0?7,

r
S’ 7
L/

BEAWebLogic
Integration~

Tutorial: Building a
Worklist Application

Version 9.2
Document Date: November 2006

Copyright

Copyright © 2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA Aqualogic, BEA Aqualogic Data Services Platform,
BEA Aqualogic Enterprise Security, BEA AqualLogic Service Bus, BEA Aqualogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Tutorial: Overview

Tutorial OVEIVIEW oo 1-2
Stepsin This Tutorial i e e e 1-3
Step 1: Setting Up the Environment 1-3
Step 2: Modeling and Deploying the Loan Processing Task Plan.............. 1-3
Step 3: Testing the Task Plan Using Worklist User Portal. 1-3
Step 4: Managing Task Instances Using Worklist Console 1-4
Step 5: Using JPDswith Worklist i 1-4
CONVENLIONS. . . oottt e e e e e 1-4

2. Step 1: Setting Up the Environment

Before YOU Begin . . .ot 2-1
Create a Worklist Domain. 2-2
Set Up the Workshop for WebLogic Platform Design-Time Environment 2-8
Configure Users and Groups for Loan Processingcovvivnennen... 2-10

Create Groups for the Loan Processing Task., 2-11

Create Users and AsSign to GroUPS oo v it 2-13
Create aBusiness Calendar. e 2-14

3. Step 2: Modeling and Deploying the Loan Processing Task

Plan
Model and Deploy the Loan Processing Task Plan 3-1
Create a New Worklist Application. o i, 3-2

Document Templates for FrameMaker 7, Version 3.0 iii

CreateaNew Task Plan e 3-5

Define the Steps for the Loan Processing Task Plan. 3-6
Define Actionsiinthe Task Plan i i 3-10
Define Constructors for the Task Plan it 3-12
Validate the Task Plan.o 3-14
Deploy the Loan Processing Task Plan. i, 3-15
4. Step 3: Testing the Task Plan Using Worklist User Portal
Create the Loan Processing Task Instance. o .. 4-1
Claim the Loan Processing Task Instance 4-3
Reject the Loan Task Instancet 4-6

5. Step 4: Managing Task Instances Using Worklist Console

Update the Application Using WorklistConsole. 5-1
Verify Updated Application in Worklist Portal 5-5
6. Step 5: Using JPDs with Worklist

Subscribe to Worklist Events. 6-1
ConfigureaPerform NOde. o 6-4
Verify the Worklist Eventis Published i i, 6-6
Use the Worklist Control 6-8
Create aWOrKIStIPDo 6-8
Createa Task Controlt e 6-11
Add Task Plan Constructor to JPD 6-13

Validate the WorklistControl JPDo 6-15

/. Advanced Topic: Adding a Customized User Interface
Define Web Page Mock-Upand Flow. i, 7-1
Define Page FIOW o o 7-3

Document Templates for FrameMaker 7, Version 3.0

.. 7-6
Define Actionsonthe Page Flow o i 7-7
DefiNg JSP PAgES . . o ottt e 7-7
Register the Custom UL o 7-7
Deploy the Custom Task Ul o e 7-7
Validate the Custom Ul 7-8
Configure USErs and groupso v et 7-8

Create USBIS . .o 7-8

Create a Loan Approval Task. 7-9
Assigned LoanOfficer Approves Loan to his Manager 7-9
Assigned LoanManager Rejectsthe Loan.. 7-10

Document Templates for FrameMaker 7, Version 3.0

vi Document Templates for FrameMaker 7, Version 3.0

Tutorial: Overview

Java Process Definition (JPD) functionality available with BEA WebLogic IntegrationTM enables
integration of diverse systems, applications, and human participants. WebL ogic Integration
Worklist enables people to collaborate as part of higher level business processes.

The Worklist subsystem enables human interaction with business processes. Worklist provides
the capability to assign tasks to human users. Based on the assigned task, human users can
perform actions on the tasks, which can trigger new task assignments to other users or system
events. This process flow depends on the higher level business processes.

Some of the Worklist subsystem features include:
e Creating and assigning tasks to users
e Generating notifications of task assignments and task due events

e Tracking task history and status

This chapter provides an overview of the tutorial and explains the business scenario on which this
tutorial is based. It includes the following sections:

e Tutorial Overview
e Steps in This Tutorial

e Conventions

Tutorial: Building a Worklist Application 1-1

Tutorial Overview

1-2

This tutorial provides you step-by-step instructions to create a loan approval tracking system for
a fictitious financial institution, Acme Financial System (AFS), using human interaction and
system integration functionality available with Worklist.

Figure 1-1 illustrates the loan approval tracking system scenario that you will create during the
course of this tutorial.

Figure 1-1 Loan Approval Tracking System Process Flow

Loan
Application
—M Customer Loan Officer
Manager
Approval

Loan Rejected

Loan Approved

Loan Manager

Following is the sequence of events illustrated in the preceding figure:

1. A customer submits a loan request for an amount of $10,000 with AFS. Based on the process
flow, the system routes this loan application to be reviewed by Loan Officers.

2. The Worklist creates the loan task for this loan application. This task appears in the Inbox of
all users who belong to the Loan Officers group.

3. One of the Loan Officers (John) logs into the system, reviews the loan request, and claims it
as his task.

4. John assesses the loan request and decides to route to the group of Loan Managers for
approval.

Tutorial: Building a Worklist Application

Steps in This Tutorial

5. Loan Manager Mary logs in and claims the loan task.

6. Mary has the choice to approve or reject the loan. If she approves the loan, Worklist flags the
task as complete and triggers an event, which is sent to the loan request system.

7. If Mary rejects the loan, Worklist aborts the task and rejects the loan request.

Steps in This Tutorial
This tutorial provides you with detailed instructions to:
e Set up the environment
e Create a task plan
e Test the loan processing approval system using Worklist User Portal
e Manage loan processing task instances using Worklist Console

e Use JPDs to interact with loan task instance

In the tutorial, these tasks have been structured and categorized into six steps. These are:

Step 1: Setting Up the Environment

The section details the steps required to set up the Worklist Design-Time environment (for
modeling the target task plan), and the Worklist run-time environment (for running the
application.) In addition, you will need to set up the users, groups, and business calendars.

Step 2: Modeling and Deploying the Loan Processing Task
Plan

This section discusses how the loan processing task plan can be modeled to implement the
business scenario and then be deployed on the WebL ogic Integration server.

Step 3: Testing the Task Plan Using Worklist User Portal

The Worklist User Portal is provided out of the box to allow different human users to work on
the task instances. A loan processing task can be created and worked on to completion by many
users through the Worklist User Portal.

Tutorial: Building a Worklist Application 1-3

Step 4: Managing Task Instances Using Worklist Console

In this section, the administrator uses the Worklist Console to look at the overall statistics of the
loan processing task instances. In addition, the administrator reassigns some task instances
because the assigned employee has left the company.

Step 9: Using JPDs with Worklist

In this section, the loan processing requests come from an online system that triggers a JPD
business process, which creates the task instance.

Conventions

This section describes the conventions used in the text and code examples of this tutorial.
Table 1-1 lists the meaning and examples for different text and code conventions.

Table 1-1 Worklist Tutorial Conventions

Convention Meaning Example

Bold Bold typeface Click Next to proceed with the Configuration
indicates terms on Wizard.
which users perform
actions.

Italics Italic typeface Because the task instance, Car loan for Maggie
indicates names of May, is assigned to the loanOfficers group, it
processes. will show up on the Assigned Tasks portlet of John’s

Inbox.

Code Code typeface Specify the Web project name as Loan_Web in

indicates names of the Web Project Name box.

files, directories, steps,
and group names.

1-4 Tutorial: Building a Worklist Application

CHAPTERa

Step 1: Setting Up the Environment

In this step, you will set up the Worklist design-time environment for building the loan processing
approval task plan and a new Worklist application.To set up the environment, you will create a
new domain, users, and groups for the Acme Financial System.

To complete the tasks in this step, go through the following sections:
e Before You Begin

Create a Worklist Domain

Set Up the Workshop for WebLogic Platform Design-Time Environment

Create a New Worklist Application

e Configure Users and Groups for Loan Processing

Before You Begin

Before you begin this tutorial, ensure that you have WebLogic Platform version 9.2 with
WebLogic Integration 9.2 installed on your system and define a workspace. Perform the

following to start the BEA Workshop for WebLogic Platform™ IDE (Integrated Development
Environment).

1. From the Start menu, click All Programs—BEA Products—Workshop for WebLogic
Platform to start the BEA Workshop for WebLogic Platform IDE. This will display the
Workspace Launcher dialog box.

Tutorial: Building a Worklist Application 2-1

2. For the purpose of this tutorial, create a workspace called worklist in the
BEA_HOME\user_projects\w4WP_workspaces\ directory. Where BEA_HOME is the
location where you installed WebLogic Platform 9.2 (see Figure 2-1).

Figure 2-1 Setting the Workspace

Workspace Launcher @

Select a workspace

BEA Warkshop For WeblLogic PlatForm skores wour projects in a Folder called a workspace,
Choose a warkspace Folder ko use For this session,

Warkspace: | Cibealuser_projectsivwdWP_workspacestworklist j Browse. ..

[Use this as the default and do ot ask again

oK | Cancel

Create a Worklist Domain

The Worklist domain is created using the Configuration Wizard. To create the Worklist domain:

1. From the Start menu, click All Programs—BEA Products— Tools—Configuration
Wizard to start the BEA WebLogic Configuration Wizard.This displays the Welcome page
in the BEA WebLogic Configuration Wizard dialog box (see Figure 2-2).

2-2 Tutorial: Building a Worklist Application

Create a Worklist Domain

Figure 2-2 Configuration Wizard Welcome Page

B BEa Weblogic Configuration Wizard

Welcome

Choose between creating and extending a domain, Based on your selection, o '] . \
% ea

the Configuration Wizard guides you through the steps to generate a new or extend an existing domain,

® Create a new Webl ogic domain

Create a Weblogic domain in your projects directory.

 Extend an existing WeblLogic domain

Extend an existing YWeblLogic domain.

Lise this option to add applications and services, or to override existing database access (JDBC) and
messaging (IMS) settings. You can also incorporate additional functionality in your domain, for example, by
including Agualogic Service Bus.

][|

2. Select Create a new WebL ogic domain and click Next. This displays the Select Domain
Source page in the Configuration Wizard dialog box.

As you proceed through the Configuration Wizard, several pages will appear in a sequence.
You need to specify your settings on each page and click Next to proceed to the subsequent
page.Table 2-1 lists the pages and the options that you need to select to create the domain
successfully.

Tutorial: Building a Worklist Application 2-3

Table 2-1 Configuring the Domain Using the Configuration Wizard

Page in the Configuration
Wizard Dialog Box

Recommendation Action

Select a Domain Source

Select Generate a domain configured automatically to support the
following BEA Products option for the following BEA Products:

e WebLogic Server (Required)

* Workshop for WebLogic Platform
e WebLogic Integration

Click Next to proceed.

Configure Administrator
Username and Password

Specify the following mandatory credentials:
User name =weblogic

User password = weblogic

Confirm user password = weblogic

Click Next to proceed.

Configure Server Start Node
and JDK

Select Development Mode in the WebLogic Domain Startup Mode column.

Select Sun SDK 1.5.0_04 @ C:\bea\jdk150_04 in the BEA Supplied JDKs
column.

Click Next to proceed.

Customize Environment and
Service Settings

Click No, to retain the settings defined in the domain source and proceed
directly to creating your domain.

Click Next to proceed.

3. On the Create WebLogic Domain page, specify the following values for each field and click
Create (see Figure 2-3):

e Domain name: myworklist

e Domain Location: C:\bea\user_projects\domains

e Application Location: C:\bea\user_projects\applications

2-4 Tutorial: Building a Worklist Application

Create a Worklist Domain

Figure 2-3 Create WebLogic Domain Page

E) BEA WebLogic Configuration Wizard

Create WeblLogic Domain e %
when you click Create the domain will be generated in the location specified, 9’°i] 7 &
% 1ea

Enter the name and location for the domain and its applications:

Domain name: | ryweorklist |

Domain location: | F:\bealplatformaZ _for_Betaluser_projectsidomains | | Browse |

Application location: |F:'l,bea'l,platForm92_F0r_Beta'l,userjrojects'l,applications || Browse |

After the domain is created successfully, the Creating Domain page is displayed (see
Figure 2-4).

Tutorial: Building a Worklist Application 2-5

Figure 2-4 Creating Domain Page

E) BEA WebLogic Configuration Wizard

. . 7
Creating Domain \‘

P
o7 7
Z e
% 16a

Progress:

100%

Preparing...

Extracting Domain Conkents. .,

Creating Domain Security Information. ..
Saving the Domain Information, ..

Staring Domain Information. ..

String Substituting Domain Files. ..
Performing OS5 Specific Tasks...
Performing Post Domain Creation Tasks...
Domain Created Successfully!

Domain Location: Fiibealplatform22_for_Betaluser_projectsidomainsimyworklist

[start Admin Server

4. Select the Start Admin Server check box and click Done to proceed.

Set Up the Workshop for WebLogic Platform Design-Time
Environment

After you create the myworklist domain, you can set up the design-time environment for the
loan processing task plan by performing the following steps:

1. Click File—New—Server. The New Server dialog box appears (see Figure 2-5).

2-6 Tutorial: Building a Worklist Application

Set Up the Workshop for WebLogic Platform Design-Time Environment

Figure 2-5 New Server Dialog Box

W New Server, E

Define a New Server
Choose the type of server to create

Server's host name: | Iocalhost j

Select the server bype:
+- [~ Apache

Wiew By: [Vendar -

Description: BEA WWeblogic v9.2 Server

Server runtime: |BEA Weblogic v2.2 j Installed Runtimes...

| Mext = | | Cancel |

2. Inthe New Server dialog box, accept the default settings and click Next.

3. Browse and select the myworklist domain, which you created using the Configuration
Wizard. It is located at C:\bea\user_projects\domains\myworklist (see Figure 2-6).

Tutorial: Building a Worklist Application 2-1

Figure 2-6 Specify the domain name for the New Server

W New Server,
BEA WeblLogic v9.2 Server prees
Define a Wweblogic Server ~ o
7 hea
Darnain horme: |C:'l,bea'l,useu:rDjects'l,dnmains'l,myworldist j Browse, .. |

Click here ko launch Configuration Wizard to create a new domain

Mame
¥ sz defaulk

< Back. Mext = Finish Zancel

4. Click Finish.

This completes the creation of a new server on which, the Worklist application will be deployed.

Create a New Worklist Application

2-8

A Worklist application consists of an EAR and a Web project, which contain all the files and
directories that relate to a executable and self-contained Worklist application on the server.

The EAR project corresponds to the Enterprise Application. It hosts the Worklist system instance
and the loan processing task plan for Acme Financial System. You will build and deploy this
project to create the task scenario described in the overview of this tutorial.

The Web project, an instance of the Worklist user portal that acts as the user interface for the
Worklist system (hosted by the EAR project). The Web project is a part of the EAR project.

To create a new Worklist application:

1. In BEA Workshop for WebLogic Platform, click File—>New—Project.

The New Project dialog box appears.

2. Select the WebLogic Integration—Worklist Application in the New Project dialog box
(see Figure 2-7).

Tutorial: Building a Worklist Application

Create a New Worklist Application

Figure 2-7 New Project Dialog Box

[

¥ New Project @

Select a wizard

=7

‘Wizards:

+ Bm

= EB

[IZEE

= Java

== Simple

= Web

(== WeblLogic Integration
L:% Process Application
L worklist Application

== WebLogic Portal

== Web Services

== Examples

1 [F- - E-

F-[F-[H

I Shaw Al Wizards,

| | | Cancel

3. Click Next. The New Worklist Application dialog box appears.

4. Select the Process Host option from the Choose Worklist Application Type section, this will
allow to use Worklist and Business Process Management together in the same application.

5. Specify the EAR Project Name as Loan_EAR in the EAR Project Name box.
6. Specify the Web Project Name as Loan_Web in the Web Project Name box.

7. Select the Create Utility Project check box and specify the Utility Project Name as
LoanuUtil. This project will contain all the WebLogic Integration schemas.

8. Select the Add WebLogic Integration System and Control schemas in utility project
check box (see Figure 2-8).

Tutorial: Building a Worklist Application 2-9

2-10

Figure 2-8 New Worklist Application Dialog Box

W New Worklist Application |X|

New Worklist Application
Create a new Worklist application,

Choose Worklist Application Type
" Simple Client
A simple client uses the Worklist API to interact with \Warklist,

" ‘Worklist System Host
A worklist system host defines task plans {.task files) and uses the User Portal to interact with Worklist

(* Pracess Host
Process hosts define weblogic integration processes and task plans {.task files) and use Worklist controls o
interact programmatically with Worklist and the User Portal to interact with Worklist for human actions

EAR. Project Name: | Loan_EAR.

‘Web Project Mame: | Loan_Web

Iv Create Utility Project

Ukility Project Mame: | Loanbil

Iv add weblogic Integration System and Control schemas in utility project:

< Back | | Finish | Cancel |

9. Click Finish and the Open Associated Perspective? dialog box is displayed.

10. In the displayed Open Associated Perspective? dialog box, select the Remember my
decision check box and click Yes. In doing so, you associate the project with the Task Plan
perspective (see Figure 2-9).

Figure 2-9 Open Associated Perspective? Confirmation Box

W Open Associated Perspective?

92 This kind of project is associated with the Task Plan perspective, Do you wank
_:/ to open this perspective now?

You can see the Task Plan icon | “#T#£Fa" o1 the top right corner of the BEA Workshop
for WebLogic Platform window.

Tutorial: Building a Worklist Application

Configure Users and Groups for Loan Processing

For Acme Financial System, the users and groups listed in Table 2-2 need to be created. To do
this, you need to start the server created in the previous section if it is not started already. Perform

the following to start the server afresh.
1. Select the server in the Servers pane (see Figure 2-10).

