
BEAWebLogic®
Integration

Best Practices for WLI
Application Lifecycle

Version 9.2
December 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Best Practices for WLI Application Lifecycle iii

Contents

1. Introduction
Features of WLI . 1-2

2. Understanding Requirements

3. Architecture and Design of the WLI Application
Modeling Business Processes and Services . 3-3

Defining Business Processes . 3-3

Identifying Process Objectives and Goals . 3-3

Identifying Key Performance Indicators for the Process 3-4

Identifying Process Actors or Participants . 3-4

Identifying Public and Private Processes . 3-4

Identifying Initiator and Participant Processes . 3-5

Keeping Processes Modular . 3-5

Enabling end-to-end, Cross-functional Processes . 3-6

Separating Production and Monitoring Processes . 3-6

Designing and Developing Services . 3-6

Service Classification . 3-7

Identify Services . 3-7

Define Service Contract . 3-8

Define Input and Output Service Messages . 3-8

Define Pre and Post Conditions for Services . 3-8

Decide the Service Calling Paradigm . 3-8

iv Best Practices for WLI Application Lifecycle

Decide the Service Granularity . 3-9

Define Quality of Service Requirements . 3-9

Design Service With a Service Proxy . 3-9

Design Reusable Services . 3-9

Design Loosely Coupled Services . 3-10

4. Composing and Developing WLI Applications
Naming Standard for WLI Application Artifacts and Variables 4-2

Modular JPD Design . 4-3

Modular XML Document . 4-4

Parallel Node. 4-4

JPD Exceptions . 4-4

Event Handlers for Process Events . 4-6

JPD Transactions and Compensation Management . 4-7

Transaction Boundaries . 4-7

Transactions for Synchronous and Asynchronous Processes 4-7

Transactions and Controls . 4-7

JPD State Management . 4-10

JPD Versioning. 4-11

Singleton JPD . 4-12

Race Condition With Dynamic Subscription . 4-13

Dead Letter Channel Subscription . 4-13

High Quality of Service JPD. 4-13

SLA Threshold for JPDs . 4-14

Monitor JPDs . 4-15

Security Policy for JPDs . 4-16

Interoperable JPDs . 4-17

Communication Between JPDs. 4-18

Best Practices for WLI Application Lifecycle v

Using Controls. 4-19

Using Dynamic Properties and Annotation for Controls 4-20

Buffering Service Control Methods During Asynchronous Calls 4-21

Using Control Factory to Manage Multiple Instances of a Control 4-21

Data Transformation . 4-21

Canonical Data Model . 4-22

Runtime Selection of a Transformation. 4-22

Developing a Task Plan . 4-23

Task Plan for Exception Management. 4-23

Integrating Custom Logic With a Task Plan . 4-23

5. Deploying and Maintaining WLI Applications
Deploying WLI Application During Runtime. 5-1

Deploying WLI Application in a Cluster . 5-1

Configuring Trading Partner Integration Resources . 5-2

Changing Cluster Configurations and Deployment Requests 5-2

Load Balancing in a WLI Cluster . 5-3

HTTP Functions in a Cluster . 5-3

JMS Functions in a Cluster . 5-3

Synchronous Clients and Asynchronous Business Processes 5-3

RDBMS Event Generators . 5-3

Application Integration Functions in a Cluster . 5-4

6. Core Implementation Patterns for WLI Applications
Core Implementation Patterns for a JPD . 6-1

Pattern 1: Basic Synchronous Stateless two-way Service 6-3

Pattern 2: Basic Asynchronous Stateless two-way Service 6-4

Pattern 3: Basic Asynchronous Stateless one-way Service 6-5

vi Best Practices for WLI Application Lifecycle

Pattern 4: Basic Asynchronous Stateful two-way Service. 6-6

Pattern 5: Basic Asynchronous Stateful one-way Service 6-7

Pattern 6: Composite Synchronous Stateless two-way Service 6-8

Pattern 7: Composite Synchronous Stateful two-way Service. 6-9

Pattern 8: Composite Asynchronous Stateless two-way Service. 6-10

Pattern 9: Composite Asynchronous Stateless one-way Service 6-11

Pattern 10: Composite Asynchronous Stateful two-way Service 6-12

Pattern 11: Composite Asynchronous Stateful one-way Service. 6-13

Other Patterns. 6-13

Course-Grained Process Front-end for a Fine-Grained Process 6-15

Loosely Coupled Process With a Common Message Interface 6-16

Dynamic Property Driven Processes. 6-17

A. Understanding Requirements

Best Practices for WLI Application Lifecycle 1-1

C H A P T E R 1

Introduction

This document specifies the best practices, lessons learnt, and key considerations which help
WebLogic Integration users such as application architects, developers, and operation staff to
develop and run high quality WebLogic Integration (WLI) applications.

Note: It is recommended that you read the following documents before you use this document:

Introduction to WebLogic Integration

Guide to Building Business Processes

Tips and Tricks for WebLogic Integration

Using the Worklist

Using Integration Controls

While reading this document, you may have to refer to relevant documents and information about
WLI 9.2, available on the WebLogic Integration documentation page.

This document:

Explains the basic Features of WLI

Provides general best practices to help you with Understanding Requirements, Architecture
and Design of the WLI Application, and design of business processes and services.

Describes best practices with WLI for:

– Composing and Developing WLI Applications

– Deploying and Maintaining WLI Applications

http://e-docs.bea.com/wli/docs92/bpguide/index.html
http://e-docs.bea.com/wli/docs92/worklist/index.html
http://e-docs.bea.com/wli/docs92/overview/index.html
http://e-docs.bea.com/wli/docs92/tipstrick/index.html
http://edocs.bea.com/wli/docs92/index.html
http://e-docs.bea.com/wli/docs92/controls/index.html

In t roduct ion

1-2 Best Practices for WLI Application Lifecycle

WebLogic Integration is specially designed for enterprise integration. Figure 1-1 shows the
architecture of WebLogic platform.

Figure 1-1 Architecture of WebLogic Platform

Features of WLI
WebLogic Integration provides you with the capability to design, develop, deploy and run
integration-centric applications. The main features or capabilities of WebLogic Integration are:

Creates system (Java Process Definition) and human-centric (Task Plan) business process
applications using an Eclipse-based unified IDE.

Defines system-centric transactional processes that have fine-grained control over the
process using JPD graphical editor.

Defines human-centric, multi-step, task-oriented, and long running business processes
using Task Plan graphical editor.

Uses standard-based Beehive controls to enable easier access to enterprise resources such
as EJBs, JMS and web services. In most WLI applications, JPDs, controls, and Task Plans

Best Practices for WLI Application Lifecycle 1-3

work with each other in realizing overall business objectives. They can be easily integrated
with each other and remain loosely coupled.

Uses JPD controls and task plans that are property and annotation driven. Properties and
annotations can be either static or dynamic. Dynamic properties can be changed during
runtime which makes business processes that run with WLI applications agile and flexible.

Provides extensive support of Business to Business (B2B) capabilities for inter-enterprise
business processes using Trading Partner Management, Rosettanet, ebXML, and EDI.

Creates loosely coupled, publish and subscribe architecture, style based process integration
using event generators, message brokers, and event handlers.

Provides extensive Enterprise Application Integration features such as adapters, and
XQuery (2004) based data transformation. The large number of integration controls such as
service and process controls make the task of integrating enterprise resources easier.

Supports enterprise computing services support such as transaction management,
clustering, security, and J2EE container services.

Figure 1-2 shows the functional overview of WLI.

Figure 1-2 Functional Overview of WLI

For more information on the features and functions of WLI, see Introduction to WebLogic
Integration.

http://e-docs.bea.com/wli/docs92/overview/index.html
http://e-docs.bea.com/wli/docs92/overview/index.html

In t roduct ion

1-4 Best Practices for WLI Application Lifecycle

Best Practices for WLI Application Lifecycle 2-1

C H A P T E R 2

Understanding Requirements

The key to successful software development is that all stake holders develop a clear and uniform
understanding of application requirements.

Software requirements can be broadly classified into two groups:

Functional or problem domain requirements

Non-functional or solution domain requirements

In a problem domain, the focus is on the functional or business requirements. It is recommended
that you create a domain model of your functional requirements before you start thinking of the
solution domain.

In a solution domain, we focus on how to deliver the solution for functional or business
requirements.

Some of the important non-functional requirements of a WLI application are:

Quality attributes such as security, high availability, scalability, performance, and
reliability.

User interface

Integration

Message format, transport, and protocol

Data format and transformation

Internationalization or i18n

Unders tanding Requ i rements

2-2 Best Practices for WLI Application Lifecycle

Legal and compliance

Runtime infrastructure

Networking and communication

Constraints such as the use of specific RDBMS System, protocols, and standards

For general guidelines on understanding requirements, see Understanding Requirements.

Best Practices For WebLogic Integration Application Lifecycle 3-1

C H A P T E R 3

Architecture and Design of the WLI
Application

WLI is an enterprise class product, which can be used to implement process-driven Service
Oriented Architecture (SOA) applications. Figure 3-1 shows the BEA reference architecture for
service oriented applications.

Figure 3-1 BEA Reference Architecture for Service Oriented Applications

Arch i tec tu re and Des ign o f the WL I App l i cat ion

3-2 Best Practices For WebLogic Integration Application Lifecycle

It is recommended that you use BEA reference architecture for service oriented applications for
a WLI application.

