
A Component of BEA WebLogic Integration

B E A W e b L o g i c X M L / N o n - X M L T r a n s l a t o r R e l e a s e 2 . 0
D o c u m e n t E d i t i o n 2 . 0

J u l y 2 0 0 1

BEA WebLogic

User Guide

XML/Non-XML Translator

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.

BEA WebLogic XML/Non-XML Translator User Guide

Document Edition Part Number Date Software Version

2.0 July 2001 BEA WebLogic XML/Non-XML Translator
2.0

About This Document

This document describes BEA WebLogic XML/Non-XML Translator, hereafter
referred to as XML Translator, and provides instructions for using it to translate data
from binary format to XML and from XML to binary format.

This document covers the following topics:

n BEA WebLogic XML/Non-XML Translator Overview

n Building Format Definitions

n Testing Format Definitions

n Using the Run-Time Component

n Supported Data Types

n Glossary

What You Need to Know

This document is intended mainly for application programmers and technical analysts
who perform data translations from binary to XML and XML to binary.
BEA WebLogic XML/Non-XML Translator User Guide iii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic XML/Non-XML
Translator documentation Home page on the e-docs Web site (and also on the
documentation CD). You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format. To access the PDFs, open the BEA
WebLogic XML/Non-XML Translator documentation Home page, click the PDF files
button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA publications are also available:

n BEA WebLogic XML/Non-XML Translator Installation Guide

n BEA WebLogic XML/Non-XML Translator Getting Started Guide

n BEA Format Builder online help system
iv BEA WebLogic XML/Non-XML Translator User Guide

Contact Us!

Your feedback on the BEA WebLogic XML/Non-XML Translator documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic XML/Non-XML Translator documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic XML/Non-XML Translator 2.0 release.

If you have any questions about this version of BEA WebLogic XML/Non-XML
Translator, or if you have problems installing and running BEA WebLogic
XML/Non-XML Translator, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.
BEA WebLogic XML/Non-XML Translator User Guide v

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
vi BEA WebLogic XML/Non-XML Translator User Guide

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic XML/Non-XML Translator User Guide vii

viii BEA WebLogic XML/Non-XML Translator User Guide

Contents

About This Document
What You Need to Know .. iii

e-docs Web Site ... iv

How to Print the Document... iv

Related Information... iv

Contact Us! ..v

Documentation Conventions ...v

1. BEA WebLogic XML/Non-XML Translator Overview
Understanding XML Translation .. 1-2

What is XML Translator?.. 1-3

The Design-Time Component .. 1-4

The Run-Time Component... 1-5

Run-Time Plug-In to WebLogic Process Integrator 1-8

Post Translation Options and Considerations.. 1-9

Performing XML Transformation .. 1-9

Working with BEA WebLogic Process Integrator................................... 1-10

Getting Started with the BEA WebLogic XML/Non-XML Translator 1-11

2. Building Format Definitions
Understanding the Data Formats Used with XML Translator 2-1

About Binary Data (Non-XML Data) .. 2-2

About XML Documents... 2-3

About MFL Documents ... 2-5

Analyzing the Data to be Translated ... 2-7

Using the Format Builder .. 2-8

Starting Format Builder.. 2-8
BEA WebLogic XML/Non-XML Translator User Guide ix

Using the Format Builder Main Window... 2-8

Creating a Message Format .. 2-17

Creating a Group .. 2-18

Creating a Field .. 2-22

Creating a Comment... 2-27

Creating References.. 2-28

Working with Palettes .. 2-30

Saving a Message Format to a File... 2-34

Opening an Existing Message Format File .. 2-35

Working With the Repository .. 2-35

Setting Format Builder Options.. 2-37

Format Builder Menus.. 2-39

3. Testing Format Definitions
Starting Format Tester ... 3-1

Using the Format Tester Main Window .. 3-2

Using the Menu Bar.. 3-3

Using the Shortcut Menus .. 3-6

Using the Binary Window .. 3-7

Using the XML Window .. 3-8

Using the Debug Window .. 3-8

Using the Resize Bars... 3-9

Testing Format Definitions.. 3-9

Debugging Format Definitions .. 3-10

Searching For Values ... 3-11

Positioning to an Offset .. 3-12

Using the Debug Log.. 3-12

4. Importing Meta Data
Importing a COBOL Copybook .. 4-1

COBOL Copybook Sample Files ... 4-3

Importing C Structures .. 4-4

C Struct Importer Sample Files .. 4-5

Starting the C Struct Importer .. 4-6

Understanding Hardware Profiles .. 4-9
x BEA WebLogic XML/Non-XML Translator User Guide

Generating MFL... 4-10

Generating C Code ... 4-12

Importing an FML Field Table Class .. 4-13

FML Field Table Class Importer Prerequisites .. 4-13

FML Field Table Class Sample Files ... 4-14

Creating XML with the FML Field Table Class Importer 4-14

5. Retrieving and Storing Repository Documents
Accessing the Repository .. 5-2

Repository Menu .. 5-3

Retrieving Repository Documents .. 5-3

Storing Repository Documents.. 5-4

Importing Documents into the Repository .. 5-5

Invoking the Batch Import Utility .. 5-5

Using the Repository Document Chooser ... 5-7

Using the Open Document Dialog Box.. 5-7

Using the Store Document Dialog Box.. 5-8

Using the Shortcut Menus .. 5-9

6. Using the Run-Time Component
Binary to XML .. 6-1

Generating XML with a Reference to a DTD .. 6-2

Passing in a Debug Writer.. 6-4

XML to Binary .. 6-5

 Converting a Document object to Binary.. 6-6

Passing in a debug writer ... 6-8

 XML to XML Transformation ... 6-8

Initialization methods... 6-10

Java API Documentation.. 6-12

Run-Time Plug-In to WebLogic Process Integrator 6-12

A. Supported Data Types
MFL Data Types... A-1

COBOL Copybook Importer Data Types... A-7

C Structure Importer From Importing Meta Data .. A-9
BEA WebLogic XML/Non-XML Translator User Guide xi

B. Creating Custom Data Types
User Defined Types Sample Files .. B-2

Registering User Defined Types in Format Builder ... B-3

Creating User Defined Types for the Stand-Alone XML Translator Engine... B-5

Configuration of User Defined Types for the Process Integrator XML
Translator Plug-In.. B-6

Publishing User Defined Types to the Repository from Format Builder .. B-7

Publishing User Defined Types to the Repository Using the
Repository Import Utility ... B-9

User Defined Type Coding Requirements.. B-9

Class com.bea.wlxt.bintype.Bintype ... B-9

Class com.bea.wlxt.bintype.BintypeString ... B-13

Class com.bea.wlxt.bintype.BintypeDate.. B-14

Class com.bea.wlxt.mfl.MFLField ... B-16

C. Running the Purchase Order Sample
What is Included in the Purchase Order Sample .. C-2

Prerequisite Considerations .. C-2

Understanding the Data Formats Used with XML Translator.......................... C-2

About Binary Data (Non-XML Data) ... C-3

About XML Documents .. C-3

About MFL Documents... C-4

Performing Binary to XML Translation ... C-6

Analyzing the Data to be Translated ... C-6

Using the Format Builder To Test the Translation.................................. C-10

Performing XML to Binary Translation ... C-18

Glossary

Index
xii BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
1 BEA WebLogic
XML/Non-XML
Translator Overview

Within most enterprise application integration (EAI) problem domains, data
translation is an inherent part of an EAI solution. XML is quickly becoming the
standard for exchanging information between applications, and is invaluable in
integrating disparate applications. However, most data transformation engines do not
support translations between binary data formats and XML. BEA WebLogic
XML/Non-XML Translator (hereafter referred to as XML Translator) provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML.

This section provides information about the following topics:

n Understanding XML Translation

n What is XML Translator?

l The Design-Time Component

l The Run-Time Component

l Run-Time Plug-In to WebLogic Process Integrator

n Post Translation Options and Considerations

l Performing XML Transformation

l Working with BEA WebLogic Process Integrator

n Getting Started with the BEA WebLogic XML/Non-XML Translator
BEA WebLogic XML/Non-XML Translator User Guide 1-1

1 BEA WebLogic XML/Non-XML Translator Overview
Understanding XML Translation

Data that is sent to, or received from, legacy applications is often platform-specific
binary data that is in the native machine representation. Binary data is not
self-describing, so in order to be understood by an application, the layout of this data
(metadata) must be embedded within each application that uses the binary data.

XML is becoming the standard for exchanging information between applications
because XML embeds a description of the data within the data stream, thus allowing
applications to share data more easily. XML is easily parsed and can represent
complex data structures. As a result, the coupling of applications no longer requires
metadata to be embedded within each application.

When you translate binary to XML data, you convert structured binary data to an XML
document so that the data can be accessed via standard XML parsing methods. You
must create the metadata used to perform the conversion. The translation process
converts each field of binary data to XML according to the metadata defined for each
field of data. In the metadata you specify the name of the field, the data type, the size,
and whether the field is always present or optional. It is this description of the binary
data that is used to translate the binary data to XML. Figure 1-1 shows a sample of
XML data translation.

Figure 1-1 XML Data Translation of: Tom;Jones;1345;19;

Applications developed on the WebLogic platform often use XML as the standard data
format. If you want the data from your legacy system to be accessible to applications
on the WebLogic platform, you may use XML Translator to translate it from binary to
XML or from XML to binary. If you need the XML in a particular XML dialect for
end use, you must transform it using an XML data mapping tool.
1-2 BEA WebLogic XML/Non-XML Translator User Guide

What is XML Translator?
What is XML Translator?

XML Translator facilitates the integration of data from diverse enterprise applications
by supporting data translations between binary formats from legacy systems and XML.
XML Translator normalizes legacy data into XML so it may be directly consumed by
XML applications, transformed into a specific XML grammar, or used directly to start
workflows in BEA WebLogic Process Integrator. XML Translator supports non-XML
to XML translation and vice versa and is made up of three primary components:

n The Design-Time Component

n The Run-Time Component

n Run-Time Plug-In to WebLogic Process Integrator

To perform a translation, you create a description of your binary data using the
design-time component (Format Builder). This involves analyzing binary data so that
its record layout is accurately reflected in the metadata you create in Format Builder.
You then create a description of the input data in Format Builder and save this
metadata as a Message Format Language (MFL) document. XML Translator includes
importers that automatically create message format definitions.

You can then use XML Translator’s run-time component to translate instances of
binary data to XML. Figure 1-2 shows the event flow for non-XML to XML data
translation. A Plug-In to Process Integrator allows for easy access to configuring
translations.
BEA WebLogic XML/Non-XML Translator User Guide 1-3

1 BEA WebLogic XML/Non-XML Translator Overview
Figure 1-2 Event Flow for Non-XML to XML Translation Using XML
Translator

The Design-Time Component

The design-time component is a Java application called Format Builder. Format
Builder is used to create descriptions of binary data records. Format Builder allows you
to describe the layout and hierarchy of the binary data so that it can be translated to or
from XML. With Format Builder, you can describe sequences of bytes as fields. Each
field description includes the type of data (floating point, string, etc.), the size of the
data, and the name of the field. Format Builder allows you to further define groupings
of fields (groups), repetition of fields and groups, and aggregation.

The description you create in Format Builder is saved in an XML grammar called
Message Format Language (MFL). MFL documents are metadata used by the run-time
component of XML Translator and the plug-in to Process Integrator to translate an
instance of a binary data record to an instance of an XML document (or vice-versa).
Format Builder will also create a DTD or XML Schema document that describes the
XML document created from a translation. Figure 1-4 shows the process flow of
binary and XML data through Format Builder during the design-time phase.
1-4 BEA WebLogic XML/Non-XML Translator User Guide

What is XML Translator?
Figure 1-3 Design Time Process Flow Through Format Builder

You can also use Format Builder to retrieve, validate, and edit stored MFL documents
and to test message format definitions with your own data. MFL documents may be
stored using the file system or archived in the Process Integrator repository. The test
feature allows you to select the option of testing the translation of XML data to binary
format, or binary data to XML format. You may save the transformed data to a file for
future testing.

The Run-Time Component

The run-time component of XML Translator is a Java class with various methods used
to translate data between binary and XML formats. This Java class can be deployed in
an EJB using BEA WebLogic Server, invoked from a workflow in BEA WebLogic
Process Integrator, or integrated into any Java application. Figure 1-4 shows the
run-time process flow for binary to XML translations and XML to binary translation.

1 2 3

Binary
 Data

Format

MFL Document

DTD Document

XML Schema
Document

The metadata you create
in Format Builder is

saved as an MFL docu-
ment. It and the binary

data are ready to be
processed by the run-time

component

Based on your analy-
sis of the binary data,
create metadata using

Format Builder

Analyze binary data to
determine the layout
and binary types of
each field of data

Builder
BEA WebLogic XML/Non-XML Translator User Guide 1-5

1 BEA WebLogic XML/Non-XML Translator Overview
Figure 1-4 Run-Time Process Flow

Binary to XML Translation

Listing 1-1 is a code sample that shows the parsing of a file containing binary data into
an XML document object. The MFL file mymfl.mfl is used as the description of the
binary data contained in the file mybinaryfile.

Listing 1-1 Sample Code for Binary to XML Translation

import com.bea.wlxt.*;
import org.w3.dom.Document;
import java.io.FileInputStream;
import java.net.URL;

try
{

Binary to XML

XML to Binary
1-6 BEA WebLogic XML/Non-XML Translator User Guide

What is XML Translator?
 WLXT wlxt = new WLXT();
 URL mflDocumentName = new URL("file:mymfl.mfl");
 FileInputStream in = new FileInputStream("mybinaryfile");

 Document doc = wlxt.parse(mflDocumentName, in, null);
}
catch (Exception e)
{
 e.printStackTrace(System.err);
}

XML to Binary Translation

Listing 1-2 is a code sample that shows the translation of the XML data contained in
the file myxml.xml to the binary format specified by the MFL document mymfl.mfl.
The binary data is written to the file mybinaryfile.

Listing 1-2 Sample Code for XML to Binary Translation

import com.bea.wlxt.*;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.net.URL;

try
{
 WLXT wlxt = new WLXT();
 URL mflDocumentName = new URL("file:mymfl.mfl");
 FileInputStream in = new FileInputStream("myxml.xml");
 FileOutputStream out = new FileOutputStream("mybinaryfile");
 wlxt.serialize(mflDocumentName, in, out, null);
}
catch (Exception e)
{
 e.printStackTrace(System.err);
}

BEA WebLogic XML/Non-XML Translator User Guide 1-7

1 BEA WebLogic XML/Non-XML Translator Overview
Run-Time Plug-In to WebLogic Process Integrator

BEA XML Translator Plug-In for WebLogic Process Integrator provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML. The XML Translator Plug-In provides
Process Integrator actions that allow you to access XML to Binary and Binary to XML
translations.

In addition to this data translation capability, the XML Translator Plug-In provides
event data processing in binary format, in-memory caching of MFL documents and
translation object pooling to boost performance, a BinaryData variable type to edit
and display binary data, exporting of entirely self-contained workflow definition
packages, and execution within a WebLogic Server clustered environment.

The following illustration describes the relationship between XML Translator and
Process Integrator.

Figure 1-5 XML Translator and Process Integrator Relationship

Start Done
Workflow Task Configured

with XML Translator Actions

Format BuilderXML Document
Repository

BEA XML Translator Plug-In
to Process Integrator

BEA XML
Translator Java

Classes

Translated
XML Document

Input Binary Data
MFL Document Name

MFL
Document

MFL
Document

Optional:
DTD
XML Schema
1-8 BEA WebLogic XML/Non-XML Translator User Guide

Post Translation Options and Considerations
Post Translation Options and Considerations

After you have successfully translated your binary data to XML, or vice versa, you
have numerous options for additional processing of the XML data. The XML data can
be transformed to a specific XML dialect or to a display format. The XML data can be
sent to other applications that consume XML such as WebLogic Process Integrator.
Once your binary data has been put in a self-describing format such as XML, this data
is available for use in other applications.

Performing XML Transformation

Once you have translated binary data into XML, you may need to transform the XML
data to a different XML grammar, to a display format (HTML), or to another binary
format. The process of transforming XML to another XML grammar is referred to in
this document as XML transformation. XML transformation can be accomplished via
the XML module of WebLogic Server. WebLogic Process Integrator provides an
action that allows you to access this module and transform XML documents using XSL
style sheets. You might want to transform XML for several reasons:

n Transform the XML to a specific XML dialect (RosettaNet or ebXML)

n Transform the XML to a display format (HTML)

n Transform the XML so that it matches another MFL document and can be
converted to a different binary format by XML Translator

XSL (extensible stylesheet language) is an XML language that describes a series of
transformations that are to be performed on nodes of an XML document. A stylesheet
is an XSL document that can be used to map an XML document to another XML
dialect or to another text format (such as HTML or PDF). A stylesheet can also be used
with the run-time component of XML Translator to transform XML.

Figure 1-6 demonstrates one XML grammar converted to another using an XSLT
engine. The transformation metadata in this case is an XSL style sheet that describes
how one XML grammar is mapped into another.
BEA WebLogic XML/Non-XML Translator User Guide 1-9

1 BEA WebLogic XML/Non-XML Translator Overview
Figure 1-6 XML Data Transformation of: Tom;Jones,1345;19

Working with BEA WebLogic Process Integrator

BEA WebLogic Process Integrator (Process Integrator) is a powerful workflow engine
that automates workflow, business-to-business processes, and enterprise application
assembly. WebLogic Process Integrator runs on BEA WebLogic Server and is a robust
J2EE standards-based workflow and process integration solution.

Using an intuitive flowchart paradigm, business analysts use the WebLogic Process
Integrator Studio to define business processes that span applications or to automate
human interaction with applications. Developers can use WebLogic Process Integrator
to assemble application components quickly without programming. The assembled
applications are executed and managed by the WebLogic Process Integrator engine.

Process Integrator has an extensible architecture that allows new functionality to be
plugged in. XML Translator includes a plug-in that provides XML to binary and binary
to XML translation that is accessible through a Process Integrator action.

For detailed information about using the example workflow, see BEA WebLogic
XML/Non-XML Translator Plug-In Guide.
1-10 BEA WebLogic XML/Non-XML Translator User Guide

Getting Started with the BEA WebLogic XML/Non-XML Translator
Getting Started with the BEA WebLogic
XML/Non-XML Translator

The steps outlined in Table 1-1 provide you with a high-level guideline to all of the
tasks and processes that you must perform to install, configure, and work with the
XML Translator. Think of these steps as a road map to guide you through the process
and to point you to the resources available to help you.

Table 1-1 Steps for Working with the XML Translator

Task Resource

1. Read the BEA WebLogic
XML/Non-XML Translator Release
Notes.

BEA WebLogic XML/Non-XML Translator
Release Notes.

2. Make sure that all of the
platform/environment prerequisites
listed in the Installation and
Configuration Guide and in the
Release Notes have been met.

BEA WebLogic XML/Non-XML Translator
Release Notes and BEA WebLogic XML/Non-XML
Translator Installation and Configuration Guide.

3. Install the BEA WebLogic
XML/Non-XML Translator.

BEA WebLogic XML/Non-XML Translator
Installation and Configuration Guide.

4. Define the data format using Format
Builder and generate translation
metadata.

BEA WebLogic XML/Non-XML Translator User
Guide.

5. Test the translation BEA WebLogic XML/Non-XML Translator User
Guide.

6. Install Process Integrator and verify
correct operation of the repository.

BEA WebLogic Process Integrator Installation
Guide.

7. Save the format to the Process
Integrator Repository.

BEA WebLogic XML/Non-XML Translator User
Guide.
BEA WebLogic XML/Non-XML Translator User Guide 1-11

1 BEA WebLogic XML/Non-XML Translator Overview
8. Deploy the XML Translator plug-in
using the Process Integrator plug-in
manager.

BEA WebLogic Process Integrator Installation
Guide.

9. Add an XML to Binary or Binary to
XML translation action to a task in a
Process Integrator workflow.

BEA WebLogic Process Integrator Installation
Guide.

Task Resource
1-12 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
2 Building Format
Definitions

The following sections provide information on building format definitions using the
Format Builder included with BEA WebLogic XML/Non-XML Translator (hereafter
referred to as XML Translator):

n Understanding the Data Formats Used with XML Translator

n Analyzing the Data to be Translated

n Using the Format Builder

The Format Builder included with XML Translator allows users to build format
definitions for binary data that will be translated to or from XML. Format definitions
are the metadata used to parse or create binary data.

Understanding the Data Formats Used with
XML Translator

To understand how the Format Builder is used, it helps to understand the data formats
used by XML Translator: binary data, XML, MFL, DTD and Schema.
BEA WebLogic XML/Non-XML Translator User Guide 2-1

2 Building Format Definitions
About Binary Data (Non-XML Data)

Because computers are based on the binary numbering system, applications often use
a binary format to represent data. A file stored in binary format is computer-readable
but not necessarily human-readable. Binary formats are used for executable programs
and numeric data, and text formats are used for textual data. Many files contain a
combination of binary and text formats. Such files are usually considered to be binary
files even though they contain some data in a text format.

Unlike XML data, binary data is not self-describing. In other words, binary data does
not provide a description of how the data is grouped, divided into fields, or arranged
in a layout. Binary data is a sequence of bytes that can be interpreted as an integer, a
string, or a picture, depending on the intent of the application that generates the
sequence of bytes. In order for binary data to be understood by an application, the
layout must be embedded within each application that uses this data. Binary data may
also be embedded using different character sets. For example, character data on an
IBM mainframe is usually encoded using the EBCDIC character set while data from a
desktop computer is either ASCII or unicode.

The Format Builder is used to create a Message Format Language (MFL) file that
describes the layout of the binary data. MFL is an XML language that includes
elements to describe each field of data, as well as groupings of fields (groups),
repetition, and aggregation. The hierarchy of a binary record, the layout of fields, and
the grouping of fields and groups are expressed in an MFL document. This MFL
document is used by XML Translator at run-time to translate the data to and from an
XML document.

Listing 2-1 Example of Binary Data

1234;88844321;SUP:21Sprockley’s Sprockets01/15/2000123 Main St.;
Austin;TX;75222;555 State St.;Austin;TX;75222;PO12345678;666123;150;Red
Sprocket;
2-2 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator
About XML Documents

Extended Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
In contrast to binary data, XML data embeds a description of the data within the data
stream. Applications can share data more easily, since they are not dependent on the
layout of the data being embedded within each application. Since the data is presented
in a standard form, applications on disparate systems can interpret the data using XML
parsing tools, instead of having to interpret data in proprietary binary formats.

Instances of XML documents contain character data and markup. The character data
is referred to as content, while the markup provides hierarchy for that content. Markup
is distinguished from text by angle brackets. Information in the space between the
“<“and the“>” is referred to as the tag that markup the content. Tags provide an
indication of what the content is for, and a mechanism to describe parent-child
relationships. Listing 2-2 shows an example of an XML document.

Listing 2-2 Example of XML Document

<?xml version="2.0"?>
<PurchaseRequest>
 <PR_Number>1234</PR_Number>
 <Supplier_ID>88844321</Supplier_ID>
 <Supplier_Name>Sprockley's Sprockets</Supplier_Name>
 <Requested_Delivery_Date>2000-01-15T00:00:00:000</Requested_Delivery_Date>
 <Shipping_Address>
 <Address>
 <Street>123 Main St.</Street>
 <City>Austin</City>
 <State>TX</State>
 <Zip>75222</Zip>
 </Address>
 </Shipping_Address>
 </PurchaseRequest>

An XML document can conform to a content model. A content model allows Metadata
about XML documents to be communicated to an XML parser. XML documents are
said to be valid if they conform to a content model. A content model describes the data
that can exist in an instance of an XML document. A content model also describes a
top-level entity, which is a sequence of subordinate entities. These subordinate entities
BEA WebLogic XML/Non-XML Translator User Guide 2-3

2 Building Format Definitions
are further described by their tag names and data content. The two standard formats for
XML content models are XML Document Type Definition (DTD) and XML Schema.
A Schema is an XML document that defines what can be in an XML document. A
DTD also defines what content can exist in an XML document, but the Schema
definition is more specific than the DTD, and provides much finer-grained control over
the content that can exist in an XML document.

Listing 2-3 shows an example of a Document Type Definition.

Listing 2-3 Example DTD

<!ELEMENT PurchaseRequest
(PR_Number,Supplier_ID,Supplier_Name?,Requested_Delivery_Date,Shipping_Address,
Billing_Address,Payment_Terms,Purchase_Items)>
<!ELEMENT PR_Number (#PCDATA) >
<!ATTLIST PR_Number type CDATA #FIXED "nonNegativeInteger">
<!ELEMENT Supplier_ID (#PCDATA) >
<!ATTLIST Supplier_ID type CDATA #FIXED "nonNegativeInteger">
<!ELEMENT Supplier_Name (#PCDATA) >
<!ATTLIST Supplier_Name type CDATA #FIXED "string">
<!ELEMENT Requested_Delivery_Date (#PCDATA) >
<!ATTLIST Requested_Delivery_Date type CDATA #FIXED "timeInstant">
<!ELEMENT Shipping_Address (Address)>
<!ELEMENT Address (Street,City,State,Zip)>
<!ELEMENT Street (#PCDATA) >
<!ATTLIST Street type CDATA #FIXED "string">
<!ELEMENT City (#PCDATA) >
<!ATTLIST City type CDATA #FIXED "string">
<!ELEMENT State (#PCDATA) >
<!ATTLIST State type CDATA #FIXED "string">
<!ELEMENT Zip (#PCDATA) >
<!ATTLIST Zip type CDATA #FIXED "nonNegativeInteger">

Listing 2-4 shows an example of an XML Schema.

