
BEA
 WebLogic
Integration�

Deploying BEA WebLogic
Integration Solutions
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Deploying BEA WebLogic Integration Solutions

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
Overview Documents for WebLogic Integration .. xi
What You Need to Know .. xiii
How to Print this Document .. xiii
Related Information... xiv
Contact Us! .. xiv
Documentation Conventions ...xv

1. Introduction
Deployment Goals ... 1-1
Key Deployment Tasks ... 1-2
Roles in Integration Solution Deployment .. 1-3

Deployment Specialists .. 1-3
WebLogic Server Administrators... 1-3
Database Administrators .. 1-4

Deployment Architecture .. 1-4
Key Deployment Resources .. 1-5

WebLogic Server Resources .. 1-5
Clustering .. 1-6
Java Message Service.. 1-6
EJB Pooling and Caching ... 1-6
JDBC Connection Pools.. 1-7
Execution Thread Pool.. 1-8
J2EE Connector Architecture.. 1-8

Business Process Management Resources ... 1-9
Overview of BPM Resources.. 1-10
Types of BPM Resources.. 1-10
BPM Work Sequence.. 1-13
Deploying BEA WebLogic Integration Solutions iii

B2B Integration Resources... 1-15
Application Integration Resources ... 1-15

Synchronous Service Invocations ... 1-16
Asynchronous Service Invocations ... 1-17
Events .. 1-19
Application Views and Connection Factories 1-23

Relational Database Management System Resources.............................. 1-24
Hardware, Operating System, and Network Resources 1-25

2. Understanding WebLogic Integration Clusters
Understanding WebLogic Integration Clusters ... 2-1
Designing a Clustered Deployment ... 2-3

Introducing WebLogic Integration Domains.. 2-3
Creating Domains.. 2-3
Clustered Servers... 2-4
Note About Cluster and Management Domains 2-4

Deploying WebLogic Integration Resources ... 2-4
Clusterable Resources ... 2-5
Two-Phase Deployment of WebLogic Integration 2-10
Distribution Guidelines ... 2-10
Deployment Order in WebLogic Integration Application 2-12
Deploying The Default Web Application ... 2-12
 Note About Administration Servers... 2-14

Load Balancing in a WebLogic Integration Cluster .. 2-15
Load Balancing WebLogic Server Functions in a Cluster 2-15
Load Balancing BPM Functions in a Cluster ... 2-15

Event Queues and Associated Pools ... 2-16
Creating New Pools... 2-17
Requirements for Load Balancing BPM Functionality..................... 2-18
Timed Events... 2-18

Load Balancing Application Integration Functions in a Cluster 2-19
Load Balancing B2B Integration Functions in a Cluster.......................... 2-20

High Availability in a WebLogic Integration Cluster 2-21
Highly Available JMS .. 2-21

 High Availability for Asynchronous Service Requests.................... 2-22
iv Deploying BEA WebLogic Integration Solutions

High Availability for Event Forwarding... 2-22
Understanding JMS Resources.. 2-23

JMS Connection Factories .. 2-23
JMS JDBC Stores.. 2-25
JMS Servers and JMS Destinations .. 2-25
Creating a Store and Associating It with a Connection Pool 2-29
Creating a JMS Server and Associating It with the Store................. 2-30

Deploying Adapters... 2-30

3. Configuring a Clustered Deployment
Step 1. Comply with Configuration Prerequisites... 3-2

Setting the wlai.clusterFrontEndHostAndPort Property (Optional) 3-5
Why Set the wlai.clusterFrontEndHostAndPort Property?................. 3-5
How to Set the wlai.clusterFrontEndHostAndPort Property 3-6

Step 2. Create a WebLogic Integration Domain ... 3-7
Step 3. Configure the Database for Your Domain .. 3-9
Step 4. Configure BPM Resources for One Managed Server 3-11

Edit the Configuration File... 3-11
Use the WebLogic Server Administration Console 3-12

Configure BPM Master EJB for One Managed Server..................... 3-12
Configure BPM Event Topic for One Managed Server.................... 3-14

Step 5. Configure Event Router WAR File for Adapters................................ 3-15
Using the Administration Console ... 3-16
Using the config.xml File... 3-16

Step 6. Configure an RDBMS Realm.. 3-17
Step 7. Configure a Router .. 3-18
Step 8. Edit the startWeblogic Command File .. 3-20
Step 9. Set Up Managed Servers for Your Domain .. 3-21

Add a Managed Server to an Existing Installation................................... 3-21
Step 1. Create a New Managed Server ... 3-22
Step 2. Update the Domain Configuration for the New Managed Server

(Optional)... 3-23
Add a Managed Server in a New Location .. 3-26

Step 1. Copy the Contents of Your Preconfigured Domain to the New
Location ... 3-26
Deploying BEA WebLogic Integration Solutions v

Step 2. Modify the Contents of the Directory You Copied............... 3-27
Step 3. Create a Managed Server .. 3-27
Step 4. Update the Domain Configuration for the New Managed Server

(Optional) ... 3-28
Step 10. Configure WebLogic Integration for Automatic Restart................... 3-29
Step 11. Configure WebLogic Integration for Migration from Failed to Healthy

Node ... 3-30
Step 12. Configure WebLogic Integration Security .. 3-30
Step 13. Start the Servers in the Domain... 3-31

Before You Start the Servers.. 3-32
Starting Servers in a Domain for Which the Node Manager Is Not Configured

3-32
Starting Servers in a Domain for Which the Node Manager Is Configured ...

3-33
Monitoring and Shutting Down Your Servers.. 3-34

4. Understanding WebLogic Integration High Availability
About WebLogic Integration High Availability.. 4-2

Recommended Hardware and Software ... 4-2
What to Expect from WebLogic Integration Recovery.............................. 4-3

Configuring WebLogic Integration for Automatic Restart 4-6
Node Manager .. 4-6
Step 1. Configure Managed Servers for Remote Start 4-7
Step 2. Configure SSL for Your Administration Server 4-7
Step 3. Configure the Node Manager ... 4-8
Step 4. Configure Self-Health Monitoring ... 4-9
Step 5. Start the Node Manager.. 4-10

Syntax for the Start Node Manager Command 4-10
Starting the Node Manager When a Machine Is Booted................... 4-13

Configuring WebLogic Integration for Migration from Failed to Healthy Node ..
4-13
Step 1. Configure Your Cluster .. 4-14
Step 2. Configure Migratable Targets for JMS Servers and JTA Recovery

Service... 4-14
Failover and Recovery... 4-18

Backup and Failover for an Administration Server.................................. 4-18
vi Deploying BEA WebLogic Integration Solutions

Manual Migration of WebLogic Integration from Failed to Healthy Node.....
4-19
Using the weblogic.Admin Command-Line Utility.......................... 4-20
Using the WebLogic Server Administration Console....................... 4-21

Recovering a Database ... 4-22
Recovering JMS Stores .. 4-22

5. Using WebLogic Integration Security
Overview of WebLogic Integration Security .. 5-1

Security and WebLogic Integration Domains .. 5-2
WebLogic Server Security Principals and Resources Used in WebLogic

Integration ... 5-3
Considerations for Configuring Security... 5-5

About Digital Certificates .. 5-6
Digital Certificate Formats.. 5-6

Using the Secure Sockets Layer (SSL) Protocol.. 5-7
Using an Outbound Proxy Server or Proxy Plug-In................................... 5-8

Using an Outbound Proxy Server ... 5-8
Using a Web Server with the WebLogic Proxy Plug-In..................... 5-9

Using a Firewall ... 5-10
Setting Up a Secure Deployment .. 5-10

Step 1: Create the Domain ... 5-11
Step 2: Configure WebLogic Server Security.. 5-11
Step 3: Configure BPM Security.. 5-13
Step 4: Configure B2B Integration Security .. 5-14

Obtaining Certificates ... 5-14
Creating the Keystores .. 5-15
Configuring Local Trading Partners ... 5-16
Configuring Remote Trading Partners .. 5-16
Implementing the Security Requirements for Business Protocols.... 5-17

Step 5: Configure Application Integration Security................................. 5-18

6. Tuning Performance
Tuning WebLogic Integration Performance.. 6-1

Primary Tuning Resources ... 6-1
Tuning WebLogic Server Performance.. 6-2
Deploying BEA WebLogic Integration Solutions vii

Configuring EJB Pool and Cache Sizes .. 6-3
Configuring JDBC Connection Pool Sizes ... 6-5
Configuring the Execution Thread Pool.. 6-7
Configuring Resource Connection Pools for J2EE Connector

Architecture Adapters .. 6-8
Configuring Large Message Support for B2B 6-8
Configuring EJB Transactions .. 6-9

Monitoring and Tuning the Java Virtual Machine (JVM)........................ 6-10
Choosing the JVM... 6-10
Tuning JVM Heap Size ... 6-11
Garbage Collection Control on Hotspot JVM................................... 6-11
Monitoring JVM Heap Usage ... 6-12

Monitoring and Tuning Run-Time Performance... 6-13
Monitoring and Tuning WebLogic Server Performance.......................... 6-13

Do You Have Enough Threads?.. 6-13
How Many Transactions Are Occurring? ... 6-17
Do You Have Enough JDBC Connections?...................................... 6-18

Monitoring and Tuning BPM Performance.. 6-19
Do You Have Enough Message-Driven Beans? 6-20
How Many of Each Type of Bean Does My System Have?............. 6-22
Guaranteeing Message Delivery ... 6-25

Monitoring and Tuning B2B Integration Performance 6-26
Monitoring B2B Activity .. 6-27

Monitoring and Tuning Application Integration Performance................. 6-28
Monitoring and Tuning Application View Connections................... 6-28
Monitoring and Tuning EJB Pools for Application Integration........ 6-31

Profiling Applications .. 6-31
Tuning Hardware, Operating System, and Network Resources 6-32

Performance Bottlenecks.. 6-32
Tuning Hardware.. 6-33
Tuning the Operating System... 6-33

Configurable TCP Tuning Parameters on Windows NT/2000 6-33
System Monitoring on Windows NT/2000 6-34
Swap Space Configuration for Solaris .. 6-34
Network Tuning for Solaris... 6-34
viii Deploying BEA WebLogic Integration Solutions

System Monitoring for Solaris .. 6-35
Tuning Network Performance.. 6-35

Tuning Databases .. 6-36
General Database Tuning Suggestions... 6-36

Opened Cursors... 6-37
Disk I/O Optimization... 6-37
Database Sizing and Organization of Table Spaces.......................... 6-37
Checkpointing ... 6-38
Database Compatibility... 6-38
Database Monitoring... 6-38

Tuning Oracle Databases ... 6-39
V$Tables ... 6-39
Initialization Parameters ... 6-39
Tuning Options for System Administrators 6-42

Tuning Microsoft SQL Server Databases .. 6-46
Tuning Sybase Databases... 6-46

A. Deploying WebLogic Integration Client Applications
JAR Files .. A-1
Requirements and Recommendations .. A-2

B. Deploying Resource Adapters
Using the weblogic.Deployer Command-Line UtilityB-1
Using the WebLogic Server Administration ConsoleB-4

Index
Deploying BEA WebLogic Integration Solutions ix

x Deploying BEA WebLogic Integration Solutions

About This Document

This document describes how to deploy an integration solution using BEA WebLogic
Integration in a production environment. Specifically, it describes how to deploy an
integration solution that meets goals for high availability, performance, scalability, and
security. It defines key deployment concepts, explains how to deploy integration
solutions on a WebLogic Integration cluster, provides an overview of WebLogic
Integration security, and describes how to tune performance in a production
environment.

Overview Documents for WebLogic
Integration

This document is one in a series of four documents that provide an overview of
WebLogic Integration, and that explain how the functionality provided by WebLogic
Integration is used at various stages in the design, development, and deployment of
integrated solutions. Readers should start with these documents to gain a
comprehensive understanding of the functionality provided by WebLogic Integration.
The other documents in the series are:

! Introducing BEA WebLogic Integration�Provides an overview of WebLogic
Integration. It outlines the integration problems faced by e-businesses today, as
they try to conduct business with collections of fragmented, heterogeneous
systems. It also describes the application integration, B2B integration, business
process management, and data integration functionality provided by WebLogic
Integration to solve e-business integration problems.

! Learning to Use BEA WebLogic Integration�Describes a sample integrated
application. The sample application deploys a supply-chain hub, which connects
Deploying BEA WebLogic Integration Solutions xi

with business partners, automates a number of business processes, and integrates
back-end enterprise information systems. Readers learn how to set up and run
the sample application, and understand how the integrated solution is architected
and developed using WebLogic Integration.

! Designing BEA WebLogic Integration Solutions�Describes how to design an
integration solution in the BEA WebLogic Integration environment. It defines
key design concepts, provides a roadmap for determining integration
requirements, based on a comprehensive analysis of business and technical
requirements, and describes how to design an integration architecture that meets
design goals for high availability, scalability, and performance.

These and other WebLogic Integration documents are available at the following URL:

http://edocs.bea.com/wli/docs70/index.html

Once you are familiar with the contents of these overview documents, you can proceed
to the detailed documentation about the functionality provided by WebLogic
Integration.

This document is organized as follows:

! Chapter 1, �Introduction,� introduces the WebLogic Integration deployment
architecture, including deployment resources, concepts, tasks, and the roles
played by members of a deployment team.

! Chapter 2, �Understanding WebLogic Integration Clusters,� describes how to
deploy an integration solution on a cluster, which is a collection of servers that is
managed as a single unit. It describes key clustering concepts and design tasks,
and information about how a clustered deployment is configured.

! Chapter 3, �Configuring a Clustered Deployment,� describes the steps you must
take to set up and configure WebLogic Integration in a clustered environment.

! Chapter 4, �Understanding WebLogic Integration High Availability,� describes
how high availability is achieved for WebLogic Integration applications.

! Chapter 5, �Using WebLogic Integration Security,� describes how to set up a
secure WebLogic Integration deployment.

! Chapter 6, �Tuning Performance,� describes key performance considerations in a
WebLogic Integration deployment and explains how to monitor system
performance. It provides instructions for tuning performance for WebLogic
Integration resources, hardware, operating systems, network connectivity, and
databases.
xii Deploying BEA WebLogic Integration Solutions

What You Need to Know

This document is intended primarily for:

! Deployment specialists who coordinate the deployment effort, designing the
deployment topology for integration solutions, and configuring various
WebLogic Integration features on one or more servers.

! System administrators who set up, deploy, and administer WebLogic Integration
in a production environment.

! Database administrators who set up, deploy, and administer database
management systems for WebLogic Integration in a production environment.

For an overview of the WebLogic Integration architecture, see Introducing BEA
WebLogic Integration.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation CD. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.
Deploying BEA WebLogic Integration Solutions xiii

Related Information

For information about installing WebLogic Integration and running the Configuration
Wizard, see Installing BEA WebLogic Platform and Using the Configuration Wizard,
which are available at the following URL:

http://edocs.bea.com/platform/docs70/index.html

WebLogic Integration documentation is available at the following URL:

http://edocs.bea.com/wli/docs70/index.html

WebLogic Server documentation is available at the following URL:

http://edocs.bea.com/wls/docs70/index.html

Contact Us!

Your feedback on the WebLogic Integration documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate which version of the product and the
documentation you are using.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
xiv Deploying BEA WebLogic Integration Solutions

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.
Deploying BEA WebLogic Integration Solutions xv

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xvi Deploying BEA WebLogic Integration Solutions

CHAPTER
1 Introduction

This document describes how to deploy BEA WebLogic Integration solutions in a
production environment. The following sections introduce key concepts and tasks for
deploying WebLogic Integration in your organization:

! Deployment Goals

! Key Deployment Tasks

! Roles in Integration Solution Deployment

! Deployment Architecture

! Key Deployment Resources

Deployment Goals

WebLogic Integration is a single, unified platform that provides the functionality
businesses can use to develop new applications, integrate them with existing systems,
streamline business processes, and connect with trading partners. When deploying
WebLogic Integration solutions, consider the following goals:

! High Availability. A deployment must be sufficiently available and accessible,
with provisions for failover in the event of hardware or network failures.

! Performance. A deployment must deliver sufficient performance at peak and
off-peak loads.

! Scalability. A deployment must be capable of handling anticipated increases in
loads simply by using additional hardware resources, rather than requiring code
changes.
Deploying BEA WebLogic Integration Solutions 1-1

1 Introduction
! Security. A deployment must sufficiently protect data from unauthorized access
or tampering.

You can achieve these goals and others with every WebLogic Integration deployment.

Key Deployment Tasks

Deploying WebLogic Integration may require that you complete some or all of the
following tasks:

1. Define the goals for your WebLogic Integration deployment, as described in
�Deployment Goals� on page 1-1.

2. Deploy WebLogic Integration applications in a cluster. To do so, you must first
design the cluster, and before you can start designing, you need to understand the
components of a WebLogic Integration deployment. Chapter 2, �Understanding
WebLogic Integration Clusters,� provides descriptions of these components that
will help you design the best possible environment for your application.

3. Deploy WebLogic Integration applications in a clustered environment so that
they are highly available. To do so, you must configure your application as
described in Chapter 3, �Configuring a Clustered Deployment.�

4. Set up security for your WebLogic Integration deployment as described in
Chapter 5, �Using WebLogic Integration Security.�

5. Optimize overall system performance (once your WebLogic Integration
deployment is running) as described in Chapter 6, �Tuning Performance.�
1-2 Deploying BEA WebLogic Integration Solutions

Roles in Integration Solution Deployment
Roles in Integration Solution Deployment

To deploy an integrated solution successfully, a deployment team must include people
who perform the following roles:

! Deployment Specialists

! WebLogic Server Administrators

! Database Administrators

One person can assume multiple roles, and all roles are not equally relevant in all
deployment scenarios, but a successful deployment requires input by people in each
role.

Deployment Specialists

Deployment specialists coordinate the deployment effort. They are knowledgeable
about the features of the WebLogic Integration product. They provide expertise in
designing the deployment topology for an integration solution, based on their
knowledge of how to configure various WebLogic Integration features on one or more
servers. Deployment specialists have experience in the following areas:

! Resource requirements analysis

! Deployment topology design

! Project management

WebLogic Server Administrators

WebLogic Server administrators provide in-depth technical and operational
knowledge about WebLogic Server deployments in an organization. They have
knowledge of the hardware and platform, and experience managing all aspects of a
WebLogic Server deployment, including installation, configuration, monitoring,
security, performance tuning, troubleshooting, and other administrative tasks
Deploying BEA WebLogic Integration Solutions 1-3

1 Introduction
Database Administrators

Database administrators provide in-depth technical and operational knowledge about
database systems deployed in an organization. They have experience in the following
areas:

! Hardware and platform knowledge

! Expertise in managing all aspects of a relational database (RDBMS), including
installation, configuration, monitoring, security, performance tuning,
troubleshooting, and other administrative tasks

Deployment Architecture

The following illustration provides an overview of the WebLogic Integration
deployment architecture.

Figure 1-1 WebLogic Integration Deployment Architecture

The following section describes each of the resources illustrated in the preceding
figure.
1-4 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
Key Deployment Resources

This section provides an overview of resources that can be modified at deployment
time:

! WebLogic Server Resources

! Business Process Management Resources

! B2B Integration Resources

! Application Integration Resources

! Relational Database Management System Resources

! Hardware, Operating System, and Network Resources

WebLogic Server Resources

This section provides general information about BEA WebLogic Server resources that
are most relevant to the deployment of a WebLogic Integration solution. You can
configure these resources from the WebLogic Server Administration Console or
through EJB deployment descriptors.

WebLogic Server provides many configuration options and tunable settings for
deploying WebLogic Integration solutions in any supported environment. The
following sections describe the configurable WebLogic Server features that are most
relevant to WebLogic Integration deployments:

! Clustering

! Java Message Service

! EJB Pooling and Caching

! JDBC Connection Pools

! Execution Thread Pool

! J2EE Connector Architecture
Deploying BEA WebLogic Integration Solutions 1-5

1 Introduction
Clustering

To increase workload capacity, you can run WebLogic Server on a cluster: a group of
servers that can be managed as a single unit. Clustering provides a deployment
platform that is more scalable than a single server. For more information about
clustering, see Chapter 2, �Understanding WebLogic Integration Clusters.�

Java Message Service

The WebLogic Java Message Service (JMS) enables Java applications sharing a
messaging system to exchange (create, send, and receive) messages. WebLogic JMS
is based on the Java Message Service Specification version 1.0.2 from Sun
Microsystems, Inc.

JMS servers can be clustered and connection factories can be deployed on multiple
instances of WebLogic Server. In addition, JMS event destinations can be configured
to handle workflow notifications and messages, as described in �Business Process
Management Resources� on page 1-9.

For more information about WebLogic JMS, see the following topics:

! �Introduction to WebLogic JMS� in Programming WebLogic JMS at the
following URL:

http://edocs.bea.com/wls/docs70/jms/intro.html

! For more information about configuring and monitoring the JMS, see �Managing
JMS� in the BEA WebLogic Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs70/adminguide/jms.html

EJB Pooling and Caching

In a WebLogic Integration deployment, the number of EJBs affects system throughput.
You can tune the number of EJBs in the system through either the EJB pool or the EJB
cache, depending on the type of EJB. (For information about configuring pool and
cache sizes, see �Configuring Other EJB Pool and Cache Sizes� on page 6-4.) The
following table describes types of EJBs and their associated tunable parameter.
1-6 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
JDBC Connection Pools

Java Database Connectivity (JDBC) enables Java applications to access data stored in
SQL databases. To reduce the overhead associated with establishing database
connections, WebLogic JDBC provides connection pools that offer ready-to-use pools
of connections to a DBMS.

JDBC connection pools are used to optimize DBMS connections. You can tune
WebLogic Integration performance by configuring the size of JDBC connection pools.
For information about determining the size of a JDBC connection pool on each node
in a WebLogic Integration cluster, see �Configuring JDBC Connection Pool Sizes� on
page 6-5. A setting that is too low results in delays while WebLogic Integration waits
for connections to become available. A setting that is too high results in slower DBMS
performance.

Table 1-1 Parameters for Tuning EJBs

Group Name Description Type of Resource Group

Event Listener
Message-Driven
Beans

max-beans-in-free-pool1 The maximum number of listeners
that pull work from a queue.

Stateless Session
Beans

max-beans-in-free-pool1 The maximum number of beans
available for work requests.

Stateful Session
Beans

 max-beans-in-cache The number of beans that can be active
at once. A setting that is too low
results in CacheFullExceptions. A
setting that is too high results in
excessive memory consumption.

Entity Beans

1. The WebLogic Server documentation recommends setting the number of execute threads rather than
setting max-beans-in-free-pool. However, in a WebLogic Integration environment, it is more
efficient to control the workload by specifying the max-beans-in-free-pool setting of the event
listener message-driven beans than by setting the number of execute threads.
Deploying BEA WebLogic Integration Solutions 1-7

1 Introduction
For more information about WebLogic JDBC connection pools, see:

! �Overview of Connection Pools� in �Introduction to WebLogic JDBC� in
Programming WebLogic JDBC at the following URL:

http://edocs.bea.com/wls/docs70/jdbc/intro.html

! �Managing JDBC Connectivity� in the BEA WebLogic Server Administration
Guide at the following URL:

http://edocs.bea.com/wls/docs70/adminguide/jdbc.html

Execution Thread Pool

The execution thread pool controls the number of threads that can execute
concurrently on WebLogic Server. A setting that is too low results in sequential
processing and possible deadlocks. A setting that is too high results in excessive
memory consumption and may cause thrashing.

Set the execution thread pool high enough so that all candidate threads run, but not so
high that performance is hampered due to excessive context switching in the system.
The number of execute threads also determines the number of threads that read
incoming socket messages (socket-reader threads). This number is, by default,
one-third of the number of execute threads. A number that is too low can result in
contention for threads for reading sockets and can sometimes lead to a deadlock.
Monitor your running system to empirically determine the best value for the execution
thread pool.

For information about configuring the execution thread pool, see �Configuring the
Execution Thread Pool� on page 6-7.

Following these recommendations for tuning your execution thread pool will help
optimize the performance of WebLogic Integration. However, in a WebLogic
Integration environment, the best way to throttle work is by controlling the number of
message-driven beans�see �EJB Pooling and Caching� on page 1-6.

J2EE Connector Architecture

The WebLogic J2EE Connector Architecture (JCA) integrates the J2EE Platform with
one or more heterogeneous Enterprise Information Systems (EIS). The WebLogic JCA
is based on the J2EE Connector Specification, Version 1.0, Proposed Final Draft 2,
from Sun Microsystems, Inc.
1-8 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
For information about the WebLogic J2EE-CA, see �Managing the WebLogic J2EE
Connector Architecture� in the BEA WebLogic Server Administration Guide at the
following URL:

http://edocs.bea.com/wls/docs70/adminguide/jconnector.html

Business Process Management Resources

In WebLogic Integration, the Business Process Management (BPM) functionality
handles the definition and execution of business processes. For an introduction to BPM
functionality, see �Business Process Management� in Introducing BEA WebLogic
Integration.

The following sections describe BPM features that are used for the deployment of
WebLogic Integration solutions:

! Overview of BPM Resources

! Types of BPM Resources

! BPM Work Sequence

BPM resources can be configured to run on a cluster�a group of servers that is
managed as a single unit. For more information about clustering and BPM, see
Chapter 2, �Understanding WebLogic Integration Clusters.�
Deploying BEA WebLogic Integration Solutions 1-9

1 Introduction
Overview of BPM Resources

The following diagram shows BPM resources for a single node in a cluster.

Figure 1-2 BPM EJB Resources

The next section, �Types of BPM Resources,� describes the resources represented in
the preceding figure.

Types of BPM Resources

BPM uses WebLogic JMS (described in �Java Message Service� on page 1-6) for
communicating worklist, time, and event notifications, as well as error and audit
messages. BPM client applications send these messages, as XML events, to JMS event
queues. BPM uses event listener message-driven beans to process XML events that
arrive in event queues and deliver them to the running instance of the BPM engine.

You can create custom message queues using the WebLogic Server Administration
Console, then run the MDB Generator utility to generate an event listener bean to listen
on the queue, and subsequently update the BPM configuration to recognize the new
event listener bean. For more information, see �Creating New Pools� on page 2-17.
1-10 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
The following sections describe the types of resources you can use when configuring
BPM for a clustered environment and when tuning BPM performance:

! Workflow Processor Beans

! Event Listener Message-Driven Beans

! Template Beans

! Template Definition Beans

! Instance Beans

! Event Queue

! Worklist Console (Deprecated)

Workflow Processor Beans

Workflow processor beans are stateful session beans that execute workflows, which
proceed from a start/event node to a stop/event node (quiescent state to quiescent
state). Workflow processor beans accept work from event listener beans, Worklist
clients, and from other workflow processor beans (when subworkflows are used).

Because workflow processor beans are instantiated at run time, based on the system
load, the exact number of workflow processor beans at run time is dynamic. The size
of the workflow processor bean pool determines the number of workflow processor
beans that can be active concurrently. If the number of beans exceeds the pool size,
then excess beans are passivated until a bean in the pool becomes available. In general,
a pool size that is too large is preferable to one that is too small. For tuning information,
see �Configuring Other EJB Pool and Cache Sizes� on page 6-4.

Workflow processor beans are deployed to the cluster. WebLogic Server optimizes a
clustered system such that each node in a cluster uses a local copy of a workflow
processor bean.

Event Listener Message-Driven Beans

Event listener message-driven beans pull work from the event queue and send work to
the workflow processor beans. Event listener beans wait until the workflow processor
bean either executes to completion or hits a quiescent state before getting new work
from the queue.
Deploying BEA WebLogic Integration Solutions 1-11

1 Introduction
Event listener beans have a configured pool size for unordered messages and they use
a series of single bean pools (named beans with a free pool size of 1) for ordered
messages, as described in �Generating Message-Driven Beans for Multiple Event
Queues� in �Establishing JMS Connections� in Programming BPM Client
Applications.

In combination, these pools determine the amount of parallel workflow execution that
can occur when initiated from events.

Template Beans

Template beans are entity beans that contain the workflow template to be executed. In
general, the size of the template entity bean pool should equal the maximum number
of workflow templates (templates, not instances) to be executed concurrently. In
general, a pool that is too large is preferable to one that is too small. Template entity
beans are clusterable (they have cluster-aware stubs), so they can be used by workflow
processor beans on other nodes in a cluster.

Template Definition Beans

Template definition beans are entity beans that contain the workflow template
definition to be executed.

Business processes are saved as workflow templates in a database. These templates are
essentially empty containers for storing different workflow versions.They can be
associated with multiple organizations. Templates contain template definitions, which
serve as different versions of the same workflow, and are distinguished by effective
and expiry dates. For information about business processes and workflows, see Using
the WebLogic Integration Studio.

In general, the size of the template definition entity bean pool should equal the
maximum number of workflow templates (not workflow instances) to execute
concurrently. In general, a pool that is too large is preferable to one that is too small.
Template definition entity beans are clusterable (they have cluster-aware stubs), so
they can be used by workflow processor beans on other nodes in a cluster.

Instance Beans

Instance beans are entity beans that contain the workflow instance being executed. In
general, the size of the instance entity bean pool should equal the size of the workflow
processor bean pool. There is no advantage to having an instance entity bean pool that
1-12 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
is larger than the workflow processor bean pool. In general, a pool that is too large is
preferable to one that is too small. Instance entity beans are clusterable (they have
cluster-aware stubs), so they can be used by workflow processor beans on other nodes
in a cluster.

Event Queue

A single JAR file contains both ordered and unordered event listener message-driven
beans for a particular queue. The WebLogic Integration installation provides the
wlpi-mdb-ejb.jar file, which contains message-driven beans that consume
messages from the default EventQueue. This JAR file must be targeted to the cluster.
You can also create new event queues, as described in �Creating New Pools� on page
2-17. For information about BPM event queues in a cluster, see �Load Balancing BPM
Functions in a Cluster� on page 2-15.

Note: To scale BPM functionality in a cluster, you must create new event queues.

Worklist Console (Deprecated)

The Worklist client includes the swing-based WebLogic Integration Worklist console,
as well as any user code that creates workflows from the BPM API. It is shown in
Figure 1-2 for context only�it is not a configurable run-time resource.

BPM Work Sequence

The following diagram shows the interaction among BPM EJBs when processing
events.
Deploying BEA WebLogic Integration Solutions 1-13

1 Introduction
Figure 1-3 Interaction Between BPM EJBs When Processing Events

When a BPM event listener bean receives a work request from the event queue
(whether the default queue or a user-defined queue), it creates a workflow processor
bean to work on the request. The workflow processor bean executes the workflow until
the workflow hits a stop or event node. Note that, when a workflow calls another
workflow, a new workflow processor bean is created and the calling workflow does
not exit the workflow processor bean.

The template bean and template definition bean are read at the beginning of workflow
execution. The instance bean is read at the beginning of workflow execution, and
written when workflow execution quiesces at a transaction boundary (such as an event
or done node).

For event-driven workflows, the creation of additional workflow processor beans does
not enable the deployment to do more work. The number of event listener beans limits
the number of workflow instances that can be processed in parallel.
1-14 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
B2B Integration Resources

When you deploy WebLogic Integration to a clustered domain, all B2B integration
resources, with the exception of resources for the administration server, must be
deployed homogeneously in the cluster. That is, to achieve high availability,
scalability, and performance improvements, B2B integration resources must be
targeted to all clustered servers in a domain. For more information about B2B
integration resources and clustering, see �Designing a Clustered Deployment� on page
2-3.

Many B2B integration resources are allocated dynamically, as needed; a deployment
cannot be configured ahead of time. For information about resources that can be
configured to accommodate B2B loads, see �Configuration Requirements� in
Administering B2B Integration.

A shared file system is required for a cluster that uses B2B integration functionality.
We recommend either a Storage Area Network (SAN) or a multiported disk system.

Note: WebLogic Integration applications that are based on the XOCP business
protocol are not supported in a clustered environment.

Application Integration Resources

The following sections describe the types of application integration resources that
WebLogic Integration supports:

! Synchronous Service Invocations

! Asynchronous Service Invocations

! Events

! Application Views and Connection Factories

For information about clustering and application integration, see Chapter 2,
�Understanding WebLogic Integration Clusters.�

Application integration functionality is integrated in the WebLogic Integration
product, but it is also available packaged in a single, self-contained J2EE ear file. This
enables you to deploy application integration on any valid WebLogic domain. For
Deploying BEA WebLogic Integration Solutions 1-15

1 Introduction
example, Web services developers and WebLogic Portal developers can use
application views to interact with EIS applications. For more information about
deploying application integration outside of a WebLogic Integration environment, see
�Modular Deployment of Application Integration� in Using Application Integration.

Synchronous Service Invocations

Use synchronous invocations when the underlying EIS can respond quickly to
requests, or when the client application can afford to wait.

The following figure illustrates the flow of a synchronous service invocation.

Figure 1-4 Synchronous Service Invocations

In a synchronous service invocation, a client (shown here as a workflow processor)
calls the application view EJB (a stateless session bean). The application view calls the
service adapter using a synchronous Common Client Interface (CCI) request. The
service adapter is a J2EE-CA service adapter that actually processes the request.

Note: When a workflow acts as a client to an EIS, the workflow processor is stalled
while it waits for the request to complete, tying up a workflow processor bean
and perhaps an event listener bean as well. To optimize throughput, consider
using asynchronous invocations instead unless the underlying EIS system can
respond quickly to the request.
1-16 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
Asynchronous Service Invocations

The following figure illustrates asynchronous service processing in WebLogic
Integration.

Figure 1-5 Asynchronous Service Invocations

Note: The WLAI_ASYNC_REQUEST_QUEUE and WLAI_ASYNC_RESPONSE_QUEUE
queues are deployed as distributed destinations in a WebLogic Integration
cluster. The Asynchronous Service Request Processor is a message-driven
bean (wlai-asyncprocessor-ejb.jar), which is also deployed to the
cluster. For more information about how application integration resources are
deployed for high availability, see �Highly Available JMS� on page 2-21.

