
Integration™

Learning to Use

V e r s i o n 2 . 1
D o c u m e n t D a t e : O c t o b e r 2 0 0 1

BEA WebLogic Integration

BEA WebLogic

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Learning to Use BEA WebLogic Integration

Part Number Date Software Version

N/A October 2001 2.1

Learning to Use BEA WebLogic Integration iii

Contents

About This Document
Who Should Read This Document .. vi

e-docs Web Site .. vii

How to Print the Document.. vii

Related Information... viii

Contact Us! .. viii

Documentation Conventions ... ix

1. Introduction
Scope of the Sample .. 1-1

Background to the Scenario... 1-2

EnergyMiser 76 History ... 1-2

Increase in Demand for Product... 1-2

Deploying an Integrated Solution.. 1-3

Short-Term and Long-Term Advantages ... 1-4

Solution Architecture ... 1-6

2. Setting Up and Running the Sample
Preparing to Run the Sample... 2-1

Running the Sample .. 2-2

Step 1. Configure and Invoke the Launcher Web Page 2-3

Step 2: Choose the WebLogic Integration Sample 2-7

Step 3. Start the Sample ... 2-8

Step 4. Send the QPA Request ... 2-9

Step 5. Check for QPA Responses ... 2-10

Step 6. Create the Purchase Order.. 2-11

Step 7. Check the Purchase Order .. 2-13

Step 8. Check for Purchase Order Acknowledgment............................... 2-14

iv Learning to Use BEA WebLogic Integration

3. Understanding the Sample
Overview ... 3-1

Model Business Processes .. 3-2

Manage B2B Integration .. 3-2

Integrate New and Existing Systems.. 3-3

Handle Heterogeneous Data Formats ... 3-3

B2B Integration ... 3-4

Loading the Repository Data.. 3-5

Understanding the Repository Data.. 3-6

Using the WebLogic Integration B2B Console.. 3-14

Business Process and Workflow Modeling ... 3-17

Introduction to BPM... 3-17

Using the WebLogic Integration Studio... 3-18

QPA Business Process.. 3-21

PO Business Process... 3-54

Application and Data Integration .. 3-77

Introduction .. 3-77

Application Integration... 3-77

Data Integration .. 3-81

A. DTDs
General DTDs... A-1

QPA DTDs ... A-2

PO DTDs .. A-4

Learning to Use BEA WebLogic Integration v

About This Document

This document describes a sample integrated application. The sample application
deploys a supply-chain hub, which connects business partners, automates a number of
business processes, and integrates back-end enterprise information systems. Readers
learn how to set up and run the sample application, and understand how the integrated
solution is architected and developed using WebLogic Integration.

This document is one in a series of four documents that provide an overview of
WebLogic Integration, and that explain how the functionality provided by WebLogic
Integration is used at various stages in the design, development, and deployment of
integrated solutions. Readers should start with these documents to gain a
comprehensive understanding of the functionality provided by WebLogic Integration.
The other documents in the series are:

n Introducing BEA WebLogic Integration—Provides an overview of WebLogic
Integration. It outlines the integration problems today’s e-businesses face, with
their collections of fragmented, heterogeneous business systems. It also
describes the application integration, B2B integration, business process
management, and data integration functionality WebLogic Integration provides
to solve e-business integration problems.

n Designing BEA WebLogic Integration Solutions—Describes how to design and
architect WebLogic Integration solutions. Readers learn about good design
principles following recommended best practices.

n Deploying BEA WebLogic Integration Solutions—Explains how to move an
integrated solution from a development to a production environment. Readers
learn about configuring, scaling, porting, and performance tuning integrated
applications.

Once you are familiar with the contents of these overview documents, you can proceed
to the detailed documentation about the functionality provided by WebLogic
Integration.

vi Learning to Use BEA WebLogic Integration

This document is organized as follows:

n Chapter 1, “Introduction,” describes the business problem and an overview of
how the WebLogic Integration sample application addresses it.

n Chapter 2, “Setting Up and Running the Sample,” describes how to set up and
run the sample implementation.

n Chapter 3, “Understanding the Sample,” explains how the sample works—that
is, how the WebLogic Integration components work together to solve an
enterprise integration problem.This chapter is a tutorial that describes how the
sample defines and manages business partners, automates a number of business
processes, and integrates back-end enterprise information systems.

n Appendix A, “DTDs,” defines the Document Type Definitions (DTDs) used in
the sample implementation.

Who Should Read This Document

This document is intended for the following users:

n Business Analysts—Define the goals of the integrated solution, and work with
technical analysts to ensure that those goals are implemented successfully.
Business analysts have expertise in business and economics, and have intimate
knowledge about they way a company runs its business. Business analysts want
to improve the existing business processes by deploying technologies that
leverage the company’s information technology assets to provide competitive
advantages.

n Technical Analysts—Responsible for evaluating, deploying, and administering a
WebLogic Integration solution that includes the application server and
application integration, business process management, B2B integration, and data
integration functionality. Technical analysts typically have end-to-end knowledge
of the entire system, and work with business analysts to ensure that the goals of
the integrated solution are met.

n Software Engineers—Responsible for implementing a WebLogic Integration
solution. Software Engineers have detailed knowledge of the underlying code
that drives the integrated solution, they ensure that all the software components

Learning to Use BEA WebLogic Integration vii

are linked together so the solution runs error free, and they address software
application issues such as scaling, porting, and performance tuning.

This document is intended mainly for application developers who are interested
in building solutions to address enterprise integration challenges. It assumes a
familiarity with the WebLogic Integration platform and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://edocs.bea.com/.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Integration
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

viii Learning to Use BEA WebLogic Integration

Related Information

The following BEA WebLogic Integration documents contain information that
supplements the information in this document and is relevant to understanding how to
develop and deploy WebLogic Integration applications:

n Introducing BEA WebLogic Integration

n Deploying BEA WebLogic Integration Solutions

n Designing BEA WebLogic Integration Solutions

See the entire suite of WebLogic Integration documents at http://edocs.bea.com/.

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Integration 2.1 release.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSupport at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

Learning to Use BEA WebLogic Integration ix

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

x Learning to Use BEA WebLogic Integration

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Learning to Use BEA WebLogic Integration 1-1

CHAPTER

1 Introduction

This section describes the example business problem that serves as the background for
the WebLogic Integration sample. It includes the following topics:

n Scope of the Sample

n Background to the Scenario

n Deploying an Integrated Solution

Scope of the Sample

BEA WebLogic Integration™ is a single platform that delivers application server,
application integration, business process modeling, and business-to-business (B2B)
integration functionality for the enterprise.

The WebLogic Integration sample demonstrates how to develop a new application,
integrate it with existing systems, streamline complex business processes, and connect
business partners using the WebLogic Integration platform. The sample code
documented here is available in the /samples/wlis directory of your WebLogic
Integration installation.

The sample implementation addresses only part of the complete supply chain
automation and integration challenge, but it demonstrates how you can use the flexible
WebLogic Integration platform to develop solutions according to your requirements,
thereby improving efficiency within your company and across the value chain.

1 Introduction

1-2 Learning to Use BEA WebLogic Integration

Background to the Scenario

General Control Systems (GCS) is an Illinois-based division of a large enterprise that
makes a variety of control systems for factories and office buildings.

EnergyMiser 76 History

GCS has produced the EnergyMiser 76, a monitoring and control system for reducing
electrical consumption, since the oil crisis of the 1970s. The company supplies these
energy control systems for three other OEM companies. GCS procures the metal boxes
used for the EnergyMiser 76 from Midwest Metals, a medium-size firm in Chicago.
Midwest Metals has been the exclusive supplier of the silk-screened boxes for 25
years.

GCS’s value-added resellers (VAR) all use EDI systems to automate their supply
chains. GCS has been using EDI in both its supply and demand chains for 15 years, to
process orders from VARs and to automate procurement from Midwest Metals.
Inventories of the silk-screened boxes are controlled by an automated replenishment
system that links the EDI systems of GCS and Midwest Metals. The supply-chain
mechanism has been working smoothly because demand for the EnergyMiser 76
model has been steady, making it easy for GCS to plan its inventory needs.

The corporate parent of GCS recently started an initiative to use BEA WebLogic
Integration as its business-to-business (B2B) infrastructure. Until now, GCS has been
unable to justify a move to this system because it has a working system in place, and
neither suppliers nor customers have requested XML-based B2B transactions.

Increase in Demand for Product

Suddenly, in Q3, GCS is overwhelmed by an unprecedented glut of orders for the
EnergyMiser 76 from its VARs. The automated replenishment system goes into
operation and an automated EDI 850 message (purchase order) is sent to Midwest
Metals for a larger than usual order of silk-screened boxes. The president of Midwest

Deploying an Integrated Solution

Learning to Use BEA WebLogic Integration 1-3

Metals calls the GCS procurement department to let them know that his company is
unable to fill the entire order in the specified time because his plant does not have
enough capacity.

The Midwest Metals president further explains that he cannot increase the capacity of
his plant unless he has a long-term, open purchase order for the increased capacity. The
GCS manager explains that the spike in demand is due to unusually large orders from
customers in California. However, because of the uncertainties of the Californian
energy situation, it is unclear whether the current orders indicate a long-term increase
in demand or a temporary spike.

Understanding the situation, the procurement manager buys the maximum allotment
of supplies from Midwest Metals and begins to look for alternative sources.
Remembering the new corporate initiative to improve the B2B integration
infrastructure, he contacts the IT Department to discuss short-term plans to resolve the
current crisis and long-term plans to gain more control and visibility into the supply
chain to avoid future shortages or other surprises. He realizes that this situation is an
indication of how the GCS legacy system is no longer sufficient to meet today’s
automated and dynamic marketplace.

Deploying an Integrated Solution

GCS is the channel master in this value chain. To improve efficiency in its marketplace
and drive competitive advantage, GCS deploys a supply-chain hub using BEA
WebLogic Integration.

The sample application is a supply-chain hub that connects business partners,
automates a number of business processes, and integrates back-end enterprise
information systems. This sample application does not address the GCS demand chain
or GCS integration with its VARs. See “The End-to-End EDI Sample” in Using EDI
with WebLogic Integration for a sample EDI integration application.

1 Introduction

1-4 Learning to Use BEA WebLogic Integration

Short-Term and Long-Term Advantages

Deployment of the hub has both short-term and long-term advantages. It resolves the
current crisis by facilitating procurement of supplies from partners other than Midwest
Metals in an approved vendor list (AVL), and it establishes a system that streamlines
the supply chain for future business.

Deploying a supply-chain hub allows GCS to automate several processes. In this
sample application, GCS engages in a conversation with selected business partners.
The following sequence of events summarizes the transaction among the business
partners:

1. A price and availability query is issued by GCS to approved secondary suppliers.

2. GCS collects the responses from the suppliers and presents them to the ordering
manager for selection of a supplier.

3. A purchase order is generated for the selected supplier.

4. The purchase order is automatically entered into the company’s ERP system.

5. The selected supplier returns a purchase order acknowledgment to GCS.

6. The purchase order record is automatically updated with information from the
purchase order acknowledgment (for example, the supplier’s sales order number).

Deploying an Integrated Solution

Learning to Use BEA WebLogic Integration 1-5

The following figure illustrates the process flow for the price and availability query
exchanged by the GCS hub and its suppliers.

Figure 1-1 Process Flow of the Sample Application

1 Introduction

1-6 Learning to Use BEA WebLogic Integration

Solution Architecture

The WebLogic Integration sample implements the solution by deploying four business
entities: a hub, a buyer, and two supplier trading partners. In a production environment,
each entity can run on a separate WebLogic Integration server. However to simplify
the procedure for running the sample, this scenario uses a collocated approach in which
a single WebLogic Integration server hosts all four entities. The following figure
illustrates the implementation.

Figure 1-2 Implementation Architecture for WebLogic Integration Sample

The functions performed by the business entities that make up the sample are described
in the following table.

Table 1-1 Functions Performed by Business Entities in Sample

Business Entity Function

WLIS_Hub Routes the communication between the buyer and suppliers,
providing business-to-business integration

WLIS_Buyer n Coordinates business processes among suppliers and
internal functions (for example, back-end database updates),
using workflow templates

n Provides connectivity to the buyer’s database system, using
an application view

n Handles data presentation and the user interface through
HTML and JSP pages

Deploying an Integrated Solution

Learning to Use BEA WebLogic Integration 1-7

WLIS_SupplierOne n Responds to requests from the buyer and invokes internal
programs (for example, data transformation and
persistence), using workflow templates

n Performs data translations to facilitate the exchange of
information among applications

WLIS_SupplierTwo n Responds to requests from the buyer and invokes internal
programs (for example, data transformation and
persistence), using workflow templates

n Performs data translations to facilitate the exchange of
information among applications

Table 1-1 Functions Performed by Business Entities in Sample

Business Entity Function

1 Introduction

1-8 Learning to Use BEA WebLogic Integration

Learning to Use BEA WebLogic Integration 2-1

CHAPTER

2 Setting Up and
Running the Sample

This section provides instructions for setting up your environment and running the
WebLogic Integration sample application. The instructions are provided in the
following sections:

n Preparing to Run the Sample

n Running the Sample

For a description of the architecture behind this sample, see “Solution Architecture”
on page 1-6. For a summary of the process illustrated by the sample application, see
Figure 1-1, “Process Flow of the Sample Application.”

Preparing to Run the Sample

Before running the sample, complete the following steps:

1. Install WebLogic Integration with the following option: WebLogic Integration Full
Installation with Samples. For installation instructions, see Installing BEA
WebLogic Integration.

The WebLogic Integration sample is installed in the /samples/wlis directory
in your WebLogic Integration installation.

2 Setting Up and Running the Sample

2-2 Learning to Use BEA WebLogic Integration

2. Make sure the proxy settings on your browser are set so that you can connect to
your local WebLogic Server. For more information, see “Web Browser
Configuration Requirements” in “WebLogic Integration Administration and
Design Tools” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Note: The sample uses the database you specified when you installed WebLogic
Integration. If you want to change the database, you can do so by running the
WebLogic Integration Database Configuration wizard. See “Using the
Database Configuration Wizard” in Starting, Stopping, and Customizing BEA
WebLogic Integration for instructions on running the Configuration wizard.

Running the Sample

Note: This sample can be run by only one user at a time per instance of WebLogic
Integration.

To run the WebLogic Integration sample, complete the following eight-step
procedure:

n Step 1. Configure and Invoke the Launcher Web Page

n Step 2: Choose the WebLogic Integration Sample

n Step 3. Start the Sample

n Step 4. Send the QPA Request

n Step 5. Check for QPA Responses

n Step 6. Create the Purchase Order

n Step 7. Check the Purchase Order

n Step 8. Check for Purchase Order Acknowledgment

Running the Sample

Learning to Use BEA WebLogic Integration 2-3

Step 1. Configure and Invoke the Launcher Web Page

The \samples\bin directory in your WebLogic Integration installation contains
scripts used to configure and run all the samples for the WebLogic Integration product.

About the Scripts

The RunSamples script is a driver script that invokes other scripts in the appropriate
order until the launcher Web page is displayed. The launcher Web page contains links
to start several WebLogic Integration samples and administration consoles. See
“Configuring and Starting the Samples Domain” in “Getting Started” in Starting,
Stopping, and Customizing BEA WebLogic Integration for details about the
RunSamples script.

This Step (Configure and Invoke the Launcher Web Page) describes two substeps.
These substeps describe alternative procedures to configure and invoke the launcher
Web page:

n Step 1A: Invoke the RunSamples Script

n Step 1B: Invoke the Start Server and Launcher Scripts

You must execute the RunSamples script, described in Step 1A, the first time you run
a sample in the samples domain. The RunSamples script both configures the samples
database, and starts WebLogic Integration in the samples domain.

If you have executed the RunSamples script once, and the database is properly
configured, the next time you start the samples domain, you can choose to start a
sample by executing the RunSamples script again, as described in Step 1A.

Note: When you execute the RunSamples command after the samples database has
already been properly configured, you will be prompted with the following
message:

The WebLogic Integration repository has already been created
and populated, possibly from a previous run of this
RunSamples script. Do you want to destroy all the current data
in the repository and create and populate the WebLogic
Integration repository again?
Y for Yes, N for No

2 Setting Up and Running the Sample

2-4 Learning to Use BEA WebLogic Integration

When you enter N, the command bypasses the database configuration tasks.
The command starts WebLogic Integration in the samples domain, launches
your default Web browser, and displays the Samples Launcher page.

Alternatively, you can use the Start Server and Launcher scripts, described in Step 1B.

Step 1A: Invoke the RunSamples Script

Note: You must complete the tasks described in this step if you have not invoked the
RunSamples script before, or if you have changed the database with which
you want to run the sample.

