BEAWebLogic
Integration~

Developing Adapters

Version 8.5 Service Pack 5
Revised: October 2005

0?7,

r
S’ 7
L/

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AqualLogic, BEA Aqualogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLlogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

1. Introduction to the ADK

SeCtion OBJECHIVES . . . o vttt ettt e e 1-1
What Is the ADK? o 1-2
Requirements for Adapter Development 1-2
What the ADK Provides i i 1-3
What Are Adapters?.t e 1-3
ResourceAdapter Interface 1-4
Service CONNECLIONS vttt ettt ettt et 1-4
Event CONNECtiONSttt e 1-5
J2EE-Compliant Adapters Not Exclusive to WebLogic Integration 1-6
Design-Time GUI e e 1-6
ApPPLiCation VIBWS.ottt e 1-6
Packaging Framework 1-7
Before You Begin 1-7

2. Basic Development Concepts

Run Time Versus Design Time e 2-1
Run-Time Framework. 2-2
Design-Time Framework 2-2

Events and Servicesot e 2-3
What Are Events? 2-3
What Are Services?t 2-3

Developing Adapters iii

How Adapters Use Logging i 2-4

Logging ToolKitot e e 2-4
Logging Framework. 2-4
Internationalization and Localization. 2-5
Adapter Logical Namet 2-5
Where the Adapter Logical Name IsUsed 2-6
Use of Adapter Logical Name in Adapter Deployment 2-6

Adapter Logical Name Used as an Organizing Principle.................. 2-7

Adapter Logical Name Used as the Return Value for getAdapterLogicalName 2-8
Enterprise Archive (EAR) Files i 2-8

3. Development Tools

Sample Adapter. 3-1
Why Use the Sample Adapter? 3-1
What Is In the Sample Adapter? 3-2

GenerateAdapterTemplate Utility. i 3-3

ADK Javadoc 3-3

Ant-Based Build Process. 3-3
Why Use Ant? .. .o 3-4

XML TOOIS . oo 3-4

4. Creating a Custom Development Environment

Adapter Setup Worksheet 4-1
Using GenerateAdapterTemplate i 4-2
Step 1. Execute GenerateAdapterTemplate oo .. 4-2
Step2. Rebuild the Tree. e 4-5
Step 3. Testthe Adapter.ot e e 4-6
Step 4. Deploy the Adapter to WebLogic Integration 4-6

iv Developing Adapters

5. Using the Logging Toolkit

Logging ToolKit. e 5-2
Logging Configuration File. 5-2
Logging Conceptsottt e e e e 5-2
Message CateOTIESo oottt ettt et e e e e e 5-3
Message Priority. 5-4
Assigning a Priority toa Category i 5-5
Message ApPpenders 5-5
Message Layout 5-6
Putting the Components Together 5-7
How to Set Up Logging. it e e 5-7
Logging Framework Classest 5-9
com.bea.logging.ILogger. 5-9
com.bea.logging.LogContext. 5-10
com.bea.logging.LogManager i 5-10
Internationalization and Localization of Log Messages 5-13
Saving Contextual Information in a Multithreaded Component. 5-13

6. Developing a Service Adapter

J2EE-Compliant Adapters Not Specific to WebLogic Integration 6-2
Service Connections in a Run-Time Environment 6-2
Flow of EVents. e 6-5
Step 1: Research Your Environment Requirements 6-6
Step 2: Configure the Development Environment. 6-7
Step 2a: Set Up the Directory Structureo, 6-7

The web.xml and weblogic.xml Descriptor Files 6-9
Creating A Development Tree Within the Directory Structure. 6-10

Step 2b: Assign the Adapter Logical Name 6-11

Developing Adapters

vi

Step 2c: Set Up the Build Process i 6-11

Manifest File. 6-11
build.xml Componentst 6-13
Step 2d: Create the Message Bundle 6-23
Step 3: Implement the SPL. 6-23
Basic SPIImplementationt 6-24
ManagedConnectionFactoryttt 6-24
Transaction Demarcation i 6-24
ADK Implementationsuuuuttn ittt 6-25
AbstractManagedConnectionFactory Properties Required at Deployment . . . 6-31
ManagedConnectionc.uunineu et et 6-32
ADK Implementationvn ittt e 6-33
ManagedConnectionMetaData. i 6-33
ADK Implementationuu ittt e 6-33
ConnectionEventListener.ot 6-34
ADK Implementationouut it e 6-34
ConnectioNMAanagerottt et e 6-34
ADK Implementationuu ittt e 6-35
ConnectionRequestInfo 6-35
ADK Implementationouu it e 6-35
LocalTransactionottt 6-35
ADK Implementationovn it e 6-35
Step4: Implement the CCIL e 6-36
How to Use This Section i 6-36
Basic CCI Implementation.ttt 6-36
CONNECHION . . . o\ttt 6-37
ADK Implementationvn ittt e 6-37
Interaction oo 6-38

Developing Adapters

ADK Implementationttt ... 6-38

Using XCCI toImplement the CCI 6-40
S OTVICES . v ittt e e 6-40
DocumentRecord. 6-41
IDocument.ot 6-42
Proper Use of Namespaces in IDocument Instances. 6-44
ADK-Supplied XCCI Classes. . . .« vttt e 6-44
XCCIDesign Pattern.t 6-46

Using NonXML J2EE-Compliant Adapters., 6-46

ConnectionFactory i 6-47
ADK Implementationo. ittt 6-47

ConnectionMetaData i 6-48
ADK Implementationttt 6-48

CONNECHIONSPEC .« vttt et e e e e e e e e e e 6-48
ADK Implementationttt 6-48

INteraCtionSPeC.ottt 6-49
ADK Implementationttt 6-50

LocalTransactionttt 6-50

Record. 6-51
ADK Implementationttt 6-52

ResourceAdapterMetaData. 6-52
ADK Implementationo ittt 6-52

Step 5: Enable Environment Variable Support (Optional) 6-52
Implementing ClientDatalnteractionSpec, 6-53
Extending DocumentlInteractionSpecImpl L 6-53

Step 6: Testthe Adapter e 6-54
Using the Test Harnessottt e 6-54
Test Case Extensions Provided by the ADK 6-55

Developing Adapters vii

sample.spi.NonManagedScenarioTestCase 6-55

sample.event.OfflineEventGeneratorTestCase 6-55
sample.client. ApplicationViewClient. 6-56
Step 7: Deploy the Adapter. 6-56

/. Developing an Event Adapter

Introduction to Event Connections ittt nennnnen... 7-1
Event Adapters in a Run-Time Environment 7-2
Flow of EVents e 7-4
Step 1: Define the Adapter 7-5
Step 2: Configure the Development Environment 7-6
Step 2a: Set Up the File Structure 7-7
Step 2b: Assign a Logical Name tothe Adapter 7-7
Step 2c: Set Up the Build Process i 7-7
Step 2d: Create the Message Bundle 7-8
Step 2e: Configure Logging. 7-8
Create an Event Generation Logging Category 7-8

Step 3: Implement the Adapter 7-9
Step 3a: Create an Event Generator. i, 7-9
How the Data Extraction Mechanism Is Implemented. 7-10

How the Event Generator Is Implemented 7-12

Step 3b: Implement the Data Transformation Method. 7-18
Step 3c: Implement Suspend/Resume Support 7-21
Step 3d: Implement Event Generator and EIS Status Reporting 7-22
Step 3e: Implement Event Generator Instance Support. 7-25
Example: DBMS Sample Adapter 7-25

Why Implement Event Generator Instance Support?.................... 7-27

viii Developing Adapters

Detecting and Responding to Changes in Event Generator Instance Specifications

7-27
Step 3f: Implement Environment Variable Support. 7-29
Step4: Testthe Adapter e 7-32
Step 5. Deploy the Adapter 7-32

8. Developing a Resource Adapter

Introduction to Resource Adaptersttt 8-1
Resource Adapters in a Run-Time Environment. 8-2
Step 1: Define the Adaptero e 8-3
Step 2: Configure the Development Environment. 8-4
Step 2a: Set Up the File Structure, 8-4
Step 2b: Assign a Logical Name to the Adapter 8-4
Step 2c: Set Up the Build Process 8-5
Step 2d: Create the Message Bundle 8-5
Step 2e: Configure Logging oot 8-6
Create an Event Generation Logging Category 8-6

Step 3: Implement the Adaptert 8-6
Step 3a: Create a Resource Adapter., 8-7
Step 3b: Implement the Resource Adapter Properties 8-10
Step 4: Implement the Event and Service Adapters 8-11
Step 5. Deploy the Adaptert 8-11

9. Developing a Design-Time GUI

Introduction to Design-Time Form Processing. 9-2
Form Processing Classesttt i 9-3
RequestHandler. 9-3
ControllerServlet. 9-4
ActionResult 9-4

Developing Adapters ix

Word and Its Descendants. 9-4

AbstractInputTagSupport and Its Descendants. 9-5

Form Processing Sequence i 9-5
PrerequiSitesot e 9-6
Stepsinthe Sequencet 9-6
Design-Time Features. e 9-8
Java Server Pages.o 9-8

JSP Templatesottt e 9-9
ADK Library of ISP Tagsot e 9-10

JSP Tag Attributes.o 9-11

The Application VIEWt e e 9-13
File Structure. o 9-13
Flow of EVents e 9-14
Step 1: Defining the Design-Time GUI Requirements. 9-16
Step 2: Defining the Page Flow. 9-17
Page 1: Logging In. o 9-17
Page 2. Managing Application VIEWSttt 9-17
Page 3: Defining the New Application View. 9-17
Page 4: Configuring the Connectiont ennen... 9-18
Page 5: Administering the Application View 9-18
Page 6: Addingan Event 9-19
Page 7: Adding a Service.o 9-19
Page 8: Testing an Application View., 9-20
Publishing an Application View 9-20

Saving an Application VIiewt 9-21

Page 9: Summarizing an Application View. 9-21
Step 3: Configuring the Development Environment. 9-22
Step 3a: Create the Message Bundle 9-22

Developing Adapters

Step 3b: Configure the Environment to Update JSPs Without Restarting WebLogic

SOIVET . ot 9-22
Step 4: Implement the Design-Time GUIL 9-26
Extend AbstractDesignTimeRequestHandler. 9-26
MethodstoInclude 9-26
Step 4a. Supply the ManagedConnectionFactory Class. 9-27
Step 4b. Implement initServiceDescriptor(). 9-27
Step 4c. Implement initEventDescriptor() 9-28
Step 5: Writethe HTML Forms. i 9-28
Step 5a: Create the confconn.jsp Form. 9-29
Including the ADK Tag Library 9-30
Posting the ControllerServlet 9-30
Displaying the Label for the Form Field. 9-31
Displaying the Text Field Size 9-31
Displaying a Submit Buttononthe Form............................. 9-31
Implementing confconn() i 9-32
Step 5b: Create the addevent.jspform 9-32
Including the ADK Tag Library 9-33
Posting the ControllerServlet 9-33
Displaying the Label for the Form Field. 9-33
Displaying the Text Field Size 9-33
Displaying a Submit Buttononthe Form 9-33
Adding Additional Fields 9-34
Step Sc: Create the addserve.jspform 9-34
Including the ADK Tag Library 9-34
Posting the ControllerServlet 9-34
Displaying the Label for the Form Field. 9-35
Displaying the Text Field Size 9-35

Developing Adapters Xi

Displaying a Submit Buttononthe Form............................. 9-35

Adding Additional Fields 9-35

Step 5d: Implement Editing Capability for Events and Services (optional) 9-36
Update the Adapter Properties File. 9-36

Create edtservc.jsp and addServe.jsp oo e i 9-37
Implement Methods 9-38

Step Se: Write the Web Application Deployment Descriptors. 9-39
Step 6. Implement the Look and Feel 9-40
Step 7. Implement Environment Variables. 9-41
Step 7a — Displaying/Editing the Variable Set. 9-42
Step 7b — Using the Variable Set i, 9-43
Step 8. Test the Sample Adapter Design-Time Interface 9-44
Files and Classesttt e e 9-44
Runthe Testso e e 9-45

10.Deploying Adapters

Using Enterprise Archive (EAR) Files 10-1
Using Shared JAR Filesinan EAR File 10-3
EAR File Deployment Descriptor 10-3

Deploying Adapters Using the WebLogic Server Administration Console 10-4

Adapter AUto-re@iStrationottt e 10-5
Using a Naming Conventioniuiuiuninininninenennnn... 10-5
UsingaTextFile 10-6

Editing Web Application Deployment Descriptors 10-6
Deployment Parameters. 10-6
Editing the Deployment Descriptors 10-7

Deploying Adapters in a WebLogic Integration Cluster. 10-9

Redeploying Adapter Instances. i 10-9

Xii Developing Adapters

Creating an Adapter Not Specific to WebLogic Integration

Using This Section. e e e e A-1
Building the Adapter e A-2
Updating the Build Process i e A-2
XML Toolkit

Toolkit Packages oo e B-1
IDOCUMENL . . . o et e B-2
Schema Object Model (SOM)ot e e B-3
How SOM Workso e e e B-3
Creatingthe Schema. B-5
Resulting Schema. B-8
Validating an XML Documentttt B-11
How the Document Is Validated. B-12
Implementing isValid() oo B-12
isValid() Sample Implementation B-13

Adapter Setup Worksheet
Adapter Setup Worksheet C-2

Upgrading Adapters to WebLogic Integration 8.1
Learning to Develop Adapters Using the DBMS Sample

Adapters
Introduction to the DBMS Sample Adapters., E-1
Connection Parameters for DBMS Sample Adapters, E-2
How the DBMS Sample Adapters Work. i E-3
Before YouBegin.o E-3
Accessing the DBMS Sample Adapter., E-4

Developing Adapters Xiii

Xiv

Tour of the DBMS Sample Adapter. E-4

How the DBMS Sample Adapters Were Developed E-26
Step 1: Learn About the DBMS Sample Adapters. E-26
Step 2: Define Your Environment E-26
Step 3: Implement the Server Provider Interface Package. E-29

ManagedConnectionFactorylmpl i E-29
ManagedConnectionImpl E-30
ConnectionMetaDatalmpl. E-31
LocalTransactionImpl. E-32
Step 4: Implement the Common Client Interface Package E-33
ConnectionImpl E-34
InteractionImpl E-35
InteractionSpecImpl E-36
Step 5: Implement the Event Package E-37
EventGenerator.t E-37
Step 6: Deploy the DBMS Sample Adapter., E-38
Step 6a: Set Up Your Environment.o, E-39
Step 6b: Update theraxml File E-39
Step 6¢: Createthe RARFile o E-40
Step 6d: Build the JAR and EARFiles. E-40
Step 6e: Create and Deploy the EARFile E-40

Database-Specific Error Messagest E-42

How the DBMS Sample Adapter Design-Time GUI Was Developed E-43
Step 1: Identify Requirements i E-43
Step 2: Identify Required Java Server Pages E-44
Step 3: Create the Message Bundle E-45
Step 4: Implement the Design-Time GUI E-45
Step 5: Write Java Server Pages. i E-47

Developing Adapters

Use Custom JSPTagso i e E-47

Save an Object’s State.ottt e E-47

Write the WEB-INF/web.xml Deployment Descriptor. E-47
Run-Time Considerationsttt E-48
Changing Event Connections.ottt E-48

Administering a DBMS Sample Adapter Instance Used by Multiple Application Views
E-49
Multiple Event Generators Using the Same DBMS Instance E-49

Index

Developing Adapters XV

Xvi Developing Adapters

Introduction to the ADK

This guide provides instructions for using the WebLogic Integration Adapter Development Kit
(ADK). It shows you how to develop, test, and deploy event and service connections and the
design-time user interface.

This section provides information about the following subjects:

What Is the ADK?

What Are Adapters?

Design-Time GUI

e Before You Begin

Section Objectives

This section serves as an overview to using the ADK to develop event and service connections
and a design-time GUI. You will learn:

e What adapters are and how they are used
e Prerequisites you must meet before beginning adapter development

e Terminology associated with adapter development

Developing Adapters 1-1

Introduction to the ADK

What Is the ADK?

The ADK is a set of tools for implementing the event and service protocols supported by BEA
WebLogic Integration. These tools are organized in a collection of frameworks that support the
development, testing, packaging, and distribution of resource adapters for WebLogic Integration.
Specifically, the ADK includes frameworks for four purposes:

1-2

Design-time operation
Run-time operation
Logging

Packaging

Requirements for Adapter Development

The ADK addresses three requirements for adapter development:

Development environment structure: The organization of a development project is
important in any integrated development and debugging environment (IDDE). With a well
structured development environment, you can begin coding an adapter immediately. The
ADK provides an organized development environment, build process, intuitive class names
and class hierarchy, and test methodology. By using the ADK, you avoid having to spend
time designing and organizing a build process.

Because the ADK encompasses so many advanced technologies, an incremental
development process (code a little, test a little) is the key to success. The ADK test process
allows a developer to make a simple change and test it immediately.

Minimal exposure to peripheral implementation details: Peripheral implementation details
are sections of code that are needed to support the framework in which a robust software
program runs.

For example, the J2EE Connector Architecture specification requires that the
javax.resource.cci.InteractionSpec implementation class provide getter and setter
methods that follow the JavaBeans design pattern. To support the JavaBeans design
pattern, you must, in turn, support PropertyChangeListeners and
VetoableChangeListeners in your implementation class. You do not want to have to
study the JavaBeans specification to learn how to do this. Rather, you want to focus on
implementing the enterprise information system (EIS)-specific details of the adapter. The
ADK provides a base implementation for a majority of the peripheral implementation
details of an adapter.

Developing Adapters

What Are Adapters?

e A clear roadmap to success: Exit criteria enable you to answer the question: “How do I
know my implementation is complete?” The ADK provides a clear methodology for
developing an adapter. The methodology helps you organize your thoughts around a few
key concepts: events, services, design-time operation, and run-time operation. Using this
methodology, you can establish exit criteria that form a roadmap to implementation
completion.

What the ADK Provides

The ADK provides:
e Run-time support for events and services

e An API for integrating an adapter’s user interface with the Application Integration Design
Console

The ADK adds value by making it possible to make adapters an integral part of a single
graphical console application that can be used by business users to construct integration
solutions.

What Are Adapters?

Resource adapters—referred to in this document as adapters—are software components used to
connect applications that were not originally designed to communicate with each other. For
example, an adapter might be needed to enable an order entry system built by one company to
communicate with a customer information system built by another.

By using the ADK, you can create two types of adapters:
e Service adapters, which accept requests and return responses

e Event adapters, which generate messages
You can also create an adapter that supports both services and events. All these types of adapters

include an implementation of a top-level adapter interface

® ResourceAdapter—A top-level container for managing service and event adapters and
connections.

You can also use the ADK to create J2EE-compliant adapters that are not specific to WebLogic
Integration but that comply with the J2EE Connector Architecture Specification.

Developing Adapters 1-3

Introduction to the ADK

1-4

ResourceAdapter Interface

The ResourceAdapter interface is new in WebLogic Integration 8.1. It serves as a single object
to unify both event and service handling. In prior WebLogic Integration releases, the event
adapter and service adapter were treated as separate adapter components. Each was deployed and
configured separately.

In this release, the event and service adapters are unified under the Resourceadapter interface,
and the adapter's implementation of that interface. It provides access to 0 or 1 event connection
(created by the event adapter), and 0 or more service connections (created by the service adapter).
The service connections are sometimes referred to as connection factories.

Configuration of event and service connections are now done under the umbrella of the
ResourceAdapter interface. You will see the term Resource Adapter used in the Application
Integration Design Console to represent a container of event and service connections.

Each adapter must implement ResourceAdapter in a concrete class and package that class into
the adapter's EAR module in order to operate within WebLogic Integration. The ADK provides
an abstract base implementation of the Resourceadapter class in

com.bea.adapter.spi.AbstractWLIResourceAdapter.

To learn how to develop a Resource Adapter implementation, see Chapter 8, “Developing a
Resource Adapter”.

Service Connections

Service connections receive XML request documents from clients and invoke specific functions
in the underlying enterprise information system (EIS). They are consumers of messages; they
may or may not provide a response.

A service may be invoked in either of two ways: asynchronously or synchronously. When a
service is invoked asynchronously, the client application issues a service request and then
proceeds with processing without waiting for the response. When a service is invoked
synchronously, the client waits for the response before proceeding with processing. BEA
WebLogic Integration supports both types of service connection invocations, so you are not
required to provide this functionality.

Service connections perform the following four functions:

e Receive service requests from an external client.

Developing Adapters

What Are Adapters?

e Transform the XML format of a request document into an EIS-specific format. The request
document conforms to the request XML schema for the service. The request XML schema
is based on metadata in the EIS.

e Invoke the underlying function in the EIS and wait for its response.

e Transform the response from the EIS-specific data format to an XML document that
conforms to the response XML schema for the service. The response XML schema is
based on metadata in the EIS.

As with events, the ADK implements the aspects of these four functions that are common to all
service connections.

To learn how to develop a service connection, see Chapter 6, “Developing a Service Adapter.”

Event Connections

Event connections are designed to propagate information from an EIS to WebLogic Server; they
can be described as publishers of information.

There are two basic types of event connections: in-process and out-of-process. In-process event
connections execute within the same process as the EIS. Out-of-process adapters execute in a
separate process. In-process and out-of-process event connections differ only in terms of how
they accomplish the data extraction process.

Event connections running in a WebLogic Integration environment perform the following three

functions:

e Respond to events deemed to be of interest to some external party that occur inside the
running EIS and extract data about such events from the EIS.

e Transform event data from an EIS-specific format to an XML document that conforms to
the XML schema for the event. The XML schema is based on metadata in the EIS.

e Propagate each event to an event message endpoint provided by the application server.

The ADK implements the aspects of these three functions that are common to all event
connections. Consequently, you can focus on the EIS-specific aspects of your adapter. This
concept is the same as the concept behind Enterprise Java Beans (EJB): the container provides
system-level services for EJB developers so they can focus on implementing business application
logic.

To learn how to develop an event connection, see Chapter 7, “Developing an Event Adapter.”

Developing Adapters 1-5

Introduction to the ADK

J2EE-Compliant Adapters Not Exclusive to WebLogic
Integration

These adapters are not designed for WebLogic Integration exclusively; they can be plugged into
any application server that supports the J2EE Connector Architecture specification. These
adapters can be developed by making minor modifications to the procedures given for developing
a service connection. To learn how to develop an adapter that is not specific to WebLogic
Integration, see Appendix A, “Creating an Adapter Not Specific to WebLogic Integration.”

Design-Time GUI

1-6

Along with event and service connections, the ADK’s design-time framework provides tools you
can use to build the Web-based GUI that adapter users need to define, deploy, and test application
views (see “Application Views”). Although each adapter has EIS-specific functionality, all
adapters require a GUI for deploying application views. The design-time framework minimizes
the effort required to create and deploy these interfaces, primarily by using two components:

e A Web application component and a web request handler base class
(AbstractDesignTimeRequestHandler) that allows you to build an HTML-based GUI by
using Java Server Pages (JSP). This component is augmented by tools such as the JSP
templates, the JSP tag library, and the JavaScript library.

e A deployment helper component, called DesignTimeHelper, that provides a simple API
for deploying, undeploying, and editing application views on WebLogic Server.

To learn how to develop a design-time GUI, see Chapter 9, “Developing a Design-Time GUL”

Application Views

While an adapter represents a system-level interface to all the functionality in an application, an
application view represents a business-level interface to a particular set of functions in the
application.

An application view is configured for a single business purpose and contains only services related
to that purpose. These services require only business-relevant data to be specified in the request
document; they return only business-relevant data in the response document. Without user
intervention, the application view combines this business-relevant data with stored metadata
necessary for the adapter. The adapter takes both the business-relevant data and the stored
metadata and executes a system-level function on the application.

Developing Adapters

Packaging Framework

The application view also represents both the events and services that support the specified
business purpose. As a result, the business user can perform all communication with an
application through the application view. Such bidirectional communication is supported by two
adapter components: the event connection and the service connection. The application view
abstracts this fact from users and presents them with a unified business interface to the
application.

For more information about application views, see “Introduction to Using Application
Integration” in Using Application Integration.

Packaging Framework

The ADK packaging framework is a tool set for packaging an adapter for delivery to a customer.
Ideally, all adapters are installed, configured, and uninstalled in the same way on WebLogic
Server. All service connections must be J2EE compliant. The packaging framework simplifies
the creation of a J2EE adapter archive (RAR) file, a Web application archive (WAR) file, an
enterprise archive (EAR) file, and a WebLogic Integration design environment archive.

Before You Begin

Before beginning your development work, make sure WebLogic Integration is installed on your
computer. For more information, see Installing BEA WebLogic Platform and the BEA WebLogic
Integration Release Notes.

Developing Adapters 1-1

Introduction to the ADK

1-8 Developing Adapters

CHAPTERa

Basic Development Concepts

This section describes some basic concepts with which you should become familiar before
attempting to develop an adapter or design-time graphical user interface (GUI). Specifically, it
provides information about the following subjects:

e Run Time Versus Design Time

Events and Services

How Adapters Use Logging

Adapter Logical Name

e Enterprise Archive (EAR) Files

Run Time Versus Design Time

The term adapter activity encompasses both run-time and design-time activity. Run-time activity
is the execution of an adapter’s processes. Design-time activity, performed by an adapter user,
includes the creation, deployment, and testing of an application view.

Run-time and design-time activity are supported by ADK run-time and design-time frameworks,
respectively. The run-time framework comprises tools for developing adapters, while the
design-time framework includes tools for designing Web-based user interfaces. Both types of
activity are discussed in greater detail in the following sections.

Developing Adapters 2-1

Basic Development Concepts

2-2

Run-Time Framework

The run-time framework is a set of tools you can use to develop event and service connections.
To support event connection development, the run-time framework provides a basic, extensible
event generator. For service connection development, the run-time framework provides a
complete J2EE-compliant adapter.

The classes supplied by the run-time framework provide the following benefits:

They allow you to focus on EIS details rather than J2EE details.

They minimize the effort needed to use the ADK logging framework.

They simplify the J2EE Connector Architecture.

They minimize redundant code used in multiple adapters.

In addition, the run-time framework provides abstract base classes to help you implement an
event generator that can leverage the event support provided by the ADK environment.

A key component of the run-time framework is the run-time engine, which hosts the adapter
component responsible for handling service invocations and manages the following WebLogic
Server features:

e Physical connections to the EIS
e Login authentication

e Transaction management

All three features comply with the J2EE Connector Architecture standard.

Design-Time Framework

The design-time framework provides tools for building the Web-based GUI that adapter users
need to define, deploy, and test their application views. Although each adapter has EIS-specific
functionality, all adapters require a GUI for deploying application views. This framework
provides two tools that minimize the effort required to create and deploy such a GUI:

e A Web application component that allows you to build an HTML-based GUI by using
JSPs. This component is augmented by tools such as the JSP templates, the tag library, and
the JavaScript library.

e A deployment helper component that provides a simple API for deploying, undeploying,
and editing application views on WebLogic Server.

Developing Adapters

Events and Services

The design-time interface for each adapter is a J2EE Web application that is bundled as a WAR
file. A Web application is a bundle of . jsp files, .html files, image files, and so on. The Web
application descriptor is web.xml. The descriptor provides the J2EE Web container with
instructions for deploying and initializing the Web application.

Every Web application has a context that is specified during deployment. The context identifies
resources associated with the Web application under the Web container’s document root.

Events and Services

With the ADK you can create both event connections and service connections. Within the ADK
architecture, services and events are defined as self-describing objects (for which a name
indicates a business function) that use XML schema to define input and output.

What Are Events?

An event is an XML document published by an application view when an occurrence of interest
takes place within an EIS. Clients that want to be notified of events request such notification by
registering with an application view. The application view then acts as a broker between the target
application and the client. When a client has subscribed to events published by an application
view, the application view notifies the client whenever an event of interest occurs in the target
application. When an event subscriber is notified that an event of interest has occurred, it is
passed an XML document that describes the event. Application views that publish events can also
provide clients with the XML schema for publishable events.

Note: An application view represents a business-level interface to a specific function in an
application. For more information about this feature, see Introducing Application
Integration.

What Are Services?

A service is a business operation in an application that is exposed by an application view. It serves
as a request/response mechanism: when an application receives a request to invoke a business
service, the application view invokes the service in the target application and then returns (or,
responds with) an XML document that describes the results.

To define a service, you must define input requirements, output expectations, and an interaction
specification.

A service request and response consists of:

Developing Adapters 2-3

Basic Development Concepts

e An interaction specification, containing static mefadata about the request. An example of
this static metadata would be an SQL statement for a DBMS adapter. The end user of the
service never sees the metadata.

e User input, which represents business information the user has obtained and provided as
the request document for this service. This request document can contain variable
information that relates to the metadata in the interaction specification. For example, in a
DBMS adapter based service, the SQL statement is provided in the interaction
specification, and the value of any variables in that SQL statement are provided in the
request document.

e The response from the service conforms to the output expectations described at design-time
for the service.

How Adapters Use Logging

2-4

Logging is an essential feature of an adapter. Most adapters are used to integrate different
applications and do not interact with end-users while processing data. Unlike a front-end
component, when an adapter encounters an error or warning condition, it cannot stop processing
and wait for an end-user to respond.

Moreover, many business applications connected by adapters are mission-critical. For example,
an adapter might be required to keep an audit report of every transaction with an EIS.
Consequently, adapter components should provide both accurate logging and auditing
information. The ADK’s logging framework is designed to accommodate both logging and
auditing.

Logging Toolkit

The ADK provides a toolkit that allows you to log localized messages to multiple output
destinations. The logging toolkit leverages the work of the Apache Log4j open source project.

The logging toolkit wraps the critical classes in Log4j to provide added functionality when you
are building J2EE-compliant adapters. The toolkit is provided in the logtoolkit.jar file.

For information about using the logging toolkit, see Chapter 5, “Using the Logging Toolkit.”

Logging Framework

With the ADK, logging of adapter activity is accomplished by implementing the logging
framework. This framework gives you the ability to log internationalized and localized messages

Developing Adapters

Adapter Logical Name

to multiple output destinations. It provides a range of configuration parameters you can use to
tailor message category, priority, format, and destination.

The logging framework uses a categorical hierarchy to allow inheritance of logging configuration
by all packages and classes within an adapter. The framework allows parameters to be modified
easily during run time.

Internationalization and Localization

The logging framework allows you to internationalize log messages. Internationalized
applications are easy to tailor to the idioms and languages of end-users around the world without
rewriting the code. Localization is the process of adapting software for a specific region or
language by adding locale-specific components and text. The logging framework uses the
internationalization and localization facilities provided by the Java platform.

Adapter Logical Name

Every adapter must have an adapter logical name: a unique identifier that represents an
individual adapter and serves as the organizing principle for all adapters. An adapter logical name
is the means by which both an individual adapter and the following related items are identified:

e Message bundle
e Logging configuration

e [og categories

An adapter logical name is formed by combining the vendor name, the type of EIS connected to
the adapter, and the version number of the EIS. By convention, this information is expressed as
vendor_ EIS-type EIS-version. For example, in the adapter logical name
BEA_WLS_SAMPLE_ADK:

e BEA_WLS is the vendor and product
e saMPLE is the EIS type

e ADK is the EIS version

You may use another format for this information, if you prefer, as long as you include the required
data.

Developing Adapters 2-5

Basic Development Concepts

2-6

Where the Adapter Logical Name Is Used

The adapter logical name is used with adapters in the following ways:
e It is used during adapter deployment as part of the WAR, RAR, JAR, and EAR filenames.

e It is used as an organizing principle, as described in “Adapter Logical Name Used as an
Organizing Principle” on page 2-7.

e It is used as a return value to the abstract method getAdapterLogicalName () in
com.bea.adapter.web, as described in “Adapter Logical Name Used as the Return Value
for getAdapterLogicalName” on page 2-8.

Use of Adapter Logical Name in Adapter Deployment

To assign an adapter logical name, specify it as the value of the Name attribute of the
<Application> element that contains the <ConnectiorComponent> element. This value is the
key used by WebLogic Integration to associate an application view with a deployed resource
adapter, as shown for a sample adapter in Listing 2-1.

Listing 2-1 Name Attribute of the ConnectorComponent Element

<Application Deployed="true" Name="BEA_WLS_DBMS_ADK"
Path="<WLI_HOME>/adapters/dbms/1lib/BEA_WLS_DBMS_ADK.ear"
TwoPhase="true">

<ConnectorComponent Name="BEA_WLS_DBMS_ADK" Targets="myserver"
URI="BEA_WLS_DBMS_ADK.rar"/>

<WebAppComponent Name="DbmsEventRouter" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_EventRouter.war"/>

<WebAppComponent Name="BEA_WLS_DBMS_ADK_ Web" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_Web.war"/>

</Application>

Note: The use of the adapter logical name as the name of the RAR file is an optional
convention; such naming is not required in the URI attribute.

When an application view is deployed, it is associated with a J2EE Connector Architecture CCI
connection factory deployment. For example, if a user deploys the abc . xyz application view,

Developing Adapters

Adapter Logical Name

WebLogic Integration deploys a new ConnectionFactory and binds it to the following JNDI

location:

com.bea.wlai.connectionFactories.abc.xyz.connectionFactoryInstance

Adapter Logical Name Used as an Organizing Principle

Table 2-1 lists the types of functionality that use the adapter logical name as an organizing

principle.

Table 2-1 How an Adapter Logical Name Is Used as an Organizing Principle

In this area of
functionality . . .

Adapter logical names are used as follows . . .

Logging

The adapter logical name is used as the base log category name for all log messages that
are unique to the adapter. Consequently, the adapter logical name is passed as the value
for the RootLogContext parameters in the following XML documents:

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/weblogic-ra.xml
e WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml

In these pathnames, ADAPTER represents the name of your adapter. For example:
WLI_HOME/adapters/dbms/src/war/WEB-INF/web.xml

In addition, the adapter logical name is used as the base for the name of the Log4J
configuration file for the adapter; the name is completed by the addition of the .xm1
suffix.

.xml is appended to the name. For example, the Log4J configuration file for the sample
adapter is BEA_WLS_SAMPLE_ADK.xml.

Localization

The logical name of the adapter is used as the base name for message bundles for the
adapter. For example, the default message bundle for the sample adapter is
BEA_WLS_SAMPLE_ADK.properties. Consequently, the adapter logical name is
passed as the value for the MessageBundleBase parameters in the following XML
documents:

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml

e WLI_HOME/adapters/ADAPTER/src/rar/META-INF/weblogic-ra.xml
e WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml

In these pathnames, the value of ADAPTER is the name of your adapter. For example:
WLI_HOME/adapters/dbms/src/war/WEB-INF/web.xml

Developing Adapters 2-1

Basic Development Concepts

Adapter Logical Name Used as the Return Value for getAdapterLogicalName

Lastly, the adapter logical name is used as the return value to the abstract method
getAdapterLogicalName () on the com.bea.adapter.web.
AbstractDesignTimeRequestHandler. This return value is used during the deployment of
application views as the value of the RootLogContext for a connection factory.

Enterprise Archive (EAR) Files

2-8

The ADK uses Enterprise Archive files, or EAR files, for deploying adapters. A single . ear file
contains the WAR and RAR files necessary to deploy an adapter. An example of an EAR file is
shown in Listing 2-2.

Listing 2-2 EAR File Structure

adapter.ear
META-INF
application.xml
sharedJar.jar
adapter.jar
adapter.rar
META-INF
ra.xml
weblogic-ra.xml
MANIFEST .MF

designtime.war

WEB-INF
web . xml
META-INF

MANIFEST .MF

The EAR file for the sample adapter is shown in Listing 2-3.

Developing Adapters

Enterprise Archive (EAR) Files

Listing 2-3 Sample Adapter EAR File

sample.ear
META-INF
application.xml
shared.jar (shared .jar between .war and .rar)
BEA_WLS_SAMPLE_ADK.war (Web application with
META-INF/MANIFEST.MF entry Class-Path: shared.jar
BEA_WLS_SAMPLE_ADK.rar (Resource Adapter
META-INF/MANIFEST.MF entry Class-Path: shared.jar

Notice that neither the RAR nor WAR files include any shared JAR files; rather, both refer to the
shared JAR files located in the root directory of the EAR file.

For more information about using EAR files to deploy adapters, see Chapter 10, “Deploying
Adapters.”

Developing Adapters 2-9

Basic Development Concepts

2-10 Developing Adapters

Development Tools

The ADK provides a set of robust tools to assist you in developing adapters and the design-time
GUI. This section describes these tools. Specifically, it includes information about the following
subjects:

Sample Adapter

GenerateAdapterTemplate Utility

ADK Javadoc

e Ant-Based Build Process

e XML Tools

Sample Adapter

To help you start building an adapter, the ADK provides a sample adapter with code examples
that are not specific to EIS. Do not confuse this sample adapter with the DBMS sample adapters
that are also provided by WebLogic Integration; the DBMS sample adapters are documented in
Appendix E, “Learning to Develop Adapters Using the DBMS Sample Adapters.” You can find
the DBMS sample adapters in wWLI_HOME/adapters/dbms.

Why Use the Sample Adapter?

The purpose of the sample adapter is to free you from much of the coding necessary to build an
adapter. It provides concrete implementations of key abstract classes that require customization
only to meet the requirements of the EIS you are using. In addition, the ADK provides

Developing Adapters 3-1

Development Tools

GenerateAdapterTemplate, a utility with which you can quickly clone the sample adapter
development tree for use by the adapter you are developing. See “GenerateAdapterTemplate
Utility” on page 3-3.

What Is In the Sample Adapter?

The sample adapter contains:

sample.cci.ConnectionImpl
A concrete implementation of the Connection interface that represents an
application-level handle used by a client to access the underlying physical connection.

sample.cci.InteractionImpl
A class that demonstrates how to implement a design pattern using the
DesignTimeInteractionSpecImpl class.

sample.cci.InteractionSpecImpl
An interface that provides a base implementation that you can extend by using getter and
setter methods for the standard interaction properties.

sample.client.ApplicationViewClient
A class that demonstrates how to invoke a service and listen for an event on an application
view.

sample.eis.EIS
sample.eis.EISConnection
sample.eis.EISEvent
sample.eis.EISListener
Classes that represent, for demonstration purposes, a simple EIS.

sample.event.EventGenerator
A concrete extension to AbstractPullEventGenerator that shows how to extend the
ADK base class to construct an event generator.

sample.event.0fflineEventGeneratorTestCase
A class you can use to test the inner workings of your event generator outside WebLogic
Server.

sample.spi.ManagedConnectionFactoryImpl
A concrete extension to AbstractManagedConnectionFactory that you can customize
for a specific EIS.

sample. spi.ManagedConnectionImpl
A concrete extension to AbstractManagedConnection that you can customize for a
specific EIS.

Developing Adapters

GenerateAdapterTemplate Utility

sample.spi.ConnectionMetaDataImpl
A concrete extension to AbstractConnectionMetaData that you can customize for a
specific EIS.

sample. spi.NonManagedScenarioTestCase
A class you can use to test your SPI and CCI classes in an unmanaged scenario.

sample.spi.ResourceAdapterImpl
A concrete extension to AbstractWLIResourceAdapter that you can customize for a
specific EIS.

sample.web.DesignTimeRequestHandler
A concrete extension to AbstractDesignTimeRequestHandler that shows how to add
an event or service at design time.

Note: For details about the classes extended by those in the sample adapter, see the ADK
Javadocs at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/adk/

GenerateAdapterTemplate Utility

To facilitate use of the sample adapter, the ADK provides GenerateAdapterTemplate, a
command-line utility you can use to create a new adapter development tree by cloning the sample
tree. For complete instructions on using this tool, see Chapter 4, “Creating a Custom
Development Environment.”

ADK Javadoc

ADK classes, interfaces, methods, and constructors are defined in the development kit’s Javadoc.
The ADK Javadoc is located at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/adk/

The Javadoc for the ADK is not specific to a single adapter. For additional information on
specific sample adapter, refer to comments in the adapter source code provided in
WLI_HOME/adapters/ADAPTER/src where ADAPTER is the specific adapter directory.

Ant-Based Build Process

The ADK employs a build process based on Ant, a 100% pure Java-based build tool. For the
ADK, Ant does the following:

e Creates a Java archive (JAR) file for the adapter.

Developing Adapters 3-3

http://e-docs.bea.com/wli/docs81/javadoc/adk/
http://e-docs.bea.com/wli/docs81/javadoc/adk/

Development Tools

e Creates a WAR file for an adapter’s Web application.
e Creates a RAR file for a J2EE-compliant adapter.

e Bundles the other components in this list into an EAR file for deployment.

Why Use Ant?

Traditionally, build tools are shell-based. Like shell commands, they evaluate a set of
dependencies and then execute various tasks. While the advantage of such tools is that it is simple
to extend them by using or writing any program for your operating system (OS), the disadvantage
is that you are limited to that OS.

Ant is preferable to shell-based make tools for the following reasons:
e Itis extended with Java classes instead of shell-based commands.

e The configuration files are based on XML instead of shell commands: they invoke a target
tree in which various tasks get executed. Each task is run by an object that implements a
particular task interface. While this arrangement removes some of the expressive power
inherent in the ability to construct a shell command, it makes your application portable
across platforms.

e Ant allows you to execute various OS-specific shell commands.

For complete instructions for setting up Ant, see “Step 2c: Set Up the Build Process” on
page 6-11.

XML Tools

The ADK includes the XML Toolkit, a set of two XML development tools that are considered
part of the metadata support layer for the design-time framework:

e XML Schema API—Based on the Schema Object Model (SOM), this API is used to build
XML schemas programmatically. The SOM is a set of tools that enables you to extract
many common details, such as the syntactical complexities of XML schema operations, so
you can focus on the more fundamental aspects of a schema.

e XML Document API—Based on IDocument, this API provides the x-path interface to a
document object model (DOM) document.

For instructions on using these tools, see Appendix B, “XML Toolkit.”

WebLogic Integration provides Javadoc for both APIs:

3-4 Developing Adapters

XML Tools

e For SOM Javadoc, go to the WebLogic Integration Javadoc at
http://e-docs.bea.com/wli/docs81/javadoc/ and select the com.bea . schema
package

e For IDocument Javadoc, go to the WebLogic Integration Javadoc at
http://e-docs.bea.com/wli/docs81/javadoc/ and select the com.bea.document
package

Developing Adapters 3-5

http://e-docs.bea.com/wli/docs81/javadoc/
http://e-docs.bea.com/wli/docs81/javadoc/

Development Tools

3-6 Developing Adapters

CHAPTERa

Creating a Custom Development
Environment

Warning: We strongly recommend that you do not alter the sample adapter directly. Instead,
use the GenerateAdapterTemplate utility described in this chapter to make a copy
of the adapter, and then make any changes you want to your copy. Modifying the
sample adapter itself (or trying to create a copy of it without using
GenerateAdapterTemplate) might result in unexpected and unsupported
behavior.

To facilitate the use of the sample adapter (see “Sample Adapter” on page 3-1), the ADK
provides GenerateAdapterTemplate, a command-line utility you can use to create a new
adapter development tree by cloning the sample tree.

This section provides information about the following subjects:
e Adapter Setup Worksheet

e Using GenerateAdapterTemplate

Adapter Setup Worksheet

The adapter setup worksheet is a questionnaire designed to help you identify and collect critical
information about the adapter you are developing. You can find this questionnaire in Appendix C,
“Adapter Setup Worksheet.”

This worksheet is a set of 20 questions that can help you identify critical adapter information,
such as EIS type, vendor, and version, locale and national language of the deployment, the
adapter logical name, and whether or not the adapter supports services. When you run

Developing Adapters 4-1

Creating a Custom Development Environment

GenerateAdapterTemplate, you are prompted to enter this information. When the information
is processed, a custom development tree for your adapter is created.

Using GenerateAdapterTemplate

This section explains how to use GenerateaAdapterTemplate. You must perform the following
steps:

e Step 1. Execute GenerateAdapterTemplate
e Step 2. Rebuild the Tree
e Step 3. Test the Adapter

e Step 4. Deploy the Adapter to WebLogic Integration

Step 1. Execute GenerateAdapterTemplate

To use this tool, do the following:
1. Open a command line from the WLI_HOME/adapters/utils directory and execute one the
following commands:
— For Windows NT: GenerateAdapterTemplate.cmd
— For UNIX: GenerateAdapterTemplate.sh
The system responds:

R R R R R S S R R R R R R S R R R R R AR R R R ok

Welcome! This program helps you generate a new adapter development tree
by cloning the ADK's sample adapter development tree.

Do you wish to continue? (yes or no); default='yes':

For Windows systems, proceed to step 2. After completing step 2, the system displays the
prompt shown in step 3.

For non-Windows systems, proceed to step 3.

2. Select yes by pressing Enter. For Windows systems only, select your console's codepage
value from the following codepage list:

Cp437 - United States

Cp850 - Multilingual (Latin I)
Cp852 - Slavic (Latin II)
Cp855 - Cyrillic (Russian)

4-2 Developing Adapters

Using GenerateAdapterTemplate

Cp857 - Turkish

Cp860 - Portuguese

Cp861 - Icelandic

Cp863 - Canadian-French

Cp865 - Nordic

Cp866 - Russian

Cp869 - Modern Greek

MS932 - Japanese

Enter your console's codepage; default='Cpd37':

If you do not know your codepage, launch a new DOS console prompt and enter chcp at
your console prompt. Depending on the Windows version, this command displays your
console’s codepage value.

Select yes by pressing Enter.
The system responds:

Please choose a name for the root directory of your adapter development
tree (NOTE: this directory will be created under WLI_HOME/adapters) :

Enter a unique, easy-to-remember directory name (dir_name) and press Enter.
The system responds:

created directory WLI_HOME/adapters/dir name

Enter the EIS type for your adapter:

In the pathname specified in the system output, dir_name is the name of the new
directory.

Note: If you enter the name of an existing directory, the system responds:

WLI_HOME/adapters/dir name already exists, please choose
a new directory that does not already exist!

Please choose a name for the root directory of your adapter
development tree:

Enter an identifier for the EIS type to which your adapter will connect. Press Enter.
The system responds:

Enter a short description for your adapter:

Enter a short, meaningful description of the adapter you are about to develop and press
Enter.

The system responds:

Developing Adapters 4-3

Creating a Custom Development Environment

4-4

10.

11.

Enter the major version number for your adapter; default='1':

Either press Enter to accept the default, or enter the appropriate version number and then
press Enter.

The system responds:
Enter the minor version number for your adapter; default='0':

Either press Enter to accept the default, or type the appropriate minor version number and
then press Enter.

The system responds:

Enter the vendor name for your adapter:

Enter the vendor’s name and press Enter.

The system responds:

Enter an adapter logical name; default='default_name':

Either press Enter to accept the default or type the adapter logical name you want to use.
Press Enter. The default adapter logical name ('default_name ‘) is based on the format
recommended for WebLogic Integration:

vendor name_EIS-type_version-number.

The system responds:

Enter the Java package base name for your adapter
(e.g. sample adapter's is sample): Java package base name

Enter the base name of the Java package, in package format, and press Enter. A name in
package format consists of the following strings, separated by dots:

— The extension used in the URL for your organization’s Web site (such as .com, .org,
or.edu)

— The name of your company
— Additional adapter identifiers. For example: com.your_co.adapter.EIS.

The system responds:

The following information will be used to generate your new
adapter development environment:

EIS Type = 'SAP R/3'

Description = 'description'

Major Version = '1'

Minor Version = '0'

Vendor = 'vendor_name'

Developing Adapters

Using GenerateAdapterTemplate

Adapter Logical Name = 'adapter.__logical_name'

Java Package Base = 'com.java.package.base'

Are you satisfied with these values? (enter yes or no or d to quit);
default='yes':

12. To confirm the information, press Enter.
The system responds by displaying the appropriate build information.

Note: If you enter no, you are routed back to step 4. If you enter g (quit), the application
terminates.

Step 2. Rebuild the Tree

After completing the clone process, go to the new directory and use Ant, the ADK’s build tool,
to rebuild the entire tree. For more information about Ant, see “Ant-Based Build Process” on
page 3-3.

Note: You must explicitly enter the file extension when running Ant commands on UNIX
systems. For example, enter ant . sh release. Entering ant release on UNIX
systems does not locate ant . sh.

To rebuild the tree by using Ant, do the following:

1. Edit antEnv.cmd (Windows) or antEnv.sh (UNIX) in
WLI_HOME/adapters/ADAPTER/utils.

2. Set the following variables to valid paths:

— BEA_HOME - The top-level directory for your BEA products, such as c: /bea.

WLI_HOME - The location of your WebLogic Integration directory.

WL_HOME - The location of your WebLogic Server directory.

