
BEAWebLogic®
Integration

Using Worklist

Version 10.2
Revised: March 2008

Using the Worklist iii

Contents

1. About Worklist
Key Terms in Worklist. 1-2

Worklist Scenario. 1-4

About Perspectives. 1-6

Selecting a Perspective . 1-6

Task Plan Perspective . 1-7

Process Perspective. 1-8

Page Flow Perspective . 1-8

2. Creating and Managing Worklist Task Plans
About Tasks and Task Plans . 2-2

Administrative and Working States . 2-3

Global Actions . 2-5

Worklist Properties . 2-6

Task Plan Properties . 2-7

System Properties . 2-8

User Properties . 2-8

Worklist Application . 2-9

Overview of Creating Task Plans . 2-11

Steps . 2-11

Actions and Connections . 2-12

Work Action. 2-12

iv Using the Worklist

Assign Action . 2-13

Return Action . 2-13

Assign to Next User . 2-13

Connections . 2-13

Constructors . 2-13

Candidate List Handling . 2-14

Load Balancing . 2-17

Steps in Creating a Task Plan. 2-17

Before you Begin . 2-17

Creating a Domain . 2-18

Configuring a Domain to Run WLI Business Process and Worklist 2-18

Configuring a Domain to Run Worklist . 2-18

Configuring a Server . 2-19

Starting Workshop for WebLogic Platform . 2-21

Creating a Worklist Application . 2-22

Creating a Task Plan . 2-25

Adding Steps and Actions to a Task Plan . 2-28

Defining a Constructor for the Task Plan. 2-30

Setting the System Properties of a Step . 2-31

Assignment Instructions . 2-31

Setting the System Properties of an Action . 2-34

Creating User Properties of the Task Plan . 2-35

Validating a Task Plan . 2-37

Importing a Task Plan . 2-38

Deploying a Task Plan . 2-39

Changing a Task Plan . 2-40

Using the Worklist v

3. Using and Customizing User Portal
About Worklist User Portal . 3-1

Customizing Worklist User Portal. 3-1

Login to Worklist. 3-2

4. Using Worklist Controls
About Worklist Controls . 4-1

TaskBaseControl. 4-2

Method-level Annotations for TaskBaseControl. 4-3

Task Control . 4-14

Method-level Annotations for TaskControl . 4-14

TaskBatch Control . 4-15

Merging Parameter Values with Annotation Values. 4-16

Creating Worklist Controls . 4-17

Creating a Task Control . 4-17

Creating a Task Control from the Select a Wizard Dialog 4-17

Creating a Task Control from the Data Palette in Process Perspective. 4-19

Creating a Task Batch Control . 4-22

Creating a Task Batch Control from the Select a Wizard Dialog 4-22

Creating a Task Batch Control from the Data Palette in Process Perspective . 4-23

Creating a Worklist Control Using Task Control Generator 4-24

Running the Task Control Generator . 4-25

Running the Task Control Generator from a Java Client or Command Line . . 4-26

Running the Task Control Generator from Ant. 4-26

Manually Creating Task Control and Task Batch Control . 4-28

Using Task and Task Batch Controls in Business Processes . 4-28

Creating a Business Process . 4-29

Invoking the Task Plan Constructor from the Business Process 4-33

vi Using the Worklist

Deploying and Validating the Business Process . 4-35

5. Worklist Event-based Services
Task Change Events . 5-1

Event Delivery Paths . 5-2

Events. 5-2

Controlling Events Per-Task Plan . 5-6

Event Dispatch Modes (Quality of Service) . 5-6

EventListener Interface . 5-7

Installing EventListeners . 5-14

Event Listener and Run-As Identity. 5-14

EventHandler Modules . 5-15

Event Handler File . 5-16

Deployment . 5-16

Event Handler Editors . 5-16

Default Event Configuration . 5-16

Default Reporting Store . 5-17

Task History . 5-17

Task History Provider . 5-18

Reporting Store Design . 5-21

Business Goals . 5-21

Database Schema . 5-22

Sample Queries . 5-23

Reporting Event Filtering . 5-25

Email Notification . 5-26

Specifying Actors for Email Notification . 5-26

Email Recipient Calculators . 5-27

EMail Delivery Mechanism . 5-30

Using the Worklist vii

Event Types . 5-30

Calculating Task URLs. 5-36

Email Templates . 5-36

Email Notification Configuration and EventHandler Modules 5-37

MessageBroker and JPD Integration . 5-37

Worklist Channel . 5-37

Event Types . 5-39

Message Header Fields. 5-39

MessageBroker Event Configuration and EventHandler Modules 5-42

Custom Task Event Listeners . 5-43

Custom Assignment Handlers . 5-43

6. Extending the Capabilities of your Application with Custom
Modules

Deploying Task Plans . 6-1

Deploying Schemas in your Application . 6-3

Deploying Event Handlers. 6-3

Deploying Custom Assignment Handlers . 6-6

Deploying Custom Event Listeners . 6-9

Deploying EMail Recipient Calculators . 6-13

Deploying Task URL Calculators . 6-15

Deploying Custom Task History Providers. 6-18

7. Using Worklist Console
Starting Worklist Console . 7-3

viii Using the Worklist

Using Worklist 1-1

C H A P T E R 1

About Worklist

WebLogic Integration Worklist provides mechanisms to interact with human actors from
WebLogic platform applications. Worklist is intended to complement BEA WebLogic
Integration™ Java Process Definition (JPD) component. JPD is intended to handle automated
business processes and does not directly concern itself with the nuances of human interaction.
Worklist extends the reach of the JPD component to include human actors where required.

JPD and Worklist components available with WebLogic Integration enables integration of
diverse systems, applications, and human participants. Worklist enables human interaction, via
the capability of assigning tasks to human users, with business processes. Based on the assigned
task, human users can perform actions on the tasks, which can trigger new task assignments to
other users or system events. This process flow depends on the higher level business processes.

Worklist may also be used in a stand-alone fashion. In this case, the Worklist User Portal becomes
the primary interface for the user into Worklist. Worklist manages tasks and updates them as
human users complete the steps needed to complete them.

Worklist enables modeling of task flow via a task plan. The main features of Worklist are:

A task plan which matches “real world” tasks that spans multiple logical steps and actions
required to complete the task. For more information, see Chapter 2, “Creating and
Managing Worklist Task Plans”

A web interface, called Worklist User Portal, that is modular and contains portlets. For
more information, see Chapter 3, “Using and Customizing User Portal”. This user portal
can also be customized and tailored to meet your specific requirements. For more
information, see Customizing Worklist User Portal.

http://edocs.bea.com/wli/docs102/userportalhelp/custominterface.html#wp1093721

About Work l i s t

1-2 Using Worklist

Task assignment and load balancing functionalities that can be used to schedule and assign
tasks to appropriate human users.

A task plan can include one or more steps. Each step represents a distinct phase in the completion
of the task. Human actors move tasks through their defined steps by taking actions on the task at
each step. Each step defines one or more actions from which the human actor can choose. Actions
include “work actions” that have an associated step to which the task will move when the action
is taken. This model allows a task to move through a set of defined steps in a manner dictated by
the actions taken on the task.

Tasks can be assigned to and claimed by a human actor, and can maintain a number of system
and user-defined properties representing data for the task. Human actors specify and alter
properties (both user and system) as the steps in a task are completed.

The steps and user properties for a task are defined by a Task Plan and apply to all instances of
tasks of that type. Task plans are defined by a Worklist designer prior to the creation of any
instance of the task plan.

Key Terms in Worklist

Term Definition

Task Represents a unit of work requiring one or more human actors to assist in its
completion.

Task Plan A description of the steps, properties, task assignment rules, and so on that are
common to a class of tasks for a given purpose. For more information, see
Chapter 2, “Creating and Managing Worklist Task Plans”.

Task Plan Host Application An application that hosts or deploys task plan modules and uses Worklist via a
Worklist system instance. In most cases, a Worklist application is also a task
plan host application.

Task Plan Path A hierarchical name representing a task plan's location in the abstract file
system for the task plan registry being used by a Worklist system instance. This
path is of the form /Folder1/Folder2/.../FolderN/TaskPlanFileName (minus
.task extension) and is derived from the location of the .task file in task plan
host application, relative to the application's root folder.

Task Instance A task instance created from a task plan. For more information, see “Creating a
Task Instance” in Worklist User Portal.

http://edocs.bea.com/wli/docs102/userportalhelp/worklistinterface.html

Key Te rms in Work l i s t

Using Worklist 1-3

Step A phase in the overall completion of a task. The steps for a task are defined by
the task plan for the task. Task assignment can occur at any step in a task. For
more information, see “Steps” on page 2-11.

Action A discrete operation that can alter the properties or working state of a task.
Some actions (work actions) cause a transition to another step defined for the
task (can be to the same or current step), whereas others (assign, return actions)
simply change the working state of the task. For more information, see “Actions
and Connections” on page 2-12.

User Property A named or typed data value associated with a task plan. A task plan may have
any number of properties to hold data that is required to define the state of a
task. All steps in a task plan share access to the same set of user properties. For
more information, see “User Properties” on page 2-8.

System Property A named or typed data value defined by Worklist for all tasks. Some system
properties can be edited while others cannot be edited. For more information,
see “System Properties” on page 2-8.

Assignee A human actor or group of actors that have been designated as candidates to
work on a task or tasks of a given task plan.

Claimant A single human actor who has assumed responsibility for completing a step for
a given task. An user with sufficient privileges can claim a task on behalf of
another user from Worklist Console. For more information, see “Claiming a
Task for a User” in Worklist Administration.

Administrative State A value that describes how the Worklist system is currently treating the task
instance. Active tasks are allowed to operate normally, whereas suspended tasks
cannot be interacted with (except to resume them). Tasks in an error state can
be interacted with in a limited way, or have their error state cleared. For more
information, see “Administrative and Working States” on page 2-3.

Working State A value describing the current association of a task with human actors who can
work on the task. Working state can be “Unassigned”, “Assigned”, or
“Claimed”. For more information, see “Administrative and Working States” on
page 2-3.