Listing 2-4 Example XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<xsd:annotation>
<xsd:documentation>
2-4 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator
This schema created for MFL MessageFormat PurchaseRequest.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="PurchaseRequest">
<xsd:complexType content="elementOnly">
<xsd:sequence>
<xsd:element ref="PR_Number" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Supplier_ID" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Supplier_Name" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="Requested_Delivery_Date" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="Shipping_Address" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="PR_Number" type="xsd:nonNegativeInteger"/>

<xsd:element name="Supplier_ID" type="xsd:nonNegativeInteger"/>

<xsd:element name="Supplier_Name" type="xsd:string"/>

<xsd:element name="Requested_Delivery_Date" type="xsd:timeInstant"/>

<xsd:element name="Shipping_Address">
<xsd:complexType content="elementOnly">
<xsd:sequence>
<xsd:element ref="Address" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

About MFL Documents

Message Format Language (MFL) is an XML language that describes the layout of
binary data. This language includes elements to describe each field of data, as well as
groupings of fields (groups), repetition, and aggregation. The hierarchy of a binary
record, the layout of fields, and the grouping of fields and groups is expressed in an
MFL document. MFL documents are created using Format Builder. These MFL
documents are then used to perform run-time translation. MFL documents are created
for you when you define and save definitions from within Format Builder.
BEA WebLogic XML/Non-XML Translator User Guide 2-5

2 Building Format Definitions
The MFL documents you create using Format Builder can contain the following
elements:

n Message Format - The top level element. Defines the message name and MFL
version.

n Field - Sequence of bytes that have some meaning to an application. (For
example, the field EMPNAME contains an employee name.) Defines the formatting
for the field. The formatting parameters you can define include:

l Tagged - Indicates that a literal precedes the data field, denoting the
beginning of the field.

l Length - Indicates that a length value precedes the data field, denoting the
length of this field.

l Occurrence - Repeating fields appear more than once in the message format.
You can set a specific number of times the field is to repeat, or define a
delimiter to indicate the end of the repeating field.

l Optional - The field may or may not be present in the named message
format.

l Code Page - The character encoding of the field data.

n Groups - Collections of fields, comments, and other groups or references that are
related in some way (for example, the fields PAYDATE, HOURS, and RATE could
be part of the PAYINFO group). The parameters you can define include:

l Tagged - Being tagged means that a literal precedes the other content of the
group, which could be other groups or fields.

l Occurrence - Repeating groups appear more than once in the message
format: You can set a specific number of times the group is to repeat, or
define a delimiter to indicate the end of the repeating group.

l Choice of Children - Defining a group as “Choice of Children” means that
only one item in the group will appear in the message format.

l Optional - The group of data within this structure may or may not be present
in the named message format.

n References - Indicate that another instance of the field or group format exists in
the data. Reference fields or groups have the same format as the original field or
group, but you can change the optional setting and the occurrence setting for the
reference field or group. For example, if you have a “bill to” address and a “ship
2-6 BEA WebLogic XML/Non-XML Translator User Guide

Analyzing the Data to be Translated
to” address in your data, you only need to define the address format once. You
can create the “bill to” address definition and create a reference for the “ship to”
address.

n Comments - Notes or additional information about the message format.

Analyzing the Data to be Translated

Before a message format can be created, the layout of the binary data must be
understood. Legacy purchase order sample data and corresponding MFL and XML
documents for a purchase order record are included on the XML Translator CD-ROM.
The sample purchase order illustrates how XML Translator translates data from one
format to another. For more information on this sample data, refer to Appendix C,
“Running the Purchase Order Sample.”

The key to translating binary data to and from XML is to create an accurate description
of the binary data. For binary data (data that is not self-describing), you must identify
the following elements:

n Hierarchical groups

n Group attributes, such as name, optional, repeating, delimited

n Data fields

n Data field attributes, such as name, data type, length/termination, optional,
repeating

The Format Builder (the design-time portion of XML Translator) is used to build the
format definitions that are used for data translations. For details on the steps you need
to perform to thoroughly analyze your data, refer to the BEA WebLogic
XML/Non-XML Translator Samples Guide.
BEA WebLogic XML/Non-XML Translator User Guide 2-7

2 Building Format Definitions
Using the Format Builder

Format Builder assists you in creating format descriptions for binary data. You use
Format Builder to create hierarchical and detail information derived from structural
and detailed analysis of your data. These format descriptions are stored in an MFL
document. You can also use Format Builder to test your format descriptions before you
apply them to your actual data.

Starting Format Builder

To start Format Builder, choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The Format
Builder main window displays. If you did not use the installation directory defaults,
your path may be different.

Using the Format Builder Main Window

The main window of Format Builder is split into two panes. The left pane (the Tree
Pane) shows the structural information for the data format. The right pane (the
Properties Pane) shows the detail for the item selected in the tree pane.

Details of the file you are editing display in the Title Bar of the Format Builder main
window.
2-8 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Figure 2-1 Format Builder Main Window

The structure of the binary data is defined in the tree pane using a combination of fields
and groups that match the target data.

The following topics discuss the parts of the main window and provide instructions for
navigating and executing commands from the main window of Format Builder:

n Using the Tree Pane

n Using the Menu Bar

n Using the Toolbar

n Using Drag and Drop

n Using the Shortcut Menus
BEA WebLogic XML/Non-XML Translator User Guide 2-9

2 Building Format Definitions
Using the Tree Pane

The Tree Pane represents hierarchical/structural information about the format of the
binary data in a tree. The root node of the tree will correspond to the MFL document
being created or edited. The root node is referred to as the Message node. Child nodes
are labeled with group or field names. Fields are represented by leaf nodes in the tree.
Groups contain fields or other groups and are represented by non-leaf nodes in the tree.

The icon for each node encapsulates information about the node. The icon indicates
whether the node represents a message, a group, a field, a comment, or a reference. The
icon also indicates whether a group or field is repeating, whether a group is a Choice
of Children, and whether a group or field is optional or mandatory. You also have the
ability to add, delete, move, copy, or rename nodes in the tree. This is done through the
menus or the toolbar (see Using the Menu Bar and Using the Toolbar).

The icons that appear in the Tree Pane are described in the following table.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description

Message Format The top level element.

Group Collections of fields, comments, and other
groups or references that are related in
some way (for example, the fields
PAYDATE, HOURS, and RATE could be part
of the PAYINFO group). Defines the
formatting for all items contained in the
group.

Optional Group A group that may or may not be included
in the message format.

Repeating Group A group that has one or more occurrence.

Optional Repeating Group A group that may or may not be included,
but if included, may occur more than
once.
2-10 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Group Reference Indicates that another instance of the
group exists in the data. Reference groups
have the same format as the original
group, but you can change the optional
setting and the occurrence setting for the
reference group.

Group Choice Indicates that only one of the items in the
group will be included in the message
format.

Field Sequence of bytes that have some
meaning to an application. (For example,
the field EMPNAME contains an employee
name.) Defines the formatting for the
field.

Optional Field A field that may or may not be included in
the message format.

Repeating Field A field that has one or more occurrences.

Optional Repeating Field A field that may or may not be included,
but, if included, may occur more than
once in the message format.

Field Reference Indicates that another instance of the field
exists in the data. Reference fields have
the same format as the original field, but
you can change the optional setting and
the occurrence setting for the reference
field.

Comment Contains notes about the message format
or the data translated by the message
format.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description
BEA WebLogic XML/Non-XML Translator User Guide 2-11

2 Building Format Definitions
Using the Menu Bar

The Menu bar displays the menu headings. The menu items that are available depend
on what is selected in the tree pane and the state of the tree. Click a menu heading to
open the menu and choose a command.

Figure 2-2 Format Builder Menu Bar

All Format Builder menus are expandable from your keyboard by pressing Alt +
mnemonic keys. Some menu commands are also executable using Ctrl + letter
accelerator keys.

Note: Menu items that appear in gray are unavailable for the current selection.

For a complete description of the menu commands, see Format Builder Menus.

Using the Toolbar

The toolbar provides buttons that access some of the frequently used commands in the
menus. To activate a command, click its toolbar button. If a command is unavailable,
its button appears grayed-out.

Figure 2-3 Format Builder Toolbar

Collapse A minus sign next to an object indicates
that it can be collapsed.

Expand A plus sign next an object indicates that it
can be expanded to show more objects.

Table 2-1 Tree Icon Descriptions

Tree Icon Icon Name Description
2-12 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
The toolbar buttons provided with Format Builder are described below:

Toolbar Button Name Description

New Creates a new Message Format.

Open Opens an existing Message Format.

Save Saves the current Message Format.

Cut Removes the item currently selected in the
left-hand pane, and it’s child objects, from the tree.
The item can be pasted elsewhere in the tree.

Note: This action is not available if the Message
Format (root) item is selected.

Copy Makes a copy of the item currently selected in the
left-hand pane for insertion elsewhere in the tree.

Note: This action is not available if the Message
Format (root) item is selected.

Paste as
Sibling

Inserts the cut or copied item as a sibling object of
the selected item.

Paste as
Reference

Inserts a reference to the cut or copied item as a
sibling object of the selected item.

Undo Reverses the previous action. The tool tip changes
to indicate the action that can be undone. For
example, changing the name of a field to Address
and clicking Apply causes the tool tip to read
“Undo Apply Field Address”. Format Builder
supports multi-level undoing and redoing.
BEA WebLogic XML/Non-XML Translator User Guide 2-13

2 Building Format Definitions
Redo Reverses the effects of an Undo command. The
tool tip changes to indicate the action that can be
redone. For example, changing the name of a field
to Address and then undoing that action causes the
tool tip to read “Redo Apply Field Address”.
Format Builder support multi-level undoing and
redoing.

Insert Field Inserts a field as a sibling of the item selected in the
tree pane.

Insert Group Inserts a group as a sibling of the item selected in
the tree pane.

Insert
Comment

Inserts a comment as a sibling of the item selected
in the tree pane.

Move Up Moves the selected item up one position under its
parent.

Move Down Moves the selected item down one position under
its parent.

Promote item Promotes the selected item to the next highest level
in the tree. For example, Field1 is the child object
of Group1. Selecting Field1 and clicking the
Promote tool makes it a sibling of Group1.

Demote item Demotes the selected item to the next lower level
in the tree. For example, Group1 is the sibling of
Field1. Field1 immediately follows Group1 in the
tree. Selecting Field1 and clicking the Demote tool
makes it a child of Group1.

Expand All Expands all items in the tree pane to show child
items.

Toolbar Button Name Description
2-14 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Using the Shortcut Menus

Instead of using the standard menus to find the command you need, use the right mouse
button to click an item in the tree pane. The menu that appears shows the most
frequently used commands for that item.

The following commands are available from the Shortcut Menus.

Note: Some commands may be unavailable, depending on the item you have selected
in the tree, or the state of the tree at the time.

Table 2-2 Shortcut Menus

Collapse All Collapses the tree pane to show first level items
only.

Format Tester Opens the Format Tester window.

Toolbar Button Name Description

Menu Command Description

Cut Removes the item currently selected in the left-hand pane,
and it’s child objects, from the tree.

Copy Makes a copy of the item currently selected in the left-hand
pane for insertion elsewhere in the tree.

Paste Inserts the cut or copied item. An additional menu displays
when you select Paste. You can choose to paste the item as a
child or sibling of the selected item. In addition, you can
choose to paste a reference to the cut or copied item as a
sibling of the selected item.

Insert Group Inserts a new group. You select whether to insert the group
as a child or sibling of the selected item.

Insert Field Inserts a new field. You select whether to insert the field as a
child or sibling of the selected item.
BEA WebLogic XML/Non-XML Translator User Guide 2-15

2 Building Format Definitions
Using Drag and Drop

You can use the drag and drop feature of XML Translator to copy and/or move the
items in the tree pane.

Note: The node being copied or moved is always inserted as a sibling of the selected
node during the drag and drop process. If you drag and drop the node onto the
message format node, it is inserted as the last child.

To use drag and drop to move an item:

1. Select the item you want to move.

2. Press and hold the left mouse button while you drag the item to the desired node.

3. When the item is in the desired location, release the left mouse button. The item
is moved to the new location.

To use drag and drop to copy an item:

1. Select the item you want to copy.

2. Press and hold the CTRL key.

3. Keeping the CTRL key depressed, press and hold the left mouse button while you
drag the item to the desired node.

Insert Comment Inserts a comment. You select whether to insert the comment
as a child or sibling of the selected item.

Duplicate Makes a copy of the currently selected item. The duplicate
item contains the same values as the original item. The name
of the duplicate item is the same as the original item name,
with the word “New” inserted before the original name. For
example, duplicating a group called “Group1” results in a
group with the name “NewGroup1”.

When you duplicate an item with a numeric value in its
name, the new item name contains the next sequential
number. For example, duplicating “NewGroup1” results in a
group named “NewGroup2”.

Delete Deletes the selected item.

Menu Command Description
2-16 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
4. With the sibling object selected, release the left mouse button. A copy of the item
is placed at the new location.

Creating a Message Format

The first step in creating a Message Format Definition file is to create a message format
(the root node of a message format file).

To create a message format:

1. Choose File→New. The Message Format Pane displays in the detail window.

Figure 2-4 Message Format Properties

2. Enter data in the fields as described in the following table.

Note: The examples that follow are based on MFL version 2.01 documents.

Table 2-3 Message Format Properties

Field Description

Message Format Properties

Name The name of the message format. This value will be used as the root
element in the translated XML document. This name must comply
with XML element naming conventions.

MFL Version The version of MFL you are using. Version 2.0 of Format Builder
adds new features and its default version is 2.01. If you open an MFL
document created using an earlier version of Format Builder, you
must change this value from 2.0 to 2.01 to use all of the new Format
Builder features.
BEA WebLogic XML/Non-XML Translator User Guide 2-17

2 Building Format Definitions
Valid Names

Message Formats, Fields, and Groups are identified by a Name. The name that is
specified is used as the XML tag when binary data is translated to XML by XML
Translator. Thus the name must conform to the XML rules for a name.

The rules for names are as follows:

n Must start with a letter or underscore

n Can contain letters, digits, the period character, the hyphen character, or the
underscore character.

The following are valid name examples:

MyField
MyField1
MyField_again
MyField-again

The following are invalid name examples:

1MyField - may not start with a digit
My>Field - the greater-than sign (>) is an illegal character
My Field - a space is not permitted

Creating a Group

Groups are collections of fields, comments, references and other groups that are related
in some way (for example, the fields PAYDATE, HOURS, and RATE could be part of the
PAYINFO group). You can create a group as a child of the message format item, as a
child of another group, or as a sibling of a group or field.

Apply Saves your changes to the message format document.

Reset Discards your changes to the detail window and resets all fields to the
last saved values.

Help Displays online help information for this detail window.

Field Description
2-18 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
To create a group:

1. Select an item in the tree pane.

2. Choose Insert→Group→As Child if you want to create the group as the child of
the message format or another group. Choose Insert→Group→As Sibling if you
want to create the group as the sibling of another group or a field. The Group
Details display in the detail window.

Figure 2-5 Group Details

3. Enter data in the fields as described in the following table.

Note: The following example applies to MFL version 2.1.

Table 2-4 Group Detail Properties

Field Description

Group Description

Name The name of the group. This name must comply with XML element
naming conventions.

Optional Choose Optional if this is an optional group.
BEA WebLogic XML/Non-XML Translator User Guide 2-19

2 Building Format Definitions
Choice of Children Choose Choice of Children if only one of the items in the group will
be included in the message format.

Group Occurrence

Occurrence Choose one of the following to indicate how often this group
appears in the message format:

n Once - Indicates the group appears only once.

n Repeat Delimiter - Indicates the group will repeat until the
specified delimiter is encountered.

n Repeat Field - Indicates the group will repeat the number of
times specified in the repeat field.

n Repeat Number - Indicates the group will repeat the
specified number of times.

n Unlimited - Indicates the group will repeat an unlimited
number of times.

Note: Unless a group is defined as Optional, all groups occur at
least once.

Group Attributes

Group is Tagged Select this option if this is a tagged group. Being tagged means that
a literal precedes the other content of the group, which could be
other groups or fields.

Group Delimiter

None Select this option if the group has no delimiter.

Delimited Groups can have their termination point specified by a delimiter. A
delimiter is a string of characters that marks the end of the group of
fields. The group continues until the delimiter characters are
encountered.

Select this option if the end of the group is marked with a delimiter.

Value - Enter the delimiter that marks the end of the group of fields.

Note: Normally, groups are not delimited. They are usually
parsed by content (the group ends when all child objects
have been parsed).

Field Description
2-20 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
4. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

Delimiter Field Groups can have their termination point specified by a field that
contains a delimiter character string. A delimiter is a string of
characters that mark the end of the group. The group continues until
the delimiter character string contained in the specified field is
encountered.

n Field - Select the field that contains the delimiter character
string. A list of valid fields will be presented in a drop-down
list.

n Default - Enter the default delimiter character that will be used
if the above field is not present in the data. This value is
required.

Delimiter is Shared Indicates that the delimiter marks both the end of the group of data,
and the end of the last field of the group. The delimiter is shared
among the group, and the last field of the group, to delimit the end
of the data.

Group Update Buttons

Apply Saves your changes to the message format document.

Duplicate Makes a copy of the group currently displayed. The duplicate group
contains the same values as the original group. The name of the
duplicate group is the same as the original group name, with the
word “New” inserted before the original name. For example,
duplicating a group called “Group1” results in a group with the
name “NewGroup1”.

When you duplicate an item with a numeric value in its name, the
new item name contains the next sequential number. For example,
duplicating “NewGroup1” results in a group named “NewGroup2”.

Reset Discards your changes to the detail window and resets all fields to
the last saved values.

Help Displays online help information for this detail window.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 2-21

2 Building Format Definitions
Note: The Apply and Reset buttons are only enabled once changes are made to
the detail panel’s components.

Creating a Field

Fields are a sequence of bytes that have some meaning to an application. (For example,
the field EMPNAME contains an employee name.) You can create a field as a child of the
message format item, as a child of a group, or as a sibling of a group or another field.
The field name is used as the element name in the XML document and must comply
with XML naming conventions.

To create a field:

1. Select an item in the tree pane.

2. Choose Insert→Field→As Child if you want to create the field as the child of the
message format or group. Choose Insert→Field→As Sibling if you want to
create the field as the sibling of another field or a group. The Field Details
display in the detail window.
2-22 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Figure 2-6 Field Details

3. Enter data in the fields as described in the following table.

Note: The following example applies to MFL version 2.01.

Table 2-5 Field Detail Properties

Field Description

Field Description

Name The name of the field. This name must comply with XML element
naming conventions.

Optional Select this option if this is an optional field. Optional means that the
data for the field may or may not be present.
BEA WebLogic XML/Non-XML Translator User Guide 2-23

2 Building Format Definitions
Type Select the data type of the field from the drop-down list. The default
is String.

Note: The Field Type you select dictates the Field Data Options
that appear on the dialog.

Refer to Appendix A, “Supported Data Types,” for a list of data
types supported by XML Translator.

Field Occurrence

Occurrence Choose one of the following to indicate how often this field appears
in the message format:

n Once - Indicates the field appears only once.

n Repeat Delimiter - Indicates the field will repeat until the
specified delimiter is encountered.

n Repeat Field - Indicates the field will repeat the number of
times specified in the field denoted as the repeat field.

n Repeat Number - Indicates the field will repeat the specified
number of times.

n Unlimited - Indicates the field will repeat an unlimited number
of times.

Note: Unless a field is defined as optional, the field will occur at
least one time.

Note: The fields that display in the following sections of the detail window depend on the
Field Type selected.

Field Attributes

Field is Tagged Select this option if this is a tagged field. Being tagged means that a
literal proceeds the data, indicating that the data is present. You
must also choose the data type of the tag field from the drop-down
list box. For example: SUP:ACME INC, SUP: is a tag. ACME
INC is the field data.

If you selected the Field is Tagged option, enter the tag in the text
box to the right of the checkbox.

Field Description
2-24 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Field Default Value Select this option to specify a value for the data of the field that will
be inserted into the binary data if the field is not present in the XML.

Note: If the field does not occur in the binary data and it is not
optional, then the binary data will fail to parse even if there
is a default value given.

Data Base Type If the field is a date or time field, the base type indicates what type
of characters (ASCII, EBCDIC, or Numeric) make up the data.

Year Cutoff If the field is a date field that has a 2-digit year, the year cutoff
allows the 2-digit year to be converted to a 4-digit year. If the 2-digit
year is greater than or equal to the year cutoff value, a ’19’ prefix will
be added to the year value. Otherwise a ’20’ prefix will be used.

Code Page The character encoding of the field data.

Value The value that appears in a literal field.

Field Termination

Length Variable-sized data types can have their length set to a fixed value.

n Length - Enter the number of bytes in the field.

n Trim Leading/Trailing - Removes the specified data from the
leading or trailing edge of the data.

n Pad - If the XML data is shorter than the specified length, enter
the necessary value to the data to correct its length.

Imbedded Length Variable-sized data types can have their termination point specified
by an imbedded length. An imbedded length precedes the data field
and indicates how many bytes the data contains.

n Type - Specifies the data type and Length or Delimiter for
termination if needed.

n Tag/Length Order - Specifies the order of tag and length fields
when both are present. Default is tag before length.

n Trim Leading/Trailing - Removes the specified data from the
leading or trailing edge of the data.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 2-25

2 Building Format Definitions
4. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

Delimiter Variable-sized data types can have their termination point specified
by a delimiter. A delimiter is a value that marks the end of the field.
The field data continues until the delimiter is encountered.

n Value - Enter the delimiter that marks the end of the field data.

n Trim Leading/Trailing - Removes the specified data from the
leading or trailing edge of the data.

Delimiter Field Variable-sized data types can have their termination point specified
by a field that contains a delimiter value. A delimiter is a value that
marks the end of the field. The field data continues until the field
containing the delimiter is encountered.

n Field - Select the field that contains the delimiter.

n Default - Enter the default delimiter. You must supply a default
value. The default is used when the delimiter field is not present.

n Trim Leading/Trailing - Removes the specified data from the
leading or trailing edge of the data.

Decimal Position Specifies the number of digits (0-16) to the left of the decimal point.

Field Update Buttons

Apply Saves your changes to the message format file.

Duplicate Makes a copy of the field currently displayed. The duplicate field
contains the same values as the original field. The name of the
duplicate field is the same as the original field name, with the word
“New” inserted before the original name. For example, duplicating
a field called “Field1” results in a field with the name “NewField1”.

When you duplicate an item with a numeric value in its name, the
new item name contains the next sequential number. For example,
duplicating “NewField1” results in a group named “NewField2”.

Reset Discards your changes to the detail window and resets all fields to
the last saved values.

Help Displays online help information for this detail window.

Field Description
2-26 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Note: The Apply and Reset buttons are only enabled once changes are made to
the detail panel’s components.

Creating a Comment

Comments contain notes about the message format or the data translated by the
message format. Comments are included in the message format definition for
documentation and informational purposes only. You can create a comment as a child
or sibling of any message format, group, or field. Comments are unnumbered in the
MFL document and are not transformed to the XML or Binary data.

Note: Conventionally, the comment usually precedes the node it intends to
document.

To create a comment:

1. Select an item in the tree pane.

2. Choose Insert→Comment→As Child if you want to create the comment as the
child of the selected item. Choose Insert→Comment→As Sibling if you want to
create the comment as the sibling of the selected item. The Comment Details
display in the detail window.

3. Enter data in the fields as described in the following table.

Figure 2-7 Comment Details
BEA WebLogic XML/Non-XML Translator User Guide 2-27

2 Building Format Definitions
Table 2-6 Comment Detail Properties

4. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the Comment Details window and reset the field to the
last saved value.

Note: The Apply and Reset buttons are only enabled once changes are made to
the detail panel’s components.

Creating References

References indicate that the description of the field or group format has been
previously defined and you want to reuse this description without re-entering the data.
Reference fields or groups have the same format as the original field or group, but you
can change only the optional setting and the occurrence setting for the reference field
or group. For example, if you have a “bill to” address and a “ship to” address in your
data and the format for the address is the same, you only need to define the address
format once. You can create the “bill to” address definition and create a reference for
the “ship to” address.

Note: References are named exactly the same as the original item. For example, the
“bill to” address definition and the “ship to” address definition would be
named the same. If you want to reuse a group definition, create a generic group
and embed it within a specific group. For example, in the previous example,
you can create an address group within a bill_to group and reference address
within a ship_to group.

To create a reference:

1. Select a field or group in the tree pane.

Field Description

Comment Details Enter the comment text.

Apply Saves your changes to the message format document.

Reset Discards your changes to the detail window and resets the field to
the last saved value.

Help Displays online help information for this detail window.
2-28 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
2. Choose Edit→Copy.

3. Choose the proper sibling in the tree.

4. Choose Edit→Paste→As Reference.

Figure 2-8 Reference Details

5. Enter data in the fields as described in the following table.

Table 2-7 Reference Detail Properties

Field Description

Reference Description

Name Displays the name of the original field or group for which you
created this reference. This value cannot be changed.

Optional Select this option if the reference field or group is optional.

Occurrence
BEA WebLogic XML/Non-XML Translator User Guide 2-29

2 Building Format Definitions
6. Click Apply to save your changes to the message format file, or click Reset to
discard your changes to the detail window and reset all fields to the last saved
value.

Note: The Apply and Reset buttons are only enabled once changes are made to
the detail panel’s components.

Working with Palettes

The palette allows you to store commonly used message format items and insert them
into your message format definitions. These items are stored in an MFL document, and
you can use the drag and drop feature (see Using Drag and Drop) to copy items from
the palette into your message format definition. You can also open any MFL document
in the palette and reuse any message format items.

Occurrence Choose one of the following to indicate how often this reference field
or group appears in the message format:

n Once - Indicates the reference appears only once.

n Repeat Delimiter - Indicates the reference will repeat until the
specified delimiter is encountered.

n Repeat Field - Indicates the reference will repeat the number of
times specified in the field denoted as the repeat field.

n Repeat Number - Indicates the reference will repeat the
specified number of times.

n Unlimited - Indicates the reference will repeat an unlimited
number of times.

Field Update Buttons

Apply Saves your changes to the message format document.

Edit Reference Displays the detail window for the original item so you can edit the
details of the referenced field or group.

Reset Discards your changes to the detail window and resets all fields to the
last saved values.

Help Displays online help information for this detail window.

Field Description
2-30 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Opening the Palette

To open the palette:

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose View→Show Palette. The palette window displays.

You may reorder or change the hierarchy within the palettes by using drag and drop or
the Context menu. The contents of the palette are automatically saved when you exit
Format Builder.

Note: You can only copy items from the tree pane to the palette and vice versa. You
cannot move items between the windows.

The XML Translator palette contains some common date formats, literals, and strings.
You can use these items in the message formats you create, as well as adding your own
items to the palette.

