BEA WebLogic
Integration

Implementing cXML for
B2B Integration

Version 2.1
Document Date: October 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, ORMAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Portal, BEA WebL ogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Implementing cXML for B2B Integration

Part Number Date Software Version

N/A October 2001 21

Contents

What Y OU NEed t0 KNOWcceiieiiceie ettt st Y
HOW to Print thiS DOCUMENLcuoeiiiiiee ettt Vi
Related INfOrmMatioN.........ccveiieeeeicce e enens Vii
(00 1 r=o: AU LS TR vii
Documentation CONVENLIONScccueiiiieieeiesie et ee e seesreseesresneens viii

1. Introduction

WebL ogic Integration Architecture and CXMLccccvvvierievenennreesseeeeneenens 1-1
CXML ProtOCOl LAYESccvieeieeeiieeieiree et s 1-2
CXML AP et 1-3
BUSINESS DOCUMENTS......ccvvieieereerereees e 1-3
Digital Signatures and Shared SECIeLS.........cuirrirreeirerire e 1-4
MESSA0E ValidaLIONeceeveeesie et e s neene s 1-5
LiMIEBEIONS....e et 1-5
2. ¢cXML Administration
Connecting to Other cXML Trading Partners..........ccccveeeenenenenene e 2-1
Collaboration AQrEEMENES........vvvrerereeseereeeeerese e se e e see e e e eneees 2-3
SECUITEY ..ttt ettt sttt b et b b e s e e st et et e re et ebesbeebesaeebesbees 2-3
Configuring Shared SECIELS.......ccoorirrrerrerere e 2-4
3. Using the cXML API
CXML MENOUS ...t 31
Properties Used to L ocate Collaboration Agreements.........ccoceeeverecrennnne 34
CXML MESSAgE SITUCIUNE........eceeeieceeieeeeese et 35
CXML DTDS.coiecrretrerre ettt s nrenas 3-6
Dealing With Shared SECIetS........cco i 3-6

Implementing cXML for B2B Integration i

iv

Processing INCOMING MESSAJES........ccccueruerirerseiesieeeeeenesseeseseesesresseseeseessenes 3-7

TNl ZAETON. ...ttt e 3-7
Processing the MESSAQE.couveeeeeeeee st 3-8
Processing OUtgOiNG MESSAgEScvvueererrerereesiesieseeseesieseeseeeeseseesesressessessenses 3-10
SeNding the MESSAQEcoueiuirieie et 311
(@000 (SIS 3T o] = 3-13
SAMPIE BUYES ... e 3-13

SAMPIE SUPPLTES <.t et 3-19

4. Using Workflows with cXML

Including CXML in WOrKfIOWS.......ccvciriiiiisee e 4-1
WOrkflow Integration Tasks.........cccerereienereniesiee e 4-2
Programming TaSKcccceeeveeeseresiereeseeeseeeeseseesessessessesse e ssesseses 4-2
AdMINISErative TASKS.......corieeeierieereee e 4-2

DESION TASK ... 4-3
Designing Workflows for Exchanging Business MESSagESc.ccevveverreeneenes 4-3
Working With BUSINESS MESSAJESccvrrererireisieiesieeesesseeensessesse e ssesseseeseas 4-3
About CXML BUSINESS MESSAES........ervereeeeireeinrerieriesresie s see e sesseeeenens 4-4
Prerequisite Tasks for Exchanging Business MEeSSages........ccuovervvreererenen. 4-5

Index

Implementing cXML for B2B Integration

About This Document

This document describes the cXML capabilities of WebL ogic Integration.

WebL ogic Integration introduces a routing architecture that allows it to manage and
resolve XOCP, RosettaNet, and cXML messages. This architecture allows WebL ogic
I ntegration to engage in business-to-business conversations using any of these protocol
standards.

cXML on WebL ogic Integration provides the ability to send and receive cXML
messages as described in the cXML User’s Guide, available at
http://ww. cxm . org.

This document is organized as follows:

m Chapter 1, “Introduction,” provides an introduction to cXML on WebL ogic
Integration and the architecture used to implement cXML on WebL ogic
Integration.

m Chapter 2, “cXML Administration,” describes cXML-specific administration and
security issues for WebL ogic Integration.

m Chapter 3, “Using the cXML API,” describesthe cXML API and how it is used.

m Chapter 4, “Using Workflows with cXML," describes how to use the WebL ogic
Integration Studio to create workflows for use with cXML.

Implementing cXML for B2B Integration v

What You Need to Know

This document isintended primarily for:

m Business process designers who use the WebL ogic Integration Studio to design
workflows that integrate with the WebL ogic I ntegration environment,
specifically focusing on cXML implementations.

m Application developers who use the cXML API to implement buyer or supplier
applications using WebL ogic Integration.

m System administrators who set up and administer WebL ogic Integration
applicationsin acXML environment.

For an overview of the WebL ogic Integration architecture, see “Overview” in the
Introducing B2B Integration document.

How to Print this Document

Y ou can print acopy of this document from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Integration
documentation CD. Y ou can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Vi Implementing cXML for B2B Integration

Related Information

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup
Language (XML), and Java programming, see the Javasoft Web site at the following
URL:

http://java. sun.com

Y ou will also find useful information at the BEA edocs Web site at thefollowing URL :
http://edocs. bea. com

For more information about cXML, visit the cXML.org Web site at the following
URL:
http://ww.cxm . org.

Contact Us!

Y our feedback on the WebL ogic Integration documentation isimportant to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebL ogic Integration 2.0 release.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

® Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Implementing cXML for B2B Integration vii

Documentation Conventions

viii

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneoudly.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chrmod u+w *
\t ux\ dat a\ ap
.doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace .
Example:
t ext amp .
void commt ()
nonospace Identifies variables in code.
italic .
Example:
t ext amp
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Implementing cXML for B2B Integration

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...

[-1 file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name]| [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Implementing cXML for B2B Integration

ixX

X Implementing cXML for B2B Integration

CHAPTER

1 Introduction

This section introducesthe cXML standard for el ectronic businesstransactions. cXML
is an extensible e-commerce-oriented XML standard developed by Ariba and widely
used for e-commerce purchasing transactions.

m WebL ogic Integration Architecture and cXML
m cXML API

m Business Documents

m Digital Signatures and Shared Secrets

m Message Validation

m Limitations

WebLogic Integration Architecture and cXML

cXML support provided by WebL ogic Integration consists of the following
components:

m cXML protocol layer
m cXML APl support

cXML integrationis provided through the use of business process management (BPM)
business operations and the cXML API. For more information, see Chapter 3, “Using
thecXML API,” and Chapter 4, “Using Workflows with cXML.”

Implementing cXML for B2B Integration 11

1 introduction

The following diagram illustrates the cXML architecture used by WebL ogic
Integration, and shows how WebL ogic Integration interacts with other systems using
cXML.