Figure 2-10 Starting the Server

¥ Workshop - Welcome - BEA Workshop for, WebLogic Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
] © G-E2#E- @s @ F £ | (i workshop
1§ Package Explorer 31 = O B welcome 52 = OB annotations &7 . Cutine =0
=% 7 Welcome 5 -
BEA Waorkshop For WebLogic Platform (Workshop for WeblLogic) is an Property | value
IDE builk on the Eclipse platform that simplifies the pracess of develaping
web-based, service-oriented (04) and 12EE applications For deployment an
BEA ‘WebLogic Server,
warkshop For \WebLogic is part of a Family of products that provide
development tools For industry-standard frameworks and standards
like Struts, I5F, Hibernake and Tiles. The BEA waorkshaop product line
alsn includes BEA Workshop For Struts, BEA workshop for J5F,
EEA Workshop for 35P and BEA Workshop Studio.
(=) Dverview
Read an overview of the Workshop for weblLogic development environment.
(=) Tutorials B
Get started step-by-step with a tutorial,
(% samples
Get a list of the sample workspaces included with \Workshop For WebLogic,
(=) What's New? v
Problems (S t5 “ g = 08
Republish

2. Right click and select the Start option.

Tutorial: Building a Worklist Application

2-1

2-12

Table 2-2 Users and Groups for Loan Processing

Users Groups

John loanOfficer
Joe loanOfficer
Mary loanManager
Mark loanManager

Create Groups for the Loan Processing Task

Perform the following steps to create Group.

1.

o o ~ w

Open the Worklist Console using Run—Weblogic Integration—Worklist Console menu in
the BEA Workshop for WebLogic Platform or alternatively open a Web browser, such as
Internet Explorer, and enter the Worklist console URL.:

http://host:port/worklistconsole

Use the following credentials to log in to the WebLogic Integration Worklist console with
administrator rights:

— User name: weblogic

— Password: weblogic
Click Worklist Users from the left panel.
Click Groups from the Worklist Users section in the left panel.
Click Add Group to open the Add New Group page (see Figure 2-11).

Specify the following details for the new group:
— Group name: loanOfficer

— Authentication Provider: SQLAuthenticator

Tutorial: Building a Worklist Application

Configure Users and Groups for Loan Processing

Figure 2-11 Add New Group Page

)
£hea WebLogic Integration Worklist Gonsole

Worklist Lisars Wlcome, b 1 impworkist & Horr
Workst System Instance(s) Lisers > Groups
b
sl (] A rvew Group
oles
=
" Group Name loarifces
* authentcation Prowider SOLAUGANCAr M
Hvalale Grougs Cument Grougs
Irtngratonleplpms ~ [
Integrationidcnitors *
~ IrtegrationCperators
Group Membersn
Group e e Ity aton sy
Monifors b4
Opirators -
Savn Sl
Worklist
Burness Caleridar

8. Click Add Group to create another group.
9. Specify the following details for the new group:
— Group name: loanManager
— Authentication Provider: SQLAuthenticator
10. Click Save.

After you create the groups, you need to create the users and assign the users to these groups.

Create Users and Assign to Groups
1. Click Worklist Users from the left panel.

2. Click Add User. This opens the Add New User - General Configuration page.
3. Specify the following details:

— Name: John

— Provider: SQLAuthenticator

— Password: password

Tutorial: Building a Worklist Application 2-13

2-14

Note: The password must be of at least 8 characters.

4. Move loanOfficer from the list of Available Groups to the list of Current Groups (see
Figure 2-12).

Figure 2-12 Add New User- General Configuration

=y : - :
£hea WebLogic Integration Worklist Consola

Worklist Users Wedcome, weblogic 110 myworklist BrHome | WLS Corscie

s)
e Am[™™
Group Membersh ey
Integr abonAdminstr o
by ationDepkoyer -
Integr ationMonitors ~
Worklist Save e
wiorklist Users
5. Click Save.
6. This displays the Summary of Users page, which lists John as a user.
7. Repeat step 2 to step 5 for Joe.
8. For users Mary and Mark, select the loanManager group after repeating step 2 and step 3.
Note: While you can change the password for these users, retain the same password for this
tutorial.
9. Click Save.

Figure 2-13 shows the summary of users and groups required for the loan processing task plan.

Tutorial: Building a Worklist Application

Configure Users and Groups for Loan Processing

Figure 2-13 Summary of Users

r:iie‘;g WebLogic Integration Worklist Console

worklist Users welcome, welilogic

o yworkBst | Home

Worklst System Irstanca(s) > Lssrs
Users
Groups (8] summary of Users
Raks -
&) search User Hama [Sowch]
Iterrs 1.5 o 5 1
| User Name = Grongp Membership < susthentication Provider < Options
] Joe lanDificer SOLALthenticater]
(m] Jotn kanofficer SOLALthEnECAL i |
(m] Mk anManagn SOLALhAAEC At b |
(m] Mary InanManager SQLALthanticator i |
u] weblogc Admiistrators SQLALhenticatoe]
Mgrre 15 of § 1
Ak U Latte Liser
‘Worklist
Business Calendar

Tutorial: Building a Worklist Application 2-15

2-16 Tutorial: Building a Worklist Application

CHAPTERa

Step 2: Modeling and Deploying the
Loan Processing Task Plan

A task plan defines the business-specific life cycle to complete a task. A loan processing task plan
depicts the multiple human interaction steps involved in processing a loan. For example, when a
prospective customer submits a loan application, a loan officer needs to be assigned the task of
checking the customer details and then approve the loan or forward it to the loan manager for
further scrutiny. This step is a part of the task plan, which ensures that whenever a new loan
application is submitted, a loan officer claims the task and processes the loan application.

In WebLogic Integration Worklist 9.2, a task plan can be modeled using the Workshop for
WebLogic design-time environment and then be deployed to run on the server. Once the task plan
is deployed, the task instances can be created by authorized systems or human entities. Task
Instances or tasks are based on the task plan.

In this step, you will model and deploy the loan processing task plan using Workshop for
WebLogic Platform design-time environment.

Model and Deploy the Loan Processing Task Plan

The loan processing task plan will be modeled using Workshop for WebLogic. To model the task
plan, you need to perform the following tasks:

e Create a New Task Plan
e Define the Steps for the Loan Processing Task Plan
e Define Actions in the Task Plan

e Define Constructors for the Task Plan

Tutorial: Building a Worklist Application 3-1

3-2

e Validate the Task Plan

e Deploy the Loan Processing Task Plan

Create a New Task Plan

To create the loan processing task plan:

1. Inthe Package Explorer pane, right-click the Loan_EAR\EarContent folder, and select
New—Folder.

2. Inthe New Folder dialog box, specify the folder name as Loan and click Finish to continue.
3. Select the Loan folder, right-click and select New—Task Plan.
The New Task Plan dialog box appears.

4. Inthe New Task Plan dialog box enter loan_approval in the File name (see Figure 3-1).

Figure 3-1 New Task Plan

W New Task Plan [g|
Task Plan :::
This wizard creates a new Task with * kask extension,] =
o
Container: | ILoan_EAREarContent/Loan Browse, ..

File nare: | loan_approval

Finish | Cancel

5. Click Finish to proceed.

Define the Steps for the Loan Processing Task Plan

A task plan is a collection of steps that define the action a human needs to perform when working
through a task. For Acme Financial loan processing system, the steps involved are listed in
Table 3-1.

Tutorial: Building a Worklist Application

Table 3-1 Steps in the Loan Processing Task Plan

Step Name Default Assignee Note

Officer Review Pending Loan Officer

Manager Review Pending Loan Manager

Loan Approved Step Completed
Loan Rejected Step Aborted

To add these steps to the loan_approval task plan:

1.

o v

From the Palette box, click Step and then click anywhere in the *loan_approval.task tab to
add a step. The default name for a new step is Step#, where # is an incremental numeric value
that changes depending on the number of existing steps in the task plan.

Click the step again and change the name to OfficerReviewPending.

With the OfficerReviewPending step selected, click Assignment Instructions in the
Properties tab.

In the Value column, click E=1. This displays the Assignment Instructions dialog box, as
shown in Figure 3-2.

Click Add and click the Name column to enter loanOfficer.

In the Type column, click the list box and select Group.

7. Select DEFAULT from the Candidate List Handling list box.

8. Click OK. The officerReviewPending step is now assigned to the loanOfFficer group (

see Figure 3-2).

Tutorial: Building a Worklist Application 3-3

3-4

Figure 3-2 Assignment Instructions

W Assignment Instructions @

Marme | Twpe |
doanCfficer i Group

add
Candidate List Handling: | DEFALLT j
-
04 I Cancel |

9. Add another step to the 1oan_approval . task file and call it ManagerReviewPending.

10. With the ManagerReviewPending step selected, click Assignment Instructions in the
Properties tab.

11. In the Value column, click (=, This displays the Assignment Instructions dialog box.

12. Click Add and click the Name column to enter 1oanManager.

13. In the Type column, click the list box and select Group.

14. Select DEFAULT from the Candidate List Handling list box.

15. Click OK. The officerReviewPending step is now assigned to the loanManager group.
16. From the Palette tab, click Complete Step and drop it in the loan_approval . task tab.
17. Change the name of the step to LoanApproved.

18. From the Palette tab, click Abort Step and drop it in the loan_approval . task tab.

19. Change the name of the step to LoanRejected.
After you add all the steps, the loan_approval - task tab will be displayed (Figure 3-3).

Tutorial: Building a Worklist Application

Figure 3-3 Steps in loan_approve.task

Welcome E *loan_approval.task X =0

Define the User Properties of the Task Plan

User properties are business-specific data elements of a task plan. For the loan processing
scenario, you need to define the user properties mentioned in Table 3-2.

Table 3-2 User Properties for Loan Processing Task Plan

User Property Name Data Type
LoanAmt Integer
Name String
SSN String
Collateral Assets String
Notes String

Tutorial: Building a Worklist Application

Note: User properties are global and apply to all the steps throughout the life cycle of the task
plan.

To create user properties:

1. From the User Properties tab, click the Create user property icon (see Figure 3-4).

Figure 3-4 User Properties Tab

= o < G il
rl |

Name | [Create user property...

2. Inthe Create User Property dialog box, enter the name of the user property as LoanAmt, and
provide a brief description in the Description field.

3. Click the Type drop-down list and select Integer (see Figure 3-5).

3-6 Tutorial: Building a Worklist Application

Figure 3-5 Create User Property Dialog Box

W Create User Property

Mame: | LoanAmt

Desaription: || oan Amount

Type Information

Type: |Integer -

Default Value: |

Example: [

Cancel

4. Click OK to implement the new property.
5. Repeat step 1 to step 4 for the other properties listed in Table 3-2.

Define Actions in the Task Plan

Every step (other than terminal steps including Completed Step and Aborted Step) of the loan
processing task plan can include actions, which allow the transition of the task instance from one

step to another. The actions can be taken by authorized employees or system actors.

For the loan processing task plan, create the actions listed in Table 3-3.

Table 3-3 Actions for the Loan Processing Task Plan

Step/Constructor Action User Properties Required Resulting Step
Officer Review Pending Approve Notes Approved
Officer Review Pending Reject Notes Rejected

Tutorial: Building a Worklist Application

3-1

3-8

Tahle 3-3 Actions for the Loan Processing Task Plan

Step/Constructor Action User Properties Required Resulting Step
Officer Review Pending Request Notes Manager Review
Manager Pending
Review
Manager Review Pending Approve Notes, Collateral Assets Approved
Manager Review Pending Reject Notes Rejected

To create the actions listed in Table 3-3:

N oo g &

9.

Click Action in the Palette tab and drop it on the OFficerReviewPending step.
Change the action name to Approve.

In the Properties tab, click the Required User Properties—Notes property.

In the Value column, click to open the Property Notes dialog box.
Select the Required check box and click OK.
Click Connections in the Palette tab.

To create a connection between the Approve action, and the LoanApproved step, which
appears in green color, click the Approve action box.

Move the mouse over the LoanApproved step and click again. This creates the connection
between the Approve action and the LoanApproved step.

Repeat step 1 to step 8 for the other steps listed in Table 3-3.

After you create the connections for each action, the Outline tab will look similar to Figure 3-6.

Tutorial: Building a Worklist Application

Figure 3-6 Outline Tab with Action, Steps and Connections

[welcame i X =0

-~ ‘\'.
- II\'-.
~ \
- .
_____————_______ “apprave A
T ——Reject A

Define Constructors for the Task Plan

In a task plan, there is at least one constructor that defines how a task instance comes into
existence. A constructor for a task plan lists the initial data to be provided for the creation of a
task instance as well as the resulting step of the task instance. Each constructor needs to have a
step associated with it. There may be more than one constructor for a task plan.

For the loan processing task plan, define the NewLoan constructor. This constructor will be used
to create a loan task when a loan request comes in without a credit score and pre-approval.

Note: Constructors can be invoked by authorized employees or system actors, so that the loan
task instances can be created either by human data entry or system execution.

To configure the constructor:

1. Click Constructor on the Palette tab and drop it in the Constructor container of the
*loan_approval.task tab.

2. Name the constructor NewLoan.

Tutorial: Building a Worklist Application 3-9

3. Inthe Properties tab, set the value for the LoanAmt, Name, and SSN properties to Requi red,
by performing the following steps:

a. Inthe Properties tab, click the LoanAmt property (see Figure 3-7).
b. Click in the Value column to open the Property LoanAmt dialog box.

c. Select the Required check box and click OK.

Figure 3-7 Property LoanAmt Dialog Box

W Property LoanAmt @

Type: Integer
Required; v

Description:

Default value:

[0]4 | Cancel |

d. Repeat step a to step ¢ for the Name and SSN properties.

For a new loan application, you need to create a connection between the NewLoan
constructor and the OFFicerReviewPending step.

4. Click Connection in the Palette tab to connect NewLoan to OfficerReviewPending.

5. Click the NewLoan constructor box and move the mouse over to the OfFficerReviewPending
step and click again.

After you map the NewLoan constructor to OFFicerReviewPending step, the Outline tab
will appear similar to Figure 3-8.

3-10 Tutorial: Building a Worklist Application

Figure 3-8 Outline Tab After Connecting the NewLoan to OfficerReviewPending

B+ can_approvaltask X =08

\\\H\
e
s

/

N

-

—Approve E
Feject E
Request Manager Review B
X\
s \
e

N
//

Approve E

Reject E

6. Select File—Save All menu option to save the application before you proceed.

Validate the Task Plan

The final stage in designing and deploying the task plan is to validate if the task plan is working
according to the required enterprise model specification.

To validate the loan processing task plan:
1. Click Worklist—Validate Task Plan for Runtime.
2. If the task plan is valid, then the Validation Results dialog box appears (see Figure 3-9).

Figure 3-9 Validation Results Dialog Box

W validation Results

i) Congratulations! Task Plan is valid,

3. Click OK to confirm.

Tutorial: Building a Worklist Application 3-11

4. Select File—Save All menu option to save the application before you proceed.

Deploy the Loan Processing Task Plan

Once the loan processing task plan is modeled completely, you can deploy it on WebLogic
Integration Server.

To deploy the loan processing task plan:

1. Inthe Package Explorer pane, right-click the Loan_Web project that you created previously
and select Run As—Run on Server. The Run on Server dialog box is displayed (see
Figure 3-10).

Figure 3-10 Run on Server Dialog Box

W Run On Server @

Define a New Server
Choose the type of server to create

How do you want to select the server?
* Choose an existing server
" Manually define a new server

Select the server that you want to use;

= localhost
SR EE A \Webl ogic w9, 2 Server [myworklist]

View By: |[Host name +

Description: BEA WebLogic v3. 2 Runtime

I Setserver as project default (do not ask again)

Mext = | Einish | Cancel

2. Select Choose an existing server and from the Select the server that you want to use: list,
select the myworklist server and click Next.

This will display the Add and Remove Projects dialog box.

3-12 Tutorial: Building a Worklist Application

3. Ensurethat Loan_EAR is listed in the Configured projects list. If it is not then select Loan_EAR
from the Available projects list, and click Add.

4. Click Finish to start deploying the project on the server.

It will take some time to deploy the project on the server. After the task plan is deployed

successfully, it opens up on the Worklist User Portal within the BEA Workshop for WebLogic
Platform (see Figure 3-11).

Figure 3-11 Worklist User Portal

W Task Plan - Worklist User Portal - BEA Workshop for WebLogic Platform

Fle Edt Nevgste Semch Froject Run Window el
QL- |+ | @ o -

14 Padage Explorer 11 I T Rl kst User Portal X
+ I Lown £AR
o 1 Lown_wils
& T Loaninl
Home Tazk List Work on Task
Login to Worklist [S[=]l overdue Tasks | Assigned Tasks Q=
Flaase enter your usamama ou must log in before accessing | | Vou must lag in bafare
and passwerd below. this page. ng this page.
J— Upcaming Tasks EE
vou must log in bofore accessing | | You must ko
Passward: thes page. accessing this page.
Ak Pette 7 (=] e | 8% Servers 1
[P ——— Quick Goarch S= 50 % WE
You must leg in before — —
accessing this page. S YT e —
Brovse Tasks by Type B
You must leg in belare
accessing this page.
-
[l propesties 1 . Probllema | Consce B ¥ o
Froperty akoe -
[
derned faise
adtathe true
L el el 11720006 10:29 A
Irked faise
[il ot We_ ek, .
name: Lean Web w i »

Tutorial: Building a Worklist Application 3-13

3-14 Tutorial: Building a Worklist Application

CHAPTERa

Step 3: Testing the Task Plan Using
Worklist User Portal

The user portal provides Worklist users an interface for accessing the task instances that they are
authorized to deal with. In the user portal, the user will see list of task instances associated with
them or the groups they belong to. These lists should be considered to the user’s Inbox for
Worklist.

There Upcoming Tasks and Overdue Tasks portlets show tasks created by the user or owned by
the user. Task claimed by the user are shown with a special icon containing a check mark. This
is done to clearly indicate the tasks this user is expected to work on (by taking actions on them

and setting their properties). Tasks that are were created by or are owned by the user require the
user to keep track of them, but not necessarily to work on them.

The Assigned Tasks portlet shows tasks that are assigned to the user, or the groups to which the
user belongs, but are not claimed by anyone. The claimed tasks are claimed by the user and to be
worked on by the user only. For example, if loan officer John claims a loan processing task
instance, then loan officer Joe will not have access to this task instance, and will not see the task
in his view of the user portal.

The Assigned Tasks are tasks assigned directly to the user or groups. the user belongs.

In this step, you will perform the following tasks:
e Create the Loan Processing Task Instance
e Claim the Loan Processing Task Instance

e Reject the Loan Task Instance

Tutorial: Building a Worklist Application 4-1

Create the Loan Processing Task Instance

42

To test the newly deployed loan processing task plan, you need to create a new task instance.
Before integrating with the system application, the task plan can be tested by creating a loan
processing task instance.

The NewLoan constructor will be used to create the loan processing task instance. To create the
task instance:
1. Open a Web browser and enter the following URL to open the Worklist User Portal test
browser:
http://1ocalhost:7001/Loan_Web
Note: You can use any external browser, for example Internet Explorer, or the default browser
that comes with BEA Workshop for WebLogic Platform.
2. Log into the Loan_Wweb project using the following credentials:
Username: weblogic
Password: weblogic

The Home page is displayed with the Inbox’ for the user. This is a portal page with portlets
for the Inbox of overdue, upcoming, and assigned tasks, along with the portlet that allows
you to create a new task (see Figure 4-1).

