
BEA
 WebLogic
Integration�

Using Application
Integration
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using Application Integration

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know .. viii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... ix
Contact Us! .. ix
Documentation Conventions ...x

1. Introduction to Application Integration
Before You Begin.. 1-2

Software Prerequisites.. 1-2
Familiarizing Yourself with Basic Concepts ... 1-3

Creating an Interface to an Adapter... 1-3
When to Define an Application View .. 1-3
When to Write Custom Code ... 1-4

Defining an Application View... 1-4
What Is Defined by an Application View Definition................................. 1-5
How to Define an Application View.. 1-5

Step 1: Name and Configure Connection Parameters for an Application
View... 1-6

Step 2: Add Services and Events to the Application View................. 1-6
Step 3: Test Services and Events .. 1-6

Using an Application View in a Workflow... 1-7
Using an Application View in the WebLogic Integration Studio 1-7
Using an Application View by Writing Custom Code............................... 1-8
Choosing a Method for Implementing a Business Process 1-8

When to Use the WebLogic Integration Studio 1-8
Using Application Integration iii

When to Write Custom Java Code .. 1-9
Using an Application View with Web Services .. 1-9

2. Defining an Application View
Before You Begin .. 2-2
High-Level Procedure for Defining an Application View 2-2
Sample Detailed Procedure for Defining an Application View 2-5

Step 1: Log On to the Application View Console...................................... 2-5
Steps 2 and 3: Define an Application View and Configure Connection

Parameters ... 2-7
Step 4A: Add a Service to an Application View...................................... 2-11
Step 4B: Add an Event to an Application View....................................... 2-13
Step 5: Deploy an Application View.. 2-15
Optional Step: Undeploy an Application View.. 2-20
Step 6A: Test an Application View�s Services .. 2-21
Step 6B: Test an Application View�s Events ... 2-24

If You Select Service... 2-25
If You Select Manual .. 2-28

Editing an Application View ... 2-30

3. Using Application Views in the Studio
Before You Begin .. 3-2

Workflow Setup Tasks ... 3-2
Task 1: Set Up a Task Node to Call an Application View Service 3-3

Steps for Setting up a Task Node to Call an Application View Service 3-3
Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous

Application View Service... 3-10
Configuring Receipt of a Response.. 3-10
Handling Errors in an Asynchronous Application View Service Response ...

3-12
Procedure for Configuring Receipt of an Asynchronous Service Response

(Preferred Method) .. 3-12
Procedure for Configuring Receipt of an Asynchronous Service Response

(Legacy Method) ... 3-15
Functions Provided by the Application Integration Plug-In..................... 3-17

AIHasError() ... 3-17
iv Using Application Integration

AIGetErrorMsg() .. 3-18
AIGetResponseDocument() .. 3-19

Task 3: Create a Workflow Started by an Application View Event................ 3-19
Steps for Creating a Workflow Started by an Application View Event... 3-20

Task 4: Set Up an Event Node to Wait for an Application View Event 3-23
Steps for Setting Up a Node to Wait for an Application View Event...... 3-24

Handling Application View Local Transactions in Workflows 3-27
Local Transaction Management Contracts... 3-28
Connector Support for Local Transactions with No User Defined Transaction

Demarcation .. 3-28
Connector Support for XA Transactions.. 3-28

4. Using Application Views by Writing Custom Code
Scenario 1: Creating Connections with Specific Credentials............................ 4-1

Implementing ConnectionSpec .. 4-2
Calling setConnectionSpec() and getConnectionSpec() 4-2

Using the ConnectionSpec Class .. 4-3
Scenario 2: Custom Coding a Business Process.. 4-5

About This Scenario... 4-5
Before You Begin... 4-6
Creating the SyncCustomerInformation Class ... 4-7
Code for Sample Java Class ... 4-9

5. Using the Application View Console
Logging On to the Application View Console .. 5-1
Creating a Folder ... 5-3
Removing an Application View .. 5-4
Removing a Folder .. 5-5

A. Migrating Application Integration Data
Overview of Migrating Data .. A-1
Migrating Data Within a Single EIS Instance .. A-2

How an Application View Is Exported ... A-2
Example Application View Export ... A-3
Importing an Application View... A-5

Migrating Data Within Multiple EIS Instances.. A-5
Using Application Integration v

Example Application View Import ... A-6
Recommended Practices... A-9

B. Importing and Exporting Application Views
Import/Export Utility .. B-1
Import/Export Methods and Command Line.. B-2

Invoking the Import/Export Utility from the Command Line................... B-2
Editing on Import .. B-4
Using the Import/Export API .. B-6

Connecting to the Server Instance.. B-6
Printing Objects in a Namespace ... B-7
Exporting Objects... B-7
Importing Objects... B-7
Importing and Editing Objects ... B-8
Specify File for Import/Export ... B-8
Choosing Where to Print Messages ... B-8
Choosing Whether to Print Messages .. B-8

C. Modular Deployment of Application Integration
Overview .. B-1

Classpath Changes and Server Restart .. B-2
Repository.. B-2
JMS Resources .. B-2
Configuration... B-3
Import/Export Utility... B-4

Deployment Components ... B-4
Deployment Configuration for Domains Outside the WebLogic Integration

Environment .. B-6
JMS Resources ... B-7

JMS Resource Configuration .. B-8

Index
vi Using Application Integration

About This Document

Using Application Integration is organized as follows:

! �Introduction to Application Integration� provides an overview of the BEA
WebLogic Integration Framework and explains how it fits into the WebLogic
Server environment and contributes to the BEA EAI solution.

! �Defining an Application View� explains how to log in to the Application View
Console, and create and configure Application Views to represent your
enterprise�s business processes.

! �Using Application Views in the Studio� explains how to use Application Views
in the WebLogic Server environment by setting up workflows using the
WebLogic Integration Studio.

! �Using Application Views by Writing Custom Code� explains how to use
Application Views in the WebLogic Server environment by writing custom Java
code.

! �Using the Application View Console� explains how to use namespaces to
organize your Application Views by location or department instead of by
adapter.

! Appendix A, �Migrating Application Integration Data� explains how to migrate
application integration data between WebLogic Server domains.

! Appendix B, �Importing and Exporting Application Views,� explains how to use
the Import/Export utility to export Application View metadata objects from the
repository and how to import those objects back into the repository.

! Appendix C, �Modular Deployment of Application Integration,� describes how
to deploy an application integration enterprise application outside a WebLogic
Integration domain.
Using Application Integration vii

What You Need to Know

This document is intended for the following users:

! Business Analysts�Business analysts work with technical analysts to ensure
accuracy of the business interface functionality, to create Application Views, and
to use Application Views within an enterprise.

! Technical Analysts�Technical analysts are responsible for configuring an adapter,
for setting up WebLogic Integration services to execute information transfers
with a legacy system, for configuring solutions using adapters, and for
evaluating, mapping, deploying, and maintaining the WebLogic Server
environment. This guide is based on the assumption that the technical analyst
has thorough knowledge of the entire system.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �edocs�
Product Documentation page at http://edocs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Integration
documentation home page on the edocs Web site. You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To
access the PDFs, open the BEA WebLogic Integration documentation home page,
click the PDF Files button and select the document you want to print.
viii Using Application Integration

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following resources are also available:

! BEA WebLogic Server documentation (http://edocs.bea.com)

! BEA WebLogic Integration documentation (http://edocs.bea.com)

! XML Schema Specification (http://www.w3c.org/TR/xmlschema-formal/)

! Sun Microsystems, Inc. Java site (http://www.javasoft.com/)

! Sun Microsystems, Inc. J2EE Connector Architecture Specification
(http://java.sun.com/j2ee/connector/)

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Application Integration documentation.

In your e-mail message, please indicate which release of the BEA WebLogic
Application Integration documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Application Integration, contact
BEA Customer Support through BEA WebSupport at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
Using Application Integration ix

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
chmod u+w *

c:\startServer

.doc

wls.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()
x Using Application Integration

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
Example:
import com.sap.rfc.exception.*;

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using Application Integration xi

xii Using Application Integration

CHAPTER
1 Introduction to
Application Integration

This document provides instructions for using adapters built with the BEA WebLogic
Integration Adapter Development Kit (ADK). It explains how to define Application
View services and events and use them in your business processes in a WebLogic
Integration environment.

This section provides the following topics:

! Before You Begin

! Creating an Interface to an Adapter

! Defining an Application View

! Using an Application View in a Workflow

! Using an Application View with Web Services

Note: Because all adapters and applications are different, the instructions provided
in this document are generic: they are not written for a specific adapter or
application. For details about the DBMS adapter provided with the ADK, see
�The DBMS Adapter� in Developing Adapters.
Using Application Integration 1-1

1 Introduction to Application Integration
Before You Begin

Before you can begin using adapters to integrate your enterprise, you must set up your
environment and learn about how WebLogic Integration uses adapters and Application
Views to help achieve integration.

This section provides the following information:

! Software Prerequisites

! Familiarizing Yourself with Basic Concepts

Software Prerequisites

Note: For a detailed list of prerequisites, see the BEA WebLogic Platform Release
Notes.

Make sure the following prerequisites are satisfied:

! You have installed WebLogic Platform.

! You have installed JDK 1.3.1. The JDK 1.3 development kit is automatically
installed when you install WebLogic Platform. If you prefer, however, you may
install your own version, as long as it is 1.3.1-compliant.

! You have included BEA WebLogic Integration as part of your WebLogic
Platform installation.

! You have deployed each adapter for which you will define Application Views.

In this release, the application integration functionality of WebLogic Integration is
packaged in a single, self-contained J2EE EAR file. This packaging enables you to
deploy application integration capabilities on any valid WebLogic Server domain. For
example, Web services developers and WebLogic Portal developers can use
Application Views to interact with EIS applications. For more information, see
Appendix C, �Modular Deployment of Application Integration.�
1-2 Using Application Integration

Creating an Interface to an Adapter
Familiarizing Yourself with Basic Concepts

If you are not familiar with the basic concepts of application integration, we
recommend that you take the time to read the overview of application integration
provided in Introducing Application Integration. Then you will be ready to learn how
to address practical issues, such as when to use one application integration method
rather than another, and how to implement the method you select.

Creating an Interface to an Adapter

For each adapter to be used in your enterprise, you must provide an interface to the
services and events that it provides. You can create such an interface in either of two
ways: by defining Application Views or by writing custom code.

Application views provide the most convenient method of accessing an adapter�s
resources. In most situations you will probably choose this method for exposing the
application functions provided by each adapter. However, if you require more control
over an adapter�s functions than that afforded by Application Views, you may also
write custom code.

You are responsible for deciding whether your enterprise can derive greater benefit
from Application Views or custom code. The following sections provide basic
guidelines for choosing between these two methods. For details, see Chapter 2,
�Defining an Application View.�

When to Define an Application View

Most enterprise information system (EIS) applications can be integrated easily by
defining Application Views. In general, you should define Application Views if one or
more of the following criteria are true:

! You have more than one EIS in your enterprise, and you lack developers with
detailed, thorough knowledge of all systems.
Using Application Integration 1-3

1 Introduction to Application Integration
! You want to construct business processes using the WebLogic Integration Studio.

! You need to update the parameters of an adapter or one of its processes.

When to Write Custom Code

You should write custom code as an interface to an adapter only if one or more of the
following criteria are true:

! You have only one EIS in your enterprise and your developer has thorough,
detailed knowledge of the EIS involved in the business processes being coded.

! You do not need to use the business process management (BPM) functions
provided by WebLogic Integration.

! Your code will never require changes.

Defining an Application View

An Application View for an adapter is an XML-based interface between WebLogic
Server and a particular EIS application. You must define an Application View for each
adapter used by your enterprise.

This section describes:

! What Is Defined by an Application View Definition

! How to Define an Application View
1-4 Using Application Integration

Defining an Application View
What Is Defined by an Application View Definition

When you define an Application View, you must configure communication
parameters for it, and then add services and/or events to it. The Application View�s
services and events expose specific functions of the application. The communication
parameters of the Application View govern how the Application View connects to the
target EIS.

An Application View definition specifies:

! A unique name for the Application View

! Security privileges for users of the Application View

! Parameters for the:

" Application

" Network connections between the application and the Application View

" Management of the pool of connections available to the Application View

" Load balancing to be performed by the Application View

How to Define an Application View

This section provides a high-level overview of the procedure you must complete to
define Application Views for adapters. For detailed instructions, see Chapter 2,
�Defining an Application View.�

Defining an Application View involves the following steps:

! Step 1: Name and Configure Connection Parameters for an Application View

! Step 2: Add Services and Events to the Application View

! Step 3: Test Services and Events
Using Application Integration 1-5

1 Introduction to Application Integration
Step 1: Name and Configure Connection Parameters for an Application View

The first step in defining an Application View for an adapter is to log on to the
Application View Console, optionally create or select one or more folders in which the
Application View will reside, and configure EIS connection parameters for it.

For details about creating and configuring an Application View, see the following
topics:

! �Step 1: Log On to the Application View Console� on page 2-5

! �Steps 2 and 3: Define an Application View and Configure Connection
Parameters� on page 2-7

Step 2: Add Services and Events to the Application View

Services and events support a subset of an application�s business processes by enabling
WebLogic Server clients to interact with the application functions you specify. The
services and events offered by an Application View allow specific types of
transactions between WebLogic Server and the EIS application.

For details about adding services and events to an Application View, see the following
topics:

! �Step 4A: Add a Service to an Application View� on page 2-11

! �Step 6B: Test an Application View�s Events� on page 2-24

Step 3: Test Services and Events

Verify that your services or events interact properly with the EIS application.

For details about testing services and events, see the following topics:

! �Step 6A: Test an Application View�s Services� on page 2-21

! �Step 6B: Test an Application View�s Events� on page 2-24
1-6 Using Application Integration

Using an Application View in a Workflow
Using an Application View in a Workflow

Once you define an Application View in your WebLogic Integration environment, you
can deploy it on WebLogic Server and use it to implement your enterprise�s business
processes in a business process workflow.

You can use Application Views in business processes in either of the following ways:

! By designing business process workflows in the WebLogic Integration Studio

! By writing custom code

When an Application View is used in your business process workflow, the end result
is a deployed electronic representation of your enterprise�s business process. The
workflow specifies the transactions to be performed by your applications to
accomplish the business processes. The Application Views perform the transactions
themselves.

