aFe
|
s
Zbhea

BEA WebLogic
Integration

Programming Messaging
Applications for B2B Integration

Version 2.1
Document Date: October 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Portal, BEA WebL ogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming M essaging Applications for B2B I ntegration

Part Number Date Software Version

N/A October 2001 2.1

Contents

About This Document

What Y OU NEEd t0 KINMOWooiiiiiiiiiie sttt ettt sr e s sraans Vii
E-00CSWED SOttt st a e bbb ere e n viii
HOw to Print the DOCUMENT..........coceiiiiieieie ettt viii
Related INfOrmMation..........cccoi ittt e viii
L] g1 "o S USSP iX
Documentation CONVENTIONS............cooeieiiieiie ittt ettt ee e r e seeereas X

1. Developing XOCP Applications to Exchange Business Messages

INEFOTUCTION ..ottt e e e e b e e 1-1
K@Y CONCEPLS ..ot s e 1-2
XOCP APPHCAIONS......ccviieieireieireciiriee ettt 1-3
XOCP APPlICatioN SESSIONScveueiieiiieirieiirie st ss e eeeaes 1-4
Messaging APl Class Librarycoceveineinenenese e 1-5
XOCP Business Messages and Message ENVElOpes..........occvveenecincenn 1-6
Diagram of an XOCP BUSINESS MESSEQEcvrvereriererierenienenie e 1-6
Components of an XOCP BUSINESS MESSAGEc.uevvvrmreriririeenenne 1-7
Information Flow for Message ENVelopes...........cceve v vne e necieneas 1-8
Conversation Initiators and PartiCipants..........c.cocceverneneiie e sese s 1-9
Conversation COOrdiNALONSccvruereriererierere e ettt 1-11
Global Conversation CoOrdinatorcoevveereeereeireeireeeereeeenieees 1-11

Local Conversation CoordiNators...........c.ueuererenierenenesenesie e 1-12

Trading Partner SEAEES.ovieerie et e 1-12
SECUrE M ESSAGING .. .eveerieetereetere ettt ettt st st st et s ebe e ebe e ereea 1-13
Key Tasksfor XOCP ApPlICatIONS........cocverrerrie e 1-13
Creating an XOCP Application SESSIONcocevievrieierie e e 1-13
Registering for aRole in a Conversationcccooceveenennenene s 1-14

Programming Messaging Applications for B2B Integration iii

Engaging in Conversations with Trading Partners.............cccocceeincnne. 1-15

Initiating a Conversation and Sending a Business Message.............. 1-15
Participating in @ CONVErSatioN.cooerriereceneeiese e 1-16

Leaving @ CONVErSAtIONoeererrierene e 1-16
Terminating CoONVErSations..........ccueeereeeie e seesee e seeeeneeeeas 1-16
Shutting Down an XOCP Application SeSSioNcc.ccoeveieneineeeenesveens 1-17
Run-Time INformation FIOWcoooiiiiiiincc s 1-17
Information FIOW Diagram..........ccceeireeeireeireiereeeenieeisee e e 1-18
Stepsin the INfFormMation FIOW ..o 1-19

2. Programming Steps for XOCP Applications

Step 1: IMpPOort PaCKagES.ceiveviierire et 2-2
Step 2: Implement the MessageL istener Interface........cooeeveveevvieveneennn. 2-2
Step 3: Create an XOCP Application SESSION........ccooveereeereerereerineeeneeiens 2-4
Step 4: Create and Register aMessage Listenerccoevveveeeverecnienene 2-4
Step 5: Initiate or Participate in @ ConNVersation..........ccooeeeveeeneeeneeneenens 2-5
Step 6: Exchange BUSINESS MESSAgEScveuvereeneenieeieneseeee st see e seeneas 2-6
Step 7: ENd the CONVErSatiON.couevirieriiereie ettt er e enens 2-6

Participant Leaves a Conversation...........ccccuereoeeererienieseereeseseseenens 2-6

Initiator Terminates a CoNVErsation...........oecevereereeverenneeeeseereesenee s 2-7
Step 8: Shut Down the XOCP Application SESSION.........ccooveeveveevineereneenens 2-7

3. Sending XOCP Business Messages

Step 1: Create the BUSINESS MESSAJEc.ccviveririeririetesie ettt 31
Importing the Required PaCkagescccoeereire v 32
Creating Payload Parts.........c.coiiiiiiie e 32

Creating XML DOCUMENES......cociuereiiereiie ettt 33
Creating AttaChMENtS..........ccovviiiriiiricre e e 34
Creating the XOCP Business Message and Adding Payload Parts............ 34

Step 2: Specify the Recipients of the Business Message (Optional)................. 35
Specifying a Particular Trading Partnerccocoeveeeneee e 3-6
Using XPath Expressionsto Specify Message Recipient Criteria............. 3-6

Specifying Standard Trading Partner Attributes...........cccooveeiiieieen 3-7
Specifying an XOCP X Path Expression Using Extended Properties. 3-8
Step 3: Specify the Quality of Service for Message Delivery.........ooevvnieenene. 39

iv Programming Messaging Applications for B2B Integration

Automatic Quality of Service FEatUreS..........cccoveinein e 39

QUATILYOFSENVICE ClaSS.ciueveriieirie st 3-10
Quality of Service Settings, Options, and Default Values................ 3-10

COdE EXBMPIE.....ccveeite ettt s e e et e e e 312
Setting the M essage Delivery Confirmation Levelcccooevveenecienes 3-13
Setting the MeSSage TIMEOULcveveiererierire et 3-14
Timeout AlGOITtRM ..o e 3-14

Setting the Number of Delivery Retry Aemptsccovevvvevinesinens 3-15
Setting the Correlation ID for aBusinesSSMeSsagecoeeveeeveeeeieceeneas 3-16
Step 4: Send the XOCP BUSINESS MESSATE........coveveieriieriiereie e 3-16
Synchronous Message DEIVENY ... rne e et 3-17
Deferred Synchronous Message DeliVEry ... 3-18
Step 5: Check the Delivery Status of the BusinessMessage..........ccccovvueeenee. 3-19
MESSAOE TOKENS......oiieiecteie ettt ettt ettt bbb e 3-19
Delivery Status Trackingcccoeveeineinein e e 3-20
Message Tracking LOCALIONScceoerveerieie e e 321
Diagram of Message Tracking LOCALIONS........c.ccovereeeneeeneeenecienens 3-22
Description of Message Tracking LOCations..........ccoceeveevereeeneevenens 3-22

Receiving XOCP Business Messages

How XOCP Business Messages Are RECEIVED. ... 4-1
Receiving an XOCP BUSINESS MESSAJEcoeeieierii et ere e 4-2

Index

Programming Messaging Applications for B2B Integration

Vv

Vi Programming Messaging Applications for B2B Integration

About This Document

This document describes how to use the Messaging API for BEA WebL ogic
Integration B2B integration to develop XOCP protocol messaging applications.

This document includes the following topics:

m Chapter 1, “Developing XOCP Applications to Exchange Business M essages,”
discusses the steps required to develop applications that exchange business
messages using the WebL ogic Integration eXtensible Open Collaboration
Protocol (XOCP).

m Chapter 2, “Programming Steps for XOCP Applications,” discusses the steps
required to program applications that exchange business messages using the
XOCP protocal.

m Chapter 3, “Sending XOCP Business Messages,” discusses the requirements for
sending X OCP business messages.

m Chapter 4, “Receiving XOCP Business Messages,” discusses requirements for
receiving XOCP busi ness messages.

What You Need to Know

This document is intended for independent software vendors (ISV's) who want to
extend their WebL ogic Integration environment. It is assumed that the reader has a
familiarity with the BEA WebL ogic Integration platform and Java programming.

Programming Messaging Applications for B2B Integration Vil

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “ e-docs”
Product Documentation page at htt p: / / e- docs. bea. com

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Integration
documentation Home page on the e-docs Web site (and a so on the documentation
CD). Y ou can open the PDF in Adobe Acrobat Reader and print the entire document
(or aportion of it) in book format. To access the PDFs, open the WebL ogic Integration
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at ht't p: / / www. adobe. com

Related Information

viii

Thefollowing WebL ogic | ntegration documents contai ninformation that will help you
understand how to write messaging applications that take advantage of the B2B
integration functionality provided by WebL ogic Integration:

m WebL ogic Integration documentation (available online):
e Administering B2B Integration

e Programming Management Applications for B2B Integration

Programming Messaging Applications for B2B Integration

e Programming Logic Plug-Ins for B2B Integration

For more information about BEA WebL ogic Integration and Java, see the WebL ogic
Integration documentation available at htt p: / / edocs. bea. com .

Contact Us!

Y our feedback on the BEA WebL ogic Integration documentation is important to us.

Send us e-mail at docsupport@bea.com if you have questions or comments. Y our

comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Integration 2.1 release.

If you have any questions about this version of BEA WebLogic Integration, or if you

have problemsinstalling and running BEA WebL ogic Integration, contact BEA

Customer Support through BEA WebSupport at www.bea.com. Y ou can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which isincluded in the product package.

When contacting Customer Support, be prepared to providethefollowing information:

Your name, e-mail address, phone number, and fax number
Your company hame and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming Messaging Applications for B2B Integration

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, datatypes, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream h> void main () the pointer psz
chrmod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void conmt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

UPPERCASE
TEXT

I ndicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

Programming Messaging Applications for B2B Integration

Convention

tem

{1}

Indicates a set of choices in asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Programming Messaging Applications for B2B Integration

Xi

Xii Programming Messaging Applications for B2B Integration

CHAPTER

1 Developing XOCP

Applications to
Exchange Business
Messages

The eXtensible Open Collaboration Protocol (XOCP) is the default business protocol
used by WebL ogic Integration for exchanging business messages. This section
includes the following topics:

m |ntroduction
m Key Concepts
m Key Tasksfor XOCP Applications

® Run-Time Information Flow

Introduction

WebL ogic I ntegration providestwo meansto implement trading partner conversations
that are based on the XOCP protocol:

Programming Messaging Applications for B2B Integration 1-1

1 Developing XOCP Applications to Exchange Business Messages

m Viabusiness process management (BPM) collaborative workflows that you
create using the WebL ogic Integration Studio. These workflows define each role
in a conversation, and they specify how business messages are handled and
exchanged by trading partners. For information about creating collaborative
workflows, see Creating Wor kflows for B2B Integration.

m ViaXOCP applications that you create using the WebL ogic Integration
Messaging API. An X OCP application implements a trading partner role and
interacts directly with the B2B engine to manage the conversation and handle
business messages as appropriate.

This document explains how to use the Messaging API to create X OCP applications
to conduct and manage conversations among trading partners.