The preceding diagram illustrates the following process flow for an application
integration asynchronous service:

1. An Application View client instantiates an Application View instance.

The client has the option of supplying a durable client ID at the time of
construction. The durable client ID is used as the correlation ID for
asynchronous response messages.

The client invokes the invokeServiceAsync method and passes the request
IDocument to an AsyncServiceResponse Listener to handle the response.

2. The Application View instance creates an AsyncServiceRequest object and
sends it to the WLAI_ASYNC_REQUEST_QUEUE.
Deploying BEA WebLogic Integration Solutions 1-17

1 Introduction
The AsyncServiceRequest object contains the name of the destination to
which the response listener is pinned. The AsyncServiceProcessor
message-driven bean uses this information to determine which physical
destination to which it should send the response.

If a request object does not contain the name of a response destination, the
AsyncServiceProcessor message-driven bean uses the destination specified
for the JMS message (using a call to the JMSReplyTo() method).

Suppose, however, that only the client supplies an
AsyncServiceResponseListener to the Application View:

invokeServiceAsync(String serviceName, IDocument request,
AsyncServiceResponseListener listener);

In this scenario, the Application View establishes a receiver to the JMS queue
that is bound at the JNDI location provided by the Application View EJB
method getAsyncResponseQueueJNDIName(). The Application View instance
uses QueueReceiver.getQueue() to set the ReplyTo destination on the
request message.

3. In a cluster, the WLAI_ASYNC_REQUEST_QUEUE queue is deployed as a distributed
JMS queue. However, each message is sent to a single physical queue and is
available only from that queue. If that physical queue becomes unavailable before
a given message is dequeued, then the message (that is, the Asynchronous
Service Request) remains unavailable until that physical queue comes back
on-line via a manual JMS migration or server restart.

It is not sufficient to send a message to a distributed queue and expect the
message to be received by a QueueReceiver of that queue. Because the message
is sent to only one physical queue, there must be a QueueReceiver listening on
the physical queue. To satisfy this requirement, the AsyncServiceProcessor
(wlai-asyncprocessor-ejb.jar) must be deployed on all nodes in a cluster.

The AsyncServiceProcessor message-driven bean receives the message from the
queue in a first in, first out (FIFO) manner.

The AsyncServiceProcessor uses the AsyncServiceRequest object in the JMS
ObjectMessage to determine the qualified name, service name, request
document, and response destination for the Application View.

4. The AsyncServiceProcessor uses an Application View EJB to invoke the service
synchronously. The service is translated into a synchronous CCI-based
request/response message for the resource adapter.
1-18 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
5. The AsyncServiceProcessor receives the response. The response is subsequently
encapsulated into an AsyncServiceResponse object and sent to the response
destination provided in the AsyncServiceRequest object, which in this case is
WLAI_ASYNC_RESPONSE_QUEUE_myserver1.

Note that the AsyncServiceProcessor must send the response to a specific
physical destination (WLAI_ASYNC_RESPONSE_QUEUE_myserver1) and not to
the distributed destination (WLAI_ASYNC_RESPONSE_QUEUE). The physical
destination queue was established by the Application View instance running on
the client when it called the Application View EJB
getAsyncResponseQueueJNDIName() method. (See step 2.)

Note: It is possible for a client application to fail before it receives all the
response messages it expects. If, after recovery, you want to make sure that
the client is associated with the same JMS response queue with which it
was associated before the failure, you must use the same client ID that you
used before the failure, after recovery. The following listing is an example
of recovery code, which facilitates this association of the client with the
JMS response queue by using the same unique client ID before the failure
and after recovery:

String uniqueClientID = "uniqueClientID";

ApplicationView myAppView = new ApplicationView(jndiContext,
"MyAppView", uniqueClientID);

myAppView.recoverAsyncServiceResponses(new
MyAsyncResponseListener());

6. The instance of the Application View message listener that was created when the
Application View instance was instantiated, receives the AsyncServiceResponse
message as a JMS ObjectMessage and passes it to the
AsyncServiceResponseListener supplied in the invokeServiceAsync() call
shown in step 2.

Events

Application integration adapters generate events that are consumed by BPM or
WebLogic Workshop. Events are forwarded from an Application View to a JMS queue
(WLAI_EVENT_QUEUE). This queue is a distributed destination containing multiple
physical destinations. A message-driven bean (the WLI-AI Event Processor) listens on
the WLAI_EVENT_QUEUE distributed destination.
Deploying BEA WebLogic Integration Solutions 1-19

1 Introduction
The WLI-AI Event Processor does the following:

! Delivers a copy of the event to the BPM event processor (if BPM is installed
and running in the server instance) or to the Application View WebLogic
Workshop Control event processor (if this control is being used).

Exactly one copy of each event is delivered to BPM or WebLogic Workshop.

! Publishes a copy of the event to the WLAI_EVENT_TOPIC.

The WLAI_EVENT_TOPIC is a distributed JMS topic and handles the delivery of
events to remote Application View clients. The Application View class creates
an EventContext on the WLAI_EVENT_TOPIC. The EventContext class filters
messages based on the name of the Application View, which is stored in the
SourceKey JMS header property. The SourceType is ApplicationView.

! Dequeues the event transactionally to allow the message to be rolled back to the
queue if there is a processing failure.
1-20 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
The following figure illustrates event processing in WebLogic Integration.

Figure 1-6 Events

The preceding figure illustrates the following sequence of steps for event processing:

1. An event occurs in an enterprise information system (EIS) and is sent to a JMS
queue, as follows:

a. An event occurs in an enterprise information system (EIS).

b. The event data is transferred to the event generator in the resource adapter. The
event generator transforms the EIS-specific event data into an XML document
and posts an IEvent object to the event router (Adapter Event Router).
Deploying BEA WebLogic Integration Solutions 1-21

1 Introduction
c. The Event Router passes the IEvent object to an EventContext object for each
application integration server that is interested in the specific event type.

d. The EventContext encapsulates the IEvent object into a JMS ObjectMessage
and, using a JMS QueueSender, sends it to the JMS Queue bound at the
following JNDI context: com.bea.wlai.EVENT_QUEUE.

2. The ObjectMessage is stored in the WLAI_EVENT_QUEUE and is processed by the
WLI-AI Event Processor message-driven bean
(wlai-eventprocessor-ejb.jar) in a first in, first out (FIFO) manner.

In a cluster, WLAI_EVENT_QUEUE is deployed as a distributed JMS queue.
However, each message is sent to a single physical queue and is only available
from the physical queue to which it was sent. If that physical queue becomes
unavailable before a given message is dequeued, then the message (that is, the
event) is unavailable until that physical queue comes back on-line.

It is not enough to send a message to a distributed queue and expect the message
to be received by a QueueReceiver for that distributed queue. Because the
message is sent to one physical queue, there must be a QueueReceiver listening
on that physical queue. To satisfy this requirement, the WLI-AI Event Processor
message-driven bean (wlai-eventprocessor-ejb.jar) must be deployed on
all nodes in a cluster.

3. The WLI-AI Event Processor message-driven bean
(wlai-eventprocessor-ejb.jar) determines the list of event destinations:

a. Event destinations are added to the AIDestinationMBean. The MBean is
replicated across the cluster so that the same list of event destinations is passed
to the event processor message-driven bean on each managed server. When the
WLI-AI BPM plug-in (wlai-plugin-ejb.jar) is deployed, it adds the BPM
Event Queue as an event destination. The inclusion of this destination makes it
possible for EIS events to be sent to the BPM process engine. Also, when
Application View event listeners are registered, the event is sent to the
WLAI_EVENT_TOPIC.

b. The WLI-AI Event Processor message-driven bean reads the list of event
destinations, to which it should send events, from the MBean.

4. An event ObjectMessage is delivered to all registered event destinations in a
single JTA user transaction. If a message is not delivered to any event destination,
it is rolled back on to the WLAI_EVENT_QUEUE. The WLAI_EVENT_QUEUE is
1-22 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
configured to forward poisoned messages to the WebLogic Integration error
destination (com.bea.wli.FailedEventQueue). For information about the
FailedEventQueue, see �Error Destination� on page 2-28.

Note: Because the destinations for events are typically JMS destinations, it is
unlikely that the system will fail to forward an event.

Application Views and Connection Factories

The run-time application integration features (synchronous service invocations,
asynchronous service invocations, and events) described in preceding sections can be
clustered for scalability and high availability. Design-time application integration
features (Application Views and connection factories) can be clustered for scalability,
but not for high availability. This means that you cannot deploy or undeploy (edit)
Application Views if any server in a cluster is not running. In other words, you can
deploy and undeploy (edit) only in a healthy cluster.

The resource adapter (RAR) is uploaded by deploying the wlai-admin.ear archive
file to the administration server, not to the clustered managed servers. Two-phase
deployment is used. The WebLogic Deployer utility on the administration server
controls the deployment to managed servers.
Deploying BEA WebLogic Integration Solutions 1-23

1 Introduction
The following figure illustrates connection factory deployment at design time.

Figure 1-7 Connection Factory Deployment

Application View deployment depends on successful connection factory deployment.
For more information about deploying application integration adapters in clustered
environments, see �Load Balancing Application Integration Functions in a Cluster� on
page 2-19 and �Deploying Adapters� on page 2-30.

Relational Database Management System Resources

WebLogic Integration relies extensively on database resources for handling run-time
operations and ensuring that application data is durable. Database performance is a key
factor in overall WebLogic Integration performance. For more information, see
�Tuning Databases� on page 6-36.
1-24 Deploying BEA WebLogic Integration Solutions

Key Deployment Resources
Hardware, Operating System, and Network Resources

Hardware, operating system, and network resources play a crucial role in WebLogic
Integration performance. Deployments must comply with the hardware and software
requirements described in the BEA WebLogic Integration Release Notes. For more
information about configuring these resources for maximum performance in a
production environment, see �Recommended Hardware and Software� on page 4-2,
and �Tuning Hardware, Operating System, and Network Resources� on page 6-32.
Deploying BEA WebLogic Integration Solutions 1-25

1 Introduction
1-26 Deploying BEA WebLogic Integration Solutions

CHAPTER
2 Understanding
WebLogic Integration
Clusters

The following sections describe how WebLogic Integration is configured and
deployed in a clustered environment. It contains the following topics:

! Understanding WebLogic Integration Clusters

! Designing a Clustered Deployment

! Load Balancing in a WebLogic Integration Cluster

! High Availability in a WebLogic Integration Cluster

! Understanding JMS Resources

! Deploying Adapters

Understanding WebLogic Integration
Clusters

Clustering allows WebLogic Integration to run on a group of servers that can be
managed as a single unit. In a clustered environment, multiple machines share the
processing load. WebLogic Integration provides load balancing so that resource
Deploying BEA WebLogic Integration Solutions 2-1

2 Understanding WebLogic Integration Clusters
requests are distributed proportionately across all machines. A WebLogic Integration
deployment can use clustering and load balancing to improve scalability by
distributing the workload across nodes. Clustering provides a deployment platform
that is more scalable than a single server.

A WebLogic Server domain consists of only one administration server, and one or
more managed servers. The managed servers in a WebLogic Integration domain can
be grouped in a cluster. When you configure WebLogic Integration clusterable
resources, you target the resources to a named cluster. The advantage of specifying a
cluster as the target for resource deployment is that it makes it possible to increase
capacity dynamically by adding managed servers to your cluster.

The topics in this section provide the information you need to configure WebLogic
Integration in a clustered environment. Although some background information about
how WebLogic Server supports clustering is provided, the focus is on procedures that
are specific to configuring WebLogic Integration for a clustered environment.

Before proceeding, we recommend that you review the following sections of the
WebLogic Server documentation to obtain a more in-depth understanding of
clustering:

! Using WebLogic Server Clusters at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html

! �Understanding Cluster Configuration and Application Deployment� in Using
WebLogic Server Clusters at the following URL:

http://edocs.bea.com/wls/docs70/cluster/config.html

! �WebLogic Server Clusters and Scalability� in �Tuning WebLogic Server� in
BEA WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs70/perform/WLSTuning.html
2-2 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
Designing a Clustered Deployment

The following sections provide the information you need to design a clustered
deployment:

! Introducing WebLogic Integration Domains

! Deploying WebLogic Integration Resources

! Load Balancing in a WebLogic Integration Cluster

Introducing WebLogic Integration Domains

Before you begin designing the architecture for your clustered domain, you need to
learn how WebLogic Server clusters operate.

Creating Domains

Domain and cluster creation are simplified by a Configuration Wizard that lets you
generate domains from domain templates based on WebLogic Integration, business
process management (BPM), or enterprise application integration (EAI) functionality.
Based on user queries, the Configuration Wizard generates a domain, server, and
enterprise application with the appropriate components preconfigured and assets
included. For information about the templates available for different domains, see the
Configuration Wizard Template Reference, which is available at the following URL:

http://edocs.bea.com/platform/docs70/template/index.htm

For information about creating WebLogic Integration domains using the
Configuration Wizard, see Chapter 3, �Configuring a Clustered Deployment.�
Deploying BEA WebLogic Integration Solutions 2-3

2 Understanding WebLogic Integration Clusters
Clustered Servers

A server can be either a managed server or an administration server. A WebLogic
Server running the administration service is called an administration server and hosts
the Administration Console. In a domain with multiple WebLogic Servers, only one
server is the administration server; the other servers are called managed servers. Each
managed server obtains its configuration at startup from the administration server.

For general information, see Using WebLogic Server Clusters in the WebLogic Server
documentation set, at the following URL:

 http://edocs.bea.com/wls/docs70/cluster/index.html

For details about basic, multi-tiered, and proxy architectures that are recommended,
see �Cluster Architectures� in Using WebLogic Server Clusters.

Note About Cluster and Management Domains

Although it is possible for a WebLogic Server management domain and cluster domain
to be different (that is, it is possible for WebLogic Server clusters to have nodes that
belong to different management domains), you must design your WebLogic
Integration deployment such that the cluster domain equals the management domain.

Deploying WebLogic Integration Resources

For each server in a clustered domain, you can configure a variety of attributes that
define the functionality of the server in the domain. These attributes are configured
using the Servers node in the Administration Console.

This section describes WebLogic Integration resources and how they can be
partitioned and distributed in a cluster. It contains the following topics:

! Clusterable Resources

! Two-Phase Deployment of WebLogic Integration

! Distribution Guidelines

! Deployment Order in WebLogic Integration Application

! Deploying The Default Web Application
2-4 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
! Note About Administration Servers

Clusterable Resources

Table 2-1 describes the WebLogic Integration deployment resources. It contains the
following information:

! Resource Groups�Arbitrary designation of related deployment resources that
are categorized for clustering purposes. All resources in a resource group must
be targeted to the same machine.

There are two types of resource groups:

" Clusterable�Targeted to one or more servers, but all members of a group
must be targeted to the same server or set of servers.

" Single Node�Targeted to one and only one server in a cluster. Single Node
resources must not be clustered.

! Resource Name�Name of an individual package or service (in a resource
group) as it is shown in the WebLogic Server Console.

Note that some resource names contain abbreviations that are a legacy from
prior WebLogic Integration releases:

" wlc corresponds to B2B integration

" wlpi corresponds to BPM

" wlai corresponds to application integration

! Administration Console Navigation�Route through the WebLogic Server
Administration Console navigation tree to the specified package or service. All
resources can be viewed and modified in the Administration Console.

The following table describes the WebLogic Integration deployment resources.

Table 2-1 WebLogic Integration Deployment Resources

Resource
Group

Description
(Single Node/Clusterable)

Resource Name Administration
Console Navigation

bpm-singleNode BPM master components
(Single node)

WLI-BPM Plugin Manager
(wlpi-master-ejb.jar)

Deployments→EJB
Deploying BEA WebLogic Integration Solutions 2-5

2 Understanding WebLogic Integration Clusters
bpm-clusterable BPM components
(Clusterable)

WLI-BPM initialization
(bpm-init-ejb.jar)

Deployments→EJB

WLI-BPM Server
(wlpi-ejb.jar)

Deployments→EJB

WLI-BPM Event Processor MDBs
(wlpi-mdb-ejb.jar)

Deployments→EJB

User-defined Event Processor
MDBs

wlpi-mdb-xxx.jar1

Deployments→EJB

wlpiFactory
(com.bea.wlpi.TopicConne
ctionFactory)

Services→JMS→
Connection Factories

wlpiQueueFactory
(com.bea.wlpi.QueueConne
ctionFactory)

Services→JMS→
Connection Factories

TXDataSource Services→JDBC→
Tx Data Sources

B2B-singleNode B2B integration
administration
(Single node:
Administration Server)

B2B console
(b2bconsole.war)

Deployments→
Web Applications

WLI-B2B Startup
(b2b-startup.jar)
Note: Deployed to the
administration server and the
clustered managed servers.

Deployments→EJB

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Group

Description
(Single Node/Clusterable)

Resource Name Administration
Console Navigation
2-6 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
B2B-clusterable B2B integration components
(Clusterable)

WLI-B2B Startup
(b2b-startup.jar)

Deployments→EJB

WLCShutdown Deployments→
Startup & Shutdown

WLCHub.DS Services→JDBC→
Tx Data Sources

TransportServlet
(b2b.war)

Deployments→
Web Applications

WLI-B2B RN MDB
(b2b-rosettanet.jar)

Deployments→EJB

WLI-B2B RN BPM Plug-in
(wlc-wlpi-plugin.jar)

Deployments→EJB

WLI-B2B ebXML BPM Plug-in
(ebxml-bpm-plugin.jar)

Deployments→EJB

RNQueueFactory
(com.bea.wli.b2b.rosetta
net.QueueConnectionFacto
ry)

Services→JMS→
Connection Factories

B2BTopicFactory
(com.bea.wli.b2b.server.
TopicConnectionFactory)

Services→JMS→
Connection Factories

AI-admin Application integration
administration
(Single node:
Administration Server)2

WLI-AI RAR Upload
(wlai-admin.ear)

Deployments→
Applications→WLI-AI
RAR Upload

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Group

Description
(Single Node/Clusterable)

Resource Name Administration
Console Navigation
Deploying BEA WebLogic Integration Solutions 2-7

2 Understanding WebLogic Integration Clusters
AI-clusterable Application integration
components
(Clusterable)

WLI-AI Server
(wlai-server-ejb.jar)

Deployments→EJB

Application View Management
Console
(wlai.war)

Deployments→Web
Applications→wlai

WLI-AI Event Processor
(wlai-eventprocessor-ejb
.jar)

Deployments→EJB

WLI-AI Async Processor
(wlai-asyncprocessor-ejb
.jar)

Deployments→EJB

WLI-AI BPM Plug-in
(wlai-plugin-ejb.jar)

Deployments→EJB

WLI-AI BPM Plug-in Help
(wlai-plugin.war)

Deployments→
Web Applications

WLAI_JMSConnection
Factory

Services→JMS→
Connection Factories

wlai-event-yyy1 Application integration event
adapter

(Depends on the adapter3)

yyyEventRouter1 Deployments→
Applications→
yyyEventRouter1,4

wlai-service-yyy1 Application integration
service adapter

(Depends on the adapter3)

BEA . . . yyy . . . ADK_RAR1 Deployments→
Applications→ BEA . . .
yyy . . . ADK_RAR1,4

BEA . . . yyy . . . ADK_WEB1 Deployments→
Applications→ BEA . . .
yyy . . . ADK_WEB

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Group

Description
(Single Node/Clusterable)

Resource Name Administration
Console Navigation
2-8 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
DI-clusterable Data Integration components
(Clusterable)

WLI-DI BPM Plug-in
(wlxtpi.jar)

Deployments→EJB

WLI-DI BPM Plug-in Help
(wlxtpi.war)

Deployments→Web
Applications

wli-clusterable Resources that must be
located on all servers in the
domain
(Clusterable)

WLI-Repository
(respository-ejb.jar)

Deployments→EJB

WLI Error Listener
(wli-errorlistener-
mdb.jar)

Deployments→EJB

Mailsession
(wlpiMailSession)

Services→Mail
Java mail sessions used
for the BPM Send
E-mail action.

JDBCConnectionPool
(wliPool)

Services→JDBC→
Connection Pools
Used for all database
connections in
WebLogic Integration.

1. Name represents a user-defined package or resource group.
2. You need to deploy wlai-admin.ear only when you deploy WebLogic Integration to a cluster; do
not deploy it when you deploy in a single-node environment. For more information about the application
integration administration component, see �Load Balancing Application Integration Functions in a Cluster�
on page 2-19.
3. For example, the DBMS sample event adapter is deployed to a single node. For more information, see
the documentation for the adapter you are using.
4. Event and service adapters reside in a single EAR file but they are deployed separately and are listed as
separate resources in the WebLogic Server Administration Console. For more information, see the
following section, �Two-Phase Deployment of WebLogic Integration.�.

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Group

Description
(Single Node/Clusterable)

Resource Name Administration
Console Navigation
Deploying BEA WebLogic Integration Solutions 2-9

2 Understanding WebLogic Integration Clusters
Two-Phase Deployment of WebLogic Integration

It is essential to have all WebLogic Integration application components deployed
before your system attempts to process messages. To guarantee this, specify the
TwoPhase attribute when you deploy WebLogic Integration. The following excerpt
from a sample config.xml file illustrates an Application element, which specifies
deployment of WebLogic Integration.

Listing 2-1 Deploying the WebLogic Integration Application

<Domain Name="MyCluster">
...
 <Application Name="WebLogic Integration" Path="WLI_HOME/lib"

TwoPhase="true">
...

Distribution Guidelines

A WebLogic Integration cluster deployment conforms to the following guidelines:

! Most resources must be deployed to all servers in the cluster. For information
about which WebLogic Integration resources are deployed to all managed
servers in a cluster, a single managed server, and the administration server in a
cluster, see �Deploying WebLogic Integration Resources� on page 2-4.

! Resources identified as members of the same resource group, as described in
�Deploying WebLogic Integration Resources� on page 2-4, must be targeted to
the same server, and, if those resources are identified as clusterable, they must be
targeted to the same set of servers.

! The administration server does not require all WebLogic Integration resources,
but you should deploy the following resources to it:

" B2B Console (b2bconsole.war)

" WLI-B2B Startup (b2b-startup.jar)

" WLI-AI RAR Upload (wlai-admin.ear)

" B2BTopic JMS Destination (com.bea.wli.b2b.server.B2BTopic)
2-10 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
! The number of JMS queues on a node should be determined using the guidelines
described in �Load Balancing BPM Functions in a Cluster� on page 2-15 and
�Load Balancing Application Integration Functions in a Cluster� on page 2-19.
For information about how JMS resources are used in a WebLogic Integration
deployment, see �Understanding JMS Resources� on page 2-23.

Targeting Resources to a Cluster

As shown in �Deploying WebLogic Integration Resources� on page 2-4, most
WebLogic Integration resources are deployed to all the servers in a cluster. This
deployment is specified in the configuration file (config.xml) for your domain.

You can use the WebLogic Server Administration Console to target components to
nodes in your cluster. For more information, see Chapter 3, �Configuring a Clustered
Deployment.�

The following listing is an excerpt from the configuration file for a clustered domain,
in which BPM components are specified. The listing shows how these components are
targeted to a cluster named MyCluster.

Listing 2-2 Targeting WebLogic Integration Components to a Cluster

<Application Deployed="true" Name="WebLogic Integration"
Path="C:/bea/weblogic700/integration/lib" TwoPhase="true">

<!--Repository-->

 <EJBComponent Name="WLI Repository" Targets="MyCluster"
URI="repository-ejb.jar" />

<!--BPM-->

 <EJBComponent Name="WLI-BPM Server" Targets="MyCluster"
URI="wlpi-ejb.jar" />

 <EJBComponent Name="WLI-BPM Event Processor"
Targets="MyCluster" URI="wlpi-mdb-ejb.jar" />

 <EJBComponent Name="WLI-BPM Master Components"
 Targets="MyServer-1" URI="wlpi-master-ejb.jar" />

 <EJBComponent Name="WLI-BPM Initialization"
Targets="MyCluster" URI="bpm-init-ejb.jar"/>

...
</Application>
Deploying BEA WebLogic Integration Solutions 2-11

2 Understanding WebLogic Integration Clusters
In the preceding listing, note that all BPM components are targeted to the cluster,
except the WLI-BPM master components (wlpi-master-ejb.jar). As specified in
Table 2-1, the WLI-BPM master components must be deployed to one server in the
cluster (in this case, MyServer-1).

Deployment Order in WebLogic Integration Application

The following file specifies all the components of WebLogic Integration:

WLI_HOME\lib\META-INF\application.xml

Because the components are deployed in the order in which they are listed in
application.xml, you must not change the order in which they are listed in the file.
The specified order is critical because it reflects dependencies among components.
EJBs and BPM plug-ins are included in this application because they must be
accessible to BPM functions.

If you deploy custom resources (such as custom plug-ins, EJBs, message-driven beans,
and so on) to a WebLogic Integration application, you must edit the
application.xml file to specify your new component.

Warning: You can specify a custom resource as the last entry in the
application.xml file, unless your new resource is a plug-in to BPM, in
which case, you must specify the new component as the penultimate
(second to last) entry in the file. That is, it must be defined immediately
before the bpm-init-ejb.jar module, but after all the other modules in
the application.

The bpm-init-ejb.jar module must be the last module specified in
application.xml:

<module>

<ejb>bpm-init-ejb.jar</ejb>

</module>

Deploying The Default Web Application

By default, when you create a domain based on any of the WebLogic Integration
domain templates, it contains configuration for a Web server deployed to the
administration server. The Web server configuration, in turn, specifies the default Web
application (DefaultWebApp).
2-12 Deploying BEA WebLogic Integration Solutions

Designing a Clustered Deployment
The deployment descriptor (web.xml) for this default Web application resides in the
following location:

DOMAIN_HOME\applications\DefaultWebApp_myserver\WEB-INF\

In the preceding line, DOMAIN_HOME represents the pathname of the domain you
created.

A Web Application contains an application's resources, such as servlets, Java Server
Pages (JSPs), JSP tag libraries, and any static resources such as HTML pages and
image files.

Deploying Custom JSP and HTML Pages

If you deploy custom JSP or HTML pages as part of your WebLogic Integration
application, your custom JSP and HTML pages should reside in the following
directory:

DOMAIN_HOME\applications\DefaultWebApp_node

In the preceding path, DOMAIN_HOME represents the root directory of the custom
domain you created using the Configuration Wizard (see �Step 2. Create a WebLogic
Integration Domain� on page 3-7), and node represents the name of a WebLogic Server
instance in your cluster.

You must configure a Web server for each node in your cluster. The following excerpt
from a config.xml file shows:

! A WebServer element configured for a managed server named
managedserver1

! An Application element configured for the default Web application

(Information of interest is in bold text for emphasis.)

Listing 2-3 WebServer Element for Managed Server in a config.xml File

<Server Name="managedserver1" ...
...
<WebServer Name="managedserver1" DefaultWebApp="DefaultWebApp_node"

HttpsKeepAliveSecs="120" KeepAliveSecs="60"
LogFileName="C:/bea/user_projects/mydomain/logs/access.log"
LoggingEnabled="true"/>
Deploying BEA WebLogic Integration Solutions 2-13

2 Understanding WebLogic Integration Clusters
...
</Server>

 :

<Application Deployed="true" Name="DefaultWebApp_node"
Path="C:/bea/weblogic700/samples/integration/config/samples/RN2Security/

config/peer2/applications"
StagedTargets="" TwoPhase="false">
<WebAppComponent IndexDirectoryEnabled="true"
Name="DefaultWebApp_node" Targets="managedserver1"
URI="DefaultWebApp_node"/>

</Application>

In the preceding listing, note that the DefaultWebApp attribute in the WebServer
element references the default Web application component. The configuration for the
default Web application is also shown in the preceding listing. It, in turn, references
the directory where your JSP and HTML pages reside (node represents the name of a
server in your cluster).

For more information about deploying Web applications, see Assembling and
Configuring Web Applications, which is available at the following URL:

http://edocs.bea.com/wls/docs70/webapp/index.html

 Note About Administration Servers

If the administration server for a cluster is down, deployment or undeployment
requests are interrupted, but managed servers should continue serving requests. You
can boot or reboot managed servers using an existing configuration. However, you
cannot change configuration for the cluster (for example, add new nodes to the cluster)
until the administration server is recovered. For more information, see �Backup and
Failover for an Administration Server� on page 4-18.
2-14 Deploying BEA WebLogic Integration Solutions

Load Balancing in a WebLogic Integration Cluster
Load Balancing in a WebLogic Integration
Cluster

One of the goals of clustering your WebLogic Integration application is to achieve
scalability. In order for a cluster to be scalable, each server must be fully utilized. Load
balancing distributes the workload proportionally among all the servers in a cluster so
that each server can run at full capacity. The following sections describe load
balancing for various functional areas in a WebLogic Integration cluster:

! Load Balancing WebLogic Server Functions in a Cluster

! Load Balancing BPM Functions in a Cluster

! Load Balancing Application Integration Functions in a Cluster

! Load Balancing B2B Integration Functions in a Cluster

Load Balancing WebLogic Server Functions in a Cluster

WebLogic Server supports load balancing for HTTP session states and clustered
objects. For more information, see �Communications in a Cluster� in Using WebLogic
Server Clusters, which is available at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html

Load Balancing BPM Functions in a Cluster

BPM workflows require an event queue for processing event-based workflows. For
more information, see �Business Process Management Resources� on page 1-9.
Deploying BEA WebLogic Integration Solutions 2-15

2 Understanding WebLogic Integration Clusters
Event Queues and Associated Pools

The following types of pools are associated with each BPM event queue:

! Pool of unordered event listener message-driven beans

! Set of ordered event listener message-driven beans that select order keys from
the JMS queue

The following figure illustrates an event queue and the pools associated with it.

Figure 2-1 Event Queue and Associated Pools

The unordered event listener message-driven beans process messages in a
nondeterministic order. Although messages are read in first-in, first-out (FIFO) order,
messages can be processed out of order after they are read, depending on thread
scheduling and the load at the time they are processed.

The ordered event listener message-driven beans guarantee that, for a particular order
key (WLPIOrderKey), messages are processed in an ordered sequence. To achieve this,
a single event listener message-driven bean in a cluster must be configured to process
messages for WLPIOrderKey.
2-16 Deploying BEA WebLogic Integration Solutions

Load Balancing in a WebLogic Integration Cluster
An order key must be an integer value, and the value must be the same for each event
that you want processed in the order in which it is received. Ordered messages must
also be sent to the same JMS queue. The message producer is responsible for
delivering the messages in the queue in the correct order.

WLPIOrderKey is a custom JMS property that BPM uses. You can set this property in
the WebLogic Integration Studio or you can set it programmatically:

! You can set WLPIOrderKey in the post-XML event dialog box when you send
messages between workflows. For more information, see �Posting an XML
Message to a JMS Topic or Queue� in �Defining Actions� in Using the
WebLogic Integration Studio.

! You can define the WLPIOrderKey JMS header field for a message
programatically, as described in �Guaranteeing Sequential Processing of
Messages� in �Establishing JMS Connections� in Programming BPM Client
Applications.

A single JAR file (wlpi-mdb-ejb.jar) contains both ordered and unordered event
listener message-driven beans for a particular queue. The message-driven beans
provided in the wlpi-mdb-ejb.jar file consume messages from the default
EventQueue. This JAR file must be targeted to the cluster.

BPM load balancing is achieved by deploying wlpi-mdb-ejb.jar to the cluster. This
JAR file contains five ordered event listener message-driven beans and five unordered
event listener message-driven beans. The message-driven beans consume messages
from distributed destinations for validating and nonvalidating event queues. The
distributed destinations contain one physical destination per JMS server, and one JMS
server per instance of WebLogic Server. A single message producer on a distributed
queue is bound to a single physical destination. Message-driven beans are bound to the
physical destination in the server on which they are deployed (server affinity). Making
use of server affinity means that a message is kept within the same JVM and WebLogic
Server instance while it is being processed. Therefore, ordered messages sent by a
given producer to a distributed destination are guaranteed to be consumed by the same
ordered message-driven bean. This process guarantees ordered delivery of messages.

Creating New Pools

If you have sufficient processing power on a single server, you can increase the pool
size and range for event listener message-driven beans in the wlpi-mdb-ejb.jar file,
as described in �Do You Have Enough Message-Driven Beans?� on page 6-20.
Deploying BEA WebLogic Integration Solutions 2-17

2 Understanding WebLogic Integration Clusters
For information about creating a custom JMS queue and event listeners for that queue,
see �Configuring a Custom Java Message Service Queue� in �Customizing WebLogic
Integration� in Starting, Stopping, and Customizing BEA WebLogic Integration.

Requirements for Load Balancing BPM Functionality

When you are load balancing BPM functionality in a WebLogic Integration cluster,
consider the following requirements:

! A JAR file containing the ordered and unordered event listener message-driven
beans for a particular JMS queue must be targeted to the cluster. In other words,
homogeneous deployment across the cluster is mandatory. WebLogic Integration
provides the wlpi-mdb-ejb.jar file to pull work from the default event queue
(com.bea.wli.bpm.EventQueue).

Note: This description also applies to the validating queue when XML validation
is being performed. The default validating event queue is
com.bea.wli.bpm.ValidatingEventQueue.

! You can use the MDB Generator utility to create a new JAR file. The new JAR
file must be associated with a new and unique JMS queue.

! Applications must be aware of the new JMS queue in order to trigger work on
the new event listener message-driven beans.

Timed Events

Like the message-driven beans for the event and validating event queues, timed event
listeners are also deployed to the cluster in the wlpi-mdb-ejb.jar file. These
message-driven beans pull work from com.bea.wli.bpm.TimerQueue.

Timed events are implemented using JMS delivery times. They are executed by two
types of pools:

! A pool of timed event listener message-driven beans similar to the pool for
non-ordered processing (timed start workflows).

! A set of message-driven beans for consuming the timed events with which a
workflow instance (task due date, timed event action) is associated. (Single
timed event listener message-driven beans in a cluster are configured to process
messages for specific order keys.)
2-18 Deploying BEA WebLogic Integration Solutions

Load Balancing in a WebLogic Integration Cluster
Load Balancing Application Integration Functions in a
Cluster

It is possible to configure a homogenous cluster (that is, one in which all resources
have the same managed server targets), subject to any constraints in the adapters
themselves.