Tutorial: Building a Worklist Application

Create the Loan Processing Task Instance

Figure 4-1 Creating a Task Using the Worklist User Portal Home Page

-

£hea BEA WEBLOGIC WORKLIST o

LOGOUT

Home Task List Work on Task

Login to Worklist

Logged in as weblogic There are no "Overdue There are no Assigned Tasks

preferences in this view, this wigw,

IB|=|ll Overdue Tasks B = f Assigned Tasks B (=

Tasks" matching the matching the preferences in

& show all tasks in B show all tasks in
Quick Search B/E this wview this wview

5 Edit Preferences... ® Edit Preferences...
|

Browse Tasks by Type

© Edit Preferences...

"] upcoming Tasks IS

@ /Loan/Loan_approval 1.0 Tl—:l?sr'?ni::cl?n?ngufhceommg @ /Loan/Loan_approval
preferences in this wiew, 1.0
Show all tasks in 9 Edit Preferences...
this wiew

Edit Preferences...

3. Click the /Loan/loan_approval 1.0 option in the Create Task portlet. The Create New Task

page is displayed.

4. Ensure that NewLoan is selected as the task plan constructor.

5. Specify the details listed in Table 4-1 for the other fields on the page:

Table 4-1 Specifications for the New Loan Approval Task Instance

Field Name

Value

Task Name

Car loan for Maggie May

User Properties: SSN

222-33-4444

User Properties: LoanAmt

10000

User Properties: Name

Maggie May

6. Click Create Task. The task is created and shows up in the Upcoming Tasks portlet on the
home page, as shown in Figure 4-2.

Tutorial: Building a Worklist Application 4-3

Figure 4-2 Upcoming Tasks Portlet After Creating a Task

Upcoming Tasks E@

. (Car loan for Maggie May
(/Loan/loan_approwval:1.0)
Mo Due Date

« Show all tasks in this view
. Edit Preferences...

Note: The task shows up on the Inbox of the user weblogic because weblogic is the owner of
the task instance. By default, the user who creates the task instance becomes the owner
of the task instance. This enables the owner to track the status of the task instance
although the owner is not assigned to work on the task instance.

7. Click Logout to close and log out as weblogic from the Worklist User Portal.

Claim the Loan Processing Task Instance

44

The new task instance shows up in the list of upcoming tasks, which implies that a loan officer
needs to claim the task and process it. Loan officer John will claim this task and work on it.

To claim the task instance, Car loan for Maggie May:

1. Start a new session of the loan web project using the URL:
http://1ocalhost:7001/Loan_Web

2. Log in to the portal using the following credentials:
Username: John
Password: password

Because the task instance, Car loan for Maggie May, is assigned to the loanOfFficers
group, it will show up on the Assigned Tasks portlet of John’s Inbox (see Figure 4-3).

Tutorial: Building a Worklist Application

Create the Loan Processing Task Instance

Figure 4-3 Task Assigned to User

Assigned Tasks B [=]

® car loan for Maggie May
(/Loan/loan_approval:1.0)
Mo Due Date m Work

Smrrrerreer—

H Show all tasks in this view
® Edit Preferences...

3. Click Claim to claim the particular task. This will move the task from the Assigned Tasks
portlet to the Upcoming Tasks portlet for user John, as shown in Figure 4-4.

Figure 4-4 Upcoming Tasks for Loan Officer John

£hea BEA WEBLOGIC WORKLIST

Home Lask List Work on Task

Login to Worklist
Logged in as John There arm no “Orerdus Tasks® matehing the greferences i this view

© Show all tasks in this view
¥ Edit Brefersnces..

® Show all tasks in this view

® edie Praforences...

Quick Search ==
& Upcoming Tasks
W Car loan for Magge May (Loan/Loan_approval: 1.0)
. a@ 1.0
Brovse Tasks by Type am No Due Date fLoan/Loan_aspprov

@ Edit Profarences...
Show i tasks in this view
Edit Praferences...

® gdit Preferences...

As the task instance has been claimed by John, it will no longer show up in Joe’s Assigned
Tasks portlet. Joe is the other loan officer who could have claimed the task.

4. Click Car Loan for Maggie May in the Upcoming Tasks portlet. This will display the Task
Work page with the task details, and the Action options available for user John. As show in
Figure 4-5.

Tutorial: Building a Worklist Application 4-5

Figure 4-5 Task Detail Information on the Task Work Web Page

Task Work

Task Generar INFORMATION
Task Name:

Current Step:
Comment:

Priority:

Owner:

Claimant:

Current Assignee(s):
PROPERTIES

Collateral Assets
LoanAmt

Name

Notes

SSN

AcTioNs

Car loan for Maggie May

OfficerReviewPending

1
weblogic
John

Groups [loanOfficer]

{null)
20000
Maggie May View Text...
{null)

222-33-4444 View Text...

O Approve
o Reject

O Request Manager Review

Work on 'Car loan for Maggie May' in 'OfficerReviewPending’ Step

=S

<
2

Applicant's collateral details

&ny other information

Lot |

Edit / View Details |

| History |

‘ Cancel |

5. Select Request Manager Review in the Actions section to forward the request to the loan
managers group for approval, and click Next.

6. Inthe Key Action Properties of the refreshed Web page that appears, enter the string Loan
amount of 10,000 sent for sanction by loan managers.

7. Click Submit. The task is now assigned to the loan managers group and will not show up in

John’s Inbox.

8. Logout as user John from the Worklist User Portal.

Reject the Loan Task Instance

After John forwards the new loan application for approval to the managers, one of the managers
needs to claim the task, decide to approve or reject the loan, and the system will process the

request accordingly. Perform the following steps to claim the task instance and subsequently to
reject the loan request.

46

Tutorial: Building a Worklist Application

Create the Loan Processing Task Instance

1. Start a new session of the Loan_Web project at the following URL:
http://1ocalhost:7001/Loan_Web

2. Log in to the portal using the following credentials:
Username: Mary

Password: password

3. As the task instance, Car loan for Maggie May, has been passed on to the loanManagers
group, it will show up on the Assigned Tasks portlet of Mary’s Inbox. The Assigned Tasks
portlet will look similar to Figure 4-3.

4. Click Claim to claim the particular task. This will move the task from the Assigned Tasks
portlet to the Upcoming Tasks portlet for user Mary (Figure 4-6).

Figure 4-6 Task Instance in Upcoming Tasks Portlet of Mary’s Inbox

{hoa BEA WEBLOGIC WORKLIST

Home Task List Work on Tosk

Login Lo Worklist
Loggad in a5 Mary

¥ Show all tasks in this view
= gdit Prefarences...

Quick Snarch =is]

Upcoming Tasks

* Car loan for Maggie May (/Loan/Loan_approval: 1.0)
Mo Due Date

& Aoan/Loan_approval 1.0

@ Edit Preferences.

Show all tasks m thes view

 Edit Praferencas..,

Edit Preferences...

As the task instance has been claimed by Mary, it will no longer show up in Mark’s Inbox.
Mark is the other loan manager who could have claimed the task.

5. Click Car Loan for Maggie May inthe Upcoming Tasks portlet. This will display the Task
Work page with the task details, and the Action options available for user Mary. (see
Figure 4-7).

Tutorial: Building a Worklist Application 4-7

Figure 4-7 Rejecting the Loan from the Task Work Web Page

Task Work E@
Work on 'Car loan for Maggie May' in 'ManagerReviewPending'
Step
Task GEnEralL INFORMATION Mew

Task Name: Car loan for Maggie May
Current Step: ManagerReviewPending
Comment:
Priority: 1
Owner: weblogic
Claimant: Mary
Current Assignee Groups [lcanManager]
(s):
PROPERTIES
Collateral Assets (null) Applicant's collateral details
LoanAmt 20000
Mame Maggie May View Text...
Notes Loan amount of 20,000 sent for sanction by loan Any other information
managers View Text...
SSN 222-33-4444 View Text...
AcTions
O Approve
® Reject
| MNext = | | Edit / View Details | | History | | Cancel |

6. Inthe Actions section, select Reject to reject the loan as shown in Figure 4-7 and click Next.

7. Inthe Key Action Properties of the refreshed Web page that appears, enter the string Loan
rejected on bad credit.

8. Click Submit to complete the task. As the loan has been rejected, the task instance will no
longer appear in Mary’s Inbox.

9. Logout as user Mary from the Worklist User Portal.

4-8 Tutorial: Building a Worklist Application

CHAPTERa

Step 4: Managing Task Instances Using
Worklist Console

This section describes how to use the Worklist Console to modify a task in the Loan_Web project.
The key objectives for this section are:

e Log in with administrator rights
e Re-assign a pending task

e Validate the update using the Worklist User Portal

This section is an extension of the previous section, and relies on its environment. So, it is
assumed that you have the Loan Application open in Workshop for WebLogic Platform, and the
myworklist server is up and running.

Update the Application Using Worklist Console

Perform the following steps to log in and re-assign a task:

1. Open a Web browser and enter the following URL to open the WebLogic Integration
Management Console:

http://1ocalhost:7001/worklistconsole

Alternatively, select Run—WebLogic Integration—Worklist Console to open the
WebLogic Integration Management Console in the Workshop for WebLogic Platform IDE.

2. Use the following credentials to log in to the Worklist Console, with administrator rights:
Username: weblogic

Password: weblogic

Tutorial: Building a Worklist Application 5-1

3. Click View Tasks for the Loan_EAR Worklist System Instance as shown in Figure 5-1.
Worklist Application Management: Worklist System Instance Page

Welcome, weblogic Connected fo : myworklist ‘ B Home | WLS Console | Logout : Help i AskBEA | |

Wworklist Systern Instance(s)

Worklist System Instances

Session Management

| Global Vorklist Policy | ‘ Purge Tasks ‘ [- I P | [- Global Task Plan Policy
3 jscar
[J worklist System Instance Tasks Description Session
O Loan_EAR Wiew Tasks Mo Data Closed
Session Management
| Global Worklist Policy | ‘ Purge Tasks ‘ [- I o |0 - Gloal Task Plan Policy
a jscan

As a user with administrator rights, you can view all the Worklist Instance details at any
given point. After clicking View Tasks, the page is refreshed and all the tasks in the
Loan_EAR project are listed in the Task Summary page.

4. Inthe Task Summary page, select the task from the list by clicking the check box adjacent to
the task name. This task has been claimed by Mary, as shown in Figure 5-2.

Figure 5-1 Worklist Application Management: Task Summary Page for the Loan_EAR Project

Waelcome, wiblogic 110 : myworklist B Horre

Worklst System Futances)

« Tasks Summany - Loan_EAR

b Curstomize Tablhe Header

Tt 11 of 1 1

[Task Name = Completion DueDate < Owrer < Task Plan ID & Deseription < Clamant & Curent Step & Priority < Wosking State < Admin State <
[l | Car loan for Magge May | - webloge | fLoanfLosn_sperava 10 | - My Lnarkejected 1 CLAIMED ARCRTED
Items 1-1of 1 1
Apply this action on selected tasks: |Suspend v | Sunmt [Conce
Clai thes tacks for Usar o0 > it v Uit Select Usar and clck 'Clarn for Usor
Cic: ‘Assign” o assgn selected tass Assn

5. Select Reactivate from the dropdown menu in Apply this action on selected tasks and click
Submit.

6. Click OK to proceed.

Selected action REACTIVATE executed successfully dialog appears in the Tasks Summary
- Loan_EAR page.

Note: Since Mary, rejected the loan in the previous chapter, you have to activate the task.

7. Click Assign to update the task with the intent to re-assign it to user weblogic.

5-2 Tutorial: Building a Worklist Application

Update the Application Using Worklist Console

Note: At this point, if you log in to the Worklist User Portal as weblogic, you will notice that
there are no tasks assigned to you. After completion of this section, the list of tasks
assigned should be updated to reflect re-assignment of the task selected in Figure 5-2.

8. In the refreshed page, move weblogic from the Users list to the Selected Users list, and
Administrators from the Group list to the Selected Groups list (see Figure 5-3).

Figure 5-2 Assign Task to User weblogic

Welcome, weblogic Connected to : myworklist | fir Home WLS Console Logout Help AskBEA

Worklist System Instance(s)

Worklist Applications Management

©

u Tasks Summary - Loan_EAR
Note: Please enter Assignment Instructions for selected Tasks Types

Users Selected Users

Joe weblogic
John o
Users: Mark

Mary -

Groups Selected Groups
AppTesters ~ Administrators
Deployers ¥
IntegrationAdministrators
IntegrationDeployers —
IntegrationMonitors -
IntegrationOperators b

Candidate List Handling: NONE v
Load Balancing Check:

I Assign-= I | Cancel |

Groups:

9. Click Assign to complete this task and the refreshed page displays the Task Summary page.
As highlighted in Figure 5-4, the task has been updated as the Claimant field is empty. This
task was claimed by Mary prior to this re-assignment exercise.

Tutorial: Building a Worklist Application 5-3

Figure 5-3 Updated Task Summary Page

welcome, weblogi “orrecied I : myworidist WHome | WLS Conso

Workist Systam Irstance(s)

o Tasks Summary - Loan_EAR

¥ Customice Tabke Header

Tterrs 11 0f 1 1
[] tagk Name = Complation DueDate = Owrser = Tatk Plan 1D & Descrption & Curment Step < Pty o Working State o Adein State o
[| Carloan for Maggie May | — webloge | floan/Loan_spprovia: 1.0 | — Mansgaifevewendng 1 ASSIGNED ACTIVE
Tterms 1-1 of 1 1
Agely this action on selected tasks: Suspend = | Suemt] Cance
Clam the tasks for User: | Jos w| | Cmmforser | Select User and cck ‘Clam for User’
Thck “Assign’ bo wesgn seectod Laks Avsygn

10. Click Logout to close the Worklist Console and proceed to the next section, validating the
re-assignment.

Verify Updated Application in Worklist Portal

After completing the re-assignment task, verify if the task has been assigned to the user
weblogic using Worklist Portal.

1. Start a new session of the loan web project in a Web browser using the URL:
http://1localhost:7001/Loan_Web.

2. Log in to the portal using the following credentials:
Username: weblogic

Password: weblogic

3. Click Login to display the Task home page for user weblogic, as shown in Figure 5-6.

5-4 Tutorial: Building a Worklist Application

Verify Updated Application in Worklist Portal

Figure 5-4 View Task Home Page for User weblogic

£hea BEA WEBLOGIC WORKLIST

Home Task List Waork an Task

Login Lo Worklist Assigned Tasks -1c}
Logged in 35 woblogie Yhara ars o ‘Dvardie Tasks™ mutching trs praferancet in ts vive ® Car loan for Maggie May
(fLoan/Loan_approval: 1.0}
® Show all tasks in this vew No Dus Date Clam Wark
® gait
GQulck Bearch 2=
@ Upeoming Tasks [=lizl B Snow all tasks in this view

Car loan far Maggio May {/Loan/Loan_appraval 1,00 ¥ Edt Proforences..,

Brovese Tasks by Type o ho Dus Date

“ paanaan_apgroval 10 jereatetask &

Show all tasks in this view s fLean/Lean_spproval 1.0
© Edit Proferances... = Edit Preferences. i

& Edit Preforences...

The task instance Car loan for Maggie May is now displayed in your Assigned Tasks portlet.

Tutorial: Building a Worklist Application 5-5

5-6 Tutorial: Building a Worklist Application

CHAPTERa

Step 5: Using JPDs with Worklist

This section describes details on how to use JPDs and Worklist controls to support the integration
of business processes with human actors via the Worklist system.

As with other built-in controls in Workshop for WebLogic Platform, you use the controls by
adding instances of the controls to your business process. Subsequently, you invoke operations

on the controls at the point in the business process at which you want to reach out to one or more
human actors.

In this step, you will perform the following tasks:
e Subscribe to Worklist Events
e Configure a Perform Node
o \ferify the Worklist Event is Published
e Use the Worklist Control

Information in this section is an extension of the previous section. So, it is assumed that the Loan
Application is open, and the myworklist server is up and running.

Subscribe to Worklist Events

Perform the following steps to configure access to the Message Broker Channel, and initiate the
access using a start event.

1. In the Package Explorer pane, right-click the Loan_Wweb\src folder, and select
New—Folder. This will display the New Folder dialog box.

Tutorial: Building a Worklist Application 6-1

6-2

2. Enter processes in the Folder name field and click Finish.
3. Select the processes folder and use Ctrl+N to display the Select a Wizard dialog box.

4. Select WebLogic Integration—Process and click Next to display the New Process File
dialog box.

5. Inthe Name field, enter Loan_jpd. This will create a JPD process file Loan_jpd. java under
the newly created processes folder (see Figure 6-1).

Figure 6-1 Defining a New JPD File

W New Process

Process

This wizard creates a new Process file with *.java extension,

Source Folder: | Loan_webjsic Browse, .,

Package: | processes Browse. ..

Mame: | Loan_jpd

(1] com.bea.jpd. ProcessDefinition

Al

Do wou want to add comments as configured in the properties of the current project?

| Generate comments

< Back | ‘ Einish | Cancel

6. Click Finish to complete the process.

The new JPD appears in the Design view (see Figure 6-2).

Tutorial: Building a Worklist Application

Subscribe to Worklist Events

Figure 6-2 Creating a New JPD

=) Welcome <%} Loan Approval task @ warklist User Partal = X =04
Loan_jpd
Double Sick fo Select Start
£Lvent

Finish

Design | Source:

7. Double-click the Select Start Event (see Figure 6-2).
The node builder displays.

8. Inthe node builder, select Subscribe to a Message Broker channel and start via an event...
and click Close. The JPD design view is refreshed and the Start node is named
Subscription.

9. Click on Subscription and replace it with Subscribe worklist event.

10. Double-click the Start node to configure it (see Figure 6-3).

Tutorial: Building a Worklist Application 6-3

Figure 6-3 Configuring the Start Node

P

m-i. J Specify a method name and select one or more parameter bypes,

Method Mame: | subscription

Subscribe worklist ey
Channel Marme: -

General Settings |ﬁﬂ><mlobject %0

Settings:
Help
Yiew Code r
Close

11. In the General Settings tab, select /WorklistEvent as the Channel Name.

12. In the Specify Filter tab, select eventType from the TaskEventMetadata xml tree, and type
CREATE as the filter value.

13. In the Receive Data tab, do the following:

— select Create new variable next to RawData x0 and in the Create Variable
dialog box that appears, enter workl istEventData in the Variable Name field, and
select com.bea.data.RawData as its type.