Using an Application View in the WebLogic Integration
Studio

The most common way to use an Application View in your enterprise�s business
processes is by designing a workflow in the WebLogic Integration Studio. The Studio
is a graphical user interface (GUI) for designing business process workflows. These
workflows can include Application View services and events.

You can use an Application View to support services and events in any of the
following four ways:

! Task 1: Set Up a Task Node to Call an Application View Service

! Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

! Task 3: Create a Workflow Started by an Application View Event

! Task 4: Set Up an Event Node to Wait for an Application View Event
Using Application Integration 1-7

1 Introduction to Application Integration
For detailed information about each task, see Chapter 3, �Using Application Views in
the Studio.�

Using an Application View by Writing Custom Code

If you do not implement your business process by using an Application View through
the Studio, you must write custom Java code, instead. For instructions, see Chapter 4,
�Using Application Views by Writing Custom Code.�

Choosing a Method for Implementing a Business Process

WebLogic Integration allows you to implement your business processes by using
either of two methods: by creating a workflow in the Studio or by writing custom code.
Any business process can be implemented as a Studio workflow.

Custom coding, however, should be attempted only if the target business process is
extremely simple and specialized. In this document, custom coding is described only
as an alternate method to be used in situations that require it. For a list of such
situations, see �When to Write Custom Java Code� on page 1-9.

When to Use the WebLogic Integration Studio

Use the WebLogic Integration Studio to implement a business process if one or more
of the following criteria are true:

! Your business processes require complicated error management, persistent
processes, and sophisticated conditional branching.

For example, if your business process must receive numerous events, select a
subset of them, perform complex branched actions, generate many complex
messages, and send the messages to various WebLogic Server clients, then you
should use the Studio.

! Your business process requires periodic changes.

The Studio reduces the number of required compile/test/debug cycles.

! Your developers (like those in most organizations) are valuable and scarce.
1-8 Using Application Integration

Using an Application View with Web Services
When to Write Custom Java Code

Write custom code to implement a business process only if one or more of the
following criteria are true:

! Your business process is simple; that is, it includes no complicated error
recovery, long-lived processes, conditional branching, or joining of the process
flow.

For example, if your business process performs a limited set of actions on an
incoming message, and then routes the message to a small number of client
applications, you can safely write custom code for it.

! You do not anticipate the need for frequent updates to the business process.

Whenever you update custom code, a full compile/test/debug cycle, which can
be costly, is required.

! Your organization can afford to allocate developers for the job of implementing
business processes in code.

Using an Application View with Web
Services

A developer of Web Services can use an AppView Control to provide users of BEA
WebLogic Workshop with a Web Service that interacts with an EIS application. The
interaction is implemented using a Java API. A Web services developer is not required
to be an expert on the EIS to use its capabilities. A developer can invoke Application
View services both synchronously and asynchronously, and can subscribe to
Application View events using simple Java objects. For more information about using
AppView Controls, see �Application View Control: Accessing an Enterprise
Application from a Web Service� in BEA WebLogic Workshop online documentation
at the following location:

http://edocs.bea.com/workshop/docs70/help/index.html#guide/
controls/appview/conAppViewCtrlAccessAnEnterpriseAppFromAJWS.html
Using Application Integration 1-9

1 Introduction to Application Integration
1-10 Using Application Integration

CHAPTER
2 Defining an
Application View

This section presents the following topics:

! Before You Begin

! High-Level Procedure for Defining an Application View

! Sample Detailed Procedure for Defining an Application View

! Editing an Application View
Using Application Integration 2-1

2 Defining an Application View
Before You Begin

When you define an Application View, you are creating an XML-based interface
between WebLogic Server and a particular EIS application within your enterprise.
Once you create the Application View, a business analyst can use it to create business
processes that use the application. For any adapter, you can create any number of
Application Views, each of which may contain any number of services and events.

Before you attempt to define an Application View, make sure the following
prerequisites are satisfied:

! The appropriate adapter has been developed using the ADK. You can create and
configure Application Views only for existing adapters.

! Determine which business processes need to be supported by the Application
View you are configuring. The required business processes determine the types
of services and events you include in your Application Views. Therefore, you
must gather information about the application�s business requirements from the
business analyst. Once you determine the necessary business processes, you can
define and test the appropriate services and events.

High-Level Procedure for Defining an
Application View

Figure 2-1 summarizes the procedure for defining and configuring an Application
View.
2-2 Using Application Integration

High-Level Procedure for Defining an Application View
Figure 2-1 Procedure for Defining and Configuring an Application View

1. Log on to the WebLogic Integration Application View Console. For detailed
information, see �Step 1: Log On to the Application View Console� on page 2-5.
Using Application Integration 2-3

2 Defining an Application View
2. Click Add Application View to create a new Application View for the
appropriate adapter. An Application View enables a set of business processes for
the specified adapter�s target EIS application. For detailed information, see
�Steps 2 and 3: Define an Application View and Configure Connection
Parameters� on page 2-7.

3. On the Configure Connection Parameters page, enter application connection
parameters. Alternatively, you can select a previously deployed connection using
the Select Existing Connection page. For detailed information, see �Steps 2 and
3: Define an Application View and Configure Connection Parameters� on page
2-7.

The information is validated, and the Application View is configured to connect
to the specified system.

4. Click Add Event or Add Service to define the appropriate events and services for
this Application View.

5. Deploy the Application View on WebLogic Server so other entities can interact
with it according to your security settings.

Note: You cannot test an Application View unless it is deployed.

6. Test all services and events to make sure they can properly interact with the target
EIS application.

Once your services and events are tested and functioning, you can use the
Application View in workflows. For more information, see Chapter 3, �Using
Application Views in the Studio.�

7. Undeploy the Application View if you need to reconfigure its connection
parameters or add services and events to it.

Note: When an Application View is undeployed, no other entities can interact
with it.
2-4 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Sample Detailed Procedure for Defining an
Application View

This section explains how to define and maintain Application Views using an EIS
adapter for a hypothetical database EIS called simply DBMS. The steps in the
procedure presented here correspond to the steps shown in Figure 2-1.

When you create Application Views for your enterprise, they may look different from
those shown in this document. Such differences are to be expected, because the
Application View�s adapter determines the information required for each Application
View page, and each enterprise has its own specialized adapters. For details about an
adapter used in your enterprise, consult the relevant technical analyst or EIS specialist.

Note: Before performing the following steps, ensure that WebLogic Server is
running on your system.

Step 1: Log On to the Application View Console

The Application View Console displays all the Application Views in your WebLogic
Integration environment, organized in folders.

To log on to the Application View Console:

1. Open a new browser window.

2. Enter the URL for your system�s Application View Console. The actual URL you
enter depends on your system. It should conform to the following format:

http://host:port/wlai

The Application View Console Logon page is displayed.
Using Application Integration 2-5

2 Defining an Application View
3. Enter your WebLogic Server username and password, then click Login. The
Application View Console is displayed.

Note: If you do not see a page such as this, consult the WebLogic Server
administrator.

4. To add a folder, click the New Folder icon:

For more information, see �Creating a Folder� on page 5-3.
2-6 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Steps 2 and 3: Define an Application View and Configure
Connection Parameters

1. Add a new Application View to the current folder by clicking Add Application
View.

Note: Make sure you are working in the appropriate folder before performing this
step. Once you define an Application View, you cannot move it to another
folder.

The Define New Application View page is displayed.

2. In the Application View Name field, enter a name. The name should describe the
functions performed by this application. Each Application View name must be
unique to its adapter. Any valid Java Identifier is allowed in a name.
Using Application Integration 2-7

2 Defining an Application View
Note: The name Root is a reserved word, and cannot be used for an Application
View name. If you use Root as a name, you cannot import or export the
Application View using the import/export utility.

3. In the Description field, enter any notes that may be helpful to people using this
Application View in workflows created in the WebLogic Integration Studio.

4. From the Associated Adapter list, select an adapter to be used to create this
Application View.

5. Click OK. The Select Existing Connection page is displayed.

The Select Existing Connection page allows you to choose the type of
connection factory to associate with the Application View.

" Select the New Connection option to create a new connection factory. Once
the new connection factory is created, other Application Views cannot create
a new connection with the same name.

" Select the option for an existing connection factory to share a connection
factory with other Application Views. To display the names of Application
Views that are deployed with the existing connection factory, click the
References link beside the name of an existing connection factory.
2-8 Using Application Integration

Sample Detailed Procedure for Defining an Application View
From the Connection Factory selection page, you can display the Select
Connection or Connection Configuration pages at any time. You can switch
between a new connection factory and an existing one at any time before the
Application View is deployed.

Using an existing connection factory can simplify server administration,
especially in cases where multiple adapters interact with a single EIS. Also,
using a shared connection factory allows an administrator to set the connection
factory configuration parameters and direct users to select an existing
connection. In this case, the users do not have to know how to configure
connection parameters.

6. Click Continue. If you choose to create a new connection factory, the Configure
Connection Parameters page is displayed.
Using Application Integration 2-9

2 Defining an Application View
If you choose to use an existing connection factory, the Application View
Administration page is displayed. (For information about the Application View
Administration page, see step 9.) On the Configure Connection Parameters page,
define the network-related information necessary to enable the Application View
to interact with the target EIS. You need to enter this information only once per
Application View.

7. Enter your WebLogic Server username and password.

Note: The fields displayed on the page you see may differ from those shown here.
Which fields are displayed is determined by the adapter.

8. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

9. Click Continue. The Application View Administration page is displayed.
2-10 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Step 4A: Add a Service to an Application View

1. On the Application View Administration page, click Add in the Services row. The
Add Service page is displayed.
Using Application Integration 2-11

2 Defining an Application View
Note: The fields displayed on the page you see may differ from those shown here.
Which fields are displayed is determined by the adapter.

2. In the Unique Service Name field, enter a name. The name should describe the
function performed by this service. Each service name must be unique to its
Application View. Any valid Java Identifier is allowed in a name.

3. In the Description field, enter any notes which may be helpful to people using
this Application View in workflows created in the WebLogic Integration Studio.

4. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

In many cases, this required information consists of an SQL statement for
retrieving information from or updating information in a database. The following
sample SQL statement retrieves customer information from a customer table
based on a user-specified country value:

select * from PBPUBLIC.CUSTOMER_TABLE
where COUNTRY=[country varchar]

The sample Application Views provided with WebLogic Integration include
services which use SQL statements. Display the Application View
Administration page and click the View Summary link for a service. The
Summary page includes an SQL statement.

5. When finished, click Add.
2-12 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Step 4B: Add an Event to an Application View

1. In the Application View Console, select Administration. The Application View
Administration page is displayed.

2. Click Add in the Events row. The Add Event page is displayed.
Using Application Integration 2-13

2 Defining an Application View
Note: The fields displayed on the page you see may differ from those shown here.
Which fields are displayed is determined by the adapter.

3. In the Unique Event Name field, enter a name. Each event name must be unique
to its Application View. Any valid Java Identifier is allowed in a name.

4. In the Description field, enter any notes that may be helpful to people using this
Application View in workflows created in the WebLogic Integration Studio.

5. For the required information for any remaining fields, consult the relevant
technical analyst or EIS specialist.

6. When finished, click Add. The Application View Administration page is
displayed.

7. If you are finished adding services and events, click Continue to deploy the
Application View.
2-14 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Step 5: Deploy an Application View

You may deploy an Application View when you have added at least one event or
service to it. You must deploy an Application View before you can test its services and
events or use the Application View in the WebLogic Server environment. By
deploying an Application View, you place relevant metadata about its services and
events into a run-time metadata repository. Deployment also makes the Application
View available to other WebLogic Server clients. As a result, business processes can
interact with the Application View, and you can test the Application View�s services
and events.

To deploy an Application View:

1. Open the Application View as described in �Step 1: Log On to the Application
View Console� on page 2-5. The Summary for Application View page is displayed.

2. Click Edit. The Application View Administration page is displayed.
Using Application Integration 2-15

2 Defining an Application View
3. Click Continue. The Deploy Application View page is displayed.
2-16 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Note: Which fields you see on the Deploy Application View page depends on the
adapter being used. For a description of all fields, consult the relevant
technical analyst or EIS specialist. If the Application View uses a shared
connection factory, the connection factory properties are displayed.

4. To enable the WebLogic Integration Studio or other authorized clients to
asynchronously call any services available from this Application View, select
Enable Asynchronous Service Invocation.

An entity that calls an Application View service asynchronously continues its
process without waiting for a response from the service.

5. If your Application View supports events, enter the URL of the adapter�s event
router. For example:
http://localhost:7001/YourEIS_EventRouter/EventRouter

Note: This field is not displayed if no events are defined for this Application
View.
Using Application Integration 2-17

2 Defining an Application View
6. In the Minimum Pool Size field, enter the minimum number of connection pools
to be used by this Application View. For example: 1.

7. In the Maximum Pool Size field, enter the maximum number of connection pools
to be used by this Application View. For example: 10.

8. In the Target Fraction of Maximum Pool Size field, enter the ideal pool size,
measured from 0 to 1.0. For example, if you specify 0.7, then the Maximum
Pool Size is defined as 10 and the Target Fraction, as 0.7. As a result, the adapter
performs load balancing with the goal of maintaining the connection pool size at
70% of the maximum, which, in this case, means with 7 connections.

9. To have unused connections deleted automatically, select Allow Pool to Shrink.

10. In the Log Configuration area, select one of the following options according to
your logging preferences:

" Log errors and audit messages

" Log warnings, errors, and audit messages

" Log informational messages, warnings, errors, and audit messages

" Log all messages

11. If necessary, click Restrict Access to your_application using J2EE Security. The
Application View Security page is displayed.
2-18 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Use this page to grant or revoke read and write access to this Application View
for a WebLogic Server user or group.

12. When you finish setting up permissions, click Apply to save your changes.

13. Decide whether you want to deploy the Application View now or later. To deploy
the Application View later, proceed to step 14. To deploy the Application View
now, proceed to step 15.

14. To deploy the Application View later, click Done to return to the Deploy
Application View page.

To save the Application View without deploying it, click Save.

Note: To save the Application View to be completed later without deploying it
now, click Save at any time.

15. To deploy the Application View now, select Deploy Persistently to have this
Application View automatically redeployed whenever WebLogic Server is
restarted, then click Deploy Application View. The Summary for Application
View page is displayed.

If the Application View uses a shared connection factory, the connection factory
properties are displayed on the Deploy and Connection tabs. Click the
Using Application Integration 2-19

2 Defining an Application View
References link beside the name of an existing connection factory to display the
names of Application Views that are deployed using that connection factory.