Many of the code examples in this documentation derive from the Messaging API
example. For moreinformation, see the“Messaging APl Sampl€” in Running the B2B
Integration Samples.

Notes: The WebL ogic Integration Messaging APl has been updated since Release
2.0. If you have an X OCP application created with an earlier release of
WebL ogic Integration that you want to use with WebL ogic Integration
Release 2.1, see “Migrating Applications that Exchange Business M essages
Using the XOCP Protocol” in Migrating to BEA WebLogic Integration
Release 2.1.

The C-Enabler API, which wasformerly used for creating XOCP applications
(in WebL ogic Integration Release 2.0 and the WebL ogic Collaborate product)
is deprecated but still supported. Information about creating applications that
use this deprecated API isavailable at the following URL:

http://e-docs. bea. com W i ntegration/v2_0/col | aborate/ devxocp/i ndex. htm

XOCP applications, including those originally written with the WebL ogic
Collaborate C-Enabler API for WebL ogic Integration Release 2.0, must berun
in aseparate Java Virtual Machine (JVM) in nonpersistent mode.

Key Concepts

This section describes the following key concepts associated with X OCP applications:

1-2 Programming Messaging Applications for B2B Integration

Key Concepts

m XOCP Applications

m Messaging APl Class Library

m XOCP Business Messages and Message Envel opes
m Conversation Initiators and Participants

m Conversation Coordinators

m Trading Partner States

m Secure Messaging

XOCP Applications

An XOCP application is a user-written Java application that runs on aWebL ogic
Integration node that is deployed in a hub-and-spoke configuration and that uses the
XOCP application class to execute a specific role in a conversation definition. In a
hub-and-spoke configuration, atrading partner X OCP application is associated with a
spoke delivery channel, or B2B spoke. This XOCP application alows atrading partner
to communicate with other trading partners at B2B spokes via an intermediary, or
routing proxy, which is configured with a hub delivery channel.

A user-written X OCP application executes the following tasks:

m Create and shut down X OCP application sessions

m |nitiate or participatein conversations

m Exchange X OCP business messages with other trading partners

m Terminate or leave conversations

Note: For complete details on the XOCP application class, see the
com bea. b2b. pr ot ocol . xocp. appl i cat i on classin the BEA WebLogic
Integr ation Javadoc.

The following figure shows three possible hub-and-spoke configurations for the
delivery channels, the XOCP applications, and the instances of WebL ogic Integration
that host the XOCP applications.

Programming Messaging Applications for B2B Integration 1-3

1 Developing XOCP Applications to Exchange Business Messages

Figure1-1 Possible Hub-and-Spoke Configurations

YWebLogic Integration

Trading Parther Trading Partner
XOocCP Int di XocpP
Application ntermediary Application
Spoke Delivery Hub Delivery || | Spoke Delivery
Channel Channel Channel

WebL ogic Integration

WeblL ogic Integration

Trading Partner Trading Partner
XOCP Intermedia XOCP
Application ry Application
Spoke Delivery ||| Hub Delivery Spoke Delivery
Channel Channel Channel

WebLogic Integration WebLogic Integration | [WebLogic Integration

Trading Partner Trading Partner
XOCP - XoCP
Application Intermediary Application
Spoke Delivery Hub Delivery Spoke Delivery
Channel Channel Channel

A WebL ogic Integration node can host many X OCP applications. For more
information about configuring hub and spoke delivery channels used with XOCP
applications, see “Configuration Requirements’ in Administering B2B I ntegration.

XOCP Application Sessions

An XOCP application session is the means by which an XOCP application is
associated with a collaboration agreement and a delivery channel. An XOCP
application session is created by an application to communicate with atrading partner;

1-4 Programming Messaging Applications for B2B Integration

Key Concepts

and its scope is bounded by a delivery channel. X OCP applications create an XOCP
application session by invoking the get XOCPAppl i cat i onSessi on method on the

XOCP application class.

An XOCP application can be associated with multiple XOCP application sessions,
enabling the application to participate in multiple conversations simultaneously.

Messaging API Class Library

The Messaging API class library includes the XOCP application class and provides
APIsfor exchanging X OCP business messages. It consists of the packageslisted inthe

following table.

Table 1-1 Messaging API ClassLibrary Packages

Package Name

Description

com bea. b2b. prot ocol . xocp. appl i cation

Used for working with XOCP applications
and X OCP application sessions. This
packageis designed for applications used by
trading partners configured with a spoke
delivery channel.

com bea. b2b. prot ocol . xocp. conversati on. | ocal

Used for working with conversations based
on XOCP.

com bea. b2b. prot ocol . nessagi ng

Used for working with messagesin a
conversation.

com bea. b2b. prot ocol . xocp. nessagi ng

Used for working with business messages in
conversations based on XOCP.

For detailed information about these packages, see BEA WebLogic Integration
Javadoc on the WebL ogic Integration documentation CD or, on Windows systems,
choose the BEA WebL ogic e-Business Platform — WebL ogic Integration

2.1 Javadocs from the Windows Start menu.

Programming Messaging Applications for B2B Integration 1-5

1 Developing XOCP Applications to Exchange Business Messages

XOCP Business Messages and Message Envelopes

An XOCP business message is the basic unit of communication exchanged between
trading partnersin an X OCP conversation. An XOCP business message is represented
in the Messaging API classlibrary by the

com bea. b2b. pr ot ocol . xocp. messagi ng. XOCPMessage class.

A message envelope is a container for a business message. A message envelope
contains information about the sender (such asthe sender URL) and recipient (such as
the destination URL). A message envelope is represented in the Messaging API class
library by the com bea. b2b. prot ocol . messagi ng. MessageEnvel ope class.
However, only logic plug-ins (not XOCP applications) have programmatic access to
message envel opes. For more information, see “Information Flow for Message
Envelopes’ on page 1-8 and “ Routing and Filtering Business Messages’ in
Programming Logic Plug-Insfor B2B Integration.

Diagram of an XOCP Business Message

The following figure shows a message envelope and the components of an XOCP
business message.

Figure1-2 Componentsof an XOCP Business M essage

Message Header

Payload
Business Attachment
Document
Attachment
Business Attachment
Document

1-6 Programming Messaging Applications for B2B Integration

Key Concepts

Components of an XOCP Business Message

An XOCP business message is a multipart MIME (Multipurpose Internet Mail
Extensions) message. It consists of the following components.

Table 1-2 Components of an XOCP Business M essage

Component

Description

M essage header

M essage éttributes, including information about the sender and
recipient, the conversation, Qualities of Service, and so on.

Payload

Container for one or more business documents, one or more
attachments, or a combination of both. The payload component is
represented in the Messaging API class library by the

com bea. b2b. prot ocol . nessagi ng. Payl oadPart
interface.

Business
document(s)

XML filesin the XML-based part of the payload. Represented in the
Messaging API class library by the

com bea. b2b. prot ocol . nessagi ng. Busi nessDocunent
class.

Attachment(s)

NonXML filesin the nonXML-based part of the payload. Binary
content. Represented in the Messaging AP class library by the
com bea. b2b. prot ocol . nessagi ng. At tachnent class.

Programming Messaging Applications for B2B Integration 1-7

1 Developing XOCP Applications to Exchange Business Messages

Information Flow for Message Envelopes

Thefollowing figure shows an example of how message envelopes are processed in
WebL ogic Integration.

Figure1-3 Message Envelope Processing in WebL ogic | ntegration

Intermediary: WebLogic Integration
B2B Engine
Message
Envelope
Business
Message
Message
Envelope .
XOCP Router ™ Business - XOCP Filter
Message
i Message
Envelope
Message Business
Envelope Message
Busi Message Message
B Envelope Envelope
Message - -
Business Business
& Message Message
¥ ¥
—‘ Hub Delivery Channel I I Hub Delivery Channel }—
4
Business
Message
f ¥ ¥
B2B Spoke B2B Spoke B2B Spoke
Sending Receiving Receiving
Trading Trading Trading
Partner Partner Partner

1-8 Programming Messaging Applications for B2B Integration

Key Concepts

M essage envelope processing occurs in the following sequence:

1. A trading partner creates and sends a business message from its spoke delivery
channel to the hub delivery channel at theintermediary. (Thishub delivery channel
can be configured on aB2B engine collocated with the sending trading partner, on
a standal one machine, or on a B2B engine collocated with a recipient trading
partner, as shown in Figure 1-1.)

2. The business message isreceived at the hub delivery channel. The B2B engine
wraps the business message with a message envelope, extracting certain sender
and recipient information from the business message.

3. The XOCP router processes the business message, and then validates and
finalizesthe list of recipients.

4. Therouter creates a separate message envelope for each recipient in the list of
recipients, inserts alogical copy of the business message in each message
envelope, and then forwards all message envelopes to the XOCP filter.

As shown in the example in Figure 1-3, the router creates message envelopes for
three recipients.

5. Within the XOCP filter, the applicable filter for each recipient trading partner
evaluates each business message to determine whether it will be sent to the
recipient. The filter forwards accepted messages to the next processing step in the
B2B engine.

In Figure 1-3, the three business messages are evaluated in the filter. Two are
accepted and oneisrejected.

6. The B2B engine validates the recipient, and then sends the business message (in
its message envelope) to the recipient trading partner.

7. Therecipient trading partner receives the business message.

Conversation Initiators and Participants

In any XOCP conversation, there are two types of trading partner roles:

m Conversation initiator is the trading partner that creates the conversation and
sends the first business message (such as a request) to one or more recipient
trading partners. The conversation initiator usually awaits areply from each

Programming Messaging Applications for B2B Integration 1-9

1

Developing XOCP Applications to Exchange Business Messages

1-10

Time

trading partner and might exchange subsequent business messages. When
finished, the conversation initiator terminates the conversation (unless the
conversation hastimed out).

m Conversation participant is atrading partner that is enlisted in the conversation
when it receives the first business message from the conversation initiator. The
conversation participant usually sends areply to the conversation initiator and,
optionally, might exchange subsequent business messages. When finished, the
conversation participant either leaves the conversation or waits until the
conversation terminates.

Each conversation definition in the repository includes at least both of these types of
roles. A trading partner must be subscribed to the appropriate role in the conversation
toinitiate or participate in conversations associated with the associated conversation
definition.

Theinitiator of a conversation isusually determined by the role in which atrading
partner isregistered. For example, in a Get Quot e conversation, the trading partner in
therole of the buyer normally initiates a Get Quot e conversation. Any trading partner
in the role of the seller normally acts as a conversation participant in the Get Quot e
conversation.

The following figure shows some of the tasks that conversation initiators and
conversation participants perform.