— select Create new variable next to TaskEventMetadataDocumentxl and in
the Create Variable dialog box that appears, enter worklistEventMetaData in the
Variable Name field, and enter
com.bea.wli.worklist.xml.TaskEventMetadataDocument as its type.

14. Click OK to set the variable name, and click Close on the Start Node configuration to
complete this step.

Configure a Perform Node

After creating a JPD to subscribe to a Worklist event to start, create and configure a Perform node
to echo the event. Perform the following steps:

1. Inthe Design view, select Insert—Perform to insert an action node between Subscription
and the Finish nodes.

6-4 Tutorial: Building a Worklist Application

Configure a Perform Node

2. Name the node as Print Messages, as shown in Figure 6-4.

Figure 6-4 Adding the Perform Node

Sie"

Subscribe worklisk ewvent

8"

Print Messages

=

Firish

Design | Source

3. Click the Source tab of the JPD and it should highlight the perform method definition.

4. Enter the following code into the perform method:
System.out.printIn("####Got worklist event for loan task type');

ByteArraylnputStream bais = new
ByteArraylnputStream(worklistEventData.byteValue());

ObjectlnputStream ois = new ObjectlnputStream(bais);
TaskEvent event = (TaskEvent)ois.readObject();

System.out.printIn("####Got TaskEvent data in JPD: " +
event.getSummary());

5. Enter the following import statements to the beginning of the JPD.
import java.io.ByteArraylnputStream;

import java.io.ObjectlnputStream;

Tutorial: Building a Worklist Application 6-5

import com.bea.wli.worklist.api.events.data.*;

6. Select File—Save or use Ctrl+S to save the file.

Deploy the Loan_JPD

1. In the Package Explorer pane, right-click the Loan_jpd. java project that you created
previously and select Run As—Run on Server.

The Run on Server dialog box is displayed.

2. Select Choose an existing server and from the Select the server that you want to use: list,
select the myworklist server and click Next.

This will display the Add and Remove Projects dialog box.
3. click Next.

4. Ensure that Loan_EAR is listed in the Configured projects list. If it is not then select
Loan_EAR from the Available projects list, and click Add.

5. Click Finish to start deploying the project on the server.

Verify the Worklist Event is Published

Test the Application by creating a new task instance using the Worklist User Portal. After the task
instance has been created, the Worklist event is published to the Message Broker, and a JPD
instance is started by the event. Perform the following steps:

1. Start a new session of the loan web project in a Web browser using the URL.:
http://1ocalhost:7001/Loan_Web

2. Log in to the portal using the following credentials:
Username: weblogic

Password: weblogic

3. Click Login to display the Task home page for user weblogic (see Figure 6-5).

6-6 Tutorial: Building a Worklist Application

Verify the Worklist Event is Published

Figure 6-5 View Task Home Page for User weblogic

Zbex BEA WEBLOGIC WORKLIST

Home LaskList Work on Task

Login Lo Worklist
Logged n as weblogic

EClfocesetass __________ G&fAsigedtons &5

B Show al tagks in this vie

B Edit Prefersnces..

® Car loan for Maggie May
{/oan/Loan_approval: 1.0)
Ho Oue Date Claim Wark

Upcoming Tasks [=:=]

® Show all Lasks in this view
S loan for Magge May (fLoan/Loan_approvali1.0) ® gdit proferences...
No Due Date

Show i tasks in this view floan/Loan_aspproval 1.0

Edit Preferences...

& gdit Preferences...

4. Click the /Loan/loan_approval 1.0 option in the Create Task portlet. The Create New Task

page is displayed.

5. Ensure that NewLoan is selected as the task plan constructor.

6. Specify the details listed in Table 6-1 for the other fields on the page:

Table 6-1 Specifications for the New Loan Approval Task Instance

Field Name Value

Task Name Car loan for Maggie JPD
User Properties: SSN 222-33-4444

User Properties: LoanAmt 40000

User Properties: Name Maggie JPD

7. Click Create Task. The task is created and shows up in the Upcoming Tasks portlet on the

home page.

You can also verify creation of the JPD instance by logging into the WebLogic Worklist Console.

1. Open a Web browser and enter the following URL to open the WebLogic Worklist Console;
http://1ocalhost:7001/worklistconsole

Tutorial: Building a Worklist Application 6-7

2. Use the following credentials to log in to the Worklist Console, with administrator rights:

Username: weblogic

Password: weblogic
3. Click View Tasks for the Loan_EAR Worklist System Instance.

4. Inthe Task Summary page, select the task from the list by clicking the check box adjacent to
the task name, Car Loan for Maggie JPD.

The Worklist Task Details is displayed (see Figure 6-6).

6-8 Tutorial: Building a Worklist Application

Figure 6-6 Worklist Task Details - Maggie JPD

27 s “ .
£bea WebLogic Integration Worklist Console

wielcome, weblogic

Wiorklst Systern
Wrklist Systenn Irstance(s)

10 : myworklist & Ho

Use the Worklist Control

mo | WLS Consols | Logout | Holp | AsiEEA |

> Work SUbSLES > Worklst Systim Futinceds) > User Profies > worklst System Instance(s)

User Frofiles i Worklist Task Details - Loan_EAR
Work Substiutes

Ttk Narme: Car loan for Magoe ¥O

61757 10099004500275-277 1 19, 10100936431, 7RIS
Task Plarc foanfLoan_approva: 1.0:Lasn_EAR
Dscrption:

Commnt:

Fricrty: 1

TASK DWHERS, CLAIMANTS, AND ASSIGNEES
Cratod date and Croate by: Mon Mo 20 20015:06 15T 2006 woblogic
Lt updated Dt and Lse: Mo Now 20 20e15:05 15T 2006 webloge
Crwrn: wkogr:
Camant:
Assgress:
STATUS

Wsers() and Groups(loanCficer)

L L ks and Grougs lanOffioe |

STATUS
Step: Offcerfevawiendng

B Stat: ACTIVE

wiorkng State: BESIGNED

DUE DATES
Step Completion Due Cata:

Tak Corglation Dus Date-

CUSTOM TASK PROPERTIES

Daka Type &

e = strieg
Sty

Sty

ik 1o et e Lk

Apphy ths action on selected baks: Susperd v Subead Lol

i the Lasks for Uker: Joe w | Cloim o Lier Select User and chck Clam for User”

Chck “hssign’ o assgn selected tasks: | Amgn.,

T 1:66f § 1

Use the Worklist Control

© Copyight 7005, BEA Systems

In this section, you will create a loan processing task instance using a Task Control in a JPD.
During this process, you will create a Worklist JPD (WorklistControl), a Task Control
(MyControl), deploy the process, and subsequently create a sample task to validate the task

instance creation.

Tutorial: Building a Worklist Application

6-10

Create a Worklist JPD

This section details steps on how to create a Worklist JPD.

1. Inthe Package Explorer pane, select the Loan_Web\src\processes folder, and use Ctrl+N
to display the Select a Wizard dialog box.

2. Select WebL ogic Integration—Process and click Next to display the New Process File
dialog box, similar to Figure 6-1.

3. Inthe Name field, enter WorklistControl. This will create a JPD process file
WorklistControl . java under the processes folder.

Click Finish to complete the process.

The new JPD appears in the design view (see Figure 6-7).

Figure 6-7 New JPD Using Worklist Control

G# BEA WeblLogic Work. .

P
|U|
WorklistControl
|

—

Double Ciick fo Sefect Start
Lvant

-

Finish

Design | Source

4. Double-click Select Start Event (see Figure 6-7).
The node builder displays.
5. Inthe node builder, select Invoked via a Client Request and click Close. The JPD design

view is refreshed and the Start node is named Client Request.

Tutorial: Building a Worklist Application

Use the Worklist Control

6. Double-click Client Request node to invoke the node builder for the Client Request node as

shown in Figure 6-8.

Figure 6-8 Configuring Client Request

"

=

Client Request

[# General Settings

Help
Wiew Code

Specify a method name and select one or mare parameter bypes,

Method Mame: |cientRequest

Settings:

-

Add...

Close

7. Inthe General Settings tab, click Add to display a dialog box for defining parameters. Create

three parameters and configure their types as shown in Table 6-2.

Table 6-2 Setting Parameters for the Client Request

Parameter Name Type

TaskName String

Name String

SSN String

LoanAmt java.lang.Long

8. Click the Receive Data tab to create new variables and assign them the respective parameters
created in the previous step. The variable assignment details are shown in Figure 6-9.

Tutorial: Building a Worklist Application 6-11

6-12

Figure 6-9 Assigning Variables to Parameters

I _
TR
- - % Variable Assignment ™ Transformation
Client Request
Client Sends: Select variables to assign:
E General Settings String TaskMame TaskMame {String) -
[#4 Receive Data String Marne Mame (String) -
String 550 S3M (String) -
IE‘ Long Loansmt ||E| Loanamt {Long) -
Help
Yiew Code
Close

The four new variables of default type are: TaskName(String),Name(String),
SSN(String), and LoanAmt(Long).

9. Click Close to continue, and the JPD appears as shown in Figure 6-10.

Figure 6-10 WorkListControl JPD with Client Request Start Node

L

‘WorklistControl

o™
Client Request

C]
Create a Task Control

In this section, you will create a Task Control that will trigger the creation of a task instance.

1. Inthe Package Explorer pane, select the Loan_Web\src\processes folder,and use Ctrl+N
to display the Select a Wizard dialog box.

Tutorial: Building a Worklist Application

Use the Worklist Control

2. Select WebLogic Integration Controls — Task and click Next to display the Create Control
page of the Insert Control: Task dialog box.

3. Enter MyControl in the Name field and ensure the other fields have same value as shown in
Figure 6-11.

Figure 6-11 Creating a Task Control

X

YW Insert control: Task

Create Control

This wizard creates a new control

Source folder: | Loan_\Web,fsrc Browse...

Package: | Drocesses Browse...

MName: | MyControl|

& com.bea.control. TaskControl

il

Do you want to add comments as configured in the properties of the current project?

[Generate comments

< Back | Mext = | Cancel

4. Click Next to proceed to the Task Plan page of the Insert Control: Task dialog box.

5. For the Task Plan field, click Browse and select
Loan_EAR\EarConten\Loan\loan_approval . task.as shown in Figure 6-12.

Tutorial: Building a Worklist Application 6-13

Figure 6-12 Selecting the Loan Approval Task Plan

W Task Plan Selection

Select a Task Plan file

—|-{=% Loan_EAR
-] EarContent
=== Loan

OK | Cancel

6. Click OK to continue.
7. Click Finish to add the new Task Control to the JPD.

8. Select MyControl.java from the Package Explorer, drag and drop it to Controls folder in the
Data Palette.

Note: If the Data Palette pane is not visible, go to Window—Show ViewOther—WebL ogic
Integration—Data Palette

9. Select File—Save or use Ctrl+S to save the JPD.

Add Task Plan Constructor to JPD

In this section, you will add the task instance creation constructor to the Worklist JPD.

1. Right click the WorklistControl . java file in the Package Explorer pane and select Open
With—Process Editor option. Ensure the JPD is displayed in the Design tab and that you are
using the Process Perspective.

2. From the Data Palette pane on the bottom right corner of the IDE, navigate to
Controls—myControl and select the OfficerReviewPending NewLoan(String
taskName, String SSN, Long LoanAmt, String Name) method. As shown in
Figure 6-13.

6-14 Tutorial: Building a Worklist Application

Figure 6-13 Selecting the NewLoan Method

CQutline | Servers

Use the Worklist Control

= =B

Variables

Gz wmL

2 Mon-smML

@ Java

Controls

% myContral
4-. . i 1

2 String getCollateralassets()

2 Step getCurrentStep()

2 Long getLoanAmti)

2 Loandpproved getLoanApprovedStep()
2 LoanRejected getloanRejectedStepi)

2 String getMamet)
2 sString gethotes()

2 String getssHi)
2 TaskData getTaskDatal)

2 sString getTaskld()

2 TaskInfo getTaskInfol)

2 TaskInfoXMLDocument getTaskInfoXMLDoCumEnt)
2 TaskPlan getTaskPlan(TaskPlanId arg)

2 sString[] getTaskPropertisshames()

S R O [N [VPR SRy | gy JUSVVIS R Y

<

2 String construckTask(TaskConstructionXMLDocument argl)
2 String createTaski TaskCreation:MLDocument argl)

2 ManagerReviewPending getManagerReviewPendingStepl)
2 OfficerReviewPending getOfficerReviewPendingStep()

2 TaskDataxMLDocument getTaskDataXMLDocument()

ong Loandn

>

3. Drag and drop the selected method into the WorklistControl JPD, between the Client

Request and the Finish nodes. The method will be added as NewL oan (see Figure 6-14).

Tutorial: Building a Worklist Application

6-15

6-16

Figure 6-14 WorklistControl JPD with NewLoan Node

®E

WorklistControl

He®

Client Request

GIEY

Mewloan

Finish

4. Double click NewLoan and configure the Send Data properties, as shown in Figure 6-15 .
You can leave the General Settings and Receive Data properties as they are.

Figure 6-15 Mapping the Send Data Variables with the Control Parameters

(2| ¥ Variable Assignment " Transformation
Mewloan
Select variables to assign: Control Expects:
E General Settings TaskMame {String) - String taskMame
|#4 send Data 55N (String) - String S5

Receive Dat
eceive Data Loandmt {Long) - Long Laandmt

Mame (String) - Skring Mame
Help
Wiew Code

5. Click Close to implement the settings.

Close

6. Select File—Save or use Ctrl+S to save the JPD.

Tutorial: Building a Worklist Application

Use the Worklist Control

Validate the WorklistControl JPD

In this section, you will deploy the JPD and after successfully deploying the JPD, you will
validate it using test values.

1. Ensure the WorklistControl.java is selected in the Package Explorer, and click the Run—Run

As option. After successful deployment the JPD process page will be launched in the IDE
browser.

2. Click the Test Form tab of the WorklistControl process browser, as shown in Figure 6-16.

Figure 6-16 WorklistControl Process Test Form Page

http:#flocalhost: 7001 A oan_Wweb/frocesses,
[Overview | [Consale | | Test Form | [Test S08F | | Message Broker | [Process Graph | wiorklistCortral, jod

Test operations
Monitor all WorklistControl. jpd processes

clientRequest
string TaskName:
string Name:
skring SSM:

integer LoanAmk:

clientRequest | axecutes a Process

3. Enter the test values in their respective fields, as shown in Table 6-3.

Tahle 6-3 Test Values for the WorklistControl Process

Parameter Value
TaskName Loan for John Doe
Name John Doe

Tutorial: Building a Worklist Application 6-17

Tahle 6-3 Test Values for the WorklistControl Process

Parameter Value
SSN 123-456
LoanAmt 20000

4. Click ClientRequest to execute the process with the test values. After a successful execution,
the TestForm tab is refreshed (see Figure 6-17).

Figure 6-17 Successful Execution of the WorklistControl JPD

=] = |http:,i,l’lncalhost:?DD1,I’Loan_Web,l’processesJ‘WorHistCDntml.ipd?.EXPLORE=.TEST&.LOGENTRY=D j =
P

WorklistControl.jpd Process

hittp:/Aocalhost: 7001 A oan \Web frocesses/
COwerview | [Console | [Test Farm | [Test S04P | [Message Braker | | Process Graph | WorklistContral. jpd

Test aperations
Monitor all WworklistContral, jpd processes

Message Lo k2l Refresh Service Request clientRequest
=+ clientRequest Submitted at Thu Now 23 17:59:12 IST 2006

TaskMame = Loan for John Doe
LoanAmt = 20000
MName = John Doe

Service Response
Submitted at Thu Nov 23 17:59:12 15T 2006
<¥oid xrlns:xsi="http: ffwaw, w3.0rgf2001 jXMLSchema-instance” xsitnil="true" = </Void =

Processing Request
Submitted at Thu Now 23 17:59:12 IST 2006

5. Start a new session of the Loan_Web project in a Web browser using the URL.:
http://1ocalhost:7001/Loan_Web
6. Log in to the portal using the following credentials:
Username: John
Password: password

The user John is part of the loanOfficer group and the task instance created should be
visible in his Assigned Tasks portlet box.

6-18 Tutorial: Building a Worklist Application

Use the Worklist Control

7. Click Login to display the Task home page for user John, as shown in Figure 6-18.

Figure 6-18 Task Home Page for User John

=1 ‘§° ‘http:,l’,l’loca\host:?DDI,I’LUan?Web,I’user.portal?fnpr=true&fnfIs=fa\se&JageLabeI=Iogin ﬂ B

o

£hea BEA WEBLOGIC WORKLIST o

Home Task List Work on Task

Login to Worklist (2=l Overdue Tasks B = | Assigned Tasks BE

Logged in as John There are no "Overdue Tasks" matching ¥ | pan for John Doe
the preferences in this view,
{/Loan/Loan_approval: 1.0)
B Show all tasks in this view o) [BIVT3 [eisy (e) il
Quick Search = & Edit Preferences...
] : ¥ Show all tasks in this view
Upcoming Tasks 2=

S Edit Preferences...

There are no "Upcoming Tasks" matching

Browse Tasks by Type =008 | the preferences in this view,
There are na task plans that you can Create Task H =
brawse. Show all tasks in this view

Edit Prefarences. .. 9 /Loan/Loan_approval 1.0

@ Edit Preferences...
9 Edit Preferences... —

v

The Assigned Tasks portlet box displays the Loan for John Doe task. This confirms that a task
instance was created by a JPD using a Control.

Tutorial: Building a Worklist Application 6-19

6-20 Tutorial: Building a Worklist Application

CHAPTERa

Advanced Topic: Adding a Customized
User Interface

This chapter describes how to create a customized task user interface (for use in the Worklist user
portal. Worklist provides a default task user interface (shown in the Work on Task page of the
user portal). This user interface dynamically creates forms based on the task plan metadata. For
example, the default task user interface consults the current step for a task before deciding what
actions to make available on the ‘take action’ page, and consults the properties defined for an
action before deciding what properties to show on the ‘complete task action’ page. This allows
you to perform most human interaction in Worklist without any custom user interface
development.

However, there may be instances where you need to customize the interface and control what is
displayed for a given step, or for the entire task plan. Worklist enables you to provide a
customized user interface for tasks based on a given task plan (and optionally a specific step
within a task plan). This allows you to integrate custom business logic, external systems, etc. into
the processing of task actions and property settings.

Your custom task user interface is used in place of the default Worklist-supplied task user

interface when viewing tasks based on task plans (or steps of those plans) you designate. It will
appear in place of the default task user interface on the “Work on Task’ page of the Worklist user
portal. This granular replacement of the default task user interface allows you to specify a custom
task user interface only where it is needed, and use the default task user interface everywhere else.