The reference architecture is generic and can be implemented with WLI standalone or with a
combination of several products. The main components of the reference architecture are as
follows:

Business event initiators: The entities that initiate business actions or events. Business
initiators are either human, or based on systems and applications.

Service consumers or composite applications: The applications that are developed while
using WLI. They handle business actions or events initiated by business entities.

Shared service access layer: Provides access to shared business services. It is based on
Validate, Enrich, Transform, Route, and Operate or invoke (VETRO) patterns. This layer
can be implemented using WLI or an Enterprise Service Bus (ESB) such as AquaLogic
Service Bus.

Shared services layer: The shared and reusable services that are used in service
orchestration while creating business processes.

The types of shared services are as follows:

– Presentation services that present the data to the user.

– Business services that represent core business capabilities. Business services can range
from relatively simple to very complex. An example of a simple business service is
credit card validation. An example of a complex business service is a cross-functional,
inter-enterprise business process such as order fulfillment. Business services are task or
activity-oriented. You can implement task-oriented services such as purchase order
approval using task plans, and system-centric transactional services using JPDs. Most
complex business services require both JPDs and task plans. JPDs and task plans can
work independently and also be loosely coupled as required.

– Data services that are entity services which provide access to enterprise data. Data
services have a Validate user, Create, Retrieve, Update, and Delete (CRUD) interface
and can be implemented using WLI components or special data service enabling
products such as AquaLogic Data Services Platform.

– Infrastructure services are non-functional services such as security, and audit.

Common service provider access layer: Provides a common access to service providers.
This layer can be implemented using WLI or an ESB. A service provider provides services
and can be either human or based on systems and applications.

Mode l ing Bus iness P rocesses and Serv ices

Best Practices For WebLogic Integration Application Lifecycle 3-3

Modeling Business Processes and Services
The steps involved in modeling business processes and services are:

Defining Business Processes

Designing and Developing Services

Defining Business Processes
You can define a good business process by:

Identifying Process Objectives and Goals

Identifying Key Performance Indicators for the Process

Identifying Process Actors or Participants

Identifying Public and Private Processes

Identifying Initiator and Participant Processes

Keeping Processes Modular

Enabling end-to-end, Cross-functional Processes

Separating Production and Monitoring Processes

Identifying Process Objectives and Goals
It is important to understand the main objectives behind the decision to automate a business
process. A business process is defined to:

Improve operational efficiency and productivity

Gain better information visibility and insight into business operations

Improve customer service

Improve human collaboration.

A few examples of process objectives are:

An account receivable and payable process to improve visibility.

A purchase order processing and fulfillment process to improve operational efficiency and
productivity.

Arch i tec tu re and Des ign o f the WL I App l i cat ion

3-4 Best Practices For WebLogic Integration Application Lifecycle

A document approval process to improve human collaboration.

A complaint resolution process in a call center for improving customer service and
operational efficiency.

Identifying Key Performance Indicators for the Process
KPIs are the key indicators that provide the visibility for process performance. A few sample
process KPIs are:

The visibility of Days of Sales Outstanding (DSO) for an Accounts Receivable process.

The time taken from order to delivery (efficiency), or the number of purchase orders
completed in a day (productivity) for Purchase Order processing and fulfillment.

Identifying Process Actors or Participants
Identify process actors or participants before you define the process. In addition to human actors
and applications, data sources and partners can also serve as actors or participants in a business
process.

Identifying Public and Private Processes
Public and private processes have a special significance in the B2B domain. A public process is
one that is visible to the external user. A private process is one that performs a task that is invisible
to the external user within the application in the background. The private process is linked to the
public process. When a public process is used as a front end for a private process, you can modify
the private process without disturbing your public process clients.

It is a good practice to keep your public process modular. Public processes have higher
requirements in terms of security, scalability and availability. Public processes always have
special requirements for messaging, protocols, and standards, which need to be identified in
advance. Figure 3-2 illustrates a public and private process pattern.

One way to integrate public and private processes is to use loosely coupled publish and subscribe
architecture between these processes using the message broker component of WLI.

Another alternative to integrate public and private processes, is to have a process control between
public and private processes, and use Java Web Services (JWS) as the front end for your public
processes. Process Control (PC) is a better option if your public and private processes are in the
same domain. See the Communication Between JPDs section for more details.

Mode l ing Bus iness P rocesses and Serv ices

Best Practices For WebLogic Integration Application Lifecycle 3-5

Identifying Initiator and Participant Processes
Many business processes, especially in the B2B domain, are conversational in nature. For
example, a request quote service, where an agreement on the quoted price is achieved after
several rounds of message exchange. An initiator uses an initiator process to initiate a business
conversation. Participant processes respond to the request from an initiator process. An initiator
process:

Can have multiple conversations with a single participant process at the same time.

Can also interact with multiple participant processes at the same time.

Generates a unique conversation ID for each process. All the related participant processes,
include this conversation ID in their response messages. Conversation IDs act as
correlation identifiers across a conversation. Figure 3-2 shows a sample implementation of
Public, Private, and Conversational patterns.

Figure 3-2 Public, Private, and Conversational Patterns

Keeping Processes Modular
It is a good practice to define small and modular processes. A modular process meets a specific
business need. Modular process definition results in the reuse of business processes. It is easier
to maintain many modular processes than a few long processes.

Arch i tec tu re and Des ign o f the WL I App l i cat ion

3-6 Best Practices For WebLogic Integration Application Lifecycle

Enabling end-to-end, Cross-functional Processes
You can get the best results from Business Process Management (BPM) when you enable
end-to-end cross-functional processes, to realize a specific business objective.

A few examples of end-to-end, cross-functional processes are as follows:

Order to cash

Request to quote

Complaint to resolution

The ideal way to enable end-to-end processes is using loosely coupled integration between a
number of modular business processes.

Separating Production and Monitoring Processes
It is always a good practice to separate your core production processes from your monitoring
processes. Production processes have higher scalability, performance, and availability
requirements than monitoring processes. An example of a core production process is the order
fulfillment process. An example of monitoring processes are audit, compliance, and KPI
calculation processes.

You can have loosely coupled integration between production and monitoring processes using
publish and subscribe architecture with Message Broker. For more information, see Design
Loosely Coupled Services.

Note: It is a good practice to capture monitoring data from a production process and publish it
to specific channels, which the monitoring process can then subscribe to. Subsequently,
a monitoring process can process the monitoring data as per business needs.

Designing and Developing Services
The steps that you need to follow when you design and develop services are:

Service Classification

Identify Services

Define Service Contract

Define Input and Output Service Messages

Define Pre and Post Conditions for Services

Mode l ing Bus iness P rocesses and Serv ices

Best Practices For WebLogic Integration Application Lifecycle 3-7

Decide the Service Calling Paradigm

Decide the Service Granularity

Define Quality of Service Requirements

Design Service With a Service Proxy

Design Reusable Services

Design Loosely Coupled Services

Service Classification
Table 3-1 lists the services that can be broadly classified into categories.

Identify Services
The first step in service design is to identify the candidate services. You can identify business
services based upon business events. Table 3-2 contains a few examples of business events and
related services.

Table 3-1 Service Classification

Category Service Category as
per Reference
Architecture

Characteristic Example

Task-oriented Business services Long running and
human-centric

Document-oriented such as
Purchase Order approval

Activity Business services System-centric • Purchase Order fulfillment
• Credit card verification

service

Entity service Data services CRUD service for
business entities

Retrieve customer address

Table 3-2 Sample Business Events and Related Services

Business Events Services

Purchase Order is received Purchase Order processing service

Purchase Order is validated Purchase Order fulfillment service

Arch i tec tu re and Des ign o f the WL I App l i cat ion

3-8 Best Practices For WebLogic Integration Application Lifecycle

If you identify a service with its related business event, you have event-driven services, which
can be easily orchestrated into long running business processes.

Define Service Contract
Once you have identified a service, the next step is to define a service contract. The service
contract specifies the functions that a service provides in a format that the service consumer easily
understands. A service contract defines how a service can be used and specifies the Quality of
Service (QoS) parameters for a service. However, a service contract does not contain any
implementation level details.

Define Input and Output Service Messages
After defining the service contract, the next most important step is to define service messages. A
service receives an input message from service consumer and may or may not return a message
to the consumer. Define an appropriate service message schema for each service message.

Define Pre and Post Conditions for Services
The next step is to define pre and post conditions for each service. Pre-condition represents the
condition which should be satisfied, before a service is invoked. The service consumer has to
ensure that the service is invoked, only when the pre-condition is satisfied. The service provider
has to ensure that post conditions are satisfied after the service invocation is completed. If you
develop your services using this method, you can perform better exception management for
services.

Decide the Service Calling Paradigm
You need to decide whether the service is invoked in a synchronous or asynchronous mode. Small
and data oriented services such as obtaining a customer address, can be designed in a synchronous
mode. Long running services that require state management, should be designed as asynchronous
services. Asynchronous services are more loosely coupled and scalable compared to synchronous
services.

Invoice is received Invoice processing service

Purchase Order amendment
request is received

Purchase Order amendment service

Table 3-2 Sample Business Events and Related Services

Mode l ing Bus iness P rocesses and Serv ices

Best Practices For WebLogic Integration Application Lifecycle 3-9

Decide the Service Granularity
Services should be more course-grained in comparison to API calls. You should decide on the
actual granularity based upon your specific situation. A service call involves a round trip on the
network. For performance reasons, you should try to minimize round trips on the network. In case
you have too many fine-grained services, it is good practice to create a course-grained service by
performing a light weight orchestration of the fine-grained services. Subsequently, you can
expose the course-grained services to the user.

