o®%%,

» F
: #
Oy e a

BEA WebLogic

Collaborate
A Component of BEA WebLogic Integration

Programming
BEA WebLogic Collaborate
Messaging Applications

BEA WebLogic Collaborate Release 2.0
ition 2.0
July 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, ORMAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebL ogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebL ogic, BEA WebL ogic Commerce Server, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Collaborate, BEA
WebL ogic Enterprise, BEA WebL ogic Server, and BEA WebL ogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.
Programming BEA WebL ogic Collaborate M essaging Applications

Document Edition Date Software Version

20 July 2001 20

Contents

About This Document

What Y 0oU Need t0 KNOWccoiieieciecieeece ettt Vii
E-UOCSWED SITE.....ociiice e e et stesreesaesreeaaesreeaeees viii
HOW to Print the DOCUMENL.........ccccevirirerirreeieee e viii
Related INfOrmation...........ooviiii e e e viii
(0o o1 r=o: A U LS TS iX
Documentation CONVENTIONS.........c.eierererereseste e s eeeseee e e e esesseeessessessessesnens X

1. Developing XOCP C-Enabler Applications to Exchange Business Messages

gL 0o 7 1o o B USSR 1-1
(Y O] o= o L= 1-2
XOCP C-Enabler AppliCationS.......ccccveverreeiesisie e seseseeseese e 1-3
C-Enabler Class Library........coceiereeesese e 1-3
Conversations and Conversation Definitions...........ccveevecnecncenenene 1-4
XOCP Business Messages and Message ENVelOpesS.......coovvveeeenereeceneenn 1-4
Conversation Initiators and PartiCipants..........ccoceeeerienenenie e 1-8
Conversation COOrdiNGLONScureuerieirieerieesieese et seenes 1-9
Trading Partner SaES........covvviieiererereseseeeee s e s snens 1-11
SECUIE MESSAGING ...eveeeetertiie st sieee e se st be ettt see e e e e e e e ebeenas 1-11
Key Tasksfor C-Enabler AppliCationsS.........ccovevevveeinesiere e e e seenens 1-12
JOINING @ C-SPACE.euveeeeeeetieie st se s see e e e aese e se s snesresaesaeseens 1-12
Registering for aRolein a Conversation.............ccceeeerenencneneneneneens 1-13
Engaging in Conversations with Trading Partnersccccceeveeecvvecennns 1-14
Shutting Down a C-Enabler Session to Leave a C-Space..........ccocevvenene 1-16
RUN-Time INformation FIOWccoi i 1-16
Information FIOW Diagramcccceeevevereveerieeeeee s ese s 1-17
Stepsin the INformation FIOW............cccoveeievinere v 1-18

Programming BEA WebL ogic Collaborate M essaging Applications iii

2. Programming Steps for C-Enabler Applications

Step 1 IMPOrt PaCKagES......vevereeeeerere s se e s ee st s e eesesseeesnens
Step 2: Implement the ConversationHandler Interface............ccocveeienns
Step 3: Create a C-Enabler SESSION.......cocvveveverirereeeeeesese s
Step 4: Register a Conversation Handleroooevvvveveneceeveceenecenins
Step 5: Initiate or Participate in a ConVersation............ccoeeeeereercenieneneens
Step 6: Exchange BUSINESS MESSAgES........cvvevereerereeeereeeeresessessessesseseens
Step 7: End the CoNVErSationccccieiirenieieesieee e
Step 8: Shut Down the C-Enabler SeSSioN.........cccoevereeieeeereneeineeeins

3. Sending XOCP Business Messages

Step 1: Create the BUSINESS MESSAQEccvvveerieeierireeires et
Importing the Required Packagescooe v ieeneneeeeeeses e
Creating Payl0ad PartS.........cccceveeeeenenie s e eeseesesseseesesseesessesennens
Creating the XOCP Business Message and Adding Payload Parts..........

Step 2: Specify the Recipients of the BuSINeSS MeSSageccveverererencnnns
Specifying aParticular Trading Partnerccocevveeeeeeeveeeseneseseseseens
Using C-Enabler XPath Expressions

to Specify Message Recipient Criteria.......ccvvevereeernieenenesiese e

Step 3: Specify the Quality of Service for Message Delivery.........ccovvnnnen.
Automatic Quality of Service FEALUrES........ceoveevereeese e
QUalityOf SErVICE ClaSS......cieiereeiereeeee e e e e e sne e
COUE EXAMPIE ...ttt e
Setting the Message Déelivery Confirmation Levelcccceevevveevivinnnnns
Setting Message DUrabilityccccvveeeieeerise e
Setting the Number of Delivery Retry Attempts........cooeeeeeevreeecinienennns
Setting the Correlation ID for a Business MESSage........covvvrvrerenierennenns

Step 4: Send the XOCP BUSINESS MESSA0E......ccvecvereereeeeeeeeeeseesessessessessesnens
Synchronous Message DEITVENY ... e
Deferred Synchronous Message DElIVENY ..o vevevecceenecece e

Step 5: Check the Delivery Status of the Business Message.........ccovvereereenens
M ESSAGE TOKENS ...ttt sttt ettt eae b b e
Delivery Status Tracking........cccoevereeerenierie e seese e
Message Tracking LOCALIONS.........ccvveireresesesieseeseeseeseeseeeerese s

iv Programming BEA WebL ogic Collaborate Messaging Applications

4. Receiving XOCP Business Messages

About Receiving XOCP BUSINESS MESSAGESceivrverrerrerieserreeseeseesessesessessens 4-1
Receiving an XOCP BUSINESS MESSA0E........ceoueueririerieriesieseesieseeseeeeesiese v 4-2
TasKS PErfOrMEdc.ooveiieiieie e e 4-2
(0010 L= T] oo S 4-3

Index

Programming BEA WebL ogic Collaborate M essaging Applications

Vi

Programming BEA WebL ogic Collaborate Messaging Applications

About This Document

This document describes how to use the BEA WebL ogic Collaborate Messaging AP
to develop X OCP protocol messaging applications.

This document includes the following topics:

m Chapter 1, “Developing XOCP C-Enabler Applications to Exchange Business
Messages,” discusses steps required to devel op applications that exchange
busi ness messages using the BEA WebL ogic Collaborate eXtensible Open
Collaboration Protocol (XOCP).

m Chapter 2, “Programming Steps for C-Enabler Applications,” discusses the steps
required to program applications that exchange business messages using the
XOCP protocol.

m Chapter 3, “Sending XOCP Business Messages,” discusses the requirements for
sending X OCP business messages.

m Chapter 4, “Receiving XOCP Business Messages,” discusses requirements for
receiving XOCP business messages.

What You Need to Know

This document is intended for independent software vendors (ISVs) who want to
extend BEA WebL ogic Collaborate. It assumes afamiliarity with the BEA WebL ogic
Collaborate platform and Java programming.

Programming BEA WebL ogic Collaborate M essaging Applications vii

e-docs Webh Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at ht t p: / / e- docs. bea. com

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Collaborate
documentation Home page on the e-docs Web site (and also on the documentation
CD). Y ou can open the PDF in Adobe Acrobat Reader and print the entire document
(or aportion of it) inbook format. To accessthe PDFs, open the WebL ogic Collaborate
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web siteat ht t p: / / www. adobe. com

Related | nfor mation

The following BEA WebLogic Collaborate documents contain information that will
help you understand how to extend WebL ogic Server:

m BEA WebL ogic Collaborate documentation (available online):
e Administering BEA WebLogic Collaborate
e Programming BEA WebLogic Collaborate Management Applications
e Programming BEA WebLogic Collaborate Logic Plug-Ins

viii Programming BEA WebL ogic Collaborate Messaging Applications

m The Sun Microsystems, Inc. Javasiteat htt p: //j ava. sun. conl

For more information about BEA WebL ogic Server and Java, refer to the WebL ogic
Server documentation availableat htt p: // edocs. bea. cont .

Contact Udl

Y our feedback on the BEA WebL ogic Collaborate documentation isimportant to us.

Send us e-mail at docsupport@bea.com if you have questions or comments. Y our

comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Collaborate documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Collaborate 6.0 release.

If you have any questions about this version of BEA WebL ogic Collaborate, or if you

have problems installing and running BEA WebL ogic Collaborate, contact BEA

Customer Support through BEA WebSupport at www.bea.com. Y ou can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming BEA WebL ogic Collaborate M essaging Applications

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneoudly.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

.doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

Identifies significant words in code.

Example:
void commt ()

nonospace
italic
t ext

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

Programming BEA WebL ogic Collaborate Messaging Applications

Convention Item

{} Indicates a set of choicesin asyntax line. The braces themselves should
never be typed.

[] Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.
Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsisitself should never be typed.

Programming BEA WebL ogic Collaborate M essaging Applications Xi

Xii Programming BEA WebL ogic Collaborate Messaging Applications

CHAPTER

1 Developing XOCP

C-Enabler Applications
to Exchange Business
Messages

XOCP isthe default protocol used by WLC for exchanging business messages. This
section includes the following topics:

Introduction
Key Concepts
Key Tasks for C-Enabler Applications

Run-Time Information Flow

Introduction

The WebL ogic Collaborate C-Enabler API is no longer recommended for devel oping
XOCP applicationsto exchange business messages. Thisdocumentationisprovided to
support preexisting WebL ogic Collaborate installations in which the XOCP protocol
is used to manage business message processes.

Programming BEA WebL ogic Collaborate M essaging Applications 11

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

Instead of using the API the recommended method is to use the WebL ogic Process
Integrator Studio with the WebL ogic Collaborate plug-in. To create applications that
exchange business messages, see the WebL ogic Process Integrator Studio.

Terminology in this documentation differsin several significant ways from current
WebL ogic Collaborate terminology. For information about migrating from previous
releases of WebL ogic Collaborate to WebL ogic Collaborate Release 2.0, including a
table that maps the terminology differences, see “Migrating Applications that
Exchange Business M essages Using the XOCP Protocol” in Migrating BEA WebL ogic
Collaborate to Release 2.0.

Note: If you migrated a Java messaging application that was written using the
WebL ogic Collaborate C-Enabler API to WebL ogic Collaborate Release 2.0,
themigrated application must berunin aseparate JavaVirtual Machine (JV M)
in nonpersistent mode.

Many of the code examples in this documentation derive from the installation
verification example. For moreinformation, seelnstalling BEA WebLogic Collaborate
and the “Hello Partner Sample”’ in Using BEA WebL ogic Collaborate Samples.

Developers can al so design and implement workflows by using the WebL ogic Process
Integrator Studio. For more information, see Using the BEA WebLogic Process
Integrator Studio, Chapter 2, “Using Workflows to Exchange Business Messages.”