The following sections provide instructions for running the RunSamples script on a
Windows and UNIX system.

Invoking the RunSamples Script on Windows

To run the RunSamples script on a Windows system, do one of the following:

n Using menus, invoke the RunSamples script as follow:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→RunSamples.

n From the command line, invoke the RunSamples script as follows:

a. Open a command window.

b. Go to the \bin directory in the samples domain. For example, if you installed
the product in the default location, enter the following:

cd \bea\wlintegration2.1\samples\bin

c. Execute the RunSamples script by entering:

RunSamples

After the RunSamples script finishes running, a Web browser, which displays the
launcher Web page provided with the samples, is displayed.

Running the Sample

Learning to Use BEA WebLogic Integration 2-5

Invoking the RunSamples Script on UNIX

To run the RunSamples script on a UNIX system:

1. Go to the bin directory in the samples domain. For example, if you installed the
product in the default location, enter the following:

cd BEA_Home/wlintegration2.1/samples/bin

2. Execute the RunSamples script by entering:

. ./RunSamples

After the RunSamples script finishes running, a Web browser, which displays
the launcher Web page provided with the samples, is displayed.

Step 1B: Invoke the Start Server and Launcher Scripts

If you have previously run the RunSamples script, as described in Step 1A, the
database has been created and populated with the sample data. In this case, when you
want to run a sample, you can complete the tasks in this step (as an alternative to Step
1A). The procedures in Step 1B start WebLogic Server and invoke the launcher Web
page on Windows and UNIX systems.

Invoking the Start Server and Launcher Scripts on Windows

To run the scripts on a Windows system, do one of the following:

n Using menus, invoke the Start Server script, and then the Samples Launcher
script, as follows:

a. Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Start Server.

When the following message is displayed, the Start Server script has
completed successfully:

StartServer execution successful

b. Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Samples Launcher.

A Web browser, which displays the launcher Web page provided with the
samples, is displayed.

2 Setting Up and Running the Sample

2-6 Learning to Use BEA WebLogic Integration

n From the command line, invoke the Start Server script, and then the Samples
Launcher script, as follows:

a. Open a command window.

b. Go to the bin directory in the samples domain. For example, if you installed
the product in the default location, enter the following:

cd \bea\wlintegration2.1\samples\bin

c. Start the server by entering:

startServer

When the following message is displayed, the startServer script has
completed successfully:

StartServer execution successful

d. Start the Web browser by entering:

launchBrowser

A Web browser, which displays the launcher Web page provided with the
samples, is displayed.

Invoking the Start Server and Launcher Scripts on UNIX

To run the scripts on a UNIX system:

1. Go to the bin directory in the samples domain. For example, if you installed the
product in the default location, enter the following:

cd BEA_Home/wlintegration2.1/samples/bin

2. Start the server by entering:

. ./startServer

When the following message is displayed, the startServer script has
completed successfully:

StartServer execution successful

3. Start a Web browser using the following URL:

http://localhost:7001/index.html

The launcher Web page provided with the samples, is displayed.

Running the Sample

Learning to Use BEA WebLogic Integration 2-7

Step 2: Choose the WebLogic Integration Sample

You can start several sample applications and administration consoles from the
launcher Web page. Click the WLI Sample link under Sample Applications on this
Web page to invoke the sample application that addresses the supply chain problem
described in Chapter 1, “Introduction.”

As shown in the following figure, the sample overview page is displayed in your
browser.

Figure 2-1 WebLogic Integration Sample Overview Window

The overview window contains a brief description of the business problem and the
solution offered by the WebLogic Integration sample.

2 Setting Up and Running the Sample

2-8 Learning to Use BEA WebLogic Integration

Step 3. Start the Sample

Start the sample by doing either of the following:

n Click Run in the black horizontal bar at the top of the Overview window.

n Click Start the Sample at the bottom of the Overview window.

The Send QPA Request window, shown in the following figure, is displayed.

Figure 2-2 Send QPA Request Window

Note the following details about this window:

n The window contains the Query for Price and Availability (QPA) form which, in
turn, contains the QPA request data to be sent from the buyer (GCS) to two
suppliers.

You cannot modify data in the fields in this form.

Running the Sample

Learning to Use BEA WebLogic Integration 2-9

n The status bar is displayed on the right side of the window. This bar is a compact
flow chart in which each box represents both a step in the procedure you follow,
as you progress through the sample application, and a window that corresponds
to that step. The appropriate status box is highlighted in each window as you
progress through the sample. Use this status bar to track your progress.

Step 4. Send the QPA Request

Click Send QPA Request to trigger the QPA process. The Check QPA Response
window, shown in the following figure, is displayed.

Figure 2-3 Check QPA Response Window

This window indicates that the QPA request has been sent to suppliers and that the
buyer is waiting for responses.

Click Check QPA Response in the Check QPA Response window to go to the next
window.

2 Setting Up and Running the Sample

2-10 Learning to Use BEA WebLogic Integration

Step 5. Check for QPA Responses

Which window is displayed next depends on whether or not the buyer has received
QPA responses from the suppliers:

n If the buyer has not received QPA responses from the suppliers, the following
dialog box is displayed.

Figure 2-4 QPA Response Dialog Box

a. Click OK to close the dialog box. The Check QPA Response window remains
displayed in the browser.

b. Wait a few moments and click Check QPA Response again.

c. Repeat steps a and b until the QPA Response dialog box is no longer displayed,
indicating that the buyer has received responses from the suppliers. When the
responses are received, the Create PO window is displayed, as shown in
Figure 2-5. If you do not get a response, check the WebLogic Server log for
error information.

n If the buyer has received the QPA responses from the suppliers, the Create PO
window, shown in the following figure, is displayed.

Running the Sample

Learning to Use BEA WebLogic Integration 2-11

Figure 2-5 Create PO Window

This window displays a form summarizing each supplier’s response to the price and
availability query.

Step 6. Create the Purchase Order

Complete the following procedure to create the purchase order for the silk-screened
metal boxes:

1. Select either WLIS_SupplierOne or WLIS_SupplierTwo on the form displayed in
Figure 2-5.

2. Click Create PO to submit your request to the back-end ERP system, in which the
specified purchase order is generated and sent to the selected supplier.

2 Setting Up and Running the Sample

2-12 Learning to Use BEA WebLogic Integration

The Check PO window is displayed. It displays a message indicating that the
purchase order request has been submitted, as shown in the following figure.

Figure 2-6 Check PO Window

To check the status of the purchase order you have submitted, click Check Purchase
Order.

Running the Sample

Learning to Use BEA WebLogic Integration 2-13

Step 7. Check the Purchase Order

When the purchase order has been submitted to the selected supplier, the system
displays its contents, as shown in the following figure.

Figure 2-7 Check PO Ack Window

The preceding figure displays the PO information that you, as the buyer, submitted to
the selected supplier. On receipt of the purchase order, the supplier returns an
acknowledgment message.To view this message, click Check PO Acknowledgement.

2 Setting Up and Running the Sample

2-14 Learning to Use BEA WebLogic Integration

Step 8. Check for Purchase Order Acknowledgment

When the supplier acknowledges receipt of the purchase order, a PO Confirmation
page, as shown in the following figure, is displayed to the buyer.

Figure 2-8 PO Confirmation Window

The preceding figure shows the purchase order confirmation sent from the supplier to
the buyer (GCS). Note that the supplier has added shipping information to the original
purchase order sent by the buyer and confirmed by the supplier, as shown in the PO
Master Information sections of Figure 2-7 and Figure 2-8, respectively.

You have now completed running the WebLogic Integration sample application. See
Chapter 3, “Understanding the Sample,” to find out how this application works.

Learning to Use BEA WebLogic Integration 3-1

CHAPTER

3 Understanding the
Sample

Note: We strongly recommend that you run the sample before reading this section.
For instructions, see Chapter 2, “Setting Up and Running the Sample.” The
sample code described in this section is available in the \samples\wlis
directory of your WebLogic Integration installation.

The sample application automates a number of business processes, integrates back-end
enterprise information systems (EIS), and deploys a supply-chain hub that connects
business partners. This section describes how this sample integrated solution addresses
the supply-chain challenge experienced by our hypothetical enterprise, General
Control Systems (GCS). Specifically, it includes the following topics:

n Overview

n B2B Integration

n Business Process and Workflow Modeling

n Application and Data Integration

Overview

In our sample scenario, General Control Systems (GCS) decides to implement a
WebLogic Integration solution to its supply-chain challenge. What is the first step?

3 Understanding the Sample

3-2 Learning to Use BEA WebLogic Integration

GCS begins by analyzing how it will use WebLogic Integration to perform the
following tasks:

n Model the business processes that drive transactions among participating trading
partners

n Define and manage business-to-business (B2B) integration among business
partners in the scenario

n Integrate new Web-based front-end systems with existing enterprise information
systems

n Handle heterogeneous data formats

The remainder of this section explains how WebLogic Integration enables GCS to
perform these tasks.

Model Business Processes

WebLogic Integration provides the tools required to manage business processes:

n WebLogic Integration process engine—Collection of EJBs that provide services
to create and maintain workflow templates, start and terminate running
workflows, control and manage workflow instances at run time, and so on

n WebLogic Integration Studio—Graphical design tool for creating business
processes and monitoring them at run time

Manage B2B Integration

WebLogic Integration supports communication with external trading partners over the
Internet. Specifically, it supports the XOCP, RosettaNet (1.1 and 2.0), and Ariba
cXML business protocols for sending and receiving XML messages.

A B2B integration BPM plug-in extends the WebLogic Integration Studio so the
Studio can be used to define collaborative workflows, that is, workflows that exchange
messages with external trading partners.

Overview

Learning to Use BEA WebLogic Integration 3-3

Integrate New and Existing Systems

WebLogic Integration supports the integration of new Web-based front-end systems
with existing enterprise information system (EIS) applications through the use of
adapters. Application integration adapters can be broadly categorized as follows:

n Service Adapters—Provide synchronous request and response integration from
WebLogic Integration into an EIS application.

n Event Adapters—Provide unidirectional asynchronous integration from the EIS
application into WebLogic Integration.

Application integration adapters are configured using a Web browser interface.
Business events that flow through application integration adapters are defined as XML
Schema Definitions (XSDs) in the WebLogic Integration repository.

An application integration BPM plug-in extends the WebLogic Integration Studio so
the Studio can be used to define processes that:

n Send events to application integration service adapters

n Consume events generated by application integration adapters

Handle Heterogeneous Data Formats

XML is the message format used in WebLogic Integration systems. The WebLogic
Integration framework, however, makes it easy to integrate WebLogic Integration
applications with environments in which a binary message format is used.

WebLogic Integration supports the following types of data integration:

n Binary-to-XML/XML-to-binary translation: WebLogic Integration performs
bidirectional translation between XML and binary formats. This type of
translation alters only the data representation (XML or binary) of a message; the
data structure and content of a message are unchanged.

n XML-to-XML transformation: Using XSLT, WebLogic Integration can map the
data structure or the content (or both) of an XML message from a source
message to a target message.

3 Understanding the Sample

3-4 Learning to Use BEA WebLogic Integration

XSL stylesheets can be created manually or by using the Contivo Analyst
mapping tool that is bundled with the WebLogic Integration product. Stylesheets
are stored in the WebLogic Integration repository.

Transformations are executed at run time: an input message is assigned to a
workflow variable; the process engine references the XSL stylesheet in the
repository; and the output message is assigned to another workflow variable.

The following sections describe how the components of WebLogic Integration work
together to build and deploy this sample application.

B2B Integration

The definition and management of the relationships between the trading partners that
participate in the e-business transactions (in the roles of the buyer and suppliers for this
scenario) is fundamental to the development of this integrated solution. The data to
define and administer trading partners is stored in the WebLogic Integration
repository, and WebLogic Integration provides tools and processes for the effective
management of dynamic and diverse trading partner relationships.

An exhaustive discussion of how to configure your B2B integration environment is
beyond the scope of this document. However, this section briefly describes the
WebLogic Integration repository data that is used in the sample application, how it is
loaded for the sample, and how you can view the data and monitor the progress of the
sample’s business conversations.

For information about B2B integration and instructions for configuring the WebLogic
Integration environment to support it, see Introducing B2B Integration and
Administering B2B Integration, respectively.

This section includes the following topics:

n Loading the Repository Data

n Understanding the Repository Data

n Using the WebLogic Integration B2B Console

B2B Integration

Learning to Use BEA WebLogic Integration 3-5

Loading the Repository Data

The data required by the sample for integrating the trading partners is bulk loaded into
the WebLogic Integration repository when you run the RunSamples script during the
sample setup (see “Running the Sample” on page 2-2).

The RunSamples script loads the repository with the B2B configuration data contained
in the following XML files:

n SystemRepData.xml—located in the \dbscripts directory in your WebLogic
Integration installation directory, for example:

D:\bea\wlintegration2.1\dbscripts

The SystemRepData.xml file contains system data. The elements used by this
sample include:

l Business protocol definitions

l Logic plug-ins

n BulkLoaderData.xml—located in the \samples\wlis\lib directory in your
WebLogic Integration installation directory, for example:

D:\bea\wlintegration2.1\samples\wlis\lib

This BulkLoaderData.xml file contains data specific to the WebLogic
Integration sample. It describes the following elements:

l Trading partners

l Conversation definitions

l Collaboration agreements

For details about each of these data elements, see the next section, “Understanding the
Repository Data.”

3 Understanding the Sample

3-6 Learning to Use BEA WebLogic Integration

Understanding the Repository Data

This section highlights important information about the following data elements that
are bulk loaded to the WebLogic Integration repository for the sample application:

n Business Protocol Definitions

n Logic Plug-Ins

n Trading Partners

n Conversation Definitions

n Collaboration Agreements

Note: As described in “Loading the Repository Data” on page 3-5, data from two
XML files is imported into the WebLogic Integration repository to support the
sample application. You can bulk load configuration data or enter it through
the WebLogic Integration B2B Console. You can also access and configure
bulk-loaded data using the B2B Console. For more information, see “Using
the WebLogic Integration B2B Console” on page 3-14.

Business Protocol Definitions

The SystemRepData.xml file contains system data, including definitions for all the
business protocols supported by WebLogic Integration: XOCP, RosettaNet, and
cXML. The WebLogic Integration sample application uses only XOCP. The following
excerpt from the SystemRepData.xml file shows the XOCP business protocol
definitions.

Listing 3-1 XOCP Business Protocol Definitions in the SystemRepData.xml File

<!-- XOCP BUSINESS PROTOCOL DEFINITIONS -->
<business-protocol-definition
 name="XOCP-SPOKE"
 business-protocol-name="XOCP"
 protocol-version="1.1"
 endpoint-type="SPOKE">
 <java-class>com.bea.b2b.protocol.xocp.XOCPSpokeProtocol</java-class>
 <decoder>XOCP-Decoder</decoder>
 <encoder>XOCP-Encoder</encoder>

</business-protocol-definition>

B2B Integration

Learning to Use BEA WebLogic Integration 3-7

<business-protocol-definition
 name="XOCP-Hub"
 business-protocol-name="XOCP"
 protocol-version="1.1"
 endpoint-type="HUB">
 <java-class>com.bea.b2b.protocol.xocp.XOCPHubProtocol</java-class>
 <decoder>XOCP-Decoder</decoder>
 <system-router>XOCP-System-Router</system-router>
 :
 :
 <system-router>XOCP-Router-Enqueue</system-router>
 <system-filter>XOCP-System-Filter</system-filter>
 :
 <encoder>XOCP-Encoder</encoder>
 :
 :
</business-protocol-definition>

In the preceding listing, note the following:

n WebLogic Integration supports two definitions for the XOCP business protocol:
XOCP-HUB and XOCP-SPOKE.

n An endpoint-type is provided for each definition.

n Each business protocol definition is implemented by a specified Java class.

For details about configuring business protocol definitions, see “Configuration
Requirements” in Administering B2B Integration and “Configuring Trading Partners”
in Online Help for the WebLogic Integration B2B Console.

Logic Plug-Ins

Logic plug-ins are Java classes that can intercept and process business messages at run
time. Each business protocol is associated with standard router and filter logic
plug-ins.

The SystemRepData.xml file contains system data, including the WebLogic
Integration logic plug-ins for XOCP, RosettaNet, and cXML business protocols. This
sample uses the XOCP logic plug-ins only.

3 Understanding the Sample

3-8 Learning to Use BEA WebLogic Integration

For details about developing logic plug-ins and processing messages through the
WebLogic Integration B2B engine, see Programming Logic Plug-Ins for B2B
Integration.