Figure1-4 Conversation Initiatorsand Participants

Intermediary
B2B Spoke | Create Conversation B2B Spoke
Send Request _
Send Reply
Conversation [Conversation
Initiator Terminate Participant
Conversation

Programming Messaging Applications for B2B Integration

Key Concepts

Conversation Coordinators

WebL ogic I ntegration supports two types of conversation coordinators that manage
conversations at run time: a global conversation coordinator manages active
conversations on the B2B intermediary, and local conver sation coordinators
associated with B2B spokes help the global coordinator manage active conversations
locally.

The following figure showswhere global and local conversation coordinators work in
the WebL ogic Integration architecture.

Figure1-5 Global and Local Conversation Coordinators

B2B Spoke Intermediary B2B Spoke
Conversation Conversation
Initiator Global Participant

xoce Conversation
Local Conversation Coordinator Local
C ti -t - - | C
Coordinator Coordinator

Global Conversation Coordinator

A global conversation coordinator isaservice associated with theintermediary, which
is configured with a hub delivery channel. The global conversation coordinator
manages conversation lifecycles according to the rules of XOCP and supports
long-living, durable conversations that span multiple organizationa boundaries. The
global conversation coordinator maintains a list of active conversations.

The globa conversation coordinator performs the following services:

Enlists and delists trading partnersin a conversation

Enforces the X OCP conversation termination protocol

m Maintains status i nformation about conversations

Provides the conversational context for the execution of the business protocol

Programming Messaging Applications for B2B Integration 1-11

1 Developing XOCP Applications to Exchange Business Messages

Local Conversation Coordinators

A loca conversation coordinator is a service associated with a B2B spoke. The local
conversation coordinator manages conversations in which the local trading partner
(configured with a spoke delivery channel) is participating and maintains a list of
active conversations. Each X OCP appli cation session hasaseparate local conversation
coordinator.

Thelocal conversation coordinator performs the following tasks:

m Locally enlistsin aconversation when the initial business messagein a
conversation is received from the intermediary

m Locally delists from a conversation when the system message that terminates the
conversation is received from the intermediary

Trading Partner States

The following table describes the states assigned to trading partners as they perform
tasks related to X OCP application sessions and conversation participation.

Table 1-3 Trading Partner States

State Description

REG STERED Connected trading partner hasregistered for rolesin conversationsand
isready to initiate or participate in conversations.

ACTI VE Registered trading partner has participated (that is, hassent or received
abusiness message) in at least one conversation.

DROPPEDOUT Trading partner has |eft a conversation.

Some of these trading partner states are visible in the WebL ogic Integration B2B
Console.

1-12 Programming Messaging Applications for B2B Integration

Key Tasks for XOCP Applications

Secure Messaging

Communication among trading partnersis secured via the Secure Sockets L ayer
(SSL). Beforeallowing trading partnersto exchange business messages, the WebL ogic
I ntegration node must authenticate the identity of each trading partner using thetrading
partner’s certificate. Once these identities are authenticated, business messages are
exchanged securely among trading partners. For more information about WebL ogic
Integration security, see Implementing Security with B2B Integr ation.

Key Tasks for XOCP Applications

This section introduces the key tasks that X OCP applications perform:
m Creating an XOCP Application Session

m Registering for aRolein a Conversation

m Engaging in Conversations with Trading Partners

m Shutting Down an XOCP Application Session

Creating an XOCP Application Session

Before exchanging business messages, an X OCP application must create an XOCP
application session for the trading partner and its associated delivery channel.

Before atrading partner X OCP application can create an X OCP application session:

m Configuration information about the delivery channel and trading partner must
be defined in the WebL ogic Integration repositories for both the hub and spoke
delivery channels associated with the collaboration agreement. For more
information, see “Configuration Requirements’ in Administering B2B
I ntegr ation.

m The trading partner must be authorized to access the delivery channel.

Programming Messaging Applicationsfor B2B Integration ~ 1-13

1 Developing XOCP Applications to Exchange Business Messages

Note: If the machine hosting the XOCP application associated with the spoke
delivery channel crashes after connecting to ahub delivery channel, the XOCP
application can reconnect to the hub delivery channel upon normal startup.
The previous XOCP application session is discarded and new resources are
assigned to the new X OCP application session. However, the intermediary
cannot deliver business messages while the machine associated with the spoke
delivery channel is down. Undelivered business messages are discarded if the
number of retry attempts is exceeded or if the business message or
conversation times out.

When atrading partner no longer wants to exchange business messages with other
trading partners, the X OCP application shuts down the X OCP application session, as
described in “ Shutting Down an XOCP Application Session” on page 1-17.

Registering for a Role in a Conversation

After the XOCP application session has been created, atrading partner needsto
register amessage listener for the conversation type to which it is bound by the
collaboration agreement. The message listener must be registered for a conversation
type that defines how the trading partner participates in the conversation.

Role registration requires the following information in the repository associated with
the hub delivery channd:

m The conversation type—is a subset of a conversation definition that defines a
conversation for one trading partner based on the trading partner’srolein the
conversation definition to which it is subscribed.

m A message definition—consists of ordered message parts. A message part
contains a content type (XML or binary) and can contain a document definition.
If the content type for a part is XML, then adocument definition is required for
that part. For the binary type, no other information is required.

For an introduction to these concepts, see “Overview” in Introducing B2B Integration.

Before registering a message listener for a conversation type in a collaboration
agreement, the trading partner must first be authorized to register. Authorization is
configured by the administrator of the intermediary and is based on the trading
partner’ s subscription to arole in a conversation definition.

1-14 Programming Messaging Applications for B2B Integration

Key Tasks for XOCP Applications

When an XOCP application session attempts to register amessage listener for a
specific conversation type in a collaboration agreement, the spoke delivery channel
sends an XOCP system message, register for conversation, to the intermediary. The
intermediary validates the role of the trading partner for the requested conversation
type in the associated delivery channel. If the registration is valid, the trading partner
is then allowed to initiate and participate in conversations associated with the
registered conversation type. At thispoint, the trading partner isinaREG STERED state
and is ready to initiate or participate in conversations.

Engaging in Conversations with Trading Partners

Once registered for arole in aconversation, a trading partner can engage in
conversations in accordance with that role. Conversation initiation and participation
occurs on the intermediary itself. However, the XOCP application session maintains
some state information about the conversations in which it isinvolved.

Conversation initiator X OCP applications and conversation participant XOCP
applications are very similar. However, conversation initiator XOCP applications can
terminate conversations while conversation participant X OCP applications cannot.
Conversation participant X OCP applications can only leave a conversation.

Initiating a Conversation and Sending a Business Message

To initiate a conversation, a conversation initiator XOCP application first creates it.
Optionally, the conversation initiator XOCP application can specify atimeout value,
after which the conversation automatically terminates; this value overrides the timeout
value that is specified in the associated conversation definition in the repository.

Thelocal conversation coordinator on the B2B spoke sends an XOCP system message,
create conversation of the specific collaboration agreement, to the intermediary. The
global conversation coordinator in the intermediary creates a conversation using the
appropriate delivery channel and enlists the trading partner as the conversation
initiator. After the conversationiscreated, the conversation initiator XOCP application
creates and sends a business message, as described in “Sending XOCP Business
Messages” on page 3-1.

Programming Messaging Applicationsfor B2B Integration ~ 1-15

1

Developing XOCP Applications to Exchange Business Messages

Participating in a Conversation

Theglobal conversation coordinator in theintermediary handlesall business messages
that the intermediary receivesfor agiven conversation. After theintermediary delivers
an initial business message to recipient trading partners, the global conversation
coordinator enlists those trading partners in that conversation. Once atrading partner
isenlisted in aconversation, the trading partner isin an ACTI VE state and can send and
receive business messages in that conversation.

When the X OCP application session on atarget spoke delivery channel receives the
initial business message in a conversation, it performs the necessary housekeeping
(such asregistering the conversation in the local list) before invoking the onMessage
callback on the message listener. For more information, see “ Receiving XOCP
Business Messages’ on page 4-1.

Oncearegistered trading partner is enlisted in a conversation, the trading partner isin
an ACTI VE state and can send and receive business messages in that conversation.

Leaving a Conversation

When it has finished participating in aconversation, a conversation participant trading
partner can leaveit. When atrading partner leavesaconversation, it is removed, by the
conversation coordinator, from the list of participating trading partners. Subsequent
business messages in that conversation are not sent to that trading partner. After a
trading partner leaves, it is kept in a DROPPEDOUT state for the remainder of that
conversation.

Terminating Conversations

1-16

A conversation terminates when theinitiating trading partner explicitly terminatesthe
conversation, or when the conversation times out; whichever occurs first. A trading
partner who initiates aconversation must terminate that conversation at the appropriate
time in abusiness process.

Note: Only the conversation initiator can terminate a conversation.

When a conversation is terminated, the conversation coordinator sends al of the
participating trading partners an X OCP system message: terminate message. This
message is propagated as the callback onTer ni nat e on registered message listeners
in XOCP application sessions on B2B spokes.

Programming Messaging Applications for B2B Integration

Run-Time Information Flow

Shutting Down an XOCP Application Session

When atrading partner finishes all the activities in a conversation, the XOCP
application shuts down the XOCP application session. When an X OCP application
shuts down an X OCP application session, the B2B engine associated with the spoke
unregisterswith theintermediary al the collaboration agreements associated with this
session. This causestheintermediary to unregister the associated conversation type. In
response, the conversation coordinator automatically terminates all of the
conversationsthat thetrading partner hasinitiated in the X OCP appli cation session and
delists the trading partner from all other conversations in which it was participating.

When atrading partner shutsdown an X OCP appli cation session, the consequences are
asfollows:

m Theintermediary is stopped from sending any further messages to the trading
partner at the specified delivery channel.

m All conversationsinitiated by the trading partner are terminated.
m Thetrading partner leaves any conversationsin which it is participating.

m The trading partner reclaims resources allocated in the intermediary for the shut
down XOCP application session.

Run-Time Information Flow

At run time, all XOCP applications perform certain tasks identically: they connect to
adelivery channel, register message listeners, and shut down the application sessionin
the same way. During individual conversations, however, conversation initiators and
conversation participants perform a series of distinct, interweaving tasks.

Programming Messaging Applicationsfor B2B Integration ~ 1-17

1 Developing XOCP Applications to Exchange Business Messages

Information Flow Diagram

The following figure shows the run-time information flow between a conversation
initiator and a participant.