For example, a Loan Manager may need to check the credit rating of the customer before
approving or rejecting the loan. Using the custom task Ul, you can customize the user portal to
display information that will empower the Loan Manager to make a well informed decision.

The following topics are covered in this chapter:

Tutorial: Building a Worklist Application 1-1

Define Web Page Mock-Up and Flow

Create the Page Flow

Register the Custom Ul
Deploy the Custom Task Ul

Validate the Custom Ul

Define Web Page Mock-Up and Flow

Before you start creating a customized user interface, define the appearance of the page by
creating a mock-up. For this tutorial, create mock-up pages for the “Manager Review Page” and
the “Asset Summary Page” (See Figure 7-1 and Figure 7-2).

Figure 7-1 Manager Review Mock-Up Page

Customer Name: John W. Smith -&—— This comes from task properties

SSN:111-11-1111 - This comes from task properties
Loan Amount: $ 10,000 -e———— This comes from task properties

View Asset Summary -¢——— Forward to Asset Summary Page

Reason for Action: Bad credit -¢—— From/To task properties

Collateral Assets: -4—— From/To task properties

Approve Reject -¢—— Actions on the Step

1-2 Tutorial: Building a Worklist Application

Create the Page Flow

Figure 7-2 Asset Summary Mock-Up Page

Name: John W. Smith -¢——— This comes from task properties
SSN:111-11-1111 -a——— This comes from task properties

Assets: - This comes from an external system
Asset Name Value Amount Owed Total Value
Home 100,000 90,000 10,000

Car 10,000 12,000 0

Return

Now that the mock-up is complete, proceed with defining the page flow as described in the
following section.

Create the Page Flow

After determining the appearence of the customized user interface pages, define the logic and use
of these pages as follows::

1. Inthe Package Explorer pane, right-click the Loan_Web\src folder, and select New—Other.
This will display the Select a Wizard dialog box.

2. Select Web— Page Flow and click Next (see Figure 7-3).

Tutorial: Building a Worklist Application 1-3

Figure 7-3 Define Page Flow

&

Select a wizard

Create a new Beehive Page Flow |

‘Wizards:

+- 5= Simple
—-[Z= Web
Eg=
.ﬁ Drynamic Web Project
L7 HTHL
'g\f Javascript

|

<
153
i#5 Shared Flow
31 Static web Project
+-[Z% WeblLogic Integration —
+- [z Weblogic Integration Controls
+-[Z= Weblogic Portal

|

I Shaw Al Wizards,

| Mexk = | | Cancel |

3. The New Page Flow dialog box appears, enter manager in the Page Flow Folder name field
and ManagerReview as the Controller name.

4. Select the Make this a nested page flow check box and click Finish (see Figure 7-4).

1-4 Tutorial: Building a Worklist Application

Figure 7-4 New Page Flow Dialog Box

5.

\W New Page Flow

Page Flow

Create a new page flow folder, 15P and controller

Create the Page Flow

Page flow Folder name: | manager

Enter or select the parent folder:

| ILoan_Web/src

B oo
E}y Loan_web
+|- 4= build

src
E"—} WwebContent

Controller name: ManagerReview

Mested page flows are used ko gather and return information to a calling page Flow,

¥ Make this a nested page flow

< Back | [ext = | Einish I

Cancel

The Open Associated Perspective? dialog box is displayed.

In the displayed Open Associated Perspective? dialog box, select the Remember my
decision check box and click Yes. In doing so, you associate the project with the Page Flow

perspective.

6. The Page Flow Editor view appears (see Figure 7-5).

Tutorial: Building a Worklist Application 1-5

1-6

Figure 7-5 Page Flow Editor

B JLoan_Webjsrc/manager ManagerController java
B | beain
o9 o

<default> "
4P begin L P (&) indexjsp

@ 7 Quick Jump

loan_approval. task &%, LoanProcess.java B ManagerController.java X =98

backage manager; ~
#import javax.servlet.http.HttpSession;[]
@Jpf.Controller (nested = trume, simpleActions = { @Jpf.SimpleAction(name = "begin®, path
public class ManagerController extends PageFlowController f
private static final long serialVersion -1280736002L;
@Jpf.Action (forwards = { @Jpf.Forward(name = "done", returnAction = "managerDone")
protected Forward done() (
return new Forward("done");
H
* Callback that is invoked when this controller instance is created. &
< >

Edit the page flow as follows:

1. Replace PageFlowController with
com.bea.wli.worklist.TaskUlIPageFlowController.

2. Delete simpleActions = { @Jpf.SimpleAction(name = "begin’, path =
"index.jsp'™) })
The initial view in the page flow was as follows:

@Jpf.Controller(nested = true, simpleActions = { @JpfF.SimpleAction(name

= "begin', path = "index.jsp') })
After editing it, it should be:

@Jpf.Controller(nested = true)

public class ManagerReview extends
com.bea.wli.worklist.TaskUIPageFlowController {

Note: This change will result in some compilation errors saying ‘Action "begin™ was not
found.” This error will be resolved in subsequent steps.You can view the compilation
error in the ‘Problems’ view in the bottom part of the IDE. Make sure ‘Problems’ view
is opened. To open the Problems view from the menu, go to Window—Show
View—Problems.

Tutorial: Building a Worklist Application

Create the Page Flow

Define Form Beans

You must define form beans to support the two web pages mocked up (see “Define Web Page
Mock-Up and Flow” on page 7-2).

We create three form beans as inner classes of the Manager Review Pane, they are as follows:
e ManagerReviewForm- This will support the Manager Review web page.
e AssetSummaryForm- This will define the individual assets.

e AssetForm- This states the assets from the AssetSummayForm.

Create Form Beans

1. Inthe Page Flow Explorer, right-click Form Beans and select New Inner Class Form Bean
(see Figure 7-6).

Figure 7-6 New Inner Class Form Bean

& page Flow Explorer X 1 =8

=<5 manager

@ ManageriZontroller.java

+ ES Actions

+-[3 Pages
=S
E?) Except E Mew Inner Class Form Bean
[z Referenced Contrals
[Referenced Page Flows
[z Referenced Shared Flows
% Referenced Message Bundles
[Class-Level Forwards
[Class-Level Catches

2. A new form bean with the default name NewFormBean is created.

Tutorial: Building a Worklist Application 1-1

1-8

3. Right-click NewFormBean—Rename, and name it as ManagerReviewForm.

4. Repeat step 1 and step 3 and name it as AssetSummaryForm and AssetForm (see

Figure 7-7).

Figure 7-1 Form Beans

E@ > i

Define ManagerReviewForm

== manager

,ﬂl ManagerReview, java
[Actions
L3 Pages

_£| AssetSummary. jsp

<:?| ManagerReviewPage. jsp
L # Form Beans

=| AssetFarm

=| AssetSummaryFarm

=] ManagerReviewForm
[Cvy Exception Handlers
L Referenced Controls
L5 Referenced Page Flows
L% Referenced Shared Flaws
L7 Referenced Message Bundles
Lt Class-Lewel Forwards
[Class-Level Catches

1. The ManagerReviewForm includes the following variables and data type:

Name (String)
SSN (String)

LoanAmount (Int)

Collateral Assets (String)

NotesProp (PropertylnstanceHolder)

2. Select the above variables and place them in the ManagerReview.java source view.

3. Select the variables and select Source—Generate Getters and Setters.

The Generate Getters and Setters dialog box appears.

4. Select the properties variable variables (Figure 7-8).

Tutorial: Building a Worklist Application

Create the Page Flow

Figure 7-8 Generate Getters and Setters Dialog Box

W Generate Getters and Setters

Select getters and setters to create:

+ O Select Al
+ o _collateralassets

+ @ loanAmount Deselect Al
+ o _name

+ o _notesProp Select Getters
+ o

—s=n Select Setters

Insertion point:

|Last method j
Sort by:
|Fields in getter /setter pairs j

Access modifier
* public " protected " default " private
[~ final ™ synchronized

[Generate method comments

The format of the getters/setters may be configured on the Code Templates preference page.

i 100of 12 selected.

oK | Cancel

5. Click OK.
After you defined the variables, the class should look as the follows:

@Jpf.FormBean

public static class ManagerReviewForm implements java.io.Serializable {

rivate static final long serialVersionUID = 746621147L;

private String _name;

private String _ssn;

private int _loanAmount;

private PropertylnstanceHolder _notesProp;

private String _collateralAssets;

Tutorial: Building a Worklist Application

1-9

1-10

public int getLoanAmount() { return _loanAmount; }

public void setLoanAmount(int loanAmount) { _loanAmount =

loanAmount; }

Note:

public String getName() { return _name; }

public void setName(String name) { _name = name; }
public String getSsn() { return _ssn; }

public void setSsn(String ssn) { _ssn = ssn; }

public PropertylnstanceHolder getNotesProp() { return _notesProp;

public void setNotesProp(PropertylnstanceHolder notesProp) {
_notesProp = notesProp; }
public String getCollateralAssets() { return _collateralAssets; }
public void setCollateralAssets(String collateralAssets) {
_collateralAssets = collateralAssets; }

}

The serialVersionUID value will differ. It is auto-generated and can be different from the
one shown here.

Define AssetSummaryForm

1. The AssetSummaryForm includes the following properties and data type:

a ~ w N

Name (String)

Ssn (String)

Assets (SortedSet<AssetForm>)
CreditScore (int)

Repeat step 2 and step 3 of ManagerReviewForm.

Select the property variables listed above.

Click Ok.

Enter the follwing code into the AssetSummaryForm:

public java.util.SortedSet<AssetForm> getAssets() { return _assets; }

public int getCreditScore() { return _creditScore; }

Tutorial: Building a Worklist Application

Create the Page Flow

After you defined the variables, the class should look as the following:
@Jpf.FormBean
public static class AssetSummaryForm
implements java.io.Serializable {
private static final long serialVersionUID = 1517513921L;
private java.util.SortedSet<AssetForm> _assets;
private int _creditScore;
private String _name;
private String _ssn;
public AssetSummaryForm() {
_assets = new java.util_TreeSet<AssetForm>();
}
public String getName() { return _name; }
public void setName(String name) { _name = name; }
public String getSsn() { return _ssn; }
public void setSsn(String ssn) { _ssn = ssn; }

public java.util_SortedSet<AssetForm> getAssets() { return
_assets; }

public int getCreditScore() { return _creditScore; }

Note: The serialVersionUID value will differ. It is auto-generated and can be different from the
one shown here.

In the AssetSummaryForm, add the following code to allow the form bean to load asset and credit
score information.

This information is loaded in a very simplistic way (properties files) that is sufficient for the
purposes of this tutorial. In a real application, this information would likely come by way of a
Java API or web service to an external system.

The page flow action implementations use the loadSummaryInfo method included in the
following code to initialize the AssetSummaryForm object with asset and credit score
information for the user given by the name variable.

public void loadSummarylnfo(HttpSession session) {

Tutorial: Building a Worklist Application 1-11

1-12

loadCreditScore(session);
loadAssets(session);
}
public int getTotalActualAssetValue() {
int total = O;
for (AssetForm asset: _assets) {
total = asset.getActualValue();
}
return total;
}
protected void loadCreditScore(HttpSession session) {
// Load the credit scores as properties

String resourceName =
""/creditRatings/creditRatings.properties";

Jjava.util _Properties props =
loadProperties(resourceName, session);
_creditScore = getIntProperty(props, _name);
}
protected void loadAssets(HttpSession session) {
// Load the assets as properties
String resourceName = "/assets/" + _name + '.properties";
Jjava.util _Properties props =
loadProperties(resourceName, session);
String assetList = props.getProperty(‘assetList"™);
if (assetList I= null) {

java.util.StringTokenizer st = new
jJava.util.StringTokenizer(assetList, ",");

while (st.hasMoreTokens()) {
String assetName = st.nextToken().trimQ);
AssetForm asset = new AssetForm();

asset.setName(assetName);

Tutorial: Building a Worklist Application

Create the Page Flow

int value =
getintProperty(props, assetName + "." + "value');
asset.setValue(value);
int amountOwed =
getIntProperty(props, assetName + "." + "amountOwed™);
asset.setAmountOwed(amountOwed) ;

_assets.add(asset);

}

protected java.util.Properties
loadProperties(String resourceName, HttpSession session) {
// Load the resources as properties
Java.io.InputStream is = null;
try {
is = session.getServletContext().
getResourceAsStream(resourceName) ;
jJava.util.Properties props = new java.util.Properties(Q);
if (is '= null) {
props.load(is);
}
return props;
} catch (Exception e) {
// TODO: Better handling
e.printStackTrace();
} finally {
if (is '= null) {
try { is.close(); } catch (Exception e) {

e.printStackTrace(); }

}

Tutorial: Building a Worklist Application 1-13

return new java.util_Properties();

private int getintProperty(Java.util_Properties props, String
key) {

String value = props.getProperty(key);
if (value == null) {
return O;

}

return Integer.valueOf(value);

}

After completing the above steps, there will be a compilation error regarding the missing
begin()method in the page flow.

Define AssetForm
1. The AssetForm will include the following properties and data type:
— Name (String)
— Value (int)
— AmountOwed (int)
— TotalValue (int)

2. Repeat step 2 and step 3 of ManagerReviewForm..
3. Select the property variables listed above.

4. Click Ok.
After you defined the variables, the class should look as the following:
@Jpf.FormBean
public static class AssetForm
implements java.io.Serializable, Comparable {
private static final long serialVersionUID = 1491696939L;
private String _name;

private int _value;

1-14 Tutorial: Building a Worklist Application

Create the Page Flow

private int _amountOwed;

public int getAmountOwed() {
return _amountOwed;

}

public void setAmountOwed(int lienValue) {
_amountOwed = lienValue;

}

public String getName() {
return _name;

}

public void setName(String name) {
_name = name;

}

public int getvalue() {
return _value;

}

public void setValue(int value) {
_value = value;

}

public int getActualvValue() {

return _value - _amountOwed;

}

Note: The serialVersionUID value will differ. It is auto-generated and can be different from the
one shown here.

After completing the above steps, there will be a compilation error stating that AssetForm class
must implement the inherited abstract method Comparable.compareTo(Object). To resolve

this errror, copy the following method and paste it inside the AssetForm class. The code allows
the asset summary web page to collate the individual asset items in descending total asset value.

public int compareTo(Object 0) {

Tutorial: Building a Worklist Application 1-15

1-16

if (1(o instanceof AssetForm)) {
return O;

}

AssetForm other = (AssetForm)o;
int otherActualValue = other._value - other._amountOwed;
return otherActualValue - getActualValue();

}

Add the following method to the end of the AssetForm class. This method will be used to retrieve
an ‘actual’ asset value from the JSP pages we define later.

public int getActualvValue() {

return _value - _amountOwed;

Define Support Asset Information Files

Define information to support a loan request for a person nhamed John Smith (use spelling and
case as given here) as follows:

1. Inthe Package Explorer pane, expand Loan_Web.

2. Right-click WebContent—New—Folder.
The New Folder dialog box appears (see Figure 7-9).

Tutorial: Building a Worklist Application

Create the Page Flow

Figure 7-9 New Folder

Folder —

Create a new folder resource. :' 7

Enter or select the parent folder:

| LoantebywebContent

(=51
+-3=F LoanApp
+- 3% LoanUtil
= _57' Loan'web
+- 7% .apt_src
= .settings
= .xbean_bin
= .xbean_src
+- = build
+ = st

+- = WebContent

Folder name: |

Advanced =

| Cancel

3. Enter assets in the Folder Name and click Finish.

4. Create another new folder, enter creditRatings in the Folder Name and click Finish.

5. Right-click asset and select a new file.

The New File dialog box appears.

6. In the File Name enter John Smith.properties and click Finish.

It appears in the editor.

7. Enter the following details in the editor:
assetList=Home, Car
Home . value=300000
Home . amountOwed=290000
Car.value=20000.
Car.amountOwed=19000

Tutorial: Building a Worklist Application

1-117

1-18

8. Right-click creditRatings and select a new file.
9. In the File Name enter CreditRating.properties and click Finish.

10. Enter the following details (exactly as shown) on a single line in the properties file:
John\ Smith=100.

Define Actions on the Page Flow

Define actions on the page flow to move between the Manager Review and Asset Summary
pages, and to take the Approve and Reject actions on the task. Page flow actions are methods on
the page flow controller that allow the Ul to forward to new pages, optionally calculating results
and passing form beans to the pages to which you forward.

Form beans are passed from an action to a web page in order to populate display fields on the
page. Then, values from fields on the web page are collected and placed into properties on the
form bean when the web page is submitted back to the server for processing.

Action methods can accept a form bean populated as the result of clicking a submit button on a
web page, by defining the form bean as a parameter to the action method. For an example of this,
see the “approve’ action below. Action methods can also pass a form bean on to a target web page
to which the action is forwarding. This is done by passing a Forward object that has a form bean
object set on it. For an example of this, see the ‘show asset summary’ action below.

Define the following actions for initialization:

— begin: Initialize this controller, and call the super class helper to initialize stuff we get
for free. This includes task context, standard form beans for a task and action, and
property editing support.

Define the following actions for page navigation:

— viewAssetSummaryAction: Navigates from the manager review page to the asset
summary page. This action will take a ManagerReviewForm form bean, and will pass
an AssetSummaryForm form bean on to the asset summary page (via a Forward object
returned from the action method

— returnToManagerReviewAction: Navigates from the asset summary form back to the
manager review form. This action will take an AssetSummaryForm form bean, and will
pass a ManagerReviewForm form bean on to the manager review page (via a Forward
object)

Note: The above two actions are natural reciprocals of each other. This reflects their purpose to
navigate between two pages in a cyclic fashion.

Tutorial: Building a Worklist Application

Create the Page Flow

Define the following actions to handle user actions on the task:

— approveLoanAction: Calls the helper functions on the TaskUIPageFlowController
controller class to take the ‘Approve’ action on the task. This action then exits the
custom task Ul and returns to the Worklist user portal by returning a forward marked as

a ‘return’ forward, and specifying the stepDoneAction on that forward. More on this
below.

— rejectLoanAction: Calls the helper functions to take the ‘Reject’ action on the task.
This action also exits the custom task Ul and returns to the user portal by returning a
‘return’ forward object specifying the stepDoneAction.

The following describes how to add new actions. You can follow the steps below and use the page
flow action wizard to add all of the above actions (and then copy/paste the action method body
code as given in the section ‘Implement Action Methods’). Or you can just copy and paste the
complete code for the action declarations and methods as given in ‘Implement Action Methods’
below and skip the next step completely.

