
BEA WebLogic
Integration™

Deploying BEA WebLogic
Integration Solutions

Release 2.1
Document Date: October 2001
Revised: November 30, 2001

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems

License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable

form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems

License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR

supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT

WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE

RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign

Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA

WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes

E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Deploying BEA WebLogic Integration Solutions

Part Number Date Software Version

N/A Release: October 2001

Revised: November 30, 2001

2.1

Deploying BEA WebLogic Integration Solutions iii

Contents

About This Document
Overview Documents for WebLogic Integration .. ix

What You Need to Know ..x

How to Print this Document .. xi

Related Information... xi

Contact Us! ... xii

Documentation Conventions ... xiii

1. Introduction
Deployment Goals ... 1-1

Deployment Architecture .. 1-2

Key Deployment Resources .. 1-2

WebLogic Server Resources .. 1-3

Clustering .. 1-3

Java Message Service.. 1-4

EJB Pooling and Caching ... 1-4

JDBC Connection Pools.. 1-5

Execution Thread Pool.. 1-6

J2EE Connector Architecture.. 1-6

Business Process Management Resources ... 1-6

Overview of BPM Resources.. 1-7

Types of BPM Resources.. 1-7

BPM Work Sequence.. 1-10

B2B Integration Resources... 1-11

Application Integration Resources ... 1-11

Synchronous Service Invocations ... 1-12

Asynchronous Service Invocations ... 1-12

iv Deploying BEA WebLogic Integration Solutions

Events .. 1-13

Relational Database Management System Resources.............................. 1-14

Hardware, Operating System, and Network Resources 1-14

Roles in Integration Solution Deployment .. 1-15

Deployment Specialists .. 1-15

WebLogic Server Administrators... 1-15

Database Administrators .. 1-16

Key Deployment Tasks ... 1-16

2. Configuring WebLogic Integration Clusters
Understanding WebLogic Integration Clusters ... 2-1

About WebLogic Integration Clusters.. 2-2

Designing a Clustered Deployment ... 2-3

WebLogic Integration Deployment Resources .. 2-3

Resource Groups ... 2-3

Deployment Containers... 2-5

Load Balancing in a WebLogic Integration Cluster................................... 2-8

Load Balancing WebLogic Server in a Cluster................................... 2-9

Load Balancing BPM in a Cluster... 2-9

Load Balancing Application Integration in a Cluster........................ 2-13

Configuring a Clustered Deployment.. 2-13

Configuration Prerequisites .. 2-14

Summary of Basic Configuration Tasks... 2-15

Setting Up a WebLogic Integration Managed Server 2-15

Adding a Managed Server to the Existing Installation 2-16

Installing a Managed Server in a New Location 2-18

Sample Managed Server Startup ... 2-21

Adding Managed Servers and Creating Clusters...................................... 2-22

Creating a Cluster.. 2-22

Creating a Machine ... 2-23

Creating a Server ... 2-23

Assigning an Existing Server to a Machine or Cluster 2-24

Configuring JMS Queues for BPM .. 2-24

Configuring JMS Servers and Queues for Application Integration 2-25

Create a Store and Associate It with a Connection Pool................... 2-25

Deploying BEA WebLogic Integration Solutions v

Create a JMS Server and Associate It with the Store 2-25

Distributing Resources Across Servers or Clusters.................................. 2-26

Distribution Guidelines ... 2-26

Targeting Resources to Clusters ... 2-27

Targeting Resources to Servers... 2-27

Starting the Servers in the Domain .. 2-28

3. Using WebLogic Integration Security
Overview of WebLogic Integration Security .. 3-1

WebLogic Server Security ... 3-2

Business Process Management Security .. 3-2

B2B Integration Security.. 3-3

Application Integration Security .. 3-3

WebLogic Server Security Principals Used in WebLogic Integration.............. 3-4

4. Tuning Performance
Tuning WebLogic Integration Performance.. 4-1

Primary Tuning Resources ... 4-1

Tuning WebLogic Server Performance.. 4-2

Configuring the Pool Size of BPM Event Listener Message-Driven

Beans.. 4-3

Configuring the Number of Application Integration Asynchronous

Request Threads... 4-3

Configuring Other EJB Pool and Cache Sizes.................................... 4-3

Configuring JDBC Connection Pool Sizes ... 4-4

Configuring the Execution Thread Pool ... 4-6

Configuring Resource Connection Pools for J2EE Connector
Architecture Adapters .. 4-7

Configuring Large Message Support for B2B 4-7

Monitoring and Tuning the Java Virtual Machine (JVM) 4-8

Choosing the JVM .. 4-8

Tuning JVM Heap Size... 4-9

Garbage Collection Control on Hotspot JVM..................................... 4-9

Monitoring JVM Heap Usage ... 4-10

Monitoring and Tuning Run-Time Performance... 4-11

Monitoring and Tuning WebLogic Server Performance.......................... 4-11

vi Deploying BEA WebLogic Integration Solutions

Do You Have Enough Threads?.. 4-11

How Many Transactions Are Occurring? ... 4-14

Do You Have Enough JDBC Connections?...................................... 4-15

Monitoring and Tuning BPM Performance.. 4-17

Do You Have Enough Message-Driven Beans? 4-18

How Many of Each Type of Bean Does My System Have? 4-19

Monitoring and Tuning B2B Integration Performance 4-22

Monitoring B2B Activity .. 4-23

Monitoring and Tuning AI Performance .. 4-24

Monitoring and Tuning Application View Connections................... 4-24

Monitoring and Tuning Queues for Asynchronous Services 4-27

Enabling Transactions and Persistence in Asynchronous Service

Request/Response Handling for JMS .. 4-29

Profiling Applications .. 4-29

Tuning Hardware, Operating System, and Network Resources 4-29

Performance Bottlenecks.. 4-30

Tuning Hardware.. 4-30

Tuning the Operating System... 4-31

Configurable TCP Tuning Parameters on Windows NT/2000 4-31

System Monitoring on Windows NT/2000 4-32

Swap Space Configuration for Solaris .. 4-32

Network Tuning for Solaris... 4-32

System Monitoring for Solaris .. 4-32

Tuning Network Performance .. 4-33

Tuning Databases .. 4-33

General Database Tuning Suggestions... 4-34

Opened Cursors ... 4-34

Disk I/O Optimization ... 4-34

Database Sizing and Organization of Table Spaces.......................... 4-35

Checkpointing ... 4-35

Database Compatibility ... 4-35

Database Monitoring ... 4-36

Tuning Oracle Databases.. 4-36

V$ Tables .. 4-36

Initialization Parameters.. 4-36

Deploying BEA WebLogic Integration Solutions vii

Tuning Options for System Administrators 4-39

Tuning Microsoft SQL Server Databases .. 4-43

Tuning Sybase Databases... 4-43

Tuning Cloudscape Databases ... 4-44

Index

viii Deploying BEA WebLogic Integration Solutions

Deploying BEA WebLogic Integration Solutions ix

About This Document

This document describes how to deploy an integration solution using BEA WebLogic

Integration in a production environment. It describes how to deploy an integration

solution that meets goals for high availability, performance, scalability, and security.
It defines key deployment concepts, explains how to deploy integration solutions on a

WebLogic Integration cluster, provides an overview of WebLogic Integration security,
and describes how to tune performance in a production environment.

Overview Documents for WebLogic
Integration

This document is one in a series of four documents that provide an overview of
WebLogic Integration, and that explain how the functionality provided by WebLogic

Integration is used at various stages in the design, development, and deployment of
integrated solutions. Readers should start with these documents to gain a

comprehensive understanding of the functionality provided by WebLogic Integration.
The other documents in the series are:

� Introducing BEA WebLogic Integration—Provides an overview of WebLogic

Integration. It outlines the integration problems today’s e-businesses face, with

their collections of fragmented, heterogeneous business systems. It also

describes the application integration, B2B integration, business process

management, and data integration functionality WebLogic Integration provides

to solve e-business integration problems.

� Learning to Use BEA WebLogic Integration—Describes a sample integrated

application. The sample application deploys a supply chain hub, which connects

with business partners, automates a number of business processes, and integrates

x Deploying BEA WebLogic Integration Solutions

back-end enterprise information systems. Readers learn how to set up and run

the sample application, and understand how the integrated solution is architected

and developed using WebLogic Integration.

� Designing BEA WebLogic Integration Solutions—Describes how to design an

integration solution in the BEA WebLogic Integration environment. It defines

key design concepts, provides a roadmap for determining integration

requirements based on a comprehensive analysis of business and technical
requirements, and describes how to design an integration architecture that meets

design goals for high availability, scalability, and performance.

Once you are familiar with the contents of these overview documents, you can proceed

to the detailed documentation about the functionality provided by WebLogic

Integration.

This document is organized as follows:

� Chapter 1, “Introduction,” introduces the WebLogic Integration deployment
architecture, including descriptions of deployment resources, concepts, tasks,
and roles on a deployment team.

� Chapter 2, “Configuring WebLogic Integration Clusters,” describes how to

deploy an integration solution on a cluster, which is a collection of servers that
are managed as a single unit. It describes key clustering concepts and design

tasks, and it provides instructions for configuring a clustered deployment.

� Chapter 3, “Using WebLogic Integration Security,” describes how to set up a

secure WebLogic Integration deployment.

� Chapter 4, “Tuning Performance,” describes key performance considerations in a

WebLogic Integration deployment and explains how to monitor system

performance. It provides instructions for tuning performance for WebLogic

Integration resources, hardware, operating systems, network connectivity, and

databases.

What You Need to Know

This document is intended primarily for:

How to Print this Document

Deploying BEA WebLogic Integration Solutions xi

� Deployment specialists who coordinate the deployment effort, designing the

deployment topology for integration solutions, and configuring various

WebLogic Integration features on one or more servers.

� System administrators who set up, deploy, and administer WebLogic Integration

in a production environment.

� Database administrators who set up, deploy, and administer database

management systems for WebLogic Integration in a production environment.

For an overview of the WebLogic Integration architecture, see Introducing BEA

WebLogic Integration.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using

the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration

documentation CD. You can open the PDF in Adobe Acrobat Reader and print the

entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free

from the Adobe Web site at http://www.adobe.com/.

Related Information

For information about WebLogic Integration, see the following documents:

� Introducing BEA WebLogic Integration at the following URL:

http://edocs.bea.com/wlintegration/v2_1/overview/index.htm

� Learning to Use BEA WebLogic Integration

http://edocs.bea.com/wlintegration/v2_1/tutorial/index.htm

xii Deploying BEA WebLogic Integration Solutions

� Installing BEA WebLogic Integration

http://edocs.bea.com/wlintegration/v2_1/install/index.htm

� Starting, Stopping, and Customizing BEA WebLogic Integration

http://edocs.bea.com/wlintegration/v2_1/config/index.htm

� BEA WebLogic Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/index.html

Contact Us!

Your feedback on the WebLogic Integration documentation is important to us. Send

us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update

the WebLogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the

BEA WebLogic Integration 2.1 release.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

Deploying BEA WebLogic Integration Solutions xiii

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and

their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE

TEXT
Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

xiv Deploying BEA WebLogic Integration Solutions

{ } Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should

never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Deploying BEA WebLogic Integration Solutions 1-1

CHAPTER

1 Introduction

This document describes how to deploy BEA WebLogic Integration solutions in a

production environment. The following sections introduce key concepts and tasks for
deploying WebLogic Integration in your organization:

� Deployment Goals

� Deployment Architecture

� Key Deployment Resources

� Roles in Integration Solution Deployment

� Key Deployment Tasks

Deployment Goals

When deploying WebLogic Integration solutions, consider the following goals:

� Performance. A deployment must deliver sufficient performance at peak and

off-peak loads.

� Scalability. A deployment must be capable of handling anticipated increases in

loads simply by using additional hardware resources, rather than requiring code

changes.

� Security. A deployment must sufficiently protect data from unauthorized access

or tampering.

You can achieve these goals and others with every WebLogic Integration deployment.

1 Introduction

1-2 Deploying BEA WebLogic Integration Solutions

Deployment Architecture

The following illustration provides an overview of the WebLogic Integration

deployment architecture.

Figure 1-1 WebLogic Integration Deployment Architecture

The following section describes these resources in detail.

Key Deployment Resources

This section provides an overview of resources that can be modified at deployment
time. It contains the following sections:

� WebLogic Server Resources

� Business Process Management Resources

� B2B Integration Resources

� Application Integration Resources

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-3

� Relational Database Management System Resources

� Hardware, Operating System, and Network Resources

WebLogic Server Resources

This section provides general information about BEA WebLogic Server resources that
are most relevant to deploying a WebLogic Integration solution. You can configure

these resources from the WebLogic Server Administration Console or through EJB

deployment descriptors.

WebLogic Server provides many configuration options and tunable settings for
deploying WebLogic Integration solutions in any supported environment. The

following sections describe the configurable WebLogic Server features that are most
relevant to WebLogic Integration deployments:

� Clustering

� Java Message Service

� EJB Pooling and Caching

� JDBC Connection Pools

� Execution Thread Pool

� J2EE Connector Architecture

For more information, see the BEA WebLogic Server documentation at the following

URL:

http://edocs.bea.com/wls/docs61/index.html

Clustering

To increase workload capacity, you can run WebLogic Server on a cluster: a group of
servers that can be managed as a single unit. Clustering provides a deployment
platform that is more scalable than a single server. For more information about
clustering, see Chapter 2, “Configuring WebLogic Integration Clusters.”

1 Introduction

1-4 Deploying BEA WebLogic Integration Solutions

Java Message Service

The WebLogic Java Message Service (JMS) enables Java applications sharing a

messaging system to exchange (create, send, and receive) messages. WebLogic JMS

is based on the Java Message Service Specification version 1.0.2 from Sun

Microsystems, Inc.

JMS servers can be clustered and connection factories can be deployed on multiple

instances of WebLogic Server. In addition, JMS event queues can be configured to

handle workflow notifications and messages, as described in “Business Process

Management Resources” on page 1-6.

For more information about WebLogic JMS, see the following topics:

� “Introduction to WebLogic JMS” in Programming WebLogic JMS at the

following URL:

http://edocs.bea.com/wls/docs61/jms/intro.html

� For more information about configuring and monitoring the JMS, see “Managing

JMS” in the BEA WebLogic Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/jms.html

� “Monitoring JMS” in the “Monitoring Servers” section of “Monitoring a

WebLogic Server Domain” in the BEA WebLogic Server Administration Guide at
the following URL:

http://edocs.bea.com/wls/docs61/adminguide/monitoring.html

EJB Pooling and Caching

In a WebLogic Integration deployment, the number of EJBs affects system throughput.
You can tune the number of EJBs in the system through either the EJB pool or the EJB

cache, depending on the type of EJB:

� For event listener message-driven beans, max-beans-in-free-pool is the

maximum number of listeners that pull work from a queue.

� For stateless session beans, max-beans-in-free-pool is the maximum number
of beans available for work requests.

� For stateful session beans and entity beans, max-beans-in-cache is the number
of beans that can be active at once. A setting that is too low results in

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-5

CacheFullExceptions. A setting that is too high results in excessive memory

consumption.

The WebLogic Server documentation recommends setting the number of execute

threads rather than setting max-beans-in-free-pool. In a WebLogic Integration

environment, however, it is more efficient to control the workload by specifying the

max-beans-in-free-pool setting of the event listener message-driven beans than by

setting the number of execute threads.

For more information about configuring pool and cache sizes, see “Configuring Other
EJB Pool and Cache Sizes” on page 4-3.