Figure1l-1 WebLogic Integration cXML Architecture

B Ariba Commerce
uyer el Services Network

-

Hub -and-spoke
t2= topology, used for

ML - - - most transactions

Supplier

ser application

F'eer—tﬁ-peer cbL protocol
topology, used far layer
FunchOut sessions WebLogic

Integration B2Bi

WebL ogic Integration support for cXML is designed to allow seamlessintegration of
cXML with the standard B2B integration infrastructure. For more information about
the remainder of the B2Bi architecture, see Introducing B2B Integration.

Because of the design environment for cXML, support for hubs other than the Ariba
Commerce Services Network is not provided.

cXML Protocol Layer

The cXML protocol layer providesthe ability to send and receive messages by way of
the Internet, according to the cXML specifications for transport, message packaging,
and security. WebL ogic Integration createsindividual cXML sessions, each of which
createsand managesaURL wherethe WebL ogic Integration server can receive cXML
messages. Y ou can configure cXML sessions as needed using either the WebL ogic
Integration B2B Console or a configuration file. To use a WebL ogic Integration

1-2 Implementing cXML for B2B Integration

cXML API

configuration file, create a configuration file based on the W.C. dt d file to configure
cXML sessions as needed. If you use this approach, use the Bulk Loader to load the
configuration file into the repository.

cXML API

WebL ogic Integration includes comprehensive API support for the creation of cXML
user applications. For more information onthe c XML API, see Chapter 3, “Using the
cXML API,” and the BEA WebLogic Integration Javadoc.

Business Documents

Business document processing is performed in WebL ogic Integration using a
combination of public and private processes. Public processes are those processes used
to integrate and manage transactions between trading partners. Private processes are
those processes used internally by atrading partner; for example to communicate
between acompany’ s public processes and itsinternal ERP and CRM systems. Private
processes are thus not directly exposed for trading partner consumption or use. For
further explanation, see the BEA WebL ogic Integration Glossary.

cXML business documents are part of the public processes in which trading partners
participate while performing e-business transactions. For example, a PunchOut is part
of the process that a Customer trading partner performs with a Product Supplier
trading partner to get information from alive repository on the price and avail ability
of goods that the Customer wants to buy and the Product Supplier wants to sell.
Trading partners planning to use PunchOuts must do the following:

m Implement the public process associated with the PunchOut

m Connect their internal systems, as well astheir private processes and workflows,
to the public process

Implementing cXML for B2B Integration 1-3

1

Introduction

WebL ogic Integration implements all business documents available within cXML:
m Catalogs

m PunchOuts

m Purchase Orders

m Subscriptions

For further information on cXML business documents, go to the cXML.org Web site
at thefollowing URL:

http://wwmv. cxm . org

Digital Signatures and Shared Secrets

1-4

The standard method of securing transactionsin cXML isthe shared secret. In cXML
terms, a shared secret istypically a username/password combination, exchanged
through secure transport before business communication begins.

WebL ogic Integration includes full support for cXML shared secrets. For more
information about implementing and configuring shared secrets, see the Online Help
for the WebLogic Integration B2B Console. In addition, you may optionally use https
transport for your messages.

IncXML v1.2, optional digital signatures based on the Base64-encoded X.509 V3
certificate model wereintroduced. Thesedigital signaturesare not the sameasthe RSA
CertJdigital signatures implemented within WebL ogic Integration. At thistime,
WebL ogic Integration does not support cXML digital signatures. For more
information on this subject, see the cXM_. or g Web site at the following URL :

http://wwmv. cxm . org

Implementing cXML for B2B Integration

Message Validation

Message Validation

ThecXML standard requiresall cXML documentsto be valid and to refer to published
cXML Document Type Definitions (DTDs). Validation is not required by the cXML
standard, but it is provided by WebL ogic Integration as a service.

Limitations

Several cXML-related features are not supported in this release of WebL ogic
Integration:

Digital Certificates: Asdiscussed earlier, cXML 1.2 digital certificates are not
supported.

cXML 1.2 attachments are not supported at this time.

Non ACSN hub support: No support is provided for any hub other than the
Ariba Commerce Services Network. All hub-based transactions must be routed
through the ACSN. Peer-to-peer support is provided.

No Sample implementation is provided at thistime.

Implementing cXML for B2B Integration 1-5

1 introduction

1-6 Implementing cXML for B2B Integration

CHAPTER

2 cXML Administration

Administration of cXML transactionsis performed using the WebL ogic Integration
B2B Console. The following sections describe the administrative work required to
support cXML transactions:

m Connecting to Other cXML Trading Partners
m Collaboration Agreements

m Security

Connecting to Other cXML Trading Partners

Conversations between cXML trading partners use both peer-to-peer and
hub-and-spoke configurations. While these configurations are discussed in
Introducing B2B Integration as they apply to most situations, cXML variesdightly in
its use of these configurations. The following illustration demonstrates how aroutine
cXML transaction uses both topologies simultaneously.

Implementing cXML for B2B Integration 2-1

2 cXML Administration

Figure2-1 cXML Deployment Configurations

B Ariba Commerce
uyer el Services Network

-

Hub -and-spoke
t2= topology, used for

ML - - - most transactions

Supplier

ser application

F'eer—tﬁ-peer cbL protocol
topology, used far layer
FunchOut sessions WebLogic

Integration B2Bi

In thisillustration, the Ariba Commerce Services Network (ACSN) is the hub. Most
transactions are performed through this hub, with individual trading partners serving
asthe related spokes. However, when you browse a partner’ s catal og, a PunchOut
trading session is created that connects directly to the remote system. In this case, the
hub-and-spoke topology isbypassed in favor of apeer-to-peer configuration. Once the
PunchOut session is finished, and the Buyer wants to send an Order or a Subscription,
then the system topol ogy reverts to a hub-and-spoke model, and the ACSN again acts
as the hub.

Itisimportant to note that when cXML isused with WebL ogic Integration, the ACSN
isthe only authorized hub. WebL ogic Integration does not provide support for any
other hub-and-spoke deployments, and no other system is capable of acting as a hub
for cXML-based transactions.

2-2 Implementing cXML for B2B Integration

Collaboration Agreements

Collaboration Agreements

Collaboration agreements used with cXML are similar in scope and effect to
collaboration agreements configured for other trading protocols. For further general
information on configuring collaboration agreements, see Administering B2B
Integration and the Online Help for the WebLogic Integration B2B Console.

The one significant difference in configuring collaboration agreements liesin how
credentials are configured. Because cXML uses the Ariba Commerce Services
Network as the authenticating hub, all credentials are configured in relation to the
ACSN, not in relation to another trading partner.

In practice, this means that your shared secret will always be registered with the
ACSN, rather than onethat isdefined solely and specifically between you and atrading
partner.