The following sections describe X OCP c-enabler applications and related concepts:
m Key Concepts
m Key Tasksfor C-Enabler Applications

m Run-Time Information Flow

Key Concepts

1-2

This section describes the following key concepts associated with c-enabler
applications:

m XOCP C-Enabler Applications
m C-Enabler Class Library

Programming BEA WebL ogic Collaborate Messaging Applications

Key Concepts

m Conversations and Conversation Definitions

m XOCP Business Messages and Message Envelopes
m Conversation Initiators and Participants

m Conversation Coordinators

m Trading Partner States

m Secure Messaging

XOCP C-Enabler Applications

XOCP c-enabler applicationsare Javaapplicationsthat run on c-enabler nodesand use
the C-Enabler Class Library to execute the following tasks: join and |eave c-spaces,
initiate or participate in conversations; terminate or leave conversations; and exchange
XOCP business messages with other trading partnersin the c-space. A c-enabler node
can host many XOCP c-enabler applications.

C-Enabler Class Library

The C-Enabler Class Library provides APIsfor exchanging X OCP business messages
and consists of the packages listed in the following table.

Table 1-1 C-Enabler ClassLibrary Packages

Package Name Description

com bea. b2b. enabl er Used for working with c-enabler nodes and c-enabler
Sessions.

com bea. b2b. enabl er. xocp Used for working with c-enabler sessions for the

eXtensible Open Collaboration Protocol (XOCP).

com bea. b2b. prot ocol . xocp. conver sati on Used for working with conversations based on the
.l ocal eXtensible Open Collaboration Protocol (XOCP).

com bea. b2b. prot ocol . nessagi ng Used for working with messagesin a conversation.

Programming BEA WebL ogic Collaborate M essaging Applications 1-3

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

Table 1-1 C-Enabler ClassLibrary Packages (Continued)

Package Name Description

com bea. b2b. prot ocol . xocp. nessagi ng Used for working with messagesin conversations
based on the eXtensible Open Collaboration Protocol
(XOCP).

For detailed information about these packages, see the Javadoc on the WebL ogic
Collaborate documentation CD or in the cl assdocs subdirectory of your WebL ogic
Collaborate installation.

Conversations and Conversation Definitions

In WebL ogic Collaborate, a conversation is a series of message exchanges between
trading partners that takes place in a collaboration space and that is predefined
according to a conversation definition. Each message in the conversation may cause
any number of back-end transactions.

A conversation definition consists of a unique conversation name, conversation
version, message definitions, trading partner 1Ds, and trading partner roles for one
conversation. At design time, you use the WebL ogic Process Integrator Studio to link
aworkflow template definition to a particular role (such as buyer or seller) ina
WebL ogic Collaborate conversation definition.

XOCP Business Messages and Message Envelopes

An XOCP business message is the basic unit of communication exchanged between
trading partnersin an XOCP conversation. An XOCP business message is represented
in the c-enabler class library by the

com bea. b2b. prot ocol . xocp. messagi ng. XOCPMessage class.

A message envelope is a container for a business message. A message envelope
contains information about the sender (such asthe sender URL) and recipient (such as
the destination URL). A message envelope is represented in the C-Enabler Class
Library by the com bea. b2b. pr ot ocol . messagi ng. MessageEnvel ope class.
However, only logic plug-ins (not c-enabler applications) have programmatic access

1-4 Programming BEA WebL ogic Collaborate Messaging Applications

Key Concepts

to message envelopes. For more information, see “ Information Flow for Message
Envelopes’ on page 1-7 and “ Routing and Filtering Business Messages” in
Programming BEA WebL ogic Collaborate Logic Plug-Ins.

Diagram of an XOCP Business Message

The following figure shows a message envelope and the components of an XOCP
business message.

Figure1-1 Componentsof an XOCP Business M essage

Message Header

Payload
Business Attachmemnt
Document Attachment
Business Attachment
Document

Programming BEA WebL ogic Collaborate M essaging Applications 1-5

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

Components of an XOCP Business Message

1-6

An XOCP business message is a multipart MIME (Multipurpose Internet Mail
Extensions) message. It consists of the following components.

Table 1-2 Components of an XOCP Business M essage

Component

Description

Message header

Message attributes, including the sender and recipient information,
conversation information, Qualities of Serviceinformation, and so on.

Payload

Container for business document(s) and attachment(s) in thisbusiness
message. The payload container has one or more business documents,
one or more attachments, or a combination of both. A payload part is
represented in the C-Enabler Class Library by the

com bea. b2b. prot ocol . nessagi ng. Payl oadPar t
interface.

Business
document(s)

XML -based payload part of a business message. Represented in the
C-Enabler Class Library by the

com bea. b2b. prot ocol . nessagi ng. Busi nessDocurnent
class.

Attachment(s)

NonXML-based payload part of a business message. Binary content.
Represented in the C-Enabler Class Library by the
com bea. b2b. prot ocol . nessagi ng. At t achnent class.

Programming BEA WebL ogic Collaborate Messaging Applications

Key Concepts

Information Flow for Message Envelopes

The following figure shows an example of how message envel opes are processed in

the c-hub.

Figure1-2 Message Envelope Processing in the C-Hub

C-Hub
Message
Envelope
Business
Message
Message
Envelope .
Router AETEeE - Filter
Message
i Message
Envelope
Message Business
Envelope Message
Business
Message Message Message
Envelope Envelope
4 - -
Business Business
Message Message
Business
Message
4
¥ ¥
Sending Recipient Recipient
Trading Trading Trading
Partner Partner Partner

Programming BEA WebL ogic Collaborate M essaging Applications 1-7

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

M essage envel ope processing occurs in the following sequence:

1

The sending c-enabler application creates and sends the business message to the
c-hub.

The c-hub receives the business message and wraps it with a message envelope,
extracting certain sender and recipient information from the business message.

The router processes the business message, and then validates and finalizes the
list of recipients.

The router creates a separate message envelope for each recipient in the
recipientslist, insertsalogical copy of the business message in the message
envelope, and then forwards all message envelopes to the filter.

Asshown in Figure 1-2, the router creates message envelopes for three
recipients.

Within the filter, the applicable protocol-specific filter for each recipient trading
partner evaluates each business message to determine whether it will be sent to
the recipient. The filter forwards accepted messages to the next processing step in
the c-hub.

In Figure 1-2, the three business messages are evaluated in the filter. Two are
accepted and one is rejected.

The c-hub validates the recipient, and then sends the business message (in its
message envelope) to the recipient trading partner.

The recipient trading partner receives the business message.

Conversation Initiators and Participants

In any XOCP conversation, there are two types of trading partner roles:

m Conversation initiator isthe trading partner who creates the conversation and

sends the first business message (such as a request) to one or more recipient
trading partners. The conversation initiator usually awaits a reply from each
trading partner and might exchange subsequent business messages. When
finished, the conversation initiator terminates the conversation (unless the
conversation has timed out).

1-8 Programming BEA WebL ogic Collaborate Messaging Applications

Key Concepts

m Conversation participant is atrading partner who is enlisted in the conversation
when it receives the first business message from the conversation initiator. The
conversation participant usually sends areply to the conversation initiator and,
optionally, might exchange subsequent business messages. When finished, the
conversation participant either leaves the conversation or waits until the
conversation terminates.

Each conversation definition in the repository includes at least both of these types of
roles. A trading partner must be subscribed to the appropriate role in the conversation
in order to initiate or participate in conversations associated with that conversation
definition.

Theinitiator of aconversation is usually determined by the role in which atrading
partner isregistered. For example, in a Get Quot e conversation, the trading partner
whoisintheroleof thebuyer normally initiatesaGet Quot e conversation. Any trading
partner whoisin therole of the seller would normally act as a conversation participant
in the Get Quot e conversation.

The following figure shows some of the tasks that conversation initiators and
conversation participants perform.

Figure1-3 Conversation Initiatorsand Participants

C-Hub

Time

Create Conversation
—_———————»

Send Request

Conversation
Participant

Conversation

Initiator Send Reply

]

Terminate
Conversation

Conversation Coordinators

WebL ogic Collaborate supports two types of conversation coordinators that manage
conversations at run time: aglobal conversation coordinator manages active
conversations on the c-hub, and local conversation coordinatorsin c-enablershelp the
global coordinator manage active conversations locally.

Programming BEA WebL ogic Collaborate M essaging Applications 1-9

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

The following figure shows global and local conversation coordinatorsin the
WebL ogic Collaborate architecture.

Figure1-4 Global and Local Conversation Coordinators

Conversation C-Hub Conversation
Initiator Global Participant
Xxocp Conversation
Local Conversation Coordinator Local
C - -t = C
Coordinator Coordinator

Global Conversation Coordinator

A global conversation coordinator is a c-hub-based service that coordinates
conversation life cycles according to the rules of XOCP and supports long-living,
durable conversations that span multiple organizational boundaries. The global
conversation coordinator maintains alist of active conversationsin the c-hub.

The global conversation coordinator performs the following services:
m Enlistsand delists trading partnersin a conversation

m Enforces the XOCP conversation termination protocol

m Maintains status information about conversations

m Providesthe conversational context for the execution of the business protocol

Local Conversation Coordinators

A local conversation coordinator is a c-enabler-based service that coordinates
conversations in which the c-enabler node is participating. The local conversation
coordinator maintains a list of active conversations in which the c-enabler nodeis
participating. Each c-enabler session has a separate local conversation coordinator.

1-10 Programming BEA WebL ogic Collaborate Messaging Applications

Key Concepts

Thelocal conversation coordinator performs the following tasks:

m Localy enlistsin a conversation when the initial business messagein a
conversation is received from the c-hub

m Localy delists from a conversation when the system message that terminates the
conversation is received from the c-hub

Trading Partner States

The following table describes the states assigned to trading partners as they perform
tasks related to c-space and conversation participation.

Table 1-3 Trading Partner States

State Description
CONNECTED Trading partner has joined a c-space.
REG STERED Connected trading partner hasregistered for rolesin conversationsand

isready to initiate or participate in conversations.

ACTI VE Registered trading partner has participated in (that is, has sent or
received a business message) at least one conversation.

DROPPEDOUT Trading partner has | eft a conversation.

DI SCONNECTED Trading partner has left a c-space.

Some of these trading partner states are visible in the WebL ogic Collaborate
Administration Console. For moreinformation, see* Getting Started Using WebL ogic
Collaborate” in Introducing BEA WebLogic Collaborate.

Secure Messaging

Communication between the c-hub and c-enablersis secured via the Secure Sockets
Layer (SSL). Before allowing the trading partner to exchange business messages, the
c-hub must authenticate the identity of the trading partner using the trading partner’s

Programming BEA WebL ogic Collaborate Messaging Applications 1-11

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

certificate. Once authenticated, business messages are exchanged securely among
trading partners via the c-hub. For more information about WebL ogic Collaborate
security, see Using BEA WebL ogic Collaborate Security.