Figure1-6 Information Flow Between Conversation Initiator and Participant

B2B B2B
Spoke Spoke
Create XOCP Application Create XOCP Application
Session o _ Session
getXOCPApplicationSession() get¥OCPApplicationSession()
Register Message Listener Register Message Listener
E registertdessagelistenar]) - h registertdessagelistenear() -
= c
[§ Get Collaboration Agreement __ Get Collaboration Agreement g
m il . ——
= getCAld) getCAld) L
c = =
£ . > % a
g Create Conversation g O
ks > T 3
g createConversation() E o E
c
g Send First Bus Msg (Request) [‘g Deliver First Bus Msg 4
[= - E =) - 2
8 send) - g._ enlist global enlist local c
onhlessagel) 8
Aj ‘ Deliver Reply Bus Msg Send Reply Bus Msg
TonMessage() N send()
Terminate Conversation Terminate Conversation
terminater delist global delist local
onTerminatel)
Conversation Terminated
onTerminatel)
Shut Down N - Shut Down
shutdown(- h shutdaown()

1-18 Programming Messaging Applications for B2B Integration

Run-Time Information Flow

Thisisasimplified example that involves asingle conversation and a minimal
exchange of business messages (request and reply). In practice, atrading partner may
participate in multiple conversations after registering a message listener and before
shutting down an X OCP application session. In addition, within asingle conversation,
trading partners might exchange many business messages, not just asinglerequest and
asinglereply.

Steps in the Information Flow

At run time, the flow of information between trading partners (via XOCP applications
communicating through the intermediary) proceeds in the following sequence:

1.

Each trading partner with a specific delivery channel creates an X OCP application
session.

Each trading partner XOCP application registers a message listener with the
XOCP application session, which, in turn (with the help of the local conversation
coordinator), registers that trading partner for agiven rolein aconversation in a
given collaboration agreement maintained by the intermediary.

Each trading partner XOCP application gets the collaboration agreement ID, if it
is not known.

The conversation startswhen it is created by the conversation initiator XOCP
application.

The global conversation coordinator adds the conversation instance to its global
conversation list and marks the trading partner asthe initiator.

The local conversation coordinator in the conversation initiator adds the
conversation instance to its local conversation list.

The conversation initiator’'s X OCP application creates and sends a business
message (such as a request).

The conversation initiator’s X OCP application session delivers the business
message to the hub delivery channel in the intermediary.

Theintermediary delivers the business message to the conversation participant’s
spoke delivery channel.

Programming Messaging Applicationsfor B2B Integration ~ 1-19

1 Developing XOCP Applications to Exchange Business Messages

10. The global conversation coordinator in the intermediary enlists the participating
trading partner in the conversation, adding it to the conversation instance entry in
the global conversation list.

11. Thelocal conversation coordinator receives the business message and enlists the
trading partner in the conversation locally, adding the conversation instance to the
local conversation list.

12. The onMessage implementation in the conversation participant XOCP
application isinvoked and processes the business message.

13. The conversation participant X OCP application creates and sends a business
message (such as a reply) back to the conversation initiator.

14. The X OCP application session associated with the conversation participant
delivers the business message to the intermediary.

15. Theintermediary receives the business message and deliversit to the
conversation initiator.

16. The conversation initiator receives the business message.

17. The onMessage implementation in the conversation initiator XOCP application
isinvoked and processes the business message.

18. To end the conversation, the conversation initiator XOCP application terminates
it.

Note: A conversation might terminate automatically if the conversation timeout
is exceeded.

19. Thelocal conversation coordinator in the conversation initiator delivers
notification of termination to the global conversation coordinator in the
intermediary.

20. The global conversation coordinator in the intermediary delists the conversation
participant from the global conversation list and delivers notification of
termination to the local conversation coordinator associated with the conversation
participant.

21.Thelocal conversation coordinator associated with the conversation participant
receives the termination notification and delists the conversation from the local
conversation list.

1-20 Programming Messaging Applications for B2B Integration

Run-Time Information Flow

22. The onTer ni nat e implementation in the conversation participation XOCP
application isinvoked.

23. The global conversation coordinator in the intermediary marks the conversation
terminated and informs the conversation initiator by sending a conversation
termination confirmation.

24. The conversation initiator receives the conversation termination confirmation.

25. The local conversation coordinator on the conversation initiator receives the
termination notification and delists the conversation from the local conversation
list.

26. TheonTer m nat e implementation in the conversation initiator XOCP
application isinvoked.

27. Each trading partner X OCP application shuts down its respective XOCP
application session.

For more information about these steps, see “Key Tasks for XOCP Applications’ on
page 1-13.

Programming Messaging Applicationsfor B2B Integration 1-21

1 Developing XOCP Applications to Exchange Business Messages

1-22 Programming Messaging Applications for B2B Integration

CHAPTER

2

Programming Steps for
XOCP Applications

The following sections describe each step in the procedure that a developer usually
provides in an XOCP application:

Step 1: Import Packages

Step 2: Implement the MessageL istener Interface
Step 3: Create an XOCP Application Session

Step 4: Create and Register a Message Listener
Step 5: Initiate or Participate in a Conversation
Step 6: Exchange Business M essages

Step 7: End the Conversation

Step 8: Shut Down the XOCP Application Session

Each section includes example code from the Messaging APl sample, which isfully
described in Running the B2B Integration Samples.

Note: Before you can run an XOCP application, the administrator must specify a

collaboration agreement for the trading partners who participate in the
conversation associated with that X OCP application. For more information,
see “ Configuration Requirements” in Administering B2B Integration. For
information about backward compatibility with XOCP applications created
with earlier versions of WebL ogic Integration, see Migrating to BEA
WebLogic Integration Release 2.1.

Programming Messaging Applications for B2B Integration 2-1

2 Programming Steps for XOCP Applications

Step 1: Import Packages

XOCP applicationsimport the required packages from the Messaging API class
library. For adescription of these packages, see “Messaging API Class Library” on
page 1-5.

The following example listing shows the type of packages that must be imported.

Listing 2-1 Importing Packages

i nport java.util.Properties;

i nport com bea. b2b. prot ocol . xocp. application. *;

i mport com bea. b2b. prot ocol . xocp. nessagi ng. *;

i nport com bea. b2b. prot ocol . conversati on. ConversationType;

i nport com bea. b2b. prot ocol . nessagi ng. Payl oadPart;

i mport com bea. b2b. prot ocol . xocp. conversati on. | ocal . Conver sati on;
i nport com bea. eci . | oggi ng. *;

Step 2: Implement the MessageListener Interface

To receive messages, an X OCP application must implement the following interface:

com bea. b2b. prot ocol . xocp. nessagi ng. XOCPMessageli st ener

Thisinterface provides the onMessage and onTer ni nat e methods that are used to
handle incoming business messages and conversation termination notifications,
respectively. The onMessage method is invoked when a B2B spoke receives a
business message. The onTer ni nat e method isinvoked when aB2B spoke receives
notification of aconversation termination.

The message listener isrequired in order for the trading partner to receive business
messages in a conversation. An XOCP application session supports one message
listener per collaboration agreement.

2-2 Programming Messaging Applications for B2B Integration

Listing2-2 Implementation of the M essagel istener Interface

public class Partner1Messageli st ener
i npl ements XOCPMessageli st ener {

public void onMessage(XOCPMessage rnsg){
counter ++;
QualityOf Service qos = rmsg. get QS();
/!l Received reply, time to wake up waiter
synchroni zed(wai ter){
debug("onMessage in waiter counter = " + counter);

Payl oadPart[] payload = rmnsg. get Payl oadParts();

// we are using a single part document

if (payload != null && payload.length > 0){
Busi nessDocunent bd = (Busi nessDocunent) payl oad[0] ;
waiter.reply = bd. get Docunent () ;

}

wai t er. done = true;

wai ter.notify();

}
}

public void onTerm nate(Conversation conv, int result)

}
}

For detailed information about the XOCPMessagelLi st ener interface, see BEA

WebL ogic Integration Javadoc on the WebL ogic Integration documentation CD or, in
Windows systems, choose the BEA WebL ogic e-Business Platform — WebL ogic
Integration 2.1 — Javadocs from the Windows Start menu.

Programming Messaging Applications for B2B Integration 2-3

2 Programming Steps for XOCP Applications

Step 3: Create an XOCP Application Session

To initiate or participate in conversations, atrading partner creates an XOCP
application session associated with alocal B2B spoke delivery channel. Each XOCP
application session enables the associated trading partner to exchange messages with
other trading partnersin a conversation.

To create anew XOCP application session or to get an existing one, use the

com bea. b2b. pr ot ocol . xocp. appl i cati on. XOCPAppl i cat i on class. The
following listing is an example of getting the MimApp1 X OCP application session,
based on the trading partner name (Par t ner 1) and the delivery channel

(Par t ner 1- Channel 0).

Listing 2-3 Obtaining an XOCP Application Session

XCCPAppl i cation app = XOCPAppl i cati on. get XOCPAppl i cati on(" MimAppl");
XOCPAppl i cati onSession es = app. get XOCPAppl i cati onSessi on("Partner1",
"Partner 1- Channel 0");

Step 4: Create and Register a Message Listener

To participatein aconversation, an X OCP application must register amessage listener.
A message listener isimplemented by the application; the devel oper isresponsible for
using it as needed.

To register amessage listener, an XOCP application calls the

regi st er MessageLi st ener method on the XOCPAppl i cat i onSessi on instance,
passing the collaboration agreement 1D, the conversation role of the trading partner,
and the message listener object as parameters.

Thefollowing example listing shows how to register amessage listener for arequestor
role (generally aconversationinitiator) intheveri fi er Conver sat i on conversation.
Note that the required collaboration agreement ID and role must be specified in the
repositories of the trading partner and the intermediary respectively.

2-4 Programming Messaging Applications for B2B Integration

Listing2-4 Registering a M essage L istener

Par t ner 1IMessagelLi stener ml = new Partner 1Messageli stener();

Properties prop = new Properties();

prop. set Property("Busi nessProcessNane", "verifierConversation");
prop. set Property("Busi nessProcessVersion", "1.0");

prop. set Property("otherTradi ngPartner", "Hub");

prop.set Property("toRol e", "replier");

String cald = es.get CAl d(prop);

String myRole = "requestor"”;

es. regi st er MessagelLi stener(cald, nyRole, m);

Step 5: Initiate or Participate in a Conversation

A conversation initiator application explicitly starts a conversation. To initiate a
conversation, theinitiating trading partner callsthecr eat eConver sat i on method on
thecom bea. b2b. prot ocol . xocp. appl i cati on. XOCPAppl i cat i onSessi on
instance, passing the collaboration agreement 1D, the trading partner role, and,
optionally, the conversation timeout value, which is specified in seconds. (The default
valueiszero, or no timeout, if the configured timeout is also zero in the conversation
definitionin both thetrading partner’ sand intermediary’ srespectiverepositories.) The
trading partner must be registered in the initiator role in the conversation definition.