Table 3-1 XOCP-Specific Logic Plug-Ins

Logic Plug-In Description

XOCP-Router This router logic plug-in processes incoming business
messages and generates the message-context document that
is used in the processing. By default, this is the first logic
plug-in in the router chain. The XOCP router logic plug-in
for a hub delivery channel can modify the list of trading
partner recipients, based on XPath router expressions. For
more information, see “Routing and Filtering Business
Messages” in Programming Logic Plug-Ins for B2B
Integration.

XOCP-Router-Enqueue This router enqueue logic plug-in adds business messages to
the router message queue. By default, this logic plug-in is the
last one in the router chain.

XOCP-Filter This filter logic plug-in processes outgoing business
messages and generates the message-context document that
is used in processing outgoing messages. By default, this is
the only logic plug-in in the filter chain. The XOCP filter
logic plug-in for a hub delivery channel can use any XPath
filter expressions defined to determine whether or not to
send a message. For more information, see “Routing and
Filtering Business Messages” in Programming Logic
Plug-Ins for B2B Integration.

XOCP-Encoder The encoder forwards the message to the B2B transport
service.

XOCP-Decoder The decoder processes the XOCP headers, identifies the
sending trading partner, enlists the sending trading partner in
a conversation, prepares a reply to return to the sender, and
forwards the message to the B2B scheduling service.

B2B Integration

Learning to Use BEA WebLogic Integration 3-9

Trading Partners

The WebLogic Integration sample scenario involves three business partners: a buyer
(General Control Systems) and two suppliers. For each business partner, a trading
partner is configured in the BulkLoaderData.xml file. The following trading partners
are defined for the sample: WLIS_Buyer, WLIS_SupplierOne, and
WLIS_SupplierTwo.

Because these trading partners communicate using the XOCP business protocol,
General Control Systems must define its WebLogic Integration system as
hub-and-spoke configuration. (See “Getting Started with B2B integration” in
Introducing B2B Integration for details about configuring B2B integration.) To that
end, the BulkLoaderData.xml file defines a fourth trading partner: WLIS_Hub.

The WLIS_Hub trading partner acts as an intermediary. It is responsible for mediating
messages between the spoke trading partners: WLIS_Buyer, WLIS_SupplierOne, and
WLIS_SupplierTwo. The WLIS_Hub trading partner is not the sender or receiver of a
business message, but it acts as the proxy buyer and proxy supplier, at different times
during the transaction.

Each of the three trading partners—WLIS_Buyer, WLIS_SupplierOne, and
WLIS_SupplierTwo—has a collaboration agreement with the WLIS_Hub trading
partner. The WLIS_Hub trading partner is responsible for linking collaboration
agreements. Such linking is essential, for example, when a message arrives as part of
one collaboration agreement and must be routed to another trading partner as part of
another collaboration agreement. Collaboration agreements that use the same delivery
channel—the channel defined for the WLIS_Hub trading partner—are linked. For
details about the collaboration agreements in this scenario, see “Collaboration
Agreements” on page 3-12.

Each trading partner element is characterized by various attributes and subelements,
some of which contain simple identification information, such as name, email, phone,
and fax. Other trading partner configuration information is described in the following
table.

Table 3-2 Trading Partner Configuration

Element Description

Type Note that Type=”LOCAL” for all trading partners in the
sample scenario because all run on the same instance of
WebLogic Server.

3 Understanding the Sample

3-10 Learning to Use BEA WebLogic Integration

Note: See the BulkLoaderData.xml file for the sample’s trading partner
configuration.

Conversation Definitions

The BulkLoaderData.xml file contains two XOCP conversation definitions, one
each for the Query Price and Availability (QPA) and the Purchase Order (PO)
conversations. There are two roles—buyer and supplier—for each conversation. Each
role references the following:

n A BPM workflow template, such as:

wlpi-template=”WLIS_SupplierQPA”

n A WebLogic Integration BPM organization, such as:

Party Identifier A unique party ID, which is used along with the trading
partner name to identify the party in a collaboration
agreement.The party ID has a unique name, a business ID,
and a business ID type.

Business ID Descriptive name for the business ID associated with a party
ID. In this sample scenario the same business ID
(business-id="999999999") is used for both the WLIS_Hub
and WLIS_Buyer trading partners because both are owned
by GCS.

Each supplier trading partner has a unique business ID.

Delivery Channel References a transport and a document exchange for each
trading partner. Note that the delivery channel for the
WLIS_Hub trading partner is configured with
routing-proxy="true", and the delivery channels for
the other trading partners (each of which is configured as a
spoke in this scenario) are configured with
routing-proxy=”false”.

Document Exchange Defines the business protocol (XOCP for this scenario) and
run-time parameters.

Transport Defines the transport protocol (HTTP) and end-point URI.

Table 3-2 Trading Partner Configuration

Element Description

B2B Integration

Learning to Use BEA WebLogic Integration 3-11

process-implementation wlpi-org="ORG1"

Note: The BPM component of WebLogic Integration was formerly known as
WebLogic Process Integrator (WLPI). You may still see references to
WebLogic Process Integrator or WLPI, as in the names of the template and
organization shown here.

The workflow template, in turn, references the conversation definition to which it
applies. (For example, see the reference to a conversation in Figure 3-12, which shows
properties for one of the public workflows used in this sample).

For details about the workflows used to implement this sample, see “Business Process
and Workflow Modeling” on page 3-17.

Organizations represent different business entities, geographical locations, or any
other classifications that are relevant to the particular business of the company. For
details about BPM organizations, see “Configuring the Security Realms” in
Programming BPM Client Applications.

The following listing is an excerpt from the BulkloaderData.xml file. It defines the
WLIS_QPAConversation.

Listing 3-2 Conversation Definition in the BulkLoaderData.xml File

...
<conversation-definition
 name="WLIS_QPAConversation"
 version="1.1"
 business-protocol-name="XOCP"
 protocol-version="1.1">
 <role
 name="Buyer"
 wlpi-template="WLIS_BuyerQPAPublic">
 <process-implementation wlpi-org="ORG1" />
 </role>
 <role
 name="Supplier"
 wlpi-template="WLIS_SupplierQPAPublic">
 <process-implementation wlpi-org="ORG1" />
 </role>
</conversation-definition>

...

3 Understanding the Sample

3-12 Learning to Use BEA WebLogic Integration

Collaboration Agreements

Six collaboration agreements are used in this sample: three in the QPA conversation
and three in the PO conversation. For each conversation, collaboration agreements are
defined between the following pairs of business entities:

n WLIS_Buyer and WLIS_Hub

n WLIS_SupplierOne and WLIS_Hub

n WLIS_SupplierTwo and WLIS_Hub

The following figure illustrates the collaboration agreements among trading partners
who participate in the QPA conversation (WLIS_QPAConversation).

Figure 3-1 Collaboration Agreements Among Trading Partners in the QPA
Conversation

B2B Integration

Learning to Use BEA WebLogic Integration 3-13

The following figure illustrates the collaboration agreements among trading partners
who participate in the PO conversation (WLIS_POConversation).

Figure 3-2 Collaboration Agreements Among Trading Partners in the PO
Conversation

Notice the following details in the preceding figures:

n The WLIS_Hub trading partner is a party in each of the collaboration
agreements. In the QPA_1 and PO_1 collaboration agreements, it is assigned the
role of (proxy) supplier; in all other collaboration agreements, the role of (proxy)
buyer.

For example, when the WLIS_Hub trading partner receives a QPA message from
WLIS_Buyer, it is acting as the proxy supplier in the QPA_1 collaboration
agreement. It then changes roles and becomes the proxy buyer for the QPA_2
and QPA_3 collaboration agreements.

n Parties in the collaboration agreements are associated with roles in conversation
definitions.You must configure each party in a collaboration agreement with a
role name.

3 Understanding the Sample

3-14 Learning to Use BEA WebLogic Integration

The following listing is an excerpt from the BulkLoaderData.xml file. It
describes the collaboration agreement between WLIS_Hub and WLIS_Buyer.

Listing 3-3 Collaboration Agreement in the BulkLoaderData.xml file

...
<collaboration-agreement
name="WLIS_QPAConversation|1.1|WLIS_Buyer|WLIS_Hub"
global-identifier="WLIS_QPAConversation|1.1|WLIS_Buyer|WLIS_Hub
version="1.1"
status="ENABLED"
conversation-definition-name="WLIS_QPAConversation"
conversation-definition-version="1.1">
<party

trading-partner-name="WLIS_Buyer"
party-identifier-name="WLIS_BuyerPartyId"
delivery-channel-name="WLIS_BuyerDeliveryChannel"
role-name="Buyer"/>

<party
trading-partner-name="WLIS_Hub"
party-identifier-name="WLIS_HubPartyId"
delivery-channel-name="WLIS_HubDeliveryChannel"
role-name="Supplier"/>

</collaboration-agreement>

...

Using the WebLogic Integration B2B Console

WebLogic Integration allows you to bulk load configuration data or enter it through
the WebLogic Integration B2B Console. You do not need to run the B2B Console
when you run the WebLogic Integration sample, but you can use it to view the
repository data that is bulk loaded for the sample (see “Loading the Repository Data”
on page 3-5). You can also use the B2B Console to monitor the ongoing conversations
while you are running the sample.

Start the WebLogic Integration B2B Console by completing the procedure appropriate
for your platform:

Note: If you have not already done so, run the WebLogic Integration sample as
described in “Setting Up and Running the Sample” on page 2-1.

B2B Integration

Learning to Use BEA WebLogic Integration 3-15

n To launch the B2B Console on a Windows system, do one of the following:

l Click the B2B link under Administration Consoles on the launcher Web
page (http://localhost:7001) from which you started the sample.

l Use menus, as follows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→B2B Console.

l Invoke the startB2bconsole script from the command line, as follows:

a. Open a command window.

b. Go to the bin directory in the directory in which you installed WebLogic
Integration. For example, if WebLogic Integration is installed in the default
location, enter the following:

 cd \bea\wlintegration2.1\bin

c. Start the B2B Console by entering:

 startB2bconsole

n To launch the B2B Console on a UNIX system, do one of the following:

l Click the B2B link under Administration Consoles on the launcher Web
page (http://localhost:7001) from which you started the sample.

l Start a Web browser with the following URL:

http://localhost:7001/b2bconsole

3 Understanding the Sample

3-16 Learning to Use BEA WebLogic Integration

The following figure shows the WebLogic Integration B2B Console with the
WebLogic Integration sample data loaded.

Figure 3-3 WebLogic Integration B2B Console Displaying Sample Data

See Online Help for the WebLogic Integration B2B Console and Administering B2B
Integration for details about using the WebLogic Integration B2B Console to
configure B2B integration. See “Working with the Bulk Loader” in Administering B2B
Integration for details about the Bulk Loader.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-17

Business Process and Workflow Modeling

This section provides a brief introduction to the business process management (BPM)
functionality provided by WebLogic Integration, followed by instructions for starting
and using the Studio, and descriptions of the two business processes implemented by
the WebLogic Integration sample: Query Price and Availability (QPA) and Purchase
Order (PO). It includes the following topics:

n Introduction to BPM

n Using the WebLogic Integration Studio

n QPA Business Process

n PO Business Process

Introduction to BPM

Workflows that implement the roles assigned to trading partners in a conversation
definition (see “Conversation Definitions” on page 3-10) are referred to as
collaborative workflows.

A workflow template represents a workflow, and combines various workflow template
definitions (versions) of its implementation. Workflow templates are designed and
edited in the WebLogic Integration Studio. Several BPM plug-ins extend the
functionality of the Studio:

n B2B integration plug-in—Supports B2B integration, that is, the design and
management of collaborative workflows. The Studio allows you to assign
properties to the workflows. These properties make the workflows usable in the
B2B integration environment.

n Application integration plug-in—Allows you to design workflows that can
integrate back-end and legacy enterprise information systems (EIS).

n Data integration plug-in—Allows you to design workflows that integrate
heterogeneous data formats, by making it possible to share data among
heterogeneous EIS applications.

3 Understanding the Sample

3-18 Learning to Use BEA WebLogic Integration

In this sample scenario, trading partners implement both private and collaborative
workflows. Private workflows work in conjunction with the collaborative workflows,
and implement local processes for the trading partners. Local and private processes are
not necessarily dictated by the conversation definition. For example, when a trading
partner starts a conversation, that trading partner’s private workflow can start the
collaborative workflow to initiate the conversation.

The following sections describe the implementation of the business processes on the
buyer-side and supplier-side of the sample business transaction. Key workflow design
elements, tasks, and events are highlighted.

Using the WebLogic Integration Studio

The WebLogic Integration Studio allows you to design new workflows and monitor
running workflows using a familiar flowchart paradigm. You are not required to run
the Studio when you run the WebLogic Integration sample, but you may find it useful
for viewing the details of any workflow or workflow node, and for learning how nodes
are defined and configured for this sample. You can also use the Studio to monitor the
workflows as you run the sample.

This section provides procedures for starting and using the Studio, and a list of
components used by the sample to manage business processes.

Launching the Studio

Launch the Studio by completing the procedure appropriate for your platform:

n To launch the Studio on a Windows system, do one of the following:

l Use menus, as follows:

a. Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Studio.

b. Log on to the Studio (user: wlpisystem; password: wlpisystem).

l Invoke the Studio script from the command line, as follows:

a. Open a command window.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-19

b. Go to the bin directory in the directory where you installed WebLogic
Integration. For example, if WebLogic Integration is installed in the default
location, enter the following:

 cd \bea\wlintegration2.1\bin

c. Execute the studio command by entering:

 studio

d. Log on to the Studio (user: wlpisystem; password: wlpisystem).

n To launch the Studio on a UNIX system, complete the following tasks:

a. Go to the bin directory in the directory where you installed WebLogic
Integration. For example, if WebLogic Integration is installed in the default
location, enter the following:

cd BEA_Home/wlintegration2.1/bin

b. Start the Studio application by entering:

. ./studio

c. Log on to the Studio (user: wlpisystem; password: wlpisystem).

Viewing Workflow Templates in the Studio

To view a workflow template and its properties in the Studio, complete the following
procedure:

1. In the left pane of the Studio, make sure ORG1 is selected in the Organization field.

2. In the left pane, double-click the Templates folder to display a list of workflow
templates.

3. Expand the Templates folder to display the list of workflow template definitions.
The template definitions of interest for this sample application are listed in
Table 3-3, “Components Imported to the WebLogic Integration Repository.”
They are imported, via the workflow.jar file, when you configure the sample,
as described in “Step 1. Configure and Invoke the Launcher Web Page” on page
2-3.

4. Right-click a template definition, and select Open to open the workflow template
in the Studio.

3 Understanding the Sample

3-20 Learning to Use BEA WebLogic Integration

Note: You can also expand a particular workflow template definition to display
folders containing the Tasks, Decisions, Events, Joins, Starts, Dones, and
Variables for that workflow template definition.

5. Double-click any node in the Studio to display the Properties dialog box for that
node.

See Using the WebLogic Integration Studio for complete details about the Studio tools
and functionality.

BPM Components Used in the Sample

Workflow templates and other data required by the Studio and process engine for this
sample application are loaded into the WebLogic Integration repository, via the
workflow.jar file, when you configure the sample. Imported components include
those listed in the following table.

Table 3-3 Components Imported to the WebLogic Integration Repository

Component Name

Business Operations binary to file

file to binary

xmlToFile

create POAck from PO

Template Definitions WLIS_BuyerPOPrivate

WLIS_BuyerPOPublic

WLIS_BuyerQPAPrivate

WLIS_BuyerQPAPublic

WLIS_SupplierOnePOPrivate

WLIS_SupplierOneQPAPrivate

WLIS_SupplierPOPublic

WLIS_SupplierQPAPublic

WLIS_SupplierTwoPOPrivate

WLIS_SupplierTwoQPAPrivate

XML Repository Folders com.bea.wlxt.MFL

wlis

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-21

QPA Business Process

Due to the supply shortage of metal boxes, GCS (the buyer trading partner) sends a
QPA message for such boxes to selected suppliers. The following diagram illustrates
the flow of events for the QPA business process.

XML Repository Entities PO.mfl

PO.dtd

POAck.mfl

POAck.dtd

Event Keys PORequest

AggregatedQPAResponse

PurchaseOrderAcknowledgement

Table 3-3 Components Imported to the WebLogic Integration Repository

Component Name

3 Understanding the Sample

3-22 Learning to Use BEA WebLogic Integration

Figure 3-4 Process Flow in the QPA Business Process

The following sequence summarizes the events illustrated in the preceding figure:

1. The buyer trading partner creates a QPA.

2. The QPA is sent to suppliers.

3. The suppliers process the QPA and generate responses.

4. The buyer trading partner collects and aggregates responses from the suppliers.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-23

Note: The preceding figure shows a high-level view of the QPA business process.
Each side of the process is implemented by a public (collaborative) and a
private workflow. The following sections describe these workflows:

n Overview of the QPA Implementation

n Buyer-Side Implementation

n Supplier-Side Implementation

Overview of the QPA Implementation

In this scenario, each trading partner implements a private and a public workflow for
the QPA process. The following five workflow templates are used in this sample’s
QPA process.