Key Tasks for C-Enabler Applications

This section introduces the key tasks that c-enabler applications perform:

Joining a C-Space

Registering for aRolein a Conversation

Engaging in Conversations with Trading Partners
Shutting Down a C-Enabler Session to Leave a C-Space

Joining a C-Space

1-12

Before exchanging business messages, a c-enabler application must join a c-space.
To join ac-space, the c-enabler application must create ac-enabler session, whichisa
logical session between a c-enabler node and one c-hub for one particular c-space.

Before atrading partner (c-enabler application) can create ac-enabler sessiontojoina
Cc-space:

The c-space and trading partner configuration information must be defined in the
WebL ogic Collaborate repository on the spoke and hub that hosts the c-space.

The session’s configuration information (as well as the c-space, ¢c-hub and
c-enabler URL, trading partner name, and c-enabler session name) must be
defined in the c-enabler XML configuration file. For more information, see
“Configuration Requirements’ in Administering BEA WebLogic Collaborate.

The trading partner must be authorized to join the c-space.

When ac-enabler sessionis created, the c-enabl er sends a system message to the c-hub
with arequest to join the c-space using the configuration settings specified in the
c-enabler XML configuration file. This message acts as an authentication request to

Programming BEA WebL ogic Collaborate Messaging Applications

Key Tasks for C-Enabler Applications

join the WebL ogic Collaborate system. The c-hub validates the registration of the
trading partner in the requested c-space and, if the registration is valid, allows that
trading partner to join that particular c-space. At this point, the trading partner isin a
CONNECTED state but it cannot yet participate in conversations.

Note: If the c-enabler node crashes after joining a c-space, the c-enabler application
can rejoin the c-space upon normal startup. The previous c-enabler sessionis
discarded and new resources are assigned to the new c-enabler session.
However, the c-hub cannot deliver business messages while the c-enabler
node is down. Undelivered business messages are discarded if the number of
retry attemptsis exceeded or if the business message or conversation times
out.

When atrading partner wantsto leave a c-space, the c-enabler application shuts down
the associated c-enabler session, as described in “ Shutting Down a C-Enabler Session
to Leave a C-Space” on page 1-16.

Registering for a Role in a Conversation

Once connected, atrading partner needs to register a conversation handler for a
particular role in a specific conversation definition in a given c-space. The
conversation handler must be registered for the conversation type that defines how the
trading partner participatesin the conversation.

Role registration requires the following information in the c-hub repository:

m The conversation type is a subset of a conversation definition that defines a
conversation for one trading partner based on the role in the conversation
definition to which the trading partner subscribed.

m A message definition consists of ordered message parts. A message part contains
a content type (XML or binary) and can contain a document definition. If the
content type for a part is XML, then adocument definition is required for that
part. For type binary, no other information is required.

For an introduction to these concepts, see “ Getting Started Using WebL ogic
Collaborate” in Introducing BEA WebLogic Collaborate.

Before registering for aconversation type, the trading partner must first be authorized
to register. Authorization is configured by the c-hub administrator and is based on the
trading partner’ s subscription to arole in a conversation definition.

Programming BEA WebL ogic Collaborate Messaging Applications 1-13

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

When a c-enabler session attempts to register a conversation handler for a specific
conversation type, the c-enabler sends an XOCP system message, register for
conversation, to the c-hub. The c-hub validates the role of the trading partner for the
requested conversation type in the associated c-space. If the registration is valid, the
trading partner is then alowed to initiate and participate in conversations associated
with the registered conversation type. At this point, the trading partner isin a

REG STERED state and is ready to initiate or participate in conversations.

Engaging in Conversations with Trading Partners

Once registered for arole in a conversation, atrading partner can engage in
conversations in accordance with that role. Conversation initiation and participation
occurs on the c-hub itself. However, the c-enabler session maintains some state
information about the conversationsin which it isinvolved.

The overall tasks for conversation initiator c-enabler applications and conversation
participant c-enabler applications are very similar. However, conversation initiator
c-enabler applications can terminate conversations while conversation participant
c-enabler applications cannot. Conversation participant c-enabler applications can
only leave a conversation.

Initiating a Conversation and Sending a Business Message

To initiate a conversation, a conversation initiator c-enabler application creates the
conversation. Optionally, the conversation initiator c-enabler application can specify a
timeout value, after which the conversation automatically terminates; this value
overrides the timeout value that is specified in the associated conversation definition
in the repository.

Thelocal conversation coordinator on the c-enabler node sends an XOCP system
message, create conversation, to the c-hub. The global conversation coordinator in the
c-hub creates a conversation in the appropriate c-space and enlists the trading partner
asthe conversation initiator. After the conversation is created, the conversation
initiator c-enabler application creates and sends a business message, as described in
“Sending X OCP Business Messages’ on page 3-1.

1-14 Programming BEA WebL ogic Collaborate Messaging Applications

Key Tasks for C-Enabler Applications

Participating in a Conversation

The global conversation coordinator in the c-hub handles all business messages that
the c-hub receivesfor agiven conversation. After thec-hub deliverstheinitial business
message to recipient trading partners, the global conversation coordinator enliststhose
trading partners in that conversation. Once atrading partner is enlisted in a
conversation, the trading partner isin an ACTI VE state and can send and receive
business messages in that conversation.

When the c-enabler session on atarget c-enabler node receives the initial business
messagein aconversation, it performsthe necessary housekeeping (such asregistering
the conversation in the local list) before invoking the onMessage callback on the
conversation handler. For more information, see “Receiving X OCP Business

Messages’ on page 4-1.

Once aregistered trading partner is enlisted in a conversation, the trading partner isin
an ACTI VE state and can send and receive business messages in that conversation.

Leaving a Conversation

When it hasfinished participating in aconversation, aconversation participant trading
partner can leave the conversation. When atrading partner leaves a conversation, it is
removed, by the conversation coordinator, from the list of participating trading
partners. Subsequent business messagesin that conversation are not sent to that trading
partner. After atrading partner leaves, it is kept in a DROPPEDOUT state for the
remainder of that conversation.

Terminating Conversations

A conversation terminates when theinitiating trading partner explicitly terminatesthe
conversation, or when the conversation times out; whichever occursfirst. A trading
partner who has initiated a conversation must terminate that conversation at the
appropriate time in a business process.

Note: Only the conversation initiator can terminate a conversation.
When a conversation is terminated, the conversation coordinator sends al of the
participating trading partners an XOCP system message, terminate message, which is

propagated as the callback onTer mi nat e on registered conversation handlersin
c-enabler sessions at respective c-enabler nodes.

Programming BEA WebL ogic Collaborate Messaging Applications 1-15

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

Shutting Down a C-Enabler Session to Leave a C-Space

When atrading partner hasfinished itsactivitiesin ac-space, the c-enabler application
should leave the c-space by shutting down the c-enabler session. When a c-enabler
application shuts down a c-enabler session, the c-enabler sends an XOCP system
message, leave c-space, to the c-hub. When the c-hub receives this system message,
the conversation coordinator automatically terminates all of the conversationsthat the
trading partner hasinitiated in the c-space and delists the trading partner from all other
conversations in which it was participating in the c-space.

When atrading partner leaves a c-space, the consegquences are as follows:

m The c-hub is stopped from sending any further messages to the trading partner
associated with the shutdown c-enabler session.

m All conversations that were initiated by the trading partner are terminated.
m Thetrading partner leaves any conversations in which it was participating.

m Thetrading partner reclaims resources allocated in the c-hub for that c-enabler
session.

At this point, the trading partner isin a DI SCONNECTED state in that c-space.

Run-Time Information Flow

At runtime, al c-enabler applications perform certain tasks identically: they join a
c-space, register conversation handlers, and leave the c-space in the sameway. During
individual conversations, however, conversation initiators and conversation
participants perform a series of distinct, interweaving tasks.

1-16 Programming BEA WebL ogic Collaborate Messaging Applications

Run-Time Information Flow

Information Flow Diagram

The following figure shows the run-time information flow between a conversation
initiator and a participant.

Figure 1-5 Information Flow Between Conversation Initiator and Participant

C-Enabler CHub CEnabler
Join C-Space N P Join C-Space
getEnablerSessions() getEnablerSessionsi)
Register Conversation Handler Register Conversation Handler
E registerConversationHandler) - B registerCorversationHandler()
F 5 Create Conversation E_
- » 2
% createConversation() %
E Send First Bus Msg (Request) 'g Deliver First Bus Msg o
=] - I - =
w send() (_I) enlist global enlist local =
@ onhvlessage() ®
2 . 4
= Deliver Reply Bus Msg Send Reply Bus Msg 2
8 “onhessage() B send() g
&)
L Terminate Conversation Terminate Conversation
terminate() delist global delist local
onTerminatel)
Conversation Terminated
onTerminate()
Leave C-Space N " Leave C-Space
shutdown() o b shutdown()

Thisisasimplified example that uses a single conversation and a minimal exchange

of business messages (request and reply). In practice, atrading partner may participate
in multiple conversations after registering a conversation handler and before leaving

the c-space. In addition, within asingle conversation, trading partners might exchange
many business messages, not just a single request and asingle reply.

Programming BEA WebL ogic Collaborate Messaging Applications 1-17

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

Steps in the Information Flow

At run time, the flow of information between trading partners (via c-enabler
applications communi cating through the c-hub) proceeds in the following sequence:

1
2.

Trading partner c-enabler applications join the c-space.

Each trading partner c-enabler application registers a conversation handler with
the c-enabler session which, in turn (with the help of the local conversation
coordinator), registersthat trading partner for agiven rolein agiven conversation
at the c-hub.

The conversation starts when the conversation initiator c-enabler application
creates a conversation.

The global conversation coordinator adds the conversation instance to its global
conversation list and marks the trading partner as the initiator.

The local conversation coordinator in the conversation initiator c-enabler node
adds the conversation instance to its local conversation list.

The conversation initiator’s c-enabler application creates and sends a business
message (such as a request).

The conversation initiator’s c-enabler session delivers the business message to
the c-hub.

The c-hub delivers the business message to the conversation participant’s
c-enabler node.

The global conversation coordinator in the c-hub enlists the participating trading
partner in the conversation, adding the participating trading partner to the
conversation instance entry in the global conversation list.

10. The local conversation coordinator receives the business message and enlists the

trading partner in the conversation locally, adding the conversation instance to
thelocal conversation list.

11. The onMessage implementation in the conversation participant c-enabler

application isinvoked, and the onMessage implementation processes the
busi ness message.

12. The conversation participant c-enabler application creates and sends a business

message (such as areply) back to the conversation initiator.

1-18 Programming BEA WebL ogic Collaborate Messaging Applications

Run-Time Information Flow

13. The c-enabler session on the conversation participant c-enabler node delivers the
business message to the c-hub.

14. The c-hub receives the business message and deliversit to the conversation
initiator c-enabler node.

15. The conversation initiator c-enabler node receives the business message.

16. The onMessage implementation in the conversation initiator c-enabler
application isinvoked, and the onMessage implementation processes the
business message.