JAVA_HOME - The location of your Java Development Kit.
— ANT_HOME - The location of your Ant directory, typically wLI_HOME/adapters/utils.
Note: The installer performs this step for you, but you should be aware that these settings

control the Ant process.

On a UNIX system, execute permission for all must be set for the Ant file in
WLI_HOME/adapters/utils. To add execute permission, enter the following
command:

chmod u+x ant.sh

Developing Adapters 4-5

Creating a Custom Development Environment

4-6

3. Execute antEnv.cmd (Windows) or antEnv.sh (UNIX) from the command line to set the
necessary environment variables for your shell.

4. Execute ant.cmd release (Windows) or ant.sh release (UNIX) from the
WLI_HOME/adapters/ADAPTER/project directory to build the adapter. (Replace ADAPTER
with the name of the new adapter development root.)

When you execute ant release, Javadoc is generated for the adapter. You can view the
Javadoc by going to:

WLI_HOME/adapters/ADAPTER/docs/overview.html

This file provides environment-specific instructions for deploying your adapter in a
WebLogic Integration environment. Specifically, it provides config.xml entries and
replacements for the path already created. In addition, the file provides mapping
information.

To facilitate adapter deployment, as described in “Step 4. Deploy the Adapter to WebLogic
Integration” on page 4-6, you can copy the contents of overview.html directly into
config.xml.

Step 3. Test the Adapter

Before deploying the adapter, you should test the behavior of the adapter. Create a service and an
event and test them. You can use the steps described in “Learning to Develop Adapters Using the
DBMS Sample Adapters” on page E-1 as a guide to using the adapter. Once testing is
successfully complete, you are ready to customize the cloned adapter to meet the needs of the
EIS.

Step 4. Deploy the Adapter to WebLogic Integration

You can deploy the adapter either manually or from the WebLogic Server Administration
Console. See Chapter 10, “Deploying Adapters,” for complete information.

Developing Adapters

Using the Logging Toolkit

Logging is an essential feature of an adapter component. Most adapters are used to integrate
different applications; they do not interact with end users while data is being processed. Unlike a
front-end component, when an adapter encounters an error or warning condition, it cannot stop
processing and wait for an end-user to respond.

With the ADK, you can log adapter activity by implementing a logging framework. This
framework gives you the ability to log internationalized and localized messages to multiple
output destinations. It provides a range of configuration parameters you can use to tailor message
category, priority, format, and destination.

This section contains information about the following subjects:
e Logging Toolkit
e Logging Configuration File

e Logging Concepts

How to Set Up Logging

Logging Framework Classes

e Internationalization and Localization of Log Messages

Saving Contextual Information in a Multithreaded Component

Developing Adapters 5-1

Using the Logging Toolkit

Logging Toolkit

The ADK logging toolkit allows you to log internationalized messages to multiple output
destinations. The logging toolkit leverages the work of the Apache Log4j open source project.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org).

The logging toolkit is a framework that wraps the necessary Log4j classes to provide added
functionality for J2EE-compliant adapters. It is provided in the logtoolkit.jar file under
wLI_HoME/1lib. This JAR file depends on DOM, XERCES, and Log4j. The XERCES
dependency is satisfied by the weblogic.jar and xmlx.jar files provided with WebLogic
Server. The required version of Log4j, 1og4j.jar, is provided in WL_HOME/common/1ib.

The Log4j package is distributed under the Apache public license, a full-fledged open source
license certified by the open source initiative. The latest Log4j version, including full-source
code, class files, and documentation, can be found at the Apache Log4j Web site
(http://www.apache.org).

Logging Configuration File

Throughout this section, you will see references to and code excerpts from the logging
configuration file. This file is an .xm1 file that is identified by the adapter logical name, such as
BEA_WLS_DBMS_ADK.xml. It contains the base information for the four logging concepts
discussed in “Logging Concepts” on page 5-2 and can be modified for your specific adapter.

The ADK provides a basic logging configuration file, BEA_WLS_SAMPLE_ADK.xml, in
WLI_HOME/adapters/sample/src. To modify this file for your adapter, run
GenerateAdapterTemplate. This utility customizes the sample version of the logging
configuration file with information pertinent to your new adapter and places the customized
version in the new adapter’s development environment. For more information about
GenerateAdapterTemplate, see Chapter 4, “Creating a Custom Development Environment.”

Logging Concepts

Before using the logging toolkit provided with the ADK, you should understand a few key
concepts of the logging framework. Logging has four main components:

e Message Categories
e Message Priority

e Message Appenders

5-2 Developing Adapters

http://www.apache.org
http://www.apache.org

Logging Concepts

e Message Layout

These components work together to enable you to log messages according to message type and
priority, and to control, at run time, how these messages are formatted and where they are
reported.

Message Categories

Categories identify log messages according to criteria you define and are a central concept of the
logging framework. In the ADK, a category is identified by its name, such as
BEA_WLS_SAMPLE_ADK.DesignTime.

Categories are hierarchically defined and any category can inherit properties from a parent

category. The hierarchy is defined as follows:

e A category is an ancestor of another category if its name, followed by a dot, is a prefix of
the descendant category name.

e A category is a parent of a child category if there are no ancestors between itself and the
descendant category.

For example, BEA_WLS_SAMPLE_ADK.DesignTime is a descendant of BEA_WLS_SAMPLE_ADK
which, in turn, is a descendant of the root category, as shown in the following diagram.

Developing Adapters 5-3

Using the Logging Toolkit

ROOT CATEGORY

|—>BEA_WLS_SAMPLE_ADK

| ->BEA_WLA_SAMPLE.ADK.DesignTime
The root category resides at the top of the hierarchy; it cannot be deleted or retrieved by name.

When you create categories, you should name them according to components in the adapter to
which they belong. For example, if an adapter has a design-time user interface component, the
adapter might have a category with the following name: BEA_WLS_SAMPLE_ADK.DesignTime.

Message Priority

Every message has a priority that indicates its importance. Message priority is determined by the
ILogger interface method used to log the message. For example, if you call the debug method on
an [Logger instance, a debug message is generated.

The logging toolkit supports five possible priorities for a given message. These priorities are
listed, in descending order of importance, in Table 5-1.

Table 5-1 Logging Toolkit Priorities

Priority Indicates

AUDIT An extremely important log message related to the business processing
performed by an adapter. Messages with this priority are always written to the
log.

ERROR An error in the adapter. Error messages are internationalized and localized for
the user.

WARN A situation that is not an error, but that might cause problems in the adapter.

Warning messages are internationalized and localized for the user.

INFO An informational message that is internationalized and localized for the user.

DEBUG A debug message, that is, information used to determine how the internals of
acomponent are working. Debug messages are typically not internationalized.

The BEA_WLS_SAMPLE_ADK category has priority WARN because of the following child element:

<priority value='WARN' class='com.bea.logging.LogPriority'/>

5-4 Developing Adapters

Logging Concepts

The class for the priority must be com.bea.logging.LogPriority.

Assigning a Priority to a Category

You can assign a priority to a category. If a given category is not assigned a priority, it inherits
one from its closest ancestor with an assigned priority; that is, the inherited priority for a given
category is equal to the first non-null priority above the given category in the hierarchy.

A log message is sent to the log destination if its priority is higher than or equal to the priority of
its category. Otherwise, the message is not written to the log. A category without an assigned
priority inherits one from the hierarchy. To ensure that all categories can eventually inherit a
priority, the root category always has an assigned priority. A log statement of priority p, in a
category with inherited priority g, is enabled if p >= q. This rule is based on the assumption that
priorities are ordered as follows: DEBUG < INFO < WARN < ERROR < AUDIT.

Message Appenders

The logging framework allows an adapter to log messages to multiple destinations by using an
interface called an appender. Log4j provides appenders for:

e Console
e Files

Remote socket servers

NT event loggers

Remote UNIX Syslog daemons

In addition, the ADK logging toolkit provides an appender that you can invoke to send a log
message to your WebLogic Server log.

A category may refer to multiple appenders. Each enabled logging request for a given category
is forwarded to all the appenders in that category, as well as all the appenders higher in the
hierarchy. In other words, appenders are inherited cumulatively from the category hierarchy.

For example, if a console appender is added to the root category, then all enabled logging requests
are displayed, at a minimum, on the console. If, in addition, a file appender is added to category
C, then enabled logging requests for C and C’s children are printed in a file and displayed on the
console. It is possible to override this default behavior (that is, to stop appender inheritance from
being cumulative) by setting the additivity flag to false.

Developing Adapters 5-5

Using the Logging Toolkit

5-6

Note: If you also add the console appender directly to C, you get two messages—one from C
and one from root—on the console. The root category always logs to the console.

Listing 5-1 shows an appender for the WebLogic Server log.

Listing 5-1 Sample Code Showing an Appender for the WebLogic Server Log

<!--
A WeblogicAppender sends log output to the Weblogic log. If running outside
of WebLogic, the appender writes messages to System.out
-—>
<appender name="WebLogicAppender"
class="com.bea.logging.WeblogicAppender" />

</appender>

Message Layout

Log4j enables you to customize the format of a log message by associating a layout with an
appender. The layout determines the format of a log message, while an appender directs the
formatted message to its destination. The logging toolkit typically uses PatternLayout to format
its log messages. PatternLayout, part of the standard Log4;j distribution, lets you specify the
output format according to conversion patterns similar to the C language print£ function.

For example, if you invoke PatternLayout with the conversion pattern $-5p%d{DATE} %c{4} %x
- %m%n, a message such as the following is generated:

AUDIT 21 May 2001 11:00:57,109 BEA_WLS_SAMPLE_ADK - admin opened connection
to EIS

In this conversion pattern:

e The value of %-5p is the priority of the message; in the example shown here, the priority is
AUDIT.

e The value of $a{DATE} is the date of the message; in the example shown here, the date is
21 May 2001 11:00:57,100.

e The value of $c {4} is the category for the log message; in the example shown here, the
category is BEA_WLS_SAMPLE_ADK.

Developing Adapters

How to Set Up Logging

The text after the dash (-) is the message of the statement.

Putting the Components Together

Listing 5-2 declares a new category for the sample adapter, assigns a priority to the new category,
and declares an appender in order to specify the type of file to which log messages should be sent.

Listing 5-2 Sample XML Code for Declaring a New Log Category

<!-

IMPORTANT!!! ROOT Category for the adapter; making this unique prevents other
adapters from logging to your category
-—>

<category name='BEA_ WLS_SAMPLE_ADK' class='com.bea.logging.LogCategory'>
<!-
Default Priority Level; may be changed at runtime
DEBUG means log all messages from the adapter's code base
INFO means log informationals, warnings, errors, and audits
WARN means log warnings, errors, and audits
ERROR means log errors and audits
AUDIT means log audits only
-—>

<priority value='WARN' class='com.bea.logging.LogPriority'/>
<appender-ref ref='WebLogicAppender'/>

</category>

Note: YOuInuMSpeCﬁytheCkwsaScom.bea.logging.LogCategory.

How to Set Up Logging

Note: The following procedure is based on the assumption that you have cloned a development
environment by running the GenerateAdapterTemplate utility. For more information
about this utility, see Chapter 4, “Creating a Custom Development Environment.”

To set up the logging framework for your adapter:

Developing Adapters 5-7

Using the Logging Toolkit

5-8

1.

Identify all the basic components used in the adapter. For example, if your adapter has an
EventGenerator, you might want an EventGenerator component; if it supports a design-time
GUI, you need a design-time component.

Open the base log configuration file from the cloned adapter. This file is found in
WLI_HOME/adapters/ADAPTER/src/. Its name includes the .xml extension. For example,
the DBMS sample adapter configuration file is
WLI_HOME/adapters/dbms/src/BEA_WLS_DBMS_ADK.xml.

In the base log configuration file, add the category elements for all adapter components you
identified in step 1. For each category element, establish a priority. Listing 5-3 shows how a
category for an EventGenerator with a priority of DEBUG is added.

Listing 5-3 Sample Code for Adding an EventGenerator Log Category with a Priority of DEBUG

<category name='BEA_WLS_DBMS_ADK.EventGenerator'
class="'com.bea.logging.LogCategory'>
<priority value='DEBUG'
class='com.bea.logging.LogPriority'/>
</category>

Determine which appender is needed and specify it in the configuration file. If necessary,
add message formatting information. Listing 5-4 shows how a basic file appender is added
within the <appender> element. Instructions within the <layout> element identify the
message format.

Note: By default, webLogicAppender is used in all sample adapters provided by
WebLogic Integration.

Listing 5-4 Sample Code for Adding a File Appender and Layout Pattern

<!-- A basic file appender -->

<appender name='FileAppender'
class="'org.apache.Log4j.FileAppender'>

<!-- Send output to a file -->
<param name='File' value='BEA_WLS_DBMS_ADK.log'/>

<!-- Truncate existing -->

Developing Adapters

Logging Framework Classes

<param name="Append" value="true"/>
<!-- Use a basic LOG4J pattern layout -->
<layout class='org.apache.Log4j.PatternLayout'>
<param name='ConversionPattern' value='%$-5p $d{DATE} %$c{4}
$x - Sm&n'/>

</layout>

</appender>

At this point, you should check the setting in the following configuration files:

® WLI_HOME/adapters/ADAPTER/src/rar/META-INF/ra.xml and weblogic-ra.xml—
The AbstractManagedConnectionFactory uses the logging information entered in the
base configuration file to configure the log framework at initialization time.

® WLI_HOME/adapters/ADAPTER/src/war/web-inf/web.xml—The RequestHandler
(the parent of AbstractDesignTimeRequestHandler) uses the logging information
entered in the base configuration file to configure the log framework at initialization time.

In the preceding paths, ADAPTER represents the name of your adapter. For example, the name of
the DBMS sample adapter appears in the pathname for the associated configuration file, as
follows:

WLI_HOME/adapters/dbms/src/rar/META-INF/ra.xml

Logging Framework Classes

In addition to understanding the basic concepts of the logging framework, you also need to
understand the three main classes provided in the logging toolkit:

® com.bea.logging.ILogger
® com.bea.logging.LogContext

® com.bea.logging.LogManager

com.bea.logging.lLogger

This class is the main interface to the logging framework. It provides numerous convenience
methods for logging messages.

Developing Adapters 5-9

Using the Logging Toolkit

5-10

The “How to Set Up Logging” procedure explains how you can configure logging in the base log
configuration file. You can also configure logging programmatically by implementing the

following logging methods:

logger.setPriority (“DEBUG”) changes the minimum priority of messages printed from
the current ILogger.

logger.addRuntimeDestination (writer) adds the appender that is used when the
container passes its PrintWriter to the adapter.

logger.warn (“Some message”, true) logsa message with the priority level of WARN,
without using the ResourceBundle. The boolean indicates that the string is a message, not
a key.

logger.warn (“someKey”) logs a message with the priority level warN, by looking it up
with “someKey” in ResourceBundle.

logger.info(“someKey”, anObjArray) logs a message with the priority level of INFO
by looking up a template with someKey in ResourceBundle and filling in the blanks with
the elements of anoObjArray.

logger .error (exception) logs a message with the priority level of ERROR, by passing
an exception (Throwable) to this method. It calls getMessage () and includes a stack
trace. (All logging methods that take a Throwable as an argument log a stack trace.)

com.bea.logging.LogContext

This class encapsulates the information needed to identify an ILogger instance in the logging
framework. Currently, the LogContext class encapsulates a log category name and a locale, such
as en_Us. This class is the primary key for uniquely identifying an ILogger instance in the log
manager.

com.bea.logging.LogManager

This class provides a method that allows you to configure the logging framework and gain access
to ILogger instances.

To ensure that you can properly configure the logging toolkit for your adapter, the ADK
implements the LogManager's configure () method with the arguments shown in Listing 5-5.

Developing Adapters

Logging Framework Classes

Listing 5-5 Sample Code for Configuring the Logging Toolkit

public static LogContext

configure(String strLogConfigFile,

String strRootLogContext,

String strMessageBundleBase,

Locale locale,

ClassLoader classLoader)

Table 5-2 describes the arguments passed by configure ().

Table 5-2 configure() Arguments

Argument

Description

strLogConfigFile

File that contains the log configuration information for
your adapter. The file’s location should be included in
the classpath. We recommend that you include this file
in your adapter’s main JAR file so that it can be
included in the WAR and RAR files for your adapter.
This file should conform to the Log4j .dtd. The
Log43j .dtd file is provided in the Log4j . jarfile
provided with WebLogic Integration.

strRootLogContext

Name of the logical root of the category hierarchy for
your adapter. For the sample adapter, its value is
BEA_WLS_SAMPLE_ADK.

strMessageBundleBase

Base name of the message bundles for your adapter.
The ADK requires the use of message bundles. For the
sample adapter, its value is BEA_WLS_SAMPLE_ADK.

locale

Nation and language of the users. The logging toolkit
organizes categories into different hierarchies, based on
locale. For example, if your adapter supports two
locales, en_US and fr_CA, the logging toolkit
maintains two hierarchies: one for en_US and one for
fr CA.

classLoader

ClassLoader that should be used by the
LogManager to load resources, such as
ResourceBundles and log configuration files.

Developing Adapters

5-11

Using the Logging Toolkit

Once the configuration is complete, you can retrieve ILogger instances for your adapter by
supplying a LogContext object.

Listing 5-6 Sample Code for Supplying a LogContext Object

LogContext logContext = new LogContext ("BEA_WLS_SAMPLE_ADK",

java.util.Locale.US) ;

ILogger logger = LogManager.getLogger (logContext); logger.debug("I'm

logging now!");

The ADK hides most of the log configuration and setup from you. The
com.bea.adapter.spi.AbstractManagedConnectionFactory class configures the logging
toolkit for service connections and the AbstractEventGenerator configures the logging
toolkit for event connections. In addition, all of the Client Connector Interface (CCI) and Service
Provider Interface (SPI) base classes included in the ADK provide access to an ILogger and the
LogContext associated with it.

An adapter may also include layers that support the CCI/SPI layer, such as a socket layer used for
establishing communication with the EIS. To make it possible for such adapters to access the
correct ILogger object, you can take either of two approaches:

e The CCI/SPI layers can pass the LogContext object into the lower layers. This method
works, but it adds overhead.

e The CCI layer can establish the LogContext for the current running thread at the earliest
possible place in the code. The ADK’s
com.bea.adapter.cci.ConnectionFactoryImpl class sets the LogContext for the
current running thread in the getConnection () methods. The getConnection ()
methods are the first point of contact between a client program and your adapter.
Consequently, lower layers in an adapter can safely access the LogContext for the current
running thread by using the following code:

Listing 5-7 Code Accessing LogContext for the Current Thread

public static LogContext getLogContext (Thread t)
throws IllegalStateException, IllegalArgumentException

5-12 Developing Adapters

Internationalization and Localization of Log Messages

Additionally, we supply the following convenience method on LogManager:
public static ILogger getLogger () throws IllegalStateException

This method provides an ILogger for the current running thread. There is one caveat to
using this approach: lower layers should not store LogContext or ILogger as members.
Rather, they should dynamically retrieve them from LogManager. An
IllegalStateException is thrown if this method is called before a LogContext is set for
the current running thread.

Internationalization and Localization of Log Messages

Internationalization (I18N) and localization (L10N) are central concepts to the ADK logging
framework. All logging convenience methods on the ILogger interface, except the debug
methods, allow I18N. The implementation follows the Java Internationalization standards, using
ResourceBundle objects to store locale-specific messages or templates. Sun Microsystems
provides a good online tutorial on using the I18N and L10N standards of the Java language.

Saving Contextual Information in a Multithreaded Component

Most real-world systems must manage multiple clients simultaneously. In a typical multithreaded
implementation of such a system, different threads handle different clients. Logging is especially
well suited to tracing and debugging complex distributed applications. A common way of
differentiating between the logging output of two clients is to instantiate a separate category for
each client. This approach has a drawback however: categories proliferate and the overhead
required to manage them increases.

A lighter technique is to stamp each log request initiated from the same client interaction with a
unique identifier. Neil Harrison describes this method in “Patterns for Logging Diagnostic
Messages” in Pattern Languages of Program Design 3, edited by R. Martin, D. Riehle, and F.
Buschmann (Addison-Wesley, 1997).

To stamp each request with a unique identifier, the user pushes contextual information into the
Nested Diagnostic Context (NDC). The logging toolkit provides a separate interface for
accessing NDC methods. The interface is retrieved from the ILogger by using the
getNDCInterface () method.

NDC printing is turned on in the XML configuration file (with the symbol %x). Every time a log
request is made, the appropriate logging framework component includes the entire NDC stack for
the current thread in the log output. The user does not need to intervene in this process. In fact,
the user is responsible only for placing the correct information in the NDC by using the push and
pop methods at a few well-defined points in the code.

Developing Adapters 5-13

Using the Logging Toolkit

Listing 5-8 Sample Code

public void someAdapterMethod(String aClient) {
ILogger logger = getLogger () ;
INestedDiagnosticContext ndc = logger.getNDCInterface() ;
// I'm keeping track of this client name for all log messages
ndc.push ("User name=" + aClient);
// method body ..
ndc.pop () ;

}

A good place to use the NDC is in your adapter’s CCI Interaction object.

5-14 Developing Adapters

GHAPTERa

Developing a Service Adapter

A service connection receives an XML request document from a client and invokes the associated
function in the underlying EIS. Service connections are consumers of messages; they may or may
not provide responses. They perform the following four functions:

e They receive service requests from an external client.

e They transform an XML request document into the EIS-specific format. The request
document conforms to the request XML schema for the service. The request XML schema
is based on metadata in the EIS.

e They invoke the underlying function in the EIS and wait for a response from that function.

e They transform the response from the EIS-specific data format to an XML format that
conforms to the response XML schema for the service. The response XML schema is
based on metadata in the EIS.

This section contains information about the following subjects:
e Service Connections in a Run-Time Environment
e Flow of Events

e Step 1: Research Your Environment Requirements

Step 2: Configure the Development Environment

Step 3: Implement the SPI

Step 4: Implement the CCI

Developing Adapters 6-1

Developing a Service Adapter

e Step 5: Enable Environment Variable Support (Optional)
e Step 6: Test the Adapter

e Step 7: Deploy the Adapter

J2EE-Compliant Adapters Not Specific to WebLogic Integration

The steps outlined in this section are directed primarily at developing adapters for use with
WebLogic Integration. You can also use the ADK to develop adapters for use outside the
WebLogic Integration environment, however, by following the same steps with certain
modifications. For instructions, see Appendix A, “Creating an Adapter Not Specific to WebLogic
Integration.”

Service Connections in a Run-Time Environment

6-2

Figure 6-1 and Figure 6-2 show the processes that are executed when a service connection is used
in a run-time environment. Figure 6-1 shows an asynchronous service connection; Figure 6-2, a
synchronous adapter.

Figure 6-1 Asynchronous Service Connection in a Run-Time Environment

Developing Adapters

Service Connections in a Run-Time Environment

Azynch Azynch Azynch Asynich
" " App Wiew Service Reqguest Message Responze : " Responze
Cligrt A g Bean Responze Gueue Reqguest Message RSEN'CE App View Gueue
Listener Handller Listener eSnonse
| | | | | | | |
\%1) sterd | | | | I | |
create ; | o |
I'—O—“I potually eredted UG) 1 { This is the client's This s a thread This is 8 S |
ome instance and is implementstion of dedicated to the Message Listener
| | accessed via EJB | IMEleMErtatian A Vi g |
i Wiew
| | . . | the AzynchService . that forwards |
remate interface. This - deployment (only if N
	s & stateless session	Responze Listener N AzynchService					
		Interface. asynch is enabled). Response to an					
		T	AsynchService				
							Responzelistener.
: ey »				i			
invoklaServiceAsynchlE"Svm ",IDocumeFl‘rt, listener) : : : : : : :							
		nkwiliztener)					
1 1 1 I 1 1 - 1 1 1							
			cresteGueugReceivermsaligtenear)		Ny		
I T T T T T T =1							
				receive			
				I			
invokeServikeAaynoh" a1, "Svel” IDocument)							
R —							
	build AsynchServiceReguest						
	A Send(asybchReques{) »						
			retprn asynchREﬂupst				
: : : : : extract 441, Svct, IDoc:unJluent :	:						

| | | | | ! | | |
1 1 1 1 1 1 | new 1 l 1
I I I I I I ; T > I
1 | 1 1 1 1) # o w el | 1
					invokeService"Svel", IDPc:ument) »		
							1
				I retugn responze IDocyment			
				I T]			
! ! ! ! ! ! new respoﬁse IDocumert !	!						
				I + >			
					I	.	
					send(phjecitessage(asynchServiceRegponse) o		
! ! ! ! ! ! ! onMeskage(object meskage) !							
						- + t i	
					extract asynchServiceResponze		
!						I	
			1				
		opAsyncherviceResponse(asynchServiceResponge)					
		e T T 1					
		check return §tatus, process document					
		I } } .					
						I	

Figure 6-2 Synchronous Service Connection in a Run-Time Environment

Developing Adapters

6-3

Developing a Service Adapter

Client App. Viewy

Connec- Inter-
Al View JHDI tion Connec- rer- action Bs
Factory Spec

T
rlew(Contes, "A1) :
created()

b CIPEEAL)

Invoke#ervice(“Svﬂ " ‘Documem)
™
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

eturn IDocument)
e —

|

|

|
InvokeBervice"Swct ", Document)

T T T
| |
1 1 1
This is actually created
using Home instance
and Is accessed via
EJB remate interface.
Thiz iz a stateless

e

Thiz iz the workhorse
object. it defines the
behavior of the adapter
available to the client.

This contains any
EIS specific
properties and is
the "personality” of
the service tt was

Thiz step effectively
combines the ixSpec
property data and XML
data in IDocument into

r%ﬁurn IDocumen1

Developing Adapters

|
|
|
|
|
|
|
'
|
|
|

!

|

|

| b

| Thiz step takes the
| native Els

| response dats

| stream and

! converts it to XML
| in an IDocumert.
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
I i |
| | sessian BB, 1 | placed into Jpi
| 1 1 1 1 1 | ouring App i
deployment.
| okup(Ay1-=Sve)) \ \ | | o
L . :
| | | I retrisve deployet! InteractionSped |
1 1 t t t t Ll
| | " | returnli=Spec | |
| | P ™ T T T 1
g hurm Spes					
lookypl &1 -=connFagtary)					
»					
		retrieve			
1 1	returnct	1 1 1			
1 — 1 1 1 1					
	"				
I gatCDnr{ectlon() o					
: : 1 lereate o retrievd : :					
	i				
e return c#nnecﬂnn h					
		"			
H	getinteraction()	»l			
I I I I [I					
[Ireturn irteraction					
1 3 T T 1	I a native EIS data				
		execute(ixSpec, Document)	o	atream	
T T T T ful					
1 1	1 petFunctioniame)				
		Data passed to the EIS	I		
			function iz & combination of		yetPropertyyalues
		ixSpec property data and	1		
			the Document dats passed Iaxtract.l’conver‘t vt from IDocum#nt(}(ML)		
I I I	by the user. Since the data		[
		cortert required by any I . I			
	I [given function iz & constant, function(ngtive data)				
		putting maore dats into I 1 fl			
! ! ! ixSpec means less data ! ML respon%e as native data					
	I	that the user must specify			
		extracticondert from native dbta			
s t					

Flow of Events

Flow of Events

Figure 6-3 outlines the steps required to develop a service connection.

Figure 6-3 Flow of Events in Service Connection Development Process

Devel t C iderations

You wilf!

Determine the EIS and appropriate service
Determine the connection

Determine the security needs

Determine the transaction support

2

Configure D Envi

You will:

Set up file structure

Assign Adapter Logical Mame
Create and update files

Set up the build process

3
Implement the Service Provider Interface

You will:

Implement the interfaces that comprise the SPI
including the

ManagedConnectionFactory

4
Implement the Client Connection Interface
Yoo wilf:
Implement the interfaces that comprise the CCT

including the
Connection interface and the Interaction interface

Test the Adapter

ou witl:
Ernplay the ADK Test Harness to test the
adapter
6
Deploy the Adapter
You will!

Update the RA.KML file
Create the RAR file
Create the EAR file
Deploy the EAR file

Developing Adapters 6-5

Developing a Service Adapter

Step 1: Research Your Environment Requirements

Before you start developing your service connection, you must identify the resources needed in
your environment to support it. This section provides a high-level description of the prerequisites
for a development environment. For a complete list of required resources, see Appendix C,
“Adapter Setup Worksheet.”

e Identify the required EIS and the service appropriate for it.

Based on your knowledge of the EIS, identify the interface to the back-end functionality.

o Identify the expensive connection object.

An expensive connection object is an object required to invoke a function within the EIS.
This function, in turn, is required for communicating with the EIS.

An expensive connection object requires an allocation of system resources, such as a
socket connection or DBMS connection. A valuable benefit of using the J2EE Connector
Architecture is that the application server pools these objects. Because the object for your
adapter will be pooled by the application server, you need to identify it.

o Identify your security needs.

To pass connection authentication across the connection request path, your adapter must
implement a ConnectionRequestInfo class. To facilitate such an implementation, the
ADK provides the class ConnectionRequestInfoMap. You can use this class to map
authorization information, such as username and password, to the connection.

The ADK conforms to the J2EE Connector Architecture Specification 1.0. For more
information about connection architecture security, see the “Security” section of that
document. You can download the specification in PDF format (for easy printing) from the
following URL.:

http://java.sun.com/j2ee/
e Identify the type of transaction support needed for your adapter.

Decide which of the following types of transaction demarcation support to implement with
your adapter:

— No transaction
— Local transaction demarcation

— XA-compliant transaction demarcation

6-6 Developing Adapters

Step 2: Configure the Development Environment

Note: For more information about transaction demarcation support, see ‘“Transaction
Demarcation” on page 6-24, or see:

http://java.sun.com/blueprints/guidelines/designing_enterprise_appli
cations/transaction_management/platform/index.html

e Decide if you will support environment variables for services.

Environment variables are used to isolate environment specific information in a way that
allows system administrators and application deployers to modify it as necessary for the
target environment. If your adapter defines service properties that include
environment-specific identifiers or other information, you should implement environment
variable support in your service adapter.

Step 2: Configure the Development Environment

This section provides a four-step procedure (steps 2a-2d) for configuring your environment.

Note: A simple way of completing this procedure is by running the GenerateAdapterTemplate
utility. For more information, see Chapter 4, “Creating a Custom Development
Environment.”

Step 2a: Set Up the Directory Structure

When you install WebLogic Integration, you also create the directory structure necessary not only
to run an adapter, but also to use the ADK. The ADK files reside under wLI_HOME/adapters/,
where wLI_HOME is the directory in which you installed WebLogic Integration. Be sure to verify
that your wL1_HOME directory is populated with the necessary directories and files at installation
time.

The following table describes the directory structure under wLI_HOME.

Table 6-1 ADK Directory Structure

Pathname Description

adapters Directory containing the ADK.

adapters/src/war Directory containing . j sp files, images, and so on. All files in
this directory should be included in the WAR file for an
adapter.

adapters/utils Directory containing files used by the build process, including

a file that timestamps JAR files.

Developing Adapters 6-7

Developing a Service Adapter

Table 6-1 ADK Directory Structure

Pathname Description

adapters/dbms Directory containing a sample J2EE-compliant adapter built
with the ADK.

adapters/sample Directory containing a sample adapter that you can use to start

developing your own adapter.

adapters/sample/project

Directory containing the Apache Jakarta Ant build file:
build.xml. This file contains build information for
compiling the source code, generating the JAR and EAR files,
and generating Javadoc information. For details about building
the adapter, see “Step 2c: Set Up the Build Process” on

page 6-11.

adapters/sample/src

Directory containing all the source code for an adapter. The
decision about whether to provide source code with your
adapter is yours.

adapters/sample/src/
BEA_WLS_SAMPLE_ADK
-base.properties

File containing messages used by the adapter for
internationalization and localization. This file is merged with
the ADK properties file
(WLI_HOME/adapters/src/ADK.properties) to form
the BEA_WLS_ SAMPLE_ADK . properties file, the final
properties file that will be used by the adapter. This merge
happens in the build.xml file in the packages target.

adapters/sample/src/
BEA_WLS_ SAMPLE_ADK.xml

File that provides a basic configuration file for the logging
framework. You should use this file to develop your own
adapter logging configuration file.

adapters/sample/src/rar/
META- INF/ra.xml

File containing configuration information about a
J2EE-compliant adapter. Use this file as a guide to which
parameters are needed by the ADK run-time framework.

adapters/sample/src/rar/META-
INF/weblogic-ra.xml

File containing configuration information for a
J2EE-compliant adapter that is specific to the WebLogic
Server J2EE engine. Use this file as an example for setting up
the weblogic-ra.xml file for your adapter. The file is
required for WebLogic Server.

adapters/sample/src/sample

Directory containing the source code for the adapter.

6-8 Developing Adapters

Table 6-1 ADK Directory Structure

Step 2: Configure the Development Environment

Pathname

Description

adapters/sample/src/war

Directory containing . jsp files, . html files, images, and so
on. All files in this directory should be included in the Web
application archive (.war) file for an adapter.

adapters/sample/src/war/WEB-
INF/web.xml

Web application descriptor. See “The web.xml and
weblogic.xml Descriptor Files” on page 6-9 for details.

adapters/sample/src/war/WEB-INF/
weblogic.xml

File containing WebLogic Server-specific attributes for a Web
Application. See “The web.xml and weblogic.xml Descriptor
Files” on page 6-9 for details.

adapters/sample/src/ear/META-INF
/application.xml

J2EE application that contains a connector and a Web
application for configuring application views for the adapter.

The weh.xml and weblogic.xml Descriptor Files

The web.xml and weblogic.xml descriptors for your adapter generally follow a very simple
pattern. They list the names of all the JSP pages in your design-time web application and provide
additional setup information. Because most adapters contain very similar web descriptors, the
ADK provides a means to automatically generate them. This frees the adapter developer from
maintaining a large descriptor that is mostly identical to other adapter’s web descriptors.

The generation of the web application descriptors may be requested by including and calling a
special Ant target in your Ant build.xml file for your adapter. If you clone the ADK sample
adapter using GenerateAdapterTemplate, the resulting build.xml already includes the
necessary Ant target and a call to use that target. Look at the
WLI_HOME/adapters/sample/project/build.xml file and find the
generate_web_descriptors target. This Ant target takes in a file called
web-gen.properties and generates the web.xml and weblogic.xml descriptors from the
information contained in it. Notice that in the sample adapter build.xm1, this target is called near

the top of the packages target.

The sample adapter includes a web-gen.properties file as a template that can be modified for
your adapter. The following properties are listed in this file:

e display-name—This is the value used in the display-name element of web.xml. It
should be the adapter logical name for your adapter (for example, BEA_WLS_SAMPLE_ADK

for the sample adapter).

Developing Adapters 6-9

Developing a Service Adapter

6-10

e version—The version of your design-time web application and the value that is used in
the version element of web.xml (for example, 8.1 .0 for the sample adapter). Always use
the same value you specified in GenerateAdapterTemplate.

® request-handler-class—This is the full class name of the design-time request handler
implementation class for your adapter. This class that extends
AbstractDesignTimeRequestHandler and normally resides in
adapter_package.web.DesignTimeRequestHandler.

® adapter-logical-name—The adapter logical name for your adapter. It should be the
same value you used in GenerateAdapterTemplate for example, BEA_WLS_SAMPLE_ADK
for the sample adapter)

e debug-setting—This setting enables or disables debug capabilities and is specified as on
or of£. Turning debug on enables any debug statements you have placed in your source
code (or that were there from cloning the sample adapter source) that use the
ILogger.debug () method. Turning debug of £ disables these debug statements from
being logged to the log file.

® extra-jsp-list—a comma separated list of additional JSPs. The standard ones are:

— addevent, addservc, confconn, edtevent, edtservc, event, service, testform,
and varset

You do not need to include those in your list. For example, if you add a JSP called
mybrowser. jsp, your extra-jsp-list would be: extra-jsp-list=mybrowser

Fill in the information appropriate for your adapter in the copy of this file made for you by
GenerateAdapterTemplate. Do no modify the original file.

At build time, the generate_web_descriptors target substitutes the information in your
web-gen.properties file and generates the web.xml and weblogic.xml descriptors
appropriate for your adapter’s design-time web application. The descriptors are placed in the
src/war/WEB-INF directory for your adapter.

If you wish to tightly control your web.xml and weblogic.xml descriptors, you can comment
out any call to generate_web_descriptors in your build.xml file, and maintain the web . xm1
and weblogic.xml descriptors manually.

Creating A Development Tree Within the Directory Structure

When you clone a development tree by using Generate AdapterTemplate, the contents of all the
directories under WLI_HOME/adapters/sample are automatically cloned and updated to reflect
the new development environment.

Developing Adapters

Step 2: Configure the Development Environment

The changes are also reflected in the file
WLI_HOME/adapters/ADAPTER/src/overview.html, where the value of ADAPTERis the name
of the new development directory. This file also contains code that you can copy and paste into
the config.xml file for the new adapter that sets up WebLogic Integration to host the adapter.

Step 2b: Assign the Adapter Logical Name

Assign a logical name to the adapter. By convention, this name is made up of three items—the
vendor name, the type of EIS connected to the adapter, and the version number of the EIS—
separated by underscores, as follows:

vendor EIS-type_ EIS-version
For example:
BEA_WLS_SAMPLE_ADK

For more information about the logical name of an adapter, see “Adapter Logical Name” on
page 2-5.

Step 2c¢: Set Up the Build Process

The ADK employs a build process based on Ant, a 100% pure Java-based build tool. For more
information about Ant, see “Ant-Based Build Process” on page 3-3. For more information about
using Ant, see:

http://jakarta.apache.org/ant/index.html

The sample adapter provided with the ADK (in wLI_HOME/adapters/sample/project)
contains build.xml, the Ant build file for the sample adapter. It contains the tasks needed to
build a J2EE-compliant adapter. When you run the GenerateAdapterTemplate utility to clone
adevelopment tree for your adapter, abuild.xml fileis created specifically for that adapter. This
automatic file generation frees you from having to customize the sample build.xml and ensures
that the code is correct. For information about using the GenerateAdapterTemplate utility, see
Chapter 4, “Creating a Custom Development Environment.”

Manifest File

Among the files created by GenerateAdapterTemplate is MANIFEST . MF, the manifest file. This
file contains classloading instructions for each component that uses the file. A manifest file is
created for each /META-INF directory except ear/META-INF.

Listing 6-1 shows an example of the manifest file included with the sample adapter.

Developing Adapters 6-11

Developing a Service Adapter

6-12

Listing 6-1 Manifest File Example

Manifest-Version: 1.0

Created-By: BEA Systems, Inc.

Class-Path: shared.jar

The first two lines of the file contain version and vendor information. The third line contains the
relevant classpath or classloading instructions. The class-Path property contains references to
resources required by the component and a list of shared JAR files. (Filenames in the list are
separated by spaces.) Make sure the JAR files are included in the shared area of the EAR file.
(For details, see “Enterprise Archive (EAR) Files” on page 2-8.)

The JAR tool imposes a 72-character limit on the length of the Class-Path: line. Lines longer
than 72 characters should carry over to the next line and begin with a preceding space, as in the
following:

Class-Path: 72 chars of classpath

<space>more classpath

In the sample ADK adapters, all shared JAR files are combined into a single JAR file
(shared.jar) using the following Ant commands:

Listing 6-2 Shared JAR File Creation

<jar jarfile='${LIB_DIR}/shared.jar'>

<zipfileset src='S${LIB_DIR}/S$S{JAR_FILE}'>

<exclude name='META-INF/MANIFEST.MF'/>

</zipfileset>

<zipfileset src='${WLI_LIB_DIR}/adk.jar'>

<exclude name='META-INF/MANIFEST.MF'/>

</zipfileset>

<zipfileset src='S${WLI_LIB_DIR}/adk-eventgenerator.jar'>
<exclude name='META-INF/MANIFEST.MF'/>

</zipfileset>

<zipfileset src='${WLI_LIB_DIR}/wlai-core.jar'>

Developing Adapters

Step 2: Configure the Development Environment

<exclude name='META-INF/MANIFEST.MF'/>
</zipfileset>

<zipfileset src='S${WLI_LIB_DIR}/wlai-client.jar'>
<exclude name='META-INF/MANIFEST.MF'/>
</zipfileset>

</jar>

Note: When it is included in a WAR file, the filename MANTFEST . MF must be spelled in all
uppercase letters. If it is spelled otherwise, it is not recognized on a UNIX system and an
eITor Occurs.

build.xml Components

To learn how build.xml works, open it and review its components. This section provides
descriptions of the main file elements. Refer to these descriptions as you review the contents of
build.xml.

Note: The examples in this section are taken from the sample adapter itself, not from a cloned
version of it.

1. The first line sets the name attribute of the root project element:
<project name='BEA_WLS_SAMPLE_ADK' default='all' basedir='.'>
2. The following line reads the value of the wr,_HOME environment variable from your system.

<property environment="env" />

3. The location of the weblogic.jar file and the integration home directory (WLI_HOME) are
defined, ensuring access to required parsers and J2EE packages:

<property name="WEBLOGIC_JAR" value="${env.WL_HOME}/lib/weblogic.jar" />
<property name="WLI_HOME" value="${basedir}/../../.." />

4. Names are assigned to the archive files (JAR, WAR, and RAR files), as shown in the
following example listing. Note that as of WebLogic Integration 8.1 the EventRouter is no
longer a separate component within the adapter, so its JAR and WAR files are no longer
built

Developing Adapters 6-13

Developing a Service Adapter

Listing 6-3 Setting Archive Filenames

<property name="JAR_FILE" value="BEA_WLS_SAMPLE_ADK.jar" />
<property name="EIS_JAR_FILE" value="sample-eis.jar" />

<property name="EIS_JAR_PATH" value="APP-INF/lib/${EIS_JAR_FILE}" />
<property name="RAR_FILE" value="BEA_WLS_SAMPLE_ADK.rar" />
<property name="WAR_FILE" value="BEA_WLS_SAMPLE_ADK Web.war" />
<property name="EAR_FILE" value="BEA_WLS_SAMPLE_ADK.ear" />

5. The standard properties for the ADK are listed as shown in Listing 6-4.

Listing 6-4 Standard ADK Properties

<property name="ADAPTER_DIR" value="${WLI_HOME}/adapters/sample" />

<property name="SRC_DIR" value="S${ADAPTER_DIR}/src" />

<property name="LIB_DIR" value="${ADAPTER_DIR}/lib" />

<property name="DOC_DIR" value="${ADAPTER_DIR}/docs/api" />

<property name="WLI_LIB_DIR" value="${WLI_HOME}/lib" />

<property name="METAMATA_ JAR" value="${WLI_LIB_DIR}/metamata.jar" />

<property name="LOG4J_JAR" value="${WLI_LIB_DIR}/log4j.jar" />

<property name="JUNIT" value="${WLI_LIB_DIR}/junit.jar" />

<property name="HTTPUNIT" value="${WLI_LIB_DIR}/httpunit.jar" />

<property name="TIDY" value="${WLI_LIB_DIR}/Tidy.jar" />

<property name="ADK" value="${WLI_LIB_DIR}/adk.jar" />

<property name="ADK _WEB" value="${WLI_LIB_DIR}/adk-web.jar" />

<property name="ADK_TEST" value="${WLI_LIB_DIR}/adk-test.jar" />

<property name="ADK EVENTGENERATOR"
value="${WLI_LIB_DIR}/adk-eventgenerator.jar" />

<property name="BEA" value="S${WLI_LIB_DIR}/bea.jar" />

<property name="LOGTOOLKIT" value="${WLI_LIB_DIR}/logtoolkit.jar" />

<property name="WEBTOOLKIT" value="${WLI_LIB_DIR}/webtoolkit.jar" />

<property name="WLAI_CORE" value="${WLI_LIB_DIR}/wlai-core.jar" />

<property name="WLAI_CLIENT" value="${WLI_LIB_DIR}/wlai-client.jar" />

<property name="XMLTOOLKIT" value="${WLI_LIB_DIR}/xmltoolkit.jar" />

<property name="XCCI" value="${WLI_LIB_DIR}/xcci.jar" />

You should not need to alter these properties. After them, however, you can add any other
JAR files and/or classes needed by your adapter.

6. The classpath is set up for compiling as shown in the following listing.

6-14 Developing Adapters

Step 2: Configure the Development Environment

Listing 6-5 Setting the Classpath

<path id='CLASSPATH'>
<pathelement location='${SRC_DIR}'/>
<pathelement path="'${ADK} : ${ADK_EVENTGENERATOR} :
S{ADK_WEB} : ${ADK_TEST} : $ {WEBTOOLKIT} :${WLAI_CORE}:
${WLAI_CLIENT}'/>
<pathelement path='${WEBLOGIC_JAR}:S${env.BEA_HOME}'/>
<pathelement path='${JUNIT}:S{HTTPUNIT}:S{TIDY}'/>
<pathelement path="${env.JAVA_HOME}/lib/tools.jar" />
</path>

After this information, you have the option of calling any of the following three
combinations of files:

— All the binaries and archives for the adapter
— All the binaries and archives for the adapter, plus the Javadoc:
<target name='release' depends='all,apidoc'/>

— A version_info file for inclusion with the archive files

7. The contents of the JAR file for the adapter are specified: run-time aspects of the adapter
are included in the main JAR, while additional classes, such as the design-time GUI support
classes, are included in the WAR or other JAR files, as shown in the following listing.

Listing 6-6 Sample Code for Setting Values in a JAR File

<target name='jar' depends='packages,version_info'>
<delete file='${LIB_DIR}/${JAR FILE}'/>
<mkdir dir='${LIB_DIR}'/>
<jar jarfile='S${LIB_DIR}/$S{JAR_FILE}'>

The includes list from the adapter’s source directory is specified. For the sample adapter
described in this section, all the classes in the sample/cci and sample/spi packages are
included, as well as the logging configuration file and message bundles.

Developing Adapters 6-15

Developing a Service Adapter

Listing 6-7 Sample Code for Including the /ncludes List

<fileset dir='${SRC_DIR}"'
includes="'sample/cci/*.class,sample/spi/*.class,
*.xml, * .properties'/>

Version information about the JAR file is provided, as shown in the following listing.

Listing 6-8 Setting JAR File Version Information

<!-- Include version information about the JAR file -->
<fileset dir='S${basedir}"’
includes="'version_info.xml'/>
</jar>

8. The JAR file for the dummy EIS used by this adapter is created. The classes making up this
dummy EIS are placed in a separate JAR file to allow for the control of which ClassLoader
loads these classes. You can remove this target and any references to it when implementing
your own EIS communication logic.

Listing 6-9 Sample Code for Creating the Dummy EIS

<target name="eis_jar" depends="packages,version_info">
<delete file="${LIB_DIR}/${EIS_JAR_PATH}" />
<mkdir dir="¢{LIB_DIR}" />
<mkdir dir="${LIB_DIR}/APP-INF" />
<mkdir dir="¢{LIB_DIR}/APP-INF/lib" />
<jar jarfile="¢${LIB_DIR}/${EIS_JAR_PATH}">
<fileset dir="${SRC_DIR}" includes="sample/eis/*.class" />
<fileset dir="${basedir}" includes="version_info.xml" />
</jar>
</target>

9. The J2EE adapter archive (RAR) file is created. This file should contain all the classes and
JAR files needed by the adapter. It can be deployed on any J2EE-compliant application
server on which the adapter depends. Our example adapter includes the following targets:

6-16 Developing Adapters

Step 2: Configure the Development Environment

— Version information for this RAR file
— The deployment descriptor for the adapter

The following listing shows how the RAR file for the sample adapter is created.

Listing 6-10 Sample Code for Creating the Connection Architecture RAR File

<target name='rar' depends='jar'>
<delete file='S${LIB_DIR}/S{RAR_FILE}'/>
<mkdir dir='S${LIB_DIR}'/>
<jar jarfile='${LIB_DIR}/S$S{RAR_FILE}"
manifest='${SRC_DIR}/rar/META-INF/MANIFEST.MF'>
<fileset dir='${SRC_DIR}/rar'includes='META-INF/ra.xml,
META-INF/weblogic-ra.xml' excludes=
'META-INF/MANIFEST.MF'/>
</jar>
</target>

10. The J2EE Web application archive (WAR) file is created. This file also includes code that
cleans up the existing environment.

