
A Component of BEA WebLogic Integration

B E A W e b L o g i c A p p l i c a t i o n I n t e g r a t i o n R e l e a s e 2 . 0
D o c u m e n t E d i t i o n 2 . 0

J u l y 2 0 0 1

BEA WebLogic

 User Guide

Application Integration

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Application Integration

Document Edition Part Number Date Software Version

2.0 N/A July 2001 2.0

BEA WebLogic Application Integration User Guide iii

Contents

About This Document
What You Need to Know ... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ...x

1. Introduction to Using Application Integration
Before You Begin.. 1-2

Concepts .. 1-2

Adapters: XML Interfaces to an EIS.. 1-3

Application Views: Windows to an EIS Application................................. 1-3

When to Use Application Views and
When to Write Custom Code .. 1-4

When to Define Application Views .. 1-4

When to Write Custom Code Instead of
Defining Application Views .. 1-4

“Defining” Versus “Using” Application Views... 1-5

Defining: Configuring the Application View
and Adding Events and Services ... 1-5

Using Application Views in Business Processes 1-5

Services and Events: Specialized Message Handlers................................. 1-6

Understanding Services... 1-6

Understanding Events ... 1-7

Using the Application View Management Console................................... 1-7

Who Uses Adapters and Application Views? .. 1-8

iv BEA WebLogic Application Integration User Guide

System Administrators .. 1-8

Adapter Developers... 1-8

Adapter Users.. 1-8

How Responsibilities are Distributed Among Users........................... 1-8

Defining Application Views... 1-9

Creating and Configuring an Application View 1-10

Adding Services and Events to an Application View 1-10

Testing Services and Events.. 1-10

Using Application Views in Business Processes...................................... 1-10

Using Application Views in WebLogic Process Integrator 1-11

Using Application Views by Writing Custom Code......................... 1-11

Deciding Which of the Two Methods to Use.................................... 1-11

2. Defining Application Views
Before You Begin .. 2-2

Introduction to Defining Application Views ... 2-2

The Flow of Events .. 2-2

Steps for Defining Application Views... 2-4

Logging On to the Application View Management Console 2-5

Defining an Application View.. 2-6

Adding Services to an Application View ... 2-9

Adding Events to an Application View.. 2-11

Deploying an Application View... 2-13

Undeploying an Application View... 2-18

Testing an Application View’s Services .. 2-19

Testing an Application View’s Events ... 2-23

If you choose Service .. 2-24

If you choose Manual .. 2-27

Editing an Application View.. 2-30

BEA WebLogic Application Integration User Guide v

3. Using Application Views in WebLogic Process Integrator
Before You Begin.. 3-2

Introduction to Using Application Views
in WebLogic Process Integrator ... 3-3

Using Application Views in WebLogic Process Integrator 3-3

Scenario 1: Setting Up a Task Node to Call
an Application View Service .. 3-4

Steps for Setting up a Task Node to Call
an Application View Service ... 3-4

Scenario 2: Setting Up an Event Node to Wait for
a Response from an Asynchronous
Application View Service ... 3-10

Receiving an Asynchronous Application View
Service Response ... 3-11

Handling Errors in an Asynchronous Application View
Service Response ... 3-11

Steps for Setting Up an Event Node to Wait for a Response
from an Asynchronous Application View Service 3-11

Explanation of Functions Provided by the AI Plug-in 3-14

Scenario 3: Creating a Workflow that is Started
by an Application View Event .. 3-16

Steps for Creating a Workflow that is Started
by an Application View Event... 3-16

Scenario 4: Setting Up an Event Node to Wait for
an Application View Event ... 3-19

Steps for Setting Up a Node to Wait for
an Application View Event.. 3-19

4. Using Application Views by Writing Custom Code
Before You Begin.. 4-2

Introduction to Using Application Views by Writing Custom Code 4-2

Steps for Using Application Views by Writing Custom Code.......................... 4-3

About this Example.. 4-3

Prerequisites for this Example.. 4-3

Writing the Java Class.. 4-4

Example Code for SyncCustomerInformation... 4-6

vi BEA WebLogic Application Integration User Guide

5. Using the Application View Management Console
Before You Begin .. 5-2

Introduction to Using the Application View Management Console 5-2

Steps for Using the Application View Management Console 5-2

Logging On to the Application View Management Console 5-3

Creating Folders ... 5-4

Removing Application Views .. 5-5

Removing Folders .. 5-5

BEA WebLogic Application Integration User Guide vii

About This Document

The BEA WebLogic Application Integration User Guide is organized as follows:

n “Introduction to Using Application Integration” provides an overview of BEA
WebLogic Integration Framework and explains how it fits into the WebLogic
Server environment and contributes to the BEA EAI solution.

n “Defining Application Views” explains how to log into an adapter, create and
configure application views to represent your enterprise’s business processes.

n “Using Application Views in WebLogic Process Integrator” explains how to use
application views in the WebLogic environment by setting up workflows using
WebLogic Process Integrator.

n “Using Application Views by Writing Custom Code” explains how to use
application views in the WebLogic environment by writing custom Java code.

n “Using the Application View Management Console” explains how to use
namespaces to organize your application views by location or department instead
of by adapter.

What You Need to Know

This document is intended for the following users:

n Business Analysts–Business analysts work with the technical analysts to ensure
accuracy of the business interface functionality, to create application views, and
to use application views within your enterprise.

n Technical Analysts–Technical analysts are responsible for configuring an
adapter, for setting up WebLogic services to execute information transfers with a

viii BEA WebLogic Application Integration User Guide

legacy system, for configuring solutions using adapters, and for evaluating,
mapping, deploying, and maintaining the WebLogic Environment. This guide
assumes that the technical analyst has thorough knowledge of the entire system.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “edocs”
Product Documentation page at http://edocs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Application
Integration documentation home page on the edocs Web site. You can open the PDF
in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA WebLogic Application Integration
documentation home page, click the PDF Files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following resources are also available:

n BEA WebLogic Server documentation (http://e-docs.bea.com)

BEA WebLogic Application Integration User Guide ix

n BEA WebLogic Process Integrator documentation (http://www.edocs.com)

n XML Schema Specification (http://www.w3.org/TR/xmlschema-l/)

n The Sun Microsystems, Inc. Java site (http://www.javasoft.com/)

n The Sun Microsystems, Inc. J2EE Connector Architecture Specification
(http://java.sun.com/j2ee/connector/)

Contact Us!

Your feedback on the BEA WebLogic Application Integration documentation is
important to us. Send us e-mail at docsupport@beasys.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Application Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Application Integration 2.0 release.

If you have any questions about this version of BEA WebLogic Application
Integration, or if you have problems installing and running BEA WebLogic
Application Integration, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

x BEA WebLogic Application Integration User Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

chmod u+w *

c:\startServer

.doc

wls.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

BEA WebLogic Application Integration User Guide xi

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

Example:

import com.sap.rfc.exception.*;

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii BEA WebLogic Application Integration User Guide

BEA WebLogic Application Integration User Guide 1-1

USING THE INTEGRATION FRAMEWORK

1 Introduction to Using
Application Integration

Welcome to the BEA WebLogic Application Integration User Guide, the guide for
using adapters built using the BEA Application Integration ADK (Adapter
Development Kit). This document explains how to define application view services
and events and use them in your business processes.

The instructions in this document are general instructions. Because each adapter and
application is different, the instructions do not cover any information specific to any
particular adapter or application. If you are looking for a tour of specific adapters
developed using Application Integration ADK, see the following two sections in “BEA
WebLogic Application Integration Development Guide:”

n E-mail Adapter Guide

n DBMS Adapter Guide

This section provides information on the following subjects:

n Before You Begin

n Concepts

l Adapters: XML Interfaces to an EIS

l Application Views

l When to Use Application Views and When to Write Custom Code

l “Defining” Versus “Using” Application Views

l Services and Events: Specialized Message Handlers

l Using the Application View Management Console

1 Introduction to Using Application Integration

1-2 BEA WebLogic Application Integration User Guide

l Who Uses Adapters and Application Views?

l Defining Application Views

l Using Application Views in Business Processes

Before You Begin

Before you can begin using adapters to integrate your enterprise, make sure the
following prerequisites are satisfied:

n You have installed WebLogic 6.0, with Service Pack 2.

n You have installed JDK 1.3. The JDK 1.3 development kit is automatically
installed when you install WebLogic 6.0, although you may want to install your
own version, as long as it is 1.3-compliant.

n You have installed the Application Integration Plug-in for WebLogic Process
Integrator.

n Deploy each WebLogic adapter for which you will define application views.

Note: For a complete list of prerequisites, see BEA WebLogic Application
Integration Release Notes.

Concepts

This section describes important concepts with which you should familiarize yourself
before you use Application Integration. The following concepts are discussed in detail
in “Defining Application Views” and “Using Application Views in WebLogic Process
Integrator.” For a broad overview of BEA WebLogic Application Integration, see the
BEA WebLogic Integration Framework Getting Started Guide.