Optional Step: Undeploy an Application View

You must undeploy an Application View whenever you want to edit its connection
parameters, add services and events to it, or disable clients from using it. For
information about editing connection parameters, see �Steps 2 and 3: Define an
Application View and Configure Connection Parameters� on page 2-7. When an
Application View is undeployed, no other WebLogic Server clients can interact with
it, and you cannot test its services or events.

To undeploy an Application View:

1. In the Application View Console, click Summary. The Summary for Application
View page is displayed.

2. To undeploy the Application View from WebLogic Server, click Undeploy. The
Undeploy Application View window is displayed.
2-20 Using Application Integration

Sample Detailed Procedure for Defining an Application View
3. Click Confirm. The Summary for Application View page is displayed, giving you
an opportunity to deploy the Application View again.

Step 6A: Test an Application View’s Services

The purpose of testing an Application View service is to evaluate whether or not that
service interacts properly with the target EIS. You can test an Application View only
if it is deployed and it contains at least one event or service. To test an Application
View service:

1. In the navigation area (on the left side of the window), select Summary. The
Summary for Application View page is displayed.
Using Application Integration 2-21

2 Defining an Application View
2. In the Services area of the Events and Services tab, find the appropriate service
and click Test. The Test Service page is displayed.

3. If necessary, enter the required data in the appropriate fields.

Note: The fields displayed on your Test Service page may differ from those show
here. Which fields are displayed is determined by the Application View
2-22 Using Application Integration

Sample Detailed Procedure for Defining an Application View
service. For a description of all fields, consult the relevant technical analyst
or EIS specialist.

4. Click Test. If the Application View service correctly processes the input data that
you provided in step 3, the test is successful. The Test Result page, on which all
input and output documents are listed, is displayed.

5. Repeat the test procedure (steps 1-4) for each service you want to test.

6. After you finish testing the Application View�s services, you may keep the
Application View deployed or, if you want to edit it, you may undeploy it.
Using Application Integration 2-23

2 Defining an Application View
Step 6B: Test an Application View’s Events

The purpose of testing your Application View events is to evaluate whether or not the
Application View responds correctly to the EIS application. You can test an
Application View only if it is deployed and it contains at least one event or service. To
test an Application View event:

1. In the navigation area (on the left side of the window), click Summary. The
Summary for Application View page is displayed.

2. In the Events area on the Events and Services tab, find your event and click Test.
The Test Event page is displayed.
2-24 Using Application Integration

Sample Detailed Procedure for Defining an Application View
Note: The fields displayed on your Test Event page may differ from those shown
here. Which fields are displayed is determined by the Application View
event. For a description of all fields, consult the relevant technical analyst
or EIS specialist.

3. Select a method for generating the test event:

" Service: Select Service when you want to use one of the Application View�s
own services to generate a canned event. Then complete the procedure in �If
You Select Service� on page 2-25.

" Manual: Select Manual when you want to generate the event by logging on
to an EIS application and performing the appropriate event-generating
function. Then complete the procedure in �If You Select Manual� on page
2-28.

If the Application View event responds correctly before the specified amount of
time elapses, the test is successful.

If You Select Service

1. From the Service menu, select a service that triggers the event you are testing. For
example, if you are testing the NewCustomer event, select a service that invokes it,
such as Insert Customer.
Using Application Integration 2-25

2 Defining an Application View
2. In the Time field, enter a reasonable period of time to wait, specified in
milliseconds. (One minute = 60,000 milliseconds.) If the specified period elapses
before the event succeeds, the test times out and a failure message is displayed.

3. Click Test. The triggering service is executed.

If the service requires input data, an input page is displayed.

4. If service input data is required, enter it in the appropriate fields, and click Test.

The service is executed. If the test succeeds, the Test Result page is displayed,
showing the event document, the service input document, and the service output
document.
2-26 Using Application Integration

Sample Detailed Procedure for Defining an Application View
If the test fails, the Test Result page displays only a Timed Out message.

5. If the test fails, edit the event definition, or contact the system administrator or
application manager.
Using Application Integration 2-27

2 Defining an Application View
6. If the test succeeds, repeat the test procedure for each remaining event you want
to test.

7. When finished, save the Application View.

If You Select Manual

1. In the Time field, enter a reasonable time to wait, specified in milliseconds. (One
minute = 60,000 milliseconds.) If this period elapses before the event succeeds, the
test times out and a failure message is displayed.

2. If the application you will use to trigger the event is not already open, open it
now.

3. Click Test. The test waits for an event to trigger it.

4. Using the triggering application, perform an action that executes the service that,
in turn, tests the Application View event.

If the test succeeds, the Test Result page is displayed. This page, in turn,
displays the event document from the application, the service input document,
and the service output document.

If the test fails or takes too long, the Test Result page is displayed, showing a
Timed Out message.
2-28 Using Application Integration

Sample Detailed Procedure for Defining an Application View
5. If the test fails, edit the event definition, or contact the system administrator or
application manager.

6. If the test succeeds, repeat the test procedure for each remaining event you want
to test.

7. When you are finished, save the Application View.
Using Application Integration 2-29

2 Defining an Application View
Editing an Application View

When you define an Application View, you must configure its connection parameters.
After you add and test services and events, you may want to reconfigure the connection
parameters or remove services and events.

To edit an existing Application View:

1. Open the Application View. The Summary for Application View page is displayed.

2. Click Edit. The Application View Administration page is displayed.
2-30 Using Application Integration

Editing an Application View
3. To reconfigure the Application View�s connection parameters, select Configure
Connection in the left pane. The Configuration Connection Parameters page is
displayed. Follow the instructions beginning with step 6 in �Steps 2 and 3: Define
an Application View and Configure Connection Parameters� on page 2-7.

4. To add services or events, click Add Service or Add Event, respectively. Follow
the instructions in �Step 4A: Add a Service to an Application View� on page 2-11
or �Step 4B: Add an Event to an Application View� on page 2-13.
Using Application Integration 2-31

2 Defining an Application View
2-32 Using Application Integration

CHAPTER
3 Using Application
Views in the Studio

This section presents the following topics:

! Before You Begin

! Task 1: Set Up a Task Node to Call an Application View Service

! Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

! Task 3: Create a Workflow Started by an Application View Event

! Task 4: Set Up an Event Node to Wait for an Application View Event

! Handling Application View Local Transactions in Workflows
Using Application Integration 3-1

3 Using Application Views in the Studio
Before You Begin

After you create all the Application View services and events that are required for your
enterprise, you can use the resulting Application Views to execute your business
processes. The simplest way to do this is by using the WebLogic Integration Studio to
design business process workflows that use your Application View services and
events.

The WebLogic Integration Studio is a graphical user interface (GUI) for designing
business process workflows. These workflows can include Application View services
and events defined using WebLogic Integration. For details, see Using the WebLogic
Integration Studio.

Before you can invoke an Application View service or receive an Application View
event in the WebLogic Integration Studio, you must make sure the following
prerequisites have been met:

! You have created an Application View and defined services and events for it.

! The Application View and its adapter are functional and saved. If you plan to
call Application View services and events from a running workflow, the
Application View must be deployed, as well.

! BPM and application integration functionality is available.

! The application integration plug-in has been loaded.

! You have received information about the required business logic for the
workflows you are defining from the appropriate business analyst.

! A workflow template definition is open.

Workflow Setup Tasks

The following sections describe four tasks you may perform to set up your workflow
to use Application View services and events:

! Task 1: Set Up a Task Node to Call an Application View Service
3-2 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service
! Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous
Application View Service

! Task 3: Create a Workflow Started by an Application View Event

! Task 4: Set Up an Event Node to Wait for an Application View Event

You can perform any combination of these tasks to create your own workflows.

This document does not fully explain how to use the business process management
(BPM) functions provided by WebLogic Integration; for complete information, see
Learning to Use BPM with WebLogic Integration.

Task 1: Set Up a Task Node to Call an
Application View Service

In your organization, there may be situations in which you want to call an Application
View service from within a workflow. To make this type of call possible, add a task
node to the workflow, then add an appropriate Application View Service action to the
task node. Once the workflow is saved and activated, the Application View service is
called whenever the task node is executed.

Steps for Setting up a Task Node to Call an Application
View Service

To create a task node that calls an Application View service, complete the following
procedure:

1. In the WebLogic Integration Studio, open a template definition. The Workflow
Design window is displayed.
Using Application Integration 3-3

3 Using Application Views in the Studio
2. If there is no task node, create one.

3. Double-click the task node that calls the Application View service. The Task
Properties dialog box is displayed.

4. In the Actions area, select the tab from which you want the service to be called.
Your selection depends on your business processes.

5. Click Add. The Add Action dialog box is displayed.
3-4 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service
6. Choose AI Actions→Call Application View Service and click OK. The Call
Service dialog box is displayed.

7. In the navigation tree, find and select the service you want to call.

The navigation tree organizes Application View services by folder (for example,
Test2) and Application View (for example, Test). All Application View services
are at the lowest level of the navigation tree.
Using Application Integration 3-5

3 Using Application Views in the Studio
Note: To check for recently saved Application Views and events at any time,
select the Refresh Tree option.

If the navigation tree is missing or appears too narrow, it may include an
overly long XML or string variable name. Try shortening the names of
your XML or string variables.

8. From the Request Document Variable list, select an existing XML variable that
contains input data for the Application View service.

9. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new XML variable.

10. In the Name field, enter a name for the variable.

11. In the Type menu, select XML. (XML is the only option on this menu.)

For details about defining new variables, see Using the WebLogic Integration
Studio.

12. Click OK to return to the Call Service dialog box.

13. To create a service request template for the specified service, or to modify an
existing service request template, select one of the following:

" Set�to create a template

" Edit�to modify an existing template
3-6 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service
Whichever option you select, the Service Request Template dialog box is
displayed.

The Service Request Template dialog box displays the template to be used for all
service requests of the type specified in step 11. This template is based on the
input schema for the service.

When this action is executed, the template data is assigned to the specified
request document variable and used as the input document for the service. This
template overrides any previous setting for the variable. (If you set up a template
and then want to use the previous input variable instead of the new input
variable, the easiest way to do this is to delete the Call Application View Service
and recreate it.)

For details about using the Service Request Template dialog box, see Using the
WebLogic Integration Studio.

14. Click OK to return to the Call Service dialog box.

15. If you need to examine the XML schema of the input document, select View
Request Definition. The View Definition dialog box is displayed.
Using Application Integration 3-7

3 Using Application Views in the Studio
16. Click Close when finished.

17. Call the Application View synchronously or asynchronously by selecting
Synchronous or Asynchronous, respectively.

Note: When a node calls a service synchronously, the workflow waits until the
service returns a response document before continuing. If a node calls a
service asynchronously, the workflow continues processing.

18. For synchronous services that require storage of the response, select a predefined
XML variable from the Response Document Variable list. When the Studio
receives a response from the Application View service, the response is stored in
the response document variable. If you do not care about the response data, leave
this field empty.

19. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new XML variable. See step 9. in �Steps
for Setting up a Task Node to Call an Application View Service� for details.

For details about defining new variables, see Using the WebLogic Integration
Studio.

20. If you need to examine the XML schema of the response document, select View
Response Definition. The View Definition dialog box is displayed.
3-8 Using Application Integration

Task 1: Set Up a Task Node to Call an Application View Service
21. Click Close when finished.

22. For asynchronous services that require storage of the request ID, select a
predefined string variable from the Request ID Variable list.

23. If no suitable string variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new string variable.

24. In the Name field, enter a name for the variable.

25. In the Type menu, select String. (String is the only option on this menu.)

For details about defining new variables, see Using the WebLogic Integration
Studio.

Note: When you set up a task node to call an asynchronous Application View
service, the result is returned to the Studio. The workflow identifies this
response using the request ID variable you selected. To set up an event
Using Application Integration 3-9

3 Using Application Views in the Studio
node to receive the response, make sure to use the same request ID variable
for the event node. For more information about creating such an event
node, see �Task 2: Set Up an Event Node to Wait for a Response from an
Asynchronous Application View Service� on page 3-10.

26. Click OK to save the action.

27. In the Task Properties dialog box, click OK to save the node.

Task 2: Set Up an Event Node to Wait for a
Response from an Asynchronous
Application View Service

This section explains how to receive an asynchronous Application View service
response and handle any errors it may contain.

In a workflow, whenever an action calls an Application View service asynchronously,
the Application View service returns a response. If you need the response, you must
set up a corresponding asynchronous event node to wait for it. This section describes
a highly simplified scenario in which an event node receives an Application View
service response without checking for errors.

To set up an asynchronous event node to wait for a response from an asynchronous
Application View service, create an event node and configure it to wait for an event of
type AI Async Response.

Configuring Receipt of a Response

To set up an event node to receive an asynchronous service response, you can use
either of the following methods:

! Select the Response Document tab (preferred method). Then select a request ID
variable (a string) and a response document variable (of type XML). For details
3-10 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
about using this method, see �Procedure for Configuring Receipt of an
Asynchronous Service Response (Preferred Method)� on page 3-12.

! Select the Asynchronous Variable tab (legacy method). Then select a request ID
variable, an asynchronous service response variable (a string), and an
asynchronous service response variable (of type AsyncServiceResponse). For
details about using this method, see �Procedure for Configuring Receipt of an
Asynchronous Service Response (Legacy Method)� on page 3-15.

Note: Use of the Response Document tab is preferred because it provides a
universal means of receiving both asynchronous and synchronous
responses. When you use this method, an XML document is received
regardless of whether the response is asynchronous or synchronous, and
you do not need to query the value of the asynchronous service response
variable.

We recommend using a response document variable to receive asynchronous service
responses whenever possible. To configure a service to wait for an event of type
AI Async Response, use the Event Properties dialog box. This dialog box may or may
not offer you the choice of using an asynchronous variable to receive the response.
Whether this choice is available depends on the following conditions:

! If you edit an existing AI Async Response event node that was previously set up
to use an Asynchronous Service Response variable to receive the response, then
two tabs are displayed in the Event Properties dialog box: an Asynchronous
Variable tab (legacy method) and a Response Document tab (preferred method).
Thus you have a choice of two methods you can use to configure receipt of the
service response.

! If you edit an existing AI Async Response event node that does not use an
Asynchronous Service Response variable, or if you are creating a new
AI Async Response event node, then the Event Properties dialog box displays a
dialog box without tabs. In this case you must set up a response document to
receive the service response (preferred method).
Using Application Integration 3-11

3 Using Application Views in the Studio
Handling Errors in an Asynchronous Application View
Service Response

Although this task does not include the configuration of error handling for the
Application View service response, you may want to handle errors in your own
workflows. To handle asynchronous service response errors in workflows that use an
AsyncServiceResponse variable, you can use the features provided by the application
integration plug-in.