Define Quality of Service Requirements
Services are required to meet minimum quality requirements in terms of availability and
performance. Service providers are required to have a Service Level Agreement (SLA) with
service consumers. You should understand and specify QoS requirements well in advance.

One way to improve your QoS is to design your service as idempotent. Idempotent services do
not change the state of the system, even if the service is invoked by the same input message
several times. With idempotent services, you can easily use standards such as web service reliable
messaging, which can re-transmit a message in case of failure. All read only services are
idempotent.

However, even write services can be designed as idempotent. This design ensures that your
services are more reliable and improves QoS. For example, when a service receives an invoice
from a supplier, the invoice amount should be added to the total accounts receivable amount. In
such a scenario, you can first assign a unique number to the invoice in the database and then
increase the account payable amount. If the same message is sent again, the uniqueness constraint
of the invoice number throws a database exception and discards the duplicate message.

Design Service With a Service Proxy
If you design your service with a proxy service as the front end, you can obtain several advantages
using a proxy service as your main service. A proxy service can be used for authentication,
enrichment, transformation, and versioning. The use of proxy services establishes a loose
coupling between service providers and consumers.

Design Reusable Services
You should identify business functions that are reusable across different domains or departments.
Such functions should be prime candidates for being exposed as standard based services.

Arch i tec tu re and Des ign o f the WL I App l i cat ion

3-10 Best Practices For WebLogic Integration Application Lifecycle

Design Loosely Coupled Services
Services should be designed as loosely coupled. There should be minimum coupling between
service consumers and service providers. The best practices to design loosely coupled services
are as follows:

Message format and protocol coupling: Use a proxy as a front end for your service to
reduce the message format and protocol coupling.

Time coupling: Design asynchronous services and reduce time coupling. You can also
reduce time coupling by making your services highly available (7/24/365).

Type coupling: Design document-oriented services to reduce type coupling.
Document-oriented services are more loosely coupled than Remote Procedure Call (RPC)
styled services. In an RPC styled service, the client makes a method call to a service. The
client has to know the method name and data type of the method input as well as the
output parameters. This leads to tight coupling between the service consumer and provider.

In the case of document-oriented services, the service consumer interacts with the service
by sending documents that are meant to be processed as complete entities. These
documents are written in XML, and defined in a commonly agreed upon schema between
the service provider and consumer. For example, a document-oriented service is a purchase
order processing service which receives a purchase order (in XML form), processes it, and
returns a purchase order confirmation (XML document) to the client. JPDs are designed to
be document-oriented. A JPD uses a document and processes it as an entity.

Location coupling: You can reduce location coupling by making your service available.
You can publish your service WSDL and meta data to a registry or repository. The service
consumer can then discover the service from the registry and then invoke the service as
required.

Version Coupling: You can reduce version coupling by making your service backward
compatible. Existing service consumers should not be affected if there is a new version of
the service. If you use a proxy service as a front end, it receives the initial request and then
directs it to the appropriate version of the service.

Best Practices for WLI Application Lifecycle 4-1

C H A P T E R 4

Composing and Developing WLI
Applications

There are several best practices for composing and developing WLI applications. They are
described in the following sections:

Naming Standard for WLI Application Artifacts and Variables

Modular JPD Design

Modular XML Document

Parallel Node

JPD Exceptions

Event Handlers for Process Events

JPD Transactions and Compensation Management

JPD State Management

Singleton JPD

Race Condition With Dynamic Subscription

Dead Letter Channel Subscription

High Quality of Service JPD

SLA Threshold for JPDs

Monitor JPDs

Compos ing and Deve lop ing WL I App l ica t ions

4-2 Best Practices for WLI Application Lifecycle

Security Policy for JPDs

Interoperable JPDs

Communication Between JPDs

Using Controls

Data Transformation

Canonical Data Model

Runtime Selection of a Transformation

Developing a Task Plan

For more information on this section, see Guide to Building Business Processes and Using
WebLogic Integration Controls.

Naming Standard for WLI Application Artifacts and
Variables
When you develop WLI applications, you should follow a uniform and consistent naming
standard for various WLI artifacts such as JPDs, task plans, controls, projects, and files. All
controls, processes, methods, variables, and other WLI object names should follow standard
object oriented and Java naming standards.

In WLI version 9.2, JPD, control, and data-transformation files have common .java extensions.
You should add a suffix to each artifact so that they can be easily identified. Table 4-1 contains
an example of naming controls and the related suffix for each artifact.

Table 4-1 Example of Naming Controls

Type of Artifact Suffix Example

JPD projects EAR, JPD <Name>earjpd

Web, JPD <Name>webjpd

Util, JPD <Name>utiljpd

Task plan projects EAR, JPD <Name>eartp

Web, JPD <Name>webtp

Util, JPD <Name>utiltp

http://e-docs.bea.com/wli/docs92/bpguide/index.html
http://e-docs.bea.com/wli/docs92/controls/index.html
http://e-docs.bea.com/wli/docs92/controls/index.html

Best Practices for WLI Application Lifecycle 4-3

Modular JPD Design
If you have to define a large process, it is always a good practice to make it modular. A modular
JPD meets a specific business objective. A few examples of modular JPDs are:

Process purchase order

Fulfill purchase order

You can divide a large JPD into number of smaller JPDs or sub-processes. Sub-processes can be
invoked using a central or main JPD. You can use process control to communicate between a JPD
and a sub-process (another JPD). You can also loosely couple two JPDs using Message Broker

JPD JPD <name>jpd.java

Data transformation DTF <name>dtf.java

Custom control None None

Database control DBC <name>DBC.java

Web service WSC <name>WSC.java

EJB control EJBC <name>EJBC.java

JMS JMSC <name>JMSC.java

E-mail EmailC <name>EmailC.java

File FileC <name>FileC.java

HTTP HTTPC <name>HTTPC.java

MQ Series control MQC <name>MQC.java

Process control PControl <name>PControl.java

Task control TASKC <name>TASKC.java

Channels Channel <name>Channel.java

Event generators EG <name>EG

Table 4-1 Example of Naming Controls (Continued)

Type of Artifact Suffix Example

Compos ing and Deve lop ing WL I App l ica t ions

4-4 Best Practices for WLI Application Lifecycle

or publish and subscribe architecture. See Communication Between JPDs and Core
Implementation Patterns for a JPD for more details.

Modular XML Document
Every JPD has a start node and uses a XML document to start. Ensure that the XML document is
modular and small for better performance. It is a good practice to have separate XSDs for each
type of document. For example, you should have a separate XSDs for a Purchase Order and
Invoice, instead of one single large schema for both the Purchase Order and the Invoice.

The modularity of a JPD and its associated document is a relative concept. If a JPD is too
modular, it may be counter productive. You should take a balanced decision on modularity
depending upon the specific scenario.

Parallel Node
The JPD provides a parallel node. Before you use this node, it is recommended that you
understand how this node works. Parallel nodes can be used for managing multiple tasks which
are related but not dependent. Parallel nodes are meant for business level parallelism. The actual
execution does not take place in parallel.

At any given time, execution can start in one branch without any execution in other branches. For
example, the branch executing a task may request for a quote from a partner and wait for a
response. While this branch is waiting for a response, execution may start in another branch thus
achieving business level parallelism.

There are two forms of parallel nodes – AND and OR mode. In the AND mode, all parallel paths
should complete their execution, before the business process can proceed further. In the OR
mode, the path that completes execution first is the winner. The processing of other path is
stopped and the business process proceeds further.

The branches of a parallel node are isolated by transaction (default behavior). You can override
this behavior to improve the performance of parallel nodes. Set the continueTransaction
property to true in the source for each parallel element as follows:

<parallel continueTransaction="true">

JPD Exceptions
You can define exceptions and exception handlers in JPDs at nodes, groups, or process-levels.
Exception handlers are executed in the following order:

Best Practices for WLI Application Lifecycle 4-5

1. Nodes

2. Groups

3. Processes

It is a good practice at the process-level to have a catch all process-level exception handler.

Exceptions that are not handled can cause process failure. You can set a freezeOnfailure
property to avoid this scenario. If this property is set, any exceptions that are not handled cause
the process to freeze. The process then rolls back to the last committed point and the administrator
can restart the process from the last committed state.

Table 4-2 contains a list of high-level design guidelines which you can follow while working on
a JPD exception.

Table 4-2 High-Level Design Guidelines

High-Level Design Guideline Description

Asynchronous two-way processes should
establish a way to pass exceptions or errors
back to the caller process, with a separate
client response or publication node in the
exception handler.

When an error or an exception occurs, it is possible to
catch an exception within the process. However,
asynchronous processes, by nature cannot immediately
respond to the exception. However, the caller should be
informed that the process did not complete successfully.
Your callback process should have a success or failure
path and the result in both cases should be communicated
to the caller.

All synchronous stateless processes must
throw an exception back to the caller.

If the caller is blocking, it must be notified of the failure,
as it is the only component that understands what should
be done next.

Process designers should define a
process-level exception handler at the start of
every process definition. This handler acts as
a global exception handler and catches any
undefined exceptions.

This is a catch-all process-level exception handler.
Exceptions that are not handled cause the process to fail
and no recovery is possible from this state. When you
define a global exception handler, you can ensure that the
process never goes to an aborted state.

