
WebLogic
Integration™

Introducing Application
Integration

Version 9.2
Revised: March 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Introducing Application Integration iii

Contents

1. Introduction to Application Integration
Adapters . 1-2

Easy and Fast Integration with Enterprise Information Systems 1-2

Compliance with the J2EE Connector Architecture . 1-3

Scalable, Reliable, and Secure Integration Framework . 1-3

Application Views . 1-4

Application View Control . 1-4

How Do Adapters Fit Into the WebLogic Architecture? . 1-4

2. Understanding Application Integration
The Application Integration Life Cycle . 2-1

Understanding Adapters. 2-2

Supported Operations . 2-2

Understanding Application Views . 2-3

Main Features of Application Views . 2-6

Use of XML as a Common Language Among Applications. 2-6

Use of Service and Event Definitions to Expose Application Capabilities. 2-6

Use of XML Schemas to Define the Data for Services and Events 2-7

Support of Bidirectional Communication in Adapters . 2-7

Application Integration Service Clients and Event Consumers 2-7

Clients for Service Invocations . 2-7

Event Consumers . 2-8

iv Introducing Application Integration

Understanding Design-Time GUIs . 2-9

Creating Application Views Using a Design GUI . 2-9

Managing Application Views with the Console . 2-10

When to Define Application Views and When to Write Custom Code 2-10

When to Define Application Views . 2-10

When to Write Custom Code Instead of Defining Application Views 2-10

EIS Metadata, Schemas, and Repositories. 2-11

Schemas . 2-11

Repositories . 2-13

Tools for Integration Solutions . 2-13

BEA Application Explorer. 2-13

Application Integration Design Console . 2-14

BEA WebLogic Workshop. 2-14

WebLogic Integration Administration Console . 2-14

Run-Time Processing of Services and Events. 2-15

Processing Service Invocations at Run Time. 2-15

Processing Synchronous Service Invocations. 2-16

Processing Asynchronous Service Invocations . 2-17

Processing Event Notifications at Run Time . 2-19

3. Roles, Responsibilities, and Tasks
Roles and Responsibilities . 3-1

Application Integration Specialists . 3-1

EIS Specialists . 3-2

Technology Specialists. 3-2

Process to Create Integration Solutions . 3-2

Phase 1: Design the Solution . 3-3

Step 1: Define the Components of the Solution . 3-3

Introducing Application Integration v

Step 2: Create a Detailed, End-to-End Design of the Solution 3-3

Phase 2: Build the Solution . 3-4

Phase 3: Deploy and Manage the Solution. 3-5

Where To Go From Here. 3-5

4. Understanding the ADK
Design-Time Framework . 4-1

Run-Time Framework . 4-2

Logging and Auditing Framework . 4-2

Packaging Framework . 4-2

5. Understanding the Development Kit Adapters
How the Kit Adapters Were Developed . 5-1

How to Use the Kit Adapters. 5-1

DBMS Adapter. 5-2

Sample Adapter . 5-2

Index

vi Introducing Application Integration

Introducing Application Integration 1-1

C H A P T E R 1

Introduction to Application Integration

WebLogic Integration provides a standards-based integration solution for connecting
applications both within and between enterprises. WebLogic Integration provides the following
tools for integrating applications:

Adapters

Application Views

Application View Controls

Adapter Development Kit (ADK)

By using these tools, you can integrate all your enterprise information systems. Typical IT
organizations use several highly specialized applications. Without a common integration
platform, integration of such applications requires extensive, highly specialized development
efforts.

Application Integration is a deprecated feature in WebLogic Integration. The use of Application
Views, Controls and Adapters are supported in WebLogic Integration 9.2, but will not be
supported in future releases of WebLogic Integration. WebLogic Integration does not support the
development of new adapters using the ADK.

However, to enable design-time for your application from the Application View design console,
your IDE J2EE application project will require an ‘ai-publish.properties’ file. For more
information see, CR 266949 in the Application Integration section of the WebLogic Integration
Release Notes.

In t roduct ion to App l i cat ion In tegrat ion

1-2 Introducing Application Integration

Adapters
WebLogic Integration makes use of adapters to establish a single enterprise-wide framework for
integrating current or future applications. Adapters greatly simplify your integration efforts
because they allow you to integrate each application with a single application server, and thus
avoid the need to integrate every application with every other application.

The BEA WebLogic Adapters for WebLogic Integration enable fast, simple, and robust
enterprise application integration. Compliant with the J2EE™ Connector Architecture
specification from Sun Microsystems, Inc., each adapter provides bi-directional,
request-response integration with a specific application, protocol, or technology. You purchase
the individual adapters you want, and then install them to work in conjunction with BEA
WebLogic Integration. User information on specific adapters is available at http://edocs.bea.com.
Please check the BEA web site or contact Customer Support for platform support information.

The BEA WebLogic Adapters for WebLogic Integration provide:

Easy and Fast Integration with Enterprise Information Systems

Compliance with the J2EE Connector Architecture

Scalable, Reliable, and Secure Integration Framework

In addition to the BEA WebLogic Adapters for WebLogic Integration, developers can create
custom adapters using the WebLogic Integration Adapter Development Kit (ADK). The ADK is
a set of tools for implementing the events and services supported by BEA WebLogic Integration.

Note: Throughout the rest of this document, the term adapter refers to any of the BEA
WebLogic Adapters for WebLogic Integration, while the term custom adapter refers to
any custom adapter that was created using the ADK.

Easy and Fast Integration with Enterprise Information
Systems
An enterprise information system (EIS) is an application that provides the information
infrastructure for an enterprise. An EIS offers its clients a set of services that are made available
to clients via local and/or remote interfaces. Examples of EISs include:

Enterprise Resource Planning (ERP) systems, such as SAP R/3 or PeopleSoft

Customer Relationship Management (CRM) systems, such as Siebel

Database systems, such as Oracle

Adapte rs

Introducing Application Integration 1-3

The BEA WebLogic Adapters for WebLogic Integration work with the most popular and widely
used EISs. The adapters enable organizations to quickly design and deploy integration solutions
that involve existing and future EIS resources. Adapters simplify integration efforts by providing
robust, standards based connectivity with various applications within a coherent framework built
on top of WebLogic Server.