Security

WebL ogic | ntegration provides support for the security model embodiedincXML 1.1,
which usesthe concept of shared secretsto verify message authenticity. Shared secrets
are passwords or other text strings used to verify the identity of a given partner. Like
apassword, a given trading partner entity islinked to a specific shared secret,
providing one-to-one identity mapping. Thereis no provision to prevent multiple
trading partners from using identical shared secrets, however.

cXML 1.2 introduces a specific implementation of digital signatures based on the
Base64-encoded X.509 V 3 certificate model. At thistime, WebL ogic Integration does
not support this implementation of digital signatures.

Implementing cXML for B2B Integration 2-3

2 cXML Administration

Configuring Shared Secrets

Use the WebL ogic Integration B2B Console to configure shared secrets. For more
information on this procedure, see the Online Help for the WebLogic Integration B2B
Console.

2-4 Implementing cXML for B2B Integration

CHAPTER

3 Using the cXML API

The following sections describe some of the key programming issues for the cXML
API.

cXML Methods

cXML Message Structure
cXML DTDs

Dealing with Shared Secrets
Processing Incoming Messages

Processing Outgoing M essages

For more information about programming business operations, see Creating
Workflows for B2B Integration.

cXML Methods

The following methods are available for cXML message manipulation.

Table 3-1 PubliccXML Methods

Method

Package Description

onMessage

com bea. b2b. protocol . cxni . Receives an incoming CXMLMessage
CXML_Li st ener

Implementing cXML for B2B Integration 31

3 Using the cXML API

Table 3-1 PubliccXML Methods

Method

Package

Description

der egi ster

com bea. b2b. protocol . cxn .

CXM_Manager

Deregisters the application with this
CXMLManager. Uses a set of properties
to select the registration.

get | nst ance

com bea. b2b. protocol . cxn .

CXM-Manager

Gets an instance of the CXMLManager.

get Shar edSecr et

com bea. b2b. protocol . cxm .

CXM_Manager

Gets the Shared Secret for this Trading
Partner. Usesthe Trading Partner nameto
find the Shared Secret.

register

com bea. b2b. protocol . cxm .

CXM_Manager

Registers the application with this
CXMLManager. Uses a set of properties
to select the collaboration agreement for
this Trading Partner.

Use for sending cXML messages.

get Ht t pSt at usCode

com bea. b2b. protocol . cxn .

CXMLHt t pSt at usExcepti on

Returns the HTTP Status code from the
exception.

get AsString

com bea. b2b. protocol . cxm .

nmessagi ng. CXM_Docunent

Gets the cXML part as a String.

get Docunent

com bea. b2b. protocol . cxm .

nessagi ng. CXM_Docunent

Gets the associated XML Document.

get FrontCr edenti al Do
mai ns

com bea. b2b. protocol . cxn .

nmessagi ng. CXM_Docunent

Gets the From Credential Domains from
the document header.

get FronCredential Id
entities

com bea. b2b. protocol . cxm .

nessagi ng. CXM_Docunent

Gets the From Credentia |dentities from
the document header.

getldentifier

com bea. b2b. protocol . cxn .

nessagi ng. CXM_Docunent

Gets either the document identifier or the
message identifier, as appropriate.

get NodeVal ue

com bea. b2b. protocol . cxn .

nmessagi ng. CXM_Docunent

Gets the value of adocument node using
the specified XPath expression to locate
the node. If multiple nodes match the
XPath expression, then only thefirst node
will be used.

32 Implementing cXML for B2B Integration

cXML Methods

Table 3-1 PubliccXML Methods

Method

Package

Description

get Sender Credent i al
Donai n

com bea. b2b. prot ocol . cxmni .

nmessagi ng. CXM_Docunent

Gets the Sender Credential Domain from
the document header.

get Sender Credent i al
Identity

com bea. b2b. prot ocol . cxmni .

messagi ng. CXM_LDocunent

Gets the Sender Credential Identity from
the document header.

get Sender Shar edSecr
et

com bea. b2b. prot ocol . cxmi .

nmessagi ng. CXM_.Docunent

Gets the Sender Credential Shared Secret
from the document header.

get Sender User Agent

com bea. b2b. prot ocol . cxmi .

nmessagi ng. CXM_.Docunent

Gets the Sender User Agent from the
document header.

get Ti meSt anp

com bea. b2b. prot ocol . cxmi .

messagi ng. CXM_LDocunent

Gets either the document timestamp or
the message timestamp, as appropriate.

get ToCredenti al Doma
in

com bea. b2b. prot ocol . cxmi .

nmessagi ng. CXM_.Docunent

Gets the To Credential Domain from the
document header.

get ToCredenti al | den
tity

com bea. b2b. prot ocol . cxmi .

nmessagi ng. CXM_Docunent

Gets the To Credentia Identity from the
document header.

get Versi on

com bea. b2b. prot ocol . cxmi .

messagi ng. CXM_LDocunent

Gets the document version.

set Docunent

com bea. b2b. prot ocol . cxmi .

nmessagi ng. CXM_Docunent

Sets the associated XML document.

set NodeVal ue

com bea. b2b. prot ocol . cxmni .

messagi ng. CXM_LDocunent

Sets the value of a document node using
the specified XPath expression to locate
the node.

reply

com bea. b2b. protocol . cxmi .

messagi ng. CXM_LMessage

Replies to the request message. This
method is only valid when this object is
used as a parameter to

CXM_Li st ener. onMessage() . The
reply may be sent asynchronously after
the method has been called.

get Repl yDocunent

com bea. b2b. prot ocol . cxmi .

messagi ng. CXM_LMessage

Gets the reply cXML document.

get Request Docunent

com bea. b2b. prot ocol . cxmi .

messagi ng. CXM_LMessage

Gets the request cXML document.

Implementing cXML for B2B Integration 33

3 Using the cXML API

Table 3-1 PubliccXML Methods

Method Package

Description

send com bea. b2b. protocol . cxn .
nessagi ng. CXM_Message

Sends arequest message. This method
blocksuntil areply isreceived. Thereply
can be accessed via

get Repl yDocument () .

set Col | aborati onAgr com bea. b2b. protocol . cxmi .

Sets the Collaboration Agreement 1D for

eenent nessagi ng. CXM_Message the collaboration agreement to which this
message belongs. Uses a set of properties
to select the Collaboration Agreement.
set Repl yDocunent com bea. b2b. prot ocol . cxnl . Setsthe reply cXML document.

nessagi ng. CXM_Message

set Request Docunent com bea. b2b. protocol . cxm .
nmessagi ng. CXMLMessage

Sets the request cXML document.

get Ht t pSt at usCode com bea. b2b. protocol . cxm .

nessagi ng. CXM_LMessageToken

Gets the HTTP status code.

For more information about individual methods, see the BEA WebLogic Integration

Javadoc.

Properties Used to Locate Collaboration Agreements

cXML uses a set of defined properties to locate unique collaboration agreements.
When attempting to locate a specific collaboration agreement, you must supply values

for al of the following properties:
m BusinessProcessName

m BusinessProcessversion

m DeliveryChannel

m toRole

m fromTradingPartner

m toTradingPartner

34 Implementing cXML for B2B Integration

cXML Message Structure

cXML Message Structure

A cXML message is based on the message envelope. The message envelope includes
the following data structures.