Concepts

BEA WebLogic Application Integration User Guide 1-3

Adapters: XML Interfaces to an EIS

In Application Integration, an adapter is software that forms an XML-based interface
for connecting an Enterprise Information Server (EIS) and your enterprise’s WebLogic
server. An adapter enables application-level communication between the WebLogic
server and a particular EIS in your enterprise. In your organization, you probably have
a variety of separate EIS systems whose applications must interact with each another.
In the Application Integration environment, you don’t have to connect each EIS to
every other EIS in your enterprise. Instead, you develop an adapter for each EIS.

Application Views

The application view is the cornerstone of BEA WebLogic Application Integration’s
Integration Framework. It provides a view of the application capabilities exposed by
an adapter that a user can customize to meet specific business needs. A user tailors an
application view for a specific business purpose, and as a result, the application view
provides an effective alternative to the “one size fits all” approach that most
applications provide for the design of their client interface. The application view
allows you to define for it only the business capabilities that directly apply to your
business purpose. You can customize the capabilities by naming, describing and
defining their data requirements. For more information about application views, see
the BEA WebLogic Application Integration Adapter Development Guide.

For each adapter installed on your WebLogic server, you can define any number of
application views. An application view represents a subset of business functions
available on the adapter’s EIS. An application view accepts requests for service
invocation from WebLogic clients and invokes the proper system functions on the
target EIS. To communicate with the EIS, an application view makes use of
connections provided by its adapter.

An application view has the following basic properties:

n Communication parameters

n Services

n Events

1 Introduction to Using Application Integration

1-4 BEA WebLogic Application Integration User Guide

An application view’s communication parameters provide the “rules of the road” used
by the WebLogic server and the EIS application to communicate and perform
housekeeping. An application view is a business-level interface that uses the
capabilities of the EIS, via the adapter, to implement the business function of a service
and to deliver events of significance to the business. You can add any number of
services and events to each application view. For more information on events and
services, see the BEA WebLogic Application Integration Adapter Development Guide.
For more information on defining application views, see “Introduction to Defining
Application Views.”

When to Use Application Views and
When to Write Custom Code

To support service invocation and events, you can define application views, or you can
write custom code that accomplishes the same functions. Application views provide
the most convenient interface to an adapter’s resources, but there are other ways to
access an adapter. Normally, for each WebLogic adapter, you will define application
views to expose the application functions. However, for those who require more
control, you may also write custom code to access the resources of an adapter. For your
enterprise, you must decide whether to define application views or write your own
code.

When to Define Application Views

You can define application views to easily integrate most EIS applications. In general,
define application views in the following situations:

n You have more than one EIS system in your enterprise, and you lack developers
who have detailed, thorough knowledge of all of the systems.

n You want to use WebLogic Process Integrator to construct business processes.

n When you may need to update the parameters of the adapter or one of its
processes.

Concepts

BEA WebLogic Application Integration User Guide 1-5

When to Write Custom Code Instead of
Defining Application Views

In general, write custom code as an interface to an adapter only in the following
situations:

n When you have only one EIS system in your enterprise

n When you have access to a developer who has thorough, detailed knowledge of
each EIS involved in the business processes being coded.

n When you do not need to use the coded functions in WebLogic Process
Integrator.

n When your code will never change.

“Defining” Versus “Using” Application Views

There are two initial steps in the life cycle of an application view:

n Defining the application view.

n Using the application view.

Defining: Configuring the Application View
and Adding Events and Services

When you define an application view, you configure the communication parameters,
then add services and/or events. The application view’s services and events expose
specific functions of the application. The communication parameters of the application
view govern how the application view will connect to the target EIS.

Defining an application view includes the following tasks:

n Entering a unique name for the application view.

n Configuring parameters that establish the network connection between the
application view and the application itself.

n Configuring parameters specific to the application.

1 Introduction to Using Application Integration

1-6 BEA WebLogic Application Integration User Guide

n Configuring parameters used for load balancing by the application view.

n Configuring parameters used to manage the pool of connections available to the
application view.

n Defining security privileges for users of the application view.

Using Application Views in Business Processes

After you define an application view, you can deploy it on the WebLogic server. You
can use deployed application views to implement your enterprise’s business processes.

After using an application view in a workflow, the end result is a deployed electronic
representation of your enterprise’s business process. The workflow specifies how your
enterprise’s EIS applications will interact with each other to accomplish the business
processes. The application views perform the transactions themselves.

Services and Events: Specialized Message Handlers

For each application view, you can add any number of services and events, which
support specific types of transactions between the WebLogic server and the target EIS
application. Services and events provide an XML-based interface between the
WebLogic server and the functions of the target EIS application.

When you add services and events to an existing application view, all you need to
know are the application-level parameters for the transaction. Each adapter is
programmed to perform the services and events in a way that is appropriate for your
WebLogic network.

Understanding Services

For each application view, you can designate any number of services. Services are
self-describing software modules that expose a simple XML-based request/response
interface. An application view’s services receive a particular type of XML document
from the client and then perform a specified transaction on a designated EIS
application. When the EIS application receives the message from the service, it may or
may not send back a response to the service. Each service represents a particular
transaction the EIS application can perform, and the application view manages the
mapping of its services to EIS functions.

Concepts

BEA WebLogic Application Integration User Guide 1-7

Synchronous and Asynchronous Services

You must designate each service to be either synchronous or asynchronous.

n Asynchronous services: When an EIS application transmits a service request to
an asynchronous service, the application continues its processing without waiting
for an immediate response from the service. Use asynchronous services when the
application does not need the service response until a later stage in its business
process.

For example, assume one of your application views has a service called
CreateCustomer. Whenever an entity sends a customer record to
CreateCustomer, CreateCustomer sends a message to its corresponding EIS
application, known as CustomerRelationshipApplication. When
CustomerRelationshipApplication receives the message from CreateCustomer,
the application writes a new record to its customer database, using the data
supplied by the entity that called CreateCustomer. Because the
CustomerRelationshipApplication is programmed not to respond with an
acknowledgement, you must designate the service to be asynchronous.

n Synchronous services: When an EIS application transmits a service request to a
synchronous service, the application waits for a response from the service before
the application continues processing. Use synchronous services when the
application’s business process requires an immediate service response before it
can continue.

For example, assume one of your application views has a service called
QueryCustomer. Whenever an entity calls QueryCustomer, QueryCustomer
sends a message to its corresponding EIS application, known as
CustomerRelationshipApplication. When CustomerRelationshipApplication
receives the message from QueryCustomer, the application retrieves customers
or a list of customers requested by the calling entity. According to your
enterprise’s business processes, the calling entity must receive an
acknowledgement to notify it that the transaction was successful. In this case,
you must designate the service to be synchronous.

For each service, the type you choose depends on the EIS application. For more
information on the EIS, contact the appropriate technical analyst.

1 Introduction to Using Application Integration

1-8 BEA WebLogic Application Integration User Guide

Understanding Events

For each application view, you can designate any number of events. An application
view event responds to application states, extracts data about the event from the EIS,
then propagates the data into the WebLogic environment.

Using the Application View Management Console

You can organize all of your application views into folders so you can look them up
using your own organizational scheme. Once you set up a folder tree, you can browse
all application views in your enterprise without regard to the adapter used to define the
application view. You can use the Application View Management Console to create
new folders and to define new application views in them. For details, see “Using the
Application View Management Console.”

Who Uses Adapters and Application Views?

In your enterprise, several people may share the responsibilities of maintaining
WebLogic adapters, application views, and their services and events. In most
enterprises, these people can be grouped into one of three categories:

n System administrators

n Adapter developers

n Adapter users

System Administrators

If you are the one responsible for installing the BEA WebLogic Application
Integration ADK, then you are the system administrator referred to throughout this
document.

Concepts

BEA WebLogic Application Integration User Guide 1-9

Adapter Developers

If you are a software developer or a high-level technician in your enterprise, you are
probably an adapter developer. Adapter developers commonly use the ADK to develop
new adapters for EIS systems and design the accompanying user interface that the
adapter user will interact with when creating application views for the adapter. For
information on developing adapters, see the BEA WebLogic Application Integration
Adapter Development Guide.

Adapter Users

If you are a business analyst, EIS specialist, or technical analyst in your enterprise, you
are probably an adapter user. Adapter users do not usually develop adapters but may
provide specifications to the adapter developer. Once an adapter is developed, adapter
users normally define and manage its application views.

How Responsibilities are Distributed Among Users

Table 1-1 shows how tasks and responsibilities are typically divided.

1 Introduction to Using Application Integration

1-10 BEA WebLogic Application Integration User Guide

Table 1-1 Common Jobs and Their Owners

Defining Application Views

When you define an application view for an adapter, you are creating an XML-based
interface between WebLogic and a particular EIS application. For detailed steps for
defining application views for adapters, see “Defining Application Views.”

Defining an application view involves these basic steps:

n Creating and Configuring and Application View.

n Adding Services and Events to an Application View.

n Testing Services and Events.

Task System
Administrator

Adapter
Developer

Adapter
User

Installing the Application Integration X

Developing an adapter X

Developing the user interface used for defining
application views

X

Configuring Application Integration to deploy
an adapter

X X

Defining an application view X

Configuring connection parameters of
application views

X

Adding and testing services and events X

Setting up application view folders X

Concepts

BEA WebLogic Application Integration User Guide 1-11

Creating and Configuring an Application View

The first step in defining an application view for an adapter is to log on to the
Application View Administration Console, choose a folder where the application view
will reside, and configure its communication parameters. For details on creating and
configuring an application view, see the following topics:

n “Logging On to the Application View Management Console.”

n “Defining an Application View.”