Using the File Menu

The following commands are available from the palette’s File menu.
BEA WebLogic XML/Non-XML Translator User Guide 2-31

2 Building Format Definitions
Table 2-8 File Menu Commands

Using the Shortcut Menu

The following commands are available from the palette’s shortcut menu. You can
access the shortcut menu by right-clicking within the palette window.

Note: Some commands may be unavailable, depending on the time you have selected
in the tree.

Table 2-9 Shortcut Menu Commands

Menu Command Description

Open Opens an existing message Format.

Save Saves any message format items you have added to the palette, or
any existing items you have modified. The default palette is named
palette.xml and is stored in the Format Builder installation
directory.

Hide Palette Closes the Palette window.

Menu Command Description

Insert Inserts a new group in the palette. When you select this command,
a window displays asking you to supply the name of the new
group.

Rename Displays a window asking you to supply the new name of the
group.

Delete Deletes the selected item.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote Promotes the selected item to the next highest level in the tree. For
example, Field1 is the child object of Group1. Selecting Field1
and clicking the Promote tool makes it a sibling of Group1.
2-32 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Adding Items to the Palette

To add items to the palette:

1. Choose View→Show Palette to display the palette.

Note: If the Palette window is already displayed, skip this step.

2. From the tree pane of the XML Translator window, choose the item you want to
add to the palette.

3. Click and hold the left mouse button and drag the item into the palette window.

4. When the item is placed in the position you want it (as sibling of the selected
item), release the mouse button. The item is copied from the XML Translator
window to the palette window.

Notes: You cannot add any node that depends on the existence of another node to the
palette. For example, you cannot add Field or Group References, and you
cannot add items that have a Repeat Field specified.

Adding comments is possible, but not recommended since comments do not
have unique names and therefore are indistinguishable on the palette.

Deleting Items From the Palette

To delete items from the palette:

1. Select the item in the palette to be deleted and click the right mouse button. The
Shortcut Menu displays.

2. Choose Delete. A message displays asking you to confirm the deletion.

3. Click OK to delete the item.

Demote Demotes the selected item to the next lower level in the tree. For
example, group1 is the sibling of Field1. Field1 immediately
follows Group1 in the tree. Selecting Field1 and clicking the
Demote tool makes it a child of Group1.

Menu Command Description
BEA WebLogic XML/Non-XML Translator User Guide 2-33

2 Building Format Definitions
Adding Palette Items to a Message Format

To copy items from the palette to a message format:

1. Choose View→Show Palette to display the palette.

Note: If the Palette window is already displayed, skip this step.

2. From the palette window, choose the item you want to add to your message
format.

3. Click and hold the left mouse button and drag the item into the tree pane of the
Format Builder window.

4. When the item is placed in the position you want it (as the sibling of the desired
item), release the mouse button. The item is copied from the palette to the
message format.

Saving a Message Format to a File

To save a message format file for the first time:

1. Choose File→Save As. The Save As dialog displays.

Figure 2-9 Save As Dialog

2. Navigate to the directory where you want to save the file.

3. In the File Name text box, type the name you want to assign to the file.
2-34 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
4. Format Builder automatically assigns the .mfl extension to message format files
by default if no extension is given.

5. Click Save As to save the file in the specified location with the specified name
and extension.

To save a message format file using the same name, choose File→Save. The file is
saved in the same location with the same name and extension.

To save a message format file using a different name, choose File→Save As and
follow steps 1 through 5 above.

Opening an Existing Message Format File

To open an existing message format file:

1. Choose File→Open. The Open dialog displays.

Figure 2-10 Open Dialog

2. Navigate to the directory containing the desired file and select the file name.

3. Click Open. The file is loaded into Format Builder.

Working With the Repository

The XML Translator repository provides a centralized document storage mechanism
that supports the following four document types:
BEA WebLogic XML/Non-XML Translator User Guide 2-35

2 Building Format Definitions
n Message Format Language document

n XML Document Type Definition document

n XML Schema document

n XSLT Stylesheet

The repository allows the supported documents to be shared between the components
of WebLogic Integration. The repository provides access to these document types and
provides manipulation of repository documents including access to the document text,
description, notes, and removal of the document. The repository allows the supported
documents to be shared between XML Translator, WebLogic Process Integrator
(Process Integrator), WebLogic Server (WLS), and WebLogic Collaborate (WLC).
The repository also includes a batch import utility that allows previously constructed
MFL, DTD, XML Schema, and XSLT documents residing on a different file system
to be easily migrated into the repository.

For more information on using the repository, refer to the Retrieving and Storing
Repository Documents section.

Retrieving Repository Documents

Perform the following steps to retrieve an MFL document from the repository:

1. Start Format Builder.

2. Choose Repository→Log In. The Repository Log In dialog box opens. Enter
your user name, password, and the server where the repository resides.

3. Choose Repository→Retrieve. The Select-document-to-retrieve dialog box
opens.

4. Select the document you want to retrieve from the document list.

5. Click Retrieve. The Select-document-to-retrieve dialog box is dismissed and you
are returned to the Format Builder main window with your selected document
listed in the Tree Pane.

Once you have retrieved the specified document, you can edit it as you would any MFL
document within Format Builder, store the document back into the repository, store the
document back into the repository with a different name, or save as a local file.
2-36 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Anytime you open a document that is stored in the repository, a read-only Document
Repository Properties box displays in the Message Format detail panel when the
message format node is selected. This properties box provides you with a document
description and any notes that were attached to the document.

Storing Repository Documents

Perform the following steps to store a MFL document in the repository:

1. Start Format Builder.

2. Open the MFL document you want to store in the repository.

3. Log in to the repository.

4. Choose Repository→Store As. The Store As dialog box opens.

5. Enter the name you want to associate with this repository document in the Name
field.

6. Enter a description of the repository document in the Description field.

7. Enter any notes you would like attached to the document in the Notes field.

8. Click Store. The Store As dialog box is dismissed and your MFL document
displays in the Format Builder Tree Pane. A Document Repository Properties box
with document Description and Notes information displays in the Detail panel of
the Format Builder Message Format Detail Panel.

If your Format Builder options specify generation of a DTD/XML Schema, these
documents will also be stored in the repository using the supplied name.

Setting Format Builder Options

You can set several options to control the overall operation of Format Builder.

To set Format Builder options:

1. Choose Tools→Options. The Options dialog displays.
BEA WebLogic XML/Non-XML Translator User Guide 2-37

2 Building Format Definitions
Figure 2-11 Format Builder Options Dialog

2. Enter data in the fields as described in the following table.

Table 2-10 Format Builder Options Properties

Field Definition

Default Message Format Version Select the MFL version used when creating new
documents.

Note: Message formats contain their own format
version specified on the Message Format pane.

XML Formatting Options

Initial Indent Enter the number of spaces to indent the first line of the
XML document created by XML Translator.

New Line Indent Enter the number of spaces to indent a new child line of
the XML document created by XML Translator.

XML Content Model Options

Auto-generate DTD Generates a DTD document when you save or store the
MFL document. This document will be placed in the
same directory as the message format when saving to a
file and in the repository when storing.
2-38 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Format Builder Menus

The following menus are available in Format Builder.

File Menu

The following commands are available from the File Menu.

Note: Some commands may be unavailable, depending on the actions you have
taken.

Table 2-11 File Menu Commands

Auto-generate Schema Generates an Schema file when you save the MFL
document. This document will be placed in the same
directory as the message format when saving to a file and
in the repository when storing.

Action Buttons

OK Saves your changes and closes this detail window.

Cancel Discards your changes and closes this detail window.

Field Definition

Menu Command Description

New Creates a new Message Format document.

Open Opens an existing Message Format document.

Close Closes the current Message Format document.

Save Saves the current Message Format document.

Save As Saves the current Message Format under a different name
document.

Exit Exits the Format Builder program.
BEA WebLogic XML/Non-XML Translator User Guide 2-39

2 Building Format Definitions
Edit Menu

The following commands are available from the Edit Menu.

Note: Some commands may be unavailable, depending on the actions you have taken
and the state of the tree pane and its items.

Table 2-12 Edit Menu Commands

Menu Command Description

Undo Reverses the previous action. The Undo command in the Edit
Menu changes to indicate the action that can be undone. For
example, changing the name of a field to Field1 and clicking
Apply causes the Edit Menu to read “Undo Apply Field Field1”.

Redo Reverses the effects of an Undo command. The Redo command
in the Edit Menu changes to indicate the action that can be
redone. For example, changing the name of a field to Field1 and
then undoing that action causes the Edit Menu to read “Redo
Apply Field Field1”.

Cut Removes the item currently selected in the left-hand pane, and
it’s child objects, from the tree. This item is placed on the
clipboard for pasting into another location.

Note: This action is not available if the Message Format
(root) item is selected.

Copy Makes a copy of the item currently selected in the left-hand pane
for insertion elsewhere in the tree.

Note: This action is not available if the Message Format
(root) item is selected.

Paste Inserts the cut or copied item. An additional menu displays when
you select Paste. You can choose to paste the item as a child or
sibling of the selected item. In addition, you can choose to paste
a reference as a sibling of the selected item.
2-40 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Insert Menu

The following commands are available from the Insert Menu.

Table 2-13 Insert Menu Commands

Duplicate Makes a copy of the item selected in the tree. The duplicate item
contains the same values as the original item. The name of the
duplicate item is the same as the original item name, but the
word “New” is inserted before the original name. For example,
duplicating an item called “Field1” results in an item with the
name “NewField1”.

When you duplicate an item with a numeric value in its name,
the new item name contains the next sequential number. For
example, duplicating “NewGroup1” results in a group named
“NewGroup2”.

Delete Deletes the item selected in the tree, as well as all child objects
of that item.

Move Up Moves the selected item up one position under its parent.

Move Down Moves the selected item down one position under its parent.

Promote Promotes the selected item to the next highest level in the tree.
For example, Field1 is the child object of Group1. Selecting
Field1 and clicking the Promote tool makes it a sibling of
Group1.

Demote Demotes the selected item to the next lower level in the tree. For
example, Group1 is the sibling of Field1. Field1 immediately
follows Group1 in the tree. Selecting Field1 and clicking the
Demote tool makes it a child of Group1.

Menu Command Description

Menu Command Description

Field Inserts a new field. You can choose whether to insert the
field as a child or sibling of the item selected in the tree.

Group Inserts a new group. You can choose whether to insert the
group as a child or sibling of the item selected in the tree.
BEA WebLogic XML/Non-XML Translator User Guide 2-41

2 Building Format Definitions
View Menu

The following commands are available from the View Menu.

Table 2-14 View menu Commands

Repository Menu

The following commands are available from the Repository Menu.

Table 2-15 Repository Menu Commands

Comment Inserts a comment. You can choose whether to insert the
comment as a child or sibling of the item selected in the
tree.

Menu Command Description

Menu Command Description

Show Palette Displays the palette window. For more information on the
palette, see Working with Palettes.

Expand All Expands the entire tree pane to show the child objects of all
items in the tree.

Collapse All Collapses the entire tree pane to show only the root message
format.

Menu Command Description

Log In Displays the Process Integrator Repository Login dialog,
allowing you to connect to the repository.

Log Out Disconnects from the repository.

Retrieve Retrieves a document from the repository.

Store Stores the current document in the repository.

Store As Stores the current document in the repository under a
different name.
2-42 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Builder
Tools Menu

The following commands are available from the Tools Menu.

Table 2-16 Tools Menu Commands

Help Menu

The following commands are available from the Help Menu.

Table 2-17 Help Menu Commands

Menu Command Description

Import Displays a list of the installed importers. Choose the
importer from which you want to import a message.

Test Opens the Format Tester.

User Defined Types Opens the Add/Remove User Defined Types dialog box.

Options Displays the Format Builder Options dialog.

Menu Command Description

Help Topics Displays the main Help screen.

How Do I Provides step-by-step instructions for performing the
basic tasks in Format Builder.

About Displays version and copyright information about Format
Builder and the JDK you are running.
BEA WebLogic XML/Non-XML Translator User Guide 2-43

2 Building Format Definitions
2-44 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
3 Testing Format
Definitions

Once you have built a format definition, you can test it using the Format Tester feature
of Format Builder. The Format Tester parses and reformats data as a validation test and
generates sample binary or XML data. This sample data can be edited, searched, and
debugged to produce the expected results. The Format Tester uses the XML Translator
runtime engine to perform the test translation.

This section discusses the following topics:

n Starting Format Tester

n Using the Format Tester Main Window

n Testing Format Definitions

n Debugging Format Definitions

Starting Format Tester

To start the tester:

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

Note: To run Format Tester, you must have a message format document open in
Format Builder.
BEA WebLogic XML/Non-XML Translator User Guide 3-1

3 Testing Format Definitions
2. Choose Tools→Test. The Format Tester dialog displays.

Note: The Tester works with the currently loaded message definition document.

Figure 3-1 Format Tester Dialog

Using the Format Tester Main Window

The following topics discuss the elements of the Format Tester main window and
provide instructions for navigating and executing commands from the Format Tester
main window.

n Using the Menu Bar

n Using the Shortcut Menus

n Using the Binary Window

n To use the Text feature, select the Text tab from within the Binary window to
view all printable characters. For example, carriage returns are shown as line
breaks. If you have non-printable characters, the Text window displays them as
small squares.
3-2 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Tester Main Window
n Using the Debug Window

n Using the Resize Bars

The following topics explain how to use each of these features to help you accomplish
your task.

Using the Menu Bar

The following menus are available in Format Tester. All Format Tester menus are
expandable from your keyboard by pressing Alt + mnuemonic key. Some menu
commands are also executable using Ctrl + letter accelerator keys.

Figure 3-2 Menu Bar

File Menu

The following commands are available from the File menu.

Table 3-1 File Menu Commands

Menu Command Description

Open Binary Allows you to select a file to be displayed in the binary window.

Note: The default file extension for binary files is .DATA.

Open XML Allows you to select a file to be displayed in the XML section of
the Format tester window.

Note: The default file extension for XML files is XML.

Save Binary Allows you to save the contents of the binary window.

Save XML Allows you to save the contents of the XML window.

Debug Log Allows the debug information to be saved in a text file.
BEA WebLogic XML/Non-XML Translator User Guide 3-3

3 Testing Format Definitions
Edit Menu

The following commands are available from the Edit menu

Table 3-2 Edit Menu Commands

Display Menu

The following commands are available from the Display menu

Table 3-3 Display Menu Commands

Close Closes the Format Tester window.

Menu Command Description

Menu Command Description

Cut Removes the currently selected text and places it on the clipboard
for pasting into another location.

Copy Copies the currently selected text and places it on the clipboard for
pasting into another location.

Paste Inserts the cut or copied text at the cursor location.

Find Allows you to search for a hex or text value in the binary data.

Find Next Continues your search to the next instance of the specified value.

Go To Allows you to move the cursor in the binary editor to a specified
byte offset.

Menu Command Description

XML Allows the XML data panel to be hidden or shown. If hidden, the
binary window expands to fill the width of the tester. The To XML
button remains, but the splitter disappears.

Debug Allows the Debug output window to be hidden or shown.

Clear→Binary Resets the contents of the binary window to be empty.
3-4 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Tester Main Window
Generate Menu

The following commands are available from the Generate menu.

Table 3-4 Generate menu Commands

Clear→XML Resets the contents of the XML window to be empty.

Clear→Debug Resets the contents of the debug window to be empty.

Hex→Offsets as
Hexadecimal

Displays the offset values as hexadecimal. Selecting this option
turns off the Offsets as Decimal display.

Hex→Offsets as
Decimal

Displays the offset values as decimal. Mutually exclusive with the
Offset as Hexadecimal selection.

Text→Values in
ASCII

Changes the character set used when displaying the text portion of
the hex editor display to ASCII. Mutually exclusive with the Values
in EBCDIC menu selection.

Text→Values in
EBCDIC

Changes the character set used when displaying the text portion of
the hex editor display to EBCDIC. Mutually exclusive with the
Values in ASCII menu selections.

Menu Command Description

Menu Command Description

Binary Generates binary data to match the current format specification.

XML Generates XML data to match the current format specification.

Prompt while
generating data

If selected, you are prompted during the generation process to
determine if optional fields or groups should be generated, determine
which choice of children should be generated, and determine how
many times a repeating group should repeat.
BEA WebLogic XML/Non-XML Translator User Guide 3-5

3 Testing Format Definitions
Translate Menu

The following commands are available from the Translate menu.

Table 3-5 Translate Menu Commands

Using the Shortcut Menus

Instead of using the standard menus to find the command you need, use the right mouse
button to click an item in the pop-up shortcut menu.

The following commands are available from the Shortcut menus.

Note: Some commands may be unavailable, depending on which display panel the
mouse pointer is currently in.

Table 3-6 Shortcut Menu Commands

Menu Command Description

Binary to XML Converts the contents of the binary window to XML.

XML to Binary Converts the contents of the XML window to binary.

Menu Command Description

Cut Removes the currently selected text and places it on the clipboard
for pasting into another location.

Copy Copies the currently selected text and places it in the clipboard for
pasting into another location.

Paste Inserts the cut or copied text at the cursor location.

Clear Resets the contents of the binary, XML, or Debug window to be
empty.

Generate Generates binary or XML data to match the current format
specification.

To XML Converts the contents of the binary window to XML.
3-6 BEA WebLogic XML/Non-XML Translator User Guide

Using the Format Tester Main Window
Using the Binary Window

The binary data display panel acts as hexadecimal editor, displaying data offsets, the
hex value of individual bytes, and the corresponding text, which can be optionally
displayed as ASCII/EBCDIC characters. The Binary window consists of the following
three tabs used to select which mode to display the data:

n Hex Editor

n Escaped Text

n Text

The editor allows for editing of the hex byte or the text value. If a hex data value is
modified, the corresponding text value is updated, and vice versa.

Using the Data Offset Feature

The data offset feature of the hexadecimal editor allows you to display your data
offsets as Hexadecimal or Decimal.

To change your data offsets:

1. Choose Display→Hex. The following two data offset options display.

l Offsets as Hexadecimal

l Offsets as Decimal

2. Click the display option that best suits your needs. The data offset panel of the
Binary window dynamically changes to reflect your choice.

To Binary Converts the contents of the XML window to binary.

Text in ASCII Changes the character set to ASCII when displaying text with the
hex editor.

Text in EBCDIC Changes the character set to EBCDIC when displaying text with
the hex editor.

Menu Command Description
BEA WebLogic XML/Non-XML Translator User Guide 3-7

3 Testing Format Definitions
Using the Escaped Text Feature

To use the Escaped Text feature, select the Escaped Text tab from within the Binary
window to view non-printable characters as escape sequences. The Escaped Text
window displays non-printable characters as hex values. For example, the Escaped
Text window does not show line breaks, but escapes the carriage returns.

Using the Text Feature

To use the Text feature, select the Text tab from within the Binary window to view all
printable characters. For example, carriage returns are shown as line breaks. If you
have non-printable characters, the Text window displays them as small squares.

Using the XML Window

The XML data panel displays XML data that has been converted or translated from the
contents of the Binary panel, or XML that is to be converted to Binary. The contents
of the XML panel can be cleared or edited to suit your needs. When XML is generated,
the XML Formatting Options specified in the Format Builder options dialog box are
used. Refer to Setting Format Builder Options for more information.

Using the Debug Window

The Debug window displays the actions that take place during the translation
operation, any errors that are encountered, and field and group values along with
delimiters. To determine the location of the error, determine the last field that parsed
successfully and examine the specification of the next field on the Tree Pane of Format
Builder.

When you open the Format Tester, only the Binary and XML windows are visible. To
open the Debug window, choose Display→Debug to toggle the Debug window on and
off. The Debug window opens below the Binary and XML windows.

Debug output is restricted to the most recent 64 KB of messages. This restriction
prevents large debug output from causing a JVM out of memory event.
3-8 BEA WebLogic XML/Non-XML Translator User Guide

Testing Format Definitions
The debug feature allows for full debug information to be captured to a file. See the
Using the Debug Log topic for more information.

Note: Using the Debug window or Log File increases the time required to translate
from XML to Binary.

Using the Resize Bars

Resize bars are located between the Binary, XML, and Debug windows and enable
each window to be resized to suit your needs. Each resize bar can selected and dragged
up and down, or left or right, as appropriate, to enlarge one of the windows and reduce
the other.

Each resize bar also contains two directional buttons that can be clicked to enlarge or
diminish any of the three windows.

Testing Format Definitions

Perform the following steps to test a message format definition.

1. Start Format Builder.

2. Open a Message Format file.

3. Start Format Tester.

4. Click File→Open Binary, or File→Open XML to load the file you want to
translate and view, or enter your own data in one of the two data windows.

5. Select Display→Debug if you want to view the actions that take place during the
translation operation. This step is optional, but you must open the Debug window
prior to the translation operation in order to view any debug information later.

6. Select Translate→Binary to XML, or Translate→XML to Binary to translate
your data to the appropriate format. The translated data displays in the Binary or
XML window.
BEA WebLogic XML/Non-XML Translator User Guide 3-9

3 Testing Format Definitions
Figure 3-3 Format Tester

7. Correct the errors, if present, and test the translation again.

8. Continue this process until the translation is successful.

Note: You can leave Format Tester open while you modify the Message Format from
within Format Builder. Any changes to the message definition are
automatically detected by Format Tester.

Debugging Format Definitions

The following topics discuss the various Format Tester features you can use to debug
and correct your data.

n Searching For Values

Debug messages generated during translation process
3-10 BEA WebLogic XML/Non-XML Translator User Guide

Debugging Format Definitions
n Positioning to an Offset

n Using the Debug Log

Searching For Values

The Format Tester Find feature allows you to search for hex or text values in the binary
data. Perform the following steps to perform a hex or text value search.

1. From within Format Tester, choose File→Open Binary to open the binary data file
you want to search.

2. Choose Edit→Find. The Find dialog box opens.

Figure 3-4 Find Dialog Box

3. Enter the value you want to find.

4. Select Text or Hex to specify what type of value you are searching.

5. Specify the direction you want to search.

6. Specify the position in the file from which you want your search to begin.

7. Click OK. The Find dialog box disappears and your cursor displays next to the
value for which you are searching.

8. Choose Edit→Find Next to search to the next instance of the specified value.
BEA WebLogic XML/Non-XML Translator User Guide 3-11

3 Testing Format Definitions
Positioning to an Offset

The Format Tester GoTo feature allows you to move the cursor in the binary editor to
a byte offset you specify.

To move to a specified offset:

1. From within Format Tester, choose Edit→Go To. The Go To dialog box displays.

Figure 3-5 Goto Dialog Box

2. Enter the offset value you want to go to.

3. Select either Dec or Hex to specify the type of offset you want to go to.

4. Select either Forwards or Backwards to specify the direction you want your
search to proceed within the file.

5. Select either Beginning of File, Current Position, or End of File to specify the
starting position of your search within the file.

6. Click OK to have your cursor placed next to the offset you are looking for. The
Go To dialog box disappears after you click the OK button.

Using the Debug Log

The Format Tester debug log feature allows you to save your debug information in a
text file.

To use the Format Tester debug log, choose File→Debug Log. You will be presented
with a standard Save As dialog box from which you can select the destination directory
and name for this log file. If you select an existing file, the new debug information will
be appended onto the end of the existing file.
3-12 BEA WebLogic XML/Non-XML Translator User Guide

Debugging Format Definitions
Format Tester saves debug logs to the currently selected directory or the last directory
selected.
BEA WebLogic XML/Non-XML Translator User Guide 3-13

3 Testing Format Definitions
3-14 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
4 Importing Meta Data

XML Translator provides three utilities that allow you to import COBOL copybooks,
convert C structure definitions into MFL Message Definition, and import FML Field
Table classes. The following topics provide information on how to perform these types
of imports.

n Importing a COBOL Copybook

n Importing C Structures

n Importing an FML Field Table Class

Importing a COBOL Copybook

XML Translator includes a feature that allows you to import a COBOL copybook into
Format Builder creating a message definition to translate the COBOL data. When
importing a copybook, comments are used to document the imported copybook and the
Groups and Fields it contains.

To import a COBOL copybook:

1. Choose Tools→Import→COBOL Copybook Importer. The COBOL Copybook
Importer dialog displays.
BEA WebLogic XML/Non-XML Translator User Guide 4-1

4 Importing Meta Data
Figure 4-1 COBOL Copybook Importer

2. Enter data in the fields as described in the following table:

Table 4-1 COBOL Copybook Importer Field Descriptions

Field Description

File Name Type the path and name of the file you want to import.

Browse Click to navigate to the location of the file you want to import.

Byte Order

Big Endian Select this option to set the byte order to Big Endian.

Note: This option is used for IBM 370, Motorola, and most
RISC designs (IBM mainframes and most Unix
platforms).

Little Endian Select this option to set the byte order to Little Endian.

Note: This option is used for Intel, VAX, and Unisys
processors (Windows, VMS, Digital, Unix, and
Unisys).

Character Set

EBCDIC Select this option to set the character set to EBCDIC.

Note: These values are attributes of the originating host
machine.
4-2 BEA WebLogic XML/Non-XML Translator User Guide

Importing a COBOL Copybook
Once you have imported a copybook, you may work with it as you would any message
format definition. If an error or unsupported data type is encountered in the copybook,
a message is displayed informing you of the error. You can choose to display the error
or save the error to a log file for future reference.

COBOL Copybook Sample Files

The following table provides a listing and description of the sample files installed for
the COBOL Copybook Importer. All directory names are relative to the XML
Translator installation directories.

Table 4-2 COBOL Copybook Sample Files

ASCII Select this option to set the character set to ASCII.

Note: These values are attributes of the originating host
machine.

Other The character encoding of the field data is selected using a list
of code pages.

Action Buttons

OK Imports the COBOL Copybook using the settings you defined.

Cancel Closes the dialog and returns to Format Builder without
importing.

About Displays information about the COBOL Copybook importer
including version and supported copybook features.

Field Description

Directory File Description

samples\COBOL emprec5.cpy Sample Copybook file.

samples\COBOL emprec5.data Test data corresponding to emprec5.cpy.
BEA WebLogic XML/Non-XML Translator User Guide 4-3

4 Importing Meta Data
Importing C Structures

XML Translator includes a C Struct importer utility that converts a C struct definition
into an MFL Message Definition by generating the following two types of output data:

n MFL document

n C Code

Both the MFL document and C code output methods require a .c or .h input file to be
specified, parsed, and the desired structure selected before choosing whether to
generate MFL (default) or C code.