The following example listing shows how a conversation isinitiated.

Listing 2-5 Initiating a Conversation

| ong timeout = O;
Conversation ¢ = es. createConversation(cald, nyRole, tineout);

Programming Messaging Applications for B2B Integration 2-5

2 Programming Steps for XOCP Applications

Step 6: Exchange Business Messages

After the conversation initiator application has created the conversation, it can begin
exchanging business messages with other trading partnersin the conversation.

Initially, the conversation initiator application creates and sends a business message
(such as arequest) to one or more trading partnersin the conversation. When a trading
partner receives the business message, its conversation participant application
processes the business message and (usually) creates and sends a reply business
message. Trading partners may send and receive several business messages in the
course of aconversation. For more information about exchanging business messages,
see " Sending XOCP Business Messages’ on page 3-1 and “ Receiving XOCP Business

Messages’ on page 4-1.

Step 7: End the Conversation

A conversation can end after trading partners finish exchanging business messagesin
that conversation. The way in which atrading partner endsits involvement in a
conversation depends on itsrole in the conversation.

Participant Leaves a Conversation

Participant trading partners can leave a conversation. To leave a conversation, a
participant X OCP application callsthel eave method on the Conver sat i on instance,
passing f al se. No messages are retained in the intermediary while the participant is
not participating.

Note: Inthisrelease, only thef al se argument is supported.

The following example listing shows how a participant |eaves a conversation.

Listing 2-6 Leaving a Conversation

c.l eave(false);

2-6 Programming Messaging Applications for B2B Integration

Initiator Terminates a Conversation

Conversation initiators can explicitly terminate a conversation or wait until the
conversation times out. (The conversation initiator can specify atimeout value when
it creates the conversation, or it can specify zero to use the timeout value defined for
the conversation in the trading partner’s and intermediary’s repositories.) When a
conversation terminates, the conversation initiator and all participating trading
partners are delisted from the conversation, any undelivered business messages are
discarded, and associated system resources are released.

To terminate a conversation explicitly, the initiating X OCP application callsthe
t er mi nat e method initsimplementation of the Conver sati on interface, asshownin
the following listing.

Listing2-7 Terminating a Conver sation

c.term nat e(Conversati on. SUCCESS) ;

Step 8: Shut Down the XOCP Application Session

To shut down an XOCP application session and | eave the conversation, an application
uses the shut Down method in itsimplementation of the XOCPAppl i cat i onSessi on
interface. The following example listing shows how an XOCP application session is
shut down.

Listing 2-8 Shutting Down an XOCP Application Session

es. shut Down() ;

If an XOCP application shuts down an X OCP application session, the trading partner
leaves the conversation automatically and permanently.

Programming Messaging Applications for B2B Integration 2-7

2 Programming Steps for XOCP Applications

2-8 Programming Messaging Applications for B2B Integration

CHAPTER

3

Step 1:

Sending XOCP
Business Messages

The following sections describe how an XOCP application sends X OCP business
messages to one or more trading partners in a conversation:

m Step 1. Create the Business Message

m Step 2: Specify the Recipients of the Business Message (Optional)
m Step 3: Specify the Quality of Service for Message Delivery

m Step 4: Send the XOCP Business Message

m Step 5: Check the Delivery Status of the Business M essage

To send an X OCP business message, an X OCP application constructs a business
document, creates a business message, specifies message routing criteria and Quality
of Service delivery options, and sends the business message to the intermediary for
processing. The XOCP application can also check the delivery status of the business
message, including whether it was successfully delivered. For an introduction to
XOCP business messages, see “ XOCP Business M essages and M essage Envelopes’
on page 1-6.

Create the Business Message

To create a business message, an XOCP application first creates a message payload,
which consists of any business documents and attachments to be sent.

Programming Messaging Applications for B2B Integration 31

3 Sending XOCP Business Messages

The creation of a payload involves three steps:

1. Importing the Required Packages

2. Creating Payload Parts

3. Creating the XOCP Business Message and Adding Payload Parts

This section describes these three steps. For an introduction to the components of a
business message, see “ XOCP Business M essages and M essage Envelopes’ on page
1-6.

Importing the Required Packages

To create a business message, an XOCP application imports the necessary packages,
as shown in the following listing.

Listing 3-1 Importing Packagesfor Business M essage Creation

class java.io.FilelnputStream

i mport org. apache. xerces. dom *;

i nport com bea. b2b. prot ocol . xocp. application. *;

i nport com bea. b2b. prot ocol . xocp. nessagi ng. *;

i nport com bea. b2b. prot ocol . messagi ng. At t achnent ;
i nport com bea. eci . | oggi ng. *;

Creating Payload Parts

An XOCP application next creates a message payload, which includes business
documents and/or attachments.

3-2 Programming Messaging Applications for B2B Integration

Step 1: Create the Business Message

Creating XML Documents

A business message can contain one or more business documents. A business
document isthe XML -based payload part of abusiness message. A business document
isan instance of the com bea. b2b. prot ocol . nessagi ng. Busi nessDocunent
class.

A Busi nessDocunent object containsan XML document, which isan instance of the
or g. w3c. dom Document classintheor g. wdc. dompackage published by the World
Wide Web Consortium (ww. w3. or g). An XOCP application can also use a
third-party implementation of that package, such asthe or g. apache. xer ces. dom
package provided by The Apache XML Project (wmv. apache. or g), which isused by
the Messaging APl sampleto create and process XML documents.

Note: Thedocument type parameters specified in each XML document must map to
apart content type of message definition associated with the conversation
definition in the repository.

The following code from the MiniTp1Ser vl et of the Messaging API application
creates arequest in the form of an XML document.

Listing3-2 Creating an XML Document

/] Create a request docunent

DOM npl enment ati onl npl donmi = new DOM npl enent ati onl npl () ;

Docurent Type dType =

dom . cr eat eDocunent Type("request”, null, "request.dtd");

or g. w3c. dom Docunent rql = new Docunent | npl (dType);

El enent rootl = rql. createEl ement("request");

String sendStrl1 = "FIRST MESSAGE"; // the actual string data to be
/] processed by the other partner

root 1. appendChi | d(r ql. cr eat eText Node(sendStr1));

rql. appendChil d(root1l);

After creating an XML document, an XOCP application createsaBusi nessDocunent
object, passing the XML document (payl oad[0]) as a parameter to the constructor,
as shown in the following listing.

Programming Messaging Applications for B2B Integration 3-3

3 Sending XOCP Business Messages

Listing 3-3 Creating a BusinessDocument

Busi nessDocunent bd = (Busi nessDocunent) payl oad[0] ;

Creating Attachments

A business message can contain one or more attachments. An attachment isa
nonXML-based payload part of a business message that contains binary content. An
attachment is an instance of the com bea. b2b. pr ot ocol . messagi ng. At t achment
class. For more information, see the BEA WebL ogic Integration Javadoc.

The following example listing shows how to create an attachment.

Listing 3-4 Creating an Attachment

FilelnputStreamfis = new Filel nput Strean("sonefile");
Attachnent att = new Attachment (fis);

Creating the XOCP Business Message and Adding
Payload Parts

After creating a message payload, an XOCP application creates an XOCP business
message and adds the payload partsto it. The

com bea. b2b. pr ot ocol . xocp. nessagi ng. XOCPMessage class represents an
XOCP business message. For more information, see the BEA WebLogic Integration
Javadoc.

To construct the business message, an X OCP application:
1. Creates an instance of the XOCPMessage class.

2. Addsthe payload parts to the business message by calling either of the following
methods on the XOCPMessage message object:

e addPayLoadPart , which adds a single business document or attachment to
the business message

3-4 Programming Messaging Applications for B2B Integration

Step 2: Specify the Recipients of the Business Message (Optional)

e addPaylLoadPart s, which adds multiple business documents or attachments
to the business message

In the following listing an X OCP business message is created and a payload part is
added to it.

Listing 3-5 Creating a Business M essage and Adding Payload Parts

XOCPMessage smsgl = new XOCPMessage("");
smegl. addPayl oadPart (new Busi nessDocunent (rql));

Note: The XOCP application clones the XOCPMessage content (except its payload
parts) before sending it to the intermediary. Therefore, apayload part must not
be changed after the applicationinvokesthe send or sendAndwai t method on
the XOCPMessage.

Step 2: Specify the Recipients of the
Business Message (Optional)

After creating a business message, an XOCP application may specify the trading
partner to which the message will be sent. An XOCP application might send the
business message to a specific trading partner (a point-to-point exchange), such as
when it repliesto arequest received from a conversation initiator. Alternatively, an
XOCP application might send a business message to a set of trading partners (via
multicasting) when certain businesscriteria(represented by X OCP X Path expressions)
are met. For example, an application might send a message via multicasting when a
buyer sends a bid request to multiple sellers of a particular product.

Either way, the set of eligibletrading partnersislimited to those who are subscribed to
the appropriate role in the conversation definition. In addition, router and filter
expressions defined in the intermediary repository may al so affect message delivery to
particular trading partners. For more information, see “ Advanced Configuration
Tasks’ in Administering B2B Integration.

Programming Messaging Applications for B2B Integration 3-5

3 Sending XOCP Business Messages

Specifying a Particular Trading Partner

If an XOCP business message is sent to a single, known trading partner, an XOCP
application can call the set Reci pi ent method on the XOCPMessage object, passing
the trading partner name as the parameter. The specified trading partner must be
defined in the intermediary repository.

The following example listing shows how atrading partner named Chi pMaker is
specified as therecipient of a business message.

Listing 3-6 Specifying a Single Trading Partner

String tradi ngPartner Nane = "Chi pMaker";
XOCPMessage msg = new XCOCPMessage();
nmeg. set Reci pi ent (tradi ngPart ner Nane) ;

Using set Reci pi ent for abusiness message expedites message delivery becausethe
intermediary does not perform the usual router processing, such as the evaluation of
trading partner or intermediary XPath expressions. However, the business message is
still subject to applicable filtering in the intermediary. For more information, see
“Advanced Configuration Tasks” in Administering B2B Integration.

Using XPath Expressions to Specify Message Recipient
Criteria

An XOCP application can use XPath expressions to specify the criteriafor a set of
trading partnersthat are to receive a business message. X Path expressions are used to
address parts of an XML document. For more information, see “ Advanced
Configuration Tasks” in Administering B2B Integr ation.