Compliance with the J2EE Connector Architecture
The BEA WebLogic Adapters for WebLogic Integration are implementations of the J2EE
Connector Architecture (JCA) version 1.0, from Sun Microsystems, Inc. The JCA is used for
integrating J2EE-compliant application servers with enterprise information systems (EIS). The
JCA consists of two parts: an EIS-specific resource adapter (such as those provided in the BEA
WebLogic Adapters for WebLogic Integration) and an application server (such as BEA
WebLogic Server) that the resource adapter plugs into.

The JCA defines a set of contracts, such as transactions, security, and connection management,
that a resource adapter must support in order to plug in to an application server. For more
information, see the Sun JCA page at the following URL:

http://java.sun.com/j2ee/connector/

Scalable, Reliable, and Secure Integration Framework
The BEA WebLogic Adapters for WebLogic Integration are crucial components of a
comprehensive enterprise integration framework that provides:

Scalability via the clustering, load balancing, and resource pooling features of BEA
WebLogic Platform. In a scalable deployment, adding a linear amount of resources—such
as memory, processors, or machines—will result in a corresponding linear increase in
throughput while maintaining the same response level.

Reliability via the fault-tolerant and server fail-over features of BEA WebLogic Platform.
If a critical problem occurs—such as an e-business application bug or an operating system,
hardware, or network failure—integration solutions remain up-and-running.

Security for mission-critical applications and data via the extensive security mechanisms of
BEA WebLogic Platform as well as the security of integrated EISs. WebLogic security
mechanisms provide user authentication and authorization capabilities, integration with
existing security systems (such as LDAP) through security realms, controls in both the
presentation and business layers, and fire wall interoperability.

http://java.sun.com/j2ee/connector/

In t roduct ion to App l i cat ion In tegrat ion

1-4 Introducing Application Integration

Application Views
WebLogic Integration helps you use adapters to define business-focused interfaces to an EIS.
These interfaces, called application views, provide a simple, consistent, self-describing interface
to services and events in an application. Unlike adapter users, application view users are not
required to have intimate knowledge of the EIS or its client interface. As a result, users who are
not programmers, such as technical analysts, can use application views.

Application View Control
You use application view controls in WebLogic Workshop to interact with an EIS through an
application view. Application view controls allow a business process engineer to browse the
hierarchy of application views, invoke a service as a business process action, and start a new
business process when an EIS event occurs.

How Do Adapters Fit Into the WebLogic Architecture?
Adapters are used in conjunction with the application integration capabilities of BEA WebLogic
Integration. These capabilities provides a systematic, standards-based architecture for hosting
business-oriented interfaces to enterprise applications.

The following illustration shows how the various application integration components interact.

How Do Adapte rs F i t In to the WebLog ic A rch i tec ture?

Introducing Application Integration 1-5

In t roduct ion to App l i cat ion In tegrat ion

1-6 Introducing Application Integration

Introducing Application Integration 2-1

C H A P T E R 2

Understanding Application Integration

The application integration capabilities provided by WebLogic Integration offer a
standards-based architecture for hosting application views: business-oriented interfaces to
enterprise applications.

This section includes the following topics:

The Application Integration Life Cycle

Understanding Adapters

Understanding Application Views

Understanding Design-Time GUIs

Tools for Integration Solutions

Run-Time Processing of Services and Events

The Application Integration Life Cycle
The various application integration components participate in the following high-level life cycle:

1. Define the overall integration solution. This includes defining what EIS and adapters are used
and what services and events are implemented.

2. Install and deploy the required adapters.

3. Create a WebLogic Workshop application that implements the required business processes for
the integration solution.

Unders tanding Appl i cat ion In teg ra t i on

2-2 Introducing Application Integration

4. Define an application view that addresses a specific business purpose. This step includes
defining the required services and events and testing the application view.

5. Publish the application view to the WebLogic Workshop application.

6. Define an Application View control that provides access to application view services.

7. Integrate the Application View control into your business process.

8. Deploy your integration solution.

9. Manage your integration solution using the WebLogic Integration Administration Console.

Understanding Adapters
A resource adapter (or simply adapter) is a software component that acts as a connector between
an EIS and a J2EE application server (such as BEA WebLogic Server). Each adapter provides
bi-directional, request-response integration with a specific application or technology. Resource
adapters are implementations of the J2EE Connector Architecture (JCA) version 1.0, from Sun
Microsystems, Inc. For more information, see the Sun JCA page at the following URL:

http://java.sun.com/j2ee/connector/

Application integration uses adapters and associated application views to help you integrate
applications in your enterprise. Instead of hardwiring your enterprise systems together, you can
use adapters to connect enterprise systems to an application server. Once you deploy an adapter
for an EIS, other components and applications can use that adapter to access data on the EIS.

Supported Operations
Adapters handle two general types of operations:

Services are request / response communications with the EIS. Client applications submit
service requests to the EIS via the adapter, and the adapter returns the EIS response back to
the client. For example, a business process might invoke a SAP BAPI or execute a
SELECT statement on a database. Responses are either synchronous or asynchronous.

http://java.sun.com/j2ee/connector/

Unders tanding Appl ica t ion V iews

Introducing Application Integration 2-3

Events are asynchronous, one-way messages received from an EIS. For example, the
adapter can receive an IDOC from a SAP system or a message from an MQ system.
The adapter routes the EIS message to the appropriate software component via the
WebLogic Integration Message Broker and the Application Integration JMS infrastructure.

In effect, a service is a request for some work to be done and an event is a notification that some
work has been done.

At run time, the EIS and the adapter exchange requests, responses, and events as XML
documents. The adapter automatically handles the data translation between the EIS format and
the XML format via schemas that are defined at design-time.

An adapter instance defines zero or one event connection and zero or more service connections.
Each adapter instance is related to a base adapter which is deployed as a RAR file.

Understanding Application Views
An application view is a business oriented interface to objects and operations within an EIS.
Application views include the information needed to communicate with the EIS as well as
configurations for services and events. Application views define:

Communication with the EIS, including connection settings, login credentials, and so on.

Service invocations, including the information that the EIS requires for the request, as
well as the service request and response schemas associated with the service.

Event notifications, including the information that the EIS publishes and the event
schemas for inbound messages.