17. To end the conversation, the conversation initiator c-enabler application
terminates the conversation.

Note: A conversation might terminate automatically if the conversation timeout
is exceeded.

18. Theloca conversation coordinator in the conversation initiator c-enabler node
delivers notification of termination to the global conversation coordinator in the
c-hub.

19. The global conversation coordinator in the c-hub delists the conversation
participant in the global conversation list and delivers notification of termination
to the local conversation coordinator on the conversation participant c-enabler
node.

20. Thelocal conversation coordinator on the conversation participant c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

21. The onTer ni nat e implementation in the conversation participation c-enabler
application isinvoked.

22. The glabal conversation coordinator in the c-hub marks the conversation
terminated and informs the conversation initiator by sending a conversation
termination confirmation.

23. The conversation initiator c-enabler node receives the conversation termination
confirmation.

24. The local conversation coordinator on the conversation initiator c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

Programming BEA WebL ogic Collaborate Messaging Applications 1-19

1 Developing XOCP C-Enabler Applications to Exchange Business Messages

25. The onTer ni nat e implementation in the conversation initiator c-enabler
application isinvoked.

26. Trading partner c-enabler applications leave the c-space.

For more information about these steps, see “Key Tasks for C-Enabler Applications’
on page 1-12.

1-20 Programming BEA WebL ogic Collaborate Messaging Applications

CHAPTER

2

Programming Steps for
C-Enabler Applications

The following sections describe each step in the procedure that a devel oper usually
providesin a c-enabler application:

Step 1: Import Packages

Step 2: Implement the ConversationHandler Interface
Step 3: Create a C-Enabler Session

Step 4: Register a Conversation Handler

Step 5: Initiate or Participate in a Conversation

Step 6: Exchange Business Messages

Step 7: End the Conversation

Step 8: Shut Down the C-Enabler Session

Each section includes example code.

Note: You must provide a c-enabler XML configuration file that contains the

information required by the c-enabler application at run time. Only one
c-enabler XML configuration file exists per c-enabler node. However, the
c-enabler XML configuration file can specify configuration information for
multiple c-enabler sessions; specificaly, it can provide configuration
information for each c-space that the associated trading partner joins.

Programming BEA WebL ogic Collaborate M essaging Applications 2-1

2 Programming Steps for C-Enabler Applications

For moreinformation, see “ Configuration Requirements’ in Administering
BEA WebL ogic Collaborate. In addition, for help in defining the c-enabler
XML configuration file, seethe commentsin the Enabl er Confi g. dt d filein
the dt d subdirectory of your WebL ogic Collaborate installation.

Step 1: Import Packages

C-enabler applications import the required packages from the C-Enabler Class
Library. For a description of these packages, see “ C-Enabler Class Library” on page

1-3.

The following example listing shows the type of packages that must be imported.

Listing 2-1 Importing Packages

i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport

i mport

org. w3c.

dom *;

org. apache. htm . dom *;
org. apache. xnl . seri ali ze. *;
org. apache. xerces. dom *;

com bea.
com bea.
com bea.
com bea.
com bea.
com bea.

com bea.

b2b. prot ocol . conver sati on. Conver sati onType;
b2b. enabl er. *;

b2b. enabl er. xocp. *;

b2b. pr ot ocol . messagi ng. *;

b2b. prot ocol . xocp. conversation. |l ocal . *;
b2b. prot ocol . xocp. messagi ng. *;

eci .l ogging.*;

Step 2: Implement the ConversationHandler Interface

To receive messages, a c-enabler application must implement the following interface:

com bea. b2b. prot ocol . xocp. conversation. | ocal . Conver sati onHandl er

2-2 Programming BEA WebL ogic Collaborate Messaging Applications

This interface provides the onMessage and onTer nmi nat e methods that are used to
handle incoming business messages and conversation termination notifications,
respectively. The onMessage method isinvoked when the c-enabler receives a
business message. The onTer ni nat e method isinvoked when the c-enabler receives
a conversation termination.

The conversation handler isrequiredin order for the trading partner to receive business
messages in a conversation. A conversation handler must support at least one
conversationtype (com bea. b2b. pr ot ocol . conver sati on. Conver sat i onType),
which represents arole in a conversation. A c-enabler session supports one
conversation handler per conversation type.

Listing 2-2 Implementation of the ConversationHandler Interface

public class MyConversati onHandl er
i mpl enents Conver sati onHandl er {

private String collaboratorld;

MyConver sati onHandl er (String col | aboratorld){
this.collaboratorld = col | aboratorld;
}

public void onMessage(XOCPMessage nsg){
System out. println("onMessage: received for collaborator:" +
col | aboratorld);
Conversation conv = msg. get Conversation();
QualityOf Service qos = nsg. get Q@S();

}

public void onTerm nat e(Conversation conv, int result) {
Systemout. println("onTerm nate: received for collaborator:"
+ col l aboratorld);

}
}

For detailed information about the Conver sat i onHandl er interface, see the Javadoc
on the WebL ogic Collaborate documentation CD or inthecl assdocs subdirectory of
your WebL ogic Collaborate installation.

Programming BEA WebL ogic Collaborate M essaging Applications 2-3

2 Programming Steps for C-Enabler Applications

Step 3: Create a C-Enabler Session

Toinitiate or participate in conversations, atrading partner creates a c-enabler session
on ac-enabler node. Each c-enabler session enables the trading partner to exchange
messages with other trading partnersin one c-space.

To create anew c-enabler session or to get an existing one, use the

com bea. b2b. enabl er. Enabl er class. Thefollowing listing is an example of
getting the sessi onl c-enabler session, based on the information defined in the
c-enabler XML configuration file. Alternatively, an application can get all the
c-enabler session definitions from the c-enabler XML configuration file and then
create c-enabler sessions as needed.

Listing 2-3 Obtaining a C-Enabler Session

Enabl er enabl er = Enabl er. get Enabl er ("enabl er. xm ");

Enabl er Sessi on es = enabl er. get Enabl er Sessi on("sessi onl");
[/l Create all enabler session(s) defined in "enabler.xm"
/1 Enabl er Sessi on[] ess = enabl er. get Enabl er Sessi ons() ;

/1 Optionally, get names of Enabler Sessions

/1 and use nane to create enabl er session individually

/1 String[] sessionNanes = enabl er. get Sessi onNanmes() ;

/1 Enabl er Session es = nul|;

Step 4: Register a Conversation Handler

To participate in a conversation, a c-enabler application must register a conversation
handler. A conversation handler can be associated with multiple conversation types
(each type hasa conversation name, version and rol€). A conversation handler can also
be shared among multiple conversations. A conversation handler is implemented by
the application; the devel oper is responsible for using it as needed.

To register a conversation handler, a c-enabler application calls the
r egi st er Conver sat i onHandl er method on the XOCPEnabl er Sessi on instance,
passing the conversation type and the conversation handler object as parameters.

2-4 Programming BEA WebL ogic Collaborate Messaging Applications

Thefollowing exampl elisting showshow to register aconversation handler for abuyer
role (generally aconversation initiator) in the BuyPr ocessor conversation. Note that
the specified conversation definition and role must be defined in the spoke and hub
repository.

Listing 2-4 Registering a Conversation Handler

XOCPEnabl er Sessi on session = null;
i f(es instanceof XOCPEnabl er Sessi on)
sessi on = (XOCPEnabl er Sessi on) es;
MyConver sati onHandl er ch = new
MyConver sat i onHandl er (sessi on. get Tradi ngPartner());

ConversationType ctype = new ConversationType("BuyProcessor",
"1.0", "buyer");

ConversationType[] types = { ctype };

sessi on. regi st er Conver sati onHandl er (t ypes, ch);

Step 5: Initiate or Participate in a Conversation

A conversation initiator application explicitly starts a conversation. To initiate a
conversation, theinitiating trading partner callsthecr eat eConver sat i on method on
the com bea. b2b. enabl er . xocp. XOCPEnabl er Sessi on instance, passing the
conversation type and, optionally, the conversation timeout value, in seconds. (The
default value is zero, or no timeout, if the configured timeout is also zero in the
conversation definition in the spoke and hub repository.) The trading partner must be
registered in the initiator role in the conversation definition.

The following example listing shows how a conversation is initiated:

Listing 2-5 Initiating a Conversation

Conversati onType ctype = new Conversati onType(" BuyProcessor",
"1. ou, " buyer”);
Conversation conv = session. createConversation(ctype, 0);

Programming BEA WebL ogic Collaborate M essaging Applications 2-5

2 Programming Steps for C-Enabler Applications

Step 6: Exchange Business Messages

After the conversation initiator application has created the conversation, it can begin
exchanging business messages with other trading partners in the c-space.

Initially, the conversation initiator application creates and sends a business message
(such as arequest) to one or more trading partners in the c-space. When atrading
partner receives the business message, its conversation participant application
processes the business message and (usually) creates and sends areply business
message. The trading partners may send and receive several business messagesin the
conversation. For more information about exchanging business messages, see
“Sending X OCP Business Messages’ on page 3-1 and “Receiving XOCP Business
Messages’ on page 4-1.

Step 7: End the Conversation

A conversation can end after trading partners have finished exchanging business
messages in that conversation. The way in whiuch a trading partner endsits
involvement in a conversation depends on its role in the conversation.

Participant Leaves a Conversation

Participant trading partners can leave a conversation. To leave a conversation, a
participant c-enabler application callsthe | eave method on the Conver sati on
instance, passing f al se. No messages are retained on the c-hub while the participant
is not participating.

Note: Inthisrelease, only thef al se argument is supported.

The following example listing shows how a participant leaves a conversation.

Listing 2-6 Leaving a Conversation

c.l eave(fal se);

2-6 Programming BEA WebL ogic Collaborate Messaging Applications

Initiator Terminates a Conversation

Conversation initiators can explicitly terminate a conversation or wait until the
conversation times out. (The conversation initiator can specify atimeout value when
it creates the conversation, or it can specify zero to use the timeout value defined for
the conversation in the spoke and hub repository.) When a conversation terminates, the
conversation initiator and all participating trading partners are delisted from the
conversation, any undelivered business messages are discarded, and associated system
resources are rel eased.

To terminate a conversation explicitly, the initiating c-enabler application calls the
t er mi nat e method initsimplementation of the Conver sat i on interface, asshownin
the following listing.

Listing 2-7 Terminating a Conver sation

c.term nat e(Conver sati on. SUCCESS) ;

Step 8: Shut Down the C-Enabler Session

To shut down a c-enabler session and leave the c-space, an application uses the
shut Down method in itsimplementation of the Enabl er Sessi on interface, always
passing f al se. The following example listing shows how a c-enabler session is shut
down.