Listing 6-11 Sample Code for Producing the WAR File

<target name='war' depends='jar'>
<!-- Clean-up existing environment -->

<delete file='${LIB_DIR}/$S{WAR_FILE}'/>
<copy file='S${WLI_HOME}/adapters/src/war/WEB-INF/taglibs/
adk.tld' todir='${SRC_DIR}/war/WEB-INF/taglibs'/>
<java classname='weblogic.jspc' fork='yes'>
<arg line='-d ${SRC_DIR}/war -webapp ${SRC_DIR}/
war -compileAll -depend'/>
<classpath refid='CLASSPATH'/>
</java>

<!-- The first adapter should compile the common ADK JSPs -->

<java classname='weblogic.jspc' fork='yes' failonerror="true”>
<arg line='-d ${WLI_HOME}/adapters/src/war -webapp
S{WLI_HOME}/adapters/src/war -compileAll
-depend' />
<classpath refid='CLASSPATH'/>
</java>

Developing Adapters 6-17

Developing a Service Adapter

<war warfile='${LIB_DIR}/$S{WAR_FILE}"
webxml="'"${SRC_DIR}/war/WEB-INF/web.xml'
manifest='${SRC_DIR}/war/META-INF/MANIFEST.MF'>

<!--
IMPORTANT! Exclude the WEB-INF/web.xml file from
the WAR as it already gets included via the webxml attribute above

-——>

<fileset dir="${SRC_DIR}/war" >
<patternset >
<include name="WEB-INF/taglibs/adk.tld" />
<include name="WEB-INF/weblogic.xml"/>
<include name="**/* html"/>
<include name="**/*.gif"/>
</patternset>
</fileset>

<!--

IMPORTANT! Include the ADK design time framework into the
adapter's design time Web application.

-——>

<fileset dir="${WLI_HOME}/adapters/src/war" >
<patternset >
<include name="**/*.cgss"/>
<include name="**/* html"/>
<include name="**/* gif"/>
<include name="**/*_ jg"/>
</patternset>
</fileset>

<!-- Include classes from the adapter that support the design
time UI -->

<classes dir='${SRC_DIR}' includes='sample/web/*.class'/>

<classes dir='${SRC_DIR}/war'includes='**/*_ class'/>

<classes dir='${WLI_HOME}/adapters/src/war' includes=
'x*x/* class'/>

<!--

Include all JARs required by the Web application under the
WEB-INF/lib directory of the WAR file that are not shared in the

EAR

-—>

6-18 Developing Adapters

Step 2: Configure the Development Environment

All JAR files needed by the Web application are included in the <1ib> component of the
build.xml file.

Listing 6-12 Including JAR Files Needed by Web Application

<1lib dir='${WLI_LIB_DIR}' includes='adk-web.jar,
webtoolkit.jar,wlai-client.jar'/>

11. The EAR file is created. This listing also shows all common or shared JAR files.

Listing 6-13 Including the EAR File

<target name='ear' depends='eis_jar,rar,war'>
<delete file='${LIB_DIR}/$S{EAR_FILE}'/>

<jar jarfile="${LIB_DIR}/shared.jar">
<zipfileset src="${LIB_DIR}/${JAR_FILE}">
<exclude name="META-INF/MANIFEST.MF" />
</zipfileset>
<zipfileset src="${WLI_LIB_DIR}/adk.jar">
<exclude name="META-INF/MANIFEST.MF" />
</zipfileset>
<zipfileset src="S$S{WLI_LIB_DIR}/adk-eventgenerator.jar">
<exclude name="META-INF/MANIFEST.MF" />
</zipfileset>
<zipfileset src="${WLI_LIB_DIR}/wlai-core.jar">
<exclude name="META-INF/MANIFEST.MF" />
</zipfileset>
<zipfileset src="${WLI_LIB_DIR}/wlai-client.jar">
<exclude name="META-INF/MANIFEST.MF" />
</zipfileset>
</jar>
<jar jarfile='S${LIB_DIR}/S$S{EAR_FILE}'>
<fileset dir='S${basedir}' includes='version_info.xml'/>
<fileset dir='${SRC_DIR}/ear' includes=
'META-INF/application.xml'/>
<fileset dir='${LIB_DIR}'includes="'shared.jar,
${RAR_FILE}, S${WAR_FILE}'/>
<fileset dir='${EIS_JAR_PATH}'/>
</jar>
<delete file='${LIB_DIR}/${WAR FILE}'/>

Developing Adapters 6-19

Developing a Service Adapter

<delete file='${LIB_DIR}/${RAR_FILE}'/>
<delete file='${LIB_DIR}/S${JAR_FILE}'/>

<!--

Need to keep this out of the EAR and on the system classpath until we get
WLS Connector to fix the RAR ClassLoader so logical RAR's can see all
the classes/resources the base RAR can. Currently, the logical RAR can
only see things in the BASE RAR's archive or on its Manifest Class-Path
-—>

<copy file="${LIB_DIR}/${EIS_JAR_PATH}" toFile="${LIB_DIR}/
${EIS_JAR_FILE}" />
<delete file="${LIB_DIR}/S$S{EIS_JAR_PATH}" />
<delete dir="${LIB_DIR}/APP-INF/lib" />
<delete dir="${LIB_DIR}/APP-INF" />
<delete file="${LIB_DIR}/shared.jar" />
</target>

<jar jarfile='S${LIB_DIR}/S$S{EAR_FILE}'>

<fileset dir='S${basedir}' includes='version_info.xml'/>

<fileset dir='${SRC_DIR}/ear' includes='META-INF/application.xml'/>

<fileset dir='${LIB_DIR}'includes='shared.jar,${RAR_FILE},
${WAR_FILE}'/>

<fileset dir='${EIS_JAR_PATH}'/>

</jar>

12. All the Java source files for this project are compiled.

Listing 6-14 Compiling Java Source

<target name="packages">
<echo message="Building S${ant.project.name}..." />

<l--
Generate web descriptors. NOTE: You can turn this off if you want to
tightly control your web.xml/weblogic.xml. In this case, simply maintain

these files in your src/war/WEB-INF instead of web-gen.properties
-

<ant dir="${WLI_HOME}/adapters/utils/ant"
target="generate_web_descriptors" inheritAll="false">
<property name="web_gen_props_file"
value="${SRC_DIR}/war/WEB-INF/web-gen.properties" />
</ant>

6-20 Developing Adapters

Step 2: Configure the Development Environment

<!--
Merge the ADK.properties file and your adapter-specific properties into

the final properties file that will be used by the adapter
-

<ant dir="${WLI_HOME}/adapters/utils/ant" target="merge_properties"
inheritAll="false">
<property name="props_dir" value="${SRC_DIR}" />
<property name="adapter_props_file"
value="BEA_WLS_SAMPLE_ADK-base.properties" />
<property name="target_props_file"
value="BEA_WLS_SAMPLE_ADK.properties" />
</ant>

- <l
Compile the java source files for the adapter
-—>

<javac deprecation="true" debug="true">
<classpath refid="CLASSPATH" />
<src path="${SRC_DIR}" />
<include name="**/*_java" />
<exclude name="sample/event/OfflineEventGeneratorTestCase.java" />
<exclude name="war/jsp_servlet/**" />

</javac>

</target>

13. The Javadoc is generated.

Listing 6-15 Generating Javadoc

<target name='apidoc'>
<mkdir dir='S${DOC_DIR}'/>
<javadoc sourcepath='S${SRC_DIR}"'
destdir='${DOC_DIR}"
packagenames="'sample.*"'
author="'true'
version='true'
use="'true'
overview="'${SRC_DIR}/overview.html'
windowtitle='WebLogic BEA_WLS_SAMPLE_ADK Adapter
API Documentation'
doctitle='WebLogic BEA_WLS_SAMPLE_ADK Adapter
API Documentation'
header='WebLogic BEA_WLS_SAMPLE_ADK Adapter'
bottom='Built using the WebLogic Adapter

Developing Adapters 6-21

Developing a Service Adapter

6-22

Development Kit (ADK) '>
<classpath refid='CLASSPATH'/>
</javadoc>
</target>

14. The targets that clean the files created by their counterparts are listed.

Listing 6-16 Including Cleanup Code

<target name='clean' depends='clean_release'/>
<target name='clean_release' depends='clean_all,clean_apidoc'/>
<target name='clean_all'depends='clean_ear,clean_rar,clean_war,
clean_test'/>
<target name='clean_test'>
<delete file='S${basedir}/BEA_WLS_SAMPLE_ADK.log'/>
<delete file='S${basedir}/mcf.ser'/>
</target>
<target name='clean_ear' depends='clean_jar'>
<delete file='${LIB_DIR}/S{EAR_FILE}'/>
</target>
<target name='clean_rar' depends='clean_jar'>
<delete file='${LIB_DIR}/S$S{RAR_FILE}'/>
</target>
<target name='clean _war' depends='clean_jar'>
<delete file='${LIB_DIR}/S{WAR_FILE}'/>
<delete dir='S${SRC_DIR}/war/jsp_servlet'/>

</target>

<target name='clean_jar' depends='clean_packages,clean_version_
info'>
<delete file='${LIB_DIR}/$S{JAR_FILE}'/>

</target>

<target name='clean_version_info'>
<delete file='${basedir}/version_info.xml'/>
</target>
<target name='clean_ packages'>
<delete>
<fileset dir='${SRC_DIR}' includes='**/*_ class'/>
</delete>
</target>
<target name='clean_apidoc'>
<delete dir='${DOC_DIR}'/>
</target>

</project>

Developing Adapters

Step 3: Implement the SPI

Step 2d: Create the Message Bundle

Any message destined for an end-user should be placed in a message bundle: a .properties text
file containing key=value pairs that allow you to generate messages in more than one natural
language. When a locale and a language are specified at run time, the contents of a message are
interpreted in accordance with the relevant key=value pairs, and the message is presented to the
user in the language appropriate for his or her locale.

The message bundle is generally located at the root of the src tree,
WLI_HOME/adapters/adapter/src/bundle_name-base.properties, where bundle _name
is the adapter logical name. Remember that this base message bundle is merged with the
ADK.properties bundle (in WLI_HOME/adapters/src/ADK.properties) to form the final
bundle_name.properties file that is loaded at runtime. This allows ADK defined properties
to be placed in the final bundle without having to physically copy or maintain them in the
adapter’s message bundle file. This allows for updating or upgrading these properties as new
WebLogic Integration releases are available and new locales are supported.

For instructions on creating a message bundle, see the JavaSoft tutorial on internationalization at:

http://java.sun.com/docs/books/tutorial/il8n/index.html

Step 3: Implement the SPI

The Service Provider Interface (SPI) contains the objects that provide and manage connectivity
to the EIS, establish transaction demarcation, and provide a framework for service invocation. All
J2EE-compliant adapters must provide an implementation for these interfaces in the

javax.resource.spi package.

This section contains descriptions of the interfaces you can use to implement the SPI. A minimum
of three interfaces are necessary to complete the task (see “Basic SPI Implementation” on

page 6-24). Each interface is described in detail, followed by a discussion of how it is extended
in the sample adapter included with the ADK.

First, we describe the three required interfaces. Then we describe the additional interfaces in
detail, and discuss why you might use them and how they can be beneficial when used in an
adapter.

Developing Adapters 6-23

Developing a Service Adapter

6-24

Basic SPI Implementation

To implement the SPI for your adapter, you must extend at least the following three interfaces:

® ManagedConnectionFactory, which supports connection pooling by providing methods
for matching and creating a ManagedConnection instance.

® ManagedConnection, which represents a physical connection to the underlying EIS

® ManagedConnectionMetaData, which provides information about the underlying EIS
instance associated with a ManagedConnection instance

Ideally, these interfaces are implemented in the order specified here.

In addition to these three interfaces, you can implement any of the other interfaces described in
this step, as your adapter needs dictate.

ManagedConnectionFactory

javax.resource.spi.ManagedConnectionFactory

The ManagedConnectionFactory interface is a factory of both ManagedConnection and
EIS-specific connection factory instances. This interface supports connection pooling by
providing methods for matching and creating a ManagedConnection instance.

Transaction Demarcation

A critical component of the ManagedConnectionFactory interface is transaction demarcation.
You must be able to determine which statements in your program are included in a single
transaction. J2EE defines a transaction management contract between an application server and
an adapter (and its underlying resource manager). The transaction management contract has two
parts. The contract differs, depending on the type of transaction for which it is used. There are
two types of transactions:

e XA-compliant transactions
e [ocal transactions

XA-Compliant Transaction

In a distributed transaction processing (DTP) environment, a
javax.transaction.xa.XAResource-based contract is established between a transaction
manager and a resource manager. A JDBC driver or a JMS provider implements this interface to

Developing Adapters

Step 3: Implement the SPI

support the association between a global transaction and a database or message service
connection.

The xarResource interface can be supported by any transactional resource that is intended for use
by application programs in an environment in which transactions are controlled by an external
transaction manager.

An example of such a resource is a database management system set up in such a way that an
application accesses data through multiple database connections. Each database connection is
enlisted with the transaction manager as a transactional resource. The transaction manager
obtains an xaResource for each connection participating in a global transaction. The transaction
manager uses the start () method to associate the global transaction with the resource; it uses
the end () method to disassociate the transaction from the resource. The resource manager
associates the global transaction with all work performed on its data between invocations of the
start () and end () methods.

At transaction commit time, the resource managers are instructed, by the transaction manager, to
prepare, commit, or roll back a transaction, according to the two-phase commit protocol.

Local Transaction

When an adapter implements the javax.resource.spi.LocalTransaction interface to
support local transactions that are performed on the underlying resource manager, a local
transaction management contract is established. This contract enables an application server to
provide the infrastructure and run-time environment for transaction management. Application
components rely on this transaction infrastructure to support the component-level transaction
model that they use.

For more information about transaction demarcation support, enter the following URL:

http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications/transaction_management/
platform/index.html

ADK Implementations

The ADK provides an abstract foundation for an adapter called the
AbstractManagedConnectionFactory. This foundation provides the following features:

e Basic support for internationalization and localization of exception and log messages for an
adapter

e Hooks into the logging toolkit

Developing Adapters 6-25

Developing a Service Adapter

6-26

e Getter and setter methods for standard connection properties (username, password, server,
connectionURL, and port)

e Access to adapter metadata gathered from a java.util.ResourceBundle for an adapter

e Support for the ability to plug license checking into the initialization process for the
factory. If license verification fails, client applications cannot get a connection to the
underlying EIS, which makes the adapter useless.

e State verification checking to support JavaBeans-style post-constructor initialization

You must provide your own implementations for the following key methods:
e createConnectionFactory()
e createManagedConnection()
e checkState()
e equals()
e hashCode()

e matchManagedConnections()

The following sections describe these methods.

createConnectionFactory()

createConnectionFactory () is the factory for application-level connection handles for the
adapter. In other words, clients of your adapter will use the object returned by this method to
obtain a connection handle to the EIS.

If the adapter supports a CCI interface, we recommend that you return an instance of
com.bea.adapter.cci.ConnectionFactoryImpl or an extension of this class. The key to
implementing this method correctly is to propagate the ConnectionManager, LogContext, and
ResourceAdapterMetaData into the client APL

Listing 6-17 createConnectionFactory() Example

protected Object
createConnectionFactory (ConnectionManager connectionManager,
String strAdapterName,

String strAdapterDescription,

Developing Adapters

Step 3: Implement the SPI

String strAdapterVersion,
String strVendorName)

throws ResourceException

createManagedConnection()

createManagedConnection () is used to construct a ManagedConnection instance for your
adapter. The following listing shows an example of this method.

Listing 6-18 createManagedConnection() Example

public ManagedConnection
createManagedConnection (Subject subject, ConnectionRequestInfo
info)
throws ResourceException

The ManagedConnection instance encapsulates the expensive resources needed to communicate
with the EIS. This method is called by the ConnectionManager when it determines that a new
ManagedConnection is required to satisfy a client’s request. A common design pattern used in
adapters is to open the resources needed to communicate with the EIS in this method and then
pass the resources into a new ManagedConnection instance.

checkState()

The checksState () method is called by the AbstractManagedConnectionFactory before it
attempts to perform any factory responsibilities. Use this method to verify that all members that
need to be initialized before the ManagedConnectionFactory can perform its SPI responsibilities
have been initialized correctly.

Implement this method as follows:

protected boolean checkState()

equals()

The equals () method tests the object argument for equality. It is important to implement this
method correctly because it is used by the ConnectionManager for managing the connection
pools. This method should include all important members in its equality comparison.

Developing Adapters 6-27

Developing a Service Adapter

6-28

Implement this method as follows:

public boolean equals (Object obj)

hashCode()

The hashCode () method provides a hash code for the factory. It is also used by the
ConnectionManager for managing the connection pools. Consequently, this method should
generate a hashCode based on properties that determine the uniqueness of the object.

Implement this method as follows:

public int hashCode ()

matchManagedConnections()

The ManagedConnectionFactory must supply an implementation of the
matchManagedConnections () method. The AbstractManagedConnectionFactory provides an
implementation of the matchManagedConnections () method that relies on the
compareCredentials () method of AbstractManagedConnection.

To provide logic that can match managed connections, you must override the
compareCredentials () method provided by the AbstractManagedConnection class. This
method is invoked when the ManagedConnectionFactory attempts to match a connection with a
connection request for the ConnectionManager.

Currently, the AbstractManagedConnectionFactory implementation extracts a
PasswordCredentialfﬂnntheSubject/ConnectionRequestInfopaHHne&XSthath
supplied. If both parameters are null, this method returns true because it has already been
established that the ManagedConnectionFactory for this instance is correct. This implementation
is shown in the following listing.

Listing 6-19 compareCredentials() Implementation

public boolean compareCredentials (Subject subject,
ConnectionRequestInfo info)

throws ResourceException

ILogger logger = getLogger () ;

Developing Adapters

Step 3: Implement the SPI

Next, you must extract a PasswordCredential from either the JAAS Subject or the SPI
ConnectionRequestInfo using the ADK’s ManagedConnectionFactory. An example is shown
in the following listing.

Listing 6-20 Extracting a PasswordCredential

PasswordCredential pc = getFactory().
getPasswordCredential (subject, info);
if (pc == null)
{
logger.debug (this.toString() + ": compareCredentials

In the previous listing, JAAS Subject and ConnectionRequestInfo are null, which means that a
match is assumed. This method is not invoked unless it has already been established that the
factory for this instance is correct. Consequently, if the Subject and ConnectionRequestInfo are
both null, then the credentials match by default. Therefore, the result of pinging this connection
determines the outcome of the comparison. The following listing shows how to ping the
connection programmatically.

Listing 6-21 Pinging a Connection

return ping();
}
boolean bUserNameMatch = true;

String strPcUserName = pc.getUserName () ;

if (m_strUserName != null)
{
logger.debug (this.toString () + ": compareCredentials >>> comparing
my username ["+m_strUserName+"] with client username

["+strPcUserName+"]") ;

Developing Adapters 6-29

Developing a Service Adapter

6-30

Next, you need to check whether the user specified in either the Subject or
ConnectionRequestInfo is the same as our user. We do not support reauthentication in this
adapter, so if the usernames do not match, this instance cannot satisfy the request. The following
code satisfies the request:

bUserNameMatch = m_strUserName.equals (strPcUserName) ;

If the usernames match, ping the connection to determine whether it is still good. If the names do
not match, there is no reason to ping.

To ping the connection, use the following code:

return bUserNameMatch ? ping() : false;

Explanation of the Implementation

In a managed scenario, the application server invokes the matchManagedConnections ()
method on the ManagedConnectionFactory for an adapter. The specification does not indicate
how the application server determines which ManagedConnectionFactory to use to satisfy a
connection request. The ADK’s AbstractManagedConnectionFactory implements

matchManagedConnections ().

The first step in this implementation is to compare “this” (that is, the
ManagedConnectionFactory instance on which the ConnectionManager invoked
matchManagedConnections) to the ManagedConnectionFactory on each
ManagedConnection in the set supplied by the application server. For each
ManagedConnection in the set that has the same ManagedConnectionFactory, the
implementation invokes the compareCredentials () method. This method allows each
ManagedConnection object to determine whether it can satisfy the request.

matchManagedConnections () is called by the ConnectionManager (as shown in
Listing 6-22) to search for a valid connection in the pool it is managing. If this method returns
null, then the connectionManager allocates a new connection to the EIS via a call to

createManagedConnection ().

Listing 6-22 matchManagedConnections() Method Implementation

public ManagedConnection

matchManagedConnections (Set connectionSet,
Subject subject,
ConnectionRequestInfo info)

throws ResourceException

Developing Adapters

Step 3: Implement the SPI

This class uses the following approach to match a connection:

1. For each object in the set, it iterates over the appropriate connectionSet until a match is
found. Then it determines whether the object is an AbstractManagedConnection class.

2. Ifitis, this connection is compared to the ManagedConnectionFactory for the
AbstractManagedConnection from the set.

3. If the factories are equal, then the compareCredentials () method is invoked on the

AbstractManagedConnection.

4. If the compareCredentials () method returns true, then the instance is returned.

AbstractManagedConnectionFactory Properties Required at Deployment

To use the base implementation of AbstractManagedConnectionFactory, you must, at
deployment time, provide the properties described in the following table.

Table 6-2 AbstractManagedConnectionFactory Properties

Property Name Property Type Applicable Values Description Default
LogLevel java.lang. ERROR, WARN, INFO, Logs verbosity WARN
String DEBUG level
LanguageCode java.lang. For a valid ISO language code, Determines the en
String see desired locale for
http://ftp.ics.uci.ed log messages
u/pub/ietf/http/relat
ed/1s0639.txt.
CountryCode java.lang. For a valid ISO country code, Determines the uUs
String see http://www.chemie. desired locale for
fu-berlin.de/ log messages
diverse/doc/IS0O_3166.
html.
MessageBundleBase java.lang. Any valid Java class name or ~ Determines the None,
String filename message bundle required

for log messages

Developing Adapters 6-31

Developing a Service Adapter

Table 6-2 AbstractManagedConnectionFactory Properties (Continued)

Property Name Property Type Applicable Values Description Default
LogConfigFile java.lang. Any valid filename Configures the None,
String LOGA4] system required
RootLogContext java.lang. Any valid Java string Categorizes log None,
String messages from required
this connection
factory
AdditionalLog java.lang. Any valid Java string Adds additional ~ None,
Context String information to optional
uniquely identify

messages from
this factory

6-32

Other Key ManagedConnectionFactory Features in the ADK

The ADK sample adapter provides a class called

sample. spi.ManagedConnectionFactoryImpl that extends
AbstractManagedConnectionFactory. Use this class as an example of how to extend the
ADK’s base class.

For a complete code listing of an implementation of the sample adapter called
ManagedConnectionFactory, see:

WLI_HOME/adapters/sample/src/sample/spi/
ManagedConnectionFactoryImpl.java

ManagedConnection

javax.resource.spi.ManagedConnection

The ManagedConnection object is responsible for encapsulating all the expensive resources
needed to establish connectivity to the EIS. A ManagedConnection instance represents a
physical connection to the underlying EIS. ManagedConnection objects are pooled by the
application server in a managed environment.

Developing Adapters

Step 3: Implement the SPI

ADK Implementation

The ADK provides an abstract implementation of ManagedConnection. The base class provides
logic for managing connection event listeners and multiple application-level connection handles
for each instance of ManagedConnection.

When implementing the ManagedConnection interface, you need to determine the transaction
demarcation support provided by the underlying EIS. For more information about transaction
demarcation, see “Transaction Demarcation” on page 6-24.

The ADK provides abstractManagedConnection, an abstract implementation for the

javax.resource.spi.ManagedConnection interface that:
e Provides access to the ADK logging framework
e Manages a collection of connection event listeners

e Provides convenience methods for notifying all connection event listeners of
connection-related events

e Simplifies the cleanup and destruction of a ManagedConnection instance

The sample adapter provided with the ADK includes ManagedConnectionImpl, which extends
AbstractManagedConnection. For a complete code listing for a sample adapter called

ManagedConnection, S€e:

WLI_HOME/adapters/sample/src/sample/spi/
ManagedConnectionFactoryImpl.java

ManagedConnectionMetaData

javax.resource.spi.ManagedConnectionMetaData

The ManagedConnectionMetaData interface provides information about the underlying EIS
instance associated with a ManagedConnection instance. An application server uses this
information to get run-time information about a connected EIS instance.

ADK Implementation

The ADK provides AbstractManagedConnectionMetaData, an abstract implementation of
the javax.resource. spi.ManagedConnectionMetaData and

javax.resource.cci.ConnectionMetaData interfaces that:

e Simplifies exception handling

Developing Adapters 6-33

Developing a Service Adapter

6-34

e Provides access to an AbstractManagedConnection instance
e Allows you to focus on implementing EIS-specific logic

e Makes it unnecessary for you to have separate metadata classes for the CCI and SPI
implementations

The sample adapter provided with the ADK includes ConnectionMetabDatalImpl, which
extends AbstractManagedConnectionMetaData. For the complete code listing for the adapter,
see:

WLI_HOME/adapters/sample/src/sample/spi/ConnectionMetaDatalImpl.java

ConnectionEventListener

javax.resource.spi.ConnectionEventListener

The ConnectionEventListener interface provides an event callback mechanism that enables
an application server to receive notifications from a ManagedConnection instance.

ADK Implementation

The ADK provides two concrete implementations of ConnectionEventListener:

® com.bea.adapter.spi.ConnectionEventLogger, which IOgS connection-related events
to the adapter’s log by using the ADK logging framework.

® com.bea.adapter.spi.NonManagedConnectionEventListener, which destroys
javax.resource.spi.ManagedConnection instances when the adapter is running in an
unmanaged environment. This implementation:

— Logs connection-related events using the ADK logging framework
— Destroys ManagedConnection instances when a connection-related error occurs

In most cases, the implementations provided by the ADK are sufficient; you should not need to
provide your own implementation of this interface.

ConnectionManager

javax.resource.spi.ConnectionManager

The ConnectionManager interface provides a hook that can be used by the adapter to pass a
connection request to the application server.

Developing Adapters

Step 3: Implement the SPI

ADK Implementation

The ADK provides a concrete implementation of this interface:
com.bea.adapter.spi.NonManagedConnectionManager. This implementation provides a
basic connection manager for adapters running in an unmanaged environment. In a managed
environment, this interface is provided by the application server. In most cases, you can use the
implementation provided by the ADK.

NonManagedConnectionManager iS a concrete implementation of the
javax.resource.spi.ConnectionManager interface. It serves as the ConnectionManager
in the unmanaged scenario for an adapter; it does not provide any connection pooling or any other
quality of service.

ConnectionRequestinfo

javax.resource.spi.ConnectionRequestInfo

The ConnectionRequestInfo interface enables an adapter to pass its own request-specific data
structure across a connection request flow. An adapter extends the empty interface to support its
own data structures for a connection request.

ADK Implementation

The ADK provides a concrete implementation of the
javax.resource.spi.ConnectionRequestInfo interface. This interface is called
ConnectionRequestInfoMap. It providesa java.util.Map interface to information requested
when a connection is being established, such as username and password.

LocalTransaction

javax.resource.spi.LocalTransaction

The LocalTransaction interface provides support for transactions that are managed within an
EIS resource manager, and do not require an external transaction manager.

ADK Implementation

The ADK provides an abstract implementation of this interface called
AbstractLocalTransaction, thus allowing you to focus on implementing the EIS-specific
aspects of a LocalTransaction. Specifically, it:

e Simplifies exception handling

Developing Adapters 6-35

Developing a Service Adapter

o Allows adapter providers to focus on implementing EIS-specific transaction logic

e Makes it unnecessary to have separate metadata classes for the CCI and SPI
implementations

Step 4: Implement the CCI

6-36

The client interface allows a J2EE-compliant application to access back-end systems. The client
interface manages the flow of data between the client application and the back-end system; it does
not have any visibility into what either the container or the application server are doing with the
adapter. The client interface specifies the format of both the request records and the response
records for a given interaction with the EIS.

First, you must determine whether your adapter must support the J2EE-compliant Common
Client Interface (CCI). Although not required by the current J2EE specification, the CCl is likely
to be required in a later version. Consequently, the ADK focuses on helping you implement a CCI
interface for your adapter.

How to Use This Section

This section (“Step 4: Implement the CCI”’) describes some of the interfaces you can use to
implement the CCI. Ata minimum, two interfaces are necessary to complete the task. (See “Basic
CCI Implementation” on page 6-36.) Each interface is described in detail, followed by a
discussion of how it is extended in the sample adapter included with the ADK.

Following the description of the two required interfaces, detailed descriptions of the additional
interfaces are provided, along with a discussion of reasons why you might use these interfaces
and the benefits they provide.

Basic CCl Implementation

To implement the CCI for your adapter, you need to extend at least the following two interfaces:

e Connection, which represents an application-level handle that is used by a client to access
the underlying physical connection

e Interaction, which enables a component to execute EIS functions
If possible, implement these interfaces in the order specified here.
In addition, you can implement any of the following interfaces needed for your adapter:

® ConnectionFactory

Developing Adapters

Step 4: Implement the CCI

® ConnectionMetaData
® ConnectionSpec

® InteractionSpec

® LocalTransaction

® Record

® ResourceAdapterMetaData

Connection

javax.resource.cci.Connection

A Connection represents an application-level handle that is used by a client to access the
underlying physical connection. The actual physical connection associated with a Connection
instance is represented by a ManagedConnection instance.

A client gets a Connection instance by using the getConnection () method on a
ConnectionFactory instance. A Connection can be associated with zero or more
Interaction instances.

ADK Implementation

The ADK provides an abstract implementation of this interface called AbstractConnection.
This implementation provides the following functionality:

e Access to the ADK logging framework
e Access to an AbstractManagedConnection instance

e State management and assertion checking
You must extend this class by providing an implementation for:

public Interaction createInteraction()

throws ResourceException

This method creates an interaction associated with this connection. An interaction enables an
application to execute EIS functions. This method:

e Returns an Interaction instance

e Throws a ResourceException if the create operation fails

Developing Adapters 6-37

Developing a Service Adapter

6-38

Interaction

javax.resource.cci.Interaction

The javax.resource.cci.Interaction enables a component to execute EIS functions. An
Interaction instance supports the following ways of interacting with an EIS instance:

e An execute () method may take an input Record, an output Record, and an
InteractionSpec. This method executes the EIS function represented by the
InteractionSpec and updates the output Record

e An execute () method may take an input Record and an InteractionSpec. This method
implementation executes the EIS function represented by the InteractionSpec and
produces the output Record as a return value.

An Interaction instance is created from a connection and is required to maintain the
association between the Interaction and the Connection instances. The close () method
releases all resources maintained by the adapter for the interaction. The close of an Interaction
instance should not trigger the close of the associated Connection instance.

ADK Implementation

The ADK provides an implementation of this interface called AbstractInteraction. This
implementation:

e Provides access to the ADK logging framework

e Manages warnings

You must supply a concrete extension to AbstractInteraction that implements execute().
Two versions of execute () are available. They are described in the following sections.

execute() Version 1

The execute () method declared in Listing 6-23 shows an interaction represented by

InteractionSpec

Listing 6-23 Example of execute() Version 1

public boolean execute(InteractionSpec ispec,
Record input,
Record output)

throws ResourceException

Developing Adapters

Step 4: Implement the CCI

When invoked in this way, execute () takes an input record and updates the output record. It
returns the following:

e Returns true if execution of the EIS function is successful and the output (Record) has
been updated; otherwise it returns false.

e Throws ResourceException if the execute operation fails.

The parameters for execute () version 1 are described in the following table.

Table 6-3 Parameters for execute() Version 1

Parameter Description

ispec InteractionSpec representing a target EIS data or function module
input Input record

output Output record

execute() Version 2

The execute () method declared in Listing 6-24 also executes an Interaction represented by

InteractionSpec.

Listing 6-24 Example of execute() Version 2

public Record execute(InteractionSpec ispec,
Record input)

throws ResourceException

When invoked in this way, execute () takes an input Record and, if the execution of Interaction
is successful, it returns an output Record.

This method:

e Returns an output Record if execution of the EIS function has been successful; otherwise
it throws an exception.

Developing Adapters 6-39

Developing a Service Adapter

6-40

e Throws ResourceException if the execute operation fails.

If an exception occurs, this method notifies its Connection, which takes the appropriate action,
including closing itself.

The parameters for execute () version 2 are listed in the following table.

Table 6-4 Parameters for execute() Version 2

Parameter Description
ispec InteractionSpec representing a target EIS data or function module
input Input record

Using XCClI to Implement the CCl

XML-CCl is a dialect of the Client Connector Interface, in which XML-based record formats are
used to represent data. These formats are supported by a framework and tools. XML-CCI is
usually referred to by its abbreviation: XCCI.

XCCI is made up of two components: Services and DocumentRecords.

Services

A service represents functionality available in an EIS. It includes four components:

e Unique business name

Every service has a unique business name that indicates its role in an integration solution.
For example, in an integration solution involving a Customer Relationship Management
(CRM) system, you may have a service named CreateNewCustomer. It is important to
give a service a name that reflects the business purpose of the service; it is an abstraction
of the name of the functions invoked by your service in the EIS.

e Request document definition

The request document definition describes the input requirements for a service. The
com.bea.document . IDocumentDefinition interface embodies all the metadata about a
document type. It includes the document schema (structure and usage), and the root
element name for all documents of this type. The root element name is needed because an
XML schema can define more than one root element.

e Response document definition

Developing Adapters

Step 4: Implement the CCI

A response document definition describes the output of a service.

e Additional metadata

A service is a higher-order component in an integration solution that hides most of the
complexity involved in executing functionality in an EIS. In other words, a service does
not expose many of the details required to interact with the EIS in its public interface. As a
result, some of the information required to invoke a function in an EIS is not provided by
the client in the request. Consequently, most services need to store additional metadata. In
WebLogic Integration, this additional metadata is encapsulated by an adapter’s
javax.resource.cci.InteractionSpec implementation class.

To indicate that a given service does not require request or response data, create an empty or null
IDocumentDefinition for the request or response in your DesignTimeRequestHandler. You
may also set the IDocumentDescriptor for the request or response on the
IServiceDescriptor for the service with an empty or null IDocumentDescriptor instance.
Create empty or null IDocumentDefinition instances using the static
DocumentFactory.createNullDocumentDefinition () method, and empty or null
IDocumentDescriptor instances by using the static

DescriptorFactory.createNullDocumentDescriptor () method.

If you choose to use empty or null document definitions or descriptors in the generated
IServiceDescriptor Or IApplicationViewDescriptor generated by the adapter at
design-time, you must ensure that the null request or response documents for these services are
handled at runtime. In other words, an adapter that uses empty or null document descriptors must
not assume a request or response document is non-null at runtime.

The Application View runtime engine ensures that services requiring a request or response
receive non-null request or response documents, and ensures that services not requiring a request
or response receive null request or response documents.

DocumentRecord

com.bea.connector.DocumentRecord

At run time, the XCCI layer expects DocumentRecord objects as input to a service and returns
DocumentRecord objects as output from a service. DocumentRecord implements the
javax.resource.cci.Record and the com.bea.document . IDocument interfaces. For a

description of the Record interface, see “Record” on page 6-51.

IDocument, which facilitates XML input and output from the CCI layer in an adapter, is
described in the following section.

Developing Adapters 6-41

Developing a Service Adapter

6-42

IDocument

com.bea.document.IDocument

An IDocument is a higher-order wrapper around the W3C Document Object Model (DOM). The
most important value added by the IDocument interface is an XPath interface to elements in an
XML document. In other words, IDocument objects can be queried and updated using XPath
strings. For example, the XML document shown in Listing 6-25 shows how XML is used to
record details about a person named Bob.

Listing 6-25 XML Example

<Person name="Bob">
<Home squareFeet="2000"/>
<Family>
<Child name="Jimmy">
<Stats sex="male" hair="brown" eyes="blue"/>
</Child>
<Child name="Susie">
<Stats sex="female" hair="blonde" eyes="brown"/>
</Child>
</Family>

</Person>

By using IDocument, you can retrieve Jimmy’s hair color using the XPath code shown in
Listing 6-26.

Listing 6-26 Sample Code for Retrieving IDocument Data

System.out.println("Jimmy's hair color: " +
person.getStringFrom("//Person[@name=\"Bob\"]/Family/Child
[@name=\"Jimmy\"]/Stats/@hair") ;

Developing Adapters

Step 4: Implement the CCI

On the other hand, if DOM is used, you must use the code shown in Listing 6-27 to submit a
query.

Listing 6-27 Sample Code for Retrieving DOM Data

String strJimmysHairColor = null;

org.w3c.dom.Element root = doc.getDocumentElement () ;
if (root.getTagName () .equals ("Person") &&
root.getAttribute ("name") .equals ("Bob") {

org.w3c.dom.NodeList list = root.
getElementsByTagName ("Family") ;
if (list.getLength() > 0) {
org.w3c.dom.Element family = (org.w3c.dom.
Element)list.item(0);

org.w3c.dom.NodeList childList = family.getElementsByTagName ("Child") ;
for (int 1=0; 1 < childList.getLength(); i++) {
org.w3c.dom.Element child = childList.item(i);

if (child.getAttribute("name") .equals ("Jimmy")) {
org.w3c.dom.NodeList statsList =

child.getElementsByTagName ("Stats") ;

if (statsList.getLength() > 0) {
org.w3c.dom.Element stats = statsList.item(0);

strJimmysHairColor = stats.getAttribute("hair");

As you can see, IDocument enables you to simplify your code.

Developing Adapters 6-43

Developing a Service Adapter

6-44

Proper Use of Namespaces in IDocument Instances

If you pass in XML instance documents within an IDocument instance, do not use any
namespace or prefix within the instance document text, unless the adapter or consumer of the
IDocument instance explicitly uses qualified XPath statements to query the data.

Failure to observe this rule will cause runtime failures in code using IDocument.

Also, because the sample adapters and most clients using IDocument do not use namespace
prefixes to qualify the steps in XPath expressions, use of XML namespace declarations on XML
documents represented as IDocument instances should be avoided.

For example, an XML namespace declaration is included on the XML instance document for an
Application View service. The DBMS sample adapter uses the IDocument interface to retrieve
the request data fields. IDocument, because of the underlying processor, cannot retrieve data
fields in an XML instance document with a default XML namespace using XPaths with
unqualified steps.

The result is that the DBMS Sample adapter (or any code using IDocument or the Xalan XPath
to get data fields from an XML instance) does not get the proper field data from the request
document.

Given the following document:

<Input>
<FirstName>Joe</FirstName>

</Input>
The call IDocument . getDocumentData ("/Input/FirstName") returns “Joe”.

Using the following document with a default namespace:

<Input xmlns="my URI">
<FirstName>Joe</FirstName>
</Input>

The call IDocument .getDocumentData ("/Input/FirstName") returns ‘. The XPath
processor does not detect any XPath step that selects data from the my URI namespace, just the
empty namespace.

ADK-Supplied XCCI Classes

To help you implement XCCI for your adapters, the ADK provides the following classes and
interfaces:

e AbstractDocumentRecordInteraction

Developing Adapters

Step 4: Implement the CCI

e DocumentDefinitionRecord

e DocumentlInteractionSpecImpl

This section describes those classes and interfaces.

AbstractDocumentRecordInteraction
com.bea.adapter.cci.AbstractDocumentRecordInteraction

This class extends the ADK’s abstract base Interaction,
com.bea.adapter.cci.AbstractInteraction. The purpose of this class is to provide
convenience methods for manipulating DocumentRecords and to reduce the amount of error
handling that you need to implement. Specifically, this class declares:

protected abstract boolean execute (
InteractionSpec ixSpec,
DocumentRecord inputDoc,
DocumentRecord outputDoc

) throws ResourceException

and

protected abstract DocumentRecord execute (
InteractionSpec ixSpec,
DocumentRecord inputDoc

) throws ResourceException

These methods are not invoked on the concrete implementation until it has been verified that the
output records are DocumentRecord objects.

DocumentDefinitionRecord

com.bea.adapter.cci.DocumentDefinitionRecord

This class allows the adapter to return an IDocumentDefinition from its
DocumentRecordInteraction implementation. This class is useful for satisfying design-time
requests to create the request and/or response document definitions for a service.

DocumentlnteractionSpecimpl

com.bea.adapter.cci.DocumentInteractionSpecImpl

This class allows you to save a request document definition and response document definition for
a service in the InteractionSpec provided to the execute method at run time. This capability

Developing Adapters 6-45

Developing a Service Adapter

6-46

is useful when the Interaction for an adapter needs access to the XML schemas for a service
at run time.

Note: DocumentInteractionSpecImpl also implements the
com.bea.connector.ClientDataInteractionSpec interface. This allows it to
receive IClientData instances containing environment variables and other client
information at runtime. For more information, see “Step 5: Enable Environment Variable
Support (Optional)” on page 6-52.

XCCI Design Pattern

A design pattern that is frequently used with the XCCI is support for the definition of services in
the Interaction implementation. When this design pattern is used, the
javax.resource.cci.Interaction implementation for an adapter allows a client program to
retrieve metadata from the underlying EIS in order to define a WebLogic Integration service. As
a result, the interaction must be able to generate the request and response XML schemas and
additional metadata for a service. The Interaction may also allow a client program to browse
a catalog of functions provided by the EIS. This approach facilitates a thin-client architecture for
your adapter.

The ADK provides the com.bea.adapter.cci.DesignTimeInteraction- SpecImpl class
to help you implement this design pattern. The sample.cci.InteractionImpl class
demonstrates how to implement this design pattern using the
DesignTimeInteractionSpecImpl class.

Using NonXML J2EE-Compliant Adapters

The ADK provides a plug-in mechanism for using nonXML adapters with WebLogic Integration.
Not all prebuilt adapters use XML as the javax.resource.cci.Record data type. For
example, XML may not be used in the following circumstances:

e You have developed a J2EE-compliant adapter with a proprietary record format.

e You have purchased a third-party J2EE-compliant adapter that uses a proprietary record
format in the adapter’s CCI layer.

To facilitate implementation of these types of adapters, the ADK provides the
com.bea.connector.IRecordTranslator interface. At run time, the application integration
engine uses an adapter’s IRecordTranslator implementation to translate request and response
records before executing the adapter’s service.

Developing Adapters

Step 4: Implement the CCI

Because the application integration engine supports only javax.resource.cci.Record of type
com.bea.connector.DocumentRecord, you must translate this proprietary format to a
document record for request and response records. You do not need to rewrite the adapter’s CCI
interaction layer. By including a class in your adapter’s EAR file that implements the
IRecordTranslator interface, the application integration engine can execute the translation
methods in your translator class on each record for request and response.

There is a one-to-one correlation between an InteractionSpec implementation class and an
IRecordTranslator implementation class. An adapter with more than one type of
InteractionSpec implementation requires an IRecordTranslator implementation class for
each. The plug-in architecture loads the translator class by name, using the full class name of the
adapter’s InteractionSpec, plus the phrase RecordTranslator. For example, if the name of
the adapter’s InteractionSpec class is
com.bea.adapter.dbms.cci.InteractionSpecImpl, then the engine loads the
com.bea.adapter.dbms.cci.InteractionSpecImplRecordTranslator class (if the latter
class is available).

For a description of the methods that must be implemented, see the Javadoc for
com.bea.connector.IRecordTranslator at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/adk/

ConnectionFactory

javax.resource.cci.ConnectionFactory

ConnectionFactory provides an interface for getting a connection to an EIS instance. An
implementation of the ConnectionFactory interface must be provided by an adapter.

The application looks up a ConnectionFactory instance from JNDI namespace and uses it to
get EIS connections.

To support JNDI registration, java.io.Serializable and
javax.resource.Referenceableinterfaces must be implemented. For this purpose, an
implementation class for ConnectionFactory is required.

ADK Implementation

The ADK provides ConnectionFactoryImpl, a concrete implementation of the
javax.resource.cci.ConnectionFactory interface that provides the following
functionality:

e Access to the ADK logging framework

Developing Adapters 6-41

http://e-docs.bea.com/wli/docs81/javadoc/adk/

Developing a Service Adapter

6-48

e Access to adapter metadata

e Implementation of the getConnection () method

Usually you can use this class as is, without extending it.

ConnectionMetaData

javax.resource.cci.ConnectionMetaData

ConnectionMetaData provides information about an EIS instance connected through a
Connection instance. A component calls the method Connection.getMetaData to get a
ConnectionMetaData instance.

ADK Implementation

By default, the ADK provides an implementation of this class via the
com.bea.adapter.spi.AbstractConnectionMetaData class. You must extend this abstract
class and implement its four abstract methods for your adapter.

ConnectionSpec

javax.resource.cci.ConnectionSpec

ConnectionSpec is used by an application component to pass connection request-specific
properties to the ConnectionFactory.getConnection () method.

We recommend that you implement the ConnectionSpec interface as a JavaBean so that it can
support tools. Define the properties of the ConnectionSpec implementation class through the
getter and setter methods pattern.

The CCI specification defines a set of standard properties for a ConnectionSpec. The properties
are defined on either a derived interface or an implementation class of an empty
ConnectionSpec interface. In addition, an adapter may define additional properties specific to
its underlying EIS.

ADK Implementation

Because the ConnectionSpec implementation must be a JavaBean, the ADK does not supply an
implementation for this class.

Developing Adapters

Step 4: Implement the CCI

InteractionSpec

javax.resource.cci.InteractionSpec

An InteractionSpec holds properties for driving an interaction with an EIS instance.
Specifically, it is used by an interaction to execute the specified function on an underlying EIS.

The CCI specification defines a set of standard properties for an InteractionSpec. An
InteractionSpec implementation is not required to support a standard property if that property
does not apply to the underlying EIS.

The InteractionSpec implementation class must provide getter and setter methods for each of
its supported properties. The getter and setter methods convention should be based on the
JavaBeans design pattern.

The InteractionSpec interface must be implemented as a JavaBean in order to support tools.
An implementation class for the InteractionSpec interface is required to implement the
java.io.Serializable interface.

The InteractionSpec contains information that is not in Record but that helps to determine
which EIS function to invoke.

The standard properties are described in the following table.

Table 6-5 Standard InteractionSpec Properties

Property Description
FunctionName Name of an EIS function
InteractionVerb Mode of interaction with an EIS instance: SYNC_ SEND,

SYNC_SEND_RECEIVE, or SYNC_RECEIVE

ExecutionTimeout The number of milliseconds an Interaction waits for an EIS
to execute the specified function

The following standard properties are used to give hints to an interaction instance about the
ResultSet requirements:

® FetchSize
® FetchDirection

® MaxFieldSize

Developing Adapters 6-49

Developing a Service Adapter

6-50

® ResultSetType

® ResultSetConcurrency

A CCI implementation can provide properties other than the one described in the
InteractionSpec interface.

Note: The format and type of any additional properties are specific to an EIS; they are outside
the scope of the CCI specification.

ADK Implementation

The ADK contains a concrete implementation of javax.resource.cci.InteractionSpec
called InteractionSpecImpl. This interface provides a base implementation that you can
extend by using getter and setter methods for the standard interaction properties described in
Table 6-5.

LocalTransaction

javax.resource.cci.LocalTransaction

The LocalTransaction interface is used for application-level local transaction demarcation. It
defines a transaction demarcation interface for resource manager local transactions. The system
contract level LocalTransaction interface (as defined in the javax.resource.spi package)
is used by the container for managing local transactions.

A local transaction is managed within a resource manager. No external transaction manager is
involved in the coordination of such transactions.

A CCI implementation can (but is not required to) implement the LocalTransaction interface.
If the LocalTransaction interface is supported by a CCI implementation, then the method
Connection.getLocalTransaction () should return a LocalTransaction instance. A
component can then use the returned LocalTransaction to demarcate a resource manager local
transaction (associated with the Connection instance) on the underlying EIS instance.

The com.bea.adapter.spi.AbstractLocalTransaction class also implements this
interface.

For more information about local transactions, see ‘“Transaction Demarcation” on page 6-24.

Developing Adapters

Step 4: Implement the CCI

Record

javax.resource.cci.Record

The javax.resource.cci.Recordinterface is the base interface for representing an input to or
output from the execute () methods defined for an Interaction. For more information about the
execute () methods, see “execute() Version 1” on page 6-38 and “execute() Version 2” on
page 6-39.

A MappedRecord or IndexedRecord can contain another Record. This means that you can use
MappedRecord and IndexedRecord to create a hierarchical structure of arbitrary depth. A basic
Java type is used as the leaf element of a hierarchical structure represented by a MappedRecord
or IndexedRecord.

The Record interface can be extended to form one of the representations shown in the following
table.

Table 6-6 Record Interface Representations

Representation Description

MappedRecord A set of key-value pairs that represents a record. This
interface is based on the java.util.Map.

IndexedRecord An ordered and indexed collection representing a
record. This interface is based on the
java.util.List.

JavaBean-based representation of ~ An example is a custom record generated to represent a

an EIS abstraction purchase order in an ERP system.
javax.resource.cci. This interface extends both java.sgl .ResultSet
ResultSet and javax.resource.cci.Record. A

ResultSet represents tabular data.

If the adapter implements a CCI interface, the next question to consider is which record format
to use for a service. For each service, a format must be specified for the request records (which
provide input to the service) and response records (which provide the EIS responses).