Worklist Application An application that makes use of Worklist via a Worklist system instance. In
most cases, a Worklist application hosts its own Worklist system instance, its
own task plans, and its own Worklist user portals. In this case, the Worklist
application is called a stand-alone Worklist application. For more information,
see “Worklist Application” on page 2-9.

Term Definition

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

About Work l i s t

1-4 Using Worklist

Worklist Scenario
In Worklist, a task plan can be modeled using the Workshop for WebLogic design-time
environment and then be deployed to run on the server. Once the task plan is deployed, the task
instances can be created either by authorized systems or human entities using Worklist Console.
Task Instances or tasks are based on the task plan and actions performed by employees or the
system.

Worklist User Portal provides facilities for Worklist users (not administrators/designers) and
allows them to see the tasks assigned to them or the groups they belong to. Worklist User Portal
allows users to claim tasks, take actions on them, and alter their properties.

The various stages in a typical Worklist scenario are:

1. Designers create a task plan using the design-time environment.

Stand-alone Worklist
Application

A Worklist application that hosts its own Worklist system instance, its own task
plans, and its own Worklist user and manager portals. By this definition, a
stand-alone Worklist application is a Worklist host application, task plan host
application, and Worklist portal host application. This is the most common type
of application for Worklist, and the type of application that Worklist
documentation advocates using in most cases.

Worklist Host Application An application that hosts a Worklist system instance. In most cases, a Worklist
application is also a Worklist host application.

Worklist Portal Host
Application

An application that hosts or deploys an instance of the Worklist portals. In most
cases, a Worklist application is also a Worklist portal host application.

Worklist System Instance An instance of the Worklist API and its implementation. A Worklist system
instance is configured to connect to a database instance hosting the Worklist
system tables. The tasks being managed by a Worklist system instance are the
tasks contained in the database instance. In addition, a Worklist system instance
can be configured with its own security policies, runtime configuration, and so
on.

Worklist Portal Instance An instance of the Worklist user portal. This is a web application that present a
WebLogic Portal user interface for interacting with a Worklist system instance
and the tasks it is managing.

Term Definition

Work l i s t Scenar io

Using Worklist 1-5

To address your business specific scenario using Worklist, the first step is to design the
tasks required by your organization and then use the Task Plan Editor to create and edit
task plans. The Task Plan Editor gives a graphical representation of the steps and actions
designed for the task. Since task plans are XML documents, you can also view the task
plan details by opening it with the XML Editor or the Text Editor in the Workshop for
WebLogic Platform IDE.

The Task Plan Editor provides a drag-and-drop editor for defining the steps of a task plan,
and then defining the properties of individual steps and actions in that model. In addition,
other Views in the Task Plan perspective are provided that allow you to edit the task plan
configuration. For more information, see “About Perspectives” on page 1-6.

After defining the task plan (.task file) using the Task Plan Editor, deploy it to the server
in order to use it.

For more information, see Chapter 2, “Creating and Managing Worklist Task Plans”.

2. Authorized entities create a task instance of the task plan using the Worklist User Portal. For
more information, see Chapter 3, “Using and Customizing User Portal”.

3. Users work on tasks associated with them from

– Worklist User Portal or a custom Task user interface (if a custom UI is developed for a
step in the task plan or the entire task plan).

Worklist User Portal allows users to see the tasks assigned to them, claim tasks, take
actions on tasks, and update the worklist properties (values) associated with the actions
they perform. Worklist User Portal is used by Worklist users, not administrators or
designers.

If Worklist User Portal does not meet the needs of a given task plan, a custom task user
interface can be designed and developed by a Developer and associated with the entire
task plan or just a step in the task plan. This ensures that the required user interface can
be designed without forcing the implementation of a completely new web user
interface. For more information, see Customizing the Worklist User Portal.

– A JPD business process (using methods in Worklist Task or Task Batch control). For
more information, see Chapter 4, “Using Worklist Controls”.

4. Authorized entities manage and monitor Worklist tasks, users, and the business calendar.
Worklist Console provides a navigation menu containing several modules for performing
focused operations. For more information, see Using Worklist Console.

For a sample Worklist scenario, see Tutorial: Building a Worklist Application

http://edocs.bea.com/wli/docs102/worklistadminhelp/index.html
http://edocs.bea.com/wli/docs102/worklisttutorial/index.html
http://edocs.bea.com/wli/docs102/userportalhelp/index.html

About Work l i s t

1-6 Using Worklist

About Perspectives
The window layout in the Workshop for WebLogic Platform IDE (Interactive Development
Environment) is called a perspective and can be extensively customized. Perspectives are
intended to provide related tools for performing specific tasks with specific resources. The initial
perspective is called the Workshop perspective (shown in the upper right corner of the window).
Several other useful perspectives are provided. You can switch perspectives at any time by
choosing Window > Open Perspective.

The Workshop perspective is the standard perspective for developing Java Platform, Enterprise
Edition (Java EE) Version 5 (Java EE) enterprise applications with Workshop for WebLogic.
Note the Package Explorer view at the left which allows you to move through the
projects/folders/files of your workspace.

Information panes (Views) in the workbench can be moved, torn off, displayed side by side,
stacked, minimized or maximized. Each file displayed in the editor can be maximized or
minimized to icons at the edge of the window (fast views). Menu bars and tool bars can be added,
removed or customized.

You can create and save your own perspectives. Workshop for WebLogic will also change the
perspective when you perform other tasks. For example, a different perspective is typically used
when creating a page flow or creating task plans.

For more information about Eclipse IDE features, access the Workbench User Guide from the
Online Help available from Workshop for WebLogic Platform IDE.

Selecting a Perspective
To select a perspective:

1. Click the icon at the top right corner of the screen. The Select Perspective dialog appears
(see Figure 1-1).

About Pe rspect ives

Using Worklist 1-7

Figure 1-1 Select Perspective Dialog Box

2. Select the perspective and click OK. Although, you can work in any required perspective,
Task Plan, Process, and Page Flow are perspectives that are relevant to working with
Worklist.

Task Plan Perspective
The Task Plan perspective contains the following Views:

Package Explorer

Palette

Editor

User Properties

Properties

Problems

Outline

Console

About Work l i s t

1-8 Using Worklist

Process Perspective
The Process perspective contains the following Views:

Package Explorer

Node Palette

Properties

Annotation

Data Palette

Problems

Navigator

Outline

Console

Page Flow Perspective
The Page Flow perspective contains the following Views:

Console

JSP Data Palette

JSP Design Palette

Merged Projects

Navigator

Outline

Page Flow Editor

Page Flow Explorer

Problems

Properties

Servers

About Pe rspect ives

Using Worklist 1-9

For more information, see The Page Flow Perspective in BEA Workshop for WebLogic Platform.

http://e-docs.bea.com/wlw/docs102/guide/webapplications/netui/conPageFlowPerspective.html

About Work l i s t

1-10 Using Worklist

Using Worklist 2-1

C H A P T E R 2

Creating and Managing Worklist Task
Plans

This section provides information about the following:

About Tasks and Task Plans

Administrative and Working States

Global Actions

Worklist Properties

Worklist Application

Overview of Creating Task Plans

Before you Begin

Creating a Worklist Application

Creating a Task Plan

Validating a Task Plan

Importing a Task Plan

Deploying a Task Plan

Changing a Task Plan

Creat ing and Manag ing Work l i s t Task P lans

2-2 Using Worklist

About Tasks and Task Plans
In Worklist, a task represents an activity that is assigned to a human user. The human user
oversees the progress of the task and ensures that it is completed in a correct and timely manner.
A task can include one or more steps, and one or more exit points (called terminal steps). Each
step represents a distinct phase in the completion of the task. Human actors move tasks through
their defined steps by taking actions on the task at each step. Each step defines one or more
actions from which the human actor can choose. An action called a “work action” has an
associated step to which the task will move when the action is taken. This model allows a task to
move through a set of planned steps in a manner dictated by the actions taken on the task.

A terminal step indicates the end of the effective lifetime of the task. Terminal steps can only be
reached via a work action taken by a user. Terminal steps can be marked to indicate normal
completion (via Complete Step) or abnormal termination (via Abort Step). A task plan must have
at least one terminal step.

Tasks can be assigned to and claimed by a human user. Tasks are associated with a set of
properties representing task data. Human users can specify and alter properties as the steps in a
task are completed.

The steps and properties for a given type of task are defined by a Task Plan and apply to all
instances of tasks of that type. All tasks of a given type are then governed by the plan defined for
that type of task. Task plans are defined by a designer prior to the creation of any task instance of
the type being governed by the plan.

All task instances, regardless of their associated task plan, have properties (called system
properties) like:

Unique identifier and human-readable name

Administrative State (Active, Error, Suspended, Completed, Aborted)

Working State (Unassigned, Assigned, Claimed)

Due Date

Claimant

In addition, the task plan associated with the task instance defines other elements of a task
instance. These include:

User Properties (Name, Type, Default Value, etc.)

Steps (Name, Assignee List, Available Actions, etc.)

Admin is t ra t ive and Work ing S ta tes

Using Worklist 2-3

Policies (Who can create and administer instances of this task plan)

Administrative and Working States
The Administrative state of a task is a value that describes how the Worklist system is currently treating the
task instance.The various administrative states are:

The Working state of a task is a value that describes the current association of the task with human actors
who can work on the task. The various working states are:

Table 2-1 Administrative States

Administrative State Description

Aborted Task instance completed abnormally. No further actions are allowed on
steps, and all properties are read-only. The task can be reactivated using the
Reactivate global action.

Active Task instance is active and can be interacted with. You can take actions on
your steps, set properties, and so on.

Completed Task instance completed normally. No further actions are allowed on steps,
and all properties are read-only. The task can be reactivated using the
Reactivate global action.

Error Task instance has encountered some technical error and cannot proceed
without administrative intervention. No actions are allowed on steps, but
task properties may still be modified. Other types of interaction are allowed
on this task only after using the ClearError global action.