Figure3-1 cXML Message Architecture

cREML Message

Header

From

—
=]

Sencer

Payload

Business
Document

Attachments

The message data structures are as follows:

m Header—Contains addressing and validation information, including the From,
To, and Sender data arrays. These data arrays provide information on the various
parties to the transaction, as well as validation information for each of the
participants.

m Payload—All the business documents and attachments that make up the body of
amessage.

The payload includes anumber of messaging objects. Y our application should be able
to deal with all of them.

m Business document—One or more cXML documents, each containing cXML
data, each part of which can be validated using cXML DTDs.

m cXML document—A cXML-standard document containing data. cXML
documents can be validated individually using cXML DTDs.

Implementing cXML for B2B Integration 35

Using the cXML API

m Attachment—An optional MIME-encoded binary attachment. WebL ogic
Integration does not support cXML attachments. If you want to make use them,
however, you can configure a private process to resolve MIME-encoded
attachments.

cXML DTDs

The DTDs you will need are available at the following locations:

m cXML DTDsare available from the cXML.org Web site at the following URL.:
http://xm .cxm . org/ schemas/ cXM./ ver si on/ cXM.. dt d

Here, versi onisthefull cXML version number (such as 1.1, 1.2, and so on).

m The Confirmation and Ship Notice transactions are contained in a separate DTD,
located at the following URL :

http://xm .cxm .org/schemas/ cXM./ version/ Ful fill.dtd

Here, ver si on isthefull cXML version number (such as 1.1, 1.2, and so on).

Validation using these DTDs s not required when you send a c XML message.
However, one assumption of the cXML messaging structure is that any message you
send has been validated. Thereforeit isagood ideato validate your messagesroutinely
against the DTDs, at least while you are testing interoperability with a new trading
partner. Once you are comfortable with your trading partner, you may optionally turn
off message validation to enhance performance.

Dealing with Shared Secrets

36

The cXML API provides access to the value of the shared secret stored in the
repository. The Get Shar edSecr et method allows you to retrieve the shared secret
from the repository for comparison to the shared secret stored in incoming documents,
or for use in outgoing cXML documents.

Implementing cXML for B2B Integration

Processing Incoming Messages

For incoming documents, your business operation code must perform verification of
the shared secret of an incoming message by matching its value with the value
specified in the configuration stored in the repository.

For outgoing documents your business operation code must insert the shared secret in
the Credential node of each outgoing cXML document.

Processing Incoming Messages

To process an incoming message, you must first initialize it. The registration function
associates acollaboration agreement with either alistener or asending application. The
token returned by the initialization processis used in the cXML message when the
message is sent or received.

Initialization

To initialize an incoming message:
1. Get acopy of thelistener object.

2. Define the return token.
private static CXM.Token token;

3. Retrieve an instance of the cXML Manager class
com bea. b2b. prot ocol . cxm . CXM_Manager :

private static CXM.Manager cxml m = CXM_Manager. get| nstance();

4. Define aset of propertiesto register this application and listener. The properties
are used to locate and map a unique collaboration agreement. For more
information about the properties needed to map a unique collaboration
agreement, see “Properties Used to L ocate Collaboration Agreements’ on page
3-4.
prop. set Property("Busi nessProcess", busi nessProcess);
prop. set Property("Busi nessProcessVersi on",
busi nessProcessVersi on);

prop. set Property("DeliveryChannel ", deliveryChannel);
prop. set Property("thisTradi ngPartner"”, nyTradi ngPart ner Nane);

Implementing cXML for B2B Integration 37

3 Using the cXML API

prop. set Property("otherTradi ngPartner",
ot her Tr adi ngPar t ner Nan®) ;

prop. setProperty("toRol e", toRole);
prop. setProperty("Party", "duns4");

Invoke the register method from the CXM_Manager class:
token = cxm mregister(prop);

Processing the Message

3-8

Once you have initiated an incoming message as described in the previous section,
“Initialization,” you can processit. To do so, your application must:

1

Get the request cXML document from the received cXML message using the
onMessage() callback method. This method passes the received cXML message
from the WebL ogic I ntegration run-time to your application code.

Get the XML DOM document from the cXML document:

/1l Get the cXM. docunent
CXM.Docunent regMsgDoc = cnsg. get Request Docunent () ;

/]l Get the XML DOM doc
Docurment reqXM.Doc = reqMsgDoc. get Docunent () ;

Process the request document based on the payload.

Retrieve the shared secret from the incoming message. The shared secret for the
trading partner is defined in the message, in:
/1 c XM/ Header / Fronf Credenti al .

String otherSharedSecret =
cxm m get Shar edSecr et (ot her Tr adi ngPar t ner Nane) ;

Verify that the shared secret from the message matches the shared secret defined
in the configuration for the trading partner. If the transaction is peer-to-peer, then
the trading partner will be the buyer or supplier. If the transaction is occurring
through the hub, then the trading partner will be the hub.

debug(" Stored Shared Secret for " + otherTradi ngPartner Name + "
' + ot her SharedSecret);

The following comparison failure options may occur.

Implementing cXML for B2B Integration

Processing Incoming Messages

Table 3-2 Verification Failure Options

Result Reason

No comparison was performed The shared secret has not been
configured for the trading partner.

Message was rejected with 400 (bad Request message could not be parsed.
request) http status code. This problem should be resolved in
the WebL ogic I ntegration run-time.

Message was rejected with 401 Shared secrets do not match

(unauthorized access) http status

code.

Message was rejected with 500 The listener was not properly

(Unable to forward request) http configured. This should be resolved

status code. in the WebL ogic Integration
run-time.

6. Createthereply XML DOM implementation document:
DOM npl enent ati onl npl domi = new DOM npl enent ati onl npl () ;

Docunent Type dType =
dom . creat eDocunent Type("request”, null, "cXM.dtd");

or g. wdc. dom Docunent punchout Doc = new Docunent | npl (dType);
Cxm El enent Factory cf = new Cxml El enent Fact or y(punchout Doc) ;

7. Createthereply cXML document:

El ement request = punchout Doc. cr eat eEl ement (" Request ") ;

8. Create the header elements in the document:

/'l header

cf . creat eHeader El enment (

/1 from

cf.creat eFronEl enent (
cf.createCredenti al El enent (
nyTr adi ngPar t ner Nane,
null)),

/1 to

cf.creat eToEl erment (
cf.createCredenti al El enent (

Implementing cXML for B2B Integration 39

3 Using the cXML API

" DUNS",

ot her Tr adi ngPar t ner Nane,
null)),

/'l sender

cf.creat eSender El ermrent (
cf.createCredential El enent (
" Ari baNet wor kUser | d",