Developing Adapters 6-51

Developing a Service Adapter

ADK Implementation

The ADK focuses on helping you implement an XML-based record format in the CCI layer. To
this end, the ADK provides the DocumentRecord class. In addition, you can use BEA’s schema
toolkit to develop schemas to describe the request and response documents for a service.

The ADK provides RecordImpl, a concrete implementation of the
javax.resource.cci.Record interface that provides getter and setter methods for the name
and description of a record.

For an adapter provider who wants to use an XML-based record format (which is highly
recommended), the ADK also provides the com.bea.adapter.cci.Abstract
DocumentRecordInteraction class. This class ensures that the client passes DocumentRecord
objects. In addition, this class provides convenience methods for accessing content in a

DocumentRecord.

ResourceAdapterMetaData

javax.resource.cci.ResourceAdapterMetaData

The interface javax.resource.cci.ResourceAdapterMetaData provides information about
the capabilities of an adapter implementation. A CCI client uses a
ConnectionFactory.getMetaData to get metadata information about the adapter. The
getMetaData () method does not require an active connection to an EIS instance. The
ResourceAdapterMetaData interface can be extended to provide more information specific to
an adapter implementation.

Note: This interface does not provide information about an EIS instance that is connected
through the adapter.

ADK Implementation

The ADK provides an interface that encapsulates adapter metadata and provides getters and
setters for all properties: ResourceAdapterMetaDataImpl.

Step 5: Enable Environment Variable Support (Optional)

6-52

This optional step is required if you allow the use of environment variables in service definitions.
For more information on how environment variables are defined and what they mean to your
adapter, see “Developing a Design-Time GUI” on page 9-1.

At runtime, your adapter uses a set of environment variables to obtain values a system
administrator or application deployer has configured for use in the target environment. Use of

Developing Adapters

Step 5: Enable Environment Variable Support (Optional)

variables generally involves replacing a variable reference within one or more property values for
the service with a runtime variable value. What properties, where in the property value, and what
the variable reference looks like are all adapter-specific.

In order to use environment variables, your adapter must obtain the set of environment variables
intended for use with the currently executing service. Your adapter can obtain this set of variables
in one of two ways.

e By implementing the com.bea.connector.ClientDataInteractionSpec interface.

e By extending the ADK's com.bea.adapter.cci.DocumentInteractionSpecImpl
class.

Implementing ClientDatalnteractionSpec

This interface provides an IClientData instance in the setClientData (IClientData)
method. You obtain the variable set by calling client_data_object.getVariableSet ()
method.

Extending DocumentinteractionSpecimpl

In this case, you listen for java.beans.PropertyChange events in your own implementation
of the java.beans.VetoableChangeListener.vetoableChange method. IClientData is
obtained when the PropertyChangeEvent . getPropertyName () method returns clientData
and by calling the getOldvalue () method on the event. The returned IClientData instance
can be used to obtain the variable set (IvariableSet instance) by calling the
client_data_object.getVariableSet () method.

Once you have obtained an IvariableSet instance, you can retrieve variables from the set by
calling getvariable () and use the variable's value to generate a runtime property value (by
replacing any variable references in the original property value).

If desired, you can listen for changes on this variable set, by implementing the
com.bea.connector.VariableChangeListener interface and adding an instance of your
implementation class to the variable sets listener list by calling

IVariableSet.addListener (VariableChangeListener) method. Any time the variables in
the variable set change, or their values change, you will be notified by a call to
variableChange () on your listener.

For examples of how to use environment variables at runtime, see the source code for the DBMS
sample adapter located at WLI_HOME/adapters/dbms/src.

Developing Adapters 6-53

Developing a Service Adapter

Step 6: Test the Adapter

To help you test your adapter, the ADK provides com.bea.adapter. test.TestHarness, a test
harness that leverages JUnit, an open-source tool for unit testing. The
com.bea.adapter.test.TestHarness performs the following functions:

e Reads a properties file containing test configuration information
e Initializes the logging toolkit

e Initializes JUnit TestSuite

e [oads test classes and executes them using JUnit

e Allows you to test code offline and outside WebLogic Server

You can find more information about JUnit at:

http://www.junit.org

Using the Test Harness

To use the test harness in the ADK, complete the following steps:

1. Create a class that extends junit . framework.TestCase. The class must provide a static
method named suite that returns a new junit. framework.TestSuite.

2. Implement test methods. The name of each method should begin with test.

3. Create or alter the test.properties in the project directory. (If you clone the sample
adapter, then your adapter will have a base test .properties in the project directory.) The
properties file should contain any configuration properties needed for your test case.

4. Invoke the test using Ant. Your Ant build.xml file needs a test target that invokes the
com.bea.adapter.test.TestHarness class with the properties file for your adapter. For
example, the sample adapter uses the Ant target shown in Listing 6-28.

Listing 6-28 Ant Target Specified in the Sample Adapter

<target name='test' depends='packages'>
<java classname='com.bea.adapter.test.TestHarness'>
<arg value='-DCONFIG_FILE=test.properties'/<classpath
refid="'CLASSPATH' />
</java>

6-54 Developing Adapters

Step 6: Test the Adapter

This target invokes the JVM with the following main class:
com.bea.adapter.test.TestHarness. This class uses the classpath established for the
sample adapter and passes the following command-line argument:

-DCONFIG_FILE=test.properties

Test Case Extensions Provided by the ADK

The sample adapter provides two basic TestCase extensions:

® sample.spi.NonManagedScenarioTestCase

® sample.event.OfflineEventGeneratorTestCase

sample.spi.NonManagedScenarioTestCase

NonManagedScenarioTestCase allows you to test your SPI and CCI classes in a nonmanaged
scenario. Specifically, this class tests the following:

e Initialization of the ManagedConnectionFactory implementation.
e Serialization or deserialization of the ManagedConnectionFactory instance.
e Opening of a connection to the EIS.

e Closing of a connection to the EIS. Make sure all associated resources are closed when a
connection is closed.

sample.event.OfflineEventGeneratorTestCase

sample.event.OfflineEventGeneratorTestCase allows you to test the inner workings of
your event generator outside WebLogic Server. Specifically, this class tests the following for the
event generator:

e It simulates the event router and instantiates a new instance of the adapter’s event
generator.

o [t passes the test.properties to the event generator for initialization so you can test
your initialization logic.

e It refreshes the event generator randomly so you can test your setupNewTypes () and
removeDeadTypes () methods.

Developing Adapters 6-55

Developing a Service Adapter

e It receives event postings and displays them in the log file for the adapter.

sample.client.ApplicationViewClient

The sample.client.ApplicationViewClient class offers an additional way to test your
adapter. This class is a Java program that demonstrates how to invoke a service and listen for an
event on an application view. An Ant build.xml file provides the client target so you can use
the ApplicationviewClient program. When you execute ant client, the default
configuration is to display the usage for the program. You can change the input parameters for
the client program by editing the build.xm1 file.

To see an example of sample.client.ApplicationViewClient.java, g0 to
WLI_HOME/adapters/ sample/src/sample/client.

Note: sample.client.ApplicationViewClient is not integrated with the test harness.

Step 7: Deploy the Adapter

6-56

After implementing the SPI and CCI interfaces for an adapter, and then testing the adapter, you
can deploy the adapter in a WebLogic Integration environment, either manually or from the
WebLogic Server Administration Console. For complete information, see Chapter 10,
“Deploying Adapters.”

Developing Adapters

Developing an Event Adapter

This section contains information about the following subjects:

Introduction to Event Connections

Event Adapters in a Run-Time Environment
Flow of Events

Step 1: Define the Adapter

Step 2: Configure the Development Environment
Step 3: Implement the Adapter

Step 4: Test the Adapter

Step 5. Deploy the Adapter

Introduction to Event Connections

Event connections propagate information from an EIS to the WebLogic Integration environment;
they can be described as publishers of information.

All WebLogic Integration event connections perform the following functions:

e They respond to events that occur inside the running EIS by extracting and storing data

about the event from the EIS.

Developing Adapters 1-1

Developing an Event Adapter

e They transform event data from an EIS-specific format to an XML document that
conforms to the XML schema for the event. The XML schema is based on metadata in the
EIS.

e They propagate the event in the WebLogic Integration environment by using the event
router.

e Optionally, they respond to requests by the event router to suspend and resume event
generation.

e Optionally, they can indicate their status, and the status of the EIS to which they are
connected, back to the event router.

e Optionally, they can define logical event generator instances that allow system
administrators to control the distribution of event generation work within a WebLogic
Integration cluster, thus improving load balancing and fault tolerance.

e Optionally, they can make use of environment variables. Environment variables allow
adapters to isolate information that is specific to a given deployment environment such that
it can be updated by an administrator when the adapter instances using that adapter are
moved between environments.

WebLogic Integration implements the aspects of the first three functions that are common to all
event connections, allowing you to focus on only the EIS-specific aspects of your adapter.
WebLogic Integration provides framework support for the four optional functions, but no direct
implementation.

Event Adapters in a Run-Time Environment

1-2

The behavior of an event in a run-time environment is depicted in Figure 7-1.

Developing Adapters

Event Adapters in a Run-Time Environment

Figure 7-1 Event Connections in a Run-time Environment

Process!
SemviceS
PageGroup
Client

Application
Yiew Client

Message
Broker
Channel

Al Event
Topic

]

Servicel
pplication

A
T Vew

Event1

Create
¥

Event

Subscribe

Message fu
Endpaint

— Event Router

Resource Adapter
Instance

Evant Subscribe
Information |

gl

Els

Developing Adapters 1-3

Developing an Event Adapter

Flow of Events

Figure 7-2 outlines the steps required to develop an Event Connection.

Figure 7-2 Event Connection Flow of Events

D 1 C iderations

vou will:
Determine event types
Determine extraction rmechanismms

2

Envir

Configure Dev
You wil!
Set up file structure
Assign Adapter Logical Mame
Create and update files
Set up the build process
Create the message bundle
Configure logging

Implement the Adapter
You wil:
Implement the data extraction mechanism
Implement the data transformation method
Implement IEventGenerator

4
Deploy the Adapter

Fou wilf!

Add EventRouterServiet and web.xml file to
the EventRouter WAR file

Create the EventRouter WAR file

Create the EAR file

Deploy the EAR file

5
Test the Adapter
o will:
Employ the ADK Test Harness to test the
adapter

1-4 Developing Adapters

Step 1: Define the Adapter

Step 1: Define the Adapter

Before you start developing an event connection, you must define your requirements for it. For a
complete list of the information you need to do so, see Appendix C, “Adapter Setup Worksheet.”
This section provides a summary of the most important tasks to be completed for step 1:

1. Define an event in terms of the following questions:
— What will be the contents of the event?
— How will the event be defined in the XML schema?

— What will trigger the event?

2. Select one of the following data extraction methods:

— Push—The EIS notifies the adapter of an event. Use this method when your adapter
needs to poll the EIS to determine a change of state. This is the most efficient
implementation for event generators, but involves EIS-side configuration and may not
be possible with all EIS types.

— Pull—The adapter polls the EIS and pulls event data from it. Use this method when
you want to implement event generation that works like a publish-and-subscribe model.
This is less efficient than the push model above, but is often easier to implement, is less
dependent on the capabilities of the EIS, and doesn't generally required EIS-side
configuration.

3. Decide if you will allow your event generator to be suspended and resumed.

— Allow this if your EIS holds event information persistently, and it can be retrieved at a
later time.

— Do not allow this if your EIS cannot store event information for later retrieval (for
example, event information is delivered via a non-persistent remote call)

4. Decide if you will indicate your event generator’s status and the status of your EIS instance
to the event router.

— BEA strongly recommends you consider implementing this support. Implementing it
greatly enhances the manageability of your adapter.

— Implement this support if you can clearly determine the internal state of your event
generator (for example, Healthy if your connection to the EIS is established and
working properly) and/or you can clearly determine the status of the EIS instances (for
example, Available if you have an active connection to the EIS).

5. Decide if you will implement event generator instance support.

Developing Adapters 1-5

Developing an Event Adapter

— BEA strongly recommends you consider implementing this support. Implementing it
greatly enhances the manageability of your adapter with regards to load balancing and
fault tolerance within a WebLogic Integration cluster.

— If your event generator can coexist with other event generators using the same EIS
instance without conflicting with the operation of the other generators, you should
consider implementing generator instance support. For example, the DBMS sample
adapter is capable of sharing a single set of events within a DBMS instance with
multiple generator instances. It has implemented generator instance support to enable it
to be managed effectively in a WebLogic Integration cluster.

— If your event generator cannot coexist with other event generators using the same EIS
instance, you do not need to implement event generator instance support.

6. Decide if you will implement environment variable support.

— Environment variables allow adapters to isolate information that is specific to a given
deployment environment such that it can be updated by a WLI administrator when the
adapter instances using that adapter are moved between environments.

— Adapters that require environment specific information in their interaction spec object
or in the request document for services or the event definition for events, should
consider implementing environment variable support. Examples of environment
specific information are resource identifiers like table names for a DBMS adapter, or
email folder names for an email adapter.

Note: Environment specific information does not include the information used to create
a connection to the EIS. This information is almost always, by its nature,
environment specific.

— Adapters that contain no environment specific information in their interaction spec
object, request documents, or event definitions, need not implement environment
variable support.

Step 2: Configure the Development Environment

This step involves completing a five-step procedure to prepare your computer for adapter
development:

e Step 2a: Set Up the File Structure
e Step 2b: Assign a Logical Name to the Adapter

e Step 2c: Set Up the Build Process

1-6 Developing Adapters

Step 2: Configure the Development Environment

e Step 2d: Create the Message Bundle

e Step 2e: Configure Logging

Step 2a: Set Up the File Structure

The file structure needed for an event connection development environment is the same as that
required for developing service connections. For details, see “Step 2a: Set Up the Directory
Structure” in Chapter 6, “Developing a Service Adapter.”

Step 2b: Assign a Logical Name to the Adapter

Assign a logical name to your adapter. By convention, this name comprises the vendor name, the
type of EIS connected to the adapter, and the version number of the EIS, and it is expressed as
vendor_EIS-type_EIS version. For example:

BEA_WLS_SAMPLE_ADK

This name includes the following components:
e BEA_WLS is the vendor.
e saMpLE is the EIS type.

e ADK is the EIS version.

Step 2c¢: Set Up the Build Process

WebLogic Integration employs a build process based on Ant, a 100% pure Java-based build tool.
For more information about how Ant works, see “Ant-Based Build Process” on page 3-3. For
more information about how to use Ant, go to:

http://jakarta.apache.org/ant/index.html

The sample adapter provided by WebLogic Integration contains an Ant build file:
WLI_HOME/adapters/sample/project/build.xml. This file, in turn, contains the tasks
needed to build a J2EE-compliant adapter. When you run the GenerateAdapterTemplate
utility to clone a development tree for your adapter, a build.xml file is created specifically for
that adapter. Because this file is generated automatically, you do not need to customize the
sample build.xml file and you can be sure that the code is correct. For information about using
the GenerateAdapterTemplate utility, see Chapter 4, “Creating a Custom Development
Environment.”

Developing Adapters 1-1

Developing an Event Adapter

1-8

For more information about the build process, see “Step 2c: Set Up the Build Process” in
Chapter 6, “Developing a Service Adapter.”

Step 2d: Create the Message Bundle

Any message destined for an end-user should be placed in a message bundle: a .properties text
file containing key=value pairs that allow you to internationalize messages. When a geographic
locale and a natural language are specified for a message at run time, the contents of the message
are interpreted on the basis of the key=value pair, and the message is presented to the user in the
specified language.

For instructions on creating a message bundle, see the JavaSoft tutorial on internationalization at:

http://java.sun.com/docs/books/tutorial/il8n/index.html

Step 2e: Configure Logging

Logging is performed with a logging tool called Log4j, which was developed as part of the
Apache Jakarta project.

Before you begin this step, we recommend that you read more about logging in Chapter 2, “Basic
Development Concepts,” and about how to use Log4j in Chapter 5, “Using the Logging Toolkit.”

Create an Event Generation Logging Category

If you are planning to use an event connection, you must create a logging category specifically
for event generation. (For more information about logging categories, see “Message Categories”
on page 5-3.) To edit the logging configuration file for a specific adapter
(WLI_HOME/adapters/YOUR_ADAPTER/src/adapter _logical_name.xml), add the code
shown in the following listing.

Listing 7-1 Sample Code for Creating an Event Generation Logging Category

<category name='BEA WLS SAMPLE ADK.EventGenerator' class='com.bea.
logging.LogCategory'>

</category>

Replace BEA wLS_saMPLE_ADK with the logical name of your adapter.

Developing Adapters

Step 3: Implement the Adapter

If you do not set any parameters for this category, it inherits all the property settings of the parent
category. In this example, the parent category is BEA_WLS_SAMPLE_ADK. Although you are not
required to use the adapter logical name as the root category, you must use a unique identifier so
that there is no impact on other adapters in a multi-adapter environment.

Step 3: Implement the Adapter

To implement an event connection, you must complete the following two-step procedure:

1. Create an event generator. This process implements the data extraction method (in either push
or a pull mode) and the IEventGenerator interface. (The latter interface is used by the event
router to drive the event generation process.) This step is described in “Step 3a: Create an
Event Generator.”

2. Implement the data transformation method. This step is described in “Step 3b: Implement
the Data Transformation Method.”

Step 3a: Create an Event Generator

Event generation provides an adapter with a mechanism to either receive notification from an EIS
or poll an EIS for a specific occurrence of an event. The WebLogic Integration engine provides
a powerful event generator that can support multiple types of events. An event type is defined by
the configuration properties for an event.

Typically event properties are defined by the properties associated with an event at design time.
When configuring an event connection, keep in mind that you may designate one or more Web
pages from which the adapter will collect event properties. These properties are saved with the
application view descriptor and passed back to the event at run time. The WebLogic Integration
engine uses the properties and the source application view to determine how to route back to the
listeners. For instance, if two separate deployments of the same event generator with identical
properties are used, only one IEventDefinitionis created by the WebLogic Integration engine.
If different properties are specified, however, a single TEventDefinition is created for each
deployment of a single event connection. The event generator must determine which
IEventDefinition to use in the routing process. This determination is typically made on the
basis of property values and specific event occurrences.

IEventDefinition objects are used by your implementation of the event generator to route
specific events back to their listener. As discussed elsewhere, the WebLogic Integration engine
creates IEventDefinition objects for deployed application views containing events.
IEventDefinition objects can be used to extract specific properties associated with the

Developing Adapters 1-9

Developing an Event Adapter

deployment of an application view, or to access schema and routing objects. You must employ
these attributes when routing an event.

How the Data Extraction Mechanism Is Implemented

WebLogic Integration supports two modes of data extraction:

e Push event generation—A state change is recognized when the object generating events
pushes a notification to the event generator. When the push event generator receives the
event the WebLogic Integration engine then routes the event to a deployed application
view. The push event generator uses a publish-and-subscribe model.

e Pull event generation—Used when polling is required to confirm a state change. A process
continually queries an object until it detects a change in state, at which point it creates an
event, which the WebLogic Integration engine then routes to a deployed application view.

Pull Mode

Pull mode relies on a polling technique to determine whether an event has taken place. To
implement it, you must derive your event generator from the AbstractPullEventGenerator
in the com.bea.adapter.event package.

Note: The adk-eventgenerator.jar file contains the ADK base classes required to
implement an event generator. It must be included in your WAR make file.

In the AbstractPullEventGenerator, the ADK supplies several abstract methods that you
must override in your implementation. These methods are described in the following table.

Table 7-1 AbstractPullEventGenerator Methods

Method Description

postEvents () Control method for the remainder of your event generation,
message transformation, and routing code; allows you to add
polling and routing code. Called from the run method in the
AbstractPullEventGenerator at an interval determined
by the Event Router configuration files.

setupNewTypes () Method for preprocessing any IEventDefinition object
being deployed. Only valid new IEventDefinition objects
can be passed to this method.

1-10 Developing Adapters

Step 3: Implement the Adapter

Tahle 7-1 AbstractPullEventGenerator Methods (Continued)

Method

Description

removeDeadTypes ()

Handles any cleanup required for IEventDefinition objects
being undeployed. The WebLogic Integration engine calls this
method when application views with associated events are being
undeployed.

doInit ()

Method called while the event generator is being constructed.
During the initialization process the event generator can use
predefined configuration values to set up the necessary state or
connections for the event generation process.

doCleanUpOnQuit ()

Frees resources allocated by your event generation process.
Called before the thread driving the event generation process is
ended.

Push Mode

Push mode uses notification to trigger the routing of an event. To implement it, you must derive

your event generator from the AbstractPushEventGenerator class in the
com.bea.adapter.event package. Several other supporting classes are included in the event
package. These classes are described in Table 7-2.

Note: The adk-eventgenerator.jar file contains the WebLogic Integration base classes
required to implement an event generator. It must be included in your WAR make file.

Developing Adapters 1-11

Developing an Event Adapter

1-12

Table 7-2 AbstractPushEventGenerator Classes

Class

Description

AbstractPushEventGenerator

Class containing the same abstract and concrete
methods as the
AbstractPullEventGenerator. The
methods in both implementations
(AbstractPullEventGenerator and
AbstractPushEventGenerator) are
intended to be used in the same manner. For a list
of the methods and responsibilities associated with
each, see Table 7-1.

IPushHandler

Interface provided primarily to abstract the
generation of an event from the routing of an
event. It is not required for the implementation of
the push mode of data extraction. The
IPushHandler is designed to be tightly coupled
with the PushEventGenerator. The
PushEventGenerator initializes, subscribes,
and cleans up the PushHand1 er implementation.
The TPushHandler provides a simple interface
to abstract the generation logic. The interface
provides methods to initialize, subscribe to push
events, and clean up resources.

PushEvent

PushEvent is an event object derived from
java.util.EventObject. The PushEvent
object is designed as a wrapper for an EIS
notification, which is sent to any
IPushEventListener objects.

EventMetaData

The EventMetaData class is intended to wrap
any data necessary for event generation. The
EventMetaData class is passed to the
IPushHandler on initialization.

How the Event Generator Is Implemented

An event generator typically implements the following flow of control:

1.

Developing Adapters

The doInit () method creates and validates connections to the EIS.

Step 3: Implement the Adapter

2. The setupNewTypes () method processes IEventDefinition objects, creating any
structures required for processing.

3. The postEvents () method iteratively invokes one of the two modes of data extraction:

— Push—The postEvents () method polls the EIS for an event and, if an event exists,
postEvent () determines which IEventDefinition objects will receive it. The
method then transforms the event data into an IDocument object, using the associated
schema, and routes the IDocument object using the TEvent associated with the
IEventDefinition object.

— Pull—The postEvents () method waits for notification of an event. When it receives
such notification, it extracts the event data from the PushEvent object and transforms
it into an IDocument object in accordance with the schema associated with the event
connection. When all the necessary event data has been put into the IDocument, the
IDocument is routed to the correct IEventDefinition objects.

4. The removeDeadTypes () method removes dead IEventDefinition objects from any
data structures being used for event processing. Any resources associated with those objects
are also freed. TEventDefinition objects are considered dead when the application view
to which they belong is undeployed.

5. The doCleanuponguit () method removes any resources allocated during event
processing.

Listing 7-2 shows the class declaration for the sample adapter’s (pull-mode) event generator.

Listing 7-2 Sample Implementation of the Pull Mode of Data Extraction

public class EventGenerator

extends AbstractPullEventGenerator

Note: The AbstractPullEventGenerator implements the Runnable interface, which
enables it to run on its own thread.

The remaining sections in “Step 3a: Create an Event Generator” provide more code examples that
show how an event generator is implemented with the pull mode of data extraction.

Developing Adapters 1-13

Developing an Event Adapter

1-14

Sample EventGenerator

Listing 7-3 shows a simple constructor for an event generator. You must invoke the parent’s
constructor so that the parent’s members get initialized correctly. The listing then shows how the
doInit () method receives configuration information from the map variable and validates the
parameters. The sample contains any parameters associated with the event generator at design
time.

Listing 7-3 Sample Constructor for an EventGenerator

public EventGenerator ()

{

super () ;

}

protected void doInit (Map map)
throws java.lang.Exception

{

ILogger logger = getLogger () ;

m_strUserName = (String)map.get ("UserName") ;
if (m_strUserName == null || m_strUserName.length() == 0
{
String strErrorMsg =
logger.getI18NMessage ("event_generator_no_UserName") ;
logger.error (strErrorMsg) ;
throw new IllegalStateException (strErrorMsg) ;
}
m_strPassword = (String)map.get ("Password") ;
if (m_strPassword == null || m_strPassword.length() == 0)
{
String strErrorMsg = logger.getIl8NMessage
("event_generator_no_Password") ;
logger.error (strErrorMsg) ;

throw new IllegalStateException(strErrorMsg) ;

Developing Adapters

Step 3: Implement the Adapter

postEvents () is called from the run method of the parent class, as shown in Listing 7-4. This
method polls the EIS to detect the occurrence of a new event. This method is invoked at a fixed
interval, which is defined in the web.xm1 file for the event router.

Listing 7-4 Sample Implementation of postEvents()

protected void postEvents (IEventRouter router)
throws java.lang.Exception

{
ILogger logger = getLogger () ;

// TODO: a real adapter would need to call into the EIS to
// determine ifany new events occured since the last time
// this method was invoked. For the sake of example, we'll just
// post a single event every time this method gets invoked...
// event data will be the current time on the
// The system formatted according to the event definition...

// we'll look for several event types...

Iterator eventTypesIterator = getEventTypes() ;
if (eventTypesIterator.hasNext())

{
do

{
// The event router is still interested in this type of event

IEventDefinition eventDef = (IEventDefinition)
eventTypesIterator.next () ;

logger.debug ("Generating event for " + eventDef.getName()) ;
// Create a default event (just blank/default data)

IEvent event = eventDef.createDefaultEvent () ;

// Get the format for the event

java.util.Map eventPropertyMap = eventDef.
getPropertySet () ;
String strFormat = (String)eventPropertyMap.get

("Format") ;

Developing Adapters 1-15

Developing an Event Adapter

if(logger.isDebugEnabled())
logger .debug ("Format for event type '"+eventDef.
getName ()+"' is '"+strFormat+"'");
java.text.SimpleDateFormat sdf =
new java.text.SimpleDateFormat (strFormat) ;
IDocument payload = event.getPayload() ;
payload.setStringInFirst ("/SystemTime", sdf.format (new
Date()));

// let's log an audit message for this...

try
{
logger.audit (toString() + ": postEvents >>> posting event

["+payload.toXML()+"] to router");

catch (Exception exc)

logger.warn (exc) ;

// This call actually posts the event to the IEventRouter

router.postEvent (event) ;
} while (eventTypesIterator.hasNext());
}

}// end of postEvents

A real adapter must query the EIS to determine whether any new events have occurred since the
last time this method was invoked. A concrete example of such a call, available in the DBMS
sample adapter included with the ADK, is the postEvent () method in the

EventGenerator.javafﬂ&

WLI_HOME/adapters/dbms/src/com/bea/adapter/dbms/event /EventGenerator.java

Adding New Event Types

setupNewTypes () is called during refresh to handle any new event types. Typically, an event
generator needs to allocate resources in the EIS in order to be able to receive events from the EIS.

1-16 Developing Adapters

Step 3: Implement the Adapter

In the DBMS sample adapter, for example, a trigger is created in the DBMS in order to handle a
new event type. The setupNewTypes () method allows you to set up any definitions required to
handle a new type. The parent class has already performed (and logged) a sanity-check on the
listOfNewTypes () file, so you do not need to perform those tasks.

Listing 7-5 Sample Template for setupNewTypes()

protected void setupNewTypes (java.util.List listOfNewTypes)
{
Iterator iter = listOfNewTypes.iterator();
while (iter.hasNext())
{
IEventDefinition eventType = (IEventDefinition)iter.next();

}

Removing Event Types for Undeployed Application Views

removeDeadTypes () is called during refresh to remove any event types for application views
that have been undeployed.

You must execute a cleanup process

To ensure that obsolete event types are no longer handled, you must perform a cleanup process.
You should, for example, close resources needed to handle the obsolete event type. Listing 7-6
shows how removeDeadTypes () 1S implemented.

Listing 7-6 Sample Code Based on removeDeadTypes() Template

protected void removeDeadTypes (java.util.List listOfDeadTypes)

{
Iterator iter = listOfDeadTypes.iterator();
while (iter.hasNext())

IEventDefinition eventType = (IEventDefinition)iter.next();

Developing Adapters 111

Developing an Event Adapter

1-18

Removing Resources

doCleanUpOnQuit () is called during shutdown of the event generator. This method removes
any resources allocated during event processing. The sample adapter stubs in this method. The
template for implementing this method is shown in the following listing.

Listing 7-7 Sample doCleanUpOnQuit() Method Call

protected void doCleanUpOnQuit ()
throws java.lang.Exception
{
ILogger logger = getLogger () ;
logger.debug (this.toString() + ": doCleanUpOnQuit") ;
}

Step 3b: Implement the Data Transformation Method

Data transformation is the process of taking data from the EIS and transforming it into an XML
schema that can be read by the application server. For each event, a schema defines the
appearance of the XML output, using the SOM and IDocument class libraries. The following code
listings show the sequence of events during the data transformation process:

e Listing 7-8 shows the code that transforms data from the EIS into XML schema.
e Listing 7-9 shows the XML schema created by the code in Listing 7-8.

e Listing 7-10 shows the valid XML document created by the schema shown in Listing 7-9.

Listing 7-8 Sample Code for Transforming EIS Data into XML Schema

SOMSchema schema = new SOMSchema () ;

SOMElement root = new SOMElement ("SENDINPUT") ;
SOMComplexType mailType = new SOMComplexType () ;
root.setType (mailType) ;

SOMSequence sequence = mailType.addSequence() ;
SOMElement to = new SOMElement ("TO");

Developing Adapters

to.setMinOccurs ("1") ;
to.setMaxOccurs ("unbounded") ;
sequence.add(to) ;
SOMElement from = new SOMElement ("FROM") ;
from.setMinOccurs ("1") ;
from.setMaxOccurs("1") ;
sequence.add (from) ;
SOMElement cc = new SOMElement ("CC");
cc.setMinOccurs ("1") ;
cc.setMaxOccurs ("unbounded") ;
sequence.add(cc) ;
SOMElement bcc = new SOMElement ("BCC") ;
bcc.setMinOccurs ("1") ;
bcc. setMaxOccurs ("unbounded") ;
sequence.add (bcc) ;
SOMElement subject = new SOMElement ("SUBJECT") ;
subject.setMinOccurs("1") ;
subject.setMaxOccurs ("1") ;
sequence.add (bcc) ;
SOMElement body = new SOMElement ("BODY") ;
if (template == null)

{ body.setMinOccurs("1") ;

body.setMaxOccurs("1") ;
}else
{ Iterator iter = template.getTags() ;
if (iter.hasNext())

Step 3: Implement the Adapter

{ SOMComplexType bodyComplex = new SOMComplexType() ;

body.setType (bodyComplex) ;
SOMAll all = new SOMAll();
while (iter.hasNext())

{ SOMElement eNew = new SOMElement ((String)iter.next());

all.add(eNew) ;
}//endwhile
bodyComplex.setGroup(all) ;
}//endif
}//endif
sequence.add (body) ;
schema.addElement (root) ;

Developing Adapters

1-19

Developing an Event Adapter

Listing 7-9 XML Schema Created by Code in Listing 7-8

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="SENDINPUT">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="TO"
type="xsd: string"/>
<xsd:element name="FROM"
<xsd:element name="CC"
type="xsd:string" />
<xsd:element name="BCC"
"unbounded" type=
<xsd:element name="BCC"
type="xsd:string"/>
<xsd:element name="BODY"
</xsd:sequence>
</xsd:complexType>

</xsd:element>

maxOccurs="unbounded"

type="xsd:string"/>

maxOccurs="unbounded"
maxOccurs=
"xsd:string" />

maxOccurs="unbounded"

type="xsd:string" />

Listing 7-10 Valid XML Document Created by Schema in Listing 7-9

</xsd:schema>
<?xml version="1.0"?>
<!DOCTYPE SENDINPUT>
<SENDINPUT>

<TO/>

<FROM/>

<Cc/>

<BCC/>

<BCC/>

<BODY/>

</SENDINPUT> <xsd:schema xmlns:xsd="http

1-20 Developing Adapters

://www.w3.0rg/2001/XMLSchema">

Step 3: Implement the Adapter

Step 3c: Implement Suspend/Resume Support

This is an optional step. Suspend/resume support allows your event generator to respond to
requests from the event router to suspend or resume generation of events. The event router makes
these requests when an administrator indicates event delivery from your adapter should be
suspended. If you do not implement suspend/resume support directly, the WebLogic Integration
engine will store any events generated by your event generator during the time your adapter is
suspended.

Whether you implement suspend/resume support in your adapter depends on whether your EIS
instance can store event information for later retrieval. If your EIS can store this information, you
should implement suspend/resume support in your adapter. This allows you to store events

(possibly) more efficiently on the EIS than if WebLogic Integration were to store them for you.

If your EIS cannot effectively store event information for later retrieval, you should not
implement suspend/resume support directly in your event generator. Rather, you should just
allow WebLogic Integration to store the events for you.

If you decide to implement suspend/resume support, simply implement the
com.bea.wlai.event.ISuspendableEventGenerator interface on your event generator
implementation class. If you subclass AbstractPullEventGenerator, you can simply delegate
the suspend () and resume () calls back to the superclass. The following code listing shows how
the DBMS sample adapter implements ISuspendableEventGenerator.

Listing 7-11 Sample Adapter

import com.bea.adapter.event.AbstractPullEventGenerator;
import com.bea.wlai.event.ISuspendableEventGenerator;

public class EventGenerator
extends AbstractPullEventGenerator
implements ISuspendableEventGenerator {

/**

* Suspend (temporarily) the generation of events. Any events that occur
* on the EIS instance must be preserved either on the EIS instance itself,
* or within some EventGenerator-specific store. This method simply delegates

Developing Adapters 1-21

Developing an Event Adapter

* the call back to its superclass.
*/
public void suspend/()

throws Exception
{

super.suspend() ;

}

/**
* Resume the generation of events. Any events that have occurred while this
* EventGenerator was suspended, should now be delivered as soon as possible
* to the EventRouter. This method simply delegates the call back to its
* superclass.

*/

public void resume ()
throws Exception

{
super.resume () ;

}

If your event generator does not extend from AbstractPullEventGenerator, you will need to
determine for yourself the proper way to implement ISuspendableEventGenerator.

Step 3d: Implement Event Generator and EIS Status Reporting

This is an optional step. WebLogic Integration 8.1 adds the ability for event generators to indicate
their own status and the status of their EIS instance back to their event router. This ability greatly
enhances the manageability of your event generator. BEA strongly recommends adapter
developers implement this support in their adapters.

Status reporting provides two important benefits to the WebLogic Integration administrator:

e Within the WebLogic Integration Administration Console, when your event generator
moves to any abnormal state, the administrator can see the status message your event
generator has itself reported to the event router. This provides good diagnostic information
to the administrator.

e When your event generator detects any problems communicating with the EIS, it can
indicate this directly back to the router, allowing the adapter instance it belongs to be

1-22 Developing Adapters

Step 3: Implement the Adapter

suspended, and thus clearly indicate the EIS is unavailable. Without this support, EIS
availability is only detected second-hand during service invocation through the service
adapter or by errors logged by the event generator.

To implement status reporting, you will use the following methods on the TEventRouter
interface.

Note: You are passed an IEventRouter instance in the call to postEvents, setupNewTypes
and removeDeadTypes.

® setEventGeneratorStatus(Status status)—This allows you to indicate the status of
your event generator. The Status class is an enumeration class that defines standard status
values (for example, UNKNOWN, HEALTHY, SUSPENDED, MARGINAL,
INOPERATIVE). You may choose any of these values, or you may define your own status
values as integer values greater than 100. The status class also provides a description field
that allows you describe the reason your event generator is in the indicated state.

® eisUnavailable(String reason)—This method is used to indicate that your event
generator cannot contact its EIS instance. Call this method with a descriptive reason why
you couldn’t contact the EIS. Calling this method will cause the adapter instance for the
event generator to be suspended, and will cause the adapter instance to appear in the WLI
management console as Suspended.

® cisAvailable(String reason)—This method is used to indicate that your event
generator can again contact its EIS instance. Call this method with a descriptive reason
why you now can contact the EIS. Examples would include resetting the connection to the
EIS, or waiting some predefined amount of time and retrying the connection. Calling this
method will cause the adapter instance for the event generator to be resumed, and will
cause the adapter instance to appear in the WLI management console as Deployed.

Listing 7-12 DBMS Sample Adapter Status Reporting

/**
* This method is called each time the event generator accesses
* the connection to the DBMS.
*/
private final boolean verifyEISStatus (IEventRouter router)
{
Status status = null;
if (router != null)

{

Developing Adapters 1-23

Developing an Event Adapter

status = router.getEventGeneratorStatus() ;

boolean pingSucceeded = false;

Exception pingException = null;

try

{
// Perform a trivial operation on the connection to see if its alive.
// Try to revive the connection if the ping fails the first time.
pingSucceeded = pingAndRevive (true) ;

}

catch (Exception e)

{
pingException = e;

// See where we are, and act on it

if (pingSucceeded)

{
if (status == null || status.status != Status.HEALTHY)
{

router.eisAvailable (“Ping on DBMS connection succeeded”) ;

}
}
else
{
if (status == null || status.status != Status.SUSPENDED)
{
String msg = “Ping on DBMS connection failed”;
if (pingException != null)
{
msg += “: “ + pingException;
}
router.eisUnavailable (msg) ;
}

1-24 Developing Adapters

Step 3: Implement the Adapter

return pingSucceeded;

Step 3e: Implement Event Generator Instance Support

Note that as of WebLogic Integration 8.1Service Pack 2, you must set event generator targets
when in a clustered environment. A blank target (" ") does not trigger events on any node in the
cluster. (In a single node environment, no entry is needed; a blank event generator target value
kicks off events for the one server.)

WebLogic Integration 8.1 has added the ability to distribute event generators among nodes in a
WebLogic Integration cluster. This improves load balancing and fault tolerance of event
generation. However, the ability to do this is predicated in the requirements and implementation
of the adapter itself.

Some event generators assume that they own any resources in the EIS they use to detect the
occurrence of an event. Such event generators cannot coexist with other event generators using
the same EIS instance, as resource usage conflicts will arise. An example of this is the WebLogic
Integration 7.0 DBMS sample adapter. It assumed that it owned the information in the event
staging tables within the DBMS. Because of this it could not coexist with other WebLogic
Integration 7.0 DBMS sample adapter event generators, because they would each compete for the
event information in the event staging tables, often causing starvation of one or more generators
or database locking/update conflicts.

Note: Even event generators that do not implement event generator instance support can benefit
from the new event generation targeting capabilities. However, the WebLogic
Integration administrator is only able to designate nodes in cluster to have a single
instance (or no instance) of the event generator. Implementing event generator instance
support allows the adapter to have finer control over event generation and greater
manageability.

Example: DBMS Sample Adapter

In WebLogic Integration 8.1, the DBMS sample adapter has been enhanced to allow the
coexistence of multiple event generators using the same DBMS instance. It does this by
implementing a concept know as event generator instance support. The DBMS sample adapter
recognizes any number of administrator defined generator instances. This section provides an
example of what generator instances are and how they are used in the DBMS sample adapter.

Developing Adapters 1-25

Developing an Event Adapter

1-26

We have a 3 node WebLogic Integration cluster. The cluster nodes are named Serverl, Server2,
and Server3. The administrator wishes to evenly distribute event generation responsibilities for a
single adapter instance (and by convention a single EIS instance) among the nodes. Before this
can be done, the administrator must know if the adapter supports multiple event generators or not.
This information is included in the adapter documentation.

If the adapter does not support multiple generator instances, a single event generator must be
associated with a single node in the cluster. This is done by specifying the following value for the
Event Generation Targets field in the WebLogic Integration Administration Console (Event
Connection Details page).

Event Generation Targets: Serverl

If the adapter does support multiple generator instances, event generators can be distributed to
each node in the cluster. This is done by specifying the Event Generation Targets field as follows:

Event Generation Targets: Serverl,Server2,Server3
This allows 3 event generators to share the work of generating events for the given EIS instance.

In the case of the DBMS sample adapter, having multiple event generators
selecting/deleting/updating in the same tables caused database locking conflicts. To overcome
this, we define a way to identify each generator instance such that the individual events are
destined to a specific generator instance. This allows multiple event generators to coexist because
they each have their own set of events to handle. The use of generator instance identifiers
effectively partitions the single set of event staging tables for the DBMS sample adapter into
multiple logical sets of tables.

For the DBMS sample adapter, a generator instance has a numeric identifier, or ID. The system
administrator, knowing that the DBMS sample adapter supports event generator instances, can
define a set of generator instances by defining a list of numeric identifiers. He can then distribute
these generator instances among the nodes in the cluster by associating the generator instance’s
numeric ID with the server name in the Event Generation Targets field value.

A typical Event Generation Targets setting for our example 3 node cluster, for the DBMS sample
adapter is as follows:

Event Generation Targets: Server1=[1/3],Server2=[2/3],Server3=[3/3]

This specification defines one generator instance per node in the cluster. Each instance
specification is represented as:

=[instance_id/number_of_ instances]

Developing Adapters

Step 3: Implement the Adapter

The instance specification follows the name of the server to which the instances are to be
associated.

Note: The instance id/number_of_instances format is specific to the DBMS sample
adapter. You are free to define the format of the generator instance however you wish.
However, the list of instances is always enclosed in square brackets [] and each instance
is separated from the others by one more space characters. Because of this, your instance
format cannot allow the following characters:

e open/close square bracket ([1)
e comma (,)

e whitespace of any kind (such as spaces, tabs, or newline).

Why Implement Event Generator Instance Support?

To see why event generator instance support is a powerful feature, let us consider a single-node
failure scenario within the WebLogic Integration cluster, using the DBMS sample adapter. Let’s
assume that the administrator has configured the three nodes to have one generator instance each,
and that the generators have been initialized and are steadily processing, and delivering events.
Let’s assume that sometime later, Server2 fails.

In this case, since the administrator assigned generator instance 2 to Server2, all events destined
for instance 2 simply stop being processed when Server2 fails. When the administrator detects
the failure of Server2, they can use the WebLogic Integration Administration Console to reset the
Event Generation Targets field to retarget instance 2 to a live node in the cluster:

Event Generation Targets: Serverl=[1/3 2/3],Server3=[3/3]

By making this change, the administrator has migrated the event generation responsibilities for
instance 2 from the failed Server2 to the live Serverl. In the next section, we describe how the
event generator will detect changes to the generator instance specification, and how it should
respond to those changes.

Detecting and Responding to Changes in Event Generator Instance
Specifications

Any time the WebLogic Integration administrator changes the value of Event Generation Targets,
the event generator receives a call to refresh (). This is the generator’s opportunity to refresh
the list of generator instance IDs it has been made responsible for.

The DBMS sample adapter extends AbstractPullEventGenerator.
AbstractPullEventGenerator intercepts the call to refresh (), collates the current event

Developing Adapters 1-21

Developing an Event Adapter

1-28

types for the event generator, and calls setupNewTypes () or removeDeadTypes () only as
needed. To make generator instance handling work reliably, we override the refresh () method
as shown in Listing 7-13.

Listing 7-13 Getting List of Generator Instance IDs in the refresh() Method

/**
* Refresh this generator, taking into account the current list of event
* types (definitions) this router is responsible for, and also the list

* of event router instance IDs its responsible for.

*/
public void refresh()
throws Exception
{
// See what instance IDs we're being asked to handle

refreshEventRouterInstanceIDs () ;

// Make sure the EVENT_GENERATOR table reflects our new max count (this
// call is a no-op if we're not the 'primary' generator instance
// (e.g. instance id 1).

updateGeneratorID(getConnection (), true);

// Let our super class decide whether the event types for this router have
// changed.
super.refresh () ;

}

private void refreshEventRouterInstancelIDs ()
{

m_isPrimaryInstance = false;

String[] eventRouterInstanceIDs =

getRouter () .getEventRouterInstanceIDs () ;
. Store the new list of instance IDs, and if we see instance ‘1l’, we have

become the ‘primary’ instance. The ‘primary’ instance is responsible for

certain singleton lifecycle updates. The concept of principal instance

Developing Adapters

Step 3: Implement the Adapter

allows us to avoid collisions that might result if more than one instance
attempted these lifecycle operations ..
}

Note that we call the superclass refresh () method at the end of the overridden method. This
ensures proper calls to setupNewTypes () and removeDeadTypes () if needed. Note also that
within the call to refresh () we retrieve the current list of generator instance IDs this generator
is responsible for. The DBMS sample adapter event generator will then begin selecting events
from the event staging tables destined for any generator instance it has found in the new list.

Note: The DBMS sample adapter event generator only uses the one thread created for it by
AbstractPullEventGenerator. A powerful way to scale the processing power of your
event generator would be to allocate one processing thread per generator instance ID.
This way, in our single-node failure scenario above, you could have two threads
processing events on Serverl instead of just one. In addition, having more threads as
more generator instances are associated with an event generator provides a way for the
administrator to increase event processing throughput. He can simply define a larger
number of generator instances (say two or more per node in the cluster), and distribute
them among the nodes.

Step 3f: Implement Environment Variable Support

This is an optional step. Environment variables allow adapters to isolate information that is
specific to a given deployment environment such that it can be updated by a WLI administrator
when the adapter instances using that adapter are moved between environments.

Adapters that require environment specific information in their interaction spec object, service
request documents, or event definitions, should consider implementing environment variable
support. Examples of environment specific information are resource identifiers like table names
for a DBMS adapter, or email folder names for an email adapter.

Note: Environment specific information does not include the information used to create a
connection to the EIS. This information is almost always, by its nature, environment
specific.

Adapters that contain no environment specific information in their interaction spec object,
request documents, or event definitions, need not implement environment variable support.

Environment variables are defined for a given application view at design-time in the Application
Integration Design Console. The set of variable definitions created there are propagated to the

Developing Adapters 1-29

Developing an Event Adapter

1-30

event adapter instance, event router, and finally event generator by way of the
IEventDefinition object used to represent an event subscription in the event generator.

For more information on how environment variables are defined at design-time, see “Developing
a Design-Time GUI” on page 9-1.

You get a set of event definitions in each call to IEventGenerator.refresh() or
AbstractEventGenerator.setupNewTypes () Or

AbstractEventGenerator.removeDeadTypes ().

An environment variable at runtime is represented as an instance of the Ivariable interface. The
IVariable interface is as follows:

/**

* Contains an adapter defined environment variable
*/

public interface IVariable

extends java.io.Serializable

public String getName () ;
public String getType();
public String getDescription() ;
public String getDefaultValue() ;
public String getValue() ;

}

The variables are contained in a variable set defined as follows:

/ * %

* Contains a set of adapter defined environment variables for an adapter
*/

public interface IVariableSet

extends java.io.Serializable

public void addListener (VariableChangeListener listener);
public void removelistener (VariableChangeListener listener) ;
public String[] listVariableNames() ;

public IVariable getVariable(String name) ;

public IVariable[] listVariables();

Developing Adapters

Step 3: Implement the Adapter

Event generator instances will likely only be interested in the name and value of variables. How
you use variables in your event generator implementation is up to you. It depends on the format
of the metadata your design-time component places into the event definition for an event.
Typically, adapters will place marker fields into the text for an event definition property
indicating a replaceable variable value.

For example, the DBMS sample adapter allows application view designers to use environment
variables when defining the table, catalog, and schema names for an event. The DBMS sample
adapter treats events as any insert/delete/update on a designated table. A table is identified by its
name, and the name of the catalog and schema that contain it. These names often vary between
environments, and thus using variables to represent them allows the administrator an easy way to
change those names as he moves the application view between environments. A typical event
descriptor for the DBMS sample adapter contains the following property name/value pairs:

® tableName—CUSTOMER_TABLE
® schemaName—{mySchema}

o catalogName——{myCatalog}

Notice the curly braces enclosing the mySchema and myCatalog values. These braces are used
by the DBMS sample adapter to indicate a variable value. The variables in this case are
mySchema, and myCatalog. With this event definition, the DBMS sample adapter event
generator expects the event definition to be accompanied at runtime by a set of variables
containing two variables named mySchema and myCatalog. At runtime, the event generator
retrieves the variable values in effect at the time, and substitutes those values for the {mySchema }
and {myCatalog} textin the schemaName and catalogName property values, respectively. Here
is the code from the DBMS sample adapter:

IEventDefinition eventDef = .. One of the event defs passed in setupNewTypes ()

IClientData clientData = eventDef.getClientData () ;

if (clientData != null)

{
IVariableSet varSet = clientData.getVariableSet () ;
catalogName = DBMSSQLUtils.applyVariables (varSet, catalogName) ;
schemaName = DBMSSQLUtils.applyVariables (varSet, schemaName) ;
tableName = DBMSSQLUtils.applyVariables (varSet, tableName) ;

DBMSSQLUtils.applyVariables () simply does a string replacement of the variables it find in
the given property with the value of the corresponding variable.