Suspended Task instance is not yet complete (or aborted) but temporarily cannot be
interacted with (except to resume it). No actions are allowed on steps, and
properties are read-only.

Table 2-2 Working States

Working State Description

Assigned Task instance is associated with a list of candidate users who may potentially work
on the task. No user has taken responsibility for completing the task.

Creat ing and Manag ing Work l i s t Task P lans

2-4 Using Worklist

The coresponding database numeric value of the worklist task states are:

– Assigned: 0

– Claimed: 1

– Started: 2

– Suspended: 3

– Completed: 4

– Aborted: 5

Claimed Task instance is associated with a single human user who has taken responsibility
for completing the task. This user may later choose to complete the task or return it
(putting it back into the Assigned working state).

Unassigned Task instance is not associated with any human user who can work on the task

Table 2-2 Working States

Working State Description

Globa l Ac t i ons

Using Worklist 2-5

Global Actions
A number of global actions have been defined that affect the administrative state of the task.
These actions may be taken on any task instance regardless of task plan. The actions that effect
administrative state are:

Table 2-3 Global Actions

Operation Description

Abort Forcefully stop a task. This signifies that the task should be cancelled and should not
complete. This operation is performed by the claimant, an administrator, or the task
owner. State of the task becomes Aborted.

Assign Causes a task to move to the ASSIGNED state. The Assignees list must be set when
this operation is performed and specify which users can claim the task.

This operation can be performed on tasks in a final state, such as COMPLETED or
ABORTED. This allows you to work on the task again.

This operation can unassign or reassign a task. Assignment can be performed on a
single task instances multiple times throughout its life cycle. When assigning a task, an
algorithm must be specified to determine how to set the Assignees List. To learn about
the algorithms, see Assignment Algorithms.

This operation is performed by the task owner, task creator, an assignee, or an
administrator.

Claim Causes a task in the ASSIGNED state to become CLAIMED. A user that is on the
Assignees List is set as the claimant of the task. This signifies that a user on the
Assignees List has marked ownership of the task and intends to complete it. This
operation is performed by a user who wishes to become the claimant for a task, or by
an administrator or task owner on behalf of another user.

Clear Error Force a task instance that has been set into the error state back into the active state. This
action will fail if the current user is not an administrator or owner for the task.

Complete Causes a task in the STARTED state to become COMPLETED. It signifies that the
claimant has finished the work required to complete the task, or as much of the work as
is possible to do is finished. This operation is performed by the claimant, or by an
administrator or task owner on behalf of the claimant.

Create Creates a new task instance in the ASSIGNED state.

Delete Delete a task instance. This action will fail if the current user is not an administrator or
owner for the task.

Creat ing and Manag ing Work l i s t Task P lans

2-6 Using Worklist

Worklist Properties
Every task has a number of built-in properties, called the system properties. System properties
that can be edited may be specified when you define the task plan, steps and actions in the task
plan. In addition, you can define properties that are relevant to your task plan. These are called
user properties.

Reactivate Bring a task back from a terminal state. This action will fail if the current user is not an
administrator/owner for the task.

If the task was administratively completed or aborted, the value of the current step will
be the step the task was on when the task was aborted or completed. In this case, this
step will again be the current step after reactivation of the task instance.

If the task completed or aborted as a result of a user action, the final action or step fields
will be used to put the task instance back at the step from which the final action was
taken.

Resume Cause a SUSPENDED task to return to the state it was in prior to its suspension. This
operation is performed by an administrator or by the task owner.

Return Remove the current claimant for the task, and force the task back into the Assigned
working state. This action will fail if the current user is not an administrator/owner for
the task.

Set Error Force a task instance into the Error Administrative state. This action will fail if the
current user is not an administrator or owner for the task.

Start Causes a task in the CLAIMED state to become STARTED. It signifies that the
claimant is starting to work on the task. This operation is performed by the claimant, or
by an administrator or task owner on behalf of a claimant.

Stop Causes a task in the STARTED state to return to the CLAIMED state. It signifies that
the claimant is stopping work on the task, possibly temporarily. They can start it again
when they are ready to continue working. This operation is performed by the claimant,
or by an administrator or task owner on behalf of the claimant.

Suspend Causes a task to become SUSPENDED. It signifies that the task no longer progresses
and should not be worked on, possibly temporarily. The task can be resumed (using the
resume operation) when work should continue. This operation is performed by an
administrator or task owner.

Table 2-3 Global Actions

Operation Description

Work l i s t P roper t i es

Using Worklist 2-7

Task Plan Properties
When you design and develop the task plan, you can specify the following properties:

Table 2-4 Task Plan Properties

Property Description

Completion Due Date The business date and time by which this task must be completed. This is
specified as a time interval, and an optional business calendar name. If
there is no business calendar name given, the Worklist global system
calendar will be used in the date calculation. The business calendar is used
to calculate the absolute date by which the task must be completed.

The interval may define a number of days, hours and/or minutes in the D
days H hours M minutes format, where D is number of days, H is number
of hours, and M is number of minutes.

The completion due date of the task is generated based on the interval, and
the user or business calendar. For example, if the interval is specified as 10
days and the business calendar is selected. If current date is 1, and the next
5 days are busy based on selected business calendar, then the completed
due date for the task would be 15.

Description A description of the task plan

Owner Name Name of the User who created the task.

Time Estimate The estimated time (specified as a business calendar interval, for example,
3min2hour1day or 10 years 5 hours 3 seconds) required to complete the
task. This information is used by the default Worklist assignment handler
for load balancing. If specified, this value is used as a default value for the
time estimate setting on all the steps this task contains.

Version The version of the task plan. Default value is 1.0.

Creat ing and Manag ing Work l i s t Task P lans

2-8 Using Worklist

System Properties
Every task has a number of built-in properties (defined by Worklist and not any individual task
plan) that may be set from a constructor or action taken from a step. These properties (called
system properties) may be referenced in the property name list of an action or constructor by
prefixing the name of the system property with a system defined prefix.

Note: This prefix is locale-sensitive. In the US English locale, the prefix is 'sys:'.

Some of the system properties that can be edited are Task Name, Comment, Priority, Task
Completion Due Date, Task Time Estimate, Current Step Completion Due Date, and Current Step
Time Estimate.

User Properties
The user properties for a task consist of any number of name/type pairs that define data elements
that are maintained for any instance of the task plan. These data elements represent the data
passed between participants in completing a given task. A task plan may define any user
properties that make sense to help accomplish the goal of that type of task.

At runtime, Worklist administrators (and/or the Worklist API and task control) can modify the
properties (both user and system) of a task instance (including adding new user properties) as
needed. This is done by creating a copy of the task plan for the task, adding the user property, and
applying the new task plan to the task instance using the Set Task Plan global action. This
ability allows Worklist administrators to respond to special circumstances that may arise on a
per-task instance basis.

Terminal Task Retention The duration (specified as a business calendar interval, for example,
3min2hour1day or 10 years 5 hours 3 seconds) for which Completed or
Aborted tasks should be retained in the runtime store before becoming
eligible for purging. For more information, see “Purging Tasks” in
Worklist Administration.

Threshold Priority An integer value that, if specified, conditionally enables the use of user
availability information when performing load balancing during task
assignment. Availability checking is performed only for those task
instances that have a Priority value greater than or equal to the given
threshold value.

Table 2-4 Task Plan Properties

Property Description

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Work l is t App l i cat ion

Using Worklist 2-9

User properties may be defined with:

A name (unique within this task plan, maximum of 100 characters in length). See the
Requirements for Names Used in a Task Plan section for general guidelines on names.

Description

Default value

Data type

Worklist defines some system data types, and the system will support the addition of
user-defined data types (plugged in by implementing an SPI layer for the new data type).
The system data types are:

– String

– Integer

– Float

– Boolean

– URL

– Date/Time as java.util.Date

– Custom class as JavaBean

– List

– Typed XML as XMLBean class (extends XmlObject)

TaskMessage with MIME Type and Value (MIME Type can be changed dynamically, and
value is interpreted according to the MIME Type).

Worklist Application
A Worklist application consists of an EAR and a Web project, which contain all the files and
directories that relate to a single unit of work. Optionally, there can be a Utility folder for the
Worklist Application that contains the WebLogic System Integration and Control Schemas.

The EAR project corresponds to the Enterprise Application. You can build and deploy this
project to create the entire process flow of the enterprise. The task plan that you create is stored
under the EARContent folder in the <EAR project name> folder.

Creat ing and Manag ing Work l i s t Task P lans

2-10 Using Worklist

The Web project corresponds to the Web application of Worklist that acts as the user interface
for the system. The Web project is a part of the EAR project.

Note: <web project name> in this document refers to the name of this folder.

Worklist allows developers to define custom plugin classes of various types. For example,
developers can define custom assignment handlers by implementing
com.bea.wli.worklist.api.config.AssignmentHandler, or implement a custom task
event listener by implementing com.bea.wli.worklist.api.events.TaskEventListener.

The custom plugin classes must be placed in a utility project so that they are available from the
host application's class loader. In order to write these classes, developers need access to Worklist
API classes. To implement custom plugin classes, create a utility project to host the plugin code,
and then manually add the worklist-client.jar library to the build path of the project.

To add the worklist-client.jar library to the project build path:

1. In Package Explorer view, right-click on the Utility folder and select Properties. The
Properties for <utility folder name> dialog appears.

2. Select Java Build Path in the left navigation pane and select the Libraries tab (see Figure 2-1).

Figure 2-1 Add worklist-client.jar

Overv iew o f Creat ing Task P lans

Using Worklist 2-11

3. Click Add External JARs and navigate to the location of the worklist-client.jar file
(WebLogic installation directory/weblogic92/integration/lib). Select the file and click Open.

4. Click OK.

Now, your utility project should have access to Worklist API classes needed to write the plugin
implementation.

There are three Worklist application types:

Simple Client

This is a standalone Worklist application that hosts its own Worklist system instance, its
own task plans, and its own Worklist user and manager portals. By this definition, a
stand-alone Worklist application is a Worklist host application, task plan host application,
and Worklist portal host application. The simple client uses the Worklist API to interact
with Worklist.