"adm n@cne. cont',

ot her Shar edSecret),

"Ariba ORMS 5.1P4")),

9. Set the XML document in the cXML document:

CXML.Docunent repl yMsgDoc = new CXM.Docunent () ;
repl yMsgDoc. set Docunent (repl yXM.Doc) ;

10. Set the cXML document in the reply cXML message:
cnsg. set Repl yDocunent (repl yMsgDoc) ;

11. Set the collaboration agreement in the cXML message:
cnsg. set Col | abor ati onAgr eenent (prop) ;

12. Send the reply message to dispatch the outgoing cXML message from your
application to the WebL ogic Integration run-time:

cnsg. reply();

Processing Outgoing Messages

3-10

Y ou must initialize outgoing messages before you send them. To do so:
1. Definethe return token:
private static CXM.Token token;

2. Retrieve an instance of the cXML Manager class:
com bea. b2b. prot ocol . cxm . CXM_Manager .

private static CXM_Manager cxml m = CXM_Manager. get | nstance();

Implementing cXML for B2B Integration

Processing Outgoing Messages

3. Define a set of properties to register this application. The properties are used to
locate and map a unique collaboration agreement. For more information about the
properties needed to map a unique collaboration agreement, see “ Properties Used
to Locate Collaboration Agreements’ on page 3-4.

prop. set Property("Busi nessProcess", businessProcess);

prop. set Property("Busi nessProcessVersion",

busi nessProcessVersi on);

prop. set Property("DeliveryChannel ", deliveryChannel);

prop. setProperty("thi sTradi ngPartner", myTradi ngPart ner Nane) ;
prop. set Property("otherTradi ngPartner",

ot her Tr adi ngPar t ner Nane) ;

prop. setProperty("toRol e", toRole);

prop.setProperty("Party", "duns4");

4. Invokether egi st er method:

token = cxm mregister(prop);

Sending the Message

To send amessage, your application must perform the following actions:

1. Create acXML message:
DOM npl enent ati onl npl domi = new DOM npl enent ati onl npl () ;

Docunent Type dType =
dom . creat eDocunent Type("request”, null, "cXM.dtd");

or g. wdc. dom Docunent punchout Doc = new Docunent | npl (dType);
Cxm El enent Factory cf = new Cxml El enent Fact or y(punchout Doc) ;

2. Createthe XML DOM request document:

El ement request = punchout Doc. cr eat eEl ement ("request");
El enent trans =

punchout Doc. cr eat eEl emrent (“Punchout Set upRequest”) ;
request . appendchi l d(trans);

3. Create the header elementsin the request document:

punchout Doc. appendChi | d(
cf.createCxm El enent (

/'l header

cf.creat eHeader El enent (
/1 from

Implementing cXML for B2B Integration ~ 3-11

3 Using the cXML API

312

cf. creat eFronkl ement (
cf.createCredential El enent (
"DUNS",

nmy Tr adi ngPar t ner Nane,
null)),

Il to

cf.creat eToEl ement (
cf.createCredenti al El enent (
"DUNS",

ot her Tr adi ngPar t ner Nane,
null)),

/1 sender

cf.creat eSender El ement (
cf.createCredenti al El enent (
" Ari baNet wor kUser | d",

"adm n@cne. coni',

ot her Shar edSecret),

"Ariba ORMS 5.1P4")),

Retrieve the receiving trading partner’s shared secret from the appropriate trading
partner profile. For peer-to-peer messages, thiswill be the actual receiving
trading partner’s shared secret. For messages routed through a hub, thiswill be
the hub’s shared secret.

The value of the receiving trading partner’s shared secret (defined in
/I cXM_/ Header / To/ Credent i al) is updated to the sender’s shared secret
element (defined in// c XM/ Header / Sender / Cr edent i al):

String otherSharedSecret =

cxm m get Shar edSecr et (ot her Tr adi ngPar t ner Nane) ;

debug(" Stored Shared Secret for " + otherTradi ngPartner Name + "
' + ot her SharedSecret);

. Create the cXML document:

CXM.Docunent reqMsgDoc = new CXM.Docurent () ;

. Set the cXML document in the cXML message:

regMsgDoc. set Docunent (regXM.Doc) ;
crsg. set Request Docunent (reqMvsgDoc) ;

. Set the collaboration agreement in the cXML message:

csg. set Col | abor ati onAgr eenent (prop) ;

. Send the message:

CXM_.MessageToken sendToken = (CXM_MessageToken) cmsg. send();

Implementing cXML for B2B Integration

Processing Outgoing Messages

9. Get the reply document:
CXM.Docunent repl yMsgDoc = cnsg. get Repl yDocunent () ;
10. Extract the XML document:
or g. w3c. dom Docunent repl yXM.Doc = repl yMsgDoc. get Documnent () ;

11. Verify the response.

Code Samples

This section shows examples of code used by buyers and suppliers to process
messages. These examples are provided solely to illustrate the operation of the cXML
classes; they are not intended for execution. The examples below are configured for
peer-to-peer operation.

For more information about cXML classes, see BEA WebLogic | ntegration Javadoc.

Sample Buyer

Listing 3-1 Sample Buyer Code Example

Copyright (c) 2001 BEA

rights reserved

package exanpl es.ibcxm verifier;

i mpor t
i nport
i mpor t
i mpor t

i nport
i mpor t
i nport
i nport

i nport
i nport

i nport

java.io.*;
java.util.*;
javax.servlet.*;
javax.servlet.http.*;

org.w3c. dom *;

org. apache. htm . dom *;

org. apache. xnl . seri al i ze. *;
or g. apache. xer ces. dom *;

com bea. b2b. prot ocol . cxnl . nessagi ng. *;
com bea. b2b. protocol . cxml . *;

com bea. eci . | oggi ng. *;

Implementing cXML for B2B Integration ~ 3-13

3 Using the cXML API

*

This exanple provides a sinple test that will verify nmessage flow of cXM
peer-to-peer sending and receiving a cXM. docunent .

The two peers (Partnerl and Partner2) are running on a single WS.

Partner1l sends a Punchout Request to Partner2. Partner2 generates a

Punchout Set upResponse and returns it to Partnerl. Shared Secrets are verified
at both ends.