Developing Adapters 1-31

Developing an Event Adapter

Step 4: Test the Adapter

You can test the adapter by using the adapter test harness provided with WebLogic Integration.
For a complete description of this tool and instructions for using it, see “Step 6: Test the Adapter”
in Chapter 6, “Developing a Service Adapter.”

Step 5. Deploy the Adapter

After rebuilding the new adapter, deploy it in a WebLogic Integration environment. You can
deploy an adapter either manually or from the WebLogic Server Administration Console. For
complete information, see Chapter 10, “Deploying Adapters.”

1-32 Developing Adapters

CHAPTERa

Developing a Resource Adapter

This section contains information about the following subjects:

Introduction to Resource Adapters

Resource Adapters in a Run-Time Environment

Step 1: Define the Adapter

Step 2: Configure the Development Environment

Step 3: Implement the Adapter

Step 4: Implement the Event and Service Adapters

Step 5. Deploy the Adapter

Introduction to Resource Adapters

The ResourceAdapter interface is new in WebLogic Integration 8.1. It serves as a single object
to unify both event and service handling. In prior WebLogic Integration releases, the event
adapter and service adapter were treated as separate adapter components. Each was deployed and
configured separately.

In WebLogic Integration 8.1, the event and service adapters are unified under the
ResourceAdapter interface, and the adapter's implementation of that interface. It provides
access to 0 or 1 event connection (created by the event adapter), and 0 or more service
connections (sometimes referred to as connection factories, and created by the service adapter)

Developing Adapters 8-1

Developing a Resource Adapter

Configuration of event and service connections are now done under the umbrella of the
ResourceAdapter interface. You will see the term Resource Adapter used in the Application
Integration Design Console to represent a container of event and service connections.

WebLogic Integration defines an extension to the generic ResourceAdapter interface (called
WLIResourceAdapter) that contains enhancements designed to improve usability and adds
methods needed to support optional features of event adapters. The optional features enabled by
these added methods are:

e Suspend/Resume Support
e Event Generator and EIS Status Reporting

e Event Generator Instance Support

Each adapter must implement WLIResourceAdapter in a concrete class in order to operate
within WebLogic Integration 8.1. The ADK provides an abstract base implementation of the
WLIResourceAdapter class in com.bea.adapter.spi.AbstractWLIResourceAdapter.
WebLogic Integration also provides an adapter repackaging utility that allows existing adapters
to be utilized in WebLogic Integration 8.1. This utility code generates the required
WLIResourceAdapter implementation for any repackaged adapter.

The WLIResourceAdapter implementation should be implemented according to the JavaBeans
specification. This means WebLogic Integration should be able to instantiate an instance of the
WLIResourceAdapter implementation, and set properties on that instance via simple
setter/getter pairs of methods (one pair per property). The properties defined for a
WLIResourceAdapter implementation can be used support event connections, service
connections or both. In most cases, however, properties on the WLIResourceAdapter
implementation are used to support event connections, whereas service connections are usually
supported by properties of the ManagedConnectionFactory implementation in the service
adapter.

The flow of events is roughly the same as that for the development of a service adapter.

Resource Adapters in a Run-Time Environment

The behavior of a resource adapter in a run-time environment is depicted in Figure 8-1.

8-2 Developing Adapters

Step 1: Define the Adapter

Figure 8-1 Resource Adapters in a Run-time Environment

Appview Container
AppWiew
Deployer

o Deploy Deploy--

- Subscribe

Servicel

Application

iew Event Adaptar Senice
Process/ rosoa Event1 Instance Adapter Instance
Pasgeergcroeﬂp E:_mk.er Event Router
Client opiE Event
; Generatar
Create :
* Deploy
Application Al Event “Event LA)
e Client Topic [] Erd oidr:t‘ *
L P Subscribe
Connector Container
Adapter RAR
Deployment
Connection
Factory Instance ¥
: ¥
Create——» Cannection Instance Els

Step 1: Define the Adapter

Before you start developing a resource adapter, you must define your requirements for it. For a
complete list of the information you need to do so, see “Adapter Setup Worksheet” on page C-1.
This section provides a summary of the most important tasks to be completed for step 1:

1. Decide if your adapter will support events, services, or both:
— Services do work within an EIS instance

— Events notify listeners that work has been done in an EIS instance

2. Define properties for WLIResourceAdapter implementation

Developing Adapters 8-3

Developing a Resource Adapter

— Define one setter method and one getter method per property on the
WLIResourceAdapter implementation for each property used to support an event
connection.

— Define one setter method and one getter method per property on the
WLIResourceAdapter implementation for each property used to support a service
connection. In this step you must take into account the properties required for service
connections that are already designated to reside directly on the
ManagedConnectionFactory implementation for the service adapter. You generally
will want to have a given property stored in only one place.

3. Define any validation logic needed for the properties you defined
— Some properties may depend on or relate to other properties

— Optionally, you can implement the internalvalidate method to get an opportunity
to do a final check on all properties for a resource adapter instance

Step 2: Configure the Development Environment

This step involves completing a five-step procedure to prepare your computer for adapter
development:

Step 2a: Set Up the File Structure

Step 2b: Assign a Logical Name to the Adapter

Step 2c: Set Up the Build Process

Step 2d: Create the Message Bundle

Step 2e: Configure Logging

Step 2a: Set Up the File Structure

The file structure needed for an event connection development environment is the same as that
required for developing service connections. For detailed information on setting up the file
structure, see “Step 2a: Set Up the Directory Structure” on page 6-7.

Step 2b: Assign a Logical Name to the Adapter

Assign a logical name to your adapter. By convention, this name comprises the vendor name, the
type of EIS connected to the adapter, and the version number of the EIS, and it is expressed as
vendor_EIS-type_ EIS version. For example:

8-4 Developing Adapters

Step 2: Configure the Development Environment

BEA_WLS_SAMPLE_ADK

This name includes the following components:
e BEA_WLS is the vendor
e saMPLE is the EIS type

e ADK is the EIS version

Step 2c¢: Set Up the Build Process

WebLogic Integration employs a build process based on Ant, a 100% pure Java-based build tool.
For more information about how Ant works, see “Ant-Based Build Process” on page 3-3. For
more information about how to use Ant, go to:

http://jakarta.apache.org/ant/index.html

The sample adapter provided by WebLogic Integration contains an Ant build file:
WLI_HOME/adapters/sample/project/build.xml. This file, in turn, contains the tasks
needed to build a J2EE-compliant adapter. When you run the GenerateAdapterTemplate
utility to clone a development tree for your adapter, a build.xml file is created specifically for
that adapter. Because this file is generated automatically, you do not need to customize the
sample build.xml file and you can be sure that the code is correct. For information about using
the GenerateAdapterTemplate utility, see “Creating a Custom Development Environment” on
page 4-1.

For more information about the build process, see “Step 2c: Set Up the Build Process” on
page 6-11.

Step 2d: Create the Message Bundle

Any message destined for an end-user should be placed in a message bundle: a .properties text
file containing key=value pairs that allow you to internationalize messages. When a geographic
locale and a natural language are specified for a message at run time, the contents of the message
are interpreted on the basis of the key=value pair, and the message is presented to the user in the
specified language.

For instructions on creating a message bundle, see the JavaSoft tutorial on internationalization at:

http://java.sun.com/docs/books/tutorial/il8n/index.html

Developing Adapters 8-5

Developing a Resource Adapter

Step 2e: Configure Logging

Logging is performed with a logging tool called Log4j, which was developed as part of the
Apache Jakarta project.

Before you begin this step, we recommend that you read more about logging in “Basic
Development Concepts” on page 2-1, and about how to use Log4j in “Using the Logging Toolkit”
on page 5-1.

Create an Event Generation Logging Category

If you are planning to use an event connection, you must create a logging category specifically
for event generation. (For more information about logging categories, see “Message Categories”
on page 5-3.) To edit the logging configuration file for a specific adapter
(WLI_HOME/adapters/YOUR_ADAPTER/src/adapter_logical_name.xml), add the code
shown in the following listing.

Listing 8-1 Sample Code for Creating an Event Generation Logging Category

<category name='BEA_WLS_SAMPLE_ADK.EventGenerator'
class="'com.bea.logging.LogCategory'>

</category>

Replace BEA_wWLS_saMPLE_ADK with the logical name of your adapter.

If you do not set any parameters for this category, it inherits all the property settings of the parent
category. In this example, the parent category is BEA_WLS_SAMPLE_ADK. Although you are not
required to use the adapter logical name as the root category, you must use a unique identifier so
that there is no impact on other adapters in a multi-adapter environment.

Step 3: Implement the Adapter

8-6

To implement a resource adapter, you must complete the following two-step procedure:

1. Create a WLIResourceAdapter implementation. This process implements the unified
resource adapter implementation and the WLIResourceaAdapter interface. (The latter
interface is used by the application integration engine to control the lifecycle of the resource
adapter.) This step is described in “Step 3a: Create a Resource Adapter.”

Developing Adapters

Step 3: Implement the Adapter

2. Implement the property setter/getter methods. This step is described in “Step 3b: Implement
the Resource Adapter Properties.”

Step 3a: Create a Resource Adapter

The GenerateAdapterTemplate utility does most of the work necessary to implement your
resource adapter class. What remains is to implement the setter/getter methods for each property
you chose to define on your WLIResourceAdapter implementation. By way of example, we list
below the WLIResourceaAdapter implementation for the Sample adapter. This code should look
nearly identical to the code you now have in your adapter development project. The difference in
your project is that your adapter logical name, package names, and other identifiers will have the
values you specified in the GenerateAdapterTemplate utility.

Listing 8-2 Sample WLIResourceAdapter Implementation

package sample.spi;

import com.bea.adapter.spi.AbstractWLIResourceAdapter;
import javax.resource.ResourceException;

// Sample Resource Adapter Implementation

public class ResourceAdapterImpl
extends AbstractWLIResourceAdapter

{
// NOTE:
//
//
//

If the class named here implements ISuspendableEventGenerator
then the AbstractWLIResourceAdapter implementation will handle
advertising this WLIResourceAdapter instance as suspendable, and
will handle calling suspend/resume on the EventGenerator

public static String EVENT_GENERATOR_CLASS_NAME =
"sample.event.EventGenerator";

// Sample Adapter specific members

private String m_userName = null;
private String m_password = null;
private String m_sleepCount = "4000";

public ResourceAdapterImpl ()
throws ResourceException

{

super () ;

Developing Adapters 8-7

Developing a Resource Adapter

// Tell AbstractWLIResourceAdapter what EventGenerator we're using
setEventGeneratorClassName (EVENT_GENERATOR_CLASS_NAME) ;

// Set properties that never change

setAdapterName ("BEA_WLS_SAMPLE_ADK Adapter") ;

setAdapterDescription("__ BEA Sample_Description_ ") ;
setAdapterVersion("__MAJOR_V__._ MINOR_V__");
setAdapterVendorName ("__BEA__ ") ;

// Set default values for standard properties
setRootLogContext ("BEA_WLS_SAMPLE_ADK") ;

setLogConfigFile ("BEA_WLS_SAMPLE_ADK.xml") ;
setMessageBundleBase ("BEA_WLS_SAMPLE_ADK") ;
setLogLevel ("WARN") ;

public String getUserName ()
{

return m_userName;

public void setUserName (String userName)
{

m_userName = userName;

public String getPassword/()
{

return m_password;

public void setPassword(String password)

{
m_password = password;

public String getSleepCount ()
{

return m_sleepCount;

public void setSleepCount (String sleepCount)
{

m_sleepCount = sleepCount;

/**

8-8 Developing Adapters

Step 3: Implement the Adapter

* TODO: Modify this method to do the proper checking for your adapter's

properties. This method is key in forcing users to give you valid
configuration for the ResourceAdapter instance.

*
*
*/
protected void internalValidate()

throws ResourceException
{

if (m_userName == null || m_userName.trim().length() < 1 ||

m_sleepCount == null || m_sleepCount.trim().length() < 1)

throw new ResourceException ("UserName and SleepCount properties are
required") ;

try

int sleepCount = Integer.parselnt (m_sleepCount) ;
if (sleepCount < 1)

throw new IllegalArgumentException("sleepCount");
}
}
catch (Exception e)
{
throw new ResourceException("SleepCount '" + m_sleepCount + "' is
invalid") ;

}

Note that the constructor of the ResourceadapterImpl calls several setter methods from the
AbstractWLIResourceAdapter base class. These setters establish default values for the
standard properties defined by WebLogic Integration. These standard properties are as follows.
For more information on logging properties, see “Using the Logging Toolkit” on page 5-1.

® EventGeneratorClassName—the name of the class you define to implement the event
generator for your event adapter (optional). If you will not be implementing an event
adapter, you can skip setting this property. This will leave its value as the default of null.

e AdapterName—adapter display name
e AdapterVersion—version to display for the adapter

e AdapterVendorName—name of the vendor for this adapter

Developing Adapters 8-9

Developing a Resource Adapter

8-10

® RootLogContext—logging configuration
® LogConfigFile—logging configuration
® MessageBundleBase—logging configuration

e LogLevel—logging configuration

Step 3b: Implement the Resource Adapter Properties

As you can see, the sample adapter’s ResourceAdapterImpl class is comprised of a simple
constructor, and setter/getter methods to define the following properties:

® UserName
® Password
® SleepCount

These three properties are used to support event connections in the sample adapter. Thus, the
ResourceAdapterImpl class defines a setUserName/getUserName pair of methods, a
setPassword/getPassword set of methods and a setSleepCount/getSleepCount set of
methods. Each of these sets of methods operate on a single property. These methods can do
simple validity checking such as ensuring an integer value doesn’t exceed some set minimum or
maximum value, or a string property doesn’t exceed some maximum length of violate some
syntactical conventions.

However, sometimes individual properties must be compared with other properties on the same
object. With individual setter/getter methods, this can become difficult, as you must take into
account the order in which properties have been set, and account for properties that have not yet
been given valid values.

For this reason, the WLIResourceaAdapter interface defines a validate method that is called after
all properties have been set on the WLIResourceaAdapter instance. This method gives you the
opportunity to inspect and validate the values of all properties at one time. The
AbstractWLIResourceAdapter base class (which implements WLIResourceAdapter) defines
the validate method, and makes a call to a method called internalvalidate to allow subclasses
to hook into the validation process. You should implement internalvalidate such that it
checks all properties for validity and throws ResourceException if any invalid properties are
encountered.

Developing Adapters

Step 4: Implement the Event and Service Adapters

Step 4: Implement the Event and Service Adapters

For a complete description of how to develop an event adapter, see “Developing an Event
Adapter” on page 7-1. For a complete description of how to develop a service adapter, see
“Developing a Service Adapter” on page 6-1.

Step 5. Deploy the Adapter

After rebuilding the new adapter, deploy it in a WebLogic Integration environment. You can
deploy an adapter either manually or from the WebLogic Server Administration Console. For
complete information, see “Deploying Adapters” on page 10-1.

Developing Adapters 8-11

Developing a Resource Adapter

8-12 Developing Adapters

GHAPTERa

Developing a Design-Time GUI

The ADK’s design-time framework provides tools for building a web-based GUI for defining,
deploying, and testing adapter users’ application views. Although each adapter has EIS-specific
functionality, adapters require a GUI for deploying application views. The design-time
framework minimizes the effort required to create and deploy such a GUI, primarily through the
use of the following components:

e A Web application component that allows you to build an HTML-based GUI by using Java
Server Pages (JSP). This component is augmented by tools such as the JSP templates and
tag library and the JavaScript library.

e The DesignTimeHelper class, which provides a simple API for deploying, undeploying,
copying, and editing application views on WebLogic Server.

This section includes information about the following subjects:
e Introduction to Design-Time Form Processing
e Design-Time Features
e File Structure

Flow of Events

Step 1: Defining the Design-Time GUI Requirements

Step 2: Defining the Page Flow

Step 3: Configuring the Development Environment

Developing Adapters 9-1

Developing a Design-Time GUI

Step 4: Implement the Design-Time GUI

Step 5: Write the HTML Forms

Step 6. Implement the Look and Feel

Step 7. Implement Environment Variables

e Step 8. Test the Sample Adapter Design-Time Interface

Introduction to Design-Time Form Processing

A variety of approaches are available for processing forms using Java Servlets and JSPs. All
approaches share several basic requirements, however:

e Displaying an HTML form.
To create this functionality, you must:
— Generate the form layout using HTML.
— Indicate to the user which fields are mandatory.

— Prepopulate fields with defaults, if any.

e Validating the field values in the HTTP request included in the data on a form submitted by
a user.

To create this functionality, you must:
— Supply logic that can determine whether all mandatory fields contain a value.

— Validate each value submitted against a set of constraints. For example, you may want
your Web application to determine whether the value in an age field is a valid integer
between 1 and 120.

e Redisplaying a form on which an invalid value has been entered, along with an error
message beside each erroneous field on the form. If the Web application supports multiple
locales, the error message should be localized for the user's preferred locale.

The Web application must also be capable of redisplaying the last input of the user is not
required to re-enter valid information. The Web application should continue with Step 2
and loop as many times as necessary until the values entered in all fields are valid.

e Processing the form data after all fields have passed coarse-grained validation. While
processing the data, the Web application may encounter an error condition that is unrelated
to individual field validation, such as a Java exception. The form must be redisplayed to

9-2 Developing Adapters

Introduction to Design-Time Form Processing

the user with a localized error message at the top of the page. As stipulated in step 3, all
input fields should be saved so the user is not required to re-enter any valid information.

The Web application developer must determine:
— Which object or method implements the form-processing APIL.

— How and when to advance the user to the next page in the Web application.

o If the form is processed successfully, the next page in the Web application is displayed to
the user.

Form Processing Classes

Implementing all the form-processing functionality for every form in a Web application is a
tedious and error-prone process. The ADK design-time framework simplifies this process by
using a Model-View-Controller (MVC) paradigm. This paradigm, in turn, is based on the
following five classes:

e RequestHandler

e ControllerServlet

e ActionResult

e Word and Its Descendants

o AbstractInputTagSupport and Its Descendants

RequestHandler

com.bea.web.RequestHandler

This class provides HTTP request-processing logic. It is the model component of the MVC-based
mechanism. The RequestHandler object is instantiated by the ControllerServlet and saved in
the HTTP session under the key handler. The ADK provides the
com.bea.adapter.web.AbstractDesignTimeRequestHandler. This abstract base class
implements the functionality needed to deploy an application view that is common to all adapters.
You must extend this class to supply adapter or EIS-specific logic.

Developing Adapters 9-3

Developing a Design-Time GUI

9-4

ControllerServiet

com.bea.web.ControllerServlet

This class is responsible for receiving an HTTP request, validating each value in the request,
delegating the request to a RequestHandler for processing, and determining which page to
display to the user. The ControllerServlet uses Java reflection to determine which method to
invoke on the RequestHandler. The ControllerServlet looks for an HTTP request
parameter named doAction to indicate the name of the method that implements the
form-processing logic. If this parameter is not available, the ControllerServlet does not
invoke any methods on the RequestHandler.

The controllerServlet is configured in the web.xml file for the Web application. The
ControllerServlet is responsible for delegating HTTP requests to a method on a
RequestHandler. You are not required to provide any code to use the ControllerServlet.
However, you must supply the initial parameters listed in Table 9-5.

ActionResult
com.bea.web.ActionResult

ActionResult encapsulates the outcome of processing a request. It also provides information to
the ControllerServlet to help that class determine which page to display next to the user.

Word and Its Descendants

com.bea.web.validation.Word

All fields in a Web application require validation. The com.bea.web.validation.Word class
and its descendants supply logic to validate form fields. If any fields are invalid, the word object
uses a message bundle to retrieve an internationalized or localized error message for the field. The
ADK supplies the custom validators described in Table 9-1.

Table 9-1 Custom Validators for Word Object

Validator Determines whether the value for a field
Integer Is an integer within a specified range
Float/Double Is a floating point value within a specified range
Identifier Is a valid Java identifier

Developing Adapters

Introduction to Design-Time Form Processing

Table 9-1 Custom Validators for Word Object (Continued)

Validator Determines whether the value for a field

Perl 5 Regular Matches a Perl 5 regular expression

Expression

URL (Supplied by the user) is a valid URL

Email (Supplied by the user) contains a list of valid e-mail addresses

Date (Supplied by the user) is a valid date using a specified date/time
forma

AbstractinputTagSupport and Its Descendants
com.bea.web.tag.AbstractInputTagSupport

The tag classes provided by the Web toolkit are responsible for:

e Generating the HTML for a form field and prepopulating it with a default value, if
applicable.

e Displaying a localized error message beside the form field if the supplied value is invalid.

e Initializing a com.bea.web.validation.Word object and saving it in Web application
scope so that the validation object is accessible by the ControllerServlet using the
name of the field on the form.

Submit Tag
Additionally, the ADK provides a submit tag, such as:

<adk:submit name='xyz_submit' doAction='xyz'/>

This tag ensures that the doAction parameter is passed to the ControllerServlet in the
request. As a result, the ControllerServlet invokes the xyz () method on the registered

RequestHandler.

Form Processing Sequence

This section discusses the sequence in which forms are processed.

Developing Adapters 9-5

Developing a Design-Time GUI

9-6

Prerequisites

Before a form can be processed, the following must occur:

1. When a JSP containing a custom ADK input tag is written to an HTTP response object, the
tag ensures that the object initializes an instance of com.bea.web.validation.Word and
places it in the Web application scope, keyed by the input field name. Such a tag makes the
validation object available to the ControllerServlet so that it can perform coarse-grained
validation on an HTTP request before submitting the request to the RequestHandler. For
example:

<adk:int name='age' minInclusive='1l' maxInclusive='120"
required="'true'/>

2. The HTML for this tag is generated when the JSP engine invokes the doStartTag ()
method on an instance of com.bea.web.tag.IntegerTagSupport. The
IntegerTagSupport instance instantiates a new instance of
com.bea.web.validation.IntegerWord and adds it to Web application scope under the
key age. Consequently, the ControllerServlet can retrieve the IntegerWord instance
from its ServletContext whenever it must validate a value for age. The validation ensures
that any value passed for age is greater than or equal to one, and less than or equal to 120.

3. The HTML form must also submit a hidden field named doaction. The value of this field
is used by the ControllerServlet to determine which method on the RequestHandler
can process the form.

Once these prerequisites are met, the JSP form is displayed, as shown in Listing 9-1.

Listing 9-1 Sample JSP Form

<form method='POST' action='controller'>
Age: <adk:int name='age' minInclusive='1l' maxInclusive='120"
required="'true'/>
<adk:submit name='processAge_submit' doAction='processAge'/>

</form>

Steps in the Sequence

The following diagram illustrates, step by step, how form processing is performed.

Developing Adapters

Figure 9-1 Ul Form Processing

Wb SApplication
Endl User

Introduction to Design-Time Form Processing

Cortroller Serviet Integer In%_eger Reguest Action display. thanke. |
Servlet Corntext Wiord Su;;?or‘t Handler Result j=p ANk Jsp

| T T T T T T T T
| | | | | | | | |
| | | | | | | | |
| | | Intialiee and put in app scope | | | |

| | e | 1 | |
|

| | | | | | | |
| -
| HTTF POST | :4 set(Mage ,ne\v\r Irtegetiord) : : : : :

ade=10g@dosction= | | | | | | |

| processige)

| | | | | | | |

| | | | | | | |
|

| wetrragem | | | | | | |
: | geI("ane") » | | | | | | |

| | | | | | | |
|

|) o | | | | | |
! | Va"da{ef 107 ! | | I | |

| | | | | | | |
|
| : invoke the 'lprocessAge“ rnefhc-d using Java F%eflection : : : :
| >
| ! ! ! ! ew("process.&ée ! !
| : : : : rue, null, "thanks " : :

49

: | | | | | | | |
| ! ! ettt Action returns thanks" ! ! ! !
|]] 9 il] ! | |

| | | | | | | |
: | | rediredt to display jsp whth dobction=thahks | | |
| I t t t t t | |
| | | | | | |
| ! ! ! ! | JEPinclude !
| I I I I ™
| | | | | |

| | | | |

The sequence is as follows:

1.
2.

A user submits a form with the following data: age=10, doAction=processaAge.

ControllerServlet retrieves the age field from the HTTP request.

ControllerServlet retrieves a com.bea.web.validation.Word object from its

ServletContext using age as the key. The object is an instance of

com.bea.web.validation.IntegerWord.

The controllerServlet invokes the validate ()
passes l10asa parameter.

method on the word instance and

The Word instance determines that the value 10 is greater than or equal to 1, and it is less
than or equal to 120. The Word instance returns true to indicate that the value is valid.

Developing Adapters

9-1

Developing a Design-Time GUI

10.

The controllerServlet retrieves the RequestHandler from the session (or creates it)
and adds it to the session as handler.

The controllersServlet uses the Java Reflection API to locate and invoke the
processAge () method on the RequestHandler. An exception is generated if the method
does not exist. The method signature is:

public ActionResult processAge (HttpServletRequest request) throws
Exception

The RequestHandler processes the form input and returns an ActionResult object to
indicate the outcome of the processing. The ActionResult contains information used by
the ControllerServlet to determine the which page to display next to the user. The next
page information should be the name of another JSP or HTML page in your Web
application. For example, thanks might display the thanks. jsp page to the user.

If the ActionResult is a success, then the ControllersServlet redirects the HTTP
response to the display page for the Web application. In the ADK, the display page is
typically display. jsp.

The display.jsp page includes the JSP indicated by the content parameter (for example,
thanks.jsp). It displays that JSP to the user.

Design-Time Features

Design-time development has its own features, different from those associated with run-time
adapter development. This section describes those features.

9-8

Java Server Pages

A design-time GUI comprises a set of Java Server Pages (JSPs). JSPs are simply HTML pages
that call Java servlets to invoke a transaction. To the user, a JSP looks like any other web page.

The following table describes the JSPs that make up a design-time GUI.

Table 9-2 Design-Time GUI JSPs

Filename Description

display.jsp The display page, also called the Adapter Home Page, contains

the HTML necessary to create the look-and-feel.

login.jsp The Adapter Design-Time Login page.

Developing Adapters

Design-Time Features

Table 9-2 Design-Time GUI JSPs (Continued)

Filename Description

confconn. jsp The Confirm Connection page provides a form on which the
user can specify connection parameters for the EIS.

appvwadmin. jsp The Application View Administration page provides a summary
of an undeployed application view.

addevent.jsp The Add Event page allows the user to add an event to the
application view.

addservc.jsp The Add Service page allows the user to add a service to the
application view.

edtevent.jsp The Edit Event page is an optional page that allows users to edit
events.
edtservc.jsp The Edit Service page is an optional page that allows users to

edit services.

depappvw. jsp The Deploy Application View page allows users to specify
deployment properties.

For a discussion of how to implement these JSPs, see “Step 2: Defining the Page Flow” on
page 9-17.

JSP Templates

A template is an HTML page that is dynamically generated by a Java Servlet based on parameters
provided in an HTTP request. Templates are used to minimize the number of custom pages and
the amount of custom HTML needed for a Web application.

The design-time framework provides a set of JSP templates for rapidly assembling a Web
application to define, deploy, and test a new application view for an adapter. The templates
supplied by the ADK offer three advantages to adapter developers:

e They provide most of the HTML forms needed to deploy an application view. In most
cases, you need to supply only three custom forms:

— Form that collects the EIS-specific connection parameters

Developing Adapters 9-9

Developing a Design-Time GUI

— Form that collects the EIS-specific information needed to add an event. You can use
either the same form or a different form to collect the information needed to edit an
event.

— Form that collects the EIS-specific information needed to add a service. You also have
the option of supplying a JSP for browsing a metadata catalog for an EIS. You can use
either the same form or a different form to collect the information needed to edit a
service.

e They leverage the internationalization and localization features of the Java platform. The
content of every page in the Web application is stored in a message bundle. Consequently,
the web interface for an adapter can be internationalized quickly.

e They guarantee a consistent look and feel for all templates

For a complete list of JSP templates provided by the ADK, see “JSP Templates” on page 9-9.

ADK Library of JSP Tags

The custom JSP tag library provided by the ADK helps developers create user-friendly HTML
forms. Custom tags for HTML form input components allow page developers to seamlessly link
to a validation mechanism. The following table describes the custom tags provided by the ADK.

Table 9-3 ADK JSP Tags

Tag Description

adk:check box Determines whether the checkbox form field should be checked
when a form is displayed. (This tag does not perform validation.)

adk:content Provides access to a message in a message bundle.

adk:date Verifies that the user's input is a date value in a specific format.

adk:double Verifies that the user's input is a double value.

adk:email Verifies that the user's input is a valid list of e-mail addresses (one
or more).

adk: float Verifies that the user's input is a float value.

adk:identifier Verifies that the user’s input is a valid Java identifier.

adk:int Verifies that the user’s input is an integer value.

9-10 Developing Adapters

Design-Time Features

Table 9-3 ADK JSP Tags (Continued)

Tag Description

adk:label Displays a label from the message bundle.

adk:password Verifies the user's input in a text field against a Perl 5 regular
expression and marks the input with an asterisk (*).

adk:submit Links the form to a validation mechanism.

adk: text Verifies the user's input against a Perl 5 regular expression.

adk: textarea Verifies that the user’s input in a text area matches a Perl 5 regular
expression.

adk:url Verifies that the user's input is a valid URL.

JSP Tag Attributes

You can further customize the JSP tags by applying the attributes listed in Table 9-4.

Developing Adapters 9-11

Developing a Design-Time GUI

Table 9-4 JSP Tag Attributes

Tag Requires Attributes

Optional Attributes

adk:int, name - field name

adk:float,
adk:double

default - value displayed on the page by default
maxlength - maximum length of value
size - size of display

minInclusive - value supplied by user must be greater than
or equal to this value

maxInclusive - value supplied by user must be less than or
equal to this value

minExclusive - value supplied by user must be strictly
greater than this value

maxExclusive - value supplied by user must be strictly less
than this value

required - true or false (default is false, meaning field is not
required)

attrs - additional HTML attributes

adk:date name - field name

default - value displayed on the page by default
maxlength - maximum length of value
size - size of display

required - true or false (default is false, meaning field is not
required)

attrs - additional HTML attributes

lenient - true or false (default is false, meaning the date
formatter should not be lenient in its parsing)

format - expected format of the user input (default is
mm/dd/ yyyy)

adk:email, name - field name

adk:url,
adk:identifier

default - value displayed on the page by default
maxlength - maximum length of value
size - size of display

required - true or false (default is false, meaning field is not
required)

attrs - additional HTML attributes

9-12 Developing Adapters

Table 9-4 JSP Tag Attributes (Continued)

File Structure

Tag Requires Attributes

Optional Attributes

adk: text, name - field name
adk:password

default - value displayed on the page by default
maxlength - maximum length of value
size - size of display

required - true or false (default is false, meaning field is not
required)

attrs - additional HTML attributes

pattern - a Perl 5 regular expression

adk: textarea name - field name

default - value displayed on the page by default

required - true or false (default is false, meaning field is not
required)

attrs - additional HTML attributes
pattern - a Perl 5 regular expression
rows - number of rows to be displayed

columns - number of columns to be displayed

Note: For more information about tag usage, see adk.t1d in:

WLI_HOME/adapters/src/war/WEB-INF/taglibs

The Application View

An application view is a business-level interface to the functionality specific to an application.
For more information, see “Application Views” on page 1-6.

File Structure

The file structure necessary to build a design-time GUI adapter is the same as that required for
service connections. See “Step 2a: Set Up the Directory Structure” on page 6-7. In addition to the
structure described there, you should also be aware that:

e The design-time interface for each adapter is a J2EE Web application that is bundled as a

WAR file.

e A Web application is a bundle of . jsp, .html, and image files.

Developing Adapters 9-13

Developing a Design-Time GUI

e The Web application descriptor is
WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml. This descriptor instructs
the J2EE web container how to deploy and initialize the Web application.

Flow of Events

Figure 9-2 outlines the steps required to develop a design-time GUI.

9-14 Developing Adapters

Flow of Events

Figure 9-2 Design-Time GUI Development Flow of Events

1

1] 1 t C iderations

ow wills

Determine the adapters to be supported
Determine browsing

Determine schema generation
Determine testing prerequisites

Determine the Screen Flow

You wi

Decide, based upon best practices, the
sequence in which 15Ps will be displayed during
designtime

Configure the Development Environment

You wil:

Create and update files

Create the message bundle

Configure the environment to update 15P
pages without restarting WeblLogic Server

4
Implement the Desig e GUI

rou Wil

Supply the ManagedConnectionFactory class
Implement addserve()

Implerment addevent()

5
Write the HTML Forms

rou witl

Create confconn.jsp

Create addevent.jsp

Create addserve.jsp

Create display.jsp

wirite the web application deployment
descriptor file

6
Implement the Look and Feel

You weil:
Implement display.jsp to ensure a consistent

look-and-feel

Developing Adapters

9-15

Developing a Design-Time GUI

Step 1: Defining the Design-Time GUI Requirements

Before you start developing your design-time GUI, you must define your requirements for it by
answering the following questions:

e Will this GUI support event connections? Service connections? Both?

e How does the user browse event and service catalogs?

The EIS must supply functions to access the event and service catalogs. If the EIS does not
supply these, the user cannot browse the catalogs. If the EIS does supply them, we
recommend the following design principle: invoke a call from the design-time Ul to get
metadata from the EIS. Such a call is really no different from a call from a run-time
component. Both types of call execute functions on the back-end EIS.

Consequently, you need to leverage your run-time architecture as much as possible to
provide design-time metadata features. You should invoke design-time-specific functions
that use a CCI Interaction object. The sample adapter included with the ADK provides an
example or framework of this approach. You can find the sample adapter in
WLI_HOME/adapters/sample.

e How will the adapter generate the request/response schema for a service? Will it make a
call to the EIS or use some other methodology?

Generally, an adapter must call the EIS to get metadata about a function or event. The
adapter then transforms the EIS metadata into XML schema format. To make this process
happen, you must invoke the SOM API. Again, the sample adapter provides instructions
for implementing the SOM API. For more information about this API, see “ADK Library
of JSP Tags” on page 9-10.

e Will some sort of service testing be supported? If your design-time GUI will support
service testing, you must provide:

— A class that transforms the XML response schema into an HTML form. For an
example, see:

WLI_HOME/adapters/dbms/docs/api/com/bea/adapter/dbms/utils/
class-use/TestFormBuilder.html

A JSP named testform. jsp that invokes the transformation and displays the HTML
form. To see an example of this file, see: WLI_HOME/adapters/dbms/src/war/

e Will environment variables be supported? This may be the case if your event or service
property values can contain environment specific identifiers or other information.
Environment variable support can be added using JSPs and request handler methods
provided by the ADK.

9-16 Developing Adapters

Step 2: Defining the Page Flow

Step 2: Defining the Page Flow

You must specify the order in which the JSPs will be displayed when the user invokes an
application view. This section describes the basic, required flow of pages for a successful
application view. Note that these are requirements are minimal; you can also add pages to the
flow to meet your specific needs.

Page 1: Logging In

Because an application view is a secure system, the user must log in before implementing the
view. Thus, the Application Integration Design Console Logon page must be the first page the
user sees.

To use this page, the user supplies a valid username and password. That information is then
validated to ensure that the user is a member of the adapter group in the default WebLogic Server
security realm.

Note: The security requirements for Application View Web applications are specified in the
WLI_HOME/adapters/ADAPTER/src/war/WEB-INF/web.xml file, which is available
in the adapter .war file.

Page 2. Managing Application Views

Once the user successfully logs in, the Application Integration Design Console page is displayed.
This page lists the folders that contain application views, the status of these folders, and any
actions taken on them. From this page, the user can either view existing application views or add
new ones.

e To view an existing application view, the user selects the appropriate folder and drills down
to the desired application view. The user then selects the desired application view and the
Application View Summary page is displayed (appvwsum. jsp). For details about this
page, see “Page 9: Summarizing an Application View” on page 9-21).

e To add a new application view, the user clicks Add Application View. The Define New

Application View page is displayed.

Page 3: Defining the New Application View

The Define New Application View page (defappvw.jsp) allows the user to define a new
application view in any folder in which the client is located. To do this, the user must provide a
description that associates the application view with an adapter. This form provides fields in

Developing Adapters 9-17

Developing a Design-Time GUI

9-18

which the user can enter the application view name and a description of it, and a drop-down list
of adapters with which the user can associate the application view.

Once the new application view is defined, the user selects OK and the Configure Connection page
is displayed.

Page 4: Configuring the Connection

If the new application view is valid, the user must configure the connection. Therefore, once the
application view is validated, the Configure Connection Parameters page (confconn.jsp)
should be displayed. This page provides a form on which the user can specify connection
parameters for the EIS. Because connection parameters are EIS-specific, the appearance of this
page differs from one adapter to another.

When the user submits the connection parameters, the adapter attempts to open a new connection
to the EIS using the parameters. If it succeeds, the user is forwarded to the next page, Application
View Administration.

Page 5: Administering the Application View

The user needs a means of administering the new application view. The Application View
Administration page (appvwadmin.jsp) provides a summary of an undeployed application
view. Specifically, it shows the following:

e Connection criteria—The connection criteria section provides a link that returns the user to
the Configure Connection page so that he or she can change connection parameters.

e List of events—For each event listed in the application view, the user can do the following:
— View the XML schema
— Remove the event

— Provide event properties

e List of services—For each service listed in the application view, the user can do the
following:

View the request XML schema

View the response XML schema

Remove the service

Provide service properties

Developing Adapters

Step 2: Defining the Page Flow

In addition to providing a list of events and a list of services in the application view, the page
provides a link to a page that allows you to add a new event or service.

Page 6: Adding an Event

Now the user needs to add events to the application view. The Add Event page (addevent. jsp)
allows the user to do so.

The following rules apply to a new event:

e Every event must have a unique name.

— The event name can contain only the following characters: a-z, A-Z, 0-9, and
underscore (_). It must begin with a letter. No other characters are valid.

— The length of the name may not exceed 256 characters.

— The event name must be unique within the application view. If the user specifies an
event name that is not unique, the form is reloaded with an error message indicating
that the event is already defined.

Optionally, the user can provide a description of the event. This description cannot exceed
2048 (2K) characters.

In addition to a name and a description, every event requires EIS-specific parameters. The
collection of EIS-specific parameters defines an event type for the adapter.

Optionally, the adapter can provide a mechanism for browsing the event catalog for an EIS.

Optionally, the adapter can allow the user to define environment variables for use in the
configuration of the event. For more details, see “Step 7. Implement Environment
Variables” on page 9-41.

After defining and saving a new event, the user is returned to the Application View
Administration page.

Page 7: Adding a Service

The user also needs to add new services to an application view. The Add Service page
(addservc.jsp) allows the user to do so.

The following rules apply to a new event:

e Every service must have a unique name.

Developing Adapters 9-19

Developing a Design-Time GUI

The service name can contain only the following characters: a-z, A-Z, 0-9, and
underscore (_). It must begin with a letter. No other characters are valid.

The length of the name may not exceed 256 characters.

The service name must be unique within the application view. If the user specifies a
service name that is not unique, the form is reloaded with an error message indicating
that the service is already defined.

Optionally, the user can provide a description of the service. This description cannot
exceed 2048 (2K) characters.

In addition to a name and a description, every service requires EIS-specific parameters.
The collection of EIS specific parameters defines an service type for the adapter.

Optionally, the adapter can provide a mechanism for browsing the service catalog for an
EIS.

Optionally, the adapter can allow the user to define environment variables for use in the
configuration of the service. For more information, see “Step 7. Implement Environment
Variables” on page 9-41.

After defining and saving a new service, the user is returned to the Application View
Administration page.

Page 8: Testing an Application View

After adding at least one service or event, the user can test the application view. When an
application view is tested, it becomes available to process events and services for testing
purposes. If the user chooses to test the application view, he or she has the following two choices:

e Test—Go directly to the Application View Summary page and begin testing the application
view.

e Set Variables and Test—Optionally, set any environment variable values to non-default
values, and then proceed to the Application View Summary page to begin testing the
application view (depappvw. jsp).

Publishing an Application View

Once the user has successfully tested an application view, they can publish it from the
Application View Summary page, thus making it available for use from within WebLogic
Workshop applications.

9-20 Developing Adapters

Step 2: Defining the Page Flow

Saving an Application View

The user can save an application view (even one which is untested and unpublished) and return
to it later via the Application Integration Design Console. This process saves the application view
to the application integration repository within your target WebLogic Workshop application.
Testing an application view will automatically save it, so this step is only necessary if you wish
to leave a design session before actually testing the application view.

Page 9: Summarizing an Application View

When an application view is deployed successfully, the user is forwarded to the Application View
Summary page (appvwsum. jsp). This page provides the following information about an
application view:

e Testing state (testing or not testing)
— If the application view is deployed:

The page includes an option to stop testing the application view. If the user clicks the
Stop Testing link, a child window is displayed, prompting the user to confirm this
choice. If the user confirms, the application view test is stopped and the summary page
is redisplayed. Application views that are not being tested in this way continue to be
saved in the repository. As a result, the user can edit or remove the application view.

If the adapter supports the testing of events, the Summary page displays a test link for
each event. Testing of events is not supported directly by the ADK.

If the adapter supports the testing of services, the Summary page displays a test link for
each service. The ADK demonstrates one possible approach to testing services by
providing the testservc.jsp and testrslt.jsp files. You are free to use these
pages to devise your own service testing strategy.

— If the application view is not deployed:

The page includes an option to test the application view. If the user clicks the Test link,
the application view test is started and the Application View Summary page is
reloaded.

The page includes an option to edit the application view. If the user clicks the Edit link,
the Application View Administration page is displayed.

The page includes an option to remove the application view. If the user clicks the
Remove link, a child window is displayed, prompting the user to confirm the choice to
remove the application view from the ADK repository. If the user confirms, the

Developing Adapters 9-21

Developing a Design-Time GUI

application view is deleted from the repository and the user is redirected to the
Application Integration Design Console.

e Event and service connection information (pooling configuration, log level, and security)

e List of events: For each event, the Summary page offers the option of viewing the schema
and, if event testing is supported, the option of testing. The user cannot remove events
from this page; instead the user must choose to edit first.

e List of services: For each service, the Summary page offers the option of viewing the
request schema and the response schema, and, if service testing is supported, the option of
testing. The user cannot remove services from this page; instead the user must undeploy
and edit first.

Step 3: Configuring the Development Environment

9-22

In this step, you set up your software environment to support design-time GUI development.

Step 3a: Create the Message Bundle

Any message destined for an end-user should be placed in a message bundle. A message bundle
is simply a . properties text file that contains key=value pairs that allow you to internationalize
messages. When a locale and national language are specified for a message at run time, the
contents of the message are interpreted, on the basis of the key=value pair, and the message is
presented to the user in the language appropriate for the specified locale.

For instructions on creating a message bundle, see the JavaSoft tutorial on internationalization at:

http://java.sun.com/docs/books/tutorial/il8n/index.html

Step 3b: Configure the Environment to Update JSPs Without
Restarting WebLogic Server

The design-time Ul is deployed as a J2EE Web application from a WAR file. A WAR file is
simply a JAR file with a Web application descriptor in WEB-INF /web.xml in the JAR file.
However, the WAR file does not allow the J2EE Web container in WebLogic Server to recompile
JSPs on the fly. Consequently, you normally have to restart WebLogic Server just to change a
JSP file. Because this approach contradicts the spirit of JSP, the ADK suggests the following
workaround for updating JSPs without restarting WebLogic Server:

1. Construct a valid WAR file for your adapter’s design-time UI. For the sample adapter, you
can do so by using Ant. Listing 9-2 shows the target that produces the J2EE WAR file.

Developing Adapters

Step 3: Configuring the Development Environment

Listing 9-2 Target that Creates a WAR File

<target name='war' depends='jar'>

<!-- Clean-up existing environment -->
<delete file='S${LIB_DIR}/$S{WAR_FILE}'/>

<war warfile='${LIB_DIR}/S$S{WAR _FILE}'
webxml="'"${SRC_DIR} /war/WEB-INF/web.xml'
manifest='${SRC_DIR}/war/META-INF/MANIFEST.MF'>

<!--
IMPORTANT! Exclude the WEB-INF/web.xml file from the WAR as it
already gets included via the webxml attribute above
-—>
<fileset dir="${SRC_DIR}/war" >
<patternset >
<include name="WEB-INF/weblogic.xml"/>
<include name="**/*_html"/>
<include name="**/* gif"/>
</patternset>

</fileset>

<!--

IMPORTANT! Include the ADK design time framework into the adapter's

design time Web application.
-——>
<fileset dir="${WLI_HOME}/adapters/src/war" >
<patternset >
<include name="**/*.css"/>
<include name="**/*_html"/>
<include name="**/* gif"/>
<include name="**/*_js"/>
</patternset>

</fileset>

<l--

Include classes from the adapter that support the design time UI

Developing Adapters

9-23

Developing a Design-Time GUI

9-24

-——>

<classes dir='${SRC_DIR}' includes='sample/web/*.class'/>

<classes dir='${SRC_DIR}/war' includes='**/*_class'/>
<classes dir='${WLI_HOME}/adapters/src/war'

includes='**/*.class'/>

<!--
Include all JARs required by the Web application under the
WEB-INF/lib directory of the WAR file that are not shared in the EAR
-——>
<1ib dir='${WLI_LIB_DIR}"
includes="'adk-web.jar,webtoolkit.jar,wlai-client.jar'/>
</war>

</target>

This Ant target constructs a valid WAR file for the design-time interface in the

PROJECT _ROOT/1ib directory, where PROJECT ROOT is the location under the WebLogic
Integration installation where the developer is constructing the adapter; for example, the
DBMS sample adapter is being constructed in:

WLI_HOME/adapters/DBMS

2. Load your Web application into WebLogic Server using the WebLogic Server
Administration Console.

3. Configure the development environment. Sample development environment information is
shown in Listing 9-3.

Listing 9-3 Name of Adapter Development Tree

<Application Deployed="true" Name="BEA_WLS_SAMPLE_ADK_Web"
Path="WLI_HOME\adapters\PROJECT ROOT\lib">

<WebAppComponent Name="BEA_WLS_SAMPLE_ADK_Web"
ServletReloadCheckSecs="1" Targets="myserver" URI=
"BEA_WLS_SAMPLE_ADK_Web" />

</Application>

Developing Adapters

Step 3: Configuring the Development Environment

Set the adapter logical name and directory values as follows:
a. Replace BEA_WLS_SAMPLE ADK_Web with the logical name of your adapter.

b. Replace wr1_HowmE with the pathname of the directory in which WebLogic Integration is
installed. Replace ProJECT ROOT with the name of the top-level directory of your adapter
development tree, as shown in Listing 9-3.

Note: If you run GenerateadapterTemplate, the information in Listing 9-3 is updated
automatically. You can then open WLI_HOME/adapters/
ADAPTER/src/overview. html, copy this information and paste the copy into your
config.xml entry.

4. To change a JSP, do so in the src/war directory and then rebuild the WAR target. Do not
change a JSP in the temporary directory. When the WAR file is created, it is also extracted
into the directory monitored by WebLogic Server, which picks up changes only to a specific
JSP. The duration of the monitoring operation performed by WebLogic Server is set by the
pageCheckSeconds parameter in WEB-INF/weblogic.xml. Listing 9-4 shows how this
parameter is set.

Listing 9-4 Setting the Monitoring Interval

<jsp-descriptor>
<jsp-param>
<param-name>compileCommand</param-name>
<param-value>/jdkl130/bin/javac.exe</param-value>
</jsp-param>
<jsp-param>
<param-name>keepgenerated</param-name>
<param-value>true</param-value>
</jsp-param>
<jsp-param>
<param-name>pageCheckSeconds</param-name>
<param-value>l</param-value>
</jsp-param>
<jsp-param>
<param-name>verbose</param-name>
<param-value>true</param-value>
</jsp-param>
</jsp-descriptor>

This approach also tests whether your WAR file is being constructed correctly.

Developing Adapters 9-25

Developing a Design-Time GUI

Step 4: Implement the Design-Time GUI

Implementing the procedure provided in “Introduction to Design-Time Form Processing” for
every form in a Web application is a tedious and error-prone process. The design-time framework
simplifies this process by supporting a Model-View-Controller paradigm.