Compos ing and Deve lop ing WL I App l ica t ions

4-6 Best Practices for WLI Application Lifecycle

Event Handlers for Process Events
Events handlers allow outside events to interrupt the process using OnMessage and OnTimeout
event handlers. OnMessage event handlers can accept client requests. When a timer event is fired,
control, receive, and message broker subscription message events are invoked.

Figure 4-1 shows an example of an OnMessage and OnTimeout event handler.

Figure 4-1 Example of OnMessage and OnTimeout Event Handler

Set the freezeOnfailure property to true If you set the freezeOnfailure property on the
process, the process is rolled back to last commit state and
persisted. The administrator can then fix the problem and
re-activate the process.

Process designers should be especially careful
about handling exceptions when processes
call sub processes synchronously through the
process control.

Exceptions that are not handled in the called sub process
can set transactions to roll back. In this case, both the
sub-process and caller process can be rolled back. You
can define an appropriate exception handler in the sub
process to avoid the roll back of the caller process.

Table 4-2 High-Level Design Guidelines (Continued)

High-Level Design Guideline Description

Best Practices for WLI Application Lifecycle 4-7

JPD Transactions and Compensation Management
The following sections describe the best practices for various JPD transactions and compensation
management:

Transaction Boundaries

Transactions for Synchronous and Asynchronous Processes

Transactions and Controls

JPD Versioning

Using Dynamic Properties and Annotation for Controls

Buffering Service Control Methods During Asynchronous Calls

Using Control Factory to Manage Multiple Instances of a Control

Transaction Boundaries
Processes in WLI are transactional in nature. Every step of a process is executed within the
context of a Java Transaction API (JTA) transaction. When you are building a process, implicit
transaction boundaries are formed based upon the location of blocking elements such as a Control
Receive or a Client Send. As you add process nodes, the transaction boundaries within a process
keep changing.

You can also create explicit transaction boundaries. To do this, select contiguous nodes and
declare them in a separate transaction to distinguish between them and the implicit nodes that the
application creates. The transaction may also contain resources accessed by a process, depending
on the nature of the resource and the control that provides the access.

Transactions for Synchronous and Asynchronous Processes
A stateless process is executed either in a client transaction or when a new transaction is started.
Using JPD proxy, a Java client can invoke a JPD over RMI. In this scenario, the client
transactions are propagated to the JPD. The caller transaction is not propagated when a JPD is
invoked as a web service. The caller transaction is not propagated to a JPD for asynchronous
processes as well.

Transactions and Controls
Transaction controls are of three types:

Compos ing and Deve lop ing WL I App l ica t ions

4-8 Best Practices for WLI Application Lifecycle

Transactional and XA Compliant

Transactional and not XA Compliant Controls

Non-transactional Controls

Transactional and XA Compliant
If all controls used within a process are transactional and XA compliant, then the transaction of
the process can be used to commit or terminate the underlying transaction branches. The process
needs exception handlers to catch any issues and make the necessary transaction decisions. The
developer needs to be aware where the transaction was started as any abort or rollback takes the
control back to the starting point and this may not be within the process where the exception
occurred.

Transactional and not XA Compliant Controls
XA is a protocol used to manage distributed transactions. WLI extends XA to allow non-XA
resources to participate in distributed transactions, with the limitation that in a given transaction,
only one transactional resource can be non-XA compliant. Therefore, if more than one
transactional non-XA resource needs to be accessed in a process, then the access to these
resources should be encapsulated in separate JPD sub-processes, which should be called
asynchronously by the original process. Asynchronous invocation is necessary because
synchronously called subprocesses run in the same transaction as the calling process. See Using
Integration Controls for more details.

Non-transactional Controls
Non-transactional controls such as email controls do not support transactions. In the case of
non-transactional controls, you need to have a strategy for exception handling. Use automatic
rollback where controls are transactional. Use a caught exception for non-transactional controls
to handle the error based on the business problem.

In addition to providing support for Atomicity Consistency Isolation and Durability (ACID) and
XA transaction, JPDs also provide support for compensation. You should ensure that the
transaction block for which you want to provide compensation, is not marked for rollback
only. Define an exception handler path for the transaction block and enable the execute on
rollback exception handler property. In such a situation, when a transaction fails, the exception
handler path is executed first. You can define your undo or compensation logic in such a path.
Figure 4-2 shows an example of non-transactional controls.

http://e-docs.bea.com/wli/docs92/controls/index.html
http://e-docs.bea.com/wli/docs92/controls/index.html

Best Practices for WLI Application Lifecycle 4-9

Figure 4-2 Non-transactional Controls

Table 4-3 contains a list of high-level guidelines to decide the transaction characteristic for your
JPD.

Table 4-3 High-Level Design Guidelines for JPD Transaction Characteristics

High-Level Design Guidelines Description

Implement the automatic execution of
compensating transactions only with extreme
caution.

At a design level it seems very simple to implement the
reverse. The problems arise when the compensation fails, the
question being the recovery from the failure. The solution to
this situation is often unclear. The default design rule should be
to raise an alert and manually decide on a solution.

Compos ing and Deve lop ing WL I App l ica t ions

4-10 Best Practices for WLI Application Lifecycle

JPD State Management
A stateless JPD is a process executed in memory only. Its state does not persist. All stateless
processes are compiled into a stateless session bean. Stateless processes are intended to support
business scenarios that involve short-running logic and have high performance requirements.

As the JPD does not persist its state to a database, it is optimized for lower-latency and
higher-performance execution.

Table 4-4 contains a list of high-level guidelines that you should follow, when working on
stateless processes.

A process needs to have exception handlers in
place to find any issues and make the
necessary transaction decisions.

You must not leave anything to default, always identify the
exceptions and decide on a solution. This is applicable to
transactional and non-transactional resources.

When more than one transactional non-XA
resource has to be accessed in a process, the
access to these resources should be
encapsulated in separate JPD sub-processes.

The original process should call the sub-processes
asynchronously. In this way, the sub-process runs in a separate
transaction and is able to access the non-transactional resource.

Table 4-3 High-Level Design Guidelines for JPD Transaction Characteristics (Continued)

High-Level Design Guidelines Description

Table 4-4 High-Level Guidelines for Stateless Processes

High-Level Design Guidelines Description

Do not use default values in global
variables, unless the variable is either
declared static or final. Initialize all global
variables before use.

Stateless processes are implemented as stateless session beans.
After a process is complete, subsequent process instances reuse the
same stateless session bean instances, and therefore inherit the last
known value of the global variables.

Set the on sync failure property on the
process to re-throw for synchronously
called processes where the requestor needs
to handle transaction demarcation.

This property only applies to your process if it is configured to be
a synchronous sub-process; it is ignored for any other business
processes. If a synchronous sub-process fails, the default behavior
is to mark it as rollback, which causes both the sub-process and
the parent process to rollback. However, if the on sync
failure property is set to re-throw, only the sub-process is
rolled back.

Best Practices for WLI Application Lifecycle 4-11

A stateful process is a process that runs within the scope of more than one transaction. The
process persists its state in the database. The state of the JPD survives even if the server crashes.
The stateful JPD process is compiled into an entity bean. Stateful processes are intended to
support business scenarios that involve complex, and long-running logic.

Stateful processes, in general, are slower than stateless processes. Use stateless processes,
especially in scenarios where a state does not need to persist. In certain situations, you can split
a stateful process into several stateless processes. Figure 4-3 shows how you can split a stateful
process into a stateless process.

Figure 4-3 Splitting a Stateful Process Into a Stateless Processes

JPD Versioning
WLI has a version feature that helps you change your business process without interrupting any
instances of the process that are currently running. When you create a version of a business
process, you are actually creating a child version of a business process that shares the same public
interface as the parent business process. At runtime, the version of the process that is marked

Compos ing and Deve lop ing WL I App l ica t ions

4-12 Best Practices for WLI Application Lifecycle

active, is the process that external clients access using the public URI. Through the regular
development cycle, new process versions are deployed with new versions of the application.

When the new version of a JPD is deployed, the existing instances run to completion on the same
version of the JPD that they started with. You can version business processes, but not the
individual controls associated with that process, or other business process related components
such as schemas and transformations. When you version a business process, you must also
version the sub-processes of that process, as they are not assigned a version automatically along
with their parent process.

Table 4-5 contains a list of high-level guidelines that you can follow to set versions for JPDs.

Singleton JPD
A JPD can subscribe to a message broker channel in two ways: Static or Dynamic.

If a process subscribes to a channel at the start node, this is called a static subscription. The
subscription is known at the time the application is compiled and remains through the life time of
the application.

When a process subscribes to a message broker channel during its flow using the message broker
control, this is known as a dynamic subscription. The subscription starts and ends at runtime. A
static subscription to a message broker channel can be specified as suppressible if you set the
suppressible attribute for the subscription in the business process. The accepted values for the
suppressible attribute are true and false (false is the default value).

Table 4-5 High-Level Guidelines to Version JPDs

High-Level Design Guidelines Description

If you have to deploy a new version of
a business process, you must set a
version for your existing process
before deploying the new version.

If you do not follow that process, you must let non-versioned instances
run to completion before deploying the new versioned process.

Set the process version strategy
according to the parent-child
relationship of the business process.

This describes how you can invoke sub-processes when different
versions of the parent process exist. From the strategy drop-down
menu:
• Select loosely-coupled if you want the sub-process version to be

set when the sub-process is invoked.
• Select tightly-coupled if you want the sub-process version to be

set at the time the parent process is invoked.

