
BEA
 WebLogic
Integration™

Tutorial: Building Your
First Data Transformation
Version 9.2
Document Date: June 2007

Tutorial: Building Your First Data Transformation iii

Contents

1. Tutorial: Building Your First Data Transformation
Tutorial Goals . 1-3

Steps in This Tutorial . 1-3

2. Step 1: Getting Started

3. Step 2: Building the Transformation

4. Step 3: Mapping Elements and Attributes

5. Step 4: Mapping Repeating Elements—Creating a Join

6. Understanding the Concepts
Understanding the Transformation . 6-1

Understanding XML Repeating Nodes . 6-5

iv Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 1-1

C H A P T E R 1

Tutorial: Building Your First Data
Transformation

Data transformation is the mapping and conversion of data from one format to another. For
example, XML data can be transformed from XML data valid to one XML Schema to another
XML document valid to a different XML Schema. Other examples include the data
transformation from non-XML data to XML data. This tutorial introduces the basics of building
a data transformation by describing how to create and test a XML-to-XML data transformation
using BEA Workshop for WebLogic Platform.

In WebLogic Integration business processes, a data transformation transforms data using queries
(written in the XQuery language). This tutorial describes the steps for building a query in the
XQuery language—a language defined by the World Wide Web Consortium (W3C) that provides
a vendor independent language for the query and retrieval of XML data.

To learn about the XQuery language, see the XQuery 1.0: An XML Query Language
Specification -W3C Recommendation 23 July 2004 at the W3C web site at the following URL:
http://www.w3.org/TR/2004/WD-xquery-20040723/

Note: WebLogic Integration 8.x supported the August 2002 version. WebLogic Integration 9.2
supports the 2004 version, and 2002 version for backward compatibility.

The data transformation created in this tutorial is invoked in the RequestQuote business process.
This business process is created to meet the business needs of an enterprise. The enterprise starts
the business process as a result of receiving a Request for Quote from clients, checks the
enterprise’s inventory and pricing systems to determine whether the order can be filled, and sends
a quote for the requested items to the client. To learn more about creating business processes and
the RequestQuote business process, see Tutorial: Building Your First Business Process.

http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://edocs.bea.com/wli/docs92/jpdtutorial/index.html

1-2 Tutorial: Building Your First Data Transformation

The following figure shows the flow of data in the RequestQuote business process of the Tutorial
Process application.

Figure 1-1 Representing Flow of Data

The purpose of the RequestQuote business process is to provide price and availability
information for a set of widgets. The flow of the data through the RequestQuote business process
is represented by the following steps:

1. The business process receives the set of widget IDs.

2. The business process determines the tax rate for the shipment and puts the result in the
taxRate float business process variable.

3. The business process gets the price of each of the requested widgets from a source and
places the resulting XML data into the priceQuote business process variable. (This XML
data is valid to the XML Schema in the PriceQuote.xsd file.)

Tuto r ia l Goa ls

Tutorial: Building Your First Data Transformation 1-3

4. The business process gets information about availability for the widgets from another
source and places the resulting XML data into the availQuote business process variable.
(This XML data is valid to the XML Schema in the AvailQuote.xsd file.)

5. The business process invokes the Combine Price and Avail Quotes node. The Combine
Price and Avail Quotes node calls the myJoin Transformation method stored in the
Transformation file called MyTutorialJoin.java file. The business process passes the
values of the priceQuote, availQuote, and taxRate business process variables to the
myJoin method. The myJoin method invokes the query written in the XQuery language
and stored in the myJoin.xq file. The query merges all the price, availability, and tax rate
information into a single set of XML data and returns the result as the return value of the
myJoin method. The data returned from this myJoin method is valid to the XML Schema
in the Quote.xsd file. After the myJoin method is invoked, the Combine Price and Avail
Quotes node assigns the resulting XML data to the Quote business process variable.

Tutorial Goals
The tutorial provides steps to create and test a transformation using the graphical environment
provided in BEA Workshop for WebLogic Platform. Specifically, in this tutorial you will create
the following:

The MyTutorialJoin Transformation file.

The myJoin Transformation method in the MyTutorialJoin Transformation file.

The query invoked by the myJoin Transformation method. This query is stored in the XQ
file called myJoin.xq.

Steps in This Tutorial
Follow the steps in this tutorial to create and test a data transformation. Specifically, the steps
include:

Chapter 2, “Step 1: Getting Started”
Describes how to load the prepackaged Tutorial Process Application.

Chapter 3, “Step 2: Building the Transformation”
Provides a step-by-step procedure to create and select source and target types for a
Transformation method.

Chapter 4, “Step 3: Mapping Elements and Attributes”
Provides a step-by-step procedure to create mappings between source and target elements
and attributes in a Transformation method.

1-4 Tutorial: Building Your First Data Transformation

Chapter 5, “Step 4: Mapping Repeating Elements—Creating a Join”
Provides a step-by-step procedure to add a join between repeating elements to the
Transformation method.

Tutorial: Building Your First Data Transformation 2-1

C H A P T E R 2

Step 1: Getting Started

The Business Process and Data Transformation Tutorials both use a prepackaged Tutorial
Process application. The prepackaged Tutorial: Request Quote Process Application contains
all the business process, XML, XML Schema, Transformation, and XQ files, required to run the
tutorial business processes and transformations.

The RequestQuote business process in the Tutorial Process application invokes a transformation
stored in the TutorialJoin.java and join.xq files. The steps in this Tutorial explain the
procedures to create the same transformation that is prepackaged in the TutorialJoin.java
and join.xq files of the Tutorial: Request Quote Process Application. (You can use the
transformation in the TutorialJoin.java and join.xq files as a reference.) Name the
Transformation file MyTutorialJoin.java and the XQ file that contains the query:
myJoin.xq.

After completing the steps in this Tutorial, modify the RequestQuote business process to invoke
the transformation created in this tutorial. In addition, run the RequestQuote business process
which will invoke the transformation, as described in Step 12: Run the Request Quote Business
Process of the Business Process Tutorial.

Note: If you followed the steps described in the Business Process Tutorial, you have already
created an application and can skip the “To Load The Tutorial Process Application” on
page 2-2 task.

The task in this step include:

To Load The Tutorial Process Application

http://edocs.bea.com/wli/docs92/jpdtutorial/tutWLIProcessTest.html
http://edocs.bea.com/wli/docs92/jpdtutorial/tutWLIProcessTest.html

2-2 Tutorial: Building Your First Data Transformation

To Load The Tutorial Process Application
In this task, you load the prepackaged Tutorial: Process Application.