To implement the design-time GUI, you must implement the DesignTimeRequestHandler
class. This class accepts user input from a form and performs a design-time action. To implement
this class, you must extend the AbstractDesignTimeRequestHandler provided with the
ADK. For a detailed overview of the methods provided by this object, see the Javadoc for the
DesignTimeRequestHandler class.

Extend AbstractDesignTimeRequestHandler

The AbstractDesignTimeRequestHandler provides utility classes for deploying, editing,
copying, and removing application views on the WebLogic Server. It also provides access to an
application view descriptor. The application view descriptor provides the connection parameters,
list of events, list of services, log levels, and pool settings for an application view. The parameters
are shown on the Application View Summary page.

At ahigh level, the AbstractDesignTimeRequestHandler provides an implementation for all
actions that are common to all adapters. These actions include:

e Defining an application view

e Configuring the connection

Note: The ADK provides a method for processing connection parameters to obtain a CCI
connection, but it does not supply the confconn. jsp page. For instructions on
creating this form, see “Step 5a: Create the confconn.jsp Form” on page 9-29.

Deploying an application view

Providing application view security

Editing an application view

Undeploying an application view

Methods to Include

To ensure that these actions are performed successfully, you must supply the following methods
when you implement AbstractDesignTimeRequestHandler:

9-26 Developing Adapters

Step 4: Implement the Design-Time GUI

® initServiceDescriptor();

This method adds a service to an application view at design time. (See “Step 4b.
Implement initServiceDescriptor()” on page 9-27.)

® initEventDescriptor() ;

This method adds an event to an application view at design time. (See “Step 4c. Implement
initEventDescriptor()” on page 9-28.)

In every concrete implementation of AbstractDesignTimeRequestHandler, you also need to
provide the following two methods:

® protected String getAdapterLogicalName () ;

This method returns the logical name of the adapter. It is used to deploy an application
view under that name.

® protected Class getManagedConnectionFactoryClass() ;

This method returns the SPI ManagedConnectionFactory implementation class for the
adapter.

Step 4a. Supply the ManagedConnectionFactory Class

To supply the ManagedConnectionFactory class, you need to implement the following
method:

protected Class getManagedConnectionFactoryClass() ;

This method returns the SPI ManagedConnectionFactory implementation class for the adapter.
This class is needed by the AbstractManagedConnectionFactory when it tries to get a
connection to the EIS.

Step 4b. Implement initServiceDescriptor()

For service connections, you need to implement initServiceDescriptor () so that the adapter
user can add services at design time. This method is implemented as shown in Listing 9-5.

Listing 9-5 initServiceDescriptor() Implementation

protected abstract void initServiceDescriptor (ActionResult result,
IServiceDescriptor sd,
HttpServletRequest request)

throws Exception

Developing Adapters 9-21

Developing a Design-Time GUI

This method is invoked by the addservc () implementation of the
AbstractDesignTimeRequestHandler. It is responsible for initializing the EIS-specific
information associated with the IServiceDescriptor parameter. The base class
implementation of addservc () handles error handling, and so on. The addservc () method is
invoked when the user submits the addservc JSP.

Step 4c. Implement initEventDescriptor()

For event connections, you must implement initEventDescriptor () so that the adapter user
can add events at design time. This method is implemented as shown in Listing 9-6.

Listing 9-6 initEventDescriptor () Implementation

protected abstract void
initEventDescriptor (ActionResult result,
IEventDescriptor ed,
HttpServletRequest request)

throws Exception;

This method is invoked by the addevent () implementation of the
AbstractDesignTimeRequestHandler. It is responsible for initializing the EIS-specific
information associated with the IServiceDescriptor parameter. The base class
implementation of addevent () handles such concepts as error handling. The addevent ()
method is invoked when the user submits the addevent JSP. You should not override addevent,
as it contains common logic and delegates EIS-specific logic to initEventDescriptor ().

Note: When adding properties to a service descriptor, make sure that the names you give them
conform to the bean attribute naming standard. When property names do not conform to
that standard, the service descriptor does not update the InteractionSpec correctly.

Step 5: Write the HTML Forms

The final step to implementing a design-time GUI is to write the various forms that the interface
comprises. To familiarize yourself with the forms you must create, see the following sections:

9-28 Developing Adapters

Step 5: Write the HTML Forms

e See “Java Server Pages” on page 9-8 for a list of the necessary forms and a high-level
description of them.

e See “Step 2: Defining the Page Flow” on page 9-17 for details about each form.

The following sections describe how to write code for these forms. A sample of code for a form
is included.

Step ba: Create the confconn.jsp Form

This page provides an HTML form for users to supply connection parameters for the EIS. You
are responsible for providing this page with your adapter’s design-time Web application. This
form posts to the ControllerServlet with doAction=confconn. This implies that the
RequestHandler for your design-time interface must provide the following method:

public ActionResult confconn (HttpServletRequest request) throws

Exception

The implementation of this method is responsible for using the supplied connection parameters
to create a new instance of the adapter’s ManagedConnectionFactory. The
ManagedConnectionFactory supplies the CCI ConnectionFactory, which is used to obtain
a connection to the EIS. Consequently, the processing of the confconn form submission verifies
that the supplied parameters are sufficient for obtaining a valid connection to the EIS.

The confconn form for the sample adapter is shown in Listing 9-7.

Listing 9-7 Coding confconn.jsp

<%@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk' %>
<form method='POST' action='controller'>

<table>
<tr>
<td><adk:label name='userName' required='true'/></td>
<td><adk:text name='userName' maxlength='30' size='8"'/></td>
</tr>
<tr>
<td><adk:label name='password' required='true'/></td>
<td><adk:password name='password' maxlength='30'size='8"'/></td>
</tr>
<tr>
<td colspan='2'><adk:submit name='confconn_submit'
doAction="'confconn'/></td>
</tr>

Developing Adapters 9-29

Developing a Design-Time GUI

15 </table>
16 </form>

The following sections describe the contents of Listing 9-7:

Including the ADK Tag Library

Posting the ControllerServlet

Displaying the Label for the Form Field

Displaying the Text Field Size

Displaying a Submit Button on the Form

Implementing confconn()

Including the ADK Tag Library
Line 1 in Listing 9-7 instructs the JSP engine to include the ADK tag library:

<%@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk' %>

The tags provided by the ADK are listed in Table 9-3.

Posting the ControllerServlet
Line 2 in Listing 9-7 instructs the form to post to the ControllerServlet:

<form method='POST' action='controller'>

The controllerServlet is configured in the web.xml file for the Web application. It is
responsible for delegating HTTP requests to a method on a RequestHandler. You are not
required to provide any code to use the ControllerServlet; however, you must supply the
initial parameters, which are described in Table 9-5:

9-30 Developing Adapters

Step 5: Write the HTML Forms

Table 9-5 Initial Parameters for ControllerServlet

Parameter Description

MessageBundleBase Specifies the base name for all message bundles supplied with
an adapter. The ADK always uses the logical names for its
sample adapters. However, you are free to choose your own
naming convention for message bundles. This property is also
established in the ra.xml file.

DisplayPage Specifies the name of the JSP that controls both the flow and
the look-and-feel of the pages in the application. In the sample
adapter, this page is display.jsp.

LogConfigFile Specifies the log4j configuration file for the adapter.

RootLogContext Specifies the root log context. Log context is helpful for
classifying log messages according to modules in a program.
The ADK uses the adapter logical name for the root log context
so that all messages from a specific adapter are classified
accordingly.

RequestHandlerClass Provides the fully qualified name of the request handler class
for the adapter. In the sample adapter, this value is
sample.web.DesignTimeRequestHandler.

Displaying the Label for the Form Field
Line 5 in Listing 9-7 displays a label for a field on the form:

<adk:label name='userName' required='true'/>

The value that is displayed is retrieved from the message bundle for the user. The required
attribute indicates whether the user must supply this parameter to be successful.

Displaying the Text Field Size
Line 6 in Listing 9-7 sets a text field of size 8 with a maximum length (max length) of 30:

<adk:text name='userName' maxlength='30' size='8'/>

Displaying a Submit Button on the Form

Line 13 in Listing 9-7 displays a button on the form that allows an adapter user to submit input:

Developing Adapters 9-31

Developing a Design-Time GUI

W o Jo U idWN K

11
12

9-32

<adk:submit name='confconn_submit' doAction='confconn'/>

The label on the button is retrieved from the message bundle using the confconn_submit key.
When the form data is submitted, the ControllerServlet locates the confconn method on the
registered request handler (see the RequestHandlerClass property) and passes the request data
to it.

Implementing confconn()

The AbstractDesignTimeRequestHandler provides an implementation of the confconn ()
method. This implementation leverages the Java Reflection API to map connection parameters
supplied by the user to setter methods on the adapter's ManagedConnectionFactory instance.
You need to supply only one item: the concrete class for your adapter's
ManagedConnectionFactory. To provide this class, implement the following method:

public Class getManagedConnectionFactoryClass()

Step bb: Create the addevent.jsp form

This form allows a user to add a new event to an application view. The form is EIS-specific. The
addevent . jsp form for the sample adapter is shown in Listing 9-8.

Listing 9-8 Sample Code Creating the addevent.jsp Form

<%@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk' %>
<form method='POST' action='controller'>

<table>
<tr>
<td><adk:label name='eventName' required='true'/></td>
<td><adk:text name='eventName' maxlength='100' size='50"'/></td>
</tr>
<tr>
<td colspan='2'><adk:submit name='addevent_submit'
doAction='addevent'/></td>
</tr>
</table>
</form>

The following sections describe the contents of addevent. jsp.

Developing Adapters

Step 5: Write the HTML Forms

Including the ADK Tag Library
Line 1 in Listing 9-8 instructs the JSP engine to include the ADK tag library.

<%@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk'%>

The tags provided by the ADK are described in Table 9-3.

Posting the ControllerServlet
Line 2 in Listing 9-8 instructs the form to post to the ControllerServlet.

<form method='POST' action='controller'>

The ControllerServlet is configured in the web.xml file for the Web application. It is
responsible for delegating HTTP requests to a method on a RequestHandler. You are not
required to provide any code to use the ControllerServlet; however, you must supply the
initial parameters, as described in Table 9-5, “ControllerServlet Parameters.”

Displaying the Label for the Form Field
Line 5 in Listing 9-8 displays a label for a field on the form.

<adk:label name='eventName' required='true'/>

The value that is displayed is retrieved from the message bundle for the user. The required
attribute indicates whether the user must supply this parameter to be successful.

Displaying the Text Field Size
Line 6 in Listing 9-8 sets a text field of size 50 with a maximum length (max length) of 100.

<adk:text name='eventName' maxlength='100' size='50"'/>

Displaying a Submit Button on the Form
Line 9 in Listing 9-8 displays a button on the form that allows an adapter user to submit input.

<adk:submit name='addevent_submit' doAction='addevent'/>

The label on the button is retrieved from the message bundle using the addevent_submit key.
When the form data is submitted, the ControllerServilet locates the addevent () method on
the registered request handler (see the RequestHandlerClass property) and passes the request
data to it.

Developing Adapters 9-33

Developing a Design-Time GUI

Adding Additional Fields

You must also add any additional fields that the user requires for defining an event. See
Appendix E, “Learning to Develop Adapters Using the DBMS Sample Adapters,” for examples
of forms with multiple fields.

Step 5c¢: Create the addservc.jsp form

This form allows a user to add a new service to an application view. The form is EIS-specific.
The addservc. jsp form for the sample adapter is shown in Listing 9-9.

Listing 9-9 Coding addservc.jsp

1 <%@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk' %>

2 <form method='POST' action='controller'>

3 <table>

4 <tr>

5 <td><adk:label name='serviceName' required='true'/></td>

6 <td><adk:text name='serviceName' maxlength='100' size='50'/></td>

7 </tr>

8 <tr>

9 <td colspan='2'><adk:submit name='addservc_submit'
doAction="'addservc'/></td>

10 </tr>

11 </table>

12 </form>

Including the ADK Tag Library
Line 1 in Listing 9-9 instructs the JSP engine to include the ADK tag library.

<%$@ taglib uri='/WEB-INF/taglibs/adk.tld' prefix='adk' %>

The tag library supports the user-friendly form validation provided by the ADK. The ADK tag
library provides the tags described in Table 9-3.

Posting the ControllerServlet
Line 2 in Listing 9-9 instructs the form to post to the ControllerServlet.

<form method='POST' action='controller'>

9-34 Developing Adapters

Step 5: Write the HTML Forms

The controllerServlet is configured in the web.xml file for the Web application. It is
responsible for delegating HTTP requests to a method on a RequestHandler. You are note
required to provide any code to use the ControllerServlet; however, you must supply the
initial parameters, as described in Table 9-5, “ControllerServlet Parameters.”

Displaying the Label for the Form Field
Line 5 in Listing 9-9displays a label for a field.
<adk:label name='serviceName' required='true'/>

The value that is displayed is retrieved from the message bundle for the user. The required
attribute indicates whether the user must supply this parameter to be successful.

Displaying the Text Field Size
Line 6 in Listing 9-9 sets a text field of size 50 with a maximum length (max length) of 100.

<adk:text name='serviceName' maxlength='100' size='50'/>

Displaying a Submit Button on the Form
Line 9 in Listing 9-9 displays, on a form, a button that allows an adapter user to submit input.

<adk:submit name='addservc_submit' doAction='addservc'/>

The label on the button is retrieved from the message bundle using the addservc_submit key.
When the form data is submitted, the ControllerServlet locates the addservc method on the
registered RequestHandler (see the RequestHandlerClass property) and passes the request
data to it.

Adding Additional Fields

You must also add any additional fields that the user requires for defining a a service. See
Appendix E, “Learning to Develop Adapters Using the DBMS Sample Adapters,” for examples
of forms with multiple fields.

Developing Adapters 9-35

Developing a Design-Time GUI

Step bd: Implement Editing Capability for Events and Services
(optional)

If you want to give adapter users the ability to edit events and services at design time, you must
edit the adapter properties, create edtservc. jsp and edtevent . jsp forms, and implement
some specific methods. This step describes those tasks.

Note: This step is optional. You are not required to provide users with these capabilities.

Update the Adapter Properties File

First, update the system properties in the adapter properties file for the sample adapter by making
the following changes to that file:

e Add the following properties:
- edtservc_title=Edit Service
— edtservc_description=0On this page, you edit service properties.

- edtevent_description=0n this page, you edit event
properties.edtevent_title=Edit Event

- glossary_description=This page provides definitions for commonly
used terms.

- service_submit_add=Add

— service_label_serviceDesc=Description:

- service_submit_edit=Edit

- service_label_serviceName=Unique Service Name:
- event_submit_add=Add

- event_label_eventDesc=Description:

- event_label_eventName=Unique Event Name:

- event_submit_edit=Edit

- eventLst_label_edit=Edit

- serviceLst_label_ edit=Edit

- event_does_not_exist=Event {0} does not exist in application view

{1}.

- service_does_not_exist=Service {0} does not exist in Application
View {1}.

9-36 Developing Adapters

Step 5: Write the HTML Forms

- no_write_access={0} does not have write access to the Application

View.
e Remove the following properties:

- addservc_submit_add=Add

- addevent_label_eventDesc=Description:

- addservc_label_serviceName=Unique Service Name:

- addevent_submit_add=Add

- pingTable_invalid=The ping table cannot be reached. Please enter a
valid table in the existing database to ping.

- pingTable=Ping Table

- addevent_label_eventName=Unique Event Name:

— addservc_label_serviceDesc=Description:

After updating the adapter properties file, compare your new version of the file to the original file
and make sure that they are now synchronized.

Create edtservc.jsp and addservc.jsp

These Java server pages are called in order to provide editing capabilities. The main difference
between the edit JSP file and the add JSP file is the loading of descriptor values; the edit JSP file
loads the existing descriptor values. For this reason, the same HTML files are used for both
editing and adding in the DBMS sample adapter.

These HTML files are statically included in each JSP page. This saves duplication of JSP/HTML
and properties. The descriptor values are mapped to the controls displayed on the edit page. From
there, you can submit any changes.

To initialize the controls with values defined in the descriptor, call the
loadEvent/ServiceDescriptorProperties () method on the
AbstractDesignTimeRequestHandler. This method sets all the service's properties in the
RequestHandler. Once these values are set, the RequestHandler maps the values to the ADK
controls being used in the JSP file.

The default implementation of loadEvent/ServiceDescriptorProperties () uses the
property name associated with the ADK tag to map the descriptor values. If you use values other
than the ADK tag names to map the properties for a service or event, you must override these
values to provide the descriptor to the ADK tag-name mapping.

Developing Adapters 9-37

Developing a Design-Time GUI

You must also initialize the RequestHandler before the HTML is resolved. This initialization
should be performed only once. Listing 9-10 shows an example of code used to load the
edtevent. jsp.

Listing 9-10 Sample Code Used to Load edtevent.jsp

if (request.getParameter ("eventName") != null) {
handler.loadEventDescriptorProperties (request) ;

}

The edtservc. jsp file should submit to edtservc:

<adk:submit name='edtservc_submit' doAction='edtservc'/>

The edtevent . jsp file should submit to edtevent:

<adk:submit name='edtevent_submit' doAction='edtevent'/>
For examples, see the DBMS sample adapter at the following location:

WLI_HOME/adapters/dbms/src/war

Implement Methods
Finally, implement the methods described in Table 9-6.

Table 9-6 Methods to Implement with edtserve.jsp and edtevent.jsp

Methods Description
loadServiceDescriptorProperties These methods load the RequestHandler with the ADK
and tag-to-value mapping. If the developer uses the same values

loadEventDescriptorProperties

to name the ADK tag and load the Service/Event Descriptor,
then the mapping is free. Otherwise, to provide these
mappings, the developer must override these methods in
DesigntimeRequestHandlers.

9-38

Developing Adapters

Step 5: Write the HTML Forms

Table 9-6 Methods to Implement with edtservc.jsp and edtevent.jsp (Continued)

Methods Description
boolean supportsEditableServices() These methods are used as markers. If they return true, the
and edit link is displayed on the Application View

boolean supportsEditableEvents ()

Administration page. Override in the
DesigntimeReqguestHandler is supported.

editServiceDescriptor These methods are used to persist the edited service or event

and

editEventDescriptor

data. These methods extract the ADK tag values from the
request and add them back into the Service or Event
Descriptor. In addition, these methods handle any special
processing for the schemas associated with the event or
service. If the schemas need modification, they should be
updated here. Once the values read in from the request are no
longer needed, they should be removed from the
RequestHandler.

For an example of how these methods are implemented, see the sample adapters.

Step be: Write the Web Application Deployment Descriptors

The web.xml and weblogic.xml descriptors for your adapter generally follow a very simple
pattern, and list the names of all the JSP pages in your design-time web application, plus some
other setup information for the design-time web application. Because most adapters contain very
similar web descriptors, the ADK provides a means to automatically generate them. This frees
the adapter developer from maintaining a large descriptor that is mostly identical to other adapters
web descriptors.

The generation of the web application descriptors may be requested by including and calling a
special Ant target in your Ant build.xml file for your adapter. If you clone the ADK sample
adapter using GenerateAdapterTemplate, the resulting build.xml will already include the
necessary Ant target, and a call to use that target. Look at
WLI_HOME/adapters/sample/project/build.xml and find the
generate_web_descriptors target. This Ant target takes in a file called
web-gen.properties, and generates the web.xml and weblogic.xml descriptors from the
information contained in it. Notice in the sample adapter build.xml, this target is called near the
top of the packages target.

The sample adapter includes a web-gen . properties file that acts as a template for you to fill
in for your adapter. Following is a list of properties in this file, and their meanings:

Developing Adapters 9-39

Developing a Design-Time GUI

e display-name - This is the value to be used in the display-name element of web.xml. It
should be the adapter logical name for your adapter (e.g. BEA_WLS_SAMPLE_ADK for
the sample adapter).

e version - The version of your design-time web application, and the value that will be
used in the version element of web.xml (e.g. 8.1.0 for the sample adapter, but you should
use the same value as you used in GenerateAdapterTemplate).

® request-handler-class - This is the full class name of the design-time request handler
implementation class for your adapter. Its the class that extends
AbstractDesignTimeRequestHandler and normally resides in <your adapter
package>.web.DesignTimeRequestHandler)

® adapter-logical-name - The adapter logical name for your adapter. It should be the
same value you used in GenerateAdapterTemplate (e.g. BEA_ WLS_SAMPLE_ADK for
the sample adapter)

® debug-setting - Can be the value 'on' or 'off' (without the quotes). Turning debug on will
enable any debug statements you have placed in your source code (or that were there from
cloning the sample adapter source) that use the ILogger.debug() method. Using a value of
off disables any such statements from being logged to the log file.

® extra-jsp-list - a comma separated list of 'extra’ JSPs. The 'standard' ones are:

addevent, addservc, confconn, edtevent, edtserve, event, service, testform, var
set

You do not need to include these in your list. For example, if you add a JSP called
mybrowser. jsp, your extra-jsp-1list would be as follows:

extra-jsp-list=mybrowser

Step 6. Implement the Look and Feel

9-40

An important programming practice you should observe when developing a design-time GUI is
to implement a consistent look and feel in all the pages of your application view. The
look-and-feel is determined by display.jsp. This page, included with the ADK, provides the
following benefits for a design-time Web application:

e Creates a template that establishes the look and feel for all pages.

e Includes other JSPs based on the content HTTP request parameter. If the content HTTP
request parameter is not supplied, the display. jsp file must include main. jsp.

e Registers the error page for Java exceptions as error. jsp from the ADK.

Developing Adapters

Step 7. Implement Environment Variables

To implement a consistent look and feel across a set of pages, do the following:

1. Use display.jsp from the sample adapter as a starting point. For example, see
WLI_HOME/adapters/sample/src/war/WEB-INF/web.xml.

2. Using HTML, alter the look-and-feel markup on this page to reflect your own look and feel
or your company’s identity standards.

3. Somewhere in your HTML markup, be sure to include:
<%pageContext.include (sbPage.toString()) ;%>

This code is a custom JSP tag used to include other pages. This tag uses the JSP scriptlet
sbPage. toString () to include an HTML or JSP page in the display page.

sbPage. toString () evaluates to the value of content (the HTTP request parameter) at
run time.

Step 7. Implement Environment Variables

This is an optional step. Environment variables are intended to isolate environment-specific
information within an application view in a way that allows system administrators and WebLogic
Integration application deployers to specify new values for this information depending on the
environment they are deploying to. If your adapter does not include any event or service
properties that can be considered environment-specific, then you do not need to implement
environment variables in your adapter. Examples of environment-specific information in event
or service properties for the DBMS sample adapter are:

e Name of the catalog/schema holding the table for a given event type. Different database
instances will use different catalog/schema names for the same tables, and thus this
information might need to change when moving between database instances.

e Qualified names of tables used in a SQL statement for a service. If the SQL statement
refers to tables in more than one catalog/schema, qualified names are required, and these
names can change between database instances.

Event and service connection information should not be considered when deciding whether or not
to implement environment variables. Connection information is, by its very nature, specific to the
EIS instance being connected to. Environment variables are used only to isolate environment
specific information in event and service definitions.

If you choose to implement environment variable support in your adapter, you must provide this
support in both the design-time GUI and the runtime portion of the adapter. For more information
on runtime considerations, see “Developing a Service Adapter” on page 6-1.

Developing Adapters 9-41

Developing a Design-Time GUI

9-42

For the design-time GUI, environment variable support can be added in two major steps:

e Include the varset.jsp from your addevent/edtevent/addservc/edtservc JSP pages.
This extra JSP provides an HTML table used to display and edit a set of environment
variables. This set of variables will be stored along with the application view that is being
defined.

e Provide fields and field parsers/validators that accept variable markers referring to the
variables shown in the varset . jsp table.

Step 7a — Displaying/Editing the Variable Set

The preferred method for displaying and editing the variable set for an application view is to
include the varset . jsp JSP page in your event and service definition JSP pages. You can do
this by including the following JSP code:

<p>

<hr>

<p>

<jsp:include page='varset.jsp'>
<jsp:param name='mode' value='writeable'/>
<jsp:param name='hostPage' value='addservc'/>

</Jjsp:include>

This will be shown as a horizontal line with a table below it for displaying and editing the
environment variables for an application view. The varset. jsp table allows the user to add,
remove, and edit variable definitions. See the DBMS sample adapter for examples of using the
varset.jsp JSP. The mode parameter should always be writable, and the hostPage parameter
should be the name of the JSP hosting the variable set JSP (without the . jsp extension).

Note: It is possible for you to define your own variables without using the varset.jsp JSP
page. You can control the variables defined for an application view by using the
IMutableVariableSet interface defined in the com.bea.connector package. The
following code shows how to get the application view descriptor, and define a new
variable called myvariable on it.

import com.bea.wlai.common.IApplicationViewDescriptor;

import com.bea.connector.IMutablevVariableSet;

IApplicationViewDescriptor avd = getApplicationViewDescriptor () ;
IMutableVariableSet varSet = avd.getMutableVariableSet () ;

Developing Adapters

Step 7. Implement Environment Variables

// Add a variable
IVariable myVar = varSet.addVariable (“myVariable”, “string”, “My Variable”,
“the default value”);

// And then remove it

varSet.removeVariable (“*myVariable”) ;

Step 7b — Using the Variable Set

Once you have included the varset. jsp JSP page, you can begin using the environment
variables it will allow you to define. How you use environment variables depends on the nature
of your adapter and the environment-specific information it maintains.

In general, environment variables will be used to provide either a part of or the entire value for

an event or service property. The value provided by the variable at runtime can be a default value
or a specific value configured for the variable by a system administrator or application deployer.
The decision of whether to use variables for part of a property’s value, or the entire value is up to
you.

For the DBMS sample adapter, variables are used in some cases as the entire property value (for
example, catalog/schema name for events) or as a part of a property value (or example,
catalog/schema name within a SQL statement for services). The DBMS sample adapter denotes
the use of an environment variable by including the variable’s name enclosed in curly braces:
{var_name}. It uses this syntax for both events and services. The curly braces were chosen to
delimit the variable name because curly braces are not reserved characters and are not legal
characters in SQL syntax. This allows the DBMS sample adapter to reliably parse the curly braces
within a SQL statement without risk of confusing the parser.

Your adapter may require different conventions to uniquely or safely identify variable references
in your property values.

Once you have decided how to represent variable references in your event and service property
values, you can write the code needed to validate variable use in those values. The following rules

apply:

e All variable references in your event/service properties must match with an environment
variable defined within the application view (via the varset. jsp).

e You must verify that all variable references in event/service properties conform to the
type/usage expectations for those variables.

Developing Adapters 9-43

Developing a Design-Time GUI

At runtime, the application integration engine will provide you with a set of variables and their
values. Your runtime adapter code should substitute the variable’s runtime value for any variable
reference in the configured property value. For more information, see “Developing a Service
Adapter” on page 6-1 or “Developing an Event Adapter” on page 7-1.

To get a list of variables defined (at design-time) via the varset . jsp, obtain the
IAapplicationViewDescriptor being configured by calling the superclass
(AbstractDesignTimeRequestHandler) method:

import com.bea.connector.IVariableSet;

IApplicationViewDescriptor avd = getApplicationViewDescriptor () ;
IVariableSet varSet = avd.getVariableSet() ;

// List variable names
String[] varNames = varSet.listVariableNames/() ;
// Get the first variable

IVariable var = varSet.getVariable(varNames[0]);

Step 8. Test the Sample Adapter Design-Time Interface

9-44

WebLogic Integration provides a test driver that verifies the basic functionality of the sample
adapter design-time interface. The test driver is based on HTTP Unit, a framework for testing web
interfaces which is available from http://www.httpunit.org. HTTP Unit is related to the
JUnit test framework (available from http: //www.junit.org). Versions of both HTTP Unit
and JUnit are also included with WebLogic Integration.

The test driver executes a number of tests. It creates application views, adds both events and
services to application views, deploys and undeploys application views, and tests both events and
services. After if finishes running successfully, the test driver removes all application views.

Files and Classes

All test cases are available in the DesignTimeTestCase class or its parent class,
AdapterDesignTimeTestCase.TheDesignTimeTestCaseCkaﬁnthesample.webpackage
and the wLI_HOME/adapters/sample/src/sample/web folder) contains tests specific to the
sample adapter. AdapterDesignTimeTestCase (in the com.bea.adapter.web package and

Developing Adapters

Step 8. Test the Sample Adapter Design-Time Interface

the WLI_HOME/1lib/adk-web.jar file) contains tests that apply to all adapters and several
convenience methods.

Run the Tests

To test the design-time interface, complete the following procedure:

1. Start WebLogic Server with the sample adapter deployed. Next, change the current working
folder to the specific project folder and execute the setenv command, as shown in the
following steps.

2. Go to wLI_HOME and, at the command prompt, enter setenv.

The setenv command creates the necessary environment for the next step.

3. Go to the web folder for the sample adapter by entering the following at the command
prompt:

cd WLI_HOME/adapters/sample/project

4. Edit the designTimeTestCase.properties file: in the line containing the list of test
cases to be executed, add web.DesignTimeTestCase. The line should read:

test.case=web.DesignTimeTestCase

5. Near the end of the file, you might need to change the value of two entries: username and
password. Specify the username and password that the test driver should use to connect to
WebLogic Integration.

6. After editing the test.properties file, start WebLogic Server.

7. Run the tests by entering the following command at the command prompt:

ant designtimetest

Developing Adapters 9-45

Developing a Design-Time GUI

9-46 Developing Adapters

Deploying Adapters

After you create an adapter, you must deploy it by using an Enterprise Archive (EAR) file. An
EAR file simplifies this task by deploying all adapter components in a single step. You can
deploy an EAR file from the WebLogic Server Administration Console.

This section contains information about the following subjects:
e Using Enterprise Archive (EAR) Files
e Deploying Adapters Using the WebLogic Server Administration Console

e Editing Web Application Deployment Descriptors

Using Enterprise Archive (EAR) Files

Each adapter is deployed from a single Enterprise Archive (EAR) file. An EAR file contains a
design-time Web application WAR file, an adapter RAR file, an adapter JAR file, and any shared
JAR files required for deployment. The EAR file should be structured as shown in Listing 10-1.

Listing 10-1 EAR File Structure

adapter.ear
application.xml
sharedJar. jar
adapter.jar
adapter.rar
META-INF

Developing Adapters 10-1

Deploying Adapters

ra.xml
weblogic-ra.xml
MANIFEST .MF

designtime.war

WEB-INF
web . xml
META-INF

MANIFEST .MF

The EAR file for the sample adapter is shown in Listing 10-2.

Listing 10-2 EAR File for the Sample Adapter

sample.ear
application.xml
adk.jar (shared .jar between .war and .rar)
bea.jar (shared .jar between .war and .rar)

BEA_WLS_SAMPLE_ADK.jar (shared .jar between .war and .rar)

BEA_WLS_SAMPLE_ADK.war (Web application with
META-INF/MANIFEST.MF entry Class-Path:
BEA_WLS_SAMPLE_ADK.jar adk.jar bea.jar log4j.jar

logtoolkit.jar xcci.jar xmltoolkit.jar)

BEA_WLS_SAMPLE_ADK.rar (Resource Adapter with
META-INF/MANIFEST.MF entry Class-Path:
BEA_WLS_SAMPLE_ADK.jar adk.jar bea.jar log4j.jar

logtoolkit.jar xcci.jar xmltoolkit.jar)

log4j.jar (shared .jar between .war and .rar)
logtoolkit.jar (shared .jar between .war and .rar)
xcci.jar (shared .jar between .war and .rar)

xmltoolkit.jar (shared .jar between .war and .rar)

Notice that neither the RAR nor WAR file includes the shared JAR files; them; instead, both
types of files refer to the shared JAR files using the <manifest.classpath> attribute.

10-2 Developing Adapters

Using Enterprise Archive (EAR) Files

Using Shared JAR Files in an EAR File

The design-time application uses an adapter’s SPI classes in an unmanaged scenario.
Consequently, an adapter’s SPI and CCI classes should be contained in a shared JAR file that
resides in the same directory as the EAR file. To allow the WAR and RAR classloaders to access
the classes in the shared JAR, you must specify, in the MANIFEST . MF files, a request for inclusion
of the shared EAR files. For more information about MANIFEST . FM, see either “Manifest File”” on
page 6-11 or “Understanding the Manifest” at the following URL:

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

The BEA_WLS_SAMPLE_ADK . rar and BEA_WLS_SAMPLE_ADK .war files contain
META-INF/MANIFEST.MF, as shown in Listing 10-3:

Listing 10-3 Manifest File Example

Manifest-Version: 1.0
Created-By: BEA Systems, Inc.

Class-Path: BEA_WLS_SAMPLE_ADK.jar adk.jar wlai-core.jar

wlai-client.jar

Note: The name of the file, MANTIFEST . MF, is spelled in all uppercase. If it is not spelled
correctly, it is not recognized on a UNIX system and an error occurs.

EAR File Deployment Descriptor

Listing 10-4 shows the deployment descriptor, which declares the components of an EAR file. In
this case, these components include the design-time WAR and adapter RAR modules.

Listing 10-4 Deployment Descriptor for the EAR File

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN'
'http://java.sun.com/dtd/application_1_3.dtd'>

<application>
<display-name>BEA_WLS_SAMPLE_ADK</display-name>

Developing Adapters 10-3

Deploying Adapters

<description>This is a J2EE application that contains a sample
connector and Web application for configuring
application views for the adapter.</description>
<module>
<connector>BEA_WLS_SAMPLE_ADK.rar</connector>
</module>
<module>
<web>
<web-uri>BEA_WLS_SAMPLE_ADK.war</web-uri>
<context-root>BEA_WLS_SAMPLE_ADK_ Web</context-root>
</web>
</module>

</application>

You can deploy the adapter via the WebLogic Server Administration Console. This procedure is
described in “Deploying Adapters Using the WebLogic Server Administration Console”.

Deploying Adapters Using the WebLogic Server Administration
Console

To configure and deploy an adapter from the WebLogic Server Administration Console,
complete the following procedure:

1. Open the WebLogic Server Administration Console.

2. In the navigation tree (in the left pane), choose Deployments— Applications.
The Applications page is displayed.

3. Select Configure a new application.
The Configure a new Application page is displayed.

4. Enter values in the following fields:
— In the Name field, enter the logical name of the adapter.
— In the Path field, enter the path for the appropriate EAR file.

— In the Deployed field, make sure that the check box is selected.

10-4 Developing Adapters

Adapter Auto-registration

5. Click Apply to create the new entry.
6. Select Configure Components.

7. Set the target for each component individually.

When you install an application (or application component) via the WebLogic Server
Administration Console, you also create entries for that application or component in the
configuration file for the relevant domain (/config/DOMAIN NAME/config.xml, where
DOMAIN_NAME is your domain). WebLogic Server also generates JIMX Management Beans
(MBeans) that enable you to configure and monitor the application and application components.

Adapter Auto-registration

WebLogic Integration uses an automatic registration process during adapter deployment.
Autoregistration is performed during the adapter deployment phase. You can invoke this process
in either of two ways:

e Using a Naming Convention

e Using a Text File

Using a Naming Convention

The preferred approach is to use a naming convention for the design-time Web application and
connector deployment.

When deploying an EAR file in a WebLogic Integration environment, identify the file in
config.xml by using the logical name of the adapter as the filename, as shown in the example,
in Listing 10-5.

Listing 10-5 Adding the Adapter Logical Name to config.xml

<Application Deployed="true" Name="ALN"
Path="WLI_HOME/adapters/ADAPTER/1lib/ALN.ear">
<ConnectorComponent Name="ALN" Targets="myserver"
URI="ALN.rar"/>
<WebAppComponent Name="ALN_EventRouter" Targets="myserver"
URI="ALN_ EventRouter.war"/>
<WebAppComponent Name="ALN_Web" Targets="myserver"

Developing Adapters 10-5

Deploying Adapters

URI="ALN Web.war"/>
</Application>

In this listing, AL is the logical name of the adapter. You must use this name as the value of the
Name attribute of the <ConnectorComponent> element.

If you assign the name ALN_Web to your design-time Web application deployment, the
design-time Web application is registered automatically, through the Weblogic Server
Administration Console, during deployment. This naming convention is used in the DBMS and
sample adapters.

Using a Text File

Alternatively, you can include a text file named webcontext . txt in the root directory of the
pathname for your EAR file. The webcontext . txt file should contain the context for the
design-time Web application for your adapter. This file must be encoded in UTF-8 format.

Editing Web Application Deployment Descriptors

10-6

For some adapters, you may need to change the deployment parameters of the Event Router Web
application. For the DBMS sample adapter, for example, you might need to change the database
URL used by its event generator.

This section explains how to use the Deployment Descriptor Editor provided by the WebLogic
Server Administration Console to edit the following Web application deployment descriptors:

® web.xml

® weblogic.xml

Deployment Parameters
You can change any parameter of the Event Router Servlet. These parameters are:
® eventGeneratorClassName
® userID
® password
e dataSource

® jdbcDriverClassName

Developing Adapters

Editing Web Application Deployment Descriptors

dbURL
dbAccessFlag
eventCatalog
eventSchema
RootLogContext
AdditionalLogContext
LogConfigFile
LogLevel
MessageBundleBase
LanguageCode
CountryCode

sleepCount

Editing the Deployment Descriptors

To edit the Web application deployment descriptors, complete the following procedure:

1.

Open the WebLogic Server Administration Console in your browser by accessing the
following URL.:

http://host:port/console

In this URL, replace host with the name of the computer on which WebLogic Server is
running, and port, with the number of the port on which WebLogic Server is listening. For
example:

http://localhost:7001/console

In the left pane, expand two nodes: the Deployments node and the Web Applications node
below it.

Right-click the name of the Web application for which you want to edit the deployment
descriptors. From the drop-down menu select Edit Web Application Descriptor. The
WebLogic Server Administration Console is displayed in a new browser.

The Console consists of two panes. The left pane contains a navigation tree composed of
all the elements in the two Web application deployment descriptors. The right pane
contains a form for the descriptive elements of the web . xm1 file.

Developing Adapters 10-7

Deploying Adapters

10-8

. To edit, delete, or add elements in the Web application deployment descriptors, expand the

node in the left pane that corresponds to the deployment descriptor file you want to edit.
The following nodes are available:

— The WebApp Descriptor node contains the elements of the web . xm1 deployment
descriptor.

— The WebApp Ext node contains the elements of the weblogic.xml deployment
descriptor.

. To edit an existing element in one of the Web application deployment descriptors, complete

the following procedure:

a. Navigate the tree in the left pane, clicking parent elements until you find the element you
want to edit.

b. Click the name of the appropriate element. A form is displayed in the right pane with a list
of either the attributes or the subelements of the selected element.

c. Edit the text in the form in the right pane.

d. Click Apply.

. To add a new element to one of the Web application deployment descriptors, complete the

following procedure:

a. Navigate the tree in the left pane, clicking parent elements until you find the name of the
element you want to create.

b. Right-click the name of the appropriate element and select Configure a New Element from
the drop-down menu. A form is displayed in the right pane.

c. Enter the element information in the form in the right pane.

d. Click Create.

. To delete an existing element from one of the Web application deployment descriptors,

complete the following procedure:

a. Navigate the tree in the left pane, clicking parent elements until you find the name of the
element you want to delete.

b. Right-click the name of the appropriate element and select Delete Element from the
drop-down menu. A confirmation page is displayed.

c. Click Yes on the Delete confirmation page to verify that you want to delete the element.

Developing Adapters

Deploying Adapters in a WebLogic Integration Cluster

8. Once you have made all your changes to the Web application deployment descriptors, click
the root element of the tree in the left pane. The root element is either the name of the Web
application *.war archive file or the name that is displayed for the Web application.

9. Click Validate if you want to ensure that the entries in the Web application deployment
descriptors are valid.

10. Click Persist to write your edits of the deployment descriptor files to disk in addition to
WebLogic Server memory.

Deploying Adapters in a WebLogic Integration Cluster

Adapters can be deployed to a WebLogic Integration cluster. For more information about
deploying adapters in a clustered WebLogic Integration environment, see “‘Understanding
WebLogic Integration Clusters” in Deploying BEA WebLogic Integration Solutions at the
following URL.:

http://edocs.bea.com/wli/docs81/deploy/cluster.html

Redeploying Adapter Instances

If you have made changes to the event connection or service connection for an adapter instance,
you must redeploy the instance for those changes to take effect. Redeploying an adapter instance
causes its dependent application views to be redeployed, as well. You can reploy adapter
instances using the WebLogic Integration Administration Console. For more information, see
“Redeploying an Adapter Instance” in Managing WebLogic Integration Solutions at the
following URL.:

http://edocs.bea.com/wli/docs81/manage/ai.html

Warning: The adapter instance redeploy operation does not guarantee any transaction recovery
for in-flight transactions or transaction requests during undeployment and
redeployment. Redeploying during transaction processing may result in
unpredictable behavior and data mismatches between the database and the
WebLogic Integration Administration Console.

Developing Adapters 10-9

http://edocs.bea.com/wli/docs81/deploy/cluster.html
http://edocs.bea.com/wli/docs81/manage/ai.html

Deploying Adapters

10-10 Developing Adapters

APPENDlxa

Creating an Adapter Not Specific to
WebLogic Integration

The procedures for developing J2EE-compliant adapters outlined in Chapter 6, “Developing a
Service Adapter,” and Chapter 7, “Developing an Event Adapter,” primarily pertain to adapters
developed for use with WebLogic Integration. By making modifications to the procedures
described in those chapters, you can build an adapter that complies with the J2EE Connector
Architecture specification but is not specific to WebLogic Integration.

This section describes those modifications. Specifically, it provides information about the
following subjects:

e Using This Section
e Building the Adapter

e Updating the Build Process

Using This Section

This section shows you how to modify the procedure for developing a J2EE-compliant adapter
in order to build one that is not specifically designed to run with WebLogic Integration. Each step
in this section refers to a corresponding step in Chapter 6, “Developing a Service Adapter,” and
describes how to modify that step. You should understand each step thoroughly before
proceeding with the modifications described here.

Developing Adapters A-1

Creating an Adapter Not Specific to WebLogic Integration

Building the Adapter

This procedure is based on the assumption that you have installed WebLogic Integration as
described in Installing BEA WebLogic Integration.

1.

5.

Identify the requirements for your development environment as described in “Step 1:
Research Your Environment Requirements” in Chapter 6, “Developing a Service Adapter.”
Ignore the final item in the bullet list, which refers to transaction support; WebLogic Server
does not support local or XA transactions.

Run GenerateAdapterTemplate, as described in Chapter 4, “Creating a Custom
Development Environment.”

Assign a logical name to the adapter, as described in “Step 2b: Assign the Adapter Logical
Name” on page 6-11.

Implement the SPI, as described in “Basic SPI Implementation” on page 6-24. You must
extend the following classes:

— AbstractManagedConnectionFactory (described in “ManagedConnectionFactory”
on page 6-24)

— AbstractManagedConnection (described in “ManagedConnection” on page 6-32)

— AbstractConnectionMetaData (described in “ManagedConnectionMetaData” on
page 6-33)

As you implement these classes, keep the following considerations in mind:
— WebLogic Server does not support adapters that use transactional semantics.

— Do not implement the ConnectionManager interface; the adapters you are developing
here are managed adapters (that is, they are designed to be plugged in to WebLogic
Server).

Extend AbstractConnectionFactory.

Updating the Build Process

In addition to the procedure provided in “Building the Adapter” on page A-2, you need to modify
the build.xml file to create an adapter that is not specific to WebLogic Integration. To update
the build process, do the following:

1.

A-2

In your code editor, open the ADK’s build.xml file.

Developing Adapters

Updating the Build Process

. See “Step 2c: Set Up the Build Process” on page 6-11. This step includes a section called
“build.xml Components” on page 6-13. In that section, the contents of the build.xml file
are shown in a set of code listings.

. Find Listing 6-11 and Listing 6-12.

. Remove the code shown in those listings from the adapter’s build.xm1 file.

Developing Adapters A-3

Creating an Adapter Not Specific to WebLogic Integration

A-4 Developing Adapters

XML Toolkit

The XML Toolkit provided with BEA WebLogic Integration’s Adapter Development Kit (ADK)
helps you develop valid XML documents to transmit information from an EIS to the application
on the other side of the adapter. It consolidates, in a single location, many of the operations
required for XML manipulation, relieving you of the need to perform these often tedious chores
separately.

This section contains information about the following subjects:
e Toolkit Packages
e [Document

e Schema Object Model (SOM)

Toolkit Packages
The XML Toolkit is composed primarily of two Java packages:
® com.bea.document
® com.bea.schema

These packages are available in the xmltoolkit. jar file, whichis installed with the ADK when
you install WebLogic Integration. They include complete Javadoc for each class, interface, and
method.

Developing Adapters B-1

XML Toolkit

IDocument

com.bea.document . IDocument

An IDocument is a container that combines the W3C Document Object Model (DOM) with an
XPath interface to elements in an XML document. This combination makes it possible to query
and update IDocument objects simply by using XPath strings. These strings eliminate the need
to parse an entire XML document to find specific information by allowing you to specify only
those elements you want to query, and returning responses to those queries.

For example, the XML document shown in Listing B-1 describes a person named Bob.

Listing B-1 XML Example

<Person name="Bob">
<Home squareFeet="2000"/>
<Family>
<Child name="Jimmy">
<Stats sex="male" hair="brown" eyes="blue"/>
</Child>
<Child name="Susie">
<Stats sex="female" hair="blonde" eyes="brown"/>
</Child>
</Family>

</Person>

Suppose you want to retrieve Jimmy’s hair color from the <child> element. If you use DOM,
you must use the code shown in Listing B-2.

Listing B-2 Sample Retrieval of DOM Data

String strJimmysHairColor = null;
org.w3c.dom.Element root = doc.getDocumentElement () ;

if (root.getTagName () .equals("Person") && root.getAttribute ("name").
equals ("Bob") {
org.w3c.dom.NodeList list = root.getElementsByTagName ("Family"); 1f
(list.getLength() > 0) {
org.w3c.dom.Element family = (org.w3c.dom.Element)list.item(0);

B-2 Developing Adapters

Schema Object Model (SOM)

org.w3c.dom.NodeList childList = family.getElementsByTagName ("Child") ;
for (int i=0; i < childList.getLength(); i++) {
org.w3c.dom.Element child = childList.item(i);
if (child.getAttribute("name") .equals ("Jimmy")) {
org.w3c.dom.NodeList statsList = child.
getElementsByTagName ("Stats") ;
if (statsList.getLength() > 0) {
org.w3c.dom.Element stats = statsList.item(0);
strJimmysHairColor = stats.getAttribute("hair");

By using IDocument, however, you can retrieve Jimmy’s hair color by creating the XPath string
that seeks exactly that information, as shown in Listing B-3.

Listing B-3 Sample Retrieval of IDocument Data

System.out.println("Jimmy's hair color: " + person.getStringFrom
("//Person[@name=\"Bob\"] /Family/Child[@name=\"Jimmy\"]/Stats/@hair");

As you can see, by using IDocument you can simplify the code necessary to query and find
information in a document.

Schema 0Object Model (SOM)

SOM is an interface for programmatically building XML schemas. An adapter calls an EIS for
specific request and response metadata, which then must be programatically transformed into an
XML schema. SOM is a set of tools that extracts and validates many of the common details XML
schemas—such as syntactical complexities of schemas—so that you can focus on the more
fundamental aspects of the XML document.

How SOM Works

An XML schema is similar to a contract between an EIS and an application on the other side of
the adapter. This contract specifies how data coming from the EIS must be displayed in order to

Developing Adapters B-3

XML Toolkit

B-4

be manipulated by the application. A document (that is, an XML-rendered collection of metadata
from the EIS) is considered valid if it meets the rules specified in the schema, regardless of
whether or not the XML code in the document is correct. For example, if a schema requires a
name to be shown in a <name> element and that element requires two child elements,
<firstname> and <lastname>, then, in order to be valid, the document from the EIS must be
written in the form shown in Listing B-4 and the schema must be written as shown in Listing B-5.

Listing B-4 Document Example

<name>
<firstname>Joe</firstname>
<lastname>Smith</lastname>

</name>

Listing B-5 Schema Example

<schema>
<element name="name">
<complexType>
<sequence>
<element name="firstname" />
<element name="lastname" />
</sequence>
</complexType>
</element>

</schema>

No other form of <name></name> is valid, even if it is written as correct XML code. The
following XML, for example, is not valid:

<name>Joe Smith</name>

Developing Adapters

Schema Object Model (SOM)

Creating the Schema

You can create an XML schema programatically by using the classes and methods provided with
SOM. The benefit of using this tool is that it allows you to tailor a schema for your needs simply

by populating the variables in the program components. For instance, the following code
examples create a schema that validates a purchase order document. Listing B-6 sets up the
schema and adds the necessary elements.