Best Practices for WLI Application Lifecycle 4-13

A singleton JPD has only one instance of the JPD running at any time. To create a singleton JPD,
first define a JPD with a static subscription and set the suppressible attribute to True. In this
situation, the first message on the channel invokes the JPD and creates an instance of the JPD.
Subsequent messages on the static channel do not lead to the creation of a new JPD instance.
Singleton JPDs created in this way can continue to receive messages using dynamic subscription.

Race Condition With Dynamic Subscription
A race condition is possible when you use the message broker with a dynamic subscription. A
message is lost if it is sent before the subscription is complete. This problem is evident when
processes start waiting indefinitely for a response, coupled with messages appearing in the
dead-letter channel.

If the request message is non-transactional, for example, in the case of a web service call, the
message is sent immediately, whereas the subscription to the response occurs only when the
transaction is committed. If the subscription appears before the message is sent in the process
flow, it might occur later. In this case, ensure that the transaction is committed (for example, add
an empty explicit transaction) after the subscription node and before the request message is sent.

Dead Letter Channel Subscription
If a message is sent to a channel without a subscriber after the filtering process is complete, the
message goes to the dead-letter channel. Subscribe to the dead-letter channel to check if messages
are published there, because in most cases, this is not a desired behavior.

High Quality of Service JPD
You need to take special steps to implement at-least-once or once-only Quality of Service.
If these steps are not taken, the default is the at-least-once Quality of Service. The steps for
the different process types are as follows:

 Invoking a Synchronous JPD: The quality of service is the responsibility of the caller.

Invoking an Asynchronous JPD with JMS: When you use JMS as a calling mechanism to a
process, the steps to achieve high Quality of Service are:

– Configure re-delivery limit and re-delivery delay override for the associated JMS queue

– JMS queues persist

– JMS connection factories are transactional

– JMS queue has an error queue configured

Compos ing and Deve lop ing WL I App l ica t ions

4-14 Best Practices for WLI Application Lifecycle

– Any exception that was not handled must be resent to the caller using the call back
process. This step ensures that the message is delivered to the process. If an exception
is not handled, the message is stored in the error queue and can be recovered.

Note: You cannot ensure the successful completion of every computer program, but a high
Quality of Service means that the error is always recoverable.

The once-only Quality of Service cannot be implemented for event generator
synchronous services such as files and e-mail that have source events that are not
transactional.

SLA Threshold for JPDs
A service level agreement (SLA) specifies the performance target for a JPD. An internal or
external commitment shows that a JPD is executed within a specified period of time. To help you
achieve the SLA for a process, the WLI Administration Console allows you to set the following
thresholds (Figure 4-4):

 SLA threshold, that represents the commitment applicable to the process type. For
example, number of seconds, minutes, hours, or days.

SLA warning threshold, which is a percentage of the total SLA.

Best Practices for WLI Application Lifecycle 4-15

Figure 4-4 SLA Threshold Details

The process status that is relative to these thresholds is tracked for each process instance as
follows:

When the elapsed time for a process instance reaches the warning threshold, a warning is
displayed on the Process Instance Summary and Detail pages. The amount of time remaining
until the SLA threshold is reached is also displayed. When the elapsed time exceeds the SLA, a
red flag is displayed. The time limit by which the SLA threshold has been exceeded is also
displayed. This ability to set SLA thresholds allows you to easily identify processes that do not
execute within the target time frame. You can then make the required changes to meet agreements
between suppliers and customers, or to achieve your own performance goals.

Monitor JPDs
You can track a process at various levels. The system contains a default tracking level and then
each process can override this. The WLI Administration Console and underlying MBeans

Compos ing and Deve lop ing WL I App l ica t ions

4-16 Best Practices for WLI Application Lifecycle

provide a monitoring interface to running instances and their variable values. Although variable
values cannot be changed, it is possible to query the process using the instance ID or process
label. You can set the process label in the instance by calling the JPD context setProcessLabel.
Table 4-6 contains a list of high-level design guidelines to monitor JPDs.

Security Policy for JPDs
You can define the security policy for a JPD. The security policy controls the identity that the
JPD uses to access external or backend systems. It allows the administrator to configure whether
a JPD accesses an external system as the invoking application, or as an application that calls into

Table 4-6 High-Level Design Guidelines for Monitoring JPDs

High-Level Design Guidelines Description

Use tracking data only for operational
support, and not for business or audit logging.

You need to purge tracking data regularly. Tracking can
be set on and off dynamically for each process at runtime
using the WLI Administration Console.

Disable process tracking for processes that
require high performance.

Process tracking involves information that is written into
the database several times. For performance reasons,
tracking must be eliminated.

WLI system data should only be used for
support and not business level audit.

The WLI system data should not be used for business
level audit. A designed audit or logging framework must
be implemented outside the WLI system data capture
area.

Log every InstanceID. You must record the InstanceID for any error, log, and
audit message.

Schedule regular archiving of WLI data. Archiver is a process that runs a Select query on the
database, so it must be scheduled to run regularly on small
amounts of data. Avoid scheduling the archiving process
at peak hours.

Set the process label to relevant query values. The process label is a preferred query string to design the
values, rather than depending on the person who
implements the values. For example, a support person
finds an order number easily if it is represented on the
process label.

Best Practices for WLI Application Lifecycle 4-17

the process later. For example, if a process subscribes to a channel and then waits for a client
request, the administrator can set the execution policy and use the identity from the client request
while accessing backend resources.

The JPD security policy has four main components:

Process Execution Policy: The execution policy specifies whether the operations in the
process are run with start user or the caller’s identity.

– If the administrator specifies start user, each operation assumes the identity of the user
that started the process.

– If the administrator specifies caller’s ID, the operation after the call assumes the
identity of the calling component.

The policy also ascertains if a single principal is required or not. If a single principal is
required, all incoming client requests must come from the same user.

Process authorization policy: The administrator can configure the roles authorized to
invoke the process method or client request. All methods in the process inherit the roles
specified in the process authorization policy. If the process authorization policy is not
defined, everyone is authorized.

Method authorization policy: The administrator can configure the roles authorized to
invoke the process methods or client requests. All methods inherit the roles specified in the
process authorization policy. You can also add roles to the authorization policy for a
method.

Callback authorization policy: The administrator can configure the roles authorized to
invoke the process callback. If the callback authorization policy is not defined, everyone is
authorized to make callbacks.

Interoperable JPDs
You can expose a JPD as a Java Web Service (JWS). There are limitations to developing
interoperable JPDs, which include:

JWS supports web service standards such as WS-Security and WS-Addressing.

WebLogic Server 9.2 JWS does not support WLI 8.1 JPD style callbacks.

WLI 9.2 JPDs support only WLI 8.1 conversations.

WLS 9.2 Service Control (SC) can invoke WLI 8.1 JPDs.

Compos ing and Deve lop ing WL I App l ica t ions

4-18 Best Practices for WLI Application Lifecycle

Process Control (PC) supports full interoperability with JWS via Java calls over RMI.

Figure 4-5 shows the recommended architecture, keeping the interoperability limitations in mind.

Figure 4-5 Front-end JWS with SC and JPD with a JWS and Process Control

Communication Between JPDs
A WLI application contains several JPDs that communicate with each other. A JPD that is
invoked by other JPDs is called a sub-process. Table 4-7 lists the high-level guidelines that you
can follow for JPD to JPD communication.

Table 4-7 High-Level Design Guidelines for JPD Communication

High-Level Design Guideline Description

For asynchronous communications
between processes in different domains,
the use of JMS and the messaging bridge
is recommended, together with the JMS
event generator or web services over
JMS.

The messaging bridge supports all of the QoS options for
asynchronous messaging between domains. The
store-and-forward capabilities of the messaging bridge
insulate local processes from problems and provide access to
remote providers.

Best Practices for WLI Application Lifecycle 4-19

Using Controls
Controls are an integral part of a JPD. WLI 9.2 controls are based upon open Apache Beehive
standards. They support annotations based on JSR-175 standards. Controls are reusable and
provide easy access to enterprise resources. Controls can be used within a process definition to
make calls to a backend system. For example, the database control allows a process to send SQL

For asynchronous two-way
communications between processes in
the same domain, it is recommended that
you use process control rather than the
message broker.

You get approximately the same performance when you start
a process using process control or message broker, but it is
significantly faster to receive a process control callback than
a message broker subscription. The message broker
subscription filter mechanism uses a database to map the
filter values to process instances. Process control callbacks
are routed directly to process instances.

Use raw JMS where the message size is
large.

JMS is more efficient than marshalling large messages in web
services.

Use the process control, not service or
service broker control for synchronous
communications between processes in
the same domain, if a transaction must be
propagated between processes, or
performance is an issue.

Process control is transactional and avoids SOAP
marshalling. Service and service broker controls are not
transactional.

For synchronous communications
between processes in different domains,
use service and service broker controls or
the JPD proxy.

Process control can only be used within a domain. The JPD
proxy provides transactional propagation at the cost of tight
coupling. Service and service broker control do not provide
transaction propagation but enable loose coupling.

Use the service broker control rather than
the service or process control, if the
data-dependent routing facilities are
required.

The service broker control allows for configurable routing of
service calls to different service implementations depending
on data, but this facility is not transactional.

Table 4-7 High-Level Design Guidelines for JPD Communication (Continued)

Compos ing and Deve lop ing WL I App l ica t ions

4-20 Best Practices for WLI Application Lifecycle

to an RDBMS using a JDBC connection pool. Table 4-8 lists the high-level guidelines that you
can follow for using controls.