1. From the BEA Workshop for WebLogic Platform menu, click File→New→Other. The
Select a Wizard dialog box is displayed.

2. Expand WebLogic Integration, and select Tutorial:Request Quote Process Application,
and click Next.

Figure 2-1 Select a Wizard dialog box

3. In the Request Quote Process Application dialog box, type the following:

a. In the Ear Project Name field, enter Tutorial_Process_Application_Ear.

b. In the Web Project Name field, enter Tutorial_Process_Application_Web.

c. In the Utility Project Name field, enter Tutorial_Process_Application_Utility.

Tutorial: Building Your First Data Transformation 2-3

Figure 2-2 Process Application dialog box

4. Select the Add WebLogic Integration System and Control Schemas to Utility Project
checkbox.

5. Click Finish.

6. In the displayed Open Associated Perspective? dialog box, click Yes to switch from
Workshop Perspective to Process Perspective. Select the Remember my decision
checkbox.

Figure 2-3 Open Perspective Confirmation

2-4 Tutorial: Building Your First Data Transformation

Note: Workshop is the default perspective of the 9.2 BEA Workshop for WebLogic Integration.
The Process perspective contains all the required views like Node Palette, Data Palette,
and so on.

Similarly, XQueryTransformation perspective contains views pertaining to XQuery
Transformation like Expression Functions, Expression Variables, Target
Expression, and Constraints.

7. The Tutorial Process Application is created and displayed in the Package Explorer pane.

Figure 2-4 Package Explorer Pane

The Package Explorer pane displays the files and resources available in the application:

Ear Project Name— An EAR project is the central point of WebLogic Integration
application. An EAR project contains JAR files that are shared by the projects in the
enterprise application. This project contains links to all of the projects in the application.
The project files are used by BEA Workshop for WebLogic Platform to test and deploy

Tutorial: Building Your First Data Transformation 2-5

enterprise applications that contain multiple projects. The EAR Project files are used to
create EAR (Enterprise Archive) files.

Web Project Name— A project with WebLogic Integration process facet added to it.
Every application contains one or more projects. Projects represent WebLogic Server
applications. In other words, when you create a project, you are creating a Web application.
(The name of your project is included in the URL that clients use to access your
application.)

Utility Project Name—A project that contains the XML Schemas and the Message Broker
channel file used in the application.

Web Applications are J2EE deployment units that define a collection of Web resources
such as business processes, Web services, JSPs, servlets, HTML pages, and can define
references to external resources such as EJBs.

requestquote—contains the business processes, transformation, xq files

– FileQuote.java—A File control used by your Request for Quote business process to
write a file to the file system.

– PriceAvailTransformations.java—Contains data transformations used in
RequestQuote.java.

– RequestQuote.java—The completed business process. (The tutorial walks you through
rebuilding this business process. It is provided for reference, and allows you to run and
test the business process before you start rebuilding it.)

– RequestQuoteTransformation.java and TutorialJoin.java)—Contains data
transformations used in RequestQuote.java.

XQ files—An XQ file is created for each transformation method on a transformation file.
XQ files contain the queries (written in the XQuery language) called by the transformation
files in your project.

requestquote.services folder contains services with which your business process interacts.
The services folder includes Web services, Web Service controls, business processes and
Process controls.

testxml folder contains XML files which you can use to test the completed business
process.

2-6 Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 3-1

C H A P T E R 3

Step 2: Building the Transformation

In this step, you create a transformation that contains the mapping of different source (input)
types to a single target (output) type. Specifically, this tutorial provides the steps for transforming
a Java primitive and two sets of XML data (valid to two different schemas) to a single set of XML
data valid to a third schema, as shown in the following figure.

Figure 3-1 Mapping between source and target types

3-2 Tutorial: Building Your First Data Transformation

The RequestQuote business process takes as input a set of widget IDs and returns the price and
availability of these widget IDs.

The source parameters to the myJoin Transformation method include the following:

XML data valid to the PriceQuote.xsd file. The RequestQuote business process of the
Tutorial Process application builds a piece of XML data that is valid to the
PriceQuote.xsd XML Schema and stores it in a business process variable called
priceQuote. This piece of XML data contains a set of widget IDs and their price.

XML data valid to the AvailQuote.xsd file. The RequestQuote business process of the
Tutorial Process application builds a piece of XML data that is valid to the
AvailQuote.xsd XML Schema and stores it in a business process variable called
availQuote. This piece of XML data contains a set of widget IDs, a boolean that
represents if the widget is available, and the ship date.

A Java primitive of type float called taxRate.

The myJoin Transformation method takes these source parameters and invokes a query which
merges the price, availability, and tax rate information into one piece of XML data valid to the
XML Schema in the Quote.xsd file.

The tasks in this step include:

To Create MyTutorialJoin.java

To Add a Transformation method to MyTutorialJoin

To Select the Source Types

To Select the Target Type

To Create MyTutorialJoin.java
In this task, you create a Transformation file called MyTutorialJoin.java. In addition, you
create a Transformation method in the Transformation file. During run time, the business process
will call this method to invoke the transformation.

1. In the Package Explorer pane, right-click the src→ requestquote folder and from the
drop-down menu, select New→Transformation File.

2. The New Transformation dialog box is displayed.

3. In the Name field, enter MyTutorialJoin.

4. In the New Transformation dialog box, click Finish.

Tutorial: Building Your First Data Transformation 3-3

The MytutorialJoin.java is created under the src→requestquote folder.

Note: To alternatively create Transformation, click the drop down arrow in the Data Palette
view, select Integration Controls, and then Transformation Control.

To Add a Transformation method to MyTutorialJoin

1. In the Package Explorer pane, double click on MyTutorialJoin.java.

2. Right-click in the MyTutorialJoin.java Source pane that is displayed.

3. From the popup menu, select Transform, and then Add XQuery Transformation
Method.

Figure 3-2 Transform Pop-up Menu

3-4 Tutorial: Building Your First Data Transformation

4. In the New XQuery Transformation Method dialog box, type the values for
Transformation Method Name, and XQuery File Name fields. For example, Type
myJoin as the Transformation Method Name, and myJoin.xq as the XQuery File Name.
You can also accept the default values, and click Next.

5. Select the source (input) types for the transformation from the Source Types dialog box.
The available source types are XML, Non-XML, and Java.

6. Select a target (output) type for the transformation from the Target Types dialog box.

To Select the Source Types
In this task, you select the source types for the transformation in the Source Types dialog box of
New XQuery Transformation wizard. Source types are the input data types for the
transformation—the data types that are transformed to the target data type.