In contrast to BPM functionality, it is possible to load balance application integration
functionality in a cluster using the default JMS queues and servers.

In a clustered deployment, you must deploy a single EJB (wlai-admin-ejb.jar) to
the administration server only. This EJB is deployed from the wlai-admin.ear
archive file. (See Table 2-1 in �Deploying WebLogic Integration Resources� on page
2-4.)

Note: The wlai-admin-ejb.jar is required only in a clustered deployment.
Therefore do not deploy wlai-admin.ear when you deploy WebLogic
Integration to a single server.

The following code excerpt is from a config.xml file for a clustered domain. It shows
the deployment specification for the wlai-admin.ear file in the cluster.

Listing 2-4 Deploying the wlai-admin EJB in the config.xml File

<Application Name="WLI-AI Admin Server Only"
Path="WLI_HOME/lib/wlai-admin.ear" TwoPhase="true">

<EJBComponent Name="WLI-AI RAR Upload" Targets="admin_server_name"
URI="wlai-admin-ejb.jar"/>

</Application>
Deploying BEA WebLogic Integration Solutions 2-19

2 Understanding WebLogic Integration Clusters
Load Balancing B2B Integration Functions in a Cluster

B2B integration functionality does not require partitioning of work within a cluster; to
support such functionality, you should configure a completely homogenous cluster. In
other words, all B2B resources (JMS consumers, destinations, and producers) are
available on all nodes in the cluster.

It is possible to load balance B2B integration functionality in a cluster using the default
JMS queues and servers.

B2B integration resources are deployed homogeneously to all nodes in a cluster.
Therefore, when shutdown of the B2B engine is requested, the B2B engine on all
nodes in a cluster are shut down. It is not possible to shut down the B2B engine on a
single node in a cluster; you must first remove the node from the cluster.

By using distributed destinations, WebLogic JMS balances the messaging load across
multiple physical destinations, which can result in better use of resources and
improved response times. The WebLogic JMS load-balancing algorithm determines
the physical destinations (in a distributed destination set) to which messages are sent,
as well as the physical destinations to which consumers are assigned. Message-driven
beans are bound to the physical destination in the server on which they are deployed
(server affinity).When a message is sent to a particular physical destination (or queue)
on a particular server, the message is processed by that server.

B2B integration functionality takes advantage of the server affinity heuristic and
in-memory caching in a clustered environment. During B2B message processing, the
B2B decoder enqueues the message envelope for a B2B message into the BPM JMS
event queue. A BPM message-driven bean dequeues the message and a B2B-specific
plug-in is invoked to further process the message. The B2B-specific plug-in uses the
message ID, the trading partner, and the delivery channel (URI) to retrieve the message
payload from the MessageStore in-memory cache. Therefore, B2B integration
functions can make use of in-memory caching, resulting in improved performance.
2-20 Deploying BEA WebLogic Integration Solutions

High Availability in a WebLogic Integration Cluster
High Availability in a WebLogic Integration
Cluster

Message-driven beans consume messages from JMS destinations. A number of
message-driven beans are deployed on each WebLogic Integration destination. For a
complete list of WebLogic Integration destinations (JMS queues and topics), see �JMS
Servers and JMS Destinations� on page 2-25.

Highly Available JMS

The ability to configure multiple physical destinations as members of a single
distributed destination set provides a highly available implementation of WebLogic
JMS. Specifically, for each node in a cluster, an administrator should configure one
physical destination for a distributed destination. If one node in the cluster fails,
making the physical destination for that node unavailable, then other physical
destinations configured as members of the distributed destination can provide service
to JMS producers and consumers.

In the case of those destinations that must be deployed as singletons in a clustered
environment, high availability is still achieved because a JMS server and all of its
destinations can be migrated to another WebLogic Server within a cluster. However,
destinations deployed as singletons are less desirable because the migration required
for them is manual.

Message-driven beans consume messages from distributed destinations. Distributed
destinations contain one physical destination for each instance of WebLogic Server. A
single message producer on a distributed queue is bound to a single physical
destination. Message-driven beans are bound to the physical destination in the server
on which they are deployed (server affinity). Therefore, ordered messages sent by a
given producer to a distributed destination are guaranteed to be consumed by the same
ordered message-driven bean. This process guarantees ordered delivery of messages,
and makes possible the B2B caching described in �Load Balancing B2B Integration
Functions in a Cluster� on page 2-20.
Deploying BEA WebLogic Integration Solutions 2-21

2 Understanding WebLogic Integration Clusters
When a managed server fails in a cluster, the message-driven beans from the failed
server are migrated atomically, but not automatically, to prevent multiple message
processing.

The following sections describe examples of how WebLogic Integration uses
distributed destinations and server affinity to achieve high availability in a clustered
deployment:

! High Availability for Asynchronous Service Requests

! High Availability for Event Forwarding

 High Availability for Asynchronous Service Requests

WLAI_ASYNC_REQUEST_QUEUE and WLAI_ASYNC_RESPONSE_QUEUE queues are
deployed as distributed destinations in a WebLogic Integration cluster, and the
Asynchronous Service Request Processor is the associated message-driven EJB, which
is deployed to all servers in a cluster. Asynchronous requests and responses are
processed even after the JMS server that accepted them crashes.

If a physical queue fails before an asynchronous service request is received by a
message-driven bean, the request remains unavailable until the physical queue comes
back on line. The same scenario is true for asynchronous service responses.

For information about processing of synchronous and asynchronous invocations for
application integration functions, see �Application Integration Resources� on page
1-15.

High Availability for Event Forwarding

Application integration adapters generate events that are consumed by BPM
functionality or by WebLogic Workshop. Events are forwarded from an adapter to a
JMS queue (WLAI_EVENT_QUEUE).

To obtain metadata about events, an event router communicates with a WebLogic
Integration instance, using HTTP. If you want to achieve load balancing and high
availability for event router callback communication, but you are not using a DNS
name for your cluster address, you must set the
wlai.clusterFrontEndHostAndPort property. For information about this
property, see �Setting the wlai.clusterFrontEndHostAndPort Property (Optional)� on
page 3-5.
2-22 Deploying BEA WebLogic Integration Solutions

Understanding JMS Resources
The WLAI_EVENT_QUEUE is a distributed destination containing multiple physical
destinations. A message-driven bean (the AI Event Processor) listens on the
WLAI_EVENT_QUEUE distributed destination. Because multiple servers participate in
the processing of messages for this queue, a single server failure can be
accommodated. For information about how adapter events are processed by WebLogic
Integration, see �Events� on page 1-19.

Understanding JMS Resources

This section describes how to configure JMS resources for your WebLogic Integration
application in a clustered environment. Specifically, it describes how to configure the
following resources:

! JMS Connection Factories

! JMS JDBC Stores

! JMS Servers and JMS Destinations

! Creating a Store and Associating It with a Connection Pool

! Creating a JMS Server and Associating It with the Store

JMS resources are configured in the WebLogic Server Administration Console. To
start the console, see �Starting the WebLogic Server Administration Console� in
�WebLogic Integration Administration and Design Tools� in Starting, Stopping, and
Customizing BEA WebLogic Integration.

JMS Connection Factories

The following JMS connection factories are configured in a WebLogic Integration
domain that contains an administration server and clustered managed servers:

! One for a BPM topic; deployed to the cluster

! One for a BPM queue; deployed to the cluster

! One for an application integration queue; deployed to the cluster

! One for a B2B integration topic; deployed to the administration server only
Deploying BEA WebLogic Integration Solutions 2-23

2 Understanding WebLogic Integration Clusters
! One for the B2B RosettaNet queue; deployed to the cluster

The following listing shows a sample specification for deployment of JMS connection
factories in a WebLogic Integration cluster. Note the Targets and JNDI names for the
connection factories, which are shown in bold.

Listing 2-5 JMSConnectionFactory Elements in the config.xml File

...
<!--Application Integration Connection Factories>

<JMSConnectionFactory AllowCloseInOnMessage="false"
DefaultDeliveryMode="Persistent" DefaultPriority="4"
DefaultTimeToLive="0"
JNDIName="com.bea.wlai.JMSConnectionFactory"
MessagesMaximum="10" Name="WLIJMSConnectionFactory"
OverrunPolicy="KeepOld" Targets="MyCluster"
UserTransactionsEnabled="true"/>

<!--B2B Integration Connection Factories>

<JMSConnectionFactory AllowCloseInOnMessage="true"
JNDIName="com.bea.wli.b2b.server.TopicConnectionFactory"
Name="B2BTopicFactory" Targets="MyServer-1"
UserTransactionsEnabled="true"/>

<JMSConnectionFactory AllowCloseInOnMessage="true"
JNDIName="com.bea.wli.b2b.rosettanet.QueueConnectionFactory"
Name="RNQueueFactory" Targets="MyCluster"
UserTransactionsEnabled="true"/>

<!--BPM Connection Factories>

<JMSConnectionFactory AllowCloseInOnMessage="true"
JNDIName="com.bea.wlpi.TopicConnectionFactory"
Name="wlpiFactory" Targets="MyCluster"
UserTransactionsEnabled="true"/>

<JMSConnectionFactory AllowCloseInOnMessage="true"
JNDIName="com.bea.wlpi.QueueConnectionFactory"
Name="wlpiQueueFactory" Targets="MyCluster"
UserTransactionsEnabled="true"/>

...
2-24 Deploying BEA WebLogic Integration Solutions

Understanding JMS Resources
JMS JDBC Stores

A JMS JDBC store must be defined for each JMS server in your deployment.

The following listing is an excerpt from a config.xml file, which defines JMS JDBC
stores for a cluster (MyCluster) containing two managed servers (MyServer-1 and
MyServer-2), administered by the myserver administration server. Note that the
target for the connection pool lists both the cluster and the administration server.

Listing 2-6 JMSJDBCStore Elements in the config.xml File

<JMSJDBCStore ConnectionPool="wliPool"
Name="JMSWLCStore-MyServer-1" PrefixName="MyServer_1"/>

<JMSJDBCStore ConnectionPool="wliPool"
Name="JMSWLCStore-MyServer-2" PrefixName="MyServer_2"/>

<JMSJDBCStore ConnectionPool="wliPool" Name="JMSWLCStore-myserver"
PrefixName="myserver"/>

...

<JDBCConnectionPool CapacityIncrement="1"
DriverName="oracle.jdbc.driver.OracleDriver" InitialCapacity="1"
LoginDelaySeconds="1" MaxCapacity="15" Name="wliPool"
Properties="user=scott;password=tiger;dll=ocijdbc8;protocol=thin
RefreshMinutes="0" ShrinkPeriodMinutes="15"
ShrinkingEnabled="true" Targets="myserver,MyCluster"
URL="jdbc:oracle:thin:@machine:port:name"/>

JMS Servers and JMS Destinations

One JMS server must be configured for each managed server in your cluster, and one
for the administration server. (Only one destination (the B2B Topic) is deployed to the
JMS server configured for the administration server, as shown in Table 2-2.) We
recommend the following naming convention for your JMS servers:
WLI_JMSServer_node, such that node represents the name of the server on which the
JMS server is deployed.
Deploying BEA WebLogic Integration Solutions 2-25

2 Understanding WebLogic Integration Clusters
The following table describes the destinations (JMS queues and topics) used by
WebLogic Integration and specifies whether they are deployed as single or distributed
destinations.

Table 2-2 JMS Destinations

Destination Distributed or Single

com.bea.wli.bpm.TimerQueue Distributed

com.bea.wli.bpm.EventQueue Distributed

com.bea.wli.bpm.ValidatingEventQueue Distributed

com.bea.wli.bpm.ErrorTopic Distributed

om.bea.wli.bpm.AuditTopic Distributed

com.bea.wli.bpm.NotifyTopic Distributed

com.bea.wlpi.EventTopic Single managed server

com.bea.wli.b2b.server.B2BTopic Administration server only

com.bea.b2b.OutboundQueue Distributed

com.bea.b2b.rosettanet.EncoderQueue Distributed

com.bea.wlai.ASYNC_REQUEST_QUEUE Distributed

com.bea.wlai.ASYNC_RESPONSE_QUEUE Distributed

com.bea.wlai.EVENT_QUEUE Distributed

com.bea.wlai.EVENT_TOPIC Distributed

com.bea.wli.FailedEventQueue1

1. The com.bea.wli.FailedEventQueue destination is used by all components
of WebLogic Integration. It should be used as the error destination for any JMS
destination that consumes messages in a JTA UserTransaction. For more information
about the error queue, see �Error Destination� on page 2-28.

Distributed
2-26 Deploying BEA WebLogic Integration Solutions

Understanding JMS Resources
The following listing is an excerpt from a config.xml file. It shows selected JMS
elements for a clustered configuration containing two managed servers (MyServer-1
and MyServer-2), administered by an administration server (myserver).

Listing 2-7 JMSServer Elements in the config.xml File

<!--Distributed Destinations-->

<JMSDistributedQueue JNDIName="com.bea.wli.bpm.EventQueue"
 Name="WLI_BPM_Event" Targets="MyCluster">

<JMSDistributedQueueMember JMSQueue="WLI_BPM_Event_MyServer-1"
Name="WLI_BPM_Event_MyServer-1"/>
<JMSDistributedQueueMember JMSQueue="WLI_BPM_Event_MyServer-2"
Name="WLI_BPM_Event_MyServer-2"/>

</JMSDistributedQueue>

<!--Administration Server-->

<JMSServer Name="WLI_JMSServer_myserver"
Store="JMSWLCStore-myserver" Targets="myserver"
TemporaryTemplate="TemporaryTemplate">
<JMSTemplate Name="TemporaryTemplate"/>
<JMSTopic JNDIName="com.bea.wli.b2b.server.B2BTopic"
Name="B2BTopic"/>

</JMSServer>

<!--Managed Server-->

<JMSServer Name="WLI_JMSServer_MyServer-1"
Store="WLI_JMSJDBCStore_MyServer-1" Targets="MyServer-1
(migratable)"

<JMSQueue JNDIName="com.bea.wli.bpm.Event.MyServer-1"
Name="WLI_BPM_Event_MyServer-1" StoreEnabled="true"
Template="WLI_JMSTemplate-1"/>

...
<JMSTopic JNDIName="com.bea.wli.bpm.EventTopic"
Name="wlpiEvent" StoreEnabled="false"/>

...
</JMSServer>
Deploying BEA WebLogic Integration Solutions 2-27

2 Understanding WebLogic Integration Clusters
Note the following information in the preceding listing:

! One JMS distributed destination (JMSDistributedQueue) is shown. It specifies
the WLI_BPM_Event queue:

" The queue is deployed to all servers in the cluster, as specified by the
following: Targets="MyCluster"

" The JMSDistributedQueue element contains two
JMSDistributedQueueMember elements, one for each physical destination.
That is, one destination is associated with each managed server.

! Two JMSServer elements are shown: one for the administration server and one
for a managed server.

! The JMSServer element for the administration server contains one JMSTopic
element, specifying that only one destination (the B2B Topic destination) is
deployed on the administration server.

! The JMSServer for each managed server should contain JMSTopic and
JMSQueue elements for all the JMS distributed destinations described in
Table 2-2. The excerpt from the config.xml file shown in this listing illustrates
the following examples:

" The JMSQueue element specifying the WLI_BPM_Event queue for
MyServer-1 (WLI_BPM_Event_MyServer-1).

" The JMSTopic element specifying com.bea.wli.bpm.EventTopic, which
must be deployed to only one server in the cluster (in this case,
MyServer-1).

Error Destination

The com.bea.wli.FailedEventQueue is the error destination for any JMS
destination that consumes messages in a JTA User Transaction. For example, it is the
error destination for the EventQueue, ValidatingEventQueue, and TimerQueue.
Messages that do not find a target BPM workflow instance and those that fail a number
of retries, at one minute intervals, are sent to the FailedEventQueue. (The default
number of retry attempts is 10, but you can configure a different number.) When a JMS
message arrives on the FailedEventQueue, a message-driven bean
(com.bea.wli.common.errorlistener.ErrorListenerBean), which listens on
the queue, writes log entries to the WebLogic Server log.
2-28 Deploying BEA WebLogic Integration Solutions

Understanding JMS Resources
You can specify the number of retry attempts to be allowed by configuring attributes
for redelivery in the WLI_JMSTemplate-node, which is the JMS template used by the
error queue. The error queue is a distributed destination, and the redelivery attributes
are configured for a node-specific physical destination, which is named
WLI-FailedEvent-node. (For these names, node represents the name of a WebLogic
Server instance in your cluster):

1. In the WebLogic Server Administration Console navigation tree, choose
Services→JMS→Templates→WLI_JMSTemplate-node.

2. Select the Configuration tab, followed by the Redelivery tab.

3. Specify the redelivery attributes and the appropriate WLI-FailedEvent-node for
which to configure those attributes.

4. Click Apply.

For more information about configuring redelivery attributes for a JMS template, see
�JMS Template→Configuration→Redelivery� in �JMS� in the Adminstration Console
Online Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstemplate_c
onfig_redelivery.html

In addition, you have the option of creating your own custom message listener, adding
it to the classpath, and referencing it in the FailedEventQueue message-driven bean
deployment descriptor. By doing so, you can configure your system to persist error
messages.

Creating a Store and Associating It with a Connection Pool

To create a store and associate it with a connection pool, complete the following steps:

1. In the Administration Console navigation tree, go to the Services→JMS→Stores
node and select Configure a new JMSJDBCStore. The Configuration tab should be
selected by default.

2. In the Name field, enter the name by which you want to identify this store.

Every JMS server has its own JMSJDBCStore. Every managed server has its
own JMS server. For instructions on creating such a server, see �Creating a JMS
Server and Associating It with the Store� on page 2-30.

3. In the Connection Pool field, select the connection pool that you want to use.
Deploying BEA WebLogic Integration Solutions 2-29

2 Understanding WebLogic Integration Clusters
4. In the Prefix Name field, enter the prefix to be appended (for example, WLI-AI).

5. Click Create.

Creating a JMS Server and Associating It with the Store

To create a JMS server and associate it with a JMSJDBCStore, complete the following
steps:

1. In the Administration Console navigation tree, go to the Services→JMS→Servers
node and select Configure a new JMSServer.

2. In the Name field, enter the name by which you want to identify this JMS server.

3. In the Store field, select the JMSJDBCStore with which you want to associate
this JMS server.

4. In the Temporary Template field, select one of the available templates:

" Temporary Template

" WLIJMSTemplate

Note: You can access the properties for each of these JMS templates through the
Services→JMS→Templates node in the Administration Console.

5. Click Create.

Deploying Adapters

Run-time application integration features (synchronous service invocations,
asynchronous service invocations, and events), described in �Application Integration
Resources� on page 1-15, can be clustered for scalability and high availability.
Application integration features that are available at design time (Application Views
and Connection Factories) can be clustered for scalability but not for high availability,
meaning that you cannot deploy or undeploy (edit) Application Views if any server in
a cluster is not running. In other words, you can deploy and undeploy (edit) only in a
healthy cluster.
2-30 Deploying BEA WebLogic Integration Solutions

Deploying Adapters
An application integration adapter is typically composed of three components:

! A resource adapter deployed from a RAR file

! A design-time Web application deployed from a WAR file

! An event generator Web application deployed from a WAR file

The resource adapter (RAR) file and the design time Web application (WAR) file
should be deployed to the cluster. However the event generator Web application
(WAR) file should, in most cases, be deployed to a single node in the cluster. (For
specific information, see the documentation for the adapter you are using.)

For example, when a DBMS adapter is used, the DbmsEventRouter Web application
must be targeted to a single node in a cluster. The following listing is an excerpt from
a config.xml file. It shows an Application element that specifies the configuration for
deployment of a DBMS adapter.

Listing 2-8 Configuration for Deploying an Application Integration Adapter

<Application Deployed="true" Name="BEA_WLS_DBMS_ADK"
Path="/bea/weblogic700/integration/adapters/dbms/lib/
BEA_WLS_DBMS_ADK.ear" StagingMode="stage" TwoPhase="true">

<ConnectorComponent Name="BEA_WLS_DBMS_ADK"
Targets="MyCluster" URI="BEA_WLS_DBMS_ADK.rar"/>

<WebAppComponent Name="BEA_WLS_DBMS_ADK_Web"
Targets="MyCluster" URI="BEA_WLS_DBMS_ADK_Web.war"/>

<WebAppComponent Name="DbmsEventRouter" Targets="MyServer-1"
URI="BEA_WLS_DBMS_ADK_EventRouter.war"/>
</Application>

Note the following information in the preceding listing. Information of interest is
highlighted in bold text for emphasis:

! The value of StagingMode must be set to stage, to ensure that the
administration server copies the adapter EAR file to all managed servers in the
StagedTargets list before activating the server.

! Adapters must be deployed using the TwoPhase=�true� attribute. This setting
ensures that all adapter components are deployed before your system attempts to
process messages.
Deploying BEA WebLogic Integration Solutions 2-31

2 Understanding WebLogic Integration Clusters
! The resource adapter design-time Web application is deployed to the cluster, but
the event generator Web application, deployed from a WAR file, is deployed to
only one managed server (MyServer-1).

Configuring Adapters for Deployment

WebLogic Integration domains created by the Configuration Wizard define the
configuration for resource adapters. In the configuration created by the Configuration
Wizard, the three components of an adapter are targeted for deployment to the cluster.
However, as described in the preceding section (specifically, Listing 2-8), the event
generator Web application (WAR) file should, in most cases, be deployed to a single
node in the cluster. You must modify your domain configuration to meet this
requirement. For information about how to modify the domain configuration, see
�Step 5. Configure Event Router WAR File for Adapters� on page 3-15.

You can also deploy resource adapters after you start the servers in your cluster. For
information about how to set up and start your clustered deployment, see Chapter 3,
�Configuring a Clustered Deployment.� For information about using the
weblogic.Deployer command-line utility or the WebLogic Server Administration
Console to deploy resource adapters to a running cluster, see Appendix B, �Deploying
Resource Adapters.�

For more information about deploying adapters in the WebLogic Integration
environment, see �Deploying Adapters� in Developing Adapters.
2-32 Deploying BEA WebLogic Integration Solutions

CHAPTER
3 Configuring a
Clustered Deployment

This section describes the tasks that you must perform to configure WebLogic
Integration for deployment in a clustered environment.

For information about deploying WebLogic Integration on a single server, see
�Creating and Customizing a New Domain� in �Customizing WebLogic Integration�
in Starting, Stopping, and Customizing BEA WebLogic Integration.

Plan the architecture of your clustered domain, as described in �Designing a Clustered
Deployment� on page 2-3; then set up WebLogic Integration in a clustered
environment. To do this, you must configure a router (hardware or software), an
administration server, and managed servers and deploy WebLogic Integration
resources to the servers. The persistent configuration for a domain of WebLogic Server
instances and clusters is stored in an XML configuration file (config.xml) on the
administration server.

To set up and deploy WebLogic Integration in a clustered domain, complete the
following steps:

! Step 1. Comply with Configuration Prerequisites

! Step 2. Create a WebLogic Integration Domain

! Step 3. Configure the Database for Your Domain

! Step 4. Configure BPM Resources for One Managed Server

! Step 5. Configure Event Router WAR File for Adapters

! Step 6. Configure an RDBMS Realm

! Step 7. Configure a Router
Deploying BEA WebLogic Integration Solutions 3-1

3 Configuring a Clustered Deployment
! Step 8. Edit the startWeblogic Command File

! Step 9. Set Up Managed Servers for Your Domain

! Step 10. Configure WebLogic Integration for Automatic Restart

! Step 11. Configure WebLogic Integration for Migration from Failed to Healthy
Node

! Step 12. Configure WebLogic Integration Security

! Step 13. Start the Servers in the Domain

Step 1. Comply with Configuration
Prerequisites

This section describes prerequisites for configuring WebLogic Integration to run in a
clustered environment:

! Obtain a WebLogic Server cluster license for each required installation.

To use WebLogic Server in a clustered configuration, you must have a special
cluster license. Contact your BEA representative for information about obtaining
one.

! Obtain an IP address for the administration server you will use for the cluster.

All WebLogic Server instances in a cluster use the same administration server
for configuration and monitoring. When you add servers to a cluster, you must
specify the administration server that each will use.

! Define a multicast address for each cluster

Note: You are prompted to provide a multicast address when you create a
WebLogic Integration domain using the Configuration Wizard. (See �Step
2. Create a WebLogic Integration Domain� on page 3-7.)

The multicast address is used by cluster members to communicate with each
other. Clustered servers must share a single, exclusive multicast address. For
each cluster on a network, the combination of multicast address and port must be
3-2 Deploying BEA WebLogic Integration Solutions

Step 1. Comply with Configuration Prerequisites
unique. If two clusters on a network use the same multicast address, they should
use different ports. If the clusters use different multicast addresses, they can use
the same port or accept the default port, 7001. To support multicast messages,
the administration server and the managed servers in a cluster must be located
on the same subnet.

! Define IP addresses for the servers in your cluster. You can do this in a number
of ways:

Note: You are prompted to provide a listen addresses for servers when you create
a WebLogic Integration domain using the Configuration Wizard. (See
�Step 2. Create a WebLogic Integration Domain� on page 3-7.)

" Assign a single IP address and different listen port numbers to the servers in
the cluster.

By assigning a single IP address for your clustered servers with a different
port number for each server, you can set up a clustered environment on a
single machine without the need to make your machine a multihomed server.

To access such an IP address from a client, structure the IP address and port
number in your URL in one of the following ways:

" Assign a static IP address for each WebLogic Server instance to be started on
each machine in the cluster.

In this case, when multiple servers are run on a single machine, that machine
must be configured as a multihomed server, that is, multiple IP addresses are
assigned to a single computer.

In this case, structure the cluster address as a comma-separated list of IP
addresses. For example, the following listing is an example of a cluster

ipAddress:portNumber-portNumber When the port numbers are sequential, for
example:
127.0.0.1:7003-7005

ipAddress:portNumber+...+portNumber When the port numbers are not sequential, for
example:
 127.0.0.1:7003+7006+7008

ipAddress:portNumber,ipAddress:portNumber,
...

Verbose, explicit specification, for example:
127.0.0.1:7003,127.0.0.1:7004,127
.0.0.1:7005
Deploying BEA WebLogic Integration Solutions 3-3

3 Configuring a Clustered Deployment
address specified in a config.xml file. It specifies a static IP address for
each of the four servers in a cluster named MyCluster:
<Cluster
ClusterAddress="127.0.0.1:7001,127.0.0.2:7001,127.0.0.3,127.
0.0.4:7001" Name="MyCluster"/>

Note: For development and testing, you can use a comma-separated list.
However, for production, it is recommended that you specify the
cluster address only as a DNS name or a single IP address. If you do
not use a DNS name for the ClusterAddress, you should set the
wlai.clusterFrontEndHostAndPort property to support load
balancing and high availability for event router callback
communication (application integration functionality). For information
about setting this property, see �Setting the
wlai.clusterFrontEndHostAndPort Property (Optional)� on page 3-5.

! Configure an Oracle, Microsoft SQL, Sybase, or DB2 database for your
clustered domain.

! Include a shared file system. A shared file system is strongly recommended for
any cluster in which B2B integration functionality is used. A shared file system
is required for any cluster you want to be highly available. We recommend either
a Storage Area Network (SAN) or a multiported disk system.

! Configure a hardware or software router for your system. Load balancing of
servlets and JSPs can be accomplished using either the built-in load balancing
capabilities of a WebLogic proxy plug-in, or separate load balancing hardware.

For information about configuring a software router for your WebLogic
Integration domain, see �Step 7. Configure a Router� on page 3-18.

For information about hardware and software routers, see Using WebLogic
Server Clusters, which is available at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html

For more information about setting up clustered WebLogic Server instances, see
�Setting Up WebLogic Clusters� in Using WebLogic Server Clusters, which is
available at the following URL:

http://e-docs.bea.com/wls/docs70/cluster/index.html
3-4 Deploying BEA WebLogic Integration Solutions

Step 1. Comply with Configuration Prerequisites
Note: Additional requirements apply when you design your domain to include one
or more firewalls. For details, see �Communications in a Cluster� in Using
WebLogic Server Clusters, which is available at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html

Setting the wlai.clusterFrontEndHostAndPort Property
(Optional)

Application integration adapters generate events that are consumed by the BPM
engine. For information about events and event processing in WebLogic Integration,
see �Events� on page 1-19.

When you do not use a DNS name for your cluster address, you should set the
wlai.clusterFrontEndHostAndPort property to achieve load balancing and high
availability for event router callback communication.

Why Set the wlai.clusterFrontEndHostAndPort Property?

The following table describes the cluster configuration in a sample cluster, for which
the cluster address is:

<Cluster ClusterAddress="127.0.0.1:7001,127.0.0.1:7002"
Name="MyCluster"/>

Server Name Server Type Listen Address:Port

MyAdmin Administration Server 127.0.0.5:7005

MyServer1 Managed Server 127.0.0.1:7001

MyServer2 Managed Server 127.0.0.1:7002

MyRouter Router 127.0.0.1:7003
Deploying BEA WebLogic Integration Solutions 3-5

3 Configuring a Clustered Deployment
An event router uses obtains metadata about events by communicating with an
instance of WebLogic Integration through HTTP. Exactly how such communication
occurs is determined by whether or not the wlai.clusterFrontEndHostAndPort
property is set:

! If the wlai.clusterFrontEndHostAndPort property is not set . . .

As a result, upon establishment of communication with the event router,
WebLogic Integration passes the first address listed in ClusterAddress as the
callback address. In our example, the callback address is 127.0.0.1:7001. In
this scenario, if MyServer-1 fails, then event routers cannot contact the
WebLogic Integration application, even though MyServer-2 is still running.

! If the wlai.clusterFrontEndHostAndPort property is set . . .

The wlai.clusterFrontEndHostAndPort property is set to the address of the
cluster front-end, in this case, the MyRouter server, which hosts the
HttpClusterServlet.

As a result, upon establishment of communication with the event router,
WebLogic Integration passes the following address to the event router:
127.0.0.1:7003. Even if a managed server in the cluster fails, event routers
can still contact the WebLogic Integration application in this scenario.

How to Set the wlai.clusterFrontEndHostAndPort Property

You must create a wlai.clusterFrontEndHostAndPort property in the
WLAIStartup EJB environment properties for each managed server. For example, to
set wlai.clusterFrontEndHostAndPort=127.0.0.1:7003, complete the
following procedure:

1. In the Administration Console navigation tree, choose
Domain_Name→Deployments→EJB→WLI-AI Server.

2. Click Edit EJB Descriptor to display a new window, in which you can edit the
EJB descriptor.

3. In the left navigation pane of the new window, choose EJB Jar→Enterprise
Beans→Sessions→WLAIStartup→Env Entries to display a configuration window.

4. Click Configure a New Environment Entry.
3-6 Deploying BEA WebLogic Integration Solutions

Step 2. Create a WebLogic Integration Domain
5. Enter the following information:

" Env Entry Name: wlai.clusterFrontEndHostAndPort

" Env Entry Value: 127.0.0.1:7003

127.0.0.1:7003 represents the listen address and port for the cluster
front-end (in this case, the router) that hosts the HttpClusterServlet.

Step 2. Create a WebLogic Integration
Domain

To complete this step, you must add a definition for each managed server to the domain
configuration file (config.xml), assign all managed servers to a cluster, specify the
WebLogic Integration components on the servers in your domain, and so on.

You begin the definition of a clustered WebLogic Integration deployment by creating
a domain using the BEA Configuration Wizard.

Note: The procedure described in this section for setting up your domain is based on
the assumption that you are running the Configuration Wizard in GUI mode
from the Windows Start menu.

For information about using the Configuration Wizard in different modes, see
Using the Configuration Wizard, which is available at the following URL:

http://edocs.bea.com/platform/docs70/confgwiz/index.html

To create a WebLogic Integration domain using the Configuration Wizard, complete
the following steps:

1. From the Start Menu, choose Programs→BEA WebLogic Platform 7.0→Domain
Configuration Wizard.

The Configuration Wizard is launched. It prompts you for data with which to
configure your domain.

2. Respond to the Configuration Wizard prompts by providing the information
described in the following table.
Deploying BEA WebLogic Integration Solutions 3-7

3 Configuring a Clustered Deployment
In this window . . . Perform the following action . . .

Choose a Domain Type and
Name

Select a template on which to base your domain and assign a name to your domain.
Select one of the following domain templates, depending on the requirements for
your domain:
! WLI Domain�Use this template when you want your domain to support all

WebLogic Integration functionality: BPM, B2B integration, application
integration, and data integration.

! WLI BPM�Use this template when you want your domain to support BPM
and data integration functionality.

! WLI EAI�Use this template when you want your domain to support
application integration, BPM, and data integration functionality.

Choose Server Type Select the following option when you are prompted for the server type:
Admin Server with Clustered Managed Server(s)

Choose Domain Location Specify a directory in which to install your domain.
Accept the default directory or browse to select a different one. Any valid directory
on your machine can be used as the domain directory.

Configure Clustered
Servers

Specify the server name, listen address, and listen port for each managed server in
your cluster.1

Configure Cluster Specify the cluster name, cluster multicast address, cluster multicast port, and
cluster address.1

Configure
Standalone/Administrative
Server

Specify the server name, server listen address, server listen port, and server SSL
listen port for the administration server, from which all administrative functions for
your clustered domain will be performed.1

Note: When you configure the administration server, we recommend that you
accept the default Server Name (myserver), as prompted by the
Configuration Wizard. If you specify a server name other than the default,
you must change the name of the following directory in your domain, by
replacing myserver with the new name you specified:
DOMAIN_HOME/applications/DefaultWebApp_myserver

In the preceding path, DOMAIN_HOME represents the root directory of the
custom domain you created using the Configuration Wizard.