Listing 2-8 Shutting Down a C-Enabler Session

es. shut Down(f al se);

If ac-enabler application shuts down ac-enabler session, the trading partner leavesthe
c-space automatically and permanently.

Programming BEA WebL ogic Collaborate M essaging Applications 2-7

2 Programming Steps for C-Enabler Applications

2-8 Programming BEA WebL ogic Collaborate Messaging Applications

CHAPTER

3 Sending XOCP
Business Messages

The following sections describe how a c-enabler application sends X OCP business
messages to one or more trading partnersin a c-space:

Step 1: Create the Business Message

Step 2: Specify the Recipients of the Business Message
Step 3: Specify the Quality of Service for Message Delivery
Step 4: Send the XOCP Business Message

Step 5: Check the Delivery Status of the Business Message

To send an X OCP business message, a c-enabler application constructs a business
document, creates the business message, specifies the message routing criteria and
Quality of Service delivery options, and sends the business message to the c-hub for
processing. The c-enabler application can also check the delivery status of the business
message, including whether it was successfully delivered. For an introduction to
XOCP business messages, see “ X OCP Business M essages and M essage Envel opes”
on page 1-4.

Programming BEA WebL ogic Collaborate M essaging Applications 31

3 Sending XOCP Business Messages

Step 1: Create the Business Message

To create a business message, a c-enabler application first creates the message
payload, which consists of any business documents and attachments that the business
message will contain. For an introduction to the components of a business message,
see “ XOCP Business Messages and Message Envelopes’ on page 1-4.

Importing the Required Packages

To create a business message, a c-enabler application imports the necessary packages,
as shown in the following listing.

Listing 3-1 Importing Packagesfor Business M essage Cr eation

i mport org.w3c.dom *;

i mport org.apache. htm . dom *;

i mport org.apache. xm .serialize.*;

i mport org.apache. xerces. dom *;

i mport com bea. b2b. prot ocol . conversati on. Conversati onType;

Creating Payload Parts

A c-enabler application next creates the message payload, which can include business
documents and attachments.

Creating XML Documents

A business message can contain one or more business documents. A business
document isthe XML -based payload part of abusiness message. A business document
is an instance of the com bea. b2b. pr ot ocol . nessagi ng. Busi nessDocunent
class.

32 Programming BEA WebL ogic Collaborate Messaging Applications

Step 1: Create the Business Message

A Busi nessDocunent object containsan XML document, whichisan instance of the
or g. w3c. dom Docunent classintheor g. wdc. dompackage published by the World
Wide Web Consortium (www. wa. or g). A c-enabler application can also usea
third-party implementation of that package, such asthe or g. apache. xer ces. dom
package provided by The Apache XML Project (ww. apache. or g), whichisthe
package used by the Verifier application to create and process XML documents.

Note: The specified document type parameters must map to a part content type of
message definition associated with the conversation definition in the
repository.

Thefollowing listing fromthePar t ner 1Ser vl et of the Verifier application createsa
reguest in the form of an XML document.

Listing 3-2 Creatingan XML Document

/1 Create a request docunent

DOM npl enent ati onl npl domi = new DOM npl enent ati onl npl () ;
Docunent Type dType = doni . creat eDocunent Type("request”, null,
"request.dtd");

org. w3c. dom Docunent rqg = new Docunent | npl (dType);

El ement root = rq.createEl ement ("request");

/1 the actual string data to be processed by the other partner
String sendStr = "ABCDEFGH ";

root . appendChi | d(rq. creat eText Node(sendStr));

rg. appendChil d(root);

After creating the XML document, a c-enabler application creates a
Busi nessDocument object, passing the XML document (request) as a parameter to
the constructor, as shown in the following listing.

Listing 3-3 Creating a BusinessDocument

Busi nessDocunent bdoc = new Busi nessDocurent (rq);

Programming BEA WebL ogic Collaborate M essaging Applications 33

3 Sending XOCP Business Messages

Creating Attachments

A business message can contain one or more attachments. An attachment isa
nonXM L-based payload part of a business message that contains binary content. An
attachment is an instance of the com bea. b2b. pr ot ocol . messagi ng. At t achmrent
class. For more information, see the WebL ogic Collaborate Javadoc.

The following example listing shows how to create an attachment.

Listing 3-4 Creating an Attachment

FilelnputStreamfis = new Fil el nput Stream("sonefile");
Attachnent att = new Attachment (fis);

Creating the XOCP Business Message and Adding
Payload Parts

After creating the message payload, ac-enabler application createsthe XOCP business
message and adds the payload partsto it. The
com bea. b2b. prot ocol . xocp. messagi ng. XOCPMessage class represents an

XOCP business message. For more information, see the WebL ogic Collaborate
Javadoc.

To construct the business message, a c-enabler application:
1. Creates an instance of the XOCPMessage class.

2. Addsthe payload parts to the business message by calling either of the following
methods on the XOCPMessage message object:

e addPaylLoadPart adds asingle business document or attachment to the
busi ness message.

e addPaylLoadPart s adds multiple business documents or attachments to the
busi ness message.

34 Programming BEA WebL ogic Collaborate Messaging Applications

Step 2: Specify the Recipients of the Business Message

In the following listing an X OCP business message is created and payload parts are
added to it.

Listing 3-5 Creating a Business M essage and Adding Payload Parts

XOCPMessage snsg = new XOCPMessage("");
smsg. addPayl oadPart (bdoc) ;
snmsg. addPayl oadPart (att);

Note: The c-enabler application clones XOCPMessage content (except its payload
parts) before sending it to the c-hub. Therefore, a payload part must not be
changed after the application invokes the send or sendAndwai t methods on
the XOCPMessage.

Step 2: Specify the Recipients of the
Business Message

After creating a business message, a c-enabler application optionally specifies the
trading partner to which the message will be sent. A c-enabler application might send
the business message to a specific trading partner (a point-to-point exchange), such as
when it replies to a request received from a conversation initiator. Alternatively, a
c-enabler application might send a business message to a set of trading partners (via
multicasting) when certain business criteria (represented by c-enabler XPath
expressions) are met. For example, an application might sentd a message via
multicasting when a buyer sends a bid request to multiple sellers of a particular
product.

Either way, the set of eligible trading partners is constrained by those who are
subscribed to the appropriate rolein the conversation definition. In addition, router and
filter expressions defined in the c-hub repository may also affect message delivery to
particular trading partners. For more information, see Administering BEA WebL ogic
Collaborate.

Programming BEA WebL ogic Collaborate M essaging Applications 35

3 Sending XOCP Business Messages

Specifying a Particular Trading Partner

If an XOCP business message is being sent to asingle, known trading partner, a
c-enabler application can call theset Reci pi ent method on the XOCPMessage object,
passing the trading partner name as the parameter. The specified trading partner must
be defined in the c-hub repository.

The following example listing shows how atrading partner named Chi pMaker is
specified as the recipient of the business message.

Listing 3-6 Specifying a Single Trading Partner

String tradi ngPartner Nane = " Chi pMaker";
XCOCPMessage nsg = new XOCPMessage();
nmsg. set Reci pi ent (tradi ngPart ner Nane) ;

Using set Reci pi ent for abusiness message expedites message delivery because the
c-hub does not perform the usua router processing, such as the evaluation of trading
partner or c-hub XPath expressions. However, the business message is still subject to
applicable filtering in the c-hub. For more information, see Administering BEA
WebLogic Collaborate.

Using C-Enabler XPath Expressions to Specify Message
Recipient Criteria

A c-enabler application can use XPath expressions to specify the criteriafor a set of
trading partners that are to receive a business message. C-enabler X Path expressions
are used to address parts of an XML document. For more information, see
Administering BEA WebLogic Collaborate.

The X Path expression should be specific to the document format of the c-hub
repository and should define a node-specific set of trading-partner elements. The
XPath expression selects recipient trading partners based on the following attributes,
which are defined in the c-hub repository:

36 Programming BEA WebL ogic Collaborate Messaging Applications

Step 2: Specify the Recipients of the Business Message

m Standard attributes, such the trading partner name or a postal code

m Extended properties: custom attributes, elements, and text defined by the c-hub
administrator

The XPath expression is passed as part of the message header in the business message
from the c-enabler to the c-hub. The c-hub usesthis X Path expression, along with other
XPath expressions defined in the c-hub repository, to determine the set of message
recipients for the business message.

If applicable trading partner and c-hub X Path expressions are defined in the c-hub
repository, the c-hub eval uates these expressions after it receives the business
message. Depending on how they are configured, these X Path expressions might
override or append the c-enabler X Path expression that the c-enabler application
specifies. For more information, see Administering BEA WebLogic Collaborate.

To specify ac-enabler X Path expression for an X OCP business message, the c-enabler
application callstheset Expr essi on method on the XOCPMessage object, passing the
XPath expression as the parameter.

Notes: Apache Xalanv 1.0.1 supports single quotes, but not double quotes, to delimit
string literals.

Beforethe businessmessageisdelivered, itisstill subject to applicablerouter and filter
processing in the c-hub.

Specifying Standard Trading Partner Attributes

The following listing shows a c-enabler X Path expression that selects the trading
partner with the specified name.

Listing 3-7 C-Enabler XPath Expression Specifying a Trading Partner Name

nsg. set Expressi on("//tradi ng- partner[@ane=\""+
tradi ngPart ner Name+"\"']")

The following listing shows a c-enabler X Path expression that selects the trading
partner whose address contains the string San.

Programming BEA WebL ogic Collaborate M essaging Applications 37

3 Sending XOCP Business Messages

Listing 3-8 C-Enabler XPath Expression Specifying a Trading Partner Name

nmsg. set Expressi on("//tradi ng-partner[contains(address,\' San\')]")

Specifying a C-Enabler XPath Expression Using Extended Properties

Extended properties are user-defined el ements, attributes, and text that can be
associated with trading partners in the c-hub repository. These properties provide
application extensions to the standard predefined attributes in the repository. The
extended property sets are modeled in the repository so that they can be retrieved as
subtreeswithin an XML document. Extended propertiesare configured on the Trading
Partners tab in the WebL ogic Collaborate Administration Console. For more
information, see Administering BEA WebL ogic Collaborate.

C-enabler XPath expressions can refer to these extended propertiesto assist with

busi ness message routing. For example, suppose a c-hub administrator adds an
extended property called Maximum Order Quantity so that sellers can indicate, in the
c-hub repository, the largest quantity that they can accommodate. With this property
defined, abuyer with alarge order can specify a c-enabler X Path expression that sends
the business message only to the sellers that can process the order.

The following code listing shows an XML document generated from the repository
with an extended property set for a given seller.