In addition to the requirement that all input to the parser consist of valid C code, all
outside references, such as #include(s), #define(s), and typedef(s) must be resolved
prior to use. This may require hand editing or use of the compiler’s pre-processor.

There are platform considerations that affect the description of data for C code. For
example, the length of a long on a platform will affect the binary data that conforms
to a particular structure definition.

There are two methods for dealing with these platform dependencies depending on
whether or not MFL is generated directly into Format Builder. If you want to generate
MFL and have that MFL displayed immediately in Format Builder, you must supply
the platform dependent parameters in a configuration file. Alternately, by choosing to
generate C code source, you may compile the C code on the desired machine. The
compiler on that machine accounts for the necessary platform dependent information.
This will produce an executable file that when run will produce an MFL document and
binary data that conforms to that MFL in separate files. The MFL document can be
opened in Format Builder and the binary data file can be opened in Format Tester.

Generating MFL directly into Format Builder requires platform configuration
parameters found in an existing configuration file or a newly generated configuration
file created with the hardware profile editor. The hardware profile editor allows you to
specify an existing profile that can be loaded, updated, and saved.

The source code for a utility that generates hardware profiles according to your needs
is provided in the samples\cgf subdirectory.
4-4 BEA WebLogic XML/Non-XML Translator User Guide

Importing C Structures
C Struct Importer Sample Files

The following table provides a listing and description of the sample files installed for
the C Struct Importer. All directory names are relative to the XML Translator
installation directory.

Table 4-3 C Struct Importer Sample Files

Directory File Description

samples\C emprec5.h A C version of the emprec5.cpy sample
Copybook file, with some typedefs.

samples\C emprec5n.h A variant of the emprec5.h file using a nested
struct definition, but no typedefs.

samples\C emprec5s.h A simple version of the emprec5.h file.

samples\C ntfsez.h A small sample extracted from the ntfs.h file.
Designed to test recursive typedefs.

samples\Cfg cprofile.c The source code for the cprofile.c utility. This
utility is designed to generate profiles on various
platforms.

The following .cfg files were all generated by the cprofile program on various
platforms. Each .cfg file contains the DESCRIPTION.

samples\Cfg dec8cc.cfg DEC Alpha 1091, Digital Unix 4.0e, cc compiler.

samples\Cfg hp5cc.cfg HP-UX B.11.00, cc compiler.

samples\Cfg nt4bcc5.cfg Windows NT 4.0, Borland 5.x compiler, default
switches.

samples\Cfg nt4vc6.cfg Windows NT 4.0, Visual C++ 6.x compiler, default
switches.

samples\Cfg sun7cc.cfg SunOS 5.8, cc compiler.

samples\Cfg w95bcc5.cfg Windows 95, Borland 5.x compiler, default
alignment.

samples\Cfg w95vc5.cfg Windows 95, Visual C++ 5.x compiler, default
alignment.
BEA WebLogic XML/Non-XML Translator User Guide 4-5

4 Importing Meta Data
Starting the C Struct Importer

To start the C Struct Importer:

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose Tools→Import→C Struct Importer. The C Struct Importer dialog box
displays.

Figure 4-2 C Struct Importer Dialog Box

The C Struct Importer dialog box opens with MFL specified as the default output and
contains the following fields.

Table 4-4 C Struct Importer Field Descriptions

Field Description

Input

Input File Enter the path and name of the file you want to import.
4-6 BEA WebLogic XML/Non-XML Translator User Guide

Importing C Structures
Browse Click Browse to navigate to the directory containing the file you
want to use.

Structure This list box is populated with the list of structures found in the
input file after it has been successfully parsed.

Parse Click Parse to parse the input file. If successful, the Structure list
box is populated with the list of structures found in the input file.

Output

MFL If you select this option button, you can generates MFL from a
structure definition and a hardware configuration file. You will see
the Hardware Profile group box.

C Code If you select this option button, you can generate C source code to
compile on the target machine and execute to produce MFL. You
will see the C Code File Names group box.

Hardware Profile

Name Specify an existing profile either by entering the file name or using
the Browse button. The prebuilt hardware profiles may be found in
the samples\cfg directory.

Browse Click Browse to navigate to the directory containing the file you
want to use.

Save Saves the current hardware profile.

Save As Saves the current hardware profile under another name.

Edit Click Edit to edit the current hardware profile listed in the
Hardware Profile Name field.

New Click New to create a new hardware profile.

Field Description
BEA WebLogic XML/Non-XML Translator User Guide 4-7

4 Importing Meta Data
Figure 4-3 C Struct Importer Dialog Box

Field Description

C Code File Names

MFL Gen Specifies the C source code file name that must be compiled on
the target machine to generate MFL.

Browse Click Browse to navigate to the directory where you want the file
to reside.

Data Gen Specifies the C source code file name that must be compiled on
the target machine for generating test data.

Browse Click Browse to navigate to the directory where you want the file
to reside.

Action Buttons

OK Click OK to save your hardware profile changes.

Cancel Click Cancel to dismiss your hardware profile changes.

About Click About to view C Struct Importer version and date
information.
4-8 BEA WebLogic XML/Non-XML Translator User Guide

Importing C Structures
Understanding Hardware Profiles

The hardware profiles used by the C Struct Importer contain data size and alignment
information for specific hardware and compiler combinations and are used to generate
MFL for C structures. They are stored in configuration files that can be created, loaded,
updated, and saved.

The cprofile.c source file located in the samples\cfg directory is used to generate
these profiles for any platform. This code is designed to be compiled and executed on
the target platform with the complier normally used and should compile and execute
on any platform with an ANSI standard C compiler in order to generate a profile
configuration file that can be imported into the C Struct Importer.

Building the Hardware Profile Utility

To produce acceptable parser input, execute the following commands for each of the
platforms listed.

n On Windows NT, use the VC++ pre-processor:

cl /P cprofile.c (output in cprofile.i)- VC++ Compiler

gcc -P -E cprofile.c>cprofile.i - GNU Compiler

n On Unix:

cc -P cprofile.c (output in cprofile.i)

Running the Hardware Profile Utility

At a command prompt, enter the following text to execute the cprofile program and
specify a hardware profile name:

cprofile configfilename [DESCRIPTION]

The optional description is placed in the configuration file as the DESCRIPTION value.
If the description contains embedded blanks, enclose it in quotes.
BEA WebLogic XML/Non-XML Translator User Guide 4-9

4 Importing Meta Data
Generating MFL

Perform the following steps to generate MFL.

1. Enter a file name in the Input File field, or click Browse to select a file.

2. Click Parse to parse the file.

Upon completion, the Structure list box is populated with the list of structures
found in the input file.

Note: If your file does not parse correctly, it is recommended that you proceed in
one of two ways:

n Run your .h or .c source code through the compilers preprocessor and
run that output through the parser.

n Comment out the character creating the parse failure and attempt to
parse again. Please note that the parser fails at the first failure it
encounters.

3. Select the desired structure from the Structure drop-down list box.

At this point, you must provide some profile configuration data to generate the MFL
directly. You can do this by creating a new hardware profile, or specifying an existing
profile.

4. Specify an existing profile or create a new one by performing one of the
following procedures.

l Specify an existing profile either by entering the file name in the Hardware
Profile Name field, or click Browse to select a file. Click Edit to open the
hardware profile editor if you need to view or edit the profile parameters.

Note: hardware profiles for common configurations are prebuilt and may be
found in the samples\c\cfg directory.

l Click New to create a new hardware profile. This opens the Hardware Profile
editor loaded with the default parameters. Specify a Profile Name, a
description, and modify the primitive data types and byte order to suit you
needs.
4-10 BEA WebLogic XML/Non-XML Translator User Guide

Importing C Structures
Figure 4-4 C Struct Importer Hardware Profile Dialog Box

5. Click OK to save your hardware profile changes and return to the C Struct
Importer dialog box.

6. Click OK to generate your MFL. If the generation is successful, you are returned
to Format Builder with an MFL object listed in the Tree Pane. The MFL object
reflects the same name as the input file used in the parse operation.

If errors are detected during the generation process, the MFL Generation Errors
dialog box displays providing you the opportunity to view or file the error log.
BEA WebLogic XML/Non-XML Translator User Guide 4-11

4 Importing Meta Data
Figure 4-5 MFL Generation Errors Dialog Box

7. Click Display Error Log to view any errors encountered, click Save Error Log to
save the error log to the location of your choice, or click Cancel to dismiss the
MFL Generation Errors dialog box.

Once you have determined what errors were generated, you can return to the C Struct
Importer and repeat the prior steps.

Generating C Code

Perform the following steps to generate C code.

1. Enter a file name in the Input File field, or click Browse to select a file.

2. Click Parse to parse the file.

Upon completion, the Structure list box is populated with the list of structures
found in the input file.

Note: If your file does not parse correctly, it is recommended that you proceed in
one of two ways:

n Run your .h or .c source code through the compilers preprocessor and
run that output through the parser.

n Comment out the character creating the parse failure and attempt to
parse again. Please note that the parser fails at the first failure it
encounters.

3. Select the desired structure from the Structure drop-down list box.

4. Select the C Code option button.

5. Enter a file name in either the MFL Gen or Data Gen fields, or click Browse to
select a file.
4-12 BEA WebLogic XML/Non-XML Translator User Guide

Importing an FML Field Table Class
6. Click OK. You will be warned about overwriting existing files and notified about
the success or failure of the code generation.

7. Copy the generated source code to the target platform and compile and execute it.

Note: You must copy the input file containing the struct declarations as well.
Both programs, when compiled, take an argument of the output file name.

8. Copy the generated MFL or data back to the platform running Format Builder.

Importing an FML Field Table Class

The FML Field Table Class Importer facilitates the integration of WebLogic Tuxedo
Connector and WebLogic Process Integrator (Process Integrator). Tuxedo application
buffers are translated to/from XML by the FML to XML Translator that is a feature of
WebLogic Tuxedo Connector.

The integration of Weblogic Process Integrator with Process Integrator requires the
creation of the XML that is passed between the WebLogic Tuxedo Connector
translator and Process Integrator. To this end, you can use the FML Field Table Class
Importer and the XML generation feature of Format Tester to facilitate the creation of
the necessary XML.

FML Field Table Class Importer Prerequisites

Perform the following steps prior to starting Format Builder.

1. Move the field tables associated with the FML buffer from the Tuxedo system to
the WebLogic Server/WebLogic Tuxedo Connector environment.

2. Use the weblogic/wtc/jatmi/mkfldclass utility to build java source code
representing the field tables.

3. Compile the source code. The resulting class files are called fldtbl classes
because they implement the FldTbl interface. These fldtbl classes must be
moved to a location specified in the Format Builder CLASSPATH.
BEA WebLogic XML/Non-XML Translator User Guide 4-13

4 Importing Meta Data
The samples/fml directory contains several fldtbl class fields that you can use as
samples. These samples allow you to work through the following steps without having
completed the previous three steps.

Note: These steps are normally done when configuring WTC, so these class files
may already exist.

FML Field Table Class Sample Files

The following table provides a listing and description of the sample files installed for
the FML Field Table Class Importer. All directory names are relative to the XML
Translator installation directory.

Table 4-5 FML Field Table Class Sample Files

Creating XML with the FML Field Table Class Importer

Perform the following steps to create an XML document with the FML Field Table
Class Importer.

Directory File Description

samples\fml bankflds.class A compiled source file that serves as input
to the FML Field Table Class Importer.

samples\fml bankflds.java A fldtbl source file generated by the
mkfldclass utility.

samples\fml crdtflds.class A compiled source file that serves as input
to the FML Field Table Class Importer.

samples\fml crdtflds.java A fldtbl source file generated by the
mkfldclass utility.

samples\fml tBtest1flds32.class A compiled source file that serves as input
to the FML Field Table Class Importer.

samples\fml tBtest1flds32.java A fldtbl source file generated by the
mkfldclass utility.
4-14 BEA WebLogic XML/Non-XML Translator User Guide

Importing an FML Field Table Class
1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose Tools→Import→FML Field Table Class Importer. The FML Field Table
Class Importer dialog displays.

3. Enter the name of the fldtbl class file that is to be processed into the Class
Names field.

Because a single FML buffer may contain fields from several field tables, you
can enter one or more fldtbl class name files in the Class Names field. The list
should be comma separated and each name does not have to include the .class
extension.

Note: If any of the listed classes are not fldtbl classes created by the
weblogic/wtc/jatmi/mkfldclass utility, or are not in Format Builder’s
CLASSPATH, then an error dialog box is displayed. However, the valid
fldtbl classes in the list will still be processed.

4. Click Load. The names of the fields from the field tables appear in the Available
Fields list. The Available Fields list does not allow for duplicate names. If the
name of a field appears in different field tables, it will only appear once on the
list.
BEA WebLogic XML/Non-XML Translator User Guide 4-15

4 Importing Meta Data
5. Select the desired fields from the Available Fields list and click Add. The
selected fields will appear in the Selected Fields list. To remove a field from the
Selected Fields list, select the desired field and click Remove.

6. Click OK after you have successfully selected all the necessary field names. The
FML Field Table Class Importer dialog will closes and the generated MFL will
appear in the Format Builder tree pane. The selected fields will be listed in the
order they appear in the selected Fields list.

7. Edit the created MFL document to specify the order and occurrences of the fields
that will be in the XML document which is passed to the WTC FML/XML
Translator from Process Integrator.

8. Choose Tools→Test to open Format Tester.

9. From the Format Tester menu bar, choose Generate→XML.

10. Format Tester now creates an XML document that conforms to the MFL
document in Format Builder. Edit the data content of the fields as desired.

11. Choose File→Save XML to save the XML document to the name and location of
your choice.

The created XML may be imported into Process Integrator by using the XML
instance editor. Refer to the WebLogic Process Integrator documentation for
information on importing XML.
4-16 BEA WebLogic XML/Non-XML Translator User Guide

CHAPTER
5 Retrieving and Storing
Repository Documents

The XML Translator repository feature provides a centralized document storage
mechanism that supports the following four document types:

n Message Format Language document

n XML Document Type Definition document

n XML Schema document

n XSLT Stylesheet

The repository allows the supported documents to be shared between the components
of WebLogic Integration. The repository provides access to these document types and
provides manipulation of repository documents including access to the document text,
description, notes, and removal of the document. The repository allows the supported
documents to be shared between XML Translator, WebLogic Process Integrator
(Process Integrator), WebLogic Server (WLS), and WebLogic Collaborate (WLC).
The repository also includes a batch import utility that allows previously constructed
MFL, DTD, XML Schema, and XSLT documents residing on a different file system
to be easily migrated into the repository.

This section discusses the following topics:

n Accessing the Repository

n Retrieving Repository Documents

n Storing Repository Documents

n Importing Documents into the Repository
BEA WebLogic XML/Non-XML Translator User Guide 5-1

5 Retrieving and Storing Repository Documents
n Using the Repository Document Chooser

Accessing the Repository

To access the Repository:

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose Repository→Log In. The Process Integrator Repository Login window
opens.

Figure 5-1 Process Integrator Repository Login Dialog Box

3. Enter the Process Integrator userid specified for the connection in the User Name
field.

4. Enter the Process Integrator password specified for the connection in the
Password field.

5. Enter the server name and Port number in the Server[:port] field.

Note: The Process Integrator Repository Login window allows up to three
unsuccessful login attempts, after which, a login failure message is
displayed. If you experience three login failures, choose Repository→Log
In to repeat the login procedure.
5-2 BEA WebLogic XML/Non-XML Translator User Guide

Retrieving Repository Documents
6. Click Connect. If your login is successful, the Login window disappears and the
Format Builder Title bar displays the server name and port number entered on the
Process Integrator Repository Login window. You may now choose any of the
active repository menu items to access.

Repository Menu

The following commands are available from the Repository Menu.

Table 5-1 Repository Menu Commands

Retrieving Repository Documents

Perform the following steps to retrieve repository documents:

1. Start Format Builder.

2. Log in to the Repository.

3. Choose Repository→Retrieve. The Select-document-to-retrieve dialog box
opens.

Menu Command Description

Log In Displays the Process Integrator Repository Login dialog,
allowing you to connect to the repository.

Log Out Disconnects from the repository.

Retrieve Retrieves a document from the repository.

Store Stores the current document in the repository.

Store As Stores the current document in the repository under a
different name.
BEA WebLogic XML/Non-XML Translator User Guide 5-3

5 Retrieving and Storing Repository Documents
4. Select the document you want to retrieve from the document list.

5. Click Retrieve. The Select-document-to-retrieve dialog box is dismissed and you
are returned to the Format Builder main window with your selected document
listed in the Tree Pane.

Once you have retrieved the specified document, you can edit it as you would any MFL
document within Format Builder, store the document back into the repository, store the
document back into the repository with a different name, or save as a local file.

Anytime you open a document that is stored in the repository, a read-only Document
Repository Properties box displays in the Message Format detail panel when the
message format node is selected. This properties box provides you with a document
description and any notes that were attached to the document.

Storing Repository Documents

Perform the following steps to store a MFL document in the repository:

1. Start Format Builder.

2. Open the MFL document you want to store in the repository.

3. Log in to the repository.

4. Choose Repository→Store As. The Store As dialog box opens.

5. Enter the name you want to associate with this repository document in the Name
field.

6. Enter a description of the repository document in the Description field.

7. Enter any notes you would like attached to the document in the Notes field.

8. Click Store. The Store As dialog box is dismissed and your MFL document
displays in the Format Builder Tree Pane. A Document Repository Properties box
with document Description and Notes information displays in the Detail panel of
the Format Builder Message Format Detail Panel.

If your Format Builder options specify generation of a DTD/XML Schema, these
documents will also be stored in the repository using the supplied name.
5-4 BEA WebLogic XML/Non-XML Translator User Guide

Importing Documents into the Repository
Importing Documents into the Repository

The XML Translator Repository Batch Import Utility provides a command line
interface to the Repository. It provides a mechanism for easily importing previously
built MFL documents into the Repository. The Batch Importer is capable of importing
MFL, DTD, class, .XSLT, and XML schema documents in any combination. The
Batch Importer also works with any plug-in repository.

Use of the repository importer with the Process Integrator Repository requires the
placement of a wlxt-repository.properties file to be placed in a CLASSPATH
directory. The contents of this file identify the WebLogic Server hosting the Process
Integrator repository. For example:

wlxt.repository.url=t3://localhost:7001

Invoking the Batch Import Utility

At the console command prompt, invoke the Batch Import Utility using the following
command.

java com.bea.wlxt.repository.Import [-v] [-n] [-t type] [-f folder]
files...

The following information describes the commands and their options.

-v
specifies that verbose mode is on. This switch may appear anywhere within
the command line and affects all operations that follow. Verbose mode is
disabled by default.

-n
specifies that verbose mode is off. This switch may appear anywhere within
the command line and affects all operations that follow. Verbose mode is
disabled by default.

-f
Optional switch specifying the parent folder of all the following files.
Multiple -f switches may be specified to change folders during an import
execution. By default, documents are imported into the root folder of the
BEA WebLogic XML/Non-XML Translator User Guide 5-5

5 Retrieving and Storing Repository Documents
repository. A special -f switch argument of @ may be used to specify the root
folder.

Folder names specified in the -f switch are always absolute pathnames from
the repository root folder. Folder names within a path should be separated by
a forward slash.

-t
Optional switch specifying the default type of all the following files. The
default type is assigned to documents when the document type cannot be
determined by the file extension. Valid values are .mfl, .dtd, .class, .xsl, and
.xsd.

files
specifies one or more filenames to be imported. Wildcards may be used based
on the current command line shell.

All switches take effect at the point in the command line where the are encountered
and remain in effect until overridden by another switch. For example, the following
command line imports all .dtd, .class, and .mfl files in the current directory, but only
enables verbose mode while class files are imported.

java com.bea.wlxt.repository.Import *.dtd -v *.class -n *.mfl

The document type of imported documents is derived from the file extension as
follows:

Table 5-2 Supported Document Types and Extensions

File Extension Document Type Assigned

.dtd DTD

.xsd XML Schema

.mfl MFL

.class Java Class

.xsl Extensible Stylesheet Language

anything else Default type (defaults to MFL)
5-6 BEA WebLogic XML/Non-XML Translator User Guide

Using the Repository Document Chooser
Using the Repository Document Chooser

The Repository Document Chooser provides a user interface exposing the contents of
the repository. The user interface consists of six different dialog and message boxes
that allow you to store, retrieve, and modify repository documents.

Using the Open Document Dialog Box

The following is an image of the Open Document dialog box used for retrieving
repository documents.

Figure 5-2 Select Document To Retrieve Dialog Box

The following reference numbers refer to those listed in the previous figure.

1
The Current Folder field specifies the name of the current repository folder.

1 2 3

4

5

6

710

9

8

BEA WebLogic XML/Non-XML Translator User Guide 5-7

5 Retrieving and Storing Repository Documents
2
The Up Folder icon is used to move up to the parent of the current folder if
the current folder is not the root folder of the repository.

3
The Root Folder icon is used to make the root the current folder if the current
folder is not the root folder of the repository.

4
The New Folder icon is used to create a new child folder in the current folder.
This icon is disabled if the repository does not support folders.

5
The list field contains all the MFL documents in the current folder. Each entry
in the list is prefixed by an icon indicating the type of object: Folder or MFL.
Selecting an entry in the list causes its information to be displayed.
Double-clicking an entry in the list causes it to be retrieved or become the
current folder.

6
The Retrieve button opens the selected document. If a folder is currently
selected, pressing this button causes it to become the current folder.

7
The Cancel button causes the dialog box to be dismissed.

8
The Name field specifies the name of the currently selected document folder.

9
The Description field provides the description of the currently selected
document folder.

10
The Notes field provides the notes attached to the currently selected
document folder.

Using the Store Document Dialog Box

The following is an image of the Store Document dialog box used for storing
repository documents.
5-8 BEA WebLogic XML/Non-XML Translator User Guide

Using the Repository Document Chooser
Figure 5-3 Store Document Dialog Box

The Store Document dialog box differs from the Open Document dialog box only in
its ability to enter a new document name, description, or notes.

Using the Shortcut Menus

Both the Open Document and Store Document dialog boxes provide the capability to
update repository objects, rename existing objects, and remove objects. These update
features are accessed by right-clicking on a repository object. The following is an
image of the shortcut menus.

Figure 5-4 Store Document Dialog Box

n Selecting Delete warns you that an object is about to be permanently removed
from the repository.
BEA WebLogic XML/Non-XML Translator User Guide 5-9

5 Retrieving and Storing Repository Documents
Figure 5-5 Confirm Delete Dialog Box

n Selecting Rename allows the folder or document to be renamed in the repository.
The following dialog box displays requesting the new object name. Pressing
Cancel aborts the rename operation.

Figure 5-6 Rename Folder NewFolder Dialog Box

n Selecting Properties allows the description and notes of the selected object to be
updated.

Figure 5-7 Modify Documents - Document Generate Dialog Box
5-10 BEA WebLogic XML/Non-XML Translator User Guide

Binary to XML
6 Using the Run-Time
Component

The run-time component of XML Translator consists of a Java class named WLXT.
This class has various methods used to translate data between binary and XML
formats. This Java class can be deployed in an EJB using BEA WebLogic Server,
invoked from a workflow in BEA WebLogic Process Integrator, or integrated into any
Java application.

The XML Translator class provides several parse() methods that translate binary
data into XML. XML Translator also provides several serialize() methods that
translate XML data to a binary format. Binary data formats are described via MFL
documents. XML Translator uses MFL documents to read and write binary data to or
from XML. MFL documents are specified by a URL in a parse() or serialize()
method. The code samples below illustrate how to use XML Translator to parse binary
data into XML, and serialize XML into binary.

Binary to XML

The following code listing uses the parse() method of XML Translator to parse a file
containing binary data into XML.

Listing 6-1 Sample Binary to XML Parse() Method

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document;
BEA WebLogic XML/Non-XML Translator User Guide 6-1

6 Using the Run-Time Component
3 import java.io.FileInputStream;
4 import java.net.URL;
5
6 public class Example
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
14 FileInputStream in = new FileInputStream(“mybinaryfile”);
15
16 Document doc = wlxt.parse(mflDocumentName, in, null);
17 String xml = wlxt.getXMLText(doc, 0, 2);
18 System.out.println(xml);
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25}

In the prior listing, a new instance of the XML Translator class is instantiated at line
12. A Uniform Resource Locator (URL) is created for a MFL file that was previously
created with Format Builder. A FileInputStream is created for some binary data that
exists in the file mybinaryfile. The URL for the MFL document, and the stream of
binary data, are then passed into the parse method of XML Translator at line 16. The
parse method converts the binary data into an instance of a W3C Document object.
This object can be converted to XML text via XML Translator getXMLText() method
(as shown on line 17), or manipulated directly via the W3C DOM API.

Generating XML with a Reference to a DTD

WXLT also includes parse() methods that allow a reference to a Document Type
Definition (DTD) or an XML Schema to be output in the resulting XML document.
The following listing illustrates this generation.
6-2 BEA WebLogic XML/Non-XML Translator User Guide

Binary to XML
Listing 6-2 Sample XML Generation with a DTD Reference Code Example

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document
3 import java.io.FileInputStream;
4 import java.net.URL;
5
6 public class Example2
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
14 FileInputStream in = new FileInputStream(“mybinaryfile”);
15
16 Documentdoc=wlxt.parse(mflDocumentName,in,“mydtd.dtd”,
17 null);String xml = wlxt.getXMLText(doc, 0, 2);
18 System.out.println(xml);
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25 }

The only difference between Listing 4-2 and Listing 4-1 occurs in line 16. On line 16,
a different parse method is invoked that allows a DTD file to be specified
(mydtd.dtd), so that it is referenced in the resulting XML document.

Thus, the resulting XML has a DOCTYPE statement that refers to the DTD
mydtd.dtd (see the following example).

<?xml version=”1.0”?>
<!DOCTYPE someRootNode SYSTEM ‘mydtd.dtd’>

A similar parse method allows the resulting XML to refer to an XML Schema.
BEA WebLogic XML/Non-XML Translator User Guide 6-3

6 Using the Run-Time Component
Passing in a Debug Writer

All of the parse() methods of XML Translator allow a PrintWriter to be passed in as
the last parameter of the parse() method. If this parameter is not null, XML
Translator will print debug messages to this PrintWriter. This allows you to debug the
translation if the MFL document and the binary data do not agree. If debug messages
are not desired, pass in null for this parameter as shown in the previous listings.