The application integration plug-in includes the variable type AsyncServiceResponse
and three functions:

! AIHasError()

! AIGetErrorMsg()

! AIGetResponseDocument()

For a complete description of these functions, see �Functions Provided by the
Application Integration Plug-In� on page 3-17.

Procedure for Configuring Receipt of an Asynchronous
Service Response (Preferred Method)

To set up an asynchronous event node to wait for a response from an asynchronous
Application View service, create an event node and configure it to wait for an event of
type AI Async Response.

To set up an event node to use an XML variable to receive an asynchronous service
response, complete the following procedure:

1. In the WebLogic Integration Studio, open a workflow template definition. The
workflow design window is displayed.
3-12 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
2. If no event node exists, create one now. This event node will wait for an
asynchronous response from a designated Application View service.

3. Double-click the event node. The Event Properties dialog box is displayed.

4. (Optional) In the Description field, enter a name.
Using Application Integration 3-13

3 Using Application Views in the Studio
5. In the Type list, select AI Async Response.

6. Select the Response Document (preferred) tab.

Note: If your workflow does not use an AsyncServiceResponse variable, or if
you are creating a new AI Async Response event node, then the Event
Properties dialog box displays a dialog box without tabs, instead. Use this
dialog box to set up a response document to receive the service response.
(This method is the recommended.)

7. In the Request ID Variable list, select a string variable that is already defined. The
WebLogic Integration process engine listens for an asynchronous response with
an ID matching the ID stored in this variable.

8. If no suitable string variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new string variable. See step 23. in �Steps
for Setting up a Task Node to Call an Application View Service� for details.

For details about defining new variables, see Using the WebLogic Integration
Studio.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was called asynchronously earlier in
the workflow. The Call Application View Service action sets the request
ID variable. The action and this event node can work together only if both
use the same request ID variable. For more information about setting up
the Call Application View Service action, see �Task 1: Set Up a Task Node
to Call an Application View Service� on page 3-3.

9. For asynchronous services that require storage of the response, select a
predefined XML variable in the Response Document Variable list. Subsequently,
whenever WebLogic Integration receives a response from the Application View
service, the response is stored in the response document variable. If, on the other
hand, you need the response data, skip this step.

10. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. See step 9. in �Steps for
Setting up a Task Node to Call an Application View Service� for details.

For details about defining new variables, see Using the WebLogic Integration
Studio.

11. Click OK to save the event node.
3-14 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
Procedure for Configuring Receipt of an Asynchronous
Service Response (Legacy Method)

The preferred method for receiving an asynchronous service response is to use a
response document variable of type XML. However, if an existing workflow contains
an asynchronous event node that was previously set up to use an
AsyncServiceResponse variable (to wait for a response from an asynchronous
Application View service), you can modify the event node.

To modify an event node that uses an AsyncServiceResponse variable to receive an
asynchronous service response, complete the following procedure:

1. In the WebLogic Integration Studio, open a workflow template definition. The
Workflow Design window is displayed.

2. Double-click the asynchronous event node. The Event Properties dialog box is
displayed.
Using Application Integration 3-15

3 Using Application Views in the Studio
3. Select the Asynchronous Variable (legacy) tab.

4. From the Request ID Variable list, select a string variable that is already defined.
WebLogic Integration listens for an asynchronous response with an ID matching
the ID stored in this variable.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was invoked asynchronously earlier
in the workflow. The Call Application View Service action sets the request
ID variable. The action and this event node can work together only if both
use the same request ID variable. For more information about setting up
the Call Application View Service action, see �Task 1: Set Up a Task Node
to Call an Application View Service� on page 3-3.
3-16 Using Application Integration

Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
5. From the Asynchronous Service Response Variable list, select an
AsyncServiceResponse variable in which to store the response data.

Note: Because you are modifying an existing asynchronous event node, the
asynchronous service response variable field is already populated. If you
do not need the response, select the Response Document (preferred) tab.
For details about using the preferred method, see �Procedure for
Configuring Receipt of an Asynchronous Service Response (Preferred
Method)� on page 3-12.

6. Click OK to save the event node.

Functions Provided by the Application
Integration Plug-In

If your enterprise includes AI Async Response variables and you want to interrogate
those variables while using the application integration plug-in, use the following
functions:

! AIHasError()

! AIGetErrorMsg()

! AIGetResponseDocument()

Using these functions, you can set up decision nodes to handle success and failure
conditions.

Note: These functions are available only if the application integration plug-in is
installed, and they support only the asynchronous variable method for
receiving asynchronous service responses. For details, see �Procedure for
Configuring Receipt of an Asynchronous Service Response (Legacy
Method)� on page 3-15.

AIHasError()

Use AIHasError() to determine the status of an asynchronous service response. The
following table provides details about this function.
Using Application Integration 3-17

3 Using Application Views in the Studio
AIGetErrorMsg()

Use AIGetErrorMsg() to retrieve the error message string returned by an
asynchronous Application View service. The following table provides details about
this function.

Operands AsyncServiceResponse variable

Preconditions ! You have created a variable of type AsyncServiceResponse.
! You have called an asynchronous Application View

service.
! The Application View service has returned a response,

which is stored in your AsyncServiceResponse variable.

Returns Boolean

Output explanation False: The asynchronous Application View service call was
successful.
True: The asynchronous Application View service call failed.

Operands AsyncServiceResponse variable

Preconditions ! You have created a variable of type AsyncServiceResponse.
! You have called an asynchronous Application View

service.
! The Application View service has returned a response,

which is stored by your AsyncServiceResponse variable.

Returns String

Output explanation Error string: Returns an error string explaining why the
asynchronous Application View response failed.
Empty string: There was no error.
3-18 Using Application Integration

Task 3: Create a Workflow Started by an Application View Event
AIGetResponseDocument()

Use AIGetResponseDocument() to retrieve the XML response document returned by
an asynchronous Application View service. The following table provides details about
this function.

Task 3: Create a Workflow Started by an
Application View Event

It is sometimes desirable to have a workflow that is started whenever a designated
Application View event occurs. To create such a workflow, edit the workflow�s start
node so it responds to an event of type AI Start, then select the appropriate Application
View event. If necessary, you can set up conditions with which the event can be
filtered. After you save and activate the workflow, the start node is executed each time
the Application View event occurs.

Operands AsyncServiceResponse variable

Preconditions ! You have created a variable of type AsyncServiceResponse.
! You have called an asynchronous Application View

service.
! The Application View service has returned a response,

which is stored in your AsyncServiceResponse variable.

Returns XML

Output explanation XML document: Returns an XML document representing the
asynchronous service response.
Null: No response document is returned because an error
occurred.
Using Application Integration 3-19

3 Using Application Views in the Studio
Steps for Creating a Workflow Started by an Application
View Event

To set up a workflow with a start node that is triggered by an Application View event,
complete the following procedure:

1. In the WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.

2. If no start node exists, create one now. This start node will respond to an
Application View event that you specify.

3. Double-click the start node. The Start Properties dialog box is displayed.
3-20 Using Application Integration

Task 3: Create a Workflow Started by an Application View Event
4. (Optional) In the Description field, enter a name.

5. Click Event.

6. From the Event list, select AI Start.

7. In the navigation tree, select an Application View event.

The navigation tree organizes Application View events by folder (such as the
EastCoast and Sales folders shown in the preceding Start Properties dialog box)
and Application View (for example, CustomerManagement). All Application
View events are listed at the lowest level of the hierarchy.

Note: To check for recently saved Application Views and events at any time,
select Refresh Tree.

If the navigation tree is missing or appears too narrow, it may include an overly
long XML or string variable name. Try shortening the names of your XML or
string variables.

8. In the Key Value Expression field, define a key value for the event. You can enter
a String as the key value, or you can create an expression that is evaluated at run
time to produce the key value. (Select the A + B option to display the Expression
Using Application Integration 3-21

3 Using Application Views in the Studio
Builder dialog box, and then create an appropriate expression.) The specified key
value must match an element in the incoming Event�s XML before WebLogic
Integration triggers the event.

You must also define the expression that locates the key value in the XML for
the incoming Event, so that WebLogic Integration can compare the incoming
key value to the specified key value. If there is no key value expression, you are
prompted to create one before you can save the event.

The Event Descriptor for AI Events is the fully qualified Application View event
name in the following form:

namespace.Application View name.event

Root is not part of the fully qualified event name. The Event Descriptor field is
filled in automatically if the key value expression is created directly from the
event dialog box. To accept each instance of the specified Application View
event regardless of its contents, leave this field blank.

9. If necessary, filter the event in one of the following ways: enter a condition in the
Condition field, or select the A + B option to display the Expression Builder
dialog box, and then create an appropriate expression.

For information about setting up conditions and XPath expressions, see Using
the WebLogic Integration Studio.

10. From the Event Document Variable list, select an XML variable. Data from the
Application View event that is received by the start node is stored in this
variable. If you do not need the event data, skip this step.

11. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. See step 9. in �Steps for
Setting up a Task Node to Call an Application View Service� for details.

For details about defining new variables, see Using the WebLogic Integration
Studio.

12. If you need to examine the XML schema for the event document, click View
Definition. The View Definition dialog box is displayed.
3-22 Using Application Integration

Task 4: Set Up an Event Node to Wait for an Application View Event
13. Click Close to return to the Start Properties dialog box.

14. In the Start Properties dialog box, click OK. The new or modified start node is
saved.

Task 4: Set Up an Event Node to Wait for an
Application View Event

In a workflow, it is sometimes desirable to have an event node that is triggered by an
Application View event. To create such a node, edit an event node so it responds to an
event of type AI Event, then select the appropriate Application View event. If
necessary, you can set up conditions with which to filter the designated Application
View event. After you save and activate the workflow, the workflow progresses to this
event node, waits for a specified Application View event, and continues processing.
Using Application Integration 3-23

3 Using Application Views in the Studio
Steps for Setting Up a Node to Wait for an Application
View Event

To set up an event node to be triggered by an Application View event, complete the
following procedure:

1. In the WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.

2. If no event node exists, create one now. This event node will be triggered by a
designated Application View event.

3. Double-click the event node. The Event Properties dialog box is displayed.
3-24 Using Application Integration

Task 4: Set Up an Event Node to Wait for an Application View Event
4. (Optional) In the Description field, enter a name.

5. From the Type list, select AI Event.

6. In the navigation tree, select an Application View event.

The navigation tree organizes Application View events by folder (such as the
EastCoast and Sales folders shown in the preceding Start Properties dialog box)
and Application View (for example, CustomerManagement). All Application
View events are listed at the lowest level of the hierarchy.

Note: To check for recently saved Application Views and events at any time,
select Refresh Tree.

If the navigation tree is missing or appears too narrow, it may include an overly
long XML or string variable name. Try shortening the names of your XML or
string variables.

7. In the Key Value Expression field, define a key value for the event. You can enter
a variable or a String as the key value, or you can create an expression that is
evaluated at run time to produce the key value. (Select the A + B option to
display the Expression Builder dialog box, and then create an appropriate
expression.) The specified key value must match an element in the incoming
Event�s XML before WebLogic Integration triggers the event.
Using Application Integration 3-25

3 Using Application Views in the Studio
You must also define the expression that locates the key value in the XML for
the incoming Event, so that WebLogic Integration can compare the incoming
key value to the specified key value. If there is no key value expression, you are
prompted to create one before you can save the event.

The Event Descriptor for AI Events is the fully qualified Application View event
name in the following form:

namespace.Application View name.event

Root is not part of the fully qualified event name. The Event Descriptor field is
filled in automatically if the key value expression is created directly from the
event dialog box. To accept each instance of the specified Application View
event regardless of its contents, leave this field blank.

8. If necessary, filter the event in one of the following ways: enter a condition in the
Condition field, or select the A + B option to display the Expression Builder
dialog box, and then create an appropriate expression.

For information about setting up conditions and XPath expressions, see Using
the WebLogic Integration Studio.

9. In the Event Properties dialog box, select an XML variable from the Event
Document Variable list. Data from the Application View event that is received by
the start node is stored in this variable. If you do not need to save the event data,
skip this step.

10. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, in which you can create a new variable. See step 9. in �Steps for
Setting up a Task Node to Call an Application View Service� for details.

For details about defining new variables, see Using the WebLogic Integration
Studio.

11. If you need to examine the XML schema for the event document, click View
Definition. The View Definition dialog box is displayed.
3-26 Using Application Integration

Handling Application View Local Transactions in Workflows
12. Click Close when finished.

13. In the Event Properties dialog box, click OK.

Handling Application View Local
Transactions in Workflows

The LocalTransaction interface is exposed to adapter clients via the Common Client
Interface (CCI) Connection class. Currently the Application View interface does not
use the CCI LocalTransaction interface. To manage a local transaction, a user must
first acquire a LocalTransaction from the Connection object.
Using Application Integration 3-27

3 Using Application Views in the Studio
Local Transaction Management Contracts

A local transaction management contract is created when an adapter implements the
javax.resource.spi.LocalTransaction interface to provide support for local
transactions that are performed on the system�s underlying resource manager. This
type of contract enables an application server to provide the infrastructure and run-time
environment for transaction management. Application components rely on this
transaction infrastructure to support their component-level transaction model.

For more information about transaction demarcation support, see:

http://java.sun.com/blueprints/guidelines/designing_enterprise_ap
plications/transaction_management/platform/index.html

Connector Support for Local Transactions with No User
Defined Transaction Demarcation

The following is a scenario for supporting Application View local transactions within
the Application Integration Plug-in. This scenario is similar to TX_REQUIRES_NEW for
EJB transactions because the connector supports only local transactions.

In this scenario, the Connector supports only local transactions and the BPM designer
does not explicitly demarcate the start and end of a local transaction. WebLogic
Integration allows the Connector to participate in the global transaction by providing
an XA Wrapper around the LocalTransaction object. The XA Wrapper no-ops all
methods on the XAResource interface that can not be delegated to the
LocalTransaction instance. WebLogic Integration allows only one non XA resource in
the transaction chain. As a result, a user can have only one Application View
LocalTransaction within a workflow.