1. In the Available Source Types pane, the application XSD files are displayed, as shown in
following figure.

Figure 3-3 Available Source Types pane

Note: If these files are not listed, you probably have not loaded the Tutorial: Process
Application. For instructions on loading this application, see “To Load The Tutorial
Process Application” on page 2-2.

2. In the Available Source Types pane, expand schemas/PriceQuote.xsd folder, then select
the priceQuote element, as shown in the following figure.

Tutorial: Building Your First Data Transformation 3-5

Figure 3-4 XML-Types

3. Click Add.

The elements and attributes that make up the priceQuote element are displayed in the
Selected Source Types pane.

4. In the Available Source Types pane, expand AvailQuote.xsd folder, then select the
availQuote element.

Figure 3-5 Available Source Types - XML Options

5. Click Add.

The elements and attributes that make up the availQuote element are displayed in the
Selected Source Types pane.

6. In the Available Source Types pane, select the Java option.

The available Java Types are displayed in the Available Source Types pane.

7. In the Available Source Types pane, select the float node, as shown in the following figure.

3-6 Tutorial: Building Your First Data Transformation

Figure 3-6 Select float node from Available Source Types

8. Type taxRate as the Parameter Name.

9. Click Add.

To Select the Target Type
In this task, you select a target type for the transformation in the Target Types dialog box of New
XQuery Transformation.

1. In the Available Target Types pane of the Target Types dialog box, the PriceQuote.xsd,
AvailQuote.xsd, Quote.xsd, and QuoteRequest.xsd files are listed.

2. In the Available Target Types pane, expand Schemas/Quote.xsd folder, then select the
quote element, as shown in the following figure.

Tutorial: Building Your First Data Transformation 3-7

Figure 3-7 Available Target Types Pane

3. Click Add.

The elements and attributes that make up the quote element are displayed in the Selected
Target Types pane.

4. Click Finish.

The file: myJoin.xq is created and displayed in the Design view.

The myJoin Transformation method is added to MyTutorialJoin Transformation file. The
myJoin method contains the three source parameters selected from priceQuote.xsd,
availQuote.xsd, and the float java type.

In the Package Explorer pane, representations of the MyTutorialJoin.java and
myJoin.xq files are displayed as shown in the following figure.

Figure 3-8 MyTutorialJoin.Java file in Package Explorer Pane

3-8 Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 4-1

C H A P T E R 4

Step 3: Mapping Elements and
Attributes

In this step, you map source nodes to target nodes. The following figure shows the mapping of
example XML data.

Figure 4-1 Mapping Example

In the preceding figure, the source XML data has a different format than the target XML data.
When building a query invoked by a Transformation method, you map the source nodes to target
nodes as represented by the arrows. During run time, the transformation uses the mappings to
convert the data from the source format to the target format. For example, the arrow labeled 1

4-2 Tutorial: Building Your First Data Transformation

represents the transformation of the priceQuote/customerName element to the quote/name
element.

The mapping of the address data, is a more complex transformation, as represented by the arrow
labeled 2 in the preceding figure. To transform the address information, all the attributes of the
shipAddress element (street, city, state, and zip) must be converted to a single string
XML element called address.

The source XML data is valid to a different XML Schema than the target XML data. As shown
in the preceding figure, the example source XML document called PriceQuote.xml is valid to
the XML Schema in the PriceQuote.xsd file. Additionally, the example source XML document
called Quote.xml is valid to the XML Schema in the Quote.xsd file.

The PriceQuote.xml, AvailQuote.xml, QuoteRequest.xml, QuoteRequest_a.xml, and
Quote.xml files are located in the
Tutorial_Process_ApplicationWeb/requestquote/testxml directory of the application.

Note: Figure 4-1 shows one source data type (priceQuote). This is just one of the three
sources to the myJoin method as described in “Step 2: Building the Transformation” on
page 3-1. In this step, the mappings between the XML Schema in the PriceQuote.xsd
file to the XML Schema in the Quote.xsd file are discussed. In the “Step 4: Mapping
Repeating Elements—Creating a Join” on page 5-1, mappings between the other source
types (AvailQuote.xsd and taxRate) are discussed.

The PriceQuote.xml, AvailQuote.xml, QuoteRequest_a.xml,
QuoteRequest.xml, and Quote.xml files are provided as examples and are not used by
the business process during run time. During run time, the business process constructs
the source XML data, and passes it to the transformation as described in the Introduction
of this tutorial.

Complete the following tasks to create, alter, and test mappings between the source and target
data:

To Map a Node From a Source to a Target

To Map Attributes of an Element to Single Element

To View and Save the Generated Simple Query

To Test a Simple Query

To Edit and Retest the Simple Query

To Add an XQuery Function Call to the Query

http://www.edocs.bea.com/dttutorial/tutWLIDataTransIntro.html

Tutorial: Building Your First Data Transformation 4-3

To Map a Node From a Source to a Target
In this step, you map the XML string element called customerName from the source
(PriceQuote.xsd) to the XML string element called name in target (Quote.xsd).

1. View myJoin.xq in the Design view:

a. In the Navigator pane, browse to the src folder, and double click on myJoin.xq.

The Design view displays the a graphical representation of the selected sources in the
Source pane, as shown in the following figure.

Figure 4-2 Graphical Representation of Design View

Note: If the priceQuote1, availQuote1, and taxRate nodes are not displayed in your
Source pane, follow the instructions in “To Select the Source Types” on page 3-4.

The nodes displayed in the Source pane correspond to source parameters of the myJoin
method of the MyTutorialJoin Transformation file. The signature of the myJoin method
from the MyTutorialJoin.java file is shown in the following Java code segment:

declare function xf:myJoin($priceQuote1 as element(ns0:priceQuote),

 $availQuote1 as element(ns1:availQuote),

 $taxRate as xs:float)

 as element(ns2:quote) {

 <ns2:quote/>

};

declare variable $priceQuote1 as element(ns0:priceQuote) external;

4-4 Tutorial: Building Your First Data Transformation

declare variable $availQuote1 as element(ns1:availQuote) external;

declare variable $taxRate as xs:float external;

xf:myJoin($priceQuote1,

 $availQuote1,

 $taxRate)

2. From the Source pane of the myJoin XQ file, drag-and-drop the
priceQuote1/customerName node onto the quote/name node in the Target pane.

A solid line appears between the two elements. This solid line represents a data link
between the two nodes—a link that converts the value of the source node directly to the
value of the target.

Figure 4-3 Link between two elements

This link corresponds to the mapping represented with an arrow (labeled with the number
1) in Figure 4-1.

To Map Attributes of an Element to Single Element
In this step, you will map multiple attributes of one element to another single element.

