0?7,

r
S’ 7
L/

BEA WeDbLogic
Integration-

Using Application
Integration

Release 2.1 Service Pack 1
Documen t Date: Januar y 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Using Application Integration

Part Number Date Software Version

N/A January 2002 2.1 Service Pack 1

Contents

About This Document

What YOou Need t0 KNOWc.cciiiiiiiiicie et s vii
B-00CS WED SHE....iiieicece ettt viii
HOW t0 Print the DOCUMENL......ccccveiieiesise et viii
Related INfOrmMation...........ccocviiiiicc e iX
(@0) [ot AU L PRSPPI iX
Documentation CONVENTIONScceverieieieeeie e sie et nreens X

1. Introduction to Application Integration

BefOre YOU BEGINcciiiiiiiiieie ettt e 1-1
SOftWAre Prer@qUISITESc.veuveieeeieeiesieresiee s eeee e 1-2
Familiarizing Yourself with Basic CONCEPLSccvvvrvrvrernieeicesinsieanens 1-2

Creating an Interface to an Adapter...........ocoeiiiirieieneie e 1-3
When to Define an Application VIeWcccccvvvevineie i 1-3
When to Write CUSTOM COUEc.eovereiviiiiiriiie et 1-3

Defining an Application VIBW..........ocviiiiiiiiiiie e 1-4
What Is Defined by an Application View Definition.........c.cccccocvvvevennnnn 1-4
How to Define an Application VIEWcccocvecvvivvenincrene e 1-5

Step 1: Name and Configure Connection Parameters for an Application

WIBW ..ttt bbb bbbt et enas 1-5
Step 2: Add Services and Events to the Application View................. 1-5
Step 3: Test Services and EVENLSccvcvevvivvevenesiieseeeise e 1-6

Using an Application View in a WOrkflow.............ccoconiiiiiniinininiinee 1-6
Using an Application View in the WebLogic Integration Studio.............. 1-7
Using an Application View by Writing Custom Code..........cccceveveriinanns 1-7
Choosing a Method for Implementing a Business Process............cc.ccoue.... 1-7

When to Use the WebLogic Integration Studio...........ccccceevvervriennnne. 1-8

Using Application Integration iii

iv

When to Write Custom Java Codeccoevvviviieceeiciece e 1-8

2. Defining an Application View

Before YOU BeGINccuoiiiiiiie ettt 2-2

High-Level Procedure for Defining an Application Viewc..ccccecvvvrenene. 2-2

Sample Detailed Procedure for Defining an Application Viewc.ccoceeene. 2-4

Step 1: Log On to the Application View Console..........ccccevvvvvervevcnnnnnn, 2-5
Steps 2 and 3: Define an Application View and Configure Connection

PArAMETEIS ...ttt 2-6

Step 4A: Add a Service to an Application VIewcccccccvniiincnenenne. 2-9

Step 4B: Add an Event to an Application VIieW..........cccccvcevvvervcrvcnennnn 2-10

Step 5: Deploy an Application VIeW........ccccceveeieercncece e 2-12

Optional Step: Undeploy an Application VIieW..........cccocevvinieiencnenene, 2-17

Step 6A: Test an Application VIew’s SErviCesccuevvvvrivrivrveneverennns 2-18

Step 6B: Test an Application View’s EVENESccccveevvveivnnnevenecnienenns 2-21

If YOU SEIECt SEIVICE.c.eiiieiiiiii e 2-22

If You Select Manualcooeiieiiiii e 2-25

Editing an AppliCation VIEWccceviiiiinieiecse s 2-28

Using Application Views in the Studio

Before YOU BEGINccuiiiiiiiii et 3-2
WOTKFIOW SEtUP TaSKS ...c.vvieeivisieiie ettt 3-2
Task 1: Set Up a Task Node to Call an Application View Service.................... 3-3

Steps for Setting up a Task Node to Call an Application View Service.... 3-3
Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous

ApPPlICation VIEW SEIVICE......cviiviieere et 3-11

Configuring Receipt 0f @ RESPONSEccceiiiiireriiere e 3-11

Handling Errors in an Asynchronous Application View Service Response ...
3-12

Procedure for Configuring Receipt of an Asynchronous Service Response
(Preferred Method)c.coeveeiiieeeeses e 3-13

Procedure for Configuring Receipt of an Asynchronous Service Response
(Legacy Method)ooeeeeeiiieeeeeiice e 3-15

Functions Provided by the Application Integration Plug-In..................... 3-18
WA L] = g (o 3-18
ATGELEITOIMSG() - veveiviieerie ettt e 3-19

Using Application Integration

AlGetResponseDOCUMENT() ...ccvrverrerereererierieerieeeieee e e e srese e 3-20

Task 3: Create a Workflow Started by an Application View Event................ 3-20
Steps for Creating a Workflow Started by an Application View Event... 3-21
Task 4: Set Up an Event Node to Wait for an Application View Event......... 3-24
Steps for Setting Up a Node to Wait for an Application View Event...... 3-25

4. Using Application Views by Writing Custom Code

Scenario 1: Creating Connections with Specific Credentials..........c..cc.cccovnnee.
Implementing CONNECLIONSPECc..oiveureiriiiiiie e
Calling setConnectionSpec() and getConnectionSpec()cceovervrvevrennnn.

Using the ConnectionSPec Classcccvevvevevrenenieseneneseeeseeeeans

Scenario 2: Custom Coding a BUSINESS PrOCESS........cccerereriererieneeieieeeee e
ADOUL ThiS SCENAIO.....ciiviirieirieee e
BefOre YOU BEQIN....cvciiieiiie sttt
Creating the SyncCustomerInformation CIass...........cccooviiniiiinieninnnn.
Code for Sample Java ClIassS.........c.covverviiirieiieresiese e

5. Using the Application View Console
Logging On to the Application View Console..........cccoeoeiiniiciinieninininene
Creating @ FOIARToo i e
Remaoving an Application VIBWcccccveiiriricieiececiee s
REMOVING @ FOIART ..o e

A. Migrating Application Integration Data
Overview of Migrating Datacccevverveeieeise e
Migrating Data Within a Single EIS INStaNCecccevvevviviveivsinnesee e
How an Application View iS EXPOrtedccooeeverirenenencieiieisenennns
Example Application View EXPOrt.......ccccoeveievciisieninsnse e neee s
Importing an Application VIEW........ccccveiv e
Migrating Data Within Multiple EIS INStanCes...........cccooevviiniinienencieieeeins
Example Application View IMport.........cccccoveveecinsinsinnnseseeseeereseennns
RecOMMENAEd PraCliCeS.cvvieiiiiiiiiei e

Index

Using Application Integration

Vi

Using Application Integration

About This Document

Using Application Integration is organized as follows:

m “Introduction to Application Integration” provides an overview of theBEA
WebLogic Integration Framework and explains how it fits into the WebLogic
Server environment and contributes to the BEA EAI solution.

m “Defining an Application View” explains how to log in to an adapter, and create
and configure application views to represent your enterprise’s business
processes.

m “Using Application Views in the Studio” explains how to use application views
in the WebLogic Server environment by setting up workflows using the
WebLogic Integration Studio.

m “Using Application Views by Writing Custom Code” explains how to use
application views in the WebLogic Server environment by writing custom Java
code.

m “Using the Application View Console” explains how to use namespaces to
organize your application views by location or department instead of by adapter.

m Appendix A, “Migrating Application Integration Data” explains how to migrate
application integration data between WebLogic Server domains.

What You Need to Know

This document is intended for the following users:

Using Application Integration vii

m Business Analysts—Business analysts work with technical analysts to ensure
accuracy of the business interface functionality, to create application views, and
to use application views within an enterprise.

m Technical Analysts—Technical analysts are responsible for configuring an adapter,
for setting up WebL ogic Integration services to execute information transfers
with a legacy system, for configuring solutions using adapters, and for
evaluating, mapping, deploying, and maintaining the WebLogic Server
environment. This guide is based on the assumption that the technical analyst
has thorough knowledge of the entire system.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “edocs”
Product Documentation page at http://edocs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File — Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Integration
documentation home page on the edocs Web site. You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To
access the PDFs, open the BEA WebLogic Integration documentation home page,
click the PDF Files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

viii Using Application Integration

Related Information

The following resources are also available:

m BEA WebLogic Server documentation (ht t p: / / edocs. bea. com)

m BEA WebLogic Integration documentation (ht t p: / / edocs. bea. com)

m XML Schema Specification (ht t p: / / www. w3c. or g/ TR/ xml schema-f or mal /)
m Sun Microsystems, Inc. Java site (ht t p: / / www. j avasof t. com')

m Sun Microsystems, Inc. J2EE Connector Architecture Specification
(http://java. sun. com j 2ee/ connector/)

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Application Integration documentation.

In your e-mail message, please indicate which release of the BEA WebLogic
Application Integration documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Application Integration, contact
BEA Customer Support through BEA WebSupport at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

Using Application Integration iX

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

chnmod u+w *
c:\start Server
. doc

w s. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

Identifies significant words in code.
Example:
void commt ()

nonospace
italic
t ext

Identifies variables in code.
Example:
String expr

X Using Application Integration

Convention

Item

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information

Example:
i nport com sap. rfc.exception.*;

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsis itself should never be typed.

Using Application Integration

Xi

Xii Using Application Integration

CHAPTER

1 Introduction to
Application Integration

This document provides instructions for using adapters built with the BEA WebL ogic
Integration Adapter Development Kit (ADK). It explains how to define application
view services and events and use them in your business processes in a WebLogic
Integration environment.

This section provides the following topics:
m Before You Begin

m Creating an Interface to an Adapter

m Defining an Application View

m Using an Application View in a Workflow

Note: Because all adapters and applications are different, the instructions provided
in this document are generic: they are not written for a specific adapter or
application. For details about the adapters provided with the ADK, see “The
E-mail Adapter” and “The DBMS Adapter” in Developing Adapters.

Before You Begin

Before you can begin using adapters to integrate your enterprise, you must set up your
environment and learn about how WebL ogic Integration uses adapters and application
views to help achieve integration.

Using Application Integration 1-1

1 Introduction to Application Integration

This section provides the following information:
m Software Prerequisites

m Familiarizing Yourself with Basic Concepts

Software Prerequisites

Make sure the following prerequisites are satisfied.

Note: Foradetailed list of prerequisites, see the BEA WebLogic Integration Release
Notes.

m You have installed WebLogic Server, including Service Pack 2.

m You have installed JDK 1.3.1. The JDK 1.3 development kit is automatically
installed when you install WebLogic Server 6.1. If you prefer, however, you
may install your own version, as long as it is 1.3.1-compliant.

m You have installed BEA WebLogic Integration.

m You have deployed each adapter for which you will define application views.

Familiarizing Yourself with Basic Concepts

If you are not familiar with the basic concepts of application integration, we
recommend that you take the time to read the overview of application integration
provided in Introducing Application Integration. Then you will be ready to learn how
to address practical issues, such as when to use one application integration method
rather than another, and how to implement the method you select.

1-2 Using Application Integration

Creating an Interface to an Adapter

Creating an Interface to an Adapter

For each adapter to be used in your enterprise, you must provide an interface to the
services and events that it provides. You can create such an interface in either of two
ways: by defining application views or by writing custom code.

Application views provide the most convenient method of accessing an adapter’s
resources. In most situations you will probably choose this method for exposing the
application functions provided by each adapter. However, if you require more control
over an adapter’s functions than that afforded by application views, you may also write
custom code.

You are responsible for deciding whether your enterprise can derive greater benefit
from application views or custom code. The following sections provide basic
guidelines for choosing between these two methods. For details, see Chapter 2,
“Defining an Application View.”

When to Define an Application View

Most enterprise information system (EIS) applications can be integrated easily by
defining application views. In general, you should define application views if one or
more of the following criteria are true:

m You have more than one EIS in your enterprise, and you lack developers with
detailed, thorough knowledge of all systems.

m You want to construct business processes using the WebLogic Integration
Studio.

m You need to update the parameters of an adapter or one of its processes.

When to Write Custom Code

You should write custom code as an interface to an adapter only if one or more of the
following criteria are true:

Using Application Integration 1-3

1 Introduction to Application Integration

m You have only one EIS in your enterprise.

m Your developer has thorough, detailed knowledge of each EIS involved in the
business processes being coded.

®m You do not need to use the business process management (BPM) functions
provided by WebL ogic Integration.

m Your code will never require changes.

Defining an Application View

An application view for an adapter is an XML-based interface between WebLogic
Server and a particular EIS application. You must define an application view for each
adapter used by your enterprise.

This section describes:
m What Is Defined by an Application View Definition

m How to Define an Application View

What Is Defined by an Application View Definition

When you define an application view, you must configure communication parameters
for it, and then add services and/or events to it. The application view’s services and
events expose specific functions of the application. The communication parameters of
the application view govern how the application view connects to the target EIS.

An application view definition specifies:
m A unique name for the application view
m Security privileges for users of the application view

m Parameters for the:

e Application

1-4 Using Application Integration

Defining an Application View

e Network connections between the application and the application view
e Management of the pool of connections available to the application view

e Load balancing to be performed by the application view

How to Define an Application View

This section provides a high-level overview of the procedure you must complete to
define application views for adapters. For detailed instructions, see Chapter 2,
“Defining an Application View.”

Defining an application view involves the following steps:
m Step 1: Name and Configure Connection Parameters for an Application View
m Step 2: Add Services and Events to the Application View

m Step 3: Test Services and Events

Step 1: Name and Configure Connection Parameters for an Application View

The first step in defining an application view for an adapter is to log on to the
Application View Console, select a folder in which the application view will reside,
and configure EIS connection parameters for it.

For details about creating and configuring an application view, see the following
topics:

m “Step 1: Log On to the Application View Console” on page 2-5

m “Steps 2 and 3: Define an Application View and Configure Connection
Parameters” on page 2-6

Step 2: Add Services and Events to the Application View

Services and events support a subset of an application’s business processes by enabling
WebLogic Server clients to interact with the application functions you specify. The
services and events offered by an application view allow specific types of transactions
between WebL ogic Server and the EIS application.

Using Application Integration 1-5

1 Introduction to Application Integration

For details about adding services and events to an application view, see the following
topics:

m “Step 4A: Add a Service to an Application View” on page 2-9

m “Step 6B: Test an Application View’s Events” on page 2-21

Step 3: Test Services and Events

Verify that your services or events interact properly with the EIS application.
For details about testing services and events, see the following topics:
m “Step 6A: Test an Application View’s Services” on page 2-18

m “Step 6B: Test an Application View’s Events” on page 2-21

Using an Application View in a Workflow

Once you define an application view in your WebLogic Integration environment, you
can deploy it on WebLogic Server and use it to implement your enterprise’s business
processes in a business process workflow.