Unders tanding Appl i cat ion In teg ra t i on

2-4 Introducing Application Integration

An application view is typically configured for a single business purpose and contains only the
services or events required for that business purpose. An EIS might have multiple application
views defined for different business purposes. For example, an EIS containing human resources
data might have an HREmployee application view that provides individual employees with
read-only access to their personnel information, and an HRDataEntry application view that
provides data entry clerks with the ability to add, update, and delete personnel information.

Application views provide a layer of abstraction between an adapter and the EIS functions
exposed by that adapter. By using application views, you can simplify the procedure you must
perform to access adapters. Instead of accessing an EIS by directly invoking it, you can simply
edit the adapter’s application views, create new application views, or delete obsolete ones. This
layer of abstraction, formed by application views, makes it easy for nonprogrammers to maintain
the services and events exposed by the adapter.

Each application view defines a set of business functions on one adapter’s EIS. After an adapter
is created, you can use its Web-based interface to define your own application views. Such
application views allow you to display the application capabilities exposed by an adapter.

If you are a business analyst or technical analyst and you define an application view using an
adapter, you can customize the application view for a specific business purpose. The business
purpose is defined by the business analyst. For example, if you define a “Customer Management”
application view on an adapter for a CRM (Customer Relationship Management) system, then
you are likely to add only services and events that are related to customer management. You can,
however, create application views that are as inclusive as necessary. Because application views
can be customized for a specific business purpose, they work much better than the “one size fits
all” approach used by many other EAI systems.

The business-level view of an application’s capabilities provides a logical dividing line between
the focus of the programmer and that of the technical analyst. For example, with a business-level
view, a technical analyst can create records in a database without knowing SQL. Figure 2-1
provides a diagram of an application view at work in an application integration environment.

Unders tanding Appl ica t ion V iews

Introducing Application Integration 2-5

Figure 2-1 How Application Views Work

You create application views using the Application Integration Design Console, which is
described in “Application Integration Design Console” on page 2-14. For detailed information
about application views, see Defining an Application View in Using the Application Integration
Design Console at the following URL:

http://edocs.bea.com/wli/docs92/aiuser/2usrdef.html

You can use application views from a business process (JPD), web service (JWS), or from BEA
Liquid Data. You can also write custom code to access an application view. For more
information, see Using Application Views by Writing Custom Code in Using the Application
Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs92/aiuser/4usrcust.html

{DOCROOT}/aiuser/2usrdef.html
{DOCROOT}/aiuser/2usrdef.html
{DOCROOT}/aiuser/4usrcust.html
{DOCROOT}/aiuser/4usrcust.html

Unders tanding Appl i cat ion In teg ra t i on

2-6 Introducing Application Integration

Main Features of Application Views
WebLogic Integration uses the application view as its primary user interface for adapters, and it
offers the following features not commonly found in competing EAI technologies:

Use of XML as a Common Language Among Applications

Use of Service and Event Definitions to Expose Application Capabilities

Use of XML Schemas to Define the Data for Services and Events

Support of Bidirectional Communication in Adapters

The remainder of this section provides descriptions of these functions.

Use of XML as a Common Language Among Applications
In an EAI scenario, it is much easier and more efficient to use one common data format to
integrate every EIS with WebLogic Server than it is to use a variety of custom, proprietary data
formats to integrate each EIS with every other EIS. When a common data format is used, all
applications communicate using a standard language. WebLogic Integration uses XML, the
increasingly popular data interchange format, as its common data format.

In the WebLogic Integration environment, virtually all messages are sent as XML documents:

For each service, application views require an XML request message and provide an XML
response message.

When events are generated, registered event listeners receive event information as XML
messages. The application view relies on its adapter to translate the EIS-specific format
into and from XML.

Because an adapter translates an application’s data format using XML, business analysts do not
need to understand that format themselves. If you are a business analyst and you want to use an
adapter, you need to know only how to define and use application views. Best of all, because all
adapters use a similar Web-based interface for defining application views, it is easy to learn to
use current and future adapters. Thus XML simplifies the use of EAI for developers and business
analysts alike.

Use of Service and Event Definitions to Expose Application Capabilities
The application view, via an underlying adapter, supports events and services for a particular
business use. Events enable messages generated by an application to be managed following a
publish and subscribe model. Services are business functions that may be invoked by a user.

Unders tanding Appl ica t ion V iews

Introducing Application Integration 2-7

Service invocations cause messages to be sent to an application following a request/response
model. Events, service requests, and service responses are all passed through the system as XML
documents.

Use of XML Schemas to Define the Data for Services and Events
Each application view uses an XML schema as metadata: that is, as information about the XML
information for events, service requests, and service responses. This metadata helps users
understand the data requirements of any application view event or service.

Support of Bidirectional Communication in Adapters
Currently, the J2EE Connector Architecture Specification version 1.0 does not provide guidelines
governing how an EIS initiates communication with an application server or client. WebLogic
Integration provides this communication capability via events.

Application Integration Service Clients and Event
Consumers
This section describes clients for service invocations and consumers for event notifications.

Clients for Service Invocations
The following table describes the kinds of clients that invoke services on an EIS via an
application view.

Unders tanding Appl i cat ion In teg ra t i on

2-8 Introducing Application Integration

Event Consumers
Adapters deliver events using the WebLogic Integration Message Broker, which provides
business processes with a channels-based publish and subscribe communication mechanism. For
an illustration, see “Processing Event Notifications at Run Time” on page 2-19. The following
table describes common consumers of events from an EIS.

Table 2-1 Common Service Clients

Client Description

 BEA
WebLogic
Workshop:
• business

processes
• web

services
• portals

Business processes, web services, and portals all access EIS data via the Application
View Control, a Workshop control that provides access to an application view and,
therefore, to the services defined for the associated EIS. The Application View control
allows a business process engineer to browse the hierarchy of application views and to
invoke a service as a business process action.

Synchronous services are represented as simple methods with a single parameter and
a non-void return value. For an illustration of synchronous services, see “Processing
Synchronous Service Invocations” on page 2-16. Asynchronous services are
represented as both a method with a single parameter (the request), and a callback
method with a single parameter (the response). For an illustration of asynchronous
services, see “Processing Asynchronous Service Invocations” on page 2-17.