Create Administrative User Specify a user name and password.
3-8 Deploying BEA WebLogic Integration Solutions

Step 3. Configure the Database for Your Domain
When you complete the domain configuration using the Configuration Wizard, your
new domain is created in the location you specified earlier. A configuration file
(config.xml) is created in the domain. It contains a definition for the administration
server and each managed server in the cluster, and it assigns the managed servers to
the cluster.

Note: In the steps that follow in this procedure, you will edit the config.xml file to
configure your clustered domain. Therefore, we recommend that before
proceeding to the next step, you save a backup copy of the config.xml file
created in this step.

Step 3. Configure the Database for Your
Domain

The Database Wizard is a WebLogic Integration configuration utility that facilitates
the task of setting up a database for the domain you created in the preceding step.

To run the Database Wzard:

1. Run the wliconfig script in the domain you created in step 2.

If, for example, you created a domain named mydomain in the default location,
run one of the following command sequences (depending on your operating
system):

Create Start Menu Entry for
Server

Specify whether you want to install the administration server in the Windows Start
menu.

Configuration Summary Do one of the following:
! Review the configuration summary information and click Create to create the

defined domain.
! Review the configuration summary information and click Previous to return to

windows you have already viewed, so you have an opportunity to change
information that you supplied earlier, before creating the domain.

1. For information about setting up addresses and port numbers, see �Step 1. Comply with Configuration
Prerequisites� on page 3-2.
Deploying BEA WebLogic Integration Solutions 3-9

3 Configuring a Clustered Deployment
" Windows:

cd %BEA_HOME%\user_projects\mydomain
wliconfig

" UNIX:

cd $BEA_HOME/user_projects/mydomain
wliconfig

2. The Database Wizard provides the following options:

" Switch Database
Select this option to designate a different database to be used for the domain.
The environment variables used by commands that are invoked to initialize
the database (commands such as CreateDB and RunSamples) are updated,
and the config.xml file is modified to reflect the new settings. This option
does not initialize the database; rather, it configures the environment in
preparation for database initialization.

" Create Database
Select this option to initialize the database currently specified, or to switch to
a new database and initialize it.

3. The Database Wizard prompts you to provide the values required to connect to
the database you are configuring.

For information about running the Database Wizard, see �Using the Database Wizard�
in �Customizing WebLogic Integration� in Starting, Stopping, and Customizing BEA
WebLogic Integration.
3-10 Deploying BEA WebLogic Integration Solutions

Step 4. Configure BPM Resources for One Managed Server
Step 4. Configure BPM Resources for One
Managed Server

As described in �JMS Servers and JMS Destinations� on page 2-25, and in �Deploying
WebLogic Integration Resources� on page 2-4, the following BPM resources must be
deployed to a single node in your cluster:

! The WLI-BPM Plugin Manager, for which the URI is wlpi-master-ejb.jar.

! The EventTopic JMS topic, for which the JNDI name is
com.bea.wlpi.EventTopic.

You must modify your domain configuration to meet this requirement. You can do this
in one of two ways:

! Edit the Configuration File

! Use the WebLogic Server Administration Console

Edit the Configuration File

The config.xml file in your domain contains comments to help you quickly identify
and edit the elements that must be changed. Complete the following steps to make the
required changes to the domain�s configuration file:

1. In the root directory of the domain you created, open the config.xml file in a text
editor.

2. Search for comments labeled with the word MODIFY.

The following table shows the elements in the configuration file labeled with a
MODIFY comment, and describes the modifications you are required to make.
Deploying BEA WebLogic Integration Solutions 3-11

3 Configuring a Clustered Deployment
3. Proceed to �Step 5. Configure Event Router WAR File for Adapters� on page
3-15.

Use the WebLogic Server Administration Console

If you start the administration server in your domain before making the changes
described in the preceding table, comments that were written in the config.xml file
are lost. However, if the comments are lost, you can still configure your system
appropriately, by following the procedures described in the following sections:

! Configure BPM Master EJB for One Managed Server

! Configure BPM Event Topic for One Managed Server

Configure BPM Master EJB for One Managed Server

The simplest method to configure the BPM master EJB for one managed server is to
modify the domain configuration file, as described in Table 3-1.

Table 3-1 Configuring BPM Resources for One Managed Server

Locate the element . . . To modify the element . . .

<!-- MODIFY: In a cluster, the BPM Plugin
Manager Targets attribute must specify only
ONE cluster server -->
<EJBComponent Name="WLI-BPM Plugin
Manager"
Targets="mycluster"
URI="wlpi-master-ejb.jar"/>

Change the Targets attribute to deploy the WLI-BPM Plugin
Manager EJB component to a managed server, represented, in
this case, by managedserver-1:

<EJBComponent Name="WLI-BPM Plugin Manager"
Targets="managedserver-1"
URI="wlpi-master-ejb.jar"/>

<!-- MODIFY: This JMS Topic must be
deployed to only one node in the cluster.
Uncomment this section for one node.
<JMSTopic Name="wlpiEvent"
JNDIName="com.bea.wlpi.EventTopic"
/>

-->

Uncomment this JMSTopic element for one, and only one,
managed server in the cluster configuration:

<JMSTopic Name="wlpiEvent"
JNDIName="com.bea.wlpi.EventTopic"/>
3-12 Deploying BEA WebLogic Integration Solutions

Step 4. Configure BPM Resources for One Managed Server
Note: The following procedure is provided for reference only. Use it, for example, if
the comments in your config.xml file are lost before you complete the
configuration.

To configure the BPM Master EJB for a single managed server:

1. In the Administration Console navigation tree, select the WLI-BPM Plugin
Manager EJB in the domain you created:

Domain_Name→Deployments→EJB→WLI-BPM Plugin Manager

2. Select the Targets tab and follow the instructions in the Administration Console
to change the deployment settings in such a way that the WLI-BPM Plugin
Manager EJB is deployed to only one managed server in your cluster.

For more information about using the Administration Console to configure the
deployment of EJBs, see the WebLogic Server Adminstration Console Online
Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

After you create your domain, following the procedures in �Step 2. Create a WebLogic
Integration Domain� on page 3-7, the WLI-BPM Plugin Manager is targeted to the
cluster. In other words, the Targets attribute contains the cluster name.

After you complete the required modification, the WLI-BPM Plugin Manager EJB
should be targeted to a single managed server in your cluster. The following excerpt
shows the edited config.xml file, which illustrates the configuration change in the
Targets attribute. In this example, the EJB is targeted to a managed server named
manageserver-1.

Listing 3-1 Targeting WLI-BPM Plugin Manager to a Managed Server

<Application Name="WebLogic Integration" Deployed="false"
Path="C:/bea/weblogic700/integration/lib" TwoPhase="true">

...
<EJBComponent Name="WLI-BPM Plugin Manager"
Targets="manageserver-1"
URI="wlpi-master-ejb.jar"/>

...
</Application>
Deploying BEA WebLogic Integration Solutions 3-13

3 Configuring a Clustered Deployment
Configure BPM Event Topic for One Managed Server

The simplest method to complete your domain configuration is to modify the domain
configuration file, as described in �Step 4. Configure BPM Resources for One
Managed Server� on page 3-11.

Note: The following procedure is provided for reference only. Use it, for example, if
the comments in your config.xml file are lost before you complete the
configuration.

To configure a BPM Event Topic for a single managed server:

1. In the Administration Console navigation tree, select Destinations for a JMS
server. For example, choose:

Services→JMS→Servers→WLIJMSServer_manageserver-1→Destinations

WLIJMSServer_manageserver-1 represents the name of the JMS server that is
specific to one managed server in your domain.

Note: You can assign any name you choose to the JMS server. However, we
recommend that you follow the naming convention used in this example:
WLIJMSServer_node. When this convention is used, node represents the
name of the server on which the JMS server is deployed.

2. Click Configure a New JMS Topic to display the Configuration tab.

3. Enter the following information in the appropriate fields:

" Name: wlpiEvent

" JNDI Name: com.bea.wlpi.EventTopic

4. Accept the defaults for the remainder of the fields, and click Apply.

For more information about creating new JMS queues and topics, see the WebLogic
Server Adminstration Console Online Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

The following listing is an excerpt from a config.xml file to which the BPM Event
Topic is added to the JMSServer element for a managed JMS server. (In this case, the
managed server is named WLIJMSServer_manageserver1.) The section of code
being highlighted in this listing is shown in bold.
3-14 Deploying BEA WebLogic Integration Solutions

Step 5. Configure Event Router WAR File for Adapters
Listing 3-2 Configuration for com.bea.wlpi.EventTopic

<JMSServer Name="WLIJMSServer_manageserver1"
Targets="manageserver1 (migratable)"
TemporaryTemplate="TemporaryTemplate"
Store="JMSWLIStore_manageserver1">

<JMSTopic Name="wlpiEvent"
JNDIName="com.bea.wlpi.EventTopic"/>

...
</JMSServer>

Step 5. Configure Event Router WAR File for
Adapters

Note: This step is required only for domains that are based on the WebLogic
Integration or the EAI domain templates. If your clustered domain is based on
the BPM domain template, proceed to �Step 6. Configure an RDBMS Realm�
on page 3-17.

As described in �Deploying WebLogic Integration Resources� on page 2-4, the event
router WAR files for sample adapters must be deployed on a single node in a cluster.
To meet this requirement, you must edit your domain configuration for the adapters
that are configured as part of your WebLogic Integration domain or your EAI domain:
BEA_WLS_DBMS_ADK and BEA_POWERENTERPRISE_3_0 adapters.

To change your configuration, you can use the WebLogic Server Administration
Console, or you can edit the config.xml file in your domain.
Deploying BEA WebLogic Integration Solutions 3-15

3 Configuring a Clustered Deployment
Using the Administration Console

1. In the Administration Console navigation tree, select the following event router
WAR files in the domain you created:

" Domain_Name→Deployments→WebApplications→DbmsEventRouter

" Domain_Name→Deployments→WebApplications→
BEA_POWERENTERPRISE_3_0_EventRouter

2. Change the deployment settings for each event router by selecting the appropriate
Targets tab and following the instructions in the Administration Console. Specify
that each event router will be deployed to only one managed server in your
cluster.

For more information about using the Administration Console to configure the
deployment of Web applications, see the WebLogic Server Adminstration
Console Online Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

Using the config.xml File

The following listing is an excerpt from a sample config.xml file for a domain
containing an administration server with clustered managed servers. It shows the event
router WAR files for two adapters, configured such that they are deployed on a single
managed server in the cluster. The WebAppComponent elements are shown in bold.

Listing 3-3 Configuring BEA_WLS_DBMS_ADK and
BEA_POWERENTERPRISE_3_0 Adapters

<Application Deployed="true" Name="BEA_WLS_DBMS_ADK"
Path="<WLI_HOME>/adapters/dbms/lib/BEA_WLS_DBMS_ADK.ear"
TwoPhase="true">

 <ConnectorComponent Name="BEA_WLS_DBMS_ADK"
Targets="MyCluster" URI="BEA_WLS_DBMS_ADK.rar"/>

 <WebAppComponent Name="DbmsEventRouter" Targets="MyServer-1"
URI="BEA_WLS_DBMS_ADK_EventRouter.war"/>
3-16 Deploying BEA WebLogic Integration Solutions

Step 6. Configure an RDBMS Realm
 <WebAppComponent Name="BEA_WLS_DBMS_ADK_Web"
Targets="MyCluster" URI="BEA_WLS_DBMS_ADK_Web.war"/>

</Application>

 :

<Application Deployed="true" Name="BEA_POWERENTERPRISE_3_0"
Path="<WLI_HOME>/adapters/powerenterprise/lib/
BEA_POWERENTERPRISE_3_0_EAR.ear" TwoPhase="true">

 <ConnectorComponent Description="J2EE CA adapter for
PowerEnterprise!" Name="BEA_POWERENTERPRISE_3_0"
Targets="MyCluster" URI="BEA_POWERENTERPRISE_3_0.rar"/>

<WebAppComponent
Name="BEA_POWERENTERPRISE_3_0_EventRouter"

Targets="MyServer-1"
URI="BEA_POWERENTERPRISE_3_0_EventRouter.war"/>

<WebAppComponent Name="BEA_POWERENTERPRISE_3_0_Web"
Targets="MyCluster"

URI="BEA_POWERENTERPRISE_3_0_Web.war"/>

</Application>

Step 6. Configure an RDBMS Realm

If your domain uses an RDBMS Realm from a previous release of WebLogic
Integration, you must include an RDBMSRealm element in the config.xml file for
your domain. The element is configured, but it is disabled in the config.xml file
generated when you create your domain using the procedures in �Step 2. Create a
WebLogic Integration Domain� on page 3-7. To enable the RDBMSRealm element:

1. Open the config.xml file in the root directory of your WebLogic Integration
domain.

2. Search for the RDBMSRealm element and uncomment the RDBMS Realm
element.
Deploying BEA WebLogic Integration Solutions 3-17

3 Configuring a Clustered Deployment
3. The RDBMSRealm element provided for you in the config.xml file is
configured for the Pointbase database, as shown in the following listing. If you
are using another database, reconfigure the DatabaseDriver, DatabasePassword,
DatabaseURL, and DatabaseUserNameattributes in the RDBMSRealm element.

Listing 3-4 RDBMSRealm Element

<RDBMSRealm Name="wlpiRDBMSRealm"
 DatabaseDriver="com.pointbase.jdbc.jdbcUniversalDriver"

DatabasePassword="none"
DatabaseURL="jdbc:pointbase://localhost:9094/WLIDB”
DatabaseUserName="none"

:
:

For more information about migrating security realm data, see �Step 8. Migrate Your
Security Realm Data� in �Migrating WebLogic Integration 2.1 to WebLogic
Integration 7.0� in the BEA WebLogic Integration Migration Guide.

Step 7. Configure a Router

If you want to configure a software router based on the built-in WebLogic
HttpClusterServlet, you can do so by uncommenting a predefined section in the
config.xml file in your domain.

The config.xml file in your domain contains comments to help you quickly identify
and edit the elements that must be changed. Complete the following steps to make the
required changes to the domain�s configuration file:

1. Open the config.xml file in the root directory of your WebLogic Integration
domain.

2. Search for comments labeled with the words ROUTER-OPTION, and follow the
instructions included in those comments to configure a router for your domain.
3-18 Deploying BEA WebLogic Integration Solutions

Step 7. Configure a Router
You must provide appropriate values for the router server name, listen address,
listen port, and so on.

3. Configuration for a Web server is included in the router configuration, as shown
in the following code from the config.xml file:
<WebServer Name="ROUTER_NAME"
DefaultWebApp="DefaultWebApp_ROUTER_NAME"
. . . />

Note that the Web server element references the default Web application through
the DefaultWebApp attribute. (ROUTER_NAME represents the name you assign to
the router.)

a. Make sure that a directory matching the specified DefaultWebApp value (in
this case, DefaultWebApp_ROUTER_NAME) resides in the following location:

DOMAIN_HOME/applications/

In the preceding path, DOMAIN_HOME represents the root directory for your
domain.

b. Create a web.xml deployment descriptor in the DefaultWebApp directory
specified in the preceding step. The web.xml deployment descriptor should
include the registration of the HttpClusterServlet.

For information about creating a web.xml deployment descriptor, see
�Configure Proxy Plug-Ins� in �Setting up WebLogic Clusters� in Using
WebLogic Server Clusters, which is available at the following URL:

 http://edocs.bea.com/wls/docs70/cluster/index.html

Note: When you configure a hardware or software router for your cluster, messages
coming from outside the cluster should be sent to the URL of the router.

For information about hardware and software routers, see Using WebLogic Server
Clusters, which is available at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html
Deploying BEA WebLogic Integration Solutions 3-19

3 Configuring a Clustered Deployment
Step 8. Edit the startWeblogic Command File

You must edit the startWeblogic.cmd or startWeblogic.sh file in your domain
to set the -Dweblogic.management.discover parameter to true:

1. Open the startWeblogic command file in the root directory of your WebLogic
Integration domain.

2. Locate the -Dweblogic.management.discover argument to the start
WebLogic command.

3. Change the value specified from false to true.

The following code listing shows an example of a start server command and
includes the modification to the -Dweblogic.management.discover
argument. This code listing represents a single command. It is shown here as
multiple lines for the sake of readability. In your command file, however, it is
entered as one physical line.

Listing 3-5 Start Server Command for a WebLogic Integration Clustered
Domain

REM Start weblogic

%JAVA_HOME%\bin\java %JAVA_VM% %JAVA_OPTIONS% -Xmx256m
-classpath %SVRCP%
-Dweblogic.servlet.ClasspathServlet.disableStrictCheck=true
-Dwli.bpm.server.evaluator.supportsNull=false
-Dweblogic.management.username= -Dweblogic.management.password=
-Dweblogic.Name=adminserver
-Dweblogic.RootDirectory=%WLI_DOMAIN_HOME%
-Djava.security.policy=%WL_HOME%\lib\weblogic.policy
-Dweblogic.management.discover=true
-Dweblogic.ProductionModeEnabled=%STARTMODE% weblogic.Server
By making

For a scenario in which the administration server is restarted while managed servers
are running in your domain, the administration server can discover running managed
servers when -Dweblogic.management.discover is set to true.
3-20 Deploying BEA WebLogic Integration Solutions

Step 9. Set Up Managed Servers for Your Domain
Step 9. Set Up Managed Servers for Your
Domain

This step provides instructions for extending the domain you created by adding
managed servers. To add a managed server to a domain, you must create the managed
server and configure WebLogic Integration components on the server.

A WebLogic Integration domain can be set up in one of the following ways:

! The administration server and the clustered managed servers can be set up on the
same machine.

! The administration server and the clustered managed servers can be set up on
different machines.

! Any combination of the preceding two configurations. For example, a cluster
might comprise one machine that hosts an administration server and a number of
managed servers, and one or more other machines that host additional managed
servers.

This section provides instructions for setting up managed servers in your cluster:

! Add a Managed Server to an Existing Installation

! Add a Managed Server in a New Location

Both procedures explain how to add a managed server to a domain created with one of
the templates provided with the Configuration Wizard.

Add a Managed Server to an Existing Installation

Complete the following steps to add a managed server to a WebLogic Integration
domain:

! Step 1. Create a New Managed Server

! Step 2. Update the Domain Configuration for the New Managed Server
(Optional)
Deploying BEA WebLogic Integration Solutions 3-21

3 Configuring a Clustered Deployment
Note: The procedures in this section are based on the assumption that your domain
is named mydomain, and that it resides in the default location:
BEA_HOME\user_projects.

Step 1. Create a New Managed Server

1. Start the administration server and the WebLogic Server Administration Console:

a. To start the administration server, see �Starting WebLogic Integration� in
�Getting Started� in Starting, Stopping, and Customizing BEA WebLogic
Integration.

b. To start the console, see �Starting the WebLogic Server Administration
Console� in �WebLogic Integration Administration and Design Tools� in
Starting, Stopping, and Customizing BEA WebLogic Integration.

2. In the Administration Console navigation tree, select Servers.

3. Click Configure a New Server.

4. Enter values in the Name, Listen Address (server instance IP address) fields and,
if applicable, in the external DNS name field.

The value you specify for the external DNS name can be a host name, or a
virtual host name for a multihomed machine. (A multihomed machine is one for
which multiple IP addresses are assigned.)

5. Select the machine name from the Machine drop-down list.

6. Click Create.

7. Select the Cluster tab.

8. Select the appropriate cluster from the Cluster drop-down list.

Note: For more information about creating and configuring servers, clusters,
machines, and domains using the WebLogic Server Administration Console,
see the WebLogic Server Adminstration Console Online Help, which is
available at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html
3-22 Deploying BEA WebLogic Integration Solutions

Step 9. Set Up Managed Servers for Your Domain
Step 2. Update the Domain Configuration for the New Managed Server
(Optional)

You must add a managed server to the configuration for a domain before you can start
that server. You may add a managed server to the domain configuration when you are
creating the domain, or you may add it after a domain has been created. Therefore, this
step is optional. Use the following guidelines to determine whether you need to
complete it:

! You must update your domain configuration if the managed server you created
in the previous step (�Step 1. Create a New Managed Server� on page 3-22) was
not added to your configuration when you initially created your domain. (In
other words, updating is required if you did not define the managed server in the
Configuration Wizard when you performed �Step 2. Create a WebLogic
Integration Domain� on page 3-7.)

! You do not need to update your domain configuration if the managed server you
created in �Step 1. Create a New Managed Server� on page 3-22 is already
configured for your domain. (In other words, updating is not required if you
defined the managed server in the Configuration Wizard when you created your
domain, as described in �Step 2. Create a WebLogic Integration Domain� on
page 3-7.)

To update your domain configuration for a new managed server, complete the
following procedure:

1. Configure a JMS JDBC Store, and associate it with a connection pool:

a. In the Administration Console navigation tree, choose
Domain_Name→Services→JMS→Stores

b. Click Configure a New JMSJDBCStore to display the Configuration tab.

c. Enter the following information in the appropriate fields:

Name: JMSWLIStore_newmanageserver

Connection Pool: wliPool

Prefix Name: newmanageserver

d. Click Create to create a new JMSJDBCStore for the new managed server.
Deploying BEA WebLogic Integration Solutions 3-23

3 Configuring a Clustered Deployment
2. Configure a JMS Server and associate it with the JMS JDBC Store:

a. In the Administration Console navigation tree, choose
Domain_Name→Services→JMS→Servers

b. Click Configure a New JMS Server to display the Configuration tab.

c. Enter the following information in the appropriate fields:

Name: WLIJMSServer_newmanageserver

Store: JMSWLIStore_newmanageserver

Temporary Template: TemporaryTemplate

WLIJMSServer_newmanageserver represents the name of the new JMS
server. JMSWLIStore_newmanageserver is the name you gave the
JMSJDBC Store when you created it.

You can give the JMS server any name you choose. However, we
recommend using the naming convention in this example:
WLIJMSServer_node. In this format, node represents the name of the server
(WebLogic Server instance) on which the JMS server is deployed.

d. Accept the defaults for the remainder of the fields, and click Create to create a
new JMS server for your new managed server.

3. Configure destinations for the newly defined JMS server:

a. Access your new JMS server configuration in the Administration Console
navigation tree:

Domain_Name→Services→JMS→Servers→Server_Name→Destinations

b. Click Configure Destinations.

c. Click Configure a new JMS Topic or Configure a new JMS Queue.

Configure the WLI_FailedEvent-node destination first. By doing so, a
WLI_JMSTemplate-node can be configured for redelivery. (For information
about how to configure redelivery attributes for physical destinations, see
�Error Destination� on page 2-28.) The WLI_JMSTemplate-node is used by
several of the other queue destinations.

For information about using the Administration Console to complete this
task, see �JMS Destination Tasks� in �JMS� in the WebLogic Server
3-24 Deploying BEA WebLogic Integration Solutions

Step 9. Set Up Managed Servers for Your Domain
Adminstration Console Online Help, which is available at the following
URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html

Note: You should refer to an existing node in the cluster to see the destinations
that need to be configured, and which destinations use the
WLI_JMSTemplate-node. The destinations required vary depending on
the domain template you used when you created your domain.

For a list of all JMS queues and topics configured for a JMS server in a
domain based on the WLI Domain template, see �JMS Servers and JMS
Destinations� on page 2-25.

4. Configure WebLogic Integration distributed destinations.

Multiple physical JMS destinations are configured for every distributed
destination. One physical destination is configured for each managed server in
your cluster.

To configure JMS destinations for a newly created managed server, complete the
following steps:

a. Access the distributed destinations for your WebLogic Integration domain by
selecting the following nodes in the Administration Console navigation tree:

Domain_Name→Services→JMS→Distributed Destinations

Note: Distributed destinations for your WebLogic Integration deployment are
listed in �JMS Servers and JMS Destinations� on page 2-25.

b. Create a JMS distributed queue member for each distributed destination.

For information about creating a distributed queue member, see �JMS
Distributed Destination Tasks� in �JMS� the WebLogic Server Adminstration
Console Online Help, which is available at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html

Note: For an example of WebLogic Integration distributed destination configuration,
see �JMS Servers and JMS Destinations� on page 2-25. You can also view the
JMSDistributedQueue and JMSDistributedTopic elements in the
config.xml file that was created when you created a domain.
Deploying BEA WebLogic Integration Solutions 3-25

3 Configuring a Clustered Deployment
Add a Managed Server in a New Location

To add a managed server to a domain in which the administration server and the
clustered managed servers reside on different machines, complete the following steps:

! Step 1. Copy the Contents of Your Preconfigured Domain to the New Location

! Step 2. Modify the Contents of the Directory You Copied

! Step 3. Create a Managed Server

! Step 4. Update the Domain Configuration for the New Managed Server
(Optional)

Step 1. Copy the Contents of Your Preconfigured Domain to the New Location

To set up a managed server in a new location, copy the contents of the domain
directory you created to the new location, and modify them.

Complete the following procedure:

1. Install WebLogic Integration in the new location.

2. Copy the contents of the domain directory you created (see �Step 2. Create a
WebLogic Integration Domain� on page 3-7) to the remote machine. The
directory you copy serves as the start location for the managed server.

Note: If you set up a mixed cluster environment (that is, a cluster in which some
instances of WebLogic Integration run on Windows systems and others run on
UNIX systems), you may encounter a particular problem with carriage return
characters. The carriage return character used in scripts run on Windows
systems is ^M. Sometimes these characters remain in a file that is copied from
a Windows system to a UNIX system. If the Windows carriage returns persist
on a UNIX system, simply open the file and delete the ^M characters before
running your script. You can do this using any text editor, or you can use the
dos2unix command on Solaris systems. The dos2unix utility converts
characters in the DOS extended character set to the corresponding ISO
standard characters.

If you use FTP to transfer your ASCII files from a Windows system to a UNIX
system, you can avoid this problem with carriage return characters by
choosing the default ASCII mode.
3-26 Deploying BEA WebLogic Integration Solutions

Step 9. Set Up Managed Servers for Your Domain
Step 2. Modify the Contents of the Directory You Copied

Note: The following instructions are based on the assumption that you copied a
domain directory named mydomain to the following location:
BEA_HOME/user_projects.

To modify the contents of the directory you copied to the new location, delete all files
and directories from BEA_HOME/user_projects, except those listed in the following
table.

Step 3. Create a Managed Server

1. Start the administration server and the Administration Console:

a. To start the administration server, see �Starting WebLogic Integration� in
�Getting Started� in Starting, Stopping, and Customizing BEA WebLogic
Integration.

b. To start the console, see �Starting the WebLogic Server Administration
Console� in �WebLogic Integration Administration and Design Tools� in
Starting, Stopping, and Customizing BEA WebLogic Integration.

2. In the Administration Console navigation tree, select Servers.

Files startWeblogic.cmd or startWebLogic.sh

startManagedWeblogic.cmd or startManagedWebLogic.sh

caKeyStore.pks

privateKeyStore.pks

Directories applications

cacerts

certs

keys

wlai1

1. The wlai directory is available in the domain directory if you are adding
a managed server to a domain in which adapters, application views, and
the application integration plug-in are deployed.
Deploying BEA WebLogic Integration Solutions 3-27

3 Configuring a Clustered Deployment
3. Click Configure a New Server.

4. Enter values in the Name, Listen Address (server instance IP address) fields and,
if applicable, in the external DNS name field.

The value you specify for the external DNS name can be a host name or a
virtual host name for a multihomed machine.

5. Select the machine name from the Machine drop-down list.

6. Click Create.

7. Select the Cluster tab.

8. Select the appropriate cluster from the Cluster drop-down list.

Note: For more information about creating and configuring servers, clusters,
machines, and domains using the WebLogic Server Administration Console,
see the WebLogic Server Adminstration Console Online Help, which is
available at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html

Step 4. Update the Domain Configuration for the New Managed Server
(Optional)

You must add a managed server to the configuration for a domain before you can start
that server. You may add a managed server to the domain configuration when you are
creating the domain, or you may add it after a domain has been created. Therefore this
step is optional.

To determine whether you need to complete it and, if so, how to do so, use the same
guidelines and procedures described in �Step 2. Update the Domain Configuration for
the New Managed Server (Optional)� on page 3-23.
3-28 Deploying BEA WebLogic Integration Solutions

Step 10. Configure WebLogic Integration for Automatic Restart
Step 10. Configure WebLogic Integration for
Automatic Restart

Whether WebLogic Integration is deployed in a clustered environment or a
nonclustered environment, you can configure your system to automatically restart
servers that have shut down because of a system crash, hardware reboot, server failure,
and so on. You can do this by configuring the Node Manager in one of two ways:

! Edit the configuration file created when you used the Configuration Wizard to
create your domain.

The config.xml file in your domain contains comments to help you quickly
identify and edit the elements that must be changed. To configure the Node
Manager and modify the configuration file for your domain, complete the
following procedure:

a. In the root directory of the domain you created, open the config.xml file in a
text editor.

b. Search for comments labeled with the string NM-OPTION, and follow the
instructions included in those comments to configure the Node Manager and
SSL.

c. To configure self-health monitoring (that is, to specify the frequency with
which the Node Manager checks a managed server�s health), see �Step 4.
Configure Self-Health Monitoring� on page 4-9.

d. To start the Node Manager, see �Step 5. Start the Node Manager� on page 4-10.

! Configure the required components through the WebLogic Server
Administration Console, following the procedure described in �Configuring
WebLogic Integration for Automatic Restart� on page 4-6.
Deploying BEA WebLogic Integration Solutions 3-29

3 Configuring a Clustered Deployment
Step 11. Configure WebLogic Integration for
Migration from Failed to Healthy Node

To configure your WebLogic Integration deployment such that it can support
migration of resources from a failed node to a healthy node, follow the procedure
outlined in �Configuring WebLogic Integration for Migration from Failed to Healthy
Node� on page 4-13.

Step 12. Configure WebLogic Integration
Security

If you want to configure SSL for your cluster, you can do so by uncommenting
predefined sections (one section in each Server element) in the config.xml file in
your domain.

The config.xml file contains comments to help you quickly identify and edit the
elements that must be changed. To configure SSL and modify the configuration file for
your domain, complete the following procedure:

1. Open the config.xml file in the root directory of your WebLogic Integration
domain.

2. Search for comments labeled with the string SSL-OPTION, and uncomment the
appropriate sections to configure SSL for your domain.

For a domain in which B2B integration functionality is deployed in a multinode
cluster, you also need to configure keystores, server certificates, startWeblogic scripts,
and so on, for every machine in a cluster.
3-30 Deploying BEA WebLogic Integration Solutions

Step 13. Start the Servers in the Domain
For information about the tasks you must complete, see:

! �Using the Keystore in a Multinode Cluster� in �Configuring the Keystore� in
Implementing Security with B2B Integration

! Chapter 5, �Using WebLogic Integration Security.�

Warning: If your domain is based on the WLI Domain or EAI Domain template, and
if you want to configure keystores for your domain, you must set the
Deployed attribute in the WebLogic Integration Application element to
false before you can configure keystores.

The following listing is an excerpt from a config.xml file for a
WebLogic Integration domain, which shows the Deployed attribute set to
false.

Listing 3-6 Setting the Deployed Attribute Before Configuring Keystores

<Application Name="WebLogic Integration" Deployed="false"
Path="C:/bea/weblogic700/integration/lib" TwoPhase="true">

Step 13. Start the Servers in the Domain

This section describes how to start the servers in your clustered domain:

! Before You Start the Servers

! Starting Servers in a Domain for Which the Node Manager Is Not Configured

! Starting Servers in a Domain for Which the Node Manager Is Configured

! Monitoring and Shutting Down Your Servers
Deploying BEA WebLogic Integration Solutions 3-31

3 Configuring a Clustered Deployment
Before You Start the Servers

Complete the following procedure before you start the servers in your domain:

1. Make sure that the Deployed attribute is set to true for the WebLogic Integration
Application element in the domain configuration file.

If you configured keystores for your domain, you should have set this Deployed
attribute to false, as described in �Step 12. Configure WebLogic Integration
Security� on page 3-30.

The following listing is an excerpt from a config.xml file for a WebLogic
Integration domain, which shows the Deployed attribute set to true.
<Application Name="WebLogic Integration" Deployed="true"
Path="C:/bea/weblogic700/integration/lib" TwoPhase="true">

2. If you specified a server name other than the default when you created your
domain (described in �Step 2. Create a WebLogic Integration Domain� on page
3-7), make sure that you now change the name of the following directory in your
domain:
DOMAIN_HOME/applications/DefaultWebApp_myserver

In the preceding path, DOMAIN_HOME represents the root directory for your
domain. Replace the myserver string with the name you specified for your
administration server.

Starting Servers in a Domain for Which the Node
Manager Is Not Configured

To start servers in a domain for which the Node Manager is not configured, complete
the following procedure:

1. Start the administration server by executing the startWebLogic command:
cd DOMAIN_HOME
startWeblogic

In the preceding line, DOMAIN_HOME represents the root directory for your
domain.
3-32 Deploying BEA WebLogic Integration Solutions

Step 13. Start the Servers in the Domain
2. After the administration server is started, start the managed servers in your
domain by executing the startManagedWebLogic command for each managed
server, in turn. In other words, go to the root directory in which you installed
each managed server instance, and run the startManagedWeblogic command:

cd DOMAIN_HOME
startManagedWeblogic managedserver

In the preceding line, managedserver represents the name of a managed server
in your domain.

As each managed server starts, status messages are displayed in the command
window.

Starting Servers in a Domain for Which the Node
Manager Is Configured

To start servers in a domain for which the Node Manager is configured, complete the
following procedure:

1. Start the administration server by executing the startWebLogic command:
cd DOMAIN_HOME
startWeblogic

In the preceding line, DOMAIN_HOME represents the root directory for your
domain.

2. Start the managed servers in your domain:

a. If you have not done so already, start the Node Manager on each machine that
hosts managed servers. (See �Step 5. Start the Node Manager� on page 4-10.)

b. In the Administration Console navigation tree, select the name of each
managed server, in turn.

c. In the main console window, select the Control tab.

d. Click Start this Server.

For information about how the Start Server command is affected by other
settings made via the WebLogic Server Administration Console, see the
Deploying BEA WebLogic Integration Solutions 3-33

3 Configuring a Clustered Deployment
WebLogic Server Adminstration Console Online Help, which is available from
the software and at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html

Monitoring and Shutting Down Your Servers

When startup is complete, you can use the WebLogic Server Administration Console
to verify deployments and status.