You can use application views in business processes in either of the following ways:
m By designing business process workflows in the WebLogic Integration Studio
m By writing custom code

When an application view is used in your business process workflow, the end result is
a deployed electronic representation of your enterprise’s business process. The
workflow specifies the transactions to be performed by your applications to
accomplish the business processes. The application views perform the transactions
themselves.

1-6 Using Application Integration

Using an Application View in a Workflow

Using an Application View in the WebLogic Integration

Studio

The most common way to use an application view in your enterprise’s business
processes is by designing a workflow in the WebLogic Integration Studio. The Studio
is a graphical user interface (GUI) for designing business process workflows. These
workflows can include application view services and events.

You can use an application view to support services and events in any of the following
four ways:

Task 1: Set Up a Task Node to Call an Application View Service

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

Task 3: Create a Workflow Started by an Application View Event

Task 4: Set Up an Event Node to Wait for an Application View Event

For detailed information about each task, see Chapter 3, “Using Application Views in
the Studio.”

Using an Application View by Writing Custom Code

If you do not implement your business process by using an application view through
the Studio, you must write custom Java code, instead. For instructions, see Chapter 4,
“Using Application Views by Writing Custom Code.”

Choosing a Method for Implementing a Business Process

WebLogic Integration allows you to implement your business processes by using
either of two methods: by creating a workflow in the Studio or by writing custom code.
Any business process can be implemented as a Studio workflow.

Using Application Integration 1-7

1

Introduction to Application Integration

Custom coding, however, should be attempted only if the target business process is
extremely simple and specialized. In this document, custom coding is described only
as an alternate method to be used in situations that require it. For a list of such
situations, see “When to Write Custom Java Code” on page 1-8.

When to Use the WebLogic Integration Studio

Use the WebLogic Integration Studio to implement a business process if one or more
of the following criteria are true:

m Your business processes require complicated error management, persistent

processes, and sophisticated conditional branching.

For example, if your business process must receive numerous events, select a
subset of them, perform complex branched actions, generate many complex
messages, and send the messages to various WebL ogic Server clients, then you
should use the Studio.

Your business process requires periodic changes.

The Studio reduces the number of required compile/test/debug cycles.

m Your developers (like those in most organizations) are valuable and scarce.

When to Write Custom Java Code

1-8

Write custom code to implement a business process only if one or more of the
following criteria are true:

m Your business process is simple; that is, it includes no complicated error

recovery, long-lived processes, conditional branching, or joining of the process
flow.

For example, if your business process performs a limited set of actions on an
incoming message, and then routes the message to a small number of client
applications, you can safely write custom code for it.

You do not anticipate the need for frequent updates to the business process.

Whenever you update custom code, a full compile/test/debug cycle, which can
be costly, is required.

Your organization can afford to allocate developers for the job of implementing
business processes in code.

Using Application Integration

CHAPTER

2 Defining an
Application View

This section presents the following topics:

m Before You Begin

m High-Level Procedure for Defining an Application View

m Sample Detailed Procedure for Defining an Application View

m Editing an Application View

Using Application Integration 2-1

2 Defining an Application View

Before You Begin

When you define an application view, you are creating an XML-based interface
between WebL ogic Server and a particular EIS application within your enterprise.
Once you create the application view, a business analyst can use it to create business
processes that use the application. For any adapter, you can create any number of
application views, each of which may contain any number of services and events.

Before you attempt to define an application view, make sure the following
prerequisites are satisfied:

m The appropriate adapter has been developed using the ADK. You can create and
configure application views only for existing adapters.

m Determine which business processes need to be supported by the application
view you are configuring. The required business processes determine the types
of services and events you include in your application views. Therefore, you
must gather information about the application’s business requirements from the
business analyst. Once you determine the necessary business processes, you can
define and test the appropriate services and events.

High-Level Procedure for Defining an
Application View

Figure 2-1 summarizes the procedure for defining and configuring an application
view.

2-2 Using Application Integration

High-Level Procedure for Defining an Application View

Figure 2-1 Procedure for Defining and Configuring an Application View

1

Log Cn

2

Define an
Application
Wiew

3

Configure
Connection
Parameters

4 4
add Add
Services Events

S5
Deploy the
Application

Wiew

6 6
Test the Test the Undeploy
Service Event the
Application
Wiew

1. Log on to the WebLogic Integration Application View Console. For detailed
information, see “Step 1: Log On to the Application View Console” on page 2-5.

2. Click Add Application View to create a new application view for the appropriate
adapter. An application view enables a set of business processes for the specified
adapter’s target EIS application. For detailed information, see “Steps 2 and 3:
Define an Application View and Configure Connection Parameters” on page 2-6.

3. On the Configure Connection Parameters page, enter application connection
parameters. For detailed information, see “Steps 2 and 3: Define an Application
View and Configure Connection Parameters” on page 2-6.

Using Application Integration 2-3

2

Defining an Application View

The information is validated, and the application view is configured to connect
to the specified system.

4. Click Add Event or Add Service to define the appropriate events and services for
this application view.

5. Deploy the application view on WebLogic Server so other entities can interact
with it according to your security settings.

Note: You cannot test an application view unless it is deployed.

6. Test all services and events to make sure they can properly interact with the
target EIS application.

Once your services and events are tested and functioning, you can use the
application view in workflows. For more information, see Chapter 3, “Using
Application Views in the Studio.”

7. Undeploy the application view if you need to reconfigure its connection
parameters or add services and events to it.

Note: Whenan application view is undeployed, no other entities can interact with
it.

Sample Detailed Procedure for Defining an
Application View

2-4

This section explains how to define and maintain application views using an EIS
adapter for a hypothetical database EIS called simply DBMS. The steps in the
procedure presented here correspond to the steps shown in Figure 2-1.

When you create application views for your enterprise, they may look different from
these shown in this document. Such differences are to be expected, because the
application view’s adapter determines the information required for each application
view page, and each enterprise has its own specialized adapters. For details about an
adapter used in your enterprise, consult the relevant technical analyst or EIS specialist.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Step 1: Log On to the Application View Console

The Application View Console displays all the application views in your WebLogic
Integration environment, organized in folders.

To log on to the Application View Console:
1. Open a new browser window.

2. Enter the URL for your system’s Application View Console. The actual URL you
enter depends on your system. It should conform to the following format:
http://host:port/w ai
The Application View Console - Logon page is displayed.

‘.c',:

L4 7
“ha
2 1jed

Application View Console - Logon

Please supply a valid WeblLogic username and password.

Username Isystem
Password |*°“°“°“°“°“°“°"
Login |

3. Enter your WebLogic Server username and password, then click Login. The
Application View Console is displayed.

Using Application Integration 2-5

2 Defining an Application View

0“"1

Application View Console :‘h
L

Folder: Root =

MName Status Action
™ EastCoast Remaove
= WestCoast Remaove

Add Application View

Note: If you do not see a page such as this, consult the WebLogic Server
administrator.

4. To add a folder, click the New Folder icon:

For more information, see “Creating a Folder” on page 5-3.

Steps 2 and 3: Define an Application View and Configure
Connection Parameters

1. Add a new application view to the current folder by clicking Add Application
View.

Note: Make sure you are working in the appropriate folder before performing this

step. Once you define an application view, you cannot move it to another
folder.

The Define New Application View page is displayed.

2-6 Using Application Integration

Sample Detailed Procedure for Defining an Application View

Define New Application View "'hea

This page allows you to define a new application view

Folder: EastCoast.Sales

Application View MName:* [Customemtanagement

Description: Tour description here. ;I

Associated Adapter:

Cancel |

CIEIRAS

Logic

Yi'e b

2. Inthe Application View Name field, enter a name. The name should describe the
functions performed by this application. Each application view name must be
unique to its adapter. Valid characters are a-z, A-Z, 0-9, and _ (underscore).

3. Inthe Description field, enter any relevant notes. These notes are read by people
using this application view in workflows created in the WebL ogic Integration
Studio.

4. From the Associated Adapter list, select an adapter to be used to create this
application view.

5. Click OK. The Configure Connection Parameters page is displayed.

Using Application Integration 2-7

2

Defining an Application View

2-8

0“"1

. L4 7
Configure Connection Parameters 2 Il 4
L Ba
1y

tion Conzole Weblogic Conzole

o UL L O Hhis page, vou supply parameters to connect to vour DBMS

Weblogic User Name* Iadmin
Weblogic Password* |*°“°“°“°“°“°“°"

Data Source Name (JNDIY* [WLA_DataSource

On the Configure Connection Parameters page, define the network-related
information necessary for the application view to interact with the target EIS.
You need to enter this information only once per application view.

6. Enter your WebL ogic Server username and password.

Note: The fields displayed on the page you see may differ from those shown here.

Which fields are displayed is determined by the adapter.

7. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

8. Click Continue. The Application View Administration page is displayed.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Application View Administration for EastCoast.Sales.CustomerManagement

Description:
Connection Criteria

Password:

Root Log Gategory:
Log Configuration File:
Message Bundle Base:
Username:

Data Source Name:

Additional Log Category:

Your description here, _Edit

system

P

". 7

2

Ll hea
L

This page aliows you to add events and/or services to an application view,

CustomeriManagement

BE&A_WLS_DBMS_aDK
BEA_WLS_DBMS_ADK. xml
BEA_WLS_DBMS_ADK

system

WLal DataSource
Reconfigure connection parameters for CustomerM

Events

CustomerlInserted

Services

RetrieveallCustomers

Continue

Add

Remove Event Wiew Summary Wiew Event Schems

Add

Edit Remous Seruice Miew Summary Wiew RequestSchems Wiew Response Schems

Save | 9

Step 4A: Add a Service to an Application View

1. Onthe Application View Administration page, click Add in the Services row. The
Add Service page is displayed.

Add Service

Unique Service Name: %

Description:

SQL Statement:#

on this page, vou add services to your application view.

FetrieveAllCustomers

Browse DBMS..,

Returns & 1ist of all customer =

records, including first name,

last name, and date of birth.

select * from wlpi.dbo.Customer_Tsble =]

-

Syntax Help: 1. Use fully gualified table name (i.e.
catalog.schema.table); 2. ta gather user input, bracket the calumn
name and type as follows: “[ColumnName ColumnType]". Hint: browse
to cut & paste ColumnMame and ColumnType into your sql.

Using Application Integration 2-9

2 Defining an Application View

Note: The fields displayed on the page you see may differ from those shown here.
Which fields are displayed is determined by the adapter.

2. Inthe Unique Service Name field, enter a name. The name should describe the
function performed by this service. Each service name must be unique to its
application view. Valid characters are a-z, A-Z, 0-9, and _ (underscore).

3. Inthe Description field, enter any relevant notes. These notes are read by people
using this application view in workflows created in the WebLogic Integration
Studio.

4. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

5. When finished, click Add.

Step 4B: Add an Event to an Application View

1. Inthe Application View Console, select Administration. The Application View
Administration page is displayed.

Application View Admini ion for EastCoast.Sales.CustomerManagement -'he‘a

This page aliows you to add events and/or services to an application view,

Description: Your description here, _Edit
Connection Criteria

Additional Log Category: CustomerManagement
Password: system

Root Log Category: BEA_WLS_DBMS_ADK
Log Configuration File: BEA_WLS_DBMS_ADK.xml
Message Bundle Base: BEA_WLS_DBMS_ADK
Username: system

Data Source Name: WLAI_DataSource
Reconfigure connection parameters for ©

Events Add

CustomerInserted Edit Bemove Event Yiew Summary View EventSchema

Services Add

RetrieveAllCustomers Edit Remove Service Wiew Summary Miew Request Schema View Response Schema

Continue Save | ¢

2. Click Add in the Events row. The Add Event page is displayed.

2-10 Using Application Integration

Sample Detailed Procedure for Defining an Application View

0“"1

L4 7
Add Event ’ h ’
-
Ty ea
Adapter Home WLIF Home Page WeblLogic Console Yy
Gn this page, you add events to your application view,
Unique Event Name:* Customerinserted
Description: Thiz event is triggered when a new =]
customer record is added.
Table Name:* wilpi.dbo. Customer_Tahle 7

Browse DBMS...

Please Select The Type Of * Insert Event
Event To Create:
' Update Event

" Delete Evant

Note: The fields displayed on the page you see may differ from those shown here.
Which fields are displayed is determined by the adapter.

3. Inthe Unique Event Name field, enter a name. Each event name must be unique
to its application view. Valid characters are a—z, A-Z, 0-9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are read by people
using this application view in workflows created in the WebLogic Integration
Studio.

5. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

6. When finished, click Add. The Application View Administration page is
displayed.

7. If you are finished adding services and events, click Continue to deploy the
application view.

Using Application Integration 2-11

2 Defining an Application View

Step 5: Deploy an Application View

2-12

You may deploy an application view when you have added at least one event or service
to it. You must deploy an application view before you can test its services and events

or use the application view in the WebLogic Server environment. By deploying an
application view, you place relevant metadata about its services and events into a

run-time metadata repository. Deployment also makes the application view available
to other WebL ogic Server clients. As a result, business processes can interact with the

application view, and you can test the application view’s services and events.

To deploy an application view:

1. Openthe application view as described in “Step 1: Log On to the Application View

Console” on page 2-5. The Summary for Application View page is displayed.

Summary for Application View EastCoast.Sales.CustomerManagement

| Home Page

Summary This page shows the events and services defined for the
EastCoast. Sales. CustomerManagement application view.

Name: CustomerManagement

Description: Your description here.