Listing 6-3 Passing in a Debug Writer Sample

1 import com.bea.wlxt.*;
2 import org.w3c.dom.Document
3 import java.io.FileInputStream;
4 import java.io.PrintWriter;
5 import java.net.URL;
6
7 public class Example3
8 {
9 public static void main(String[] args)
10 {
11 try
12 {
13 WLXT wlxt = new WLXT();
14 URL mflDocumentName = new URL(“file:mymfl.mfl”);
15 FileInputStream in = new FileInputStream
16 (“mybinaryfile”);
17 Document doc=wlxt.parse(mflDocumentName,in,new
 PrintWriter(System.out,true));
18 String xml = wlxt.getXMLText(doc, 0, 2);
19 System.out.println(xml);
20 }
21 catch (Exception e)
22 {
23 e.printStackTrace(System.err);
24 }
25 }
26 }
6-4 BEA WebLogic XML/Non-XML Translator User Guide

XML to Binary
At line 17, as a last parameter to the parse() method, a PrintWriter object is created
from the System.out PrintStream. This will cause debug messages such as the ones
shown below to be written to the console.

Listing 6-4 Debug Output

Parsing FieldFormat NAME at offset 0
 Field NAME Found delimiter [;]
 Field NAME type String offset 0 value=[John Doe]
Done FieldFormat NAME
Group PAYINFO repeat until delim=[*]
 Parsing 1st instance of StructFormat PAYINFO at offset 18
 Parsing FieldFormat PAYDATE at offset 18
.
.
.

XML to Binary

The following code listing illustrates using XML Translator to convert XML text to
binary format.

Listing 6-5 Sample XML to Binary Conversion

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 public class Example4
7 {
8 public static void main(String[] args)
9 {
10 try
11 {
12 WLXT wlxt = new WLXT();
13 URL mflDocumentName = new URL(“file:mymfl.mfl”);
BEA WebLogic XML/Non-XML Translator User Guide 6-5

6 Using the Run-Time Component
14 FileInputStream in = new FileInputStream(“myxml.xml”);
15 FileOutputStream out = new FileOutputStream(“mybinaryfile”);
16
17 wlxt.serialize(mflDocumentName, in, out, null);
18 out.close();
19 }
20 catch (Exception e)
21 {
22 e.printStackTrace(System.err);
23 }
24 }
25 }

In the code example above, a new instance of XML Translator class is created at line
12. Then a URL is created for an MFL file, and a FileInputStream is created for a
file containing XML text. A FileOutputStream is also instantiated to store the binary
data that will result from the XML to binary translation. On line 17, the serialize()
method of XML Translator is invoked, to translate the XML data contained in the
FileInputStream ’in’ (myxml.xml), to the binary format described in ’mymfl.mfl’.
This binary data is written to the FileOutputStream ’out’ (which is the file
’mybinaryfile’).

 Converting a Document object to Binary

The listing below illustrates converting a W3C Document object to a binary format.

Listing 6-6 Converting a Document Object to Binary

1 import com.bea.wlxt.*;
2 import java.io.FileOutputStream;
3 import java.net.URL;
4
5 import org.w3c.dom.Document;
6
7 import org.apache.xerces.parsers.DOMParser;
8
9 public class Example5
10 {
11 public static void main(String[] args)
6-6 BEA WebLogic XML/Non-XML Translator User Guide

XML to Binary
12 {
13 // Parse XML into a Document object
14 Document doc = null;
15 try
16 {
17 DOMParser parser = new DOMParser();
18 parser.parse("myxml.xml");
19 doc = parser.getDocument();
20 }
21 catch (Exception e)
22 {
23 e.printStackTrace(System.err);
24 System.exit(1);
25 }
26
27 try
28 {
29 WLXT wlxt = new WLXT();
30 URL mflDocumentName = new URL("file:mymfl.mfl");
31 FileOutputStream out = new
 FileOutputStream("mybinaryfile");
32
33 wlxt.serialize(mflDocumentName, doc, out, null);
34 out.close();
35 }
36 catch (Exception e)
37 {
38 e.printStackTrace(System.err);
39 }
40 }
41 }

This example illustrates passing in a Document object to the serialize() method of
the XML Translator class. This is useful when your application already has XML in
the form of a Document object, or has created a Document object using the DOM API.
Lines 14 through 25 convert the XML text in the file ’myxml.xml’ to a Document
object using an XML parser. This Document object is passed to XML Translator on
line 33, to convert it to the binary format specified by the MFL file ’mymfl.mfl’.
BEA WebLogic XML/Non-XML Translator User Guide 6-7

6 Using the Run-Time Component
Passing in a debug writer

The serialize methods also support passing in a PrintWriter parameter for the logging
of debug messages. An example invocation of the serialize method with a PrintWriter
object is given below.

wlxt.serialize(mflDocumentName, in, out, new
 PrintWriter(System.out, true));

This will cause debug messages such as the ones shown below to be written to the
console.

Debug Output

The following code represents debug output.

Listing 6-7 Debug Output

Processing xml and mfl nodes tcp1
Processing xml node NAME
Checking MFL node NAME
Found matching MFL node NAME
Writing field NAME value John Doe
Processing xml node PAYINFO
Checking MFL node PAYINFO

 XML to XML Transformation

XML Translator also provides methods to transform XML via XSLT. XSLT is a
language for transforming XML documents. A XSLT stylesheet is an XML document
that describes transformations that are to be performed on the nodes of an XML
document. The XML Translator class provides transform() methods that apply an
XSLT stylesheet to an XML document. Using a stylesheet, an XML document can be
transformed into HTML, PDF, or another XML dialect.
6-8 BEA WebLogic XML/Non-XML Translator User Guide

XML to XML Transformation
The listing below illustrates transforming an XML document using one of the
transform methods provided by the XML Translator class.

Listing 6-8 XML to XML Transformation

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 import org.xml.sax.InputSource;
7
8 public class Example7
9 {
10 public static void main(String[] args)
11 {
12
13 try
14 {
15 WLXT wlxt = new WLXT();
16 URL stylesheet = new URL("file:mystylesheet.xsl");
17 FileInputStream in = new FileInputStream("myxml.xml");
18 FileOuputStream out = new FileOutputStream
19 (“myoutputfile”)
20
21 wlxt.transform(new InputSource(in), out, stylesheet);
22
23 out.close();
24 }
25 catch (Exception e)
26 {
27 e.printStackTrace(System.err);
28 }
29 }
30 }

On line 15, an instance of XML Translator is created. On the following line a URL is
created for a previously created XSLT stylesheet. A FileInputStream is then created
for a file containing XML text. A FileOutputStream is also created for the text that
results from the XSLT transformation. On line 21, a transform() method of the
XML Translator class is invoked to transform the XML in the file ’myxml.xml’,
according to the XSLT stylesheet ’mystylesheet.xsl’. The output of the
transformation is written to the file ’myoutputfile’.
BEA WebLogic XML/Non-XML Translator User Guide 6-9

6 Using the Run-Time Component
Initialization methods

The XML Translator class provides several methods to ’preprocess’ MFL documents
and XSLT stylesheets. Once these documents are preprocessed, they are cached
internally, and reused when referenced in an parse(), serialize(), or
transform() method. This greatly improves the performance of these methods, since
the MFL document or XSLT stylesheet has already been processed and cached. This
is particularly useful when XML Translator is used in an EJB or servlet, where the
same MFL documents or XSLT stylesheets are used repeatedly.

init() method

The XML Translator class provides two init() methods that take either a
java.util.Properties object or the file name of a Properties file as a parameter. This
init() method will retrieve the ’WLXT.stylesheets’ and ’WLXT.MFLDocuments’
properties from the Properties object. Each property is expected to contain a
comma-delimited list of documents that are to be preprocessed and cached. When
these documents are later referenced in a parse(), serialize(), or transform()
method, the preprocessed version will be retrieved from the cache. The listing below
demonstrates using an init() method to initialize an instance of the XML Translator
class.

Listing 6-9 Properties file myconfig.cfg:

WLXT.MFLDocuments=file:mymfl.mfl
WLXT.stylesheets=file:mystylesheet.xsl

Listing 6-10 Source code example of init() method using file ’myconfig.cfg’

1 import com.bea.wlxt.*;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.net.URL;
5
6 import org.xml.sax.InputSource;
7 import org.w3c.dom.Document;
8
9 public class Example8
6-10 BEA WebLogic XML/Non-XML Translator User Guide

XML to XML Transformation
10 {
11 public static void main(String[] args)
12 {
13
14 WLXT wlxt = null;
15
16 // Initialize WLXT with a properties file
17 try
18 {
19 wlxt = new WLXT();
20 wlxt.init("myconfig.cfg");
21 }
22 catch (Exception e)
23 {
24 e.printStackTrace(System.err);
25 }
26
27 // Parse binary data into XML
28 Document doc = null;
29 try
30 {
31 URL mflDocumentName = new URL("file:mymfl.mfl");
32 FileInputStream in = new FileInputStream("mybinaryfile");
33
34 doc = wlxt.parse(mflDocumentName, in, null);
35 }
36 catch (Exception e)
37 {
38 e.printStackTrace(System.err);
39 }
40
41 try
42 {
43 URL stylesheet = new URL("file:mystylesheet.xsl");
44 FileOutputStream out = new FileOutputStream
45 (“myoutputfile”)
46
47 wlxt.transform(doc, out, stylesheet);
48
49 out.close();
50 }
51 catch (Exception e)
52 {
53 e.printStackTrace(System.err);
54 }
55 }
56 }
BEA WebLogic XML/Non-XML Translator User Guide 6-11

6 Using the Run-Time Component
The init() method on line 20 of the listing above, causes the XML Translator object
to preprocess the documents listed in the file ’myconfig.cfg’. When an MFL
document is specified in the parse() method of line 34, this MFL document has
already been processed an cached inside the XML Translator object. The same is true
of the stylesheet that is referenced in the invocation of the transform() method on
line 46.

Java API Documentation

For the complete reference to using the XML Translator class, see the Java API
Documentation located in the apidoc subdirectory of your XML Translator
installation.

Run-Time Plug-In to WebLogic Process Integrator

BEA XML Translator Plug-In for WebLogic Process Integrator provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML. The XML Translator Plug-In provides
Process Integrator actions that allow you to access XML to Binary and Binary to XML
translations.

In addition to this data translation capability, the XML Translator Plug-In provides
event data processing in binary format, in-memory caching of MFL documents and
translation object pooling to boost performance, a BinaryData variable type to edit
and display binary data, exporting of entirely self-contained workflow definition
packages, and execution within a WebLogic Server clustered environment.

The following illustration describes the relationship between XML Translator and
Process Integrator.
6-12 BEA WebLogic XML/Non-XML Translator User Guide

XML to XML Transformation
Figure 6-1 Run-Time Plug-In to Process Integrator

For more information about the XML Translator run-time plug-in for WebLogic
Process Integrator, refer to the BEA WebLogic XML/Non-XML Translator Plug-In
Guide.

Start Done
Workflow Task Configured

with XML Translator Actions

Format BuilderXML Document
Repository

BEA XML Translator Plug-In
to Process Integrator

BEA XML
Translator Java

Classes

Translated
XML Document

Input Binary Data
MFL Document Name

MFL
Document

MFL
Document

Optional:
DTD
XML Schema
BEA WebLogic XML/Non-XML Translator User Guide 6-13

6 Using the Run-Time Component
6-14 BEA WebLogic XML/Non-XML Translator User Guide

APPENDIX
A Supported Data Types

This section lists the following data types supported by XML Translator.

n MFL Data Types

n COBOL Copybook Importer Data Types

n C Structure Importer From Importing Meta Data

MFL Data Types

Table A-1 lists the MFL data types that XML Translator supports. These types are
specified in the type attribute of a FieldFormat element.

Table A-1 Supported MFL Data Types

Data Type Description

Binary (Base64 encoding) Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field
is encoded using base-64.

Binary (Hex encoding) Any character value accepted. Requires a length, length field,
delimiter, or a delimiter field. Resulting XML data for this field
is encoded using base-16.

DateTime: MM/DD/YY
hh:mm

A string defining a date and time, i.e. 01/22/00 12:24.
BEA WebLogic XML/Non-XML Translator User Guide A-1

A Supported Data Types
DateTime: MM/DD/YY
hh:mi AM

A string defining a date and time, i.e. 01/22/00 12:24 AM.

DateTime: MM/DD/YY
hh:mm:ss

A string defining a date and time, i.e. 01/22/00 12:24:00.

DateTime: MM/DD/YY
hh:mm:ss AM

A string defining a date and time, i.e. 01/22/00 12:24:00 AM.

DateTime: DD/MM/YY
hh:mm

A string defining a date and time, i.e. 22/01/00 12:24.

DateTime: DD/MM/YY
hh:mm AM

A string defining a date and time, i.e. 22/01/00 12:24 AM.

DateTime: DD/MM/YY
hh:mm:ss

A string defining a date and time, i.e. 22/01/00 12:24:00.

DateTime: DD/MM/YY
hh:mm:ss AM

A string defining a date and time, i.e. 22/01/00 12:24:00 AM.

DateTime:
MMDDYYhhmm

A string of numeric digits defining a date and time, i.e.
0122001224.

DateTime:
YYYYMMDDhhmmss

A fourteen byte numeric string of the format
YYYYMMDDHHMISS. A Base data type may be specified.

DateTime:
MMDDYYhhmmss

A string of numeric digits defining a date and time, i.e.
012200122400.

Date: DDMMMYY A string defining a date, i.e. 22JAN00.

Date: DDMMMYYYY A string defining a date, i.e. 22JAN2000.

Date: DD/MM/YY A string defining a date, i.e. 22/01/00.

Date: DD/MM/YYYY A string defining a date, i.e. 22/01/2000.

Date: DD-MMM-YY A string defining a date, i.e. 22-JAN-00.

Date: DD-MMM-YYYY A string defining a date, i.e. 22-JAN-2000.

Date: MMDDYY A six digit numeric string defining a date, i.e. 012200.

Date: MMDDYYYY An eight digit numeric string defining a date, i.e. 01222000.

Data Type Description
A-2 BEA WebLogic XML/Non-XML Translator User Guide

MFL Data Types
Date: MM/DD/YY A string defining a date, i.e. 01/22/00.

Date: MM/DD/YYYY A string defining a date, i.e. 01/22/2000.

Date: MMM-YY A string defining a date, i.e. JAN-00.

Date: MMM-YYYY A string defining a date, i.e. JAN-2000.

Date: MMMYY A string defining a date, i.e. JAN00.

Date: MMMYYYY A string defining a date, i.e. JAN2000.

Date: MMMDDYYYY A string defining a date, i.e. JAN222000.

Date: YYYYMMDD An eight byte numeric string of the format YYYYMMDD. A
base data of String or EBCDIC may be specified to indicate the
character encoding.

Date: Wed Nov 15
10:55:37 CST 2000

The default date format of the Java platform, i.e. ’WED NOV 15
10:55:37 CST 2000’

EBCDIC A string of characters in IBM Extended Binary Coded Decimal
Interchange Code. Requires a length, length field, delimiter, or
a delimiter field.

Filler A sequence of bytes that is not translated to XML. This field of
data is skipped over when translating binary data to XML. When
translating XML to binary data, this field is written to the binary
output stream as a sequence of spaces.

FloatingPoint: 4 bytes,
Big-Endian

A four byte big endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint, 4 bytes,
Little-Endian

A four byte little endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint: 8 bytes,
Big-Endian

A eight byte big endian floating point number that conforms to
the IEEE Standard 754.

FloatingPoint: 8 bytes,
Little-Endian

A eight byte little endian floating point number that conforms to
the IEEE Standard 754.

Data Type Description
BEA WebLogic XML/Non-XML Translator User Guide A-3

A Supported Data Types
Floating Point
IBM 4 byte
IBM 8 byte

IBM Mainframe floating point.

Integer: Signed, 1 byte A one byte signed integer, i.e. ’56’ is 0x38.

Integer: Unsigned, 1 byte A one byte unsigned integer, i.e. ’128’ is 0x80.

Integer: Signed, 2 byte,
Big-Endian

A signed two-byte integer in big endian format, i.e. ’4660’ is
0x1234.

Integer: Signed, 4 byte,
Big-Endian

A signed four-byte integer in big endian format, i.e. ’4660’ is
0x00001234.

Integer: Signed, 8 bytes,
Big-Endian

A signed eight-byte integer in big endian format, i.e. ’4660’ is
0x0000000000001234.

Integer: Unsigned, 2 byte,
Big-Endian

An unsigned two-byte integer in big endian format, i.e. ’65000’
is 0xFDE8.

Integer: Unsigned, 4 byte,
Big-Endian

An unsigned four-byte integer in big endian format, i.e. ’65000’
is 0x0000FDE8.

Integer: Unsigned, 8
bytes, Big-Endian

A unsigned eight-byte integer in big endian format, i.e. ’65000’
is 0x000000000000FDE8.

Integer: Signed, 2 bytes,
Little-Endian

A signed two-byte integer in little endian format, i.e. ’4660’ is
0x3412.

Integer: Signed, 4 bytes,
Little-Endian

A signed four-byte integer in little endian format, i.e. ’4660’ is
0x34120000.

Integer: Signed, 8 bytes,
Little-Endian

A signed eight-byte integer in little endian format, i.e. ’4660’ is
0x3412000000000000.

Integer: Unsigned, 2
bytes, Little-Endian

An unsigned two-byte integer in little endian format, i.e.’65000’
is 0xE8FD.

Integer: Unsigned, 4
bytes, Little-Endian

An unsigned four-byte integer in little endian format, i.e. ’65000’
is 0xE8FD0000.

Integer: Unsigned, 8
bytes, Little-Endian

A unsigned eight-byte integer in little endian format, i.e. ’65000’
is 0xE8FD000000000000.

Data Type Description
A-4 BEA WebLogic XML/Non-XML Translator User Guide

MFL Data Types
Literal A literal value determined by the contents of the value attribute.
When binary data is translated to XML, the presence of the
specified literal in the binary data is verified by WLXT. The
literal is read, but is not translated to the XML data. When XML
data is translated to a binary format, and a literal is defined as
part of the binary format, WLXT writes the literal in the
resulting binary byte stream.

Numeric A string of characters containing only digits, i.e. ’0’ through ’9’.
Requires a length, length field, delimiter, or a delimiter field.

Packed Decimal: Signed IBM signed packed format. Requires a length, length field,
delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Packed Decimal:
Unsigned

IBM unsigned packed format. Requires a length, length field,
delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

String A string of characters. Requires a length, a length field, a
delimiter, or a delimiter field. If no length, length field, or
delimiter is defined for a data type String, a delimiter of "\x00"
(a NUL character) will be assumed.

String: NUL terminated A string of characters, optionally NUL (\x00) terminated,
residing within a fixed length field. This field type requires a
length attribute or length field which determines the amount of
data read for the field. This data is then examined for a NUL
delimiter. If a delimiter is found, data following the delimiter is
discarded. If a NUL delimiter does not exist, the fixed length
data is used as the value of the field.

Time: hhmmss A string defining a time, i.e. 122400.

Time: hh:mm AM A string defining a time, i.e. 12:24 AM.

Time: hh:mm A string defining a time, i.e. 12:24.

Time: hh:mm:ss AM A string defining a time, i.e. 12:24:00 AM.

Time: hh:mm:ss A string defining a time, i.e. 12:24:00.

Data Type Description
BEA WebLogic XML/Non-XML Translator User Guide A-5

A Supported Data Types
Zoned Decimal: Leading
sign

IBM signed zoned decimal format where the sign indicator is in
the first nibble. Requires a length, length field, delimiter, or a
delimiter field to be specified. The length or length field should
specify the size of this field in bytes.

Zoned Decimal: Leading
separate sign

IBM signed zoned decimal format where the sign indicator is in
the first byte. The first byte only contains the sign indicator and
is separated from the numeric value. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal: Signed IBM signed zoned decimal format. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal: Trailing
separate sign

IBM signed zoned decimal format where the sign indicator is in
the last byte. The last byte only contains the sign indicator and
is separated from the numeric value. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Zoned Decimal:
Unsigned

IBM unsigned zoned decimal format. Requires a length, length
field, delimiter, or a delimiter field to be specified. The length or
length field should specify the size of this field in bytes.

Data Type Description
A-6 BEA WebLogic XML/Non-XML Translator User Guide

COBOL Copybook Importer Data Types
COBOL Copybook Importer Data Types

Table 4-1 lists the COBOL data types and the support provided by the Importer.

Table 6-1 COBOL Data Types

COBOL Type Support

BLANK WHEN ZERO (zoned) supported

COMP-1, COMP-2 (float) supported

COMP-3, PACKED-DECIMAL supported

COMP, COMP-4, BINARY (integer) supported

COMP, COMP-4, BINARY (fixed) supported

COMP-5, COMP-X supported

DISPLAY (alphanumeric) supported

DISPLAY numeric (zoned) supported

edited alphanumeric supported

edited float numeric supported

edited numeric supported

group record supported

INDEX supported

JUSTIFIED RIGHT ignored

OCCURS (fixed array) supported

OCCURS DEPENDING (variable-length) supported

OCCURS INDEXED BY ignored

OCCURS KEY IS ignored
BEA WebLogic XML/Non-XML Translator User Guide A-7

A Supported Data Types
Support for these data types is limited. The following formats:

05 pic 9(5) comp-5

05 pic 9(5) comp-x

will be converted to an unsigned 4 byte integer type, while the following will
generate errors:

05 pic X(5) comp-5

05 pic X(5) comp-x

In these samples, pic9(5) could be substituted for pic x(5).

The following values are defined as follows:

n Supported - the data type will be correctly parsed by the importer and converted
to a message format field or group.

n Unsupported - this data type is not supported and the importer reports an error
when the copybook is imported.

POINTER supported

PROCEDURE-POINTER supported

REDEFINES supported

SIGN IS LEADING SEPARATE (zoned) supported

SIGN IS TRAILING (zoned) supported

SIGN IS TRAILING SEPARATE (zoned) supported

SIGN IS LEADING (zoned) supported

SYNCHRONIZED ignored

66 RENAMES ignored

66 RENAMES THRU ignored

77 level supported

88 level (condition) ignored

COBOL Type Support
A-8 BEA WebLogic XML/Non-XML Translator User Guide

C Structure Importer From Importing Meta Data
n Ignored - the data type is parsed and a comment is added to the message format.
No corresponding field or group is created.

Some vendor-specific extensions are not recognized by the importer, however, any
copybook statement that conforms to ANSI standard COBOL will be parsed correctly
by the Importer. The Importer’s default data model, which is based on the IBM
mainframe model, can be changed in Format Builder to compensate for character set
and data “endianness”.

When importing copybooks, the importer may identify fields generically that, upon
visual inspection, could easily be identified by a more specific data type. For this
reason, the copybook importer creates comments for each field found in the copybook.
This information is useful in assisting you in editing the MFL data to better represent
the original Copybook. For example:

original copybook entry:

05 birth-date picxx/xx/xx

results in:

A field of type EBCDIC with a length of 8

Closer inspection indicates that this is intended to be a date format and could be
defined as

A field of type Date: MM/DD/YY

or

A field of type Data: DD/MM/YY

C Structure Importer From Importing Meta
Data

The C Struct importer does not parse files containing anonymous unions, bit fields, or
in-line assembler code. The following samples of unsupported structures came from
the pre-processor output of a hello.c file that contained an #include <windows.h>.

n Anonymous Unions
BEA WebLogic XML/Non-XML Translator User Guide A-9

A Supported Data Types
#line 353 “e:\\program files\\microsoft visual
studio\\vc98\\include\\winnt.h”
typedef union_LARGE_INTEGER{
 struct {
 DWORD LowPart;
 LONG HighPart;
 };
 struct {
 DWORD LowPart;
 LONG HighPart;
 } u;
#line 363 “e:\\program files\\microsoft visual
studio\\vc98\\include\\winnt.h”
 LONGLONG QuadPart;
} LARGE_INTEGER

n Bit Fields

typedef struct_LDT_ENTRY {
 WORD LimitLow;
 WORD BaseLow;
 union {
 struct {
 BYTE BaseMid;
 BYTE Flags1;
 BYTE Flags2;
 BYTE BaseHi;
 } Bytes;
 struct
 DWORD BaseMid : 8;
 DWORD Type : 5;
 DWORD Dpl : 2;
 DWORD Pres : 1;
 DWORD LimitHi : 4;
 DWORD Sys : 1;
 DWORD Reserved_0 : 1;
 DWORD Default_Big : 1;
 DWORD Granularity : 1;
 DWORD BaseHi : 8;
 } Bits;
 } HighWord;
} LDT_ENTRY, *PLDT_ENTRY;

n In-Line Assembler Code

_inline ULONGLONG
_stdcall
Int64ShrlMod32(
 ULONGLONG Value,
 DWORD ShiftCount
A-10 BEA WebLogic XML/Non-XML Translator User Guide

C Structure Importer From Importing Meta Data
)
{
 _asm {
 mov ecx, ShiftCount
 mov eax, dword ptr [Value]
 mov edx, dword ptr [Value+4]
 shrd eax, edx, cl
 shr edx, cl
 }
}

BEA WebLogic XML/Non-XML Translator User Guide A-11

A Supported Data Types
A-12 BEA WebLogic XML/Non-XML Translator User Guide

APPENDIX
B Creating Custom Data
Types

XML Translator uses a metadata language called Message Format Language (MFL),
based on XML, to describe binary data structure. Format Builder creates and maintains
this metadata as a data file, or an MFL document in the Process Integrator repository.
MFL uses the following metadata information to describe a binary field:

n Data type

n Length/Delimiter

n Optional/Mandatory

n Default value

n Code Page encoding

Of this information, the data type is the most critical. The selected data type dictates
which metadata attributes are valid and how they are interpreted.