Adding Services and Events to an Application View

After defining the communication parameters of the application view, the next step is
to add services and events. Services and events support a subset of an application’s
business processes by allowing other WebLogic entities to interact with the application
functions you specify. The application view services and events allow specific types
of transactions between the WebLogic server and the EIS application. For details on
adding services and events to an application view, see the following topics:

n “Adding Services to an Application View.”

n “Testing an Application View’s Events.”

Testing Services and Events

After adding a service or event to an application view, you must make sure the service
or event interacts properly with the EIS application. For details on testing services and
events, see the following topics:

n “Testing an Application View’s Services.”

n “Testing an Application View’s Events.”

Using Application Views in Business Processes

Once you define an application view in your WebLogic environment, you can use the
application view in your enterprise’s business processes. There are two ways to use
application views in business processes:

1 Introduction to Using Application Integration

1-12 BEA WebLogic Application Integration User Guide

n By designing workflows in WebLogic Process Integrator.

n By writing custom Java code.

Using Application Views in WebLogic Process Integrator

The most common way to use an application view in your enterprise’s business
processes is to design a workflow in WebLogic Process Integrator. Process Integrator
provides a GUI-based environment for designing business process workflows. These
workflows can include application view services and events defined using Application
Integration.

There are four ways to use an application view in a workflow using WebLogic Process
Integrator:

n Scenario 1: Setting Up a Task Node to Call an Application View Service

n Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service

n Scenario 3: Creating a Workflow that is Started by an Application View Event

n Scenario 4: Setting Up an Event Node to Wait for an Application View Event

For detailed information on each method, see “Using Application Views in WebLogic
Process Integrator.”

Using Application Views by Writing Custom Code

If you do not use WebLogic Process Integrator, the alternate way to use an application
view in your enterprise is to write custom Java code to implement a business process.

For detailed steps for custom coding business processes, see “Using Application
Views by Writing Custom Code.”

Deciding Which of the Two Methods to Use

For each business process you implement, you will need to decide which of the two
implementation methods to use. You can implement any business processes as a
workflow using WebLogic Process Integrator, but you should only attempt to custom
code a business processes if it is extremely simple and specialized. In this document,
custom coding is offered only as an alternate method for those who require it.

Concepts

BEA WebLogic Application Integration User Guide 1-13

When to Use WebLogic Process Integrator

In general, use WebLogic Process Integrator to implement a business process in the
following situations:

n When implementing the required business processes would require complicated
error management, persistent processes, and sophisticated conditional branching.

For example, if a business process receives events, selects only a subset of the
events, performs complex branched actions, then generates many complex
messages and sends the messages to a variety of WebLogic clients, then you
should use WebLogic Process Integrator to implement the business process.

n When you will have to make occasional changes to the business process.

WebLogic Process Integrator reduces the number of compile/test/debug cycles.

n When, like most organizations, your developers are valuable and scarce.

When to Write Custom Java Code

In general, write custom code to implement a business process only in the following
situations:

n When the business process is simple, without complicated error recovery,
long-lived processes, conditional branching, or joining of the process flow.

For example, if a business process performs a limited set of actions on an
incoming message, then routes the minimally transformed message to a small
number of client applications, then the business process is simple enough to
express by writing custom code.

n When you will not need to update the business process very often.

When you update custom code, the change requires a full compile/test/debug
cycle, which can be costly.

n When your organization can afford to dedicate developers to implement the
business processes in code.

1 Introduction to Using Application Integration

1-14 BEA WebLogic Application Integration User Guide

BEA WebLogic Application Integration User Guide 2-1

USING THE INTEGRATION FRAMEWORK

2 Defining Application
Views

This section contains information on the following subjects:

n Before You Begin

n Introduction to Defining Application Views

l The Flow of Events

n Steps for Defining Application Views

l Logging On to the Application View Management Console

l Defining an Application View

l Adding Services to an Application View

l Adding Events to an Application View

l Testing an Application View’s Services

l Testing an Application View’s Events

l Editing an Application View

2 Defining Application Views

2-2 BEA WebLogic Application Integration User Guide

Before You Begin

Before you attempt to define an application view, make sure the following
prerequisites are satisfied.

n The appropriate WebLogic adapter has been developed. You can only create and
configure application views for existing WebLogic adapters.

n Determine which business processes need to be supported by the application
view you are configuring. The required business processes determine the types
of services and events you will include in the adapter’s application views.
Normally, this means gathering information about the application’s business
requirements from the business analyst. Once you determine the necessary
business processes, you can define and test the appropriate services and events.

Introduction to Defining Application Views

When you define an application view, you are creating an XML-based interface
between your WebLogic server and a particular EIS application within your enterprise.
Once you create the application view, a business analyst can use it to create business
processes that use the application. For any adapter, you can create any number of
application views, each with any number of services and events.

The Flow of Events

Figure 2-1 shows an overview of the steps involved in defining an application view.

Introduction to Defining Application Views

BEA WebLogic Application Integration User Guide 2-3

Figure 2-1 The Flow of Events for Defining and Configuring Application Views

1. Log on to the Application View Management Console. For detailed information,
see “Logging On to the Application View Management Console.”

2. Click Add Application View to create a new application view for the appropriate
WebLogic adapter. An application view enables a set of business processes for
this adapter’s target EIS application. For detailed information, see “Defining an
Application View.”

3. At the Configure Connection Parameters page, enter application connection
parameters. For detailed information, see “Defining an Application View.”

2 Defining Application Views

2-4 BEA WebLogic Application Integration User Guide

The information is validated, and the application view is configured to connect
to the system you specified.

4. Click Add Event or Add Service to define the appropriate events and services for
this application view.

5. Deploy the application view on the WebLogic server so other entities can interact
with it according to your security settings.

Note: You can only test an application view if it is deployed.

6. Test the services and events to make sure they can properly interact with the
target EIS application.

Once the services and events are tested and functioning, you can use the
application view in workflows. For more information, see “Using Application
Views in WebLogic Process Integrator.”

7. Undeploy the application view if you need to reconfigure its connection
parameters or add services and events.

Note: When an application view is undeployed, no other entities can interact with
it.

Steps for Defining Application Views

This section explains how to define and maintain application views using an EIS
adapter for a fictional database EIS called simply “DBMS.” When you create
application views for your enterprise, they may look different than the screens shown
in this document. This is normal, because the application view’s adapter determines
the information required for each application view page, and each enterprise has its
own specialized adapters. For details on a WebLogic adapter used in your enterprise,
consult the relevant technical analyst or EIS specialist.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-5

Logging On to the Application View Management
Console

The first step in creating a new application view is to log on to the Application View
Management Console page. The Application View Management Console displays all
the application views in your WebLogic environment, organized into folders.

To log on to the Application View Management Console:

1. Open a new browser window.

2. Open the URL for your system’s Application View Management Console. The
actual URL you enter depends on your system. It should follow the format:

http://localhost:7001/wlai

The Application Integration Console - Login page displays.

3. To log on to the Application View Management Console, enter your WebLogic
username and password, then click Login. The Application View Management
Console displays.

2 Defining Application Views

2-6 BEA WebLogic Application Integration User Guide

Notes: If you do not see a page like this, consult the WebLogic system administrator.

To add a folder, click the New Folder icon. For more information, see
“Creating Folders.”

Defining an Application View

After you log on to the Application View Management Console and navigate to a
folder, click Add Application View to define an application view. Defining an
application view exposes a subset of the functions of an EIS application.

1. Log on to the Application View Management Console (see “Logging On to the
Application View Management Console.”).

2. To add a new application view to the current folder, click Add Application View.
The Define New Application View page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-7

Note: Once you define the application view, you can not move it to another
folder.

3. In the Application View Name field, enter a name. The name should describe the
set of functions performed by this application. Each application view name must
be unique to its adapter. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view in workflows using WebLogic Process
Integrator.

5. From the Associated Adapters list, choose the WebLogic adapter to use to create
this application view.

6. Click OK. The Configure Connection Parameters page displays.

2 Defining Application Views

2-8 BEA WebLogic Application Integration User Guide

At the Configure Connection Parameters page, you define the network-related
information necessary for the application view to interact with the target EIS.
You need to enter this information only once per application view.

7. Enter your WebLogic User Name and WebLogic Password.

Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.

8. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information.

9. Click Continue. The Application View Administration page displays.

Note: To save the application view for later completion, click Save at any time.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-9

Adding Services to an Application View

After you create and configure an application view, add services that support the
application’s functions. For information on application view services, see “Services
and Events: Specialized Message Handlers.”

1. While the application view is open, click Administration. The Application View
Administration page displays.

2 Defining Application Views

2-10 BEA WebLogic Application Integration User Guide

2. Click Add Service. The Add Service page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-11

Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.

3. In the Unique Service Name field, enter a name. The name should describe the
function performed by this service. Each service name must be unique to its
application view. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view service in workflows using WebLogic
Process Integrator.

5. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information or format.

6. When finished, click Add.

Adding Events to an Application View

After you create and configure an application view, add the appropriate events. For
information on application view events, see “Services and Events: Specialized
Message Handlers.”

1. While the application view is open, click Administration. The Application View
Administration page displays.

2 Defining Application Views

2-12 BEA WebLogic Application Integration User Guide

2. Click Add Event. The Add Event page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-13

Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.

3. In the Unique Event Name field, enter a name. Each event name must be unique
to its application view. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view event in workflows using WebLogic Process
Integrator.

5. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information or format.

6. When finished, click Add. The Application View Administration page displays.

Deploying an Application View

Deploy an application view after you have added at least one event or service to it, and
you want to use or test the application view. (See “Testing an Application View’s
Services” and “Testing an Application View’s Events.”) Deploy an application view
whenever you want to test its services and events or use the application view in your
WebLogic environment. Application view deployment places relevant metadata about
its services and events is placed into a runtime metadata repository. In this way, the
application view is made available to other WebLogic entities. This means other
business processes can interact with the application view, and you can test the
application view’s services and events.

To deploy an application view:

1. Open the application view. (See “Logging On to the Application View
Management Console.”) The Summary for Application View page displays.

2 Defining Application Views

2-14 BEA WebLogic Application Integration User Guide

2. To automatically redeploy this application view whenever the WebLogic server is
restarted, select Deploy Persistently.

3. To deploy the application view, click Deploy App View. The Deploy Application
View page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-15

Note: On the Deploy Application View page, the actual fields you see depend on the
adapter. For an explanation of all fields, consult the relevant technical analyst
or EIS specialist.

2 Defining Application Views

2-16 BEA WebLogic Application Integration User Guide

4. In the Minimum Pool Size field, enter the minimum number of connection pools
to be used by this application view. Example: 1.

5. In the Maximum Pool Size field, enter the maximum number of connection pools
to be used by this application view. Example: 10.

6. In the Target Fraction of Maximum Pool Size field, enter the ideal pool size,
measured from 0 to 1.0. Example: 0.7. If the Maximum Pool Size is 10 and the
Target Fraction is 0.7, this means the adapter will perform load balancing to
attempt to maintain the connection pool size at 70% of the maximum, which in
this case means 7 connections.

7. To automatically delete unused connections, select Allow Pool to Shrink.

8. On the Log Configuration area, choose one of the following options according to
your logging preferences:

l Log errors and audit messages

l Log warnings, errors, and audit messages

l Log informationals, warnings, errors, and audit messages

l Log all messages

9. If necessary, click Restrict Access using J2EE Security. The Application View
Security page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-17

Use this page to grant or revoke a WebLogic user or group’s read and write
access to this application view.

10. When finished setting up permissions, click Apply to save your changes.

11. To return to the Deploy Application View page, click Done.

12. To enable other WebLogic entities, such as WebLogic Process Integrator actions,
to asynchronously call the services of this application view, select Enable
Asynchronous Service Invocation (applies only to application views with
services).

An entity that calls an application view service asynchronously will continue its
process without waiting for a response from the service.

13. If this application view has events, enter the URL of the adapter’s event router.
Example: http://localhost:7001/YourEIS_EventRouter/EventRouter

14. To automatically redeploy this application view whenever the WebLogic server is
restarted, select Deploy Persistently.

15. Click Deploy App View. The Summary for Application View page displays.

Note: To save the application view for later completion, click Save at any time.

2 Defining Application Views

2-18 BEA WebLogic Application Integration User Guide

Undeploying an Application View

Undeploy an application view when you want to edit its connection parameters or add
services and events. For information on editing connection parameters, see “Defining
an Application View.” When an application view is undeployed, no other WebLogic
entities can interact with it, and you can not test its services or events.

To undeploy an application view:

1. Click Summary. The Summary for Application View page displays.

2. To undeploy the application view from the WebLogic server, click Undeploy. The
Undeploy Application View page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-19

3. Click Confirm. The Summary for Application View page displays, indicating you
may deploy the application view again.

Testing an Application View’s Services

After you create and deploy an application view that contains services, test the
application view services. Testing evaluates whether or not the application view
service interacts properly with the target EIS. To test application view services:

1. Define an application view (See “Defining an Application View.”), add the
appropriate services, and deploy the application view (See “Deploying an
Application View.”) if you have not done so already.

You can test an application view only if the application view is deployed and it
contains at least one event or service.

2. On the left navigation area, click Summary. The Summary for Application View
page displays.

2 Defining Application Views

2-20 BEA WebLogic Application Integration User Guide

3. In the Current Services area, find the service and click Test. The Test Service
page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-21

4. If necessary, enter the service input data in the Input fields. If the application
view service processes this data correctly, the test is successful.

Note: Your Test Service page may have different fields than the ones shown. The
fields are determined by the application view service. For an explanation of the
fields, consult the relevant technical analyst or EIS specialist.

5. Click Test after entering the service input data. The Test Result page displays.
This page displays the input and output documents.

2 Defining Application Views

2-22 BEA WebLogic Application Integration User Guide

6. Repeat the test procedure for each service you want to test.

7. When finished testing the application view’s services, you may keep the
application view deployed or undeploy it (See “Undeploying an Application
View.”) to edit the application view.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-23

Testing an Application View’s Events

After creating and deploying an application view that contains events, test the
application view events. Testing evaluates whether or not the application view
responds correctly to the EIS application. To test application view events:

1. Define an application view (See “Defining an Application View.”), add the
appropriate events, and deploy the application view (See “Deploying an
Application View.”) if you have not done so already.

You can test an application view only if it is deployed and contains at least one
event or service.

2. Click Summary. The Summary for Application View page displays.

2 Defining Application Views

2-24 BEA WebLogic Application Integration User Guide

3. In the Current Events area, find your event and click Test. The Test Event page
displays.

Note: Your Test Event page may have different fields than the ones shown. The
fields are determined by the application view service. For an explanation of the
fields, consult the relevant technical analyst or EIS specialist.

4. Choose the method to use to generate the test event:

l Service (see “If you choose Service”): Choose Service when you want to use
one of the application view’s own services to generate a “canned” event.

l Manual (see “If you choose Manual”): Choose Manual when you want to
generate the event by logging on to an EIS application and perform the
appropriate event-generating function.

If the application view event correctly responds before the specified time
elapses, the test is successful.

If you choose Service

a. On the Service menu, choose a service that will trigger the event you are
testing. Example: If you are testing the “NewCustomer” event, choose a service
that will invoke it, such as “Insert Customer.”

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-25

b. In the Time field, enter a reasonable time to wait, in milliseconds. If this time
elapses before the event succeeds, the test will time out and display a failure
message.

c. Click “Test.” The triggering service is executed.

If the service requires input data, an input page displays.

d. If necessary, enter the service input data in the fields, then click Test.

The service executes. If the test succeeds, the Test Result page displays. A
successful test result displays the event document, the service input
document, and the service output document.

2 Defining Application Views

2-26 BEA WebLogic Application Integration User Guide

If the test fails, the Test Result page displays only a “Timed Out” message.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-27

e. If the test failed, edit the event definition, or contact the system administrator
or application manager.

f. If the test succeeded, repeat the test procedure for each remaining event you
want to test.

g. When finished, save the application view.

If you choose Manual

a. In the Time field, enter a reasonable time to wait, in milliseconds. (One minute
= 60,000 ms.) If this time elapses before the event succeeds, the test will time
out and display a failure message.

b. Open the application you will use to trigger the event, if the application is not
already open.

c. Click “Test.” The test waits for an event to trigger it.

d. Using the triggering application, perform an action that will execute the service
that will test the application view event.

If the test succeeds, the Test Result page displays. A successful test result
displays the event document from the application, the service input
document, and the service output document.

2 Defining Application Views

2-28 BEA WebLogic Application Integration User Guide

If the test fails or takes too long, the Test Result page displays containing a
“Timed Out” message.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-29

e. If the test failed, edit the event definition, or contact the system administrator
or application manager.

f. If the test succeeded, repeat the test procedure for each remaining event you
want to test.

g. When finished, save the application view.

2 Defining Application Views

2-30 BEA WebLogic Application Integration User Guide

Editing an Application View

When you define an application view, you must configure its connection parameters.
After you add and test services and events, you may want to reconfigure the connection
parameters or remove services and events. To edit an existing application view:

1. Open the application view.

2. Click Summary. The Summary for Application View page displays.

Steps for Defining Application Views

BEA WebLogic Application Integration User Guide 2-31

3. In the Available Actions area, click Edit. The Application View Administration
page displays.

2 Defining Application Views

2-32 BEA WebLogic Application Integration User Guide

4. To reconfigure the application view’s connection parameters, click Configure
Connection (See “Defining an Application View.”)

5. To add services and events, click Add Service (See “Adding Services to an
Application View.”) or Add Event (See “Adding Events to an Application
View.”).