Status: Mot Deployed

Available actions Edit

Connection Security Deploy Events and Services

Connection Criteria
Additional Log Category: CustomerManagement
Password: system
Root Log Category: BEA_WLS_DBMS_ADK
Log Configuration File: BEA_WLS_DBMS_ADK. xml
Message Bundle Base: BEA_WLS_DBMS_ADK
Username: system
Data Source Name: WAL DataSource

2. Click Edit. The Application View Administration page is displayed.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Y

'v' 7
7, bea
Li

Application View Administration for EastCoast.Sales.CustomerManagement

This page aliows you to add events and/or services to an application view,

Description: Your description here, _Edit

Connection Criteria

Additional Log Category: CustomerManagement
Password: system

Root Log Gategory: BEA_WLS_DBMS_aDK
Log Configuration Fil BEA_WLS_DBMS_ADK, xml
Message Bundle Base: BEA_WLS_DBMS_ADK
Username: system

Data Source Name: WLal DataSource

Reconfigure connection parameters for CustomerM

Events Add
CustomerlInserted Edit Remowe Ewent Wiew Summary Wiew Event Schems
Services Add
RetrieveallCustomers Edit Remoue Service Miew Summary Wiew RegquestSchems Wiew Response Schems

Continug Save | 9

3. Click Continue. The Deploy Application View page is displayed.

Using Application Integration ~ 2-13

2 Defining an Application View

Deploy Application View EastCoast.Sales.CustomerManagement to Server r'd hea

er Home Home Page Wehl

On this page vou deploy your application view to the application server,

‘Au. Required Service Parameters

PERENEILEUNEY Enable asynchronous service
irnvocation? %

Required Event Parameters

Event Router URL* ¥ |ht|p.ﬁ'\m:a\husl?DUWfDbmsEventRUutervaeanUuter

Connection Pool Parameters
Use these parameters to configure the connection pool used by this application view

Minimum Pool Size* |
Maximum Poal Size* 10
Target Fraction of Maximum Pool .
Size¥* L7
Allow Pool to Shrink? cd

Log Configuration

Set the log verbosity level for this application view,

‘Lng warnings, arrors, and audit messages j
Configure Security

Restrict Access to CustomerManagerment using J2EF Securit

T MDeploy persistently?¥ Save| ¥

Note: Which fields you see on the Deploy Application View page depends on the
adapter being used. For a description of all fields, consult the relevant
technical analyst or EIS specialist.

4. To enable the WebLogic Integration Studio or other authorized clients to
asynchronously call any services available from this application view, select
Enable Asynchronous Service Invocation.

An entity that calls an application view service asynchronously continues its
process without waiting for a response from the service.

5. If your application view supports events, enter the URL of the adapter’s event

router. For example:
http://1ocal host: 7001/ Your EI S_Event Rout er/ Event Rout er

Note: Thisfield is not displayed if no events are defined for this application view.

6. Inthe Minimum Pool Size field, enter the minimum number of connection pools
to be used by this application view. For example: 1.

2-14 Using Application Integration

Sample Detailed Procedure for Defining an Application View

7. In the Maximum Pool Size field, enter the maximum number of connection pools
to be used by this application view. For example: 10.

8. Inthe Target Fraction of Maximum Pool Size field, enter the ideal pool size,
measured from 0 to 1.0. For example: 0. 7. If the Maximum Pool Size is 10 and
the Target Fraction is 0.7, this means the adapter will perform load balancing
with the goal of maintaining the connection pool size at 70% of the maximum,
which in this case means 7 connections.

9. To have unused connections deleted automatically, select Allow Pool to Shrink.

10. In the Log Configuration area, select one of the following options according to
your logging preferences:

e Log errors and audit messages
e Log warnings, errors, and audit messages
e Log informational messages, warnings, errors, and audit messages

e Log all messages

11. If necessary, click Restrict Access to your_application using J2EE Security. The
Application View Security page is displayed.

Application View Security

WLIF Home: Page

WiehLogic

This form allows vou to grant and revoke permissions for this spplication view,

Choose an Action: ® Grant © Revoke

Specify a User or Group:* adrmin

@® pead (Invoke Service or Register for Event)

Permission: } . .
T write (Deploy/Undeploy/Edit App Wiew)

Principals with Read Access Granted | Principals with Read Access Revoked
s EVEryOne

no person/group specified

Principals with Write Access Granted | Principals with Write Access Revoked

* EVEeryone

Apply Dane

no person/group specified

Using Application Integration ~ 2-15

2 Defining an Application View

Use this page to grant or revoke read and write access to this application view
for a WebLogic Server user or group.

12. When you finish setting up permissions, click Apply to save your changes.

13. Decide whether you want to deploy the application view now or later. To deploy
the application view later, proceed to step 14. To deploy the application view
now, proceed to step 15.

14. To deploy the application view later, click Done to return to the Deploy
Application View page.
To save the Application View without deploying it, click Save.

To have this application view automatically redeployed whenever WebL ogic
Server is restarted, select Deploy Persistently.

Note: To save the application view to be completed later without deploying it
now, click Save at any time.

15. To deploy the application view now, click Deploy Application View. The
Summary for Application View page is displayed.

Summary for Application Yiew EastCoast.Sales.CustomerManagement '

WLAI Home Pais e 4o

Summary This page shows the events and services defined for the
EastCoast Sales.CustomerManagement application view,

Name: CustomerManagement
Description; Your description here,
Status: Deployed

Available actions Undeploy

Connection Security Deploy Events and Services

Events

CustomerInserted Test View Summary View Event Schems

Services

RetrieveaAllCustomers Test View Summary View Request Schema View Response Schema

2-16 Using Application Integration

Sample Detailed Procedure for Defining an Application View

Optional Step: Undeploy an Application View

You must undeploy an application view whenever you want to edit its connection
parameters, add services and events to it, or disable clients from using it. For
information about editing connection parameters, see “Steps 2 and 3: Define an
Application View and Configure Connection Parameters” on page 2-6. When an

application view is undeployed, no other WebLogic Server clients can interact with it,
and you cannot test its services or events.

To undeploy an application view:

1. Inthe Application View Console, click Summary. The Summary for Application
View page is displayed.

Summary for Application View EastCoast.Sales.CustomerManagement V'

Summary

This page shows the events and services defined for the
EastCoast. Sales. CustomerManagement application view.

Name: CustomerManagement
Description: Your description here,
Status: Deployed

Available actions Undeploy

Connection Security Deploy Events and Services

Events

CustomerInserted

Test View Summary Wiew Event Schema

Services

RetrieveAllCustomers Test View Surnrmary View Request Scherna Wiew Response Scherns

2. To undeploy the application view from WebLogic Server, click Undeploy. The
Undeploy Application View window is displayed.

Using Application Integration ~ 2-17

2 Defining an Application View

28,
s .
Zhea
Undeploy Application View

This page confirms that you want to UNDEPLOY the
application view,

Are you sure you want to undeploy
EastCoast.Sales.CustomerManagement?

Confirm |
Cancel |

3. Click Confirm. The Summary for Application View page is displayed, giving you
an opportunity to deploy the application view again.

Step 6A: Test an Application View's Services

The purpose of testing an application view service is to evaluate whether or not that
service interacts properly with the target EIS. You can test an application view only if
it is deployed and it contains at least one event or service. To test an application view
service:

1. Inthe navigation area (on the left side of the window), select Summary. The
Summary for Application View page is displayed.

2-18 Using Application Integration

Sample Detailed Procedure for Defining an Application View

o*"%,

Summary for Application View EastCoast.Sales.CustomerManagement :‘ hea
by

Logou

Summary

This page shows the events and services defined for the
EastCoast. Sales. CustomerManagement application view.

Name: CustomerManagement
Description: Your description here.
Status: Deployed

Available actions Undeploy

Connection Security Deploy Events and Services

Ewvents

CustomerInserted

Test View Summary Wiew Event Schema

Services

RetrieveAllCustomers Test View Summary View Reguest Schema Yiew Response Schema

2. Inthe Services area of the Events and Services tab, find the appropriate service
and click Test. The Test Service page is displayed.

o®*%,
Test Service: InsertCustomer :‘h
Ty ea
r Hom WYWLIF Home Page v Logout]

Surmmary Piease fill in any inputs to the service query and click Test

Application Yiew: InsertCustomer EastCoast.Sales.CustomerManagement

insert into wipi.dbo.Customer_Table {firstname,lastname,dob) values{[firstname
varchar],[lastname varchar],[dob varchar])

Input

firstname |Jane tawt

lastname |Doe tawt

dob [12/31/00 text

3. If necessary, enter the required data in the appropriate fields.

Note: The fields displayed on your Test Service page may differ from those show
here. Which fields are displayed is determined by the application view

Using Application Integration ~ 2-19

2

Defining an Application View

2-20

service. For a description of all fields, consult the relevant technical analyst
or EIS specialist.

4. Click Test. If the application view service processes the input data that you
provided in step 3 correctly, the test is successful. The Test Result page is
displayed. It shows the input and output documents.

Test Result for InsertCustomer

Adapter Home WLIF Home

This page shows the results from testing a service,

Input to service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2> _J
<!DOCTYPE Inputs

<Input>

<firstname>Jane</firstname:

<lastname>Doe</ lastnsme:

<dobr12/31/00</dob>

</ Input>

-

Output from service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2> _J
<!DOCTYPE RowsAffecteds
<RowsAffecteds>1</RowsAffected:

Execution time: 40 {ms)

5. Repeat the test procedure (steps 1-4) for each service you want to test.

6. After you finish testing the application view’s services, you may keep the
application view deployed or, if you want to edit it, you may undeploy it.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Step 6B: Test an Application View’s Events

The purpose of testing your application view events is to evaluate whether or not the
application view responds correctly to the EIS application. You can test an application

view only if it is deployed and it contains at least one event or service. To test an
application view event:

1. Inthe navigation area (on the left side of the window), click Summary. The
Summary for Application View page is displayed.

e
Summary for Application View EastCoast.Sales.CustomerManagement

- 7
S)
Z,hea
Logou
Summary This page shows the events and services defined for the
EastCoast.Sales, CustomerManagement application view,
Name: CustomerManagement
Description: Your description here,
Status: Deployed
Available actions Undeploy

Connection Security Deploy Events and Services

Ewvents

CustomerInserted

Test View Summary Wiew Event Schema

Services

RetrieveAllCustomers

Test Wiew Summary Yiew Reguest Schema Wiew Response Schema

2. Inthe Events area on the Events and Services tab, find your event and click Test.
The Test Event page is displayed.

Using Application Integration ~ 2-21

2 Defining an Application View

Test Event: Customerinserted s

This page allows you to test an event. This page allows you to create the event
by invoking a service that will cause the event, or manually using EIS-specific
tools,

If you want to use a service invocation to create the event, select the
'Service' option below, and select the service to invoke, Otherwise, you can
create the event manually using any tools your EIS provides (for example an
interactive SQL tool for the DBMS adapter used to insert a new row and create
the event).

How do you want to create the event?

* Service |InsertCust0mer j

 Manual

How long should we wait to receive the event?

Time (in milisecands): [5000

Note: The fields displayed on your Test Event page may differ from those show
here. Which fields are displayed is determined by the application view
event. For a description of all fields, consult the relevant technical analyst
or EIS specialist.

3. Select a method for generating the test event:

e Service: Select Service when you want to use one of the application view’s
own services to generate a canned event. Then complete the procedure in “If
You Select Service” on page 2-22.

e Manual: Select Manual when you want to generate the event by logging on
to an EIS application and performing the appropriate event-generating
function. Then complete the procedure in “If You Select Manual” on page
2-25.

If the application view event responds correctly before the specified amount of
time elapses, the test is successful.

If You Select Service
1. From the Service menu, select a service that triggers the event you are testing. For

example, if you are testing the NewCustomer event, select a service that invokes it,
such as Insert Customer.

2-22 Using Application Integration

Sample Detailed Procedure for Defining an Application View

2.

3.

Test Service: InsertCustomer

In the Time field, enter a reasonable period of time to wait, specified in
milliseconds. (One minute = 60,000 milliseconds.) If the specified period elapses
before the event succeeds, the test times out and a failure message is displayed.

Click Test. The triggering service is executed.

If the service requires input data, an input page is displayed.

o®*%,

L4 7
z /
Ty Ba

Logout

e Home WLIF Home Page Weblogic Conzole

Surmmary Piease fill in any inputs to the service query and click Test

4,

Test Event: InsertCustomer EastCoast.Sales.CustomerManagement

insert into wipi.dbo.Customer_Table {firstname,lastname,dob) values{[firstname
varchar],[lastname varchar],[dob varchar])

Input

firstname |J0hn tawt
lastname |Doe tawt
dob [12/31/29 text

i |

If service input data is required, enter it in the appropriate fields, and click Test.

The service is executed. If the test succeeds, the Test Result page is displayed,
showing the event document, the service input document, and the service output
document.

Using Application Integration ~ 2-23

2

Defining an Application View

2-24

‘.c'?

Test Result for Customerlnserted :'h .
Ty ea

ter Home {LIF Home =)

Loggou

This page shows the results from testing a event.

Generated event of type CustomerInserted on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2>

<!DOCTYPE Customer Table.insert:
<Customer Table.insert>
<hddressl/>

<hddressz/»

<hddressi/»

<City/>

<Country/ >

<DOB>Dec 31 1999 12:004M</DOB>
<Emaild>

<Fax/>
<FirstName>John</FirstName:
<LastName>Doe</ LastName:
<MiddleName/ >

<Phone/ > x|

|»

Input to service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2> _J
<!DOCTYPE Inputs

<Input>

<firstname>John</firstname:

<lastname>Doe</ lastnsme:

<dobr12/31/99</dob>

</ Input>

=

Output from service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2>
<!DOCTYPE RowsAffecteds
<RowsAffecteds1</RowsAffected:

Execution time: 3034 {ms)

If the test fails, the Test Result page displays only a Timed Out message.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Test Result for Customerlnserted

ome WLIF Home Page WehbLogic

This page shows the results from testing a event.

Generated event of type CustomerInserted on application view
EastCoast.Sales.CustomerManagement

Timed Out =]

-

Execution time: 6028 {ms)
5. If the test fails, edit the event definition, or contact the system administrator or
application manager.

6. If the test succeeds, repeat the test procedure for each remaining event you want
to test.

7. When finished, save the application view.

If You Select Manual

1. Inthe Time field, enter a reasonable time to wait, specified in milliseconds. (One
minute = 60,000 milliseconds.) If this period elapses before the event succeeds, the
test times out and a failure message is displayed.

2. If the application you will use to trigger the event is not already open, open it
Now.

3. Click Test. The test waits for an event to trigger it.

4. Using the triggering application, perform an action that executes the service that,
in turn, tests the application view event.

If the test succeeds, the Test Result page is displayed, showing the event
document from the application, the service input document, and the service
output document.

Using Application Integration ~ 2-25

2

Defining an Application View

2-26

‘.c'?

Test Result for Customerlnserted :'h .
Ty ea

ter Home {LIF Home =)

Loggou

This page shows the results from testing a event.