For more information, see the following topics in the BEA WebLogic Workshop Help
System:
• Building Integration Applications
• Building Web Services
• Building Portal Applications

In addition, see “Using Applications With Business Processes” in Using the
Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs92/aiuser/3usruse.html

Custom Java
Applications

Any Java application that uses the Application View client API (in
com.bea.wlai.client) can invoke services on an application view. For more
information, see “Using Application Views by Writing Custom Code” in Using the
Application Integration Design Console

http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/portal/overview/BuildingPortalAppsOV.html
{DOCROOT}/aiuser/3usruse.html

Unders tand ing Des ign-T ime GUIs

Introducing Application Integration 2-9

Understanding Design-Time GUIs
The design-time capabilities provided by WebLogic Integration provide a means for developers
to create the Common Client Interface (CCI) for each adapter. The CCI enables applications
components and Enterprise Application integration (EAI) frameworks to drive interactions
across heterogeneous EISs using a common client API. An adapter’s design-time GUI enables
nonprogrammers to rapidly create, deploy, test, and edit application views, which they can
customize by adding services and events.

Creating Application Views Using a Design GUI
The primary purpose of an adapter’s design GUI is to allow you to define, deploy, and test
application views. For detailed information about defining application views, see Using the
Application Integration Design Console.

Table 2-2 Common Event Consumers

Client Description

 BEA
WebLogic
Workshop:
• business

processes
• web

services
• portals

Business processes, web services., and portals can subscribe to events published by the
Message Broker via the Message Broker Subscription control (or, for business
processes only, a static subscription). The Message Broker control listens for
application view events. Events can start business processes in which the start node is
configured with “Started with a Message Broker Subscription”.

For more information, see the following topics in the BEA WebLogic Workshop Help
System:
• Message Broker Subscription Controls in “Using Integration Controls”
• Building Integration Applications

In addition, see “Receiving Events” in “Using Applications With Business Processes”
in Using the Application Integration Design Console

Custom Java
Applications

Any Java application that uses the Application View client API (in
com.bea.wlai.client) can consume events. For more information, see “Using
Application Views by Writing Custom Code” in Using the Application Integration
Design Console.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerSubscribe.html
{DOCROOT}/aiuser/index.html
{DOCROOT}/aiuser/index.html

Unders tanding Appl i cat ion In teg ra t i on

2-10 Introducing Application Integration

Managing Application Views with the Console
The Application Integration Design Console helps you access, organize, and edit all application
views in your enterprise. You can use the Application Integration Design Console to create new
folders and then add new application views to them. These folders allow you to organize your
application views according to your own navigation scheme, regardless of the adapter used by the
application view.

For detailed information about managing application views, see “Using the Application
Integration Design Console” in Using the Application Integration Design Console.

When to Define Application Views and When to Write
Custom Code
Using an adapter’s design-time GUI is not the only way to expose the functionality of an EIS, but
it is usually the most convenient method. To support service invocations and events, you can
define application views, or you can write custom code that accomplishes equivalent functions.
At a minimum, you must define application views for each adapter, to expose the functions
provided by the adapter’s application. However, if your users require a greater than average
degree of control, you may also write custom code that allows them to access the resources of an
adapter. You must decide whether the needs of your enterprise can best be met by defining
application views, writing your own code, or implementing a combination of both methods.

When to Define Application Views
Most EIS applications can be integrated into your system easily by defining application views.
You may want to define application views in the following situations:

You have multiple EIS systems in your enterprise, and you lack developers with a detailed,
thorough knowledge of them.

You want to use WebLogic Workshop to construct and manage business processes.

You need to update the parameters of an adapter or one of its processes.

When to Write Custom Code Instead of Defining Application Views
In general, you should write a custom interface to an adapter only in the following situations:

You have only one EIS system in your enterprise.

Unders tand ing Des ign-T ime GUIs

Introducing Application Integration 2-11

Your developer has thorough, detailed knowledge of each EIS involved in the business
processes being coded.

You do not need to use the business process capabilities in WebLogic Integration.

You do not anticipate any need to change your code.

These use cases assume you are using JCA 1.0 adapters directly with WebLogic Server. In these
cases, you are coding directly to the JCA CCI. This bypasses the capabilities of application views
and WebLogic Integration.

EIS Metadata, Schemas, and Repositories
Each EIS uses its own interface to handle service requests and event notifications. For example,
SAP provides a BAPI interface that defines the parameters and syntax for BAPI requests and
responses. For each EIS, the EIS interface defines the metadata that applications can use to
integrate with the EIS. The EIS publishes data and expects requests in the format dictated by its
interface rules and metadata.

Schemas
At run time, the EIS and the adapter exchange service requests, service responses, and events via
XML documents. The adapter handles the data translation between XML documents and the EIS
format, using schemas that have been defined at design-time to map the data between XML and
the EIS format:

For service requests, the request arrives at the adapter in the form of an XML document.
The adapter uses the request schema associated with the service (as defined in the
application view) to translate the request to the format that the EIS expects. Similarly,
when the adapter receives the response back from the EIS, it uses the response schema
associated with the service to translate the response to an XML document that the
requesting application handles.

Unders tanding Appl i cat ion In teg ra t i on

2-12 Introducing Application Integration

For event notifications, the inbound message arrives at the adapter in the format that the
EIS uses to publish the event. The adapter uses the event schema associated with the event
(as defined in the application view) to translate the response to an XML document that the
subscribed application handles.

Too ls f o r In tegra t i on So lut i ons

Introducing Application Integration 2-13

At design time, you define a request and a response schema for each service and an event schema
for each event that you configure in the application view. For some adapters, such as SAP, you
can use the BEA Application Explorer, which is described in “BEA Application Explorer” on
page 2-13. For other adapters, you need to create schemas manually. For instructions on how to
define schemas for a particular adapter, see the “Generating Schemas” chapter in the User’s
Guide for the adapter(s) that you are using.

Repositories
Once you have created the necessary schemas, you save them in a file-based repository, along
with a manifest file that associates the schemas with events and services. When you configure
application views in the Application Integration Design Console, you specify the location of the
repository so that the application view can find the schemas as needed. For more information, see
the “Defining Application Views” chapter in the User’s Guide for the adapter(s) that you are
using.