Connector Support for XA Transactions

In this scenario, Application View services are not called within a local transaction.
Each service invocation is automatically enlisted in the Global XA transaction because
the resource adapter supports XA.
3-28 Using Application Integration

CHAPTER
4 Using Application
Views by Writing
Custom Code

If you are a developer, you may want to modify an Application View by writing
custom code. You can use most Application View features through the Application
View Console, but some features can be used only by writing custom code.

This section presents two sample scenarios in which custom code is used:

! Scenario 1: Creating Connections with Specific Credentials

! Scenario 2: Custom Coding a Business Process

Scenario 1: Creating Connections with
Specific Credentials

If you need to assign a security level to an Application View before invoking services
on it, you can do so by setting credentials for the appropriate EIS. To do so, use the
ApplicationView methods setConnectionSpec() and getConnectionSpec().
Both methods use a ConnectionSpec object.
Using Application Integration 4-1

4 Using Application Views by Writing Custom Code
You can instantiate a ConnectionSpec object in either of two ways: you can use the
ConnectionRequestInfoMap class provided by the BEA WebLogic Integration
Adapter Development Kit (ADK), or you can implement your own class. If you
implement your own class, you must include the following four interfaces:
ConnectionSpec, ConnectionRequestInfo, Map, and Serializable.

Implementing ConnectionSpec

Before you can use setConnectionSpec() or getConnectionSpec(), you must
instantiate a ConnectionSpec object. Use the ConnectionRequestInfoMap class
provided by the ADK, or derive your own class.

To implement ConnectionSpec:

1. Decide whether to use the ConnectionRequestInfoMap class, provided by the
ADK, or to implement your own class.

2. If you are implementing your own ConnectionSpec class, include the following
interfaces:

" ConnectionSpec (JCA class)

" ConnectionRequestInfo (JCA class)

" Map (SDK class)

" Serializable (SDK class)

Calling setConnectionSpec() and getConnectionSpec()

After you implement the ConnectionSpec class and instantiate a ConnectionSpec
object, you can use both with the following ApplicationView methods:

! setConnectionSpec()

! getConnectionSpec()
4-2 Using Application Integration

Scenario 1: Creating Connections with Specific Credentials
The following listing provides the code for setConnectionSpec().

Listing 4-1 Complete Code for setConnectionSpec()

/**
* Sets the connectionSpec for connections made to the EIS. After the
* ConnectionSpec is set it will be used to make connections to the
* EIS when invoking a service. To clear the connection spec, and use
* the default connection parameters, call this method using null.
*
* @params connectionCriteria connection criteria for the EIS.
*/
public void setConnectionSpec(ConnectionSpec connectionCriteria)
{
m_connCriteria = connectionCriteria;
}

The following listing provides the code for getConnectionSpec().

Listing 4-2 Complete Code for getConnectionSpec()

/**
* Returns the ConnectionSpec set by setConnectionSpec. If no
* ConnectionSpec has been set null is returned.
*
* @returns ConnectionSpec
*/
public ConnectionSpec getConnectionSpec()
{
return m_connCriteria;
}

Using the ConnectionSpec Class

To set the ConnectionSpec class, pass it a properly initialized ConnectionSpec
object. To clear the ConnectionSpec class, pass it a ConnectionSpec object with a
null value.
Using Application Integration 4-3

4 Using Application Views by Writing Custom Code
Listing 4-3 shows an example of how ConnectionSpec is used.

Listing 4-3 Example Use of ConnectionSpec Class

Properties props = new Properties();
ApplicationView applicationView = new
ApplicationView(getInitialContext(props),"appViewTestSend");

ConnectionRequestInfoMap map = new ConnectionRequestInfoMap();
// map properties here
map.put("PropertyOne","valueOne");
map.put("PropertyTwo","valueTwo");
.
.
.
//set new connection spec
applicationView.setConnectionSpec(map);

IDocumentDefinition requestDocumentDef =
applicationView.getRequestDocumentDefinition("serviceName");

SOMSchema requestSchema = requestDocumentDef.getDocumentSchema();

DefaultDocumentOptions options = new DefaultDocumentOptions();
options.setForceMinOccurs(1);
options.setRootName("ROOTNAME");
options.setTargetDocument(DocumentFactory.createDocument());
IDocument requestDocument = requestSchema.createDefaultDocument(options);

requestDocument.setStringInFirst("//ROOT/ElementOne","value");
requestDocument.setStringInFirst("//ROOT/ElementTwo","value");
.
.
.
// the service invocation will use the connection spec set to connect to the EIS
IDocument result = applicationView.invokeService("serviceName",
requestDocument);
System.out.println(result.toXML());
4-4 Using Application Integration

Scenario 2: Custom Coding a Business Process
Scenario 2: Custom Coding a Business
Process

Although the simplest way of using Application Views in business processes is
through the WebLogic Integration Studio, you always have the alternative of writing
custom Java code to represent your business processes. If you are a developer who
writes custom code, we recommend that you familiarize yourself with the simple
example presented in this section to demonstrate how a custom business process can
be written.

For a thorough comparison of the two methods for using Application Views, see
�Choosing a Method for Implementing a Business Process� on page 1-8.

About This Scenario

Suppose your company uses a customer relationship management (CRM) system and
an order processing (OP) system. Management wants to make sure that whenever a
customer is created on the CRM system, the creation of a corresponding customer
record on the OP system is triggered. Therefore, they ask you, their Java developer, to
create a business process that keeps the information maintained by these two systems
synchronized. The attached Java class, SyncCustomerInformation, implements this
business logic.

This example does not cover everything you can do using custom code. It simply
demonstrates the basic steps required to implement your organization�s business
processes and serves as a template you can use for custom coding your own business
processes.

This scenario uses a concrete example class called SyncCustomerInformation to
explain how to write custom code. In general, you must perform the following two
steps to create custom code that uses an Application View in a business process:

1. Make sure you have a Java class representing the application that implements the
business process.

2. Within this Java class, supply code that implements your business logic.
Using Application Integration 4-5

4 Using Application Views by Writing Custom Code
Before You Begin

The following prerequisites must be met before you start writing custom code to
implement a business process:

! Create an Application View and define one or more events or services within the
Application View.

! Obtain information, from the appropriate business analyst, about the required
business logic for the business process workflow you are defining. Make sure
you also get all the information needed to connect to WebLogic Server,
including the host server name and port number, and a user ID and password.

In addition, this scenario is based on the assumption that the following prerequisites
have been met:

! Application views for the source CRM system and the target OP system are
defined and working. For details about defining Application Views, see
�Defining an Application View� on page 2-1.

! Both Application Views reside in the East Coast folder. The source Application
View is named East Coast.Customer Mgmt and the target Application View is
named East Coast.Order Processing.

Note: Your organization must have its own folders and Application Views.

! You are familiar with the application integration API, or you are working closely
with a Java programmer who is familiar with it.

! You have all the information necessary to connect to the application integration
server that hosts the Application Views.

Note: Get the information specific to your organization from your system
administrator.
4-6 Using Application Integration

Scenario 2: Custom Coding a Business Process
Creating the SyncCustomerInformation Class

Before you can start writing custom code, you must have a Java class representing each
application required for the business process. If the necessary Java classes do not exist,
create them now. This example calls for one application class called
SyncCustomerInformation. Of course, you will use different variable names in
your own code. To create the SyncCustomerInformation Java class:

1. See �Code for Sample Java Class� on page 4-9 for the complete source code for the
Java application class.

Note: For your own projects, use the SyncCustomerInformation code as a
template or guide. The SyncCustomerInformation example code is
annotated with detailed comments.

2. Create code to listen for East Coast.New Customer.

3. Obtain references to the NamespaceManager (variable name m_namespaceMgr)
and ApplicationViewManager (variable name m_appViewMgr) within
WebLogic Server. To perform this step, use a JNDI lookup from WebLogic
Server.

4. Using the NamespaceManager to call nm.getRootNamespace(), obtain a
reference to the root namespace. This reference is stored in a variable called
root.

5. Using the root variable to call root.getNamespaceObject(“East Coast”),
obtain a reference to the East Coast namespace. This reference is stored in a
variable called eastCoast.

6. Using the eastCoast variable, obtain a temporary reference to the Customer
Management ApplicationView and store it in a variable called
custMgmtHandle.

7. Use this custMgmtHandle temporary reference to obtain a reference to an
ApplicationView instance for Customer Management. Specifically, call the
ApplicationViewManager as avm.getApplicationViewInstance
(custMgmtHandle.getQualifiedName()). Store the returned reference in a
variable called custMgmt.
Using Application Integration 4-7

4 Using Application Views by Writing Custom Code
8. Begin listening for New Customer events by calling
custMgmt.addEventListener(“New Customer”, listener), replacing
listener with the name of an object that can respond to New Customer events.
(See the application integration API for a full discussion of event listeners and
the EventListener interface.)

9. Implement the onEvent method of the listener class.

When a New Customer event is received, the onEvent method of the listener is
called.

The onEvent method calls a method to respond to the event. In this example,
the onEvent method provides the event object that contains the data associated
with the event. The method called to respond to the event is called
handleNewCustomer.

10. Implement the handleNewCustomer method that will respond to the New
Customer event. Specifically, write code that implements the following sequence
of actions:

a. The handleNewCustomer method transforms the XML document referenced
in the event to the form expected by the East Coast.Order Processing.Create
Customer service. This transformation may be performed using XSLT or
manually, using custom transformation code. The end result of the
transformation is an XML document that conforms to the schema for the
request document of the East Coast.Order Processing.Create Customer service.
Store this document in a variable called createCustomerRequest.

b. handleNewCustomer obtains a reference to an instance of the East
Coast.Order Processing Application View in the same way described for the
East Coast.Customer Management Application View. This reference is stored
in a variable called orderProc.

c. handleNewCustomer invokes the Create Customer service on the East
Coast.Order Processing Application View by calling
orderProc.invokeService(“Create Customer”,

createCustomerRequest). Recall that createCustomerRequest is the
variable holding the request document for the Create Customer service. The
response document for this service is stored in a variable named
createCustomerResponse.

d. handleNewCustomer finishes executing and becomes available for the next
incoming New Customer event.
4-8 Using Application Integration

Scenario 2: Custom Coding a Business Process
Once you complete this final step, you have a new Java class called
SyncCustomerInformation. This class implements the Sync Customer
Information business logic. The SyncCustomerInformation class uses the
application integration API to get events from the CRM system and to invoke
services on the OP system.

Code for Sample Java Class

The following listing contains the full source code for the
SyncCustomerInformation Java class. This code implements the business logic for
the scenario described earlier in this section. Use it as a template for writing code to
implement your enterprise�s business processes.

Listing 4-4 Full Class Source Code for SyncCustomerInformation

import java.util.Hashtable;
import javax.naming.*;
import java.rmi.RemoteException;
import com.bea.wlai.client.*;
import com.bea.wlai.common.*;
import com.bea.document.*;

/**
 * This class implements the business logic for the 'Sync Customer Information'
 * business process. It uses the WLAI API to listen to events from the CRM
 * system, and to invoke services on the OP system. It assumes that there
 * are two ApplicationViews defined and deployed in the 'EastCoast'
 * namespace. The Application Views and their required events and services
 * are shown below.
 *
 * CustomerManagement
 * events (NewCustomer)
 * services (none)
 *
 * OrderProcessing
 * events (none)
 * services (CreateCustomer)
 */

public class SyncCustomerInformation
 implements EventListener
{

Using Application Integration 4-9

4 Using Application Views by Writing Custom Code
 /**
 * Main method to start this application. No args are required.
 */
 public static void
 main(String[] args)
 {
 // Check that we have the information needed to connect to the server.

 if (args.length != 3)
 {
 System.out.println("Usage: SyncCustomerInformation ");
 System.out.println(" <server url> <user id> <password>");
 return;
 }

 try
 {
 // Create an instance of SyncCustomerInformation to work with

 SyncCustomerInformation syncCustInfo =
 new SyncCustomerInformation(args[0], args[1], args[2]);

 // Get a connection to WLAI

 InitialContext initialContext = syncCustInfo.getInitialContext();

 // Get a reference to an instance of the 'EastCoast.CustomerManagement'
 // Application View

 ApplicationView custMgmt =
 new ApplicationView(initialContext, "EastCoast.CustomerManagement");

 // Add the listener for 'New Customer' events. In this case we have
 // our application class implement EventListener so it can listen for
 // events directly.

 custMgmt.addEventListener("NewCustomer", syncCustInfo);

 // Process up to 10 events and then quit.

 syncCustInfo.setMaxEventCount(10);
 syncCustInfo.processEvents();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 return;
4-10 Using Application Integration

Scenario 2: Custom Coding a Business Process
 }

 /**
 * EventListener method to respond to 'New Customer' events
 */
 public void
 onEvent(IEvent newCustomerEvent)
 {
 try
 {
 // Print the contents of the incoming 'New Customer' event.

 System.out.println("Handling new customer: ");
 System.out.println(newCustomerEvent.toXML());

 // Handle it

 IDocument response = handleNewCustomer(newCustomerEvent.getPayload());

 // Print the response

 System.out.println("Response: ");
 System.out.println(response.toXML());

 // If we have processed all the events we want to, quit.

 m_eventCount++;
 if (m_eventCount >= m_maxEventCount)
 {
 quit();
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.out.println("Quitting...");
 quit();
 }
 }

 /**
 * Handles any 'New Customer' event by invoking the 'Create Customer'
 * service on the 'Order Processing' ApplicationView. The response
 * document from the service is returned as the return value of this
 * method.
 */
 public IDocument
 handleNewCustomer(IDocument newCustomerData)
 throws Exception
Using Application Integration 4-11

4 Using Application Views by Writing Custom Code
 {
 // Get an instance of the 'OrderProcessing' ApplicationView.
 if (m_orderProc == null)
 {
 m_orderProc =
 new ApplicationView(m_initialContext, "EastCoast.OrderProcessing");
 }

 // Transform the data in newCustomerData to be appropriate for the
 // request document for 'Create Customer' on the 'Order Processing'
 // ApplicationView.