Worklist System Host

This is an application that hosts a Worklist system instance. In most cases, a Worklist
application is also a Worklist host application. A Worklist system host defines task plans
and uses the Worklist User Portal to interact with Worklist.

Process Host

This is an application that hosts or deploys an instance of the Worklist portals. In most
cases, a Worklist application is also a Worklist portal host application. Process hosts define
WebLogic Integration processes and task plans and use Worklist controls to interact
programmatically with Worklist and the User Portal to interact with Worklist for human
actions.

Overview of Creating Task Plans
The steps and properties for a given type of task are defined by a Task Plan and apply to all
instances of tasks of that type. Every step (other than terminal steps including Completed Step
and Aborted Step) of a task plan can include actions, which allow the transition of the task
instance from one step to another. The actions can be taken by authorized employees or system
actors.

Steps
A step is a distinct phase in the life cycle of a task. A Worklist designer defines steps within the
scope of a task plan. A step represents a simple set of actions that can be taken to move a task

Creat ing and Manag ing Work l i s t Task P lans

2-12 Using Worklist

along in its processing. Terminal steps (Complete Step or Abort step) allow a step to be
terminated. A step has elements like:

Assignment Instructions – Optional instructions on how to assign the task (at this step) to a
human user who can help complete the task. Instructions include an assignee list (optional,
zero or more users/groups that may claim the step), a candidate list handling value that
controls how the candidates for claiming the task are prioritized, etc., and a flag for
enabling availability checking on users during the assignment process.

Actions (one or more actions the actor may take on the step)

You can select the steps from the Palette View, drag and drop it into the Task Plan Editor. You
can then actions to the step and also set the properties of the step. For more information, see
“Adding Steps and Actions to a Task Plan” on page 2-28.

Actions and Connections
Actions represent work a human user does or decisions that are made by a human user in a step
in the task instance. Users take actions that are defined for the current step in the task instance.
An action definition lives within a step, which in turn lives within a task plan. The various types
of actions in Worklist are:

Work Action

Assign Action

Return Action

Assign to Next User

You can select any of these steps from the Palette View in the Task Plan Perspective, drag and
drop the actions within the step in the task plan. For more information, see “Adding Steps and
Actions to a Task Plan” on page 2-28.

Work Action
Work Actions represent work the user has done or decisions they have made with respect to this
task. A work action causes the transition of a task from one step to another step. The step from
which the transition occurs is the step that contains the action. The step or terminal state to which
the transition occurs is named or identified within the action itself. Information about the work
done or decision taken is captured in properties for the task. Work actions define the data required
to complete the action (if any), and a description of what the action means, and under what
circumstances the human actor should take the action.

Overv iew o f Creat ing Task P lans

Using Worklist 2-13

Work actions can specify a number of properties that must be updated or specified when the
action is taken. This is the primary mechanism for updating the properties for a task.

Assign Action
Assign actions cause the task on which they are taken to be reassigned according to assignment
instructions defined for the action.

Return Action
Return actions cause the task to be “returned” to the Assigned Working state so that they may be
claimed by a different user at a later date.

Assign to Next User
AssignToNextUser actions works in conjunction with the “Iterate List” candidate list handling
and assigns the task to (and automatically claims it for) the ‘next’ user in the candidate list. For
more information, see “Candidate List Handling” on page 2-14.

Connections
Connections in the Palette View are used to specify the navigation of the steps and actions in the
task plan. The connections connect the connector with the first step in the task plan and also the
order in which the actions should be done.

Constructors
A task plan defines one or more constructors that are used to initialize new instances of the task
plan. A constructor defines:

A name for the constructor (required, and maximum length of 100 characters).

A set of property names indicating which properties of the task must be provided on
creation of a new instance of this task plan (optional). Each property may have an
associated description with respect to this constructor. Properties can be user or editable
system properties.

The name of a step to be made the start step for tasks initialized through this constructor
(required).

The properties defined for a constructor follow the same rules for properties listed on a work
action. That is, the constructor can reference properties defined on the task plan or the system
editable task properties.

Creat ing and Manag ing Work l i s t Task P lans

2-14 Using Worklist

Note: A task plan may define constructors that define no required properties. In addition, there
can be any number of such constructors.

Candidate List Handling
A task may be explicitly assigned to task or implicitly assigned to a task via a Assignee list. For
information about assigning a task from the Worklist Console, see “Assigning a Task to User or
Group” in Worklist Administration. For information about assigning a task from the Task Plan
Editor, see “Assignment Instructions” on page 2-31.

The assignment instructions contain the following:

A list of assignees (can be users or groups)

A flag indicating how the candidate list (resulting from expanding groups in the assignee
list to their individual user members and combining with users in the list) will be handled.

A flag indicating if availability checking should be applied if we are asked to perform load
balancing during assignment

The assignee list is evaluated to generate a list of candidate claimants for the task. The candidate
list is then evaluated. The possible scenarios of candidate list evaluation are given below. These
scenarios are based on the type of candidate list handling chosen. Valid values for candidate list
handling are:

None (no action is taken)

Default (simple handling)

Load Balancing (advanced handling)

Interactive (allows a human to guide the assignment process)

Iterate List (allows successive assignment to each user on the assignee list)

Table 2-5 Assignee List and Candidate Handling

Assignee List
Contents

Candidate List Handling Result

No assignees
given in step

None, Default, Load Balancing, Interactive,
or Iterate List

No action is taken.

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Overv iew o f Creat ing Task P lans

Using Worklist 2-15

A single
candidate user

None None

Default The task is automatically claimed for the user
(and the user becomes the claimant). The
claimant can later return the task if needed (at
which point the task must be reassigned to
choose another user as claimant). No
automatic claim action is performed when a
task is returned.

Load Balancing Same as Default

Interactive This flags the Worklist client to use the
Worklist API to perform interactive
assignment. That is the Worklist User Portal
or Custom Task UI (if defined) are used to
assign the task to a user.

Iterate List Handled the same as Default handling

Table 2-5 Assignee List and Candidate Handling

Assignee List
Contents

Candidate List Handling Result

Creat ing and Manag ing Work l i s t Task P lans

2-16 Using Worklist

Multiple
candidate users

None None

Default No workload calculation will be performed
for the list of candidate users, and the task
will not be claimed in the name of any user.
All the users on the candidate list will have an
equal opportunity or responsibility to claim
the task from the list of tasks they see as
assigned to them. An exception to this rule is
made if the task is currently claimed, and the
claimant is among the candidate users for this
step. In this case, the current claimant is
chosen as the new claimant for the task.

Load Balancing A load balancing algorithm is applied to
choose a single user from the candidate list to
work on the task. The task is automatically
claimed for the selected user (and the user
becomes the claimant). The claimant can
later return the task if needed (at which point
another user in the candidate list can claim
the task or the task can be reassigned). No
automatic load balancing or claim action is
performed when a task is returned. If the task
is currently claimed, and the claimant is
among the candidate users for this step, the
current claimant is chosen as the new
claimant for the task. In this case, the load
balancing algorithm is bypassed.

Interactive This flags the Worklist client to use the
Worklist API to perform interactive
assignment. That is the Worklist User Portal
or Custom Task UI (if defined) are used to
assign the task to a user.

Iterate List Initially claim the task for the first user in the
candidate list, and then subsequently (after
an AssignToNextUser action is taken) claim
the task for the next user in the candidate list.

Table 2-5 Assignee List and Candidate Handling

Assignee List
Contents

Candidate List Handling Result

Befo re you Beg in

Using Worklist 2-17

Load Balancing
When an assignee list yields a list of candidate users that contains more than one candidate, and
the candidate list handling type is set to “Load Balancing”, Worklist chooses a user based on that
user's workload and, optionally, availability. This behavior is called “load balancing”.

Since load balancing can be somewhat costly (especially when evaluating work load for a large
list of candidate users), Worklist allows the task administrator to specifically enable load
balancing on a step by step basis. Load balancing may be enabled by specifying the candidate list
handling type as LoadBalancing on the assignment instructions in the
WorklistTaskAdmin.assignTask() call, or on any step that specifies assignment instructions.

By default, load balancing does not take into account the user's availability (based on business
calendar). However, if this is required, checking can be turned on within the load balancing
process. Availability is calculated as a “score” where higher score values indicate greater
availability

Steps in Creating a Task Plan
1. Create a task plan folder.

2. Create a task plan.

3. Add one or more steps to the task plan.

4. Define the system properties of each step in the task plan.

5. Add one or more actions for each step in the task plan.

6. Define the system properties for each action in all the steps in the task plan.

7. Define any user properties for the task plan, if required.

8. Use Connectors to specify the sequence in which the steps and actions should be executed.

9. Create a Constructor for the task plan.

10. Validate the task plan.

Before you Begin
Before you start using Worklist, make sure that you:

Create a domain

Creat ing and Manag ing Work l i s t Task P lans

2-18 Using Worklist

Configure a server

Start BEA Workshop for WebLogic

Creating a Domain
You have the option to create a domain to:

– Configure a domain to run WLI (business process) and worklist

– Configure a domain to run only for worklist

Configuring a Domain to Run WLI Business Process and Worklist
You may create this domain using the Configuration Wizard. For more information, see Creating
a New WebLogic Domain in Creating WebLogic Domains Using the Configuration Wizard.

Configuring a Domain to Run Worklist
You may create this domain for running worklist application independently, without business
process support. To configure the domain perform the following steps:

1. Create a WebLogic Server domain in the Configuration Wizard.

2. From the Start menu, click All Programs > BEA > Tools > Configuration Wizard to start
the BEA WebLogic Configuration Wizard.

3. Select Extend an existing WebLogic domain and click Next. This displays the Select a
WebLogic Domain Directory Source page in the Configuration Wizard dialog box.