Using Dynamic Properties and Annotation for Controls
In many cases, control attributes are statically defined using annotations. However, some controls
provide a Java API to dynamically change attributes. Dynamic controls, such as service broker
and process controls provide the means to dynamically set control attributes. A dynamic or late
binding process is used where attributes are determined at runtime using a combination of lookup
rules and values. Controls that support dynamic binding are called dynamic controls.

Look-up rules are defined during design time. Look-up values can be defined in the
DynamicProperties.XML file by changes during runtime. This file is a domain-wide file shared
by all WLI applications in the domain. This feature allows the complete de-coupling of control
attributes from the application. This file can be re-configured while an application is running, and
you do not need to redeploy the application for the changes to take effect.

To achieve the dynamic binding of properties, use:

Selectors

The setProperties() API

Table 4-8 High-Level Guidelines for Using Controls

High-Level Design Guideline Description

Control reuse All controls should be written so that they can be reused
across process definitions.

You should develop custom controls keeping in mind
native WLI 9.2 controls.

Use the controls available in WLI 9.2 as much as
possible. Write custom controls only when absolutely
necessary.

Use custom controls instead of custom Java code if
reuse of the code is a consideration.

A control that is created for custom Java code means
that the code can be reused across different process
definitions.

Controls should be versioned in source code control. Controls should be treated as Java code and versioned
appropriately.

Each application project in BEA Workshop for
WebLogic should have a separate control project.

Import controls from the component library into this
project so that they become available to all the
applications.

Best Practices for WLI Application Lifecycle 4-21

Setter methods for individual properties, such as setEndPoint().

Use the getProperties() method to retrieve the current property settings.

Buffering Service Control Methods During Asynchronous Calls
When you call web service controls asynchronously from business processes, it is recommended
that you buffer the asynchronous call to ensure that the message sent from the business process
to the web service is enqueued. An asynchronous call to a resource marks the boundary of a
transaction in your business process. A call to a resource is not enqueued until the transaction is
committed.

By buffering the call to the resource, you ensure that the transaction is committed before there is
any response from the resource. If you do not buffer the call, your business process must wait for
the HTTP acknowledgement before the transaction is committed. In this situation, the resource
may attempt to respond to the business process before the HTTP acknowledgement.

Using Control Factory to Manage Multiple Instances of a Control
The control factory feature of a control enables a JPD to interact with a multiple instances of the
same JPD. You can implement File, e-mail, WLI JMS, Trading Partner Management, Service,
and Worklist controls as control factories. For example, if a JPD is required to send a document,
such as loan application, to multiple service providers, it can use a control factory to create
multiple instances of the service control, and dispatch requests to the service control instances in
parallel. If the control uses callbacks, a single parameterized callback handler in the calling JPD,
can manage the callbacks received from all the control instances.

Data Transformation
Data transformation and manipulation is an integrated part of a business process. Service
consumers and providers require varied data format and types. WLI provides the following tools
for data transformation:

 XQuery(2004)

XSLT

Format Builder, Message Format Language (MFL)

XML beans

Data model

Compos ing and Deve lop ing WL I App l ica t ions

4-22 Best Practices for WLI Application Lifecycle

Note: WLI 9.2 supports the runtime execution of XQuery 2002 for the purpose of backward
compatibility with WLI 8.1.

Canonical Data Model
It is recommended that you create a canonical data model for your application. A canonical data
model maps the data to an agreed standard form. If correctly implemented, such a data model
provides the services with an Enterprise Information System (EIS) neutral interface. It specifies
how you can map the reference, static, and identifier data from an EIS data format to a standard
format, de-coupling the data model of the host and the data model of the recipient. You should
first create standards for the service interface, that in turn, enforces a common representation of
data types and entities within the enterprise. You must maintain a consistent method of
representing dates, numbers, post codes, and addresses.

Runtime Selection of a Transformation
A dynamic transformation control enables a business process to dynamically select and execute
a transformation during runtime. It allows you to choose the XQuery, XSLT, or MFL file that is
invoked at runtime. For example, if you have an integration hub that receives documents from
various regional offices, you can use the dynamic transformation control to perform different
transformations based on the area code of each regional office. Table 4-9 lists the high-level
design guidelines for data transformation.

Table 4-9 High-Level Design Guidelines for Data Transformations

High-Level Design Guideline Description

Create new data transformations using
XQuery rather than XSLT.

XQuery has several advantages over XSLT, including
additional functionality, and better performance.

Use a data model (Enterprise Data Model
(EDM)) only where there are clear benefits
that offset the additional cost and complexity.

An enterprise requires a large amount of resources to use
a data model. A data model should be used only when an
organization is willing to commit the required resources.

Implementing a data model involves high cost
and social challenges. You can implement
standards at the interface to ensure a quick
return on investment.

This is to ensure that data is represented consistently
across all service interfaces. For example, dates, post
codes, and addresses are always represented in a specific
style.

Ensure that you represent information such as message
headers in a standard format.

Deve lop ing a Task P lan

Best Practices for WLI Application Lifecycle 4-23

Developing a Task Plan
WLI 9.2 worklist has several enhanced features as follows:

You can model multi-step tasks such as loan approval, and purchase order approval, using
a simple drag-and-drop task plan editor. You do not need any prior knowledge of Java or
J2EE to be able to use task plan editors.

A task can be assigned to multiple human actors (one at a time).

An enhanced and system generated web user interface allows you to work with and test a
task plan. You can write your custom user interface using the APIs that are exposed by the
task plan.

The enhanced task assignment and load balancing facilities allow the efficient utilization of
a human actor’s time.

The task plan can work without using a JPD. However, you can use a task plan control to
interact with the JPD. JPDs can also subscribe to task plan events and process them as per
business needs.

Task Plan for Exception Management
You can use the task plan to manage exceptions in a JPD. Users can work on a task plan that is
invoked when an exception occurs.

Integrating Custom Logic With a Task Plan
Use the task plan event service to integrate your custom logic with the task plan.

The origin of the message should not be
disclosed to the recipient.

If a data model or standard service interface is
appropriately implemented, the recipient of a message is
not aware of the data format of the message despatching
system.

Wrap any re-usable transformation as a
stateless process.

If a re-usable transformation is wrapped as a stateless
process, other components can call it a service. This
includes direct calls from a front-end system.

Table 4-9 High-Level Design Guidelines for Data Transformations

High-Level Design Guideline Description

Compos ing and Deve lop ing WL I App l ica t ions

4-24 Best Practices for WLI Application Lifecycle

To subscribe to task plan events, write your own custom event listeners and register them with
the task plan. You can write custom code in your listener class. This custom code is executed
when task plan events invoke the respective event listeners associated with the task.

You can use a custom assignment handler in the custom logic to change the default task
assignment at runtime.

See Using the Worklist for detailed information.

http://e-docs.bea.com/wli/docs92/worklist/index.html

Best Practices for WLI Application Lifecycle 5-1

C H A P T E R 5

Deploying and Maintaining WLI
Applications

There are several best practices for deploying, running, and maintaining WLI applications, as
explained in the following sections:

Deploying WLI Application During Runtime

Deploying WLI Application in a Cluster

Deploying WLI Application During Runtime
When you work in the development mode, you can use the WLI IDE to build and deploy your
application. The IDE provides a feature that helps you generate an Ant script to create a build for
production purposes. You can also execute these build scripts outside the IDE via the command
prompt and generate a single EAR file. You can deploy this EAR file via the command prompt
or using the WebLogic Server Console. For more information, see Deploying WebLogic
Integration Solutions.

Deploying WLI Application in a Cluster
A WebLogic Server cluster domain contains only one administration server, and one or more
managed servers. The managed servers in a WLI domain can be grouped in a cluster. When you
configure WLI resources that can be clustered, you target the resources to a named cluster. If you
specify a cluster as the target for resource deployment, you can dynamically increase the capacity
by adding managed servers to your cluster. The best practices that you can apply to a cluster are
as follows:

Configuring Trading Partner Integration Resources

http://e-docs.bea.com/wli/docs92/deploy/index.html
http://e-docs.bea.com/wli/docs92/deploy/index.html

Deploy ing and Mainta in ing WL I App l i ca t ions

5-2 Best Practices for WLI Application Lifecycle

Changing Cluster Configurations and Deployment Requests

Load Balancing in a WLI Cluster

Configuring Trading Partner Integration Resources
You must deploy Trading Partner Integration components homogeneously to a cluster. To avoid
a single point of failure, ensure that Trading Partner Integration resources are deployed
identically on every managed server.

The guidelines you can follow to configure Trading Partner Integration in a cluster are as follows:

Specify the host and port numbers of the hardware or software routers as the HTTP end
points in the binding of trading partners. This step protects the identity of your managed
servers, which are behind a firewall, and allows managed servers to change operational
status without impacting the external customer.

Update Trading Partner Management configuration using the WLI Administration Console.
A JMS broadcast mechanism propagates these changes to the managed servers. These
changes are quick, but not instantaneous. There is a brief period during which the managed
servers contain a mix of the old and new configuration information. To minimize the
impact, it is recommended that you update configurations when the resources requiring
updates are inactive.

Changing Cluster Configurations and Deployment Requests
You can change configurations for a cluster. For example, you can add new nodes to the cluster
or modify Trading Partner Integration configuration only while the administration server of the
cluster is active.