Generated event of type CustomerInserted on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2>

<!DOCTYPE Customer Table.insert:
<Customer Table.insert>
<hddressl/>

<hddressz/»

<hddressi/»

<City/>

<Country/ >

<DOB>Dec 31 1999 12:004M</DOB>
<Emaild>

<Fax/>
<FirstName>John</FirstName:
<LastName>Doe</ LastName:
<MiddleName/ >

<Phone/ > x|

|»

Input to service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2> _J
<!DOCTYPE Inputs

<Input>

<firstname>John</firstname:

<lastname>Doe</ lastnsme:

<dobr12/31/99</dob>

</ Input>

=

Output from service InsertCustomer on application view
EastCoast.Sales.CustomerManagement

<?xml wversion="1.0"2>
<!DOCTYPE RowsAffecteds
<RowsAffecteds1</RowsAffected:

Execution time: 3034 {ms)

If the test fails or takes too long, the Test Result page is displayed, showing a
Timed Out message.

Using Application Integration

Sample Detailed Procedure for Defining an Application View

Test Result for Customerlnserted

pter Home WLIF Home Page

WiehLogic Conzole

This page shows the results from testing a event.

Generated event of type CustomerInserted on application view
EastCoast.Sales.CustomerManagement

Timed Out =]

-

Execution time: 6028 {ms)

5. If the test fails, edit the event definition, or contact the system administrator or
application manager.

6. If the test succeeds, repeat the test procedure for each remaining event you want
to test.

7. When finished, save the application view.

e
Summary for Application View EastCoast.Sales.CustomerManagement ,o'h ¥
2, 0éd
= hLo Cons gty Logou
Summary This page shows the events and sarvices defined for the
EastCoast.Sales.CustomerManagement application view.
Name: CustomerManagement
Description: Your description here,
Status: Deployed
Available actions Undeploy

Connection Security Deploy Events and Services

Events

CustomerInserted Test View Surnmar

Wiew Event Schems

Services

RetrieveAllCustomers Test View Surnrnary Wisw Request Scherns view Response Scherns

Using Application Integration ~ 2-27

2

Defining an Application View

Editing an Application View

2-28

When you define an application view, you must configure its connection parameters.
After you add and test services and events, you may want to reconfigure the connection
parameters or remove services and events.

To edit an existing application view:
1. Open the application view.

2. Click Summary. The Summary for Application View page is displayed.

Summary for Application View EastCoast.Sales.CustomerManagement

Summary This page shows the events and services defined for the
EastCoast. Sales. CustomerManagement application view.

Name: CustomerManagement

Description: Your description here.

Status: Mot Deployed

Available actions Edit

Connection Security Deploy Events and Services

Connection Criteria
Additional Log Category: CustomerManagement
Password: system
Root Log Category: BEA_WLS_DBMS_ADK
Log Configuration File: BEA_WLS_DBMS_ADK. xml
Message Bundle Base: BEA_WLS_DBMS_ADK
Username: system
Data Source Name: WAL DataSource

3. Click Edit. The Application View Administration page is displayed.

Using Application Integration

Editing an Application View

‘.-c'.-:
Application VYiew Administration for EastCoast.Sales.CustomerManagement :’h v
ca
Adapter Home \ Home Page YwehLogic ¢ ogo
This page allows yvou to add events andsor services to an application view.
Administration
. Description: Your description here, Edit
Connection Criteria
Additional Log Category: CustomerManagement
Root Log Category: BE&_WLS_DBMS_ADK
Password: system
Message Bundle Base: BEA_WLS_DBMS_ADK
Log Configuration File: BEA_WLS_DBMS_ADK. xml
Username: system
Data Source Name: WLAI DataSource
Reconfigure connection parameters for CustomerManagement
Events Add
Services Add

Save | §

4. To reconfigure the application view’s connection parameters, select Configure
Connection in the left pane. The Configuration Connection Parameters page is
displayed. Follow the instructions beginning with step 6 in “Steps 2 and 3: Define
an Application View and Configure Connection Parameters” on page 2-6.

5. To add services and events, click Add Service or Add Event. Follow the
instructions in “Step 4A: Add a Service to an Application View” on page 2-9 or
“Step 4B: Add an Event to an Application View” on page 2-10.

Using Application Integration ~ 2-29

2 Defining an Application View

2-30 Using Application Integration

CHAPTER

3

Using Application
Views In the Studio

This section presents the following topics:

Before You Begin
Task 1: Set Up a Task Node to Call an Application View Service

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

Task 3: Create a Workflow Started by an Application View Event
Task 4: Set Up an Event Node to Wait for an Application View Event

Using Application Integration

3-1

3 Using Application Views in the Studio

Before You Begin

After you create all the application view services and events that are required for your
enterprise, you can use the resulting application views to execute your business

processes. The simplest way to do this is by using the WebLogic Integration Studio to
design business process workflows that use your application view services and events.

The WebLogic Integration Studio is a graphical user interface (GUI) for designing
business process workflows. These workflows can include application view services
and events defined using WebLogic Integration. For details, see Using the WebLogic
Integration Studio.

Before you can invoke an application view service or receive an application view event
in the WebL ogic Integration Studio, you must make sure the following prerequisites
have been met:

m You have created an application view and defined services and events for it.

m The application view and its adapter are functional and saved. If you plan to call
application view services and events from a running workflow, the application
view must be deployed, as well.

m BPM is running.
m Application integration is running.
m The application integration plug-in has been loaded.

m You have received information about the required business logic for the
workflows you are defining from the appropriate business analyst.

m A workflow template definition is open.

Workflow Setup Tasks

The following sections describe four tasks you may perform to set up your workflow
to use application view services and events:

m Task 1: Set Up a Task Node to Call an Application View Service

3-2 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service

m Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

m Task 3: Create a Workflow Started by an Application View Event
m Task 4: Set Up an Event Node to Wait for an Application View Event
You can perform any combination of these tasks to create your own workflows.

This document does not fully explain how to use the business process management
(BPM) functions provided by Weblogic Integration; for complete information, see
Learning to Use BPM with WebLogic Integration or go to htt p: / / edocs. bea. com

Task 1: Set Up a Task Node to Call an
Application View Service

In your organization, there may be situations in which you want to call an application
view service from within a workflow. To do this, add a task node to the workflow, then
add an appropriate Application View Service action to the task node. Once the
workflow is saved and activated, the application view service is called whenever the
task node executes.

Steps for Setting up a Task Node to Call an Application
View Service

To create a task node that calls an application view service, complete the following
procedure:

1. Inthe WebLogic Integration Studio, open a template definition. The Workflow
Design window is displayed.

Using Application Integration 3-3

3

Using Application Views in the Studio

EW’ehLogic Integration Studio:
File “iew Configuration Tools Window Help

Qrganization il Evworkflow Design WorfkowTemplate 01/01/01 12:00 AM

Jorot

B4 Templates
- B4 WorkowTemplate
RSN 01/01/01 12:00 AM e

-4 Starts p .
B3 Stan e Task 1
| L Aotiong

Events
| Tasks
~# Decisions
~-# Joing

2. If there is no task node, create one.

3. Double-click the task node that calls the application view service. The Task
Properties dialog box is displayed.

Taszk Properties [%]
Task Mame Friarity
I'I'ask1 IMedium 'l

—Prnneaptie

~Action

Created | Activated' Executed MarkedDone' Permissions' Task Motes | ActionMotes

INext

[Task 1 (T1)
[+ Dane (D13

Add
Update |
Delete |

BlE

QK | Cancel | Help |

4. In the Actions area, select the tab from which you want the service to be called.
Your tab choice depends on your business processes.

5. Click Add. The Add Action dialog box is displayed.

3-4 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service

Add Action E

Select an action to add
E-__] Task Actions
H-] Warkflow Actions
__1Integration Actions
+-_| Exception Handling Actions
J Miscellaneous actions
B4 Al Actions

- ;

QK I Cancel | Help |

6. Choose Al Actions — Call Application View Service and click OK. The Call
Service dialog box is displayed.

Using Application Integration 3-5

3

Using Application Views in the Studio

3-6

x|
Call Application Yiew Service Test SelactAll
oot Mare:
A Test2 Selectall
=4 Child
= Test Description:
~# SelectDesc
J---;DbSelectLastName Request Docurnent Yariable: Edit...l
_ | Test input LI
" Synchronous © Asynchronous
Fesponse Document Yariakle:
Request ID Variable:
|requestld LI
View Reguest Definition |
_‘l | v View Response Definition |
Refresh Tree |
Notesl

7. In the navigation tree, find and select the service you want to call.

The navigation tree organizes application view services by folder (for example,
Test2) and application view (for example, Test). All application view services

Cancel | Hel

[o |

0|

are at the lowest level of the navigation tree.

Note:

select the Refresh Tree option.

If the navigation tree is missing or appears too narrow, it may include an
overly long XML or string variable name. Try renaming your XML or

string variables with shorter names.

Using Application Integration

To check for recently saved application views and events at any time,

Task 1: Set Up a Task Node to Call an Application View Service

8. In the Request Document Variable list, select an existing XML variable that
contains input data for the application view service.

9. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new XML variable.

Variable Properties il

MName
|input

Type

[=l
Farameter
[nput [Mandatary
[Qutput

MNotes

QK I Cancel | Help |

10. In the Name field, enter a name for the variable.

11. In the Type menu, select XML. (XML is the only menu option.)

For details about defining new variables, see Using the WebLogic Integration
Studio.

12. Click OK to return to the Call Service dialog box.

13. To create a service request template for the specified service, or to modify an
existing service request template, select one of the following:

e Set—to create a template
e Edit—to modify an existing template

Whichever option you select, the Service Request Template dialog box is
displayed.

Using Application Integration 3-7

3 Using Application Views in the Studio

: Service Request Template il
al@fz[n[e x|~ [~ [<[]
= &4 Input

------ =4 LastMame SrryString

P <_><>l DOB DateToStringDated, "wan=hihd...

1] i | 2l

Ok | Cancel |

The Service Request Template dialog box displays the template to be used for
all service requests of the type specified in step 11. This template is based on the
input schema for the service.

When this action is executed, the template data is assigned to the specified
request document variable and used as the input document for the service. This
template overrides any previous setting for the variable.

For details about using the Service Request Template dialog box, see Using the
WebLogic Integration Studio.

14. Click OK to return to the Call Service dialog box.

15. If you need to examine the XML schema of the input document, select View
Request Definition. The View Definition dialog box is displayed.

1 Yiew Definition E
Root Element: IInput

<xad:achema xmlns:xsd="http:/ . wi.org/1999/3HLSchena'>

<xsd:elenent name="Input”>
<xsd: conplexTypes
<xsd: sequence’>
<xsd:elenent type="xzd:string” name="FirstName" />
<xad:element type="xzd:string” name="LastName" />
<xsd:element type="xzd:string” name="DOB"/>
</xsd: sequencer
</xsd: conplexType>
</xsd:elemnent>

< /xad: schenax

Close |

3-8 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service

16.
17.

18.

19.

20.

Click Close when finished.

Call the application view synchronously or asynchronously by selecting
Synchronous or Asynchronous, respectively.

Note: When a node calls a service synchronously, the workflow waits until the
service returns a response document before continuing. If a node calls a
service asynchronously, the workflow continues processing.

For synchronous services that require storage of the response, select a predefined
XML variable from the Response Document Variable list. When the Studio
receives a response from the application view service, the response is stored in
the response document variable. If you do not care about the response data, leave
this field empty.

If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new XML variable. For details, see step 9.
in “Steps for Setting up a Task Node to Call an Application View Service”.

For details about defining new variables, see Using the WebLogic Integration
Studio.

If you need to examine the XML schema of the response document, select View
Response Definition. The View Definition dialog box is displayed.

1 Yiew Definition E

Root Element: IRowsAﬁected

<xad:achema xmlns:xsd="http:/ . wi.org/1999/3HLSchena'>

< /xad: schenax

<xsd:element type="xzd:int” name="Rowsiffected” />

21
22

23

. Click Close when finished.

. For asynchronous services that require storage of the request ID, select a

predefined string variable from the Request ID Variable list.

. If no suitable string variable exists, select <new> to open the Variable Properties

dialog box, in which you can create a new string variable.

Using Application Integration 3-9

3 Using Application Views in the Studio

Variable Properties il

MName

Irequestld

Type

IString LI
Farameter
[nput [Mandatary
[Qutput

MNotes

QK I Cancel | Help |

24. In the Name field, enter a name for the variable.

25. In the Type menu, select String. (String is the only menu option.)

For details about defining new variables, see Using the WebLogic Integration
Studio.

Note: When you set up a task node to call an asynchronous application view
service, the result is returned to the Studio. The workflow identifies this
response using the request ID variable you selected. To set up an event
node to receive the response, make sure to use the same request ID variable
for the event node. For more information about creating such an event
node, see “Task 2: Set Up an Event Node to Wait for a Response from an
Asynchronous Application View Service” on page 3-11.

26. Click OK to save the action.

27. In the Task Properties dialog box, click OK to save the node.

3-10 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service

Task 2: Set Up an Event Node to Wait for a
Response from an Asynchronous
Application View Service

This section explains how to receive an asynchronous application view service
response and handle any errors it may contain.

In a workflow, whenever an action calls an application view service asynchronously,
the application view service returns a response. If you need the response, you must set
up a corresponding asynchronous event node to wait for it. This section describes a
highly simplified scenario in which an event node receives an application view service
response without checking for errors.

To set up an asynchronous event node to wait for a response from an asynchronous
application view service, create an event node and configure it to wait for an event of
type Al Async Response.

Configuring Receipt of a Response

To set up the event node to receive an asynchronous service response, you can use
either of the following methods:

m Select the Response Document tab (preferred method). Then select a request 1D
variable (a string) and a response document variable (of type XML). For details
about using this method, see “Procedure for Configuring Receipt of an
Asynchronous Service Response (Preferred Method)” on page 3-13.

m Select the Asynchronous Variable tab (legacy method). Then select a request ID
variable and an asynchronous service response variable (a string) and an
asynchronous service response variable (of type AsyncServiceResponse). For
details about using this method, see “Procedure for Configuring Receipt of an
Asynchronous Service Response (Legacy Method)” on page 3-15.

Note: Use of te Response Document tab is preferred because it provides a
universal means of receiving both asynchronous and synchronous

Using Application Integration 3-11

3

Using Application Views in the Studio

responses. When you use this method, an XML document is received
regardless of whether the response is asynchronous or synchronous, and
you do not need to query the value of the asynchronous service response
variable.

We recommed using a response document variable to receive asynchronous service
responses whenever possible. To configure a service to wait for an event of type

Al Async Response, you use the Event Properties dialog box. This dialog box may or
may not offer you the choice of using an asynchronous variable to receive the response.
Whether this choice is available depends on the following conditions:

m If you edit an existing Al Async Response event node that was previously set up
to use an Asynchronous Service Response variable to receive the response, then
two tabs are displayed in the Event Properties dialog box: an Asynchronous
Variable tab (legacy method) and a Response Document tab (preferred method).
Thus you have a choice of two methods you can use to configure receipt of the
service response.

m If you edit an existing Al Async Response event node that does not use an
Asynchronous Service Response variable, or if you are creating a new
Al Async Response event node, then the Event Properties dialog box displays a
dialog box without tabs. In this case you must set up a response document to
receive the service response (preferred method).