4. Select the WebLogic domain and click Next.

5. Select Extend my domain using an existing extension templete and click Browse.

6. Select workshop_wl_10.2.jar and click Ok.

7. Click Broswe, and select the p13n.jar.

8. Repeat the above steps and select wli_worklist.jar.

9. Accept the default settings in the Customize JDBC and JMS File Store Settings page and click
Next.

10. In the Extend WebLogic Domain page, click Extend.

11. Click Done, and the domain is configured.

http://edocs.bea.com/common/docs102/confgwiz/newdom.html
http://edocs.bea.com/common/docs102/confgwiz/newdom.html

Befo re you Beg in

Using Worklist 2-19

Configuring a Server
You need to configure a server on which you can deploy the worklist applications.

Note: If a server is not configured, and if you try to start Worklist Console from Workshop for
WebLogic Platform, you get the following error message:

To configure a server:

1. Select File > New > Other. The Select a Wizard dialog appears.

2. Click the icon next to Server and select Server. Click Next. The Define a New Server
dialog appears (see Figure 2-2).

Figure 2-2 Define a New Server

Creat ing and Manag ing Work l i s t Task P lans

2-20 Using Worklist

3. Select the host name of the server and server type. Retain default values for the rest of the
fields. Click Next.

The Define a WebLogic Server dialog appears (see Figure 2-3).

Figure 2-3 Define a WebLogic Server

4. Enter the path to the domain home. If required, click Browse to locate the domain. Click Next.

The Add and Remove Projects dialog appears (see Figure 2-4).

Befo re you Beg in

Using Worklist 2-21

Figure 2-4 Add and Remove Projects

5. Select any projects in the Available Projects list and click Add.

6. Click Finish.

The server is configured.

Configure a domain to run only for worklist

Starting Workshop for WebLogic Platform
To start the application:

1. Select Start > AllPrograms > BEA > WorkSpace Studio 1.1.

The Workspace Launcher dialog appears (see Figure 2-5).

2. Specify the folder in which all your projects should be stored. This folder is called the
Workspace.

Creat ing and Manag ing Work l i s t Task P lans

2-22 Using Worklist

Figure 2-5 Workspace Launcher

3. Click OK.

The BEA WorkSpace Studio IDE is displayed.

Creating a Worklist Application
A Worklist application consists of an EAR and a Web project, which contain all the files and
directories that relate to a single unit of work.

The EAR project corresponds to an Enterprise Application. You can build and deploy this project
to create the entire process flow of the enterprise.

The Web project corresponds to the Web application of Worklist that acts as the user interface
for the system. The Web project is a part of the EAR project.

To create a new Worklist application:

1. In BEA WorkSpace Studio, click File > New > Project.

The New Project dialog appears.

2. Click next to WebLogic Integration and select Worklist Application (see Figure 2-6).

Creat ing a Work l is t App l i cat ion

Using Worklist 2-23

Figure 2-6 New Worklist Project

3. Click Next.

The New Worklist Application dialog appears (see Figure 2-7).

Creat ing and Manag ing Work l i s t Task P lans

2-24 Using Worklist

Figure 2-7 New Worklist Application Dialog Box

4. Select the Worklist application type. For more information, see “Worklist Application” on
page 2-9.

5. Specify the name of the EAR project.

6. Specify the name of the Web project.

7. If required, select the Create Utility Project check box and specify the Utility project name.
This project will contain all the WebLogic Integration schemas.

8. Select the Add WebLogic Integration System and Control schemas in utility project
check box, this will create the WorklistEvent filter.

9. Click Finish.

If Task Plan perspective is not the current perspective, the Open Associated Perspective
dialog appears (see Figure 2-8).

Creat ing a Task P lan

Using Worklist 2-25

Figure 2-8 Open Associated Perspective? Confirmation Box

10. Select the Remember my decision check box and click Yes.

The Worklist application is created. In the Package Explorer pane, three project folders
(one folder each for the EAR project, Web project and the Utility project) are automatically
created and displayed.

The Task Plan perspective is now associated with the Worklist application. The Task
Plan icon appears on the top right corner of the BEA WorkSpace Studio window.

Creating a Task Plan
To create a task plan

1. In the Package Explorer pane, right-click the <EAR project folder name>\EarContent
folder, and select New > Folder.

The New Folder dialog appears.

2. Enter a folder name for the task plan and click Finish.

This task plan folder is created under the <EAR project folder name>\EarContent
folder.

3. Select the task plan folder and press Ctrl+N.

The New dialog appears.

4. Click next to WebLogic Integration and select Task Plan.

5. Click Next.

The New Task Plan dialog appears (see Figure 2-9).

Creat ing and Manag ing Work l i s t Task P lans

2-26 Using Worklist

Figure 2-9 New Task File Dialog

6. Specify the path to the task plan folder in the Container field.

7. Enter the name of the task plan.

8. Click Finish to proceed.

The task plan is created and opens in console where you can define the steps and actions for the
task. Task plan files (.task files) are placed directly in a WebLogic EAR project under its Content
folder. This folder name can vary depending on the project's configuration, but is generally
named EARContent.

To create a task plan to a Process Application

1. Create a Process Application.

2. Add Worklist facets to your Process Application by selecting Project > Properties > Project
Facets, from the BEA WorkSpace Studio menu (see Figure 2-10).

Creat ing a Task P lan

Using Worklist 2-27

Figure 2-10 Project Facets

3. Click Add/Remove Project Facets.

The Add/Remove Project Facets dialog appears.

4. Check the AquaLogic Core Facet and WebLologic Integration Worklist Application
Module check box under Project Facet to enable Worklist facet (see Figure 2-11).

Creat ing and Manag ing Work l i s t Task P lans

2-28 Using Worklist

Figure 2-11 Add/Remove Project Facets

5. Click Finsh.

6. Click Ok.

The facets are added to your project.

7. Complete the Steps in Creating a Task Plan.

Adding Steps and Actions to a Task Plan
A task plan is a collection of steps that define the actions a user needs to do when working on a
task. To add steps and actions to a task plan:

1. Double-click on the task plan file (*.task file) to add the steps.

2. From the Palette View, click Step and then drag and drop it anywhere in the <taskname>.task
tab.

The default name for a new step is Step#, where # is an incremental numeric value that
starts with 1 and changes depending on the number of existing steps in the task plan.

3. Select the step to set its system properties in the Properties View. For more information, see
“Setting the System Properties of a Step” on page 2-31.

4. Repeat step 2 and step 3 to define the required number of steps to your task plan.

Creat ing a Task P lan

Using Worklist 2-29

5. From the Palette View, click Action and then drag and drop it into a step.

The default name for a new action is Action#, where # is an incremental numeric value
that starts with 1 and changes depending on the number of existing actions in the step.

6. Select the action to set its system properties in the Properties View. For more information, see
“Setting the System Properties of an Action” on page 2-34.

Note: If required, you can create user properties for the task plan and define these user
properties for any of the actions. For more information, see “Creating User Properties
of the Task Plan” on page 2-35.

7. Repeat step 5 and step 6 to define the required number of actions to your step.

8. Repeat step 5 and step 6 to define all the actions for all the steps in the task plan.

9. Select Abort Step and Complete Step options in the Palette View and place then anywhere in
the task plan tab.

10. Click Connections in the Palette View and click the source action that you want to connect
to the target step or action. Press and hold the Mouse and point to the target step or action.
You will see a line that originates from the source action. Release the Mouse cursor at the
target step or action. The source and target are not joined by the connecting line.

After specifying the connection, a green tick appears against the source Action as shown in
the following figures. Connecting an action to another step or action specifies the order in
which steps and actions in the task plan should be executed (see Figure 2-12).

Figure 2-12 Connecting a Source Action to a Target Action

Note: You can also use self-transition to ensure that after the current action is complete, the
actions returns to the step. In Figure 2-12, after Action 3 in Step 1 is completed,
control returns to Step1. Double-click an Action to enable self-transition.

11. Repeat step 10 to connect all the actions in the task plan.

12. Save the task plan.

All Steps and actions are added to the task plan. You need to define a constructor for the task plan.

Creat ing and Manag ing Work l i s t Task P lans

2-30 Using Worklist

Defining a Constructor for the Task Plan
In a task plan, there is at least one constructor that defines how a task instance comes into
existence. A constructor for a task plan lists the initial data to be provided for the creation of a
task instance as well as the resulting step of the task instance. Each constructor needs to have a
step associated with it. There may be more than one constructor for a task plan.

Note: Constructors can be invoked by authorized users or system actors, so that the task
instances can be created either by human data entry or system execution in a process.

To define a constructor:

1. Click Constructor on the Palette tab and drop it in the Constructor container of the task plan
tab.

2. Specify the system properties for the constructor. For more information, see “Setting the
System Properties of an Action” on page 2-34.

3. If required, specify any user properties defined for the task plan. For more information, see
“Creating User Properties of the Task Plan” on page 2-35.

4. Click Connection in the Palette View to connect the Constructor to the required step in the
task plan (see Figure 2-13).

Figure 2-13 Task Plan

You can also view the task plan in the Outline View (see Figure 2-14).

Creat ing a Task P lan

Using Worklist 2-31

Figure 2-14 Task Plan in Outline View

Setting the System Properties of a Step
You can set any of the following properties for a step:

User or group to whom the step should be assigned

Date on which the step should be completed

Description associated with the step

Name of the step

Return Step can be set to True or False. If True, the Return action causes the task to be
returned, thus returning it to the Assigned Working state so that it may be claimed by a
different user at a later date.

Estimated time taken to complete the step in the task.

Figure 2-15 System Properties of a Step

Assignment Instructions
Steps define assignment instructions to control who can claim instances of its parent task plan,
when those instances are on this step. At any given time, a task instance may be claimed by at

Creat ing and Manag ing Work l i s t Task P lans

2-32 Using Worklist

most one human actor. Thus, the assignment instructions for the current step (if present)
effectively become the assignment instructions for the whole task instance.

The actor that claims a task instance is called the 'claimant' for the task instance. This actor may
be designated by name, by group or by role. A human actor must be either one of the named
actors, or belong to one of the named groups, or be granted the named role, in order to claim the
step.