 IDocument createCustomerRequest =
 transformNewCustomerToCreateCustomerRequest(newCustomerData);

 // Invoke the service

 IDocument createCustomerResponse =
 m_orderProc.invokeService("CreateCustomer", createCustomerRequest);

 // Return the response

 return createCustomerResponse;
 }

 // ---
 // Member Variables
 // ---

 /**
 * The url for the WLAI server (e.g. t3://localhost:7001)
 */
 private String m_url;

 /**
 * The user id to use when logging into WLAI.
 */
 private String m_userID;

 /**
 * The password to use when logging in to WLAI as the user given in
 * m_userID.
 */
 private String m_password;

 /**
 * The initial context to use when communicating with WLAI
 */
4-12 Using Application Integration

Scenario 2: Custom Coding a Business Process
 private InitialContext m_initialContext;

 /**
 * An instance of the 'East Coast.Order Processing' ApplicationView for
 * use in handleNewCustomer.
 */
 private ApplicationView m_orderProc;

 /**
 * Hold the maximum number of events to be processed in handleNewCustomer
 */
 private int m_maxEventCount;

 /**
 * Count of the events processed in handleNewCustomer
 */
 private int m_eventCount;

 /**
 * A monitor variable to enable us to wait until we are asked to quit
 */
 private String m_doneMonitor = new String("Done Monitor");

 /**
 * A flag indicating we are done or not.
 */
 private boolean m_done = false;

 // --
 // Utility Methods
 // --

 /**
 * Constructor.
 */
 public SyncCustomerInformation(String url, String userID, String password)
 {
 m_url = url;
 m_userID = userID;
 m_password = password;
 }

 /**
 * Establish an initial context to WLAI.
 */
 public InitialContext
 getInitialContext()
 throws NamingException
 {
Using Application Integration 4-13

4 Using Application Views by Writing Custom Code
 // Set up properties for obtaining an InitialContext to the WLAI server.

 Hashtable props = new Hashtable();

 // Fill in the properties with the WLAI host, port, user id, and password.

 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, m_url);
 props.put(Context.SECURITY_PRINCIPAL, m_userID);
 props.put(Context.SECURITY_CREDENTIALS, m_password);

 // Connect to the WLAI server

 InitialContext initialContext = new InitialContext(props);

 // Store this for later

 m_initialContext = initialContext;

 return initialContext;
 }

 /**
 * Transform the document in the 'New Customer' event to the document
 * required by the 'Create Customer' service.
 */
 public IDocument
 transformNewCustomerToCreateCustomerRequest(IDocument newCustomerData)
 throws Exception
 {
 // We could do an XSLT transform here, or manually move data from the
 // source to the target document. The details of this transformation
 // are out of the scope of this sample. For information on XSLT see
 // http://www.w3.org/TR/xslt. For more information on manually moving
 // data between documents, see the JavaDoc documentation for the
 // com.bea.document.IDocument interface.

 return newCustomerData;
 }

 /**
 * Event processing/wait loop
 */
 public void
 processEvents()
 {
 synchronized(m_doneMonitor)
4-14 Using Application Integration

Scenario 2: Custom Coding a Business Process
 {
 while (!m_done)
 {
 try
 {
 m_doneMonitor.wait();
 }
 catch (Exception e)
 {
 // ignore
 }
 }
 }
 }

 /**
 * Sets the max number of events we want to process.
 */
 public void
 setMaxEventCount(int maxEventCount)
 {
 m_maxEventCount = maxEventCount;
 }

 /**
 * Method to force this application to exit (cleanly)
 */
 public void
 quit()
 {
 synchronized(m_doneMonitor)
 {
 m_done = true;
 m_doneMonitor.notifyAll();
 }
 }
}

Using Application Integration 4-15

4 Using Application Views by Writing Custom Code
4-16 Using Application Integration

CHAPTER
5 Using the Application
View Console

The Application View Console is a graphical user interface (GUI) that offers an easy
way to access, organize, and edit all the Application Views in your enterprise. You can
use the Application View Console to create new folders and to add new Application
Views to them. By storing your Application Views in folders, you can organize them
according to your own navigation scheme, regardless of the adapters to which the
individual Application Views belong.

This section presents the following topics:

! Logging On to the Application View Console

! Creating a Folder

! Removing an Application View

! Removing a Folder

Logging On to the Application View Console

To log on to the Application View Console:

1. Launch a browser window.

2. Enter the URL for your system�s Application View Console in the following
format:

http://your_server:your_port/wlai
Using Application Integration 5-1

5 Using the Application View Console
For example: http://wli1:7001/wlai

The logon page is displayed.

3. Enter your WebLogic Server username and password, then click OK. The
Application View Console is displayed.
5-2 Using Application Integration

Creating a Folder
Creating a Folder

The Application Views in your enterprise are organized in folders that may contain
Application Views and subsidiary folders. Once you create a folder, you cannot move
it to another folder. Before removing a folder, you must remove all Application Views
and subfolders.

Once you create an Application View in a folder, you can remove the Application
View, but you cannot move it to another folder.

To create a folder:

1. While logged on to the Application View Console, navigate to the folder in which
you want to create the new folder.

2. Click the New Folder icon:

The Add Folder page is displayed.
Using Application Integration 5-3

5 Using the Application View Console
3. In the New Folder field, enter a name. Any valid Java Identifier is allowed in a
name.

Note: The name Root is a reserved word, and cannot be used for a folder name.
If you use Root as a name, you cannot import or export the folder using the
import/export utility.

4. Click Save.

Removing an Application View

Remove Application Views when they become obsolete or when the application to
which they belong is retired.

You can remove an Application View only if both of the following conditions are true:

! You have undeployed the Application View. (See �Optional Step: Undeploy an
Application View� on page 2-20.) Make sure the Application View status is Not
Deployed.

! You are logged on to WebLogic Server with a user account with the appropriate
write privileges.

To remove an Application View:

1. While logged on to the Application View Console, navigate to the folder in which
the target Application View is located.
5-4 Using Application Integration

Removing a Folder
2. Click Remove. A confirmation page is displayed. Click Confirm to delete the
Application View.

Removing a Folder

Remove folders that are no longer needed. To remove a folder:

1. Remove all Application Views and subfolders from the target folder.

2. Log on to the Application View Console and go to the folder in which the target
folder resides.

3. Click Remove. A confirmation page is displayed.

4. Click Confirm. The folder is deleted.
Using Application Integration 5-5

5 Using the Application View Console
5-6 Using Application Integration

APPENDIX
A Migrating Application
Integration Data

This section presents the following topics:

! Overview of Migrating Data

! Migrating Data Within a Single EIS Instance

! Migrating Data Within Multiple EIS Instances

! Recommended Practices

Overview of Migrating Data

Configuration data for application integration functions is stored in the same
repository as configuration data for business process management (BPM) functions.
Therefore, you can use the same tools to migrate data for both types of functions.
However, several special considerations apply to the migration of application
integration data and deployment of that data in the target environment.

Note: The application integration engine now supports modular deployment. It is
bundled in an enterprise application archive (EAR) file and is available to any
valid WebLogic domain. Because the BPM capabilities may not always be
installed, a command-line interface to the import / export tool is provided for
Application Views. For more information, see Appendix B, �Importing and
Exporting Application Views.�
Using Application Integration A-1

A Migrating Application Integration Data
Migrating application integration data is straightforward when you are migrating
between WebLogic Server domains within a single Enterprise Information System
(EIS) instance. When you migrate application data between WebLogic Server domains
in different EIS instances, however, you must perform special procedures to ensure a
working solution in the target environment.

This section provides information about migrating application integration data
between WebLogic Server domains in the following scenarios:

! Migrating Data Within a Single EIS Instance

! Migrating Data Within Multiple EIS Instances

Migrating Data Within a Single EIS Instance

This section describes how to migrate application integration data among multiple
WebLogic Server domains within a single EIS instance. For example, you might move
Application View definitions between repositories for different domains of WebLogic
Integration. In this case, only the WebLogic Integration domain changes; the target
EIS instances referred to in the Application Views remain the same.

In this case, the workflow package import/export utility (accessible from the
WebLogic Integration Studio) simplifies the job of migrating data. It involves
exporting a package from the Studio in the source domain, and importing that package
into the Studio in the target domain.

For more information about this import/export utility, see �Importing and Exporting
Workflow Packages� in Using the WebLogic Integration Studio.

How an Application View Is Exported

When you export a workflow that includes application integration functionality, the
export tool automatically identifies the Application Views and other resources on
which the workflow depends. Listing A-1 and Listing A-2 show values identifying an
Application View and the resources on which it depends in the export tool. In general,
the Application View value is displayed (in the export tool) in the location shown in
Listing A-1.
A-2 Using Application Integration

Migrating Data Within a Single EIS Instance
Listing A-1 Application View Location in the BPM Export Tool

All Workflow Objects
|-- XML Repository

|-- Folder: WLAI.Namespace.Root
|-- Folder: WLAI.Namespace.Root.firstfolder
|-- Folder: WLAI.Namespace.Root.firstfolder.nthfolder

|-- Entity: WLAI.ApplicationView.Root.firstfolder.
nthfolder.appviewname

In general, entities related to the Application View can be found under the
nth_folder, and are named according to the convention shown in Listing A-2. Not
all Application Views follow this convention, however.

Listing A-2 Application View Resource Locations in BPM Export Tool

Entity: WLAI.entity_type.Root.firstfolder.nthfolder.appviewname_event/
servicename_adapterspecific

To fully export an Application View, you must select all entities that are related to it,
including entities of Schema and ConnectionFactory types.

Example Application View Export

The EastCoast.Sales folder contains an Application View named
CustomerManagement which is displayed in the BPM export tool at the location
shown in Listing A-3.

Listing A-3 Application View in the BPM Export Tool

All Workflow Objects
|-- XML Repository

|-- Folder: WLAI.Namespace.Root
|-- Folder: WLAI.Namespace.Root.EastCoast
|-- Folder: WLAI.Namespace.Root.EastCoast.Sales
Using Application Integration A-3

A Migrating Application Integration Data
|-- Entity:WLAI.ApplicationView.Root.EastCoast.
Sales.CustomerManagement

To fully export the CustomerManagement Application View, the export tool
automatically selects all entities that conform to the following pattern:

Entity: WLAI.entitytype.Root.EastCoast.Sales.CustomerManagement

The CustomerManagement Application View contains several events and services:
the export utility shows one Schema type entity for each event and two Schema type
entities for each service. The CustomerManagement Application View also uses the
DBMS adapter, and includes one event named CustomerCreated and one service
named CreateCustomer. Therefore, the entities shown in Listing A-4 are listed by the
export utility.

Listing A-4 Entities Used by the Application View

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CustomerCreated_
CUSTOMER_TABLE_insert

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CreateCustomer_input

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_
CreateCustomer_output

The CustomerManagement Application View also includes a single connection
factory. The entity name for this connection factory is as follows:

Entity: WLAI.ConnectionFactory.Root.EastCoast.Sales.CustomerManagement.
ConnectionFactory

For the CustomerManagement Application View to be exported properly, all the
entities shown in Listing A-4 must be selected.
A-4 Using Application Integration

Migrating Data Within Multiple EIS Instances
Importing an Application View

To import an Application View, perform the following steps:

1. Using the workflow package import utility (accessible from the WebLogic
Integration Studio), import a package containing application integration data. The
utility automatically imports all the entities you exported into the package earlier.

2. Deploy your imported Application Views using the WebLogic Integration
Application View Console (generally located at http://server:port/wlai).

3. Navigate through the imported folders to find the imported Application View.

4. Select the appropriate Application View. Then select the Deploy option on the
Application View Summary page.

The Application View is now ready for use in the target environment.

Migrating Data Within Multiple EIS
Instances

Be careful when migrating data among WebLogic Server domains and between
multiple instances of an EIS, because Application Views defined for a particular EIS
instance contain identifiers and other data specific to that instance. This advice also
applies to the connection factory used by the Application View.

To prevent possible errors, you must manually change EIS instance-specific data in
your Application View or connection factory by performing the following steps:

1. Open the Application View Console.

2. Navigate to the appropriate Application View and edit it as necessary:

a. Identify and update all EIS-specific data in the Application View and the
events, services, and connection factory associated with that Application View.

b. Search for any EIS-instance-specific references, and replace them with
references to the new EIS instance in the target environment.
Using Application Integration A-5

A Migrating Application Integration Data
Be sure to edit the Application View and connection factory definitions. The following
parameters of the Application View definitions may need to be changed:

! The EventRouterURL parameter of the ApplicationView deploy screen must
refer to the event router in the target environment.

! Parameters in the service definitions. These are adapter-specific data that might
refer to EIS instance-specific data. Change any EIS instance-specific parameters
for the service as necessary.

! Parameters in the event definitions. These are adapter-specific data that may
refer to EIS instance-specific data. Use the Edit feature on the Application View
Summary page to change any EIS instance-specific parameters for the service.

Example Application View Import

The CustomerManagement example includes a database called CUST, in the source
environment, and a database called CustDB in the target environment. Listing A-5
shows the XML text that represents the Application View and connection factory.
Specifically, this listing shows the Application View descriptor for the
CustomerManagement Application View. When you use the Application View
Console, you must use the appropriate fields in the design-time UI forms to view and
edit this information.

Listing A-5 Example XML Text for the Application View and Connection
Factory

<?xml version="1.0"?>
<!DOCTYPE applicationView>
<applicationView asyncEnabled="true"
connectionFactory="com.bea.wlai.connectionFactories.EastCoast.Sales.
CustomerManagement_connectionFactoryInstance"
connectionFactoryName="EastCoast.Sales.CustomerManagement_connectionFactory"
eventRouterURL="http://localhost:7001/DbmsEventRouter/EventRouter"

name="CustomerManagement"
ownsConnectionFactory="true">

<description>Manages customers in the east coast sales database</description>

…

<service interactionSpecClass="com.bea.adapter.dbms.cci.InteractionSpecImpl"
A-6 Using Application Integration

Migrating Data Within Multiple EIS Instances
name="CreateCustomer"
ownsRequestSchema="true"
ownsResponseSchema="true"

requestDocumentType="EastCoast.Sales.CustomerManagement_CreateCustomer_input/In
put"
responseDocumentType="EastCoast.Sales.CustomerManagement_CreateCustomer_output/
RowsAffected">

<description>create a new customer in database</description>
<interactionSpecProperty

name="functionName">executeUpdate</interactionSpecProperty>
<interactionSpecProperty name="sql">insert into CUST.dbo.CUSTOMER_TABLE

(FirstName, LastName, DOB) values ([FirstName varchar], [LastName varchar], [DOB
timestamp])</interactionSpecProperty>

</service>

<event name="CustomerCreated"
ownsSchema="true"
rootElementName="CUSTOMER_TABLE.insert"

schemaName="EastCoast.Sales.CustomerManagement_CustomerCreated_CUSTOMER_TABLE_i
nsert">

<description>New customer created in database</description>
<eventProperty name="tableName">CUSTOMER_TABLE</eventProperty>
<eventProperty name="triggerType">insert</eventProperty>
<eventProperty name="catalogName">CUST</eventProperty>
<eventProperty name="schemaName">dbo</eventProperty>
</event>

</applicationView>

This Application View contains:

! Explicit reference to the event router URL. (The URL is probably different in
the target domain from that in the original domain if you change EIS instances.)