JDBC Connection Pools

Java Database Connectivity (JDBC) enables Java applications to access data stored in

SQL databases. To reduce the overhead associated with establishing database

connections, WebLogic JDBC provides connection pools that offer ready-to-use pools

of connections to a DBMS.

JDBC connection pools are used to optimize DBMS connections. A setting that is too

low results in delays while WebLogic Integration waits for connections to become

available. A setting that is too high results in slower DBMS performance.

For more information about WebLogic JDBC connection pools, see the following

sections:

� “Overview of Connection Pools” in “Introduction to WebLogic JDBC” in

Programming WebLogic JDBC at the following URL:

http://edocs.bea.com/wls/docs61/jdbc/intro.html

� “Managing JDBC Connectivity” in the BEA WebLogic Server Administration

Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/jdbc.html

� “Monitoring JDBC Connection Pools” in “Monitoring a WebLogic Server
Domain” in the BEA WebLogic Server Administration Guide at the following

URL:

http://edocs.bea.com/wls/docs61/adminguide/monitoring.html

1 Introduction

1-6 Deploying BEA WebLogic Integration Solutions

Execution Thread Pool

The execution thread pool controls the number of threads that can execute

concurrently on WebLogic Server. A setting that is too low results in sequential
processing and possible deadlocks. A setting that is too high results in excessive

memory consumption and may cause thrashing.

In a WebLogic Integration environment, controlling the number of message-driven

beans is generally the best way to throttle work. The execution thread pool should be

set sufficiently high for all candidate threads to run. In general, a pool size that is too

large is preferable to one that is too small.

For more information about configuring the execution thread pool, see “Configuring

the Execution Thread Pool” on page 4-6.

J2EE Connector Architecture

The WebLogic J2EE Connector Architecture (J2EE-CA) integrates the J2EE Platform

with one or more heterogeneous Enterprise Information Systems (EIS). The WebLogic

JCA is based on the J2EE Connector Specification, Version 1.0, Proposed Final Draft
2, from Sun Microsystems, Inc.

For more information about the WebLogic J2EE-CA, see “Managing the WebLogic

J2EE Connector Architecture” in the BEA WebLogic Server Administration Guide at
the following URL:

http://edocs.bea.com/wls/docs61/adminguide/jconnector.html

Business Process Management Resources

In WebLogic Integration, the Business Process Management (BPM) functionality

handles the definition and execution of business processes. For an introduction to BPM

functionality, see “Business Process Management” in Introducing BEA WebLogic

Integration.

The following sections describe BPM features that are used for the deployment of
WebLogic Integration solutions:

� Overview of BPM Resources

� Types of BPM Resources

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-7

� BPM Work Sequence

BPM resources can be configured to run on a cluster—a group of servers that can be

managed as a single unit. For more information about clustering and BPM, see

Chapter 2, “Configuring WebLogic Integration Clusters.”

Overview of BPM Resources

The following diagram shows BPM resources for a single node in a cluster.

Figure 1-2 BPM EJB Resources

For a description of these resources, see the next section, “Types of BPM Resources.”

Types of BPM Resources

BPM uses WebLogic JMS (described in “Java Message Service” on page 1-4) for
communicating worklist, time, and event notifications, as well as error and audit
messages. BPM client applications send these messages, as XML events, to JMS event
queues. BPM uses event listener message-driven beans to process XML events that
arrive in event queues and deliver them to the running instance of the BPM engine.

You create custom message queues using the WebLogic Server Administration

Console, run the MDBGenerator utility to generate an event listener bean to listen on

the queue, and update the BPM configuration to recognize the new event listener bean.
For more information, see “Configuring JMS Servers and Queues for Application

Integration” on page 2-25.

1 Introduction

1-8 Deploying BEA WebLogic Integration Solutions

The following sections describe the types of resources you can use when configuring

BPM for a clustered environment and when tuning BPM performance:

� Workflow Processor Beans

� Event Listener Message-Driven Beans

� Template Beans

� Template Definition Beans

� Instance Beans

� Event Queue

� Worklist Console

Workflow Processor Beans

Workflow processor beans are stateful session beans that execute workflows, which

proceed from a start/event node to an event/stop node (quiescent state to quiescent
state). Workflow processor beans accept work from event listener beans, Worklist
clients, and, when using sub-workflows, from other workflow processor beans.

Workflow processor beans are instantiated at run time based on the system load, so the

exact number of workflow processor beans at run time is dynamic. The size of the

workflow processor bean pool determines the number of workflow processor beans

that can be active concurrently. If the number of beans exceeds the pool size, then

excess beans are passivated until a container in the pool becomes available. In general,
a pool size that is too large is preferable to one that is too small.

Workflow processor beans are clusterable (they have cluster-aware stubs), so they may

accept work from other nodes in the cluster.

Event Listener Message-Driven Beans

Event listener message-driven beans pull work from the event queue and send work to

the workflow processor beans. Event listener beans wait until the workflow processor
bean either executes to completion or hits a quiescent state before getting new work

from the queue.

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-9

Event listener beans have a configured pool size for unordered messages and they use

a series of single bean pools (named beans with a free pool size of 1) for ordered

messages, as described in “Generating Message-Driven Beans for Multiple Event
Queues” in “Establishing JMS Connections” in Programming BPM Client
Applications.

In combination, these pools determine the amount of parallel workflow execution that
can occur when initiated from events.

Template Beans

Template beans are entity beans that contain the workflow template to be executed. In

general, the size of the template entity bean pool should equal the maximum number
of workflow templates (templates, not instances) to be executed concurrently. In

general, a pool that is too large is preferable to one that is too small. Template entity

beans are clusterable (they have cluster-aware stubs), so they can be used by workflow

processor beans on other nodes in a cluster.

Template Definition Beans

Template definition beans are entity beans that contain the workflow template

definition to execute. In general, the size of the template definition entity bean pool
should equal the maximum number of workflow templates (not workflow instances) to

execute concurrently. In general, a pool that is too large is preferable to one that is too

small. Template definition entity beans are clusterable (they have cluster-aware stubs),
so they can be used by workflow processor beans on other nodes in a cluster.

Instance Beans

Instance beans are entity beans that contain the workflow instance being executed. In

general, the size of the instance entity bean pool should equal the size of the workflow

processor bean pool. There is no advantage to having an instance entity bean pool that
is larger than the workflow processor bean pool. In general, a pool that is too large is

preferable to one that is too small. Instance entity beans are clusterable (they have

cluster-aware stubs), so they can be used by workflow processor beans on other nodes

in a cluster.

1 Introduction

1-10 Deploying BEA WebLogic Integration Solutions

Event Queue

The event queue is a JMS queue that is tied to a specific JMS server. WebLogic

Integration ships with a default event queue in the domain configurations. You can also

create new event queues, as described in “Configuring JMS Queues for BPM” on page

2-24.

Note: To scale BPM functionality in a cluster, you must create new event queues.

Worklist Console

The Worklist client includes the swing-based WebLogic Integration Worklist console,
as well as any user code that creates workflows from the BPM API. It is shown in

Figure 1-2 for context only—it is not a configurable run-time resource.

BPM Work Sequence

The following diagram shows the interaction among BPM EJBs when processing

events.

Figure 1-3 Interaction Between BPM EJBs When Processing Events

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-11

When a BPM event listener bean receives a work request from the event queue

(whether the default queue or a user-defined queue), it creates a workflow processor

bean to work on the request. The workflow processor bean executes the workflow until
the workflow hits a stop or event node. Note that, when a workflow calls another
workflow, a new workflow processor bean is created and the calling workflow does

not exit the workflow processor bean.

The template bean and template definition bean are read at the beginning of workflow

execution. The instance bean is read at the beginning of workflow execution, and

written when workflow execution quiesces at a transaction boundary (such as an event
or done node).

For event-driven workflows, the creation of additional workflow processor beans does

not enable the deployment to do more work. The number of event listener beans limits

the number of workflow instances that can be processed in parallel.

B2B Integration Resources

B2B integration resources are allocated dynamically, as needed; the deployment
cannot be configured ahead of time. For information about resources that can be

configured to accommodate B2B loads, see “Configuration Requirements” in

Administering B2B Integration.

While you cannot configure WebLogic Server resources to configure B2B integration,
you should be aware that some B2B integration resources, such as delivery channels

for hub-and-spoke configurations, affect performance. For more information, see

“XOCP Hub and Spoke Delivery Channels” in “Configuration Requirements” in

Administering B2B Integration.

B2B integration functionality can be deployed on a WebLogic Integration cluster, but
resources must be targeted to a single node in the cluster. For more information about
clustering and B2B integration, see Chapter 2, “Configuring WebLogic Integration

Clusters.”

Application Integration Resources

The following sections describe the types of application integration resources that
WebLogic Integration supports:

1 Introduction

1-12 Deploying BEA WebLogic Integration Solutions

� Synchronous Service Invocations

� Asynchronous Service Invocations

� Events

Application integration can be configured for a group of servers that are managed as a

single unit. For more information about clustering and application integration, see

Chapter 2, “Configuring WebLogic Integration Clusters.”

Synchronous Service Invocations

Use synchronous invocations when the underlying EIS can respond quickly to

requests, or when the client application can afford to wait.

The following figure illustrates the flow of a synchronous service invocation.

Figure 1-4 Synchronous Service Invocations

In a synchronous service invocation, a client (shown here as a workflow processor)
calls the application view EJB (a stateless session bean). The application view calls the

service adapter using a synchronous CCI request. The service adapter is a J2EE-CA

service adapter that actually processes the request.

Note: When a workflow acts as a client to an EIS, the workflow processor is stalled

while it waits for the request to complete, tying up a workflow processor bean

and perhaps an event listener bean as well. To optimize throughput, consider
using asynchronous invocations instead unless the underlying EIS system can

respond quickly to the request.

Asynchronous Service Invocations

The following figure illustrates the flow of an asynchronous service invocation.

Key Deployment Resources

Deploying BEA WebLogic Integration Solutions 1-13

Figure 1-5 Asynchronous Service Invocations

In an asynchronous invocation, a client (shown here as a workflow processor) calls the

application view EJB (a stateless session bean). The application view EJB then queues

the request for later processing and returns control to the client. The asynchronous

request is queued in the async request queue (wlai.myserver.ASYNC_REQUEST in

the default domain). This is a JMS queue in a JMS server.

An async service request processor pulls work from the async request queue, calls the

service adapter, and enqueues the response in the async response queue. The async

service request processor is configured as a pool of JMS listeners in the wlai startup

class. The pool size can be configured by a property in the wlai.properties file

(wlai.numAsyncServiceRequestProcessors). Setting the pool size of the async

service request processor is the best way to control the amount of work that a service

adapter can perform when using asynchronous service invocations.

Events

The following figure illustrates the information flow of an event.

Figure 1-6 Events

1 Introduction

1-14 Deploying BEA WebLogic Integration Solutions

An event adapter generates events and places them in a temporary topic created at run

time. The temporary topic is a JMS Topic associated with a JMS Server. The events

are forwarded to an EngineMgr that is listening on the temporary topics. The

EngineMgr is a JMS listener that is initiated by the EngineMgr EJB.

A subscribing application, such as a workflow, receives the forwarded event on a JMS

queue. In a workflow, the application integration plug-in determines the queue on

which the event should be received for a start or event node—it need not be the default
BPM EventQueue. The workflow processor represents a client application.

Relational Database Management System Resources

WebLogic Integration relies extensively on database resources for handling run-time

operations and ensuring that application data is durable. Database performance is a key

factor in overall WebLogic Integration performance. For more information, see

“Tuning Databases” on page 4-33.

Hardware, Operating System, and Network Resources

Hardware, operating system, and network resources play a crucial role in WebLogic

Integration performance. Deployments must comply with the hardware and software

requirements described in the BEA WebLogic Integration Release Notes. For more

information about configuring these resources for maximum performance in a

production environment, see “Tuning Hardware, Operating System, and Network

Resources” on page 4-29.

Roles in Integration Solution Deployment

Deploying BEA WebLogic Integration Solutions 1-15

Roles in Integration Solution Deployment

The deployment team for an integration solution fulfills the following roles:

� Deployment Specialists

� WebLogic Server Administrators

� Database Administrators

A successful deployment requires input from all of these participants. Note that one

person can assume multiple roles and that not all roles are equally relevant in all
deployments.

Deployment Specialists

Deployment specialists coordinate the deployment effort. They are knowledgeable

about the features and capabilities of the WebLogic Integration product. They provide

expertise in designing the deployment topology for an integration solution, based on

their knowledge of how to configure various WebLogic Integration features on one or
more servers. Deployment specialists have experience in the following areas:

� Resource requirements analysis

� Deployment topology design

� Project management

WebLogic Server Administrators

WebLogic Server administrators provide in-depth technical and operational
knowledge about WebLogic Server deployments in an organization. They have

experience in the following areas:

� Hardware and platform knowledge

1 Introduction

1-16 Deploying BEA WebLogic Integration Solutions

� Experience in managing all aspects of a WebLogic Server deployment, including

installation, configuration, monitoring, security, performance tuning,
troubleshooting, and other administrative tasks

Database Administrators

Database administrators provide in-depth technical and operational knowledge about
database systems deployed in an organization. They have experience in the following

areas:

� Hardware and platform knowledge

� Expertise in managing all aspects of a relational database (RDBMS), including

installation, configuration, monitoring, security, performance tuning,
troubleshooting, and other administrative tasks.

Key Deployment Tasks

Deploying WebLogic Integration may require some or all of the following tasks:

1. Define the goals for your WebLogic Integration deployment, as described in

“Deployment Goals” on page 1-1.

2. Become familiar with the WebLogic Integration resources that you can use to

configure a deployment, as described in “Key Deployment Resources” on page

1-2.

3. To deploy WebLogic Integration on a cluster, you must first design and then

configure the cluster, as described in Chapter 2, “Configuring WebLogic

Integration Clusters.”

4. Set up security for your WebLogic Integration deployment, as described in

Chapter 3, “Using WebLogic Integration Security.”

5. Once your WebLogic Integration deployment is up and running, you can

optimize overall system performance, as described in Chapter 4, “Tuning

Performance.”

Deploying BEA WebLogic Integration Solutions 2-1

CHAPTER

2 Configuring WebLogic
Integration Clusters

The following sections describe how to configure a clustered deployment for
WebLogic Integration:

� Understanding WebLogic Integration Clusters

� Designing a Clustered Deployment

� Configuring a Clustered Deployment

Understanding WebLogic Integration
Clusters

The following sections describe clustering in WebLogic Integration deployments:

� About WebLogic Integration Clusters

� WebLogic Integration Deployment Resources

� Load Balancing in a WebLogic Integration Cluster

2 Configuring WebLogic Integration Clusters

2-2 Deploying BEA WebLogic Integration Solutions

About WebLogic Integration Clusters

Clustering allows WebLogic Integration to run on a group of servers that can be

managed as a single unit. In a clustered environment, multiple machines share the

processing load. WebLogic Integration provides load balancing so that resource

requests are distributed proportionately across all machines. A WebLogic Integration

deployment can use clustering and load balancing to improve scalability by

distributing the workload across nodes. Clustering provides a deployment platform

that is more scalable than a single server.

A WebLogic Server domain consists of one and only one administration server, and

one or more managed servers. The managed servers in a domain can be organized into

clusters. When you configure WebLogic Integration clusterable resources, you can

target selected servers or selected clusters. Targeting clusters provides the most
flexibility because servers can be added to them, dynamically, to increase capacity.

The topics in this section provide the information you need to configure WebLogic

Integration in a clustered environment. Although some background information about
how WebLogic Server supports clustering is provided, the focus is on procedures that
are specific to configuring WebLogic Integration for a clustered environment.