WebLogic Integration manages the business conversations and collaboration
agreements between business partners, and it automates the business message
exchange between the buyer and suppliers. The workflows are referenced in the
collaboration agreements and conversations, as described in “Understanding the
Repository Data” on page 3-6.

This sample uses JSPs and JSP tag libraries to initiate the QPA process and display
QPA request and response data. The following figure illustrates the data flow among
the trading partners involved in the QPA business transaction.

Table 3-4 Workflows for the Sample QPA Process

Role Public/Private Workflow Name

Buyer Private WLIS_BuyerQPAPrivate

Buyer Public WLIS_BuyerQPAPublic

Supplier Public WLIS_SupplierQPAPublic

Note: Both suppliers in the scenario use
the same public workflow.

Supplier Private WLIS_SupplierOneQPAPrivate

Supplier Private WLIS_SupplierTwoQPAPrivate

3 Understanding the Sample

3-24 Learning to Use BEA WebLogic Integration

Figure 3-5 Data Flow in the QPA Business Process

The buyer-side and supplier-side implementations are discussed in more detail in
“Buyer-Side Implementation” on page 3-26 and “Supplier-Side Implementation” on
page 3-47.

The following sequence of events summarizes the data flow among trading partners
and workflows:

1. The JSP containing the QPA form (see Figure 2-2) sends the QPA request to a JMS
queue and triggers the WLIS_BuyerQPAPrivate workflow.

2. The WLIS_BuyerQPAPrivate workflow invokes the WLIS_BuyerQPAPublic
workflow, passing it the QPA request XML document. It then initiates the QPA
conversation.

3. Based on the collaboration agreement between the WLIS_Buyer and the
WLIS_Hub trading partners, the WLIS_BuyerQPAPublic workflow packs the
QPA request XML into an XOCP message and sends it to the WLIS_Hub trading
partner.

Note: When the WLIS_Hub trading partner receives a message, it is acting as the
proxy supplier in the collaboration agreement.

4. The WLIS_Hub trading partner routes the message to the destination trading
partners, WLIS_SupplierOne and WLIS_SupplierTwo, based on registered
collaboration agreements between itself and each supplier.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-25

Note: In this step, the WLIS_Hub trading partner changes roles and becomes the
proxy buyer in the collaboration agreements between itself and the
suppliers.

Each supplier’s public workflow is triggered by receiving the XOCP message. In
this scenario, WLIS_SupplierOne and WLIS_SupplierTwo share the public
workflow (WLIS_SupplierQPAPublic). The public workflow extracts the QPA
request XML document from the message.

5. The WLIS_SupplierQPAPublic workflow invokes a private workflow for each
supplier and passes the QPA request XML document to the private workflows.

6. Each supplier’s private workflow creates its own QPA response (an XML
document), and attaches it to the return variable of the public workflow.

7. The WLIS_SupplierQPAPublic workflow extracts the QPA response XML
document, packs it into an XOCP message, and sends it to the buyer.

Note that the WLIS_Hub trading partner acts as a routing proxy for
WLIS_Buyer. When the supplier trading partners send response messages to
WLIS_Hub (based on collaboration agreements between WLIS_Hub and each
supplier trading partner), WLIS_Hub acts as the proxy buyer.

WLIS_Hub then changes roles to that of proxy supplier, and routes the response
messages to the buyer (WLIS_Buyer), based on the collaboration agreement
between WLIS_Hub and WLIS_Buyer.

8. The buyer’s public workflow (WLIS_BuyerQPAPublic):

a. Extracts the QPA response XML document from the XOCP message it
receives.

b. Aggregates both supplier response documents into a single XML document and
posts it, via a JMS queue, to the buyer’s private workflow
(WLIS_BuyerQPAPrivate).

c. Terminates the QPA conversation and notifies the supplier public workflow
(WLIS_SupplierQPAPublic).

9. The buyer’s private workflow (WLIS_BuyerQPAPrivate) receives the
aggregated QPA response XML document and writes it to an XML file. A JSP
parses the XML and displays the aggregated QPA response in the Web browser.

This step marks the end of the QPA business process.

3 Understanding the Sample

3-26 Learning to Use BEA WebLogic Integration

Buyer-Side Implementation

To implement this solution, the buyer (GCS) implements a custom client (Web user
interface) to drive the sample, process messages, and exchange XML messages with
the WebLogic Integration process engine, using JMS queues. GCS also implements a
private workflow, to manage the buyer’s back-end processes, and a public workflow
that choreographs the exchange of messages in the QPA conversation. This section
discusses these components:

n Buyer-Side Web User Interface

n Buyer QPA Private Workflow

n Buyer QPA Public Workflow

Buyer-Side Web User Interface

Java Server Pages (JSPs) and JSP tag libraries are used to initiate the QPA process and
display request and response data in your Web browser. The source files related to the
QPA process can be found in the directories listed in the following table.

Table 3-5 Source Files for the QPA Process

Directory in Your WebLogic Integration Installation Source File

\samples\wlis\src\examples\wlis\tags n SendQPARequestTag.java

n CheckQPAResponseTag.java

\samples\wlis\web n SendQPARequest.jsp

n CheckQPAResponse.jsp

n QPAform.htm

n WaitQPAResponse.htm

\samples\wlis\lib\xsl ProcessQPAResponse.xsl

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-27

The Web user interface interacts with the buyer’s private workflow
(WLIS_BuyerQPAPrivate), as illustrated in the following figure.

Figure 3-6 Interaction Between the Web User Interface and the Buyer’s Private
Workflow

The following sequence of events describes the interaction illustrated in the preceding
figure:

1. The QPA request is created as XML, based on the input from the HTML Web form
(see “Step 4. Send the QPA Request” on page 2-9). The XML is sent, via a JSP
(SendQPARequest.jsp), to a JMS queue.

The following listing is code from the SendQPARequestTag.java file that
defines the name of the JMS queue and the queue connection factory to which
the XML message is posted:

Listing 3-4 SendQPARequestTag.java

//Defines the JMS connection factory.
final String JMS_FACTORY = "com.bea.wlpi.QueueConnectionFactory";

//Defines the JMS queue.
final String QUEUE = "com.bea.wlpi.EventQueue";
...

3 Understanding the Sample

3-28 Learning to Use BEA WebLogic Integration

2. The buyer’s private workflow (WLIS_BuyerQPAPrivate) is started.

3. The WLIS_BuyerQPAPrivate workflow receives responses from both suppliers,
aggregates them, and writes the QPA responses to a local file,
AggregatedQPAResponse.xml.

4. A JSP (CheckQPAResponse.jsp) reads the file using a JSP tag, parses the XML
data using XSL (see \samples\wlis\lib\xsl\processQPAResponse.xsl),
and displays the results in the Web browser as shown in Figure 2-5, “Create PO
Window” on page 2-11.

5. When running the sample, you, as the buyer, select the supplier. (See “Step 6.
Create the Purchase Order” on page 2-11). The JSP posts an XML message that
contains the QPA response data for the selected supplier to the JMS topic. The
buyer’s private workflow (WLIS_BuyerQPAPrivate) receives and processes the
message.

Buyer QPA Private Workflow

The WLIS_BuyerQPAPrivate workflow is initiated by the JMS message, which
contains the QPA request data, sent from a JSP. The interaction of the workflow with
the Web user interface is described in “Buyer-Side Web User Interface” on page 3-26.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-29

The WLIS_BuyerQPAPrivate workflow template is shown in the following figure.

Figure 3-7 WLIS_BuyerQPAPrivate Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_BuyerQPAPrivate workflow template, shown in the preceding figure:

n Start

n Lookup 2nd Tier suppliers for requested items

n Construct QPA Request XML to Suppliers

n Call BuyerQPAPublic workflow

n Wait for aggregated QPA Response

n Write QPAResponse to File

n Wait for PO Request from Web Front

n Decision

n Calculate total amount

3 Understanding the Sample

3-30 Learning to Use BEA WebLogic Integration

n Store PO Information to backend system through WLAI

Start
An XML event received from the SendQPARequest.jsp JSP triggers the
workflow.

The XML is defined by the QPARequest.dtd file. DTD files for the sample
are available in Appendix A, “DTDs.” Note that the first element in the
QPARequest.dtd:

QPARequestId: (<!ELEMENT QPARequestId (#PCDATA)>)

For this sample scenario, a unique value for the QPARequestId element is
created by the JSP every time a QPA request is generated from the buyer’s
Send QPA Request Web page (see “Step 3. Start the Sample” on page 2-8).
You can see the value that is generated for QPARequestId every time you run
the sample by looking at the form containing the QPA response that is
returned to the buyer (see “Step 5. Check for QPA Responses” on page 2-10).

The Start node extracts the XML message using an XPath expression, and
stores the message in a workflow variable (qpaRequestXML). The Start node
also extracts the value of the QPARequestId element, and assigns it to a
workflow variable, QPARequestId. The latter variable is used in other
workflows in this sample as the key value expression for an event key.

What Is an Event Key?

The WebLogic Integration process engine does not start a workflow or trigger
an Event node unless the DOCTYPE or root element in the Start or Event
Properties dialog box matches that in the incoming XML message. In
addition to using the DOCTYPE or root element, you can further qualify the
start of a workflow or the triggering of an Event node by using an event key.
An event key allows you to specify the contents of incoming XML messages
that will trigger a Start or Event node.

An event key consists of two parts: a key value expression and an event key
expression. A key value expression is a workflow expression that specifies
the exact data that an incoming document must contain for the node to be
triggered. An event key expression is an expression that specifies the exact
element in the XML message in which the target data is found.

To configure event key expressions, or to see the configurations in this
sample, choose Configuration→Events from the Studio task menu.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-31

The following event key expressions are configured for this sample scenario:

Event Key Expressions

PORequest.QPARequestId

AggregatedQPAResponse.QPARequestId

PurchaseOrderAcknowledgement.PONumber

After you configure event key expressions, they are available for all
workflows in all organizations. The event key expression must correspond to
the value specified by the key value expression defined in the Start or Event
properties dialog box, so that the process engine can compare the two values
at run time and determine whether there is a match.

You may notice the QPARequestId key value expression used by workflow
nodes in other sections of this document. See “Configuring Workflow
Resources” in Using the WebLogic Integration Studio for details about
defining and using event keys in the Studio tool.

Lookup 2nd Tier suppliers for requested items
A set of suppliers, which we refer to as tier 2 (or category 2) suppliers for this
sample scenario, are defined in the buyer’s enterprise information system
(EIS). The EIS for the sample is an RDBMS. The data for these suppliers is
loaded in the WebLogic Integration repository when you run the RunSamples
script to set up the database for the sample (see “Running the Sample” on
page 2-2). These suppliers are accessed when the primary supplier of an item
cannot meet the demand, as is the case in our sample scenario.

An application view, namely WLISAppView.sav, is also deployed for this
sample. See “Application Integration” on page 3-77 for details about the
application view. An application integration plug-in extends the functionality
of the Studio so that application view services and events can be readily
integrated with workflow templates. From the Studio, you can select a service
to invoke, and specify service request and response variables (the variables
must be in XML format).

This task node completes the following actions:

1. Composes a workflow variable (supplierLookupInputXML).

2. Calls the getSupplier service on the WLISAppView.sav application
view to retrieve information from the EIS about the tier 2 suppliers.

3 Understanding the Sample

3-32 Learning to Use BEA WebLogic Integration

You can select a service to be invoked from a workflow as follows:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Click Add to open the Add Actions dialog box.

3. Choose AI Actions→Call Application View Service to invoke the Call
Service dialog box, which displays a list of the services for the
WLISAppView.sav application view, as shown in the following figure.

Figure 3-8 Application Integration Call Service Dialog Box

Note that the value in the Request Document Variable field in the preceding
figure is the XML variable that was created at this node
(supplierLookupInputXML).

The application view service is called synchronously at this node. Therefore
the workflow waits for the service to return a response document to this node
before it continues.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-33

The value in the Response Document Variable field is
supplierLookupOutputXML. This variable receives the response from the
application view service. The supplierLookupOutputXML variable is used
by the workflow at the next node to construct the request XML messages.

Note: You can examine the XML schema of the input or the response document,
by clicking View Request Definition or View Response Definition,
respectively. The View Definition dialog box is displayed. Click Close
when finished.

See Using Application Integration for information about using the
application integration plug-in provided by WebLogic Integration.

Construct QPA Request XML to Suppliers
This task node creates workflow variables (qpaRequestXMLOne and
qpaRequestXMLTwo) to hold the QPA Request XML message for the
suppliers. These XML messages are sent from the buyer’s public workflow
(WLIS_BuyerQPAPublic) to the suppliers’ public workflow
(WLIS_SupplierQPAPublic) as part of an XOCP business message.

Because the supplier trading partners are collocated on a single instance of
WebLogic Integration, and the suppliers share the same public workflow for
this sample, the correct recipient for the incoming XOCP message must be
identified.

To that end, a unique attribute value (SupplierName) is added to the root
element of the QPA Request XML. The value for SupplierName is
composed from the variable returned as a result of the
CallApplicationViewService:sav.getSupplier event at the previous
node in the workflow: supplierLookupOutputXML. For example, the value
for the SupplierName attribute in the qpaRequestXMLOne workflow
variable is generated from the following XPath expression:

ToString(XPath("//Row[1]/supplierName/text()",
$supplierLookupOuputXML))

To see the attributes and elements for qpaRequestXMLOne and
qpaRequestXMLTwo:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated.

3 Understanding the Sample

3-34 Learning to Use BEA WebLogic Integration

3. Double-click one of the following actions:

Set workflow variable qpaRequestXMLOne structure

Set workflow variable qpaRequestXMLOne structure

The XML structure dialog box shown in the following figure is displayed.

Figure 3-9 Set Workflow Variable Dialog Box

Call BuyerQPAPublic workflow
This task node starts the WLIS_BuyerQPAPublic workflow and passes workflow
variables containing the QPA Request XML documents to the public workflow.
Because the WLIS_BuyerQPAPrivate workflow is the initiator of a
WebLogic Integration B2B conversation (WLIS_QPAConversation), this
task node uses the special Start Public Workflow action (provided by the B2B
integration plug-in), instead of the default Start Workflow action.

The key difference between the Start Public Workflow and the Start
Workflow actions is that the workflow template binding is dynamic when you
use the former. The WLIS_BuyerQPAPrivate workflow determines which
workflow template to invoke at run time, based on conversation properties
defined in the Start Public Workflow action.

Also, based on the conversation information passed as part of the Start Public
Workflow call, the B2B engine uses the collaboration agreement information
(stored in the WebLogic Integration repository) to associate the called
workflow with other public workflows in the same collaboration agreement.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-35

You can define a Start Public Workflow action in the WebLogic Integration
Studio as follows:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Add→Integration Actions→B2B Integration→Start Public
Workflow to display the Start Public Workflow dialog box.

To view the Start Public Workflow properties already specified for this node:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Activated.

3. Double-click Start Public Workflow to display the Start Public Workflow
dialog box shown in the following figure.

Figure 3-10 Start Public Workflow Dialog Box

Note the following properties for the WebLogic Integration sample in the preceding
figure:

n The Conversation tab—Information specified on this tab is used by WebLogic
Integration to locate the active collaboration agreements in the repository that
define an agreement between the specified parties, in the specified conversation:

3 Understanding the Sample

3-36 Learning to Use BEA WebLogic Integration

l The conversation name, version, and role are defined as
WLIS_QPAConversation, 1.1, and buyer, respectively.

l The parties in the conversation are specified by their trading partner names:
WLIS_Buyer and WLIS_Hub. You can optionally add values to the Role and
Delivery Channel fields, which can be used, in addition to the values in the
Name fields, to locate the collaboration agreement of interest.

See Listing 3-3, “Collaboration Agreement in the BulkLoaderData.xml file,” for
an excerpt from the BulkLoaderData.xml file. It describes the collaboration
agreement that the process engine locates in the repository to meet the
specifications defined on this Conversation tab.

n The Workflow tab—Variables that are passed to the called workflow are defined
on the Workflow tab. The variable names specified here are also specified as
input variables to the called workflow (WLIS_BuyerQPAPublic). They are:

l QPARequestXMLOne—Contains the value of the qpaRequestXMLOne
variable defined at the previous workflow node.

l QPARequestXMLTwo—Contains the value of the qpaRequestXMLTwo
variable defined at the previous workflow node.

l QPAPrivateFlowId—Workflow instance ID used to identify the instance of
the WLIS_BuyerQPAPrivate workflow that calls the public workflow.
(Several instances of the workflow template may be running.) See “Publish
Aggregated QPA Response” on page 3-46 to understand where this instance
ID is used by the called public workflow.