Then use the WebLogic Server Administration Console to shut down your WebLogic
Integration application. It is recommended that you do not close the command window
or press Ctrl+c to stop WebLogic Integration. To shut down your application
gracefully, run the stopWebLogic command, as described in �Stopping WebLogic
Integration� in �Getting Started� in Starting, Stopping, and Customizing BEA
WebLogic Integration.
3-34 Deploying BEA WebLogic Integration Solutions

CHAPTER
4 Understanding
WebLogic Integration
High Availability

A clustered WebLogic Integration application provides scalability and high
availability. A highly available deployment has recovery provisions in the event of
hardware or network failures, and provides for the transfer of control to a backup
component when a failure occurs.

The following sections describe clustering and high availability for a WebLogic
Integration deployment:

! About WebLogic Integration High Availability

! Configuring WebLogic Integration for Automatic Restart

! Configuring WebLogic Integration for Migration from Failed to Healthy Node

! Failover and Recovery
Deploying BEA WebLogic Integration Solutions 4-1

4 Understanding WebLogic Integration High Availability
About WebLogic Integration High
Availability

For a cluster to provide high availability, it must be able to recover from service
failures. WebLogic Server supports failover for replicated HTTP session states,
clustered objects, and services pinned to servers in a clustered environment. For
information about how WebLogic Server handles such failover scenarios, see
�Communications in a Cluster� in Using WebLogic Server Clusters, which is
available at the following URL:

http://edocs.bea.com/wls/docs70/cluster/index.html

Recommended Hardware and Software

The basic components of a highly available WebLogic Integration environment
include the following:

! An administration server

! A set of managed servers in a cluster

! An HTTP load balancer (router)

! A shared file system�A shared file system is required for a cluster that uses
B2B integration functionality, if you want that cluster to be highly available. We
recommend that you use either a Storage Area Network (SAN) or a multiported
disk system.

! An Oracle, Microsoft SQL, or Sybase database�You should take advantage of
any high availability or failover solutions offered by your database vendor. (See
�Recovering a Database� on page 4-22.)

! Persistence mode�Deploy your application with persistence mode turned on
(the default setting for WebLogic Integration). Whether your WebLogic
Integration application is deployed in a cluster or on a single server, you must
run it in persistent mode if you want to be able to recover after a system failure.
4-2 Deploying BEA WebLogic Integration Solutions

About WebLogic Integration High Availability
A cluster in which B2B integration functionality is used will not work if
persistent mode is off.

When you run WebLogic Integration with persistent mode on, the in-memory,
dynamic state of objects is saved to persistent storage in the WebLogic
Integration repository from where it can be retrieved if necessary. Persistence
mode ensures that run-time states can be recovered in the event of an abnormal
shutdown or crash.

A discussion of how to plan the network topology of your clustered system is beyond
the scope of this section. For information about how to fully utilize load balancing and
failover features for your Web application by organizing one or more WebLogic
Server clusters in relation to load balancers, firewalls, and Web servers, see �Cluster
Architectures� in Using WebLogic Server Clusters, which is available at the following
URL:

 http://edocs.bea.com/wls/docs70/cluster/planning.html

What to Expect from WebLogic Integration Recovery

A highly available deployment has recovery provisions in the event of system failures.
You can configure WebLogic Integration for automatic restart or manual migration:

! You can configure WebLogic Integration for automatic restart on a managed
server, whether or not that server is in a clustered environment. For information,
see �Configuring WebLogic Integration for Automatic Restart� on page 4-6.

! You can configure WebLogic Integration to allow manual migration from a
failed node to a healthy node in a clustered environment. For information, see
�Configuring WebLogic Integration for Migration from Failed to Healthy Node�
on page 4-13.

Note: High availability is not supported for WebLogic Integration applications that
are based on the XOCP business protocol; such applications are not
recoverable.
Deploying BEA WebLogic Integration Solutions 4-3

4 Understanding WebLogic Integration High Availability
When you configure WebLogic Integration appropriately, you can expect the
following behavior from your deployment:

! When a server fails, WebLogic Integration reestablishes connections to a live
server and then it retries transactions.

! When message delivery fails:

" In the case of RosettaNet messages, the WebLogic Integration protocol layer
does not retry messages; instead it returns HttpStatus code to the workflow
layer. RosettaNet workflows are usually designed to handle retries.

" In the case of ebXML messages, you specify message retries when you
specify the ebXML delivery semantics: once and only once. Based on the
retry value you specify, the WebLogic Integration protocol layer performs
message retries for failed ebXML messages.

! WebLogic Integration supports the manual migration of resources from a failed
node to a live node in a cluster. For more information, see �Configuring
WebLogic Integration for Automatic Restart� on page 4-6 and �Configuring
WebLogic Integration for Migration from Failed to Healthy Node� on page 4-13.

! All WebLogic Integration resources that were running before a server crashes
will be running again when the server is restarted or fails over.

! If the administration server for a cluster is down, deployment or undeployment
requests are interrupted, but managed servers should continue serving requests.
You can boot or reboot managed servers using an existing configuration.
However, you cannot change configuration for the cluster (for example, add new
nodes to the cluster) until the administration server is recovered. For more
information, see �Backup and Failover for an Administration Server� on page
4-18.

! If a managed server in a cluster crashes, in-flight requests are interrupted, but
other managed servers in the cluster continue serving requests.

! When any one of the managed servers participating in a cluster is down, you
cannot deploy or undeploy application integration resources. For example, you
cannot deploy application integration adapters when any server in your cluster is
down.

! In a clustered environment, it is possible that duplicate B2B messages are sent
due to failover and retry attempts. In such cases, a non fatal duplicate message
exception is logged, and a 202/200 HTTP status is returned. When they are
4-4 Deploying BEA WebLogic Integration Solutions

About WebLogic Integration High Availability
received, duplicate messages are not delivered to the workflow or application
layer.

! If WebLogic Integration and the database are running on the same machine and
the machine is unplugged, you should take steps to recover the database before
attempting to recover WebLogic Integration. Under ideal conditions, the
database is deployed on a separate machine.

! High availability is supported for ebXML and RosettaNet business protocols.
(Applications based on these business protocols are recoverable.)

WebLogic Integration supports the ebXML Message Service Specification v1.0
and the RosettaNet Implementation Framework v1.1 and v2.0.

If your WebLogic Integration application includes RosettaNet workflows
developed in previous versions of WebLogic Integration, you must make
changes to those workflows before running your application on WebLogic
Integration 7.0. For information about migrating your workflows, see �Migrating
WebLogic Integration 2.1 to WebLogic Integration 7.0� in the BEA WebLogic
Integration Migration Guide.

! If WebLogic Integration fails while an instance of a workflow is being
processed, the workflow is rolled back, and upon recovery, it is restarted from
the last quiescent point.

! If one instance of WebLogic Integration sends a message to another instance, but
the destination instance has failed, you may see one or more error messages,
followed by a stack trace, in the server console. The following are examples of
the types of error messages displayed:

" Not able to send RosettaNet Message

" Peer Gone Exception

! Automatic restart and recovery are supported for both single-node and clustered
deployments of WebLogic Integration. Migration is supported for clustered
deployments only.

! Automatic restart and recovery are supported for single-node deployments of
WebLogic Integration Business Partner (a midweight trading partner). However,
you cannot deploy midweight trading partners in a clustered environment. For
information about configuring your WebLogic Integration Business Partner
deployment for automatic restart in the case of failure, see �Configuring
WebLogic Integration for Automatic Restart� on page 4-6.
Deploying BEA WebLogic Integration Solutions 4-5

4 Understanding WebLogic Integration High Availability
Configuring WebLogic Integration for
Automatic Restart

Whether WebLogic Integration is deployed in a clustered environment or a
nonclustered environment, you can configure your system to automatically restart
servers that have shut down because of a system crash, hardware reboot, server failure,
and so on.

Note: The procedures in this section address a clustered environment, but you can
follow the same procedure to configure a nonclustered environment, that is,
one in which you deploy an administration server and a managed server.

Node Manager

The procedures in this section describe how to configure your system to start a
managed server when the Node Manager is running on the machine on which the
managed server is located. The Node Manager is a Java program provided with
WebLogic Server that enables you to perform the following tasks for managed servers:

! Start and stop any remote managed server in a domain

! Automatically restart WebLogic Server instances that have shut down because of
a system crash, hardware reboot, server failure, and so on

! Automatically monitor the health of WebLogic Server instances and restart
instances that have reached a failed health state

For information about the Node Manager, see �Managing Server Availability with
Node Manager� in Creating and Configuring WebLogic Server Domains, which is
available at the following URL:

 http://e-docs.bea.com/wls/docs70/admin_domain/index.html
4-6 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Automatic Restart
Complete the following procedures to configure your WebLogic Integration cluster for
automatic restart:

! Step 1. Configure Managed Servers for Remote Start

! Step 2. Configure SSL for Your Administration Server

! Step 3. Configure the Node Manager

! Step 4. Configure Self-Health Monitoring

! Step 5. Start the Node Manager

Step 1. Configure Managed Servers for Remote Start

You must first configure each managed server in your cluster so that it can be started
from a remote server.

To configure managed servers for remote start, complete the following steps:

1. In the WebLogic Server Administration Console navigation tree, select the
managed server for which you want to configure automatic start.

2. Select the Configuration tab and then the Remote Start tab.

3. Enter information in the fields shown on the Remote Start tab. The information
required is specific to the remote server. The fields on this tab are described in
�Server→Configuration→Remote Start� in the WebLogic Server Adminstration
Console Online Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/domain_server_config_server-st
art.html

Step 2. Configure SSL for Your Administration Server

Because the administration server communicates with the Node Manager using SSL,
you must configure SSL for your administration server. Complete the following steps:

1. Add the following line to the administration server startWeblogic command file:

-Dweblogic.security.SSL.trustedCAKeyStore=WL_HOME\lib\cacerts
Deploying BEA WebLogic Integration Solutions 4-7

4 Understanding WebLogic Integration High Availability
In the previous line, WL_HOME represents the directory where WebLogic Server is
installed. For example, if you installed WebLogic Platform in the default
directory, WL_HOME is C:\bea70\weblogic700\server.

2. Copy the democert.pem, demokey.pem and ca.pem files from
BEA_HOME\weblogic700\common\templates\domains\wls.jar to the root
directory for your domain.

3. In the WebLogic Server Administration Console navigation tree, select the
administration server.

4. Select the Connections tab and then the SSL tab.

5. Enter information in fields in the SSL tab as described in
�Server→Connections→SSL� in the WebLogic Server Adminstration Console
Online Help, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_conn

ections_ssl.html

The democert.pem, demokey.pem and ca.pem files that you copied to the root
directory of your domain in step 2 are sample files provided to get you started.
You can use them in the following fields when you configure SSL in the
Administration Console: Server Certificate File Name, Server Key File Name,
Trusted CA File Name.

Step 3. Configure the Node Manager

To configure the Node Manager for a managed server, you must use the WebLogic
Server Administration Console to create a machine, specify attributes for the Node
Manager on that machine, and deploy the managed server that you configured for
remote start on that machine. Specifically, you must complete the following steps:

1. In the Administration Console navigation tree, select Machines.

The Machines table is displayed in the right pane, showing all the machines
defined in the domain.

2. Click Configure a New Machine (or, if you are configuring a UNIX machine,
click Configure a New Unix Machine.

A dialog box is displayed in the right pane, showing the tabs associated with
configuring a new machine.
4-8 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Automatic Restart
3. Enter a name for the new machine in the Name attribute field and click Create to
create a machine instance with the name you specified.

4. On the Node Manager tab, define Node Manager connection and authentication
attributes�the address and port on which the Node Manager listens for
connections. The default values for address:port are localhost:5555. Click
Apply to implement your changes.

5. On the Servers tab, identify the managed server to reside on this machine (that is,
a managed server that you configured for remote start in �Step 1. Configure
Managed Servers for Remote Start� on page 4-7).

You can select an existing server to assign to this machine by selecting the
server name in the Available column, and click the appropriate arrow to move
the server to the Chosen column.

6. Click Apply to implement your changes.

The new machine entry now specifies the attributes required for two purposes: to
connect to the Node Manager process running on the machine; and to identify
which instances of WebLogic Server reside on the machine.

Step 4. Configure Self-Health Monitoring

This step describes how to configure the frequency of your managed server�s
automated health checks, and the frequency with which the Node Manager checks the
servers�s health. You can also specify whether the Node Manager automatically stops
and restarts the server if the server reaches a failed health state.

Complete the following procedure for each managed server:

1. In the WebLogic Server Administration Console navigation tree, select the
managed server for which you configured automatic start in �Step 1. Configure
Managed Servers for Remote Start� on page 4-7.

2. Select the Configuration tab and then the Health Monitoring tab.

3. Specify the following information:

" Auto Restart�Select Auto Restart to enable the automatic restarting of this
managed server by the Node Manager.
Deploying BEA WebLogic Integration Solutions 4-9

4 Understanding WebLogic Integration High Availability
" Auto Kill if Failed�Select Auto Kill if Failed to enable automatic kill of a
failed server by the Node Manager.

" Restart Interval�The number of seconds during which Node Manager
restarts are counted. This attribute is used with the Max Restarts within
Interval attribute to limit attempts to restart this server. The default value is
300 seconds.

" Max Restarts within Interval�The maximum number of times the Node
Manager can restart this server within the interval specified by the Restart
Interval. The default value is 2 restarts.

" Health Check Interval�Periodicity (in seconds) of the server�s health
checks. This parameter controls the frequency of the server�s self-health
monitoring and the Node Manager�s health queries.

" Health Check Timeout�Interval (in seconds) the Node Manager should wait
before timing out its health query to the server.

" Restart Delay Seconds�Interval (in seconds) the Node Manager should wait
before restarting the server. This value is used in cases such as when the OS
does not allow listen ports to be reused immediately.

Step 5. Start the Node Manager

You can start the Node Manager manually, by running the java command from an
operating system prompt, or automatically, by running a script.

Syntax for the Start Node Manager Command

The java command syntax for starting the Node Manager is as follows:

java [java_property=value ...] -D[nodemanager_property=value]
-D[server_property=value] weblogic.nodemanager.NodeManager

Caution: You must start the Node Manager from the same directory in which you
start the managed server manually.

In the preceding java command line:

! java_property�Specifies a direct argument to the java executable, such as
-ms, or -mx.
4-10 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Automatic Restart
Note: To avoid running out of memory, always specify a minimum heap size of
32 megabytes (-Xms32m) for the Node Manager.

! nodemanager_property�Defines the behavior of the Node Manager process.
Table 4-1 describes valid Node Manager properties.

Table 4-1 Values for nodemanager_property Command-Line Argument

Node Manager Property Description Default

weblogic.nodemanager.

certificateFile

Specifies the path to the certificate
file used for SSL authentication.

./config/democert.pem

weblogic.nodemanager.

javaHome

Specifies the Java home directory
used by the Node Manager to start
managed servers on this machine.

none

weblogic.nodemanager.

keyFile

The path to the private key file to be
used for SSL communication with the
Administration Server.

./config/demokey.pem

weblogic.nodemanager.

keyPassword

The password used to access the
encrypted private key in the key file.

password

weblogic.ListenAddress The address at which the Node
Manager listens for connection
requests. This argument deprecates
weblogic.nodemanager.list
enAddress.

localhost

weblogic.ListenPort The number of the TCP port on which
the Node Manager listens for
connection requests. This argument
deprecates
weblogic.nodemanager.list
enPort.

5555

weblogic.nodemanager.

nativeVersionEnabled

For UNIX systems other than Solaris
or HP-UX, set this property to
false to run the Node Manager in
non-native mode.

true

weblogic.nodemanager.

reverseDnsEnabled

Specifies whether entries in the
trusted hosts file may contain DNS
names (instead of IP addresses).

false
Deploying BEA WebLogic Integration Solutions 4-11

4 Understanding WebLogic Integration High Availability
! server_property�Specifies default values when starting new managed server
instances. Table 4-2 describes valid server properties.

weblogic.nodemanager.

savedLogsDirectory

Specifies the path for the directory in
which the Node Manager stores log
files. The Node Manager creates a
subdirectory in the
savedLogsDirectory named
NodeManagerLogs.

./NodeManagerLogs

weblogic.nodemanager.

sslHostNameVerificationEn
abled

Determines whether or not the Node
Manager performs host name
verification.

false

weblogic.nodemanager.

startTemplate

For UNIX systems only, this property
specifies the path of a script file used
to start managed servers.

./nodemanager.sh

weblogic.nodemanager.

trustedHosts

Specifies the path to the trusted hosts
file used by the Node Manager.

./nodemanager.hosts

weblogic.nodemanager.

weblogicHome

Specifies the root directory of the
WebLogic Server installation. This
directory name is used as the default
value of
-Dweblogic.RootDirectory
for servers that do not have a
configured root directory.

n/a

Table 4-1 Values for nodemanager_property Command-Line Argument (Continued)

Node Manager Property Description Default

Table 4-2 Values for server_property Command Line Argument

Server Property Description Default

bea.home Specifies the BEA home
directory used by managed
servers on the current machine.

Specifies the BEA home
directory used by managed
servers on the current machine.

java.security.policy Specifies the path to the security
policy file that Managed Servers
use.

none
4-12 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Migration from Failed to Healthy Node
The information in the preceding tables, along with details about configuring and
running the Node Manager, are available in �Starting Node Manager� in �Managed
Server Availability with Node Manager� in Creating and Configuring WebLogic
Server Domains, which is available at the following URL:

http://edocs.bea.com/wls/docs70/admin_domain/index.html

Starting the Node Manager When a Machine Is Booted

In a production environment, the Node Manager should start automatically when a
machine is booted. You can ensure that it does so by creating a startup script for UNIX
systems, or by setting up the Node Manager as a Windows service for Windows
systems. For information about how to perform these tasks, see �Starting Node
Manager� in �Managed Server Availability with Node Manager� in Creating and
Configuring WebLogic Server Domains, which is available at the following URL:

http://edocs.bea.com/wls/docs70/admin_domain/index.html

Configuring WebLogic Integration for
Migration from Failed to Healthy Node

When a managed server fails and is deemed not to be usable, you can migrate the
services from the failed managed server to a healthy node in the cluster. Complete the
following procedures to configure your system for a manual migration:

! Step 1. Configure Your Cluster

! Step 2. Configure Migratable Targets for JMS Servers and JTA Recovery
Service

weblogic.security.SSL.trusted
CAKeyStore

Specifies the path to the
KeyStore in which certificates of
trusted authorities are contained.

java.security.keyStore

Table 4-2 Values for server_property Command Line Argument (Continued)

Server Property Description Default
Deploying BEA WebLogic Integration Solutions 4-13

4 Understanding WebLogic Integration High Availability
For instructions about how to perform the migration when a node in your cluster fails,
see �Manual Migration of WebLogic Integration from Failed to Healthy Node� on
page 4-19.

Step 1. Configure Your Cluster

Make sure that your WebLogic Integration resources are distributed appropriately and
your clustered domain is configured as described in Chapter 3, �Configuring a
Clustered Deployment.�

Step 2. Configure Migratable Targets for JMS Servers and
JTA Recovery Service

To achieve high availability for your WebLogic Integration deployment, you must
configure JTA and JMS servers for failover; the process involves configuring
migratable targets for JMS servers and the JTA Recovery Service. You can do this by
using the WebLogic Server Administration Console or by editing your config.xml
file appropriately.

Complete the following procedure:

1. Create a migratable target for a cluster:

a. Select the Servers node in the Administration Console navigation tree.

b. Select the name of a server that resides in the cluster you want to configure.

c. Choose Control→Migration Config. in the main console window. A list of
servers for which you can select constrained candidate servers for the
migratable target is displayed.

d. In the Available column, select all of the servers capable of hosting migratable
services in the cluster. Use the arrow to move these servers to the Chosen
column.

Note: Typically, all the managed servers in the cluster are selected as
potential hosts for migratable services.
4-14 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Migration from Failed to Healthy Node
e. Click Apply to make your changes to the migratable target.

The list of servers that you specified is configured in the
MigratableTarget element. See the ConstrainedCandidateServers
attribute for the MigratableTarget elements in Listing 4-1. (A domain
configuration contains one MigratableTarget element for each managed
server.)

2. Configure JTA failover:

a. Make sure that all servers in your cluster have access to the transaction log files
for a server. In other words, JTA log files should reside on a shared file system.

b. Select the Servers node in the Administration Console navigation tree.

c. Select the name of a server that resides in the cluster you want to configure.

d. Choose Control→JTA Migration Config. to create a migratable target for JTA
services. A list of servers that you can select as constrained candidate servers
for the migratable target is displayed.

e. In the Available column, select all the servers capable of hosting migratable
services in the cluster. Use the arrow to move these servers to the Chosen
column.

f. Click Apply to make your changes to the new migratable target.

Note: JTA and JMS service migration is a two-step process. It is recommended that
when you migrate WebLogic Integration resources, you first migrate JTA
services, and then migrate JMS services. For more information, see �Manual
Migration of WebLogic Integration from Failed to Healthy Node� on page
4-19.

For more information about configuring migratable targets, see:

! �Constraining the Servers to Which the Transaction Recovery Service Can
Migrate� in �JTA� in WebLogic Server Adminstration Console Online Help,
which is available at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/jta.html

! �Server Migration Tasks� in �Servers� in WebLogic Server Adminstration
Console Online Help, which is available at the following URL

http://edocs.bea.com/wls/docs70/ConsoleHelp/servers.html
Deploying BEA WebLogic Integration Solutions 4-15

4 Understanding WebLogic Integration High Availability
Note: Online Help is accessible from the Administration Console, and also at the
following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/index.html

The following listing, an excerpt from a sample config.xml file, shows how to
configure migratable targets. It demonstrates the configuration of migratable targets
for both JMS servers and the JTA Recovery Service in a clustered WebLogic
Integration environment. In this example configuration, the cluster contains two
managed servers: MyServer-1 and MyServer-2.

Listing 4-1 Configuration for Migratable Targets

<JMSServer Name="WLCJMSServer-MyServer-1"
Store="JMSWLCStore-MyServer-2" Targets="MyServer-1 (migratable)"
TemporaryTemplate="TemporaryTemplate">
<JMSQueue JNDIName="com.bea.b2b.OutboundQueue-MyServer-1"

Name="B2bOutboundQueue-MyServer-2"/>
<JMSQueue ...

 :
</JMSServer>

<JMSServer Name="WLCJMSServer-MyServer-2"
Store="JMSWLCStore-MyServer-2" Targets="MyServer-2 (migratable)"
TemporaryTemplate="TemporaryTemplate">
<JMSQueue JNDIName="com.bea.b2b.OutboundQueue-MyServer-2"

Name="B2bOutboundQueue-MyServer-2"/>
<JMSQueue ...

 :
</JMSServer>
...

<MigratableTarget Cluster="MyCluster"
ConstrainedCandidateServers="MyServer-1,MyServer-2"
Name="MyServer-1 (migratable)"
Notes="This is a system generated default migratable target for a server.
Do not delete manually."
UserPreferredServer="MyServer-1"/>

<MigratableTarget Cluster="MyCluster"
ConstrainedCandidateServers="MyServer-1,MyServer-2"
Name="MyServer-2 (migratable)"
Notes="This is a system generated default migratable target for a server.
Do not delete manually."
UserPreferredServer="MyServer-2"/>
4-16 Deploying BEA WebLogic Integration Solutions

Configuring WebLogic Integration for Migration from Failed to Healthy Node
...

<Server Cluster="MyCluster" JTARecoveryService="MyServer-1"
ListenAddress="localhost" ListenPort="7901" Name="MyServer-1"
ServerVersion="7.0.0.0">
<COM Name="MyServer-1"/><ExecuteQueue Name="default" ThreadCount="15"/>
<IIOP Name="MyServer-1"/>
<JTAMigratableTarget Cluster="MyCluster"
ConstrainedCandidateServers="MyServer-1,MyServer-2 Name="MyServer-1"
UserPreferredServer="MyServer-1"/>

</Server>

<Server Cluster="MyCluster" JTARecoveryService="MyServer-2"
ListenAddress="localhost" ListenPort="7901" Name="MyServer-2"
ServerVersion="7.0.0.0">
<COM Name="MyServer-2"/><ExecuteQueue Name="default" ThreadCount="15"/>
<IIOP Name="MyServer-2"/>
<JTAMigratableTarget Cluster="MyCluster"
ConstrainedCandidateServers="MyServer-1,MyServer-2 Name="MyServer-2"
UserPreferredServer="MyServer-2"/>

</Server>

Note the following XML elements in the preceding listing:

! JMS Server�The Target attribute for the JMS server must be the migratable
target name for the server. A migratable target is created, by default, for each
managed server. (For details, see the following item in this list.)

! MigratableTarget�The migratable target specification for MyServer-2 in
MyCluster. As noted in the listing, the migratable target is a system-generated
default migratable target for a server. One such target is created for each
managed server in a cluster.

The MigratableTarget element also contains the comma-separated list of
servers for ConstrainedCandidateServers. The servers in this list are those
that you have specified as capable of acting as JMS server backups. Note that
you must include the UserPreferredServer in the list of
ConstrainedCandidateServers; the WebLogic Server Administration
Console enforces this rule.

! Server�The Server elements include the specification of migratable targets for
JTARecoveryService.
Deploying BEA WebLogic Integration Solutions 4-17

4 Understanding WebLogic Integration High Availability
Failover and Recovery

This section describes how WebLogic Integration failover and recovery works in
specific scenarios. It contains the following topics:

! Backup and Failover for an Administration Server

! Manual Migration of WebLogic Integration from Failed to Healthy Node

! Recovering a Database

! Recovering JMS Stores

Backup and Failover for an Administration Server

To provide for quick failover in case of an administration server crash or other failure,
you may wish to create another instance of the administration server on a different
machine that is ready to use if the original server fails.

Because the administration server uses the configuration file (config.xml), security
files, and application files to administer the domain, we recommend that you at least
keep an archived copy of these files, so that in case of a failure of the administration
server you can safely restart the administration server on another machine without
interrupting the functioning of the managed servers.

When the administration server for a cluster crashes, the managed servers continue
serving requests. However, you cannot change configuration for the cluster or perform
new deployment activities until the administration server is recovered. For example, if
the administration server for a cluster is not running, you cannot add new nodes to the
cluster, deploy new application views, or undeploy the connection factories associated
with those application views.

The WebLogic Integration B2B Console is deployed only on the administration server.
It is never deployed on the managed servers in a cluster. Therefore B2B integration
management and monitoring functions are unavailable when the administration server
is down. For example, you cannot add, delete, or modify trading partner information
until the administration server is recovered.
4-18 Deploying BEA WebLogic Integration Solutions

Failover and Recovery
If the managed servers are running but the administration server is stopped, you can
recover management of the domain without the need to stop and restart the managed
servers.

For instructions to restart your administration server when managed servers are
running, see �Starting and Stopping WebLogic Servers� in the BEA WebLogic Server
Administration Guide, which is available at the following URL:

 http://e-docs.bea.com/wls/docs70/adminguide/startstop.html

Manual Migration of WebLogic Integration from Failed to
Healthy Node

This section describes a controlled fail over. That is, source and destination servers are
not serving any requests when you migrate services from a failed node to a healthy
node in your cluster.

Before attempting to migrate WebLogic Integration from a failed node to a healthy
node:

! You should have configured your application (before starting your cluster) as
described in �Configuring WebLogic Integration for Migration from Failed to
Healthy Node� on page 4-13.

! Ensure that your source server is not running. If the source server is not down,
but only unavailable because of network problems, the services will be copied to
the destination server without being removed from the source server, resulting in
two simultaneous running versions of the same services, which could cause
corruption of the transaction log or of JMS messages.

Note: JTA and JMS service migration is a two-step process. When you migrate
WebLogic Integration resources, you should first migrate JTA services, and
then migrate JMS services.

You can migrate WebLogic Integration using one of the following methods:

! Using the weblogic.Admin Command-Line Utility

! Using the WebLogic Server Administration Console
Deploying BEA WebLogic Integration Solutions 4-19

4 Understanding WebLogic Integration High Availability
Using the weblogic.Admin Command-Line Utility

Use the following command line (weblogic.Admin with the MIGRATE command) to
migrate a JMS service or a JTA service to a targeted server within the cluster:

java weblogic.Admin [-url http://hostname:port]
[-username username]
[-password password]
MIGRATE -jta -migratabletarget (migratabletarget_name|servername)
-destination servername [-sourcedown] [-destinationdown]

In the previous command line:

! -url�Specifies the URL of the administration server, including the number of
the TCP port at which WebLogic Server is listening for client requests. The
format is hostname:port. The default is localhost:7001.

! -jta�Specifies that the migration is a migration of JTA services. If -jta is not
specified, the migration is assumed to be a migration of JMS services.

! -migratabletarget�Names a configuration file identified with the server
from which services will migrate. For each server, WebLogic Server
automatically creates a migratable target file. (The file is named
servername_migratable for JMS and servername for JTA.) This migratable
target file is a configuration file that specifies the preferred servers for JMS and
JTA services.

! -destination�The name of the server to which the services will migrate.

! -sourcedown�Specifies that the source server is down.

Warning: As mentioned previously in this section, it is important to ensure that
your source server is down when you invoke weblogic.Admin with
the MIGRATE command.

! -destinationdown�Use this option if the destination server is down when
you do the migration.

For more information about the weblogic.Admin command-line tool, see �WebLogic
Server Command-Line Interface Reference� in BEA WebLogic Server Administration
Guide, which is available at the following URL:

 http://e-docs.bea.com/wls/docs70/adminguide/cli.html
4-20 Deploying BEA WebLogic Integration Solutions

Failover and Recovery
Using the WebLogic Server Administration Console

As an alternative to the weblogic.Admin command-line tool, you can use the
WebLogic Server Administration Console to migrate a JTS service or a JMS service
to a targeted server within the cluster:

1. Select the Servers node in the Administration Console navigation tree.

2. Select the name of a server in your cluster.

3. Select the Migrate tab appropriate for the services you are migrating. Note that
JTA and JMS service migration is a two-step process. When you migrate
WebLogic Integration resources, you should first migrate JTA services, and then
migrate JMS services. The Migrate tab you select is determined by the type of
services you are migrating:

" When you migrate JTA services, select the Control tab, followed by the JTA
Migrate tab.

" When you migrate JMS services, select the Control tab, then the Migrate tab.

Warning: Make sure that your source server is down. Failover for WebLogic
Integration is supported only when the source server is down.

4. Select a server from the Destination Server migratable target list.

5. Click Migrate.

Services running on the server you selected in step 2 are migrated to the
destination server you selected.

The services that are migrated depend on the selection you made in step 3. That
is, if you selected the JTA Migrate tab, only the JTA service is migrated to the
selected server. If you selected the Migrate tab, only JMS services are migrated
to the selected server.

For more information about how to use the Administration Console to migrate JMS or
JTA services to a targeted server within the cluster, see �Migrating Services to a New
Server� in �Servers� in WebLogic Server Adminstration Console Online Help.
Deploying BEA WebLogic Integration Solutions 4-21

4 Understanding WebLogic Integration High Availability
Recovering a Database

WebLogic Integration does not attempt to recover a crashed database. In the event of
a database crash or database shutdown, it may be necessary to restart WebLogic
Integration.

For example, if WebLogic Integration and the database are running on the same
machine and the machine is unplugged, you should take steps to recover the database
before attempting to recover WebLogic Integration.

Recovering JMS Stores

There is no migration of JMS stores after a server crash. WebLogic Integration uses
JDBC for JMS stores. That is, it uses JDBC to access JMS JDBC Stores, which can be
on another server. WebLogic Integration uses the same database for all nodes in a
cluster. If you plan to use separate database instances for each node in your cluster, you
should take advantage of any high availability or failover solutions offered by your
database vendor. For example, you could use warm database standby in the event of
database crash.
4-22 Deploying BEA WebLogic Integration Solutions

Deploying BEA WebLogic Integration Solutions 5-1

CHAPTER

5 Using WebLogic
Integration Security

The following sections describe how to set up and manage security for WebLogic
Integration solution deployments:

! Overview of WebLogic Integration Security

! Considerations for Configuring Security

! Setting Up a Secure Deployment

Before you proceed with the remainder of this topic, see Introducing WebLogic
Platform 7.0 Security, which is available at the following URL:

http://edocs.bea.com/platform/docs70/secintro/index.html

This document provides an overview of the security features of the entire WebLogic
Platform, and provides important notes about managing security when using
WebLogic Integration with other WebLogic Platform components.

Overview of WebLogic Integration Security

The foundation of every secure deployment of a WebLogic Integration solution is the
set of security features provided by WebLogic Server. Therefore, after you configure
security for the underlying WebLogic Server layer of your environment, you need to
configure and manage security for those WebLogic Server entities that are specific to
WebLogic Integration:

5 Using WebLogic Integration Security

5-2 Deploying BEA WebLogic Integration Solutions

! WebLogic Integration system user, wlisystem

! Users of the BPM engine and WebLogic Integration Studio, and the groups to
which they belong

! Trading partners for which security management is particularly important
because trading partners are required to produce digital certificates for sending
and receiving business messages in a secure environment

! Application views

As the security manager for your environment, you need to focus your efforts on a set
of predefined principals and resources that are created along with a WebLogic
Integration domain.

This introduction presents the following topics to give you a high-level view of
WebLogic Integration security:

! Security and WebLogic Integration Domains

! WebLogic Server Security Principals and Resources Used in WebLogic
Integration

Note: For a secure deployment, avoid running WebLogic Integration in the same
WebLogic Server instance as any applications for which security is not
provided. Internal WebLogic Integration API calls are not protected from such
collocated applications.

Security and WebLogic Integration Domains

When you create a WebLogic Integration domain using the BEA Configuration
Wizard, the domain is configured, by default, to use compatibility security.
Compatibility security enables a domain to do the following:

! Use existing stores of users and groups to authenticate WebLogic Server
principals

! Use access control lists (ACLs) to protect WebLogic Integration resources

By default, all WebLogic Integration users, groups, and ACLs are stored in a security
realm known as the compatibility realm.