An XPath expression should be specific to the document format of the intermediary
repository and should define a node-specific set of trading-partner elements. The
XPath expression selects recipient trading partners based on the following attributes,
which are defined in the intermediary repository:

3-6 Programming Messaging Applications for B2B Integration

Step 2: Specify the Recipients of the Business Message (Optional)

m Standard attributes, such asthetrading partner name or a postal code

m Extended properties: custom attributes, elements, and text defined by the
administrator of the intermediary

The XPath expression is passed, as part of the message header in the business message,
from the X OCP application to the intermediary. The intermediary uses this XPath
expression, along with other X Path expressions defined in theintermediary repository,
to determine the set of message recipients for the business message.

If applicable trading partner and intermediary X Path expressions are defined in the
intermediary repository, the B2B engine hosting the intermediary evaluates these
expressions after it receives the business message. Depending on how they are
configured, these X Path expressions might override or append the XOCP X Path
expression that the X OCP application specifies. For moreinformation, see“ Advanced
Configuration Tasks’ in Administering B2B | ntegration.

To specify an XOCP XPath expression for an XOCP business message, the XOCP
application callstheset Expr essi on method on the XOCPMessage object, passing the
XPath expression as the parameter.

Note: Apache Xaanv 1.0.1 supports single quotes, but not doubl e quotes, to delimit
string literals.

Before the business message is delivered, it undergoes applicable router and filter
processing in the intermediary.

Specifying Standard Trading Partner Attributes

Thefollowing listing shows an X OCP X Path expression that selectsthetrading partner
with the specified name.

Listing 3-7 XOCP XPath Expression Specifying a Trading Partner Name

smsgl. set Expressi on("//tradi ng-partner[@ane=\"'Partner2\']");

Thefollowing listing shows an X OCP X Path expression that selectsthetrading partner
with an address that contains the string San.

Programming Messaging Applications for B2B Integration 3-7

3 Sending XOCP Business Messages

Listing 3-8 XOCP XPath Expression Specifying a Trading Partner Address

nsg. set Expressi on("//tradi ng-partner[contai ns(address,\'San\"')]");

Specifying an XOCP XPath Expression Using Extended Properties

3-8

Extended properties are user-defined elements, attributes, and text that can be
associated with trading partnersin the repository in theintermediary. These properties
provide application extensions to the standard predefined attributes in the repository.
The extended property sets are modeled in the repository such that they can be
retrieved as subtreeswithin an XML document. Extended propertiesare configured on
the Trading Partners tab in the WebL ogic I ntegration B2B Console. For more
information, see “Using Advanced Trading Partner Configuration Options” in
“Configuring B2B Integration” in Online Help for the WebLogic Integration B2B
Console.

XOCP XPath expressions can refer to these extended propertiesto assist with business
message routing. For example, suppose the administrator for the intermediary adds an
extended property called Maximum Order Quantity so that sellers can indicate, in the
intermediary repository, the largest quantity that they can accommodate. With this
property defined, a buyer with alarge order can specify an XOCP X Path expression
that sends the business message only to sellers that are qualified to process the order.

Thefollowing code listing shows an XML document generated from the repository
with an extended property set for agiven seller.

Listing 3-9 Extended Property Set in XML Document Generated from the
Repository

<hub cont ext =" nessage-rout er ">

<tradi ng- part ner nane="ABC Sell er"

emai | =" or der pr ocessi ng@omnmedonai n. cont

phone="999- 999- 9999" >

<address>123 Main St., San Jose, CA 95131</address>

<ext ended- property-set name="Capacity">
<max-order-quantity>1000</ max- order-quantity>

</ ext ended- property-set >

</trading-partner>

Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery

</ hub>

The following listing shows an X OCP X Path expression that selects trading partners
that can accommodate orders larger than 500 units.

Listing 3-10 XOCP XPath Expression Specifying an Order Size

nsg. set Expressi on("//tradi ng- partner[ext ended- property-set/ (@max-
order-qty > \'500\')]")

Because the seller can accommodate orders of up to 1000 units, it isselected asa
recipient of this business message.

Step 3: Specify the Quality of Service for
Message Delivery

The B2B engine messaging service allows X OCP applications to define the Quality of
Service (Q0S), or level of reliability, to enforce when delivering a business message to
recipient trading partners. Quality of Service settings are stored in the message header
of the business message. The messaging service supports the reliable delivery of
messages in the event of network-link or node failures. The messaging service
provides other capabilitiesto support reliable messaging, such as message logging and
tracking, correlation of messages, delivery retry attempts, message timeouts, and
choice of message-delivery methods.

Automatic Quality of Service Features

The B2B engine messaging service provides certain automatic Quality of Service
features that do not require input from XOCP applications:

Programming Messaging Applications for B2B Integration 39

3 Sending XOCP Business Messages

m TheB2B engine prevents duplicate message delivery.

m TheB2B engine affixes a timestamp to every business message when it arrives
at an intermediary or an X OCP application node. Timestamps can be helpful for
taking performance measurements and with debugging applications.

QualityOfService Class

Thecom bea. b2b. prot ocol . xocp. messagi ng. Qual i t yO Ser vi ce class
represents Quality of Service settingsfor businessmessages. TheQual i t yOf Servi ce
class definesthe level of reliability required from the B2B engine messaging service
when it delivers a specific message. It also identifies, to the B2B engine messaging
service, the XOCP application’ s expectation of how the business message will be
delivered.

An XOCP application creates an instance of this class and calls methods on this
instance to specify various Quality of Service settings. It then callsthe set QoS method
on the message instance, passing the Qual i t yOf Ser vi ce object as a parameter, to
associ ate the settings with the message. If an XOCP application does not specify
Quality of Service settings, the B2B engine messaging service uses default values
where applicable.

Quality of Service Settings, Options, and Default Values

The following table describes the available Quality of Service settings, options, and
default values.

3-10 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery

Table 3-1 Quality of Service Settings, Options, and Default Values

QoS Setting / Description Options Default Value(s)

CONFI RVED_DELI VERY_TO_APPLI CATI ON Not Applicable Not Applicable

m Provides confirmation of application delivery up to the
receiving application.

m Provides complete status of delivery to each destination,
including recel pt timestamp, list of router-selected trading
partners, final list of recipient trading partners, and so on.

m Provides complete message tracking information (of all
potential locations) for theintermediary administrator and
the administrator of the trading partner sending the

message.

CONFI RVED_DELI VERY_TO DESTI NATI ON(S) Not applicable Not applicable

m Provides complete status of delivery to each destination,
including receipt timestamp, list of router-selected trading
partners, final list of recipient trading partners, and so on.

m Provides complete message tracking information (of all
potential locations) for theintermediary administrator and
the administrator of the trading partner sending the

message.

CONFI RVED_RQUTI NG Not applicable Not applicable

m Providesinformation from the XOCP router on the
intermediary about the trading partners selected to receive
the business message.

m Provides message tracking for the administrator of the

trading partner sending the messages (until the business
message reaches the intermediary’ s XOCP router).

CONFI RVED_DELI VERY_TO HUB Not applicable Not applicable
(Default)
m Verifiesthat the message reached the intermediary.

m No message tracking for the administrator of the trading
partner sending the message.

TI MEQUT Timeout, in Ignored
milliseconds, after send

Programming Messaging Applications for B2B Integration 311

3 Sending XOCP Business Messages

Table 3-1 Quality of Service Settings, Options, and Default Values (Continued)

QoS Setting / Description Options Default Value(s)
RETRY_ATTEMPTS 0-n As configured for
the intermediary
CORRELATION_I D Application-defined Ignored
field

The following table describes how each Quality of Service setting affects message
tracking and delivery acknowledgments.

Table 3-2 How QoS Settings Affect M essage Tracking and Acknowledgment

Quality of Service Setting M essage Tracking Acknowledgment
(Y/N)? (Y/N)?

CONFI RVED_DELI VERY_TO APPLI CATI ONS Y Y

CONFI RVED_DELI VERY_TQ DESI NATI ON(S) Y Y

CONFI RVED_DELI VERY_TO ROUTER Y N

CONFI RVED_DELI VERY_TO_HUB N N

If the CONFI RVED_DELI VERY_TO_DESI NATI ON(S) setting is used, then complete
message tracking is available and acknowledgments are used to make sure that the
message is delivered reliably to its destination(s).

If the CONFI RVED_DELI VERY_TO_HUB setting is used, then no message tracking is
available and no acknowledgments are sent from recipient trading partners.

Code Example

The following example listing shows how to set the Quality of Service for abusiness
message.

3-12 Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery

Listing 3-11 Setting the Quality of Service for a Business M essage

/1 Relevant inports
i nport com bea. b2b. protocol . xocp. messagi ng. XCCPMessage;
i nport com bea. b2b. protocol . xocp. messagi ng. Qual i t yOf Servi ce;

XOCPMessage nmsg = . .

/1 Create QoS object

QualityOf Service qos = new Qual ity Service();
/1 Specify confirned delivery to destination(s)
gos. set Confi rmedDel i veryToDest i nation(true);
nsg. set QS(qos) ;

Setting the Message Delivery Confirmation Level

To specify thelevel of message delivery confirmation, an X OCP application calls one
of the following methods on the Qual i t yOf Ser vi ce instance, passing the Boolean
tr ue parameter to enable the desired option.

Table 3-3 Message Delivery Confirmation L evels

Durability Level Description

set ConfirmedDel i veryToDestination Specifies whether to confirm message delivery up toits
destination (true) or only up to the intermediary (false).

set ConfirmedDel i ver yToHub Specifies whether to confirm message delivery up to the
intermediary (true) or not (false).

set ConfirmedDel i ver yToRout er Specifies whether to confirm message delivery up to the
XOCP router in the intermediary (true) or only up to the
intermediary (false).

set Confi rmedDel i ver yToAppl i cati on Sets the Quality of Service for this business message,
specifying whether to confirm message delivery up to the
target application (true) or only up to the intermediary
(false).

The following example listing shows how to set the message confirmation level up to
its destination.

Programming Messaging Applications for B2B Integration ~ 3-13

Sending XOCP Business Messages

Listing 3-12 Setting the M essage Delivery Confirmation L evel

gos. set ConfirmedDel i veryToDesti nati on(true);

For more information about confirming message delivery, see “ Step 5: Check the
Delivery Status of the Business Message” on page 3-19.

Setting the Message Timeout

If specified, the message timeout determines how long a sender waits for
acknowledgments. If a business message expires (times out), the recipient does not
processit, and all other processing of it, including acknowledgment processing and
delivery retries, is abandoned.

Timeout Algorithm

3-14

The B2B engine does not synchronize the different clocks used by its components,
which can residein different machines at different locations. Instead, the B2B engine
uses arelative time algorithm.

Based on thisalgorithm, the amount of time remaining before the timeout of abusiness
message (relative to the absol ute time at which the component finished processing the
business message) is specified in the business message when that message is sent to
another component.