BEA WebLogic Application Integration User Guide 3-1

CHAPTER

3 Using Application
Views in WebLogic
Process Integrator

This section contains information on the following subjects:

n Before You Begin

n Introduction to Using Application Views in WebLogic Process Integrator

n Using Application Views in WebLogic Process Integrator

l Scenario 1: Setting Up a Task Node to Call an Application View Service

l Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service

l Scenario 3: Creating a Workflow that is Started by an Application View
Event

l Scenario 4: Setting Up an Event Node to Wait for an Application View Event

Chapter

3-2 BEA WebLogic Application Integration User Guide

Before You Begin

The following prerequisites must have been met before you can invoke an application
view service or receive an application view event in WebLogic Process Integrator:

n You have created an application view and defined services and events for the
application view.

n The application view and its adapter are functional and saved. If you plan on
calling application view services and events from a running workflow, the
application view must be deployed, as well.

n WebLogic Process Integrator is running.

n WebLogic Application Integration is running.

n The Application Integration Plug-in (AI Plug-in) has been loaded.

n You have received information about the required business logic for the
workflows you are defining. This information usually comes from the business
analyst or someone similar.

n A workflow template definition is open.

Introduction to Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-3

Introduction to Using Application Views
in WebLogic Process Integrator

After you create all the required application view services and events for your
enterprise, use the application views to execute your business processes. The simplest
way to do this is by using WebLogic Process Integrator to design workflows that use
the application view services and events.

WebLogic Process Integrator provides a GUI-based environment for designing
business process workflows. These workflows can include application view services
and events defined using Application Integration. For complete information on
Process Integrator, see “BEA WebLogic Process Integrator.”

Using Application Views in WebLogic
Process Integrator

There are four ways to use application view services and events in WebLogic Process
Integrator:

n Scenario 1: Setting Up a Task Node to Call an Application View Service

n Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service

n Scenario 3: Creating a Workflow that is Started by an Application View Event

n Scenario 4: Setting Up an Event Node to Wait for an Application View Event

Use these scenarios in combination with each other to create your own workflows.
This document does not fully explain how to use WebLogic Process Integrator. For
complete information on WebLogic Process Integrator, see the WebLogic Process
Integrator User Guide or see http://edocs.bea.com.

Chapter

3-4 BEA WebLogic Application Integration User Guide

Scenario 1: Setting Up a Task Node to Call
an Application View Service

In your organization, there may be situations in which you want to call an application
view service from within a workflow. To do this, add a task node to the workflow, then
add an appropriate Application View Service action to the task node. When the
workflow is saved and activated, the application view service will be called whenever
the task node executes.

Steps for Setting up a Task Node to Call
an Application View Service

Follow these steps to create a task node that calls an application view service:

1. Within WebLogic Process Integrator Studio, open a template definition. The
Workflow Design window displays.

2. Create a task node if one does not already exist.

3. Double-click the task node that will call the application view service. The Task
Properties dialog box displays.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-5

4. In the Actions area, select the tab from which you want the service to be called.
Your tab choice depends on your business processes.

5. Click Add. The Add Action dialog box displays.

6. From the Action category tree, select Workflow Actions, Set Workflow Variable,
and click OK. The Set Workflow Variable dialog box displays.

Chapter

3-6 BEA WebLogic Application Integration User Guide

7. In the Variable To Be Set list, select an XML variable to contain the input data
for the application view service.

8. Click OK.

9. On the Task Properties dialog box, click Add. The Add Action dialog box
displays.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-7

10. From the action tree, select AI Actions, Call Application View Service and click
OK. The Call Service dialog box displays.

Chapter

3-8 BEA WebLogic Application Integration User Guide

11. In the application view tree, navigate to and select the service you want to call.

The application view tree organizes application view services by folder
(example: EastCoast.Sales) and application view (example:
CustomerManagement). All application view services are at the lowest level of
the hierarchy.

Note: To check for newly saved application views and events at any time, click
Refresh Tree.

12. In the Request Document Variable list, select an XML variable.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-9

Because this XML variable serves as the input document of the application view
service, make sure the variable is properly set before the service is called.

Note: If you need to examine the XML schema of the input document, click View
Request Definition. The View Definition dialog box displays. Click Close
when finished.

13. To call the application view synchronously, select Synchronous, or select
Asynchronous to call the application view asynchronously.

Note: A node that synchronously calls a service will wait for the service to return a
response document before the workflow can continue. If the node
asynchronously calls a service, the workflow will continue.

14. For synchronous services that require a response, select an already-defined XML
variable in the Response Document Variable list. When WebLogic Process
Integrator calls the application view service, a response is returned. When
WebLogic Process Integrator receives the response from the application view
service, the Response Document Variable stores the response. If you do not care
about the response, skip this step.

Note: If you need to examine the XML schema of the response document, click View
Response Definition. The View Definition dialog box displays. Click Close
when finished.

Chapter

3-10 BEA WebLogic Application Integration User Guide

15. For asynchronous services that require a response, select an already-defined
string variable in the Request ID Variable list.

When the node calls the application view service, the node does not wait for a
response and allows the workflow to continue processing. The workflow uses
the Request ID Variable to allow asynchronous event nodes to receive the
service response. If you do not care about the asynchronous service response,
skip this step.

Note: When you set up a task node to call an asynchronous application view service,
the result will be returned to WebLogic Process Integrator. The workflow
identifies this response using the Request ID Variable you selected. In a
typical workflow, you will want to set up a corresponding event node that
waits for this response. For more information on creating such an event node,
see “Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service.”

16. Click OK to save the action.

17. On the Task Properties dialog box, click OK to save the node.

Scenario 2: Setting Up an Event Node to Wait for
a Response from an Asynchronous
Application View Service

This section explains how to receive an asynchronous application view service
response and handle any errors it may contain.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-11

Receiving an Asynchronous Application View
Service Response

In a workflow, whenever an action calls an application view service asynchronously
(see “Scenario 1: Setting Up a Task Node to Call an Application View Service”), the
application view service will return a response. Normally, if you care about the
response, you will want to set up a corresponding asynchronous event node to wait for
the response. This section explains a highly simplified scenario in which an event node
receives an application view service response without checking for errors.

Handling Errors in an Asynchronous Application View
Service Response

Although this scenario does not handle errors returned in the application view service
response, you will normally want to handle errors in your own workflows. To handle
asynchronous service response errors in your workflows, use the new features included
in the AI Plug-in.

The AI Plug-in includes a new variable type, AsyncServiceResponse, and three new
functions:

n AIHasError()

n AIGetErrorMsg()

n AIGetResponseDocument()

For complete documentation of these functions, see “Explanation of Functions
Provided by the AI Plug-in.”

Steps for Setting Up an Event Node to Wait for a Response
from an Asynchronous Application View Service

To set up an asynchronous event node to wait for a response from an asynchronous
application view service, create an event node, then set up the event node to wait for
an event of type “AI AsyncResponse.” When you set up an event node to wait for an
asynchronous response from an application view service, the event node uses a
designated Request ID Variable to receive the response. As long as the service-calling
task node and the response-receiving event node use the same Request ID Variable, the
asynchronous event node will correctly receive the service response.

Chapter

3-12 BEA WebLogic Application Integration User Guide

Follow these steps to set up an event node to wait for a response from an asynchronous
application view service:

1. Within WebLogic Process Integrator Studio, open a workflow template definition.
The Workflow Design window displays.

2. Create an event node if one does not already exist. This event node will wait for
an asynchronous response from a designated application view service.

3. Double-click the event node. The Event Properties dialog box displays.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-13

4. In the Description field, enter a name (optional).

5. In the Type list, select AI Async Response.

6. In the Request ID Variable list, select an already-defined string variable.
WebLogic Process Integrator will listen for an asynchronous response with an ID
matching this variable.

Note: The purpose of this event node is to wait for a response to a Call Application
View Service action that was called asynchronously earlier in the workflow.
The Call Application View Service action sets the Request ID Variable. To
make the action and this event node work together, they must both use the
same Request ID Variable. For more information on setting up the Call
Application View Service action, see “Scenario 1: Setting Up a Task Node to
Call an Application View Service.”

Chapter

3-14 BEA WebLogic Application Integration User Guide

7. In the Asynchronous Service Response Variable list, select a variable to store the
response data itself. It must be of type AsyncServiceResponse. If you do not
care about the response data, skip this step.

8. Click OK to save the event node.

Explanation of Functions Provided by the AI Plug-in

When using the Application Integration Plug-in, use the new functions
AIHasError(), AIGetErrorMsg(), and AIGetResponseDocument() to interrogate
AI Asynch Response. If the Application Integration Plug-in is installed in WebLogic
Process Integrator, then you have access to these new functions. Using these functions,
you can set up decision nodes to handle success and failure conditions.

AIHasError()

Use AIHasError() to determine the status of an asynchronous service response.

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have
called an asynchronous application view service. The application view service
has returned a response, which is stored in your AsyncServiceResponse
variable.

Returns:

Boolean

Output explanation:

False: The asynchronous application view service call was successful.

True: The asynchronous application view service call failed.

AIGetErrorMsg()

Use AIGetErrorMsg() to retrieve the error message string returned by an
asynchronous application view service.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-15

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have
called an asynchronous application view service. The application view service
has returned a response, which is stored by your AsyncServiceResponse
variable.

Returns:

String

Output explanation:

Error string: Returns an error string explaining why the asynchronous
application view response failed.

Empty string: There was no error.