Handling Errors in an Asynchronous Application View
Service Response

3-12

Although this task does not include the configuration of error handling for the
application view service response, you may want to handle errors in your own
workflows. To handle asynchronous service response errors in workflows that use an
AsyncServiceResponse variable, you can use the features provided by the application
integration plug-in.

The application integration plug-in includes the variable type AsyncServiceResponse
and three functions:

m Al HasError()

m Al Get Error Msg()

m Al Get ResponseDocunent ()

Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service

For a complete description of these functions, see “Functions Provided by the
Application Integration Plug-In” on page 3-18.

Procedure for Configuring Receipt of an Asynchronous
Service Response (Preferred Method)

To set up an asynchronous event node to wait for a response from an asynchronous
application view service, create an event node and configure it to wait for an event of
type Al Async Response.

To set up an event node to use an XML variable to receive an asynchronous service
response, complete the following procedure:

1. Inthe WebLogic Integration Studio, open a workflow template definition. The
Workflow Design window is displayed.

EW’ehLogic Integration Studio:
File “iew Configuration Tools Window Help

Organization W23 workflow Design WorfkowTemplate *01/01/01 12:00 AM

IgﬁiTemplates LII% Oliﬁ?lDlOlDlDl

B4 WorfkowTernpl ate
SRR ~11/01/01 12:00 AW fri

- Et 7
f g i
o B Start(51) Task 1 —— 4@
-] Events

El-4 Tasks

=4 Taskd (T

~# Created Actions

L1 Activated Actions

-] Executed Actions
~-# Done Actions

~—# Decisions

...... # Joins

2. If no event node exists, create one now. This event node will wait for an
asynchronous response from a designated application view service.

3. Double-click the event node. The Event Properties dialog box is displayed.

Using Application Integration ~ 3-13

3 Using Application Views in the Studio

Event Properties il
Description Type
|Event |AI Asyne Response LI

Asynchronous Variable (legacyy Response Docurnent (oreferred) |

Request ID Variable:

requestid LI

Response Document Yariable:

Variables | Actions' Next' Notes'

Variable | Expression | dd

Update

Delete

i

QK I Cancel | Help |

4. (Optional) In the Description field, enter a name.

5. Inthe Type list, select Al Async Response.

6. Select the Response Document (preferred) tab.

Note: If your workflow does not use an AsyncServiceResponse variable, or if
you are creating a new Al Async Response event node, then the Event
Properties dialog box displays a dialog box without tabs instead. Use this
dialog box to set up a response document to receive the service response.
(This is the preferred method.)

7. Inthe Request ID Variable list, select a string variable that is already defined.
The WebLogic Integration process engine listens for an asynchronous response
with an ID matching the ID stored in this variable.

3-14 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service

8. If no suitable string variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new string variable. For details, see step 23.
in “Steps for Setting up a Task Node to Call an Application View Service”

For details about defining new variables, see Using the WebLogic Integration
Studio.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was called asynchronously earlier in
the workflow. The Call Application View Service action sets the request
ID variable. The action and this event node can work together only if both
use the same request ID variable. For more information about setting up
the Call Application View Service action, see “Task 1: Set Up a Task Node
to Call an Application View Service” on page 3-3.

9. For asynchronous services that require storage of the response, select a
predefined XML variable in the Response Document Variable list. When
WebLogic Integration receives a response from the application view service, the
response document variable stores the response. If you do need the response data,
skip this step.

10. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. For details, see step 9. in
“Steps for Setting up a Task Node to Call an Application View Service”.

For details about defining new variables, see Using the WebLogic Integration
Studio.

11. Click OK to save the event node.

Procedure for Configuring Receipt of an Asynchronous
Service Response (Legacy Method)

The preferred method for receiving an asynchronous service response is to use a
response document variable of type XML. However, if an existing workflow contains
an asynchronous event node that was previously set up to use an
AsyncServiceResponse variable (to wait for a response from an asynchronous
application view service), you can modify the event node.

To modify an event node that uses an AsyncServiceResponse variable to receive an
asynchronous service response, complete the following procedure:

Using Application Integration ~ 3-15

3

Using Application Views in the Studio

3-16

1. Inthe WebLogic Integration Studio, open a workflow template definition. The
Workflow Design window is displayed.

EW’ehLogic Integration Studio:

File “iew Configuration Tools Window Help

Qrganization

Jorot

B4 Templates
B4 WorfkowTernpl ate

I;E!---_JTasks

| -4 Task1 (T1)

-# Created Actions

L1 Activated Actions

| Executed Actions
~-# Done Actions

~# Decisions

@ Jaing

|

1 E;a AWorkflow Design WorfkowTemplate *01/01/01 12:00 AM

R iolalal o] 5

al

Tash 1

El ;
1
—'4.@

2. Double-click the asynchronous event node. The Event Properties dialog box is

displayed.

Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service

Event Properties il
Description Type
|Evenﬂ |AI Asyne Response LI

Asynchronous Variable (legacy) | Response Document (preferred)'

Request ID Variable:

requestid LI

Asynchronous Service Response Variable:

asyncResponse =

Variables | Actions' Next' Notes'

Variable | Expression | Add

Update

Delete

i

QK I Cancel | Help |

3. Select the Asynchronous Variable (legacy) tab.

4. From the Request ID Variable list, select a string variable that is already defined.
WebLogic Integration listens for an asynchronous response with an ID matching
the 1D stored in this variable.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was invoked asynchronously earlier
in the workflow. The Call Application View Service action sets the request
ID variable. The action and this event node can work together only if both
use the same request ID variable. For more information about setting up
the Call Application View Service action, see “Task 1: Set Up a Task Node
to Call an Application View Service” on page 3-3.

Using Application Integration ~ 3-17

3 Using Application Views in the Studio

5. From the Asynchronous Service Response Variable list, select an
AsyncServiceResponse variable to store the response data.

Note: Because you are modifying an existing asynchronous event node, the
asynchronous service response variable field is already populated. If you
do not need the response, select the Response Document (preferred) tab.
For details about using the preferred method, see “Procedure for
Configuring Receipt of an Asynchronous Service Response (Preferred
Method)” on page 3-13.

6. Click OK to save the event node.

Functions Provided by the Application
Integration Plug-In

If your enterprise includes Al Async Response variables and you want to interrogate
those variables while using the application integration plug-in, use the following
functions:

m Al HasError()
m Al Get Error Msg()
m Al Get ResponseDocunent ()

Using these functions, you can set up decision nodes to handle success and failure
conditions.

Note: These functions are available only if the application integration plug-in is
installed, and they support only the asynchronous variable method for
receiving asynchronous service responses. For details, see “Procedure for
Configuring Receipt of an Asynchronous Service Response (Legacy
Method)” on page 3-15.

AlHasError()

Use Al HasEr ror () to determine the status of an asynchronous service response. The
following table provides details about this function.

3-18 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service

Operands

AsyncServiceResponse variable

Preconditions

m You have created a variable of type AsyncServiceResponse.
m You have called an asynchronous application view service.

m The application view service has returned a response, which
is stored in your AsyncServiceResponse variable.

Returns

Boolean

Output explanation

False: The asynchronous application view service call was
successful.

True: The asynchronous application view service call failed.

AlGetErrorMsg()

Use Al Get Err or Msg() to retrieve the error message string returned by an
asynchronous application view service. The following table provides details about this

function.

Operands

AsyncServiceResponse variable

Preconditions

m You have created a variable of type AsyncServiceResponse.
m You have called an asynchronous application view service.

m The application view service has returned a response, which
is stored by your AsyncServiceResponse variable.

Returns

String

Output explanation

Error string: Returns an error string explaining why the
asynchronous application view response failed.

Empty string: There was no error.

Using Application Integration ~ 3-19

3 Using Application Views in the Studio

AlGetResponseDocumenty()

Use Al Get ResponseDocurrent () to retrieve the XML response document returned by
an asynchronous application view service. The following table provides details about
this function.

Operands AsyncServiceResponse variable

Preconditions m You have created a variable of type AsyncServiceResponse.
m You have called an asynchronous application view service.

m The application view service has returned a response, which
is stored by your AsyncServiceResponse variable.

Returns XML

Output explanation XML document: Returns an XML document representing the
asynchronous service response.
Null: No response document was returned because an error
ocurred.

Task 3: Create a Workflow Started by an
Application View Event

It is sometimes desirable to have a workflow that is started whenever a designated
application view event occurs. To create such a workflow, edit the workflow’s start
node so it responds to an event of type Al Start, then select the appropriate application
view event. If necessary, you can set up conditions with which the event can be
filtered. After you save and activate the workflow, the start node is executed each time
the application view event occurs.

3-20 Using Application Integration

Task 3: Create a Workflow Started by an Application View Event

Steps for Creating a Workflow Started by an Application
View Event

To set up a workflow with a start node that is triggered by an application view event,
complete the following procedure.

1. Inthe WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.

EW’ehLogic Integration Studio:

File “iew Configuration Tools Window Help

Qrganization

Jorot
B4 Templates

-4 Start (51)

Lol Actions

Events
| Tasks
~—# Decisions

s O | =

: Eg;aWorkﬂow Design WorfkowTemplate 01/01/01 12:00 AM

o|e]|olo]e]

Tash 1

e

2. If no start node exists, create one now. This start node will respond to an
application view event that you specify.

3. Double-click the start node. The Start Properties dialog box is displayed.

Using Application Integration

3-21

3

Using Application Views in the Studio

3-22

Start Properties

Description

Jstart

 Timed Manual ¢ Called & Event IAlStaﬂ 'l

Root

_4 EastCoast

B4 Sales

B4 Custormemdanagernery
L (imerlnserted

AcctsReceivable
_AwestCoast
~# Sales

MName:

|Cust0merlnserted

Description:

This event is triggered whenewver a record is
inserted. 2

Condition:

Fath{"/Customer_Tahle.insert/Statetext
Fath{"/Customer_Tahle.insert/Statetext

A+BD

[Use warkflow exprassion

& Marketing Event Document Yariahle:
[=l
4] | » Refresh Tree Wiew Definition |
Start Organization
I"ORG1" 'l

Variables | Actions' Next' Notes'

Yariahle |

Expression |

Add

Update

Delete

il

Click Event.

A L

The navigation tree organizes application view events by folder (such as the
EastCoast and Sales folders shown in the preceding Start Properties dialog box)
and application view (for example, CustomerManagement). All application view

(Optional) In the Description field, enter a name.

From the Event list, select Al Start.

events are at the lowest level of the hierarchy.

Using Application Integration

In the navigation tree, select an application view event.

Task 3: Create a Workflow Started by an Application View Event

10.

11.

Note: To check for recently saved application views and events at any time,
select Refresh Tree.

If the navigation tree is missing or appears too narrow, it may be because an
XML or string variable name is too long. Try renaming your XML or string
variables so they are shorter.

If necessary, filter the event in one of the following ways: enter a condition in the
Condition field, or click the A + B button to display the Expression Builder
dialog box, and then create an appropriate expression.

For information about setting up conditions and XPath expressions, see Using
the WebLogic Integration Studio.

From the Event Document Variable list, select an XML variable. Data from the
application view event that is received by the start node is stored in this variable.
If you do not need the event data, skip this step.

If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. For details, see step 9. in
“Steps for Setting up a Task Node to Call an Application View Service”.

For details about defining new variables, see Using the WebLogic Integration
Studio.

If you need to examine the XML schema for the event document, click View
Definition. The View Definition dialog box is displayed.

Using Application Integration ~ 3-23

3 Using Application Views in the Studio

1 Yiew Definition E

Root Element: |Cust0mer_TabIe.inser1

<xad:achema xmlns:xsd="http:/ . wi.org/1999/3HLSchena">

<xad:elenent name="Customer_Table.insert">
<xsd: conplexTypes
<xsd: sequence’>
<xsd:element type="xzd:string” name="iddressl"/>
<xsd:element type="xzd:string” name="aAddressz"/>
<xsd:element type="xzd:string” name="aiddress3"/>
<xsd:element type="xzd:string” name="City" />
<xsd:elenent type="xzd:string” name="Country” />
<xsd:element type="xzd:timeInstant” name="DOB" />
<xsd:element type="xzd:string” name="Email”/>
<xsd:element type="xzd:string” name="Fax"/>
<xsd:elenent type="xzd:string” name="FirstName" />
<xad:element type="xzd:string” name="LastName" />
<xsd:element type="xzd:string” name="MiddleName" />
<xsd:element type="xzd:string” name="Fhone” />
<xsd:element type="xzd:string” name="PostalCode” />
<xsd:element type="xzd:string” name="3tate” />
</xsd: sequencer
</xsd: conplexType>
</xsd:elemnent>

< /xad: schenax

Close |

12. Click Close to return to the Start Properties dialog box.

13. In the Start Properties dialog box, click OK. The new or modified start node is
saved.

Task 4: Set Up an Event Node to Wait for an
Application View Event

In a workflow, it is sometimes desirable to have an event node that is triggered by an
application view event. To create such an event node, edit an event node so it responds
to an event of type Al Event, then select the appropriate application view event. If

3-24 Using Application Integration

Task 4: Set Up an Event Node to Wait for an Application View Event

necessary, you can set up conditions with which to filter the application view event.
After you save and activate the workflow, the workflow progresses to this event node,
waits for a specified application view event, and continues processing.

Steps for Setting Up a Node to Wait for an Application
View Event

To set up an event node to be triggered by an application view event, complete the
following procedure:

1. Inthe WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.

EW’ehLogic Integration Studio:
File “iew Configuration Tools Window Help

Qrganization

Jorot =l
B4 Templates
B4 WorfkowTernpl ate

: E;a AWorkflow Design WorfkowTemplate *01/01/01 12:00 AM

al

=8 El 7

: g i

o B Start(51) Task 1 —— 4@
-] Events

Daone Actions
~—# Decisions

2. If no event node exists, create one now. This event node will be triggered by a

designated application view event.

3. Double-click the event node. The Event Properties dialog box is displayed.

Using Application Integration ~ 3-25

3 Using Application Views in the Studio

Event Properties [%]
Description Type
|Eve nt |AI Event LI
24 Root Mare:
Customerinserted

=24 EastCoast

=24 Sales

B4 CustomerManage
e 3 merlinse

@ Marketing

- AcctsPayahle

~# AcctsReceivahble

WestCoast

~# Sales

Description:

This event is triggered whenever a recard is
inserted.