In the recelving component, the timeout cal cul ations are based on the amount of time
remaining to process the message, expressed through both an absol ute time (indicating
the arrival of the message) and a relative time (embedded in the message itself). This
algorithm at least ensures that the actual message timeout in the system always occurs
after the original timeout specified by the application.

Message Timeout on the Hub = Message tinmeout specified by the XOCP
application when sending a nessage

Message Tinmeout on the Sending XOCP Application = Message Ti meout
on the Hub + Nx Delta

In these settings:

Programming Messaging Applications for B2B Integration

Step 3: Specify the Quality of Service for Message Delivery

m N= A predefined number in the system, such as 10

m Del t a = Estimated amount of time required for a messageto travel, round-trip,
between the sending trading partner and the intermediary

Setting the Number of Delivery Retry Attempts

If an attempt to deliver a business message fails due to intermittent network failures,
the B2B engine messaging service attempts to retry sending the business message
repeatedly until one of the following occurs:

m The business message is delivered (that is, delivery succeeds).
m The number of retry attemptsis exceeded.
m The message times out.

m The conversation in which the business message is sent either terminates or
times out.

The default values for message timeouts and retry intervals are defined in the
repository in the intermediary and are retrieved by an X OCP application when the
XOCP application session is created. The B2B engine messaging service waits for the
configured interval before attempting to resend a business message.

To override the default retry attempt limit, an XOCP application invokes the
set Ti meout method on the Qual i t yOf Ser vi ce instance, passing the timeout value
(number of milliseconds) as a parameter, as shown in the following listing.

Listing 3-13 Specifying the M essage Timeout

gos. set Ti meout (10000) ;

Programming Messaging Applicationsfor B2B Integration ~ 3-15

3 Sending XOCP Business Messages

Setting the Correlation ID for a Business Message

An XOCP application can specify a unique correlation 1D for a business message so
that it can correlate business messages (such as repliesto arequest) received from
trading partnersin response to a previously sent message (such as arequest). The
correlation 1D accompanies the business message to its destination. The recipient
trading partner can use this value to unambiguously identify the reply message sent
back to the originating trading partner.

To specify the correlation ID, an X OCP application invokes the set Corr el ati onl d
method on the Qual i t yOf Ser vi ce instance, passing astring representing the
correlation 1D as aparameter, as shown in the following listing.

Listing 3-14 Specifying the Corréation ID for a Business M essage

gos. set Correl ati onl d("ABC123");

Step 4: Send the XOCP Business Message

After specifying the recipients of a business message and the Quality of Service, an
XOCP application sends the business message in one of the following ways:

m Synchronous message delivery
m Deferred synchronous message delivery

When sending an XOCP business message with either synchronous or deferred
synchronous delivery, you need to set the following values:

m Thecollaboration agreement D associated with that message

m Theconversation

3-16 Programming Messaging Applications for B2B Integration

Step 4: Send the XOCP Business Message

Synchronous Message Delivery

With synchronous message delivery, the application waits until the message is
delivered to the destinations. The B2B engine messaging service returns control to the
application once the outcome of the activity of sending the message is known. The
application waits until one of the following events occurs:

m Acknowledgments are received from all potential destinations.
m The message times out.
m The conversation in which the message was sent terminates.

To send a business message synchronously, an XOCP application invokes the
following methods on the XCCPMessage instance:

m Theset CAl d method, which sets the collaboration agreement ID

m Theset Conversat i on method, which sets the conversation in which to send
the business message

m ThesendAndWai t method, which specifies the amount of time to wait (in
milliseconds) before timing out. If you specify zero (0), the XOCP application
waits until the business message reaches its respective destinations.

The following example shows how to send an XOCP business message using
synchronous message delivery.

Listing 3-15 Sending a M essage Using Synchronous M essage Delivery

smsgl. set CAl d(cal d);
smsgl. set Conversation(c);
MessageToken t oken = nmsg. sendAndWai t (0) ;

Programming Messaging Applicationsfor B2B Integration ~ 3-17

3

Sending XOCP Business Messages

Deferred Synchronous Message Delivery

3-18

With deferred synchronous message delivery, the B2B engine messaging service
returns control to the X OCP application immediately after a message is sent, and
returns a message token that the XOCP application can use to check the status of
message delivery. Once a message token is accessed, the application waits for a
specified time or until any of the following events occurs:

m Acknowledgments are received from all potential destinations.
m The message times out.
m The conversation in which the message was sent either terminates or times out.

To send a business message asynchronously, an X OCP application invokes the
following methods on the XOCPMessage instance:

m Theset CAl d method, which sets the collaboration agreement ID

m Theset Conver sat i on method, which specifies the conversation in which to
send the business message

m Thesend method, which sends the message

The XOCP application continues executing business logic, and then checks the status
by calling the wai t For ACK method on the MessageToken instance, as shown in the
following listing.

Listing 3-16 Sending a M essage Using Deferred Synchronous M essage Delivery

snsgl. set CAl d(cal d);
snsgl. set Conversation(c);
token = nsg.send();

t oken. wai t For ACK() ;

Thewai t For Ack method blocks until the status of the business message is available
(if no timeout is specified) or until the specified timeout (in milliseconds) is exceeded.

Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message

Step 5: Check the Delivery Status of the

Business Message

Both the send and sendAndWai t methodsinvoked on the XOCPMessage instance
return amessage token that an X OCP application can query to check the delivery status
of the associated business message.

Message Tokens

A message token is an instance of the
com bea. b2b. prot ocol . xocp. nessagi ng. XOCPMessageToken class. A message
token has the following attributes.

Table 3-4 Message Token Information

Attribute

Description

Message ID

Unique ID of the business message.

Exception

If applicable, any exception that occurred before the
business message | eft the sending XOCP application. An
exception is usually returned when the message is sent;
but for deferred synchronous message delivery, the
business message might be kept in an internal send queue
temporarily before being ddlivered to the intermediary.

Elapsed Time

Amount of time taken to deliver the business message to
all destinations. Thisinformation is available only after
acknowledgments have been received from all message
degtinations. Availability is subject to the specified
Quality of Service delivery option.

Delivery Status

Delivery status from recipient destinations. This
information depends on the availability of such
information. Availability issubject to the specified
Quality of Service delivery option.

Programming Messaging Applications for B2B Integration ~ 3-19

3 Sending XOCP Business Messages

Table 3-4 Message Token Information (Continued)

Attribute Description

Number of Recipients (Router) Number of recipient trading partners after the business
message has been processed by the XOCP router in the
intermediary. Availability is subject to the specified
Quality of Service delivery option.

Number of Recipients (Filter) ~ Number of recipient trading partners after the business
message has been processed by the XOCP filter in the
intermediary. Availability is subject to the specified
Quality of Service delivery option.

If the business message is sent using the synchronous send delivery option, then the
message token cannot be used to wait for acknowledgments. I nstead, the send method
returnsimmediately.

Delivery Status Tracking

When a business message reaches its destination (the receive queue of the destination
trading partner node), a system message is returned to the sender (by the B2B engine
messaging service) to acknowledge the message delivery if an acknowledgment is
required by the Quality of Service setting.

An XOCP application can use either of the following methods to obtain the delivery
status:

m get All Del i verySt at us if the business message was sent to multiple recipients
m get Del i verySt at us if the business message was sent to a single recipient

Both methodsreturn aDel i ver ySt at us object, an instance of the
com bea. b2b. pr ot ocol . messagi ng. Del i ver ySt at us class that providesthe
following information:

m Recipient (name of the recipient trading partner or message tracking location)
m Timestamp for the receipt of the business message

m Status code, valid values for which are shown in the following table

3-20 Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message

Table 3-5 Message Delivery Status Codes

Status Code Description

SUCCESS Business message was successfully delivered to the
destination. No errors or exceptions occurred.

FAl LURE An error occurred during delivery of the business message
to the destination.

RETRI ES_EXHAUSTED All delivery retry attempts were exhausted and the
business message was discarded.

TI MEDOUT Timeout occurred before message delivery and the
business message was discarded.

Message Tracking Locations

The B2B engine messaging service provides tracking features that allow
administratorsto check the progress of abusiness message asit movesthrough various
predefined locations en route to its destination. The B2B Console can display status
information as a business message passes through these tracking points.
Administrators can use message tracking information for debugging and identifying
bottlenecks in applications.

Note: Theavailability of message tracking locations depends on the configuration of
the WebL ogic Integration system and the specified Quality of Service for a
given business message, such as
CONFI RVED_DELI VERY_TO DESTI NATI ON(S) . (For a description of Quality
of Service settings, see Table 3-1). For example, if the XOCP application and
the intermediary are collocated on the same node, some locations are not
available. Similarly, some tracking locations may not be available for
synchronous message delivery.

Programming Messaging Applicationsfor B2B Integration ~ 3-21

3 Sending XOCP Business Messages

Diagram of Message Tracking Locations

The following figure shows the message tracking locations in the B2B engine
messaging service.

Figure3-1 Message Tracking L ocations

1N]

)

=

% S

L w

=] =

E\ B2B Intermediary S
Sending z %I Receiving

XQacP & & | XocP
Application ® @ Application
Session % : Session

Receive Receive HUB_ROUTER Receive Receive

Queue Queue Queue Queue
XoCcp
| | i p—— '
Send Queue Send Queue

Send Queue Send Queue

EMABLER_SEND QUELE
HUE_SEND_QUEUE

Description of Message Tracking Locations

The following message tracking locations are potentialy visible in the B2B Console.

Table 3-6 Message Tracking L ocations

L ocation Description of L ocation Activity Performed

ENABLER_SEND_QUEUE Send queuein the XOCP application Message is enqueued for sending.
session of the sending trading partner

HUB_RECEI VE_QUEUE Receivequeueforthesendingtrading Message is enqueued in the receive
partner in the intermediary queue of the sending trading partner

in the intermediary.

3-22 Programming Messaging Applications for B2B Integration

Step 5: Check the Delivery Status of the Business Message

Table 3-6 M essage Tracking L ocations (Continued)

L ocation Description of Location Activity Performed

HUB_ROUTER XOCP router in the intermediary M essage has reached the XOCP
router.

HUB_SEND_QUEUE Send queue of thereceiving trading ~ Messageis enqueued for delivery in

partner in the intermediary

the target trading partner’s queuein
the intermediary.

ENABLER _RECEI VE_QUEUE Receive queue in the XOCP
application session of the receiving
trading partner

M essage is enqueued in the queue of
thelistener thread of thetarget trading
partner’s X OCP application session.