XML Translator includes a User Defined Type feature that allows you to create custom
data types specific to your unique data type requirements. The User Defined Type
feature allows these custom data types to be plugged in to the XML Translator runtime
engine. Once a user defined data type is plugged-in, it is indistinguishable from a
built-in data type in both features and function.
BEA WebLogic XML/Non-XML Translator User Guide B-1

B Creating Custom Data Types
Instructions on how to use the XML Translator User Defined Type feature are
contained in the following topics:

n User Defined Types Sample Files

n Registering User Defined Types in Format Builder

n Creating User Defined Types for the Stand-Alone XML Translator Engine

n Configuration of User Defined Types for the Process Integrator XML Translator
Plug-In

n User Defined Type Coding Requirements

n Class com.bea.wlxt.mfl.MFLField

User Defined Types Sample Files

The following table provides a listing and description of the sample files installed for
use with user defined types. All directory names are relative to the XML Translator
installation directory.

Table 6-2 User Defined Types Sample Files

Directory File Description

samples/userdef CapString.java Source for a user data type that
converts strings to upper case.

samples/userdef Dddmmyy.java Source for a user defined type that
supports a European date format.

samples/userdef Makefile Make file for building the sample
source.

samples/userdef ParseUserDef.java Source that shows installing the
sample user defined type and using
them with the runtime engine.

samples/userdef readme.txt Explains how to compile and run the
sample.
B-2 BEA WebLogic XML/Non-XML Translator User Guide

Registering User Defined Types in Format Builder
Registering User Defined Types in Format
Builder

Perform the following steps to register a new user defined type:

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose Tools→User Defined Types. The Add/Remove User Defined Types
dialog box displays.

Figure 6-2 Add/Remove User Defined Types Dialog Box

3. Enter the class name implementing the type in the Class Name field.

samples/userdef sample.data Data for the ParseUserData
sample.

samples/userdef sample.mfl The Message Format Language
(MFL) file for the ParseUserData
sample.
BEA WebLogic XML/Non-XML Translator User Guide B-3

B Creating Custom Data Types
Note: The class name entered must include any package name present in the
definition of the module. Additionally, the named class must be found in
the Format Builder CLASSPATH. The XML Translator installation of
Format Builder creates a <wlxt home>/ext directory specifically for
containing user defined types. The <wlxt home> directory is where XML
Translator is installed.

4. Click View. Information about the requested class populates the following
display-only fields as follows.

Figure 6-3 Add/Remove User Defined Types Dialog Box

l Type Name - returned by a call to getTypeName()

l Display Name - return value of getDisplayName() prefixed by the literal
User Defined:.

l Description - returned by getDescriptionText()

If the requested class cannot be loaded or does not conform to the requirements
for a user defined type, an error message displays. Click OK to return to the
Add/Remove User Defined Types dialog box. Refer to the User Defined Type
Coding Requirements for required and optional interface methods, and available
utility methods used for user defined types.

5. Once a valid user defined type is displayed, click Add to make it available for use
within Format Builder.
B-4 BEA WebLogic XML/Non-XML Translator User Guide

Creating User Defined Types for the Stand-Alone XML Translator Engine
Now that you have defined the new data type, the new Display Name appears in
Format Builder along with the built-in data types. All user defined types displayed in
the Data Type drop-down list box are prefixed with User Defined:, as in DisplayName
text field.

Note: Since Format Builder cannot know the exact type of data represented by a user
defined type, all generated XML Schema documents describing the XML
generated by XML Translator for a particular transformation will use type of
xsd::string to represent user defined type fields. This also affects Format
Tester. When generating data for an MFL document containing user defined
types, String data is generated for the corresponding fields. You must adjust
the generated data so it will parse according to the user defined type.

Creating User Defined Types for the
Stand-Alone XML Translator Engine

The interface to the XML Translator stand-alone engine is an API called by a Java
program. Creating a new user defined type for the stand-alone XML Translator engine
is accomplished via static method of the com.bea.wlxt.WLXT class.

Installation of a user defined type into the stand-alone XML Translator engine is not
persistent. At termination of the current JVM process, the user defined type
configuration information is discarded. As a result, clients using the stand-alone
engine must install all user defined types at the start of each program.

The following public functions are defined for user defined types:

public static void addNewDataType(String name, Bintype binType)

name
specifies the name of the new data type in MFL.

binType
specifies a reference to a new user defined type object.

public static void removeDataType (String name)
BEA WebLogic XML/Non-XML Translator User Guide B-5

B Creating Custom Data Types
name
specifies the name of the data type to remove.

The following example illustrates using theses APIs to install and remove the
CapString user defined type.

import com.bea.wlxt.WLXT;
import com.bea.wlxt.binType.BinType;

// create data type object and install it
Bintype udt = new CapString();
WLXT.addNewDataType(“UpperCaseString”, udt);

.

.

.

//remove the udt installed above
WLXT.removeDataType(“UpperCaseString”);

Configuration of User Defined Types for the
Process Integrator XML Translator Plug-In

User Defined Types used by the XML Translator Plug-In for Process Integrator are
stored in the XML Translator repository as CLASS documents. At runtime, the XML
Translator Plug-In loads user defined type classes from the repository as required. In
addition, the XML Translator Plug-In will export the MFL and class files required to
support the active template allowing a template to be imported on another Process
Integrator instance intact.

At runtime, the XML Translator Plug-In will retrieve both MFL documents and
required user defined type classes from the repository. Class documents may be placed
in the repository using one of the following methods:

n Publish user defined types to repository from Format Builder

n Use the Repository Import utility
B-6 BEA WebLogic XML/Non-XML Translator User Guide

Configuration of User Defined Types for the Process Integrator XML Translator Plug-In
Publishing User Defined Types to the Repository from
Format Builder

Perform the following steps to publish a user defined type to the repository.

1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→ Format Builder. The
Format Builder main window displays.

2. Choose Repository→Log In. The Process Integrator Repository Login window
opens.

Figure 6-4 Process Integrator Repository Login Dialog Box

3. Enter the userid specified for the connection in the User Name field.

4. Enter the password specified for the connection in the Password field.

5. Enter the server name and Port number in the Server[:port] field.

Note: The Process Integrator Repository Login window allows up to three
unsuccessful login attempts, after which, a login failure message is
displayed. If you experience three login failures, choose Repository→Log
In to repeat the login procedure.

6. Click Connect. If your login is successful, the Login window closes and the
Format Builder Title bar displays the server name and port number entered on the
Process Integrator Repository Login window. You may now choose any of the
active repository menu items to access.
BEA WebLogic XML/Non-XML Translator User Guide B-7

B Creating Custom Data Types
7. Choose Tools→User Defined Types. The Add/Remove User Defined Types
dialog box opens.

With a repository connection established, the Add/remove User Defined Types
dialog box displays the status of each registered user defined type and allows for
its publication to the repository. The user defined type repository status is
reflected by an icon of a ball preceding the type name of each installed user
defined type.

Figure 6-5 Add/Remove User Defined Types Dialog Box

The color of the icon asssociated with each user defined type indicates its status:

l Green - The user defined type has been published to the repository.

l Yellow - The user defined type has been published to the repository,
however, the local version of the class differs from the repository version.

l Red - The user defined type does not exist in the repository.

8. Select the class you want to publish from the list of Installed Types and click
Publish. The icon for the selected entry should become green indicating the class
was successfully placed in the repository.
B-8 BEA WebLogic XML/Non-XML Translator User Guide

User Defined Type Coding Requirements
Publishing User Defined Types to the Repository Using
the Repository Import Utility

The repository import utility may be used to import Java class files including XML
Translator user defined types. This is acccomplished by passing the class file name on
the Import command line. For example, to import all the class files in the current
directory:

java com.bea.wlxt.repository.Import *.class

It must be noted that any Java class file can be imported to the repository. This is not
the case for Format Builder user defined type class files. This capability can be useful
if, for example, a user defined type relies on additional class files that do not extend
the com.bea.wlxt.bintype.Bintype class. Using the repository import utility
allows these utility classes to be placed in the repository where they can be loaded by
the repository class loader.

User Defined Type Coding Requirements

User Defined Types are required to extend the com.bea.wlxt.bintype.Bintype
abstact class or one of its derived classes. The Bintype class provides the basic
framework the XML Translator uses to interface with a data type and also provides
utility routines useful in processing binary data types. In addition, two subclasses of
Bintype, BintypeDate and BintypeString, offer additional utility routines for date
and string types respectively.

The following classes and their required and optional interface methods are used for
user defined types.

Class com.bea.wlxt.bintype.Bintype

Class com.bea.wlxt.bintype.Bintype consists of the following required, optional, and
utility methods.
BEA WebLogic XML/Non-XML Translator User Guide B-9

B Creating Custom Data Types
Required Interface Routines

The following interface methods are required when using the XML Translator user
defined data types utility.

public String read(InputStream byteStream, MFLField mflField)throws
BintypeException

This routine is called to read a data value from a binay data stream. The read
method should read the appropriate number of bytes for the data type, convert
them to string representation, and return the string value. The mflField
parameter is a reference to a com.bea.wlxt.mfl.MFLField object that
describes the attibutes of the data field.

If a user defined type is unable to successfully read the requested data
element, it should throw a com.bea.wlxt.bintype.BintypeException
with a text string that describes the error encountered.

public void write(BintypeOutputStream byteStream, MFLField
mflField, String value)throws BintypeException

The write method is reponsible for converting a string value into the data
representation of the binary data type and writing it to a binary output stream.

If a user defined type is unable to successfully write the requested data
element, it should throw a com.bea.wlxt.bintype.BintypeException with a
text string that describes the error encountered.

Optional Interface Routines

The following interface routines are optional when using the XML Translator user
defined data types utility.

public boolean canBeFieldType()

Returns true if the user defined data type may be used as the type for a data
field.

Default: true

public boolean canBeLenFieldType()

Returns true if the user defined type may be used as the data type of a Length
Field.

Default: true
B-10 BEA WebLogic XML/Non-XML Translator User Guide

User Defined Type Coding Requirements
public boolean canBeTagFieldType()

Returns true if the user defined type may be used as the type of a Tag Field.

Default: true

public boolean canBeDelimited()

Returns true if the user defined type supports delimited data values.

Default: false

public boolean isFixedSize()

Returns true if the user defined type represents a fixed size data value.
Returning true from this method implies that the data type has an inherent
fixed size.

Default: true

public boolean isDateType()

Returns true if the user defined type represents a date data type.

Default: flase

public boolean isCutoffRequired()

Returns true if the user defined type is a date data type and requires a cutoff
value for adjusting a two digit year. This method is not used unless
isDateType() returns true.

Default: false

public boolean isCodepageOK()

Returns true if the user defined type supports code pages.

Default: false

public boolean isValueOK()

Returns true if the user defined type supports an initial value attribute.

Default: false

public boolean canHaveDecimalPlaces()

Returns true if the user defined type represents a number which may have
decimal places.

Default: false

public boolean canBePadded()

Returns true if the user defined type padding a fixed length data value.

Default: false
BEA WebLogic XML/Non-XML Translator User Guide B-11

B Creating Custom Data Types
public boolean canBeTrimmed()

Returns true if the user defined type supports leading and trailing trimming.

Default: false

public String getDescriptiontext()

Returns a String that contains a text description of this data types function.
This method should be implemented in a user defined types for
documentation purposes.

Default: Empty String

public String getTypeName()

Returns a String containing the data type name. This function is used with
user defined types and its return value is the type name used in MFL
documents.

Default: The class name of the class implementing the user defined type.

public String getDisplayName()

Returns a String containing the Display Name for a data type name. This
value appears in the Format Builder Types combo box.

Default: The class name of the class implementing the user defined type.

Utility Interface Routines

The following utility interface routines are available when using the XML Translator
user defined data types utility.

public static byte[] getBinaryBytes (String str)

Converts a Java String into an array of binary bytes by taking the low order
eight bits of each String character. No conversions are performed based on
code pages.

public static String makeString(byte[] b)

Converts an array of binary bytes into a Java String value. No conversions are
performed based on code pages.

protected void reverseBytes (byte[] data)

Reverses the order of bytes and an array of binary values.

protected String readTag(InputStream byteStream, MFLField fld)
throws BinTypeexception

Reads and returns a tag value associated with a data field. This routine
compares the tag value read with the expected value in the fld object and
B-12 BEA WebLogic XML/Non-XML Translator User Guide

User Defined Type Coding Requirements
throws a Bintypeexception if they fail to match. If called for a fld that does
not support tagged values, this method simply returns an empty string.

protected int readlength(InputStream byteStream, MFLField fld)
thorws BintypeException

Reads and returns the length field associated with a data field. If called for a
field that does not support a length field, it simply returns a zero.

protected void writeTag(BintypeOutputStream byteStream, MFLField
fld) throws Bintypeexception

Writes the tag field associated with fld to the ByteStream supplied. If fld
does not support a tag value this method simply returns without writing
anything.

protected void writeLength(BintypeOutputStream byteStream,
MFLField fld, int fldLen) thorws BintypeException

Writes the length field associated with fld to the byteStream supplied. If fld
does not support a length field this method simply returns without writing
anything.

protected byte[] readDelimitedField(InputStream byteStream,
MFLField mflField) throws BintypeException

Reads data from the supplied input stream until encountering one of the
delimiters for field mflField. The value returned is the binary data read
excluding the delimiter value. If mflField is defined as not having a delimiter
this method returns a null without reading any data.

protected String applyPadAndTrim(String value, MFLField fld,
boolean applyPad, boolean applyTrim

Applies pad and trim functions as defined for fld to the data passed as value.
The applyPad and applyTrim parameters control whether padding, trimming,
or both are performed. The return value is the result data after having the
requested operations performed.

Class com.bea.wlxt.bintype.BintypeString

Class com.bea.wlxt.bintype.BintypeString consists of the following required, optional,
and utility routines.

Required Interface Routines

Same as class com.bea.wlxt.bintype.Bintype.
BEA WebLogic XML/Non-XML Translator User Guide B-13

B Creating Custom Data Types
Optional Interface Routines

Same as class com.bea.wlxt.bintype.Bintype.

Utility Interface Routines

Same as class com.bea.wlxt.bintype.Bintype, plus the following utility interface
routines.

protected String makeString(byte[] data, MFLField mflField) throws
BintypeException

This method converts an array of binary data into a Java String respecting any
code page defined in mflField.

protected byte[] readField(InputStream byteStream, MFLField
mflField) throws Bintypeexception

This method reads a value representing a String data type from a binary input
string. All length/delimiter attributes defined in mflField are respected in
extracting the returned data value.

protected void writeField (BintypeOutputStream byteStream, MFLField
mflField, String value, String codepage) throws BintypeException

Writes a data value to the supplied byteStream respecting the attributes
defined for mflField and the passed codepage. If codepage is passed as null,
the default system code page is used.

protected String trimBoth (String data, char trimChar)

Trims a specific character from both ends of the supplied data and returns the
resulting string.

protected String trimLeading (String data, char trimChar)

Trims a specific character from the front of the supplied data and returns the
resulting string.

protected String trimTrailing(String data, char trimChar)

Trims a specific character from the end of the supplied data and returns the
resulting string.

Class com.bea.wlxt.bintype.BintypeDate

Class com.bea.wlxt.bintype.BintypeDate consists of the following required, optional,
and utility routines.
B-14 BEA WebLogic XML/Non-XML Translator User Guide

User Defined Type Coding Requirements
Required Interface Routines

Same as class com.bea.wlxt.bintype.Bintype.

Optional Interface Routines

Same as class com.bea.wlxt.bintype.Bintype.

Utility Interface Routines

Same as class com.bea.wlxt.bintype.Bintype, plus the following utility interface
routines.

protected static String readDate(String date, SimpleDateFormat fmt)

Parses a date from string parameter date according to format fmt. The return
value is a valid date in string format.

protected static String readDate(String date, SimpleDateFormat fmt,
MFLField fld, int yearpos

Parses a date containing a two digit year from string parameter date according
to format fmt.

protected static String writeDate(String date, SimpleDateFormat
fmt)

Returns a date string suitable for output from the string parameter date using
date format fmt.

protected static String rawDateToString(byte[] data, String
baseType)

Converts a date in raw binary format into a Java String using the base data
type specified.

protected static byte[] stringDateToRaw(String date, String
baseType)

Converts a date in Java String format into a binary array of bytes using the
supplied base data type.
BEA WebLogic XML/Non-XML Translator User Guide B-15

B Creating Custom Data Types
Class com.bea.wlxt.mfl.MFLField

The MFLField class is passed into all user defined type read and write methods. It
encapsulates all the defined attributes for the field being read or written. MFLField
supplies various methods that allows these attributes to be queried, and their respective
values returned. Attributes that the user defined type does not support will never be
present. For example, if the user defined type returned false to the isValueOK()
method, it would never be passed to an MFLField object which returned true for the
MFLField.hasValue() method.

Class com.bea.wlxt.mfl.MFLField supports the following MFLField methods.

public String getName()

Returns the name of the data field.

public String getType()

Returns the data type name of the field. This will be the name returned by the
user defined type’s getTypeName() method.

public boolean hasBaseType()

Returns true if a base type is defined for the field. This method will only
return true for date data types.

public String getBaseType

Returns the base data type name for this field.

public boolean hasDelimRef()

Returns true if a delimiter reference is defined for the field.

public String getDelimRef()

Returns the field name of the field containing the delimiter value for this field.

public boolean hasdelimRefValue()

Returns true if the delimiter reference field contains a value.

public boolean hasDefaultValue()

Returns true if this field has a default value.

public String getDefaultValue()

Returns the default value for this field.

public boolean hasPad()

Returns true if this field has a defined pad value.
B-16 BEA WebLogic XML/Non-XML Translator User Guide

Class com.bea.wlxt.mfl.MFLField
public String getPad()

Returns the pad value for this field.

public boolean hasTrimLeading()

Returns true if this field has a leading trim value defined.

public String getTrimLeading()

Returns the leading trim value for this field.

public boolean hasTrimTrailing()

Returns true if this field has a trailing trim value defined.

public String getTrimTrailing()

Returns the trailing trim value for this field.

public boolean isOptional()

Returns true if this field is defined as being optional.

public boolean hasCutoff()

Returns true if the field is defined as having a date cutoff value.

public int getCutoff()

Returns the date cutoff value defined for this field.

public boolean hasLength()

Returns true if an exact length is defined for this field.

public int getLength()

Returns the exact length defined for this field.

public boolean hasDelim()

Returns true if a delimiter value is defined for this field.

public String getDelim()

Returns the delimiter value defined for this field.

public boolean hasValue()

Returns true if an initial value has been defined for this field.

public String getValue()

Returns the initial value defined for this field.

public boolean hasCodepage()

Returns true if a code page has been defined for this field.

public String getCodepage()

Returns the name of the codepage defined for this field.

public boolean hasTagField()

Returns true if a tag field is defined for this field.
BEA WebLogic XML/Non-XML Translator User Guide B-17

B Creating Custom Data Types
public boolean hasLenField()

Returns true if a length field is defined for this field.

public boolean isTagBeforeLength()

Returns true if the field tag value, if present, occurs before the length field.

public boolean hasDecimalPlaces()

Returns true if this field has decimal places defined.

public int getDecimalPLaces()

Returns the number of decimal places defined for this field.
B-18 BEA WebLogic XML/Non-XML Translator User Guide

APPENDIX
C Running the Purchase
Order Sample

The XML Translator software includes a Purchase Order sample designed to illustrate
the basic techniques of creating message format definitions for binary data using
Format Builder. The Purchase Order sample consists of DTD, MFL, and DATA files.
These samples can be used to test your installation of the XML Translator.

The following topics are discussed in this section:

n What is Included in the Purchase Order Sample

n Prerequisite Considerations

n Understanding the Data Formats Used with XML Translator

n Performing Binary to XML Translation

n Performing XML to Binary Translation
BEA WebLogic XML/Non-XML Translator User Guide C-1

C Running the Purchase Order Sample
What is Included in the Purchase Order
Sample

The following table provides a listing and description of the files included in the
Purchase Order sample application.

Prerequisite Considerations

There are certain software applications that must be installed and tasks that must be
performed prior to running the Purchase Order sample. Please refer to the BEA
WebLogic XML/Non-XML Translator Release Notes for more information.

Understanding the Data Formats Used with
XML Translator

To understand how the Format Builder is used, it helps to understand the data formats
used by XML Translator: binary data, XML, and MFL.

Table 6-3 List of Purchase Order Sample Application Files

Directory File Description

samples\po po_01.data Purchase order data in binary format.

po_02.data Additional purchase order data in binary format.

po.dtd Purchase order document type definition.

po.mfl Pre-built message format description of purchase order
data.
C-2 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator
About Binary Data (Non-XML Data)

Because computers are based on the binary numbering system, applications often use
a binary format to represent data. A file stored in binary format is computer-readable
but not necessarily human-readable. Binary formats are used for executable programs
and numeric data, and text formats are used for textual data. many files contain a
combination of binary and text formats. Such files are usually considered to be binary
files even though they contain some data in text format.

Unlike XML data, binary data is not self-describing. In other words, binary data does
not provide a description of how the data is grouped, divided into fields, or arranged
in a layout. Binary data is a sequence of bytes that can be interpreted as an integer, a
string, or a picture, depending on the intent of the application that generates the
sequence of bytes. For example, the following binary data string can be interpreted
many different ways:

2231987

This could be a date (2/23/1987) or a phone number (223-1987) or any number of other
interpretations. Without a clear understanding of the purpose of this data string, the
application has no idea how to interpret the string.

In order for binary data to be understood by an application, the format must be
embedded within each application that accesses the binary data.

The Format Builder is used to create a Message Format Language (MFL) file that
describes the layout of the binary data. MFL is an XML language that includes
elements to describe each field of data, as well as groupings of fields (groups),
repetition, and aggregation. The hierarchy of a binary record, the layout of the fields,
and the groupings of fields and groups are expressed in an MFL document. The MFL
document is used by XML Translator at run-time to translate binary data to and from
an XML document.

About XML Documents

Extended Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
In contrast to binary data, XML data embeds a description of the data within the data
stream. Applications can share data more easily, since they are not dependent on the
BEA WebLogic XML/Non-XML Translator User Guide C-3

C Running the Purchase Order Sample
layout of the data being embedded within each application. Since the data is presented
in a standard form, applications on disparate systems can interpret data in proprietary
binary formats.

Instances of XML documents contain character data and markup. The character data
is referred to as content, while the markup provides hierarchy for that content. Markup
is distinguished from content by angle brackets. Information in the space between the
“<“ and the “>” is referred to as the tags that markup the content. Tags provide an
indication of what the content is for, and a mechanism to describe Parent-child
relationships.

An XML document can conform to a content model. A content model allows Metadata
(data that is used to describe other data) about XML documents to be communicated
to an XML parser. XML documents are said to be “valid” if they conform to a content
model. A content model describes the data that can exist in an instance of an XML
document. A content model also describes a top-level entity, which is a sequence of
subordinate entities. These subordinate entities are further described by their tag names
and data content. The two standard formats for XML content models are XML
Document Type Definition (DTD) and XML Schema. A Schema is an XML document
that defines what can be in an XML document. A DTD also defines what content can
exist in an XML document, but the Schema definition is more specific than the DTD,
and provides much finer-grained control over the content that can exist in an XML
document.

About MFL Documents

Message Format Language (MFL) is an XML language that describes the layout of
binary data. This language includes elements to describe each field of data, as well as
groupings of fields (groups), repetition, and aggregation. The hierarchy of a binary
record, the layout of fields, and the grouping of fields and groups is expressed in an
MFL document. MFL documents are created using Format Builder. The Format
Builder application allows you to define the structure of binary data and save that
information in an MFL document. These MFL documents are then used to perform
run-time translation.

The MFL documents you create using Format Builder can contain the following
elements:

n Message Format — The top level element. Defines the message name and MFL
version.
C-4 BEA WebLogic XML/Non-XML Translator User Guide

Understanding the Data Formats Used with XML Translator
n Field — Sequence of bytes that have some meaning to an application. (For
example, the field EMPNAME contains an employee name.) Defines the formatting
for the field. The formatting parameters you can define include:

l Tagged — Indicates that a literal precedes the data field, denoting the
beginning of the field.

l Length Field — Indicates that a length value precedes the data field,
denoting the length of this field.

l Repeating — Repeating fields appear more than once in the message format.
You can set a specific number of times the field is to repeat, or define a
delimiter to indicate the end of the repeating field.

l Optional — The field may or may not be present in the named message
format.

n Groups — Collections of fields, comments, and other groups or references that
are related in some way (for example, the fields PAYDATE, HOURS, and RATE
could be part of the PAYINFO group). Defines the formatting for all items
contained in the group. The formatting parameters you can define include:

l Repeating — Repeating groups appear more than once in the message
format: You can set a specific number of times the group is to repeat, or
define a delimiter to indicate the end of the repeating group.

l Choice of Children — Defining a group as “Choice of Children” means that
only one item in the group will appear in the message format.

l Optional— The group of data within this structure may or may not be
present in the named message format.

n References — Indicates that another instance of the field or group format exists
in the data. Reference fields or groups have the same format as the original field
or group, but you can change the optional setting and the occurrence setting for
the reference field or group. For example, if you have a “bill to” address and a
“ship to” address in your data, you only need to define the address format once.
You can create the “bill to” address definition and create a reference for the
“ship to” address.

n Comments — Notes or additional information about the message format.
BEA WebLogic XML/Non-XML Translator User Guide C-5

C Running the Purchase Order Sample
Performing Binary to XML Translation

The following sections provide information on building sample purchase order format
definitions using the Format Builder utility to test the translation of binary data into
XML format.

n Analyzing the Data to be Translated

n Using the Format Builder To Test the Translation

The Format Builder included with XML Translator allows you to build format
definitions for binary data that will be translated to or from XML. Format definitions
are the metadata used to parse binary data.

Analyzing the Data to be Translated

The key to translating binary data to and from XML is to create an accurate description
of the binary data. For binary data (data that is not self-describing), you must identify
the following elements:

n Hierarchical groups

n Group attributes, such as name, optional, repeating, delimited

n Data fields

n Data field attributes, such as name, data type, length/termination, optional,
repeating

Listing 6-11 shows sample binary data that is included on the XML Translator
CD-ROM and is called \sample\po\po_01.data. In this sample, the example data
is taken from a fictitious purchase order on a proprietary system that the XYZ
Corporation uses. They would like to interchange this information with another system
that accepts XML data.
C-6 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
Listing 6-11 Sample Binary Purchase Order Data

1234;88844321;SUP:21Sprockley’s Sprockets01/15/2000123 Main St.;
Austin;TX;75222;555 State St.; Austin;TX;75222;
PO12345678;666123;150;Red Sprocket;

Perform the following steps to analyze the purchase order data:

1. Get the definition of the data. This may involve using printed specifications or
internal documentation. For this sample, we have described the purchase order
format in Table 6-4.