Before proceeding, we recommend that you review the following sections of the

WebLogic Server documentation to obtain a more in-depth understanding of
clustering:

� “Using WebLogic Server Clusters” at the following URL:

http://edocs.bea.com/wls/docs61/cluster/index.html

� “Configuring WebLogic Servers and Clusters” in the BEA WebLogic Server

Administration Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/config.html

� “WebLogic Server Clusters and Scalability” in “Tuning WebLogic Server” in

BEA WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs61/perform/WLSTuning.html

Designing a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-3

Designing a Clustered Deployment

The following sections provide the information you need to design a clustered

deployment:

� WebLogic Integration Deployment Resources

� Load Balancing in a WebLogic Integration Cluster

Before you begin designing the architecture for your clustered domain, you need to

learn how WebLogic Server clusters operate. For general information, see Using

WebLogic Server Clusters in the WebLogic Server documentation set, at the following

URL:

http://edocs.bea.com/wls/docs61/cluster/index.html

For details about basic, multi-tiered, and proxy architectures that are recommended,
see “Planning WebLogic Server Clusters” in Using WebLogic Server Clusters. To

learn how WebLogic Integration resources can be partitioned and distributed within a

clustered domain, see “WebLogic Integration Deployment Resources” on page 2-3.

WebLogic Integration Deployment Resources

The following sections describe WebLogic Integration resources that can be deployed

in a cluster:

� Resource Groups

� Deployment Containers

Resource Groups

Resource groups are collections of related deployment resources that are categorized

for clustering purposes. Each resource in a resource group must be targeted to the same

machine.

2 Configuring WebLogic Integration Clusters

2-4 Deploying BEA WebLogic Integration Solutions

Types of Resource Groups

There are two types of resource groups:

� Clusterable—Located on one or more servers in a cluster. Certain resources

must be located on all servers in the cluster.

� Single Node—Targeted to one and only one server in a cluster.

List of Resource Groups

The following table describes the resource groups supported by WebLogic Integration.

Table 2-1 Resource Groups for WebLogic Integration Resources

Group Name Description Type of Resource Group

b2b B2B integration components. Single node

Must reside on the same node as

bpm-singleNode components.

bpm-singleNode BPM master components. Single node

bpm-queue-default BPM default event queue and

message-driven beans.
Single node

bpm-queue-xxx BPM user-defined event queue and

message-driven beans.
Single node

While multiple user-defined queues and

message-driven beans can exist, each one

can be targeted to only a single node in a

cluster.

bpm-clusterable BPM clusterable components. Clusterable

Must reside on any bpm-singleNode and

any bpm-queue-default or bpm-queue-xxx

node.

wlai-admin Application integration administration

components.
Single node

wlai-clusterable Application integration clusterable

components.
Clusterable

Designing a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-5

Deployment Containers

The table provided in this section describes the WebLogic Integration deployment
resources. These resources can be viewed and modified in the WebLogic Server
Administration Console. The table provides the following information for each

package or service:

� Resource Group—Arbitrary designation for a set of related resources that must
be deployed together.

� All singleNode resources must be targeted to one, and only one, server. They

cannot be clustered.

� Clusterable resources can be targeted to one or more servers, but all members

of a group must be targeted to the same server or set of servers.

wlai-event-yyy Application integration event adapter.

Note: Event and service adapters reside

in a single EAR file but they are

deployed separately and are listed

as separate resources in the

WebLogic Server Administration

Console.

Depends on the adapter

For example, the mail and DBMS sample

event adapters, as well as the binary file

event adapter, are all single node. For more

information, see the documentation for the

adapter you are using.

wlai-service-yyy Application integration service adapter.

Note: Event and service adapters reside

in a single EAR file but they are

deployed separately and are listed

as separate resources in the

WebLogic Server Administration

Console.

Depends on the adapter

For example, the mail and DBMS sample

event adapters, as well as the binary file

event adapter, are all single node. For more

information, see the documentation for the

adapter you are using.

wlai-queue-default Default queue for application integration. Single node

wlai-queue-zzz Application integration queue for a

specific server.
Single node

wli-clusterable Resources that must be located on all
servers in the domain.

Clusterable

Table 2-1 Resource Groups for WebLogic Integration Resources (Continued)

Group Name Description Type of Resource Group

2 Configuring WebLogic Integration Clusters

2-6 Deploying BEA WebLogic Integration Solutions

� Resource Name—Name of an individual package or service as it is shown in the

WebLogic Server Console. Some resource names contain abbreviations that are a

legacy from prior WebLogic Integration releases:

� wlc corresponds to B2B integration

� wlpi corresponds to BPM

� wlai corresponds to application integration

� Container—Route through the WebLogic Server Administration Console

navigation tree to the specified package or service.

Note: Names shown in italic represent user-defined packages or resource groups that
are not part of the default domain.

Table 2-2 WebLogic Integration Deployment Containers

Resource Group Resource Name Container

b2b Wlcconsole Deployments→Application→WLC console

WLCShutdown Deployments→Shutdown

WLCStartup Deployments→Startup

WLCHub.DS Services→JMS→Tx Data Sources

bpm-singleNode Time processor Deployments→Application→WLPI Application

Wlpi-master-ejb Deployments→Application→WLPI Application

WLPIInit Deployments→Startup

bpm-queue-default Wlpi-mdb Deployments→Application→WLPI Application

JMSServer-0 Services→JMS/Servers

bpm-queue-xxx Wlpi-mdb-xxx Deployments→Application→WLPI Application

Wlpi-queue-xxx Deployments→Application→WLPI Application

Designing a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-7

bpm-clusterable Wlc-wlpi-plug-in Deployments→Application→WLPI Application

Respository-ejb Deployments→Application→WLPI Application

Wlpi-ejb Deployments→Application→WLPI Application

Wlxtejb Deployments→Application→WLPI Application

Wlxtpi Deployments→Application→WLPI Application

WLXTPlugin Deployments→Application→WLPI Application

WLPIFactory Services→JMS→Connection Factories

WLPIQueueFactory Services→JMS→Connection Factories

TxDataSource Services→JMS→Tx Data Sources

wlai-admin Wlai-admin-ejb Deployments→Application→WLAI Application

wlai-clusterable Wlai Deployments→Application→WLAI Application

Wlai-ejb-server Deployments→Application→WLAI Application

WlaiStartup Deployments→Startup

wlai-event-yyy yyyEventRouter Deployments→Application→yyyEventRouter

Note: Event and service adapters reside in a single

EAR file but they are deployed separately and

are listed as separate resources in the

WebLogic Server Administration Console.

Table 2-2 WebLogic Integration Deployment Containers (Continued)

Resource Group Resource Name Container

2 Configuring WebLogic Integration Clusters

2-8 Deploying BEA WebLogic Integration Solutions

Load Balancing in a WebLogic Integration Cluster

Load balancing distributes the workload proportionally among all the servers in a

cluster so that each server can each run at full capacity. The following sections describe

load balancing in a WebLogic Integration cluster:

� Load Balancing WebLogic Server in a Cluster

� Load Balancing BPM in a Cluster

� Load Balancing Application Integration in a Cluster

wlai-service-yyy BEA . . . yyy . . . ADK_RAR Deployments→Application→ BEA . . . yyy . . .
ADK_RAR

Note: Event and service adapters reside in a single

EAR file but they are deployed separately and

are listed as separate resources in the

WebLogic Server Administration Console.

BEA . . . yyy . . . ADK_WEB Deployments→Application→ BEA . . . yyy . . .
ADK_WEB

wlai-queue-default Wlai_JMSServer Services→JMS→Servers

wlai-queue-zzz WLAI_zzz_ JMSServer Services→JMS→Servers

wli-clusterable Mailsession Java mail sessions used for the BPM Send E-mail
action.

JDBCConnectionPool Used for all database connections in WebLogic

Integration.

JMSConnectionFactory Used for all JMS connections in WebLogic Integration.

JDBCTtxDataSource Transaction coordinator pool used for all transactions in

WebLogic Integration.

Table 2-2 WebLogic Integration Deployment Containers (Continued)

Resource Group Resource Name Container

Designing a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-9

Load Balancing WebLogic Server in a Cluster

WebLogic Server supports load balancing for HTTP session states and clustered

objects. For more information, see Using WebLogic Server Clusters in the WebLogic

Server documentation set, at the following URL:

http://edocs.bea.com/wls/docs61/cluster/index.html

Load Balancing BPM in a Cluster

BPM workflows require an event queue for processing event-based workflows. For
more information, see “Business Process Management Resources” on page 1-6.

Event Queues and Associated Pools

Two types of pools are associated with each BPM event queue:

� Pool of unordered event listener message-driven beans

� Set of ordered event listener message-driven beans that select order keys from

the JMS queue

The following figure illustrates an event queue and the pools associated with it.

2 Configuring WebLogic Integration Clusters

2-10 Deploying BEA WebLogic Integration Solutions

Figure 2-1 Event Queue and Associated Pools

The unordered event listener message-driven beans process messages in a

nondeterministic order. Although messages are read in first-in, first-out (FIFO) order,
messages can be processed out of order after they are read, depending on thread

scheduling and the load at the time they are processed.

The ordered event listener message-driven beans guarantee that, for a particular order
key (WLPIOrderKey), messages are processed in an ordered sequence. To achieve this,
a single event listener message-driven bean in a cluster must be configured to process

messages for WLPIOrderKey.

The message producer is responsible for delivering the messages in the queue in the

correct order.

Note: WLPIOrderKey is a custom JMS property that BPM uses. You can set this

property in the WebLogic Integration Studio or you can set it
programmatically. If you are using messages between workflows, you can set
WLPIOrderKey in the post-XML event dialog box. For more information, see

“Posting an XML Message to a JMS Topic or Queue” in “Defining Actions”

in Using the WebLogic Integration Studio.

Designing a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-11

A single jar file contains both ordered and unordered event listener message-driven

beans for a particular queue. The WebLogic Integration installation provides the

wli-mdb-ejb.jar file to be read from the default EventQueue. To ensure that the

ordered event listener message-driven beans preserve processing order, this jar file

must be targeted to one—and only one—server in a cluster.

Creating New Pools

If you have sufficient processing power on a single server, you can increase the pool
size for event listener message-driven beans in the wli-mdb-ejb.jar file. If you want
to put more event listener message-driven beans on another server, you need to create

a new jar file and a new queue.

The pool size and range of WLPIOrderKeys can be changed for wli-mdb-ejb.jar,
but they cannot be targeted to another server. To add event listener message-driven

beans on another server, you must create a new pool using the MDBGenerator utility.
For more information, see “Configuring a Custom Java Message Service Queue” in

“Customizing WebLogic Integration” in Starting, Stopping, and Customizing BEA

WebLogic Integration.

The following diagram illustrates the default queue (EventQueue) on Server-1 and a

user-defined queue (EventQueue-2) on Server-2. The new pool targets a different
queue (EventQueue-2), and that queue must be shared with another event listener
message-driven bean pool. In this diagram, the custom-generated event listener
message-driven beans pull work from the user-defined event queue.

2 Configuring WebLogic Integration Clusters

2-12 Deploying BEA WebLogic Integration Solutions

Figure 2-2 Event Listener Message-Driven Beans on Another Server

An application must send work to the user-defined queue in order to use the capacity

of the custom generated event listener message-driven beans.

Requirements for Load Balancing BPM Functionality

When load balancing BPM functionality in a WebLogic Integration cluster, you must
comply with the following requirements:

� A jar file containing the ordered and unordered event listener message-driven

beans for a particular JMS queue must be targeted to one and only one server in

a cluster. By default, WebLogic Integration provides the wlpi-mdb-ejb.jar

file to pull work from com.bea.wlpi.EventQueue.

Note: This also applies to the validating queue when using XML validation. The

default validating queue is com.bea.wlpi.ValidatingEventQueue.

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-13

� Use the MDBGenerator utility to create a new jar file. The new jar file must be

associated with a new and unique JMS queue.

� Applications must be aware of the new JMS queue in order to trigger work on

the new event listener message-driven beans.

Load Balancing Application Integration in a Cluster

Application integration does not require partitioning of work within a cluster. It is

possible to configure a completely homogenous cluster (that is, one in which all
resources have the same server targets), subject to any constraints in the adapters

themselves.

In contrast to BPM functionality, it is possible to load balance application integration

functionality in a cluster using the default JMS queues and servers. New JMS servers

are needed only when the default JMS server is saturated.

Configuring a Clustered Deployment

The following sections describe how to configure a clustered WebLogic Integration

deployment:

� Configuration Prerequisites

� Summary of Basic Configuration Tasks

� Setting Up a WebLogic Integration Managed Server

� Adding Managed Servers and Creating Clusters

� Configuring JMS Queues for BPM

� Configuring JMS Servers and Queues for Application Integration

� Distributing Resources Across Servers or Clusters

� Starting the Servers in the Domain

� Load Balancing in a WebLogic Integration Cluster

2 Configuring WebLogic Integration Clusters

2-14 Deploying BEA WebLogic Integration Solutions

Configuration Prerequisites

Before configuring WebLogic Integration to run in a clustered environment, you must:

� Have a WebLogic Server cluster license for each installation required.

To use WebLogic Server in a clustered configuration, you must have a special
cluster license. Contact your BEA representative for information about obtaining

a cluster license.

� Have a static IP address for each participant in the clustered domain.

Each WebLogic Server instance requires a unique, static IP address. If multiple

servers are run on a single machine, that machine must be configured as a

multihomed server. Obtain an IP address for each WebLogic Server instance to

be started on each machine in the cluster.

� Have a multicast address for each cluster.

Clustered servers communicate among themselves over multicast and must share

a single, exclusive multicast address.

� Assign the listen port that will be used by all servers in the domain.

All servers in a domain must be configured with the same listen port. If you

have already assigned a listen port to the administration server, you must assign

the same port to each managed server.

Note: There are additional requirements when the architecture of the domain

includes one or more firewalls. For more information, see Using WebLogic

Server Clusters in the WebLogic Server documentation set, at the following

URL:

http://edocs.bea.com/wls/docs61/cluster/index.html

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-15

Summary of Basic Configuration Tasks

Configuring WebLogic Integration in a clustered environment involves the following

basic tasks:

1. Planning the architecture of the clustered domain, as described in “Designing a

Clustered Deployment” on page 2-3.

2. Setting up the required WebLogic Integration managed servers, as described in

“Setting Up a WebLogic Integration Managed Server” on page 2-15.

3. Adding a definition for each managed server to the domain configuration and

assigning all managed servers to clusters, as described in “Adding Managed

Servers and Creating Clusters” on page 2-22.

4. Deploying application resources across servers or clusters, as described in

“Distributing Resources Across Servers or Clusters” on page 2-26.

The instructions are based on two assumptions:

� You have configured an Oracle, Microsoft SQL, or Sybase database for an

existing domain.

� You will add servers to that domain.

Setting Up a WebLogic Integration Managed Server

The following sections provide instructions for setting up a managed server in two

situations:

� Adding a Managed Server to the Existing Installation

� Installing a Managed Server in a New Location

The information you need for both of these procedures is provided in the following

sections. For simplicity, it is assumed that you are adding a managed server to one of
the preconfigured domains. If you have created your own domain, the process is

similar.

2 Configuring WebLogic Integration Clusters

2-16 Deploying BEA WebLogic Integration Solutions

Adding a Managed Server to the Existing Installation

Before multiple instances of WebLogic Server can be supported on the same machine,
the machine must be configured as a multihomed host. If you meet this requirement,
you can add a managed server to a domain in the existing installation, simply by adding

a command file that starts the managed server to the domain directory.