Programming Messaging Applications for B2B Integration ~ 3-23

3 Sending XOCP Business Messages

3-24 Programming Messaging Applications for B2B Integration

CHAPTER

4 Receiving XOCP
Business Messages

The following sections describe how to receive X OCP business messagesin an XOCP
application:

m How XOCP Business Messages Are Received

m Receiving an XOCP Business Message

How XOCP Business Messages Are Received

XOCP applicationsmust implement theonMessage method inthe MessagelLi st ener
interface to receive and process business messages. The signature for the onMessage
method is asfollows.

Listing4-1 Signature for onM essage M ethod

public void onMessage(XOCPMessage nsQ)

Whenever a business message arrives, the XOCP application invokes the onMessage
method, passing the business message as an input parameter. The X OCP application
retrieves the XOCPMessage object containing the business message and then calls
methods on that instance to process the message.

Programming Messaging Applications for B2B Integration 4-1

4

Receiving XOCP Business Messages

If an X OCP application receives multiple business documents in a conversation, the
onMessage implementation first determines the type of document received (such asa
bid request or bid reward), and then processes the document accordingly.

In addition, the onMessage implementation might contain code that constructs and
sends a business message. For example, a conversation participant XOCP application
might implement onMessage to receive arequest, process the request, and then create
and send areply document.

Receiving an XOCP Business Message

Listing 4-2 showshow theonMessage method isimplemented in the MiniTp2Ser vl et
of the Messaging APl sample application. ThisonMessage implementation processes
theinitial business document (arequest) sent fromtheMsniTp1Ser vl et . Itthen creates
and sends areply document back to the conversation initiator.

Thefollowing listing is the onMessage implementation in the MiniTp2Ser vl et of the
Messaging APl sample application.

Listing4-2 onM essage Implementation in MdmTp2Servlet

public void onMessage(XOCPMessage rnsg) {

4-2

try{

QualityOf Service qos = rmnsg. get QS();

Payl oadPart[] payl oad = rmnsg. get Payl oadParts();
Docurment rq = nul | ;

/1l we are using a single part document
if (payload != null && payload.length > 0){
Busi nessDocunent bd = (Busi nessDocunent) payl oad[0] ;
rqg = bd. get Docunent () ;
}
if (rq == null){
t hrow new Exception("Di d not get a request document");

}

Conversati on conv = rmsg. get Conversation();

Programming Messaging Applications for B2B Integration

Receiving an XOCP Business Message

El enent root = rg. get Docurment El ement () ;
String nane = root. get NodeNane();

Text revStr = (Text)root.getFirstChild();

/] create the return document

DOM npl enment ati onl npl domi = new DOM npl enent ati onl npl () ;

Docurent Type dType = dom . creat eDocunment Type("“reply", null, "reply.dtd");
rg = new Docunent | npl (dType);

root = rq.createEl ement("reply");

String sendStr = new String(revStr.getData());

sendStr="Partner2 -- " + sendStr;

root . appendChi | d(rq. creat eText Node(sendStr.toLower Case()));

rg. appendChi |l d(root);

XOCPMessage snsg = new XOCPMessage("");
sneg. addPayl oadPart (new Busi nessDocunent (rq));

sneg. set QS(qos) ;

/1 Tradi ngPartnerFilter filter = new Tradi ngPartnerFilter("Partnerl");
sneg. set Expressi on("//tradi ng-partner[@ane=\"'Partner1\']");

sneg. set CAl d(rmsg. get CAld());

smsg. set Conver sati on(conv) ;

sneg. sendAndWi t (0);

}cat ch(Exception e){
e.printStackTrace();
}
}

The onMessage code performs the following tasks:

1. Retrievesthe Quality of Service setting for the business message by calling the
get QoS method on the XOCPMessage instance.

The application uses the same Quality of Service settings used in the original
message to send the reply message.

2. Retrievesthe payload parts of the business message by calling the
get Payl oadPart s method on the XOCPMessage instance.

3. Retrievesthe first (and only) business document in the Payl oadPart [] array.
4. Extracts the associated XML document by calling the get Document method on

the Busi nessDocument instance.

Programming Messaging Applications for B2B Integration 4-3

4

Receiving XOCP Business Messages

4-4

5. Retrieves and examines parts of the XML document by using methods on the

Document instance. The latter is an instance of the or g. w3c. dom Document
classin the or g. w3c. dompackage published by the World Wide Web
Consortium (www. w3. or g).

An XOCP application can a so use a third-party implementation of that package,
such astheor g. apache. xer ces. dompackage provided by The Apache XML
Project (wwv. apache. or g). This packageis used by the Messaging APl sample
application to create and process business documents.

. Retrieves the data string (" ABCDEFGHI ") embedded in the business document and

convertsit to all lowercase |etters.

. Constructs a reply document and specifies the same Quality of Service setting

specified for the request document.

. Sets the collaboration agreement ID and conversation, and sends the document to

the trading partner called Partner 1.

Programming Messaging Applications for B2B Integration

Index

A
ACTIVE state 1-12
APIs

Messaging APl 1-5
attachments

creating 3-4

B

business messages
about business messages 1-6
creating 3-1

receiving 4-1
sending 3-16
C
com.bea.b2b.protocol .xocp.application
package 1-5

confirmation of message ddlivery 3-13
conversations
coordinators 1-11
initiating 1-16
initiators 1-9
leaving 1-16
participants 1-9
participating in 1-15
registering for arolein 1-14
terminating 1-16
correlation 1D 3-16

creating

attachments 3-4

payload parts 3-2

XML documents 3-3

XOCP business messages 3-4
customer support contact information ix

D

deferred synchronous message delivery 3-18

delivery

attempts 3-15

status, tracking 3-20
documentation, where to find it viii
DROPPED OUT state 1-12

E

enlisting trading partners 1-16
extended properties 3-8

G

global conversation coordinator 1-11

I

implementing interfaces in the Messaging
API classlibrary 2-2

initiating conversations 1-15, 1-16

Programming Messaging Applications for B2B Integration

-1

L

leaving
conversations 1-16
local conversation coordinators 1-12

M
message
timeouts 3-14
tokens 3-19
tracking locations 3-21
message delivery
confirmation 3-13
deferred synchronous 3-18
synchronous 3-17
message envel opes
about message envelopes 1-6
information flow 1-8
Messaging API class library
about 1-5
enlisting trading partners 1-16
implementing interfaces 2-2

P
packages
com.bea.b2b.protocol .xocp.application
1-5
participating in conversations 1-15
payload parts
adding 3-4
creating 3-2
printing product documentation viii

Q
Quality of Service
automatic features 3-9
correlation ID 3-16
message delivery confirmation 3-13
message timeouts 3-14

options 3-10

QualityOf Service class 3-10
retry attempts 3-15

settings 3-10

values 3-10

R
receiving

business messages 4-1
recipients

specifying 3-5

trading partner 3-6

XPath expressions 3-6
REGISTERED state 1-12
registering

for arolein aconversation 1-14
related information viii
retry

attempts 3-15

S
secure messaging 1-13
Secure Sockets Layer (SSL) 1-13
sending
business messages 3-16
states, trading partners 1-12
support
technical ix
synchronous message delivery 3-17

T

terminating conversations 1-16
timeouts

message timeouts 3-14
tracking

delivery status 3-20

-2 Programming Messaging Applications for B2B Integration

trading partners
enlisting 1-16
states 1-12

X

XML documents, creating 3-3
XOCP application sessions
creating 1-13
XOCP applications
about X OCP applications 1-3
application steps 2-1
creating an XOCP application session 1-
13
creating attachments 3-4
creating business messages 3-1
creating XML documents 3-3
creating XOCP Business M essages 3-4
initiating conversations 1-15, 1-16
key tasks 1-13
leaving conversations 1-16
Messaging APl 1-5
registering for arole in aconversation 1-
14
run-time information flow 1-18
specifying atrading partner 3-6
specifying recipients 3-5
specifying XPath expressions 3-6
terminating conversations 1-16
XOCP business messages
components of 1-7
diagram of 1-6
XPath expressions 3-6

Programming Messaging Applications for B2B Integration

-3

-4 Programming Messaging Applications for B2B Integration

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Developing XOCP Applications to Exchange Business Messages
	Introduction
	Key Concepts
	XOCP Applications
	XOCP Application Sessions
	Messaging API Class Library
	XOCP Business Messages and Message Envelopes
	Diagram of an XOCP Business Message
	Components of an XOCP Business Message
	Information Flow for Message Envelopes

	Conversation Initiators and Participants
	Conversation Coordinators
	Global Conversation Coordinator
	Local Conversation Coordinators

	Trading Partner States
	Secure Messaging

	Key Tasks for XOCP Applications
	Creating an XOCP Application Session
	Registering for a Role in a Conversation
	Engaging in Conversations with Trading Partners
	Initiating a Conversation and Sending a Business Message
	Participating in a Conversation
	Leaving a Conversation
	Terminating Conversations

	Shutting Down an XOCP Application Session

	Run-Time Information Flow
	Information Flow Diagram
	Steps in the Information Flow

	2 Programming Steps for XOCP Applications
	Step 1: Import Packages
	Step 2: Implement the MessageListener Interface
	Step 3: Create an XOCP Application Session
	Step 4: Create and Register a Message Listener
	Step 5: Initiate or Participate in a Conversation
	Step 6: Exchange Business Messages
	Step 7: End the Conversation
	Participant Leaves a Conversation
	Initiator Terminates a Conversation

	Step 8: Shut Down the XOCP Application Session

	3 Sending XOCP Business Messages
	Step 1: Create the Business Message
	Importing the Required Packages
	Creating Payload Parts
	Creating XML Documents
	Creating Attachments

	Creating the XOCP Business Message and Adding Payload Parts

	Step 2: Specify the Recipients of the Business Message (Optional)
	Specifying a Particular Trading Partner
	Using XPath Expressions to Specify Message Recipient Criteria
	Specifying Standard Trading Partner Attributes
	Specifying an XOCP XPath Expression Using Extended Properties

	Step 3: Specify the Quality of Service for Message Delivery
	Automatic Quality of Service Features
	QualityOfService Class
	Quality of Service Settings, Options, and Default Values

	Code Example
	Setting the Message Delivery Confirmation Level
	Setting the Message Timeout
	Timeout Algorithm

	Setting the Number of Delivery Retry Attempts
	Setting the Correlation ID for a Business Message

	Step 4: Send the XOCP Business Message
	Synchronous Message Delivery
	Deferred Synchronous Message Delivery

	Step 5: Check the Delivery Status of the Business Message
	Message Tokens
	Delivery Status Tracking
	Message Tracking Locations
	Diagram of Message Tracking Locations
	Description of Message Tracking Locations

	4 Receiving XOCP Business Messages
	How XOCP Business Messages Are Received
	Receiving an XOCP Business Message

	Index