AIGetResponseDocument()

Use AIGetResponseDocument() to retrieve the actual XML response document
returned by an asynchronous application view service.

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have
called an asynchronous application view service. The application view service
has returned a response, which is stored by your AsyncServiceResponse
variable.

Returns:

XML

Output explanation:

XML document: Returns an XML document representing the asynchronous
service response.

Chapter

3-16 BEA WebLogic Application Integration User Guide

Null: No response document was returned, because an error ocurred.

Scenario 3: Creating a Workflow that is Started
by an Application View Event

You may want to create a workflow that starts whenever a designated application view
event occurs. To set up a workflow to be started by an application view event, edit the
workflow’s start node so it responds to an event of type AI Start, then select the
appropriate application view event. If necessary, you can set up conditions on which
to filter the event. After you save and activate the workflow, the start node will execute
each time the application view event occurs.

Steps for Creating a Workflow that is Started
by an Application View Event

Follow these steps to set up a workflow with a start node that is triggered by an
application view event.

1. Within WebLogic Process Integrator Studio, open a template definition. The
Workflow Design window displays.

2. Create a start node if one does not already exist. This start node will respond to
an application view event that you specify.

3. Double-click the start node. The Start Properties dialog box displays.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-17

4. In the Description field, enter a name (optional).

5. Click Event.

6. In the Event list, select AI Start.

7. In the application view tree, navigate to and select the application view event.

The application view tree organizes application view events by folder (example:
EastCoast.Sales) and application view (example: CustomerManagement). All
application view events are at the lowest level of the hierarchy.

Chapter

3-18 BEA WebLogic Application Integration User Guide

8. If necessary, filter the event by entering a condition in the Condition field, or
click the A + B button to display the Expression Builder dialog box.

For information on setting up conditions and XPath expressions, see the
WebLogic Process Integrator User Guide.

9. In the Event Document Variable list, select an XML variable. When the start
node receives data from the application view event, this variable stores the data.
If you do not care about the event data, skip this step.

Note: If you need to examine the XML schema of the event document, click View
Definition. The View Definition dialog box displays. Click Close when
finished.

10. Click OK. The start node is saved.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-19

Scenario 4: Setting Up an Event Node to Wait for
an Application View Event

In a workflow, you may want to create an event node that is triggered by an application
view event. To set up an event node to respond to an application view event, edit the
event node so it responds to an event of type AI Event, then select the appropriate
application view event. If necessary, you can set up conditions on which to filter the
application view event. After you save and activate the workflow, the workflow will
progress to this event node, wait for a specified application view event, and continue
processing.

Steps for Setting Up a Node to Wait for
an Application View Event

Follow these steps to set up an event node to be triggered by an application view event.

1. Within WebLogic Process Integrator Studio, open a template definition. The
Workflow Design window displays.

2. Create an event node if one does not already exist. This event node will be
triggered by a designated application view event.

3. Double-click the event node. The Event Properties dialog box displays.

Chapter

3-20 BEA WebLogic Application Integration User Guide

4. In the Description field, enter a name (optional).

5. In the Type list, select AI Event.

6. In the application view tree, navigate to and select an application view event.

The application view tree organizes application view events by folder (example:
EastCoast.Sales) and application view (example: CustomerManagement). All
application view events are at the lowest level of the hierarchy.

Note: To check for newly saved application views and events at any time, click
Refresh Tree.

7. If necessary, filter the event by entering a condition in the Condition field, or
click the A + B button to display the Expression Builder dialog box.

Using Application Views in WebLogic Process Integrator

BEA WebLogic Application Integration User Guide 3-21

For information on setting up conditions and XPath expressions, see the
WebLogic Process Integrator User Guide.

8. On the Event Properties dialog box, select an XML variable in the Event
Document Variable list. When the event node receives data from the application
view event, this variable stores the data. If you do not care about the event data,
skip this step.

Note: If you need to examine the XML schema of the event document, click View
Definition. The View Definition dialog box displays. Click Close when
finished.

9. On the Event Properties dialog box, click OK.

Chapter

3-22 BEA WebLogic Application Integration User Guide

BEA WebLogic Application Integration User Guide 4-1

USING THE INTEGRATION FRAMEWORK

4 Using Application
Views by Writing
Custom Code

This section contains information on the following subjects:

n Before You Begin

n Introduction to Using Application Views by Writing Custom Code

n Steps for Using Application Views by Writing Custom Code

l About this Example

l Prerequisites for this Example

l Writing the Java Class

l Example Code for SyncCustomerInformation

4 Using Application Views by Writing Custom Code

4-2 BEA WebLogic Application Integration User Guide

Before You Begin

The following prerequisites must have been met before you write custom Java code to
implement a business process:

n You have created an application view using the Integration Framework and have
defined one or more events or services within the application view.

n You have information about the required business logic for the business process
workflow you are defining. This information usually comes from a business
analyst. You have all the information necessary to connect to the WebLogic
server, including the host server name and port number, WebLogic user ID and
password.

Introduction to Using Application Views by
Writing Custom Code

Although the primary way to use application views in business processes is to use
WebLogic Process Integrator (see “Using Application Views in WebLogic Process
Integrator”), an alternate way is to write custom Java code to represent the business
process. If you are a developer who uses the custom coding method, this section uses
a simple example to demonstrate how to custom code your enterprise’s business
process.

For a thorough comparison of the two ways to use application views, see “Deciding
Which of the Two Methods to Use.”

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-3

Steps for Using Application Views by
Writing Custom Code

This section uses a concrete example class called SyncCustomerInformation to
explain how to write custom code. In general, you must do the following two steps to
create custom code that uses an application view in a business process:

n Make sure a Java class exists to represent the application that implements the
business process.

n Within this Java class, supply the code to implement the business logic.

About this Example

In the simple example used throughout this section, the following business logic is
implemented:

An enterprise has a customer relationship management (CRM) system and an order
processing (OP) system. You want a business process that coordinates the
synchronization of customer information between these two systems. That means that
whenever a customer is created on the CRM system, it should trigger the creation of a
corresponding customer record on the OP system. The attached Java class
SyncCustomerInformation implements this business logic.

This is not a sophisticated example. It does not cover everything you can do using
custom code. It only demonstrates the basic steps you will take when you implement
your own organization’s business processes.

Your role is to use this example code as a template for custom coding your own
business processes.

Prerequisites for this Example

This example assumes the following prerequisites are already complete:

4 Using Application Views by Writing Custom Code

4-4 BEA WebLogic Application Integration User Guide

n Application views for the source CRM system and the target OP system are
already defined and working. For details on defining application views, see
“Defining Application Views.”

n Both of the application views exist in the “East Coast” folder. The source
application view is named “East Coast.Customer Mgmt” and the target
application view is named “East Coast.Order Processing.”

Note: Your organization will have its own folders and application views.

n You are familiar with the WebLogic Application Integration API or are working
closely with a Java programmer who is.

n You have collected all the information necessary to connect to the WebLogic
Application Integration server that hosts the application views.

Note: For your organization, get this information from the system administrator.

Writing the Java Class

When writing custom code, there must exist a Java class to represent each application
required for the business process. Create the necessary Java classes if they do not exist
already. This example calls for one application class called
SyncCustomerInformation. Of course, your own code will use different variable
names. To create the SyncCustomerInformation Java class:

1. See “Example Code for SyncCustomerInformation” for the complete source code
for the Java application class.

Note: For your own projects, use the SyncCustomerInformation code as a
template or guide. The SyncCustomerInformation example code is
thoroughly commented.

2. Make sure the code does the following things:

a. Create code to listen for East Coast.New Customer.

b. Obtain a reference to the NamespaceManager (variable name
m_namespaceMgr) and ApplicationViewManager (variable name
m_appViewMgr) within WebLogic. Accomplish this using a JNDI lookup from
the WebLogic server.

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-5

c. Using the NamespaceManager, obtain a reference to the “root” namespace by
calling nm.getRootNamespace(). This reference is stored in a variable called
root.

d. Using the root variable, obtain a reference to the East Coast namespace by
calling root.getNamespaceObject(“East Coast”). This reference is
stored into a variable called eastCoast.

e. Using the eastCoast variable, obtain a temporary reference to the Customer
Management ApplicationView and store it into a variable called
custMgmtHandle.

f. This custMgmtHandle temporary reference will be used to obtain an actual
reference to an ApplicationView instance for Customer Management. Do
this by calling the ApplicationViewManager as
avm.getApplicationViewInstance

(custMgmtHandle.getQualifiedName()). Store the returned reference
into a variable called custMgmt.

g. Begin listening for New Customer events by calling
custMgmt.addEventListener(“New Customer”, listener), where
listener is an object that can respond to New Customer events (see the
WebLogic API for a full discussion of event listeners and the EventListener
interface).

h. Implement the onEvent method of the listener class used in the step above.

When a New Customer event is received, the onEvent method of the listener
is called.

The onEvent method should then call a method to respond to the event. In
this example, the onEvent method provides the event object that contains the
data associated with the event. The method is called handleNewCustomer.

i. Implement the handleNewCustomer method that will respond to the New
Customer event.