Note also that the subworkflow (WLIS_BuyerQPAPublic) is invoked asynchronously
at this node. If you open the Task Properties dialog box and choose
Actions→Activated, the following actions are specified in the order shown:

1. Start Public Workflow

2. Mark task “CallBuyerPublic workflow” done

See Creating Workflows for B2B Integration for more details about workflows in B2B
conversations.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-37

Wait for aggregated QPA Response
The workflow waits, at this event node, for a specific XML event from the
WLIS_BuyerQPAPublic workflow. When it receives the XML event, it
extracts the XML using an XPath expression, and stores it in a workflow
variable. The XML is defined by the AggregatedQPAResponse.dtd file.
DTDs for the sample application are available in Appendix A, “DTDs.”

This node uses a key value expression defined for it: QPARequestId. This
expression is used to specify the exact data that the incoming document must
contain for the node to be triggered.

If there are a number of instances of the private workflow
(WLIS_BuyerQPAPrivate), the appropriate Wait for aggregated QPA
Response node, in the appropriate workflow template instance, needs to be
triggered at this point in the QPA process. The workflow instance that
contains the node to be triggered is specified by the value of QPARequestId.
(See the discussion about event keys in “Start” on page 3-30.)

Write QPAResponse to File
This action node uses the xmlToFile business operation to write the QPA
response from both suppliers to the following local file in your WebLogic
Integration installation:
\config\samples\data\AggregatedQPAResponse.xml.

The local file is consumed by a JSP.

To see the business operations defined for this sample, choose
Configuration→Business Operations from the Studio task menu. The
Business Operations dialog box containing a list of business operations is
displayed. Double-click any business operation to see more information
about it. You can find the Java class relevant to the xmlToFile business
operation in the following location in your WebLogic Integration installation:
\samples\wlis\src\examples\wlis\common\util\Utils.java.

Wait for PO Request from Web Front
An event node that causes the workflow to wait until it receives the PO
Request from the PO Request Web page. The PO Request XML message is
assigned to the poRequestXML variable at this node. Note also that three other
variables are assigned at this node. They are loopNumber, counter, and
totalAmount, and are used in the next node in the workflow.

3 Understanding the Sample

3-38 Learning to Use BEA WebLogic Integration

Decision
This node specifies a condition that must be evaluated. The result of the
evaluation determines the path the workflow follows. When the condition
evaluates to true, that is the value of loopNumber is greater than zero, the
workflow proceeds to the Calculate total amount node. When the condition
evaluates to false, the workflow proceeds to the following task node: Store
PO information to the back-end system through WLAI.

Calculate total amount
This task node assigns values to three workflow variables, based on the
results of expressions defined in the Set Workflow Variable dialog box.
Values are first calculated for the quantity and the unit price of the requested
items. The total amount for the order is the product of the quantity and unit
price values.

Store PO Information to backend system through WLAI
This task node inputs the PO information into the Enterprise Information
System (in this case, an RDBMS) using the application integration
functionality of WebLogic Integration. From the Studio, you can select a
service to invoke on the WLISAppView.sav application view that is also
deployed for this sample, and specify the service request and response
variables, which must be in XML format.

The application view services called from this node, insertPOData and
insertLine, are called synchronously. Therefore the workflow waits for the
service to return a response document to this node before it proceeds to the
Done node.

See “Buyer PO Private Workflow” on page 3-61 for more details.

Buyer QPA Public Workflow

The buyer’s public workflow (WLIS_BuyerQPAPublic) is initiated by the buyer’s
private workflow (WLIS_BuyerQPAPrivate) for the QPA business process.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-39

The following figure shows the WLIS_BuyerQPAPublic workflow template.

Figure 3-11 WLIS_BuyerQPAPublic Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_BuyerQPAPublic workflow template, shown in the preceding figure:

n Start

n Compose QPA Request Business Message

n Send QPA Request to Suppliers

n 1st/2nd QPA Reply Message Receipt

n Extract QPA Responses

n Aggregate both QPA Responses

n Publish Aggregated QPA Response

n Done

3 Understanding the Sample

3-40 Learning to Use BEA WebLogic Integration

Note: You must define conversation properties for workflows involved in B2B
conversations, that is, for the public workflows, which are also called
collaborative workflows in the WebLogic Integration environment. The
WLIS_BuyerQPAPublic workflow is an example of a collaborative workflow.

To see the conversation properties for the WLIS_BuyerQPAPublic workflow
template, right click the template name in the left pane of the Studio, and select
Properties from the drop-down menu. The template definition dialog box
shown in the following figure is displayed.

Figure 3-12 Template Definition for the WLIS_BuyerQPAPublic Workflow

The name, version, role, and business protocol binding for the conversation
are defined on the B2B Integration tab. Note also that the
WLIS_BuyerQPAPublic workflow is specified as the Conversation Initiator
on this tab.

Start
Starts the QPA conversation. Note that the WLIS_BuyerQPAPublic
workflow is specified as the Conversation Initiator in the Template Definition
dialog box shown in the previous figure. This workflow is started by the

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-41

buyer’s private workflow (WLIS_BuyerQPAPrivate), and is therefore
defined as a called workflow.

The workflow variables assigned at this node include those that identify the
suppliers to which the QPA business message is to be sent:
FirstSupplierName and SecondSupplierName. (See the Send QPA
Request to Suppliers node in this workflow.)

Values are assigned to these variables using an XPath expression that gets
information from the XML messages passed to this workflow:
QPARequestXMLOne and QPARequestXMLTwo. For example, the following
XPath expression assigns a value to QPARequestXMLOne:

XPath("/QPARequest/@SupplierName/text()",
$QPARequestXMLOne)

Compose QPA Request Business Message
This task node composes XOCP business messages by packing XML
documents into the XOCP message payload. The XML is created by the
buyer’s private workflow (WLIS_BuyerQPAPrivate) and passed to this
workflow in the following variables: QPARequestXMLOne and
QPARequestXMLTwo.

To compose such a business message in the Studio, you must choose the
Compose Business Message action, a B2B action provided by the B2B
integration plug-in. Access the Compose Business Message dialog box as
follows:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated.

3. Choose Add→Integration Actions→B2B Integration→Compose Business
Message to display the Compose Business Message dialog box.

Two business messages are composed at this node: QPARequestMessageOne
and QPARequestMessageTwo. They are stored in variables of type Java
Object.

Send QPA Request to Suppliers
Actions defined at this task node send an XOCP message to each of two
suppliers through the WLIS_Hub trading partner.

3 Understanding the Sample

3-42 Learning to Use BEA WebLogic Integration

The sample application uses a router expression on this task node. The
WLIS_Hub routes the QPA Request XOCP message to a supplier, based on
the Router Expression Type (in this case, Trading Partner Name).

To see the Router Expression defined for this node, invoke the Send Business
Message dialog box as follows:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated, and double-click Send Business Message.

 The dialog box shown in the following figure is displayed.

Figure 3-13 Send Business Message Dialog Box

In the preceding figure, note that the value selected for Router Expression
Type is Trading Partner Name, and that the value for the Router Expression
is contained in the FirstSupplierName variable. The FirstSupplierName
and SecondSupplierName variables are assigned at the Start node for this
workflow.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-43

1st/2nd QPA Reply Message Receipt
These are event nodes, at which the workflow waits for replies from the
suppliers. Because there are two suppliers, two event nodes are defined. The
order of receipt of reply messages is not defined; that is, an incoming business
message is assigned to a target variable. The supplier’s name is subsequently
derived from the business message XML.

Note that both of these event nodes are of type Conversation Event.
Double-click one of these nodes to see the Event Properties dialog box
displayed in the following figure.

3 Understanding the Sample

3-44 Learning to Use BEA WebLogic Integration

Figure 3-14 B2B Conversation: Event Node Properties

To distinguish between event nodes that wait for business messages from
other trading partners in a B2B conversation and other event nodes (for
example, those waiting for an internal XML event), specify the former event
nodes as Conversation Event type. The Event Properties dialog box in the
preceding figure defines the properties for a node that waits to receive the first
QPA Reply Message.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-45

Extract QPA Responses
After receiving replies from both suppliers, this task node unpacks the XOCP
messages (in the FirstQPAResponseMessage and
FirstQPAResponseMessage variables). It then extracts the QPA response
XML documents into the following variables: FirstQPAResponseXML and
SecondQPAResponseXML.

Aggregate both QPA Responses
This task node defines a Set Workflow Variable action by composing an
XML Structure. The action aggregates the XML response documents into a
single QPA response XML document. The XML document is stored in the
AggregatedQPAReply variable.

To view the XML workflow variable created for this sample in the Set
Workflow Variable dialog box:

1. Double-click the node.

2. Choose Actions→Activated.

3. Double-click the Set Workflow Variable action defined for this node (Set
workflow variable “AggregatedQPAReply” XML structure) to invoke
the Set Workflow Variable dialog box shown in the following figure.

3 Understanding the Sample

3-46 Learning to Use BEA WebLogic Integration

Figure 3-15 Set Workflow Variable Dialog Box

In the preceding figure, note that the AggregatedQPAResponse XML is
composed of the following elements: QPARequestId, Creation Date, and
the QPA Response from each supplier.

Publish Aggregated QPA Response
This task node defines a Post XML Event action. (You can define such an
event for a node by double-clicking the node to display the Task Properties
dialog box, then choosing Add→Integration Actions→Post XML Event.) This
action posts the aggregated QPA response (the AggregatedQPAReply
variable defined at the previous node) as an internal XML event.

An internal XML event is an event internal to BPM: it triggers an event in the
current workflow or another one, or it starts another workflow for which the
Start node is triggered by an event. Because the destination is internal, the
XML message is sent to an internal JMS queue maintained by BPM. The
JNDI name of the internal JMS queue is com.bea.wlpi.EventQueue.

This aggregated QPA response message is called an Addressed Message,
indicating that the message should persist for a particular workflow instance.
In this case, the addressing is achieved through the instance ID,

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-47

QPAPrivateFlowId. This instance ID specifies the instance of the private
workflow that calls this public workflow. In this case, the
QPAPrivateFlowId instance ID is first specified by the private workflow
that calls this public workflow (WLIS_BuyerQPAPrivate), as described in
“Call BuyerQPAPublic workflow” on page 3-34. In this way, various
instances of caller and called workflows are synchronized.

Done

Terminates the QPA conversation successfully. Other Done nodes in the
workflow terminate the conversation unsuccessfully if the business messages
are not sent to both suppliers from the Send QPA Request to Suppliers node.

Supplier-Side Implementation

To implement this solution, the suppliers implement private workflows to manage the
back-end processes, and a public workflow that choreographs the exchange of
messages in the QPA conversation. This section describes the following workflows:

n Supplier QPA Public Workflow

n Supplier QPA Private Workflow

Supplier QPA Public Workflow

The suppliers’ QPA public workflow (WLIS_SupplierQPAPublic) is initiated by the
incoming message from the WLIS_Hub trading partner.

3 Understanding the Sample

3-48 Learning to Use BEA WebLogic Integration

The following figure shows the WLIS_SupplierQPAPublic workflow template.

Figure 3-16 WLIS_SupplierQPAPublic Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_SupplierQPAPublic workflow template, shown in the preceding figure:

n Start

n Extract Contents of QPA Request Message

n Call WLIS_SupplierOneQPA Private Workflow

n Or

n Call WLIS_SupplierTwoQPA Private Workflow

n Compose and Send QPA Response Message

n Exchange Termination

Start
The WLIS_SupplierQPAPublic workflow is started by an event, that is, the
receipt of the QPA Request business message.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-49

Extract Contents of QPA Request Message
The first Extract Business Message Parts action extracts the XML message
from the incoming business message (from the QPARequestMessage
variable) and assigns the XML to the QPARequestXML variable.

Another action defined at this node sets a workflow variable that, in turn,
defines the supplier’s name for the QPA request message. The suppliers in
this sample are collocated on the same instance of WebLogic Integration,
they have identical roles in the QPA conversation, and they share the same
public workflow template. The WLIS_Buyer trading partner sends two
XOCP messages (one for each supplier) via the WLIS_Hub trading partner.
This action sets a variable (SupplierName) by extracting the unique attribute
value in the incoming QPA request XML document, using the following
XPath expression:

ToString(XPath("/QPARequest/@SupplierName",
$QPARequestXML))

Call WLIS_SupplierOneQPA Private Workflow
Based on the value of the SupplierName variable, which was set at the
previous node in this workflow, the instance of this public workflow starts the
appropriate supplier private workflow (in this case,
WLIS_SupplierOneQPAPrivate). Note that this action starts a private
workflow; it is different from the Start Public Workflow action described (in
“Call BuyerQPAPublic workflow” on page 3-34) as part of the
WLIS_BuyerQPAPrivate workflow.

You can define the Start Workflow action as follows:

1. Double-click the task node to display the Task Properties dialog box.

2. Choose Actions→Activated→Add→Workflow Actions→Start Workflow to
display the Start Workflow dialog box.

3. Select the name of the workflow to call and define other parameters.

To view the Start Workflow action defined for this node in this workflow:

1. Double-click the node.

2. Choose Actions→Activated.

3. Double-click the Start Workflow action defined for this node (Start
workflow “WLIS_SupplierOneQPAPrivate”) to invoke the Set Workflow
Variable dialog box.

3 Understanding the Sample

3-50 Learning to Use BEA WebLogic Integration

For this node, the Start Workflow dialog box allows you to define the
WLIS_SupplierOneQPAPrivate workflow in the Workflow to Start field.
The Start Workflow dialog box also contains a Results tab, which, in turn,
contains a Variable field and a Result field. In this case, QPAResponseXML is
specified in the Variable field; QPAReplyXML, in the Result field. The Results
tab displays variables that are defined as output parameters in the called
workflow. An output parameter is used by a calling workflow to receive
values from a called workflow.

In this case, the Results tab assigns the QPAResponseXML variable to the
QPAReplyXML Result. The Result value is assigned to the QPAReplyXML
output parameter at the Create QPA Reply XML node in the
WLIS_SupplierOneQPAPrivate workflow (see “Supplier QPA Private
Workflow” on page 3-52).

After this assignment is made, the caller workflow,
WLIS_SupplierQPAPublic in this case, proceeds to the next task. In short,
the call from this node to the private workflow is a synchronous call.

Or
A join node. The called workflows (WLIS_SupplierOneQPAPrivate and
WLIS_SupplierTwoQPAPrivate) are invoked synchronously. As a result,
the caller workflow (WLIS_SupplierQPAPublic) does not proceed until it
gets results from one of the private workflows.

Call WLIS_SupplierTwoQPA Private Workflow

Based on the value of the SupplierName variable, which is set in the Extract
Contents of QPA Request Message node in this workflow, this instance of
this public workflow starts the appropriate supplier private workflow (in this
case, WLIS_SupplierTwoQPAPrivate).

The tasks performed at this node are the same as those performed at the Call
WLIS_SupplierOneQPA Private Workflow (described earlier), except that
the WLIS_SupplierTwoQPAPrivate workflow is called at this node.

Compose and Send QPA Response Message
The first action at this node composes the response message from the
supplier. It takes the QPAResponseXML variable from the private workflow
and builds the response message into the QPAReplyMessage output variable.

The Send Business Message action sends the business message, which is
assigned to the QPAReplyMessage variable, to the WLIS_Buyer trading

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-51

partner via the WLIS_Hub. WLIS_Hub routes this QPA Response XOCP
message to the WLIS_Buyer trading partner, based on the Router Expression
Type (in this case, Trading Partner Name). To see the router expression as
defined for this node, you can invoke the Send Business Message dialog box
as follows:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated, and double-click Send Business Message to
display the Send Business Message dialog box.

The dialog box contains three tabs: Message, Token, and QoS. Note the
following parameters on the Message tab.

Field Value Description

Input Message Variable QPAReplyMessage A Java object variable that contains the XOCP
message to be sent to the WLIS_Buyer trading
partner.

Router Expression Type Trading Partner Name WLIS_Hub routes this QPA Response
message to the WLIS_Buyer trading partner,
based on the trading partner name.

Router Expression $QPASenderName The trading partner that should receive this
QPA Response message is identified by the
value of the QPASenderName variable.

Target Role Buyer Defines the role in the conversation for the
trading partner who receives the message.