To set the system properties of a step, do any of the following:

1. To assign the current step to any existing user or group, select Assignment Instructions and
click in the Value column. The Assignment Instructions dialog appears.

a. Click Add and enter the user or group name in the Name column.

b. In the Type column, select User or Group.

c. In the Candidate List Handling field, select the type of handling to be applied while
assigning the step to the specified users or groups. For more information about candidate
list handling, see “Creating a Task Plan” on page 2-25.

d. Select or clear the Enable Avail Checking check box only when you select
Load_Balancing as the Candidate List Handling method for the step.

e. Click OK. The specified user or group is assigned to the current step in the task based on
the candidates associated with the step will be handled.

Figure 2-16 Assignment Instructions

2. Select Completion Due Date and click . The Completion Due Date dialog appears.

a. Enter the number of days, hours, and minutes required to complete the current step in the
task.

Creat ing a Task P lan

Using Worklist 2-33

b. Specify a calendar to associate a business calendar with the due date. The number of days
required to complete the days is calculated based on the number of free and busy days in
the calendar.

c. Select a user name to use the calendar associated with user to calculate the due date.

d. Click OK.

The interval may define a number of days, hours and/or minutes in the D days H hours M
minutes format, where D is number of days, H is number of hours, and M is number of
minutes. The completion due date of the task is generated based on the interval, and the user or
business calendar.

Figure 2-17 Completion Due Date for the Step

3. Select Description and click . The Description dialog appears (see Figure 2-18).

a. Enter a brief description for the step.

b. Click OK.

Figure 2-18 Step Description

4. Select Name and enter a meaningful name for the step.

5. Select Return Step and select True or False. If True, the task is returned, thus returning it to
the Assigned Working state so that it may be claimed by a different user at a later date.

Creat ing and Manag ing Work l i s t Task P lans

2-34 Using Worklist

6. Select Time Estimate and click . The Time Estimate dialog appears.

a. Estimate the days, hours and minutes required to complete the step.

b. Click OK.

Figure 2-19 Time Estimated for the Step

The system properties are now set. If required, click the icon to restore the default system
properties for the step. You can restore to the default values only if you did not save the task plan.

Setting the System Properties of an Action
You can set the following system properties for any action:

Table 2-6 System Properties of an Action

Property Name Description

Name Name of the action.

Description A brief description of the action.

Next Step The next step that should be done after completing the current action.

Current Step Claim Due Date The date by which the current step should be claimed by any user.

Current Step Completion
Due Date

The date by which the current step should be completed.

Is Owner Group When set to true implies that the value specified in the Owner property refers
to a group.

Owner The owner of the task.

Priority The priority of the task. This is an integer value that, if specified, conditionally
enables the use of user availability information when performing load
balancing during task assignment. Availability checking is performed only for
those task instances that have a Priority value greater than or equal to the given
threshold value.

Creat ing a Task P lan

Using Worklist 2-35

Creating User Properties of the Task Plan
User properties are business-specific data elements of a task plan. User properties are global and
apply to all the steps throughout the life cycle of the task plan. In WLI 10.2, Enumeration (List)
Data type user properties is available to task properties.

To create user properties:

1. From the User Properties View, click the Create user property icon (see Figure 2-20).

Step Time Estimates The estimated time (specified as a business calendar interval, for example,
3min2hour1day or 10 years 5 hours 3 seconds) required to complete the current
step in the task. This information is used by the default Worklist assignment
handler for load balancing. If specified, this value is used as a default value for
the time estimate setting on the current step in this task.

Task Completion Due Date The business date and time by which this task must be completed. This is
specified as a time interval, and an optional business calendar name. If there is
no business calendar name given, the Worklist global system calendar will be
used in the date calculation. The business calendar is used to calculate the
absolute date by which the task must be completed.

The interval may define a number of days, hours and/or minutes in the D days
H hours M minutes format, where D is number of days, H is number of hours,
and M is number of minutes.

The completion due date of the task is generated based on the interval, and the
user or business calendar. For example, if the interval is specified as 10 days
and the business calendar is selected. If current date is 1, and the next 5 days are
busy based on selected business calendar, then the completed due date for the
task would be 15.

Task Name Name of the task.

Task Time Estimate The estimated time (specified as a business calendar interval, for example,
3min2hour1day or 10 years 5 hours 3 seconds) required to complete the task.
This information is used by the default Worklist assignment handler for load
balancing. If specified, this value is used as a default value for the time estimate
setting on all the steps this task contains.

Table 2-6 System Properties of an Action

Property Name Description

Creat ing and Manag ing Work l i s t Task P lans

2-36 Using Worklist

Figure 2-20 User Properties Tab

The Create User Property dialog appears (see Figure 2-21).

Figure 2-21 Create User Properties for Task Plan

2. Enter the name and description of the user property.

3. Select the data type of the user property from the Type drop-down list.

The data type can be Boolean, DateTime, Float, Integer, JavaBean, String,
URL,List,or XMLBean. If you select DateTime, JavaBean, or XMLBean in the
VariantInfo field, enter the format in which the property should be specified. For
example, mm/dd/yyyy ‘at’ hh:mm:ss can be the date and time format.

Val ida t ing a Task P lan

Using Worklist 2-37

For creating List data type, the information entered in the Enum Values field should be
separated by a (,) (see Figure 2-22). For example: yes, no, neutral, no comments. Once the
user property of this type is created , the default value edited in the Properties view for List
data type will have similar behavior of other data types.

Figure 2-22 Create User Property (List Data Type)

4. If required, enter the default value of the user property.

5. Click OK.

The user property is created.

Validating a Task Plan
The final stage in designing and deploying the task plan is to validate if the task plan is working
according to the required enterprise model specification.

Note: For the task plan to be deployed successfully, version of the task plan should be 1.0.
Verify that the task plan version in the Properties View is 1.0.

Creat ing and Manag ing Work l i s t Task P lans

2-38 Using Worklist

To validate the task plan:

1. Click Worklist > Validate Task Plan for Runtime.

2. If the task plan is valid, then the Validation Results dialog appears as shown in the following
figure.

If the task plan is invalid, the error details are displayed in the Validation Results dialog
(see Figure 2-23). Fix the errors and re-validate the task plan.

Figure 2-23 Validate Task Plan

3. Click OK to confirm.

4. Select File > Save All to save the application.

If required, you can modify the layout of the task plan by selecting Worklist → Automatic Layout.

Importing a Task Plan
To import an existing task plan into the current workspace:

1. In BEA WorkSpace Studio, select File > Import.

The Import dialog appears.

2. Under Select an import source, expand General and select Existing Projects into Workspace
as the import source and click Next.

The Import Projects dialog appears.

3. Specify the root directory in which the project is located.

4. Select the projects that you want to import.

5. Click Finish.

The task plan is imported into the current workspace.

Deploy ing a Task P lan

Using Worklist 2-39

Note: In the Import dialog, you can also select File System as import source. The File System
dialog appears. Specify the path to the task plan, select the projects that you want to
import, specify the parent folder into which you want to import the file system. Click
Finish to import the task plan.

Deploying a Task Plan
Once the task plan is modeled completely, you can deploy it on WebLogic Integration Server.

To deploy the task plan:

1. In the Package Explorer View, right-click on the <web project name> folder and select Run
As → Run on Server. The Run on Server dialog appears.

2. Specify the server on which you want to deploy the task plan. You can choose an existing
server or manually define a new server. For more information about defining a server, see
“Configuring a Server” on page 2-19.

Figure 2-24 Run on Server

3. To choose an existing server, from the Select the server that you want to use: list, select the
server on which you want to deploy the task plan and click Next. The Add and Remove
Projects dialog appears.

Creat ing and Manag ing Work l i s t Task P lans

2-40 Using Worklist

4. Select the project in the Available projects list and click Add. The selected project is listed in
the Configured projects list.

Figure 2-25 Add or Remove Projects Configured on the Server

5. Click Next. The Select Tasks dialog appears.

6. Click Finish.

The selected project is deployed on the specified server.

It will take some time to deploy the project on the server. After the task plan is deployed
successfully, it opens up on the Worklist User Portal within the Workshop for WebLogic
environment.

Changing a Task Plan
You can change a task plan as and when required. Make sure that you re-deploy the task plan after
you change the task plan.

To change a task plan:

Changing a Task P lan

Using Worklist 2-41

1. From Package Explorer, navigate to the location of the task plan.

2. Right-click on the task plan and select Open With > Task Plan Editor.

3. Make the required changes and save the task plan. For more information, see “Creating a Task
Plan” on page 2-25.

The task plan is changed.

Note: After you update the task plan, re-deploy the task plan. For more information, see
“Deploying a Task Plan” on page 2-39. The updated changes are only reflected in task
instances that you created after you re-deployed the task plan.

Creat ing and Manag ing Work l i s t Task P lans

2-42 Using Worklist

Using Worklist 3-1

C H A P T E R 3

Using and Customizing User Portal

Worklist provides a web-based user portal for interacting with tasks. This portal allows users to
see the details of a task and take actions on the task to move it through its lifecycle. Each step in
a task plan can define unique actions and thus present its own unique considerations to the user.

About Worklist User Portal
Worklist User Portal is an all-purpose user interface that uses the metadata for steps and actions
to render an interactive interface at each step. The user interface for a given step and action will
differ from the user interface for other steps and actions by virtue of the differences in the
metadata for those steps and actions.

Worklist User Portal is a part of the Worklist domain and provides an interface for Worklist users
to manage task instances that they are authorized to deal with. This portal provides basic
out-of-the-box functionality for creating, monitoring, and updating tasks.

Worklist User Portal can be used by two types of users: an administrator kind of user and a normal
user. The functions that these users can do differs based on permissions.