Tools for Integration Solutions
This section describes the following tools for designing and deploying integration solutions that
involve EIS integration:

BEA Application Explorer

Application Integration Design Console

BEA WebLogic Workshop

WebLogic Integration Administration Console

BEA Application Explorer
Note: The BEA Application Explorer is only used for some BEA WebLogic adapters. Refer to

your adapter documentation to see if you need to use this tool.

The BEA Application Explorer is a design-time tool that you can use to generate schemas for
services and events. The BEA Application Explorer incorporates in-depth knowledge of
application system environments to query for metadata on specific business objects in the EIS. It
uses that metadata to generate the schemas required to build the selected service or event—
request and response schemas for services and the event schemas for events. For an introduction
to schemas, see “EIS Metadata, Schemas, and Repositories” on page 2-11.

Unders tanding Appl i cat ion In teg ra t i on

2-14 Introducing Application Integration

For instructions on how to define schemas for a particular adapter, see the “Generating Schemas”
chapter in the User’s Guide for the adapter(s) that you are using.

Application Integration Design Console
The Application Integration Design Console is a design-time tool that you use to build application
views and configure services and events. For each event or service, the Application Integration
Design Console allows you to configure connection settings and other relevant information.

For instructions on how to create application views using the Application Integration Design
Console, see the “Defining Application Views” chapter in the User’s Guide for the adapter(s) that
you are using, as well as “Defining an Application View” in “Introduction to Application
Integration” in Using the Application Integration Design Console.

BEA WebLogic Workshop
BEA WebLogic Workshop is an integrated development environment for building
enterprise-class applications on the BEA WebLogic Platform. WebLogic Workshop is both a
design-time tool for building business processes, web services, and portals, and a run-time
environment for running business processes.

BEA WebLogic Workshop provides the following mechanisms for integrating with EISs:

The Application View control lets a developer invoke Application View services both
synchronously and asynchronously.

The Message Broker Subscription control lets event consumers subscribe to Message
Broker channels and listen for events that the adapter has received from the EIS and has
published via the Message Broker.

Note: To start business processes based on events, the start nodes should be configured to
start with a Message Broker Subscription.

For detailed information, see Starting Your Business Processes in the BEA WebLogic Workshop
Help System.

WebLogic Integration Administration Console
The WebLogic Integration Administration Console allows you to manage deployed application
views and adapter instances. For each application view, an administrator can perform
management tasks, including the following:

Display and reset event and service statistics

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStart.html

Run-T ime Process ing o f Se rv i ces and Events

Introducing Application Integration 2-15

Set environment variables and the security policy

Suspend and resume an application view

Change container managed sign-on settings

Change auto suspend settings

Switch event and service connections

For each adapter instance, an administrator can perform management tasks, including the
following:

Display event and service statistics

Display application views using the adapter instance

Suspend and resume an adapter instance

Edit/modify event and service connections

Redeploy adapter instances

For more information on the console, see Managing WebLogic Integration Solutions. The
information is also provided in the WebLogic Integration Administration Console Help.

Run-Time Processing of Services and Events
This section provides a high-level overview of how adapters process services and events at run
time. It contains the following topics:

Processing Service Invocations at Run Time

Processing Event Notifications at Run Time

The procedures in this section provide simplified, high-level (non-programmer) descriptions of
the process. For sample code, see “Code for Sample Java Class” in “Using Application Views by
Writing Custom Code” in Using the Application Integration Design Console.

In these procedures, we use the term adapter instance. An adapter instance defines zero or one
event connection and zero or more service connections. Each adapter instance is related to a base
adapter which is deployed as a RAR file.

Processing Service Invocations at Run Time
Service invocations can be either synchronous or asynchronous:

{DOCROOT}/manage/index.html

Unders tanding Appl i cat ion In teg ra t i on

2-16 Introducing Application Integration

For synchronous service invocations, the client application stops until it receives the
response from the EIS.

For asynchronous service invocations, the client application continues, but polls
periodically for the response from the EIS or receives the response in a callback method.

The steps for processing service invocations differ when invoked synchronously or
asynchronously.

Processing Synchronous Service Invocations
This section walks through the process of a synchronous service invocation at run time, as shown
in Figure 2-2.

Figure 2-2 Run-Time Processing of a Synchronous Service Invocation

The following procedure describes, at a high level, how a synchronous service invocation is
processed at run time:

1. The client application invokes a given service on a given application view (invokeService
method), specifying the service name, application name, and the request document.

The client application specifies the response document as the return value to the
invokeService method.

Run-T ime Process ing o f Se rv i ces and Events

Introducing Application Integration 2-17

2. Based on the service invoked, the client instance of the application view obtains a connection
to the EIS from the connection factory defined in the adapter instance, and then establishes a
connection to the EIS.

3. The client instance of the application view requests that the adapter execute the service
request (execute method).

4. Upon receiving the request document, the adapter:

– Translates the request document into the appropriate EIS format using the request
schema that was configured for the service.

– Submits the request to the EIS for processing using the appropriate communications
technology for the EIS.

5. The EIS processes the request and returns the response.

6. Upon receiving the response from the EIS, the adapter:

– Translates the response to the XML format using the response schema that was
configured for the service.

– Returns the response document to the client.

7. The client receives the response document as the return value to the invokeService method
and processes it accordingly.

Processing Asynchronous Service Invocations
This section walks through the process of an asynchronous service invocation at run time.
Asynchronous service invocations can be initiated in either of two ways:

If the service is invoked on a business process using an Application View control, then the
service has already been configured for asynchronous invocation. At design time in
WebLogic Workshop, while configuring an application view control, you specify an
asynchronous invocation by selecting the service in the Services to Invoke Asynchronously
list in the Application View Browser window.

If the service is invoked programmatically, then the client application specifies the
request ID as the return value to the method indication. The client application also specifies
a callback handler method to match a response with the request ID and to receive the
response as a response document.

Figure 2-3 shows how an asynchronous service invocation is processed at run time.

Unders tanding Appl i cat ion In teg ra t i on

2-18 Introducing Application Integration

Figure 2-3 Run-Time Processing of an Asynchronous Service Invocation

The following procedure describes, at a high level, how an asynchronous service invocation is
processed at run time:

1. The client application invokes a given service on a given application view, specifying the
service name, application name, and the request document.