Table 6-4 Purchase Order Master Record

Field Name Data Type Length Description

Purchase Request
Number

Numeric Delimited by semicolon The Purchase Request number assigned by
the Purchasing department. This number is
used to track the status of an order from
requisition through delivery and payment.

Supplier ID Numeric Delimited by semicolon The identification of the assigned supplier
as defined in the corporate Supplier Data
Base. Assignment of an approved supplier
is made by the buyer when creating a
Purchase Request from a requisition.

Supplier Name Character Prefixed by a literal
"SUP:". Following this
literal is a two digit
numeric length field.

The name of the assigned supplier as
defined in the corporate Supplier Data
Base. This field is prefixed with a literal to
indicate that it is present.

Requested Delivery
Date

Date
MM/DD/YYYY

10 characters The delivery date specified by the
requisitioner.

Shipping Street Character Delimited by semicolon The street address to be used in shipping
the requested items.

Shipping City Character Delimited by semicolon The city to be used in shipping the
requested items.
BEA WebLogic XML/Non-XML Translator User Guide C-7

C Running the Purchase Order Sample
Shipping State Character Delimited by semicolon The state to be used in shipping the
requested items.

Shipping Zip Numeric Delimited by semicolon The zip code to be used in shipping the
requested items.

Billing Street Character Delimited by semicolon The street address to be used for billing.

Billing City Character Delimited by semicolon The city to be used for billing.

Billing State Character Delimited by semicolon The state to be used for billing.

Billing Zip Numeric Delimited by semicolon The zip code to be used for billing.

Payment Terms Supported payment terms may be either
Purchase Order or Company Credit Card.
A literal preceding the payment
information identifies the type.

PO Type Character Literal “PO” Indicates PO payment terms.

PO Number Numeric Delimited by semicolon Purchase Order number.

Credit Card Type Character Literal “CC” Indicates Credit Card payment terms.

Credit Card Number Numeric Delimited by semicolon Credit card number.

Credit Card
Expiration Month

Numeric Delimited by semicolon Expiration month for credit card.

Credit Card
Expiration Year

Numeric Delimited by semicolon Expiration year for credit card.

Purchase Items The following fields identify the items to
be purchased. This information may be
repeated for each item that is part of this
Purchase Request. At least one item must
be present.

Part Number Numeric Delimited by semicolon The supplier's part number of the requested
item.

Quantity Numeric Delimited by semicolon The quantity requested. Must be greater
then zero.

Field Name Data Type Length Description
C-8 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
2. Identify hierarchical groups.

Groups are collections of fields, comments, and other groups or references that
are related in some way. In Table 6-4, notice that the sample data defines two
distinct groups: Payment Terms and Purchase Items. In addition to these groups,
notice that there are several fields related to shipping and billing addresses. You
can define a group for Shipping Address and a group for Billing Address.

3. Identify group attributes.

You must define the attributes of the hierarchical groups. Group attributes
include the name of the group, whether the group is optional, repeating, or
delimited, or whether it is defined as a reference to another group. For example,
look at the Address group within the Shipping Address and Billing Address
groups. These two groups contain the same fields with the same attributes.
Therefore, you can define the Address group within the Shipping Address group
and set up the Address group within the Billing Address group as a reference.
For more information on references, refer to the BEA WebLogic XML/Non-XML
Translator User Guide.

4. Identify data fields.

Fields are a sequence of bytes that have some meaning to an application. In
Table 6-4, some of the sample data fields are Purchase Request Number,
Supplier ID, Supplier Name, etc.

5. Identify data field attributes.

You need to define the attributes of the data fields. Field attributes include the
name of the field, the type of data contained in the field, the length of the field,
or the delimiter that denotes the end of the field. For example, the Supplier ID
field is delimited by a semicolon (;) indicating the end of the field data, but the
Requested Delivery Date has an implied length of 10 characters.

Once you have completed the steps above, it might be helpful to put the data into a
spreadsheet form as shown in Table 6-5. This will assist you in entering the data in
Format Builder to create your message definitions.

Description Character Delimited by semicolon Description of the requested item.

Field Name Data Type Length Description
BEA WebLogic XML/Non-XML Translator User Guide C-9

C Running the Purchase Order Sample
Table 6-5 Analysis of Purchase Order Data

Using the Format Builder To Test the Translation

This section walks you through the Format Builder steps required to create the message
definition file for translating the binary Purchase Order data to XML.

Notes: For details on entering data in the detail windows of Format Builder, refer to
the BEA WebLogic XML/Non-XML User Guide.

The file \sample\po\po.mfl included on the CD-ROM contains the message
definition created by the following steps. You can use this file for reference to make
sure you create the definition correctly.

Description G
ro

up

F
ie

ld

R
ef

er
en

ce

O
pt

io
na

l

Name / Refers To Data Type Occurrence Delimited by

Purchase Request Number X PR_Number Numeric 1 Semicolon

Supplier ID X Supplier_ID Numeric 1 Semicolon

Supplier Name X X Supplier_Name String 1 Numeric field length 2

Requested Delivery Date X Requested_Delivery_Date Date MM/DD/YYYY 1 Semicolon

 Shipping Address X Shipping_Address 1

Street X Street String 1 Semicolon

City X City String 1 Semicolon

State X State String 1 Semicolon

Zip X Zip Numeric 1 Semicolon

Billing Address X Address 1 Semicolon

Street X Street String 1 Semicolon

City X City String 1 Semicolon

State X State String 1 Semicolon

Zip X Zip Numeric 1 Semicolon

Payment Terms X Payment Terms 1

Purchase Order X 0 or 1

Purchase Order Tag X Payment_Type_PO Literal "PO" 1 Semicolon

Purchase Order Number X PO_Number Numeric 1 Semicolon

Credit Card X 0 or 1

Payment Type X Payment_Type_CC Literal "CC" 1 Semicolon

Credit Card Number X CC_Number Numeric 1 Semicolon

Credit Card Expire Month X CC_Expire_Month Numeric 1 Semicolon

Credit Card Expire Year X CC_Expire_Year Numeric 1 Semicolon

Purchase Items X Purchase_Items 1- n Semicolon

Part Number X Part_Number Numeric 1 Semicolon

Quantity X Quantity Numeric 1 Semicolon

Description X Description String 1 Semicolon
C-10 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
Step 1. Starting Format Builder and Creating the Message Format

To start Format Builder and create the message format:

1. Choose Start→Programs→BEA WebLogic E-Business Platform→WebLogic
Integration 2.0→xmltranslator→ Format Builder. The Format Builder main
window displays.

2. Choose File→New. A new message definition opens.

3. Enter PurchaseRequest as the message format name and select the appropriate
MFL version from the drop-down list box.

4. Click Apply. The tree pane changes to reflect the new message format name.

Step 2. Creating Fields

To create fields:

1. Select PurchaseRequest in the tree pane and choose Insert→Field→As Child. The
Field Description detail window opens.

2. Enter the field details as follows:

These values were determined by our analysis of the raw purchase order data, as
you can see in Table 6-5.

3. Select the type of character encoding you want for the field data by selecting it
from the Codepage drop-down list box.

4. Select the field data character coding you want to use by selecting from the Code
Page drop-down list box.

Field Value

Name PR_Number

Type Numeric

Field Occurrence Once

Delimiter ; (semi-colon)
BEA WebLogic XML/Non-XML Translator User Guide C-11

C Running the Purchase Order Sample
5. Click Apply. The PR_Number field is saved to the message format file.

Note: Since the only difference between the PR_Number field and the
Supplier_ID field is the name, we will use the Format Builder Duplicate
feature to create the Supplier_ID field.

6. Select the PR_Number field you just created in the tree pane and right-click to
select Duplicate from the shortcut menu. A new field description is displayed in
the detail pane.

7. Enter Supplier_ID as the name and click Apply. The Supplier_ID field is created
and stored in the message format file.

8. Select the Supplier_ID field you just created in the tree pane and choose
Insert→Field→As Sibling.

9. Enter the Supplier_Name field details as follows:

10. Click Apply. The Supplier_Name field is created and added to the tree pane.

Note: The dashed box around the field icon in the tree pane indicates this is an
optional field.

11. Select the Supplier_Name field you just created in the tree pane and choose
Insert→Field→As Sibling.

12. Enter the Requested_Delivery_Date field details as follows:

Field Value

Name Supplier_Name

Optional Check box

Type String

Field Occurrence

n Field is Tagged

n Tag Text Field

Once

Checkbox

SUP:

Inbedded Length

n Type

n Length

Numeric

2

C-12 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
Note: The Field detail pane changes based on the Type selected. Because this
field is a Date type, it has an implied length and does not require you to
specify the termination.

13. Click Apply. The Requested_Delivery_Date field is created and added to the tree
pane.

Step 3. Creating Groups

To create groups:

1. Select the Requested_Delivery_Date field in the tree pane and choose
Insert→Group→As Sibling. The Group Detail window opens.

2. Enter the group details as follows:

These values were determined by our analysis of the raw purchase order data
presented in Table 6-5.

3. Click Apply. The Shipping_Address group is created and added to the tree pane.

We know from our initial data analysis that the Shipping Address and Billing
Address groups contain the same fields with the same attributes. Therefore, we
can define the Address group within the Shipping Address group and set up the
Address group within the Billing Address group as a reference. For more

Field Value

Name Requested_Delivery_Date

Type Date: MM/DD/YYYY

Field Occurrence Once

Data Base Type String

Field Value

Name Shipping_Address

Group Occurrence Once
BEA WebLogic XML/Non-XML Translator User Guide C-13

C Running the Purchase Order Sample
information on references, refer to the BEA WebLogic XML/Non-XML
Translator User Guide.

4. Select the Shipping_Address group in the tree pane and choose
Insert→Group→As Child.

5. Use the data in Table 6-5 to create the Address group and click Apply to save the
data.

6. Follow the steps outlined in Step 2. Creating Fields, to create the Street, City,
State, and Zip fields as children of the Address group.

Note: Once the Street field is created, you can use the Duplicate button to create
the City and State fields.

Step 4. Creating a Group Reference

Now we are going to create the Billing Address group and fields. Since this is a
duplicate of the Shipping Address group, we can create a group reference. A reference
group has the same format as the original group, but you can change the optional
setting and the occurrence setting for the reference group.

1. Select the Shipping_Address group in the tree pane and choose
Insert→Group→As Sibling. The Group Detail window opens.

2. Enter the group details as follows:

These values were determined by our analysis of the raw purchase order data
presented in Table 6-5.

3. Select the Address group under Shipping_Address in the tree pane and choose
Edit→Copy. This copies the Address group details (including child objects) and
places them on the clipboard.

Field Value

Name Billing_Address

Field Occurrence Once
C-14 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
4. Select the Billing_Address group you created in step 2 in the tree pane and
choose Edit→Paste→As Reference. This pastes the copy of the Address group
into the message definition as a sibling of the Billing Address group.

Note: You can identify this Address group as a reference by the icon located to
the left of it in the tree pane.

5. Change the Address reference group to be a child of the Billing_Address group
by selecting the Address reference group in the tree pane and choose
Edit→Demote. The Address reference group moves under the Billing_Address
group.

Step 5. Creating the Remaining Items

Follow Steps 1 through 4 above to create the remaining items necessary to complete
the message definition for the Purchase Order sample. Use the analysis of the raw
purchase order data presented in Table 6-5 to determine the values you need to enter
for each item. You can use the file \sample\po\po.mfl for reference if you need
assistance.

When you finish entering the items, your tree pane should looks similar to Figure 6-6.
BEA WebLogic XML/Non-XML Translator User Guide C-15

C Running the Purchase Order Sample
Figure 6-6 Completed Tree Pane for Purchase Order Sample

Step 6. Saving the Message Format

To save a message format file:

1. Choose File→Save As. The Save As dialog displays.

2. Navigate to the directory where you want to save the file.

3. In the File Name text box, type the name you want to assign to the file.
C-16 BEA WebLogic XML/Non-XML Translator User Guide

Performing Binary to XML Translation
Note: Format Builder automatically assigns the .MFL extension to message
format files by default if no extension is given.

4. Click Save As to save the file in the specified location with the specified name
and extension.

Once you have generated the Message Format definition, you can create a DTD or
XML Schema document that describes the XML to be converted. You can set up
Format Builder to automatically generate a DTD and/or Schema for your message
definitions as follows:

1. From the Format Builder main window, choose Tools→Options. The Format
Builder Options dialog opens.

2. Select Auto-generate DTD and/or Auto-generate Schema to have Format Builder
automatically create these documents during the translation process.

3. Click OK to activate your selections.

Now, whenever you save message format documents, Format Builder will generate a
DTD and/or a Schema for your message format. Refer to the BEA WebLogic
XML/Non-XML User Guide for more information on DTDs and Schemas.

Step 7. Testing the Message Format

Now, you must test the message format to identify any errors that exist before using it
to translate actual data.

1. Choose Tools→Test. The Tester opens. This allows you to test the translation of
the binary purchase order data into XML.

2. Click Load and navigate to the SAMPLES\PO directory.

3. Choose the file PO_01.DATA and click Open. The left side of the Format Tester
dialog displays the binary data.

4. Click Translate→Binary To XML >. The binary data is translated and the right
side of the dialog displays the purchase order data in XML format.

Note: You can see the messages output during the translation by selecting
Display→ Debug.
BEA WebLogic XML/Non-XML Translator User Guide C-17

C Running the Purchase Order Sample
5. If the translated data appears correct, choose File→ Save XML.

6. Navigate to the SAMPLES\PO directory and enter PO.XML as a name for the XML
data.

Performing XML to Binary Translation

You can also use Format Builder to create message definitions and test the translation
of XML data to binary. The steps required to do this are essentially the same as
translating binary data to XML. To translate XML data to binary, first create an MFL
description of the binary format. The Purchase Order Record sample provides an MFL
document that can be loaded by performing the following steps:

1. Choose File→Open in Format Builder.

2. Navigate to the directory containing the desired file and select the file name.

3. Click open. The file is loaded into Format Builder.

4. Choose Tools→Test.

5. Under the XML panel, click Load, and navigate to the SAMPLES\PO directory.

6. Choose the file po.xml and click Open. The right side of the Format Tester
dialog displays the XML data.

7. Click Translate→XML to Binary. The XML data is translated, and the right side
of the dialog displays the purchase order data in Binary format.

Note: You can see the messages output during the translation by selecting
Display→ Debug.

8. If the translated data appears correct, choose File→ Save Binary.
C-18 BEA WebLogic XML/Non-XML Translator User Guide

Glossary

Binary Data

A file format for data encoded as a sequence of bits, but not necessarily consisting
of a sequence of printable characters (text). The term is often used for executable
machine code.

Big Endian

Binary format where most significant byte has the lowest address. This format is
used on IBM 370 and most RISC designs.

CLASSPATH

A list of file system directories and /or Java archive files that are to be searched
by a Java Virtual machine to locate executable class files required at runtime. The
list may be supplied via an operating system environment variable CLASSPATH or
a command line switch, -classpath, to the virtual machine. Application server
containers, such as servlet engines and EJB containers, may contain additional
levels of classpath information.

COBOL Copybook Importer

Reads a COBOL Copybook and generates a message format reflecting the data
structure of the COBOL Copybook.

Code Page

In the context of this documentation, the character encoding of the field data.

Copybook

A common piece of source code designed to be copied into many source pro-
grams, used mainly in IBM DOS mainframe programming. In mainframe DOS
(DOS/VS, DOS/VSE, etc.), the copybook was stored as a "book" in a source li-
brary. A library was comprised of "books", prefixed with a letter designating the
language, (e.g., A .name for Assembler, C.name for COBOL, etc.), because DOS
did not support multiple or private libraries. This term is commonly used by CO-
BOL programmers, but is supported by most mainframe languages. The IBM OS
BEA WebLogic XML/Non-XML Translator User Guide G-1

series did not use the term "copybook"; instead it referred to such files as "librar-
ies" implemented as "partitioned data sets" or PDS. Copybooks are functionally
equivalent to C and C++ include file.

Data Transformation

In the context of this documentation, data transformation is the term used to de-
scribe the mapping of XML data to another XML format. An example would be
mapping an instance of a RosettaNet document to an instance of a ebXML docu-
ment.

Data Translation

In the context of this application, data translation is the process of converting bi-
nary data to or from XML.

Delimiter

A sequence of bytes that denote the end of a field or group of data.

Document Type Definition (DTD)

Defines what content can exist in an XML document. DTDs are part of the W3C
XML Specification 1.0.

eXtensible Stylesheet Language: Transformations (XSLT)

An XML language designed for transforming one XML document into another.
An XSLT document, or stylesheet, describes data transformations that are to be
performed on nodes of an XML document. Using XSLT, an XML document can
be transformed into a variety of text formats (XML, HTML, PDF, etc.). XSLT is
a W3C recommendation.

Field

 A sequence of bytes that are interpreted by an application as an atomic unit of da-
ta.

Group

A set of fields and/or groups that are to be treated as having a unifying relation-
ship.

Group Choice

A group comprised of fields or other groups, one of which must occur, but are mu-
tually exclusive in the actual binary data.
G-2 BEA WebLogic XML/Non-XML Translator User Guide

Java Message Service (JMS)

A peer-to-peer messaging system for java programs to send and receive messages.
A JMS application is capable of sending or receiving application defined messag-
es (asynchronous requests, reports, or events) to other JMS applications so that
these separate applications can collaborate or coordinate their efforts.

Little Endian

Binary format in which bytes at lower address have lower significance. This for-
mat is used on Intel and VAX processors.

Message Format

The description of a binary format produced by Format Builder.

Metadata

Data that is used to describe other data. Message Formats created using Format
Builder are the metadata used to parse binary data.

Message Format Language (MFL)

An XML language created by BEA that describes the native representation and hi-
erarchy of binary data. MFL is an XML description of binary data.

Reference

A group or field that relies on a prior definition to determine its name, type, and
termination attributes.

Repository

l A representation, in data, of all relevant information about a system in a
consistent complete form that is independent of its mode of entry,
modification, and subsequent use.

l A central place in which an aggregation of data is kept and maintained in an
organized way, usually in computer storage. The term is from the Latin
repositorium, a vessel or chamber in which things can be placed, and it can
mean a place where things are collected. Depending on how the term is used,
a repository may be directly accessible to users or may be a place from
which specific databases, files, or documents are obtained for further
relocation or distribution in a network. A repository may be just the
aggregation of data itself into some accessible place of storage or it may also
imply some ability to selectively extract data.
BEA WebLogic XML/Non-XML Translator User Guide G-3

Schema

An XML document that defines what can be in an XML document. A Schema def-
inition is more specific than a DTD and provides much finer-grained control over
the content that can exist in an XML document.

Servlet

A server-side Java program that is usually executed in response to an HTTP re-
quest and produces its output in a browser.

Stylesheet

An XSL document. A stylesheet describes data transformations (or mappings) that
are to be performed on an XML document. A stylesheet describes which nodes of
an XML document are to be manipulated (using XPath) and which manipulations
are to be performed.

WebLogic Process Integrator

Workflow engine for BEA WebLogic application servers that automates work-
flow, business-to-business processes, and application assembly.

WebLogic Server

WebLogic’s standards-based, pure-java application server, for assembling, de-
ploying and managing distributed Java applications. WebLogic Server manages
application components and DBMS connections to ensure security, scalability,
performance, and transaction integrity.

XML - Extensible Markup Language

Data format that is easily read and manipulated by both humans and computers;
data values and meta-data are both included in the data, to provide a standard
self-describing syntax for representing information. XML is a World Wide Web
Consortium (W3C) standard.

XPath

Used within XSLT, XPath is an XML language that identifies parts of an XML
document to be processed. XPath is used in XSLT to specify which nodes of an
XML document are to be copied or manipulated during an XSLT transformation.
XPath is a W3C recommendation.
G-4 BEA WebLogic XML/Non-XML Translator User Guide

Index

B
batch import utility

invoking 5-5
binary data, about 2-2

C
C struct importer

hardware profiles 4-9
starting 4-6

C structures
importing 4-4

choice of children 2-20
COBOL copybook

importing 4-1
COBOL copybook importer data types A-7
COBOL data types A-7
code page

field data option 2-25
com.bea.wlxt.bintype.Bintype class B-9

optional interface routines B-10
required interface routines B-10
utility interface routines B-12

com.bea.wlxt.bintype.BintypeDate
optional interface routines B-15
required interface routines B-15
utility interface routines B-15

com.bea.wlxt.bintype.BintypeDate class B-
14

com.bea.wlxt.bintype.BinTypeString
optional interface routines B-14

required interface routines B-13
utility interface routines B-14

com.bea.wlxt.bintype.BinTypeString class
B-13

com.bea.wlxt.mfl.MFLField class B-16
comment, creating 2-27
comments 2-7
customer support contact information v

D
data base type

field data options 2-25
data fields 2-7
Data Gen 4-8
data offsets 3-7
data types

COBOL A-7
MFL A-1
support A-1

debug writer 6-4
delimited

group delimiter 2-20
delimiter

field 2-26
group 2-20

delimiter field
field delimiter 2-26

delimiter is shared
group delimiter 2-21

document type definition 6-2
BEA Laguna User Guide I-1

documentation, where to find it iv

E
edit menu 2-40

copy 2-40
cut 2-40
delete 2-41
demote 2-41
duplicate 2-41
move down 2-41
move up 2-41
paste 2-40
promote 2-41
redo 2-40
undo 2-40

F
field 2-6

creating 2-22
data type 2-24
delimiter 2-24, 2-25
name 2-23, C-12
occurrence 2-24
optional 2-23, C-12
parameters 2-6

field data options
data base type 2-25
value 2-25
year cutoff 2-25

field data options, code page 2-25
field delimiter 2-24, 2-25

delimiter 2-26
delimiter field 2-26
length 2-25

field occurence
once 2-24
repeat delimiter 2-24
repeat field 2-24
repeat number 2-24

unlimited 2-24
file menu 2-39

close 2-39
exit 2-39
new 2-39
open 2-39
save 2-39
save as 2-39

FML Field Table Class
importing 4-13
sample files 4-14

Format Builder
setting options 2-37
starting 2-8
using 2-8

Format Tester
debug log 3-12
debug window 3-8
starting 3-1

G
group

creating 2-18
delimiter 2-20
description 2-19
occurence 2-20

group attributes 2-7
group delimiter

delimited 2-20
delimiter is shared 2-21

group occurence
once 2-20
repeat delimiter 2-20
repeat field 2-20
repeat number 2-20
unlimited 2-20

H
hardware profiles 4-9
I-2 BEA Laguna User Guide

building 4-9
help menu 2-43

about 2-43
help topics 2-43
how do I 2-43

hierarchical groups 2-7

I
importing C structures 4-4
insert menu 2-41

comment 2-42
field 2-41
group 2-41

L
length

field delimiter 2-25

M
menu bar 2-12
Message Format 2-6

adding palette items 2-34
default version 2-38
opening 2-35
saving 2-34

message node 2-10
MFL data types A-1
MFL documents, about 2-5
MFL Gen 4-8

N
name

field 2-23, C-12
group 2-19

O
occurence

group 2-20
occurrence

field 2-24
offsets

positioning 3-12
once

field occurence 2-24
group occurence 2-20

optional
field 2-23, C-12
group 2-19

P
palette 2-30

adding items 2-33
deleting items 2-33

printing product documentation iv
Properties Pane 2-8

R
references 2-6

creating 2-28
related information iv
repeat delimiter

field occurence 2-24
group occurence 2-20

repeat field
field occurence 2-24
group occurence 2-20

repeat number
field occurence 2-24
group occurence 2-20

repository
accessing 5-2
importing documents 5-5

repository document chooser 5-7
repository documents

retrieving 5-3
storing 5-4
BEA Laguna User Guide I-3

root node 2-10

S
shortcut menus 2-15
support

technical v

T
toolbar 2-12

buttons 2-13
tools menu 2-43

import 2-43
options 2-43

Tree Pane 2-8
using 2-10

U
unlimited

field occurence 2-24
group occurence 2-20

user defined types B-1
coding requirements B-9
registering B-3
sample files B-2

V
valid names 2-18
value

field data option 2-25
view menu 2-42

collapse all 2-42
expand all 2-42
show pallet 2-42

X
XML content model options 2-38
XML document type definition 5-1

XML documents, about 2-3
XML formatting options 2-38
XML Schema 5-1
XSLT Stylesheet 5-1
I-4 BEA Laguna User Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions
	Contents

	1 BEA WebLogic XML/Non-XML Translator Overview
	Understanding XML Translation
	Figure 1�1 XML Data Translation of: Tom;Jones;1345;19;

	What is XML Translator?
	Figure 1�2 Event Flow for Non-XML to XML Translation Using XML Translator
	The Design-Time Component
	Figure 1�3 Design Time Process Flow Through Format Builder

	The Run-Time Component
	Figure 1�4 Run-Time Process Flow
	Binary to XML Translation
	Listing 1-1 Sample Code for Binary to XML Translation

	XML to Binary Translation
	Listing 1-2 Sample Code for XML to Binary Translation

	Run-Time Plug-In to WebLogic Process Integrator
	Figure 1�5 XML Translator and Process Integrator Relationship

	Post Translation Options and Considerations
	Performing XML Transformation
	Figure 1�6 XML Data Transformation of: Tom;Jones,1345;19

	Working with BEA WebLogic Process Integrator

	Getting Started with the BEA WebLogic XML/Non-XML Translator
	Table 1�1 Steps for Working with the XML Translator

	2 Building Format Definitions
	Understanding the Data Formats Used with XML Translator
	About Binary Data (Non-XML Data)
	Listing 2-1 Example of Binary Data
	1234;88844321;SUP:21Sprockley's Sprockets01/15/2000123 Main St.; Austin;TX;75222;555 State St.;Au...

	About XML Documents
	Listing 2-2 Example of XML Document
	<?xml version="2.0"?> <PurchaseRequest> <PR_Number>1234</PR_Number> <Supplier_ID>88844321</Suppli...

	Listing 2-3 Example DTD
	<!ELEMENT PurchaseRequest (PR_Number,Supplier_ID,Supplier_Name?,Requested_Delivery_Date,Shipping_...