Customizing Worklist User Portal
Worklist User Portal is an all-purpose user interface that uses the metadata for steps and actions
to render a usable interface at each step. The user interface for a given step and action will differ
from the user interface for other steps and actions by virtue of the differences in the metadata for
those steps and actions. For example, when rendering the user interface at a given step, the
Worklist User Portal shows the description and actions the task plan designer defined for that

Using and Customiz ing User Po r ta l

3-2 Using Worklist

step. Worklist User Portal has only this information to work on when rendering the user interface,
and cannot account for any more subtle needs a user may have with regard to this step (For
example, summary information that would be needed to enter a value for an action's required
properties, or calculations that may be applied to individual task properties to derive the result
value for a property)

In some cases, like the previous examples, a given step or the actions that can be taken on that
step may require a customized user interface. Worklist accounts for this need for extensibility by
allowing a web developer to design a custom web user interface to be used for a given step, or an
entire task plan. This custom web user interface is called a Custom Task User Interface. Custom
Task UI allows a web developer to design custom pages only where needed, and still use the
facilities of the default Worklist User Portal everywhere else. This allows a gradual investment
in the customization of the user portal, instead of requiring a wholesale replacement of the
Worklist User Portal interface.

A custom interface can be designed for just a step in a task plan or for the entire task plan.

Login to Worklist
To login to Worklist User Portal:

1. Open a Web browser and enter the following URL:

http://localhost:7001/<web project name>/

The Web project corresponds to the Web application of Worklist that acts as the user
interface for the system. For more information, see “Worklist Application” on page 2-9.
You can use any external browser, for example Internet Explorer, or the default browser
that comes with Workshop for WebLogic Platform.

Worklist User Portal is displayed.

Note: E-mail notifications regarding tasks associated with you contain the URL to the
specific task instances. You can also click on this URL to access the task in the
Worklist User Portal.

2. In the Login to Worklist portlet, enter your user name and password.

Log in to Work l i s t

Using Worklist 3-3

Figure 3-1 Login to Worklist User Portal

3. Click Login.

Assigned, upcoming, overdue tasks associated with you are displayed in the appropriate portlet
in the User Portal home page. Task plans based on which you can create task instances are
displayed in the Create task portlet.

Figure 3-2 Worklist User Portal Home Page

Note: After you are done, click Logout to exit from Worklist User Portal.

Additional Information
For more information about User Portal and customizing the User Portal, see Using Worklist
User Portal.

The following table summarizes the tasks associated with using and customizing the user portal.

http://edocs.bea.com/wli/docs102/userportalhelp/index.html
http://edocs.bea.com/wli/docs102/userportalhelp/index.html

Using and Customiz ing User Po r ta l

3-4 Using Worklist

Modules Associated Tasks

User Portal For information about each of the following, see Worklist User Portal in
Using Worklist User Portal:
• Portlets in Worklist User Portal
• Creating a Task Instance
• Creating a Task Instance Associated with an Interactive Assignee List
• Viewing Upcoming Tasks
• Viewing Assigned Tasks
• Claiming a Task Instance
• Working on a Task Instance
• Viewing the Task Instance Details
• Searching for a Task
• Browsing Tasks based on Task Plan
• Viewing Overdue Tasks
• Task List Page
• Deleting a Task Instance

Custom User Portal For information about each of the following, see Customizing Worklist
User Portal in Using Worklist User Portal:
• Typical Workflow
• Implementing the Custom Task UI Page Flow
• Creating a Page Flow
• Creating Form Beans
• Defining Actions on a Page Flow
• Defining JSP Pages
• Registering the Custom Task UI
• Deploying the Custom Task UI

http://edocs.bea.com/wli/docs102/userportalhelp/worklistinterface.html
http://edocs.bea.com/wli/docs102/userportalhelp/custominterface.html
http://edocs.bea.com/wli/docs102/userportalhelp/custominterface.html

Using Worklist 4-1

C H A P T E R 4

Using Worklist Controls

Java Controls are server-side components managed by the Workshop framework. Controls
expose Java interfaces that can be invoked directly from business processes. In other words,
controls are the interfaces between your business processes and other resources.

This section describes the built-in controls provided for Worklist that support the integration of
business users with business processes. It includes the following topics:

About Worklist Controls

Creating Worklist Controls

Using Task and Task Batch Controls in Business Processes

About Worklist Controls
Worklist provides two Java controls: TaskControl and TaskBatchControl. You can use
Business Process and these Worklist controls to support the integration of human actors and
automated actors. Automated actors interact with the JPD and human actors interact with the
Worklist User Portal.

As with other built-in controls in Workshop for WebLogic Platform, you use the controls by
adding instances of the controls to your business process. Subsequently, you invoke operations
on the controls at the point in the business process at which you want to integrate the
business-user logic.

The underlying control implementation takes care of most of the details of the interaction for you.
Business processes invoke operations on the controls using Control Send and Control Send

Using Work l i s t Cont ro ls

4-2 Using Worklist

with Return nodes. Business processes can block at Control Receive nodes waiting for
events to be returned from controls. In other words, Control Receive nodes are triggered by
control callbacks. Business processes can use a TaskControl or TaskBatchControl to change
a task and also wait for a task (via a TaskControl) to be changed by a human actor. You can
extend Worklist controls through Java annotations. Common extensions include implementing
callback functions and performing system queries.

Worklist provides the following controls:

TaskBaseControl—provides the built-in control methods and annotations that are
common to both TaskControl and TaskBatchControl.

Note: This control is a base class for the other Worklist controls and is never used directly
by Worklist clients.

TaskControl—simplifies working with a single task instance via the low-level Worklist
API. This control extends TaskBaseControl and thus supports all the methods and
annotations supported by TaskBaseControl.

TaskBatchControl—simplifies working with a batch or group of task instances via the
low-level Worklist API. This control extends TaskBaseControl and thus supports all the
methods and annotations supported by TaskBaseControl.

These controls provide simplified construction and initialization of Worklist API resources.
These controls are extensible controls that allow you to define extension interfaces containing
new methods beyond those on the generic control interface. The new methods of these controls
can be annotated to attach Worklist behaviors to them.

TaskBaseControl
TaskControl and TaskBatchControl extend from TaskBaseControl, which provides the
built-in control methods and annotations that are common to both TaskControl and
TaskBatchControl. It provides the following built-in methods:

String createTask(TaskCreationXMLDocument doc)

TaskType getTaskType(TaskType.ID taskTypeId)

TaskBaseControl does not allow any control-level annotations. However, it provides the
following method-level annotations, which allow you to assign one or more Worklist behaviors
to the methods on a control extension:

create

About Work l i s t Cont ro ls

Using Worklist 4-3

assign

take an action

get properties (built-in or user-defined)

set properties (built-in or user-defined)

set error

claim

return

suspend

resume

complete

abort

delete

Method-level Annotations for TaskBaseControl
The various annotations are:

Annotation
Name

Description Fields that Support Parameters

TaskCreate
Annotation

Causes the method attached to this annotation to create
a new task using the configuration values in this
annotation. This annotation causes the setTaskId()
method to be called if the control is a TaskControl
extension (giving the ID of the newly created task).

name, comment, description,
priority, owner, timeEstimate

TaskPlanID
Annotation

The ID of the application hosting the Worklist system
instance whose registry contains the task plan for the
new task. If not specified, this will default to the name
of the application that contains this control instance.

path, version,
worklistHostApplicationId

TaskUpdate81
x Annotation

Backward compatibility for 81x use only.

Causes the method attached to this annotation to update
a task using the configuration values in this annotation.

Using Work l i s t Cont ro ls

4-4 Using Worklist

ContainerHan
dleAnno
Annotation

type, subtype, instance

DateTimeSpec
Annotation

Absolute date/time in the default date/time format for
the current locale (will be parsed with
DateFormat.getDateTimeInstance().pars
e(). Mutually exclusive with businessTime. If
businessTime is specified, this is ignored.

Note: This field supports parameters so you can
specify a method parameter that holds a
pre-parsed or calculated java.util.Date
or java.util.Calendar instance.

absoluteTime

BusinessTime
Anno
Annotation

Represents an abstract business date and time by
defining a time duration from a (as yet unknown)
reference time. This duration may optionally be
calculated using a business calendar thus allowing a
discontinuous set of time segments to be calculated
whose total duration matches the given duration. The
end time of the last such segment is taken as the
effective business date/time for this BusinessTime.
The time segments are placed such that they fall within
the boundaries of 'available' time on the business
calendar.

duration, calendarName

StepTimeEsti
mate
Annotation

Estimate in Interval string format, such as 3d4h5m stepName, estimate

AssignmentIn
structionsAnn
o Annotation

Describes instructions for assigning a task to human
actors.

AssignmentIn
structions81x
Annotation

Describes instructions for assigning a task to human
actors in 8.1.x terms.

AssigneeDefin
itionAnno
Annotation

Used from within
AssignmentInstructionsAnno to define the list
of assignees.

name

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-5

PropertyValue
Annotation

Provides a single value for a single property with a
given name.

name, value

TaskAssign
Annotation

Causes the method for this annotation to stimulate the
assignment of one or more task instances given the
defined assignment instructions

TaskAssign81
x Annotation

Backward compatibility for 81x only.

Causes the method for this annotation to stimulate the
assignment of the task instances given the defined
assignment instructions.

TaskStart81x
Annotation

Backward compatibility for 81x only.

Causes the method for this annotation to take the
Start action on the CLAIMED step of a task based on
the Compatibility 8.1.x task plan.

TaskStop81x
Annotation

Backward compatibility for 81x only.

Causes the method for this annotation to take the Stop
action on the STARTED step of a task based on the
Compatibility 8.1.x task plan.

TaskTakeActi
on Annotation

Causes the method for this annotation to take the given
action on the current step of this task instance. The
named action may be a Work action, an Assign action,
or a Return action.

name

Annotation
Name

Description Fields that Support Parameters

Using Work l i s t Cont ro ls

4-6 Using Worklist

TaskGetData
Annotation

Causes the method for this annotation to retrieve the
TaskData from one or more task instances for this
control. The method attached to this annotation will
return a TaskData object.

Do not use this annotation in conjunction with other
annotations that return values, as annotations will
compete and collide in returning values; only one
return value can be provided from the method.

If the return type of the method attached to this
annotation is not assignment compatible with
TaskData a ClassCastException will be thrown
at runtime.

If this control manages more than one task instance, the
method attached to this annotation will return an array
of type TaskData[].

TaskGetInfo
Annotation

Backward compatibility for 81x only.