Listing 3-9 Extended Property Set in XML Document Generated from the
Repository

<c- hub cont ext ="message-router">

<tradi ng- partner name="ABC Sel |l er"
emai | =" or der processi ng@omnmedomai n. cont'
phone="999- 999- 9999" >
<address>123 Main St., San Jose, CA 95131</address>
<ext ended- property-set name="Capacity">

<mex- or der - quant it y>1000</ max- order - quanti ty>
</ ext ended- property-set >
</ tradi ng- partner>

</ c- hub>

3-8 Programming BEA WebL ogic Collaborate Messaging Applications

Step 3: Specify the Quality of Service for Message Delivery

Thefollowing listing shows a c-enabler X Path expression that sel ectstrading partners
that can accommodate orders larger than 500 units.

Listing 3-10 C-Enabler XPath Expression Specifying an Order Size

nsg. set Expressi on("//tradi ng- partner[ext ended- property-set/ (@max-
order-gty > \'500\')]")

Because the seller can accommodate orders of up to 1000 units, the seller is selected
as arecipient of this business message.

Step 3: Specify the Quality of Service for
Message Delivery

The WebL ogic Collaborate messaging system allows c-enabler applicationsto define
the Quality of Service (QoS), or level of reliability, to use when delivering a business
message to recipient trading partners. The Quality of Service settings are stored in the
message header of the business message. The messaging system supports the reliable
delivery of messagesin the event of network-link or node failures. The messaging
system provides other capabilities to support reliable messaging, such as message
logging and tracking, correlation of messages, delivery retry attempts, message
timeouts, and choice of message delivery methods.

Automatic Quality of Service Features

The WebL ogic Collaborate messaging system provides certain automatic Quality of
Service features that do not require input from c-enabler applications:

m WebL ogic Collaborate prevents duplicate message delivery.

Programming BEA WebL ogic Collaborate M essaging Applications 39

3 Sending XOCP Business Messages

m WebL ogic Collaborate affixes atimestamp to every business message when it
arrives at the c-hub or a c-enabler node. Timestamps can be helpful when taking
performance measurements and with debugging applications.

QualityOfService Class

Thecom bea. b2b. prot ocol . xocp. nessagi ng. Qual i t yOf Ser vi ce class
represents Quality of Service settingsfor businessmessages. TheQual i t yOf Ser vi ce
classdefinesthe quality of servicerequired from the WebL ogic Collaborate messaging
system to deliver a specific message. It also identifies, to the WebL ogic Collaborate
messaging system, the c-enabler application’s expectation for delivering the business
message. A c-enabl er application createsan instance of thisclass, callsmethodson this
instance to specify various Quality of Service settings, and then callsthe set QS
method on the message instance, passing the Qual i t yOf Ser vi ce object, to associate
the settings with the message. If a c-enabler application does not specify Quality of
Service settings, the WebL ogic Collaborate messaging system uses the default values
where applicable.

Quality of Service Settings, Options, and Default Values

The following table describes the available Quality of Service settings, options, and
default values.

Table 3-1 Quality of Service Settings, Options, and Default Values

QoS Setting / Description Options Default Value(s)

CONFI RVED_DELI VERY_TO_APPLI CATI ON Not Applicable Not Applicable
m Provides confirmation of application delivery up to the
receiving application.

m Provides complete delivery status from each destination,
including receipt timestamp, router selected trading
partners, fina list of recipient trading partners, and so on.

m Provides complete message tracking information (all
potential locations) for the c-hub administrator and the
sending c-enabler administrator.

3-10 Programming BEA WebL ogic Collaborate Messaging Applications

Step 3: Specify the Quality of Service for Message Delivery

Table 3-1 Quality of Service Settings, Options, and Default Values (Continued)
QoS Setting / Description Options Default Value(s)

CONFI RVED_DELI VERY_TO_DESTI NATI ON(S) Not applicable Not applicable

m Provides the complete delivery status from each
destination, including receipt timestamp, router selected
trading partners, final list of recipient trading partners, and
so on.

m Provides complete message tracking information (all
potential locations) for the c-hub administrator and the
sending c-enabler’s administrator.

CONFI RVED_RQUTI NG Not applicable Not applicable
m Providesinformation from the c-hub router about the

trading partners selected to receive the business message.
m Provides message tracking for the sending c-enabler’s

administrator (until the business message reaches the
c-hub router).

CONFI RVED_DELI VERY_TO_HUB Not applicable Not applicable
(Default)

m Message reached the c-hub.

m No message tracking for sending c-enabler's

administrator.

DURABI LI TY m PERSI STENT NON- PERSI STENT
m NON- PERSI STENT

TI MEQUT Timeout, in Ignored
milliseconds, after send

RETRY_ATTEMPTS 0-n Asdefined in the

c-hub configuration
CORRELATI ON_I D Application-defined Ignored

field

The following table describes how the Quality of Service setting affects message
tracking and delivery acknowledgments.

Programming BEA WebL ogic Collaborate Messaging Applications 3-11

3 Sending XOCP Business Messages

Table 3-2 QoS, Acknowledgment, and M essage Tracking
Quality of Service Setting Message Tracking (Y/N)? Acknowledgment (Y/N)?

Confirmed Delivery to Application Y Y

Confirmed Delivery to Destination(s)

Y Y
Confirmed Delivery To Router Y N
N N

Confirmed Delivery To C-Hub

If the Confirmed Delivery to Destination(s) setting is used, then complete message
tracking is available and acknowledgments are used to make sure that the message is
delivered reliably to its destination(s). If the Confirmed Déelivery to Hub setting is
used, then no message tracking is available and no acknowledgments are sent from
recipient trading partners..

Code Example

The following example listing shows how to set the Quality of Service for abusiness
message.

Listing 3-11 Setting the Quality of Service for a Business M essage

/1 Rel evant inports

i mport com bea. b2b. prot ocol . nessagi ng. MessageToken;

i mport com bea. b2b. prot ocol . nessagi ng. Del i verySt at us;

i mport com bea. b2b. prot ocol . nessagi ng. Busi nessDocunent ;
i mport com bea. b2b. prot ocol . xocp. conversation. | ocal . *;
i mport com bea. b2b. prot ocol . xocp. nessagi ng. *;

i mport com bea. b2b. enabl er. *;

i mport com bea. b2b. enabl er. xocp. *;

XOCPMessage nmsg = ...

/1 Create QoS object

QualityOf Service qos = new QualityOf Service();
/1 Specify message to be persisted

gos. set Persi stent (true);

/1 Specify confirmed delivery to destination(s)

3-12 Programming BEA WebL ogic Collaborate Messaging Applications

Step 3: Specify the Quality of Service for Message Delivery

gos. set Confi rmedDel i veryToDesti nation(true);
neg. set QS(qos) ;

Setting the Message Delivery Confirmation Level

To specify thelevel of message delivery confirmation, ac-enabler application callsone
of the following methods on the Qual i t yOF Ser vi ce instance, passing the Boolean
t r ue parameter to enable the desired option.

Table 3-3 Message Ddlivery Confirmation Levels

Durability Description

set ConfirmedDel i veryToDesti nati on Specifies whether to confirm message delivery up to its
destination (true) or only up to the c-hub (false).

set Confi rmedDel i ver yToHub Specifies whether to confirm message delivery up to the
c-hub (true) or not (false).

set ConfirmedDel i ver yToRout er Specifies whether to confirm message delivery up to the
router in the c-hub (true) or only up to the c-hub (false).

The following exampl e listing shows how to set the message confirmation level up to
its destination.

Listing 3-12 Setting the M essage Delivery Confirmation L evel

gos. set Confi rnmedDel i veryToDesti nation(true);

For more information about confirming message delivery, see “ Step 5: Check the
Delivery Status of the Business Message” on page 3-20.

Programming BEA WebL ogic Collaborate Messaging Applications ~ 3-13

3 Sending XOCP Business Messages

Setting Message Durability

In the WebL ogic Collaborate messaging system, message durability isa Quality of
Service option that determines whether a durable message store is used in order to
guarantee delivery of messagesin case of node failures.

Message Durability Options

A c-enabler application has two message durability options. non-persistent (the
default) and persistent, as described in the following table.

Table 3-4 Message Durability Options

Durability

Description

Nonpersistent

For nonpersistent QoS, the messageis not stored anywhereinadurable
datastoreintheWebL ogic Collaborate system whileit isin the process
of being delivered to its destination. A honpersistent business message
en routeto its destination is not recoverable in case of whole or partial
system failures. Using this option requires fewer system resources and
improves throughput.

Persistent

For persistent QoS, message s persisted to adurable datastore whileit
isin the process of being delivered to its destination. This quality of
service increases the guarantee of delivery, asthe messageis stored in
areliable data store. The message delivery guarantee increases at the
expense of throughput of the system. Such a message travels more
slowly in the system and consumes more resources.

The message is persisted to a data store chosen by the owner of the
WebL ogic Collaborate component or serialized to afile on disk, based
on the size of the message.

Message and Conversation Durability

A c-enabler application can specify message durability on a per-message basis. In
addition, message durability can be defined on a per-conversation basisin the c-hub

repository.

3-14 Programming BEA WebL ogic Collaborate Messaging Applications

Step 3: Specify the Quality of Service for Message Delivery

How business messages are persisted on a per-message or a per-conversation basis
depends on a combination of whether persistence is enabled or disabled in the c-hub,
the conversation, and the message, as shown in the following table.

Table 3-5 Message Persistence

Persistent Object Persistence Enabled?

If persistenceisenabled (Y) or disabled (N) for:

m C-Hub Y Y Y Y N

m Conversation Y N Y N Y/N
m Business Message Y N N Y Y/N
Then the conversation or business messageis Persisted?

persisted (Y) or not persisted (N):

m Conversation Y N Y N N

m Business Message Y N Y N N

A business message is considered persistent if persistence (recovery) isenabled in the
c-hub, if the conversation in which the message is propagated is persistent, and if the
message QoS indicates persistence. Evenif persistenceisenabled for conversations or
messages, if persistenceis not enabled in the c-hub, then no conversations or messages
are stored to areliable data store.

Specifying Message Persistence
To enable message persistence, a c-enabler application callsthe set Per si st ent

method on the Qual i t yOF Ser vi ce instance, passing the Booleant r ue parameter, as
shown in the following listing.

Listing 3-13 Specifying M essage Persistence

gos. set Persi stent (true);

Programming BEA WebL ogic Collaborate Messaging Applications 3-15

3 Sending XOCP Business Messages

Setting the Message Timeout

If specified, the message timeout determines how long a sender waits for
acknowledgments. If a business message expires (times out), the receiver of the

busi ness message does not processit, and all other processing of the business message,
including acknowledgment processing and delivery retries, is abandoned.

Timeout Algorithm

WebL ogic Collaborate does not synchronize the clocks used by its different
components, which can reside in different machines at different locations. Instead,
WebL ogic Collaborate uses arelative time algorithm.