Requests to deploy or disable a cluster are interrupted if the administration server is inactive, but
the managed servers continue to serve requests. If you can ensure that the required configuration
files such as msi-config.xml, SerializedSystemIni.dat, and optionally boot.properties exist in
each managed server's root directory, you can boot or reboot managed servers using an existing
configuration.

Managed servers that work without an administrative server, operate in a Managed Server
Independence (MSI) mode. For more information about MSI mode, see "Understanding
Managed Server Independence Mode" sub-section in Avoiding and Recovering from Server
Failure of Managing WebLogic Server Start up and Shutdown.

http://e-docs.bea.com/wls/docs100/server_start/failures.html
http://e-docs.bea.com/wls/docs100/server_start/failures.html

Best Practices for WLI Application Lifecycle 5-3

Load Balancing in a WLI Cluster
One of the goals of clustering in your WLI application is to achieve scalability. For a cluster to
be scalable, each server must be fully utilized. Load balancing distributes the work load
proportionally among all the servers in a cluster, so that each server can run at full capacity. Load
balancing is required for various functional areas in a WLI cluster. The functions are:

HTTP Functions in a Cluster

JMS Functions in a Cluster

Synchronous Clients and Asynchronous Business Processes

RDBMS Event Generators

Application Integration Functions in a Cluster

HTTP Functions in a Cluster
Web services (SOAP or XML over HTTP) and WebLogic Trading Partner Integration protocols
can use HTTP load balancing. You can use the WebLogic HttpClusterServlet, a web server
plug-in, or a hardware router for external load balancing.

JMS Functions in a Cluster
WLI or WLI applications most often utilize JMS queues that are configured as distributed
destinations. The exception to this rule is that a JMS queue is targeted to a single managed server.

Synchronous Clients and Asynchronous Business Processes
If your WLI solution includes communication between a synchronous client and an asynchronous
business process, you can enable server affinity for the
weblogic.jws.jms.QueueConnectionFactory. This is the default setting.

WARNING: If you disable server affinity for a solution that includes communication between
a synchronous client and an asynchronous business process in an attempt to tune
JMS load balancing, the resulting load balancing behavior is unpredictable.

RDBMS Event Generators
The RDBMS event generator has a dedicated JMS connection factory called
wli.internal.egrdbms.XAQueueConnectionFactory. Load balancing is enabled for this
connection factory by default. You must disable load balancing and enable server affinity for

Deploy ing and Mainta in ing WL I App l i ca t ions

5-4 Best Practices for WLI Application Lifecycle

wli.internal.egrdbms.XAQueueConnectionFactory to disable load balancing for RDBMS
events.

Application Integration Functions in a Cluster
Application Integration allows load balancing of synchronous and asynchronous services and
events within a cluster. The usage of synchronous and asynchronous services are explained in
detail as follows:

Synchronous Services

Asynchronous Services

Synchronous Services
Synchronous Services are implemented as method calls on a session EJB. They are load balanced
within the cluster according to EJB load balancing rules. These EJBs are published at design time
and each application view is represented as two session EJBs: one stateless, and one stateful.

In a standard operation, stateless session EJBs invoke the services, and load balancing occurs on
a per-service basis. Every time you invoke a service on an application view, you may be routed
to a different EJB on a different WebLogic managed server instance.

When you use the local transaction facilities of the application view during a local transaction,
the stateful session EJB invokes the services. The stateful session EJB keeps the connection to
the EIS open, so that the local transaction state can persist between service invocations. In this
mode, service invocations are pinned to a single EJB instance on a single managed server within
the cluster. Once the transaction is complete, either through a commit or rollback, the standard
per-service load balancing is applicable.

Asynchronous Services
Asynchronous services are always invoked as method calls on a stateless session EJB. You
cannot use the local transaction facility of the application view for asynchronous service
invocations.

A single asynchronous service invocation translates to two method invocations on two different
stateless session EJB instances. The load balancing for asynchronous service in this case occurs
on two occasions, the first upon receipt of the request, and the second in the execution of the
request and delivery of the response.

In addition, both the asynchronous service request and response are posted to a distributed JMS
queue. JMS load balancing as a result, applies to both the request and the response. In this case,

Best Practices for WLI Application Lifecycle 5-5

the invokeServiceAsync method of the application view may be serviced on one managed
server, the request delivered to a second managed server where the request is processed and the
response generated, and the response delivered to a third server for retrieval by the client.

Deploy ing and Mainta in ing WL I App l i ca t ions

5-6 Best Practices for WLI Application Lifecycle

Best Practices for WLI Application Lifecycle 6-1

C H A P T E R 6

Core Implementation Patterns for WLI
Applications

There are several core implementation patterns for WLI applications, as explained in the
following sections:

Core Implementation Patterns for a JPD

Course-Grained Process Front-end for a Fine-Grained Process

Loosely Coupled Process With a Common Message Interface

Dynamic Property Driven Processes

Core Implementation Patterns for a JPD
JPDs are of several types and are designed with the following intrinsic characteristics:

Basic complexity: A basic process makes only one call out to another service or an
external system. A basic process does not contain complex logic but may contain any
number of steps for transformation and exception handling.

Composite complexity: A composite process contains two or more calls out to external
systems. A process that makes two calls out to a single back end service is defined as
composite. Composite processes may contain complex logic such as parallel calls out, and
client requests after the start node.

Note: Composite processes have more complex exception management because of the multiple
calls.

Synchronous or asynchronous calling paradigm

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-2 Best Practices for WLI Application Lifecycle

Stateful or stateless JPD state

One or two-way exchange paradigm

Several patterns of JPDs have resulted from combinations of these characteristics. The following
sections describe these patterns in brief:

Pattern 1: Basic Synchronous Stateless two-way Service

Pattern 2: Basic Asynchronous Stateless two-way Service

Pattern 3: Basic Asynchronous Stateless one-way Service

Pattern 4: Basic Asynchronous Stateful two-way Service

Pattern 5: Basic Asynchronous Stateful one-way Service

Pattern 6: Composite Synchronous Stateless two-way Service

Pattern 7: Composite Synchronous Stateful two-way Service

Pattern 8: Composite Asynchronous Stateless two-way Service

Pattern 9: Composite Asynchronous Stateless one-way Service

Pattern 10: Composite Asynchronous Stateful two-way Service

Pattern 11: Composite Asynchronous Stateful one-way Service

Other Patterns

Best Practices for WLI Application Lifecycle 6-3

Pattern 1: Basic Synchronous Stateless two-way Service
Use this pattern illustrated in Figure 6-1 to implement some of the fastest processes. The standard
usage is for simple access to a backend system or to implement helper processes.

Figure 6-1 Pattern 1

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-4 Best Practices for WLI Application Lifecycle

Pattern 2: Basic Asynchronous Stateless two-way Service
Use this pattern illustrated in Figure 6-2 to implement some of the fastest processes. The standard
usage is for simple access to a backend system, when de-coupling with the process client is
required.

Figure 6-2 Pattern 2

Best Practices for WLI Application Lifecycle 6-5

Pattern 3: Basic Asynchronous Stateless one-way Service
Use this pattern illustrated in Figure 6-3 to implement some of the fastest processes. The standard
usage is to access backend systems in event-driven situations.

Figure 6-3 Pattern 3

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-6 Best Practices for WLI Application Lifecycle

Pattern 4: Basic Asynchronous Stateful two-way Service
This pattern is not as fast as its stateless equivalent. Use this pattern illustrated in Figure 6-4 to
access backend systems that provide an asynchronous interface.

Figure 6-4 Pattern 4

Best Practices for WLI Application Lifecycle 6-7

Pattern 5: Basic Asynchronous Stateful one-way Service
This pattern is very rare because most of the one-way services are stateless and so there is no need
to wait for an answer. Use this pattern illustrated in Figure 6-5 to quickly access a backend system
in event-driven situation where a call that is waiting is required.

Figure 6-5 Pattern 5

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-8 Best Practices for WLI Application Lifecycle

Pattern 6: Composite Synchronous Stateless two-way Service
Use this pattern illustrated in Figure 6-6 to implement integration logic that requires good
performance and coupling with the client.

Figure 6-6 Pattern 6

Best Practices for WLI Application Lifecycle 6-9

Pattern 7: Composite Synchronous Stateful two-way Service
This pattern represents an unusual case, where the logic is implemented after the client has
received a response. Use this pattern illustrated in Figure 6-7 to enable a stateful process that runs
for a period of time, and is started by a synchronous request or response. Once the synchronous
reply is sent, the process moves to a traditional asynchronous model.

Figure 6-7 Pattern 7

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-10 Best Practices for WLI Application Lifecycle

Pattern 8: Composite Asynchronous Stateless two-way Service
This pattern illustrated in Figure 6-8 is a standard method to implement integration logic that
requires good performance while maintaining de-coupling from its client. It can also be used to
access a backend system when de-coupling from the caller is required. It is not always possible
to implement this pattern as it requires all the resources used to be stateless.

Figure 6-8 Pattern 8

Best Practices for WLI Application Lifecycle 6-11

Pattern 9: Composite Asynchronous Stateless one-way Service
Use this pattern illustrated in Figure 6-9 to implement integration logic that requires good
performance in event-driven situations.

Figure 6-9 Pattern 9

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-12 Best Practices for WLI Application Lifecycle

Pattern 10: Composite Asynchronous Stateful two-way Service
Use this pattern illustrated in Figure 6-10 when the stateless version of the same pattern is not
possible, as at least one of the resources contains an asynchronous interface. It is also used as a
standard pattern for long-running processes.