Listing B-6 Purchase Order Schema

import com.bea.schema.*;

import com.bea.schema.type.SOMType;

public class PurchaseOrder

{
public static void main(String[] args)

{
System.out.println(getSchema () .toString());

}

public static SOMSchema getSchema ()

{
SOMSchema po_schema = new SOMSchemal() ;

po_schema.addDocumentation ("Purchase order schema for
Example.com. \nCopyright 2000 Example.com.\nAll rights

reserved. ") ;

SOMElement purchaseOrder =

po_schema.addElement ("purchaseOrder") ;
SOMElement comment = po_schema.addElement ("comment") ;

SOMComplexType usAddress =
po_schema.addComplexType ("USAddress") ;

SOMSequence seg2 = usAddress.addSequence () ;

// adding an object to a SOMSchema defaults to type="string"
seqg2.addElement ("name") ;

seqg2.addElement ("street") ;

seqg2.addElement ("city") ;

Developing Adapters

XML Toolkit

seq2.addElement ("state") ;
seq2.addElement ("zip", SOMType.DECIMAL) ;

Attributes can be set in the same way that elements are created, as shown in Listing B-7. To set
these attributes correctly, you must maintain their addressability.

Listing B-7 Setting Parent Attributes

SOMAttribute country_attr = usAddress.addAttribute("country",
SOMType . NMTOKEN) ;
country_attr.setUse("fixed") ;

country_ attr.setValue("US");

Like complexTypes, simpleTypes can be added to the root of the schema, as shown in
Listing B-8.

Listing B-8 Adding SimpleTypes to the Schema Root

SOMSimpleType skuType = po_schema.addSimpleType ("SKU") ;

SOMRestriction skuRestrict = skuType.addRestriction
(SOMType . STRING) ;

skuRestrict.setPattern("\\d{3}-[A-Z]{2}");

SOMComplexType poType =
po_schema.addComplexType ("PurchaseOrderType") ;

purchaseOrder.setType (poType) ;
poType.addAttribute ("orderDate", SOMType.DATE) ;

The addSequence () method of a SOMComplexType object returns a SOMSequence reference,
allowing you to modify the element that was added to the schema. As shown in Listing B-9,
objects are added to the schema in this way.

B-6 Developing Adapters

Schema Object Model (SOM)

Listing B-9 Implementing addSequence() to Modify an Element

SOMSequence poType_seq = poType.addSequence () ;
poType_seq.addElement ("shipTo", usAddress) ;
)

7

poType_seq.addElement ("billTo", usAddress

The attributes of an element within a schema can be set by calling the setter methods of the

SOMElement object. For example, Listing B-10 shows the implementation of setMinOccurs ()

and setMaxOccurs ().

Listing B-10 Implementing setMinOccurs() and setMax0ccurs()

SOMElement commentRef = new SOMElement (comment) ;
commentRef.setMinOccurs (0) ;
poType_seq.add (commentRef) ;

SOMElement poType_items = poType_seq.addElement ("items") ;

SOMComplexType itemType = po_schema.addComplexType ("Items") ;
SOMSequence seg3 = itemType.addSequence() ;
SOMElement item = new SOMElement ("item") ;
item.setMinOccurs (0) ;
item.setMaxOccurs (-1) ;
seg3.add (item) ;
SOMComplexType t = new SOMComplexType () ;
item.setType(t);
SOMSequence seg4 = t.addSequence() ;
seqg4 .addElement ("productName") ;
SOMElement quantity = seqg4d.addElement ("quantity");
SOMSimpleType st = new SOMSimpleType /() ;
quantity.setType(st) ;
SOMRestriction restrict =
st.addRestriction (SOMType.POSITIVEINTEGER) ;
restrict.setMaxExclusive ("100") ;

Developing Adapters

B-7

XML Toolkit

In this example, the i tems element for PurchaseOrderType was created before the Items type.
Therefore when the Items type object becomes available, you must create the reference and set
the type by using the code shown in Listing B-11.

Listing B-11 Setting the Type When the Items Type Object Is Available

poType_items.setType (itemType) ;

Finally, you need to add an element to the schema. You can do so by implementing either the
addElement () method of soMSequence or the add () method from a previously created
SOMElement. Listing B-12 shows both methods.

Listing B-12 Adding an Element to the Schema

seg4 .addElement ("USPrice", SOMType.DECIMAL) ;

SOMElement commentRef2 = new SOMElement (comment) ;
commentRef2.setMinOccurs (0) ;

seqg4 .add (commentRef2) ;

SOMElement shipDate = new SOMElement ("shipDate", SOMType.DATE) ;
shipDate.setMinOccurs (0) ;
seg4.add (shipDhate) ;

t.addAttribute ("partNum", skuType) ;

return po_schema;

Resulting Schema

When you run the code shown in the previous seven listings (Listing B-6 through Listing B-12),
the schema shown in Listing B-13 is created.

B-8 Developing Adapters

Schema Object Model (SOM)

Listing B-13 XML Schema Definition Document

<?xml version="1.0" ?>
<!DOCTYPE schema (View Source for full doctype...)>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2000/XMLSchema">

<xsd:annotation>

<xsd:documentation>Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights

reserved.</xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="SKU">
<xsd:annotation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}" />
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element type="USAddress" name="shipTo" />
<xsd:element type="USAddress" name="billTo" />
<xsd:element ref="comment" minOccurs="0" />
<xsd:element type="Items" name="items" />

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date" />

</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" name="item"
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element type="xsd:string"
name="productName" />

<xsd:element name="quantity">

Developing Adapters

B-9

XML Toolkit

<xsd:simpleType>
<xsd:restriction base=
"xsd:positiveInteger">
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element type="xsd:decimal" name=
"USPrice" />
<xsd:element ref="comment"
minOccurs="0" />
<xsd:element type="xsd:date"
name="ghipDate" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" />
</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>
<xsd:element type="xsd:string" name="name" />
<xsd:element type="xsd:string" name="street" />
<xsd:element type="xsd:string" name="city" />
<xsd:element type="xsd:string" name="state" />
<xsd:element type="xsd:number" name="zip" />

</xsd:sequence>

<xsd:attribute name="country" use="fixed" value="US"
type="xsd:NMTOKEN" />
</xsd:complexType>
<xsd:element type="PurchaseOrderType" name="purchaseOrder" />
<xsd:element type="xsd:string" name="comment" />

</xsd:schema>

B-10 Developing Adapters

Schema Object Model (SOM)

Validating an XML Document

The schema shown in Listing B-13 is then used to validate a document sent from the EIS. For
example, the document described in Listing B-14 passes schema validation based on the schema

we just created.

Listing B-14 Validated XML Document

<?xml version="1.0" ?>

<!DOCTYPE PurchaseOrder (View Source for full doctype...

<purchaseOrder orderDate="1/14/00">
<shipTo Country=“US">
<name>Bob Jones</name>
<street>1000 S. 1lst Street</street>
<city>Denver</city>
<state>CO</state>
<zip>8011l</zip>
</shipTo>

<billTo Country=“US">
<name>Bob Jones</name>
<street>1000 S. 1lst Street</street>
<city>Denver</city>
<state>CO</state>
<zip>8011l</zip>

</billTo>

<comment>None</comment>

<items>

<item partNum=“123-AA">
<productName>Washer</productName>
<quantity>20</quantity>
<USPrice>0.22</USPrice>
<comment>0Only shipped 10</comment>
<shipDate>1/14/00</shipDate>

</item>

<item partNum=“123-BB”>

<productName>Screw</productName>

Developing Adapters

XML Toolkit

<quantity>10</quantity>
<USPrice>0.30</USPrice>
<comment>None</comment>
<shipbDate>1/14/00</shipDate>
</item>
</items>

</purchaseOrder>

How the Document Is Validated

SOM can be used to validate XML DOM documents by using the soMSchema method
isvalid().The soMElement class includes a corresponding isvalid () method for validating
an element instead of a DOM document.

The isvalid () method determines whether a document or element is valid and, if it is not,
isvalid() compiles alist of errors. If the document is valid, isvalid () returns true and the list
of errors is empty.

Implementing isValid()

Listing B-15 shows two ways to implement isvalid ().

Listing B-15 Examples of isValid() Implementation

public boolean isValid(org.w3c.dom.Document doc,
java.util.List errorList)
public boolean isValid(IDocument doc,

List errorList)

The following parameters are used:
e doc - The document instance to be validated

e errorList - A list of errors found in the document, doc

B-12 Developing Adapters

Schema Object Model (SOM)

isvalid() returns a boolean value of true if the document is valid with respect to this schema.
If the document is not valid with respect to the schema, isvalid () returns false and the errorList

is populated.

errorListis a java.util.List for reporting errors found in the document, doc. The error list is
cleared before validating the document. Therefore, the list implementation used must support the
clear () method. If isvalid () returns false, the error list is populated with a list of errors found

during the validation procedure. The items in the list are instances of the class

com.bea.schema.SOMValidationException. If isvalid() returns true, errorList is

empty.

For complete information about the API, see the Javadoc for isvalid() at the following URL:

http://e-docs.bea.com/wli/docs81/javadoc/

isValid() Sample Implementation

Listing B-16 shows a sample implementation of isvalid().

Listing B-16 Sample Implementation of isValid()

SOMSchema schema = ...;

IDocument doc = DocumentFactory.createDocument (new FileReader (f));

java.util.LinkedList errorList = new java.util.LinkedList();
boolean valid = schema.isValid(doc, errorList);...
if (! valid){

System.out.println ("Document was invalid. Errors were:");

for (Iterator i = errorList.iterator; i.hasNext();)

System.out.println(((SOMValidationException) 1i.next).
toString()) ;

Developing Adapters

B-13

http://e-docs.bea.com/wli/docs81/javadoc/

XML Toolkit

B-14 Developing Adapters

Adapter Setup Worksheet

Use the worksheet on the following page to collect critical information about the adapter you are
developing. The questions on the worksheet will help you define components, such as the logical
name of the adapter and the basename of the Java package. They can also help you determine the
locales for which you need to localize message bundles. Your answers to these questions will help
you define your adapter before you start coding.

Note: If you are using the GenerateAdapterTemplate utility, it is especially important for
you to use the worksheet; the answers you provide are essential to your ability to run this
utility successfully.

Developing Adapters Cc-1

Adapter Setup Worksheet

Adapter Setup Worksheet

C-2

Before you begin developing an adapter, answer as many of the following questions as you can.
If you plan to use the GenerateAdapterTemplate utility, you must answer every question marked
by an asterisk (¥).

1. *What is the name of the EIS for which you are developing an adapter?
*Which version of the EIS are you using?

*Which type (such as DBMS or ERP) of the EIS are you using?

*What is the name of the vendor for this adapter?

*Which version of the adapter are you using?

AN T

*What is the logical name of the adapter?

7. Does the adapter need to invoke functionality within the EIS?

If so, then your adapter needs to support services.

8. What mechanism and/or API is provided by the EIS to allow an external program to invoke
functionality provided by the EIS?

9. What information is needed to create a session and/or connection to the EIS for this
mechanism?

10. What information is needed to determine which function(s) will be invoked in the EIS for a
given service?

11. Does the EIS allow you to query it for input and output requirements for a given function?

If so, what information is needed to determine the input requirements for the service?

12. Which of the input requirements are static across all requests? Your adapter should encode
static information in an InteractionSpec object.

13. Which of the input requirements are dynamic per request? Your adapter should provide an
XML schema that describes the input parameters required by this service per request.

14. What information is needed to determine the output requirements for the service?

15. Does the EIS provide a mechanism to browse a catalog of functions your adapter can
invoke? If so, your adapter should support browsing of services.

Developing Adapters

Adapter Setup Worksheet

16. Does the adapter need to receive notifications of changes that occur inside the EIS? If so,
then your adapter needs to support events.

17. What mechanism and/or API is provided by the EIS to allow an external program to receive
notification of events in the EIS? The answer to this question will help determine whether a
pull mechanism or a push mechanism is developed.

18. Does the EIS provide a way to determine which events your adapter can support?
19. Does the EIS provide a way to query for metadata for a given event?

20. What locales (defined by language and country) does your adapter need to support?

Developing Adapters c-3

Adapter Setup Worksheet

C-4 Developing Adapters

APPENDlxa

Upgrading Adapters to WebLogic
Integration 8.1

For information on converting a WebLogic Integration 7.0 SP2 Adapter Development Kit (ADK)
adapter development tree to an 8.1 ADK adapter development tree, see “Upgrading an Adapter
Development Project” in the Upgrade Guide at the following URL:

http://edocs.bea.com/wli/docs81/upgrade/adk.html

For information on upgrading adapters developed with the ADK to interact with WebLogic
Integration 8.1 SP2, see “Upgrading WebLogic Integration 7.0 SP2 Adapters Developed by ADK
to WebLogic Integration 8.1 SP2” in the Upgrade Guide at the following URL:

http://edocs.bea.com/wli/docs81l/upgrade/addtionalinfo.html

Developing Adapters D-1

http://edocs.bea.com/wli/docs81/upgrade/adk.html
http://edocs.bea.com/wli/docs81/upgrade/addtionalinfo.html

Upgrading Adapters to WebLogic Integration 8.1

D-2 Developing Adapters

APPENDIXﬂ

Learning to Develop Adapters Using the
DBMS Sample Adapters

This section contains information about the following subjects:
e Introduction to the DBMS Sample Adapters
e How the DBMS Sample Adapters Work
e How the DBMS Sample Adapters Were Developed

e How the DBMS Sample Adapter Design-Time GUI Was Developed

Introduction to the DBMS Sample Adapters

The DBMS sample adapters are J2EE-compliant adapters that includes a JSP-based GUI. They
provides concrete examples of how an adapter can be constructed by using the WebLogic
Integration ADK. A relational database is used as the adapters’ EIS to allow adapter providers to
focus on details of the adapters and the ADK, instead of investing time to learn about a particular
proprietary EIS.

Two DBMS sample adapters are provided:

e BEA_WLS_DBMS_ADK—A sample DBMS adapter that includes XA transaction
support. This adapter is used for the tour of the sample adapter and the description of
adapter development.

e BEA_WLS_DBMS_ADK_LOCALTX—A sample DBMS adapter that includes only
support for local transactions.

Developing Adapters E-1

Learning to Develop Adapters Using the DBMS Sample Adapters

The DBMS Sample Adapters are intended to help you understand the tasks required to design and
develop your own adapter. They are not intended for use in a production environment, nor are
they supported in such an environment. Because the adapters are intended as examples, rather
than production-ready adapters, they do not include a full set of features and have the following
limitations: the adapters are unable to execute complex queries or stored procedures.

Whether you are a developer or a business analyst, the DBMS sample adapters can help you
understand the possibilities at your disposal when you use the ADK to build adapters. If you are
a business analyst, you might find it useful to run through the interface to get a better
understanding of an application view, service, and event, as described in “How the DBMS
Sample Adapters Work™ on page E-3.

If you are an adapter developer, we suggest you start by learning how you can extend and use the
ADK classes to build a J2EE-compliant adapter. To do so, review the following:

e “How the DBMS Sample Adapters Were Developed” on page E-26
e “How the DBMS Sample Adapter Design-Time GUI Was Developed” on page E-43
e DBMS sample adapter code

e DBMS sample adapter Javadoc
The DBMS sample adapters satisfy the following requirements:

e Provides a GUI that allows end-users to connect to a Pointbase, or Oracle database.
e Uses the classes and tools of the ADK.

e Allows users to create application views with events and services.

e Allows users to test events and services.

e Provides a GUI that enables users to browse, from the GUI, the catalogs, schemas, tables,
and columns of the underlying database.

e Supports the creation of services that select, insert, delete, and update data in the database
(EIS).

Connection Parameters for DBMS Sample Adapters

E-2

When setting connection parameters for these adapters, specify a JDBC Driver and URL. The
sample DBMS adapters do not support the specification of a DataSource. Existing service
connections which use a DataSource operate as before, but the Application Integration Design
Console does not allow you to specify a DataSource for a new adapter.

Developing Adapters

How the DBMS Sample Adapters Work

If you configure a domain using an XA driver, create an additional connection pool for whatever
DataSource you create for the event connection.

Do not create two Tx Data Sources that point to the same connection pool. If a transaction uses
two different Tx Data Sources which are both pointed to the same connection pool, you will get
an XA_PROTO error when you try to access the second connection.

For more information on JDBC DataSources and WebLogic Server, see “JDBC DataSources” in
Administration Console Online Help at the following location:

http://e-docs.bea.com/wls/docs8l/ConsoleHelp/jdbc_datasources.html

When using the DBMS sample adapter with a Microsoft SQL Server or Sybase database, use the
WebLogic Server Administration Console to enable the TestReservedConnection parameter
for the connection pool used for application integration. If the parameter is not enabled, the auto
resume or manual resume features do not work and a SQLException similar to the following is
thrown:

java.sgl.SQLException: [BEA][SQLServer JDBC Driver]No more data
available to read

How the DBMS Sample Adapters Work

This section shows how the DBMS sample adapter works. If you are a business analyst, you
might enjoy running through the interface to get a feel for how the adapter works. The example
in this section shows how to create a service that inserts a customer in the underlying database,
and how an event is generated to notify others that this action has taken place.

This section contains information about the following subjects:
e Before You Begin
e Accessing the DBMS Sample Adapter

e Tour of the DBMS Sample Adapter

Before You Begin

Before you try to access the DBMS sample adapter, make sure you complete the following tasks:
o Install WebLogic Integration. For instructions, see Installing WebLogic Platform

e Set up the ADK Ant-based make process. For instructions, see “Step 2c: Set Up the Build
Process” on page 6-11.

Developing Adapters E-3

Learning to Develop Adapters Using the DBMS Sample Adapters

E-4

e Deploy the DBMS sample adapter in such a way that the design-time GUI is accessible.
For more information, see Installing WebLogic Platform.

e Start WebLogic Server.

o Assign the system administrator role to Microsoft SQL Server user accounts. To deploy an
application integration event for a Microsoft SQL Server database, the user account from
which event generator tables are created must be assigned the system administrator role. If
the user account is not assigned the system administrator role, the deployment fails and an
error message is generated stating that the tables are invalid objects.

Accessing the DBMS Sample Adapter

To access the DBMS sample adapter:
1. Open a new browser window.

2. Enter the URL for your system’s Application Integration Design Console:
http://HOSTNAME:7001/wlai
The Application Integration Design Console Logon page is displayed as shown in

Figure E-1.

Warning: You should only have one instance of the Application Integration Design Console
running on a single client machine. Running multiple consoles on a single machine
may interfere with proper navigation between screens in your web browser.

Tour of the DBMS Sample Adapter

This section provides a short tour through the DBMS sample adapter. To begin, open the
Application Integration Design Console Logon page for the DBMS sample adapter in your
browser. For instructions, see “Accessing the DBMS Sample Adapter” on page E-4.

Developing Adapters

How the DBMS Sample Adapters Work

Figure E-1 Application Integration Design Console - Logon

Pla]

WebLogic Integration - Application Integration Desigh Console Logon ;'Ilea
L

Please supply a valid Weblogic username and password,

Username Iwehlngiu:

Password |unuu

Login

1. To log on to the Application Integration Design Console, enter your WebLogic Server
username and password, and click Login. The Select Application page is displayed.

Developing Adapters E-5

Learning to Develop Adapters Using the DBMS Sample Adapters

E-6

Select Application

lication Root Folder:
ole WeblLogic Integrati

Current Application:

Sweitch Application e

ation Integration = Configuration
This page allows you to define the application contest for this design-time session. This
context includes the name of the J2EE application that will host the ApplicationViews shown
within this console, and the root folder of the J2EE applications BEA Platform application or
EAR folder.

You may select a deployed application from the list below...

Deployed Applications: |- None Selected -- j

Or manually type in the name and root folder of the application.

Anplication Name (BEA |
Anplication or J2EE

Appl:

Foot Folder for |
Anplication (absolute):

o]

2. To create a repository for a new application, specify an application name and the root
directory for the application. Click OK. The Application View Design Console page is
displayed.

Developing Adapters

How the DBMS Sample Adapters Work

Figure E-2 Application View Management Console

WebLogic Integration - Application Integration Design Consele

Current Application: NewPraject Application Roat
Folder: C:\beayuser_projectshworkshopDomain

h Application WeblLog et Conzole

Folder: Root ﬂ(

Mame Status Action

Add Application Yiew

3. Click Add Application View. The Define New Application View page is displayed. When
you create an application view, you should provide a description that associates that
application view with the DBMS sample adapter.

For detailed information about application views and how to define them, see
“Defining an Application View” in Using the Application Integration Design Console.

Developing Adapters E-7

Learning to Develop Adapters Using the DBMS Sample Adapters

E-8

Figure E-3 Define New Application View Page

This page allows you to define a new application view

Folder: Foot
Application Yiew NMame:* ApptiewTest
Description: Ain application view used to test one =]

of the DEMS sample adapters.

[|

sssociated adapter: |BEA_W|_S_DEIMS_ADK j

Create Mew Connection | Reuse Existing Connection | Cancel

4. To define an application view:

a. Inthe Application View Name field, enter AppviewTest.

The name should describe the set of functions performed by this application. The name
of each application view must be unique to its adapter. All characters are valid except
the following: period (.), hash mark (#), backslash (\), plus sign (+), ampersand (&),
comma (,), apostrophe (*), double quotes (*‘), and a space.

b. In the Description field, enter a brief description of the application view.

c. From the Associated Adapters list, select a DBMS sample adapter to use to create your
application view.

d. Click Create New Connection. The Create New Browsing Connection page is displayed.

Alternatively, to reuse an existing connection, click on Reuse Existing Connection and
select a browsing connection.

Developing Adapters

How the DBMS Sample Adapters Work

Connection MNarme:* sppviewTest_Default_|Browsing

Description: |=]

Connection Parameters:

Define... | {(Needed)

Connection Pool Parameters

Use these parameters to configure the connection pool for this ConnectionFactory.

Minimum Poal Size* ID
Maximum Poal Size* |5

Allow Pool to Shrink? 2

Log Configuration

Set the log verbosity level for this ConnectionFactory,

|Lu:ug warnings, errars, and audit messages j

ﬂl Cancel |

5. To create a new connection:

a. In the Connection Name field, enter a unique suffix for to the default connection name
prefix or use the default suffix provided.

b. In the Description field, enter a description for the new connection.
c. Edit the connection pool and log parameters as required.

d. Click Define to define the connection parameters for the browsing connection. The
Configure Connection Parameters page is displayed.

Developing Adapters E-9

Learning to Develop Adapters Using the DBMS Sample Adapters

Figure E-4 Configure Connection Parameters Page

On this page, vou supply parameters to connect to your DBMS, You specify a JDBC drive
and JDBC URL to connect, Mote the supparted database types and thelr respective drive
names and URL farmats at the bottom of the page.

This adapter REQUIRES an ®A-capable driver. You must use a JDBC Driver that supports
connections,

Databasze User Name: Iweblugic
Database Password: I--------|

JDBC Driver: |C|:|m.pointhase.}{a.}{aDataSnurce

JDBC URL: debc:pnintbase:senrer:fflncalhost:BDBSHdb narne:=

Extra Properties: |

6. On the Configure Connection Parameters page, enter the network-related information that
enables the application view to interact with the target EIS. It is not necessary for you to
enter this information more than once per application view:

a. Enter the database username and password.

b. Inthe JDBC Driver and JDBC URL fields, enter the driver specification and the JDBC
URL. Depending on the database type, you can also specify additional properties. Note
the supported database types and their respective URL formats the bottom of the page.

c. Click Continue in the Configure Connection Parameters page to return to the Create New
Browsing Connection page.

d. Click OK. The Application View Administration page is displayed.

The Application View Administration page summarizes the connection criteria. After
events and services are defined, you can view schemas and summaries and delete an
event or service from this page.

You have finished creating an application view; you can now add a service to it.

E-10 Developing Adapters

How the DBMS Sample Adapters Work

Figure E-5 Application View Administration Page for AppViewTest

This page allows you to add events and/or services to an Application View,

Description: An application view used to test one of the DBMS sample
adapters. Edit

adapter: BEA_WLS_DBMS_ADK

Yersion: ADK_SAMPLE

Connections: Select/Edit

Events

Services Add

o] ¢

7. To add a service to your new application view, you must supply a name for the service, a
description of it, and an SQL statement.

Use the browse link to browse the DBMS sample adapter database schemas and tables and
to specify the database table CUSTOMER_TABLE.

To add a service:

a. On the Application View Administration page, click Add in the Services group. The Add
Service page is displayed.

Developing Adapters E-11

Learning to Develop Adapters Using the DBMS Sample Adapters

Figure E-6 Add Service Page

Unigue Service Mame:* |Inser‘tCustomer

Description: Insert & new customer record into ;I
the datsabase.

SOL Statement:® ;'

Add Browse DBMS...
Syntax Help:
1. Use fully qualified table name (i.e. catalog.schema.table);
2, to gather user input, bracket the column name and type as follows:
"[ColumnMame ColumnType]”

2. use variables to parameterize table qualifiers (2.9,
myCatalog.mySchema.myTable becomes {myTableQualifiers FrnyTable)

Parameters created in SQL only support JDBC types, To view the supported
types follow the link.,
JDBC Types

b. In the Unique Service Name field, enter InsertCustomer.

c. In the Description field, enter a description of the service.

d. Click Browse DBMS to view the table and column structure of the database. If you are
writing a complex query, you may want to leave the Browse window open so you can later
cut and paste table or column names into your query.

Figure E-7 Browse DBMS Page

-,
2 -

. bhea

Browse DBMS

DBMS Schemas For Catalog:
PEPUBLIC

POINTBASE
WEBRLOGIC

Close WWindow I

E-12 Developing Adapters

How the DBMS Sample Adapters Work

e. On the DBMS Schemas for Catalog page, click WEBLOGIC.
Figure E-8 Browse DBMS Tahle Types Page

-y
-7 H
Zhea-
z-DeEa

Browse DBMS

DBMS Table Types:

TABLE

SYSTEM TABLE
SLOP AL TEMPORSARY
SLOB AL TEMPORSR™Y

Close YWindow I

f. On the DBMS Table Types page, click TABLE.

Developing Adapters E-13

Learning to Develop Adapters Using the DBMS Sample Adapters

Figure E-9 DBMS Browse Tahles Page
Tables For: .WEBLOGIC

Table Mame:

AD BUCKET

AD COUMNT
BANKRUPTCIES

BT EVEMT

BT EVENT ACTIOM

BT EVENT TYPE

CACHED ITEMS

CaTalog ENTITY
CaTaloG PROPERTY KEY
CATALOG PROPERTY WALUE
Ch MNODE

Ch OBRJECT CLASS

Ch PROPERTY

Ch PROPERTY CHOICE
Ch PROPERTY DEFIMNITION
CONTAINED OBJIECT
CUSTOMER

CUSTOMERS

CUSTOMER TABLE

DaTea SYMHE APPLICATION

g. On the Tables list for WEBLOGIC page, click CUSTOMER_TABLE. The Browse
window now displays the names and types of the columns.

E-14 Developing Adapters

How the DBMS Sample Adapters Work

Figure E-10 Browse DBMS for Tahle Page

o9,

o0
s hea:
z.1éd

Browse DBMS

DBMS Columns For Table: CUSTOMER_TABLE

ColumnMare: ColumnType: ColumnSize:
FIRSTMAME WARCHAR 32
LASTMAME WARCHAR 32
MIDDLEMAME WARCHAR 32
DoOB DATE 10
ADDRESS1 WARCHAR 32
ADDRESS2 WARCHAR 32
ADDRESS3 WARCHAR 32
POSTALCODE WARCHAR 11
CITY WARCHAR 32
STATE WARCHAR 32
COUNTRY WARCHAR 32
PHOME WARCHAR 15
Fax WARCHAR 15
EMAIL WARCHAR 64

Close Window |

h. Click Close Window to close the window and return to the Add Service Page.

This window is included in the tour to introduce you to available functionality; you are
not required to select any text for this exercise.

i. On the Service Page, add the following information to the SQL Statement field:

Insert into WEBLOGIC.CUSTOMER_TABLE (FIRSTNAME, LASTNAME, DOB)
VALUES ([FIRSTNAME VARCHAR], [LASTNAME VARCHAR], [DOB DATE])

j- Click Add. The Application View Administration page is displayed.

For additional information about adding services, see “Defining an Application View”
in Using the Application Integration Design Console.

8. Add an event to your application view. To do so, you must provide a unique name and a
description of the event. Then you must specify the database table to which a trigger should
be added for the event. You must also specify whether the event is an insert, update, or
delete event.

Developing Adapters E-15

Learning to Develop Adapters Using the DBMS Sample Adapters

You can use the Browse DBMS link to browse the DBMS database schemas and tables and
to specify the database table. Then you can click the Fill table name with selected table
button to populate the field automatically with the specified table name.

To add an event:

a. On the Application View Administration page, click Add in the Events field. The Add
Event page is displayed.

Figure E-11 Add Event Page

an this page, vou add events to vour Application View.

Unique Event Mame:*

I
Description: | =]
I
I
I

=

Browse DEMS...

Table Mame;*

Schema Name:

Catalog Mame:

Table/Catalog/Schema Name Help...

ORACLE: SCHEMA TABLEMAME, MS SQLSERVER: catalog.schema.tablename, SYBASE: catalog.schema tablename,
DBZ2: SCHEMATABLEMAME, or POINTBASE: SCHEMA TARLEMAME

MOTE: You can specify catalog and schema name as variable references {varhamel.

For databases that don't require catalog or schema just leave them blank or define them as variable references
and leave the variable value blank,

Please select the type of
event to create:

& Insert Event
' Update Event
" Delete Event

Add

b. In the Unique Event Name field, enter CustomerInserted.
c. In the Description field, enter a description of the event.

d. Click the Browse DBMS link to view the table and column structure of the database.

E-16 Developing Adapters

How the DBMS Sample Adapters Work

Figure E-12 Browse DBMS Tahles Page

ELLEHTWIES
ACTIVECOLLARDRATOR
ACTIVECOMNDEF
ACTIVECONVERSAT[OH
ACTIVECONVSTATE

Wf_ﬂ-'!-'!l'!l'l-'I-1111111W1111111111111111'

L R -

e. Select the CUSTOMER TABLE option. Then click the Fill table name with selected table
button.

Developing Adapters E-17

Learning to Develop Adapters Using the DBMS Sample Adapters

E-18

Figure E-13 Add Event Page

On this page, you add events to your Application View.

Unique Event Name:* ICustUmerInsened
Description: Motification of the insertion of a ;I
new custower record into the
database.
Table Name: * |CUSTOMER_TABLE Browse DBMS...
Schema Mame: IWEEII_OGIC

Catalog Mame: |

Table/Catalog/Schema Mame Help...

ORACLE: SCHEMA TABLEMAME, MS SQLSERVER: catalog.schema.tahlename, SYBASE: catalog.schema tablename,
DB2: SCHEMA. TABLENAME, or POINTBASE: SCHEMA TABLENAME

MOTE: You can specify catalog and schema name as variable references {varMame?,

For databases that don't require catalog or schema just leave them blank or define them as variable references
and leave the variable value blank.

Flease select the type of
event to create:

& Insert Event
" Update Event
' Delete Event

f. Select the Insert Event option.

g. Click Add. The Application View Administration page is displayed.

Developing Adapters

How the DBMS Sample Adapters Work

Figure E-14 Application View Administration Page for AppViewTest

This page allows you to add events and/or services to an Application View,

Description: An application view used to test one of the DBMS sample

adapters. Edit
Adapter: BEA_WLS_DBMS_ADK
Version: ADK_SAMPLE
Connections: Select/Edit
Events Add
CustomerlInserted Edit Remowe Event Yiew Summary View Event Schema
Services Add
InsertCustomer Edit Femove Service Wiew Summary Wiew Request Schema View Respon chema
Testl Set Variables and Test | Save | ?

9. Click Save to save the current application view information. You must create or select
connections for services and events before testing and publishing the application view.

10. Click Select/Edit. The Connection Information page is displayed. The Connection

Information page is organized by connection type: service invocation, event delivery, and
design-time browsing connections.

Developing Adapters E-19

Learning to Develop Adapters Using the DBMS Sample Adapters

On this page you select or edit the service, ewvent, and browsing connections o use
for vour Application Wiew

On this page you select or edit the service, event, and browsing connections to use
for your Application Yiew

e« Service Connection:

o Browsing Create Mew... Select Existing...

« Event Connection:

o Event Select Existing...

e Browsing Connection:

o Browsing Create Mew... Select Existing...

Back |

11. For the purposes of this tour, use an existing service connection. Click on the Select
Existing link for service connections and select an existing connection.

12. Click Event to configure the connection properties and log level of your event connection.
The Edit Event Connection page is displayed.

E-20 Developing Adapters

How the DBMS Sample Adapters Work

an this page vou configure the connection properties, log level of vour event

connection.
Connection Mame;* EastCoast.Sales. vendorManagement_Default_Event
Description: |=]

-

Connection Parameters:

Define. .. |

Log Configuration

Set the log verbosity level for this ConnectionFactory.

ILDg warnings, errors, and audit messages j

ﬂl Cancel |

The Edit Event Connection page allows you to define event parameters and configure what
information will be logged for the connection factory. Select one of the following settings
for the log:

Log errors and audit messages

Log warnings, errors, and audit messages

Log informational, warning, error, and audit messages

Log all messages

Locate Connection Parameters and click Define to set the event delivery parameters. The
Configure Event Delivery Parameters page is displayed.

The event delivery parameters you enter on this page enable connection to an EIS instance
and are used when generating events. The properties are specific to the associated adapter
and are defined in the wli-ra.xml file within the base adapter.

13. After you have set the event delivery parameters, click on Continue to return to the Edit
Event Connection page and then click OK to return to the Connection Information page.

14. Click Back to return to the Application View Administration page.

Developing Adapters E-21

Learning to Develop Adapters Using the DBMS Sample Adapters

15. In the Application View Administration page, click Test. The Summary for Application
View page is displayed. Note that the Status is Testing and a Stop Testing link is displayed.

Figure E-15 Summary for Application View Page

Name: AppYiewTest
Description: An application view used to test one of the DBMS sample
adapters.
Status: Testing
Published?: Mot Published
. . Publish
Available Actions: Stop
Testing 7

(Gonnection Events and Services Variables.

Events

CustomerInserted Test Miew Summary Miew Event Schema
Services

InsertCustomer Test Miew Summary Miew Request Schema Miew Responsze Schema

16. Test an event. To ensure that the application view is working correctly, you can test the
events and services shown in it. You can test an event by invoking a service or by manually
creating the event. The user can also specify how long the application should wait to receive
the event.

a. In the Events group, on the CustomerInserted line, click Test. The Test Event page is
displayed.

E-22 Developing Adapters

How the DBMS Sample Adapters Work

Figure E-16 Test Event Page

This page aliows you to test an event, You may create the event by invoking 3 service,
or by manually creating the svent.

If you want to use 3 service invocation to create an event, select the service option
below, and select the service to invoke. Optionally, you can create the event manually
using any tools your EIS provides {for example an interactive SGL tool for the DBMS
adapter used to insert a new row to create an insert event),

How do you want to create the event?

% Carvice IInsenCustnmer 'l

" Manual

How long should we wait to receive the event?

Time {in milisecands): |
Test

b. On the Test Event page select the Service option and, from the Service menu,
InsertCustomer.

c. In the How long should we wait to receive the event? field, enter 6000.

d. Click Test. The Test Service page is displayed.

Developing Adapters E-23

Learning to Develop Adapters Using the DBMS Sample Adapters

Figure E-17 Test Service Page
Please @ in any inputs to the service query and click Test,
Test Service: InsertCustomer on application view "AppVYiewTest'

Insert into WEBLOGIC.CUSTOMER_TABLE (FIRSTHAME, LASTMAME, DOB) WALUES
([FIRSTHAME WARCHAR], [LASTNAME WARCHAR], [DOB DATE])

Input

FIRSTNAME | text
LASTNAME | tewt
DOB |

KL Qate 'COVY-MM-DDY, e 20053-07-03-05:00
Enable Response Mamespace Enforcement?: [
=

e. Inthe FIRSTNAME field, enter a first name.

f. Inthe LASTNAME field, enter a last name.

g. In the DOB field, enter a date of birth. The correct format is specified to the right of the
DOB field.

h. Click Test. The Test Result page is displayed. It shows the contents of the XML

documents representing the event you generated and the response generated by the
application view.

E-24 Developing Adapters

How the DBMS Sample Adapters Work

Figure E-18 Test Result Page

Thes D Sy el rescills Anoer Do G & aAane.

Ganprated avent of typa Customarinsartod on application view AppyYiowTest

< 7uml wersion==1.0" =
2 IBOCTTFE CUSTONEE TABLE . insact>
CCEPETOEER TABLE. imsert s
ZADDEESSI><f RDDEESS L
<ADDFEESZ </ ADDRERDZ
“APRFEESII < RDDFESSI >
I T e A CITE
LCINTRY =< COTREY >
SO0 1T 82 T2 LSO DO
“EALEL> < ERATL>
L4 gt = B gk
<FIRFTHANE>Jans<s FIFFTHALARE >
LA THNANE » bows o LAS THLANE >
“MIPFLENANE= </ AIFPLENARL -
< FHONE > < & FHORE = =

Inp to servion Inser Custames on application view AppYiswTast

<7uml wersion==1,0" 7> =]
L I'ESETTPE Inpiits

= Impues

<F TESTMANEJane</ FIESTHANE

=LA THARE:Doe < LAETHAHE >

2BOB>3008-10-05 041 2T:24-05 00/ OB

2 F EmpuTs

=

Outpul frorm seretion Ineer Customar on application siave AppWissToast

< Tuml vwersion="1.0%¥> =1
of VEOETTFE FowslEfectads

After successfully testing events and services, you can return to the Summary page and publish
the application view. This generates an EJB within the application directory, publishes schema
files to the WebLogic Workshop application for use in the XML Mapper, and makes the
application view visible within WebLogic Workshop.

For more information on publishing application views, see “Defining an Application View” in
Using the Application Integration Design Console.

Developing Adapters E-25

Learning to Develop Adapters Using the DBMS Sample Adapters

How the DBMS Sample Adapters Were Developed

E-26

This section describes each interface used to develop the DBMS sample adapters. The ADK
provides many of the necessary implementations required by a Java Connector
Architecture-compliant adapter, but some interfaces cannot be implemented fully until the EIS
and its environment are defined. For this reason the DBMS sample adapters were created as a
concrete implementation of the abstract classes provided by the ADK.

The procedure for creating the DBMS sample adapters includes the following steps:

e Step 1: Learn About the DBMS Sample Adapters

Step 2: Define Your Environment

Step 3: Implement the Server Provider Interface Package

Step 4: Implement the Common Client Interface Package

Step 5: Implement the Event Package

Step 6: Deploy the DBMS Sample Adapter

Step 1: Learn About the DBMS Sample Adapters

To learn how the implementations provided by the ADK are leveraged in the DBMS sample
adapters, we recommend that you review the Javadoc and code for the methods defined in this
section.

e For the Javadoc, see:
http://e-docs.bea.com/wli/docs81/javadoc/adk/

e For the code listing for this package, see:
wLI_HoME/adapters/dbms/src/com/bea/adapter/dbms/spi

Note: wrI_HOME is the drive or directory in which WebLogic Integration is installed.

Step 2: Define Your Environment

To help you identify and collect critical information about the adapter you are developing before
you begin coding, see the Appendix C, “Adapter Setup Worksheet”. For the DBMS sample
adapter BEA_WLS_DBMS_ADK, the worksheet questions are answered as follows:

Developing Adapters

http://e-docs.bea.com/wli/docs81/javadoc/adk/

How the DBMS Sample Adapters Were Developed

Note: Questions preceded by an asterisk (*) are required to use the GenerateAdapterTemplate

utility.
*What is the name of the EIS for which you are developing an adapter?

PointBase or Oracle databases.

*What version of the EIS are you using?

PointBase 4.4, Oracle 8.1.7., or Oracle 91 Release 2
*Which type of EIS (such as DBMS or ERP) are you using?
DBMS

*What is the name of the vendor for this adapter?
BEA

*What is the version number of this adapter?

None - Sample Only

*What is the logical name of the adapter?

BEA_WLS_DBMS_ADK

. Does the adapter need to invoke functionality within the EIS?
Yes
If so, then your adapter must support services.

Yes

What mechanism or API is provided by the EIS to allow an external program to invoke EIS
functionality?

JDBC

What information is needed to create a session or connection to the EIS for this
mechanism?

Database URL, driver class, user name, password

10. What information is needed to determine which function(s) will be invoked in the EIS for a

given service?

Function name, executeUpdate, executeQuery

Developing Adapters E-27

Learning to Develop Adapters Using the DBMS Sample Adapters

E-28

11. Does the EIS allow you to query it for input and output requirements for a given function?
Yes, you can browse data structures.
If so, what information is needed to determine the input requirements for the service?
SQL

12. Which of the input requirements are static across all requests? Your adapter should encode
static information in an InteractionSpec object.

SQL

13. Which of the input requirements are dynamic per request? Your adapter should provide an
XML schema that describes the input parameters required by this service per request.

The input requirements would change depending on the SQL expression for the service.
14. What information is needed to determine the output requirements for the service?
N/A

15. Does the EIS provide a mechanism to browse a catalog of functions that can be invoked by
your adapter? If so, your adapter should support the browsing of services.

Yes

16. Does the adapter need to receive notifications of changes that occur inside the EIS? If so,
then your adapter must support events.

Yes

17. What mechanism or API is provided by the EIS to allow an external program to receive
notification of events in the EIS? The answer to this question will help you determine
whether a pull mechanism or a push mechanism is developed.

None. The DBMS sample adapter was built on the WebLogic Integration event generator
using a pull mechanism.

18. Does the EIS provide a way to determine which events can be supported by your adapter?

Yes

19. Does the EIS provide a way to query for metadata for a given event?

Yes

20. What locales (defined by language and country) does your adapter need to support?
Multiple

Developing Adapters

How the DBMS Sample Adapters Were Developed

Step 3: Implement the Server Provider Interface Package

To implement the DBMS sample adapter Server Provider Interface (SPI) and meet the
J2EE-compliant SPI requirements, the classes in the ADK were extended to create the following
concrete classes:

Tahle E-1 SPI Class Extensions

This concrete class... Extends this ADK class...
ManagedConnectionFactoryImpl AbstractManagedConnectionFactory
ManagedConnectionImpl AbstractManagedConnection
ConnectionMetaDataImpl AbstractConnectionMetaData
LocalTransactionImpl AbstractLocalTransaction

These classes provide connectivity to an EIS and establish a framework for event listening and
request transmission, establish transaction demarcation, and allow management of a selected EIS.

ManagedConnectionFactorylmpl

The first step in implementing an SPI for the DBMS sample adapter was to implement the
ManagedConnectionFactory interface. A ManagedConnectionFactory supports connection
pooling by providing methods for matching and creating a ManagedConnection instance.

Basic Implementation

The ADK provides com.bea.adapter.spi.AbstractManagedConnection Factory, an
implementation of the Java Connector Architecture interface
javax.resource.spi.ManagedConnectionFactory. The DBMS sample adapter extends this
classin com.bea.adapter.dbms.spi.ManagedConnectionFactoryImpl. Listing E-1 shows
the derivation tree for ManagedConnectionFactoryImpl.

Listing E-1 com.bea.adapter.dbms.spi.ManagedConnectionFactorylmpl

javax.resource. spi.ManagedConnectionFactory

| -->com.bea.adapter.spi.AbstractManagedConnectionFactory

Developing Adapters E-29

Learning to Develop Adapters Using the DBMS Sample Adapters

E-30

\ -->com.bea.adapter.dbms. spi.ManagedConnectionFactoryImpl

Developers’ Comments

The ManagedConnectionFactory is the central class of the Java Connector Architecture SPI
package. The ADK’s AbstractManagedConnectionFactory provides much of the required
implementation for the methods declared in Sun MicroSystems’ interface. To extend the ADK’s
AbstractManagedConnectionFactory for the DBMS sample adapter, the key
createConnectionFactory () and createManagedConnection () methods were
implemented. Overrides for equals (), hashcode (), checkState () were also written to
provide specific behaviors for the databases supported by the DBMS sample adapter.

There are private attributes about which the superclass has no knowledge. When creating your
adapters, you must provide setter/getter methods for these attributes. The abstract
createConnectionFactory () method is implemented to provide an EIS-specific
ConnectionFactory using the input parameters.

Additionally, createManagedConnection () is the main factory method of the class. It checks
to see if the adapter is configured properly before doing anything else. It then implements
methods of the superclass to get a connection and a password credential object. It then attempts
to open a physical database connection; if this succeeds, it instantiates and returns a
ManagedConnectionImpl (the DBMS sample adapter implementation of
ManagedConnection), which is given the physical connection.

Other methods are getter/setter methods for member attributes.

ManagedConnectionimpl

A ManagedConnection instance represents a physical connection to the underlying EIS in a
managed environment. ManagedConnection objects are pooled by the application server. For
more information, read about how the ADK implements the AbstractManagedConnection
instance in “ManagedConnection” on page 6-32.

Basic Implementation

The ADK provides com.bea.adapter.spi.AbstractManagedConnection, an
implementation of the J2EE interface javax.resource.spi.ManagedConnection. The
DBMS sample adapter extends this class in com.bea.adapter.dbms.

Developing Adapters

How the DBMS Sample Adapters Were Developed

spi.ManagedConnectionImpl. Listing E-2 shows the derivation tree for

ManagedConnectionImpl.

Listing E-2 com.bea.adapter.dbms.spi.ManagedConnectionimpl

javax.resource. spi.ManagedConnection

|——>com.bea.adapter.spi.AbstractManagedConnection

|——>com.bea.adapter.dbms.spi.ManagedConnectionImpl

Developers’ Comments

This class is thoroughly documented in the Javadoc comments because the ManagedConnection
is a crucial part of the Java Connector Architecture SPI specification. You should focus on our
implementation of the following methods:

® java.lang.object.getConnection(javax.security.auth.Subject subject,
javax.resource.spi.ConnectionRequestInfo connectionRequestInfo)

® protected void destroyPhysicalConnection(java.lang.Object
objPhysicalConnection)

® protected void destroyConnectionHandle (java.lang.Object objHandle)

® boolean compareCredentials (javax.security.auth.Subject subject,
javax.resource.spi.ConnectionRequestInfo info)
The ping () method is used to check whether a physical database connection (not our
cci.Connection) is still valid. If an exception occurs, ping () is specific about checking the type
so that a connection is not needlessly destroyed.

Other methods are EIS-specific or are simply required setters or getters.

ConnectionMetaDatalmpl

The ManagedConnectionMetaData interface provides information about the underlying EIS
instance associated with a ManagedConnection instance. An application server uses this
information to get run-time information about a connected EIS instance. For more information,
read about how the ADK implements the AbstractConnectionMetaData instance in
“ManagedConnection” on page 6-32.

Developing Adapters E-31

Learning to Develop Adapters Using the DBMS Sample Adapters

E-32

Basic Implementation

The ADK provides com.bea.adapter.spi.AbstractConnectionMetaData, an
implementation of the J2EE interface javax.resource.spi.ManagedConnection MetaData.
The DBMS sample adapter extends this class in com.bea.
adapter.dbms.spi.ConnectionMetaDataImpl. Listing E-3 shows the derivation tree for

ConnectionMetaDataImpl.

Listing E-3 com.bea.adapter.dbms.spi.ConnectionMetaDatalmpl

javax.resource.spi.ManagedConnectionMetaData

| -->com.bea.adapter.spi.AbstractConnectionMetaData

| -->com.bea.adapter.dbms.spi.ConnectionMetaDatalmpl

Developers’ Comments

The ADK’s aAbstractConnectionMetaData class implements the following:
® javax.resource.cci.ConnectionMetaData
® javax.resource.spi.ManagedConnectionMetaData

This implementation of the ConnectionMetaData class uses a DatabaseMetaData object.
Because the ADK’s abstract implementation was used, you must provide EIS-specific knowledge
when implementing the abstract methods in this class.

LocalTransactionimpl

The LocalTransaction interface provides support for transactions that are managed within an
EIS resource manager (that is, transactions that do not require an external transaction manager).
For more information, read about how the ADK implements the AbstractLocalTransaction
instance in “LocalTransaction” on page 6-35.

Basic Implementation

The ADK provides com.bea.adapter.spi.AbstractLocalTransaction, animplementation
of the J2EE interface javax.resource.spi.LocalTransaction. The DBMS sample adapter
extends this class in com.bea.adapter.dbms. spi.LocalTransactionImpl. Listing E-4
shows the derivation tree for LocalTransactionImpl.