Based on thisalgorithm, thetimeleft before the timeout of abusiness message (relative
to the absolute time of the component processing the business message) isincluded in
the business message when the business message is sent to the other component.

In the receiving component, the timeout cal cul ations are based on an absolute time (at
the arrival of the business message) and arelative time (embedded in the incoming
message) |eft to process the message. This algorithm at least ensures that the actual
message timeout in the system always occurs after the original timeout specified by the
application.

Message Timeout on the G Hub = Message timeout specified by the
c-enabl er application when sending a nessage

Message Ti meout on the Sending C- Enabler = Message Ti neout on the
CHub + N x Delta

In these settings:
m N=A predefined number in the system, such as 10

m Del t a = Estimated amount of time required for a message to travel, round-trip,
between the sending c-enabler and the c-hub

Setting the Number of Delivery Retry Attempts

If an attempt to deliver a business message fails due to intermittent network failures,
the WebL ogic Collaborate messaging system attempts to retry sending the business
message repeatedly until one of the following occurs:

3-16 Programming BEA WebL ogic Collaborate Messaging Applications

Step 3: Specify the Quality of Service for Message Delivery

m The business message is delivered (that is, delivery succeeds).
m The number of retry attemptsis exceeded.
m The message times out.

m The conversation in which the business message is sent either terminates or
times out.

The default values for message timeouts and retry intervals are defined in the c-hub
repository and are retrieved by a c-enabler when the c-enabler session is created. The
WebL ogic Collaborate messaging system waits for the configured interval before
attempting to resend a business message.

To override the default retry attempt limit, a c-enabler application calls the
set Ti meout method on the Qual i t yOf Ser vi ce instance, passing the timeout value
(number of milliseconds) as a parameter, as shown in the following listing.

Listing 3-14 Specifying the M essage Timeout

gos. set Ti meout (10000) ;

Setting the Correlation ID for a Business Message

A c-enabler application can specify aunique correlation ID for a business message so
that it can correlate received business messages (such as replies to arequest) from
trading partners to a previoudy sent message (such as arequest). The correlation ID
accompanies the business message to its destination. The c-enabler application of the
recipient trading partner can use this value to unambiguously identify the reply
message sent back to the originating trading partner.

To specify the correlation ID, a c-enabler application callsthe set Correl ati onl d
method on the Qual i t yOF Ser vi ce instance, passing a string representing the
correlation 1D as a parameter, as shown in the following listing.

Listing 3-15 Specifying the Correlation ID for a Business M essage

gos. set Correl ationl d("ABC123");

Programming BEA WebL ogic Collaborate Messaging Applications ~ 3-17

3 Sending XOCP Business Messages

Step 4: Send the XOCP Business Message

After specifying the recipients of abusiness message and the Quality of Service, a
c-enabler application sends the business message in one of the following ways:

m Synchronous message delivery
m Deferred synchronous message delivery

Synchronous Message Delivery

With synchronous message delivery, the application waits until the sent message is
delivered to the destination(s). The WebL ogic Collaborate messaging system returns
control to the application once the outcome of the activity of sending the messageis
known. The application waits until any of the following events occurs:

m Acknowledgments are received from all potential destinations.
m The message times out.
m The conversation in which the message was sent terminates.

To send a business message synchronously, a c-enabler application calls the
sendAndwai t method on the XOCPMessage instance, passing the amount of time to
wait (in milliseconds) as aparameter. If zero (0) is specified, the c-enabler application
waits until the business message reaches its destination(s), as shown in the following
listing.

Listing 3-16 Sending a M essage Using Synchr onous M essage Delivery

MessageToken token = nmsg. sendAndWai t (0);

3-18 Programming BEA WebL ogic Collaborate Messaging Applications

Step 4: Send the XOCP Business Message

Deferred Synchronous Message Delivery

With deferred synchronous message delivery, the WebL ogic Collaborate messaging
system returns control to the c-enabler applicationimmediately after amessageis sent,
and returns a message token that the c-enabler application can use to check the status
of message delivery. Once a message token is accessed, the application waits for a
specified time or until any of the following events occurs:

m Acknowledgments are received from all potential destinations.
m The message times out.
m The conversation in which the message was sent either terminates or times out.

To send a business message with deferred synchronous message delivery, a c-enabler
application callsthe send method on the XOCPMessage instance, continues executing
business logic, and then checks the status by calling the wai t For ACK method on the
MessageToken instance, as shown in the following listing.

Listing 3-17 Sending a Message Using Deferred Synchronous M essage Delivery

token = nsg.send();

t oken. wai t For ACK() ;

Thewai t For Ack method blocks until the status of the business message is available
(if notimeout is specified) or until the specified timeout (in milliseconds) is exceeded.

Programming BEA WebL ogic Collaborate Messaging Applications ~ 3-19

3 Sending XOCP Business Messages

Step 5: Check the Delivery Status of the
Business Message

Both the send and sendAndWai t methods on the XOCPMessage instance return a
message token that a c-enabler application can query to check the delivery status of the
associated business message.

Message Tokens

A message token is an instance of the
com bea. b2b. prot ocol . xocp. nessagi ng. XOCPMessageToken class. A message
token has the following attributes.

Table 3-6 M essage Token Information

Attribute Description
Message ID Unique ID of the business message.
Exception If applicable, any exception that occurred before the

business message | eft the sending c-enabler. An exception
is usually returned when the message is sent, but for
deferred synchronous message delivery, the business
message might be kept in an internal send queue
temporarily before being delivered to the c-hub.

Elapsed Time Time taken to deliver the business message to all
destination(s). Thisinformation is available only after
acknowledgments have been received from all message
destinations. Availability is subject to the specified
Quiality of Service delivery option.

Delivery Status Delivery status from recipient destination(s). This
information depends on the availability of such
information. Availability is subject to the specified
Quiality of Service delivery option.

320 Programming BEA WebL ogic Collaborate Messaging Applications

Step 5: Check the Delivery Status of the Business Message

Table 3-6 Message Token Information (Continued)

Attribute Description

Number of Recipients (Router) Number of recipient trading partners after the business
message has been processed by the XOCP router in the
c-hub. Availability is subject to the specified Quality of
Service delivery option.

Number of Recipients (Filter) Number of recipient trading partners after the business
message has been processed by the XOCP filter in the
c-hub. Availability is subject to the specified Quality of
Service delivery option.

If the busi ness message was sent using the synchronous send delivery option, then the
message token cannot be used to wait for acknowledgments. If used, the method
returns immediately.

Delivery Status Tracking

In the WebL ogic Collaborate messaging system, when a business message reaches its
destination (the receive queue of the destination c-enabler node), a system messageis
returned to the sender to acknowledge the message delivery if the Quality of Service
setting requiresit.

A c-enabler application can use either of the following methods to obtain the delivery
status:

m get Al | Del i verySt at us if the business message was sent to multiple recipients
m get Del i ver ySt at us if the business message was sent to a single recipient

Both methods return aDel i ver ySt at us object, an instance of the
com bea. b2b. prot ocol . messagi ng. Del i ver ySt at us class that provides the
following information:;

m Recipient (name of the recipient trading partner or message tracking location)
m Timestamp of the receipt of the business message

m Status code, valid values for which are shown in the following table

Programming BEA WebL ogic Collaborate Messaging Applications 3-21

Sending XOCP Business Messages

Table 3-7 Message Delivery Status Codes

Status Code Description

SUCCESS Business message was successfully delivered to the
destination. No errors or exceptions occurred.

FAI LURE Anerror occurred during delivery of the business message
to this destination.

RETRI ES_EXHAUSTED All delivery retry attempts have been exhausted and the
business message has been discarded.

TI MEDOUT Timeout occurred before message delivery and the
business message has been discarded.

Message Tracking Locations

3-22

The WebL ogic Collaborate messaging system provides message tracking features that
alow c-hub and c-enabler administrators to check the progress of a business message
asit moves through various predefined message tracking locations along the message
path en route to its destination. The WebL ogic Collaborate Administration Console
can display status information if a business message passes through these tracking
points. Administrators can use message tracking information for debugging and to
identify bottlenecks in applications.

Note: Theavailability of message tracking locations depends on the configurati on of
the WebL ogic Collaborate system and the specified Quality of Servicefor a
given business message (such as
CONFI RVED_DELI VERY_TO_DESTI NATI ON(S) , which isdescribed in
Table 3-1). For example, if the c-enabler and c-hub are collocated on the same
node, some locations are not available. Similarly, some locations may not be
available for synchronous message delivery.

Programming BEA WebL ogic Collaborate Messaging Applications

Step 5: Check the Delivery Status of the Business Message

Diagram of Message Tracking Locations

The following figure shows the message tracking locations in the WebL ogic
Collaborate messaging system.

Figure3-1 Message Tracking L ocations

w
=
=
-t <
z 2
= =
' C-Hub H
= w
o !

Sending o 0 Receiving
C-Enabler o @ | C-Enabler
Session 2 & Session
Receive Receive HUB_ROUTER Receive Receive

Queue Queue \ Queue Queue
| / | Router \ | / |

Send Queue Send Queue Send Queue Send Queue

ENABLER_SEND_QUEUE
HUE_SEND_QUEUE

Description of Message Tracking Locations

The following message tracking locations are potentially visible in the WebL ogic
Collaborate Administration Console.

Table 3-8 Message Tracking L ocations

Message Tracking Location Activity Performed
L ocations
ENABLER_SEND_QUEUE Send queueinthec-enabler sessionof Message is enqueued for sending.

the sending trading partner.

Programming BEA WebL ogic Collaborate Messaging Applications ~ 3-23

3 Sending XOCP Business Messages

Table 3-8 Message Tracking L ocations (Continued)

M essage Tracking
L ocations

L ocation

Activity Performed

HUB_RECEI VE_QUEUE

Receive queuefor the sending trading
partner in the c-hub

Message is enqueued in the receive
queue of the trading partner at the
c-hub.

HUB_ROUTER

XOCP-Router in the c-hub

Message has reached the router.

HUB_SEND_QUEUE

Send queue of the receiving trading
partner in the c-hub

Message has been enqueued for
delivery inthetarget trading partner’s
queue at the c-hub.

ENABLER RECEI VE_QUEUE

Receive queue in the c-enabler
session of the receiving trading
partner

Message has been enqueued in the
gueue of the listener thread of the
target trading partner’s c-enabler
session.

324

Programming BEA WebL ogic Collaborate Messaging Applications

CHAPTER

4 Receiving XOCP
Business Messages

The following sections describe how to receive XOCP business messagesin a
c-enabler application:

m About Receiving XOCP Business M essages
m Receiving an XOCP Business Message

About Receiving XOCP Business Messages

C-enabler applications must implement the onMessage method in the
Conver sat i onHandl er interface to receive and process business messages.
The onMessage method has the following signature.