Figure 6-10 Pattern 10

Best Practices for WLI Application Lifecycle 6-13

Pattern 11: Composite Asynchronous Stateful one-way Service
This pattern is not common as most of the one-way services are usually stateless and there is no
need to wait for an answer. Use this pattern illustrated in Figure 6-11 to implement integration
logic in event-driven scenarios, and where a call that is waiting is also required.

Figure 6-11 Pattern 11

Other Patterns
This section re-groups useful patterns, which can be used in combination with one of the core
patterns.

SyncAsync Pattern
You can create a business process containing a client request node with a sync or async callback
name attribute property, to enable synchronous clients to interact with business processes that
have asynchronous interactions with resources. The client request node property holds the name
of the callback method that the associated client response node uses. The client request and client
response nodes delineate the activities (including asynchronous activities) that occur while the

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-14 Best Practices for WLI Application Lifecycle

client is blocking the process. After setting this property, generate the sync-to-async WSDL. The
synchronous WSDL generation process replaces the SOAP address of the service with a modified
SOAP address. The modified address causes the synchronous servlet to process the client request
and subsequent return action. A sample of the generated service entry is as follows:

Normal WSDL

<service name="syncAsync">

<port name="syncAsyncSoap" binding="s0: syncAsyncSoap">

<soap: address

location="http://localhost:7001/SyncAsyncWeb/processes/syncAsync.jpd"/>

</port>

Synchronous WSDL

<service name="syncAsync">

<port name="syncAsyncSoap" binding="s0: syncAsyncSoap">

<soap:address

location="http://localhost:7001/sync2AsyncIM/SyncAsyncWeb/processes/syncAs

ync.sync2JPD"/>

De-Synchronizer Pattern
The de-synchronizer pattern allows you to asynchronously call a synchronous process. This is
recommended if:

The process needs to support both synchronous and asynchronous clients.

De-coupling is required, in particular if a sub-process needs to run in its own transaction.

The client is unable to call services synchronously.

Best Practices for WLI Application Lifecycle 6-15

Implement the process in Figure 6-12 to provide an asynchronous interface to a synchronous
process.

Figure 6-12 De-Synchronizer Pattern

De-Synchronizer Service
This is a simple proxy process. The signature of the request and the response should remain the
same as that of the original service. The de-synchronizer passes its input values to the sub-process
and sends the return value to the caller of the sub-process.

Course-Grained Process Front-end for a Fine-Grained
Process
Figure 6-13 illustrates an example of how you can use a combination of course-grained and fine
grained processes. A course-grained process assigns specific work to a number of fine-grained
processes.

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-16 Best Practices for WLI Application Lifecycle

Figure 6-13 Front-end a Fine-Grained Process With a Course-Grained Process

Loosely Coupled Process With a Common Message
Interface
This pattern illustrated in Figure 6-14 shows how you can create a loosely coupled process using
a common messaging interface through message brokers, based upon a Publish and Subscribe
architecture.

Figure 6-14 Loosely Coupled Process Using Message Interface

Best Practices for WLI Application Lifecycle 6-17

Dynamic Property Driven Processes
You can use the following controls to define a dynamic, property driven process:

Dynamic controls:

– Dynamic Transformation control

– XML Meta data control

Dynamic Binding controls:

– Service Broker control

– Process control

Dynamic subscription:

– Message Broker Subscription control

Runtime controls - Most controls have setProperties(<type>ControlPropertiesDocument
xml)

Figure 6-15 illustrates an example of an agile and dynamic process with a Register and Table
look-up.

Figure 6-15 Agile, Dynamic Process with a Register and Table Look-up

Core Implementat ion Pat te rns fo r WL I App l i cat ions

6-18 Best Practices for WLI Application Lifecycle

The features of this process are as follows:

The target URL is determined at runtime and contains a:

– Registry Look-up

– Table Look-up

The Service Broker control accepts the end point as the runtime property

The Service Broker invokes the specified service at a location determined at runtime.

Best Practices for WLI Application Lifecycle A-1

A P P E N D I X A

Understanding Requirements

You can use the following SMART criteria to evaluate functional and non-functional
requirements:

Specific - Is the requirement unambiguous, with consistent terminology, simple, and at the
appropriate level of detail?

Measurable - Is it possible to verify that this requirement has been met? What tests must be
performed, or what criteria must be satisfied to verify that the requirement is met?

Attainable - What is your professional judgment of the technical feasibility of the
requirement?

Realistic - Is the requirement realistic, given the resources? Do you have adequate staff?
Do you have the skills? Do you have access to the requisite development infrastructure?
Do you have access to the required runtime infrastructure? Do you have enough time?

Traceable - Is the requirement linked from its conception through its specification to its
subsequent design, implementation, and test?

When in a solution domain, use robustness analysis to categorize your use cases.

You can divide a use case into four kinds of objects using robustness analysis:

Actors - Objects external to use cases. Actors could be human or other external objects
such as systems, applications, or devices. Actors interact with the use case by sending or
receiving messages.

Unders tanding Requ i rements

A-2 Best Practices for WLI Application Lifecycle

Boundary objects - The public face of the use case. Actors interact with use cases using
boundary objects. The user interface element or the public API of the use case are
examples of boundary objects.

Entity objects - The objects with long lives in the use case. Examples of entity objects are
purchase order, invoice, and customer.

Controller objects - The glue between boundary elements and entity objects. They contain
methods for specific functions in a use case such as Validate user, Create, Retrieve, Update,
and Delete (CRUD) functions.

Figure A-1 shows how the use case is divided into objects.

Figure A-1 Use Case Realization

Figure A-2 illustrates the rules of robustness analysis.

Figure A-2 Rules of Robustness Analysis

Best Practices for WLI Application Lifecycle A-3

The rules are as follows:

You can have one or more actors, boundary objects, controllers, and entity objects in a use
case.

Actors can only talk to boundary objects.

Boundary objects can only talk to controllers and actors.

Entity objects can only talk to controllers.

Controllers can talk to boundary and entity objects, other controllers, but not to actors.

Note: Dr. Ivar Jacobson developed the use case and robustness analysis technique. He is well
known as the father of use cases and was also one of the authors of the original UML
specifications.

	Introduction
	Features of WLI

	Understanding Requirements
	Architecture and Design of the WLI Application
	Modeling Business Processes and Services
	Defining Business Processes
	Identifying Process Objectives and Goals
	Identifying Key Performance Indicators for the Process
	Identifying Process Actors or Participants
	Identifying Public and Private Processes
	Identifying Initiator and Participant Processes
	Keeping Processes Modular
	Enabling end-to-end, Cross-functional Processes
	Separating Production and Monitoring Processes

	Designing and Developing Services
	Service Classification
	Identify Services
	Define Service Contract
	Define Input and Output Service Messages
	Define Pre and Post Conditions for Services
	Decide the Service Calling Paradigm
	Decide the Service Granularity
	Define Quality of Service Requirements
	Design Service With a Service Proxy
	Design Reusable Services
	Design Loosely Coupled Services

	Composing and Developing WLI Applications
	Naming Standard for WLI Application Artifacts and Variables
	Modular JPD Design
	Modular XML Document
	Parallel Node
	JPD Exceptions
	Event Handlers for Process Events
	JPD Transactions and Compensation Management
	Transaction Boundaries
	Transactions for Synchronous and Asynchronous Processes
	Transactions and Controls

	JPD State Management
	JPD Versioning

	Singleton JPD
	Race Condition With Dynamic Subscription
	Dead Letter Channel Subscription
	High Quality of Service JPD
	SLA Threshold for JPDs
	Monitor JPDs
	Security Policy for JPDs
	Interoperable JPDs
	Communication Between JPDs
	Using Controls
	Using Dynamic Properties and Annotation for Controls
	Buffering Service Control Methods During Asynchronous Calls
	Using Control Factory to Manage Multiple Instances of a Control

	Data Transformation
	Canonical Data Model
	Runtime Selection of a Transformation
	Developing a Task Plan
	Task Plan for Exception Management
	Integrating Custom Logic With a Task Plan

	Deploying and Maintaining WLI Applications
	Deploying WLI Application During Runtime
	Deploying WLI Application in a Cluster
	Configuring Trading Partner Integration Resources

	Changing Cluster Configurations and Deployment Requests
	Load Balancing in a WLI Cluster
	HTTP Functions in a Cluster
	JMS Functions in a Cluster
	Synchronous Clients and Asynchronous Business Processes
	RDBMS Event Generators
	Application Integration Functions in a Cluster

	Core Implementation Patterns for WLI Applications
	Core Implementation Patterns for a JPD
	Pattern 1: Basic Synchronous Stateless two-way Service
	Pattern 2: Basic Asynchronous Stateless two-way Service
	Pattern 3: Basic Asynchronous Stateless one-way Service
	Pattern 4: Basic Asynchronous Stateful two-way Service
	Pattern 5: Basic Asynchronous Stateful one-way Service
	Pattern 6: Composite Synchronous Stateless two-way Service
	Pattern 7: Composite Synchronous Stateful two-way Service
	Pattern 8: Composite Asynchronous Stateless two-way Service
	Pattern 9: Composite Asynchronous Stateless one-way Service
	Pattern 10: Composite Asynchronous Stateful two-way Service
	Pattern 11: Composite Asynchronous Stateful one-way Service
	Other Patterns

	Course-Grained Process Front-end for a Fine-Grained Process
	Loosely Coupled Process With a Common Message Interface
	Dynamic Property Driven Processes

