLogic Integration Domains
	Browser Proxy Settings

	2 Hello Partner Sample
	Overview of the Hello Partner Sample
	What the Sample Demonstrates
	Hello Partner Sample Scenario Logic

	Before Running the Hello Partner Sample
	Running the Hello Partner Sample
	How the Sample Works
	Documents Exchanged
	Request Message from Requestor Role
	Reply Message from Replier Role
	XML Message Over JMS from Servlet to Trigger Private Workflow
	XML Message Over JMS from Private Workflow to Servlet with Result
	XML Event from Replier Public Workflow to Replier Private Workflow
	XML Event from Replier Private Workflows to Replier Public Workflows

	Requestor Private Workflow
	Requestor Public Workflow
	Replier Public Workflow
	Replier Private Workflow

	3 Channel Master Sample
	Channel Master Sample Overview
	Before Running the Channel Master Sample
	Running the Channel Master Sample
	Workflows Behind the Channel Master Sample
	Viewing the SupplierOnePrivate Workflow
	Multicast or Broadcast Messages

	4 RosettaNet 2.0 Security Sample
	Introduction to the RosettaNet 2.0 Security Sample
	RosettaNet 2.0 Security Sample Overview
	Before Running the RosettaNet 2.0 Security Sample
	Running the RosettaNet 2.0 Security Sample
	Workflows Behind the RosettaNet 2.0 Security Sample
	A Peek at the Workflows

	5 Trading Partner Zeroweight Client Sample
	Overview of the Zeroweight Client Sample
	Purpose of the Sample
	Zeroweight Client Sample Scenario and Diagrams

	Before Running the Zeroweight Client Sample
	Running the Zeroweight Client Sample
	Creating and Using Zeroweight Clients
	Zeroweight Client Source Files
	Using the JSP Tag Library
	Configuring a Zeroweight Client
	Configuring a File-Sharing Client
	Edit the WebLogic Integration Configuration File
	Edit the File-Sharing Configuration File

	Configuring a Browser Client
	Configuring an HTTP Browser Client
	Configuring an HTTPS (SSL) Browser Client

	How to Recompile the Sample

	6 Messaging API Sample
	Overview of the Messaging API Sample
	Before Running the Messaging API Sample

	Running the Messaging API Sample
	Tracing the Execution Flow

	7 ebXML Sample
	Overview of the ebXML Sample
	Before Running the ebXML Sample
	Running the ebXML Sample
	How the Sample Works
	Introduction
	Loading the Repository Data
	Understanding the Repository Data
	Business Protocol Definitions
	Logic Plug-Ins
	Trading Partners
	Conversation Definitions
	Collaboration Agreements

	Understanding the Workflows
	Using the WebLogic Integration Studio
	Understanding the ebXMLConversationInitiator Workflow
	Understanding the ebXMLConversationResponder Workflow

	A JSP Tag Reference