The XML priceQuote1/shipAddress element contains the following attributes:

street

city

state

zip

All these attributes will be mapped to the single XML quote/address element of type string. This
mapping is represented by the arrow labeled 2 in Figure 4-1.

Link the multiple shipAddress attributes from the Source pane to the Target pane with
drag-and-drop operations, as described in the following procedure:

1. In the Source pane, select the street attribute of priceQuote1/shipAddress node.

Tutorial: Building Your First Data Transformation 4-5

2. Drag-and-drop the Street attribute from the Source pane to the quote/address node in the
Target pane.

3. Similarly select each of the individual attributes, drag-and-drop them from the Source pane
to the quote/address node in the Target pane.

Four new links are displayed, as shown in the following figure.

Figure 4-4 Create Links

The links labeled with numbers in Figure 4-4, correspond to the mappings represented as
arrows (label number 2) in Figure 4-1.

To View and Save the Generated Simple Query
A query (in the XQuery language) is generated when you create mapping links from source
elements and attributes to target elements and attributes.

1. Select the Source view of the myJoin.xq file.

The generated query is displayed as shown

Figure 4-5 Source view of the myjoin.xq file

Note: The XQuery code labeled with numbers in Figure 4-1 correspond to the numbered
mappings and links in Figure 4-4, respectively.

2. Save all the files in this application. From the BEA Workshop for WebLogic Platform
menu bar, choose File→Save All. You can also save all the files by entering Ctrl+Shift+S.

4-6 Tutorial: Building Your First Data Transformation

Note: Pressing Ctrl+S saves just the current file.

To Test a Simple Query
This section describes the steps necessary to test the query generated in the preceding section. In
this section, you will enter source XML data, run that data against the query, and view the
resulting target XML data.

1. Select the Test tab of myJoin.xq file.

2. Import PriceQuote.xml as source data for the transformation:

a. From the Source Variable drop-down menu in the Source Data pane, select
priceQuote1.

b. Click the Import icon.

The Import File dialog box is displayed.

c. Double-click the src folder.

d. Double-click the testxml folder.

e. Click the PriceQuote.xml file.

f. Click Open.

A graphical representation of the PriceQuote.xml file is displayed in the Source Data
pane.

3. In the Result Data pane, click the Test XQuery icon.

The source XML data in one format is transformed by the query to XML in the target
format is displayed in the Result Data pane, as shown in the following figure.

Figure 4-6 Result Data Pane

To learn more about the transformation occurring in the query including a walk through of
the generated XQuery code, see Understanding the Transformation.

Tutorial: Building Your First Data Transformation 4-7

Note: In the XML document, the string: quot is the namespace prefix for the following
namespace URI: xmlns:quot="http://www.example.org/quote". To learn
more about namespace declarations and how this XML data was generated, see
Understanding the Transformation.

To Edit and Retest the Simple Query
This section provides the steps for editing the generated query to add a delimiter between the
street, city, state, and zip code fields of the address element.

1. Select the Design tab of myJoin.xq file.

2. Select the link between the zip attribute of the priceQuote1/shipAddress node and the
quote/address node.

3. In the General Expression pane of the Target Expression tab, add the argument: ",",
between the address attribute parameters of the concat function to delineate between the
different address fields, as shown in the following listing:

concat($priceQuote1/ns0:shipAddress/@street,",",
$priceQuote1/ns0:shipAddress/@city,",",
$priceQuote1/ns0:shipAddress/@state,",",
$priceQuote1/ns0:shipAddress/@zip)

4. Click Apply.

The updated map is displayed as shown in the following figure.

In the proceeding step, you modified the links between shipAddress attributes and the
address element in the query, which causes these links to change from direct data links
(represented as blue lines) to implied links (represented as light gray lines) as show in the
following figure. The mapper parses the XQuery code and determines that there are
implied links between the target and source elements.

Figure 4-7 Mapping Between Source and Target Panes

4-8 Tutorial: Building Your First Data Transformation

5. Select the Test tab of myJoin.xq file and in the Result Data pane click Test.

In the Result Data pane, the resulting XML data is displayed.

The street, city, state, and zip code fields of the address element will be delineated by a
commas, as shown in the following listing:

<address>12 Springs Rd,Morris Plains,nj,07960</address>

To Add an XQuery Function Call to the Query
This section provides steps for converting the state field to uppercase by calling a standard W3C
XQuery function from the query.

1. Select the Design tab of myJoin.xq file.

2. Switch to XQuery Transormation perspective to view the Target Expression pane. To
switch to XQuery Transormation perspective, select Window→Open
Perspective→XQuery Transformation from the BEA Workshop for WebLogic
Platform menu.

3. Select the link between the state attribute of the shipAddress element and the
quote/address element.

In the Source pane, the state attribute link gets highlighted in green.

In the General Expression pane of the Target Expression tab, the call to the concat
function is displayed.

Figure 4-8 Target Expression Pane - 1

4. In the General Expression pane, find the following text:

$priceQuote1/ns0:shipAddress/@state

5. From the XQuery Functions folder, in the Expressions Functions palette expand String
Functions.

6. Select the upper-case function, and drag-and-drop it over the
$priceQuote1/ns0:shipAddress/@state attribute in the General Expression pane.

Tutorial: Building Your First Data Transformation 4-9

The following is displayed in the General Expression pane, as shown in the following
figure.

Figure 4-9 Target Expression Pane - 2

Leave $string-var selected in the General Expression pane as shown in the preceding
figure.

7. In the Source pane, select the priceQuote1/shipAddress/state node and drag-and-drop it
over the $string-var parameter of the General Expression pane.

In General Expression pane the following is displayed, as shown in the following figure.

Figure 4-10 Target Expression Pane - 3

8. Click Apply.

9. Select the Test tab.

10. Click the Test XQuery icon.

In the XML Source tab of the Result Data pane, the state is displayed in uppercase
characters, as shown in the following listing:

<address>12 Springs Rd,Morris Plains,NJ,07960</address>

4-10 Tutorial: Building Your First Data Transformation

Tutorial: Building Your First Data Transformation 5-1

C H A P T E R 5

Step 4: Mapping Repeating
Elements—Creating a Join

In this step, you will add additional mappings to the existing query. In the previous sections, you
mapped some data from the source type defined by the PriceQuote.xsd XML Schema to the
target type defined by the Quote.xsd XML Schema. In this section, you will map additional data
from the source types (defined by the PriceQuote.xsd XML Schema, the AvailQuote.xsd
XML Schema, and the Java float primitive: taxRate) to the target type (defined by the
Quote.xsd XML Schema) as shown in the following figure.