Create an Action

1. Inthe Page Flow Explorer, right-click Actions, new actions.

The New Action dialog box appears (see Figure 7-10).

Tutorial: Building a Worklist Application 1-19

Figure 7-10 New Action

W New Action

Action

Action Template: |[EEEEEdyfala N Tu)]
Creates an empty action method.

Options

Ackion Mame: | newdctionl

Form Bean: |<:none> ﬂ Add. ..

Forward Ta: |<:none> ﬂ

| Finish | Cancel

2. Create five new action and enter the details as shown in Table 7-1.

Tahle 7-1 New Action Settings

Action Name Action Form Beans Forward To
Template

begin Basic... <none> <none>

viewAssetSummaryAction Basic... ManagerReviewForm <none>

returnToManagerReviewAction Basic... AssetSummaryForm <none>

approveLoanAction Basic... ManagerReviewForm <none>

rejectLoanAction Basic... ManagerReviewForm <none>

Next we need to implement a method body for the action methods we just defined.

1-20 Tutorial: Building a Worklist Application

Create the Page Flow

The code for the all action methods is given below. Make sure you copy the action signature along
with the @Jpf.Action annotation for each action method.

Implement the Action Methods
For each action method described in the above section:

If you didn’t create the action methods using the action wizard, you should:

— copy and paste the entire action method declaration and body.
If you did create the action methods using the action wizard you should:

— copy the method body code below (for a specific action method) and paste it inside the
action method declaration you created for that action method (in the above section).

— make sure the annotations in your action method declaration match the annotations
given in the code below for the named action method.

Vs
* Initialize this controller, and call the super class
* helper to initialize stuff we get for free. This includes
* task context, standard form beans for a task and action,
* and property editing support.
*/
@JIpf.Action(forwards = {
@Jpf.Forward(name="success", path="GetManagerReview.jsp')
b
public Forward begin() throws Exception {
// Initialize our base class helpers so we can use them
// throughout this controller
beginActionHelper();
// Create our ManagerReviewForm, and load it with property
// values given by our base class helpers
_managerReviewForm = new ManagerReviewForm();
_managerReviewForm.setName(
(String)getTaskPropertiesMap() -
get("'Name') .getvValue());

Tutorial: Building a Worklist Application 1-21

1-22

_managerReviewForm.setSsn(
(String)getTaskPropertiesMap() -
get("'SSN'") .getValue());
_managerReviewForm.setLoanAmount(
((Long)getTaskPropertiesMap() -
get('LoanAmt') .getValue()) .- intvalue());
// Get the editable notes property, because we"ll
// use this PropertylnstanceHolder to edit the notes
// property via Worklist-provided helpers
com.bea.wli.worklist.portal .PropertylnstanceHolder notesProp =
getTaskEditablePropertiesMap() .-
get("'Notes™);

_managerReviewForm.setNotesProp(notesProp);

return new Forward(''success', _managerReviewForm);

}
Jx*
* Forward to the assets sub form and display the assets
* we find for the loan applicant.
*/
@JIpf.Action(forwards = {
@Jpf.Forward(name = "success",
path = "AssetSummary.jsp')
}., useFormBean = "_managerReviewForm"
)
public Forward viewAssetSummaryAction(ManagerReviewForm form) {
AssetSummaryForm assetSummaryForm = new AssetSummaryForm();
assetSummaryForm.setName(form.getName()):;
assetSummaryForm.setSsn(form.getSsn());
assetSummaryForm. loadSummaryInfo(getSession());

return new Forward(''success', assetSummaryForm);

Tutorial: Building a Worklist Application

Create the Page Flow

/**

* Return to the main form after looking at assets.
*/

@JpfF.Action(forwards = {

@Jpf.Forward(name = "success',

path ""GetManagerReview. jsp')

D

public Forward returnToManagerReviewAction(AssetSummaryForm form) {
Forward forward = new Forward(‘'success', _managerReviewForm);
return forward;

¥

J**

* Approve the loan, using the super class helpers. and the properties
we

* stored in ManagerReviewForm. We
* gpecify the useFormBean attr to keep a single copy
* of ManagerReviewForm.

* NOTE: We could have designed this action to forward to an "action
props*®

* page to collect the properties for the action (instead of
putting
* fields directly on the main form. If we did want a separate
page,
* we could call showStepActionActionHelper to prepare a
* TakeStepActionActionForm for us to obtain these properties
from.
* This form is well suited to use with propertyEditor tags in the
* action props form.
* @see

TaskUIPageFlowControl ler#showStepActionActionHelper(com.bea.wli.worklis
t.api.taskplan.StepAction)

* @see
TaskUIPageFlowControl ler#takeStepActionActionHelper(com.bea.wli.worklis
t. portal _TakeStepActionActionForm)

Tutorial: Building a Worklist Application 1-23

1-24

* @see

TaskUIPageFlowControl ler#isPostActionlnteractiveAssignment(java.lang.St

ring)

* @see

TaskUIPageFlowControl ler#takeStepActionAndClaimActionHelper(com.bea.wli

-worklist._portal .TakeStepActionActionForm, java.lang.String)
*/
@JIpf.Action(forwards = {
@Jpf.Forward(name = "success",
action = "stepDoneAction™)
}., useFormBean="_managerReviewForm'™)

public Forward approvelLoanAction(ManagerReviewForm form)

throws Exception {

// Build a map of the property values we"ll pass for the action

Java.util _Map<String, String> propMap

= new java.util.HashMap<String, String>(Q);

propMap . put(*'Notes",
form.getNotesProp() -getEditorValueAsString());

propMap.put(*CollateralAssets™, form.getCollateralAssets());

// Now take the action
this. takeStepAction(getCurrentStep() .getName(),
"Approve’,
propMap) ;
Forward forward = new Forward(''success™);
return forward;
}
/o
* Reject the loan, using the super class helpers. We
* specify the useFormBean attr to keep a single copy

* of ManagerReviewForm.

* NOTE: We could have designed this action to forward to an "action

props*

Tutorial: Building a Worklist Application

Create the Page Flow

* page to collect the properties for the action (instead of
putting
* fields directly on the main form. If we did want a separate
page,
* we could call showStepActionActionHelper to prepare a
* TakeStepActionActionForm for us to obtain these properties
from.
* This form is well suited to use with propertyEditor tags in the
* action props form.
* @see

TaskUIPageFlowControl ler#showStepActionActionHelper(com.bea.wli.worklis
t.api.taskplan.StepAction)

* @see
TaskUIPageFlowControl ler#takeStepActionActionHelper(com.bea.wli.worklis
t.portal .TakeStepActionActionForm)

* @see
TaskUIPageFlowControl ler#isPostActionlnteractiveAssignment(java.lang.St

ring)

* @see
TaskUIPageFlowControl ler#takeStepActionAndClaimActionHelper(com.bea.wli
-worklist._portal .TakeStepActionActionForm, java.lang.String)

*/
@JIpf.Action(forwards = {
@Jpf.Forward(name = "success",
action = "stepDoneAction™)
}., useFormBean="_managerReviewForm'™)
public Forward rejectLoanAction(ManagerReviewForm form)
throws Exception {
// Build a map of the property values we"ll pass for the action
Java.util _Map<String, String> propMap
= new java.util_HashMap<String, String>();

propMap . put(*'Notes",
form.getNotesProp() -getEditorValueAsString());

// Now take the action
this.takeStepAction(getCurrentStep() -getName(),

Tutorial: Building a Worklist Application 1-25

1-26

"Reject",
propMap) ;
Forward forward = new Forward(‘'success™);

return forward;

}

Action Methods, Form Beans and the UseFormBean Field

Action methods can accept form beans, and forward to pages using form beans. When submitting
a web form, and in the process of calling the action associated with the submit, the NetUI
framework, by default, will create a new form bean instance (using the no-arg public constructor
for the form bean class). This new bean instance is then populated via Java reflection with data
from data binding tags in the submitted web page form.

This process has some limitations. For example, if your form bean contains transient, hidden
information that is not represented in the web pages JSP tags, the form bean that actually gets
passed to the action method (the bean that is created by the NetUI framework) will be missing
this information.

To avoid the overhead and possible behavioral problems of creating new beans each time an
action method is called, you can specify a useFormBean field on the @JIpf.Action annotation
for an action method. This allows the controller to hold a single copy of the form bean in the page
flow controller’s state, and the action method then just fetches the object from that state instead
of creating a new form bean object.

We make use of the the useFormBean facility in the action method code given in the previous
section. To make this code work, you need to define a member variable on the page flow
controller to hold the form bean we’ll be passing around.

Add the following member variable to the top of your ManagerReview class:

private ManagerReviewForm _managerReviewForm; // To preserve the form
between requests.

If you haven’t already done so, make sure your action methods that take a ManagerReviewForm
parameter include a useFormBean attribute in the @Jpf.Action annotation. For example, the
@Jpf.Action annotation for the rejectLoanAction is:

@JIpf.Action(forwards = {
@Jpf.Forward(name = "success",

action = "stepDoneAction™)

Tutorial: Building a Worklist Application

Create the Page Flow

}. useFormBean="_managerReviewForm')

The text you need to add is highlighted in the above code.

Worklist Property Editors and Actions

Worklist provides some built-in support for editing properties in your custom task Ul. It includes
a JSP tag, default editors, and some helper methods in the base TaskUIPageFlowController.
These facilities allow you to easily edit the following types of properties using out-of-box Ul:

— Multi-line/mult-page text

— JavaBean/XMLBean objects

In addition, the property editor facility allows you to easily support editing properties using an
inline editor (simple form field) as well as a stand-alone editor for the complex types mentioned
above. This facility makes robust editing of properties a fairly simple matter. The manager review
web page defined in this tutorial edits two properties; Notes and Collateral Assets. We edit the
Notes property using the property editor facilities of Worklist, and the Collateral Assets property
using simple NetUI data binding tags.

The property editor facility usage in this tutorial spans several constructs:
— a<worklist:propertyEditor> tag in the GetManagerReview.jsp page

— three actions in the ManagerReview page flow to handle forwarding out to the
stand-alone text editor, and returning from that editor (for both the ‘Ok’ and ‘Cancel’
cases in that editor). These are, respectively, editNotesPropAction, okPropAction,
cancelPropAction.

We define the following actions to handle task’s user property editor:

— okPropAction — The stand-alone editor (forwarded to in editNotesPropAction) returns
to this action when you click 'Ok’ to apply the edit. It returns on this action passing an
EditorValueHolder holding the value that was created/edited in the editor. We pass this
_editorValue in useFormBean to avoid creating a copy of this potentially large form
bean.

— cancelPropAction — This is the action the stand-alone editor (launched from
editNotesPropAction) calls when the user clicks Cancel in the editor.

— editNotesPropAction — This action handles an 'initiate stand-alone editor' call that
comes from the GetManagerReview.jsp and the worklist propertyEditor tag. It (via
editPropActionHelper) calculates the stand-alone editor's URI, and then forwards to
that URI. This editor is a nested page flow, and returns to this controller (the caller) via

Tutorial: Building a Worklist Application 1-21

1-28

well-known return actions okPropAction, and cancelPropAction. We pass the
ManagerReviewForm form bean to avoid it getting recreated in this call.

Using the steps described for adding the actions in Define Actions on the Page Flow section, add
the following actions as shown in Table 7-2.

Table 7-2 Define Action on the Page Flow

Action Name Action Template Form Bean Forward To

editNotesPropAction Basic... ManagerReviewForm <none>

okPropAction Basic... com.bea.wli.datatype.EditorValue <none>
Holder

cancelPropAction Basic... <none> <none>

Notes: For adding com.bea.wli.datatype.EditorValueHolder you will have to click Add
button next to the form bean input field. It will open up a search window. Type
EditorValueHolder and it should find this class. Click on the entry and press Ok.

Insert the following code for the three actions mentioned above into your ManagerReview page
flow controller.

private transient com.bea.wli.datatype.EditorValueHolder _editorValue;
// For efficiency

Vs
* This action handles an "initiate stand-alone editor® call

* that comes from the GetManagerReview.jsp and the worklist

* propertyEditor tag. It (via editPropActionHelper) calculates

* the stand-alone editor®s URI, and then forwards to that URI.

* This editor is a nested page flow, and returns to this

* controller (the caller) via well-known return actions

* okPropAction, and cancelPropAction. We pass the managerReviewForm
* form bean to avoid it getting recreated in this call.

*/

@JpfF.Action(useFormBean="_managerReviewForm'™)

Tutorial: Building a Worklist Application

Create the Page Flow

public Forward editNotesPropAction(ManagerReviewForm form)

throws com.bea.wli.worklist._api.ManagementException,

com.bea.wli.datatype.DataTypeException {

// Get editable properties from the super class. Note

// that we could also get these from the UpdateActionForm

// contained in the super class. The UpdateActionForm is

// maintained for us by our super

// class, and contains the editable properties for the

// task (these are represented as PropertylnstanceHolder)

// General-purpose task Ul can simply use the UpdateActionForm

// as the form bean for their main page.
com._bea.wli.worklist._portal .PropertylnstanceHolder[] properties =

getTaskEditablePropertiesMap() -

values() - toArray(new

com.bea.wli.worklist.portal .PropertylnstanceHolder[0]);

}

// NOTE: We might store attrs off the propertyEditor tag

// here (e.g. hostPage) that would help us to

// navigate back to an appropriate page when the edit
// is completed (via okPropAction) or aborted (via
// cancelPropAction

// This begins the edit on the property we selected
// in the JSP page (and the name is set into the HTTP
// request coming in on this method.

Forward forward = editPropActionHelper(properties);

return forward;

/**

* The stand-alone editor (forwarded to in editNotesPropAction)
* returns to this action when you click "0Ok" to apply the edit.

* It returns on this action passing an EditorValueHolder holding

Tutorial: Building a Worklist Application 1-29

1-30

* the value that was created/edited in the editor. We pass
* this _editorValue in useFormBean to avoid creating a copy
* of this potentially large form bean.
*/
@Jpf.Action(loginRequired = true,

forwards = {

@Jpf.Forward(name = "backToManagerReview",
path = "GetManagerReview.jsp')
}.
useFormBean = *_editorValue')

protected Forward
okPropAction(com.bea.wli._.datatype.EditorValueHolder value)

throws Exception {
okPropActionHelper(value);
return new Forward(''‘backToManagerReview', _managerReviewForm);
}
J**
* This is the action the stand-alone editor (launched from
* editNotesPropAction) calls when the user clicks Cancel in
* the editor.
* @return
* @throws Exception
*/
@Jpf.Action(loginRequired = true,
forwards = {
@Jpf.Forward(name = "backToManagerReview',
path = "GetManagerReview.jsp'™)
D
protected Forward cancelPropAction()
throws Exception {

cancelPropActionHelper();

Tutorial: Building a Worklist Application

Create the Page Flow

return new Forward(’backToManagerReview', _managerReviewForm);

}

Final Code for Page Flow
After completing the above mentioned steps the code for the Page Flow will be as follows:

package manager;
import javax.servlet.http.HttpSession;
import org.apache.beehive.netui.pageflow.Forward;

import org.apache.beehive.netui.pageflow.annotations.Jpf;

import com.bea.wli.worklist.portal .PropertylnstanceHolder;
import com.bea.wli.worklist._portal.TaskUlPageFlowController;
@Jpf.Controller(nested = true)

public class ManagerReview extends TaskUlPageFlowController {
private static final long serialVersionUID = -1579985639L ;

private ManagerReviewForm _managerReviewForm; // To preserve the form
between requests.

@JIpf.Action(forwards = { @Jpf.Forward(name = "done', returnAction =
""managerDone'™) })

protected Forward done() {
return new Forward('‘done™);
}
[
* Initialize this controller, and call the super class
* helper to initialize stuff we get for free. This includes
* task context, standard form beans for a task and action,
* and property editing support.
*/
@JpfF.Action(forwards = {
@JIpf.Forward(name="success", path="GetManagerReview.jsp')

b

public Forward begin() throws Exception {

Tutorial: Building a Worklist Application 1-31

// Initialize our base class helpers so we can use them
// throughout this controller
beginActionHelper();
// Create our ManagerReviewForm, and load it with property
// values given by our base class helpers
_managerReviewForm = new ManagerReviewForm();
_managerReviewForm.setName(
(String)getTaskPropertiesMap() .-
get('Name™) .getValue());
_managerReviewForm.setSsn(
(String)getTaskPropertiesMap() -
get('SSN'") .getvValue());
_managerReviewForm.setLoanAmount(
((Long)getTaskPropertiesMap() -
get('LoanAmt'™) .getValue()) - intvValue());
// Get the editable notes property, because we"ll
// use this PropertylnstanceHolder to edit the notes
// property via Worklist-provided helpers
PropertylnstanceHolder notesProp =
getTaskEditablePropertiesMap().
get(*'Notes™);
_managerReviewForm.setNotesProp(notesProp);

return new Forward(''success', _managerReviewForm);

/o
* Forward to the assets sub form and display the assets
* we find for the loan applicant.
*/

@JpfF.Action(forwards = {

Tutorial: Building a Worklist Application

Create the Page Flow

@Jpf.Forward(name = "success",

path = "AssetSummary.jsp'™)

}, useFormBean = "_managerReviewForm"

)

public Forward viewAssetSummaryAction(ManagerReviewForm form) {

we

AssetSummaryForm assetSummaryForm = new AssetSummaryForm();
assetSummaryForm.setName(form.getName());
assetSummaryForm.setSsn(form.getSsn());

assetSummaryForm. loadSummarylnfo(getSession());

return new Forward(''success', assetSummaryForm);
}
/**
* Return to the main form after looking at assets.
*/
@JIpf.Action(forwards = {

@Jpf.Forward(name = "success",

path "'"GetManagerReview. jsp')

D
public Forward returnToManagerReviewAction(AssetSummaryForm form) {
Forward forward = new Forward(‘'success', _managerReviewForm);

return forward;

/**

* Approve the loan, using the super class helpers. and the properties

* stored in ManagerReviewForm. We
* specify the useFormBean attr to keep a single copy

* of ManagerReviewForm.