Overview of WebLogic Integration Security

Deploying BEA WebLogic Integration Solutions 5-3

Note: A typical installation of WebLogic Integration includes WebLogic Server and
WebLogic Workshop components. By default, the Configuration Wizard
configures WebLogic Integration security to use compatibility security and
allocates the WebLogic Server 6.x File realm for storing users and groups. The
File realm is used in all WebLogic Integration samples. The WebLogic Server
and WebLogic Workshop samples are based on a security configuration that
is, in turn, based on an embedded LDAP server, which WebLogic Integration
does not support in this release. Therefore, the samples delivered with
WebLogic Server and WebLogic Workshop may not work with the default
configuration for the WebLogic Integration samples.

For more information about the BEA Configuration Wizard, see Using the
Configuration Wizard, which is available at the following URL:

http://edocs.bea.com/platform/docs70/confgwiz/index.html

WebLogic Server Security Principals and Resources Used
in WebLogic Integration

When you create a WebLogic Integration domain via the Configuration Wizard, the
following WebLogic Server principals and resources are predefined:

! wlisystem�WebLogic Integration system user that functions on behalf of a
trading partner after the trading partner is authenticated and authorized to use
WebLogic Integration resources.

! wlpiUsers�Business Process Management users group that has access to BPM
resources, such as the WebLogic Integration Studio and the BPM engine.

! Set of BPM groups�Each member of the wlpiUsers group is a member of one
or more of these groups. Membership in a group determines the set of tasks that
can be performed by a principal. Each group represents an ACL.

! wliPool�JDBC connection pool for the WebLogic Integration repository.

! ServletFilter�Resource that is used transparently by trading partners to
access B2B resources.

The following diagram provides an overview of the WebLogic Server security
principals used in WebLogic Integration.

5 Using WebLogic Integration Security

5-4 Deploying BEA WebLogic Integration Solutions

Figure 5-1 WebLogic Server Security Principals Used in WebLogic Integration

For example, during the course of a B2B-based business operation, the WebLogic
Server principals may function as follows:

! When started via an event (XML, application integration, or B2B integration), a
workflow runs as wlisystem.

! When started via a manual task start, a workflow runs as the security principal
associated with the Worklist client.

Considerations for Configuring Security

Deploying BEA WebLogic Integration Solutions 5-5

! An application integration service runs as the security principal configured for
the application view.

! When a message is received from a trading partner, the B2B engine momentarily
switches to the WebLogic Server principal associated with the client-side
certificate for the trading partner. Then it switches to the wlisystem principal
before sending the message to the BPM event queue. For more information
about B2B integration security, see Implementing Security with B2B Integration.

! When the J2EE-CA adapter receives a request, it maps the caller�s security
principal to one that is appropriate for the EIS system. For more information, see
�Deprecated Security Principal Map Mechanism� in Programming the WebLogic
J2EE Connector Architecture in the WebLogic Server documentation set, at the
following URL:

http://edocs.bea.com/wls/docs70/jconnector/security.html

Considerations for Configuring Security

Before you configure the security for your WebLogic Integration domain, consider the
following:

! About Digital Certificates

! Using the Secure Sockets Layer (SSL) Protocol

! Using an Outbound Proxy Server or Proxy Plug-In

! Using a Firewall or NonWebLogic Server Proxy Server

The following sections present a high-level discussion of these considerations and
describe how they affect your WebLogic Integration security configuration.

5 Using WebLogic Integration Security

5-6 Deploying BEA WebLogic Integration Solutions

About Digital Certificates

Digital certificates are electronic documents used to identify principals and objects as
unique entities over networks such as the Internet. A digital certificate securely binds
the identity of a user or object, as verified by a trusted third party known as a certificate
authority, to a particular public key. The combination of the public key and the private
key provides a unique identity for the owner of the digital certificate.

When you set up a WebLogic Integration environment as the foundation of your
interenterprise commerce, using the B2B capabilities, you need to obtain and
configure a specific set of digital certificates and keys. This set includes the following:

! Server certificate�Required for SSL for the WebLogic Server instance on the
local machine.

! Root Certificate Authority�Trusted third-party organization or company that is
willing to vouch for the identities of those to whom it issues digital certificates
and public keys. Verisign and Baltimore are examples of CAs.

! Trading partner certificates�Required for each local and remote trading partner
that is involved in B2B collaborations. These certificates include the client
certificate; they may also include encryption and signature certificates, as well.
They are used for authentication, authorization, signature support, and message
encryption.

Digital Certificate Formats

Make sure that the formats and packaging standards of your digital certificates are
compatible with WebLogic Server. Digital certificates have various encoding
schemes, including the following:

! Privacy Enhanced Mail (PEM)

! Definite Encoding Rules (DER)

! Public Key Cryptography Standards 7 and 12 (PKCS7 and PKCS12)

The public key infrastructure (PKI) in WebLogic Server recognizes digital certificates
that comply with either versions 1 and 3 of X.509, X.509v1 and X.509v3. We
recommend obtaining digital certificates from a certificate authority, such as Verisign
or Entrust.

Considerations for Configuring Security

Deploying BEA WebLogic Integration Solutions 5-7

Note: If a trading partner in a conversation uses Microsoft IIS as a proxy server, all
the certificates used in the conversation must be trusted by a well-known
Certificate Authority, such as Verisign or Entrust. The use of self-signed
certificates will cause a request passed through the IIS proxy server to fail.
This is a restriction in IIS, not WebLogic Integration.

For more details, see �Configuring Security� in Implementing Security with B2B
Integration.

Using the Secure Sockets Layer (SSL) Protocol

The SSL protocol provides secure connections by supporting two functions:

! It enables each of two applications linked through a network connection to
authenticate the other�s identity

! It encrypts the data exchanged between the applications.

An SSL connection begins with a handshake during which the applications exchange
digital certificates, agree on the encryption algorithms to be used, and generate
encryption keys that are then used for the remainder of the session.

If you are using SSL for trading partner authentication and authorization, which we
strongly recommend for B2B collaborations, you need to configure the following:

! SSL for each machine in your WebLogic Integration domain. For information
about how to do this, see �Configuring the SSL Protocol and Mutual
Authentication� in �Configuring Security� in Implementing Security with B2B
Integration.

! Set of digital certificates and private keys for each trading partner

! Server certificate for each machine in the WebLogic Integration domain

! Certificate for the root Certificate Authority (CA)

For more information about configuring certificates, see �Configuring Security�
in Implementing Security with B2B Integration.

5 Using WebLogic Integration Security

5-8 Deploying BEA WebLogic Integration Solutions

Not required by SSL, but strongly recommended, is the creation and use of keystores
for storing all the certificates and keys used in your WebLogic Integration domain.
WebLogic Server provides a utility called the WebLogic Keystore provider based on
the reference Keystore implementation supplied by Sun Microsystems in the Java
Development Kit.

The WebLogic Keystore provider is based on the standard JKS keystore type, which
implements the keystore as a file. For this release of WebLogic Server, JKS is the only
keystore provider available. A keystore configured with the WebLogic Keystore
provides protects each private key with an individual password. Two keystore files are
associated with the WebLogic Keystore provider: One holds the CA certificates used
by SSL to verify client certificates; the other holds users� private keys. WebLogic
Server retrieves a private key from this keystore to initialize SSL.

For more information about setting up keystores for your WebLogic Integration
domain, see �Configuring the Keystore� in Implementing Security with B2B
Integration.

Using an Outbound Proxy Server or Proxy Plug-In

This section discusses the implications of using either an outbound proxy server or the
WebLogic proxy plug-in.

Using an Outbound Proxy Server

A proxy server allows trading partners to communicate across intranets or the Internet
without compromising security. If you are using WebLogic Integration in a
security-sensitive environment, you may want to use WebLogic Integration behind a
proxy server. Specifically, a proxy server is used to:

! Hide, from external hackers, the local network addresses of the WebLogic Server
instances that host WebLogic Integration

! Restrict access to the external network

! Monitor external network access to the local instances of WebLogic Server that
host WebLogic Integration

When proxy servers are configured on the local network, network traffic (sent with the
SSL and HTTP protocols) is tunneled through the proxy server to the external network.

Considerations for Configuring Security

Deploying BEA WebLogic Integration Solutions 5-9

If an outbound proxy server is used in your environment, be careful when specifying
the transport URI endpoints for the local trading partner. If you are using an HTTPS
proxy, then you need to specify the ssl.ProxyHost and ssl.ProxyPort Java system
properties. For details, see �Configuring WebLogic Integration B2B to Use an
Outbound HTTP Proxy Server� in �Configuring Security� in Implementing Security
with B2B Integration.

Using a Web Server with the WebLogic Proxy Plug-In

As an alternative to using an outbound proxy server, you may want to configure
WebLogic Integration with a Web server, such as an Apache server, that is
programmed to handle business messages from a remote trading partner. The Web
server can provide the following services:

! Receive business messages from a remote trading partner

! Authenticate digital certificates from the trading partner

The Web server then uses the WebLogic proxy plug-in, which you can configure to
provide the following services:

! Forwarding of business messages received by the Web server to WebLogic
Integration, which is running inside a secure internal network.

! Extraction of the remote trading partner certificate from the Web server and
delivery of it to WebLogic Server for authentication. WebLogic Integration can
then authenticate the trading partner certificate and business message.

To configure the WebLogic proxy plug-in, consider the following:

! Make sure you configure the proxy server with the WebLogic proxy plug-in to
direct requests to WebLogic Server.

! Decide which protocol you want to use for the network connection between the
proxy server and the WebLogic Integration domain. The default protocol is
HTTP. Configure the proxy plug-in to use one-way SSL only if you prefer to use
SSL.

! When configuring the transport for remote trading partners, specify the remote
URI endpoint with the HTTPS protocol, even though the HTTP protocol is used
in the network connection between the WebLogic proxy plug-in and the
WebLogic Integration domain.

5 Using WebLogic Integration Security

5-10 Deploying BEA WebLogic Integration Solutions

! When relaying a business message from one trading partner to another, some
proxy servers include only the leaf certificate, instead of the entire CA certificate
chain. In such instances, trading partner authentication may fail. To prevent such
failures, we recommend you specify the leaf certificate as the trusted CA
certificate. (For more information about leaf certificates, see �Certificate
Authority� in �Introducing WebLogic Integration B2B Security� in
Implementing Security with B2B Integration.)

! If the local trading partner site uses a Web server configured with a WebLogic
proxy plug-in, then you can specify the trading partner transport URI endpoints
in the usual manner.

! If the remote trading partner is also using WebLogic Integration, but is using a
proxy server other than the WebLogic proxy server, then it is likely that the
remote site is configured with the WebLogic proxy plug-in. When you are
configuring a remote trading partner under these circumstances, you must
specify the host and port of the trading partner�s proxy server as the transport
URI endpoints. The WebLogic proxy plug-in performs the necessary URL
transformations to business messages received for that remote trading partner.

Using a Firewall

If your WebLogic Integration environment is configured with a firewall, make sure
your firewall is configured properly so that business messages can flow freely to and
from local trading partners via the HTTP or HTTPS protocols.

Setting Up a Secure Deployment

The following sections provide instructions for the tasks you must complete to set up
a secure deployment:

! Step 1: Create the Domain

! Step 2: Configure WebLogic Server Security

! Step 3: Configure BPM Security

Setting Up a Secure Deployment

Deploying BEA WebLogic Integration Solutions 5-11

! Step 4: Configure B2B Integration Security

! Step 5: Configure Application Integration Security

Step 1: Create the Domain

We recommend that you use the BEA Configuration Wizard to create the WebLogic
Integration domain for which you want to configure security. To create a WebLogic
Integration domain, complete the following steps:

1. Start the Configuration Wizard, as described in Using the Configuration Wizard,
available at the following URL:

http://edocs.bea.com/platform/docs70/confgwiz/index.html

2. Complete the configuration of the WebLogic Integration domain, which can be
any of the following:

" WebLogic Integration BPM domain

" WebLogic Integration EAI domain

" WebLogic Integration domain

Note: Make sure you use a WebLogic Integration template when creating the new
domain; do not use a WebLogic Server or a WebLogic Portal template. By
specifying a WebLogic Integration template, you can make sure that the
domain created in this step is based on the WebLogic Server 6.x security realm
in compatibility mode. The new WebLogic Server 7.0 realm, based on LDAP,
is not supported with WebLogic Integration. If you create a new domain by
selecting a WebLogic Server template, the new domain uses the new
WebLogic Server 7.0 security realm, which is based on LDAP.

Step 2: Configure WebLogic Server Security

When configuring WebLogic Server security, be sure to do the following:

1. Obtain the server certificates for the local and remote trading partners. For SSL,
server certificates are required for each instance of WebLogic Server involved in a
trading partner request.

5 Using WebLogic Integration Security

5-12 Deploying BEA WebLogic Integration Solutions

2. Consider the following questions:

" Does the common name of the certificate match the host name of the
machine on which the corresponding instance of WebLogic Server is
running?

If the two names are not the same, then the local WebLogic Server instance
must be configured with hostname verification disabled. This requirements
applies to the server certificate for any trading partner in any collaboration
agreement configured locally. You can disable hostname verification in the
WebLogic Server Administration Console by checking the Hostname
Verification Ignored attribute on the SSL tab for the Server node.

" Are the formats of the server certificate and private key for a remote trading
partner supported by WebLogic Server?

�About Digital Certificates� on page 4-7 lists the supported certificate
formats. For server certificates, PEM encoded X.509 V1 or V3 is the most
commonly accepted format by SSL servers.

For private keys, PKCS8, which is the password-encrypted private key, is the
most common format. Be sure to set the private key password so that
WebLogic Server can read the private key.

" What is the CA certificate chain for the WebLogic Server server certificate?

A certificate chain is an array of digital certificates for trusted CAs, each of
which is the issuer of the previous digital certificate.

You may specify one file containing all the intermediate and root CA
certificates. (Note that if the file contains more than one CA certificate,
WebLogic Server requires a PEM encoded file.) If you use the root CA
keystore to store trusted CA certificates, be sure to import the whole chain in
to the root CA keystore.

3. Configure the WebLogic Keystore provider. WebLogic Server 7.0 supports
keystore functionality. For complete details on creating keystores and configuring
the WebLogic Keystore provider, see �Configuring the Keystore� in
Implementing Security with B2B Integration.

Note the following considerations for using keystores:

" One caveat to using a keystore is that once you import a key and certificate
with an alias into a keystore, overwriting that certificate file with a new
certificate does not import of the new certificate into the keystore.

Setting Up a Secure Deployment

Deploying BEA WebLogic Integration Solutions 5-13

" Make sure that your keystore is up-to-date with your current set of
certificates and keys, and make sure that the WebLogic Integration repository
reflects the relevant content of your keystore.

Step 3: Configure BPM Security

The security model provided by WebLogic Integration for business process
management (BPM) functions comprises the following entities:

! Users and groups�A user is an individual who performs a certain task, such as
programming or sales. A group is a collection of one or more users or groups
that perform the same task. For example, Group A might represent a collection
of users who are programmers; Group B, a collection of sales people.

Within a security realm, the administrator (represented by the principal
wlisystem) can specify the levels of access given to users and groups who want
to use workflows and other resources. Users and groups are maintained in a
WebLogic Server security realm. You can define groups and add users to those
groups in the WebLogic Integration Studio. Each user you add is automatically
and simultaneously added to the list of WebLogic Server users.

! Organizations�Entities that can represent different business organizations,
geographical locations, or any other distinguishing items that are relevant to the
particular business of an enterprise.

Organizations are BPM-specific entities that exist outside the WebLogic Server
security realm.

! Roles�Common areas of responsibility, ability, or authorization level that is
shared by a group of individuals. A role may belong to one organization, but you
can use the same name in multiple organizations.

Roles map to WebLogic Server groups.

The task of configuring BPM security is basically one of defining users, groups, roles,
organizations, and permission levels. Because you can define organizations and roles,
you have a great deal of flexibility in organizing the users and groups that access BPM
resources. The Studio provides tools that allow you to create and modify users, groups,
roles, and organizations. The Studio also provides a method for managing permissions
for users, groups, and roles in minute detail.

For more information about BPM security, see the following topics:

5 Using WebLogic Integration Security

5-14 Deploying BEA WebLogic Integration Solutions

! �About Security Realms� in �Administering Data� in Using the WebLogic
Integration Studio

! �Understanding the BPM Security Model� in �Customizing WebLogic
Integration� in Starting, Stopping, and Customizing BEA WebLogic Integration.
See especially the topic, �Configuring a Custom Security Realm.�

! �Configuring the Security Realms� in Programming BPM Client Applications

Step 4: Configure B2B Integration Security

WebLogic Integration solutions that involve the exchange of messages between
trading partners across firewalls have special security requirements, including trading
partner authentication and authorization, as well as nonrepudiation.

To configure B2B security, you must perform the following tasks:

! Obtain the certificates and keys required for conducting B2B collaborations.
Required certificates include those for the root CA, as well as the trading partner
certificates and keys mentioned earlier, and the server certificate and key for
each instance of WebLogic Server used in your environment.

! Create keystores for the certificate keys used in a WebLogic Integration
environment, and register them with the WebLogic Keystore provider.

! Configure local trading partners.

! Configure remote trading partners.

! Implement nonrepudiation services, if desired.

! Implement the security requirements for the business protocols used.

The sections that follow provide recommendations and considerations for each of
these tasks.

Obtaining Certificates

Before you begin configuring WebLogic Integration security, particularly if you plan
to conduct B2B exchanges, make sure you have the following certificates and keys:

Setting Up a Secure Deployment

Deploying BEA WebLogic Integration Solutions 5-15

! Server certificates and keys for each instance of WebLogic Server used in the
B2B exchanges. This requirement also applies to remote trading partners: for
each remote trading partner you configure, you must have that trading partner�s
server certificate. These certificates are required by SSL.

! Root Certificate Authority for each certificate used in the environment.

The root CA directory should contain only the root CA certificates for each
trading partner�s client, encryption, and signature certificate. The root CA
directory must not contain the CA certificates for the server certificates. (The
server certificates are configured in the domain�s config.xml file.)

! Client certificates for each trading partner, whether local or remote. For local
trading partners, you must also obtain the location of the client certificate�s
private key.

! Encryption and signature certificates for all trading partners. For local trading
partners, you must also obtain the location of each certificate�s private key.

Creating the Keystores

When you set up a WebLogic Integration domain for B2B collaborations, you must
configure the WebLogic Keystore provider to create the following keystores:

! Private keystore

Stores the local trading partners� private keys and certificates, such as the client,
server, signature, and encryption certificates typically required for B2B
collaborations. WebLogic Server retrieves a private key from this keystore to
initialize SSL.

! Root CA keystore

Stores the certificates of all the trusted certificate authorities (CAs). The
WebLogic Keystore provider creates a trusted CA keystore that WebLogic
Server uses, by default, to locate the trusted CAs used by SSL to verify client
certificates.

You can use the JavaSoft JDK keytool utility or the WebLogic Server
ImportPrivateKey utility to create each keystore and to add private keys to it. If
neither keystore exists, it is created the first time you use either of these utilities to add
a private key.

5 Using WebLogic Integration Security

5-16 Deploying BEA WebLogic Integration Solutions

After you create the keystores and populate them with initial sets of keys, register them
with the WebLogic Keystore provider, as described in �Step 2: Configure WebLogic
Server Security� on page 4-11.

Configuring Local Trading Partners

Local trading partners send messages to remote trading partners using either HTTP or
HTTPS. If you are using SSL in your B2B collaborations, which we strongly
recommend, you need to configure the client certificate and key for each local trading
partner.

Note the following about client certificates and keys for local trading partners:

! Both plain and password-protected keys are supported. The PEM, DER, PKCS8
formats are supported.

! PEM or DER encoded X509 V1 or V3 certificates are supported.

! The password for the private key is case-sensitive and is specified in the
command line of the startWeblogic script in a Java system property.

Note the following about signature and encryption certificates and keys for local
trading partners:

! Only password-protected private keys, using the PKCS8, format are supported.

! DER encoded certificates is recommended.

! You must copy the root CA certificate to the location pointed to by the CA
certificate directory.

! The private key password is case-sensitive and is specified in the command line
of the startWeblogic script in a Java system property.

Configuring Remote Trading Partners

If you are using SSL, as with local trading partners, you need to configure the client
certificate and key for each remote trading partner.

Note the following about client certificates and keys for remote trading partners:

! The remote trading partner uses a client certificate to establish a two-way SSL
connection with WebLogic Server in your domain. Make sure that this certificate

Setting Up a Secure Deployment

Deploying BEA WebLogic Integration Solutions 5-17

matches the one specified for that trading partner in the WebLogic Integration
repository.

! If the remote trading partner is also uses WebLogic Server, this information is
stored in the repository as that trading partner�s client certificate.

! If the remote trading partner is not based on WebLogic Integration, obtain a
valid client certificate form that trading partner. (In the case of WebLogic
Integration - Business Connect, you can use that software�s administration tool
to export a company�s certificate to a file, and specify that file�s location in
WebLogic Integration.)

Note the following about signature and encryption certificates and keys for remote
trading partners:

! Make sure you obtain both the signature and encryption certificates before
configuring these certificates in the WebLogic Integration repository. Not all
these certificates need to be same; however, one certificate may be used for both
encryption and signatures.

! You must also obtain the CA certificates and add them to the root CA keystore
(or directory if you are not using keystores). Self-signed certificates should also
be added, if used.

Note the following about the remote trading partner�s server certificate:

! You need to obtain the HTTP(S) server certificate of the remote trading partner�s
site. This is the server to which you establish the SSL connection.

! If the remote trading partner�s site is also based on WebLogic Integration, and
the remote site�s Web server is WebLogic Server, use the certificate of that Web
server as the trading partner�s server certificate.

Implementing the Security Requirements for Business Protocols

Note that the business protocol with which a Collaboration Agreement is configured
may have additional specific security requirements.

The following table lists additional sources of information about various business
protocols.

5 Using WebLogic Integration Security

5-18 Deploying BEA WebLogic Integration Solutions

Step 5: Configure Application Integration Security

WebLogic Integration provides the following security mechanisms for those parts of
an integration solution that are created and maintained with application integration
functionality:

! To connect to an Enterprise Information System (EIS), an application might
need to provide certain credentials, such as a login name and password. For
more information, see �Scenario 1: Connecting Using Specific Credentials� in
�Using Application Views by Writing Custom Code� in Using Application
Integration.

! When deploying an application view, you can configure security settings to grant
or revoke read and write access to the application view by a WebLogic Server
user or group. For more information, see �Deploying an Application View� in
�Steps for Defining an Application View� in �Defining an Application View� in
Using Application Integration.

Table 5-1 More Information About Business Protocols Used in B2B

For information
about . . .

See this section . . . In this document . . .

RosettaNet security �Configuring RosettaNet Security� in
�Introduction�

Implementing RosettaNet
for B2B Integration

cXML security �Security� in �cXML
Administration�

Implementing cXML for
B2B Integration

ebXML security �Configuring Security� in
�Administering ebXML�

Implementing ebXML for
B2B Integration

CHAPTER
6 Tuning Performance

The following sections describe how to tune the performance of your WebLogic
Integration deployment:

! Tuning WebLogic Integration Performance

! Monitoring and Tuning Run-Time Performance

! Tuning Hardware, Operating System, and Network Resources

! Tuning Databases

Tuning WebLogic Integration Performance

The following sections describe how to tune WebLogic Integration performance:

! Primary Tuning Resources

! Tuning WebLogic Server Performance

! Monitoring and Tuning the Java Virtual Machine (JVM)

Primary Tuning Resources

This section describes the primary WebLogic Integration resources that you can tune
to manage the work that a server performs:

! For BPM, the primary resource to tune for event-driven workflows is the event
listener message-driven bean.
Deploying BEA WebLogic Integration Solutions 6-1

6 Tuning Performance
! For application integration, tuning depends on the type of processing:

" For synchronous service invocations, the primary resource is the application
view bean.

" For asynchronous service invocations, the primary resource is the thread pool
size of the asynchronous request processor.

" Event adapters usually do not require tuning.

In addition, the J2EE-CA resource pool size should be set for each adapter. For
information about how to tune an adapter, see the documentation for the adapter.

! For B2B integration, there are no primary resources that can be tuned.

All other WebLogic Integration resources should be changed only to support these
primary resources.

Tuning WebLogic Server Performance

The following sections describe how to configure WebLogic Server resources for a
WebLogic Integration deployment:

! Configuring EJB Pool and Cache Sizes

! Configuring JDBC Connection Pool Sizes

! Configuring the Execution Thread Pool

! Configuring Resource Connection Pools for J2EE Connector Architecture
Adapters

! Configuring Large Message Support for B2B

For general information about tuning WebLogic Server performance, see BEA
WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs70/perform/index.html
6-2 Deploying BEA WebLogic Integration Solutions

Tuning WebLogic Integration Performance
Configuring EJB Pool and Cache Sizes

You can tune WebLogic Integration performance by configuring EJB pool sizes and
cache sizes: start with the default settings and change them as needed. From a
performance standpoint, an overly large pool or cache size is generally better than an
overly small one. For more information about configuring these settings, see
�Deploying EJBs to WebLogic Server� in Programming WebLogic EJB at the
following URL:

http://edocs.bea.com/wls/docs70/ejb/index.html

Configuring BPM Event Listener Message-Driven Beans Pool Size

The wlpi-mdb-ejb.jar file contains the pool of event listener message-driven beans
that pull events off the event queue. The pool size setting controls the number of
workflows executed in the WebLogic Integration system, based on incoming events.
Like message-driven beans for the event and validating event queues, time event
listeners are deployed to the cluster in the wlpi-mdb-ejb.jar file. These
message-driven beans pull work from com.bea.wli.bpm.TimerQueue.

You can access the default EventListener and TimeListener pool sizes by selecting
Edit EJB Descriptor for the WLI-BPM Event Processor EJB (wlpi-mdb-ejb.jar) in
the Administration Console. For example, the default setting for the Event Listener
message-driven beans is 10 (5 unordered listeners plus 5 ordered listeners).

If you configure a custom JMS queue for your system, use the MDB Generator utility
to set the pool size and associated queue, as described in �Configuring a Custom Java
Message Service Queue� in �Customizing WebLogic Integration� in Starting,
Stopping, and Customizing BEA WebLogic Integration.

We recommend starting with 20 beans and monitoring your system to determine
whether you need more. For more information, see �Do You Have Enough
Message-Driven Beans?� on page 6-20.
Deploying BEA WebLogic Integration Solutions 6-3

6 Tuning Performance
Configuring Other EJB Pool and Cache Sizes

The following cache and pool size settings are important to consider when you tune
your system. These parameters can be tuned for each node in your WebLogic
Integration cluster:

Cache size for BPM workflow processor beans
BPM workflow processor beans are described in �Workflow Processor Beans�
on page 1-11.

This cache size should equal or exceed the size of the BPM event listener
message-driven bean pool. It should also accommodate the anticipated
workload from subworkflows or Worklist clients. The default setting is 100. To
access the WorkflowProcessor EJB and its Max Beans In Cache setting,
select Edit EJB Descriptor for the WLI-BPM Server EJB (wlpi-ejb.jar) in
the WebLogic Server Administration Console.

Cache size of the BPM template entity beans
BPM template entity beans are described in �Template Beans� on page 1-12.

This cache size should equal or exceed the number of unique templates
concurrently processed in the WebLogic Integration system. The default setting
is 100. To access the TemplateDefinitionRO EJB and its Max Beans In
Cache setting, select Edit EJB Descriptor for the WLI-BPM Server EJB
(wlpi-ejb.jar) in the WebLogic Server Administration Console.

Cache size of the BPM instance entity beans
BPM instance entity beans are described in �Instance Beans� on page 1-12.

This setting should equal or exceed the number of workflow instance
processors. The default setting is 100. To access the WorkflowInstance EJB
and its Max Beans In Cache setting, select Edit EJB Descriptor for the
WLI-BPM Server EJB (wlpi-ejb.jar) in the WebLogic Server
Administration Console.

Pool size for the Application View stateless session bean
Application View stateless session beans are described in �Application
Integration Resources� on page 1-15.

The default setting for the Max Beans In Free Pool is 200, which is sufficient
for most deployments.To access the
com.bea.wlai.client.ApplicationView EJB and its Pool setting, select
6-4 Deploying BEA WebLogic Integration Solutions

Tuning WebLogic Integration Performance
Edit EJB Descriptor for the WLI-AI Server EJB (wlai-server-ejb.jar) in
the WebLogic Server Administration Console.

Cache size for the Application View stateful session bean
The default setting for Max Beans In Cache is 1000. To access the
com.bea.wlai.client.StatefulApplicationView EJB and its Stateful
Session Cache setting, select Edit EJB Descriptor for the WLI-AI Server EJB
(wlai-server-ejb.jar) in the WebLogic Server Administration Console.

Pool size for the asynchronous service processor message-driven bean
Asynchronous service processor message-driven beans are described in
�Application Integration Resources� on page 1-15.

The default setting for the Max Beans In Free Pool is 1000. To access the
WLI-AI Async Processor message-driven bean and its Pool setting, select Edit
EJB Descriptor for the WLI-AI Async Processor EJB
(wlai-asyncprocessor-ejb.jar) in the Administration Console.

Pool size for the event processor message-driven bean
Event processor message-driven beans are described in �Application
Integration Resources� on page 1-15.

The default setting for the Max Beans In Free Pool is 1000. To access the
WLI-AI Event Processor message-driven bean and its Pool setting, select Edit
EJB Descriptor for the WLI-AI Event Processor
(wlai-eventprocessor-ejb.jar) in the Administration Console.

Configuring JDBC Connection Pool Sizes

You can tune WebLogic Integration performance by configuring the size of JDBC
connection pools. For an introduction, see �JDBC Connection Pools� on page 1-7.

To determine the necessary size of a JDBC connection pool on each node in a
WebLogic Integration cluster, calculate the number of required connections per server,
based on the guidelines in the following table.
Deploying BEA WebLogic Integration Solutions 6-5

6 Tuning Performance
After calculating the number of connections required for each resource, calculate the
total needed for all resources, and then configure the JDBC connection pool for each
node in the cluster, using this total.

For best performance, set the initial capacity and the maximum capacity to the same
value.

You can find information on monitoring JDBC connections in �Do You Have Enough
JDBC Connections?�

Table 6-1 Calculating Connections for the JDBC Connection Pool

For this resource . . . Calculate the required number of JDBC
connections as follows . . .

BPM event listener
message-driven bean pool
size (unordered beans + all
ordered beans)

Multiply the event listener message-driven bean pool size
by 2. For example, if the event listener message-driven bean
pool size is 10, you need to add 20 connections to the JDBC
connection pool.
Event listeners always use at least one�and possibly two�
JDBC connections. Multiplying by a factor of 2 accounts for
a worst-case scenario, so you can probably use a smaller size
if necessary.

Note: If you run workflow processors from Worklist
clients, you need to add more connections.

B2B integration Add 10 connections to the JDBC connection pool.

Application integration Add 1 connection for each application view bean (the default
is 5) and add 1 connection for each asynchronous request
processor listener (the default is 2).

Application integration
adapters

Add any connections needed for adapters (event adapters and
service adapters). For example, for the DBMS adapter, add
one connector for each resource in the J2EE-CA resource
connector pool.
6-6 Deploying BEA WebLogic Integration Solutions

Tuning WebLogic Integration Performance
For more information about JDBC connection pools, see the following sections:

! �Tuning JDBC Connection Pool Size� in �Tuning WebLogic Server� in BEA
WebLogic Server Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs70/perform/WLSTuning.html

! �Managing JDBC Connectivity� in the BEA WebLogic Server Administration
Guide at the following URL:

http://edocs.bea.com/wls/docs70/adminguide/jdbc.html

Configuring the Execution Thread Pool

You can tune WebLogic Integration performance by configuring the execution thread
pool, which is described in �Execution Thread Pool� on page 1-8. For each node in a
WebLogic Integration cluster, calculate the number of execution threads based on the
guidelines described in the following table.

After calculating the number of threads required for each resource, calculate the total
needed for all resources, and then configure the thread pool size for each server, using
this total.

Table 6-2 Calculating the Number of Execution Threads

For this resource . . . Calculate the required number of execution threads as
follows . . .

BPM For BPM overhead, add 1 thread.

BPM event listener message-driven
beans

For each event listener message-driven bean, add 1 thread.

Concurrent Worklist client requests For each anticipated simultaneous Worklist client request, add 1
thread.

B2B integration Add 2 threads for every RosettaNet or ebXML message-driven
bean.

Application integration Add 5 threads for application integration overhead.

Application integration adapters For each adapter, add 3 threads.

Applications Add any execution threads required for application use.
Deploying BEA WebLogic Integration Solutions 6-7

6 Tuning Performance
For instructions on how to configure the thread pool size using the WebLogic Server
Administration Console, see �Server Configuration Tasks� in �Servers� in
Adminstration Console Online Help at the following URL:

http://edocs.bea.com/wls/docs70/ConsoleHelp/servers.html

For information about monitoring threads on your system, see �Do You Have Enough
Threads?� on page 6-13.

Configuring Resource Connection Pools for J2EE Connector Architecture
Adapters

You can tune WebLogic Integration performance by configuring the resource
connection pools for J2EE Connector Architecture (J2EE-CA) adapters, which are
described in �J2EE Connector Architecture� on page 1-8. For instructions on how to
tune resource connection pools for a particular adapter, see the documentation for the
adapter.

Configuring Large Message Support for B2B

If the messages exchanged during B2B conversations are too large to fit in memory,
enable large message support on the WebLogic Integration B2B Console and restart
the server. (Messages larger than 20MB are considered large messages.) Figure 6-1
shows the portion of the B2B Console used for enabling large message support.