Note: If you are adding a managed server to a domain in which adapters, applications

views, and the application integration plug-in are deployed, then the

WLI_HOME\config\domain_name directory must also contain the following:

WLI_HOME\config\domain_name\wlai\wlai.managed_svrname.properties
WLI_HOME\config\domain_name\wlai\deploy*.rar

where *.rar represents any adapters that are available for deployment.

For example, to add a managed server to the WebLogic Integration

(config\wlidomain) domain in the existing installation:

1. Make a copy of the start server command file by entering the command that is

appropriate for your platform:

� Windows:

copy WLI_HOME\config\wlidomain\startWeblogic.cmd
WLI_HOME\config\wlidomain\startManagedWeblogic.cmd

� UNIX:

cp WLI_HOME/config/wlidomain/startWeblogic.sh
WLI_HOME/config/wlidomain/startManagedWeblogic.sh

2. Open the new startManagedWeblogic command file in your preferred text
editor.

3. Add the following option to the Java command that starts the server:

-Dweblogic.management.server=virtualhost:7001

Here, virtualhost is the IP address or DNS name assigned to the

administration server on the machine, and 7001 is the assigned listen port.

4. Edit the -Dweblogic.Name option to assign a name to the managed server as

follows:

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-17

-Dweblogic.Name=managed_svrname

For an example of a modified server start command file, see “Sample Managed

Server Startup” on page 2-21.

5. Save and close the file.

6. If you are adding a managed server to a domain in which adapters, applications

views, and the application integration plug-in are deployed, then complete the

following steps:

a. Go to the WLI_HOME\config\wlidomain\wlai directory on a Windows

system, or to the equivalent on a Unix system.

b. Copy the wlai.properties file to wlai.managed_svrname.properties.

Here, managed_svrname is the name of the managed server.

c. Open the new wlai.managed_svrname.properties file in your preferred

text editor.

d. Add the following parameters to the file:

wlai.admin.hostNameandPort=virtualhost:7001
wlai.admin.hostUserID=user
wlai.admin.Password=passwd
wlai.numAsyncServiceRequestProcessors=4

Here, virtualhost is the IP address or DNS name of the administration

server, 7001 is the port assigned to the wlidomain administration server,
user is a valid user ID (typically system), and passwd is a valid password

for the user.

e. Modify the following properties:

wlai.jms.serverName=managedsvr_jmsserver
wlai.jms.connectionFactoryJNDIName=connection_factory_name

Here, managedsvr_jmsserver is the JMS server for the managed server,
and connection_factory_name is the name of the connection factory, if a

separate JMS connection factory is required for the server.

f. Save and close the file.

g. Add the following line to the fileRealm.properties file:

acl.access.weblogic.admin.mbean=everyone

2 Configuring WebLogic Integration Clusters

2-18 Deploying BEA WebLogic Integration Solutions

Note: In the startManagedWeblogic file that results from the preceding procedure,
some unnecessary environment variables are set, but they do not interfere with

the execution of the command.

Before you can start the new managed server, you must add it to the configuration for
the domain, as described in “Adding Managed Servers and Creating Clusters” on page

2-22.

Installing a Managed Server in a New Location

The simplest way to set up a managed server in a new location is to:

� Install WebLogic Server and WebLogic Integration in the new location.

� Modify the contents of a preconfigured domain directory to serve as the start
location for the managed server.

At a minimum, you must include the following in the domain directory for the

managed server:

� A command file to start the managed server must be located in the

WLI_HOME\config\domain_name directory in the new installation.

For example, the pathname for your start command file might be

WLI_HOME\config\ABC_Systems\startWeblogic.

� The setWliDomainData command file

Each preconfigured domain contains a SetXxxDomainData command. This file

is specific to the preconfigured domains, the domain classpath, and other
variables. This file might not exist if you have created your own domain.

� The value of domain_name must be the same as the domain_name value for all
other servers in the domain.

If you are adding a managed server to a domain in which adapters, application views,
and the application integration plug-in are deployed, the config\domain_name

directory must also contain the following:

WLI_HOME\config\domain_name\wlai\wlai.managed_svrname.properties
WLI_HOME\config\domain_name\wlai\deploy*.rar

where *.rar represents any adapters that are available for deployment.

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-19

For example, to add a managed server to the WebLogic Integration

(WLI_HOME\config\wlidomain) domain:

1. Install WebLogic Server and WebLogic Integration on the machine that will host
the managed server.

2. Delete any unnecessary files and directories from the

WLI_HOME\config\wlidomain directory.

Note: The following files are necessary and must not be deleted:

� WLI_HOME\config\wlidomain\startWeblogic.cmd or
startWebLogic.sh

� WLI_HOME\config\wlidomain\SetWliDomainData.cmd or
SetWliDomainData.sh

� WLI_HOME\config\wlidomain\wlai\wlai.properties

� WLI_HOME\config\wlidomain\wlai\deploy\MyResourceAdapter*.rar

Here, MyResourceAdapter*.rar represents any resource adapters that are

available for deployment.

3. Open the startWebLogic command file in your preferred text editor.

4. Add the following option to the Java command that starts the server:

-Dweblogic.management.server=host:7001

Here, host is the IP address or DNS name assigned to the administration server,
and 7001 is the assigned listen port.

5. Edit the -Dweblogic.Name option to assign a name to the managed server, as

follows:

-Dweblogic.Name=managed_svrname

For an example of a modified server start command file, see “Sample Managed

Server Startup” on page 2-21.

6. Save the file as startManagedWeblogic and close it. Retain the original
startWeblogic command file. Once you successfully start the managed server
using the startManagedWeblogic command file, you can delete the original.

7. Open the SetWliDomainData command file.

8. Locate the following lines:

2 Configuring WebLogic Integration Clusters

2-20 Deploying BEA WebLogic Integration Solutions

REM load database specific data
call %WLI_HOME%\config\wlidomain\setdbdata || goto error

9. Comment out the following line:

REM call %WLI_HOME%\config\wlidomain\setdbdata || goto error

10. Save and close the file.

11. If you are adding a managed server to a domain in which adapters, applications

views, and the application integration plug-in are deployed, then complete the

following steps:

a. Rename the WLI_HOME\config\wlidomain\wlai\wlai.properties file as

WLI_HOME\config\wlidomain\wlai\wlai.managed_svrname.properti

es.

Here, managed_svrname is the name of the managed server.

b. Open the wlai.managed_svrname.properties file in your preferred text
editor.

c. Add the following parameters to the file:

wlai.admin.hostNameandPort=host:7001
wlai.admin.hostUserID=user
wlai.admin.Password=passwd
wlai.numAsyncServiceRequestProcessors=4

Here, host is the IP address or DNS name of the administration server, 7001

is the port assigned to the wlidomain administration server, user is a valid

user ID (typically system), and passwd is a valid password for the user.

d. Modify the following properties:

wlai.jms.serverName=managedsvr_jmsserver
wlai.jms.connectionFactoryJNDIName=connection_factory_name

Here, managedsvr_jmsserver is the JMS server for the managed server,
and connection_factory_name is the name of the connection factory, if
you require a separate connection factory for this server.

e. Save and close the file.

f. Add the following line to the fileRealm.properties file:

acl.access.weblogic.admin.mbean=everyone

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-21

Note: In the startManagedWeblogic file that results from the preceding procedure,
some unnecessary environment variables are set, but they do not interfere with

the execution of the command.

Before you can start the new managed server, you must add it to the configuration for
the domain, as described in “Adding Managed Servers and Creating Clusters” on page

2-22.

Sample Managed Server Startup

The following code listing shows an example of the start server command for a

wlidomain managed server. The modifications from the

WLI_HOME\config\wlidomain\startWebLogic command for the default
administration server are shown in bold. This code listing represents a single

command. It is shown here on multiple lines for the sake of readability. In your
command file, however, it is entered as one physical line.

Listing 2-1 Start Server Command for a wlidomain Managed Server

%JAVA_HOME%\bin\java %DB_JVMARGS% -Xmx256m -classpath %SVRCP%
-Dbea.home=%BEA_HOME% -Dweblogic.home=%WL_HOME%
-Dweblogic.system.home=%WLI_HOME% -Dweblogic.Domain=wlidomain
-Dweblogic.management.password=security
-Dweblogic.management.server=172.20.50.250:7001
-Dweblogic.Name=managed1 -Dweblogic.RootDirectory=%WLI_HOME%
-Djava.security.policy=%WL_HOME%\lib\weblogic.policy
-Dweblogic.management.discover=false weblogic.Server

2 Configuring WebLogic Integration Clusters

2-22 Deploying BEA WebLogic Integration Solutions

Adding Managed Servers and Creating Clusters

When you add a managed server to a domain, you perform the following tasks:

1. Create the required clusters according to the instructions in “Creating a Cluster” on

page 2-22.

2. If the domain includes more than one machine, create a machine definition for
each machine that runs a server instance. See “Creating a Machine” on page

2-23. Any servers that existed before you created machines must be assigned to a

machine. See “Assigning an Existing Server to a Machine or Cluster” on page

2-24.

3. Create the required servers according to the instructions in “Creating a Server” on

page 2-23. As part of each server definition, assign the server to both a cluster
and a machine.

All tasks are performed in the WebLogic Server Administration Console. To start the

console, see “Starting the WebLogic Server Administration Console” in “WebLogic

Integration Administration and Design Tools” in Starting, Stopping, and Customizing

BEA WebLogic Integration.

Creating a Cluster

To create a new cluster:

1. In the navigation tree, select Clusters to display the Clusters page.

2. Click the Configure a New Cluster link.

3. On the General tab, enter values for the Name (arbitrary identifier) and Cluster
Address (multicast address) fields.

Note: The valid range of IP addresses for multicast is between 224.0.0.1 and

239.255.255.255. The address must not be used by any other application in

the subnet.

4. Click Create.

5. Set other options as required, and click Apply when finished.

The defaults are usually acceptable for an initial configuration.

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-23

Creating a Machine

To create a machine:

1. In the navigation tree, select Machines.

2. Click the Configure a New Machine link.

3. Enter the name that will be used to identify the machine. Any arbitrary identifier
can be used.

4. Click Create.

Creating a Server

To create a server:

1. In the navigation tree, select Servers.

2. Click the Configure a New Server link.

3. Enter values in the Name, Listen Address (server instance IP address) fields and,
if applicable, in the external DNS name field.

The value you specify for the external DNS name can be a host name or a

virtual host name for a multihomed machine.

Note: The value of Name must match the name assigned, in the start command,
to the managed server. See “Setting Up a WebLogic Integration Managed

Server” on page 2-15.

4. Select the machine name from the Machine drop-down list.

5. Click Create.

6. Select the Cluster tab.

7. Select the appropriate cluster from the Cluster drop-down list.

2 Configuring WebLogic Integration Clusters

2-24 Deploying BEA WebLogic Integration Solutions

Assigning an Existing Server to a Machine or Cluster

To assign an existing server to a machine:

1. In the navigation tree, select the name of the machine to which you will assign the

server.

2. Select the Servers tab.

3. Move the server or servers to be assigned to the machine from the Available list
to the Chosen list.

4. Click Apply.

To assign an existing server to a cluster:

1. In the navigation tree, select the name of the cluster to which you will assign the

server.

2. Select the Servers tab.

3. Move the server or servers to be assigned to the machine from the Available list
to the Chosen list.

4. Click Apply.

Configuring JMS Queues for BPM

After adding servers, you need to add JMS queues for BPM. The BPM event listener
message-driven bean pool associated with a particular JMS queue must be collocated

with the queue’s JMS server. For instructions, see “Configuring a Custom Java

Message Service Queue” in “Customizing WebLogic Integration” in Starting,
Stopping, and Customizing BEA WebLogic Integration.

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-25

Configuring JMS Servers and Queues for Application
Integration

This section describes how to configure JMS servers and queues for application

integration in a clustered environment. To determine how many JMS servers are

required, see “Load Balancing Application Integration in a Cluster” on page 2-13.

Create a Store and Associate It with a Connection Pool

To create a store and associate it with a connection pool, complete the following steps:

1. In the navigation tree, go to the Services→JMS→Stores node and select Create a

new JMSJDBCStore. The Configuration tab should be selected by default.

2. In the Name field, enter the name by which you want to identify this store.

Every JMS server has its own JMSJDBCStore. Every managed server has its

own JMS Server. For instructions on creating such a server, see “Create a JMS

Server and Associate It with the Store” on page 2-25.

3. In the Connection Pool field, select the connection pool that you want to use.

4. In the Prefix Name field, enter the prefix to be appended (for example, WLAI).

5. Click Create.

Create a JMS Server and Associate It with the Store

To create a JMS server and associate it with a JMSJDBCStore, complete the following

steps:

1. In the navigation tree, go to the Services→JMS→Servers node and select Create a

new JMSServer.

2. In the Name field, enter a name by which you want to identify this JMS server.

For JMS servers for BPM, the JMS server name must match the name used

when generating the message-driven bean jar file using the MDBGenerator
utility.

3. In the Store field, select the JMSJDBCStore with which you want to associate

this JMS server.

2 Configuring WebLogic Integration Clusters

2-26 Deploying BEA WebLogic Integration Solutions

4. In the Temporary Template field, select WLAI_TemporaryTopicTemplate.

5. Click Create.

Distributing Resources Across Servers or Clusters

After you set up the managed servers to be included in the domain, add definitions for
those servers to the configuration, and assign the servers to clusters as required, you

are ready to modify the WebLogic Integration resource configuration.

Distribution Guidelines

Before proceeding with this step, make sure you have outlined a deployment plan that
conforms to the following guidelines:

� Certain resources must be deployed to all servers in the domain. For more

information, see “Deployment Containers” on page 2-5.

� Certain resources must be deployed to one and only one server in the domain.
For more information, see “Deployment Containers” on page 2-5.

� The number of JMS servers and queues should be determined using the

guidelines described in “Load Balancing BPM in a Cluster” on page 2-9 and

“Load Balancing Application Integration in a Cluster” on page 2-13.

� The administration server doe not require WebLogic Integration resources.

� Resources identified as members of the same resource group must be targeted to

the same server, or, if clusterable, to the same set of servers, as described in

“WebLogic Integration Deployment Resources” on page 2-3.

Once you have a plan for deploying your resources to the servers and clusters in your
domain, the procedure for modifying the resource configuration depends on the

resource.

Configuring a Clustered Deployment

Deploying BEA WebLogic Integration Solutions 2-27

Targeting Resources to Clusters

To target a resource to, or remove a resource from, particular clusters:

1. In the navigation tree, select the resource.

2. Select the Targets tab.

3. Select the Clusters tab.

4. Modify the chosen Targets—Clusters as required.

� To target a resource to a cluster, move the cluster from the Available list to

the Chosen list.

� To remove a resource from a cluster, move the cluster from the Chosen list to

the Available list.

5. Click Apply when you have finished making changes.

Targeting Resources to Servers

To target a resource to, or remove a resource from, a particular server (for example, the

administration server):

1. In the navigation tree, select the resource.

2. Select the Targets tab.

3. Select the Servers tab.

4. Modify the chosen Targets—Servers as required.

� To target the resource to a cluster, move the cluster from the Available list to

the Chosen list.

� To remove a resource from a cluster, move the cluster from the Chosen list to

the Available list.