Condition:
r\l’ AT S TOTTTET T aHTE TS ETL

A+BD

o # farketing Event Document Yariable:
[=l
<| | » Refresh Tree | Wiew Definition |

Variables | Actions' Next' Notes'

WVariable | Expression | dd

Update

Delete

il

[o |

Cancel | Help |

4,
5.
6.

3-26

(Optional) In the Description field, enter a name.
From the Type list, select Al Event.

In the navigation tree, select an application view event.

The navigation tree organizes application view events by folder (such as the
EastCoast and Sales folders shown in the preceding Start Properties dialog box)
and application view (for example, CustomerManagement). All application view
events are at the lowest level of the hierarchy.

Note: To check for recently saved application views and events at any time,

select Refresh Tree.

If the navigation tree is missing or appears too narrow, it may be because an
XML or string variable name is too long. Try renaming your XML or string
variables so they are shorter.

Using Application Integration

Task 4: Set Up an Event Node to Wait for an Application View Event

7.

If necessary, filter the event in one of the following ways: enter a condition in the
Condition field, or click the A + B button to display the Expression Builder
dialog box, and then create an appropriate expression.

For information about setting up conditions and XPath expressions, see Using
the WebLogic Integration Studio.

In the Event Properties dialog box, select an XML variable from the Event
Document Variable list. Data from the application view event that is received by
the start node is stored in this variable. If you do not need the event data, skip
this step.

If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. For details, see step 9. in
“Steps for Setting up a Task Node to Call an Application View Service”.

For details about defining new variables, see Using the WebLogic Integration
Studio.

If you need to examine the XML schema for the event document, click View
Definition. The View Definition dialog box is displayed.

Using Application Integration ~ 3-27

3 Using Application Views in the Studio

ew D on

Root Element: |Cust0mer_TabIe.inser1

<xsd: conplexTypes
<xsd: sequence’>
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
<xad:elenent
</xsd: sequencer

</xsd:elemnent>

< /xad: schenax

<xad:achema xmlns:xsd="http:/ . wi.org/1999/3HLSchena">

<xad:elenent name="Customer_Table.insert">

type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:

type="xsd:

</xsd: conplexType>

string” name="Aiddressl" />
string” name="Address2" />
string” name="Addresz3"/ >
string” name="City™ />
string™ name="Country” />
timeInstant” name="DOB" />
string” name="Email"™ /=
string” name="Fax" />
string” name="FirstName" />
string” name="LastName" />
string” name="MiddleName™ />
string™ name="Thone" />
string™ name="PostalCode™ />
string™ name="3tate” />

Close |

10. Click Close when finished.

11. In the Event Properties dialog box, click OK.

3-28 Using Application Integration

CHAPTER

4 Using Application
Views by Writing
Custom Code

If you are a developer, you may want to modify an application view by writing custom
code. You can use most application view features through the Application View
Console, but some features can only be used through custom coding.

This section presents two sample scenarios in which custom code is used:
m Scenario 1: Creating Connections with Specific Credentials

m Scenario 2: Custom Coding a Business Process

Scenario 1: Creating Connections with
Specific Credentials

If you need to set a security level on an application view before invoking services on
it, you can do so by setting credentials for the appropriate EIS. To do so, use the
Appl i cati onVi ewmethods set Connect i onSpec() and get Connect i onSpec() .
Both methods use a Connect i onSpec object. To instantiate a Connect i onSpec
object, you can use the Connect i onRequest | nf oMap class provided by the BEA

Using Application Integration 4-1

4 Using Application Views by Writing Custom Code

WebLogic Integration Adapter Development Kit (ADK), or you can implement your
own class. If you implement your own class, you must include the following four
interfaces: Connect i onSpec, Connect i onRequest | nf o, Map, and Seri al i zabl e.

Implementing ConnectionSpec

Before you can use set Connect i onSpec() or get Connect i onSpec() , you must
instantiate a Connect i onSpec object. Use the Connect i onRequest | nf oMap class
provided by the ADK, or derive your own class.

To implement Connect i onSpec:

1. Decide whether to use the Connect i onRequest | nf oMap class, provided by the
ADK, or to implement your own class.

2. If you are implementing your own Connect i onSpec class, include the following
interfaces in it:

e Connecti onSpec (JCA class)
e Connecti onRequest | nf o (JCA class)
e Map (SDK class)

e Serializabl e (SDK class)

Calling setConnectionSpec() and getConnectionSpec()

After you implement the Connect i onSpec class and instantiate a Connect i onSpec
object, you can use both with the following Appl i cat i onVvi ewmethods:

m set Connecti onSpec()

m get Connecti onSpec()

The following listing provides the code for set Connect i onSpec() .

4-2 Using Application Integration

Scenario 1: Creating Connections with Specific Credentials

Listing 4-1 Complete Code for setConnectionSpec()

/**

* Sets the connectionSpec for connections nade to the EI'S. After the
* ConnectionSpec is set it will be used to nake connections to the
* EI'S when invoking a service. To clear the connection spec, and use
* the default connection paraneters, call this method using null.
*
*
*

@ar ans connectionCriteria connection criteria for the ElS.
/

public void set Connecti onSpec(Connecti onSpec connectionCriteria)

{

mconnCriteria = connectionCriteria;

}

The following listing provides the code for get Connect i onSpec().

Listing 4-2 Complete Code for getConnectionSpec()

/**
* Returns the ConnectionSpec set by set ConnectionSpec. If no
* ConnectionSpec has been set null is returned.

*

* @eturns Connecti onSpec

*/

publ i ¢ Connecti onSpec get Connecti onSpec()
{

return mconnCriteria;

}

Using the ConnectionSpec Class

To set the Connect i onSpec class, pass it a properly initialized Connect i onSpec
object. To clear the Connect i onSpec class, pass it a Connect i onSpec object with a
null value.

Listing 4-3 shows an example for use of Connect i onSpec.

Using Application Integration 4-3

4 Using Application Views by Writing Custom Code

Listing 4-3 Example Use of ConnectionSpec Class

Properties props = new Properties();
Appl i cationVi ew applicati onView = new
Appl i cationView(getlnitial Context(props),"appVi ewlest Send") ;

Connecti onRequest | nf oMap map = new Connecti onRequest | nf oMap() ;
/1 map properties here

map. put (" PropertyOne", "val ueOne");

map. put (" PropertyTwo", "val ueTwo");

/] set new connection spec
appl i cati onVi ew. set Connect i onSpec(map) ;

| Docunent Def i ni ti on request Docunent Def =
appl i cati onVi ew. get Request Docunrent Def i niti on("servi ceNane");

SOvBchema request Schema = request Docunent Def . get Docunent Schena() ;

Def aul t Docunent Qpti ons options = new Def aul t Docunent Opti ons();

options. set ForceM nCccurs(1);

options. set Root Nanme(" ROOTNAME") ;

options. set Tar get Docunent (Docunent Fact ory. cr eat eDocunent ()) ;

| Docunent request Docunent = request Schenm. cr eat eDef aul t Docunent (opti ons);

request Docunent . set Stri ngl nFirst ("//ROOI/ El ement One", "val ue");
request Docunent . set Stri ngl nFirst("//ROOI/ El ement Two", "val ue");

/1 the service invocation will use the connection spec set to connect to the EI' S
| Docunent result = applicationView invokeService("serviceNang",

request Docunent) ;

Systemout.println(result.toXM());

4-4 Using Application Integration

Scenario 2: Custom Coding a Business Process

Scenario 2: Custom Coding a Business
Process

Although the simplest way of using application views in business processes is through
the WebL ogic Integration Studio, you always have the alternative of writing custom
Java code to represent your business processes. If you are a developer who writes
custom code, we recommend that you familiarize yourself with the simple example
presented in this section to demonstrate how a custom business process can be written.

For a thorough comparison of the two methods for using application views, see
“Choosing a Method for Implementing a Business Process” on page 1-7.

About This Scenario

In the simple example presneted in this section, the following business logic is
implemented:

An enterprise has a customer relationship management (CRM) system and an order
processing (OP) system. You want a business process that coordinates the
synchronization of customer information between these two systems. That means that
whenever a customer is created on the CRM system, the creation of a corresponding
customer record on the OP system is triggered. The attached Java class

SyncCust omer | nf or mat i on implements this business logic.

This example does not cover everything you can do using custom code. It simply
demonstrates the basic steps you take when you implement your own organization’s
business processes.

Use this example code as a template for custom coding your own business processes.

This scenario uses a concrete example class called SyncCust oner | nf or mat i on to
explain how to write custom code. In general, you must do the following two steps to
create custom code that uses an application view in a business process:

1. Make sure you have a Java class representing the application that implements the
business process.

Using Application Integration 4-5

4

Using Application Views by Writing Custom Code

2.

Within this Java class, supply the code to implement the business logic.

Before You Begin

4-6

The following prerequisites must be met before you start writing custom code to
implement a business process:

Create an application view and define one or more events or services within the
application view.

Obtain information, from the appropriate business analyst, about the required
business logic for the business process workflow you are defining. Make sure
you also get all the information needed to connect to WebL ogic Server,

including the host server name and port number, and a user 1D and password.

In addition, this scenario is based on the assumption that the following prerequisites
have been met:

Application views for the source CRM system and the target OP system are
defined and working. For details about defining application views, see “Defining
an Application View” on page 2-1.

Both application views reside in the East Coast folder. The source application
view is named East Coast.Customer Mgmt and the target application view is
named East Coast.Order Processing.

Note: Your organization must have its own folders and application views.

You are familiar with the application integration API, or you are working closely
with a Java programmer who is familiar with it.

You have all the information necessary to connect to the application integration
server that hosts the application views.

Note: Get the information specific to your organization from your system
administrator.

Using Application Integration

Scenario 2: Custom Coding a Business Process

Creating the SyncCustomerinformation Class

Before you can start writing custom code, you must have a Java class representing each
application required for the business process. Create the necessary Java classes if they
do not exist already. This example calls for one application class called

SyncCust oner | nf or mat i on. Of course, your own code will use different variable
names. To create the SyncCust omer | nf or mat i on Java class:

1.

See “Code for Sample Java Class” on page 4-9 for the complete source code for the
Java application class.

Note: For your own projects, use the SyncCust oner | nf or mat i on code as a
template or guide. The SyncCust omer | nf or mat i on example code is
annotated with detailed comments.

Create code to listen for East Coast.New Customer.

Obtain references to the NanespaceManager (variable name m namespaceMyr)
and Appl i cati onVi ewManager (variable name m appVi ewMgr) within
WebLogic Server. To perform this step, use a JNDI lookup from WebLogic
Server.

Using the NanmespaceManager to call nm get Root Nanespace() , obtain a
reference to the root namespace . This reference is stored in a variable called
root.

Using the r oot variable to call r oot . get NamespaceQbj ect (“East Coast”),
obtain a reference to the East Coast namespace. This reference is stored into a
variable called east Coast .

Using the east Coast variable, obtain a temporary reference to the Customer
Management Appl i cat i onVi ewand store it in a variable called
cust Mgnt Handl e.

This cust Mgnt Handl e temporary reference is used to obtain a reference to an
Appl i cati onVi ewinstance for Customer Management. To perform this step,

call the Appl i cati onVi ewvanager as avm get Appl i cati onVi ewl nst ance
(cust Myt Handl e. get Qual i fi edName()) . Store the returned reference in a
variable called cust Mgnt .

Using Application Integration 4-7

4

Using Application Views by Writing Custom Code

4-8

8.

10.

Begin listening for New Customer events by calling

cust Mynt . addEvent Li st ener (“New Customer”, |istener), replacing

I'i st ener with the name of an object that can respond to New Customer events.
(See the application integration API for a full discussion of event listeners and
the Event Li st ener interface.)

Implement the onEvent method of the listener class.

When a New Customer event is received, the onEvent method of the listener is
called.

The onEvent method calls a method to respond to the event. In this example,
the onEvent method provides the event object that contains the data associated
with the event. The method called to respond to the event is called

handl eNewCust omer.

Implement the handl eNewCust orer method that will respond to the New
Customer event. Specifically, write code that implements the following sequence
of actions:

a. The handl eNewCust oner method transforms the XML document referenced
in the event to the form expected by the East Coast.Order Processing.Create
Customer service. This transformation may be performed using XSLT or
manually, using custom transformation code. The end result of the
transformation is an XML document that conforms to the schema for the
request document of the East Coast.Order Processing.Create Customer service.
Store this document in a variable called cr eat eCust omer Request .

b. handl eNewCust oner obtains a reference to an instance of the East
Coast.Order Processing application view in the same way described for the East
Coast.Customer Management application view. This reference is stored in a
variable called or der Pr oc.

€. handl eNewCust oner invokes the Create Customer service on the East
Coast.Order Processing application view by calling
orderProc. i nvokeService(“Create Custoner”,
cr eat eCust oner Request) . Recall that cr eat eCust onmer Request is the
variable holding the request document for the Create Customer service. The
response document for this service is stored in a variable named
cr eat eCust oner Response.

d. handl eNewCust oner is finishes executing and becomes available for the next
incoming New Customer event.

Using Application Integration

Scenario 2: Custom Coding a Business Process

When you are finished, you have a new Java class called

SyncCust omer | nf or mat i on. This class implements the Sync Customer
Information business logic. The SyncCust orrer | nf or mat i on class uses the
application integration API to get events from the CRM system and to invoke
services on the OP system.

Code for Sample Java Class

The following listing contains the full source code for the

SyncCust oner | nf or mat i on Java class. This code implements the business logic for
the scenario described earlier in this section. Use it as a template for writing code to
implement your enterprise’s business processes.

Listing 4-4 Full Class Source Code for SyncCustomerlInformation

i mport java.util.Hashtabl e;

i mport javax.nam ng.*;

i mport java.rm .Renot eException;
import combea.wW ai.client.*;

i mport com bea.w ai . comrmon. *;

i nport com bea. docunent. *;

/

E I N S T I T I N I I R I R

~

*

This class inplenents the business logic for the 'Sync Custoner |nfornmation'
busi ness process. It uses the WLAI APl to listen to events fromthe CRM
system and to invoke services on the OP system It assunes that there

are two ApplicationViews defined and deployed in the 'EastCoast'

namespace. The application views and their required events and services

are shown bel ow.