Figure 5-1 Adding Data from Source Types

5-2 Tutorial: Building Your First Data Transformation

Mappings created in this section will create a join between repeating elements in the source and
target XML Schemas. Complete the following tasks to create, test, and alter the join:

Create a User-Defined Java Method to Invoke From the Join Query

To Join Two Sets of Repeating Elements

Add Links to Populate the quoteResponse Element

Call the calculateTotalPrice User Method From the Query

To View the Generated Query

Create an Instance of the MyTutorialJoin Control

Edit the Node That Invokes the Transformation

To Run the Business Process

Create a User-Defined Java Method to Invoke From the Join Query
In this task, you will create a user-defined Java method in the MyTutorialJoin Transformation
file that calculates the total price of the widgets requested including tax. In “Call the
calculateTotalPrice User Method From the Query” on page 5-9, you will change the query to
invoke this method.

1. In the Package Explorer pane, browse to the src folder, and select MyTutorialJoin.java.

2. Right-click on the Source of the MyTutorialJoin Transformation .

3. From the shortcut menu, select Transform→Αdd User Method.

A User method is created in the MyTutorialJoin Transformation file.

4. A new method called newusermethod1 will be added in the Source. Rename this method to
calculateTotalPrice.

5. Edit the MyTutorialJoin Transformation file and replace the following generated
calculateTotalPrice Java method:

@com.bea.wli.transform.XQueryFunction()

 public java.lang.String calculateTotalPrice() {

return "";

}

With the following calculateTotalPrice Java method:

Tutorial: Building Your First Data Transformation 5-3

public float calculateTotalPrice(float taxRate, int quantity, float
price, boolean fillOrder)
{

float totalTax, costNoTax, totalCost;
if (fillOrder)
{

// Calculate the total tax
totalTax = taxRate * quantity * price;
// Calculate the total cost without tax
costNoTax = quantity * price;
// Add the tax and the cost to get the total cost
totalCost = totalTax + costNoTax;

}
else
{

totalCost = 0;
}
return totalCost;

}

Note: Ensure you modify the return type of the calculateTotalPrice function from String
to float.

6. Save all the files in this application. From the BEA Workshop for WebLogic Platform
menu bar, choose File→Save All.

To Join Two Sets of Repeating Elements

1. View myJoin.xq in the Design view:

a. In the Navigator pane, double-click
Tutorial_Project_Web\src\requestquote\MyTutorialJoin.java\myJoin.xq
and select the Design .

2. In the Source pane, collapse the shipAddress node.

3. From the Source pane, drag-and-drop the priceQuote1\priceRequests\priceRequest node
onto the quote\quoteResponse node in the Target pane.

These nodes are both repeating nodes. A repeating node means more than one instance of
this node can be specified. The + symbol to the right of the node indicates these nodes are
repeating nodes.

Warning: You must select the priceRequest node and not the priceRequests node.

A dashed line linking the two repeating nodes is displayed, as shown in the following
figure.

5-4 Tutorial: Building Your First Data Transformation

The dashed line with short dashes represents a structural link—a link between two parent
structures that does not map data directly.

To learn more about XML repeating nodes, see “Understanding XML Repeating Nodes”
on page 6-5.

4. From the Source pane, drag-and-drop the availQuote1\availRequest node onto the
quote\quoteResponse node in the Target pane.

A dashed line linking the two repeating elements is displayed, as shown in the following
figure.

Figure 5-2 Joining Two Sets of Repeating Elements

5. Select the Source tab to view the changes to the query.

The following query is displayed in Source:

declare namespace xf =
"http://tempuri.org/Tutorial_Project_Web/src/requestquote/myJoin/";

declare namespace ns0 = "http://www.example.org/price";

declare namespace ns1 = "http://www.example.org/avail";

declare namespace ns2 = "http://www.example.org/quote";

declare function xf:myJoin($priceQuote1 as element(ns0:priceQuote),

 $availQuote1 as element(ns1:availQuote),

 $taxRate as xs:float)

 as element(ns2:quote) {

 <ns2:quote>

Tutorial: Building Your First Data Transformation 5-5

 <name>{ data($priceQuote1/ns0:customerName) }</name>

 <address>{ concat($priceQuote1/ns0:shipAddress/@street ,",",
$priceQuote1/ns0:shipAddress/@city ,",",
fn:upper-case($priceQuote1/ns0:shipAddress/@state) ,
",",$priceQuote1/ns0:shipAddress/@zip) }</address>

 {

 for $priceRequest in
$priceQuote1/ns0:priceRequests/ns0:priceRequest,

 $availRequest in $availQuote1/ns1:availRequest

 return

 <quoteResponse/>

 }

 </ns2:quote>

};

declare variable $priceQuote1 as element(ns0:priceQuote) external;

declare variable $availQuote1 as element(ns1:availQuote) external;

declare variable $taxRate as xs:float external;

xf:myJoin($priceQuote1,

 $availQuote1,

 $taxRate)

In the preceding query, there are no data links between the children of the repeating nodes,
so the quoteResponse element is empty. (The string: <quoteResponse/> is an empty
node.)

The structural links between the repeating nodes generates the for loop which is shown in
bold in the preceding query listing. This XQuery for loop iterates through the set of
priceRequest and availReqest repeating elements. For example, if the source XML
data to this query contains three instances of the priceRequest element and three
instances of the availRequest element, the for loop would execute a total of nine times
with the following combinations:

– The first instance of the priceRequest element with the first instance of
availRequest element.

5-6 Tutorial: Building Your First Data Transformation

– The first instance of the priceRequest element with the second instance of
availRequest element.

– The first instance of the priceRequest element with the third instance of
availRequest element.

– The second instance of the priceRequest element with the first instance of
availRequest element.

– The second instance of the priceRequest element with the second instance of
availRequest element.

– The second instance of the priceRequest element with the third instance of
availRequest element.

– The third instance of the priceRequest element with the first instance of
availRequest element.

– The third instance of the priceRequest element with the second instance of
availRequest element.

– The third instance of the priceRequest element with the third instance of
availRequest element.

For some transformations, you may want the query to generate all the possible
combinations but for others, you may want to constrain the combinations as described in
the following steps.

6. Select the Design tab.

7. From the Source pane, drag-and-drop the
priceQuote1/priceRequests/priceRequest/widgetId node onto the
availQuote1/availRequest/widgetId node. Both of these elements are in the Source pane.

A line between the two widgetId nodes is displayed, as shown in the following figure.