5. Click Apply when you have finished making changes.

2 Configuring WebLogic Integration Clusters

2-28 Deploying BEA WebLogic Integration Solutions

Starting the Servers in the Domain

After you configure the servers in your domain, you can bring them up in the following

order:

1. If it is not already running, start the administration server.

2. Execute the startManagedWeblogic command for each managed server. For
example, if you installed a managed server for the wlidomain on an NT

machine, enter the following command:

cd bea\wlintegration2.1\config\wlidomain
startManagedWeblogic

As the managed server starts, the follow messages are displayed.

Figure 2-3 Managed Server Startup Messages

When startup is complete, you can use the WebLogic Server Administration Console

to verify deployments and status.

When you are ready to shutdown the server, you can use the WebLogic Server
Administration Console as well.

Deploying BEA WebLogic Integration Solutions 3-1

CHAPTER

3 Using WebLogic
Integration Security

The following sections describe how to set up and manage security for WebLogic

Integration solution deployments:

� Overview of WebLogic Integration Security

� WebLogic Server Security Principals Used in WebLogic Integration

Overview of WebLogic Integration Security

The following sections describe the key features of WebLogic Integration security:

� WebLogic Server Security

� Business Process Management Security

� B2B Integration Security

� Application Integration Security

Every secure deployment of a WebLogic Integration solution uses the WebLogic

Server security features as the foundation. If BPM, B2B integration, and application

integration functionality is used in a WebLogic Integration solution, the security

features associated with these functional areas are used as well.

3 Using WebLogic Integration Security

3-2 Deploying BEA WebLogic Integration Solutions

Note: For a secure deployment, avoid running WebLogic Integration in the same

WebLogic Server instance as any applications for which security is not
provided. Internal WebLogic Integration API calls are not protected from

collocated applications.

WebLogic Server Security

WebLogic Server provides the foundation for WebLogic Integration security.
WebLogic Integration deployments can use a full range of security features that
WebLogic Server provides, including security realms, users and groups, Access

Control Lists (ACLs) and permissions, the Secure Sockets Layer (SSL) protocol,
authentication mechanisms, digital certificates, controlled access to resources, and so

on. For a comprehensive discussion of WebLogic Server security features, see

“Programming WebLogic Security” at the following URL:

http://edocs.bea.com/wls/docs61/security/index.html

Business Process Management Security

WebLogic Integration uses WebLogic Server security realms to protect access to

workflows and other resources. User access is determined by the roles to which the

user is assigned. The WebLogic Integration Studio is used to define users,
organizations, and roles, and also to map roles to groups in WebLogic Server security

realms.

For more information about BPM security, see the following topics:

� “About Security Realms” in “Administering Data” in Using the WebLogic

Integration Studio

� “Configuring the Security Realms” in Programming BPM Client Applications

Overview of WebLogic Integration Security

Deploying BEA WebLogic Integration Solutions 3-3

B2B Integration Security

WebLogic Integration solutions that involve the exchange of messages between

trading partners across firewalls have specialized security requirements, including

trading partner authentication and authorization, as well as nonrepudiation. Specific

security administration tasks depend on the type of protocol used. For more

information about B2B integration security, see Implementing Security with B2B

Integration.

In addition:

� For information about RosettaNet security, see “Configuring RosettaNet
Security” in “Introduction” in Implementing RosettaNet for B2B Integration.

� For information about cXML security, see “Security” in “cXML Administration”

in Implementing cXML for B2B Integration.

Application Integration Security

WebLogic Integration provides the following security mechanisms for those parts of
an integration solution that are created and maintained with application integration

functionality:

� To connect to an Enterprise Information System (EIS), an application might
need to provide certain credentials, such as a login name and password. For
more information, see “Scenario 1: Connecting Using Specific Credentials” in

“Using Application Views by Writing Custom Code” in Implementing

Application Integration.

� When deploying an application view, you can configure security settings to grant
or revoke read and write access to the application view by a WebLogic user or
group. For more information, see “Deploying an Application View” in “Steps for
Defining an Application View” in “Defining an Application View” in

Implementing Application Integration.

3 Using WebLogic Integration Security

3-4 Deploying BEA WebLogic Integration Solutions

WebLogic Server Security Principals Used in
WebLogic Integration

The following diagram provides an overview of the WebLogic Server security

principals used in WebLogic Integration.

Figure 3-1 WebLogic Server Security Principals Used in WebLogic Integration

WebLogic Server Security Principals Used in WebLogic Integration

Deploying BEA WebLogic Integration Solutions 3-5

� When started via an event (XML, application integration or B2B integration), a

workflow runs as the WLPISystem.

� When started via a manual task start, a workflow runs as the security principal
associated with the Worklist client.

� An application integration service runs as the security principal configured for
the application view.

� When a message is received from a trading partner, the B2B engine momentarily

switches to the WebLogic Server principal associated with the client side

certificate for the trading partner. It switches to the WLCSYSTEM principal
before sending the message to the BPM event queue. For more information

about B2B integration security, see Implementing Security with B2B Integration.

� When the J2EE-CA adapter receives a request, it maps the caller’s security

principal to one that is appropriate for the EIS system. For more information, see

“Security Prinicipal Map” in Programming the WebLogic J2EE Connector

Architecture in the WebLogic Server documenation set, at the following URL:

http://edocs.bea.com/jconnector/security.html

3 Using WebLogic Integration Security

3-6 Deploying BEA WebLogic Integration Solutions

Deploying BEA WebLogic Integration Solutions 4-1

CHAPTER

4 Tuning Performance

The following sections describe how to tune the performance of your WebLogic

Integration deployment:

� Tuning WebLogic Integration Performance

� Monitoring and Tuning Run-Time Performance

� Tuning Hardware, Operating System, and Network Resources

� Tuning Databases

Tuning WebLogic Integration Performance

The following sections describe how to tune WebLogic Integration performance:

� Primary Tuning Resources

� Tuning WebLogic Server Performance

� Monitoring and Tuning the Java Virtual Machine (JVM)

Primary Tuning Resources

This section describes the primary WebLogic Integration resources that you can tune

to manage the work that a server performs:

� For BPM, the primary resource to tune for event-driven workflows is the event
listener message-driven bean.

4 Tuning Performance

4-2 Deploying BEA WebLogic Integration Solutions

� For application integration, tuning depends on the type of processing:

� For synchronous service invocations, the primary resource is the application

view bean.

� For asynchronous service invocations, the primary resource is the thread pool
size of the asynchronous request processor.

� Event adapters usually do not require tuning.

In addition, the J2EE-CA resource pool size should be set for each adapter. For
information about how to tune an adapter, see the documentation for the adapter.

� For B2B integration, there are no primary resources that can be tuned.

All other WebLogic Integration resources should be changed only to support these

primary resources.

Tuning WebLogic Server Performance

The following sections describe how to configure WebLogic Server resources for a

WebLogic Integration deployment:

� Configuring the Pool Size of BPM Event Listener Message-Driven Beans

� Configuring the Number of Application Integration Asynchronous Request
Threads

� Configuring Other EJB Pool and Cache Sizes

� Configuring JDBC Connection Pool Sizes

� Configuring the Execution Thread Pool

� Configuring Resource Connection Pools for J2EE Connector Architecture

Adapters

� Configuring Large Message Support for B2B

For general information about tuning WebLogic Server performance, see BEA

WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs61/perform/index.html

Tuning WebLogic Integration Performance

Deploying BEA WebLogic Integration Solutions 4-3

Configuring the Pool Size of BPM Event Listener Message-Driven Beans

The wlpi-mdb.jar file contains the pool of event listener message-driven beans that
pull events off the event queue. The pool size setting controls the number of workflows

executed in the WebLogic Integration system, based on incoming events. The default
setting is 11 (5 unordered listeners plus 5 ordered listeners plus 1 time listener).

Use the MDBGenerator utility to set the pool size and associated queue, as described

in “Configuring a Custom Java Message Service Queue” in “Customizing WebLogic

Integration” in Starting, Stopping, and Customizing BEA WebLogic Integration.

We recommend starting with 20 beans and monitoring whether you need more. See

“Do You Have Enough Message-Driven Beans?” for more information.

Configuring the Number of Application Integration Asynchronous Request
Threads

The wlpi-ejb.jar file contains the pool of session beans used to execute workflow

instances, which are described in “Instance Beans” on page 1-9. You can configure the

number of asynchronous request threads by adding the following line to the

wlai.properties file:

wlai.numAsyncServiceRequestProcessors=numThreads

Here, numThreads is the number of asynchronous threads required. The default is 2.

Configuring Other EJB Pool and Cache Sizes

You can tune WebLogic Integration performance by configuring EJB pool sizes and

cache sizes: start with the default settings and change them as needed. From a

performance standpoint, an overly large pool or cache size is generally better than an

overly small one. For more information about configuring these settings, see

“Deploying EJBs in the EJB Container” in Programming WebLogic EJB at the

following URL:

http://edocs.bea.com/wls/docs61/ejb/deploy.html

Note: The pool size of BPM event listener message-driven beans should already be

configured, as described in “Configuring the Pool Size of BPM Event Listener
Message-Driven Beans” on page 4-3.

For each node in a WebLogic Integration cluster, complete the following steps:

4 Tuning Performance

4-4 Deploying BEA WebLogic Integration Solutions

1. Configure the cache size for the BPM workflow processor beans, which are

described in “Workflow Processor Beans” on page 1-8.

This setting should equal or exceed the size of the BPM event listener
message-driven bean pool and it should also accommodate the anticipated

workload from subworkflows or Worklist clients. The default setting is 100. The

full name is WorkflowProcessor in weblogic-ejb-jar.xml.

2. Configure the cache size of the BPM template entity beans, which are described

in “Template Beans” on page 1-9.

This setting should equal or exceed the number of unique templates concurrently

processed in the WebLogic Integration system. The default setting is 100. The

full name is TemplateDefinitionRO in weblogic-ejb-jar.xml.

3. Configure the cache size of the BPM instance entity beans, which are described

in “Instance Beans” on page 1-9.

This setting should equal or exceed the number of workflow instance processors.
The default setting is 100. The full name is WorkflowInstance in

weblogic-ejb-jar.xml.

4. Configure the pool size of application view beans for application integration,
which are described in “Application Integration Resources” on page 1-11.

The default setting is 200, which is generally sufficient for most deployments.
The full name is com.bea.wlai.client.ApplicationView in

weblogic-ejb-jar.xml.

Configuring JDBC Connection Pool Sizes

You can tune WebLogic Integration performance by configuring the size of JDBC

connection pools. For an introduction, see “JDBC Connection Pools” on page 1-5.

To determine the necessary size of a JDBC connection pool on each node in a

WebLogic Integration cluster, calculate the number of required connections per server,
based on the guidelines in the following table.

Tuning WebLogic Integration Performance

Deploying BEA WebLogic Integration Solutions 4-5

After calculating the number of connections required for each resource, calculate the

sum total of all resources, and then configure the JDBC connection pool for each node

in the cluster using this total.

For best performance, set the initial capacity and the maximum capacity to the same

value.

You can find information on monitoring JDBC connections in “Do You Have Enough

JDBC Connections?”

For more information about JDBC connection pools, see the following sections:

� “Tuning JDBC Connection Pool Size” in “Tuning WebLogic Server” in BEA

WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs61/perform/WLSTuning.html

Table 4-1 Calculating Connections for the JDBC Connection Pool

For this resource . . . Calculate the required number of JDBC

connections as follows . . .

BPM event listener
message-driven bean pool
size (unordered beans + all
ordered beans)

Multiply the event listener message-driven bean pool size

by 2. For example, if the event listener message-driven bean

pool size is 10, you need to add 20 connections to the JDBC

connection pool.

Event listeners always use at least one—and possibly two—
JDBC connections. Multiplying by a factor of 2 accounts for
a worst-case scenario, so you can probably use a smaller size

if necessary.

Note: If you run workflow processors from Worklist
clients, you need to add more connections.

B2B integration Add 10 connections to the JDBC connection pool.

Application integration Add 1 connection for each application view bean (the default
is 5) and add 1 connection for each asynchronous request
processor listener (the default is 2).

Application integration

adapters
Add any connections needed for adapters (event adapters and

service adapters). For example, for the DBMS adapter, add

one connector for each resource in the J2EE-CA resource

connector pool.

4 Tuning Performance

4-6 Deploying BEA WebLogic Integration Solutions

� “Managing JDBC Connectivity” in the BEA WebLogic Server Administration

Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/jdbc.html

Configuring the Execution Thread Pool

You can tune WebLogic Integration performance by configuring the execution thread

pool, which is described in “Execution Thread Pool” on page 1-6. For each node in a

WebLogic Integration cluster, calculate the number of required execution threads

based on the guidelines described in the following table.

After calculating the number of threads required for each resource, calculate the total
of all resources, and then configure the thread pool size for each server, using this total.
For instructions on how to configure the thread pool size using the WebLogic Server
Administration Console, see “Thread Pool Size” in “Migrating WebLogic Server 6.0

Applications to WebLogic Server 6.1” in the WebLogic Server 6.1 Release Notes at the

following URL:

http://edocs.bea.com/wls/docs61/notes/migrate60to61.html

You can find information on monitoring threads in “Do You Have Enough Threads?”

Table 4-2 Calculating the Number of Execution Threads

For this resource . . . Calculate the required number of execution threads as

follows . . .

BPM For BPM overhead, add 1 thread.

BPM event listener message-driven

beans
For each event listener message-driven bean, add 1 thread.

Concurrent Worklist client requests For each anticipated simultaneous Worklist client request, add 1

thread.

B2B integration Add 1 thread for every 4 messages per second, and then add 10

threads to the total.

Application integration Add 5 threads for application integration overhead.

Application integration adapters For each adapter, add 3 threads.

Applications Add any execution threads required for application use.

Tuning WebLogic Integration Performance

Deploying BEA WebLogic Integration Solutions 4-7

Configuring Resource Connection Pools for J2EE Connector Architecture
Adapters

You can tune WebLogic Integration performance by configuring the resource

connection pools for J2EE Connector Architecture (J2EE-CA) adapters, which are

described in “J2EE Connector Architecture” on page 1-6. For instructions on how to

tune resource connection pools for a particular adapter, see the documentation for the

adapter.

Configuring Large Message Support for B2B

If the messages exchanged by B2B conversations are too large to fit in memory, enable

large message support on the B2B Console and restart the server. Figure 4-1 shows a

portion of the console panel used for enabling large message support.

Figure 4-1 Large Message Support Area on B2B Console

4 Tuning Performance

4-8 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning the Java Virtual Machine (JVM)

WebLogic Integration Java code is executed on the Java Virtual Machine (JVM). To

achieve the optimal performance for a WebLogic Integration deployment, you need to

tune the JVM configuration. For example, the JVM heap size determines how often

and for how long the VM collects garbage. For WebLogic Integration, the

recommended minimum heap size is 512Kb. For more information about configuring

the JVM, see “Tuning Java Virtual Machines (JVMs)” in BEA WebLogic Server

Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs61/perform/JVMTuning.html

For more information about the Sun HotSpot JVM heap organization and garbage

collection, go to the following URL:

http://java.sun.com/docs/hotspot/gc/index.html

For a complete list of command-line options for the Sun Hotspot JVM, go to the

following URL:

http://java.sun.com/docs/hotspot/VMOptions.html

Many of the JVM options are set in setenv.cmd or setenv.sh and

startWeblogic.cmd or startweblogic.sh. Some defaults are set low in order to

enable low-end systems. If you have a larger system, you can benefit from tuning the

JVM up. The following sections explore commonly used options.

Choosing the JVM

The version of the JDK that is supplied with Weblogic Server supports two or three

different JVM implementations. On Solaris systems, the Hotspot and the server JVM

are supported. On Windows NT, the classic JVM is also supported.