Listing4-1 Signaturefor onMessage M ethod

public void onMessage(XOCPMessage nsg)

The c-enabler session invokes the onMessage method whenever a c-enabler receives
abusiness message, passing the business message asan input parameter. The c-enabler
application retrieves the XOCPMessage object containing the business message and
then calls methods on that instance to process the message.

Programming BEA WebL ogic Collaborate M essaging Applications 4-1

4 Receiving XOCP Business Messages

If a c-enabler application receives multiple business documentsin a conversation, the
onMessage implementation first determines the type of document received (such asa
bid request or bid reward), and then processes that document accordingly.

In addition, the onMessage implementation might contain code that constructs and
sends a business message. For example, a conversation participant c-enabler
application might implement onMessage to receive arequest, process the request, and
then create and send the reply document.

Receiving an XOCP Business Message

Listing 4-2 describesthe onMessage implementation inthe Par t ner 2Ser vl et of the
Verifier application. ThisonMessage implementation processes theinitial business
document (arequest) sent from the Par t ner 1Ser vl et . It then creates and sends a
reply document back to the Partner1 node.

Tasks Performed

The onMessage code performs the following tasks:

1. Retrievesthe Quality of Service for the business message by calling the get QS
method on the XOCPMes sage instance.

The application uses the same Quality of Service settings to send the reply
message.

2. Retrieves the payload parts of the business message by calling the
get Payl oadPar t s method on the XOCPMessage instance.

3. Retrievesthefirst (and only) business document in the Payl oadPart[] array.

4. Extractsthe associated XML document by calling the get Document method on
the Busi nessDocunent instance.

4-2 Programming BEA WebL ogic Collaborate Messaging Applications

Receiving an XOCP Business Message

5. Retrieves and examines parts of the XML document using methods on the
Docunent instance, which is an instance of the or g. w3c. dom Docunent class
provided in the or g. w3c. dompackage published by the World Wide Web
Consortium (www. w3. or g).

A c-enabler application can also use athird party implementation of that
package, such asthe or g. apache. xer ces. dompackage provided by The
Apache XML Project (wwv. apache. or g), which iswhat the Verifier application
uses to create and process business documents.

6. Retrievesthe datastring (" ABCDEFGHI ") embedded in the business document and
convertsit to all lowercase letters.

7. Constructs areply document, specifies the same Quality of Service as the request
document, and sends the document to Trading Partner 1.

Code Listing

The following listing is the onMessage implementation in the Par t ner 2Ser vi et of
the Verifier application.

Listing4-2 onMessage I mplementation in Partner 2Servlet

public void onMessage(XOCPMessage rnsg) {

try{
QualityOf Service qos = rmsg. get QS();

Payl oadPart[] payl oad = rnsg. get Payl oadParts();
Docurment rq = nul | ;

if (payload !'= null && payl oad.|ength > 0){
Busi nessDocunent bd = (Busi nessDocunent) payl oad[0] ;
rqg = bd. get Docunent () ;

}
if (rg == null){
t hrow new Exception("Di d not get a request document");

}

Conversation conv = rnsg. get Conversation();
El ement root = rq.getDocunent El ement () ;

String nane = root. get NodeNane();
if (!nane.equal s("request")){

Programming BEA WebL ogic Collaborate M essaging Applications 4-3

4 Receiving XOCP Business Messages

debug(" Recei ved "+nane+" instead of a request");
return;

}
Text revStr = (Text)root.getFirstChild();

/Il Create the return docunent

DOM npl ement ati onl npl dom = new DOM npl enent at i onl npl () ;

Docurent Type dType = domi . creat eDocunent Type("reply", null, "reply.dtd");
rqg = new Docunent | npl (dType);

root = rqg.createEl ement("reply");

String sendStr = new String(revStr.getData());

root . appendChil d(rq. creat eText Node(sendStr.toLower Case()));

rg. appendChil d(root);

XOCPMessage snmeg = new XOCPMessage("");

smeg. addPayl oadPar t (new Busi nessDocurnent (rq));

sneg. set QS(qos) ;

snmeg. set Expression("//tradi ng-partner[@ane=\"'Partner1\']");

smeg. set Conver sati on(conv);
smsg. sendAndWai t (0) ;

}cat ch(Exception e){
e.printStackTrace();

}
}

4-4 Programming BEA WebL ogic Collaborate Messaging Applications

Index

A

ACTIVE state 1-11
APls

C-Enabler API 1-3
attachments

creating 3-4

B

business messages
about business messages 1-4
creating 3-2
receiving 4-1
sending 3-18

C

c-enabler applications
about c-enabler applications 1-3
application steps 2-1
creating attachments 3-4
creating business messages 3-2
creating XML documents 3-2
creating XOCP Business M essages 3-4
initiating conversations 1-14, 1-15
joining a c-space 1-12
key tasks 1-12
leaving conversations 1-15
registering for arolein aconversation 1-

13

run-time information flow 1-17

shutting down c-enabler sessions and
conversations 1-16

specifying atrading partner 3-6

specifying recipients 3-5

specifying XPath expressions 3-6

terminating conversations 1-15
C-Enabler Class Library

about 1-3

enlisting trading partners 1-15

implementing interfaces 2-2
c-enabler sessions

shutting down 1-16
c-enablers

Enabler API 1-3
com.bea.b2b.enabler package 1-3
confirmation of message delivery 3-13
CONNECTED state 1-11
conversations

about conversation definitions 1-4

coordinators 1-9

initiating 1-15

initiators 1-8

leaving 1-15

participants 1-8

participating in 1-14

registering for arolein 1-13

shutting down 1-16

terminating 1-15
correlation 1D 3-17
creating

attachments 3-4

Programming BEA WebL ogic Collaborate Messaginig Applications

payload parts 3-2

XML documents 3-2

XOCP business messages 3-4
Cc-spaces

joining 1-12

leaving 1-16
customer support contact information ix

D

deferred synchronous message delivery 3-19
delivery

attempts 3-16

status, tracking 3-21
DISCONNECTED state 1-11
documentation, where to find it viii
DROPPED OUT state 1-11
durability 3-14

E

enlisting trading partners 1-15
extended properties 3-8

G

global conversation coordinator 1-10

implementing interfacesin the C-Enabler
ClassLibrary
2-2
initiating conversations 1-14, 1-15

J

joining c-spaces 1-12

L

leaving

conversations 1-15
c-spaces 1-16
local conversation coordinators 1-10

M
message
durability 3-14
timeouts 3-16
tokens 3-20
tracking locations 3-22
message delivery
confirmation 3-13
deferred synchronous 3-19
synchronous 3-18
message envelopes
about message envelopes 1-4
information flow 1-7

P
packages

com.bea.b2b.enabler 1-3
participating in conversations 1-14
payload parts

adding 3-4

creating 3-2
persistence 3-14
printing product documentation viii

Q
Quiality of Service
automatic features 3-9
correlation ID 3-17
message delivery confirmation 3-13
message durability 3-14
message timeouts 3-16
options 3-10
QualityOf Service class 3-10
retry attempts 3-16

-2 Programming BEA WebL ogic Collaborate Messaginig Applications

settings 3-10
values 3-10

R
receiving

busi ness messages 4-1
recipients

specifying 3-5

trading partner 3-6

XPath expressions 3-6
REGISTERED state 1-11
registering

for arolein aconversation 1-13
related information viii
retry

attempts 3-16

S
secure messaging 1-11
Secure Sockets Layer (SSL) 1-11
sending
busi ness messages 3-18
shutting down c-enabler sessions 1-16
states, trading partners 1-11
support
technical ix
synchronous message delivery 3-18

T

terminating conversations 1-15
timeouts

message timeouts 3-16
tracking

delivery status 3-21
trading partners

enlisting 1-15

states 1-11

Programming BEA WebL ogic Collaborate Messaginig Applications

X

XML documents, creating 3-2

XOCP business messages
components of 1-6
diagram of 1-5

XPath expressions 3-6

-3

-4 Programming BEA WebL ogic Collaborate Messaginig Applications

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Developing XOCP C-Enabler Applications to Exchange Business Messages
	Introduction
	Key Concepts
	XOCP C-Enabler Applications
	C-Enabler Class Library
	Conversations and Conversation Definitions
	XOCP Business Messages and Message Envelopes
	Diagram of an XOCP Business Message
	Components of an XOCP Business Message
	Information Flow for Message Envelopes

	Conversation Initiators and Participants
	Conversation Coordinators
	Global Conversation Coordinator
	Local Conversation Coordinators

	Trading Partner States
	Secure Messaging

	Key Tasks for C-Enabler Applications
	Joining a C-Space
	Registering for a Role in a Conversation
	Engaging in Conversations with Trading Partners
	Initiating a Conversation and Sending a Business Message
	Participating in a Conversation
	Leaving a Conversation
	Terminating Conversations

	Shutting Down a C-Enabler Session to Leave a C-Space

	Run-Time Information Flow
	Information Flow Diagram
	Steps in the Information Flow

	2 Programming Steps for C-Enabler Applications
	Step 1: Import Packages
	Step 2: Implement the ConversationHandler Interface
	Step 3: Create a C-Enabler Session
	Step 4: Register a Conversation Handler
	Step 5: Initiate or Participate in a Conversation
	Step 6: Exchange Business Messages
	Step 7: End the Conversation
	Participant Leaves a Conversation
	Initiator Terminates a Conversation

	Step 8: Shut Down the C-Enabler Session

	3 Sending XOCP Business Messages
	Step 1: Create the Business Message
	Importing the Required Packages
	Creating Payload Parts
	Creating XML Documents
	Creating Attachments

	Creating the XOCP Business Message and Adding Payload Parts

	Step 2: Specify the Recipients of the Business Message
	Specifying a Particular Trading Partner
	Using C-Enabler XPath Expressions to Specify Message Recipient Criteria
	Specifying Standard Trading Partner Attributes
	Specifying a C-Enabler XPath Expression Using Extended Properties

	Step 3: Specify the Quality of Service for Message Delivery
	Automatic Quality of Service Features
	QualityOfService Class
	Quality of Service Settings, Options, and Default Values

	Code Example
	Setting the Message Delivery Confirmation Level
	Setting Message Durability
	Message Durability Options
	Message and Conversation Durability
	Specifying Message Persistence
	Setting the Message Timeout
	Timeout Algorithm

	Setting the Number of Delivery Retry Attempts
	Setting the Correlation ID for a Business Message

	Step 4: Send the XOCP Business Message
	Synchronous Message Delivery
	Deferred Synchronous Message Delivery

	Step 5: Check the Delivery Status of the Business Message
	Message Tokens
	Delivery Status Tracking
	Message Tracking Locations
	Diagram of Message Tracking Locations
	Description of Message Tracking Locations

	4 Receiving XOCP Business Messages
	About Receiving XOCP Business Messages
	Receiving an XOCP Business Message
	Tasks Performed
	Code Listing

	Index