Tutorial: Building Your First Data Transformation 5-7

Figure 5-3 Link Between Two WidgetId Nodes

8. View the changes to the query by clicking the Source tab.

The following query is displayed:

declare namespace xf =
"http://tempuri.org/Tutorial_Project_Web/src/requestquote/myJoin/";

declare namespace ns0 = "http://www.example.org/price";
declare namespace ns1 = "http://www.example.org/avail";
declare namespace ns2 = "http://www.example.org/quote";
<name>{ data($priceQuoteDoc/ns0:customerName) }</name>
declare function xf:myJoin($priceQuote1 as element(ns0:priceQuote),

$availQuote1 as element(ns1:availQuote),
$taxRate as xs:float)
as element(ns2:quote) {

<ns2:quote>

 <name>{ data($priceQuote1/ns0:customerName) }</name>
<address>{ concat($priceQuote1/ns0:shipAddress/@street ,",",
$priceQuote1/ns0:shipAddress/@city ,",",
fn:upper-case($priceQuote1/ns0:shipAddress/@state) , ",",
$priceQuote1/ns0:shipAddress/@zip) }</address>

 {

 for $priceRequest in
$priceQuote1/ns0:priceRequests/ns0:priceRequest,

 $availRequest in $availQuote1/ns1:availRequest

 where data($priceRequest/ns0:widgetId) =
data($availRequest/ns1:widgetId)

 return

5-8 Tutorial: Building Your First Data Transformation

 <quoteResponse/>

 }

 </ns2:quote>

};

declare variable $priceQuote1 as element(ns0:priceQuote) external;
declare variable $availQuote1 as element(ns1:availQuote) external;
declare variable $taxRate as xs:float external;

xf:myJoin($priceQuote1,

 $availQuote1,

 $taxRate)

The link between the widgetId nodes generates the where clause in the for loop, as
shown in bold in the preceding query listing. This where clause constrains or limits the
output of the for loop. Specifically, the where clause specifies that if the expression in the
where clause is true, the for loop will output the contents of the return. For this
example, if the widgetId of the availRequest element is equal to the widgetId of the
priceQuest element, the following XML data is returned:

<quoteResponse/>

An empty quoteReponse element isn’t very useful. In the following task: “Add Links to
Populate the quoteResponse Element” on page 5-8, you will add data links that will
populate the quoteResponse element.

Add Links to Populate the quoteResponse Element

1. Select the Design tab.

2. From the Source pane, drag-and-drop the
priceQuote1/priceRequests/priceRequest/widgetId node onto the
quote/quoteResponse/widgetId node in the Target pane.

3. From the Source pane, drag-and-drop the priceQuote1/priceRequests/priceRequest/price
node onto the quote/quoteResponse/unitPrice node in the Target pane.

4. From the Source pane, drag-and-drop the availQuote1/availRequest/requestedQuantity
node onto the quote/quoteResponse/requestedQuantity node in the Target pane.

5. From the Source pane, drag-and-drop the availQuote1/availRequest/quantityAvail node
onto the quote/quoteResponse/fillOrder node in the Target pane.

Tutorial: Building Your First Data Transformation 5-9

6. From the Source pane, drag-and-drop the availQuote1/availRequest/shipDate node onto
the quote/quoteResponse/shipDate node in the Target pane.

7. From the Source pane, drag-and-drop the taxRate Java primitive onto the
quote/quoteResponse/taxRate node in the Target pane.

8. From the Source pane, drag-and-drop the taxRate Java primitive onto the
quote/quoteResponse/totalCost node in the Target pane.

Note: In the next section, to calculate the total cost of the order, you will edit the link
between the taxRate Java primitive and the quote/quoteResponse/totalCost node.

In the Design view, the following links are displayed, as shown in the following figure.

Figure 5-4 Linking Source and Target Panes

9. Save all the files in this application. From the BEA Workshop for WebLogic Platform
menu bar, choose File→Save All.

Call the calculateTotalPrice User Method From the Query

1. Select the Design tab.

2. Select the link between the taxRate Java primitive and the quote/quoteResponse/totalCost
node.

3. In the Expression Functions Palette, find the User Functions folder.

4. In the User Functions folder, select the calculateTotalPrice function, and drag-and-drop it
into the General Expression pane.

5-10 Tutorial: Building Your First Data Transformation

5. In the Source pane, select the taxRate node and drag-and-drop it onto the $float-var
parameter of the General Expression pane.

In the General Expression pane, the default argument: $float_var is replaced with the
$taxRate argument and the next argument becomes selected.

Select $int-var in the General Expression pane.

6. In the Source pane, select availQuote1/availRequest/requestedQuantity and
drag-and-drop it onto the selected $int-var argument in the General pane.

In the General Expression pane, the default argument: $int_var is replaced with the
$availRequest/ns1:requestedQuantity argument and the next argument becomes selected.

Select $float-var in the General Expression pane.

7. In the Source pane, select priceQuote1/priceRequests/priceRequest/price and
drag-and-drop it onto the selected $float-var argument in the General Expression pane.

In the General Expression pane, the default argument: $float_var is replaced with the
$priceRequest/ns0:price argument and the next argument becomes selected.

Select $boolean-var in the General Expression pane.

8. In the Source pane, select availQuote1/availRequest/quantityAvail and drag-and-drop it
onto the selected $boolean-var argument in the General Expression pane.

In the General Expression pane, the default argument: $boolean_var is replaced with the
$availRequest/ns1:quantityAvail argument, as shown in the following figure.

Figure 5-5 General Expression pane

9. Click Apply.

In the Design view, the following is displayed, as shown in the following figure.

Tutorial: Building Your First Data Transformation 5-11

Figure 5-6 Link Between Source and Target Panes

10. Save all the files in this application. From the BEA Workshop for WebLogic Platform
menu bar, choose File→Save All.

To View the Generated Query

1. Select the Source tab.

The following query is displayed in Source view:

declare namespace xf =
"http://tempuri.org/Tutorial_Project_Web/src/requestquote/myJoin/";
declare namespace ns0 = "http://www.example.org/price";
declare namespace ns1 = "http://www.example.org/avail";
declare namespace ns2 = "http://www.example.org/quote";

declare function xf:myJoin($priceQuote1 as element(ns0:priceQuote),
$availQuote1 as element(ns1:availQuote),
$taxRate as xs:float) as element(ns2:quote)
{
<ns2:quote>

{
<name>{ data($priceQuote1/ns0:customerName) }</name>

 <address>{ concat($priceQuote1/ns0:shipAddress/@street ,",",
$priceQuote1/ns0:shipAddress/@city ,",",
fn:upper-case($priceQuote1/ns0:shipAddress/@state) , ",",
$priceQuote1/ns0:shipAddress/@zip) }</address>