Tutorial: Building a Worklist Application 1-33

1-34

* NOTE: We could have designed this action to forward to an "action
props”

* page to collect the properties for the action (instead of
putting
* Ffields directly on the main form. If we did want a separate
page,
* we could call showStepActionActionHelper to prepare a
* TakeStepActionActionForm for us to obtain these properties
from.
* This form is well suited to use with propertyEditor tags in the
* action props form.
* @see

TaskUIPageFlowControl ler#showStepActionActionHelper(com.bea.wli.worklis
t.api.tasktype.StepAction)

* @see
TaskUIPageFlowControl ler#takeStepActionActionHelper(com.bea.wli.worklis
t.portal . TakeStepActionActionForm)

* @see
TaskUlIPageFlowControl ler#isPostActionlnteractiveAssignment(java.lang.St

ring)

* @see
TaskUIPageFlowControl ler#takeStepActionAndClaimActionHelper(com.bea.wli
-worklist_portal .TakeStepActionActionForm, java.lang.String)

*/
@Jpf.Action(forwards = {
@JIpf.Forward(name = "success',
action = "stepDoneAction™)

}. useFormBean="_managerReviewForm')
public Forward approvelLoanAction(ManagerReviewForm form)
throws Exception {
// Build a map of the property values we"ll pass for the action
Java.util .Map<String, String> propMap
= new java.util_HashMap<String, String>();

propMap.put(*‘Notes",
form._getNotesProp() -getEditorValueAsString());

propMap.put(*"CollateralAssets™, form.getCollateralAssets());

Tutorial: Building a Worklist Application

Create the Page Flow

// Now take the action
this.takeStepAction(getCurrentStep() -getName(),
"Approve’,
propMap);
Forward forward = new Forward(''success");

return forward;

J**
* Reject the loan, using the super class helpers. We
* specify the useFormBean attr to keep a single copy
* of ManagerReviewForm.

* NOTE: We could have designed this action to forward to an "action
props”

* page to collect the properties for the action (instead of
putting
* Ffields directly on the main form. If we did want a separate
page,
* we could call showStepActionActionHelper to prepare a
* TakeStepActionActionForm for us to obtain these properties
from.
* This form is well suited to use with propertyEditor tags in the
* action props form.
* @see

TaskUIPageFlowControl ler#showStepActionActionHelper(com.bea.wli.worklis
t.api.tasktype.StepAction)

* @see
TaskUIPageFlowControl ler#takeStepActionActionHelper(com.bea.wli.worklis
t.portal . TakeStepActionActionForm)

* @see
TaskUlPageFlowControl ler#isPostActionlnteractiveAssignment(java.lang.St

ring)

* @see
TaskUIPageFlowControl ler#takeStepActionAndClaimActionHelper(com.bea.wli
-worklist_portal .TakeStepActionActionForm, java.lang.String)

Tutorial: Building a Worklist Application 1-35

1-36

*/

@JIpf.Action(forwards = {
@Jpf.Forward(name = "success'",

action = "stepDoneAction™)

}. useFormBean="_managerReviewForm'™)

public Forward rejectLoanAction(ManagerReviewForm form)
throws Exception {
// Build a map of the property values we"ll pass for the action
Java.util _Map<String, String> propMap
= new java.util_HashMap<String, String>();

propMap . put(**Notes",
form.getNotesProp() -getEditorValueAsString());

// Now take the action
this.takeStepAction(getCurrentStep() .getName(),
"Reject",
propMap);
Forward forward = new Forward(''success");

return forward;

Jr*
* Callback that is invoked when this controller instance is created.
*/

@0verride

protected void onCreate() {

}

/**
* Callback that is invoked when this controller instance is destroyed.
*/

@Override

Tutorial: Building a Worklist Application

Create the Page Flow

protected void onDestroy(HttpSession session) {

}

private transient com.bea.wli.datatype.EditorValueHolder
_editorValue; // For efficiency

/**

* This action handles an "initiate stand-alone editor”® call

* that comes from the GetManagerReview.jsp and the worklist

* propertyEditor tag. It (via editPropActionHelper) calculates

* the

stand-alone editor®"s URI, and then forwards to that URI.

* This editor is a nested page flow, and returns to this

* controller (the caller) via well-known return actions

* okPropAction, and cancelPropAction. We pass the managerReviewForm

* form bean to avoid it getting recreated in this call.

*/

@Jpf.Action(useFormBean=""_managerReviewForm')

public

Forward editNotesPropAction(ManagerReviewForm form)

throws com.bea.wli.worklist.api.ManagementException,

com.bea.wli.datatype.DataTypeException {

//
//
//
//
//
//
//

* we

from.

*

Get editable properties from the super class. Note

that we could also get these from the UpdateActionForm
contained in the super class. The UpdateActionForm is
maintained for us by our super

class, and contains the editable properties for the

task (these are represented as PropertylnstanceHolder)
General-purpose task Ul can simply use the UpdateActionForm
could call showStepActionActionHelper to prepare a

TakeStepActionActionForm for us to obtain these properties

This form is well suited to use with propertyEditor tags in the

Tutorial: Building a Worklist Application 1-31

1-38

* action props form.

* @see
TaskUlPageFlowControl ler#showStepActionActionHelper(com.bea.wli.worklis
t.api.tasktype.StepAction)

* @see
TaskUlPageFlowControl ler#takeStepActionActionHelper(com.bea.wli.worklis
t.portal .TakeStepActionActionForm)

* @see
TaskUlPageFlowControl ler#isPostActionlnteractiveAssignment(java.lang.St
ring)

* @see
TaskUlPageFlowControl ler#takeStepActionAndClaimActionHelper(com.bea.wli
-worklist._portal .TakeStepActionActionForm, java.lang.String)

*/
@JpF.Action(forwards = {
@Jpf.Forward(name = "success",
action = "stepDoneAction')

}. useFormBean="_managerReviewForm')
public Forward rejectLoanAction(ManagerReviewForm form)
throws Exception {
// Build a map of the property values we"ll pass for the action
Java.util _Map<String, String> propMap
= new java.util_HashMap<String, String>();

propMap.put(*'Notes",
form.getNotesProp() -getEditorValueAsString());

// Now take the action
this.takeStepAction(getCurrentStep() .getName(),
"Reject",
propMap) ;
Forward forward = new Forward(''success™);

return forward;

/**

Tutorial: Building a Worklist Application

Create the Page Flow

* Callback that is invoked when this controller instance is created.
*/

@0verride

protected void onCreate() {

}

Jr*
* Callback that is invoked when this controller instance is destroyed.
*/

@Override

protected void onDestroy(HttpSession session) {

}

private transient com.bea.wli.datatype.EditorValueHolder
_editorVvalue; // For efficiency

J**

* This action handles an "initiate stand-alone editor® call

* that comes from the GetManagerReview.jsp and the worklist

* propertyEditor tag. It (via editPropActionHelper) calculates

* the stand-alone editor®s URI, and then forwards to that URI.

* This editor is a nested page flow, and returns to this

* controller (the caller) via well-known return actions

* okPropAction, and cancelPropAction. We pass the managerReviewForm

* form bean to avoid it getting recreated in this call.

*/

@JpF.Action(useFormBean="_managerReviewForm'™)

public Forward editNotesPropAction(ManagerReviewForm form)
throws com.bea.wli.worklist._api.ManagementException,
com.bea.wli.datatype.DataTypeException {

// Get editable properties from the super class. Note

Tutorial: Building a Worklist Application 1-39

// that we could also get these from the UpdateActionForm
// contained in the super class. The UpdateActionForm is
// maintained for us by our super
// class, and contains the editable properties for the
// task (these are represented as PropertylnstanceHolder)
// General-purpose task Ul can simply use the UpdateActionForm
public String getSsn() { return _ssn; }
public void setSsn(String ssn) { _ssh = ssn; }
public PropertylnstanceHolder getNotesProp()
{ return _notesProp; }
public void setNotesProp(PropertylnstanceHolder notesProp)
{ _notesProp = notesProp; }
public String getCollateralAssets() { return _collateralAssets; }
public void setCollateralAssets(String collateralAssets) {
_collateralAssets = collateralAssets; }
}
@Jpf.FormBean

public static class AssetSummaryForm implements java.io.Serializable

{
private static final long serialVersionUID = 1517513921L ;

private java.util_SortedSet<AssetForm> _assets;
private int _creditScore;
private String _name;

private String _ssn;

public AssetSummaryForm() {

_assets = new java.util_TreeSet<AssetForm>();

}
public String getName() { return _name; }

public void setName(String name) { _name = name; }

1-40 Tutorial: Building a Worklist Application

Create the Page Flow

public String getSsn() { return _ssn; }
public void setSsn(String ssn) { _ssnh = ssn; }

public java.util.SortedSet<AssetForm> getAssets() { return
_assets; }

// NOTE: No setter for assets property. We’ll load this internally.
public int getCreditScore() { return _creditScore; }
// NOTE: No setter for creditScore, we’ll load this internally.
public void loadSummarylnfo(HttpSession session) {
loadCreditScore(session);
loadAssets(session);
}
public int getTotalActualAssetValue() {
int total = O;
for (AssetForm asset: _assets) {
total = asset.getActualValue();
}

return total;

protected void loadCreditScore(HttpSession session) {
// Load the credit scores as properties

String resourceName =
""/creditRatings/creditRatings.properties";

Jjava.util _Properties props =
loadProperties(resourceName, session);
_creditScore = getIntProperty(props, _name);
}
protected void loadAssets(HttpSession session) {
// Load the assets as properties
String resourceName = "/assets/" + _name + '".properties";

Jjava.util _Properties props =

Tutorial: Building a Worklist Application 1-41

1-42

loadProperties(resourceName, session);
String assetList = props.getProperty("assetList");
if (assetList != null) {

Jjava.util_StringTokenizer st = new

Java.util.StringTokenizer(assetList, ",");

while (st.hasMoreTokens()) {
String assetName = st.nextToken().trim();
AssetForm asset = new AssetForm();
asset.setName(assetName) ;
int value =
getIntProperty(props, assetName + "." + "value');
asset.setValue(value);
int amountOwed =
getIntProperty(props, assetName + "." + "amountOwed™);
asset.setAmountOwed(amountOwed) ;

_assets.add(asset);

protected java.util.Properties

loadProperties(String resourceName, HttpSession session) {
// Load the resources as properties

jJjava.io.lnputStream is = null;

try {
is = session.getServletContext().
getResourceAsStream(resourceName) ;
Java.util _Properties props = new java.util.Properties();
if (is = null) {
props.load(is);

Tutorial: Building a Worklist Application

Create the Page Flow

return props;
} catch (Exception e) {
// TODO: Better handling
e.printStackTrace();
} finally {
if (is '= null) {

try { is.close(); } catch (Exception e) {
e.printStackTrace(); }

}
}

return new java.util_Properties();

private int getIntProperty(java.util_Properties props, String
key) {

String value = props.getProperty(key);
if (value == null) {
return O;

}

return Integer.valueOf(value);

@Jpf.FormBean

public static class AssetForm implements java.io.Serializable,
Comparable {

private static final long serialVersionUID = 1491696939L;

private String _name;
private int _value;

private int _amountOwed;

Tutorial: Building a Worklist Application 1-43

public int getAmountOwed() {
return _amountOwed;

}

public void setAmountOwed(int lienValue) {
_amountOwed = lienValue;

}

public String getName() {
return _name;

}

public void setName(String name) {
_hame = name;

}

public int getValue() {
return _value;

}

public void setValue(int value) {

_value = value;

public int getActualvValue() {

return _value - _amountOwed;

public int compareTo(Object 0) {
if (1(o instanceof AssetForm)) {
return O;
}
AssetForm other = (AssetForm)o;
int otherActualValue = other._value - other._amountOwed;

return otherActualValue - getActualValue();

1-44 Tutorial: Building a Worklist Application

Create the Page Flow

}

Define JSP Pages

According to the screen mockups in Define Web Page Mock-Up and Flow, define two JSP pages
for the custom task Ul using Beehive NetUI data binding JSP tags to render web forms that can
read data from and write data into form beans. The use of these tags greatly simplifies the process
of writing a data-driven JSP page.

Create JSP Files

The page flow perspective in Workshop give us a starting point for defining the correct pages.
With the actions we defined in previous sections, your ManagerReview page flow controller
should show two grayed out JSP pages under the ‘Pages’ node in the page flow explorer:

— GetManagerReview.jsp

— AssetSummary.jsp
To create the JSP Files

1. Inthe Page Flow Explorer, right-click Pages.
2. Select GetManagerReview.jsp—Create to create the new JSP file

3. Repeat the above steps for AssetSummary.jsp.
The default JSP code is as follows:

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix="netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix=""netui-template"%>

<netui:html>
<head>

<netui:base/>

Tutorial: Building a Worklist Application 1-45

1-46

</head>
<netui :body>

<p>Beehive NetUl JavaServer Page -
${pageContext.request.requestURI}</p>

</netui :body>
</netui:html>

Fill out these pages by inserting the correct text for our forms in
between the <netui:body/> tag. It is recommended that you use HTML <table>
tags to help organize and align these form fields.

Delete the following code from the JSP:

<p>Beehive NetUl JavaServer Page - ${pageContext.request.requestURI}</p>

Create the Form and Associate it with an Action

In this step, create a <netui - form> element to hold all our JSP data items, then associate that
form with an action from our ManagerReview page flow controller. This will associate the form
with the form bean referenced in the action method. This association will bind the data from our
form bean to the data items we’ll add to the JSP form.

The general process for adding a NetUI form to a JSP is as follows:

1. If the JSP Design Palette is not visible, go to Window—Show View—JSP Design Palette.
The JSP Design Palette appears (see Figure 7-11).

Tutorial: Building a Worklist Application

Figure 7-11 JSP Design Palette

2.

B x -0
+ MetUI Wizards)
+ I5TL-Core

+H ISTL-Format
—IMetl1

D anchor

[area

= attribute

base

_@ behavior

[I= bindingUpdateErrars
El bady

2] button
checkBox
checkBoxGraup
checkBoxOption
m configurePopup
content

21 divpanel

[error

8= errors
exceptions

) fleUpload

Farm

51 formathiumber
B9 formatstring

image
@ imageanchor
Eu\j imageButton v

Filtered 23 TLDs

In the JSP Design Palette, expand NetUI and select form.

Create the Page Flow

3. Drag the form into your JSP source editor and drop it inside the <netui :body/> tag.

actionForm.<property on form bean>

<Java type for property> get<Property name>()

void set<Property name>(<Java type for property> value)

When you drop it, the form element is added, something like this:<netui : form
action="""></netui :form>

Associate the form with an action on your page flow controller For this tutorial, you’ll
associate the form element with an action on our ManagerReview page flow controller that
takes a form bean as a parameter. This association is very important, as it establishes the
action method that will be called when the form is submitted and the Java type of the form
bean to associate with the form. The associated form bean then becomes accessible to the
NetUI tags in the JSP code by using the value and dataSource attributes of those tags.
These attributes refer to properties on the form bean via JSP expressions like this:

and the form bean defines a pair of methods of the form:

Tutorial: Building a Worklist Application 1-47

1-48

We’ll show examples of this for the individual web pages we define.

GetManagerReview.jsp
4. Double-click GetManagerReview.jsp and open it in the source editor.

5. Drag the form from NetUI to the GetManagerReview.jsp and set the action for that form to
approveL.oanAction. The fact that approveLoanAction takes a form bean parameter of
ManagerReviewForm type generates the association, within the form tag in
GetManagerReview.jsp only, that:

actionForm.<property> -> Call method ManagerReviewForm.get<property>

6. The instance of ManagerReviewForm that is used to make this call is the instance passed in
the Forward object that forwarded to this page. In the ManagerReview.java page flow code,
the following happens from these actions:

begin()Add Data Binding Fields

returnToManagerReviewAction()

okPropAction()

cancelPropAction()
All of these actions should return a Forward containing a ManagerReviewForm instance.
The JSP Code should be as shown below:

<%@ page language=""java'" contentType=""text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui" %>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix="netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix="netui-template"%>

<netui:html>
<head>
<netui :base/>
</head>
<netui :body>
<netui:form action="approvelLoanAction"></netui:form>

</netui :body>

Tutorial: Building a Worklist Application

Create the Page Flow

</netui:html>

AssetSummary.JSP

We’ll create a <netui:form> and set the action for that form to be
returnToManagerReviewAction. Remember that returnToManagerReviewAction looks like this:

@JIpf.Action(forwards = {
@Jpf.Forward(name = "success",
path = "GetManagerReview. jsp'),
@JIpf.Forward(name = "‘success2",
path = "GetManagerReview2.jsp')
D
public Forward returnToManagerReviewAction(AssetSummaryForm form) {
Forward forward = new Forward(''success', _managerReviewForm);
return forward;
}
The fact that returnToManagerReviewAction takes a form bean parameter of

AssetSummaryForm type generates the association, within the form tag in AssetSummary.jsp
only, that::

actionForm.<property> -> Call method AssetSummaryForm.get<property>

The instance of AssetSummaryForm that is used to make this call is the instance passed in the
Forward object that forwarded to this page. In our ManagerReview.java page flow code, the
AssetSummary.jsp is reached from these actions:

The JSP Code should be as shown below:
<%@ page language="java' contentType=""text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix=""netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix=""netui-template" %>

<netui:html>

<head>

Tutorial: Building a Worklist Application 1-49

1-50

<netui:base/>
</head>
<netui :body>
<netui:form action="returnToManagerReviewAction"></netui :form>
</netui :body>

</netui:html>

Add Data-binding Fields

NetUI data binding JSP tags automate the work needed to fetch data out of a form bean for display
in a JSP page, and to set data into a form bean as a result of submitting a <netui : form>. All
NetUI data binding tags have an attribute that associates them with a property on a form bean. In
some tags (e.g. <netui : label>) the attribute is named ‘value’. On others (e.g.
<netui-data:repeater> the attribute is named ‘dataSource’. These attributes use a different
syntax for defining the property expression. If the attribute is dataSource, the syntax is:

actionForm.<property>
If the attribute is anything else (e.g. value on <netui:label>) the syntax is:
${actionForm.<property>}

We use actionForm references in the following JSP code to bind properties from our
ManagerReviewForm to the JSP page. You can drag and drop the appropriate tags from the JSP
Designer palette to the JSP code to arrive at these results. Note that some of the tags come from
the NetUI menu, and others from the NetUI-Data menu (e.g. repeater). The final code for our JSP
files are given in the sections below:

Final Code GetManagerReview.jsp
<%@ page language="java' contentType="text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui %>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix=""netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix="netui-template"%>

Tutorial: Building a Worklist Application

Create the Page Flow

<netui:html>
<head>
<netui :base/>
</head>
<netui :body>
<netui:form action="approvelLoanAction">
<table>
<tr>
<td><netui:label value="Customer Name:"/></td>
<td><netui:label value="${actionForm.name}'"/></td>
</tr>
<tr>
<td><netui:label value="SSN:"/></td>
<td><netui:label value="${actionForm.ssn}"/></td>
</tr>
<tr>
<td><netui:label value="Loan Amount:"/></td>
<td><netui:label value="${actionForm.loanAmount}"/></td>

</tr>

<tr>
<td colspan="2">
<I-- We"ll edit this property using a plain-old
NetUl actionForm binding (Note the netui :textBox
tag) -->
<netui:label value="Collateral Assets:''/>

<netui : textBox
dataSource="actionForm.col lateralAssets' />

Tutorial: Building a Worklist Application 1-51

1-52

</td>
</tr>
</table>
</netui:form>
</netui :body>

</netui:html>

Notice that we don’t have any tags to handle the Notes property. We cover
this separately here because we’ll use a custom Worklist tag called
propertyEditor to allow us to use the property editing framework offered by
Worklist. Insert the following code before the last <tr> element in the table
above (the one that holds the CollateralAssets property elements)

<tr>
<td colspan="2">
<I-- This shows how to use the propertyEditor tag.
It will show a label, a summary value, and a
link to a stand-alone editor if available. This
tag also allows editing the property value
in-place.
NOTE: We set the hostPage attr to facilitate
navigating back to this page after editing
a property
NOTE: We need an action defined on the controller
that has the name given in the actionName attr
—-——>
<netui:label value="Reason for Action:"/>

<worklist:propertyEditor
dataSource=""actionForm.notesProp"

propName=""Notes""

readOnly="false"

Tutorial: Building a Worklist Application

Create the Page Flow

hostPage=""GetManagerReview. jsp"
actionName="editNotesPropAction'/>
</td>

</tr>

To make the <worklist:propertyEditor> tag reference legal, we must define the worklist prefix to
map to the correct URI for the Worklist tags. Add this to the end of the taglib statements at the
top of the JSP file:

<%@taglib uri="http://bea.com/wli/worklist/tags-worklist-1.0"
prefix="worklist"%>

The propertyEditor tag is bound to actionForm.notesProp which is of type
PropertylnstanceHolder. This binding allows the propertyEditor tag to retrieve an editable
property value for the property, determine its property type (one of the Worklist-defined types),
find the registered stand-alone editor for that type, and pass the editable value to the stand-alone
editor.