2. The request document is put into a JMS queue.

3. The application integration framework has a message-driven bean that pulls the request
document off the JMS queue and invokes the service on the application view, which, in turn,
invokes the adapter.

4. Upon receiving the request document, the adapter completes the following operations:

– Converts the request document to the appropriate EIS format.

– Submits the request to the EIS for processing.

5. The EIS processes the request and returns the response.

6. Upon receiving the response from the EIS, the adapter completes the following operations:

– Retrieves the request ID and matches responses to the appropriate request ID.

Run-T ime Process ing o f Se rv i ces and Events

Introducing Application Integration 2-19

– Translates the response to the XML format using the response schema that was
configured for the service.

7. The response document returns to the client application when the adapter returns the response
document to the client application via the callback method.

8. The client application receives the response document and processes it accordingly.

Processing Event Notifications at Run Time
This section walks through the process of an event notification at run time. Event notifications
are always asynchronous and are published to two destinations:

Message Broker channel. For business processes (JDP files) or web services (JWS files)
defined in WebLogic Workshop. Clients are subscribed to listen for events on specific
channels in the Message Broker queue. The Message Broker uses channel files that
describe the type of data being published to any given Message Broker channel. The
channel file associates a channel name with a schema definition. At design time, when
defining the application view, the project associated with the event must be specified.
Thereafter, when an application view is deployed, a channel file containing event type
information (comprised of the application name, application view name, and event name)
is saved in the WebLogic Workshop application directories.

Application Integration event topic. (WLAI_EVENT_TOPIC JMS topic). A message-driven
bean (the WLI-AI Event Processor) listens on the WLAI_EVENT_QUEUE distributed
destination and publishes a copy of the event to the WLAI_EVENT_TOPIC.
The WLAI_EVENT_TOPIC is a distributed JMS topic that handles the delivery of events to
remote application view clients.

At design-time, event consumers must be configured to listen for the event on either of these
destinations. In addition, the EIS must be configured to send event messages to a particular
destination so that the adapter can receive it via the EIS-specific communications protocol.

Figure 2-4 shows how an event notification is processed at run time.

Unders tanding Appl i cat ion In teg ra t i on

2-20 Introducing Application Integration

Figure 2-4 Run-Time Processing of an Event Notification

The following procedure describes, at a high level, how an event notification is processed at run
time:

1. The adapter receives the event message from the EIS.

2. The adapter translates the event message to the appropriate XML format using the event
schema that was configured for the event.

Run-T ime Process ing o f Se rv i ces and Events

Introducing Application Integration 2-21

3. The Event Generator receives the inbound message and then posts it to the Event Router.

4. The Event Router forwards the event message to the Event Endpoint.

5. The Event Endpoint sends the event XML document to two destinations:

– WebLogic Integration Message Broker for delivery to any subscribers to the Message
Broker channel. Subscribers use either a Message Broker Subscription control or, for
business processes only, a Message Broker static subscription.

– Application Integration event topic (WLAI_EVENT_TOPIC) for delivery to remote or
local Application Integration clients who are listening to this topic.

6. Event consumers who have subscribed to the event receive the event XML document and
process it accordingly.

Unders tanding Appl i cat ion In teg ra t i on

2-22 Introducing Application Integration

Introducing Application Integration 3-1

C H A P T E R 3

Roles, Responsibilities, and Tasks

This section provides an overview of the roles and tasks required to create integration solutions.
This section includes the following topics:

Roles and Responsibilities

Process to Create Integration Solutions

Where To Go From Here

Roles and Responsibilities
The following sections describe the roles that must be fulfilled for members of an integration
solution team:

Application Integration Specialists

EIS Specialists

Technology Specialists

A successful integration solution requires input from all of these participants. Depending on the
solution, one person may assume multiple roles and all roles might not be required.

Application Integration Specialists
Application integration specialists lead the implementation of an integration solution and drive
the design effort. Application integration specialists are knowledgeable about the features and
capabilities of the WebLogic Integration product, particularly the application integration

3-2 Introducing Application Integration

capabilities. They consult with EIS specialists to determine requirements, map those
requirements to WebLogic Integration features, and design an integration solution’s architecture.
Integration specialists are responsible for the end-to-end solution and have experience in the
following areas:

Business and technical analysis

Architecture design

Project management

EIS Specialists
EIS specialists are experts in the enterprise information systems (EIS) that are part of the
integration solution. An EIS specialist provides the information needed to integrate the EIS into
the integration solution, including external interfaces, connection protocols, EIS metadata and
data formats, and EIS behaviors. EIS specialists are knowledgeable about all aspects of the
applicable EIS system and they have experience in the following areas:

Technical analysis

Integration solution design

In-depth knowledge of the organization’s EIS deployment and operations

Technology Specialists
Technology specialists are experts in the various technologies used in integration solutions.
Examples of technology specialists include:

Java developers

Database administrators

System administrators

Infrastructure specialists, such as experts in network, intranet, extranet, and mail
infrastructure

Process to Create Integration Solutions
This section provides a high level, end-to-end view of the process of creating integration
solutions that involve EIS integration. It includes the following topics:

Process to Create In tegrat i on So lut ions

Introducing Application Integration 3-3

Phase 1: Design the Solution

Phase 2: Build the Solution

Phase 3: Deploy and Manage the Solution

This section is a hypothetical or idealized solution designed to showcase product features rather
than a suggestion of how to execute a plan. It is intended to supplement any methodologies or
processes already used in your organization to build and deploy integration solutions.

Phase 1: Design the Solution
This phase involves two steps:

Defining the components of the integration solution

Creating a detailed, end-to-end design

Step 1: Define the Components of the Solution
The first phase is to define the components of an integration solution, which includes (but is not
limited to) the following tasks:

Determine which business process(es) will be involved in the integration solution.

Determine which external EISs and other technologies will be involved in the integration,
as well as any external EIS interfaces involved in the business process(es) that you are
integrating.

Determine which WebLogic Platform components will be involved in the integration
solution, such as:

– web services, business processes, or portals designed in WebLogic Workshop

– custom applications

Determine which adapters will be required, including BEA WebLogic Adapters for
WebLogic Integration and, if applicable, custom adapters. An integration solution can
involve multiple adapters.