! interactionSpecProperty elements with explicit SQL statements (expressed
with the <service> element) that refer to the CUST database, the dbo schema,
and the CUSTOMER_TABLE table.

! eventProperty elements that refer to catalogName as CUST and schemaName
as dbo. In this example, all references to CUST (highlighted in the preceding text)
must be changed to CustDB. If a different schema is used, the schema references
must also be changed.
Using Application Integration A-7

A Migrating Application Integration Data
Each adapter puts different properties in the service and event descriptors of the
Application View descriptors it creates. For information about which properties must
be changed to operate successfully with a new EIS instance, see your adapter
documentation.

You must also change the connection factory descriptor so that it refers to the new EIS
instance. Listing A-6 shows a sample connection factory.

Listing A-6 Sample Connection Factory

<?xml version="1.0"?>
<!DOCTYPE connection-factory-dd>
<connection-factory-dd name="CustomerManagement_connectionFactory">
<jndi-name>com.bea.wlai.connectionFactories.EastCoast.Sales.
CustomerManagement_connectionFactoryInstance</jndi-name>
<pool-parms allowPoolToShrink="true"

maxPoolSize="10"
minPoolSize="0"
targetFractionOfMaxPoolSize="0.1"/>

<mcf-parm name="MessageBundleBase">
<mcf-parm-value>BEA_WLS_DBMS_ADK</mcf-parm-value>

</mcf-parm>
<mcf-parm name="DataSourceName">

<mcf-parm-value>eventSource</mcf-parm-value>
</mcf-parm>
<mcf-parm name="AdditionalLogContext">

<mcf-parm-value>CustomerManagement</mcf-parm-value>
</mcf-parm>
<mcf-parm name="UserName">

<mcf-parm-value>system</mcf-parm-value>
</mcf-parm>
<mcf-parm name="Password">

<mcf-parm-value>security</mcf-parm-value>
</mcf-parm>
<mcf-parm name="RootLogContext">

<mcf-parm-value>BEA_WLS_DBMS_ADK</mcf-parm-value>
</mcf-parm>
<mcf-parm name="PingTable">

<mcf-parm-value>CUST.dbo.CUSTOMER_TABLE</mcf-parm-value>
</mcf-parm>
<mcf-parm name="LogLevel">

<mcf-parm-value>WARN</mcf-parm-value>
</mcf-parm>
<mcf-parm name="LogConfigFile">

<mcf-parm-value>BEA_WLS_DBMS_ADK.xml</mcf-parm-value>
</mcf-parm>
A-8 Using Application Integration

Recommended Practices
<adapter-logical-name>BEA_WLS_DBMS_ADK</adapter-logical-name>
</connection-factory-dd>

As shown in the preceding code, this connection factory descriptor refers directly to
the CUST database and to a JDBC data source named eventSource. To make sure that
this connection factory operates properly in the target environment, you must make the
following changes:

! Change the reference to CUST toa reference to CustDB

! Change the eventSource JDBC data source reference so it refers to a valid
JDBC data source (pointing at the new DBMS that is hosting CustDB) in the
target domain.

At this point, you have modified all necessary references and ensured that all the
resources needed by the Application View and connection factory exist in the target
domain. You may now deploy all the Application Views you imported, using the
Application View Console (generally located at http://host:port/wlai).

Recommended Practices

The following suggestions are offered to help you reduce the effort needed to migrate
application integration data between environments.

! Whenever possible, set up identical EIS instances in both the source and target
domains. For example, in the Application View in which the DBMS adapter is
used, you might use two instances of MS SQL Server (with the same name, the
same user accounts, and the same database object) for both your source and
target databases. This type of setup eliminates the need for manual editing of
Application View and connection factory descriptors.

! Change the event router URL to reflect the event router�s location in the target
environment. To do so, edit the Application View in the Application View
Console.

! After your Application Views are imported, deploy them using the Application
View Console.
Using Application Integration A-9

A Migrating Application Integration Data
A-10 Using Application Integration

APPENDIX
B Importing and
Exporting Application
Views

This section presents the following topics:

! Import/Export Utility

! Import/Export Methods and Command Line

Import/Export Utility

WebLogic Integration provides a simple import/export utility for Application Views
that can be executed from the command line, and incorporated into your code with the
import/export API for Application Views. The output of the utility is a JAR file
containing all artifacts owned by the Application View. You must manually import or
export any artifacts that are used but not owned by the Application View.

Note: If the business process management (BPM) capabilities of WebLogic
Integration are installed, you can use the workflow package import/export
utility (accessible from the WebLogic Integration Studio) to migrate
application integration data. For more information, see Appendix A,
�Migrating Application Integration Data.�
Using Application Integration B-1

B Importing and Exporting Application Views
The import/export utility allows you to export application integration metadata objects
from the repository and to import those objects back into the repository. The utility
allows you to import/export the following objects:

! Application views

! Connection factories (with descriptors as stored in the repository, not those
deployed from WebLogic Server)

! Schemas

! Namespaces

All exported objects for a given invocation of the utility are stored in a JAR archive.
When a previously exported JAR is imported, all objects in the JAR are imported, too.
You can also append objects to an existing exported JAR, and deploy Application
Views and connection factories on import.

Import/Export Methods and Command Line

The utility is available as an API and as a command-line tool. In both cases, the server
must be running. The following sections describe the command-line parameters and
the methods on the import/export utility.

Invoking the Import/Export Utility from the Command
Line

The following is the command-line syntax for the import/export utility:

Usage: ImportExport <server_URL> <username> <password> <file>
[-codepage=Cp<codepage_number>] [-dump=< <namespace> | <'Root'> >]
[-append] [-overwrite] [-deploy]
< [-export [object_name]*] | [-import [edit-on-import_filename]] >
B-2 Using Application Integration

Import/Export Methods and Command Line
The following table shows the command-line parameters for the import/export utility.

Parameter Description

server_URL URL of WebLogic Server. This is required only if you are
connecting from a remote client.

username Your username for the specified WebLogic Server. This is
required only if you are connecting from a remote client.

password Your password for the specified WebLogic Server. This is
required only if you are connecting from a remote client.

file Name of the file to be created on export or to be imported into
the repository.

-codepage Sets the codepage used when writing to the console. This insures
that characters are displayed correctly. The default value is
Cp437, which is used in the United States. Other valid values
include:
Cp850 Multilingual (Latin I)
Cp852 Slavic (Latin II)
Cp855 Cyrillic (Russian)
Cp857 Turkish
Cp860 Portuguese
Cp861 Icelandic
Cp863 Canadian-French
Cp865 Nordic
Cp866 Russian
Cp869 Modern Greek
MS932 Japanese

-dump Prints a list of all objects within both the specified namespace
and other namespaces nested within it. To print a list of objects
for the entire folder structure, specify Root.

-append Appends exported items to the file specified by file.

-overwrite Overwrites items already in the repository when import is being
performed.

-deploy Deploys the Application View or connection factory on
import.
Using Application Integration B-3

B Importing and Exporting Application Views
Editing on Import

When an edit-on-import file is specified, you can execute editing commands on the
text for objects to be imported. The resulting editing is done before the object is stored
in the repository or deployed. Otherwise, the method is used as described in �Importing
Objects.�

The document specified must conform to the following DTD:

<!ELEMENT ApplicationView (replace*)>
<!ATTLIST ApplicationView name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT ConnectionFactory (replace*)>
<!ATTLIST ConnectionFactory name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT Schema (replace*)>
<!ATTLIST Schema name NMTOKEN #REQUIRED

newName NMTOKEN #IMPLIED>

<!ELEMENT replace EMPTY>
<!ATTLIST replace xpath CDATA #REQUIRED

old CDATA #REQUIRED
new CDATA #REQUIRED

The edit-on-import document contains sections, indicated by the <ELEMENT> tag, for
each object to be edited. You can edit ApplicationView, ConnectionFactory, and
Schema objects. Each section identifies an object by name and specifies the elements
to be replaced. Optionally, each section can specify a newName attribute that can be
used to assign a new name to an object.

-export Specifies an export operation and the name of the objects to be
exported. Wildcards are allowed in object names. To export the
entire folder structure, include Root in the list of object names.

-import Specifies that objects contained in file should be imported
into the repository. If an edit-on-import file is specified, objects
are edited according to the instructions in the file. Edits are
performed before the object is added to the repository and before
deployment (if requested).

Parameter Description
B-4 Using Application Integration

Import/Export Methods and Command Line
Each replace element specifies the following:

! An xpath expression used to identify the nodes to be edited, among all the nodes
in the object�s XML descriptor

! An old value to search for in the selected nodes. The old value can be a Perl5
regular expression. If you specify an empty string ("") as the old value, all text
in the selected nodes is matched.

! A new value with which to replace the old value. The new value must be a
simple string.

Example Edit-on-Import Document

The following edit-on-import descriptor document describes how to edit an
Application View named DBMS.DBMS1 and rename it to DBMS.DBMS1a. The
XML document illustrates three replacements for the Application View and one
replacement for the connection factory.

<?xml version="1.0"?>
<!DOCTYPE edit SYSTEM "ImportExportEditOnImport.dtd">
<edit>

<ApplicationView name="DBMS.DBMS1" newName="DBMS.DBMS1a">
<replace xpath="/applicationView/@connectionFactory"

old=""
new="com.bea.wlai.connectionFactories.DBMS.

DBMS1a_connectionFactoryInstance"/>
<replace xpath="/applicationView/@connectionFactoryName"

old=""
new="DBMS.DBMS1a_connectionFactory"/>

<replace xpath="/applicationView/service[@name='Service1']/
interactionSpecProperty[@name='sql']"

old="CAJUN."
new="PBPUBLIC."/>

</ApplicationView>

<ConnectionFactory name="DBMS.DBMS1_connectionFactory"
newName="DBMS.DBMS1a_connectionFactory">
<replace xpath="/connection-factory-dd/jndi-name"

old=""
new="com.bea.wlai.connectionFactories.DBMS.

DBMS1a_connectionFactoryInstance"/>
</ConnectionFactory>

</edit>
Using Application Integration B-5

B Importing and Exporting Application Views
The first replacement edits the connectionFactory attribute of the Application View
descriptor and changes the text in this attribute to the new value. Note the use of an
empty string as the old value to match all text in the node.

The second replacement edits the connectionFactoryName attribute of the
Application View descriptor and changes the text in this attribute to the new value.

The third replacement edits the service descriptor for the service named Service1 and
changes the interactionSpecProperty element named sql by replacing CAJUN.
with PBPUBLIC. wherever it occurs.

The fourth replacement edits the jndi-name attribute of the connection factory
descriptor and changes the text in this attribute to the new value.

Using the Import/Export API

The following sections describe the methods included in the import/export API. The
class name for the import/export API is com.bea.wlai.client.ImportExport.

Connecting to the Server Instance

connect(<multiple signatures>)

The connect() method establishes a connection method with the server instance.
Depending on where you initiate connections, you may need to specify different
arguments for connect().

If you are initiating connections. . . Then you must specify these
arguments. . .

Within the same server No arguments

From a remote client without InitialContext URL (as a string), username, and
password

From a remote client with InitialContext InitialContext
B-6 Using Application Integration

Import/Export Methods and Command Line
Printing Objects in a Namespace

dumpNamespace(String namespaceName)

The dumpNamespace() method takes a string that represents the qualified name of a
namespace, and prints out all objects within that namespace, as well as any other
namespaces embedded in it.

Exporting Objects

exportNamespaceObjects(Set objectNames, boolean append, List errors)

The exportNamespaceObjects() method takes a list of object names (qualified
names as strings) and exports them to the specified output file (see �Specify File for
Import/Export�). All objects listed for export are examined for dependencies. Any
objects that are used but not owned by an Application View are also exported.

When an Application View is exported, the ConnectionFactory and all the Schema
objects on which the Application View depends are also exported. When a Namespace
is exported, all objects in the namespace (including other namespaces) are also
exported.

To append the exported file to an existing archive, or to overwrite or create the file, set
append to true.

Any nonfatal errors encountered during the export are stored as Exception objects in
the specified errors List object.

Importing Objects

importNamespaceObjects(boolean overwrite, boolean deploy, List errors)

The importNamespaceObjects() method takes all entries in the specified input file
(see �Specify File for Import/Export�) and imports them into the repository. Set
overwrite to true to overwrite existing metadata in the repository. Set deploy to true
to deploy connection factories and Application Views on import.

Any nonfatal errors encountered during the import are stored as Exception objects in
the specified errors List object.
Using Application Integration B-7

B Importing and Exporting Application Views
Importing and Editing Objects

importNamespaceObjects(IDocument editOnImportDoc boolean overwrite,
boolean deploy, List errors)

When an edit-on-import document is specified, the importNamespaceObjects()
method allows you to execute editing commands on the text for objects to be imported.
The resulting editing is done before the object is stored in the repository or deployed.
Otherwise, the method is used as described in �Importing Objects.�

The document specified in the editOnImportDoc argument must conform to the DTD
shown in �Editing on Import.�

Specify File for Import/Export

setFile(File filename)

The setFile() method designates the file to be used as the export destination or
import source.

Choosing Where to Print Messages

setPrintWriter(PrintWriter out)

The setPrintWriter() method designates a PrintWriter object to be used when
messages (such as status, diagnostic, and error messages) are generated.

Choosing Whether to Print Messages

setQuiet(boolean quiet)

The setQuiet() method specifies whether to print progress and information messages.
To print messages, set quiet to false. To disable message printing, set quiet to
true.
B-8 Using Application Integration

APPENDIX
C Modular Deployment
of Application
Integration

This section presents the following topics:

! Overview

! Deployment Components

! Deployment Configuration for Domains Outside the WebLogic Integration
Environment

! JMS Resources

Overview

In pre-7.0 WebLogic Integration environments, Application Views are usually created
and managed through a business process management (BPM) workflow. In a Release
7.0 environment, however, Web service developers using WebLogic Workshop need
to use Application Views to access enterprise information systems. The application
integration functionality of WebLogic Integration is packaged in an enterprise
application archive (EAR file) and is available to any valid WebLogic domain. The
following sections describe changes in the deployment process required for modular
deployment. For detailed information about deployment concepts and tasks, see
Deploying BEA WebLogic Integration Solutions.
Using Application Integration C-1

C Modular Deployment of Application Integration
Classpath Changes and Server Restart

You must add the wlai-core.jar file to the classpath for domains that are not based
on WebLogic Integration. To implement the change in the classpath, you must then
restart the server.