The classic JVM is not recommended because it does not provide a JIT compiler. The

server runs much more slowly (at least five times) with the classic JVM than with the

Hotspot or server JVM.

The Hotspot and server JVM are identical except for the run-time compilation

algorithms they use. (The Hotspot JVM is also known as the client JVM.)

The server JVM is more appropriate for use with Weblogic Integration. Use the

-server argument to specify the use of the server JVM. This argument must be the

first one immediately after the Java executable name.

Tuning WebLogic Integration Performance

Deploying BEA WebLogic Integration Solutions 4-9

There is a known bug that can occur with the server JVM, which causes the JVM to

allocate all the available memory in the system, regardless of the heap size specified

(see Sun Bug ID 4484370). If this happens, you should use Hotspot JVM, instead.

Tuning JVM Heap Size

The minimum (initial) and maximum sizes should be identical. For a large WebLogic

Integration server, we recommend 512Mb for both values, as shown in the following

option settings:

-Xms512m –Xmx512m

On Solaris systems, there are extra options that apply to very large heaps. In particular,
it is possible to bypass virtual memory and use physical memory directly for the heap.
This feature is called “Intimate Shared Memory,” and information about it can be

found at:

http://java.sun.com/docs/hotspot/ism.html

Garbage Collection Control on Hotspot JVM

The heap space in Hotspot is cut into two parts: the new or Eden heap, and the tenured

heap.

All new objects are created in the Eden heap. They are moved to the tenured heap only

after surviving garbage collection from the Eden heap. The tenured heap is not
collected as often as the Eden heap, and the collection operation for it is a lot more

expensive than collection for the Eden heap. A rule of thumb is that the Eden heap

should be configured to be large enough to store temporary objects. In the case of an

application server in general, and for WebLogic Integration in particular, the actual
application state is kept in a database. Most memory allocated while a request is being

processed is released at the end of the request. It is therefore important to configure the

Eden heap to be large enough to prevent objects that are used in a single request to be

moved to the tenured heap. Such a configuration also delays the need for collection on

the tenured heap, which is much slower than collection on the Eden heap. (For this

reason, this approach is sometimes referred to as delayed garbage collection).

With a global heap of 512Mb, a reasonable size for the Eden heap is 128Mb, as shown

in the following option setting:

-XX:NewSize=128m –XX:MaxNewSize=128m

4 Tuning Performance

4-10 Deploying BEA WebLogic Integration Solutions

Garbage collection in the Eden heap is generational. Objects are created initially in a

part of the Eden heap that contains only the young generation. Every time an object is

considered for collection, but is still being used, its generation number is incremented

and the object is copied to a survivor space in the Eden heap. After a number of
generations, the object is declared old and moved to the tenured space. The Eden heap

contains two survivor spaces, only one of which is used at a time. The number of
generations that must be reached before objects are moved in the tenured heap is

determined dynamically by the JVM to keep the survivor spaces half-full.

The size of the survivor spaces can be specified as a ratio of the Eden heap. If survivor
spaces are too small, copying collection overflows directly into the old generation. If
survivor spaces are too large, they are uselessly empty.

The recommended value for the survivor ratio is 2. When this value is used, each

survivor space is half the size of the young generation. Because there are two survivor
spaces, the space for the young generation is ½ the size of the Eden heap, and each

survivor space is ¼ the size of the Eden heap. Use the following option setting to

specify a survivor ratio of 2:

-XX:SurvivorRatio=2

Monitoring JVM Heap Usage

The most efficient way to monitor heap usage and garbage collection is to use verbose

garbage collection, selected by specifying the following flag:

-verbosegc

The output shows up on standard out. In the case of the Hotspot JVM two types of lines

show up, indicating collection in the Eden (GC) or in the tenured heap (Full GC).

It is also possible to use the Weblogic Server Administration Console to monitor heap

utilization at run time. This helps define the heap requirements as well as identifying

any memory leaks.

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-11

Monitoring and Tuning Run-Time
Performance

The following sections describe how to monitor run-time performance in a WebLogic

Integration deployment:

� Monitoring and Tuning WebLogic Server Performance

� Monitoring and Tuning BPM Performance

� Monitoring and Tuning B2B Integration Performance

� Monitoring and Tuning AI Performance

� Profiling Applications

Monitoring and Tuning WebLogic Server Performance

Use the WebLogic Server Administration Console to monitor the health and

performance of your WebLogic Server domain, including such resources as servers,
JDBC connection pools, JCA, HTTP, the JTA subsystem, JNDI, and EJBs. For
detailed information, see “Monitoring a WebLogic Domain” in the BEA WebLogic

Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs61/adminguide/monitoring.html

Do You Have Enough Threads?

In the left frame of the Weblogic Server Administration Console, select
Servers > server_name. In the right frame, select the Monitoring tab.

The General tab allows you to display a table with information on the execute queues,
including the number of idle threads. Figure 4-2 shows how the WebLogic Server
Administration Console displays information about active queues.

4 Tuning Performance

4-12 Deploying BEA WebLogic Integration Solutions

Figure 4-2 Active Execute Queues Table

Also under Monitoring, there is a Performance tab. This tab displays three graphs:
Throughput, Queue Length, and Memory Usage. Above the graphs is the Idle Threads

field. If the number shown in the Idle Threads field is sometimes zero, you need more

threads. The parameter that controls the number of threads is ThreadPoolSize. The

ThreadPoolSize parameter is set separately for each server. Figure 4-3 shows how

the WebLogic Server Administration Console displays performance information.

Figure 4-3 Server Performance Information

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-13

To add more threads, select the default queue and specify the thread count. Figure 4-4

shows how the WebLogic Server Administration Console displays execute queue

information.

Figure 4-4 Execute Queue Table

Figure 4-5 shows the WebLogic Server Administration Console tab used to specify the

thread count.

Figure 4-5 Default Execute Queue Configuration

4 Tuning Performance

4-14 Deploying BEA WebLogic Integration Solutions

On Solaris, you can also determine whether changing the number of threads improves

performance by running the mpstat command at comparable load levels before and

after changing the setting. A drop in the number of context switches suggests that
performance has improved.

How Many Transactions Are Occurring?

To display the number of transactions of various types, select your server name in the

Weblogic Server Administration Console. In the right frame, select the Monitoring tab,
then the JTA tab. Select Monitor all instances.

Some transactions are associated with the BPM framework, and you cannot change

them. You may choose to change transaction types or combine transactions for those

transactions associated with your applications.

Server > Monitoring > JTA

Figure 4-6 shows the WebLogic Server Administration Console tab used to monitor
transactions.

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-15

Figure 4-6 JTA Monitoring Tab

Do You Have Enough JDBC Connections?

JDBC connections are connections to your database, made available so that individual
threads do not suffer performance problems caused by getting a new connection every

time access to the database is required. You may have multiple pools of JDBC

connections. It is important that each pool has enough connections so that no thread

has to wait long for a connection.

In the left frame, select Services > JDBC > Connection Pools. Select a pool and

then select Monitor active connection pools.

Look at the number of Connections; is it close to the total number of connections

configured for this pool? Is the High Connections value equal to the total number of
connections configured for this pool? Either of these is a sign that more connections

4 Tuning Performance

4-16 Deploying BEA WebLogic Integration Solutions

may prove useful under similar situations or when load increases slightly. Figure 4-7

shows the WebLogic Server Administration Console window used to monitor active

connection pools.

Figure 4-7 Active JDBC Connection Pools

To modify connection pool configuration, go to Services > JDBC > Connection

Pools > wliPool, then select Connections and set the values for the Initial Capacity

and Maximum Capacity fields to the same number. Figure 4-8 shows the WebLogic

Server Administration Console tab used to set initial and maximum capacity.

Figure 4-8 Connection Pool Configuration

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-17

Monitoring and Tuning BPM Performance

Use the WebLogic Integration Studio to monitor various aspects of workflow

performance in real time, including the status of workflows and workflow variables.
The Studio allows you to delete workflow instances and to view reports on workloads

and performance statistics. For more information, see “Monitoring Workflows” in

Using the WebLogic Integration Studio.

Key BPM performance measurements include:

� Instantiations—The number of workflows started within a given time period.
Instantiations include operations that are executed by concurrent clients:
instantiating the workflow, executing the task, and sending an event to the

server.

� Completions—The number of workflows completed (as indicated by arrival at a

Done node) within a given time period. Completions include operations that are

executed from the server side: instantiating the workflow, executing the task,
receiving an event from the client, performing the business operation, and

marking the task as done.

One way to obtain statistics for these performance measurements is to extract them

from the database instance table using SQL statements. For example, the SQL code in

the following listing calculates statistics about the number of instantiations.

Listing 4-1 SQL Code to Determine Workflow Instantiation Statistics

select 'INSTANTIATIONS', count(*),
avg((completed-started)*86400),
max((completed-started)*86400),
86400*(max(started)-min(started)) total_duration,
from instance

The SQL code in the next listing calculates statistics about the number of completions.

4 Tuning Performance

4-18 Deploying BEA WebLogic Integration Solutions

Listing 4-2 SQL Code to Determine Workflow Completion Statistics

select 'COMPLETIONS', count(*),
avg((completed-started)*86400),
max((completed-started)*86400),
86400*(max(completed)-min(started)) total_duration
from instance where completed is not null

Do You Have Enough Message-Driven Beans?

To display information on message-driven beans, select your server by name in the

Weblogic Server Administration Console. Then, in the right frame, select the

Monitoring tab, followed by the JMS tab. Select Monitor all Active JMS Servers

> Active JMS Destinations > JMSServer-0.

Look at the queue length for eventQueue. If the number is often more than just a few,
more queuing is occurring than is desirable for good performance. In this case, adding

more MDBs helps performance. Figure 4-9 shows the WebLogic Server
Administration Console tab used to monitor the event queue.

Server > Monitoring > JMS > Monitor all Active JMS Servers > Active JMS

Destinations > JMSServer-0

EventQueue – Messages / Messages Received

Figure 4-9 Event Queue Monitoring

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-19

To change the number of MDBs, select EJB > wlpi-mdb-ejb.jar in the left frame

of the Weblogic Server Administration Console. Then, in the right frame, select Edit
EJB Descriptor. A new window is displayed showing the Max Beans in Free

Pool and Initial Beans in Free Pool parameters. Edit the value of the Max

Beans in Free Pool parameter. You must reboot Weblogic Server for this change

to take effect. Figure 4-10 shows the WebLogic Server Administration Console tab

used to edit the Max Beans in Free Pool parameter.

Figure 4-10 Configuring MDBs

How Many of Each Type of Bean Does My System Have?

Use the WebLogic Server Administration Console to display information bean types

and quantities. In the left frame, select a particular EJB jar. In the right frame, select
the Monitoring tab and the type of bean to be displayed. For example, to display

information about stateful session beans, select Monitor all Stateful Session

Beans.

To modify the display of information, select Customize this view. You can add or
delete columns and change the sort order. Add all the remaining columns. (Highlight
the columns, click the arrow to move them to the right, and then press Apply.) The

following columns are of particular interest:

Number of beans in use
Number of beans in cache

4 Tuning Performance

4-20 Deploying BEA WebLogic Integration Solutions

The following jar files are of particular interest: wlpi-ejb.jar, wlpi-mdb-ejb.jar,
and the jar files for your application-specific EJBs. Figure 4-11, Figure 4-12, and

Figure 4-13 show portions of the windows in which information for stateful, entity,
and message-driven beans is displayed.

Applications > WLPI Application > EJB Deployment > wlpi-ejb.jar >
Stateful EJBRuntimes

Figure 4-11 Stateful Bean Information

Applications > WLPI Application > EJB Deployment > wlpi-ejb.jar >
Entity EJBRuntimes

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-21

Figure 4-12 Entity Bean Information

Applications > WLPI Application > EJB Deployment > wlpi-mdb-ejb.jar
> Message Driven EJBRuntimes

Figure 4-13 MDB Information

If a system message concerning cache full is displayed, increase the corresponding

bean’s Max Beans in Cache parameter by editing the EJB descriptor.

If many entity beans are not passivated until the cache is full, you may want to decrease

the Idle Timeout Seconds parameter for the entity bean. Display the bean in the

WebLogic Server Administration Console and click the Edit EJB Descriptor link.
Figure 4-14 shows the WebLogic Server Administration Console tab used to edit the

Idle Timeout Seconds parameter.

4 Tuning Performance

4-22 Deploying BEA WebLogic Integration Solutions

Figure 4-14 Idle Timeout Configuration

Monitoring and Tuning B2B Integration Performance

To monitor the performance of B2B integration functionality, consider the following

tips:

� Use the WebLogic Integration B2B Console to monitor and control aspects of
B2B integration functionality, including trading partner sessions, delivery

channels, conversations, and collaboration agreements.

� To monitor run-time performance, inspect access.log, the file used for
tracking the arrival of HTTP requests in the system. This file enables system

administrators to validate the state of the network/TCP interface. The time

stamps give a good indication of the rate of arrival of requests.

� To detect a bottleneck in the flow of a message, use the getHopTimestamps()

method of the QualityOfService class on the consumer trading partner side.
This method returns timestamps at all the hops of the message. To interpret the

data accurately, ensure that the clocks in all the machines are synchronized.

Key performance measurements for B2B integration include:

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-23

� Throughput—The number of messages processed by the hub (sent and received)
during a given time period.

� Trip Time—Amount of time required for a request to travel from one spoke to

another through the hub.

For more information, see “Monitoring B2B Integration” in Administering B2B

Integration.

Monitoring B2B Activity

Use the WebLogic Integration B2B Console to determine the level of B2B activity.
You can monitor logs and message statistics using the WebLogic Integration B2B

Console tabs shown in Figure 4-15 and Figure 4-16.

Figure 4-15 Monitoring B2B Logs

4 Tuning Performance

4-24 Deploying BEA WebLogic Integration Solutions

Figure 4-16 Monitoring B2B Statistics

Monitoring and Tuning AI Performance

This section provides information about:

� Monitoring and Tuning Application View Connections

� Monitoring and Tuning Queues for Asynchronous Services

� Enabling Transactions and Persistence in Asynchronous Service

Request/Response Handling for JMS

Monitoring and Tuning Application View Connections

To check whether you have sufficient connections available for your application view,
start the Weblogic Server Administration Console and select Deployments >

Connectors.

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-25

Select the connection factory deployed for your application view, which is named

using the following format:

ApplicationViewName_connectionFactory.

Select the Monitoring tab and click Monitor all Connector Connection Pool
Runtimes...

The connections to the EIS defined in your application view are displayed. These

connections are made available so that individual threads do not suffer performance

problems caused by getting a new connection every time access to the EIS is required.
It is important that each has enough connections so that no thread has to wait long for
a connection.

Look at the number of connections; is it close to the total number of connections

configured for this pool? Is the Active Connections High Count value equal to the total
number of connections configured for this pool? Either of these is a sign that more

connections might prove useful under similar situations or when load increases

slightly. Figure 4-17 shows the WebLogic Server Administration Console tab used to

monitor connections.

Figure 4-17 Monitoring Application View Connection

To view or modify your maximum connections for your application view, go to the

Application View Console, select your application view, and select the Deploy tab.
The Maximum Pool Size value shows the maximum number of connections.
Figure 4-18 shows the Application View Console tab used to monitor the maximum

pool size.

4 Tuning Performance

4-26 Deploying BEA WebLogic Integration Solutions

Figure 4-18 Monitoring Maximum Pool Size

To modify this value, perform the following steps:

1. Click Undeploy if the Application View is currently deployed.

2. When the Application View is undeployed, click Edit.

3. Click Continue.

4. Edit the Maximum Pool Size value (the maximum number of connections).

5. Click Deploy to redeploy the Application View with the new Maximum Pool
Size value.

Figure 4-19 shows the Application View Console tab used to edit the maximum pool
size.