For more information, see “Understanding Application Integration” on page 2-1.

Step 2: Create a Detailed, End-to-End Design of the Solution
Once you have defined the components of the solution, you need to create a detailed design that
specifies:

3-4 Introducing Application Integration

Any service invocations, including:

– the schemas required for requests and responses (as described in “EIS Metadata,
Schemas, and Repositories” on page 2-11)

– the client application that will initiate each service request and handle the response (as
described in “Clients for Service Invocations” on page 2-7)

– whether each service invocation will be synchronous or asynchronous

– other requirements that pertain to the associated EISs

Any event notifications, including:

– the event schema required (as described in “EIS Metadata, Schemas, and Repositories”
on page 2-11)

– the event consumer(s) that will subscribe to, and listen for, events initiated by the EIS,
as described in “Event Consumers” on page 2-8

– the configuration required on each EIS to publish events to destination where the
adapters can receive them

– other requirements that pertain to the associated EISs

Any requirements for connecting to the EIS, such as login credentials, network
connections, specialized configuration, and so on.

Any specialized business logic, such as transaction processing.

Any other components of the integration solution, such as business processes, web
services, portals, and so on.

This step involves the expertise of business analysts, system integrators, and EIS specialists.
Note that an integration solution can be part of a larger integration solution.

Phase 2: Build the Solution
The next phase is to build the solution using the design-time tools described in “Tools for
Integration Solutions” on page 2-13. Build tasks include:

Purchase, install, and configure the WebLogic Platform and any adapters.

Create the schemas for services and events according to the “Generating Schemas” chapter
in your adapter documentation, using the BEA Application Explorer if appropriate for your
adapter.

Where To Go F rom Here

Introducing Application Integration 3-5

Create the application views that provide an XML-based interface between WebLogic
Server and the EIS. For each application view, you configure connection information,
services, and events.

Build and integrate with other BEA software components as required. For example, you
might need to build business processes, web services, or portals in WebLogic Workshop
and configure them to invoke services or receive and process event notifications. Similarly,
you might need to construct queries in Liquid Data for WebLogic that access application
views as data sources. For instructions, see the documentation associated with the BEA
software component you are using.

Test the end-to-end solution, making sure that all of its components interact correctly and
produce the desired results.

This phase involves the expertise of technical specialists, such as designers (of business
processes, web services, portals, and queries), developers, system integrators, database
administrators, EIS specialists, and so on.

Phase 3: Deploy and Manage the Solution
The final phase is to deploy the integration solution in a production environment and monitor its
ongoing operation.

Design the deployment.

Deploy the required components of the BEA WebLogic Platform.

Install and deploy the adapter as described in the adapter’s Installation and Configuration
Guide.

Deploy any application views and schemas for EIS integration.

Verify business processes in the production environment.

Monitor, tune, and troubleshoot the deployment.

This phase requires system administrators, network administrators, network operators, and
specialists who operate the infrastructure of your organization.

Where To Go From Here
To begin using one of the BEA WebLogic Adapters for WebLogic Integration in your integration
solution, refer to the “Getting Started” section of the Introduction in the adapter’s User’s Guide.

3-6 Introducing Application Integration

Introducing Application Integration 4-1

C H A P T E R 4

Understanding the ADK

If you are an adapter provider or developer, you can use the WebLogic Integration Adapter
Development Kit (ADK) to create your own J2EE-compliant EIS adapters. The ADK is a
collection of four frameworks, each of which comprises tools and Java classes. Together, these
frameworks let you quickly develop adapters that you can easily test, package, and distribute. For
details about using the ADK frameworks to create adapters, see Developing Adapters.

Note: This link will be updated in a future release of WebLogic Integration.

Note: Developing new adapters is not supported in WebLogic Integration 9.2, but existing
adapters, and modifications to these existing adapters is supported.

This section provides information about the following four component frameworks:

Design-Time Framework

Run-Time Framework

Logging and Auditing Framework

Packaging Framework

Design-Time Framework
An adapter’s design-time interface lets you define and deploy application views on the instance
of WebLogic Server that is hosting WebLogic Integration. Whenever you build an adapter with
the WebLogic Integration ADK, you can also develop a design-time user interface for it. The
design-time user interface for an adapter can be accessed from any common Web browser. The
interface allows users who are not programmers to interact with the adapter without writing code.

http://edocs.bea.com/wli/docs81/devadapt/index.html

Unders tanding the ADK

4-2 Introducing Application Integration

For example, by using a user interface, business analysts can log in to an adapter and define their
own custom application views. Without a design-time user interface, an adapter can be used only
by highly technical users.

To facilitate the development of design-time user interfaces for adapters, the ADK includes a set
of Java classes and tools known as the design-time framework. This framework is a powerful
feature because it allows users who are not programmers to use an adapter. By simplifying the
development process, the ADK’s design-time framework expands the audience for the adapter
and upgrades the role played by business analysts in the implementation of business processes.

Run-Time Framework
The ADK provides a run-time framework: a complete, extensible event generator that supports
the development of events. To help you develop services, the run-time framework provides a
J2EE-compliant adapter that offers a complete set of the minimum functions. Adapter developers
can save coding and debugging time by starting with this base framework and extending it to meet
the needs of their enterprise.

Logging and Auditing Framework
If you are an administrator, it is essential to create adapters that automatically log alert messages
on your system that can be audited later. To make it easy to develop an adapter with built-in
logging and auditing support, the ADK includes a logging and auditing framework. Any adapter
you develop can generate internationalized and localized alert messages and can deliver these
messages to multiple output destinations.

Packaging Framework
If you are a third-party adapter provider, you can use the ADK packaging framework when
preparing your adapter for delivery to a customer. This framework makes it easy to create the
archive and environment files required for packaging.

Introducing Application Integration 5-1

C H A P T E R 5

Understanding the Development Kit
Adapters

The BEA WebLogic Integration Adapter Development Kit (ADK) provides sample adapters to
get you started developing your own adapters: two DBMS adapters and a sample adapter. If you
are developing your own adapters using the ADK, we recommend that you begin by studying the
adapters supplied with the kit. Although these adapters are generic and simple, they serve as
excellent examples of the types of adapters you can build using the ADK.