L A A T

~

public class PartnerlServlet extends HtpServlet

{

static final bool ean DEBUG = true;
private final static String businessProcess = "Punchout Setup";
private final static String businessProcessVersion = "1.1.009";
private final static String deliveryChannel = "CXM.PartnerVerifierl";
private final static String nyTradi ngPartnerNane = "CXM.PartnerVerifierl";
private final static String otherTradi ngPartnerNanme = "CXM.PartnerVerifier2";
private final static String toRole = "Supplier";
private final static String expectedURL = "http://xyz/abc?from" +
nyTr adi ngPart ner Nane;
private DocSerializer ds;

/] Create the token for this application
private static CXM_.Token token;

/1 Get the manager instance
private static CXM_Manager cxm m = CXM_Manager . get | nstance();

private static Properties prop = new Properties();

public void init(ServletConfig sc) {

try {
debug("Initializing serviet for Partnerl");

/1 Set the properties for finding the Coll aboration Agreenent

prop. set Property("Busi nessProcess", businessProcess);

prop. set Property("Busi nessProcessVersi on", busi nessProcessVersion);
prop. set Property("DeliveryChannel ", deliveryChannel);

prop. set Property("thisTradi ngPartner"”, nyTradi ngPart ner Nane);

prop. set Property("otherTradi ngPartner", otherTradi ngPartner Nane) ;
prop. setProperty("toRol e", toRole);

prop. setProperty("Party", "duns4");

/1 Register the buyer with the manager using properties
token = cxm mregister(prop);

} catch (Exception e) {
debug(" CXM.PartnerVerifierl init exception: " + e);

314 Implementing cXML for B2B Integration

Processing Outgoing Messages

e.printStackTrace();

}
}

private org.w3c.dom Docunent getBusi nessDocunent () {
DOM npl enent ati onl npl dom = new DOM npl enent ati onl npl ();

Docunent Type dType =
domi . creat eDocunent Type("request”, null, "cXM.dtd");

org. w3c. dom Docunent punchout Doc = new Docunent | npl (dType);
Cxnl El ement Factory cf = new Cxmnl El ement Fact or y(punchout Doc) ;

try {
String ot her SharedSecret = cxm m get Shar edSecr et (ot her Tr adi ngPar t ner Nane) ;
debug("Stored Shared Secret for " + otherTradi ngPartnerNanme + ": " +

ot her Shar edSecret);

/1 Header

El ement request = punchout Doc. cr eat eEl enent (" Request");

El ement trans = punchout Doc. creat eEl enent (" Punchout Set upRequest ") ;
request . appendChil d(trans);

punchout Doc. appendChi | d(
cf.createCxm El ement (

/1 payl oad

"1233444-200@r i ba. acne. conf',

/1 header

cf.creat eHeader El ement (

/1 from

cf.creat eFronEl enment (

cf.createCredenti al El enent (
ny Tr adi ngPart ner Nane,
null)),

/Il to

cf.creat eToEl enent (

cf.createCredenti al El enent (
ot her Tr adi ngPar t ner Nane,
null)),

/'l sender

cf.creat eSender El emrent (

cf.createCredenti al El enent (
" Ari baNet wor kUser | d",
"adm n@cne. cont',
ot her Shar edSecret),
"Ariba ORMB 5.1P4")),

Implementing cXML for B2B Integration ~ 3-15

3 Using the cXML API

/1 request
request));

}

catch(Exception e) {
debug(" MessageDel i veryException: " + e.toString());
e.printStackTrace();

}

return punchout Doc;
}

/**

* The actual work is done in this routine. Construct a message document,
* publish the nessage, wait for a reply, term nate and report back.

*/

public void service(H tpServl et Request req, HttpServletResponse res)
throws Servl et Exception, | OException

{

try {

/1 setup for the reply display to client
res. set Content Type("text/htm");
PrintWiter pw = res.getWiter();
pw. printl n("<HTM.><BODY BGCOLOR=#f f 0000>") ;
pw. printl n("<P><l M5 SRC=I ogo. j pg W DTH=185 HEI GHT=156" +
" ALl GN=TOP BORDER=0 NATURALSI ZEFLAG=3></P>");
pw. printl n("<P>Partner1 process flow
");
pw.println("Starting Partnerl...");

debug("Starting Partnerl: get Docunent...");
CXM_Message cnsg = new CXM_Message();

or g. w3c. dom Docunent regXM.Doc = get Busi nessDocumnent () ;
CXM_.Docurent reqMsgDoc = new CXM.Docunent () ;

regMsgDoc. set Docunent (r egXM.Doc) ;

cneg. set Request Docunent (reqMsgDoc) ;

DocSerializer ds = new DocSerializer();

debug("buyer: request document:\n" +
ds. docToString(regXM.Doc, true) + "\n");

/1l Set the CA with the properties
cnsg. set Col | abor at i onAgr eenment (prop) ;

/1 Send the nessage and get the reply
CXM_LMessageToken sendToken = (CXM_.MessageToken) cmsg. send();

3-16 Implementing cXML for B2B Integration

Processing Outgoing Messages

CXM.Docunent repl yMsgDoc = cnsg. get Repl yDocunent () ;

debug(" Got docunent");
if (replyMsgbDoc == null) {
debug("repl yMsgDoc bad");

org. w3c. dom Docunent repl yXM.Doc = repl yMsgDoc. get Docurnent () ;

debug("buyer: reply document:\n" +
ds. docToString(repl yXM.Doc, true) + "\n");

/1 Verify we get the correct response
String punchout URL = repl yMsgDoc. get NodeVal ue(

"/ cXM./ Response/ Punchout Set upResponse/ St art Page/ URL") ;
i f (punchout URL. equal s(expectedURL)) {

debug(" Correct response received");

pw. printl n("<P>Correct response received");

else {
debug(" Unexpect ed response received");
pw. printl n("<P>Unexpected response recei ved");

}

/1 Verify that the shared secret is mne
String dss = repl yMsgDoc. get Sender Shar edSecret () ;

debug(" Docunment Shared Secret for " + nyTradi ngPartnerNane + ": " + dss);

String sss = cxm m get Shar edSecr et (nmyTr adi ngPar t ner Nane) ;

debug("Stored Shared Secret for " + nyTradi ngPartnerName + ": " + ssS);

if (dss.equal s(sss)) {
debug(" Shared Secret match");
pw. printl n("<P>Shared Secret match");
} else {
debug(" Shared Secret m smatch");
pw. printl n("<P>Shared Secret nismatch");

}

}

catch(Exception e) {
debug(" MessageDel i veryException: " + e.toString());
e.printStackTrace();

}
}
/**
* Asinple routine that wites to the wic |og
*/
private static void debug(String nsg){
i f (DEBUG

Implementing cXML for B2B Integration

3-17

3 Using the cXML API

User Log. |l og("***Partnerl1Servlet: " + mnsg);

3-18 Implementing cXML for B2B Integration

Processing Outgoing Messages

Sample Supplier

/*

*

*/

Listing 3-2 Sample Supplier Code Example

Copyright (c) 20001 BEA

All

rights reserved

package exanpl es.ibcxm verifier;

import java.io.*;
import java.util.*;

i nport javax.servlet.*;

i nport javax.servlet.http.*;

i mport org.w3c.dom *;

i nport org.apache. htm .dom *;
i mport org.apache.xm .serialize.*;
i nport org. apache. xer ces. dom *;

i mport com bea
i nport com bea
i nport com bea
i mport com bea

i nport com bea

/**

. b2b. protocol .
. b2b. protocol .
. b2b. protocol .
. b2b. protocol .

.eci.logging.*;

messagi ng. *;

cxml . messagi ng. *;
cxm . CXMLLi st ener;
cxm . *;

* This exanple provides a sinple test that will verify nessage flow of cXM
* peer-to-peer sending and receiving a cXM. docunent.