Use Conversation QoS Is not selected. This option is available because the workflow
template is configured with the XOCP
protocol. It allows you to specify whether to
use the Quality of Service defined at the
conversation level or at this Send Business
Message action level. In the sample, the
process engine uses the QoS information
defined at this Send Business Message action
level.

3 Understanding the Sample

3-52 Learning to Use BEA WebLogic Integration

Exchange Termination
An event node of type Conversation Event. This node terminates the QPA
conversation.

Supplier QPA Private Workflow

There are two workflow templates in this category, one for each supplier:

n WLIS_SupplierOneQPAPrivate

n WLIS_SupplierTwoQPAPrivate

The templates differ only slightly from each other. We leave it as an exercise for
readers to determine the difference.

The suppliers’ QPA private workflows are invoked from the suppliers’ QPA public
workflow (WLIS_SupplierQPAPublic).

The following figure shows the WLIS_SupplierOneQPAPrivate workflow template.

Figure 3-17 WLIS_SupplierOneQPAPrivate Workflow Template

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-53

The following sections define the key tasks and events at the nodes in the
WLIS_SupplierOneQPAPrivate workflow template shown in the preceding figure:

n Start

n Extract Variables from QPA Request

n Decision Nodes

n Create QPA Reply XML

Start
The workflow is a called workflow, that is, it is started from the suppliers’
public workflow (WLIS_SupplierQPAPublic). A variable called selfName
is set at this node. In this case, the value of selfName is WLIS_SupplierOne.

Extract Variables from QPA Request
Several Set Workflow Variable actions are defined at this node. These actions
use XPath expressions to extract the quantity, unit price, and required date of
delivery from the incoming QPA Request XML document, and to assign the
data to workflow variables.

For example, the unit price is extracted from the incoming XML document,
and assigned to the RequestPrice variable, using the following XPath
expression:

ToString(XPath("//Availability/UnitPrice/text()",
$QPARequestXML))

Decision Nodes
The workflow contains two decision nodes, which evaluate quantity and price
conditions:

RequestQuantity
The content of the RequestQuantity variable is evaluated and a
return variable (ReplyQuantity) is set, depending on the result of
the evaluation.

RequestPrice
The content of the RequestPrice variable is evaluated and a return
variable (ReplyPrice) is set, depending on the result of the
evaluation.

Examine Figure 2-2, “Send QPA Request Window,” and Figure 2-5, “Create
PO Window,” to compare the quantity and price per unit that were requested

3 Understanding the Sample

3-54 Learning to Use BEA WebLogic Integration

by the buyer in this sample scenario, with the quotes the buyer subsequently
received from the suppliers.

Create QPA Reply XML
This task node creates the QPA Response XML document using the XML
editor. The document is assigned to the return workflow variable
(QPAReplyXML) of the public workflow (WLIS_SupplierQPAPublic) that
invoked this private workflow.

The QPA Response XML document is defined by the QPAResponse.dtd
DTD. See Appendix A, “DTDs,” for the QPA Response DTD.

After the QPAReplyXML variable is set by this workflow, the public workflow
that called it can proceed to its next task. This sequence of
WLIS_SupplierQPAPublic public workflow tasks is described in “Call
WLIS_SupplierOneQPA Private Workflow” on page 3-49.

PO Business Process

Assume that you are the buyer in this sample scenario. After reviewing the QPA
responses from the suppliers, select one of the suppliers and start the PO business
process, as described in “Step 6. Create the Purchase Order” on page 2-11. The
following diagram illustrates the flow of events for the PO business process.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-55

Figure 3-18 Process Flow in the PO Business Process

The following sequence summarizes the events illustrated in the preceding figure:

1. The buyer composes a purchase order (PO) document.

2. The buyer sends the PO document to the selected supplier.

3. The supplier receives the PO and converts the XML-based PO document into a
binary data file. (In this sample we assume the supplier’s order management
system expects to receive a binary file to process the order).

4. The supplier generates an XML-based PO acknowledgment document, based on
another binary data file.

5. The supplier sends the PO acknowledgment document to the buyer.

6. The buyer updates the PO information, based on the PO acknowledgment.

3 Understanding the Sample

3-56 Learning to Use BEA WebLogic Integration

Note: The preceding figure shows a high-level view of the PO business process.
Each side of the process is implemented by a public and a private workflow.
The following sections describe these workflows:

n Overview of the PO Implementation

n Buyer-Side Implementation

n Supplier-Side Implementation

Overview of the PO Implementation

In this scenario, each trading partner implements a private workflow and a public
workflow for the PO process. The following workflow templates are used in the
sample.

The PO implementation for this sample requires WebLogic Integration support for
application integration, data integration, and management of business processes. This
section describes the PO workflows, including their integration with back-end
applications and heterogeneous data formats. See “Application and Data Integration”
on page 3-77 for more information about application integration and data integration
functionality as it applies to the PO business process in this scenario.

Table 3-6 Workflows for the Sample PO Process

Role Public/Private Workflow Name

Buyer Private WLIS_BuyerQPAPrivate

Buyer Private WLIS_BuyerPOPrivate

Buyer Public WLIS_BuyerPOPublic

Supplier Public WLIS_SupplierPOPublic

Note: Both suppliers in the scenario use
the same public workflow.

Supplier Private WLIS_SupplierOnePOPrivate

Supplier Private WLIS_SupplierTwoPOPrivate

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-57

The following figure illustrates the data flow among the trading partners involved in
the PO business process.

Figure 3-19 Data Flow in the PO Business Process

For details about the buyer-side and supplier-side implementations, see “Buyer-Side
Implementation” on page 3-59 and “Supplier-Side Implementation” on page 3-47.

The following sequence of events summarizes the data flow among trading partners,
workflows, and back-end systems:

1. The PO business process is started when you, as the buyer in this scenario, select a
supplier and create a purchase order, as described in “Step 6. Create the Purchase
Order” on page 2-11.

A JSP extracts the PO request information, including the party ID, unit price,
quantity, and delivery date, and puts it in an XML message. The XML message
is posted to the BPM JMS queue.

2. The buyer’s private workflow (WLIS_BuyerQPAPrivate) that subscribes to the
XML event is invoked by the event posting.

3 Understanding the Sample

3-58 Learning to Use BEA WebLogic Integration

The WLIS_BuyerQPAPrivate workflow invokes the insertPO service on the
WLISAppView.sav application view to insert the PO information into the
Enterprise Information System (EIS). The EIS is simulated by an RDBMS in
this sample. (The WLISAppView.sav application view, together with its services
and events, is configured and deployed in WebLogic Integration when you set up
the sample.)

3. The EIS sends an event containing the PO information to the WebLogic
Integration process engine.

The application view event triggers the start of the buyer’s private workflow for
the PO process (WLIS_BuyerPOPrivate).

4. The WLIS_BuyerPOPrivate workflow starts the buyer’s public workflow
(WLIS_BuyerPOPublic).

5. WLIS_BuyerPOPublic sends an XOCP message to the suppliers’ public
workflow (WLIS_SupplierPOPublic). This step initiates the PO conversation.

The WLIS_Hub trading partner routes the message to the destination trading
partner, WLIS_Buyer, based on a registered collaboration agreement between
itself and WLIS_Buyer.

Note: In this step, the WLIS_Hub trading partner changes roles and becomes the
proxy supplier in the collaboration agreement between itself and the buyer.

6. On the supplier side, an instance of the suppliers’ public workflow
(WLIS_SupplierPOPublic) is started when the supplier receives the XOCP
message.

The WLIS_SupplierPOPublic workflow starts the selected supplier’s private
workflow (WLIS_SupplierOnePOPrivate or WLIS_SupplierTwoPOPrivate).

7. The selected supplier’s private workflow:

a. Translates the XML PO data it receives to binary data, using the data
integration functionality of WebLogic Integration.

b. Generates a PO acknowledgment in binary format.

c. Translates the PO acknowledgment from binary format to XML.

8. The supplier’s private workflow returns the PO acknowledgment XML data to
the WLIS_SupplierPOPublic workflow.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-59

9. The WLIS_SupplierPOPublic workflow wraps the PO acknowledgment
information in an XOCP message and sends it to the buyer’s public workflow
(WLIS_BuyerPOPublic).

10. The WLIS_BuyerPOPublic workflow receives the XOCP message, extracts the
XML content, and sends an XML event to the buyer’s private workflow
(WLIS_BuyerPOPrivate).

This step marks the end of the PO conversation.

11. The WLIS_BuyerPOPrivate workflow uses the application integration
framework provided by WebLogic Integration to update the PO information in
the EIS, based on the data provided in the PO acknowledgment. The workflow
also writes PO acknowledgment information to the POAcknowledgement.xml
file.

12. A JSP reads the POAcknowledgement.xml file and displays the contents in the
PO Confirmation window described in “Step 8. Check for Purchase Order
Acknowledgment” on page 2-14.

This step marks the end of the PO business process.

Buyer-Side Implementation

The buyer (GCS) in our sample scenario implements a Web user interface to drive the
business transaction, a private workflow to manage the buyer’s back-end processes,
and a public workflow that choreographs the message exchange in the PO
conversation. The WLIS_Buyer trading partner stores its PO information in an
RDBMS.

Through the use of the application integration framework provided by WebLogic
Integration, the workflows in the PO business process can integrate with the RDBMS.
To support application integration, an application view (WLISAppView.sav) is
deployed for this sample when you set up and configure the samples domain. (The
sample domain setup is described in “Step 1A: Invoke the RunSamples Script” on page
2-4.)

3 Understanding the Sample

3-60 Learning to Use BEA WebLogic Integration

This section discusses the following components of the buyer-side PO business
process:

n Buyer-Side Web User Interface

n Buyer PO Private Workflow

n Buyer PO Public Workflow

Buyer-Side Web User Interface

The interaction between the Web browser and the buyer-side workflows for the
buyer-side implementation is similar to that for the QPA business process—Java
Server Pages (JSPs) and JSP tag libraries are used to initiate the PO process and display
request and response data in your Web browser. The source files related to the PO
business process can be found in the directories listed in the following table.

Table 3-7 Source Files for the PO Process

Directory in your WebLogic Integration Installation Source Files

\samples\wlis\src\examples\wlis\tags n CreatePOTag.java

n CheckPOTag.java

n CheckPOAckTag.java

\samples\wlis\web n CreatePO.jsp

n CheckPO.jsp

n CheckPOAck.jsp

n WaitPOCreated.htm

n WaitPOAck.htm

\samples\wlis\lib\xsl n ProcessPO.xsl

n ProcessPOAck.xsl

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-61

Buyer PO Private Workflow

The WLIS_BuyerPOPrivate workflow performs the following key tasks:

n Receives, from the process engine, the insertPO event containing PO
information from the buyer’s EIS. The insertPO event is an event defined for
the WLISAppView.sav application view.

n Retrieves the PO information from the EIS.

n Wraps the PO information in an XOCP business message.

n Calls the buyer’s public workflow (WLIS_BuyerPOPublic) which, in turn, sends
PO information to the supplier’s public workflow (WLIS_SupplierPOPublic),
thus starting the PO conversation.

n Waits for the PO acknowledgment information from the supplier.

n Uses the application integration framework provided by WebLogic Integration to
update the PO information in the EIS, based on the PO acknowledgment.

n Writes PO acknowledgment information to the POAcknowledgement.xml file.

The following figure shows the WLIS_BuyerPOPrivate workflow template.

Figure 3-20 WLIS_BuyerPOPrivate Workflow Template

3 Understanding the Sample

3-62 Learning to Use BEA WebLogic Integration

The following sections define the key tasks and events at the nodes in the
WLIS_BuyerPOPrivate workflow template, shown in the preceding figure:

n Start

n Retrieve PO Data

n Write PO to file

n Call Buyer PO Public workflow

n Wait for PO acknowledgement

n Write POAcktoFile & UpdateDB

Start
The final task in the buyer’s QPA private workflow
(WLIS_BuyerQPAPrivate), described in “Buyer QPA Private Workflow” on
page 3-28, is to input PO information into the EIS system, using the
insertPO service defined for the WLISAppView.sav application view,
which is deployed for this sample application. (See “Application Integration”
on page 3-77 for details about the application view.)

The EIS subsequently uses an application view event to post an event to the
WebLogic Integration process engine. The event
(WLISAppView.sav.insertPOEvent) triggers the start of the
WLIS_BuyerPOPrivate workflow at this Start node.

The Start Properties dialog box for this node specifies that this workflow is
started by an application integration event, namely the insertPO event
defined for the WLISAppView.sav application view.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-63

Double-click this Start node to view the Start Properties dialog box shown in
the following figure.

Figure 3-21 Start Properties Dialog Box

In the preceding figure, note that the Event Document Variable field in the
Start Properties dialog box is populated with the aiEventXML variable. The
data format for the event is XML and the XML Schema language defines the
event schema. When the start node receives data from the application view
event, the data is stored in the aiEventXML variable.

Note: You can examine the XML schema of the event document by clicking
View Definition in the Start Properties dialog box.

3 Understanding the Sample

3-64 Learning to Use BEA WebLogic Integration

A workflow variable (PONumber) is set at this node, using the following
XPath expression to get the PO number from the incoming PO data:

XPath("/PURCHASEORDER.insert/PONUMBER/text()",$aiEventXML)

Retrieve PO Data
This task node completes the following actions:

1. Composes workflow variables.

2. Calls application view services to retrieve PO information from the EIS.

This task node is set up to call application view services through the same
procedure provided for the node called Lookup 2nd Tier suppliers for
requested items, which is described in “Buyer QPA Private Workflow” on
page 3-28.

See Using Application Integration for more information about using the
application integration plug-in provided by WebLogic Integration.

Write PO to file
This action node uses the xmlToFile business operation to write the PO to a
local file (BEA_HOME/config/samples/data/PO.xml). The local file is
consumed by a JSP.

To see business operations defined for this sample, choose
Configuration→Business Operations from the Studio task menu. The
Business Operations dialog box is displayed. Double-click any business
operation to see more information about it. You can find the Java class
relevant to the xmlToFile business operation in the following location in
your WebLogic Integration installation:
\samples\wlis\src\examples\wlis\common\util\Utils.java.

Call Buyer PO Public workflow
This task node starts the buyer’s public workflow (WLIS_BuyerPOPublic)
asynchronously, and passes workflow variables containing the QPA Request XML
documents to the public workflow. Because the WLIS_BuyerPOPrivate
workflow is the initiator of a WebLogic Integration B2B conversation
(WLIS_POConversation), this task node uses the special Start Public
Workflow action (provided by the B2B integration plug-in), instead of the
default Start Workflow action.

The key difference between the Start Public Workflow and the Start
Workflow actions is that the workflow template binding is dynamic when you

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-65

use the former. The WLIS_BuyerPOPrivate workflow determines which
workflow template to invoke at run time, based on conversation properties
defined in the Start Public Workflow action.

Also, based on the conversation information passed as part of the Start Public
Workflow call, the B2B engine uses collaboration agreement information
(stored in the WebLogic Integration repository) to associate the called
workflow with other public workflows in the same collaboration agreement.

You can define a Start Public Workflow action in the WebLogic Integration
Studio as follows:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Add→Integration Actions→B2B Integration→Start Public
Workflow to display the Start Public Workflow dialog box.

To view the Start Public Workflow properties already specified for this node:

1. Double-click the task node to invoke the Task Properties dialog box.

2. Choose Actions→Activated.

3. Double-click Start Public Workflow to display the Start Public Workflow
dialog box shown in the following figure.

3 Understanding the Sample

3-66 Learning to Use BEA WebLogic Integration

Figure 3-22 Start Public Workflow Dialog Box

Note the following parameters for the Start Public Workflow action shown in the
preceding figure:

n The Conversation tab—Information specified on this tab is used by WebLogic
Integration to locate the active collaboration agreements in the repository that
define an agreement between the specified parties, in the specified conversation:

l The conversation name, version, and role are defined as
WLIS_POConversation, 1.1, and buyer, respectively.

l The parties in the conversation are specified by the trading partner names:
WLIS_Buyer and WLIS_Hub. You can optionally add values to the Role and
Delivery Channel fields, which can then be used, in addition to the values in
the Name fields, to locate the collaboration agreement of interest.

n The Workflow tab—Variables passed to the called workflow are defined on the
Workflow tab. The variable names specified here are also specified as input
variables to the called workflow (WLIS_BuyerPOPublic). They are:

l POxml—Contains the value of the purchaseOrderXML variable that was
defined at the Retrieve PO Data node (see “Retrieve PO Data” on page
3-64).