Note: The propertyEditor tag refers to our editNotesPropAction. This action will be called
when launching the stand-alone editor for the property. It is not apparent here, but our
code in the ManagerReview page flow controller also includes two ‘return’ action
methods that allow the stand-alone editor to return to the calling page flow when its Ok
and Cancel buttons are clicked. These actions are okPropAction, and cancelPropAction,
respectively.

Final Code Asset Summary.jsp
The final code for Asset Summary.jsp is as follows:

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix=""netui"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix=""netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix="netui-template"%>

Tutorial: Building a Worklist Application 1-53

<netui:html>
<head>
<netui:base/>
</head>
<netui :body>
<netui:form action="returnToManagerReviewAction">
<table>
<tr>

<td colspan="2"><netui:label value="Assets for
${actionForm.name}"/></td>

</tr>
<tr>
<netui-data:repeater dataSource="actionForm.assets">
<netui-data:repeaterHeader>
<table border="1">
<tr>
<td>Name</td>
<td>Value</td>
<td>Amount Owed</td>
<td>Actual Value</td>
</tr>
</netui-data:repeaterHeader>
<netui-data:repeaterltem>
<tr>

<td><netui: label
value="${container.item.name}"/></td>

<td><netui: label
value="${container.item.value}"/></td>

1-54 Tutorial: Building a Worklist Application

Create the Page Flow

<td><netui:label
value="${container.item.amountOwed}"/></td>

<td><netui: label
value="${container.item.actualValue}'"/></td>

</tr>
</netui-data:repeaterltem>
<netui-data:repeaterFooter>
</table>
</netui-data:repeaterFooter>
</netui-data:repeater>
</tr>
<tr>
<td><netui:label value="Credit Score:"/></td>
<td><netui:label value="${actionForm.creditScore}"/></td>
</tr>
</table>
</netui:form>
</netui :body>

</netui:html>

Add Command Links and Buttons

Add <netui:button> elements to navigate between forms and to take actions on the task they
represent.

GetManagerReview.jsp

Insert the following code before/above the <tr> element containing the
<worklist:propertyEditor> tag. This code renders an action button in our GetManagerReview
page that when clicked, will call the viewAssetSummary action, and forward the user to the
AssetSummary page.

<tr>

<td colspan="2">

Tutorial: Building a Worklist Application 1-5%5

<netui:button value="View Asset Summary"
action="viewAssetSummaryAction'/>
</td>
</tr>
and then insert this code before the ending </table> tag
<tr>

<netui:button value="Approve"
action=""approvelLoanAction"/>

<p/>
<netui:button value="Reject" action="rejectLoanAction"/>
</td>
</tr>

This renders buttons that allow the Loan Manager to take the Approve and Reject actions on the
task (via the approveLoanAction and rejectLoanAction action methods on the page flow).

Asset Summary.jsp
Insert the following code before the end table tag (</table>):
<tr>
<td colspan="2"><netui:button value="Back"/>

</tr>

This renders a ‘Back’ button to take the Loan Manager back to the Manager Review page. Note
that there is no action attribute here. In this case, the action from the form
(returnToManagerReviewAction) is taken.

Final JSP Code
The final jsp code for GetManagerReview.jsp is shown below:

<%@ page language=""java'" contentType=""text/html;charset=UTF-8"%>

1-56 Tutorial: Building a Worklist Application

Create the Page Flow

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"

prefix=""netui"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"

prefix="netui-data'%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"

prefix=""netui-template'%>

<%@taglib uri="http://bea.com/wli/worklist/tags-worklist-1.0"

prefix="worklist"%>
<netui:html>
<head>
<netui :base/>
</head>

<netui :body>

<netui:form action="approvelLoanAction">

<table>

<tr>
<td><netui
<td><netui

</tr>

<tr>
<td><netui
<td><netui

</tr>

<tr>

<td><netui

s label
s label

s label
s label

s label

value=""Customer Name:'/></td>

value="${actionForm.name}"/></td>

value=""SSN:""/></td>

value="${actionForm.ssn}"/></td>

value=""Loan Amount:"/></td>

<td><netui:label value="${actionForm.loanAmount}"/></td>

</tr>

<tr>

Tutorial: Building a Worklist Application 1-57

1-58

<netui:button value="View Asset Summary"

action=""viewAssetSummaryAction'/>
</td>
</tr>
<tr>
<td colspan="2">
<I-- This shows how to use the propertyEditor tag.
It will show a label, a summary value, and a
link to a stand-alone editor if available. This
tag also allows editing the property value
in-place.
NOTE: We set the hostPage attr to facilitate
navigating back to this page after editing
a property
NOTE: We need an action defined on the controller
that has the name given in the actionName attr
->
<netui:label value="Reason for Action:"/>
<worklist:propertyEditor hostPage="GetManagerReview.jsp"
dataSource="actionForm.notesProp"
propName="Notes"
readOnly="false"
actionName="editNotesPropAction"/>
</td>
</tr>
<tr>

<td colspan="2">

Tutorial: Building a Worklist Application

Create the Page Flow

<I-- We'll edit this property using a plain-old
NetUI actionForm binding (Note the netui:textBox
tag) -->
<netui:label value="Collateral Assets:"/>
<netui:textBox dataSource="actionForm.collateral Assets"/>
</td>
</tr>
<tr>
<td colspan="2">
<netui:button value="Approve" action="approvelLoanAction"/><p/>
<netui:button value="Reject" action="rejectLoanAction"/>
</td>
</tr>
</table>
</netui:form>
</netui:body>
</netui:html
The final jsp code for AssetSummary.jsp is shown below:
<%@ page language="java' contentType="text/html;charset=UTF-8"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix=""netui-data"%>

<%@taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix=""netui-template" %>

<netui:html>

<head>

Tutorial: Building a Worklist Application 1-59

<netui:base/>
</head>
<netui :body>
<netui:form action="returnToManagerReviewAction">
<table>
<tr>

<td colspan="2"><netui:label value="Assets for
${actionForm.name}"/></td>

</tr>
<tr>
<netui-data:repeater dataSource="actionForm.assets">
<netui-data:repeaterHeader>
<table border="1">
<tr>
<td>Name</td>
<td>Value</td>
<td>Amount Owed</td>
<td>Actual Value</td>
</tr>
</netui-data:repeaterHeader>
<netui-data:repeaterltem>
<tr>

<td><netui: label
value="${container.item.name}"/></td>

<td><netui: label
value="${container.item.value}"/></td>

<td><netui: label
value="${container.item.amountOwed}"/></td>

71-60 Tutorial: Building a Worklist Application

Register the Custom Ul

<td><netui:label
value="${container.item.actualValue}'"/></td>

</tr>
</netui-data:repeaterltem>
<netui-data:repeaterFooter>
</table>
</netui-data:repeaterFooter>
</netui-data:repeater>
</tr>
<tr>
<td><netui:label value="Credit Score:"/></td>
<td><netui:label value="${actionForm.creditScore}"/></td>
</tr>
<tr>
<td colspan="2"><netui:button value="Back'/>
</tr>
</table>
</netui:form>
</netui :body>

</netui:html>

Register the Custom Ul

After designing the custom task Ul for the Manager Review Pending step of the Loan Approval
task plan.You need to register the custom task Ul to be applied under those circumstances, by

adding mapping entries to a registry file located in our LoanWeb web project, at the following
location:

LoanWeb/WebContent/WEB-INF/task-ui-registry.xml

This XML file is associated with the schema for the Worklist Task Ul Registry, and this schema
is registered with Workshop.You w have to edit this file in Workshop. Open the file, and you’ll

Tutorial: Building a Worklist Application 1-61

1-62

see an editor with Design and Source tabs. In the source tab, the initial contents should look
something like this:

<task-ui-registry xmlns="http://www._bea.com/wli/worklist/taskuiregistry'>
</task-uil-registry>

In the design tab, you can right-click any node in the tree view to act on it. You can delete nodes,
and add children to nodes.

To register our custom task Ul, we need the following information:

— Task Plan ID — The ID of the task plan for which the custom task Ul applies, in
external format (e.g. /<path>/<task plan name>:<version>)

— Step Name — Required only when registering the custom task Ul for a specific step. In
this case, give the name of the step as it is defined in the task plan with the ID given
above.

— Custom Task Ul URI — The web URI of the page flow controller that will control the
Ul to be applied to this task plan (and possibly step if Step Name is given)

For this tutorial , the required information is:
— Task Plan ID - /Loans/Loan Approval:1.0
— Step Name — Manager Review Pending
— Custom Task Ul URI - /manager/ManagerReview.jpf

The URI ends with .jpf, even though our page flow controller file is really ManagerReview.java.
This is needed to allow servlet filters in the LoanApp web application to fire correctly. To finish
editing task-ui-registry.xml first switch to the Package Explorer view and then do the following
in the design tab of the editor:

1.

1. In the Package Explorer, expand LoanWeb and go to /WebContent/WEB-INF/, and select
task-ui-registry.xml.

2. Right-click task-ui-registry.xml, and select Add Child —step-override. This adds a new
step-override element under the root element (see Figure 7-12).

Tutorial: Building a Worklist Application

Deploy the Custom Task Ul

Figure 7-12 Adding Child

= [e] task-ui-reqgistry
xmlns http: S, bea, comfwlifworklistftaskuiregistry
+# [g] step-ove Remove
Add DTD Information. ..
Edit Mamespaces, ..
O step-override
Add Before
Add After

3
' [] task-plan-override
E-- Comment

727 Add Processing Instruction

Design | Source

3. Expand the newly added step-override element. You’ll see three elements under it called,
respectively, task-type-id, step-name, and custom-task-ui-uri. These all are set to default

values.

4. Foreach of these three elements, click on the right-hand value column, and replace the default
values with the | value discussed above (see Figure 7-13) .

Figure 7-13 Edited XML

Bl taskuiregitry
xmlns http: S, bea, comfwlifworklistftaskuiregistry
= [g] step-override
[] task-plan-id ILoans{Loan Approval:1.0

[] step-name
[8] custom-task-ui-uri

Deploy the Custom Task Ul

Manager Review Pending
Imanager/ManagerReview. jpf

1. On the Package Explorer pane, select and right-click on Loan_Web.

2. Click Run As—Run On Server.

3. Inthe Define a New Server dialog box, accept the default settings and click Next.

Tutorial: Building a Worklist Application 1-63

4,

5.

Browse and select the myworklist domain, which you created using the Configuration
Wizard. It is located at \user_projects\domains\myworklist.

Click Finish.

Validate the Custom Ul

To validate the Custom Task Ul we use the following scenario:

1-64

— “Assigned loanOfficer Forwards Loan to his Manager”

— “Assigned loanManager Rejects the Loan.”

Configure users and groups
See Configure Users and Groups for Loan Processing.

Create a Loan Approval Task

1.

Log in to the Loan_Web project using the following credentials:
Username: weblogic

Password: weblogic

The Home page is displayed with the portlets for the Inbox of overdue, upcoming, and
assigned tasks, along with the portlet that allows you to create a new task.

Click the /Loan/loan_approval 1.0 option in the Create Task portlet. The Create New Task
page is displayed.

Enter the name Loan for John Smith as the Task Name.

Enter the following information:
* Name- John Smith
* LoanAmt - 20000
e SSN-111-11-1111

Click Create Task. The task is created and shows up in the Upcoming Tasks portlet on the
home page.

Click Logout to close and log out as weblogic from the Worklist User Portal.

Tutorial: Building a Worklist Application

Validate the Custom Ul

Assigned loanOfficer Forwards Loan to his Manager

1.

Log in to the Loan_Web project using the following credentials:
Username: John

Password: password

Click Loan for John Smith in the Upcoming Tasks portlet. This will display the Task Work
page with the task details, and the Action options available for user John (Figure 7-14).

Figure 7-14 Task Detail Information

£hea BEA WEBLOGIC WORKLIST

Home Task List Work on Task

[Task wark 5l
Waork on 'Loan for John Smith’ in 'OfficerReviewPending' Step

Task Gerenas Inrormatios Moew
Task Name: Loan for Jahn Smith

Current Btep: OfficarfeviewPending

Owner: woblegic

Current Assignen(s): Graups [loanDfficer |

Collatoral Assets ralt)

Loanamt 20000

Nama 111-11-1111
Notas i) Hates
aan Iohn Smith

ArTion

ol gar ke
Hext > [Edit / View Detads | | Histary | [Cancel]

Select Request Manager Review in the Actions section to forward the request to the loan
managers group for approval, and click Next.

In the Key Action Properties of the refreshed web page that appears, enter the String Good
Guy.

Click Submit to complete the task.

As the loan has been send to the manager for approval, the task instance will no longer appear
in John’s Inbox.

Tutorial: Building a Worklist Application 1-65

7. Logout as user John from the Worklist User Portal.

Assigned loanManager Rejects the Loan.

Before creating a task instance for the new task plan, log into the Loan_web project using the
following credentials:

Username: Mary

Password: password

Mary will see the ‘Loan for John Smith’ task in her Inbox.Click this task, the resulting page is the
custom task Ul page flow we defined above (see Figure 7-15).

Figure 7-15 View Asset Summary

{fea BEA WEBLOGIC WORKLIST

Home Task List Work on Task

|Task Work e
| Customes Mame: Johin Smith

{ 111-11-1111

20000

Edit Text...

1. From the Manager Review Page, click View Asset Summary.

This displays John Smith’s asset as shown in Figure 7-16.

Figure 7-16 Asset Summary

,h;a BEA WEELOGIC WORKLIST

(Task work [t
assets for John Smith
Name [Value Amount Owed Actual Valug
Home 300000 290000 10000
Car 20000 (19000 pLelilv}

Credit Score:

1-66 Tutorial: Building a Worklist Application

Validate the Custom Ul

This table lists John Smith’s assets, and their actual value (in descending order). Mary
looks at this information, and realizes John Smith has only $10,000 in assets, and low
credit score (100). Mary decides to reject this loan by performing the following steps:

2. Click Back in the Asset Summary Page, to return to the Manager Review form.
3. Enter Insufficient assets and low credit score in Reason for Action.

4. Click Reject as shown in Figure 7-17, and the loan application is rejected by the manager.
This puts the task in amn aborted state and removes it from Mary’s Upcoming task portlets.

Figure 7-17 Loan Reject

£hes BEA WEBLOGIC WORKLIST

Home Task Lisl Work on Task

Jahn Smith
111-13-1111
Loan ameunt: 1500090

View Assel Summary

Reason for Action; Insuficient assats and low ggp Text...

Colavaral Assens:

Appreve |

Tutorial: Building a Worklist Application 1-67

7-68 Tutorial: Building a Worklist Application

	Copyright
	Tutorial: Overview
	Tutorial Overview
	Steps in This Tutorial
	Step 1: Setting Up the Environment
	Step 2: Modeling and Deploying the Loan Processing Task Plan
	Step 3: Testing the Task Plan Using Worklist User Portal
	Step 4: Managing Task Instances Using Worklist Console
	Step 5: Using JPDs with Worklist

	Conventions

	Step 1: Setting Up the Environment
	Before You Begin
	Create a Worklist Domain
	Set Up the Workshop for WebLogic Platform Design-Time Environment
	Create a New Worklist Application
	Configure Users and Groups for Loan Processing
	Create Groups for the Loan Processing Task
	Create Users and Assign to Groups

	Step 2: Modeling and Deploying the Loan Processing Task Plan
	Create a New Task Plan
	Define the Steps for the Loan Processing Task Plan
	Define Actions in the Task Plan
	Define Constructors for the Task Plan
	Validate the Task Plan
	Deploy the Loan Processing Task Plan

	Step 3: Testing the Task Plan Using Worklist User Portal
	Create the Loan Processing Task Instance

	Step 4: Managing Task Instances Using Worklist Console
	Update the Application Using Worklist Console
	Verify Updated Application in Worklist Portal

	Step 5: Using JPDs with Worklist
	Subscribe to Worklist Events
	Configure a Perform Node
	Deploy the Loan_JPD

	Verify the Worklist Event is Published
	Use the Worklist Control
	Create a Worklist JPD
	Create a Task Control
	Add Task Plan Constructor to JPD

	Validate the WorklistControl JPD

	Advanced Topic: Adding a Customized User Interface
	Define Web Page Mock-Up and Flow
	Create the Page Flow
	Define Form Beans
	Create Form Beans
	Define Support Asset Information Files

	Define Actions on the Page Flow
	Create an Action
	Implement the Action Methods
	Action Methods, Form Beans and the UseFormBean Field

	Define JSP Pages
	Create JSP Files
	Create the Form and Associate it with an Action

	Register the Custom UI
	Deploy the Custom Task UI
	Validate the Custom UI
	Configure users and groups
	Create a Loan Approval Task
	Assigned loanOfficer Forwards Loan to his Manager
	Assigned loanManager Rejects the Loan.