* ¥ * * *

/

The two peers (Partnerl and Partner2) are running on a single WS.

Partner1l sends a PunchoutRequest to Partner2. Partner2 generates a

Punchout Set upResponse and returns it to Partnerl. Shared Secrets are verified
at both ends.

public class Partner2Servl et extends H tpServlet {

static final

private
private
private
private
private
private

fi
fi
fi
fi
fi
fi

nal
nal
nal
nal
nal
nal

stati
stati
stati
stati
stati
stati

bool ean

C
Cc
C
C
Cc
C

DEBUG = true;

String businessProcess = "Punchout Set up";

String businessProcessVersion = "1.1.009";

String deliveryChannel = "CXM.PartnerVerifier2";

String nmyTradi ngPart ner Nane = "CXM.Partner Verifier2";
String ot herTradi ngPart ner Nane = "CXM.PartnerVerifierl";
String toRole = "Buyer";

Implementing cXML for B2B Integration ~ 3-19

3 Using the cXML API

[/l Create the token for this application
private stati c CXM_.Token t oken;

/1 Get the manager instance
private stati c CXM_Manager cxm m = CXM_Manager . get | nstance();

private static Properties prop = new Properties();

public void init(ServletConfig sc) {

try {
debug("Initializing serviet for Partner2");

/1 Set the properties for finding the Coll aboration Agreenent

prop. set Property("Busi nessProcess", busi nessProcess);

prop. set Property("Busi nessProcessVersi on", busi nessProcessVersion);
prop. set Property("DeliveryChannel ", deliveryChannel);

prop. setProperty("thisTradi ngPartner", myTradi ngPartner Nane) ;

prop. set Property("otherTradi ngPartner"”, otherTradi ngPartner Nane) ;
prop. set Property("toRole", toRole);

prop. setProperty("Party", "duns5");

/1 Register the supplier listener with the manager using properties
token = cxm mregister(new Partner2MessagelLi stener(), prop);

debug("Partner2 waiting for nessage...");
} catch (Exception e) {
debug(" CXM.PartnerVerifier2 init exception: " + e);
e.printStackTrace();
}
}

/**

* This routine starts the peer

*/

public void service(HttpServl et Request req, HttpServl et Response res)

throws Servl et Exception, | OException{
debug("Starting Partner2");

}
/**

* Asinple routine that wites to the wis |og

*/
private static void debug(String msg){

i f (DEBUG
User Log. |l og("***Partner2Servlet: " + nsg);

}

public class Partner2MessagelLi st ener
i mpl ement s CXMLLi st ener

320 Implementing cXML for B2B Integration

Processing Outgoing Messages

{
public void onMessage(CXM_Message cnsg) {
XPat hHel per xp = new XPat hHel per();

try {
debug("Partner2 received nessage");
/1 QualityOfService qos = cnsg. get QS();

CXM.Docunent regMsgDoc = cnsg. get Request Docunent () ;
if (regMsgDoc == null){
throw new Exception("Di d not get a request payload");

}
Document reqXM.Doc = reqMsgDoc. get Document () ;
if (regXM.Doc == null){
t hrow new Exception("Did not get a request document");

String from= reqMvsgDoc. get NodeVal ue(
"/ 1 cXM./ Header/ Froml Credential /I dentity");
if (from==null) {
from = "nobody";

}

debug(" Recei ved request from" + from);
DocSeri alizer ds = new DocSerializer();

debug("supplier: request docunent:\n" +
ds. docToStri ng(regXM.Doc, true) + "\n");

debug("Buil ding reply docunent");

DOM mpl erment ati onl npl domi = new DOM npl enent ati onl npl () ;
Docurent Type dType =
domi . creat eDocunent Type("response”, null, "cXM.dtd");

org. w3c. dom Docunent repl yXM_Doc = new Docunent | npl (dType) ;
Cxml El enent Factory cf = new Cxml El enent Factory(repl yXM.Doc);

String ot her SharedSecret = cxm m get Shar edSecr et (ot her Tr adi ngPar t ner Nane) ;
debug(" Stored Shared Secret for " + otherTradi ngPartnerName + ": " +
ot her Shar edSecret);

repl yXM_Doc. appendChi | d(
cf.createCxmn El enent (

/1 payl oad
"1233444-200@ar i ba. acne. cont',

/'l header

cf.creat eHeader El enmrent (
/1 from

Implementing cXML for B2B Integration ~ 3-21

3 Using the cXML API

3-22

cf. creat eFronEl enent (

cf.createCredenti al El enent (
ny Tr adi ngPar t ner Nane,
null)),
/Il to

cf.createToEl ement (

cf.createCredential El enent (
ot her Tr adi ngPar t ner Nane,
null)),

/1 sender

cf.creat eSender El enment (

cf.createCredenti al El enent (
" Ari baNet wor kUser | d",
"adm n@cne. cont',
ot her Shar edSecret),
"Ariba ORMS 5.1P4")),

/1 body

cf.creat eResponseEl erment (
"200",
"ok",

cf. creat ePunchout Set upResponseEl enent (
"http://xyz/abc?from=" + from))));

CXM.Docunent repl yMsgDoc = new CXM.Docunent () ;
repl yMsgDoc. set Docunent (repl yXM.Doc) ;

cneg. set Repl yDocunent (repl yMsgDoc) ;

debug("supplier: reply docunent:\n" +
ds. docToString(repl yXM.Doc, true) + "\n");

/1 Verify that the shared secret is mne
String dss = reqMsgDoc. get Sender Shar edSecret () ;

debug(" Docunent Shared Secret for " + nmyTradi ngPartnerNanme + ":

String sss = cxm m get SharedSecr et (nyTradi ngPart ner Nane) ;
debug("Stored Shared Secret for " + nyTradi ngPartner Nanme

if (dss.equal s(sss)) {
debug(" Shared Secret match");
} else {
debug(" Shared Secret nmismatch");

}

/1 Set the CA with the properties
cneg. set Col | abor at i onAgr eenent (prop) ;

cmsg. reply();

Implementing cXML for B2B Integration

" + dss);

" + s88);

Processing Outgoing Messages

debug("Partner2 sent reply");
} catch(Exception e) {
debug(" Exception errors" + e);
e.printStackTrace();
}
}

public void onTerm nat e(Message nsg) throws Exception {
debug(" received terninate notification for " + msg.get Conversationld());

/] Deregister with the manager
cxm m der egi ster(prop);

}

Implementing cXML for B2B Integration 3-23

3 Using the cXML API

324 Implementing cXML for B2B Integration

CHAPTER

4 Using Workflows with
cXML

WebL ogic Integration allows you to use business process management (BPM)
workflowsto exchange normal business messages. Whilethereisno cXML plug-infor
WebL ogic Integration, you can nonetheless integrate cXML business documents
through the use of business operations.