 {

 for $priceRequest in
$priceQuote1/ns0:priceRequests/ns0:priceRequest,

 $availRequest in $availQuote1/ns1:availRequest

5-12 Tutorial: Building Your First Data Transformation

 where data($priceRequest/ns0:widgetId) =
data($availRequest/ns1:widgetId)

 return
<quoteResponse>

<widgetId>{ data($priceRequest/ns0:widgetId) }</widgetId>

<unitPrice>{ data($priceRequest/ns0:price) }</unitPrice>

<requestedQuantity>{
data($availRequest/ns1:requestedQuantity)

}</requestedQuantity>
<fillOrder>{ data($availRequest/ns1:quantityAvail) }</fillOrder>

{
for $shipDate in $availRequest/ns1:shipDate
return

<shipDate>{ data($shipDate) }</shipDate>
}
<taxRate>{ $taxRate }</taxRate>
<totalCost>{ calculateTotalPrice($taxRate,

$availRequest/ns1:requestedQuantity,
$priceRequest/ns0:price,
$availRequest/ns1:quantityAvail) }</totalCost>

</quoteResponse>
}
</ns2:quote>

The links added in the preceding task generate the additional XQuery source code listed between
the <quoteResponse> and </quoteResponse> tags highlighted in bold in the preceding query
listing.

Create an Instance of the MyTutorialJoin Control
In this task, you create an instance of the MyTutorialJoin.java control.

Note: Switch from XQuery Transformation perspective to Process perspective to create a
control. Click Window→Open Perspective→Οther→Process Perspective.

1. View the RequestQuote business process in the Design view:

a. In the Package Explorer pane, navigate to
Tutorial_Project_Web\src\requestquote\RequestQuote.java and select the
Design tab.

b. Drag-and-drop the myTutorialJoin.java transformation file from there to the Controls
folder in the DataPalette.

Tutorial: Building Your First Data Transformation 5-13

An instance called MyTutorialJoin.java is created in your project and displayed in the
Controls pane as shown by the following figure:

Figure 5-7 Instance of MyTutorialJoin.java

Edit the Node That Invokes the Transformation
In this task, you edit the Combine Price and Avail Quotes node in the RequestQuote business
process and change the instance that gets invoked by this node from an instance of the
TutorialJoin.java to an instance of the MyTutorialJoin.java. Additionally, you change
the design of the Combine Price and Avail Quotes node to call the myJoin() method on the
MyTutorialJoin control. The myJoin() method combines the data returned to your business
process from different systems creating a single XML response document (quote) that is
subsequently returned to the business process’s client.

1. In the RequestQuote business process, double-click the Combine Price and Avail Quotes
node to open its node builder.

The node builder opens on the General Settings pane.

2. From the drop-down menu in the Control field select myTutorialJoin.

3. Select QuoteDocument myJoin() from the Method field.

4. Click Send Data to open the second pane of the node builder.

The Select variables to assign fields are populated with default variables. The data types
match the data type expected in the source parameters to the myJoin() method as shown in
the following list:

priceQuote holds the price quote data, which is returned from the PriceProcessor
service in the For Each loop in your business process.

availQuote holds the availability quote data, which is returned from the AvailProcessor
service in the For Each loop in your business process.

5-14 Tutorial: Building Your First Data Transformation

taxRate holds the rate of sales tax applied to the quote, based on the shipping address,
which is returned to your business process from the taxCalculation service.

The Control Expects fields are populated with the data type expected by the myJoin()
method on the MyTutorialJoin control, as shown in the following figure.

5. Click Receive Data to open the third pane of the node builder.

On the Receive Data tab, the Select variables to assign field is populated with the default
variable: Quote. The data type matches the data type expected in the target parameter to
the myJoin() method. The Control Expects field is populated with the data type returned
by the myJoin() method: QuoteDocument, as shown in the following figure.

6. In the node builder, click Close save your specifications and close the node builder.

7. Save all the files in this application, including the RequestQuote business process. From the
BEA Workshop for WebLogic Platform menu bar, choose File→Save All.

To Run the Business Process
Earlier in this tutorial, you entered the XML data that is run against the query. During run time,
the business process builds the XML data and passes it to the query that was built in this tutorial.
To run the business process and invoke the query, follow the instructions in Step 12: Run the
RequestQuote Business Process in the Tutorial: Building Your First Business Process.

http://edocs.bea.com/wli/docs92/jpdtutorial/tutWLIProcessTest.html
http://edocs.bea.com/wli/docs92/jpdtutorial/tutWLIProcessTest.html

Tutorial: Building Your First Data Transformation 6-1

C H A P T E R 6

Understanding the Concepts

This section is optional and provides detailed conceptual information about the following topics:

Understanding the Transformation

Understanding XML Repeating Nodes

Understanding the Transformation
The transformation occurring in the query built in “Step 3: Mapping Elements and Attributes” on
page 4-1 is shown in the following figure:

6-2 Tutorial: Building Your First Data Transformation

Figure 6-1 Mapping Elements and Attributes

The query generated in “To Map Attributes of an Element to Single Element” on page 4-4 is
shown in the following listing:
(:: pragma bea:dtfFile-class type="requestquote.MyTutorialJoin" ::)

declare namespace xf =
"http://tempuri.org/RQ_web/src/requestquote/myJoin/";

declare namespace ns0 = "http://www.example.org/price";

declare namespace ns1 = "http://www.example.org/avail";

declare namespace ns2 = "http://www.example.org/quote";

declare function xf:myJoin($priceQuote1 as element(ns0:priceQuote),

 $availQuote1 as element(ns1:availQuote),

 $taxRate as xs:float)

 as element(ns2:quote) {

 <ns2:quote>

 <name>{ data($priceQuote1/ns0:customerName) }</name>

 <address>{ concat($priceQuote1/ns0:shipAddress/@street ,
$priceQuote1/ns0:shipAddress/@city , $priceQuote1/ns0:shipAddress/@state ,
$priceQuote1/ns0:shipAddress/@zip) }</address>

 </ns2:quote>

};

Unders tanding the T ransfo rmat ion

Tutorial: Building Your First Data Transformation 6-3

declare variable $priceQuote1 as element(ns0:priceQuote) external;

declare variable $availQuote1 as element(ns1:availQuote) external;

declare variable $taxRate as xs:float external;

xf:myJoin($priceQuote1,

 $availQuote1,

 $taxRate)

The first three lines of this query are namespace declarations. These namespace declarations are
part of the query prolog. For each namespace in the source and target XML Schema, the mapper
generates a namespace declaration. For example, the mapper generates the namespace
declaration: ns0 for the namespace URI (http://www.example.org/price) defined in the
XML Schema of the PriceQuote.xsd file. Namespaces are used to uniquely distinguish
elements in XML Schema from elements in another XML Schema.