Note: For information about configuring EJB transactions for large messages, see
�Configuring EJB Transactions� on page 6-9.
6-8 Deploying BEA WebLogic Integration Solutions

Tuning WebLogic Integration Performance
Figure 6-1 Enabling Large Message Support in the B2B Console

Configuring EJB Transactions

If your system returns an exception indicating that a transaction timed out while a
message was being processed, we recommend that you tune the transaction timeout
parameters in the following BPM resources:

! WLI-BPM Server (wlpi-ejb.jar)

! WLI-BPM Event Processor EJB (wlpi-mdb-ejb.jar)

Note: Transaction timeouts are more likely to occur when large messages, rather
than small messages, are being processed.

To tune the transaction timeout parameters, we recommend that you change the
trans-timeout-seconds attribute in the wlpi-ejb.jar and wlpi-mdb-ejb.jar
files from 90 seconds to 1090 seconds. To access the JAR files:

1. In the Administration Console navigation tree, select Deployments→EJB.

2. Select WLI-BPM Server EJB or WLI-BPM Event Processor EJB.

3. Click Edit EJB Descriptor to display a new window in which you can edit the
EJB descriptor.
Deploying BEA WebLogic Integration Solutions 6-9

6 Tuning Performance
Monitoring and Tuning the Java Virtual Machine (JVM)

WebLogic Integration Java code is executed on the Java Virtual Machine (JVM). To
achieve the optimal performance for a WebLogic Integration deployment, you need to
tune the JVM configuration. For example, the JVM heap size determines how often
and for how long the JVM collects garbage. For WebLogic Integration, the
recommended minimum heap size is 512KB. For more information about configuring
the JVM, see �Tuning Java Virtual Machines (JVMs)� in BEA WebLogic Server
Performance and Tuning at the following URL:

http://edocs.bea.com/wls/docs70/perform/JVMTuning.html

For more information about the Sun HotSpot JVM heap organization and garbage
collection, go to the following URL:

http://java.sun.com/docs/hotspot/gc/index.html

For a complete list of command-line options for the Sun Hotspot JVM, go to the
following URL:

http://java.sun.com/docs/hotspot/VMOptions.html

Many of the JVM options are set in setenv.cmd or setenv.sh and
startWeblogic.cmd or startweblogic.sh. Some defaults are set low in order to
enable low-end systems. If you have a larger system, you can benefit from tuning the
JVM up. The following sections explore commonly used options.

Choosing the JVM

The JDK supplied with WebLogic Server supports different JVM implementations.
On Solaris systems, we recommend that you use the server JVM. Use the -server
argument to specify the use of the server JVM. This argument must be the first one
immediately after the Java executable name.

On Windows systems, use the Hotspot JVM (the -hotspot option is used by default
in WebLogic Integration scripts). If you experience problems using the Hotspot JVM
on Windows systems, we recommend adding the following option to your scripts:

-xxMaxPermSize=131072K

The classic JVM is not recommended because it does not provide a JIT compiler. The
server runs more slowly with the classic JVM than with the Hotspot or server JVM.
6-10 Deploying BEA WebLogic Integration Solutions

Tuning WebLogic Integration Performance
The Hotspot and server JVM are identical except that they use different run-time
compilation algorithms. (The Hotspot JVM is also known as the client JVM.)

Tuning JVM Heap Size

The minimum (initial) and maximum sizes should be identical. For a large WebLogic
Integration server, we recommend 512Mb for both values, as shown in the following
option settings:

-Xms512m –Xmx512m

On Solaris systems, there are extra options that apply to very large heaps. In particular,
it is possible to bypass virtual memory and use physical memory directly for the heap.
This feature is called �Intimate Shared Memory,� and information about it can be
found at:

http://java.sun.com/docs/hotspot/ism.html

Garbage Collection Control on Hotspot JVM

The heap space in Hotspot is defined in two parts: the nursery heap space and the
tenured heap space.

All new objects are created in the nursery heap space. They are moved to the tenured
heap only after surviving garbage collection from the nursery heap. The tenured heap
is not collected as often as the nursery heap, and the collection operation for it is more
expensive than collection for the nursery heap.

In general, the nursery heap should be configured to be large enough to store temporary
objects. In the case of an application server in general, and for WebLogic Integration
in particular, the actual application state is kept in a database. Most memory allocated
while a request is being processed is released at the end of the request. It is therefore
important to configure the nursery heap to be large enough to prevent objects that are
used in a single request to be moved to the tenured heap. Such a configuration also
delays the need for collection on the tenured heap, which is much slower than
collection on the nursery heap. (For this reason, this approach is sometimes referred to
as delayed garbage collection).

Garbage collection in the nursery heap is generational. In generational garbage
collection, all new objects are allocated from a nursery heap space. All the objects in
the nursery heap space constitute a young generation of objects. When the nursery
heap space is full, the garbage collector does a partial garbage collection. It reclaims
Deploying BEA WebLogic Integration Solutions 6-11

6 Tuning Performance
memory in the nursery space for objects that are no longer accessible, that is, dead
objects. Objects in the nursery space that are still live are moved to an area of memory
for older objects. Generational garbage collection can be much faster than full garbage
collection because the garbage collector does not have to search all of memory for dead
objects.

For more information about garbage collection and JVM performance, see A Test of
JavaTM Virtual Machine Performance, which is available at the following URL:

 http://developer.java.sun.com/developer/technicalArticles/Programming/JVMPerf/

When you have a global heap of 512MB, a reasonable size for the nursery heap is
128MB. The specifications in the following line set the initial nursery heap size to 128
MB, and the maximum size to 128 MB, respectively:

-XX:NewSize=128m –XX:MaxNewSize=128m

The nursery space is composed of an eden space and two equal-size semispaces.
During garbage collection, surviving objects are moved to a semispace. The survivor
space is the combined size of the two semispaces.

You can use the SurvivorRatio parameter to tune the size of the survivor space. The
initial recommended value for the survivor ratio is 2. You should monitor your
application to determine if you need to change this. Use the following option setting to
specify a survivor ratio of 2:

-XX:SurvivorRatio=2

This parameter sets the ratio between the eden space and each semispace to equal 2:1.
In other words, the ratio of eden space to survivor space is 1:1; each semispace is one
quarter the size of the nursery heap (not one half, because there are two semi spaces of
equal size). If survivor spaces are too small, copying collection overflows directly into
the old generation. If survivor spaces are too large, they are uselessly empty.

Monitoring JVM Heap Usage

The most efficient way to monitor heap usage and garbage collection is to use verbose
garbage collection, selected by specifying the following flag:

-verbosegc

The output shows up on standard out. In the case of the Hotspot JVM two types of lines
show up, indicating collection in the eden (GC) or in the tenured heap (Full GC).
6-12 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
It is also possible to use the Weblogic Server Administration Console to monitor heap
utilization at run time. This helps define the heap requirements as well as identifying
any memory leaks.

Monitoring and Tuning Run-Time
Performance

The following sections describe how to monitor run-time performance in a WebLogic
Integration deployment:

! Monitoring and Tuning WebLogic Server Performance

! Monitoring and Tuning BPM Performance

! Monitoring and Tuning B2B Integration Performance

! Monitoring and Tuning Application Integration Performance

! Profiling Applications

Monitoring and Tuning WebLogic Server Performance

Use the WebLogic Server Administration Console to monitor the health and
performance of your WebLogic Server domain, including such resources as servers,
JDBC connection pools, JCA, HTTP, the JTA subsystem, JNDI, and EJBs. For
detailed information, see �Monitoring a WebLogic Domain� in the Creating and
Configuring WebLogic Server Domains at the following URL:

http://edocs.bea.com/wls/docs70/admin_domain/monitoring.html

Do You Have Enough Threads?

To determine whether your system has enough threads configured:

1. In the WebLogic Server Administration Console navigation tree, select a server
name.
Deploying BEA WebLogic Integration Solutions 6-13

6 Tuning Performance
2. Select the Monitoring tab, followed by the General tab.

3. Click Monitor All Active Queues.

The following figure shows how the WebLogic Server Administration Console
displays information about active queues.

Figure 6-2 Active Execute Queues Table

The ThreadPoolSize parameter controls the number of threads. The ThreadPoolSize
parameter is set separately for each server:

1. In the WebLogic Server Administration Console navigation tree, select a server
name.

2. Select the Monitoring tab, followed by the Performance tab.

Three graphs are displayed: Throughput, Queue Length, and Memory Usage.
The Idle Threads field is displayed above the graphs. The following figure
shows how the WebLogic Server Administration Console displays performance
information.
6-14 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
Figure 6-3 Server Performance Information

3. If you determine that the number shown in the Idle Threads field is sometimes
zero, you need more threads.

To add more threads, you must select the default queue and specify the thread count as
follows:

1. In the WebLogic Server Administration Console navigation tree, select a server,
then the Monitoring→General tab.

2. Select Monitor all Active Queues.

3. Select Configure Execute Queue.

The WebLogic Server Administration Console displays execute queue
information as shown in the following figure.
Deploying BEA WebLogic Integration Solutions 6-15

6 Tuning Performance
Figure 6-4 Execute Queue Table

You can specify the thread count as follows:

1. In the WebLogic Server Administration Console navigation tree, right-click on a
server name to display a drop-down menu.

2. Select View Execute Queues from the drop down menu to display a window, as
shown in the following figure. Specify the thread count.

Figure 6-5 Default Execute Queue Configuration
6-16 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
On Solaris systems, you can also determine whether changing the number of threads
improves performance by running the mpstat command at comparable load levels
before and after you change the setting. A decrease in the number of context switches
suggests that performance has improved.

How Many Transactions Are Occurring?

To display the number of transactions of various types, select your server name in the
Weblogic Server Administration Console. In the right frame, select the Monitoring tab,
then the JTA tab. Select Monitor all instances.

Some transactions are associated with the BPM framework; they cannot be changed.
Transactions associated with your applications can be changed, however. You can
change transaction types or combine transactions by completing the following steps:

1. In the Administration Console navigation tree, select a server.

2. Select the Monitoring tab, then the JTA tab to display the window used to
monitor transactions, as shown in the following figure.

Figure 6-6 JTA Monitoring Tab
Deploying BEA WebLogic Integration Solutions 6-17

6 Tuning Performance
Do You Have Enough JDBC Connections?

JDBC connections are connections to your database, made available so that individual
threads do not suffer performance problems caused by getting a new connection every
time access to the database is required. You may have multiple pools of JDBC
connections. It is important that each pool has enough connections so that no thread
has to wait long for a connection. To monitor active JDBC connection pools:

1. In the WebLogic Server Administration Console navigation tree, select Services.

2. Choose JDBC→Connection Pools to display all JDBC connections in the main
window.

3. Click the name of a pool, and then click Monitor All Active Pools to display
Active JDBC Connections, as shown in the following figure.

Figure 6-7 Active JDBC Connection Pools

4. Look at the number of Connections; is it close to the total number of connections
configured for this pool? Is the High Connections value equal to the total number
of connections configured for this pool? Either of these is a sign that more
connections may prove useful under similar situations or when load increases
slightly.

To modify connection pool configuration:

1. In the Administration Console navigation tree, select Services.

2. Choose JDBC→Connection Pools→wliPool.

3. In the main window, select the Connections tab.
6-18 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
Figure 6-8 Connection Pool Configuration

4. Set the values for the Initial Capacity and Maximum Capacity fields to the same
number.

Monitoring and Tuning BPM Performance

Use the WebLogic Integration Studio to monitor various aspects of workflow
performance in real time, including the status of workflows and workflow variables.
The Studio allows you to delete workflow instances and to view reports on workloads
and performance statistics. For more information, see �Monitoring Workflows� in
Using the WebLogic Integration Studio.

Key BPM performance measurements include:

! Instantiations�The number of workflows started within a given time period.
Instantiations include operations that are executed by concurrent clients:
instantiating the workflow, executing the task, and sending an event to the
server.

! Completions�The number of workflows completed (as indicated by arrival at a
Done node) within a given time period. Completions include operations that are
executed from the server side: instantiating the workflow, executing the task,
receiving an event from the client, performing the business operation, and
marking the task as done.

! Guaranteeing message delivery�Using key BPM features, as necessary, to
ensure that messages are sent to target workflows and not lost
Deploying BEA WebLogic Integration Solutions 6-19

6 Tuning Performance
One way to obtain statistics for these performance measurements is to extract them
from the database instance table using SQL statements. For example, the SQL code in
the following listing calculates statistics about the number of instantiations.

Listing 6-1 SQL Code to Determine Workflow Instantiation Statistics

select 'INSTANTIATIONS', count(*),
avg((completed-started)*86400),
max((completed-started)*86400),
86400*(max(started)-min(started)) total_duration,
from instance

The SQL code in the next listing calculates statistics about the number of completions.

Listing 6-2 SQL Code to Determine Workflow Completion Statistics

select 'COMPLETIONS', count(*),
avg((completed-started)*86400),
max((completed-started)*86400),
86400*(max(completed)-min(started)) total_duration
from instance where completed is not null

Do You Have Enough Message-Driven Beans?

To display information about message-driven beans:

1. In the WebLogic Server Administration Console navigation tree, select a server
name.

2. Select the Monitoring tab, followed by the JMS tab.

3. Click Monitor all Active JMS Servers.

4. Click on the number of Active JMS Destinations. The Active JMS Destinations
are displayed, as shown in the following figure.
6-20 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
Figure 6-9 Event Queue Monitoring

5. Look at the queue length (messages pending) for WLI_BPM_Event. If the
number is often more than just a few, it is safe to conclude that the amount of
queueing that is occurring is greater than an amount that is consistent with good
performance. In this case, adding more message-driven beans helps performance.

To change the number of message-driven beans:

1. In the Administration Console navigation tree, select Deployments→EJB.

2. Select WLI-BPM Event Processor.

3. Click Edit EJB Descriptor to display a new window, in which you can edit the
EJB descriptor.

4. In the left navigation window, select WebLogic EJB Jar→WebLogic Enterprise
Bean→EventListener→Message Driven Destination→Pool to display the
configuration window shown in the following figure.
Deploying BEA WebLogic Integration Solutions 6-21

6 Tuning Performance
Figure 6-10 Configuring MDBs

5. Edit the value of the Max Beans in Free Pool parameter.

6. Reboot Weblogic Server for this change to take effect.

How Many of Each Type of Bean Does My System Have?

Use the WebLogic Server Administration Console to display information bean types
and quantities:

1. In the Administration Console navigation tree, select Deployments→EJB.

2. Select the name of a particular EJB. For example, select WLI-BPM Server.

3. In the main window, select the Monitoring tab and the type of bean to be
displayed. For example, to display information about stateful session beans, click
Monitor all Stateful EJBRuntimes.

4. To modify the display of information, click Customize this view. You can add or
delete columns and change the sort order.

The following columns are of particular interest:

" Number of beans in use

" Number of beans in cache

The following JAR files are of particular interest:
" wlpi-ejb.jar

" wlpi-mdb-ejb.jar

" wlai-server-ejb.jar
6-22 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
" wlai-eventprocessor-ejb.jar

" wlai-asyncprocessor-ejb.jar

" The JAR files for your application-specific EJBs

For more information about these JAR files, see �Configuring EJB Pool and Cache
Sizes� on page 6-3. The following figures (Figure 6-11, Figure 6-12, and Figure 6-13)
show portions of the windows in which information for stateful, entity, and
message-driven beans is displayed.

The following figure displays Stateful EJBRuntimes for the WLI-BPM Server EJB
(wlpi-ejb.jar).

Figure 6-11 Stateful Bean Information

The following figure displays Entity EJBRuntimes for the WLI-BPM Server EJB
(wlpi-ejb.jar).
Deploying BEA WebLogic Integration Solutions 6-23

6 Tuning Performance
Figure 6-12 Entity Bean Information

The following figure displays Message Driven EJBRuntimes for the WLI-BPM Event
Processor EJB (wlpi-mdb-ejb.jar).

Figure 6-13 MDB Information

If a system message concerning cache full is displayed, increase the Max Beans in
Cache parameter for the corresponding EJB by editing the EJB descriptor.

If many entity beans are not passivated until the cache is full, you may want to decrease
the Idle Timeout Seconds parameter for the entity bean:

1. In the Administration Console navigation tree, select Deployments→EJB.

2. Select the name of a particular EJB. For example, select WLI-BPM Server.
6-24 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
3. Click Edit EJB Descriptor to display a new window, in which you can edit the
EJB descriptor.

4. In the left navigation window, select WebLogic EJB Jar→WebLogic Enterprise
Bean→WorkflowProcessor→Stateful Session Descriptor→Stateful Session Cache
to display the configuration window shown in the following figure.

5. Edit the Idle Timeout Seconds parameter.

Figure 6-14 Idle Timeout Configuration

Guaranteeing Message Delivery

Depending on the design requirements for your business processes, you may want to
take advantage of two features that can guarantee the delivery of a message to a
workflow. The features summarized in this section apply specifically to messages sent
from any JMS client to a workflow, which includes workflow-to-workflow, and not to
business messages sent between trading partners (trading partner business messages
use addressed messaging by default).

The following features guarantee the delivery of messages:

! Addressed messaging, which allows you to specify the ID of a specific workflow
instance to which the message is to be sent. Using addressed messages can also
guarantee that a response message is delivered to a particular workflow instance
that has begun a conversation with the current workflow (either by calling it via
the Start Workflow action, or by triggering a Start or Event node contained
Deploying BEA WebLogic Integration Solutions 6-25

6 Tuning Performance
within it via a previously sent XML message) � even if the receiving Event
node in the instantiated workflow has not yet been activated in the flow.

! Setting the transaction mode in the Post XML Event action so that the message
is sent only if the transaction completes successfully and a commit is issued. By
making sure that the message is not sent until the workflow enters its quiescent
state, this setting ensures that the resources required to guarantee message
delivery are allocated and committed.

Using these two features together ensures that the delivery of a message to a workflow
is guaranteed. For information about using these features, see the following:

! �Guaranteeing Message Delivery� in �Establishing JMS Connections� in
Programming BPM Client Applications.

! �Posting an XML Message to a JMS Topic or Queue� in �Defining Actions� in
Using the WebLogic Integration Studio.

For an example of using addressed messaging, see �Business Process and Workflow
Modeling� in �Understanding the Sample� in Learning to Use BEA WebLogic
Integration.

For information about delivery of business messages between trading partners, see
Creating Workflows for B2B Integration.

Monitoring and Tuning B2B Integration Performance

To monitor the performance of B2B integration functionality, consider the following
tips:

! Use the WebLogic Integration B2B Console to monitor and control aspects of
B2B integration functionality, including trading partner sessions, delivery
channels, conversations, and collaboration agreements.

! To monitor run-time performance, inspect access.log, the file used for
tracking the arrival of HTTP requests in the system. This file enables system
administrators to validate the state of the network/TCP interface. The time
stamps give a good indication of the rate of arrival of requests.

! To detect a bottleneck in the flow of an XOCP message, use the
getHopTimestamps() method of the QualityOfService class on the
consumer trading partner side. This method returns timestamps at all the hops of
6-26 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
the message. To interpret the data accurately, ensure that the clocks in all the
machines are synchronized.

Key performance measurements for B2B integration include:

! Throughput�The number of messages processed by the hub (sent and received)
during a given time period.

! Trip Time�Amount of time required for a request to travel from one spoke to
another through the hub.

For more information, see �Monitoring B2B Integration� in Administering B2B
Integration.

Monitoring B2B Activity

Use the WebLogic Integration B2B Console to determine the level of B2B activity:

1. In the B2B Console navigation tree, select the parent node: B2B.

2. In the main window, select the Monitoring tab, followed by the Log tab to display
the wli.log file, as shown in the following figure.

Figure 6-15 Monitoring B2B Logs

3. In the main window, select the Monitoring tab, followed by the Statistics tab to
display B2B statistics, as shown in the following figure.
Deploying BEA WebLogic Integration Solutions 6-27

6 Tuning Performance
Figure 6-16 Monitoring B2B Statistics

Monitoring and Tuning Application Integration
Performance

This section provides information about monitoring and tuning application integration.
It contains the following topics:

! Monitoring and Tuning Application View Connections

! Monitoring and Tuning EJB Pools for Application Integration

Monitoring and Tuning Application View Connections

You can check if you have sufficient connections available for your application view,
using the Weblogic Server Administration Console:

1. In the Administration Console navigation tree, select Deployments→Connectors.

2. Select the connection factory deployed for your application view, which is named
using the following format:
ApplicationViewName_connectionFactory.

3. Select the Monitoring tab, and click Monitor all Connector Connection Pool
Runtimes...
6-28 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
The connections to the EIS defined in your application view are displayed, as
shown in the following figure.

These connections are made available so that individual threads do not suffer
performance problems caused by getting a new connection every time access to
the EIS is required. It is important that each has enough connections so that no
thread has to wait long for a connection.

Figure 6-17 Monitoring Application View Connection

4. Look at the number of connections:

" Is it close to the total number of connections configured for this pool?

" Is the Active Connections High Count value equal to the total number of
connections configured for this pool?

If either case is true, increasing the number of connections will be useful in
similar situations or when load increases slightly.

To view or modify your maximum connections for your application view:

1. Start the Application View Console

2. Select your application view, and then select the Deploy tab. The following figure
shows the Application View Console tab used to monitor the maximum pool size.
Deploying BEA WebLogic Integration Solutions 6-29

6 Tuning Performance
Figure 6-18 Monitoring Maximum Pool Size

The Maximum Pool Size value shows the maximum number of connections.

To modify the maximum pool size value, complete the following steps:

1. Click Undeploy if the Application View is currently deployed.

2. When the Application View is undeployed, click Edit.

A window in which you can edit events or services is displayed.

3. Click Continue to display the window shown in the following figure, in which
you can edit the maximum pool size.

Figure 6-19 Modifying Maximum Pool size
6-30 Deploying BEA WebLogic Integration Solutions

Monitoring and Tuning Run-Time Performance
4. Edit the Maximum Pool Size value (the maximum number of connections).

5. Click Deploy to redeploy the Application View with the new Maximum Pool
Size value.

Monitoring and Tuning EJB Pools for Application Integration

If you want to tune your application integration performance, consider tuning the
following EJB pools:

! Asynchronous service processor message-driven bean pools
(wlai-asyncprocessor-ejb.jar)

! Event processor message-driven bean pools (wlai-eventprocessor-ejb.jar)

! Application View stateful and stateless session EJB pools
(wlai-server-ejb.jar)

For information about monitoring and tuning EJB pools, see �Do You Have Enough
Message-Driven Beans?� on page 6-20, and �How Many of Each Type of Bean Does
My System Have?� on page 6-22.

Profiling Applications

You can profile applications at run time using a Java profiler tool (such as Jprobe or
OptimizeIt). Use these tools to identify performance bottlenecks and thread
contentions in the system. Remember to profile run-time performance rather than
boot-time performance.
Deploying BEA WebLogic Integration Solutions 6-31

6 Tuning Performance
Tuning Hardware, Operating System, and
Network Resources

The following sections describe factors that you need to consider when you are tuning
hardware, the operating system, and the network:

! Tuning Hardware

! Tuning the Operating System

! Tuning Network Performance

For detailed information, see �Tuning Hardware, Operating System, and Network
Performance� in BEA WebLogic Server Performance and Tuning at the following
URL:

http://edocs.bea.com/wls/docs70/perform/HWTuning.html

Performance Bottlenecks

To optimize WebLogic Integration performance in a deployment, you need to
understand how the following hardware resources interact with each other.
Performance bottlenecks result from poor tuning of these hardware resources.

Table 6-3 Performance Bottlenecks

Hardware Resource Bottlenecks

CPU Insufficient throughput, resulting in excessive paging and swapping.

Memory Insufficient system memory, resulting in excessive paging and swapping.

Network resources Insufficient bandwidth to handle high volumes of network traffic. A high
frequency of network collisions.

Disk I/O and controllers Insufficient capacity and throughput to handle the volume and size of I/O
requests.
6-32 Deploying BEA WebLogic Integration Solutions

Tuning Hardware, Operating System, and Network Resources
Tuning Hardware

To optimize WebLogic Integration performance in a deployment, consider the
following hardware factors:

! Number of machines (as well as the number of CPUs per machine) required to
run WebLogic Integration during average and peak loads at acceptable
performance levels

! Right kind of storage, configuration, and acceptable size. To enhance RDBMS
performance, use faster disks.

! Amount of main memory required to handle average and peak loads at
acceptable performance levels

Tuning the Operating System

To optimize WebLogic Integration performance in a deployment, consider the
following operating system factors:

! Configurable file descriptor limits

! Memory allocation for user processes

! Configurable TCP tuning parameters

! Configurable settings for the threading model

! Use of monitoring tools such as vmstat, mpstat, netstat, iostat, and so on

Configurable TCP Tuning Parameters on Windows NT/2000

For a Windows NT or Windows 2000 server, we recommend setting the
TcpTimedWaitDelay parameter to 60 seconds instead of the default 240 seconds. The
parameter is in the Windows registry and can be set or modified by using the regedit
utility (regedit.exe). The entry is located as follows:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The entry is not present by default.
Deploying BEA WebLogic Integration Solutions 6-33

6 Tuning Performance
TcpTimedWaitDelay determines the time that must elapse before TCP can release a
closed connection and reuse its resources. This period between closure and release is
known as the TIME_WAIT state or 2MSL state. During this time, the connection can be
reopened at much less cost to the client and server than the cost of establishing a new
connection.

RFC 793 requires that TCP maintain a closed connection for an interval at least equal
to twice the maximum segment lifetime (2MSL) of the network. When a connection is
released, its socket pair and TCP control block (TCB) can be used to support another
connection. By default, the MSL is defined to be 120 seconds, and the value of this
entry is equal to two MSLs, or 4 minutes. However, you can use this registry entry to
customize this interval.

Reducing the value of this entry allows TCP to release closed connections faster,
providing more resources for new connections. However, if the value is too low, TCP
might release connection resources before the connection is complete, requiring the
server to use additional resources to reestablish the connection.

Note: Normally, TCP does not release closed connections until the value of this entry
expires. However, TCP can release connections before this value expires if it
is running out of TCP control blocks (TCBs). The number of TCBs the system
creates is specified by the value of MaxFreeTcbs.

System Monitoring on Windows NT/2000

Use the performance monitor (perfmon.exe) for monitoring all system resources or
the task manager for monitoring CPU, memory, and threads.

Swap Space Configuration for Solaris

Insufficient swap space can show up as an out-of-memory error, such as an overly
small heap or thread limit.

Network Tuning for Solaris

For network tuning information for Solaris systems, see the WebLogic Server platform
information page at the following location:

http://e-docs.bea.com/wls/platforms/sun/index.html
6-34 Deploying BEA WebLogic Integration Solutions

Tuning Hardware, Operating System, and Network Resources
System Monitoring for Solaris

The following table lists the commands suggested for use in monitoring Solaris
systems.

Tuning Network Performance

To optimize WebLogic Integration performance in a deployment, consider the
following requirements for a high-performance network:

! Sufficient available network bandwidth for WebLogic Integration and its
connections to other tiers in your architecture (such as client and database
connections)

! Sufficient throughput speed on the LAN/WAN

! Configurable operating system settings that allow you to optimize network
performance

! Sufficient capacity to handle peak loads

To monitor . . . Use . . .

Memory utilization vmstat

CPU utilization mpstat 5. (In addition to CPU utilization, this command also displays the context
switches on a per-processor basis. For aggregate CPU utilization, use the sar
command.

Disk I/O iostat

Network I/O netstat –sP tcp. This command monitors the various TCP parameters.
Deploying BEA WebLogic Integration Solutions 6-35

6 Tuning Performance
Tuning Databases

To optimize WebLogic Integration performance in a deployment, you need to
maximize the use of underlying resources. WebLogic Integration relies extensively on
database resources for handling run-time operations and ensuring that application data
is durable. The following sections describe how to tune databases in a WebLogic
Integration deployment:

! General Database Tuning Suggestions

! Tuning Oracle Databases

! Tuning Microsoft SQL Server Databases

! Tuning Sybase Databases

These sections provide a checklist of issues to consider when you are working to
optimize your WebLogic Integration performance. For detailed instructions about
specific database products, consult the appropriate product documentation.

General Database Tuning Suggestions
The following sections explain how you can optimize database performance by
adjusting the settings for various parameters and features of your deployment:

! Opened Cursors

! Disk I/O Optimization

! Database Sizing and Organization of Table Spaces

! Checkpointing

! Database Compatibility

! Database Monitoring
6-36 Deploying BEA WebLogic Integration Solutions

Tuning Databases
Opened Cursors

While using multiple cursors for an operation can increase concurrency in most
situations (for example, one opened cursor can perform updates while another opened
cursor performs inserts), there is a limit to the maximum number of cursors that can be
handled by a database server. This maximum pool is shared across all sessions and
connections of the database server. Keeping too many cursors opened within a single
connection can starve other connections, thereby slowing database performance and
reducing system scalability. A good estimate can be derived from the maximum
number of opened cursors that the database server can handle and the average number
of simultaneous users. Another strategy is to minimize the length of time that each
cursor is kept open.

Disk I/O Optimization

Disk I/O optimization is a key database tuning parameter that is related directly to
throughput and scalability. Access to even the fastest disk is orders of magnitude
slower than memory access. Whenever possible, optimize the number of disk accesses.
In general, selecting a larger block / buffer size for I/O reduces the number of disk
accesses and might substantially increase throughput in a heavily loaded production
environment.

For recommended settings, see the appropriate database-specific sections about tuning
databases, which are provided later in this document.

Database Sizing and Organization of Table Spaces

Distribute the database workload across multiple disks to avoid or reduce disk
overloading. To optimize database performance:

! Put frequently accessed tables and indexes on different disks. The mechanism to
achieve this differs from database to database. Consult your local database
administration guide on organization of database storage structures.

For example, each workflow instance and its children create a row in the
WORKFLOWINSTANCE table. These tables need to be optimized for insert and
update operations. Delete operations on this table are performed in batches
through the WebLogic Integration Studio. For a batch delete operation used to
remove workflow instances, be sure to configure a rollback segment with a
sufficient size so that it can handle a delete operation.
Deploying BEA WebLogic Integration Solutions 6-37

6 Tuning Performance
! Put the redo logs, archive logs, and database tables on separate disks.

! Some databases allow users to choose between raw disk I/O and regular file
system I/O. In general, raw disk I/O has better write performance while file
system I/O has better read performance due to OS-level caching. Thus raw disk
I/O is a good candidate for OLTP applications while file system I/O should be
used for decision support applications. When using raw I/O, you should increase
the database buffer cache size to compensate for the lack of OS-level caching.

Checkpointing

Checkpoint is a mechanism that periodically flushes all dirty cache data to disk. This
increases the I/O activity and system resource usage for the duration of the checkpoint.
While frequent checkpointing can increase the consistency of on-disk data, it can also
slow database performance. While most database systems have the notion of
checkpoint, not all database systems provide user-level controls. Oracle, for example,
allows administrators to set the frequency of checkpoints while users have no control
over SQLServer 7.X checkpoints. For recommended settings, see the product
documentation for the database you are using.

Database Compatibility

Use only the recommended versions of clients and servers. For a list of supported
databases, see the software requirements in the BEA WebLogic Integration Release
Notes for the release of WebLogic Integration that you are using.

Database Monitoring

Monitor the following aspects of database use:

! Disk space�Monitor the system to ensure that the database is not running out of
space. The key tables, such as WORKFLOWINSTANCE, should be monitored to
make sure enough space is allocated. Schedule regular table reorganization for
space defragmentation (after first monitoring tables for fragmentation) and
reclaim the disk space.

! Performance�Use the profiling or monitoring tools that accompany your
database to identify bottlenecks and to obtain recommendations for performance
tuning.
6-38 Deploying BEA WebLogic Integration Solutions

Tuning Databases
Tuning Oracle Databases

This section describes performance tuning for Oracle 8.1.7.

V$Tables

Oracle 8.1.7 offers a series of dynamic performance views, often called V$tables, that
allows users to monitor system statistics using SQL queries. Users need to be logged
in to the database as SYS or SYSTEM, or they must have administrator privileges to
access these dynamic views. Many of these dynamic views are referenced in the
following sections. For details about these dynamic views, see your Oracle
administrator�s guide and tuning guide for details.

Initialization Parameters

The initialization parameter file (init.ora) contains the system initialization
parameters and values for the Oracle server.

On Windows NT/2000, the pathname for the file is as follows:

 d:\oracle\admin\sid\pfile\init.ora

In this pathname, d:\oracle is the installation directory and sid is the instance ID of
the database (for example, d:\Oracle\admin\hsundb\pfile\init.ora).

The contents of this file are organized as attribute-value pairs, such as PROCESSES =
100.

You should always make a backup before modifying the file. You must bounce (shut
down and restart) the server to reflect any modifications.

Modifications made to this file can and should be verified after bouncing the server.
This validation can be done through an SQL statement or an SQL*Plus command. The
parameters and their values are stored in a dynamic performance view, V$PARAMETER.

The following query validates changes made to the PROCESSES parameter. Note that
the attribute name is lower case:

SELECT name, value FROM v$parameter WHERE name = ‘processes’

Another method is to use the SHOW PARAMETERS parameter_name command in an
SQL*Plus shell. For example, the following command:
Deploying BEA WebLogic Integration Solutions 6-39

6 Tuning Performance
SHOW PARAMETERS “parameter”

is roughly equivalent to the following query:

SELECT name, value FROM v$parameter WHERE name LIKE ‘%parameter%’;

Ensure that you have a full understanding of the parameter before modifying its value.
For detailed information about specific parameters, see your Oracle documentation.

Shared Pool Size

The share pool in an important part of the Oracle server system global area (SGA). The
SGA is a group of shared memory structures that contain data and control information
for one Oracle database instance. If multiple users are concurrently connected to the
same instance, the data in the instance�s SGA is shared among the users.

The shared pool portion of the SGA caches data for two major areas: the library cache
and the dictionary cache. The library cache is used to store SQL-related information
and control structures (for example, parsed SQL statement, locks). The dictionary
cache is used to store operational metadata needed for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the
shared pool is too small, the server must dedicate resources to managing the limited
amount of available space. This consumes CPU resources and causes contention
because Oracle imposes restrictions on the parallel management of the various caches.
The more you use triggers and stored procedures, the larger the shared pool must be.