The handleNewCustomer method transforms the XML document in the
event to the form expected by the East Coast.Order Processing.Create
Customer service. This transformation may be performed using XSLT or
manually using custom transformation code. The end result of the
transformation is an XML document that conforms to the schema for the
request document of the East Coast.Order Processing.Create Customer
service. Store this document in a variable called createCustomerRequest.

4 Using Application Views by Writing Custom Code

4-6 BEA WebLogic Application Integration User Guide

handleNewCustomer will then obtain a reference to an instance of the East
Coast.Order Processing ApplicationView in the same way described for
the East Coast.Customer Management ApplicationView. This reference is
stored into a variable called orderProc.

handleNewCustomer will then invokes the Create Customer service on the
East Coast.Order Processing ApplicationView by calling
orderProc.invokeService(“Create Customer”,

createCustomerRequest). Recall that createCustomerRequest is the
variable holding the request document for the Create Customer service. The
response document for this service is stored in a variable named
createCustomerResponse.

handleNewCustomer is finished and returns, leaving itself ready to handle
the next incoming New Customer event.

When you are finished, a new Java class exists called
SyncCustomerInformation. This class implements the Sync Customer
Information business logic. This SyncCustomerInformation class uses the
WebLogic API to get events from the CRM system and to invoke services on
the OP system.

Example Code for SyncCustomerInformation

Below is the example code for the SyncCustomerInformation Java class. It
implements the business logic for the scenario described in “About this Example.” Use
this example code as a guide for writing your own custom code to implement your
enterprise’s business processes.

Listing 4-1 Full Class Source Code for SyncCustomerInformation.

package com.bea.wlai.test;

import java.util.Hashtable;
import javax.naming.*;
import java.rmi.RemoteException;
import com.bea.wlai.client.*;
import com.bea.wlai.common.*;
import com.bea.document.*;

/**

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-7

 * This class implements the business logic for the ’Sync Customer Information’
 * business process. It uses the WLAI API to listen to events from the CRM
 * system, and to invoke services on the OP system. It assumes that there
 * are two ApplicationViews defined and deployed in the ’East Coast’
 * namespace. The application views and their required events and services
 * are shown below.
 *
 * Customer Management
 * events (New Customer)
 * services (none)
 *
 * Order Processing
 * events (none)
 * services (Create Customer)
 */
public class SyncCustomerInformation
 implements EventListener
{
 /**
 * Main method to start this application. No args are required.
 */
 public static void
 main(String[] args)
 {
 // Check that we have the information needed to connect to the server.

 if (args.length != 3)
 {
 System.out.println("Usage: SyncCustomerInformation ");
 System.out.println(" <server url> <user id> <password>");
 return;
 }

 try
 {
 // Create an instance of SyncCustomerInformation to work with

 SyncCustomerInformation syncCustInfo =
 new SyncCustomerInformation(args[0], args[1], args[2]);

 // Get a connection to WLAI

 InitialContext initialContext =
 syncCustInfo.getInitialContext();

 // Get a reference to an instance of the ’East Coast.Customer Management’
 // Application View

 ApplicationView custMgmt =

4 Using Application Views by Writing Custom Code

4-8 BEA WebLogic Application Integration User Guide

 syncCustInfo.getInstanceOfCustomerManagement();

 // Add the listener for ’New Customer’ events. In this case we have
 // our application class implement EventListener so it can listen for
 // events directly.

 custMgmt.addEventListener("New Customer", syncCustInfo);

 // Process up to 10 events and then quit.

 syncCustInfo.setMaxEventCount(10);
 syncCustInfo.processEvents();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 return;
 }

 /**
 * EventListener method to respond to ’New Customer’ events
 */
 public void
 onEvent(IEvent newCustomerEvent)
 {
 try
 {
 // Print the contents of the incoming ’New Customer’ event.

 System.out.println("Handling new customer: ");
 System.out.println(newCustomerEvent.toXML());

 // Handle it

 IDocument response = handleNewCustomer(newCustomerEvent.getPayload());

 // Print the response

 System.out.println("Response: ");
 System.out.println(response.toXML());

 // If we have processed all the events we want to, quit.

 m_eventCount++;
 if (m_eventCount >= m_maxEventCount)
 {
 quit();

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-9

 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.out.println("Quitting...");
 quit();
 }
 }

 /**
 * Handles any ’New Customer’ event by invoking the ’Create Customer’
 * service on the ’Order Processing’ ApplicationView. The response
 * document from the service is returned as the return value of this
 * method.
 */
 public IDocument
 handleNewCustomer(IDocument newCustomerData)
 throws Exception
 {
 // Get an instance of the ’Order Processing’ ApplicationView.

 ApplicationView orderProc = getInstanceOfOrderProcessing();

 // Transform the data in newCustomerData to be appropriate for the
 // request document for ’Create Customer’ on the ’Order Processing’
 // ApplicationView.

 IDocument createCustomerRequest =
 transformNewCustomerToCreateCustomerRequest(newCustomerData);

 // Invoke the service

 IDocument createCustomerResponse =
 orderProc.invokeService("Create Customer", createCustomerRequest);

 // Return the response

 return createCustomerResponse;
 }

 // ---
 // Member Variables
 // ---

 /**
 * The url for the WLAI server (e.g. t3://localhost:7001)
 */
 private String m_url;

4 Using Application Views by Writing Custom Code

4-10 BEA WebLogic Application Integration User Guide

 /**
 * The user id to use when logging into WLAI.
 */
 private String m_userID;

 /**
 * The password to use when logging in to WLAI as the user given in
 * m_userID.
 */
 private String m_password;

 /**
 * The initial context to use when communicating with WLAI
 */
 private InitialContext m_initialContext;

 /**
 * The NamespaceManager for all namespace operations
 */
 private NamespaceManager m_namespaceMgr;

 /**
 * The ApplicationViewManager for all ApplicationView operations
 */
 private ApplicationViewManager m_appViewMgr;

 /**
 * An instance of the ’East Coast.Order Processing’ ApplicationView for
 * use in handleNewCustomer.
 */
 private ApplicationView m_orderProc;

 /**
 * Hold the maximum number of events to be processed in handleNewCustomer
 */
 private int m_maxEventCount;

 /**
 * Count of the events processed in handleNewCustomer
 */
 private int m_eventCount;

 /**
 * A monitor variable to enable us to wait until we are asked to quit
 */
 private String m_doneMonitor = new String("Done Monitor");

 /**

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-11

 * A flag indicating we are done or not.
 */
 private boolean m_done = false;

 // --
 // Utility Methods
 // --

 /**
 * Constructor.
 */
 public SyncCustomerInformation(String url, String userID, String password)
 {
 m_url = url;
 m_userID = userID;
 m_password = password;
 }

 /**
 * Establish an initial context to WLAI.
 */
 public InitialContext
 getInitialContext()
 throws NamingException
 {
 // Set up properties for obtaining an InitialContext to the WLAI server.

 Hashtable props = new Hashtable();

 // Fill in the properties with the WLAI host, port, user id, and password.

 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, m_url);
 props.put(Context.SECURITY_PRINCIPAL, m_userID);
 props.put(Context.SECURITY_CREDENTIALS, m_password);

 // Connect to the WLAI server

 InitialContext initialContext = new InitialContext(props);

 // Store this for later

 m_initialContext = initialContext;

 return initialContext;
 }

 /**

4 Using Application Views by Writing Custom Code

4-12 BEA WebLogic Application Integration User Guide

 * Get an instance of the ’East Coast.Customer Management’ ApplicationView.
 */
 public ApplicationView
 getInstanceOfCustomerManagement()
 throws NamingException, NamespaceException,
 ApplicationViewException, RemoteException
 {
 // Set up the namespace and ApplicationView manager instances

 setUpManagers();

 // Get a reference to the root namespace

 INamespace root = m_namespaceMgr.getRootNamespace();

 // Get a temporary reference to the ’East Coast’ namespace

 NamespaceObjectHandle eastCoastHandle =
 root.getObjectHandle("East Coast");

 // Use the eastCoastHandle to get the East Coast namespace from the
 // NamespaceManager

 INamespace eastCoast = m_namespaceMgr.
 getNamespace(eastCoastHandle.getQualifiedName());

 // Use the eastCoast namespace to get the ’Customer Management’
 // ApplicationView handle

 NamespaceObjectHandle custMgmtHandle =
 eastCoast.getObjectHandle("Customer Management");

 // Use the handle to get the ApplicationView instance from the
 // ApplicationViewManager

 ApplicationView custMgmt =
 m_appViewMgr.
 getApplicationViewInstance(custMgmtHandle.getQualifiedName());

 return custMgmt;
 }

 /**
 * Get an instance of the ’East Coast.Order Processing’ ApplicationView.
 */
 public ApplicationView
 getInstanceOfOrderProcessing()
 throws NamingException, NamespaceException,
 ApplicationViewException, RemoteException

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-13

 {
 // Only do this if we don’t have a saved one

 if (m_orderProc == null)
 {
 // Set up the namespace and ApplicationView manager instances

 setUpManagers();

 // Get a reference to the root namespace

 INamespace root = m_namespaceMgr.getRootNamespace();

 // Get a temporary reference to the ’East Coast’ namespace

 NamespaceObjectHandle eastCoastHandle =
 root.getObjectHandle("East Coast");