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-67

l POPrivateFlowId—Workflow instance ID, specifying the instance of the
WLIS_BuyerPOPrivate workflow that calls the public workflow. (Several
instances of the workflow template may be running.) See “Send PO
Acknowledgement to PO Private Workflow” on page 3-70 to understand
where this instance ID is used by the called public workflow.

Wait for PO acknowledgement
The workflow waits, at this event node, for a specific XML event from the
WLIS_BuyerPOPublic workflow. This node uses a key value expression to
specify the exact data that the incoming document must contain for the node
to be triggered. The key value expression defined for this node is PONumber.
The PONumber key value is set in the Start node for this
WLIS_BuyerPOPrivate workflow. See “Start” on page 3-62.

If a number of instances of the buyer’s private workflow
(WLIS_BuyerPOPrivate) are active, the appropriate Wait for PO
Acknowledgement node, in the appropriate workflow template instance,
needs to be triggered at this point in the PO process. The workflow instance
that contains the node to be triggered is specified by the value of PONumber.
(See the discussion about event keys in “Start” on page 3-30.)

Write POAcktoFile & UpdateDB
The actions performed at this task node include the following:

Perform business operation “xmlToFile”
This business operation writes the PO acknowledgment XML data
to the following location in your WebLogic Integration installation:

/config/samples/data/POAcknowledgement.xml

Set Workflow variable “updatePOXML” XML structure
Composes an XML document and stores the content in an
XML-type updatePOXML variable.

Call Application View Service
Calls the updatePOData service on the WLISAppView.sav
application view to update the RDBMS with the PO data.

Buyer PO Public Workflow

The primary task of the WLIS_BuyerPOPublic workflow is to send and receive the
XOCP business messages in the purchase order conversation
(WLIS_POConversation).

3 Understanding the Sample

3-68 Learning to Use BEA WebLogic Integration

The following figure shows the WLIS_BuyerPOPublic workflow template.

Figure 3-23 WLIS_BuyerPOPublic Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_BuyerPOPublic workflow template, shown in the preceding figure:

n Start

n Send PO to Selected Supplier

n Wait for PO Acknowledgement from Supplier

n Send PO Acknowledgement to PO Private Workflow

n Done

Start
This workflow is started by the buyer’s private workflow,
WLIS_BuyerPOPrivate, as described in “Call Buyer PO Public workflow”
on page 3-64. The POxml variable, specified in the Workflow tab of the Call
Buyer PO Public workflow node, is an input variable for this workflow. A
workflow variable (SupplierName) that contains the supplier’s name is set
at this node, using the following XPath expression:

ToString(XPath("//SupplierName/text()", $POxml))

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-69

Send PO to Selected Supplier
The first action defined at this node is Compose Business Message. This
action composes the PO message to be sent from the buyer to the selected
supplier. It takes the POxml variable from the private workflow and builds the
response message into the POXOCPMessage output variable.

A Send Business Message action is also defined at this node. The PO message
(POXOCPMessage) is routed through the WLIS_Hub trading partner. The
WLIS_Hub trading partner routes the message based on the Router
Expression Type (in this case, Trading Partner Name) defined at this node. To
see the router expression defined for this node, you can invoke the Send
Business Message dialog box as follows:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated, and double-click Send Business Message to
display the Send Business Message dialog box.

The dialog box contains three tabs: Message, Token, and QoS. Note the
following parameters on the Message tab.

Field Value Description

Input Message Variable POXOCPMessage Java object variable that contains the XOCP
message to be sent to the selected supplier.

Router Expression Type Trading Partner Name WLIS_Hub routes this PO message to the
selected supplier trading partner, based on the
trading partner name.

Router Expression $SupplierName The trading partner that should receive the PO
message is identified by the value of the
SupplierName variable. The
SupplierName variable is set at the Start
node for this workflow.

Target Role Supplier Defines the role in the conversation for the
trading partner who receives the message.

3 Understanding the Sample

3-70 Learning to Use BEA WebLogic Integration

Wait for PO Acknowledgement from Supplier
This node is a conversation event node at which the public workflow waits
for the returned PO acknowledgment XOCP message from the supplier. The
acknowledgment message is assigned to a Java object variable called
POXOCPMsg.

Send PO Acknowledgement to PO Private Workflow
The first action defined at this node (Extract Business Message Part) extracts
the business message parts from the incoming PO Reply XOCP message from
the selected supplier. It then assigns the XML content to the POReplyXML
variable.

Another action at this node defines a Post XML Event action to post the PO
Acknowledgment (the POReplyXML variable) to the PO private workflow as
an internal XML event. In the sample scenario, this internal XML event
triggers an event in another workflow. Because the destination is internal to
BPM, the XML message is sent to an internal JMS queue maintained by
BPM.

You can post an XML event action for a workflow node as follows:

1. Double-click the node to display the Task Properties dialog box.

2. Choose Add→Integration Actions→Post XML Event to display the Post
XML Event dialog box.

To view the parameters already defined in the Post XML Event dialog box for
this node:

1. Double-click the node to display the Task Properties dialog box.

2. Choose Actions→Activated, and double-click Post Internal XML Event to
display the Post XML Event dialog box.

Use Conversation QoS Is not selected. This option is available because the workflow
template is configured with the XOCP
protocol. It allows you to specify whether to
use the Quality of Service defined at the
conversation level or at this (Send Business
Message action) level. In this case, the process
engine uses the QoS information defined at the
Send Business Message action level.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-71

In this case, the XML message is contained in the POReplyXML variable. This
PO acknowledgment message is referred to as an Addressed Message,
indicating that the message should persist for a particular workflow instance.
In the sample scenario, addressing is achieved through the instance ID,
POPrivateFlowId. This instance ID specifies the instance of the private
workflow that called this public workflow. The POPrivateFlowId instance
ID is specified by the WLIS_BuyerPOPrivate workflow, that is, by the
private workflow that called this public workflow (see “Call Buyer PO Public
workflow” on page 3-64). In this way, various instances of caller and called
workflows are synchronized.

Done
Terminates the PO conversation successfully. Another Done node in the
workflow terminates the conversation unsuccessfully if the workflow fails to
send the purchase order to any supplier.

Supplier-Side Implementation

In this scenario, each supplier implements a private workflow to integrate its back-end
processes, and a public workflow to choreograph the exchange of messages in the PO
conversation. This section describes the following workflows:

n Supplier PO Public Workflow

n Supplier PO Private Workflow

Supplier PO Public Workflow

The PO public workflow (WLIS_SupplierPOPublic) is started on receipt of an
XOCP business message from the buyer’s PO public workflow
(WLIS_BuyerPOPrivate).

3 Understanding the Sample

3-72 Learning to Use BEA WebLogic Integration

The following figure shows the WLIS_SupplierPOPublic workflow template.

Figure 3-24 WLIS_SupplierPOPublic Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_SupplierPOPublic workflow template, as shown in the preceding figure:

n Start

n Extract PO from incoming XOCP message

n Call WLIS_SupplierOne PO private workflow

n Send PO Acknowledgement

n Wait for Conversation Termination

n Done

Start
This workflow is started when the supplier receives an XOCP business
message from the buyer’s PO public workflow (WLIS_BuyerPOPublic).
This message is one of several messages exchanged during the PO
conversation (WLIS_POConversation).

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-73

Extract PO from incoming XOCP message
In the first action at this node, message parts are extracted from the XOCP
message received from the WLIS_BuyerPOPublic workflow. The XML is
assigned to the PODataXML variable.

Next, a workflow variable expression for SupplierName is set. The name of
the supplier is derived from the incoming PO XML and is assigned to
SupplierName, using the following XPath expression:

ToString(XPath("/PurchaseOrder/SupplierInformation/Supplier
Name/text()", $PODataXML))

Call WLIS_SupplierOne PO private workflow
Based on the unique attribute value (SupplierName) extracted from the
incoming PO XML document, which specifies the supplier’s name, the
workflow proceeds to the appropriate task node and starts the PO private
workflow for either WLIS_SupplierOne or WLIS_SupplierTwo.

Note that the action in the Task Properties dialog box for both nodes is the
Start Workflow action. (From the Task Properties dialog box, choose
Add→Workflow Actions→Start Workflow.) When you add a Start Workflow
action, you select the name of the workflow to call.

At this node, for example, the WLIS_SupplierOnePOPrivate workflow is
selected in the Start Workflow dialog box. Additional information in the Start
Workflow dialog box for this action includes variables specified on the
Results tab—this tab displays variables that are defined as output parameters
in the called workflow. An output parameter is used by a calling workflow to
receive values from a called workflow.

In this case, a result is assigned to the POAck_XML output parameter at the
penultimate node in the WLIS_SupplierOnePOPrivate workflow
(described in “Get PO Ack and transform into XML” on page 3-76). Once
this assignment is made, the caller workflow proceeds to the next task. This
call from the WLIS_SupplierPOPublic workflow to the private workflow
(WLIS_SupplierOnePOPrivate or WLIS_SupplierTwoPOPrivate) is
therefore a synchronous call.

Send PO Acknowledgement
This node gets the return PO acknowledgment from the supplier’s private
workflow, wraps it in an XOCP message, and sends a PO acknowledgment
business message to the WLIS_Buyer trading partner. The business message
is routed through the WLIS_Hub, based on the value of the router expression

3 Understanding the Sample

3-74 Learning to Use BEA WebLogic Integration

input (in this case, the name of the trading partner) defined at this node. To
see the router expression defined for the Send PO Acknowledgement node,
invoke the Send Business Message dialog box as follows:

1. Double-click this node to display the Task Properties dialog box.

2. Choose Actions→Activated, and double-click Send Business Message to
display the Send Business Message dialog box.

The dialog box contains three tabs: Message, Token, and QoS. Note the
following parameters on the Message tab.

Wait for Conversation Termination
The system waits for the conversation to end. The workflow that initiates the
PO conversation (WLIS_BuyerPOPublic) also terminates it. See “Buyer PO
Public Workflow” on page 3-67.

Done
At this node, the workflow finishes and exits the conversation.

Field Value Description

Input Message Variable POreplyXOCPMsg Java object variable that contains the XOCP
message to be sent to the buyer trading partner.

Router Expression Type Trading Partner Name WLIS_Hub routes this PO message to the
buyer trading partner, based on the trading
partner name.

Router Expression $POBuyerName The trading partner that should receive the PO
reply message is identified by the value of the
POBuyerName variable. The POBuyerName
variable is set at the Start node for this
workflow.

Target Role Buyer Defines the role in the conversation for the
trading partner who receives the message.

Business Process and Workflow Modeling

Learning to Use BEA WebLogic Integration 3-75

Supplier PO Private Workflow

The sample application defines the following private workflow templates for the
suppliers in the PO process: WLIS_SupplierOnePOPrivate and
WLIS_SupplierTwoPOPrivate. The templates are similar.

The following figure shows the WLIS_SupplierOnePOPrivate workflow template.

Figure 3-25 WLIS_SupplierOnePOPrivate Workflow Template

The following sections define the key tasks and events at the nodes in the
WLIS_SupplierOnePOPrivate workflow template, shown in the preceding figure:

n Start

n Transform and persist PO

n Create POAck from PO

n Get PO Ack and transform into XML

Start
This private workflow is started at this node when it is called from the
suppliers’ PO public workflow (WLIS_SupplierPOPublic).

Transform and persist PO
WLIS_SupplierOne maintains its purchase order information as binary data,
but the PO is sent from the buyer in XML format. At this node the workflow
uses the data integration functionality provided by WebLogic Integration to
translate the incoming XML data to binary data, which can be understood by
the supplier’s systems. This translation is accomplished through an action in
the Studio which, in turn, is provided by the data integration plug-in.

3 Understanding the Sample

3-76 Learning to Use BEA WebLogic Integration

You can define a data integration action in the Studio as follows:

1. Double-click the task node to display the Task Properties dialog box.

2. Choose Actions→Add→Integration Actions→Data integration.

3. Select one of the following options: Translate Binary to XML or Translate
XML to Binary.

In this case, the data integration action is Translate XML to Binary.

A business operation (binary to file) is also defined at this node to write
the translated binary data to the file system, simulating a back-end ERP
system for this scenario. The Java class for the business operation is
examples.wlis.common.util.Utils.

Create POAck from PO
A business operation (create POAck from PO) is defined at this node to
create a PO acknowledgment message in binary format, based on the binary
PO data. The Java class for the business operation is
examples.wlis.common.util.Utils.

Get PO Ack and transform into XML
The first action at this node is Perform business operation. A business
operation (file to binary) reads the PO acknowledgment binary data from
the file system. The resulting binary data is assigned to the POAckbinary
variable.

Subsequently, this node uses the data integration functionality provided by
WebLogic Integration to translate the PO acknowledgment binary data to
XML. This translation is accomplished through the Translate Binary to XML
action, which is provided by the data integration plug-in.

The translation action takes the POAckbinary variable as input, and assigns
the result of the translation to the POAck_XML variable. After the POAck_XML
variable is set in this way, the public workflow (WLIS_SupplierPOPublic)
that calls this private workflow can proceed to its next task, as described in
“Call WLIS_SupplierOne PO private workflow” on page 3-73.

For more information about data integration actions that can be executed
through the Studio, see “Data Integration” on page 3-81.

Application and Data Integration

Learning to Use BEA WebLogic Integration 3-77

Application and Data Integration

This section contains the following topics:

n Introduction

n Application Integration

n Data Integration

Introduction

The workflows for the PO business process and the WLIS_BuyerQPAPrivate
workflow integrate the BPM functionality of WebLogic Integration with the
application integration and data integration functionality that are also provided by
WebLogic Integration.

A buyer-side process uses the application integration framework to update the PO
information in the enterprise information system (EIS), based on the PO
acknowledgment. It then writes PO acknowledgment information to the
POAcknowledgement.xml file.

A supplier-side process uses the data integration framework to translate XML data to
binary data, and vice versa.

Application Integration

The WLIS_BuyerQPAPrivate and WLIS_BuyerPOPrivate workflows highlight the
application integration functionality provided by WebLogic Integration, and the
interaction between workflows and application integration services. (See “Buyer QPA
Private Workflow” on page 3-28 and “Buyer PO Private Workflow” on page 3-61.)

3 Understanding the Sample

3-78 Learning to Use BEA WebLogic Integration

Businesses need enterprise application integration (EAI) solutions that make it
possible for applications to share data and business processes without first making
changes to their original application code or data structures. WebLogic Integration
provides an application integration framework that supports inter-enterprise
integration through the use of adapters.

Adapters provide an interface that applications can use to access enterprise data
programmatically. For example, an adapter can use a Java class to represent enterprise
data, and it can provide methods that applications can invoke to access the data. When
an application invokes an access method, the adapter executes the method to retrieve
the enterprise data. The application integration functionality provided by WebLogic
Integration is based on J2EE Connector Architecture (JCA). In addition to complete
compliance with the J2EE standard, the application integration tools available with
WebLogic Integration offer other important functionality:

n WebLogic Integration supports the bidirectional communication that enables a
Java program to invoke services provided in the EIS, and to respond to an event
generated by the EIS.

n WebLogic Integration provides high-level, XML-based application views.
Application views are a business service abstraction over JCA-compliant EIS
adapters. They are used to define the event/service interface between a Java
program and an EIS. In the WebLogic Integration Studio they are used to enlist
an EIS into workflows.

See Introducing Application Integration for details about application integration in the
WebLogic Integration environment.

When you define an application view, you create an XML-based interface between
WebLogic Integration and an EIS application. In this sample, the EIS system is an
RDBMS. The application integration adapter used in the sample is the DBMS adapter
that is packaged with the WebLogic Integration product. Based on the DBMS adapter,
an application view (WLISAppView.sav) is defined and deployed in WebLogic
Integration for this sample. See
\samples\wlis\src\examples\wlis\wlai\WLISAppViewDeployer.java in
your WebLogic Integration installation.

You can define, test, and deploy an application view using the WebLogic Integration
Application View Console, a Web-based user interface. For details about defining
application views, see Using Application Integration.

Application and Data Integration

Learning to Use BEA WebLogic Integration 3-79

You can also use the Application View Console to view the details of the application
view created by the WLISAppviewDeployer.java Java program for this sample, as
follows:

1. If you have not already done so, start the WebLogic Integration sample as described
in “Setting Up and Running the Sample” on page 2-1.

2. Do one of the following:

l Click the AI link on the Web page from which you started the sample:
http://localhost:7001.

l Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Samples→Application View Console.

The Application View Console is displayed. It displays the Root folder, which
contains a list of folders that organize the application views for your enterprise.
One of the folders in this window is WLISAppView, the folder that contains the
application view for this sample.

3. Click WLISAppView to open a window displaying a list of application views. The
list includes an application view defined for the sample application: sav. Note
that its status is Deployed.