The SHARED_POOL_SIZE initialization parameter specifies the size of the shared pool
in bytes. We recommend a value that is no less than 9MB in a production system. It is
not uncommon for systems to require up to 75MB for the shared pool. The following
query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

If there is always free memory available within the shared pool, then increasing the
size of the pool offers little or no benefit. Also, just because the shared pool is full does
not necessarily mean there is a problem. There are no entries in the shared pool that
cannot be paged out once they enter the pool. Application and deployment needs may
differ, thus this value needs to be tuned on the basis of specific deployments and
applications.
6-40 Deploying BEA WebLogic Integration Solutions

Tuning Databases
Maximum Opened Cursors

To prevent any single connection taking all the resources in the Oracle server, the
OPEN_CURSORS initialization parameter allows administrators to limit the maximum
number of opened cursors for each connection. Unfortunately, the default value for this
parameter is too small for systems such as WebLogic Server and WebLogic
Integration. A reasonable number falls in the range of 175 to 255. Cursor information
can be monitored using the following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

Maximum Number of Processes

On most operating systems, each connection to the Oracle server spawns a shadow
process to service the connection. Thus, the maximum number of processes allowed
for the Oracle server must account for the number of simultaneous users, as well as the
number of background processes used by the Oracle server. The default number is
usually not big enough for a system that needs to support a large number of concurrent
operations. A reasonable number falls in the range of 200 to 255. For platform-specific
issues. see your Oracle administrator�s guide. The current setting of this parameter can
be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

Database Block Size

A block is Oracle�s basic unit for storing data and the smallest unit of I/O. One data
block corresponds to a specific number of bytes of physical database space on disk.
This concept of a block is specific to Oracle RDBMS and should not be confused with
the block size of the underlying operating system. Note that since the block size affects
physical storage, this value can be set only during the creation of the database; it cannot
be changed once the database has been created.

Given the nature of WebLogic Integration repository tables and access patterns, it is
recommended that the database used for WebLogic Integration is created with a block
size of 8K. The current setting of this parameter can be obtained with the following
query:

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';
Deploying BEA WebLogic Integration Solutions 6-41

6 Tuning Performance
The following table shows the advantages and disadvantages of commonly used block
sizes.

Tuning Options for System Administrators

This section contains tuning procedures that should be performed only by system
administrators or users who are intimately familiar with the affected system.

Warning: Not all the tuning options described in this section have a positive effect
on performance; you may need to derive values for parameters
empirically.

SNP Processes

By default, the Oracle server creates several background processes to perform
scheduled tasks. These tasks can be scheduled only through the use of the Job Queues
functionality or Advanced Replication (check your Oracle documentation for details).
If you are not using these Oracle features, however, these background processes waste
resources. To turn off these processes until they are actually needed, modify the
init.ora file.

Block Size Advantages Disadvantages

2K-4K (small) Reduces block contention when multiple
transactions act upon the same block.
Good for small rows, or lots of random
access.

Has relatively large I/O overhead.
You may end up storing only a small number of
rows in each block, depending on the size of the
row.

8K (medium) If rows are medium size, then you can
bring a number of rows into the buffer
cache with a single I/O.
With a small block size, you may bring
in only a single row.

Space in the Oracle buffer cache is wasted if you
are doing random access to small rows and have a
large block size. For example, with an 8KB block
size and 50-byte row size, you are wasting 7,950
bytes in the buffer cache when doing random
access.

16K-32K (large) There is relatively less overhead; thus,
there is more room to store useful data.
Good for sequential access or very large
rows.

Large block size is not good for index blocks used
in an OLTP type environment, because they
increase block contention on the index leaf
blocks.
6-42 Deploying BEA WebLogic Integration Solutions

Tuning Databases
The safest way to do this is by commenting out the following section in your init.ora
file:

The following parameters are needed for the Advanced Replication
#Option

#job_queue_processes = 4
#job_queue_interval = 10

Sort Area Size

Increasing the sort area increases the performance of large sorts as this allows the sort
to be performed in memory during query processing. This can be important, as there is
only one sort area for each connection at any point in time. The default value of this
init.ora parameter is usually the size of 6-8 data blocks. This value is usually
sufficient for OLTP operations but should be increased for decision support operation,
large bulk operations, or large index-related operations (for example, recreating an
index). When performing these types of operations, you should tune the following
init.ora parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Physical Storage Parameters for Tables

Database tables grow and shrink in size due to inserts, updates, and deletes. Growing
a table incurs additional I/O that slows database operations. Thus, the physical storage
parameters of each table should be set according to its expected access and usage
pattern. This also means that the parameters are largely determined by the applications
using the tables. In general, the default values used by Oracle work fairly well, but
there are many instances where tuning these parameters can produce dramatic
performance improvements. This work should be performed by a professional DBA
with a deep understanding of the Oracle RDBMS. The following sections highlight
some storage parameters that are common to schema objects, but are especially
important to the CREATE TABLE command. It is not in the scope of this guide to
recommend specific values for these parameters. (For details, see your Oracle
documentation or DBA). Selected parameters are described and queries are provided
to help you check for potential problems.

! INITRANS and MAXTRANS

When a transaction modifies a block, it must first mark a flag in the header of
the block. The marker is released when the transaction commits. Each marker
Deploying BEA WebLogic Integration Solutions 6-43

6 Tuning Performance
takes space in the block, thus more transaction markers mean less space for data.
Without a marker, the transaction is not allowed to modify the block and must
wait. Oracle allows users to control the number of markers per block on a
per-table basis. (Some tables provide users with an even finer level of control,
but a description of such control is beyond the scope of this document.) The
INITRANS parameter allows users to specify the initial number of markers
allocated in each block (the minimum value is 1). Additional markers are
allocated up to the number specified by MAXTRANS. Transactions are blocked
when no free markers are available. As transactions become blocked, the
possibility of deadlocks increases (that is, transactions that are not allowed to
complete and hold on to resource locks). The default MAXTRANS value is 255, but
it should be checked with the following query to ensure that the parameters have
a reasonable value for tables involved in OLTP:

SELECT owner, table_name, ini_trans, max_trans, FROM all_tables;

These settings are important if your application involves many concurrent
workflows because, during its lifecycle, each workflow executes a series of
transactions against the WORKFLOWINSTANCE table.

! MINEXTENTS and MAXEXTENTS

These parameters control the size of tables as they grow and shrink. An extent is
composed of one or more data blocks (see �Database Block Size�). These
parameters control the number of extents that are allocated to a table during
creation (the size of a table cannot shrink below the value specified by
MINEXTENTS) and the maximum number of extents that can be allocated to a
table. Generally users should create tables using the following settings:

CREATE TABLE foo (col1 number, col2 date)

STORAGE (MINEXTENTS 1 MAXEXTENTS UNLIMITED);

The following query is used to check the values of these parameters:

SELECT owner, table_name, min_extents, max_extents

FROM all_tables;

Note that when the UNLIMITED option is specified for MAXEXTENTS, the value
returned by the query will be a large integer (for example, 2147483645).
6-44 Deploying BEA WebLogic Integration Solutions

Tuning Databases
Swapping of Redo Logs

To support recovery, all operations performed against the Oracle RDBMS are recorded
in redo logs (unless you explicitly disable logging for certain operations). Over time,
the amount of information in the log increases and eventually starts to affect the
performance of each operation. Immediately after a successful database backup, the
information in the redo logs is no longer necessary as recovery can be achieved with
the backup. Thus, it is a good practice to start a new redo log after each backup to clean
up the information that is no longer needed and potentially restore system
performance. This operation can be done through the following SQL command:

ALTER SYSTEM SWITCH LOGFILE

For details about redo logging, managing redo logs and log groups, and best practices
for RDBMS backup, see your Oracle documentation.

Table Reorganizations

As SQL operations (both OLTP and bulk) cause tables to grow and shrink, the storage
space for the table can become fragmented. This can lead to performance degradations
and requires user intervention to reclaim space gaps and compact table data. This
operation is often referred to as a table reorganization. Oracle 8.1.7 does not have a
built-in facility to support this operation, thus the user must perform the steps
manually. Following good practices, this operation should be done soon after a
database backup. The following steps show how to reorganize a table called foo:

1. Make a copy of the table using the following SQL statement:

 CREATE TABLE foo_bkup AS SELECT * FROM FOO;

The act of copying the data will compact the data and since this is a new table,
there is no space to reclaim.

2. Delete the old table using the following SQL statement:

 DELETE TABLE foo;

3. Rename the new table with the name of the old table using the following SQL
statement:

 RENAME foo_bkup TO foo
Deploying BEA WebLogic Integration Solutions 6-45

6 Tuning Performance
Note that each step in the process involves DDL statements (such as CREATE TABLE,
DROP TABLE, and so on). DDL statements are not transactional in Oracle. More
specifically, each DDL statement executes in a self-contained transaction. Thus the
ROLLBACK command is ineffective during a table reorganization.

Tuning Microsoft SQL Server Databases

The following table describes performance tuning parameters that are specific to
Microsoft SQL Server databases. For more information about these parameters, see
your Microsoft SQL Server documentation.

Tuning Sybase Databases

The following table describes performance tuning parameters that are specific to
Sybase databases. For more information about these parameters, see your Sybase
documentation.

Table 6-4 Performance Tuning Parameters for Microsoft SQL Server
Databases

Parameter Recommendation

Tempdb Store tempdb on a fast I/O device.

Recovery interval Increase the recovery interval if perfmon shows an increase in I/O.

I/O block size Use an I/O block size larger than 2Kb.

Table 6-5 Performance Tuning Parameters for Sybase Databases

Parameter Recommendation

Recovery interval Lower recovery interval setting results in more frequent checkpoint
operations, resulting in more I/O operations.

I/O block size Use an I/O block size larger than 2Kb.
6-46 Deploying BEA WebLogic Integration Solutions

Tuning Databases
Maximum online
engines

Controls the number of engines in a symmetric multiprocessor
(SMP) environment. Sybase recommends configuring this setting to
the number of CPUs minus 1.

Table 6-5 Performance Tuning Parameters for Sybase Databases (Continued)

Parameter Recommendation
Deploying BEA WebLogic Integration Solutions 6-47

6 Tuning Performance
6-48 Deploying BEA WebLogic Integration Solutions

APPENDIX
A Deploying WebLogic
Integration Client
Applications

WebLogic Integration provides application programming interfaces (APIs) that
developers can use to create client applications. Client applications in which
WebLogic Integration APIs are used can import WebLogic Integration classes, look
up Enterprise Java Beans (EJBs), and so on.

This section provides information to help you deploy your WebLogic Integration
client applications successfully.

JAR Files

Specify the following JAR files in the client CLASSPATH:

! %BEA_HOME%\integration\lib\wliclient.jar�Contains EJB remote
interfaces, home classes, and signature classes for EJBs that have published
APIs.

! %BEA_HOME%\integration\lib\wlicommon.jar�Contains classes common
to server and client.

In the preceding lines, BEA_HOME is the environment variable that represents the
directory in which WebLogic Platform is installed.
Deploying BEA WebLogic Integration Solutions A-1

A Deploying WebLogic Integration Client Applications
Requirements and Recommendations

In addition to specifying the JAR files, as described in the previous section, consider
the following requirements and recommendations when you deploy your client
applications:

! When the client is a simple Java application, you can specify the
wliclient.jar and wlicommon.jar files in the system CLASSPATH.

! When you deploy an enterprise application such that it runs in the same Java
Virtual Machine (JVM) as WebLogic Integration, you must specify the JAR files
in the manifest classpath.

The J2EE specification provides the manifest Class-Path entry for a
component to specify that it requires an auxiliary JAR of classes. When you
create a JAR or WAR file for your application, you include a manifest file with a
Class-Path element that references the required JAR files. For information
about how to use this manifest file, see �WebLogic Server Application
Classloading� in BEA WebLogic Server Developers Guide, which is available at
the following URL:

http://e-docs.bea.com/wls/docs70/programming/classloading.html

! Although doing so is not required, we recommend that you specify the
wliclient.jar and wlicommon.jar files in the manifest Class-Path for a
deployment scenario in which WebLogic Integration and your WebLogic
Integration client application do not run in the same JVM. By listing these JAR
files in the manifest Class-Path, you can ensure that both applications are
self-contained.

! You must maintain the same versions of the JAR files on the server and the
client.

For information about developing BPM client applications, see Programming BPM
Client Applications.
A-2 Deploying BEA WebLogic Integration Solutions

APPENDIX
B Deploying Resource
Adapters

This section describes how to deploy resource adapters after you start the servers in
your cluster. For information about how to set up and start your clustered deployment,
and which adapters are deployed by default in your WebLogic Integration domains,
see Chapter 3, �Configuring a Clustered Deployment.�

After you start the servers in your cluster, you can deploy resource adapters by using
one of the following methods:

! Using the weblogic.Deployer Command-Line Utility

! Using the WebLogic Server Administration Console

Using the weblogic.Deployer Command-Line
Utility

The weblogic.Deployer utility is a Java-based deployment tool that provides a
command-line interface to the WebLogic Server deployment API. For information, see
�Deployment Tools and Procedures� in �WebLogic Server Deployment� in BEA
WebLogic Server Developers Guide, which is available at the following URL:

http://e-docs.bea.com/wls/docs70/programming/deploying.html
Deploying BEA WebLogic Integration Solutions B-1

B Deploying Resource Adapters
Deploying the Sample DBMS Adapter

The following example demonstrates how to deploy the sample DBMS adapter, which
you received with your WebLogic Integration software, into a cluster named
MyCluster. The cluster contains two managed servers: MyServer1 and MyServer2.
The following table describes the cluster configuration.

Use the following command to deploy the DBMS adapter in this example cluster.

Note: The following code listing represents a single command. It is shown here on
multiple lines for the sake of readability. On your command line, however, it
must be entered as one physical line.

Listing B-1 weblogic.Deployer Command Line to Deploy the DBMS Adapter

java -classpath WL_HOME\lib\weblogic.jar weblogic.Deployer
-adminurl t3://127.0.0.5:7005 -user username -password password
-upload -stage
-source WLI_HOME\adapters\dbms\lib\BEA_WLS_DBMS_ADK.ear
-name BEA_WLS_DBMS_ADK
-targets BEA_WLS_DBMS_ADK.rar@MyCluster,
BEA_WLS_DBMS_ADK_Web.war@MyCluster,
BEA_WLS_DBMS_ADK_EventRouter.war@MyServer1
-activate

In the preceding command line:

! -adminurl�Specifies the URL for the administration server in the cluster.

! -user�Specifies the username used for authentication by the administration
server.

Server Name Server Type Listen Address:Port

MyAdmin Administration Server 127.0.0.5:7005

MyServer1 Managed Server 127.0.0.1:7001

MyServer2 Managed Server 127.0.0.1:7002
B-2 Deploying BEA WebLogic Integration Solutions

Using the weblogic.Deployer Command-Line Utility
! -password�Specifies the username used for authentication by the
administration server.

! -upload�Uploads the EAR file to the administration server. You can omit this
option when you run the weblogic.Deployer utility on the administration
server. However, it is required when you are not running the
weblogic.Deployer utility on the administration server.

! -stage�Instructs the WebLogic Server deployment facility to stage the EAR
file to all managed servers prior to activation.

! -source�Specifies the location of the EAR file for the resource adapter.
(WLI_HOME represents the directory in which you installed WebLogic Integration,
for example C:\bea\weblogic700\integration.)

! -name�Specifies the name of the enterprise application for the resource adapter,
which should be the same as the logical name for the adapter. This is a unique
identifier for a resource adapter.

! -targets�Specifies the subcomponents contained in the previously specified
EAR file for the adapter.

This is a comma-separated list of subcomponents. (Note that there are no spaces
between the items in the list.) As described in �Deploying Adapters� on page
2-30, the event router WAR files for sample adapters are targeted to a single
node in a cluster. This sample command specifies that the RAR and design-time
Web application are deployed to the cluster, and that the EventRouter Web
application is deployed to a specific managed server.

! -activate�Activates the application in the domain.
Deploying BEA WebLogic Integration Solutions B-3

B Deploying Resource Adapters
Using the WebLogic Server Administration
Console

1. Start the administration server and the Administration Console:

a. To start the administration server, see �Starting WebLogic Integration� in
�Getting Started� in Starting, Stopping, and Customizing BEA WebLogic
Integration.

b. To start the console, see �Starting the WebLogic Server Administration
Console� in �WebLogic Integration Administration and Design Tools� in
Starting, Stopping, and Customizing BEA WebLogic Integration.

2. In the Administration Console navigation tree, select the Applications node in the
domain in which you want to deploy an adapter:

Domain_Name→Deployments→Applications

3. Click Configure a New Application.

The WebLogic Server wizard is displayed in the main console window. It guides
you through the process of configuring and deploying your adapter.

4. Locate the EAR, WAR, JAR, or RAR file you would like to configure for use
with WebLogic Server. For example, to deploy the sample DBMS adapter, which
you received with your WebLogic Integration software, select the
BEA_WLS_DBMS_ADK.ear file in the following directory:

 WLI_HOME\adapters\dbms\lib\BEA_WLS_DBMS_ADK.ear

In the preceding line, WLI_HOME represents the directory in which you installed
WebLogic Integration, for example, C:\bea\weblogic700\integration.

Note: When you configure an exploded application or component directory,
WebLogic Server deploys all components it finds in and below the
specified directory.

5. Complete the configuration and deployment by responding to the prompts in the
wizard. For example, you must specify the targets and the staging mode. For
more information, see the -targets and -stage options in �Using the
weblogic.Deployer Command-Line Utility� on page B-1.
B-4 Deploying BEA WebLogic Integration Solutions

Using the WebLogic Server Administration Console
For information about using the WebLogic Server Administration Console to deploy
applications, see �Configuration and Deployment Tasks� in �Applications� in the
Adminstration Console Online Help, which is available at the following URL:

 http://edocs.bea.com/wls/docs70/ConsoleHelp/applications.html
Deploying BEA WebLogic Integration Solutions B-5

B Deploying Resource Adapters
B-6 Deploying BEA WebLogic Integration Solutions

Index

A
adapters

components 2-30
configuring 3-15, B-1
deploying 2-30, B-1

addressed messaging in BPM 6-25
administration

application integration 2-19
server

default Web Application 2-12
deployment 2-5, 2-14
EJBs 2-5, 4-18
failover 4-18
JMS destinations 2-23

application integration 3-5
security 5-18
WebAppComponent 3-15, B-1
See Also adapters

application profiling 6-31
Application Views

beans 6-5
deployment 1-23
message driven beans 6-5
stateless session beans 1-16, 6-4

application.xml See deployment order
architecture, deployment 1-4
ASYNC_REQUEST_QUEUE 2-26
ASYNC_RESPONSE_QUEUE 2-26
asynchronous

service invocations 1-17
service request 2-22

audience xiii
AuditTopic 2-26
automatic restart 3-29

B
B2B

configuring security 5-14
Console 4-18
topic, administration 2-26

B2B integration, load balancing 2-20
B2BTopic 2-26
bottlenecks 6-32
BPM

master EJB 3-12
BPM security

configuring 5-13
business protocols, security for 5-17

C
certificates

about 5-6
for certificate authority 5-6
format 5-6
obtaining 5-14
server 5-6
trading partner client 5-6

checkpointing 6-38
clusters

about clusters 2-1
configuration tasks 3-1, 4-6
Deploying BEA WebLogic Integration Solutions I-1

constrained servers 4-14
designing 2-3
managed servers 3-11
prerequisites for configuring 3-2
security 3-30

compatibility security 5-2
configuration

application integration 5-18
application integration in clusters 2-19
B2B security 5-14
BPM Event Topic 3-11, 3-14
BPM Master EJB 3-12
BPM security 5-13
clusters 3-1, 4-6
local trading partners 5-16
managed servers 3-21
MDB pools 2-17
RDBMS realm 3-17
security 3-30
WebLogic Server security 5-11

Configuration Wizard 3-7, 3-26
connection factories

application integration 1-23
JMS 2-23

constrained candidate servers 4-14
controlled failover 4-19
conventions, documentation xv
cursors 6-37
custom

JMS queues 2-17
message listener See error destination
resources, deploying 2-12

customer support xiv
cXML security 5-17

D
database administrators 1-4
databases

checkpointing 6-38
compatibility 6-38

initializing 3-9
monitoring 6-38
opened cursors 6-37
organization 6-37
recovery 4-22
sizing 6-37
tuning 6-36

Microsoft SQL Server 6-46
Oracle 6-39
Sybase 6-46

DBMS adapter 2-30, B-1
DbmsEventRouter 2-30, B-1
default Web application 2-12
definite encoding rules format 5-6
deployment

architecture 1-4
containers 2-5
order 2-4, 2-12
resources

application integration 1-15
B2B integration 1-15
business process management 1-9
custom 2-12
databases 1-24
deployment containers 2-5
hardware 1-25
network 1-25
operating system 1-25
overview 1-5
resource groups 2-4
WebLogic Server 1-5

specialists 1-3
tasks 1-2, 3-1, 4-6
two phase 2-4

DER 5-6
destination servers 4-20, 4-21
destinations

distributed 1-17, 2-17, 2-20, 2-26
JMS 2-25

disk I/O 6-37
distributed destinations 1-17, 2-17, 2-20, 2-
I-2 Deploying BEA WebLogic Integration Solutions

26
application integration 1-17
configuring 3-23

documentation
conventions xv
overview documents xi
printing xiii

domains
adding managed servers 3-23
administration server 4-18
clustering in 2-4
Configuration Wizard, using the 3-7
creating 3-1, 3-7, 3-26, 4-6, 5-11
managed servers, adding 3-21
management 2-4
starting servers in 3-31
WebLogic Integration 2-3

E
ebXML security 5-17
EJBs

cache 1-6
pools 1-6

error destination 2-28
ErrorListenerBean 2-28
ErrorTopic 2-26
event generator Web application 2-30, B-1
event listeners 2-16

create new pools 2-17
message-driven beans 1-11, 2-16, 6-3
pool sizes 2-17

event processor See events, application
integration

event routers, high availability 2-22, 3-5
EVENT_QUEUE 2-26
EVENT_TOPIC 2-26
EventQueue 2-26
events

application integration 1-19, 2-22
queues 1-13, 2-16

timed 2-18
EventTopic 2-26, 3-11, 3-14
execution thread pool 1-8, 6-7

F
FailedEventQueue 2-26, 2-28
failover 4-18

administration server 4-18
controlled 4-19
JMS 4-14
JTA 4-15

file system 3-2, 4-15
firewall, using 5-10

H
hardware router 3-4
hardware tuning 6-33
high availability

about high availability 4-2
event routers 2-22, 3-5
JMS 2-21

I
IIS, proxy servers

IIS 5-6
instance beans 1-12
instance entity beans 6-4
IP addresses 3-2

J
J2EE Connector Architecture (J2EE-CA) 1-

8, 6-8
J2EE Connector Architecture See JCA
Java Message Service (JMS) 1-6
Java Virtual Machine (JVM) 6-10
JCA 1-8
JDBC

connection pools 1-7, 2-25, 2-29, 5-3, 6-
Deploying BEA WebLogic Integration Solutions I-3

5
stores 2-25, 2-29

JMS
connection factories 2-23
destinations 3-11, 3-14
failover 4-14
high availability 2-21
JDBC stores 2-25, 2-29, 4-22
migration 4-20, 4-21
queues, logging JMS errors 2-28
servers, creating 2-30
stores, recovering 4-22
topics, configuring 3-11, 3-14
See also distributed destinations

Jprobe 6-31
JTA

failover 4-15
migration 4-20, 4-21
recovery service 4-14

K
keystores

cluster configuration 3-30
configuring with WebLogic Server 5-11
creating 5-15
private 5-15
root CA 5-15

L
LDAP security server 5-2
license, cluster 3-2
load balancing

about load balancing 2-15
application integration 2-19, 3-4
B2B integration 2-20
BPM 2-15
router 3-4, 3-18
WebLogic Server 2-15

logging errors 2-28

M
managed servers 3-21

adding to domains 3-23
adding to existing installation 3-21
creating 3-27
destination servers 4-20, 4-21
installing in new location 3-26
source servers 4-20, 4-21
starting 3-31
startup command 3-33
startWeblogic 3-22, 3-33

management domains 2-4
manual migration 4-19
message delivery, guaranteeing BPM 6-25
Microsoft IIS 5-6
Microsoft SQL Server database tuning 6-46
migratable targets 4-14
migration

constrained candidate servers 4-14
from failed node 3-30
migratable targets 4-14
services 4-13
to healthy node, manual 4-19
weblogic.Admin utility 4-20

monitoring
about monitoring performance 6-13
B2B integration performance 6-26
BPM performance 6-19
databases 6-38
profiling applications 6-31
WebLogic Server performance 6-13

multicast addresses 3-2
multihome machine 3-2

N
network performance tuning 6-35
NotifyTopic 2-26
I-4 Deploying BEA WebLogic Integration Solutions

O
opened cursors 6-37
operating system tuning 6-33
OptimizeIt 6-31
Oracle database tuning 6-39
order keys 2-17
order of deployment 2-4
ordered

event listener MDBs 2-16
messages 2-16
messages, order keys 2-17

OutboundQueue 2-26

P
PEM 5-6
performance

bottlenecks 6-32
monitoring 6-13

PKCS12 5-6
PKCS7 5-6
PKI format 5-6
pool size 1-6

event listeners 2-17
port numbers 3-2
prerequisites xiii
principals, WebLogic Server security 5-3
printing product documentation xiii
privacy enhanced mail format 5-6
product support xiv
profiling applications 6-31
proxy plug-in, using 5-8
proxy servers

and WebLogic proxy plug-in 5-9
using 5-8

public key cryptography format 5-6

R
recovery 3-29
resource adapters 2-30, B-1

resource connection pools 6-8
resource groups

about resource groups 2-4
types of 2-5

resources
custom 2-12
targeting to clusters 2-11

roles
database administrators 1-4
deployment specialists 1-3
WebLogic Server administrators 1-3

root CA certificate 5-6
RosettaNet security 5-17
router 3-4, 3-18

S
security

6.x and 7 5-2
about security 5-1
and cXML 5-17
and ebXML 5-17
and LDAP server 5-2
and proxy servers 5-8
and RosettaNet 5-17
and WebLogic Integration domains 5-2
and WebLogic Proxy plug-in 5-9
application integration 5-18
compatibility 5-2
configuring application integration 5-18
configuring B2B 5-14
configuring BPM 5-13
configuring in clusters 3-30
configuring WebLogic Server 5-11
digital certificates 5-6
firewall 5-10
setting up, in a deployment 5-10
WebLogic Server security principals 5-3

server affinity 2-20, 2-21
server certificate 5-6
servers
Deploying BEA WebLogic Integration Solutions I-5

starting in the domain 3-31
service invocations

asynchronous 1-17
synchronous 1-16

services
JTA recovery 4-14
manual migration of 4-19
migration on failure 4-13

ServletFilter resource 5-3
shared file system 3-2, 4-15
software router 3-4, 3-18
starting servers 3-22, 3-31
startup 3-5

B2B integration 4-18
BPM 2-12
deployment order 2-12

startWeblogic 3-22, 3-33
support xiv
Sybase database tuning 6-46
synchronous service invocations 1-16

T
table spaces, sizing and organizing 6-37
targeting resources to servers 2-11
technical support xiv
templates

definition beans 1-12
workflow, entity beans 1-12, 6-4

threads, execution 1-8
timed events 2-18
TimerQueue 2-26
trading partner certificate 5-6
trading partners

configuring 5-16
tuning

databases 6-36
hardware 6-33
Java Virtual Machine (JVM) 6-10
Microsoft SQL Server databases 6-46
network performance 6-35

operating system 6-33
Oracle databases 6-39
primary resources 6-1
Sybase databases 6-46
WebLogic Server 6-2

two phase deployment 2-4
typographic conventions xv

U
unordered

event listener MDBs 2-16
messages 2-16

V
ValidatingEventQueue 2-26

W
Web server, using with the WebLogic proxy

plug-in 5-9
web.xml deployment descriptor 2-12
WebAppComponent, adapters 3-15, B-1
WebLogic Integration domains 2-3
WebLogic Keystore provider, configuring 5-

11
WebLogic Server administrators 1-3
WebLogic Server security, configuring 5-11
weblogic.Admin utility 4-20
wlai.clusterFrontEndHostAndPort 2-22
wlai.clusterFrontEndHostAndPort See load

balancing, application integration
WLAI_ASYNC_REQUEST_QUEUE See

asynchronous service request
WLAI_ASYNC_RESPONSE_QUEUE See

asynchronous service request
WLAI_EVENT_QUEUE See events
wlai-admin.ear 2-19
wlai-admin-ejb.jar

See administration, application
I-6 Deploying BEA WebLogic Integration Solutions

integration
WLI-AI Startup 3-5
WLI-B2B Startup 4-18
WLI-BPM Plugin Manager 3-12
wliconfig utility See databases, initializing
wliPool principal 5-3
wlisystem principal 5-3
wlpi-master-ejb 3-12
wlpiUsers principal 5-3
workflow processor beans 1-11, 6-4
Worklist console 1-13

X
X.509 format 5-6
Deploying BEA WebLogic Integration Solutions I-7

I-8 Deploying BEA WebLogic Integration Solutions

	About This Document
	Overview Documents for WebLogic Integration
	What You Need to Know
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Deployment Goals
	Key Deployment Tasks
	Roles in Integration Solution Deployment
	Deployment Specialists
	WebLogic Server Administrators
	Database Administrators

	Deployment Architecture
	Key Deployment Resources
	WebLogic Server Resources
	Business Process Management Resources
	B2B Integration Resources
	Application Integration Resources
	Relational Database Management System Resources
	Hardware, Operating System, and Network Resources

	2 Understanding WebLogic Integration Clusters
	Understanding WebLogic Integration Clusters
	Designing a Clustered Deployment
	Introducing WebLogic Integration Domains
	Deploying WebLogic Integration Resources

	Load Balancing in a WebLogic Integration Cluster
	Load Balancing WebLogic Server Functions in a Cluster
	Load Balancing BPM Functions in a Cluster
	Load Balancing Application Integration Functions in a Cluster
	Load Balancing B2B Integration Functions in a Cluster

	High Availability in a WebLogic Integration Cluster
	Highly Available JMS

	Understanding JMS Resources
	Deploying Adapters

	3 Configuring a Clustered Deployment
	Step 1. Comply with Configuration Prerequisites
	Setting the wlai.clusterFrontEndHostAndPort Property (Optional)

	Step 2. Create a WebLogic Integration Domain
	Step 3. Configure the Database for Your Domain
	Step 4. Configure BPM Resources for One Managed Server
	Edit the Configuration File
	Use the WebLogic Server Administration Console

	Step 5. Configure Event Router WAR File for Adapters
	Using the Administration Console
	Using the config.xml File

	Step 6. Configure an RDBMS Realm
	Step 7. Configure a Router
	Step 8. Edit the startWeblogic Command File
	Step 9. Set Up Managed Servers for Your Domain
	Add a Managed Server to an Existing Installation
	Add a Managed Server in a New Location

	Step 10. Configure WebLogic Integration for Automatic Restart
	Step 11. Configure WebLogic Integration for Migration from Failed to Healthy Node
	Step 12. Configure WebLogic Integration Security
	Step 13. Start the Servers in the Domain
	Before You Start the Servers
	Starting Servers in a Domain for Which the Node Manager Is Not Configured
	Starting Servers in a Domain for Which the Node Manager Is Configured
	Monitoring and Shutting Down Your Servers

	4 Understanding WebLogic Integration High Availability
	About WebLogic Integration High Availability
	Recommended Hardware and Software
	What to Expect from WebLogic Integration Recovery

	Configuring WebLogic Integration for Automatic Restart
	Node Manager
	Step 1. Configure Managed Servers for Remote Start
	Step 2. Configure SSL for Your Administration Server
	Step 3. Configure the Node Manager
	Step 4. Configure Self-Health Monitoring
	Step 5. Start the Node Manager

	Configuring WebLogic Integration for Migration from Failed to Healthy Node
	Step 1. Configure Your Cluster
	Step 2. Configure Migratable Targets for JMS Servers and JTA Recovery Service

	Failover and Recovery
	Backup and Failover for an Administration Server
	Manual Migration of WebLogic Integration from Failed to Healthy Node
	Recovering a Database
	Recovering JMS Stores

	5 Using WebLogic Integration Security
	Overview of WebLogic Integration Security
	Security and WebLogic Integration Domains
	WebLogic Server Security Principals and Resources Used in WebLogic Integration

	Considerations for Configuring Security
	About Digital Certificates
	Using the Secure Sockets Layer (SSL) Protocol
	Using an Outbound Proxy Server or Proxy Plug-In
	Using a Firewall

	Setting Up a Secure Deployment
	Step 1: Create the Domain
	Step 2: Configure WebLogic Server Security
	Step 3: Configure BPM Security
	Step 4: Configure B2B Integration Security
	Step 5: Configure Application Integration Security

	6 Tuning Performance
	Tuning WebLogic Integration Performance
	Primary Tuning Resources
	Tuning WebLogic Server Performance
	Monitoring and Tuning the Java Virtual Machine (JVM)

	Monitoring and Tuning Run-Time Performance
	Monitoring and Tuning WebLogic Server Performance
	Monitoring and Tuning BPM Performance
	Monitoring and Tuning B2B Integration Performance
	Monitoring and Tuning Application Integration Performance
	Profiling Applications

	Tuning Hardware, Operating System, and Network Resources
	Performance Bottlenecks
	Tuning Hardware
	Tuning the Operating System
	Tuning Network Performance

	Tuning Databases
	General Database Tuning Suggestions
	Tuning Oracle Databases
	Tuning Microsoft SQL Server Databases
	Tuning Sybase Databases

	A Deploying WebLogic Integration Client Applications
	JAR Files
	Requirements and Recommendations

	B Deploying Resource Adapters
	Using the weblogic.Deployer Command-Line Utility
	Using the WebLogic Server Administration Console

	Index