 // Use the eastCoastHandle to get the East Coast namespace from the
 // NamespaceManager

 INamespace eastCoast = m_namespaceMgr.
 getNamespace(eastCoastHandle.getQualifiedName());

 // Use the eastCoast namespace to get the ’Customer Management’
 // ApplicationView handle

 NamespaceObjectHandle orderProcHandle =
 eastCoast.getObjectHandle("OrderProcessing");

 // Use the handle to get the ApplicationView instance from the
 // ApplicationViewManager

 ApplicationView orderProc =
 m_appViewMgr.
 getApplicationViewInstance(orderProcHandle.getQualifiedName());

 // Save this instance for use in handleNewCustomer()

 m_orderProc = orderProc;
 }

 return m_orderProc;
 }

 /**
 * Establish our namespace and ApplicationView manager references.
 */
 public void

4 Using Application Views by Writing Custom Code

4-14 BEA WebLogic Application Integration User Guide

 setUpManagers()
 throws NamingException, NamespaceException, ApplicationViewException,
 RemoteException
 {
 // Make sure we are connected

 if (m_initialContext == null)
 {
 getInitialContext();
 }

 // Get a NamespaceManager

 if (m_namespaceMgr == null)
 {
 NamespaceManagerHome nmh =
 (NamespaceManagerHome)m_initialContext.
 lookup("com.bea.wlai.client.NamespaceManagerHome");
 m_namespaceMgr = nmh.create();
 }

 // Get an ApplicationViewManager

 if (m_appViewMgr == null)
 {
 m_appViewMgr =
 new ApplicationViewManager(m_initialContext);
 }
 }

 /**
 * Transform the document in the ’New Customer’ event to the document
 * required by the ’Create Customer’ service.
 */
 public IDocument
 transformNewCustomerToCreateCustomerRequest(IDocument newCustomerData)
 throws Exception
 {
 // We could do an XSLT transform here, or manually move data from the
 // source to the target document. The details of this transformation
 // are out of the scope of this sample. For information on XSLT see
 // http://www.w3.org/TR/xslt. For more information on manually moving
 // data between documents, see the JavaDoc documentation for the
 // com.bea.document.IDocument interface.

 return newCustomerData;
 }

 /**

Steps for Using Application Views by Writing Custom Code

BEA WebLogic Application Integration User Guide 4-15

 * Event processing/wait loop
 */
 public void
 processEvents()
 {
 synchronized(m_doneMonitor)
 {
 while (!m_done)
 {
 try
 {
 m_doneMonitor.wait();
 }
 catch (Exception e)
 {
 // ignore
 }
 }
 }
 }

 /**
 * Sets the max number of events we want to process.
 */
 public void
 setMaxEventCount(int maxEventCount)
 {
 m_maxEventCount = maxEventCount;
 }

 /**
 * Method to force this application to exit (cleanly)
 */
 public void
 quit()
 {
 synchronized(m_doneMonitor)
 {
 m_done = true;
 m_doneMonitor.notifyAll();
 }
 }
}

4 Using Application Views by Writing Custom Code

4-16 BEA WebLogic Application Integration User Guide

BEA WebLogic Application Integration User Guide 5-1

USING THE INTEGRATION FRAMEWORK

5 Using the Application
View Management
Console

This section contains information on the following subjects:

n Before You Begin

n Introduction to Using the Application View Management Console

n Steps for Using the Application View Management Console

l Logging On to the Application View Management Console

l Creating Folders

l Removing Application Views

l Removing Folders

5 Using the Application View Management Console

5-2 BEA WebLogic Application Integration User Guide

Before You Begin

Before you attempt to work with folders, ensure that the following prerequisite is
satisfied:

n WebLogic Application Integration is running.

Introduction to Using the Application View
Management Console

Use the Application View Management Console to access, organize, and edit all
application views in your enterprise. You can use the Application View Management
Console to create new folders and to add new application views to the folders. These
folders allow you to organize your application views according to your own navigation
scheme, regardless of the adapter the application view belongs to.

Steps for Using the Application View
Management Console

This section explains how to organize application views into folders using the
Application View Management Console. The actual folders you set up depend on your
organization.

Steps for Using the Application View Management Console

BEA WebLogic Application Integration User Guide 5-3

Logging On to the Application View Management
Console

The first step in managing application views is to log on to the Application View
Management Console. To log on:

1. Launch a browser window.

2. Open the URL for your system’s Application View Management Console. The
actual URL you enter depends on your system. It should follow the format:

http://<yourserver>:<yourport>/wlai

The logon page displays.

3. To log on to the Application View Management Console, enter your WebLogic
username and password, then click OK. The Application View Management
Console displays.

5 Using the Application View Management Console

5-4 BEA WebLogic Application Integration User Guide

Creating Folders

Create folders to organize the application views in your enterprise. Folders can contain
application views and other folders. Once you create a folder, you can not move it to
another folder, and you can remove the folder only if it is empty. Once you create an
application view in a folder, you can remove the application view, but you can not
move it to another folder. To create a folder:

1. While logged on to the Application View Management Console, navigate to the
folder where you want to create the new folder.

2. Click the New Folder icon. The Add Folder page displays.

3. In the New Folder field, enter a name.

Invalid characters: # \ + & ‘ “ . space

4. Click Save.

Steps for Using the Application View Management Console

BEA WebLogic Application Integration User Guide 5-5

Removing Application Views

Remove application views when they become obsolete or the application is retired.

You can remove an application view only if the following conditions are true:

n You have undeployed the application view (see “Undeploying an Application
View”). That is, the application view status reads “Not Deployed.”

n You are logged on to the WebLogic server using a user account that has the
appropriate “write” privileges.

To remove an application view:

1. While logged on to the Application View Management Console, navigate to the
folder where the target application view is located.

2. Click Remove to delete the application view.

Removing Folders

Remove folders that are no longer needed. Before you can remove a folder, you must
remove all of its application views and sub-folders. To remove a folder:

1. While logged on to the Application View Management Console, navigate to the
folder where the target folder is located.

5 Using the Application View Management Console

5-6 BEA WebLogic Application Integration User Guide

2. Click Remove to delete the folder. A confirmation page displays.

3. Click Confirm to delete the folder.

BEA WebLogic Application Integration User Guide I-1

Index

A
adapter developers 1-8
adapter users 1-8
adapters

developing 1-8
understanding 1-3

ADK
See adapters, developing

AI AsyncResponse event 3-11
AI Event events 3-19
AI Plug-in

AI GetErrorMsg() function 3-14
AIGetResponseDocument() function

3-15
AIHasError() function 3-14

AI Start events 3-16
application view events

adding 2-11
setting up workflows to wait for 3-19
starting workflows using 3-16
testing manually 2-27
testing using a service 2-24
understanding 1-7

application view folders
creating 5-4
removing 5-5
understanding 1-7

application view management console
logging on to 5-3
understanding 1-7

application view services
adding 2-9
asynchronous 1-6
calling 3-4
synchronous 1-7
understanding 1-6

application views
adding events to 2-11
adding services to 2-9
configuring connection parameters 2-7
defining 2-2
deploying 2-13
editing 2-30
removing 5-5
security 2-16
testing events 2-23
users of 1-10
using by writing custom code 1-11
using in WebLogic Process Integrator

1-11
when to define 1-4

applications 1-3
asynchronous application view services

calling from workflows 3-4
receiving responses from 3-10
understanding 1-6

AsyncServiceResponse variable
in AIGetErrorMsg() 3-14
in AIGetResponseDocument() 3-15
in AIHasError() 3-14

I-2 BEA WebLogic Application Integration User Guide

B
business analysts 1-8
business processes

in workflows 1-11
using custom code 1-11

C
connection parameters 2-7
custom code

for business processes
when to use 1-12
writing 4-1

for defining application views 1-4
Customer Support ix

D
documentation

how to print viii
where to find it viii

E
e-docs Web site viii
EIS 1-3
enterprise infomation servers

See EIS
event nodes

receiving service responses 3-10
waiting for application view events 3-19

events
See application view events

F
folders

See application view folders

J
J2EE Connector Architecture Specification

ix
Java

custom coding in 4-1

M
management console

See application view management
console

P
Process Integrator

See WebLogic Process Integrator

R
Related Information

J2EE Connector Architecture
Specification ix

Sun Microsystems Java site ix
WebLogic Server documentation viii
XML Schema Specification ix

Request ID variables
when calling services 3-10
when receiving service responses 3-13

S
security 2-16
services 1-3
start nodes 3-16
Sun Microsystems ix
Sun Microsystems, Inc. Java site ix
support

technical ix
synchronous application view services

calling 3-9
understanding 1-7

BEA WebLogic Application Integration User Guide I-3

system administrators 1-8

T
Target Fraction parameter 2-16
task nodes 3-4
technical analysts 1-8

U
users

adapter developers 1-8
adapter users 1-8
system administrators 1-8

W
WebLogic Process Integrator

AI AsyncResponse event 3-11
using 3-1
when to use 1-12
with the AI Plug-in 3-11
workflows 3-3

WebLogic Server viii
workflows

using application views in 3-3

X
XML Schema Specification ix