	Listing 2-4 Example XML Schema
	<?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"> ...
	<xsd:element name="PurchaseRequest"> <xsd:complexType content="elementOnly"> <xsd:sequence> <xsd:...
	<xsd:element name="PR_Number" type="xsd:nonNegativeInteger"/>
	<xsd:element name="Supplier_ID" type="xsd:nonNegativeInteger"/>
	<xsd:element name="Supplier_Name" type="xsd:string"/>
	<xsd:element name="Requested_Delivery_Date" type="xsd:timeInstant"/>
	<xsd:element name="Shipping_Address"> <xsd:complexType content="elementOnly"> <xsd:sequence> <xsd...
	</xsd:schema>

	About MFL Documents

	Analyzing the Data to be Translated
	Using the Format Builder
	Starting Format Builder
	Using the Format Builder Main Window
	Figure 2�1 Format Builder Main Window
	Using the Tree Pane
	Table 2�1 Tree Icon Descriptions

	Using the Menu Bar
	Figure 2�2 Format Builder Menu Bar

	Using the Toolbar
	Figure 2�3 Format Builder Toolbar

	Using the Shortcut Menus
	Table 2�2 Shortcut Menus

	Using Drag and Drop
	1. Select the item you want to move.
	2. Press and hold the left mouse button while you drag the item to the desired node.
	3. When the item is in the desired location, release the left mouse button. The item is moved to ...
	1. Select the item you want to copy.

	2. Press and hold the CTRL key.
	3. Keeping the CTRL key depressed, press and hold the left mouse button while you drag the item t...
	4. With the sibling object selected, release the left mouse button. A copy of the item is placed ...

	Creating a Message Format
	1. Choose FileÆNew. The Message Format Pane displays in the detail window.
	Figure 2�4 Message Format Properties
	2. Enter data in the fields as described in the following table.
	Table 2�3 Message Format Properties

	Valid Names

	Creating a Group
	1. Select an item in the tree pane.
	2. Choose InsertÆGroupÆAs Child if you want to create the group as the child of the message forma...
	Figure 2�5 Group Details
	3. Enter data in the fields as described in the following table.
	Table 2�4 Group Detail Properties
	4. Click Apply to save your changes to the message format file, or click Reset to discard your ch...

	Creating a Field
	1. Select an item in the tree pane.
	2. Choose InsertÆFieldÆAs Child if you want to create the field as the child of the message forma...
	Figure 2�6 Field Details
	3. Enter data in the fields as described in the following table.
	Table 2�5 Field Detail Properties
	4. Click Apply to save your changes to the message format file, or click Reset to discard your ch...

	Creating a Comment
	1. Select an item in the tree pane.
	2. Choose InsertÆCommentÆAs Child if you want to create the comment as the child of the selected ...
	3. Enter data in the fields as described in the following table.
	Figure 2�7 Comment Details
	Table 2�6 Comment Detail Properties
	4. Click Apply to save your changes to the message format file, or click Reset to discard your ch...

	Creating References
	1. Select a field or group in the tree pane.
	2. Choose EditÆCopy.
	3. Choose the proper sibling in the tree.
	4. Choose EditÆPasteÆAs Reference.
	Figure 2�8 Reference Details
	5. Enter data in the fields as described in the following table.
	Table 2�7 Reference Detail Properties
	6. Click Apply to save your changes to the message format file, or click Reset to discard your ch...

	Working with Palettes
	Opening the Palette
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose ViewÆShow Palette. The palette window displays.

	Using the File Menu
	Table 2�8 File Menu Commands

	Using the Shortcut Menu
	Table 2�9 Shortcut Menu Commands

	Adding Items to the Palette
	1. Choose ViewÆShow Palette to display the palette.
	2. From the tree pane of the XML Translator window, choose the item you want to add to the palette.
	3. Click and hold the left mouse button and drag the item into the palette window.
	4. When the item is placed in the position you want it (as sibling of the selected item), release...
	Notes: You cannot add any node that depends on the existence of another node to the palette. For ...

	Deleting Items From the Palette
	1. Select the item in the palette to be deleted and click the right mouse button. The Shortcut Me...
	2. Choose Delete. A message displays asking you to confirm the deletion.
	3. Click OK to delete the item.

	Adding Palette Items to a Message Format
	1. Choose ViewÆShow Palette to display the palette.
	2. From the palette window, choose the item you want to add to your message format.
	3. Click and hold the left mouse button and drag the item into the tree pane of the Format Builde...
	4. When the item is placed in the position you want it (as the sibling of the desired item), rele...

	Saving a Message Format to a File
	1. Choose FileÆSave As. The Save As dialog displays.
	Figure 2�9 Save As Dialog
	2. Navigate to the directory where you want to save the file.
	3. In the File Name text box, type the name you want to assign to the file.
	4. Format Builder automatically assigns the .mfl extension to message format files by default if ...
	5. Click Save As to save the file in the specified location with the specified name and extension.

	Opening an Existing Message Format File
	1. Choose FileÆOpen. The Open dialog displays.
	Figure 2�10 Open Dialog
	2. Navigate to the directory containing the desired file and select the file name.
	3. Click Open. The file is loaded into Format Builder.

	Working With the Repository
	Retrieving Repository Documents
	1. Start Format Builder.
	2. Choose RepositoryÆLog In. The Repository Log In dialog box opens. Enter your user name, passwo...
	3. Choose RepositoryÆRetrieve. The Select-document-to-retrieve dialog box opens.
	4. Select the document you want to retrieve from the document list.
	5. Click Retrieve. The Select-document-to-retrieve dialog box is dismissed and you are returned t...

	Storing Repository Documents
	1. Start Format Builder.
	2. Open the MFL document you want to store in the repository.
	3. Log in to the repository.
	4. Choose RepositoryÆStore As. The Store As dialog box opens.
	5. Enter the name you want to associate with this repository document in the Name field.
	6. Enter a description of the repository document in the Description field.
	7. Enter any notes you would like attached to the document in the Notes field.
	8. Click Store. The Store As dialog box is dismissed and your MFL document displays in the Format...

	Setting Format Builder Options
	1. Choose ToolsÆOptions. The Options dialog displays.
	Figure 2�11 Format Builder Options Dialog
	2. Enter data in the fields as described in the following table.
	Table 2�10 Format Builder Options Properties

	Format Builder Menus
	File Menu
	Table 2�11 File Menu Commands

	Edit Menu
	Table 2�12 Edit Menu Commands

	Insert Menu
	Table 2�13 Insert Menu Commands

	View Menu
	Table 2�14 View menu Commands

	Repository Menu
	Table 2�15 Repository Menu Commands

	Tools Menu
	Table 2�16 Tools Menu Commands

	Help Menu
	Table 2�17 Help Menu Commands

	3 Testing Format Definitions
	Starting Format Tester
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose ToolsÆTest. The Format Tester dialog displays.
	Figure 3�1 Format Tester Dialog

	Using the Format Tester Main Window
	Using the Menu Bar
	Figure 3�2 Menu Bar
	File Menu
	Table 3�1 File Menu Commands

	Edit Menu
	Table 3�2 Edit Menu Commands

	Display Menu
	Table 3�3 Display Menu Commands

	Generate Menu
	Table 3�4 Generate menu Commands

	Translate Menu
	Table 3�5 Translate Menu Commands

	Using the Shortcut Menus
	Table 3�6 Shortcut Menu Commands

	Using the Binary Window
	Using the Data Offset Feature
	1. Choose DisplayÆHex. The following two data offset options display.
	2. Click the display option that best suits your needs. The data offset panel of the Binary windo...

	Using the Escaped Text Feature
	Using the Text Feature

	Using the XML Window
	Using the Debug Window
	Using the Resize Bars

	Testing Format Definitions
	1. Start Format Builder.
	2. Open a Message Format file.
	3. Start Format Tester.
	4. Click FileÆOpen Binary, or FileÆOpen XML to load the file you want to translate and view, or e...
	5. Select DisplayÆDebug if you want to view the actions that take place during the translation op...
	6. Select TranslateÆBinary to XML, or TranslateÆXML to Binary to translate your data to the appro...
	Figure 3�3 Format Tester
	7. Correct the errors, if present, and test the translation again.
	8. Continue this process until the translation is successful.

	Debugging Format Definitions
	Searching For Values
	1. From within Format Tester, choose FileÆOpen Binary to open the binary data file you want to se...
	2. Choose EditÆFind. The Find dialog box opens.
	Figure 3�4 Find Dialog Box
	3. Enter the value you want to find.
	4. Select Text or Hex to specify what type of value you are searching.
	5. Specify the direction you want to search.
	6. Specify the position in the file from which you want your search to begin.
	7. Click OK. The Find dialog box disappears and your cursor displays next to the value for which ...
	8. Choose EditÆFind Next to search to the next instance of the specified value.

	Positioning to an Offset
	1. From within Format Tester, choose EditÆGo To. The Go To dialog box displays.
	Figure 3�5 Goto Dialog Box
	2. Enter the offset value you want to go to.
	3. Select either Dec or Hex to specify the type of offset you want to go to.
	4. Select either Forwards or Backwards to specify the direction you want your search to proceed w...
	5. Select either Beginning of File, Current Position, or End of File to specify the starting posi...
	6. Click OK to have your cursor placed next to the offset you are looking for. The Go To dialog b...

	Using the Debug Log

	4 Importing Meta Data
	Importing a COBOL Copybook
	1. Choose ToolsÆImportÆCOBOL Copybook Importer. The COBOL Copybook Importer dialog displays.
	Figure 4�1 COBOL Copybook Importer
	2. Enter data in the fields as described in the following table:
	Table 4�1 COBOL Copybook Importer Field Descriptions

	COBOL Copybook Sample Files
	Table 4�2 COBOL Copybook Sample Files

	Importing C Structures
	C Struct Importer Sample Files
	Table 4�3 C Struct Importer Sample Files

	Starting the C Struct Importer
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose ToolsÆImportÆC Struct Importer. The C Struct Importer dialog box displays.
	Figure 4�2 C Struct Importer Dialog Box
	Table 4�4 C Struct Importer Field Descriptions

	Figure 4�3 C Struct Importer Dialog Box

	Understanding Hardware Profiles
	Building the Hardware Profile Utility
	Running the Hardware Profile Utility

	Generating MFL
	1. Enter a file name in the Input File field, or click Browse to select a file.
	2. Click Parse to parse the file.
	3. Select the desired structure from the Structure drop-down list box.
	4. Specify an existing profile or create a new one by performing one of the following procedures.
	Figure 4�4 C Struct Importer Hardware Profile Dialog Box
	5. Click OK to save your hardware profile changes and return to the C Struct Importer dialog box.
	6. Click OK to generate your MFL. If the generation is successful, you are returned to Format Bui...

	Figure 4�5 MFL Generation Errors Dialog Box
	7. Click Display Error Log to view any errors encountered, click Save Error Log to save the error...

	Generating C Code
	1. Enter a file name in the Input File field, or click Browse to select a file.
	2. Click Parse to parse the file.
	3. Select the desired structure from the Structure drop-down list box.
	4. Select the C Code option button.
	5. Enter a file name in either the MFL Gen or Data Gen fields, or click Browse to select a file.
	6. Click OK. You will be warned about overwriting existing files and notified about the success o...
	7. Copy the generated source code to the target platform and compile and execute it.
	8. Copy the generated MFL or data back to the platform running Format Builder.

	Importing an FML Field Table Class
	FML Field Table Class Importer Prerequisites
	1. Move the field tables associated with the FML buffer from the Tuxedo system to the WebLogic Se...
	2. Use the weblogic/wtc/jatmi/mkfldclass utility to build java source code representing the field...
	3. Compile the source code. The resulting class files are called fldtbl classes because they impl...

	FML Field Table Class Sample Files
	Table 4�5 FML Field Table Class Sample Files

	Creating XML with the FML Field Table Class Importer
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose ToolsÆImportÆFML Field Table Class Importer. The FML Field Table Class Importer dialog ...
	3. Enter the name of the fldtbl class file that is to be processed into the Class Names field.
	4. Click Load. The names of the fields from the field tables appear in the Available Fields list....
	5. Select the desired fields from the Available Fields list and click Add. The selected fields wi...
	6. Click OK after you have successfully selected all the necessary field names. The FML Field Tab...
	7. Edit the created MFL document to specify the order and occurrences of the fields that will be ...
	8. Choose ToolsÆTest to open Format Tester.
	9. From the Format Tester menu bar, choose GenerateÆXML.
	10. Format Tester now creates an XML document that conforms to the MFL document in Format Builder...
	11. Choose FileÆSave XML to save the XML document to the name and location of your choice.

	5 Retrieving and Storing Repository Documents
	Accessing the Repository
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose RepositoryÆLog In. The Process Integrator Repository Login window opens.
	Figure 5�1 Process Integrator Repository Login Dialog Box
	3. Enter the Process Integrator userid specified for the connection in the User Name field.
	4. Enter the Process Integrator password specified for the connection in the Password field.
	5. Enter the server name and Port number in the Server[:port] field.
	6. Click Connect. If your login is successful, the Login window disappears and the Format Builder...

	Repository Menu
	Table 5�1 Repository Menu Commands

	Retrieving Repository Documents
	1. Start Format Builder.
	2. Log in to the Repository.
	3. Choose RepositoryÆRetrieve. The Select-document-to-retrieve dialog box opens.
	4. Select the document you want to retrieve from the document list.
	5. Click Retrieve. The Select-document-to-retrieve dialog box is dismissed and you are returned t...

	Storing Repository Documents
	1. Start Format Builder.
	2. Open the MFL document you want to store in the repository.
	3. Log in to the repository.
	4. Choose RepositoryÆStore As. The Store As dialog box opens.
	5. Enter the name you want to associate with this repository document in the Name field.
	6. Enter a description of the repository document in the Description field.
	7. Enter any notes you would like attached to the document in the Notes field.
	8. Click Store. The Store As dialog box is dismissed and your MFL document displays in the Format...

	Importing Documents into the Repository
	Invoking the Batch Import Utility
	-v
	-n
	-f
	-t
	files
	Table 5�2 Supported Document Types and Extensions

	Using the Repository Document Chooser
	Using the Open Document Dialog Box
	Figure 5�2 Select Document To Retrieve Dialog Box
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Using the Store Document Dialog Box
	Figure 5�3 Store Document Dialog Box

	Using the Shortcut Menus
	Figure 5�4 Store Document Dialog Box
	Figure 5�5 Confirm Delete Dialog Box
	Figure 5�6 Rename Folder NewFolder Dialog Box
	Figure 5�7 Modify Documents - Document Generate Dialog Box

	6 Using the Run-Time Component
	Binary to XML
	Listing 6-1 Sample Binary to XML Parse() Method
	Generating XML with a Reference to a DTD
	Listing 6-2 Sample XML Generation with a DTD Reference Code Example

	Passing in a Debug Writer
	Listing 6-3 Passing in a Debug Writer Sample
	Listing 6-4 Debug Output

	XML to Binary
	Listing 6-5 Sample XML to Binary Conversion
	Converting a Document object to Binary
	Listing 6-6 Converting a Document Object to Binary

	Passing in a debug writer
	Debug Output
	Listing 6-7 Debug Output

	XML to XML Transformation
	Listing 6-8 XML to XML Transformation
	Initialization methods
	init() method
	Listing 6-9 Properties file myconfig.cfg:
	Listing 6-10 Source code example of init() method using file 'myconfig.cfg'

	Java API Documentation
	Run-Time Plug-In to WebLogic Process Integrator
	Figure 6�1 Run-Time Plug-In to Process Integrator

	A Supported Data Types
	MFL Data Types
	Table A�1 Supported MFL Data Types

	COBOL Copybook Importer Data Types
	Table 6�1 COBOL Data Types

	C Structure Importer From Importing Meta Data

	B Creating Custom Data Types
	User Defined Types Sample Files
	Table 6�2 User Defined Types Sample Files

	Registering User Defined Types in Format Builder
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose ToolsÆUser Defined Types. The Add/Remove User Defined Types dialog box displays.
	Figure 6�2 Add/Remove User Defined Types Dialog Box
	3. Enter the class name implementing the type in the Class Name field.
	4. Click View. Information about the requested class populates the following display-only fields ...

	Figure 6�3 Add/Remove User Defined Types Dialog Box
	5. Once a valid user defined type is displayed, click Add to make it available for use within For...

	Creating User Defined Types for the Stand-Alone XML Translator Engine
	name
	binType
	name

	Configuration of User Defined Types for the Process Integrator XML Translator Plug-In
	Publishing User Defined Types to the Repository from Format Builder
	1. Start Format Builder by clicking StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Inte...
	2. Choose RepositoryÆLog In. The Process Integrator Repository Login window opens.
	Figure 6�4 Process Integrator Repository Login Dialog Box
	3. Enter the userid specified for the connection in the User Name field.
	4. Enter the password specified for the connection in the Password field.
	5. Enter the server name and Port number in the Server[:port] field.
	6. Click Connect. If your login is successful, the Login window closes and the Format Builder Tit...
	7. Choose ToolsÆUser Defined Types. The Add/Remove User Defined Types dialog box opens.

	Figure 6�5 Add/Remove User Defined Types Dialog Box
	8. Select the class you want to publish from the list of Installed Types and click Publish. The i...

	Publishing User Defined Types to the Repository Using the Repository Import Utility

	User Defined Type Coding Requirements
	Class com.bea.wlxt.bintype.Bintype
	Required Interface Routines
	public String read(InputStream byteStream, MFLField mflField)throws BintypeException
	public void write(BintypeOutputStream byteStream, MFLField mflField, String value)throws BintypeE...

	Optional Interface Routines
	public boolean canBeFieldType()
	public boolean canBeLenFieldType()
	public boolean canBeTagFieldType()
	public boolean canBeDelimited()
	public boolean isFixedSize()
	public boolean isDateType()
	public boolean isCutoffRequired()
	public boolean isCodepageOK()
	public boolean isValueOK()
	public boolean canHaveDecimalPlaces()
	public boolean canBePadded()
	public boolean canBeTrimmed()
	public String getDescriptiontext()
	public String getTypeName()
	public String getDisplayName()

	Utility Interface Routines
	public static byte[] getBinaryBytes (String str)
	public static String makeString(byte[] b)
	protected void reverseBytes (byte[] data)
	protected String readTag(InputStream byteStream, MFLField fld) throws BinTypeexception
	protected int readlength(InputStream byteStream, MFLField fld) thorws BintypeException
	protected void writeTag(BintypeOutputStream byteStream, MFLField fld) throws Bintypeexception
	protected void writeLength(BintypeOutputStream byteStream, MFLField fld, int fldLen) thorws Binty...
	protected byte[] readDelimitedField(InputStream byteStream, MFLField mflField) throws BintypeExce...
	protected String applyPadAndTrim(String value, MFLField fld, boolean applyPad, boolean applyTrim

	Class com.bea.wlxt.bintype.BintypeString
	Required Interface Routines
	Optional Interface Routines
	Utility Interface Routines
	protected String makeString(byte[] data, MFLField mflField) throws BintypeException
	protected byte[] readField(InputStream byteStream, MFLField mflField) throws Bintypeexception
	protected void writeField (BintypeOutputStream byteStream, MFLField mflField, String value, Strin...
	protected String trimBoth (String data, char trimChar)
	protected String trimLeading (String data, char trimChar)
	protected String trimTrailing(String data, char trimChar)

	Class com.bea.wlxt.bintype.BintypeDate
	Required Interface Routines
	Optional Interface Routines
	Utility Interface Routines
	protected static String readDate(String date, SimpleDateFormat fmt)
	protected static String readDate(String date, SimpleDateFormat fmt, MFLField fld, int yearpos
	protected static String writeDate(String date, SimpleDateFormat fmt)
	protected static String rawDateToString(byte[] data, String baseType)
	protected static byte[] stringDateToRaw(String date, String baseType)

	Class com.bea.wlxt.mfl.MFLField
	public String getName()
	public String getType()
	public boolean hasBaseType()
	public String getBaseType
	public boolean hasDelimRef()
	public String getDelimRef()
	public boolean hasdelimRefValue()
	public boolean hasDefaultValue()
	public String getDefaultValue()
	public boolean hasPad()
	public String getPad()
	public boolean hasTrimLeading()
	public String getTrimLeading()
	public boolean hasTrimTrailing()
	public String getTrimTrailing()
	public boolean isOptional()
	public boolean hasCutoff()
	public int getCutoff()
	public boolean hasLength()
	public int getLength()
	public boolean hasDelim()
	public String getDelim()
	public boolean hasValue()
	public String getValue()
	public boolean hasCodepage()
	public String getCodepage()
	public boolean hasTagField()
	public boolean hasLenField()
	public boolean isTagBeforeLength()
	public boolean hasDecimalPlaces()
	public int getDecimalPLaces()

	C Running the Purchase Order Sample
	What is Included in the Purchase Order Sample
	Table 6�3 List of Purchase Order Sample Application Files

	Prerequisite Considerations
	Understanding the Data Formats Used with XML Translator
	About Binary Data (Non-XML Data)
	About XML Documents
	About MFL Documents

	Performing Binary to XML Translation
	Analyzing the Data to be Translated
	Listing 6-11 Sample Binary Purchase Order Data
	1. Get the definition of the data. This may involve using printed specifications or internal docu...
	Table 6�4 Purchase Order Master Record
	2. Identify hierarchical groups.
	3. Identify group attributes.
	4. Identify data fields.
	5. Identify data field attributes.

	Table 6�5 Analysis of Purchase Order Data

	Using the Format Builder To Test the Translation
	Notes: For details on entering data in the detail windows of Format Builder, refer to the BEA Web...
	Step 1. Starting Format Builder and Creating the Message Format
	1. Choose StartÆProgramsÆBEA WebLogic E-Business PlatformÆWebLogic Integration 2.0ÆxmltranslatorÆ...
	2. Choose FileÆNew. A new message definition opens.
	3. Enter PurchaseRequest as the message format name and select the appropriate MFL version from t...
	4. Click Apply. The tree pane changes to reflect the new message format name.

	Step 2. Creating Fields
	1. Select PurchaseRequest in the tree pane and choose InsertÆFieldÆAs Child. The Field Descriptio...
	2. Enter the field details as follows:
	3. Select the type of character encoding you want for the field data by selecting it from the Cod...
	4. Select the field data character coding you want to use by selecting from the Code Page drop-do...
	5. Click Apply. The PR_Number field is saved to the message format file.
	6. Select the PR_Number field you just created in the tree pane and right-click to select Duplica...
	7. Enter Supplier_ID as the name and click Apply. The Supplier_ID field is created and stored in ...
	8. Select the Supplier_ID field you just created in the tree pane and choose InsertÆFieldÆAs Sibl...
	9. Enter the Supplier_Name field details as follows:
	10. Click Apply. The Supplier_Name field is created and added to the tree pane.
	11. Select the Supplier_Name field you just created in the tree pane and choose InsertÆFieldÆAs S...
	12. Enter the Requested_Delivery_Date field details as follows:
	13. Click Apply. The Requested_Delivery_Date field is created and added to the tree pane.

	Step 3. Creating Groups
	1. Select the Requested_Delivery_Date field in the tree pane and choose InsertÆGroupÆAs Sibling. ...
	2. Enter the group details as follows:
	3. Click Apply. The Shipping_Address group is created and added to the tree pane.
	4. Select the Shipping_Address group in the tree pane and choose InsertÆGroupÆAs Child.
	5. Use the data in Table�6�5 to create the Address group and click Apply to save the data.
	6. Follow the steps outlined in Step 2. Creating Fields, to create the Street, City, State, and Z...

	Step 4. Creating a Group Reference
	1. Select the Shipping_Address group in the tree pane and choose InsertÆGroupÆAs Sibling. The Gro...
	2. Enter the group details as follows:
	3. Select the Address group under Shipping_Address in the tree pane and choose EditÆCopy. This co...
	4. Select the Billing_Address group you created in step 2 in the tree pane and choose EditÆPasteÆ...
	5. Change the Address reference group to be a child of the Billing_Address group by selecting the...

	Step 5. Creating the Remaining Items
	Figure 6�6 Completed Tree Pane for Purchase Order Sample

	Step 6. Saving the Message Format
	1. Choose FileÆSave As. The Save As dialog displays.
	2. Navigate to the directory where you want to save the file.
	3. In the File Name text box, type the name you want to assign to the file.
	4. Click Save As to save the file in the specified location with the specified name and extension.
	1. From the Format Builder main window, choose ToolsÆOptions. The Format Builder Options dialog o...

	2. Select Auto-generate DTD and/or Auto-generate Schema to have Format Builder automatically crea...
	3. Click OK to activate your selections.

	Step 7. Testing the Message Format
	1. Choose ToolsÆTest. The Tester opens. This allows you to test the translation of the binary pur...
	2. Click Load and navigate to the SAMPLES\PO directory.
	3. Choose the file PO_01.DATA and click Open. The left side of the Format Tester dialog displays ...
	4. Click TranslateÆBinary To XML >. The binary data is translated and the right side of the dialo...
	5. If the translated data appears correct, choose FileÆ Save XML.
	6. Navigate to the SAMPLES\PO directory and enter PO.XML as a name for the XML data.

	Performing XML to Binary Translation
	1. Choose FileÆOpen in Format Builder.
	2. Navigate to the directory containing the desired file and select the file name.
	3. Click open. The file is loaded into Format Builder.
	4. Choose ToolsÆTest.
	5. Under the XML panel, click Load, and navigate to the SAMPLES\PO directory.
	6. Choose the file po.xml and click Open. The right side of the Format Tester dialog displays the...
	7. Click TranslateÆXML to Binary. The XML data is translated, and the right side of the dialog di...
	8. If the translated data appears correct, choose FileÆ Save Binary.
	Glossary
	Binary Data
	Big Endian
	CLASSPATH
	COBOL Copybook Importer
	Code Page
	Copybook
	Data Transformation
	Data Translation
	Delimiter
	Document Type Definition (DTD)
	eXtensible Stylesheet Language: Transformations (XSLT)
	Field
	Group
	Group Choice
	Java Message Service (JMS)
	Little Endian
	Message Format
	Metadata
	Message Format Language (MFL)
	Reference
	Repository
	Schema
	Servlet
	Stylesheet
	WebLogic Process Integrator
	WebLogic Server
	XML - Extensible Markup Language
	XPath
	Index