How the Kit Adapters Were Developed
All the development kit adapters were developed using the ADK. Although the ADK makes it
possible to develop sophisticated adapters, the adapters provided in the kit have been kept simple
deliberately, to make them easy to dissect and understand.

How to Use the Kit Adapters
If you are an adapter provider or developer, we recommend that you study the kit adapters to
increase your knowledge of the ADK and to determine how you can use the adapters as models
for your own. All kit adapters are based on a super set of J2EE Connector Architecture 1.0 (J2EE
1.3 from Sun Microsystems). XML input/output and browsing requirements have been added to
the CCI interface (collectively known as XCCI for XML CCI). For details about the ADK, see
Developing Adapters. The following sections provide details about the kit adapters.

{DOCROOT}/devadapt/index.html

Unders tanding the Deve lopment K i t Adapte rs

5-2 Introducing Application Integration

DBMS Adapter
WebLogic Integration provides DBMS adapters that integrates WebLogic Server with a simple
relational database that it uses as its EIS. Two DBMS sample adapters are provided:

BEA_WLS_DBMS_ADK—A sample DBMS adapter that includes XA transaction
support. This adapter is used for the tour of the sample adapter and the description of
adapter development.

BEA_WLS_DBMS_ADK_LOCALTX—A sample DBMS adapter that includes only
support for local transactions.

WARNING: When setting connection parameters for these adapters, specify a JDBC Driver
and URL. Do not use a Data Source with the sample DBMS adapters. Using a
Data Source with the sample adapters results in java.sql.SQLException XA
errors.

The DBMS adapters serve as a good example for adapter developers and providers who want to
understand the adapter and ADK without having to learn an unfamiliar proprietary database
system.

If you do not have a suitable database to use with the DBMS adapters, you can use the PointBase
database included with WebLogic Integration.

The DBMS adapters support the following functions:

Retrieving all database records

Retrieving sets of database records

Writing database records

Receiving notifications when a record is updated, inserted, or deleted from a table

For more information, see “Learning to Develop Adapters Using the DBMS Sample Adapters”
in Developing Adapters.

Sample Adapter
The sample adapter is provided as a template for new adapters. It includes a design-time
component, a service connection, and an event connection. The source code clearly documents
the structure of the service connection and the event connection.

How to Use the K i t Adapte rs

Introducing Application Integration 5-3

The sample adapter is accompanied by a simple EIS implementation that demonstrates how
related events can be triggered by invoking services. Each component contains comments
indicating where you must supply your own adapter-specific logic.

Unders tanding the Deve lopment K i t Adapte rs

5-4 Introducing Application Integration

Introducing Application Integration Index-1

Index

A
Adapter Development Kit (ADK)

run-time framework 4-2
Application Integration Design Console 2-10,
2-14
application integration specialists, defined 3-1
Application View control 2-14
application views

events and services 2-6
when to define 2-10

architecture 2-1
asynchronous

event notifications 2-19
service invocations 2-17

B
BEA products

BEA Application Explorer 2-13
BEA WebLogic Workshop 2-14

C
clients for service invocations 2-7
consumers of event notifications 2-8
custom code

for defining application views 2-10

E
EIS metadata, defined 2-11
EIS specialists, defined 3-2
enterprise information systems, defined 1-2
event generator 4-2

events 2-6
consumers of 2-8
defined 2-3
event schemas 2-12
Message Broker Subscription controls 2-14
run-time processing 2-19
start nodes for 2-14

G
GUI

Application Integration Design Console
2-10

I
integration solutions

building 3-4
deploying 3-5
designing 3-3
process of creating 3-2
tools 2-13

J
J2EE Connector Architecture (JCA), defined 1-3

M
Message Broker Subscription controls 2-14
metadata, defined 2-11

Index-2 Introducing Application Integration

R
reliability 1-3
repositories, defined 2-13
request schemas 2-11
response schemas 2-11
responsibilities 3-1
roles 3-1
run-time processing

events 2-19
services 2-15

S
scalability 1-3
schemas

BEA Application Explorer 2-13
defined 2-11
event schemas 2-12
request schemas 2-11
response schemas 2-11

security 1-4
services 2-7

asynchronous 2-17
clients for 2-7
defined 2-2
request schemas 2-11
response schemas 2-11
run-time processing 2-15
synchronous 2-16
translation 2-11

start nodes, configured for events 2-14
synchronous service invocations 2-16

T
technology specialists, defined 3-2
tools

Application Integration Design Console
2-14

BEA Application Explorer 2-13
BEA WebLogic Workshop 2-14

WebLogic Integration Administration
Console 2-14

U
user interface 2-9

W
WebLogic Integration Administration Console
2-14

X
XML

schema 2-7

	Introduction to Application Integration
	Adapters
	Easy and Fast Integration with Enterprise Information Systems
	Compliance with the J2EE Connector Architecture
	Scalable, Reliable, and Secure Integration Framework

	Application Views
	Application View Control
	How Do Adapters Fit Into the WebLogic Architecture?

	Understanding Application Integration
	The Application Integration Life Cycle
	Understanding Adapters
	Supported Operations

	Understanding Application Views
	Main Features of Application Views
	Application Integration Service Clients and Event Consumers

	Understanding Design-Time GUIs
	Creating Application Views Using a Design GUI
	Managing Application Views with the Console
	When to Define Application Views and When to Write Custom Code
	EIS Metadata, Schemas, and Repositories

	Tools for Integration Solutions
	BEA Application Explorer
	Application Integration Design Console
	BEA WebLogic Workshop
	WebLogic Integration Administration Console

	Run-Time Processing of Services and Events
	Processing Service Invocations at Run Time
	Processing Event Notifications at Run Time

	Roles, Responsibilities, and Tasks
	Roles and Responsibilities
	Application Integration Specialists
	EIS Specialists
	Technology Specialists

	Process to Create Integration Solutions
	Phase 1: Design the Solution
	Phase 2: Build the Solution
	Phase 3: Deploy and Manage the Solution

	Where To Go From Here

	Understanding the ADK
	Design-Time Framework
	Run-Time Framework
	Logging and Auditing Framework
	Packaging Framework

	Understanding the Development Kit Adapters
	How the Kit Adapters Were Developed
	How to Use the Kit Adapters
	DBMS Adapter
	Sample Adapter

	Index