Monitoring and Tuning Run-Time Performance

Deploying BEA WebLogic Integration Solutions 4-27

Figure 4-19 Modifying Maximum Pool size

Monitoring and Tuning Queues for Asynchronous Services

When asynchronous services are invoked, the service responses are queued in the

WLAI_ASYNC_REQUEST JMS queue. The consumers for this queue are worker threads,
which are set to 2 by default. As the number of concurrent invocations increases,
asynchronous service responses can start to fill up the WLAI_ASYNC_REQUEST queue.
To determine whether the queue is filling up, display the Active JMS Destinations

window:

Server > Monitoring > JMS > Monitor all Active JMS Servers > Active
JMS Destinations

Check the number of messages for WLAI_ASYNC_REQUEST. Figure 4-20 shows the

WebLogic Server Administration Console tab used to monitor the number of
messages.

4 Tuning Performance

4-28 Deploying BEA WebLogic Integration Solutions

Figure 4-20 Monitoring Messages for WLAI_ASYNC_REQUEST

If messages are queuing up, increase the number of worker threads. The more you

have, the more asynchronous service invocations the server can support. This

parameter is set by editing the following line in the wlai.properties file:

wlai.numAsyncServiceRequestProcessors=2

The number of processors is 2 by default, so you will likely need to increase this

number. Use the following formula for calculating the number of processors that gives

the theoretical maximum throughput of asynchronous requests and responses:

num_async_processors = avg_clients * avg_services/sec *
avg_service_duration

The following table describes the values you must provide for each formula element.

num_async_processors The value to specify for
wlai.numAsyncServiceRequestProcessors.

avg_clients The average number of clients you expect to be invoking

services asynchronously.

avg_services/sec The average number of asynchronous service invocations

you expect EACH client to initiate per second.

avg_service_duration The average time a given service invocation will take, in

seconds.

Tuning Hardware, Operating System, and Network Resources

Deploying BEA WebLogic Integration Solutions 4-29

These averages are sometimes difficult to calculate, so you may have to estimate a

value and then observe the results. In general, if your WLAI_ASYNC_REQUEST queue is

filling up, you should add more processors.

Enabling Transactions and Persistence in Asynchronous Service
Request/Response Handling for JMS

By default, transactions and persistence are disabled. You can enable them as required.
Turn on transactions by adding or modifying the following line in the

wlai.properties file:

wlai.jms.asyncServiceTransFlag=true

To enable or disable persistence, modify the WLAI_JMSConnectionFactory JMS

Connection factory in the WebLogic Server Administration Console by changing the

default delivery mode to Persistent or NonPersistent.

Profiling Applications

You can profile applications at run time using a Java profiler tool (such as Jprobe or
OptimizeIt). Use these tools to identify performance bottlenecks and thread

contentions in the system. Remember to profile run-time performance rather than

boot-time performance.

Tuning Hardware, Operating System, and
Network Resources

The following sections describe factors that you need to consider when you are tuning

hardware, the operating system, and the network:

� Tuning Hardware

� Tuning the Operating System

� Tuning Network Performance

4 Tuning Performance

4-30 Deploying BEA WebLogic Integration Solutions

For detailed information, see “Tuning Hardware, Operating System, and Network

Performance” in BEA WebLogic Server Performance and Tuning at the following

URL:

http://edocs.bea.com/wls/docs61/perform/HWTuning.html

Performance Bottlenecks

To optimize WebLogic Integration performance in a deployment, you need to

understand how the following hardware resources interact with each other.
Performance bottlenecks result from poor tuning of these hardware resources.

Tuning Hardware

To optimize WebLogic Integration performance in a deployment, consider the

following hardware factors:

� Number of machines (as well as the number of CPUs per machine) required to

run WebLogic Integration during average and peak loads at acceptable

performance levels

� Right kind of storage, configuration, and acceptable size. To enhance RDBMS

performance, use faster disks.

� Amount of main memory required to handle average and peak loads at
acceptable performance levels

Table 4-3 Performance Bottlenecks

Hardware Resource Bottlenecks

CPU Insufficient throughput, resulting in excessive paging and swapping.

Memory Insufficient system memory, resulting in excessive paging and swapping.

Network resources Insufficient bandwidth to handle high volumes of network traffic. A high

frequency of network collisions.

Disk I/O and controllers Insufficient capacity and throughput to handle the volume and size of I/O

requests.

Tuning Hardware, Operating System, and Network Resources

Deploying BEA WebLogic Integration Solutions 4-31

Tuning the Operating System

To optimize WebLogic Integration performance in a deployment, consider the

following operating system factors:

� Configurable file descriptor limits

� Memory allocation for user processes

� Configurable TCP tuning parameters

� Configurable settings for the threading model

� Use of monitoring tools such as vmstat, mpstat, netstat, iostat, and so on

Configurable TCP Tuning Parameters on Windows NT/2000

For a Windows NT or Windows 2000 server, we recommend setting the

TcpTimedWaitDelay parameter to 60 seconds instead of the default 240 seconds. The

parameter is in the Windows registry and can be set or modified by using the regedit

utility (regedit.exe). The entry is located as follows:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The entry is not present by default.

TcpTimedWaitDelay determines the time that must elapse before TCP can release a

closed connection and reuse its resources. This period between closure and release is

known as the TIME_WAIT state or 2MSL state. During this time, the connection can be

reopened at much less cost to the client and server than the cost of establishing a new

connection.

RFC 793 requires that TCP maintain a closed connection for an interval at least equal
to twice the maximum segment lifetime (2MSL) of the network. When a connection is

released, its socket pair and TCP control block (TCB) can be used to support another
connection. By default, the MSL is defined to be 120 seconds, and the value of this

entry is equal to two MSLs, or 4 minutes. However, you can use this registry entry to

customize this interval.

Reducing the value of this entry allows TCP to release closed connections faster,
providing more resources for new connections. However, if the value is too low, TCP

might release connection resources before the connection is complete, requiring the

server to use additional resources to reestablish the connection.

4 Tuning Performance

4-32 Deploying BEA WebLogic Integration Solutions

Note: Normally, TCP does not release closed connections until the value of this entry

expires. However, TCP can release connections before this value expires if it
is running out of TCP control blocks (TCBs). The number of TCBs the system

creates is specified by the value of MaxFreeTcbs.

System Monitoring on Windows NT/2000

Use the performance monitor (perfmon.exe) for monitoring all system resources or
the task manager for monitoring CPU, memory, and threads.

Swap Space Configuration for Solaris

Insufficient swap space can show up as an out-of-memory error, such as an overly

small heap or thread limit.

Network Tuning for Solaris

For network tuning information for Solaris systems, see the WebLogic Server platform

information page at the following location:

http://e-docs.bea.com/wls/platforms/sun/index.html

System Monitoring for Solaris

The following table lists the commands suggested for use in monitoring Solaris

systems.

To monitor . . . Use . . .

Memory utilization vmstat

CPU utilization mpstat 5. (In addition to CPU utilization, this command also displays the context
switches on a per-processor basis. For aggregate CPU utilization, use the sar

command.

Disk I/O iostat

Network I/O netstat –sP tcp. This command monitors the various TCP parameters.

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-33

Tuning Network Performance

To optimize WebLogic Integration performance in a deployment, consider the

following requirements for a high-performance network:

� Sufficient available network bandwidth for WebLogic Integration and its

connections to other tiers in your architecture (such as client and database

connections)

� Sufficient throughput speed on the LAN/WAN

� Configurable operating system settings that allow you to optimize network

performance

� Sufficient capacity to handle peak loads

Tuning Databases

To optimize WebLogic Integration performance in a deployment, you need to

maximize the use of underlying resources. WebLogic Integration relies extensively on

database resources for handling run-time operations and ensuring that application data

is durable. The following sections describe how to tune databases in a WebLogic

Integration deployment:

� General Database Tuning Suggestions

� Tuning Oracle Databases

� Tuning Microsoft SQL Server Databases

� Tuning Sybase Databases

� Tuning Cloudscape Databases

These sections provide a checklist of issues to consider when you are working to

optimize your WebLogic Integration performance. For detailed instructions about
specific database products, consult the appropriate product documentation.

4 Tuning Performance

4-34 Deploying BEA WebLogic Integration Solutions

General Database Tuning Suggestions

The following sections explain how you can optimize database performance by

adjusting the settings for various parameters and features of your deployment:

� Opened Cursors

� Disk I/O Optimization

� Database Sizing and Organization of Table Spaces

� Checkpointing

� Database Compatibility

� Database Monitoring

Opened Cursors

While using multiple cursors for an operation can increase concurrency in most
situations (for example, one opened cursor can perform updates while another opened

cursor performs inserts), there is a limit to the maximum number of cursors that can be

handled by a database server. This maximum pool is shared across all sessions and

connections of the database server. Keeping too many cursors opened within a single

connection can starve other connections, thereby slowing database performance and

reducing system scalability. A good estimate can be derived from the maximum

number of opened cursors that the database server can handle and the average number
of simultaneous users. Another strategy is to minimize the length of time that each

cursor is kept open.

Disk I/O Optimization

Disk I/O optimization is a key database tuning parameter that is related directly to

throughput and scalability. Access to even the fastest disk is orders of magnitude

slower than memory access. Whenever possible, optimize the number of disk accesses.
In general, selecting a larger block / buffer size for I/O reduces the number of disk

accesses and might substantially increase throughput in a heavily loaded production

environment.

For recommended settings, see the appropriate database-specific sections about tuning

databases, which are provided later in this document.

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-35

Database Sizing and Organization of Table Spaces

Distribute the database workload across multiple disks to avoid or reduce disk

overloading. To optimize database performance:

� Put frequently accessed tables and indexes on different disks. The mechanism to

achieve this differs from database to database. Consult your local database

administration guide on organization of database storage structures.

For example, each workflow instance and its children create a row in the

WORKFLOWINSTANCE table. These tables need to be optimized for insert and

update operations. Delete operations on this table are performed in batches

through the WebLogic Integration Studio. For a batch delete operation used to

remove workflow instances, be sure to configure a rollback segment with a

sufficient size so that it can handle a delete operation.

� Put the redo logs, archive logs, and database tables on separate disks.

� Some databases allow users to choose between raw disk I/O and regular file

system I/O. In general, raw disk I/O has better write performance while file

system I/O has better read performance due to OS-level caching. Thus raw disk

I/O is a good candidate for OLTP applications while file system I/O should be

used for decision support applications. When using raw I/O, you should increase

the database buffer cache size to compensate for the lack of OS-level caching.

Checkpointing

Checkpoint is a mechanism that periodically flushes all dirty cache data to disk. This

increases the I/O activity and system resource usage for the duration of the checkpoint.
While frequent checkpointing can increase the consistency of on-disk data, it can also

slow database performance. While most database systems have the notion of
checkpoint, not all database systems provide user-level controls. Oracle, for example,
allows administrators to set the frequency of checkpoints while users have no control
over SQLServer 7.X checkpoints. For recommended settings, see the product
documentation for the database you are using.

Database Compatibility

Use only the recommended versions of clients and servers. For a list of supported

databases, see the software requirements in the BEA WebLogic Integration Release

Notes for the release of WebLogic Integration that you are using.

4 Tuning Performance

4-36 Deploying BEA WebLogic Integration Solutions

Database Monitoring

Monitor the following aspects of database use:

� Disk space—Monitor the system to ensure that the database is not running out of
space. The key tables, such as WORKFLOWINSTANCE, should be monitored to

make sure enough space is allocated. Schedule regular table reorganization for
space defragmentation (after first monitoring tables for fragmentation) and

reclaim the disk space.

� Performance—Use the profiling or monitoring tools that accompany your
database to identify bottlenecks and to obtain recommendations for performance

tuning.

Tuning Oracle Databases

This section describes performance tuning for Oracle 8.1.7, the only version of the

Oracle database supported by Weblogic Integration 2.1

V$ Tables

Oracle 8.1.7 offers a series of dynamic performance views, often called V$ tables, that
allows users to monitor system statistics using SQL queries. Users need to be logged

in to the database as SYS or SYSTEM, or they must have administrator privileges to

access these dynamic views. Many of these dynamic views are referenced in the

following sections. For details about these dynamic views, see your Oracle

administrator’s guide and tuning guide for details.

Initialization Parameters

The initialization parameter file (init.ora) contains the system initialization

parameters and values for the Oracle server.

On Windows NT/2000, the pathname for the file is as follows:

d:\oracle\admin\sid\pfile\init.ora

where d:\oracle is the installation directory and sid is the instance ID of the

database (for example, d:\Oracle\admin\hsundb\pfile\init.ora).

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-37

The contents of this file are organized as attribute-value pairs, such as PROCESSES =

100.

You should always make a backup before modifying the file. You must bounce (shut
down and restart) the server to reflect any modifications.

Modifications made to this file can and should be verified after bouncing the server.
This validation can be done through an SQL statement or an SQL*Plus command. The

parameters and their values are stored in a dynamic performance view, V$PARAMETER.

The following query validates changes made to the PROCESSES parameter. Note that
the attribute name is lower case:

SELECT name, value FROM v$parameter WHERE name = ‘processes’

Another method is to use the SHOW PARAMETERS parameter_name command in an

SQL*Plus shell. For example, the following command:

SHOW PARAMETERS “foo”

is roughly equivalent to the following query:

SELECT name, value FROM v$parameter WHERE name LIKE ‘%foo%’;

Ensure that you have a full understanding of the parameter before modifying its value.
For detailed information about specific parameters, see your Oracle documentation.

Shared Pool Size

The share pool in an important part of the Oracle server system global area (SGA). The

SGA is a group of shared memory structures that contain data and control information

for one Oracle database instance. If multiple users are concurrently connected to the

same instance, the data in the instance’s SGA is shared among the users.

The shared pool portion of the SGA caches data for two major areas: the library cache

and the dictionary cache. The library cache is used to store SQL-related information

and control structures (for example, parsed SQL statement, locks). The dictionary

cache is used to store operational metadata needed for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the

shared pool is too small, the server must dedicate resources to managing the limited

amount of available space. This consumes CPU resources and causes contention

because Oracle imposes restrictions on the parallel management of the various caches.
The more you use triggers and stored procedures, the larger the shared pool must be.

4 Tuning Performance

4-38 Deploying BEA WebLogic Integration Solutions

The SHARED_POOL_SIZE initialization parameter specifies the size of the shared pool
in bytes. We recommend a value that is no less than 9MB in a production system. It is

not uncommon for systems to require up to 75MB for the shared pool. The following

query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

If there is always free memory available within the shared pool, then increasing the

size of the pool offers little or no benefit. Also, just because the shared pool is full does

not necessarily mean there is a problem. There are no entries in the shared pool that
cannot be paged out once they enter the pool. Application and deployment needs may

differ, thus this value needs to be tuned on the basis of specific deployments and

applications.