The following steps describe the transformation that occurs when the source XML data is run
against the preceding query:

1. The eleventh line of the query is shown in the following listing:

<ns2:quote>

This line of the query becomes the first line of the XML output, as shown in the following
listing:

<quot:quote xmlns:quot="http://www.example.org/quote">

During the transformation, the namespace prefix for the quote element changes. In the
query, the namespace prefix associated with http://www.example.org/quote
namespace URI is ns2. However, in the resulting XML data, the namespace prefix
generated for the http://www.example.org/quote namespace URI is quot. This
namespace declaration is highlighted in bold in the preceding listing.

2. The twelveth line of the query is shown in the following listing:

<name>{data($priceQuote1ns0:customerName)}</name>

This line of the query transforms the customerName element of the priceQuote element
to the name element of the quote element.

The following steps describe the transformation that occurs on this line of XQuery code:

a. The <name> and </name> tags transform directly to XML output.

6-4 Tutorial: Building Your First Data Transformation

b. Characters between curly braces {} are interpreted in a special way by the XQuery engine.
That is, characters surrounded by curly braces are not transformed directly into XML.
Specifically, in this example, the curly braces surrounding the data method specify that
the data function of the XQuery language should be executed.

The data function returns the value of the passed in XML node. For this example, the
argument to the data function is the following XPath expression:
$priceQuoteDoc/ns0:customerName. The $priceQuoteDoc variable contains the
contents of the priceQuote element, including its subelements. This XPath expression
returns the customerName node of the priceQuote element. (The / XPath operator
delineates parent nodes from child nodes.)

The XQuery data function takes customerName node and returns the value of the
node, the string: Acme Inc. This string is placed between the <name> and </name>
tags resulting in the following line of output XML data, as shown in the following
listing:

<name>Acme Inc</name>

3. The thirteenth line in the query is shown in the following listing:

<address>{ concat($priceQuote1/ns0:shipAddress/@street ,

$priceQuote1/ns0:shipAddress/@city ,
$priceQuote1/ns0:shipAddress/@state ,

$priceQuote1/ns0:shipAddress/@zip) }</address>

The following steps describe the transformation that occurs on this line of XQuery code.

a. The <address> and </address> tags transform directly to XML output.

b. Characters between curly braces {} are interpreted in a special way by the XQuery engine.
That is, characters surrounded by curly braces are not transformed directly into XML.
Specifically, in this example, the curly braces surrounding the data method specify that
the data function of the XQuery language should be executed.

c. The concat function takes the values of all its arguments, concatenates these values
together, and returns them as a string. For this example, the concat function takes the
values of the all the XPath expressions and concatenates them together in one address
string. Additionally, all the arguments in this concat function are XPath expressions that
return the value of specified attribute, as shown in the following table.

Unders tanding XML Repeat ing Nodes

Tutorial: Building Your First Data Transformation 6-5

The return string of the concat function is placed between the <address> and
<address> tags resulting in the following line of XML data, as shown in the following
listing:

<address>12 Springs RdMorris Plainsnj07960</address>

4. The last line of the query is shown in the following listing:

</ns2:quote>

The last line of the query becomes the last line of the XML output, as shown in the
following listing:

</quot:quote>

The resulting address element has no delimiter between the street, city, state, and zip code
fields, making the address difficult to read and parse. For instructions on adding delimiters to this
query, return to “To Edit and Retest the Simple Query” on page 4-7 in the main section of this
tutorial.

Understanding XML Repeating Nodes
A repeating node means that more than one instance of this node can be specified. For example,
in the following XML data there are three instances of the priceRequest node, as shown in the
following listing:

<?xml version="1.0"?>
<priceQuote xmlns="http://www.example.org/price">

<customerName>Acme Inc</customerName>

The Following XPath
Expression

Returns The String

$priceQuote1/ns0:sh

ipAddress/@street

The value of the street attribute
of the shipAddress element.

12 Springs Rd

$priceQuote1/ns0:ship
Address/@ns0:city

The value of the city attribute of
the shipAddress element.

Morris Plains

$priceQuote1/ns0:ship
Address/@ns0:state

The value of the state attribute
of the shipAddress element.

nj

$priceQuote1/ns0:ship
Address/@ns0:zip

The value of the zip attribute of
the shipAddress element.

07960

6-6 Tutorial: Building Your First Data Transformation

<shipAddress street="12 Springs Rd" city="Morris Plains" state="nj"
zip="07960"/>

<priceRequests>
<priceRequest>

<widgetId>12</widgetId>
<price>1.00</price>

</priceRequest>
<priceRequest>

<widgetId>134</widgetId>
<price>34.10</price>

</priceRequest>
<priceRequest>

<widgetId>211</widgetId>
<price>10.00</price>

</priceRequest>
</priceRequests>

</priceQuote>

A segment of the XML Schema for the preceding XML data is shown in the following listing:

<?xml version="1.0"?>
<xsd:schema . . . >
. . .

<xsd:element name="widgetId" type="xsd:integer"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="priceRequest">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:widgetId"/>
<xsd:element ref="pri:price"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="priceRequests">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="pri:priceRequest" minOccurs="1"
maxOccurs="10"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
. . .

<xsd:element name="priceQuote">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="pri:customerName" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:shipAddress" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="pri:priceRequests"/>

</xsd:sequence>

Unders tanding XML Repeat ing Nodes

Tutorial: Building Your First Data Transformation 6-7

</xsd:complexType>
</xsd:element>

</xsd:schema>

The minOccurs="1" and maxOccurs="10" settings, in the definition of the priceRequest
element (highlighted in bold in the preceding listing), specify that there can be one to ten
instances of the priceRequest element. This defines priceQuote as a repeating element.

To View the Full listing of the XML Schema, Open the PriceQuote.xsd file

1. In the Package Explorer pane, expand the src folder.

2. Double-click the PriceQuote.xsd icon.

The PriceQuote.xsd file is displayed.

3. Return to the Design view of the myJoin.xq file:

a. In the Package Explorer pane, double-click
Tutorial_Project_Web\src\requestquote
requestquote\MyTutorialJoin.java\myJoin.xq

b. Select the Design tab.

6-8 Tutorial: Building Your First Data Transformation

	Tutorial: Building Your First Data Transformation
	Tutorial Goals
	Steps in This Tutorial

	Step 1: Getting Started
	Step 2: Building the Transformation
	Step 3: Mapping Elements and Attributes
	Step 4: Mapping Repeating Elements-Creating a Join
	Understanding the Concepts
	Understanding the Transformation
	Understanding XML Repeating Nodes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