4. Double-click sav to display details about the WLISAppView.sav application
view, as shown in the following figure.

3 Understanding the Sample

3-80 Learning to Use BEA WebLogic Integration

Figure 3-26 WebLogic Integration Application View Console

The WLISAppView.sav application view includes the following services and events.

Services getContact
updatePOData
insertPOData
getPOData
getAddress
getSupplier
insertLine
getLineData

Events insertPOEvent

Application and Data Integration

Learning to Use BEA WebLogic Integration 3-81

Click on the following links in the Application View Console to view more
information about any service or event:

n View Summary—Provides the SQL expression

n View Request Schema—Provides XML schema for request data

n View Response Schema—Provides XML schema for response data

Data Integration

The WLIS_SupplierOnePOPrivate and WLIS_SupplierTwoPOPrivate workflows
highlight the data integration functionality provided by WebLogic Integration. This
feature is used to translate data from XML to binary format, and vice versa. For this
sample application, the following translations are performed:

n PO XML data is converted to binary data.

n PO acknowledgment binary data is converted to XML.

Both translations are described in “Supplier PO Private Workflow” on page 3-75.

The following data integration plug-in actions are available in the Studio to support
data integration:

n Translate Binary to XML

n Translate XML to Binary

To perform a data translation at a task node in the Studio:

1. Double-click the node to invoke the Task Properties dialog box.

2. In the Actions pane, click Add to display the Add Action dialog box.

3. Choose Integrated Actions→Data Integration.

4. Select one of the following actions:

l Translate Binary to XML

The Binary to XML dialog box is displayed.

3 Understanding the Sample

3-82 Learning to Use BEA WebLogic Integration

l Translate XML to Binary

The XML to Binary dialog box is displayed.

5. In the Binary to XML (or XML to Binary) dialog box, browse the WebLogic
Integration repository and select an available map.

The following figure shows the Binary to XML dialog box for the final task
node (Get PO Ack and transform into XML) in the
WLIS_SupplierTwoPOPrivate workflow template, described in “Supplier PO
Private Workflow” on page 3-75.

Figure 3-27 Binary to XML Dialog Box

In the preceding figure note the following:

n POAck, the value in the Name field in the Message Format area, represents the
POAck.mfl translation map.

n The settings for the input and output variables specify that the binary data will
come from the POAckBinary variable and the translated data will be written to
the POAck_XML variable.

Application and Data Integration

Learning to Use BEA WebLogic Integration 3-83

For this sample application, two translation maps, PO.mfl and POAck.mfl, were built
in the Format Builder design tool and saved in the WebLogic Integration repository.
The maps, stored in the workflow.jar package, are imported during the setup and
configuration of the sample.

You can view the translation maps for this sample by invoking the Format Builder tool,
as described in the following section.

Invoke Format Builder

To invoke Format Builder, complete the procedure appropriate for your platform:

n Windows:

l Using menus, invoke the Format Builder as follows:

Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.1→Format Builder.

l From the command line, invoke the Format Builder as follows:

a. Open a command window.

b. Go to the bin directory where you installed WebLogic Integration, and
execute the fb command. For example, if WebLogic Integration is installed
in the default location, enter the following sequence of commands:

cd \bea\wlintegration2.1\bin
fb.cmd

n UNIX:

a. Go to the bin directory in the samples domain.

For example, if WebLogic Integration is installed in the default location,
enter the following:

cd BEA_Home/wlintegration2.1/bin

Here BEA_Home represents the default directory in which you install BEA
products.

b. Start the Format Builder by entering:

. ./fb

3 Understanding the Sample

3-84 Learning to Use BEA WebLogic Integration

View the Sample Translation Maps

You can view the translation maps for this sample as follows:

n From the Format Builder menu options, choose File→Open.

A dialog box that allows you to browse for files on your system is displayed.

n Select the following directory in your WebLogic Integration installation:

/samples/wlis/lib/xt

n Select the following map files:

l PO.mfl

l POAck.mfl

See Translating Data with WebLogic Integration for information about using the
Format Builder design tool to build and test your translation maps. The following
figure shows the PO.mfl translation map being defined in the Format Builder.

Application and Data Integration

Learning to Use BEA WebLogic Integration 3-85

Figure 3-28 PO Map in Format Builder

3 Understanding the Sample

3-86 Learning to Use BEA WebLogic Integration

General DTDs

Learning to Use BEA WebLogic Integration A-1

A DTDs

The DTDs for XML data that are used by this WebLogic Integration sample can be
found in the following directory in your WebLogic Integration installation:

\samples\wlis\lib\dtds

For your convenience, they are provided in this appendix. They include:

n General DTDs

n QPA DTDs

n PO DTDs

General DTDs

Listing A-1 common.dtd

<!-- Some common definition used by the DTD -->

<!ENTITY % ADDRESS "Address">
<!ELEMENT Address (Street1, Street2?, Street3?, City, State,
ZipCode)>
<!ELEMENT Street1 (#PCDATA)> <!-- String -->
<!ELEMENT Street2 (#PCDATA)> <!-- String -->
<!ELEMENT Street3 (#PCDATA)> <!-- String -->
<!ELEMENT City (#PCDATA)> <!-- String -->
<!ELEMENT State (#PCDATA)> <!-- String -->
<!ELEMENT ZipCode (#PCDATA)> <!-- String -->

<!ENTITY % CONTACT "Contact">
<!ELEMENT Contact (ContactName, ContactPhone, ContactEmail?,

A DTDs

A-2 Learning to Use BEA WebLogic Integration

 ContactFax?, ContactAddress)>
<!ELEMENT ContactName (#PCDATA)> <!-- String -->
<!ELEMENT ContactPhone (#PCDATA)> <!-- String -->
<!ELEMENT ContactPhone (#PCDATA)> <!-- String -->
<!ELEMENT ContactEmail (#PCDATA)> <!-- String -->
<!ELEMENT ContactFax (#PCDATA)> <!-- String -->
<!ELEMENT ContactAddress (%ADDRESS;)>

QPA DTDs

Listing A-2 QPARequest.dtd

<!ELEMENT QPARequest (QPARequestId, CreationDate, Availability+)>
 <!ELEMENT QPARequestId (#PCDATA)> <!-- String -->
 <!ELEMENT CreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
 <!ELEMENT Availability (PartId, Quantity, Price, RequiredDate,

Location*, Note?)>

 <!ELEMENT PartId (#PCDATA)> <!-- String -->
 <!ELEMENT Quantity (#PCDATA)> <!-- Long -->
 <!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
 <!ELEMENT RequiredDate (#PCDATA)> <!-- DateStamp

(CCYYMMDD) -->
 <!ELEMENT Location (#PCDATA)> <!-- String -->
 <!ELEMENT Note (#PCDATA)> <!-- String -->

Listing A-3 QPAResponse.dtd

<!ELEMENT QPAResponse (QPAResponseId, ResponseDate, QPARequestId,
CreationDate, SupplierName, Availability+)>
<!ELEMENT QPAResponseId (#PCDATA)> <!-- String -->
<!ELEMENT ResponseDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT QPARequestId (#PCDATA)> <!-- String -->
<!ELEMENT CreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT SupplierName (#PCDATA)> <!-- String -->
<!ELEMENT Availability (PartId, Quantity, Price, AvailableDate,
 Location*, Note?)>

QPA DTDs

Learning to Use BEA WebLogic Integration A-3

 <!ELEMENT PartId (#PCDATA)> <!-- String -->
 <!ELEMENT Quantity (#PCDATA)> <!-- Long -->
 <!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
 <!ELEMENT AvailableDate (#PCDATA)> <!-- DateStamp

(CCYYMMDD) -->
 <!ELEMENT Location (#PCDATA)> <!-- String -->
 <!ELEMENT Note (#PCDATA)> <!-- String -->

Listing A-4 Aggregated QPAResponse.dtd

<!ELEMENT AggregatedQPAResponse (QPARequestId, CreationDate,
QPAResponse+>
<!ELEMENT QPAResponse (QPAResponseId, ResponseDate, SupplierName,
Availability+)>
<!ELEMENT QPARequestId (#PCDATA)> <!-- String -->
<!ELEMENT CreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT QPAResponseId (#PCDATA)> <!-- String -->
<!ELEMENT ResponseDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT SupplierName (#PCDATA)> <!-- String -->

<!ELEMENT Availability (PartId, Quantity, UnitPrice, AvailableDate,
Location*, Note?)>
<!ELEMENT PartId (#PCDATA)> <!-- String -->
<!ELEMENT Quantity (#PCDATA)> <!-- Long -->
<!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
<!ELEMENT AvailableDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT Location (#PCDATA)> <!-- String -->
<!ELEMENT Note (#PCDATA)> <!-- String -->

A DTDs

A-4 Learning to Use BEA WebLogic Integration

PO DTDs

Listing A-5 PORequest.dtd

<!ELEMENT PORequest (SupplierName, QPAResponseId, QPARequestId,
POItems+)>
<!ELEMENT PORequest (#PCDATA)> <!-- String -->
<!ELEMENT SupplierName (#PCDATA)> <!-- String -->
<!ELEMENT QPAResponseId (#PCDATA)> <!-- String -->
<!ELEMENT QPARequestId (#PCDATA)> <!-- String -->
<!ELEMENT POItems (PartId, Quantity, UnitPrice, DeliveryDate,
Location*, Note?)>
<!ELEMENT PartId (#PCDATA)> <!-- String -->
<!ELEMENT Quantity (#PCDATA)> <!-- Long -->
<!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
<!ELEMENT DeliveryDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
<!ELEMENT Location (#PCDATA)> <!-- String -->
<!ELEMENT Note (#PCDATA)> <!-- String -->

Listing A-6 PO.dtd

<!ELEMENT PurchaseOrder (PONumber, Status, CreationDate,
SupplierInformation, BuyerContact?, ShippingInformation?,
FinanceInformation?, LineItem+, TotalAmount?)>

 <!ELEMENT PONumber (#PCDATA)> <!-- String -->
 <!ELEMENT Status (#PCDATA)> <!-- String -->
 <!ELEMENT CreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
 <!ELEMENT BuyerContact (%CONTACT;)> <!-- Entity: CONTACT -->

<!ELEMENT ShippingInformation (ShipToAddress?,
 ShippingProvider, ShipmentNote?)>
 <!ELEMENT ShipToAddress (%ADDRESS;)> <!-- Entity:ADDRESS -->
 <!ELEMENT ShippingProvider (#PCDATA)> <!-- String -->
 <!ELEMENT ShipmentNote (#PCDATA)> <!-- String -->

<!ELEMENT FinanceInformation (FinanceTerm, TaxInformation?,
FinanceNote?)>

 <!ELEMENT FinanceTerm (#PCDATA)> <!-- String -->
 <!ELEMENT TaxInformation (#PCDATA)> <!-- String -->
 <!ELEMENT FinanceNote (#PCDATA)> <!-- String -->

PO DTDs

Learning to Use BEA WebLogic Integration A-5

<!ELEMENT SupplierInformation(SupplierName, SupplierContact?,
 BillingToInformation?)>

 <!ELEMENT SupplierName (#PCDATA)>
 <!ELEMENT SupplierContact (%CONTACT)>
 <!ELEMENT BillingToInformation (BillToAddress, AccountId)>
 <!ELEMENT BillToAddress (%ADDRESS;)> <!-- Entity:ADDRESS -->
 <!ELEMENT AccountID (#PCDATA)> <!-- String -->

<!ELEMENT LineItem (LineNumber, PartId, PartDescription?, Quantity,
UnitPrice, DeliveryDate, Note?)>

 <!ELEMENT LineNumber (#PCDATA)> <!-- String -->
 <!ELEMENT PartId (#PCDATA)> <!-- String -->
 <!ELEMENT PartDescription (#PCDATA)> <!-- String -->
 <!ELEMENT Quantity (#PCDATA)> <!-- Long -->
 <!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
 <!ELEMENT DeliveryDate (#PCDATA)> <!-- DateStamp
(CCYYMMDD) -->
 <!ELEMENT Note (#PCDATA)> <!-- String -->
<!ELEMENT TotalAmount (#PCDATA)> <!-- Float -->

Listing A-7 POAcknowledgement.dtd

<!ELEMENT PurchaseOrderAcknowledgement (PONumber, POCreationDate,
SONumber, SOCreationDate, SupplierInformation,
ShippingInformation?, FinanceInformation?, LineItem+,
TotalAmount?)>

 <!ELEMENT PONumber (#PCDATA)> <!-- String -->
 <!ELEMENT POCreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD)
-->
 <!ELEMENT SONumber (#PCDATA)> <!-- String -->
 <!ELEMENT SOCreationDate (#PCDATA)> <!-- DateStamp (CCYYMMDD)
-->
<!ELEMENT SupplierInformation(SupplierName, SupplierContact?,
BillingToInformation?)>
 <!ELEMENT SupplierName (#PCDATA)>
 <!ELEMENT SupplierContact (%CONTACT)>
 <!ELEMENT BillingToInformation (BillToAddress, AccountId)>
 <!ELEMENT BillToAddress (%ADDRESS;)> <!-- Entity: ADDRESS -->
 <!ELEMENT AccountID (#PCDATA)> <!-- String -->

<!ELEMENT ShippingInformation (ShipToAddress?, ShippingProvider,
TrackingId, ShipmentNote?)>
 <!ELEMENT ShipToAddress (%ADDRESS;)> <!-- Entity: ADDRESS -->

A DTDs

A-6 Learning to Use BEA WebLogic Integration

 <!ELEMENT ShippingProvider (#PCDATA)> <!-- String -->
 <!ELEMENT TrackingId (#PCDATA)> <!-- String -->
 <!ELEMENT ShipmentNote (#PCDATA)> <!-- String -->
<!ELEMENT FinanceInformation (FinanceTerm,
TaxInformation?,FinanceNote?)>
 <!ELEMENT FinanceTerm (#PCDATA)> <!-- String -->
 <!ELEMENT TaxInformation (#PCDATA)> <!-- String -->
 <!ELEMENT FinanceNote (#PCDATA)> <!-- String -->
<!ELEMENT LineItem (LineNumber, PartId, PartDescription?, Quantity,
UnitPrice, DeliveryDate, Note?)>
 <!ELEMENT LineNumber (#PCDATA)> <!-- String -->
 <!ELEMENT PartId (#PCDATA)> <!-- String -->
 <!ELEMENT PartDescription (#PCDATA)> <!-- String -->
 <!ELEMENT Quantity (#PCDATA)> <!-- Long -->
 <!ELEMENT UnitPrice (#PCDATA)> <!-- Float -->
 <!ELEMENT DeliveryDate (#PCDATA)> <!-- DateStamp (CCYYMMDD) -->
 <!ELEMENT Note (#PCDATA)> <!-- String -->
<!ELEMENT TotalAmount (#PCDATA)> <!-- Float -->

	About This Document
	Who Should Read This Document
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Scope of the Sample
	Background to the Scenario
	EnergyMiser 76 History
	Increase in Demand for Product

	Deploying an Integrated Solution
	Short-Term and Long-Term Advantages
	Solution Architecture

	2 Setting Up and Running the Sample
	Preparing to Run the Sample
	Running the Sample
	Step 1. Configure and Invoke the Launcher Web Page
	About the Scripts
	Step 1A: Invoke the RunSamples Script
	Step 1B: Invoke the Start Server and Launcher Scripts

	Step 2: Choose the WebLogic Integration Sample
	Step 3. Start the Sample
	Step 4. Send the QPA Request
	Step 5. Check for QPA Responses
	Step 6. Create the Purchase Order
	Step 7. Check the Purchase Order
	Step 8. Check for Purchase Order Acknowledgment

	3 Understanding the Sample
	Overview
	Model Business Processes
	Manage B2B Integration
	Integrate New and Existing Systems
	Handle Heterogeneous Data Formats

	B2B Integration
	Loading the Repository Data
	Understanding the Repository Data
	Business Protocol Definitions
	Logic Plug-Ins
	Trading Partners
	Conversation Definitions
	Collaboration Agreements

	Using the WebLogic Integration B2B Console

	Business Process and Workflow Modeling
	Introduction to BPM
	Using the WebLogic Integration Studio
	Launching the Studio
	Viewing Workflow Templates in the Studio
	BPM Components Used in the Sample

	QPA Business Process
	Overview of the QPA Implementation
	Buyer-Side Implementation
	Supplier-Side Implementation

	PO Business Process
	Overview of the PO Implementation
	Buyer-Side Implementation
	Supplier-Side Implementation

	Application and Data Integration
	Introduction
	Application Integration
	Data Integration
	Invoke Format Builder
	View the Sample Translation Maps

	A DTDs
	General DTDs
	QPA DTDs
	PO DTDs