Developing Adapters

How the DBMS Sample Adapters Were Developed

Listing E-4 com.bea.adapter.dbms.spi.LocalTransactionimpl

javax.resource.spi.LocalTransaction

| -->com.bea.adapter.spi.AbstractLocalTransaction

| -->com.bea.adapter.dbms.spi.LocalTransactionImpl

Developers’ Comments

This class utilizes the ADK’s abstract superclass which provides logging and event notification.
The superclass implements both the CCI and SPI LocalTransaction interfaces provided by Sun.
The DBMS sample adapter’s concrete class implements the three abstract methods of the
superclass:

® doBeginTx ()
® doCommitTx ()

® doRollbackTx ()

Step 4: Implement the Common Client Interface Package

To implement the DBMS sample adapter Common Client Interface (CCI) and meet the
J2EE-compliant CCI requirements, several classes in the ADK were extended to create the
following concrete classes.

Table E-2 CCI Class Extensions

This concrete class . . . Extends this ADK class . . .
ConnectionImpl AbstractConnection
InteractionImpl AbstractInteraction
InteractionSpecImpl InteractionSpecImpl

These classes provide access back-end systems. The client interface specifies the format of both
the request and response records for a given interaction with the EIS.

Developing Adapters E-33

Learning to Develop Adapters Using the DBMS Sample Adapters

E-34

Note: Although implementation of the CCI is optional in the Java Connector Architecture 1.0
specification, it is likely to be required in the future. For your reference, the DBMS
sample adapter provides a complete implementation.

Connectionlmpl

A connection represents an application-level handle that is used by a client to access an

underlying physical connection. The actual physical connection associated with a Connection
instance is represented by a ManagedConnection instance. For more information, read about
how the ADK implements the AbstractConnection instance in “Connection” on page 6-37.

Basic Implementation

The ADK provides com.bea.adapter.cci.AbstractConnection, an implementation of the
J2EE interface javax.resource.cci.Connection. The DBMS sample adapter extends this
classin com.bea.adapter.dbms.cci.ConnectionImpl. Listing E-5 shows the derivation tree
for ConnectionImpl.

Listing E-5 com.bea.adapter.dbms.cci.Connectionimpl

javax.resource.cci.Connection

| -->com.bea.adapter.cci.AbstractConnection

\ -->com.bea.adapter.dbms.cci.ConnectionImpl

Developers’ Comments

The connectionImpl class is the DBMS sample adapter’s concrete implementation of the
javax.resource.cci.Connection interface. It extends the ADK’s AbstractConnection
class. The actual physical connection associated with a connection instance is represented by a
ManagedConnection instance.

A client gets a connection instance by using the getConnection () method on a
ConnectionFactory instance. A connection can be associated with zero or more interaction
instances. The simplicity of this concrete class is a testament to the power of extending the
ADK’s base classes.

Developing Adapters

How the DBMS Sample Adapters Were Developed

Interactionlmpl

The Interaction instance enables a component to execute EIS functions. An interaction
instance is created from a connection and is required to maintain its association with the
Connection instance. For more information, read about how the ADK implements the
AbstractInteraction instance in “Interaction” on page 6-38.

Basic Implementation

The ADK provides com.bea.adapter.cci.AbstractInteraction, animplementation of the
J2EE interface javax.resource.cci.Interaction. The DBMS sample adapter extends this
class in com.bea.adapter.dbms.cci. InteractionImpl. Listing E-6 shows the derivation
tree for InteractionImpl.

Listing E-6 com.bea.adapter.dbms.cci.Interactionimpl

javax.resource.cci.Interaction

| -->com.bea.adapter.cci.AbstractInteraction

| -->com.bea.adapter.dbms.cci.InteractionImpl

Developers’ Comments

The InteractionImpl class is the concrete implementation of the ADK’s Interaction object.
The methods are EIS-specific implementations of methods required by the Java Connector
Architecture and the ADK.

Both versions of the Java Connector Architecture's
javax.resource.cci.InteractionExecute () method (the central method of this class) were
implemented for the DBMS sample adapter. The main logic for the execute () method includes
the following signature:

public Record execute(InteractionSpec ispec, Record input)

Because this method returns the actual output record from the interaction, it is called more often
than other methods.

The second implementation is provided as a convenience method. This form of execute ()
includes the fOllOWing signature: public boolean execute(InteractionSpec ispec,

Developing Adapters E-35

Learning to Develop Adapters Using the DBMS Sample Adapters

E-36

Record input, Record output).The second implementation’s logic returns a boolean, which
indicates only the success or failure of the interaction.

InteractionSpecimpl

An InteractionSpecImpl holds properties for driving an interaction with an EIS instance. An
InteractionSpec is used by an interaction to execute the specified function on an underlying
EIS.

The CCI specification defines a set of standard properties for an InteractionSpec, but an
InteractionSpec implementation is not required to support a standard property if that property
does not apply to its underlying EIS.

The InteractionSpec implementation class must provide getter and setter methods for each of
its supported properties. The convention followed in the getter and setter methods should be
based on the Java Beans design pattern. For more information, read about how the ADK
implements the InteractionSpecImpl instance in “InteractionSpec” on page 6-49.

Basic Implementation

The ADK provides com.bea.adapter.cci.InteractionSpecImpl, animplementation of the
J2EE interface javax.resource.cci.InteractionSpec. The DBMS sample adapter extends
this class in com.bea.adapter.dbms. cci.InteractionSpecImpl. Listing E-7 shows the
derivation tree for InteractionSpecImpl.

Listing E-7 com.bea.adapter.dbms.cci.InteractionSpecimpl

javax.resource.cci.InteractionSpec

\ -->com.bea.adapter.cci.InteractionSpecImpl

\ -->com.bea.adapter.dbms.cci.InteractionSpecImpl

Developers’ Comments

An implementation class for the InteractionSpec interface is required to implement the
java.io.Serializable interface. InteractionSpec extends the ADK InteractionSpec in
order to add setter and getter methods for the String attribute m_sql. The getter and setter

Developing Adapters

How the DBMS Sample Adapters Were Developed

methods should be based on the Java Beans design pattern, as specified in the Java Connector
Architecture 1.0 specification.

Step 5: Implement the Event Package

This package contains only one class: the DBMS sample adapter EventGeneratoriorker. It
does the work for the event generator for the DBMS sample adapter.

EventGenerator
The EventGenerator class implements the following interfaces:
® com.bea.wlai.event.IEventGenerator

® java.lang.Runnable

Basic Implementation

The DBMS sample adapter event generator extends the ADK’s
AbstractPullEventGenerator because a database cannot push information to the event
generator; you therefore need to pull or poll the database for changes about which you want to be
notified. Listing E-8 shows the derivation tree for EventGenerator.

Listing E-8 EventGenerator

com.bea.adapter.event .AbstractEventGenerator

| -->com.bea.adapter.event .AbstractPullEventGenerator

| -->com.bea.adapter.dbms . event . DbmsEventGeneratorWorker

Developers’ Comments

This concrete implementation of the ADK’s AbstractPullEventGenerator implements the
following abstract methods:

® protected abstract void postEvents (IEventRouter router) throws
Exception

® protected abstract void setupNewTypes (List listOfNewTypes)

® protected abstract void removeDeadTypes (List listOfDeadTypes).

Developing Adapters E-37

Learning to Develop Adapters Using the DBMS Sample Adapters

E-38

It also overrides the following methods:
® void doInit (Map map)

® void doCleanUpOnQuit ().

These methods are EIS-specific: they are used to identify an event within the context of the EIS
while interacting with the database to create and remove event definitions and events.
Additionally, these methods can be used to create and remove triggers on the database that are
activated when an event occurs.

The key method of the class is postEvents (). It creates the IEvent objects of the data taken
from rows in the EVENT table of the database. This method takes an IEventRouter as an
argument. After creating an IEvent using the IEventDefinition object’s
createDefaultEvent () method, the postEvents () method populates the event data
propagates the event to the router by calling router.postEvent (event). Once the event is sent
to the router, the method deletes the relevant rows of event data from the database.

The method setupNewTypes () creates new event definitions, making sure that the appropriate
triggers are created for the database. For each event definition, the method creates a trigger
information object that describes the catalog, schema, table, triggerType, and trigger key
represented by the event definition. A map of trigger keys is maintained so that triggers are not
redundantly added to the database. If the map does not contain the new key, trigger text for the
database is generated.

The method removeDeadTypes () also creates a trigger information object, but this object also
searches for one or more matching event types. All event definitions that match this trigger are
removed from the map, and then the trigger itself is removed from the database.

Step 6: Deploy the DBMS Sample Adapter

After implementing the SPI, CCI, and event interfaces, deploy the adapter by completing the
following steps:

e Step 6a: Set Up Your Environment

e Step 6b: Update the ra.xml File

Step 6c¢: Create the RAR File

Step 6d: Build the JAR and EAR Files

Step 6e: Create and Deploy the EAR File

Developing Adapters

How the DBMS Sample Adapters Were Developed

Step 6a: Set Up Your Environment

Before deploying the adapter in a WebLogic Integration environment, determine the location of
the adapter on your computer. The adapter resides in WLI_HOME/adapters/dbms. You must
replace wLI_HOME with the pathname for the directory in which WebLogic Integration is
installed. We refer to this location as ADAPTER_ROOT.

Step 6b: Update the ra.xml File

The DBMS sample adapter provides the ra.xml file in the adapter’s RAR file
(META-INF/ra.xml). Because the DBMS sample adapter extends the
AbstactManagedConnectionFactory class, the following properties are provided in the

ra.xml file:

LogLevel
LanguageCode
CountryCode
MessageBundleBase
LogConfigFile
RootLogContext

AdditionalLogContext

The DBMS sample adapter also requires the declarations listed in the following table.

Table E-3 ra.xml Properties

Property Example

UserName Username for DBMS sample adapter login
Password Password for username
DataSourceName Name of the JDBC connection pool

You can view the complete ra.xml file for the DBMS sample adapter in:

WLI_HOME/adapters/dbms/src/rar/META-INF/

Developing Adapters E-39

Learning to Develop Adapters Using the DBMS Sample Adapters

E-40

Step 6¢: Create the RAR File

Class files, logging configuration information, and message bundle(s) should be collected in a
JAR file, which should then be bundled, along with META-INF/ra.xml, into a RAR file. The
Ant build.xml file demonstrates how to construct this RAR file properly.

Step 6d: Build the JAR and EAR Files
To build the JAR and EAR files, complete the following procedure:

1. In atext editor, open either antEnv.cmd (Windows) or antEnv. sh (UNIX) in
WLI_HOME/adapters/utils. Assign valid pathnames to the following variables:

— BEA_HOME - The top-level directory for your BEA products.

— WLI_HOME - The location of your Application Integration directory.

JAVA_HOME - The location of your Java Development Kit.

wL_HOME - The location of your WebLogic Server directory.

ANT_HOME - The location of your Ant installation, such as
WLI_HOME/adapters/utils.

2. Execute antEnv from the command line so the new values of the required environment
variables take effect.

3. Go to WLI_HOME/adapters/dbms/project.

4. Execute ant.cmd release (Windows) or ant.sh release (UNIX) from the
WLI_HOME/adapters/dbms/project directory to build the adapter.

Step 6e: Create and Deploy the EAR File

The DBMS sample adapter is displayed by creating and deploying an EAR file. To do so,
complete the following procedure:

1. Declare the adapter’s EAR file in your domain’s config.xml file, as shown in the following
listing.

Listing E-9 Declaring the DBMS Sample Adapter’s EAR File

<!-- This deploys the EAR file -->

Developing Adapters

How the DBMS Sample Adapters Were Developed

<Application Deployed="true" Name="BEA_WLS_DBMS_ADK"
Path="WLI_HOME/adapters/dbms/lib/BEA_WLS_DBMS_ADK.ear">

<ConnectorComponent Name="BEA_WLS_DBMS_ADK" Targets="myserver"
URI="BEA_WLS_DBMS_ADK.rar"/>

<WebAppComponent Name="DbmsEventRouter" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_EventRouter.war"/>

<WebAppComponent Name="BEA_WLS_DBMS_ADK_Web" Targets="myserver"
URI="BEA_WLS_DBMS_ADK_Web.war"/>

</Application>

Note: Replace wr1_zHoME with the pathname of the WebLogic Integration installation
directory for your environment.

2. Open the WebLogic Server Administration Console by entering:

http://host:port/console

In this URL host is the name of your server and port is the port at which your server
listens. For example:

http://localhost:7001/console
3. Inthe WebLogic Server Administration Console:
a. Add the adapter group to the default WebLogic Server security realm.
b. Add a user to the adapter group.
c. Save your changes.

4. To configure and deploy application views, go to:
http://host:port/wlai

In this URL host is the name of your server and port is the port at which your server
listens. For example:

http://localhost:7001/wlai

The Application Integration Design Console Logon page is displayed.

Developing Adapters E-41

Learning to Develop Adapters Using the DBMS Sample Adapters

‘.lf?
WebLogic Integration - Application Integration Design Console Logon ;'Ile-'a
s

Please supply a valid Weblaogic username and passward,

Username |weh|ngic

paSSWDrdliillllll

Login

5. Log on to WebLogic Integration by entering your username and password in the appropriate
fields.

6. Configure and publish your application views by completing the procedures described in
“Defining Application Views” in Using Application Integration.

Database-Specific Error Messages

When using the DBMS sample adapter, you may see database-specific error messages written to
the log file. The section identifies some of the more common database-specific error messages.

From time to time, when using Sybase or MSSQL databases, warnings are issued stating that the
active database and/or language has been changed. These warnings come from the Sybase and
MSSQL databases when the active database or language is changed on a connection. Since the
catalog is changed at various points in the DBMS sample adapter, users of the sample adapter will
inevitably see these messages. These warnings are harmless and can be ignored.

When an adapter instance in an MSSQL XA environment is automatically suspended and
resumed, error messages similar to the following are thrown.

<Oct 15, 2003 4:40:30 PM PDT> <Error> <JDBC> <BEA-001112>

<Test "SELECT COUNT(*) FROM sysobjects" set up for pool "wlaiPool" failed with
exception: "javax.transaction.xa.XAException: [BEA][SQLServer JDBC Driver]

No more data available to read.".>

E-42 Developing Adapters

How the DBMS Sample Adapter Design-Time GUI Was Developed

This is a JDBC-level error, generated as the JDBC container cleans up existing/dead connections
to the restarted DBMS instance. This type of exception is normal in this case; the EIS is available,
the adapter instance is resumed successfully, and the JDBC container recovers.

When using the DBMS sample adapter with a Microsoft SQL Server database, use the WebLogic
Server Administration Console to enable the TestReservedConnection parameter for the

connection pool used for application integration. If the parameter is not enabled, the auto resume
or manual resume features do not work and a SQLException similar to the following is thrown:

java.sdl.SQLException: [BEA][SQLServer JDBC Driver]No more data
available to read

How the DBMS Sample Adapter Design-Time GUI Was Developed

The design-time GUI is an interface that allows a user to create application views, add services
and events, and deploy an adapter that is hosted in a WebLogic Integration environment. This
section explains how the design-time GUI for the DBMS sample adapter was developed:

e Step 1: Identify Requirements

Step 2: Identify Required Java Server Pages

Step 3: Create the Message Bundle

Step 4: Implement the Design-Time GUI

e Step 5: Write Java Server Pages

Step 1: [dentify Requirements

Before development of the design-time GUI for the DBMS was begun, values for the following
parameters needed to be determined:

e Which database(s) will be supported?
e How many levels of browsing will be supported?
e Determine the DBMS schema generation.

e Will the adapter support testing of services and events?

Developing Adapters E-43

Learning to Develop Adapters Using the DBMS Sample Adapters

E-44

Step 2: ldentify Required Java Server Pages

The DBMS sample adapter uses the Java Server Pages (JSPs) delivered with the ADK for a
design-time GUI. Additional JSPs have been added, however, to provide adapter-specific
functionality. The additional JSPs are described in the following table.

Table E-4 Additional ADK JSPs

Filename Description

addevent.jsp The Add Event page allows a user to add a new event to the
application view.

addservice.jsp The Add Service page allows the user to add a new service to the
application view.

browse.jsp The Browse page handles the logic flow and display for the
Browse window of the DBMS sample adapter. Although this
functionality was developed specifically for this adapter, it
illustrates a fairly common interaction between a design-time
interface and an underlying adapter.

The Browse page calls the DesignTimeRequestHandler
(handler) of the DBMS sample adapter, which extends the
ADK’s AbstractDesignTimeRequestHandler. The best
way to understand the browse functionality of the DBMS
sample adapter is to deploy the adapter and use your Web
browser to access the design-time framework.

confconn. jsp The Confirm Connection page provides a form on which a user
can specify connection parameters for the EIS.

testform. jsp The Testform page is included (<jsp:include
page="'testform.jsp'/>)inthe ADK’s testsrvc.jsp
page. It accesses the InteractionSpec for this interaction and
displays the SQL for the service. It then creates a form for
gathering the user input required to test a service.

To create a form, Testform gets the
RequestDocumentDefinition from the handler’s
application view and then passes it, with the . jsp Writer, to a
utility class called
com.bea.adapter.dbms.utils.TestFormBuilder.
This class creates the form.

Developing Adapters

How the DBMS Sample Adapter Design-Time GUI Was Developed

Step 3: Create the Message Bundle

To support the internationalization of all text labels, messages, and exceptions, the DBMS sample
adapter uses a message bundle based on a text property file. The property file includes both
name-value pairs copied from the BEA_WLS_SAMPLE_ADK property file, and new entries, added
for properties specific to the DBMS sample adapter.

The message bundle for the DBMS sample adapter resides in the
WLI_HOME/adapters/dbms/src directory, which was installed with the ADK. For details, see
the BEA_WLS_DBMS_ADK.properties file in the same directory.

For additional instructions on creating a message bundle, see the JavaSoft tutorial on
internationalization at:

http://java.sun.com/docs/books/tutorial/il8n/index.html

Step 4: Implement the Design-Time GUI

To implement the design-time GUI, you need to create a DesignTimeRequestHandler class.
This class accepts user input from a form and provides methods to perform a design-time action.
For more information about the DesignTimeRequestHandler, see “Step 4: Implement the
Design-Time GUI” on page 9-26.

The DBMS sample adapter public class DesignTimeRequestHandler extends
AbstractDesignTimeRequestHandler, and it provides the methods shown in the following
table.

Table E-5 Methods for the DBMS Sample Adapter Design-Time GUI

Method

Description

browse (java.lang.String dbtype,
com.bea.connector.DocumentRecord
input)

Handles the back-end behavior for the Browse
functionality of the addevent . jsp and
addservc. jsp pages.

getAdapterLogicalName ()

Returns the adapter’s logical name and helps the parent
class when entities such as application views are
deployed.

getManagedConnectionFactoryClass ()

Returns the adapter’s SPI
ManagedConnectionFactory implementation class,
which is then used by a parent class to get a CCI
connection to the EIS.

Developing Adapters E-45

Learning to Develop Adapters Using the DBMS Sample Adapters

Tahle E-5 Methods for the DBMS Sample Adapter Design-Time GUI (Continued)

Method

Description

supportsServiceTest ()

Indicates that this adapter supports the testing of services
at design time.

initServiceDescriptor (ActionResult
result, IServiceDescriptor sd,
HttpServletRequest request)

Initializes a service descriptor, which involves creating
the request and response schemas for a service. A typical
approach is to execute an Interaction against the EIS to
retrieve metadata and then transform that metadata into an
XML schema.

Consequently, the CCI interface provided by the adapter
was used. This method is called from the addsrvc
method of the
AbstractDesignTimeRequestHandler.

initEventDescriptor (ActionResult
result, IEventDescriptor ed,
HttpServletRequest request)

Initializes an event descriptor. The event descriptor
provides information about an event on an application
view. Subclasses must supply an implementation of this
method.

If events are not supported, then the implementation
should throw an UnsupportedOperationException. This
method is not called (by the
AbstractDesignTimeRequestHandler) until the
name and definition of the event have been validated and
it is confirmed that the event does not already exist for the
application view.

GetDatabaseType ()

Used to determine the type of database management
system being used. WebLogic Integration supports
PointBase and Oracle.

E-46 Developing Adapters

How the DBMS Sample Adapter Design-Time GUI Was Developed

Step 5: Write Java Server Pages

Consider incorporating the following practices into your development process:
e Use Custom JSP Tags
e Save an Object’s State

e Write the WEB-INF/web.xml Deployment Descriptor

Use Custom JSP Tags

Because the Java Server Pages (JSPs) are displayed on the display.jsp page, display.jspis
the first . jsp file that needs to be written. The ADK provides a library of custom JSP tags, which
are used extensively throughout the Java server pages of the ADK and DBMS sample adapter.
These tags support numerous features, such as the ability to add validation and to save a value
entered in a field when the user clicks a button.

Save an Object’s State

While writing the JSPs, with the ADK, for your adapter, you may need to save an object’s state.
You can do so in any of a number of ways. The AbstractDesignTimeRequestHandler

maintains an ApplicationviewDescriptor of the application view being edited. This [file?] is
often the best place in which to save state; calls to the handler from this file are fast and efficient.

As an alternative, you can request a Manager Bean from the
AbstractDesignTimeRequestHandler,uﬁngﬂsconvmﬁencenkﬁhods
(getApplicationViewManager (), getSchemaManager (), and getNamespaceManager ())to
retrieve information from the repository about an application view. This method is more
time-consuming but, occasionally, it may be necessary. Because it is a JSP, you can also use the
session object, although everything put in the session must explicitly implement the
java.io.serializable interface.

Write the WEB-INF/web.xml Deployment Descriptor

Write the WEB-INF/web.xml deployment descriptor. In most cases, you should use the adapter’s
web.xml file as a starting point and modify components as necessary. To see the web.xml file
for this adapter, go to:

WLI_HOME/adapters/dbms/src/war/WEB-INF/web.xml
For detailed information, see the BEA WebLogic Server product documentation at:

http://edocs.bea.com

Developing Adapters E-41

Learning to Develop Adapters Using the DBMS Sample Adapters

Run-Time Considerations

E-48

You can manage your application integration run-time environment using the WebLogic
Integration Administration Console. For more information, see “Application Integration” in
Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/ai.html

The following sections describe administration issues specific to the DBMS sample adapter.

Changing Event Connections

Please consider the following when modifying the EventSchema parameter of the event
connection for DBMS sample adapter instances:

o Ensure that the new event schema has all the required event staging tables. You can run
evnt .sql to ensure that this is the case. The location for evnt.sql is as follows:

WLI_HOME\adapters\dbms\sqgl\database_type

where WLI_HOME is the WebLogic Integration installation directory and database_type
is the directory for the database you are using.

Note: In WebLogic Integration 8.1 Service Pack 3 or later, you must run both evnt. sql
and evnt_trigger.sql if your database type is Oracle.

e Ensure that the user for the source schema has insert privileges on the event schema’s
event staging tables. Consult your database documentation for instructions on granting
insert privileges to users.

For example, if userl owns the schema user1 that contains CUSTOMER_TABLE, the
trigger on CUSTOMER_TABLE tries to insert event data into the staging tables in the
user2 schema. Make sure userl has insert privileges on the event staging tables in user2’s
schema.

Note: You may need to redeploy servers if there is a change in the database instance used by
the JDBC connection pool for the application integration event.

The schema name/table owner associated with an event trigger retains the information provided
at design time. When you edit the event connection from the WebLogic Integration
Administration Console, you point to a new connection setting for the event tables; any event
metadata is associated with the new connection after the application is redeployed from the
WebLogic Integration Administration Console. The event trigger still points to the old schema
name.

Developing Adapters

http://edocs.bea.com/wli/docs81/manage/ai.html

Run-Time Considerations

When changing event connections to a new database, you must ensure that the new database has
a schema and a table with the same name as the previous settings. The new table is used for
triggering events.

You can point the event trigger to the new schema/table name using environment variables. Note
that the old trigger is not deleted and that the adapter instance must be redeployed. To delete the
old trigger, redeploy the application from the WebLogic Server Administration Console. The
environment variable for the schema name is capable of changing the schema name/table owner
where the trigger polls.

It is good practice to limit events to one per table in the database. This avoids multiple event
pollers attempting to access one table.

Administering a DBMS Sample Adapter Instance Used by
Multiple Application Views

Please consider the following when setting up DBMS sample adapter instances used by multiple
application views. Only one adapter instance should be used for all application views needing an
event for a given table/trigger type. If you have two application views that each depend on
CUSTOMER_TABLE inserts, make sure they both use the same adapter instance. This is because the
event generator for the adapter instance deletes the insert trigger from CUSTOMER_TABLE when
all its event subscriptions are undeployed. If Appviewl uses adapter_instance_1 and is
undeployed, adapter_instance_1 deletes the insert trigger for CUSTOMER_TABLE. If
AppView2, which also needs CUSTOMER_TABLE inserts, uses adapter_instance_2, it will be
starved of events because adapter_instance_1 previously deleted the trigger. If Appview?2
uses adapter_instance_1, adapter_instance_1 knows that Appview?2 still needs the
CUSTOMER_TABLE insert event and does not delete the trigger even if Appviewl is undeployed.

Multiple Event Generators Using the Same DBMS Instance

You can distribute event generators among nodes in a WebLogic Integration cluster. This
improves load balancing and fault tolerance of event generation. For an example of multiple
event generators using the same DBMS instance, see “Example: DBMS Sample Adapter” on
page 7-25.

You must set event generator targets when in a clustered environment. A blank target (" ") does
not trigger events on any node in the cluster. (In a single node environment, no entry is needed;
a blank event generator target value kicks off events for the one server.)

Developing Adapters E-49

Learning to Develop Adapters Using the DBMS Sample Adapters

E-50 Developing Adapters

Index

A

abstract base class 2-2
AbstractConnection 6-37
AbstractConnectionFactory A-2
AbstractConnectionMetaData A-2
AbstractDesignTimeRequestHandler 9-26, 9-28,
9-32
AbstractDocumentRecordInteraction 6-45
AbstractInputTagSupport 9-5
AbstractInteraction 6-38
AbstractLocalTransaction 6-35
AbstractManagedConnection 6-34, 6-37, A-2
AbstractManagedConnectionFactory A-2
AbstractManagedConnectionMetaData 6-33,
6-34
AbstractPullEventGenerator 7-10, 7-12, 7-13
AbstractPushEventGenerator 7-12
ActionResult 9-4
adapter 1-6

event 1-7

service 1-7
adapter logical name 2-5, 4-4, 5-2, 7-7, A-2
Adapter Setup Worksheet 7-5
adapter setup worksheet 4-1
adapter, deploying 2-8
addevent.jsp 9-32
addservc 9-28
addservc.jsp 9-34
ADK 1-2
ADK tag library 9-33, 9-34
adk-eventgenerator.jar 7-10, 7-11
Ant 3-3, 3-4, 4-5, 6-54, 7-7, 9-24

why use 3-4

ant release 4-6

ANT_HOME 4-5, E-40

antEnv.cmd 4-5

antEnv.sh 4-5, 4-6

Apache Project 2-4, 5-2, 7-8

Apache Software Foundation 5-2

appender 5-5, 5-8

Application Integration Design Console 1-3
application view 1-6, 1-7, 2-3, 9-1, 9-26, 9-32
application view descriptor 9-26
application view security 9-26

Application View Summary page 9-26
assertion checking 6-37

avaScript library 2-2

BEA_HOME 4-5, E-40
build.xml 6-54

C

category

ancestor 5-3

assigning a priority to 5-5

child 5-3

naming 5-4

parent 5-3

properties 5-3

referring to multiple appenders 5-5

root 5-4
CCI 6-34, 6-36, 6-40, 6-41, 6-48, 6-49, 6-50,
6-51, 6-52, 6-55, 6-56, 9-26, 9-29
chmod u+x ant 4-5

Developing Adapters Index-1

classes

abstract 3-1
com.bea.adapter.cci.Abstract
DocumentRecordInteraction 6-52
com.bea.adapter.cci.AbstractDocumentRecordIn
teraction 6-45
com.bea.adapter.cci.AbstractInteraction 6-45
com.bea.adapter.cci.DesignTimelnteractionSpec
Impl 6-46
com.bea.adapter.cci.DocumentDefinitionRecord
6-45
com.bea.adapter.cci.ServicelnteractionSpecImpl
6-45
com.bea.adapter.event 7-11
com.bea.adapter.spi. AbstractConnectionMetaDa
ta 6-48
com.bea.adapter.spi.ConnectionEventLogger
6-34
com.bea.adapter.spi.NonManagedConnectionEv
entListener 6-34
com.bea.adapter.spi.NonManagedConnectionM
anager 6-35
com.bea.adapter.test. TestHarness 6-54
com.bea.connector.DocumentRecord 6-41
com.bea.document.IDocument 6-41, 6-42, B-2
com.bea.web.ActionResult 9-4
com.bea.web.ControllerServlet 9-4
com.bea.web.RequestHandler 9-3
com.bea.web.tag. AbstractlnputTagSupport 9-5
com.bea.web.tag.IntegerTagSupport 9-6
com.bea.web.validation.IntegerWord 9-6, 9-7
com.bea.web.validation.Word 9-4, 9-5, 9-6
Common Client Interface
confconn.jsp 9-26, 9-29
config.xml 4-6
Connection 6-36, 6-37
connection 6-38

event 1-5
ConnectionEventListener 6-34
ConnectionFactory 6-47
ConnectionFactory.getMetaData 6-52

Index-2 Developing Adapters

ConnectionFactorylmpl 6-47
ConnectionManager 6-34, 6-35, A-2
ConnectionMetaData 6-48
ConnectionRequestInfo 6-35

ConnectionSpec 6-48

ControllerServlet 9-4, 9-5, 9-6, 9-7, 9-29, 9-30,
9-33,9-34

Creating a Custom Development Environment
4-1

Data Extraction 7-10
data transformation 7-9, 7-18
DbmsEventGeneratorWorker.java 7-16
deployment helper 1-6, 2-2
design time 2-1, 9-27

GUI 1-6
designtime

GUI 1-6
design-time GUI 1-1
DesignTimeHelper 1-6
DesignTimelnteractionSpecImpl 6-46
DesignTimeRequestHandler 9-26
Developing an Event Adapter 7-1, 8-1
display.jsp 9-40, 9-41
DisplayPage 9-31
Document Object Mode
DocumentDefinitionRecord 6-45
DocumentRecord 6-41, 6-45
DocumentRecordInteraction 6-45
DOM 5-2, 6-42, B-2

E

EAR file 2-8, 2-9

EAR files 2-9

Enterprise Adapter Archive file 2-8
enterprise information system (EIS) 1-4
Enterprise Java Beans (EJB) 1-5
error.jsp 9-40

event connection 1-3

Event Generator 7-9, 7-10, 7-12
event generator 2-2, 7-9

event listener 6-33

event router 6-55
EventGenerator 7-14, 7-18
EventMetaData 7-12
EventRouter 7-9, 7-15
exception handling 6-35
ExecutionTimeout 6-49

F

form processing 9-2
classes 9-3
prerequisites 9-6
sequence 9-5
framework 1-2
designtime 1-2, 1-6, 3-4, 9-1
logging 1-2, 2-2, 2-4, 2-5, 5-1, 5-3, 6-33,
6-34, 6-37, 6-38, 6-47
packaging 1-2, 1-7
runtime 1-2, 2-1, 2-2
FunctionName 6-49

G

GenerateAdapterTemplate 3-2, 3-3,4-1,5-2,7-7,
A-2

GenerateAdapterTemplate.cmd 4-2
GenerateAdapterTemplate.sh 4-2

GUI 1-1

118N 5-13

IDocument 3-4, 6-41, 6-42, 7-13, B-2, B-3
IDocumentDefinition 6-45
IEventDefinition 7-9, 7-10, 7-13

ILogger 5-4

IndexedRecord 6-51

installer 4-5

Interaction 6-36, 6-38, 6-46

interaction 6-38

InteractionSpec 6-38, 6-39, 6-45, 6-49
InteractionSpecImpl 6-50
InteractionVerb 6-49
internationalization 7-8, 9-4
IPushHandler 7-12

J

Jakarta project 7-8

JAR file 2-9

Java 2-5

Java exception 9-2, 9-40

Java package base name 4-4

Java Reflection 9-8, 9-32

Java Server Page. see JSP
java.io.Serializable 6-47

java.util. Map 6-35

JAVA_HOME 4-5, E-40

JavaBean 6-48

Javadoc 3-3, 4-6

JavaScript library 1-6
javax.resource.cci.Connection 6-37
javax.resource.cci.ConnectionFactory 6-47
javax.resource.cci.ConnectionMetaData 6-33,
6-48

javax.resource.cci.ConnectionSpec 6-48
javax.resource.cci.Interaction 6-38, 6-46
javax.resource.cci.InteractionSpec 6-49, 6-50
javax.resource.cci.LocalTransaction 6-50
javax.resource.cci.Record 6-41, 6-51, 6-52
javax.resource.cci.ResourceAdapterMetaData
6-52

javax.resource.Referenceableinterfaces 6-47
javax.resource.spi 6-23, 6-50
javax.resource.spi.ConnectionEventListener
6-34

javax.resource.spi.ConnectionManager 6-34,
6-35
javax.resource.spi.ConnectionRequestInfo 6-35
javax.resource.spi.LocalTransaction 6-35

Developing Adapters Index-3

javax.resource.spi.ManagedConnection 6-34
javax.resource.spi.ManagedConnectionMetaDat
a 6-33

JNDI 6-47

JSP 1-6, 2-2,9-1, 9-6, 9-8, 9-28, 9-30, 9-40, 9-41
JSP template 1-6

JSP templates 2-2

JUnit 6-54

junit.framework.TestCase 6-54
junit.framework.TestSuite 6-54

L

L10N 5-13
label, displaying for a form field 9-31, 9-33, 9-35
local transaction 6-50
localization 6-23, 7-8, 9-4, 9-5
LocalTransaction 6-35, 6-50
log categories 2-5
Log4j 2-4,5-2
log4j 5-2,7-8
LogConfigFile 9-31
Logging 2-4, 5-1
logging 5-2, 7-8
appender 5-2
appenders 5-5
AUDIT 5-4
categories 5-2, 5-3
category 7-8
concepts 5-2
DEBUG 5-4
ERROR 5-4
INFO 5-4
internationalization 2-5, 5-1, 5-2, 5-4, 9-4
localization 2-4, 2-5, 5-1, 5-4, 9-4
message layout 5-3
priorities 5-4
priority 5-2, 5-4
WARN 5-4
logging configuration file 5-2
logging toolkit 2-4, 5-2

Index-4 Developing Adapters

M

main.jsp 9-40

ManagedConnection 6-24, 6-33, 6-34, 6-37
ManagedConnectionFactory 6-24, 6-55, 9-27,
9-29, 9-32

ManagedConnectionImpl 6-33
ManagedConnectionMetaData 6-24, 6-33
ManagedConnectionMetaDatalmpl 6-34
manifest 6-11

manifest file 6-11

MappedRecord 6-51

Message Bundle 6-23, 7-8

message bundle 2-5, 6-23, 9-33

message bundles 9-31

MessageBundleBase 9-31

metadata 3-4, 6-34, 6-36, 6-41, B-3

namespace 6-47
NDC 5-13
NonManagedScenarioTestCase 6-55

0

overview.html 4-6

P

package format 4-4

PatternLayout 5-6

priority 5-4

pull data extraction 7-9, 7-10, 7-13
push data extraction 7-9, 7-10, 7-13
PushEvent 7-12, 7-13

R

ra.xml 9-31

RAR file 2-8, 2-9
Record 6-38, 6-49, 6-51
RecordImpl 6-52

Request Document Definition 6-40
RequestHandler 9-3, 9-4, 9-5, 9-6, 9-8, 9-29,
9-30,9-33

RequestHandlerClass 9-31

resource adapter, see adapter
ResourceAdapterMetaData 6-52
ResourceAdapterMetaDatalmpl 6-52
Response Document Definition 6-40
RootLogContext 9-31

Runtime 2-1

runtime 2-5, 9-41

run-time engine 2-2

S

Sample Adapter 3-1
sample adapter 3-1, 3-3, 4-1, 6-34
sample.client. ApplicationViewClient 6-56
sample.event. EventGenerator 3-3
sample.event.OfflineEventGeneratorTestCase
6-55
sample.spi.ConnectionMetaDatalmpl 3-3
sample.spi.ManagedConnectionFactoryImpl 3-2
sample.spi.ManagedConnectionImpl 3-2
sample.spi.NonManagedScenarioTestCase 6-55
sample.spi.ResourceAdapterImpl 3-3
sample.web.DesignTimeRequestHandler 3-3
Schema Object Model
see CCI
see DOM
see SOM
see SPI
service

synchronous 1-4
service connection 1-3
service descriptor 9-28
Service Provider Interface
SOM 3-4
SPI 6-34, 6-36, 6-55, 6-56, 9-27, A-2
State management 6-37

submit button, displaying on a form 9-31, 9-33,
9-35

T

tag library 2-2

test harness 7-32

test.properties 6-54, 6-55

TestSuite 6-54

text field, displaying size 9-31, 9-33, 9-35
transaction, local A-2

transaction, XA A-2

u

Unique Business Name 6-40

v

validation 9-2
validator 9-4

w

WAR file 2-8

web application 2-3, 3-4, 9-2, 9-30
web application descriptor 2-3
web.xml 2-3, 7-15, 9-4, 9-30, 9-33, 9-41
WebLogic 6.0 5-2

WebLogic Integation A-2
WebLogic Server 5-5, A-2
WebLogic Server 6.0 A-2
WL_HOME 4-5, E-40
WLAI_HOME E-40

WLI_HOME 4-5

Word 9-4, 9-7

X

XA transaction A-2
XCCI 6-40, 6-44
design pattern 6-46

Developing Adapters Index-5

DocumentRecords 6-40
Services 6-40
XERCES 5-2
XML 2-3
document 6-42, 7-18, B-2
request document 1-5
schema 1-5, 2-3, 3-4, 6-46, 7-2, 7-5, 7-18,
B-3
XML Tools 3-4
XPath 6-42, B-2

Index-6 Developing Adapters

	Introduction to the ADK
	Section Objectives
	What Is the ADK?
	Requirements for Adapter Development
	What the ADK Provides

	What Are Adapters?
	ResourceAdapter Interface
	Service Connections
	Event Connections
	J2EE-Compliant Adapters Not Exclusive to WebLogic Integration

	Design-Time GUI
	Application Views

	Packaging Framework
	Before You Begin

	Basic Development Concepts
	Run Time Versus Design Time
	Run-Time Framework
	Design-Time Framework

	Events and Services
	What Are Events?
	What Are Services?

	How Adapters Use Logging
	Logging Toolkit
	Logging Framework
	Internationalization and Localization

	Adapter Logical Name
	Where the Adapter Logical Name Is Used
	Use of Adapter Logical Name in Adapter Deployment
	Adapter Logical Name Used as an Organizing Principle
	Adapter Logical Name Used as the Return Value for getAdapterLogicalName

	Enterprise Archive (EAR) Files

	Development Tools
	Sample Adapter
	Why Use the Sample Adapter?
	What Is In the Sample Adapter?

	GenerateAdapterTemplate Utility
	ADK Javadoc
	Ant-Based Build Process
	Why Use Ant?

	XML Tools

	Creating a Custom Development Environment
	Adapter Setup Worksheet
	Using GenerateAdapterTemplate
	Step 1. Execute GenerateAdapterTemplate
	Step 2. Rebuild the Tree
	Step 3. Test the Adapter
	Step 4. Deploy the Adapter to WebLogic Integration

	Using the Logging Toolkit
	Logging Toolkit
	Logging Configuration File
	Logging Concepts
	Message Categories
	Message Priority
	Assigning a Priority to a Category

	Message Appenders
	Message Layout
	Putting the Components Together

	How to Set Up Logging
	Logging Framework Classes
	com.bea.logging.ILogger
	com.bea.logging.LogContext
	com.bea.logging.LogManager

	Internationalization and Localization of Log Messages
	Saving Contextual Information in a Multithreaded Component

	Developing a Service Adapter
	J2EE-Compliant Adapters Not Specific to WebLogic Integration
	Service Connections in a Run-Time Environment
	Flow of Events
	Step 1: Research Your Environment Requirements
	Step 2: Configure the Development Environment
	Step 2a: Set Up the Directory Structure
	The web.xml and weblogic.xml Descriptor Files
	Creating A Development Tree Within the Directory Structure

	Step 2b: Assign the Adapter Logical Name
	Step 2c: Set Up the Build Process
	Manifest File
	build.xml Components

	Step 2d: Create the Message Bundle

	Step 3: Implement the SPI
	Basic SPI Implementation
	ManagedConnectionFactory
	Transaction Demarcation
	ADK Implementations
	AbstractManagedConnectionFactory Properties Required at Deployment

	ManagedConnection
	ADK Implementation

	ManagedConnectionMetaData
	ADK Implementation

	ConnectionEventListener
	ADK Implementation

	ConnectionManager
	ADK Implementation

	ConnectionRequestInfo
	ADK Implementation

	LocalTransaction
	ADK Implementation

	Step 4: Implement the CCI
	How to Use This Section
	Basic CCI Implementation
	Connection
	ADK Implementation

	Interaction
	ADK Implementation

	Using XCCI to Implement the CCI
	Services
	DocumentRecord
	IDocument
	Proper Use of Namespaces in IDocument Instances
	ADK-Supplied XCCI Classes
	XCCI Design Pattern

	Using NonXML J2EE-Compliant Adapters
	ConnectionFactory
	ADK Implementation

	ConnectionMetaData
	ADK Implementation

	ConnectionSpec
	ADK Implementation

	InteractionSpec
	ADK Implementation

	LocalTransaction
	Record
	ADK Implementation

	ResourceAdapterMetaData
	ADK Implementation

	Step 5: Enable Environment Variable Support (Optional)
	Implementing ClientDataInteractionSpec
	Extending DocumentInteractionSpecImpl

	Step 6: Test the Adapter
	Using the Test Harness
	Test Case Extensions Provided by the ADK
	sample.spi.NonManagedScenarioTestCase
	sample.event.OfflineEventGeneratorTestCase
	sample.client.ApplicationViewClient

	Step 7: Deploy the Adapter

	Developing an Event Adapter
	Introduction to Event Connections
	Event Adapters in a Run-Time Environment
	Flow of Events
	Step 1: Define the Adapter
	Step 2: Configure the Development Environment
	Step 2a: Set Up the File Structure
	Step 2b: Assign a Logical Name to the Adapter
	Step 2c: Set Up the Build Process
	Step 2d: Create the Message Bundle
	Step 2e: Configure Logging
	Create an Event Generation Logging Category

	Step 3: Implement the Adapter
	Step 3a: Create an Event Generator
	How the Data Extraction Mechanism Is Implemented
	How the Event Generator Is Implemented

	Step 3b: Implement the Data Transformation Method
	Step 3c: Implement Suspend/Resume Support
	Step 3d: Implement Event Generator and EIS Status Reporting
	Step 3e: Implement Event Generator Instance Support
	Example: DBMS Sample Adapter
	Why Implement Event Generator Instance Support?
	Detecting and Responding to Changes in Event Generator Instance Specifications

	Step 3f: Implement Environment Variable Support

	Step 4: Test the Adapter
	Step 5. Deploy the Adapter

	Developing a Resource Adapter
	Introduction to Resource Adapters
	Resource Adapters in a Run-Time Environment
	Step 1: Define the Adapter
	Step 2: Configure the Development Environment
	Step 2a: Set Up the File Structure
	Step 2b: Assign a Logical Name to the Adapter
	Step 2c: Set Up the Build Process
	Step 2d: Create the Message Bundle
	Step 2e: Configure Logging
	Create an Event Generation Logging Category

	Step 3: Implement the Adapter
	Step 3a: Create a Resource Adapter
	Step 3b: Implement the Resource Adapter Properties

	Step 4: Implement the Event and Service Adapters
	Step 5. Deploy the Adapter

	Developing a Design-Time GUI
	Introduction to Design-Time Form Processing
	Form Processing Classes
	RequestHandler
	ControllerServlet
	ActionResult
	Word and Its Descendants
	AbstractInputTagSupport and Its Descendants

	Form Processing Sequence
	Prerequisites
	Steps in the Sequence

	Design-Time Features
	Java Server Pages
	JSP Templates
	ADK Library of JSP Tags
	JSP Tag Attributes

	The Application View

	File Structure
	Flow of Events
	Step 1: Defining the Design-Time GUI Requirements
	Step 2: Defining the Page Flow
	Page 1: Logging In
	Page 2. Managing Application Views
	Page 3: Defining the New Application View
	Page 4: Configuring the Connection
	Page 5: Administering the Application View
	Page 6: Adding an Event
	Page 7: Adding a Service
	Page 8: Testing an Application View
	Publishing an Application View
	Saving an Application View

	Page 9: Summarizing an Application View

	Step 3: Configuring the Development Environment
	Step 3a: Create the Message Bundle
	Step 3b: Configure the Environment to Update JSPs Without Restarting WebLogic Server

	Step 4: Implement the Design-Time GUI
	Extend AbstractDesignTimeRequestHandler
	Methods to Include

	Step 4a. Supply the ManagedConnectionFactory Class
	Step 4b. Implement initServiceDescriptor()
	Step 4c. Implement initEventDescriptor()

	Step 5: Write the HTML Forms
	Step 5a: Create the confconn.jsp Form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Implementing confconn()

	Step 5b: Create the addevent.jsp form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Adding Additional Fields

	Step 5c: Create the addservc.jsp form
	Including the ADK Tag Library
	Posting the ControllerServlet
	Displaying the Label for the Form Field
	Displaying the Text Field Size
	Displaying a Submit Button on the Form
	Adding Additional Fields

	Step 5d: Implement Editing Capability for Events and Services (optional)
	Update the Adapter Properties File
	Create edtservc.jsp and addservc.jsp
	Implement Methods

	Step 5e: Write the Web Application Deployment Descriptors

	Step 6. Implement the Look and Feel
	Step 7. Implement Environment Variables
	Step 7a – Displaying/Editing the Variable Set
	Step 7b – Using the Variable Set

	Step 8. Test the Sample Adapter Design-Time Interface
	Files and Classes
	Run the Tests

	Deploying Adapters
	Using Enterprise Archive (EAR) Files
	Using Shared JAR Files in an EAR File
	EAR File Deployment Descriptor

	Deploying Adapters Using the WebLogic Server Administration Console
	Adapter Auto-registration
	Using a Naming Convention
	Using a Text File

	Editing Web Application Deployment Descriptors
	Deployment Parameters
	Editing the Deployment Descriptors

	Deploying Adapters in a WebLogic Integration Cluster
	Redeploying Adapter Instances

	Creating an Adapter Not Specific to WebLogic Integration
	Using This Section
	Building the Adapter
	Updating the Build Process

	XML Toolkit
	Toolkit Packages
	IDocument
	Schema Object Model (SOM)
	How SOM Works
	Creating the Schema
	Resulting Schema
	Validating an XML Document
	How the Document Is Validated
	Implementing isValid()
	isValid() Sample Implementation

	Adapter Setup Worksheet
	Adapter Setup Worksheet

	Upgrading Adapters to WebLogic Integration 8.1
	Learning to Develop Adapters Using the DBMS Sample Adapters
	Introduction to the DBMS Sample Adapters
	Connection Parameters for DBMS Sample Adapters
	How the DBMS Sample Adapters Work
	Before You Begin
	Accessing the DBMS Sample Adapter
	Tour of the DBMS Sample Adapter

	How the DBMS Sample Adapters Were Developed
	Step 1: Learn About the DBMS Sample Adapters
	Step 2: Define Your Environment
	Step 3: Implement the Server Provider Interface Package
	ManagedConnectionFactoryImpl
	ManagedConnectionImpl
	ConnectionMetaDataImpl
	LocalTransactionImpl

	Step 4: Implement the Common Client Interface Package
	ConnectionImpl
	InteractionImpl
	InteractionSpecImpl

	Step 5: Implement the Event Package
	EventGenerator

	Step 6: Deploy the DBMS Sample Adapter
	Step 6a: Set Up Your Environment
	Step 6b: Update the ra.xml File
	Step 6c: Create the RAR File
	Step 6d: Build the JAR and EAR Files
	Step 6e: Create and Deploy the EAR File

	Database-Specific Error Messages
	How the DBMS Sample Adapter Design-Time GUI Was Developed
	Step 1: Identify Requirements
	Step 2: Identify Required Java Server Pages
	Step 3: Create the Message Bundle
	Step 4: Implement the Design-Time GUI
	Step 5: Write Java Server Pages
	Use Custom JSP Tags
	Save an Object’s State
	Write the WEB-INF/web.xml Deployment Descriptor

	Run-Time Considerations
	Changing Event Connections
	Administering a DBMS Sample Adapter Instance Used by Multiple Application Views
	Multiple Event Generators Using the Same DBMS Instance

	Index