Repository

The application integration engine uses the repository for metadata persistence. The
application integration engine relies on a preconfigured repository and associated
JDBC connection pool and data source. For modular deployment, you must provide
the JDBC data source name and credentials at the time of deployment. The application
integration engine assumes that the repository has already been installed in the data
source.

JMS Resources

Application views use JMS resources to handle events and asynchronous service
invocations. To support these functions, Application Views use the following
resources: JMSConnectionFactory, JMSTemplate, JMSJDBCStore, and
JMSServer. In addition, the application integration engine defines a request and
response queue for handling asynchronous service invocations. There are two modes
of operation supported for determining which JMS resources to use.

! You provide the name of existing JMS resources for any or all of the following
resources:
" JMSConnectionFactory

" JMSServer

Note: If you provide the name for the JMSServer, you must also configure the
JMSJDBCStore.

! You do not provide the name of existing JMS resources. In this case, the startup
process uses JMS MBeans to define the necessary JMS resources. The full list of
JMS Resources used by the application integration engine is described in �JMS
Resources.�
C-2 Using Application Integration

Overview
Configuration

The application integration startup and shutdown classes are replaced by an Enterprise
JavaBean (EJB) named StartupBean. The EJB is deployed from
wlai-server-ejb.jar and is loaded on startup. On startup, the EJB initiates the
initialization sequence for the application integration engine. The initial parameters to
the StartupBean EJB serve as the configuration parameters for the application
integration engine. You can set these parameters using the standard EJB Descriptor
editing tool provided in the WebLogic Administration Console. The following table
lists the configuration parameters.

Property Name Default Value Description

wlai.logLevel warning Verbosity level for application
integration logging.

wlai.deploymentRepositoryRoot
Path

$PWD/wlai/deploy;
where $PWD is the present
working directory for
WebLogic Server

The location where the application
integration engine saves connection
factory deployment descriptors

wlai.hostUserID system A user identifier. Application
integration allows a remote event
router (deployed from a Web
application) to authenticate itself to
the WebLogic Server so that it can
post events.

wlai.hostPassword security The password for a user. Application
integration allows a remote event
router (deployed from a Web
application) to authenticate itself to
the WebLogic Server so that it can
post events.

wlai.jms.autogen true Flag that allows the application
integration startup process to
autogenerate JMS resources.

wlai.jms.serverName WLIJMSServer Name of the JMSServer on the local
WebLogic Server.
Using Application Integration C-3

C Modular Deployment of Application Integration
In the Application View Console, click on Server Configuration to view the
configuration parameters for the application integration engine. You can edit the
wlai.logLevel property on the Server Configuration page. All other parameters
must be edited using the WebLogic Administration Console.

Start and stop the application integration engine from the WebLogic Administration
Console by deploying and undeploying the WebLogic Integration application that
contains the application integration component.

Import/Export Utility

In previous releases, application integration data was migrated using the workflow
package import/export utility accessible from the WebLogic Integration Studio. To
support modular deployment, application integration provides a command-line
import/export tool for Application Views. For more information, see Appendix B,
�Importing and Exporting Application Views.�

Deployment Components

The following list describes the deployment components for application integration.

! wlai-core.jar

This jar file must be added to the WebLogic server classpath at startup. It
contains the following components:

wlai-core.jar
|__log4j.jar contents
|__logtoolkit.jar contents
|__xmltoolkit.jar contents
|__bea.jar contents
|__com/bea/wlai/*.dtd

wlai.jms.connectionFactoryJND
IName

com.bea.wlai.JMSCon
nectionFactory

JMS Connection Factory JNDI
context.

wlai.repositoryDatasourceName WLAI_DataSource JDBC data source name.
C-4 Using Application Integration

Deployment Components
|__com/bea/wlai/common/*.class
|__com/bea/wlai/message/*.class
|__xcci.jar contents

This jar file is also required for all clients of application integration.

! wlai-client.jar

This jar file contains all classes needed by clients of the application integration
engine, such as Application View clients and resource adapter design time Web
applications.

! wlai-server.jar

This jar file contains all classes needed only by server-side components and
should not be included in any adapter EAR files or clients.

! wlai-mbean.jar

This jar file contains the Application View MBeans and must be included on
the system classpath for WebLogic Server.

! wlai-server-ejb.jar

This jar file contains the base server classes and the management EJBs. This
jar file must be deployed before all other components of the AI engine. This
jar file contains the Startup EJB which initializes application integration.

! wlai.war

This war file contains the Application View Console Web Application and the
LifeCycleServlet for the application integration engine.

! wlai-eventprocessor-ejb.jar

This jar file contains the event processing message driven EJB for handling
application integration events.

! wlai-asyncprocessor-ejb.jar

This jar file contains the asynchronous service processing message driven EJB
for handling asynchronous service invocations.

! wlai-plugin-ejb.jar

This jar file contains all classes for the Application Integration Plug-in for
BPM.

! wlai-plugin.war

This war file contains the online help Web application for the Application
Integration Plug-in for BPM.
Using Application Integration C-5

C Modular Deployment of Application Integration
Deployment Configuration for Domains
Outside the WebLogic Integration
Environment

To deploy an application integration enterprise application outside a WebLogic
Integration domain, use wlai.ear. The EAR file contains the components shown in
the following diagram:

wlai.ear
|__META-INF
| |__application.xml (EAR file deployment descriptor)
|__wlai.war (Application View Console Web application)
| |__WEB-INF
| |__lib
| |__webtoolkit.jar
|__wlai-server-ejb.jar (Application Integration Management EJBs)
| |__Startup EJB
| |__ApplicationView EJB
| |__SchemaManager EJB
| |__DeployManager EJB
| |__ApplicationViewManager EJB
| |__NamespaceManager EJB
|__wlai-eventprocessor-ejb.jar
|__wlai-asyncprocessor-ejb.jar
|__ecibase.jar (ECI repository base classes)
|__ecirepository.jar (ECI repository classes)

You must add wlai-core.jar, wlai-server.jar, and wlai-mbean.jar to the
system classpath and restart WebLogic Server. You must also copy the
wlai-mbean.jar file to your WL_HOME\lib\mbeantypes directory where WL_HOME
is your Web Logic Server installation.

Once the wlai-core.jar has been added to the classpath, add the following
Application component to the config.xml file for the domain, or upload it from the
WebLogic Server Administration Console:

<Application Deployed="true" Name="WebLogic Application Integration"
Path="PATH_TO_EAR/wlai.ear">

<EJBComponent Name="WLI–AI Server" Targets="myserver"
URI="wlai-server-ejb.jar"/>
C-6 Using Application Integration

JMS Resources
<WebAppComponent Name="wlai"
Targets="myserver" URI="wlai.war"/>

<EJBComponent Name="WLI–AI Async Processor" Targets="myserver"
URI="wlai-asyncprocessor-ejb.jar"/>

<EJBComponent Name="WLI–AI Event Processor" Targets="myserver"
URI="wlai-eventprocessor-ejb.jar"/>

</Application>

Note: The deployment order is specified in the application.xml file for the
wlai.ear.

Note: The Application Integration Plug-In for BPM is not deployed from the
wlai.ear file for domains outside the WebLogic Integration environment.

JMS Resources

The application integration engine uses the following JMS resources:

! JMSServer

! JMSConnectionFactory

If the JMSConnectionFactory supplied by the user is not bound to JNDI
location com.bea.wlai.JMSConnectionFactory, the factory is cloned and
bound to com.bea.wlai.JMSConnectionFactory. As a result, internal
application integration components are guaranteed access to a
JMSConnectionFactory.

! Queues:

" WLAI_EVENT_QUEUE�Must be bound at com.bea.wlai.EVENT_QUEUE.

" WLAI_ASYNC_REQUEST_QUEUE�Must be bound at
com.bea.wlai.ASYNC_REQUEST_QUEUE.

" WLAI_ASYNC_RESPONSE_QUEUE�Must be bound at com.bea.wlai.
ASYNC_RESPONSE_QUEUE.

! Topics:

" WLAI_EVENT_TOPIC�Must be bound at com.bea.wlai.EVENT_TOPIC.
Using Application Integration C-7

C Modular Deployment of Application Integration
JMS Resource Configuration

The application integration engine automatically defines all required JMS resources if
you do not define them explicitly for a standalone server and for a cluster. The system
administrator can specify the following configuration parameters:

wlai.jms.serverName
wlai.jms.connectionFactoryJNDIName

In addition, the administrator has the option of disabling all autogeneration of JMS
resources, by specifying the following configuration parameter:

wlai.jms.autogen=false

This parameter prevents the application integration engine from attempting to
autogenerate any required JMS resources. If you specify it, you must define any
required JMS resources manually.
C-8 Using Application Integration

Index

A
Adapter Development Kit (ADK) 1-1
AI Async Response event 3-12, 3-15
AI Event events 3-23
AI Start events 3-19
application integration plug-in

AIGetErrorMsg() function 3-18
AIGetResponseDocument() function

3-19
AIHasError() function 3-17

Application View Console 5-1
application view events

adding 2-13
testing manually 2-28
testing with a service 2-25

application view folders
creating 5-3
removing 5-5

application view services
adding 2-11

application views
adding events to 2-13
adding services to 2-11
configuring connection parameters 2-9
deploying 2-15
editing 2-30
removing 5-4
security 2-18
testing events 2-24
users of 1-7
using by writing custom code 1-8

using in WebLogic Integration Studio
1-7

when to define 1-3
AsyncServiceResponse variable

in AIGetErrorMsg() 3-18
in AIGetResponseDocument() 3-19
in AIHasError() 3-17

B
business process management (BPM)

AI Async Response event 3-12, 3-15
using 3-1
when to use 1-8
with the application integration plug-in

3-12
business processes

in workflows 1-7
using custom code 1-8

C
connection parameters 2-9
custom code

for business processes
when to use 1-9
writing 4-1

for defining application views 1-4
Using Application Integration I-1

Customer Support -ix

D
documentation

how to print -viii
where to find it -viii

E
e-docs Web site -viii
events

See application view events

J
J2EE Connector Architecture Specification

-ix
Java

custom coding in 4-1

R
Related Information

J2EE Connector Architecture
Specification -ix

Sun Microsystems Java site -ix
WebLogic Server documentation -ix
XML Schema Specification -ix

request ID variables
when calling services 3-9
when receiving service responses 3-14,

3-16
response document variables

when receiving service responses 3-8,
3-10, 3-12

S
security 2-18
Studio

See WebLogic Integration Studio

Sun Microsystems -ix
Sun Microsystems, Inc. Java site -ix
support

technical -ix
synchronous application view services

calling 3-8

T
Target Fraction parameter 2-18

W
WebLogic Integration Studio

AI Async Response event 3-12, 3-15
using 3-1
when to use 1-8
with the application integration plug-in

3-12
WebLogic Server -ix

X
XML Schema Specification -ix
I-2 Using Application Integration

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to Application Integration
	Before You Begin
	Software Prerequisites
	Familiarizing Yourself with Basic Concepts

	Creating an Interface to an Adapter
	When to Define an Application View
	When to Write Custom Code

	Defining an Application View
	What Is Defined by an Application View Definition
	How to Define an Application View

	Using an Application View in a Workflow
	Using an Application View in the WebLogic Integration Studio
	Using an Application View by Writing Custom Code
	Choosing a Method for Implementing a Business Process

	Using an Application View with Web Services

	2 Defining an Application View
	Before You Begin
	High-Level Procedure for Defining an Application View
	Sample Detailed Procedure for Defining an Application View
	Step 1: Log On to the Application View Console
	Steps 2 and 3: Define an Application View and Configure Connection Parameters
	Step 4A: Add a Service to an Application View
	Step 4B: Add an Event to an Application View
	Step 5: Deploy an Application View
	Optional Step: Undeploy an Application View
	Step 6A: Test an Application View’s Services
	Step 6B: Test an Application View’s Events

	Editing an Application View

	3 Using Application Views in the Studio
	Before You Begin
	Workflow Setup Tasks

	Task 1: Set Up a Task Node to Call an Application View Service
	Steps for Setting up a Task Node to Call an Application View Service

	Task 2: Set Up an Event Node to Wait for a Response from an Asynchronous Application View Service
	Configuring Receipt of a Response
	Handling Errors in an Asynchronous Application View Service Response
	Procedure for Configuring Receipt of an Asynchronous Service Response (Preferred Method)
	Procedure for Configuring Receipt of an Asynchronous Service Response (Legacy Method)
	Functions Provided by the Application Integration�Plug-In

	Task 3: Create a Workflow Started by an Application View Event
	Steps for Creating a Workflow Started by an Application View Event

	Task 4: Set Up an Event Node to Wait for an Application View Event
	Steps for Setting Up a Node to Wait for an Application View Event

	Handling Application View Local Transactions in Workflows
	Local Transaction Management Contracts
	Connector Support for Local Transactions with No User Defined Transaction Demarcation
	Connector Support for XA Transactions

	4 Using Application Views by Writing Custom Code
	Scenario 1: Creating Connections with Specific Credentials
	Implementing ConnectionSpec
	Calling setConnectionSpec() and getConnectionSpec()

	Scenario 2: Custom Coding a Business Process
	About This Scenario
	Before You Begin
	Creating the SyncCustomerInformation Class
	Code for Sample Java Class

	5 Using the Application View Console
	Logging On to the Application View Console
	Creating a Folder
	Removing an Application View
	Removing a Folder

	A Migrating Application Integration Data
	Overview of Migrating Data
	Migrating Data Within a Single EIS Instance
	How an Application View Is Exported
	Example Application View Export
	Importing an Application View

	Migrating Data Within Multiple EIS Instances
	Example Application View Import

	Recommended Practices

	B Importing and Exporting Application Views
	Import/Export Utility
	Import/Export Methods and Command Line
	Invoking the Import/Export Utility from the Command Line
	Editing on Import
	Using the Import/Export API

	C Modular Deployment of Application Integration
	Overview
	Classpath Changes and Server Restart
	Repository
	JMS Resources
	Configuration
	Import/Export Utility

	Deployment Components
	Deployment Configuration for Domains Outside the WebLogic Integration Environment
	JMS Resources
	JMS Resource Configuration

	Index