The following sections describe how to exchange cXML business messagesin
WebL ogic Integration, using workflows and the c XML API-driven interface:

m Including cXML in Workflows
m Designing Workflows for Exchanging Business M essages
m Working with Business Messages

For more information about developing workflows using WebL ogic Integration, see
Creating Workflows for B2B Integration.

Including cXML in Workflows

Workflows intended to use cXML must make use of an externally-created business
operation class to encapsulate the cXML APl used by WebL ogic Integration.

The result of this development process is aworkflow that, when executed, allows the
methods defined in the wrapper class to be invoked. These methods perform the
defined cXML business operation.

Implementing cXML for B2B Integration 4-1

4 Using Workflows with cXML

Workflow Integration Tasks

Using cXML with BPM workflows requires a specific combination of administrative,
design, and programming tasks.

Programming Task

Externally created business operation classes use the c XML API to perform aspecific
business operation. For example, you might create a class that implements the
Punchout Set upRequest functionality for aworkflow. For moreinformation, seethe
cXML User’s Guide at:

http://wwm. cxm . org

If you plan to pass parameters using the workflow, you must create a class that can
accept such parameters. Y ou can then pass parameters into the class using workflow
variables. These parameters can then be used to set up your cXML output.

To configure the class, its methods, and any parameters that you have defined, open
the WebL ogic Integration Studio and choose Business Operations from the Configure
menu. For more information, see Using the WebLogic Integration Sudio.

Within theWebL ogic Integration Studio, you can then invoke the business operation
used to invoke the cXML process operation as a workflow action. When you add an
action, select Perform Business Operations from the Integration Actionsfolder of the
Add Actions dialog box. This option alows you to map workflow variablesto the
method parameters used by the cXML wrapper class. For moreinformation, see Using
the WebL ogic Integration Sudio.

Administrative Tasks

4-2

Before you start using cXML with workflows, you must compl ete the following
administrative tasks. These tasks are in addition to those that you normally perform
while using the WebL ogic Integration Studio to generate workflows for use with
WebL ogic Integration:

m Using the WebL ogic Integration B2B Console, create and configure the entities
that will be involved in your cXML transactionsin the WebL ogic Integration
repository, including trading partners, collaboration agreements, and so on. For
more information, see Administering B2B Integration.

Implementing cXML for B2B Integration

Designing Workflows for Exchanging Business Messages

Design Task

m After you have created a Business Operation class, create a Business Operation
within the WebL ogic Integration Studio to make use of the Business Operation
class. For more information on creating a Business Operation class, see
Chapter 3, “Using the cXML API.”

In addition to the design work required to create a workflow for use with WebL ogic
Integration, you must do some extra design work if you want to use cXML in your
workflow. Specifically, you must design your workflow to use a Business Operation
to execute all cXML functionality. For each cXML function you need to execute, you
must create a separate Business Operation.

Designing Workflows for Exchanging
Business Messages

To use workflows to exchange business messages in WebL ogic Integration, design
workflow template definitions by using the WebL ogic Integration Studio. For
information about creating workflows, see Using the WebL ogic | ntegration Sudio and
Creating Workflows for B2B Integration.

Asdiscussed previoudly, use of cXML in workflows requires the creation of business
operation classesto implement the cXML API. In the previous section, we discussthe
creation of these business operation classes. In this section, we discuss the use of
business operation classes to manipulate cXML messages within the BPM component
of WebL ogic Integration.

Working with Business Messages

Y ou use the WebL ogic Integration Studio to enable trading partners to exchange
business messages. cXML is one method by which this task may be performed.

Implementing cXML for B2B Integration 4-3

Using Workflows with cXML

The following sections describe how to work with cXML business messages
exchanged using workflows:

m About cXML Business Messages
m Prerequisite Tasks for Exchanging Business M essages

About cXML Business Messages

4-4

A cXML business message is the basic unit of communication exchanged between
trading partnersin a conversation. A cXML business message is amulti part MIME
message that consists of:

m A business document, which represents the XML -based payload part of a
busi ness message. The payload is the business content of a business message.

m An attachment, which represents the non XML payload part of the business
message. Attachments are optional entities within the cXML1.2 standard, and
are not available with cXML 1.1 implementations.

Aswith other forms of business messages, you can access the contents
programmatically, as described in Creating Workflows for B2B Integration. Unlike
with XOCP and RosettaNet business messages, however, the WebL ogic Integration
implementation of cXML does not allow you to use any other method to access the
contents of a business message when using cXML.

Implementing cXML for B2B Integration

Working with Business Messages

Prerequisite Tasks for Exchanging Business Messages

Before you can send and receive business messages, you must define the following
actions in the workflow template using the WebL ogi ¢ I ntegration Studio:

m To define the sending of a business message, define a Manipulate Business
Message action to construct the business message and a Send Business Message
action to send the message.

m To define the reception of a business message, define a Manipulate Business
M essage action to process an incoming business message.

For more information, see Creating Wor kflows for B2B Integration.

Implementing cXML for B2B Integration 4-5

4 Using Workflows with cXML

4-6 Implementing cXML for B2B Integration

Index

B

busi ness messages
about business messages 4-4
exchanging 4-5

C

collaboration agreement
locating 3-4
collaboration agreements 2-3
customer support contact information vii
cXML
business documents 1-3
components 1-1
DTDs 3-6
message processing 3-7
message processing code samples 3-13
message structure 3-5
message validation 1-5
protocol layer 1-2
security 1-4
cXML API
methods 3-1
cXML trading partners
connecting to 2-1

D
digital signatures 1-4

P

printing product documentation vi

R
related information vii

S
security 2-3
digital signatures 1-4
shared secrets 1-4, 3-6
shared secrets 1-4, 3-6

w

WebL ogic Integration BPM component
administrative tasks 4-2
design tasks 4-3
integration tasks 4-2
programming tasks 4-2
workflow template definitions
business messages
defining 4-5

Implementing cXML for B2B Integration

-2 Implementing cXML for B2B Integration

	About This Document
	What You Need to Know
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	WebLogic Integration Architecture and cXML
	cXML Protocol Layer

	cXML API
	Business Documents
	Digital Signatures and Shared Secrets
	Message Validation
	Limitations

	2 cXML Administration
	Connecting to Other cXML Trading Partners
	Collaboration Agreements
	Security
	Configuring Shared Secrets

	3 Using the cXML API
	cXML Methods
	Properties Used to Locate Collaboration Agreements

	cXML Message Structure
	cXML DTDs
	Dealing with Shared Secrets
	Processing Incoming Messages
	Initialization
	Processing the Message

	Processing Outgoing Messages
	Sending the Message
	Code Samples

	4 Using Workflows with cXML
	Including cXML in Workflows
	Workflow Integration Tasks

	Designing Workflows for Exchanging Business Messages
	Working with Business Messages
	About cXML Business Messages
	Prerequisite Tasks for Exchanging Business Messages

	Index