Cust onmer Managenent
events (NewCust oner)
servi ces (none)

Or der Pr ocessi ng
events (none)
servi ces (CreateCustoner)

public class SyncCustonerlnfornmation

{

i mpl enent's Event Li st ener

Using Application Integration 4-9

4

Using Application Views by Writing Custom Code

/**

* Main nethod to start this application. No args are required.
*/
public static void
mai n(String[] args)

4-10

/1 Check that we have the information needed to connect to the server.

if (args.length = 3)

{ System out. println("Usage: SyncCustonerlnfornmation ");
System out. println(" <server url> <user id> <password>");
return;

}

try

{

/1 Create an instance of SyncCustonerinformation to work with

SyncCust oner | nf ormati on syncCustlnfo =
new SyncCustoner|nformation(args[0], args[1], args[2]);

/l Get a connection to WAI
Initial Context initial Context = syncCustlnfo.getlnitial Context();

/1l Get a reference to an instance of the 'East Coast. Custoner Managenent'
/1 Application View

Appl i cationVi ew cust Mgnt =
new ApplicationView(initial Context, "EastCoast.CustonerManagenment");

/1 Add the listener for 'New Custoner' events. In this case we have
/1 our application class inplenent EventListener so it can listen for
/1 events directly.

cust Mgnt . addEvent Li st ener (" NewCust omer ", syncCust | nfo);

/1 Process up to 10 events and then quit.

syncCust | nf 0. set MaxEvent Count (10) ;
syncCust | nf o. processEvents();

catch (Exception e)

{
}

e.printStackTrace();

return;

Using Application Integration

Scenario 2: Custom Coding a Business Process

}

/**
* EventListener nmethod to respond to ' New Custoner' events
*/

public void
onEvent (| Event newCust onmer Event)
{

try

{

/1 Print the contents of the incom ng 'New Custoner' event.

System out. println("Handling new custoner: ");
System out . printl n(newCust orrer Event . t oXM_()) ;

/1 Handle it
| Docunent response = handl eNewCust oner (newCust oner Event . get Payl oad()) ;
/1 Print the response

System out. println("Response: ");
Systemout. println(response.toXM.());

/1 1f we have processed all the events we want to, quit.

m_event Count ++;
if (mevent Count >= m naxEvent Count)

{
}

catch (Exception e)

quit();

e.printStackTrace();
Systemout.println("Qitting...");
quit();
}
}
/**
* Handl es any ' New Custoner' event by invoking the 'Create Custoner'
* gservice on the 'Order Processing' ApplicationView The response
* docunment fromthe service is returned as the return value of this
* met hod.
*/
public | Docunent
handl eNewCust oner (| Docunent newCust oner Dat a)
t hrows Exception

Using Application Integration 4-11

4 Using Application Views by Writing Custom Code

/1 Get an instance of the 'OrderProcessing’ ApplicationView.
if (morderProc == null)

m or der Proc =
new ApplicationViewm.initial Context, "EastCoast.O derProcessing");
}

/1 Transformthe data in newCustonerData to be appropriate for the
/1 request document for 'Create Custoner' on the 'O der Processing'
/1 ApplicationView.

| Docunent cr eat eCust oner Request =
t ransf or mNewCust oner ToCr eat eCust oner Request (newCust oner Dat a) ;

/'l 1 nvoke the service

I Docunment creat eCust omer Response =
m or der Proc. i nvokeServi ce(" Creat eCustoner”, createCustonmer Request);

/1 Return the response

return createCust oner Response,;

R e R
/1 Menber Vari abl es

/**
* The url for the WAI server (e.g. t3://local host:7001)
*
/
private String murl;

/**

* The user id to use when logging into WAI.
*/
private String muserlD;

/**

* The password to use when logging in to WAl as the user given in
* m.userlD

*/

private String m password;

/**

* The initial context to use when comunicating with WAI
*/

4-12 Using Application Integration

Scenario 2: Custom Coding a Business Process

private Initial Context minitial Context;

/**
* An instance of the 'East Coast.Order Processing’ ApplicationView for
* use in handl eNewCust orer .
*/

private ApplicationView m orderProc;

/**

* Hold the maxi mum nunber of events to be processed in handl eNewCust oner
*/

private int m nmaxEvent Count;

/**

* Count of the events processed in handl eNewCust onmer
*/

private int mevent Count;

/**

* A nonitor variable to enable us to wait until we are asked to quit
*/

private String mdoneMnitor = new String("Done Mnitor");

/**

* Aflag indicating we are done or not.

*/
private bool ean m done = fal se;
R
/1 Wility Methods
e i e
/**

* Constructor.

*/
public SyncCustonerlnformation(String url, String userlD, String password)
{

murl = url;

m user| D = userl D,
m password = password;

}

/**
* Establish an initial context to WAI.
*/
public Initial Context
getlnitial Context()
t hrows Nami ngException
{

Using Application Integration ~ 4-13

4 Using Application Views by Writing Custom Code

/1 Set up properties for obtaining an Initial Context to the WLAl server.
Hasht abl e props = new Hasht abl e();
/1 Fill in the properties with the WAl host, port, user id, and password.

props. put (Context. | N TI AL_CONTEXT_FACTCRY,

"webl ogi c.j ndi.W.I nitial Cont ext Factory");
props. put (Cont ext . PROVIDER_URL, m.url);
props. put (Cont ext . SECURI TY_PRI NCl PAL, m user|D);
props. put (Cont ext . SECURI TY_CREDENTI ALS, m password);

/1 Connect to the WAl server

Initial Context initial Context = new Initial Context(props);
/'l Store this for later

m.initial Context = initial Context;

return initial Context;

/**
* Transformthe docunent in the 'New Customer' event to the docunent
* required by the 'Create Custoner' service.
*/

publ i c | Docunment

t ransf or mMNewCust orrer ToCr eat eCust oner Request (1 Docunent newCust oner Dat a)

throws Exception
{

/1 W could do an XSLT transform here, or nanually nove data fromthe
/1 source to the target document. The details of this transformation
/1 are out of the scope of this sanple. For information on XSLT see
/1 http://ww.w3.org/ TR/ xslt. For nmore information on nanually noving
/] data between docunents, see the JavaDoc docunentation for the

/1 com bea. docunent. | Docunment interface.

ret urn newCust omrrer Dat a;

}

/**
* Event processing/wait |oop
*/

public void

processEvent s()

{

synchr oni zed(m donelbni t or)

4-14 Using Application Integration

Scenario 2: Custom Coding a Business Process

}

{
whil e (! m done)
{
try
{
m _doneMbni tor. wai t () ;
catch (Exception e)
{
/1 ignore
}
}
}
}
/**

* Sets the max nunber of events we want to process.
*/

public void
set MaxEvent Count (i nt maxEvent Count)
{

m _maxEvent Count = nmaxEvent Count ;
}
/**

* Method to force this application to exit (cleanly)
*/

public void
qui t()
{

synchr oni zed(m doneMbni t or)

m done = true;
m doneMoni tor. noti fyA | ();
}
}

Using Application Integration

4-15

4 Using Application Views by Writing Custom Code

4-16 Using Application Integration

CHAPTER

5 Using the Application
View Console

The Application View Console is a graphical user interface (GUI) that offers an easy
way to access, organize, and edit all the application views in your enterprise. You can
use the Application View Console to create new folders and to add new application
views to them. By storing your application views in folders, you can organize them
according to your own navigation scheme, regardless of the adapters to which the
individual application views belong.

This section presents the following topics:

m Logging On to the Application View Console
m Creating a Folder

m Removing an Application View

m Removing a Folder

Logging On to the Application View Console

To log on to the Application View Console:
1. Launch a browser window.

2. Enter the URL for your system’s Application View Console in the following
format:

http://yourserver:yourport/w ai

Using Application Integration 5-1

5

Using the Application View Console

5-2

For example: http://w i 1: 7001/ w ai
The logon page is displayed.

0“"1

L4 7
z /
Ty Ba

Application View Console - Logon

Please supply a valid WeblLogic username and password.

Username |system
Password e
Login

Note: If you have already logged on to WebL ogic Server with the username
syst em the Application View Console logon page is not displayed.
Instead, the Application View Console is displayed.

3. Enter your WebLogic Server username and password, then click OK. The
Application View Console is displayed.

Application View Console 1

Folder: Root =

MName Status Action
™ EastCoast Remaove
= WestCoast Remaove

Add Application View

Using Application Integration

Creating a Folder

Creating a Folder

The application views in your enterprise are organized in folders that may contain
application views and other folders. Once you create a folder, you cannot move it to
another folder. Before removing a folder, you must remove all application views and
subfolders.

Once you create an application view in a folder, you can remove the application view,
but you cannot move it to another folder.

To create a folder:

1. While logged on to the Application View Console, navigate to the folder in which
you want to create the new folder.

0“"1

Application View Console P
2 2, he

0oL

Folder: Root - EastCoast -> Sales Iji

Name Status Action
£ Customertanagement Not Deplayed Remaove

Add Application View |

2. Click the New Folder icon:

The Add Folder page is displayed.

or,
oo
' hea:
2 1td

Add Folder

MNew Faolder |

Savel Cancel |

Using Application Integration 5-3

5 Using the Application View Console

3. Inthe New Folder field, enter a name. Valid characters are a-z, A-Z, 0-9, and _
(underscore).

4. Click Save.

Removing an Application View

Remove application views when they become obsolete or when the application to
which they belong is retired.

You can remove an application view only if both of the following conditions are true:

m You have undeployed the application view. (See “Optional Step: Undeploy an
Application View” on page 2-17.) Make sure the application view status is Not
Deployed.

m You are logged on to WebLogic Server with a user account with the appropriate
write privileges.

To remove an application view:

1. While logged on to the Application View Console, navigate to the folder in which
the target application view is located.

Application View Console :'hea

Folder: Root - EastCoast -> Sales Iji

Name Status Action
£ Customertanagement Not Deplayed Remaove

Add Application View |

2. Click Remove to delete the application view.

5-4 Using Application Integration

Removing a Folder

Removing a Folder

Remove folders that are no longer needed. To remove a folder:
1. Remove all application views and subfolders from the target folder.

2. Log on to the Application View Console and go to the folder in which the target
folder resides.

0“"1

L4 7
z /
y Ba

Application View Console

Folder: Root - EastCoast Iji

Name Status Action
™ sales

= Marketing Remove
= AcctsPayable Remove
& acctsReceivable Remove

Add Application View |

3. Click Remove. A confirmation page is displayed.

v,
oo
' hea:
2 1td

Are you sure you want to remove?
'AcctsReceivable'?

Corfirm | Cancel |

4. Click Confirm. The folder is deleted.

Using Application Integration 5-5

5 Using the Application View Console

5-6 Using Application Integration

APPENDIX

A Migrating Application
Integration Data

This section presents the following topics:

m Overview of Migrating Data

m Migrating Data Within a Single EIS Instance
m Migrating Data Within Multiple EIS Instances

m Recommended Practices

Overview of Migrating Data

Configuration data for application integration is stored in the same repository as
configuration data for business process management (BPM). Therefore, you can use
the same tools to migrate data for both types of functions. However, several special
considerations apply to the migration of application integration data and deployment
of that data in the target environment.

Migrating application integration data is straightforward when you are migrating
between WebL ogic Server domains within a single Enterprise Information System
(EIS) instance. When you migrate application data between WebLogic Server domains
in different EIS instances, however, you must then perform special procedures to
ensure a working solution in the target environment.

This section provides information about migrating application integration data
between WebLogic Server domains in the following scenarios:

Using Application Integration A-1

A Migrating Application Integration Data

m Migrating Data Within a Single EIS Instance

m Migrating Data Within Multiple EIS Instances

Migrating Data Within a Single EIS Instance

This section describes how to migrate application integration data between WebLogic
Server domains, within a single EIS instance. For example, you might move
application view definitions between repositories for different domains of WebLogic
Integration. In this case, only the WebLogic Integration domain changes; the target
EIS instances referred to in the application views remain the same.

In this case, the workflow package import/export utility (accessible from the
WebLogic Integration Studio) makes migrating data simple. It involves exporting a
package from the Studio in the source domain, and importing that package into the
Studio in the target domain.

For more information about this import/export utility, see “Importing and Exporting
Workflow Packages” in Using the WebLogic Integration Studio.

How an Application View is Exported

When you export a workflow that includes application integration functionality, the

export tool automatically identifies the application views and other resources on which
the workflow depends. Listing A-1 and Listing A-2 show general values identifying an
application view and the resources on which it depends in the export tool. In general,
the application view is located (in the export tool) in the location shown in Listing A-1.

Listing A-1 Application View Location in the BPM Export Tool

Al Workfl ow Objects
|-- XM Repository
| -- Fol der: WL.AI. Nanespace. Root
| -- Fol der: W.AI. Nanmespace. Root . firstfol der
| -- Fol der: WL.AI. Nanmespace. Root. firstfol der. nthfol der

A-2 Using Application Integration

Migrating Data Within a Single EIS Instance

|-- Entity: W.AI.ApplicationView Root.firstfolder.
nt hf ol der . appvi ewnane

In general, entities related to the application view can be found under the nt h_f ol der,
and are named according to the convention shown in Listing A-2. Not all application
views follow this convention, however.

Listing A-2 Application View Resource Locations in BPM Export Tool

Entity: WAl .entity_type.Root.firstfolder.nthfol der.appvi ewnane_
event/servi cenane_adapt erspecific

To fully export an application view, you must select all entities that are related to it,
including entities of Schena and Connect i onFact or y types.

Example Application View Export

The East Coast . Sal es folder contains an application view named
Cust omer Managenent . It is displayed in the BPM export tool at the location shown in
Listing A-3.

Listing A-3 Application View in the BPM Export Tool

Al Workfl ow Objects
|-- XM Repository
| -- Fol der: WL.AI. Nanespace. Root
| -- Fol der: W.AI. Nanespace. Root . East Coast
| -- Fol der: WAl . Nanmespace. Root . East Coast . Sal es
|-- Entity: WAI. ApplicationVi ew. Root . East Coast .
Sal es. Cust oner Managemnent

To fully export the Cust oner Managenent application view, the export tool
automatically selects all entities that conform to the following pattern:

Using Application Integration A-3

A Migrating Application Integration Data

Entity: WLAI.entitytype. Root. East Coast. Sal es. Cust orer Managenent

The Cust omer Managenment application view contains several events and services: the
export utility shows one Schema type entity for each event and two Schena type
entities for each service. The Cust omer Managenent application view also uses the
DBMS adapter, and includes one event named Cust oner Cr eat ed and one service
named Cr eat eCust orrer . Therefore, the entities shown in Listing A-4 are listed by the
export utility.