Maximum Opened Cursors

To prevent any single connection taking all the resources in the Oracle server, the

OPEN_CURSORS initialization parameter allows administrators to limit the maximum

number of opened cursors for each connection. Unfortunately, the default value for this

parameter is too small for systems such as WebLogic Server and WebLogic

Integration. A reasonable number falls in the range of 175 to 255. Cursor information

can be monitored using the following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

Maximum Number of Processes

On most operating systems, each connection to the Oracle server spawns a shadow

process to service the connection. Thus, the maximum number of processes allowed

for the Oracle server must account for the number of simultaneous users, as well as the

number of background processes used by the Oracle server. The default number is

usually not big enough for a system that needs to support a large number of concurrent
operations. A reasonable number falls in the range of 200 to 255. For platform-specific

issues. see your Oracle administrator’s guide. The current setting of this parameter can

be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-39

Database Block Size

A block is Oracle’s basic unit for storing data and the smallest unit of I/O. One data

block corresponds to a specific number of bytes of physical database space on disk.
This concept of a block is specific to Oracle RDBMS and should not be confused with

the block size of the underlying operating system. Note that since the block size affects

physical storage, this value can be set only during the creation of the database; it cannot
be changed once the database has been created.

Given the nature of WebLogic Integration repository tables and access patterns, it is

recommended that the database used for WebLogic Integration is created with a block

size of 8K. The current setting of this parameter can be obtained with the following

query:

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

The following table shows the advantages and disadvantages of commonly used block

sizes.

Tuning Options for System Administrators

This section contains tuning procedures that should be performed only by system

administrators or users who are intimately familiar with the affected system.

Block Size Advantages Disadvantages

2K-4K (small) Reduces block contention when multiple

transactions act upon the same block.
Good for small rows, or lots of random

access.

Has relatively large I/O overhead.

You may end up storing only a small number of
rows in each block, depending on the size of the

row.

8K (medium) If rows are medium size, then you can

bring a number of rows into the buffer
cache with a single I/O.

With a small block size, you may bring

in only a single row.

Space in the Oracle buffer cache is wasted if you

are doing random access to small rows and have a

large block size. For example, with an 8KB block

size and 50-byte row size, you are wasting 7,950

bytes in the buffer cache when doing random

access.

16K-32K (large) There is relatively less overhead; thus,
there is more room to store useful data.
Good for sequential access or very large

rows.

Large block size is not good for index blocks used

in an OLTP type environment, because they

increase block contention on the index leaf
blocks.

4 Tuning Performance

4-40 Deploying BEA WebLogic Integration Solutions

Warning: Not all tuning options in this section will have a positive effect on

performance and parameter values may need to be empirically derived.

SNP Processes

By default, the Oracle server creates several background processes to perform

scheduled tasks. These tasks can be scheduled only through the use of the Job Queues

functionality or Advanced Replication (check your Oracle documentation for details).
Thus, if you are not using these Oracle features, then the processes are wasted

resources. Turn off these processes until they are actually needed. This can be done by

modifying the init.ora file. The safest approach is to comment out the following

section in your init.ora file:

The following parameters are needed for the Advanced Replication
Option
#job_queue_processes = 4
#job_queue_interval = 10

Sort Area Size

Increasing the sort area increases the performance of large sorts as this allows the sort
to be performed in memory during query processing. This can be important, as there is

only one sort area for each connection at any point in time. The default value of this

init.ora parameter is usually the size of 6-8 data blocks. This value is usually

sufficient for OLTP operations but should be increased for decision support operation,
large bulk operations, or large index-related operations (for example, recreating an

index). When performing these types of operations, you should tune the following

init.ora parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Physical Storage Parameters for Tables

Database tables grow and shrink in size due to inserts, updates, and deletes. Growing

a table incurs additional I/O that slows database operations. Thus, the physical storage

parameters of each table should be set according to its expected access and usage

pattern. This also means that the parameters are largely determined by the applications

using the tables. In general, the default values used by Oracle work fairly well, but
there are many instances where tuning these parameters can produce dramatic

performance improvements. This work should be performed by a professional DBA

with a deep understanding of the Oracle RDBMS. The following sections highlight

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-41

some storage parameters that are common to schema objects, but are especially

important to the CREATE TABLE command. It is not in the scope of this guide to

recommend specific values for these parameters. (For details, see your Oracle

documentation or DBA). Selected parameters are described and queries are provided

to help you check for potential problems.

� INITRANS and MAXTRANS

When a transaction modifies a block, it must first mark a flag in the header of
the block. The marker is released when the transaction commits. Each marker
takes space in the block, thus more transaction markers mean less space for data.
Without a marker, the transaction is not allowed to modify the block and must
wait. Oracle allows users to control the number of markers per block on a

per-table basis. (Some tables provide users with an even finer level of control,
but a description of such control is beyond the scope of this document.) The

INITRANS parameter allows users to specify the initial number of markers

allocated in each block (the minimum value is 1). Additional markers are

allocated up to the number specified by MAXTRANS. Transactions are blocked

when no free markers are available. As transactions become blocked, the

possibility of deadlocks increases (that is, transactions that are not allowed to

complete and hold on to resource locks). The default MAXTRANS value is 255, but
it should be checked with the following query to ensure that the parameters have

a reasonable value for tables involved in OLTP:

SELECT owner, table_name, ini_trans, max_trans, FROM all_tables;

These settings are important if your application involves many concurrent
workflows because, during its lifecycle, each workflow executes a series of
transactions against the WORKFLOWINSTANCE table.

� MINEXTENTS and MAXEXTENTS

These parameters control the size of tables as they grow and shrink. An extent is

composed of one or more data blocks (see “Database Block Size”). These

parameters control the number of extents that are allocated to a table during

creation (the size of a table cannot shrink below the value specified by

MINEXTENTS) and the maximum number of extents that can be allocated to a

table. Generally users should create tables using the following settings:

CREATE TABLE foo (col1 number, col2 date)

STORAGE (MINEXTENTS 1 MAXEXTENTS UNLIMITED);

The following query is used to check the values of these parameters:

SELECT owner, table_name, min_extents, max_extents

4 Tuning Performance

4-42 Deploying BEA WebLogic Integration Solutions

FROM all_tables;

Note that when the UNLIMITED option is specified for MAXEXTENTS, the value

returned by the query will be a large integer (for example, 2147483645).

Swapping of Redo Logs

To support recovery, all operations performed against the Oracle RDBMS are recorded

in redo logs (unless you explicitly disable logging for certain operations). Over time,
the amount of information in the log increases and eventually starts to affect the

performance of each operation. Immediately after a successful database backup, the

information in the redo logs is no longer necessary as recovery can be achieved with

the backup. Thus, it is a good practice to start a new redo log after each backup to clean

up the information that is no longer needed and potentially restore system

performance. This operation can be done through the following SQL command:

ALTER SYSTEM SWITCH LOGFILE

For details about redo logging, managing redo logs and log groups, and best practices

for RDBMS backup, see your Oracle documentation.

Table Reorganizations

As SQL operations (both OLTP and bulk) cause tables to grow and shrink, the storage

space for the table can become fragmented. This can lead to performance degradations

and requires user intervention to reclaim space gaps and compact table data. This

operation is often referred to as a table reorganization. Oracle 8.1.7 does not have a

built-in facility to support this operation, thus the user must perform the steps

manually. Following good practices, this operation should be done soon after a

database backup. The following steps show how to reorganize a table called foo:

1. Make a copy of the table using the following SQL statement:

CREATE TABLE foo_bkup AS SELECT * FROM FOO;

The act of copying the data will compact the data and since this is a new table,
there is no space to reclaim.

2. Delete the old table using the following SQL statement:

DELETE TABLE foo;

3. Rename the new table with the name of the old table using the following SQL

statement:

Tuning Databases

Deploying BEA WebLogic Integration Solutions 4-43

RENAME foo_bkup TO foo

Note that each step in the process involves DDL statements (such as CREATE TABLE,
DROP TABLE, and so on). DDL statements are not transactional in Oracle. More

specifically, each DDL statement executes in a self-contained transaction. Thus the

ROLLBACK command is ineffective during a table reorganization.

Tuning Microsoft SQL Server Databases

The following table describes performance tuning parameters that are specific to

Microsoft SQL Server databases. For more information about these parameters, see

your Microsoft SQL Server documentation.

Tuning Sybase Databases

The following table describes performance tuning parameters that are specific to

Sybase databases. For more information about these parameters, see your Sybase

documentation.

Table 4-4 Performance Tuning Parameters for Microsoft SQL Server

Databases

Parameter Recommendation

Tempdb Store tempdb on a fast I/O device.

Recovery interval Increase the recovery interval if perfmon shows an increase in I/O.

I/O block size Use an I/O block size larger than 2Kb.

Table 4-5 Performance Tuning Parameters for Sybase Databases

Parameter Recommendation

Recovery interval Lower recovery interval setting results in more frequent checkpoint
operations, resulting in more I/O operations.

I/O block size Use an I/O block size larger than 2Kb.

4 Tuning Performance

4-44 Deploying BEA WebLogic Integration Solutions

Tuning Cloudscape Databases

BEA provides Cloudscape support only for development on Windows platforms. We

recommend using a database other than Cloudscape for production for the following

reasons:

� With high loads, Cloudscape performance is very poor.

� Cloudscape is more prone to deadlocks in a multiCPU, multiple-client
deployment.

� Migration of earlier WebLogic Integration versions to WebLogic Integration

Release 2.1 is not supported when the underlying database is Cloudscape.

� Bundling of Cloudscape might be discontinued in future WebLogic Integration

releases.

Maximum online

engines
Controls the number of engines in a symmetric multiprocessor
(SMP) environment. Sybase recommends configuring this setting to

the number of CPUs minus 1.

Table 4-5 Performance Tuning Parameters for Sybase Databases (Continued)

Parameter Recommendation

Deploying BEA WebLogic Integration Solutions I-1

Index

A
application profiling 4-29
application view beans 4-4
architecture, deployment 1-2
asynchronous request threads 4-3
asynchronous service invocations 1-12
audience x

B
bottlenecks 4-30

C
checkpointing 4-35
Cloudscape database tuning 4-44
clusters

about clusters 2-2
creating 2-22
designing 2-3
managed servers 2-15
prerequisites for configuring 2-14
targeting resources to 2-27
task summary 2-15

conventions xiii
cursors 4-34
customer support xii

D
database administrators 1-16
databases

checkpointing 4-35
Cloudscape database tuning 4-44
compatibility 4-35
Microsoft SQL Server database tuning

4-43
monitoring 4-36
opened cursors 4-34
organization 4-35
sizing 4-35
Sybase database tuning 4-43
tuning 4-33
tuning suggestions 4-34

deployment
architecture 1-2
resources

application integration 1-11
B2B integration 1-11
Business Process Management 1-6
databases 1-14
deployment containers 2-5
distributing across servers or

clusters 2-26
hardware 1-14
network 1-14
operating system 1-14
overview 1-2
resource groups 2-3
WebLogic Server 1-3

tasks 1-16
deployment containers 2-5
deployment specialists 1-15

I-2 Deploying BEA WebLogic Integration Solutions

disk I/O 4-34
documentation

conventions xiii
overview documents ix
printing xi

E
EJBs

cache 1-4
pools 1-4

event listener message-driven beans 1-8, 4-3
event queues 1-10
events 1-13
execution thread pool 1-6, 4-6

H
hardware tuning 4-30

I
instance beans 1-9
instance entity beans 4-4

J
J2EE Connector Architecture (J2EE-CA) 1-

6, 4-7
Java Message Service (JMS) 1-4
Java Virtual Machine (JVM) 4-8
JDBC connection pools 1-5, 4-4
JMS

queues
application integration, configuring

for 2-25
BPM, configuring for 2-24

servers, creating 2-25
Jprobe 4-29

L
load balancing

about load balancing 2-8
application integration 2-13
BPM 2-9
WebLogic Server 2-9

M
machines, creating 2-23
managed servers

adding to domain 2-22
adding to existing installation 2-16
installing in new location 2-18
sample start server command 2-21

Microsoft SQL Server database tuning 4-43
monitoring

about monitoring performance 4-11
B2B integration performance 4-22
BPM performance 4-17
databases 4-36
profiling applications 4-29
WebLogic Server performance 4-11

N
network performance tuning 4-33

O
opened cursors 4-34
operating system tuning 4-31
OptimizeIt 4-29

P
performance

bottlenecks 4-30
monitoring 4-11

prerequisites x
principals, WebLogic Server security 3-4

Deploying BEA WebLogic Integration Solutions I-3

printing product documentation xi
product support xii
profiling applications 4-29

R
resource connection pools 4-7
resource groups

about resource groups 2-3
list of 2-4
types of 2-4

resources, targeting 2-27
roles

database administrators 1-16
deployment specialists 1-15
WebLogic Server administrators 1-15

S
security

about security 3-1
application integration security 3-3
B2B Integration security 3-3
Business Process Manager security 3-2
WebLogic Server security 3-2
WebLogic Server security principals 3-4

servers
assigning existing server to machine or

cluster 2-24
creating 2-23
starting in the domain 2-28
targeting resources to 2-27

service invocations
asynchronous 1-12
synchronous 1-12

starting servers 2-28
support xii
Sybase database tuning 4-43
synchronous service invocations 1-12

T
table spaces, sizing and organizing 4-35
targeting resources

clusters 2-27
servers 2-27

technical support xii
template beans 1-9
template definition beans 1-9
template entity beans 4-4
tuning

Cloudscape databases 4-44
databases 4-33
hardware 4-30
Java Virtual Machine (JVM) 4-8
Microsoft SQL Server databases 4-43
network performance 4-33
operating system 4-31
primary resources 4-1
Sybase databases 4-43
WebLogic Server 4-2

typographic conventions xiii

W
WebLogic Server administrators 1-15
workflow processor beans 1-8, 4-4
Worklist console 1-10

I-4 Deploying BEA WebLogic Integration Solutions

	About This Document
	Overview Documents for WebLogic Integration
	What You Need to Know
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Deployment Goals
	Deployment Architecture
	Key Deployment Resources
	WebLogic Server Resources
	Business Process Management Resources
	B2B Integration Resources
	Application Integration Resources
	Relational Database Management System Resources
	Hardware, Operating System, and Network Resources

	Roles in Integration Solution Deployment
	Deployment Specialists
	WebLogic Server Administrators
	Database Administrators

	Key Deployment Tasks

	2 Configuring WebLogic Integration Clusters
	Understanding WebLogic Integration Clusters
	About WebLogic Integration Clusters

	Designing a Clustered Deployment
	WebLogic Integration Deployment Resources
	Load Balancing in a WebLogic Integration Cluster

	Configuring a Clustered Deployment
	Configuration Prerequisites
	Summary of Basic Configuration Tasks
	Setting Up a WebLogic Integration Managed Server
	Adding Managed Servers and Creating Clusters
	Configuring JMS Queues for BPM
	Configuring JMS Servers and Queues for Application Integration
	Distributing Resources Across Servers or Clusters
	Starting the Servers in the Domain

	3 Using WebLogic Integration Security
	Overview of WebLogic Integration Security
	WebLogic Server Security
	Business Process Management Security
	B2B Integration Security
	Application Integration Security

	WebLogic Server Security Principals Used in WebLogic Integration

	4 Tuning Performance
	Tuning WebLogic Integration Performance
	Primary Tuning Resources
	Tuning WebLogic Server Performance
	Monitoring and Tuning the Java Virtual Machine (JVM)

	Monitoring and Tuning Run-Time Performance
	Monitoring and Tuning WebLogic Server Performance
	Monitoring and Tuning BPM Performance
	Monitoring and Tuning B2B Integration Performance
	Monitoring and Tuning AI Performance
	Profiling Applications

	Tuning Hardware, Operating System, and Network Resources
	Performance Bottlenecks
	Tuning Hardware
	Tuning the Operating System
	Tuning Network Performance

	Tuning Databases
	General Database Tuning Suggestions
	Tuning Oracle Databases
	Tuning Microsoft SQL Server Databases
	Tuning Sybase Databases
	Tuning Cloudscape Databases

	Index