Listing A-4 Entities Used by the Application View

Entity: WLAI.Schena. Root . East Coast . Sal es. Cust orrer Managenent _Cust oner Cr eat ed_
CUSTOMER _TABLE i nsert

Entity: W.AI. Schema. Root . East Coast . Sal es. Cust oner Managenent _Cr eat eCust onmer _i nput

Entity: WLAI.Schema. Root . East Coast . Sal es. Cust orer Managenent _
Cr eat eCust oner _out put

The Cust omer Managenent application view also includes a single connection factory.
The entity name for this connection factory is as follows:

Entity: WLAI.Connecti onFactory. Root. East Coast. Sal es. Cust oner Managenent .
Connecti onFact ory

For the Cust oner Management application view to be exported properly, all the
entities shown in Listing A-4 must be selected.

Importing an Application View

To import an application view, perform the following steps:

1. Using the workflow package import utility (accessible from the WebL ogic
Integration Studio), import a package containing application integration data. The
utility automatically imports all the entities you exported into the package earlier.

2. Deploy your imported application views using the WebLogic Integration
Application View Console (generally located at ht t p: // server: port/w ai).

3. Navigate through the imported folders to find the imported application view.

A-4 Using Application Integration

Migrating Data Within Multiple EIS Instances

4. Select the appropriate application view. Then select the Deploy option on the
Application View Summary page.

The application view is now ready for use in the target environment.

Migrating Data Within Multiple EIS
Instances

Be careful when migrating data among WebLogic Server domains and between
multiple instances of an EIS, because application views defined for a particular EIS
instance contain identifiers and other data specific to that instance. This advice also
applies to the connection factory used by the application view.

To prevent possible errors, you must manually change EIS-instance-specific data in
your application view or connection factory by performing the following steps:

1. Open the Application View Console.
2. Navigate to the appropriate application view and edit is as necessary:

a. ldentify and update all EIS-specific data in the application view and its events,
services and associated connection factory.

b. Search for any EIS-instance-specific references, and replace them with
references to the new EIS instance in the target environment.

Be sure to edit the application view and connection factory definitions. The following
parameters of the pplication view definitions may need to be changed:

m The Event Rout er URL parameter of the Appl i cat i onVi ewdeploy screen must
refer to the event router in the target environment.

m Parameters in the service definitions. These are adapter-specific data that might
refer to EIS-instance-specific data. Change any EIS instance-specific parameters
for the service as necessary.

m Parameters in the event definitions. These are adapter-specific data that may
refer to EIS-instance-specific data. Use the Edit feature on the Application View
Summary page to change any EIS instance-pecific parameters for the service.

Using Application Integration A-5

A Migrating Application Integration Data

Example Application View Import

The Cust orrer Managenent example includes a database called CUST, in the source
environment, and a database called Cust DB in the target environment. Listing A-5
shows the XML text that represents the application view and connection factory.
Specifically, this listing shows the application view descriptor for the

Cust omer Managenent application view. When you use the Application View
Console, you must use the appropriate fields in the design-time Ul forms to view and
edit this information.

Listing A-5 Example XML Text for the Application View and Connection
Factory

<?xm version="1.0"?>
<! DOCTYPE appl i cationVi ew>
<appl i cati onVi ew asyncEnabl ed="true"
connecti onFact ory="com bea. w ai . connecti onFact ori es. East Coast . Sal es.
Cust onmer Managenent _connect i onFact or yl nst ance"
connecti onFact or yNane="East Coast . Sal es. Cust omrer Managenent _connecti onFact ory"
event Rout er URL="http:// 1 ocal host: 7001/ DbnsEvent Rout er / Event Rout er "
nanme="Cust omer Managenent "
ownsConnecti onFact ory="true">
<descri pti on>Manages custoners in the east coast sal es database</description>

<service interacti onSpecC ass="com bea. adapt er. dbnms. cci .| nteracti onSpecl npl "
name="Cr eat eCust onmer "
ownsRequest Schema="t r ue"
ownsResponseSchema="true"
request Docunent Type="East Coast . Sal es. Cust omer Managenent _Cr eat eCust oner _i nput/1In
put "
responseDocunent Type="East Coast . Sal es. Cust orer Managenent _Cr eat eCust ormer _out put /
Rows Af f ect ed" >
<description>create a new custoner in database</description>
<i nteractionSpecProperty
name="f uncti onNane" >execut eUpdat e</ i nt eracti onSpecProperty>
<interactionSpecProperty nane="sql ">i nsert into CUST.dbo. CUSTOVER TABLE
(FirstName, LastName, DOB) val ues ([FirstNanme varchar], [LastName varchar], [DOB
timestanp])</interactionSpecProperty>
</ servi ce>

<event nane="Cust oner Cr eat ed"
ownsSchema="true"

A-6 Using Application Integration

Migrating Data Within Multiple EIS Instances

r oot El enment Nane=" CUSTOMVER TABLE. i nsert"

schemaNane="East Coast . Sal es. Cust omer Managenent _Cust oner Cr eat ed_CUSTOVER_TABLE _i
nsert">

<descri pti on>New custoner created in database</description>

<event Property nanme="t abl eNane" >CUSTOVER_TABLE</ event Pr operty>

<event Property name="trigger Type">i nsert </ event Property>

<event Property nanme="cat al ogNanme" >CUST</ event Property>

<event Property name="schemaNane" >dbo</ event Property>

</ event >

</ appl i cationVi ew>

This application view contains:

m Explicit reference to the event router URL (The URL is probably different in the
target domain from that in the original domain if you changed EIS instances.)

m interactionSpecProperty elements with explicit SQL statements (expressed
with the <ser vi ce> element) that refer to the CUST database, the dbo schema,
and the CUSTOMVER_TABLE table.

®m event Property elements that refer to cat al ogNarre as CUST and schermaNane
as dbo. In this example, all references to CUST (highlighted in the preceding text)
must be changed to Cust DB. If a different schema is used, the schema references
must also be changed.

Each adapter puts different properties in the service and event descriptors of
application view descriptors it creates. For information about which properties must be
changed to operate successfully against a new EIS instance, see your adapter
documentation.

You must also change the connection factory descriptor so that it refers to the new EIS
instance. Listing A-6 shows a sample connection factory.

Listing A-6 Example Connection Factory

<?xm version="1.0"?>
<! DOCTYPE connecti on-fact ory-dd>
<connection-factory-dd name="Cust oner Management _connecti onFact ory" >
<j ndi -
name>com bea. W ai . connecti onFact ori es. East Coast . Sal es. Cust oner Managenent _connec

Using Application Integration A-7

A Migrating Application Integration Data

tionFact oryl nst ance</j ndi - name>
<pool - parns al | owPool ToShri nk="true"
maxPool Si ze="10"
m nPool Si ze="0"
target Fracti onOf MaxPool Si ze="0. 1"/ >
<ncf - par m nanme=" MessageBundl eBase" >
<ncf - parm val ue>BEA W.S_DBMS_ADK</ ntf - par m val ue>
</ ntcf - parn»
<ncf - par m name=" Dat aSour ceNane" >
<ncf - par m val ue>event Sour ce</ ncf - par m val ue>
</ ncf - parn»
<ncf - par m nanme="Addi t i onal LogCont ext " >
<ncf - par m val ue>Cust onmer Managenent </ ncf - par m val ue>
</ ntf - parn»
<ncf - par m nanme="User Nane" >
<mcf - par m val ue>syst enx/ ncf - par m val ue>
</ ntcf - parn»
<ncf - par m nanme="Passwor d" >
<ncf - parm val ue>securi ty</ ncf - par m val ue>
</ ntf - parn»
<ncf - par m name="Root LogCont ext " >
<ncf - parm val ue>BEA W.S_DBMS_ADK</ ntf - par m val ue>
</ ntcf - parn»
<ncf - par m nanme="Pi ngTabl e" >
<mncf - par m val ue>CUST. dbo. CUSTOVER_TABLE</ ntf - par m val ue>
</ ncf - parn»
<ncf - par m nanme="LogLevel ">
<ncf - par m val ue>WARN</ ntf - par m val ue>
</ ncf - par n»
<ncf - par m nanme="LogConfi gFi |l e" >
<ncf - parm val ue>BEA W.S DBMS_ADK. xml </ ntf - par m val ue>
</ ncf - par n»
<adapt er -1 ogi cal - name>BEA_W.S_DBM5_ADK</ adapt er - | ogi cal - name>
</ connecti on-factory-dd>

As shown in the preceding code, this connection factory descriptor refers directly to
the CUST database and to a JDBC data source named event Sour ce. To make sure that
this connection factory operates properly in the target environment, you must make the
following changes:

m change the reference to CUST to Cust DB

m change the event Sour ce JDBC data source reference so it refers to a valid
JDBC data source (pointing at the new DBMS hosting Cust DB) in the target
domain

A-8 Using Application Integration

Recommended Practices

At this point, you have modified all necessary references and ensured that all the
resources needed by the application view and connection factory exist in the target
domain. You may now deploy all the application views you imported, using the
Application View Console (generally located at ht t p: / / host : port/w ai).

Recommended Practices

The following suggestions are offered to help you reduce the effort needed to migrate
application integration data between environments.

m Wherever possible, set up identical EIS instances in both the source and target
domains. For example, in the application view in which the DBMS adapter is
used, you might use two instances of MS SQL Server (with the same name, the
same user accounts, and the same database object), for both your source and
target databases. This type of setup eliminates the need to edit application view
and connection factory descriptors manually.

m Change the event router URL to reflect the event router’s location in the target
environment. To do so, edit the application view in the Application View
Console.

m Deploy your application views, after they are imported, using the Application
View Console.

Using Application Integration A-9

A Migrating Application Integration Data

A-10 Using Application Integration

Index

A

Adapter Development Kit (ADK) 1-1
Al Async Response event 3-13, 3-15
Al Event events 3-24
Al Start events 3-20
application integration plug-in

AlGetErrorMsg() function 3-19

AlGetResponseDocument() function

3-20

AlHasError() function 3-18
Application View Console 5-1
application view events

adding 2-10

testing manually 2-25

testing with a service 2-22
application view folders

creating 5-3

removing 5-5
application view services

adding 2-9
application views

adding events to 2-10

adding services to 2-9

configuring connection parameters 2-7

deploying 2-12

editing 2-28

removing 5-4

security 2-15

testing events 2-21

users of 1-6

using by writing custom code 1-7

using in WebLogic Integration Studio
1-7
when to define 1-3
AsyncServiceResponse variable
in AlGetErrorMsg() 3-19
in AlGetResponseDocument() 3-20
in AlHasError() 3-18

B

business process management (BPM)
Al Async Response event 3-13, 3-15
using 3-1
when to use 1-8
with the application integration plug-in
3-12
business processes
in workflows 1-7
using custom code 1-7

C

connection parameters 2-7
custom code
for business processes
when to use 1-8
writing 4-1
for defining application views 1-3

Using Application Integration 1-1

Customer Support ix

D

documentation
how to print viii
where to find it viii

E

e-docs Web site viii
events
See application view events

J

J2EE Connector Architecture Specification
iX
Java
custom coding in 4-1

R

Related Information
J2EE Connector Architecture
Specification ix
Sun Microsystems Java site ix
WebLogic Server documentation ix
XML Schema Specification ix
request ID variables
when calling services 3-9
when receiving service responses 3-14,
3-17
response document variables
when receiving service responses 3-9,
3-11, 3-13

S

security 2-15
Studio
See WebLogic Integration Studio

1-2 Using Application Integration

Sun Microsystems ix
Sun Microsystems, Inc. Java site ix
support
technical ix
synchronous application view services
calling 3-9

T

Target Fraction parameter 2-15

W
WebLogic Integration Studio
Al Async Response event 3-13, 3-15
using 3-1
when to use 1-8
with the application integration plug-in
3-12
WebLogic Server ix

X
XML Schema Specification ix

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to Application Integration
	Before You Begin
	Software Prerequisites
	Familiarizing Yourself with Basic Concepts

	Creating an Interface to an Adapter
	When to Define an Application View
	When to Write Custom Code

	Defining an Application View
	What Is Defined by an Application View Definition
	How to Define an Application View
	Step 1: Name and Configure Connection Parameters for an Application View
	Step 2: Add Services and Events to the Application View
	Step 3: Test Services and Events

	Using an Application View in a Workflow
	Using an Application View in the WebLogic Integration Studio
	Using an Application View by Writing Custom Code
	Choosing a Method for Implementing a Business Process
	When to Use the WebLogic Integration Studio
	When to Write Custom Java Code

	2 Defining an Application View
	Before You Begin
	High-Level Procedure for Defining an Application View
	Sample Detailed Procedure for Defining an Application View
	Step 1: Log On to the Application View Console
	Steps 2 and 3: Define an Application View and Configure Connection Parameters
	Step 4A: Add a Service to an Application View
	Step 4B: Add an Event to an Application View
	Step 5: Deploy an Application View
	Optional Step: Undeploy an Application View
	Step 6A: Test an Application View’s Services
	Step 6B: Test an Application View’s Events
	If You Select Service
	If You Select Manual

	Editing an Application View

	3 Using Application Views in the Studio
	Before You Begin
	Workflow Setup Tasks

	Task 1: Set Up a Task Node to Call an Application View Service
	Steps for Setting up a Task Node to Call an Application View Service

	Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
	Configuring Receipt of a Response
	Handling Errors in an Asynchronous Application View Service Response
	Procedure for Configuring Receipt of an Asynchronous Service Response (Preferred Method)
	Procedure for Configuring Receipt of an Asynchronous Service Response (Legacy Method)
	Functions Provided by the Application Integration�Plug-In
	AIHasError()
	AIGetErrorMsg()
	AIGetResponseDocument()

	Task 3: Create a Workflow Started by an Application View Event
	Steps for Creating a Workflow Started by an Application View Event

	Task 4: Set Up an Event Node to Wait for an Application View Event
	Steps for Setting Up a Node to Wait for an Application View Event

	4 Using Application Views by Writing Custom Code
	Scenario 1: Creating Connections with Specific Credentials
	Implementing ConnectionSpec
	Calling setConnectionSpec() and getConnectionSpec()
	Using the ConnectionSpec Class

	Scenario 2: Custom Coding a Business Process
	About This Scenario
	Before You Begin
	Creating the SyncCustomerInformation Class
	Code for Sample Java Class

	5 Using the Application View Console
	Logging On to the Application View Console
	Creating a Folder
	Removing an Application View
	Removing a Folder

	A Migrating Application Integration Data
	Overview of Migrating Data
	Migrating Data Within a Single EIS Instance
	How an Application View is Exported
	Example Application View Export
	Importing an Application View

	Migrating Data Within Multiple EIS Instances
	Example Application View Import

	Recommended Practices

	Index