Causes the method for this annotation to retrieve the
TaskInfo from one or more task instances for this
control. The method attached to this annotation will
return a TaskInfo object.

Do not use this annotation in conjunction with other
annotations that return values, as annotations will
compete and collide in returning values; only one
return value can be provided from the method.

If the return type of the method attached to this
annotation is not assignment compatible with
TaskInfo a ClassCastException will be thrown
at runtime.

If this control manages more than one task instance, the
method attached to this annotation will return an array
of type TaskInfo[].

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-7

TaskGetPrope
rtyNames81x
Annotation

Backward compatibility for 81x use only.

Causes the method for this annotation to retrieve the
names of all properties set on the task instances for this
control. The method attached to this annotation will
return an array of String containing names of
properties.

Do not use this annotation in conjunction with other
annotations that return values, as annotations will
compete and collide in returning values; only one
return value can be provided from the method.

If the return type of the method attached to this
annotation is not assignment compatible with String[]
a ClassCastException will be thrown at runtime.

If this control manages more than one task instance, the
method attached to this annotation will return a
two-dimensional array where the first dimension
indicates the task ID (as a String) of each individual
task instance. The second dimension represents the
property names array described above.

Annotation
Name

Description Fields that Support Parameters

Using Work l i s t Cont ro ls

4-8 Using Worklist

TaskGetPrope
rties
Annotation

Causes the method for this annotation to retrieve the
value of the named properties from the task instance(s)
for this control. The method attached to this annotation
will return an array of PropertyInstance objects,
one per property specified. If the property was not
found, the array element corresponding to the
unknown property will be null.

In the special case where only one property name is
given, and if the return type of the method is not an
array type, the single property value will be returned
(not an array) according to the rules below.

This annotation should not be used in conjunction with
other annotations that return values, as only one return
value can be provided from the method (and
annotations will compete and collide in returning
values).

If the return type of the method attached to this
annotation is not assignment compatible with
PropertyInstance, this annotation will cause the
value object of the PropertyInstance to be
extracted. The value object (if assignment compatible)
will be stored in the return value. If not, a
ClassCastException will be thrown at runtime.

If this control manages more than one task instance, the
method attached to this annotation will return an array
of TaskProperties objects indicating the task ID
(as a String) of each individual task instance. The
TaskProperties object represents the property
value array described above (for a single task).

Note: For tasks based on the Compatibility 8.1.x task
plan, the names given in propertyNames
will not be represented in the task plan. This is
allowed for compatibility reasons only with
this task plan. All properties are assumed to be
of type String.

propertyNames, sysProperties

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-9

TaskGetReque
st81x
Annotation

Backward compatibility for 81x use only.

Causes the method for this annotation to retrieve the
value of the request property from the task instance(s)
for this control. The method attached to this annotation
will return an object representing the given property.
The type of that object will be (in precedence order):
• A TaskMessage if the method return type is

assign-compatible with TaskMessage
• A byte[] containing the byte data of the property

if the return type is byte[]
• An XMLBean if the return type is

assign-compatible with XmlObject
• A Java object

Do not use this annotation in conjunction with other
annotations that return values, as annotations will
compete and collide in returning values; only one
return value can be provided from the method.

If this control manages more than one task instance, the
method attached to this annotation will return a
two-dimensional array where the first dimension
indicates the task ID (as a String) of each individual
task instance. The second dimension represents the
indicated property described above.

Annotation
Name

Description Fields that Support Parameters

Using Work l i s t Cont ro ls

4-10 Using Worklist

TaskGetRespo
nse81x
Annotation

Backward compatibility for 81x use only.

Causes the method for this annotation to retrieve the
value of the response property from the task instance(s)
for this control. The method attached to this annotation
will return an object representing the given property.
The type of that object will be (in precedence order):
• A TaskMessage if the method return type is

assign-compatible with TaskMessage
• A byte[] containing the byte data of the

property if the return type is byte[]
• An XMLBean if the return type is

assign-compatible with XmlObject
• A Java object

Do not use this annotation in conjunction with other
annotations that return values, as annotations will
compete and collide in returning values; only one
return value can be provided from the method.

If this control manages more than one task instance, the
method attached to this annotation will return a
two-dimensional array where the first dimension
indicates the task ID (as a String) of each individual
task instance. The second dimension represents the
indicated property described above.

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-11

TaskSetProper
ties
Annotation

Causes the method for this annotation to set the value
of the given properties onto the task instance(s) for this
control. The method attached to this annotation will
take arguments that can be combined with annotation
values to form the effective runtime property value. If
the effective runtime value is assignment compatible
with the value class of the data type for the property, it
will be taken as the new property value. If not, and it is
of type String, it will be treated as a serialized default
value for the data type, and de-serialized to get the
actual runtime value for the property. If this fails, or the
original runtime value was not a String, then a
DataTypeException is thrown at runtime. If the
method declares it can throw DataTypeException,
the exception will be thrown directly. Otherwise, it will
be wrapped in an IllegalArgumentException
and thrown that way.

TaskSetProper
ty81x
Annotation

Backward compatibility for 81x use only.

Causes the method for this annotation to set the value
of the given property onto the task instance(s) for this
control. The method attached to this annotation will
take arguments that can be combined with annotation
values to form the effective runtime property value.

Note: For tasks based on the Compatibility 8.1.x task
plan, the name given in name will not be
represented in the task plan. This is allowed for
compatibility reasons only with this task plan.
All properties are assumed to be of type
String.

Annotation
Name

Description Fields that Support Parameters

Using Work l i s t Cont ro ls

4-12 Using Worklist

TaskSetReque
st81x
Annotation

For 81x backwards compatibility only.

Causes the method for this annotation to set the value
of the indicated property onto the task instance(s) for
this control. The method attached to this annotation
will take arguments that can be combined with
annotation values to form the effective runtime
property value. The effective runtime value will be
taken as the data for the TaskMessageValue value
for the indicated property. If the method declares it can
throw DataTypeException, any
DataTypeException that might occur when trying
to serialize or store the value will be thrown directly.
Otherwise, it will be wrapped in an
IllegalArgumentException and thrown that
way.

TaskSetRespo
nse81x
Annotation

For 81x backwards compatibility only.

Causes the method for this annotation to set the value
of the indicated property onto the task instance(s) for
this control. The method attached to this annotation
will take arguments that can be combined with
annotation values to form the effective runtime
property value. The effective runtime value will be
taken as the data for the TaskMessageValue value
for the indicated property. If the method declares it can
throw DataTypeException, any
DataTypeException that might occur when trying
to serialize or store the value will be thrown directly.
Otherwise, it will be wrapped in an
IllegalArgumentException and thrown that
way.

TaskRemoveP
roperties81x
Annotation

For 8.1/8.5 backwards compatibility only.

Causes the method for this annotation to unset the
named properties from one or more task instances for
this control.

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-13

TaskSetError
Annotation

Causes the method for this annotation to set an error
condition on one or more task instances for this control.
Methods with this annotation should only be used to
indicate technical errors in the processing of a task.
Business errors should be accounted for in the step and
action model of the task type for this task.

message

TaskClaim
Annotation

Causes the method for this annotation to claim one or
more task instances for this control.

claimant

TaskClaim81x
Annotation

For 8.1/8.5 backwards compatibility only.

Causes the method for this annotation to claim one or
more task instances for this control, and then take the
Claim action on the ASSIGNED step of the task.

This has been deprecated. Use custom task plan and
TaskTakeAction annotation instead.

TaskReturn
Annotation

Causes the method for this annotation to return one or
more task instances for this control.

TaskReturn81
x Annotation

For 8.1 and 8.5 backwards compatibility only.

Causes the method for this annotation to return one or
more task instances for this control, and then take the
Return action on the CLAIMED or STARTED step of
the task.

This has been deprecated. Use custom task plan and
TaskTakeAction annotation instead.

TaskSuspend
Annotation

Causes the method for this annotation to suspend one
or more task instances for this control.

TaskResume
Annotation

Causes the method for this annotation to resume one or
more task instances for this control.

TaskComplete
Annotation

Causes the method for this annotation to complete one
or more task instances for this control.

Annotation
Name

Description Fields that Support Parameters

Using Work l i s t Cont ro ls

4-14 Using Worklist

Task Control
TaskControl encapsulates low-level access to a single task instance throughout its life cycle. It
provides methods to set user-defined and system properties of the task, as well as taking actions
on a task.

TaskControl provides programmatic and declarative event services as described in the Beehive
Controls Development Guide. Control extensions of the TaskControl can define their own
event methods, and attach listener configuration attributes to them via annotations.

TaskControl extends TaskBaseControl (thus providing all its methods). TaskControl also
provides methods for the following:

setTaskId(String taskId) - can be called only once to associate the control with the
task

String getTaskId()

public TaskData getTaskData

public TaskDataXMLDocument getTaskDataXMLDocument()

public void updateTask(TaskUpdateXMLDocument doc)

Method-level Annotations for TaskControl
The TaskControl control interface is not intended to be a fully functional replacement for the
Worklist API. It is expected that users will define extensions of TaskControl, adding any
appropriate methods to meet their needs for managing the task.

A TaskControl extension can define any number of methods with any legal Java name. Worklist
does not assign any special meaning to a method name. Instead, annotations added to the methods
of a TaskControl extension attach behaviors to those methods. A given method can have
multiple annotations, and thus accomplish multiple operations on a task in a single method call.

TaskAbort
Annotation

Causes the method for this annotation to abort one or
more task instances for this control.

TaskDelete
Annotation

Causes the method for this annotation to delete one or
more task instances for this control.

Annotation
Name

Description Fields that Support Parameters

About Work l i s t Cont ro ls

Using Worklist 4-15

In addition, annotations may be placed at the top-level of a control extension (before the interface
declaration) that sets behavior (default or otherwise) for all methods in the extension.

TaskControl extensions can be annotated with:

TaskPlan (specifies the task plan for the task that will be managed from this control)

TaskCreate (acts as default values for create annotations on methods)

TaskAssign (acts as default values for assign annotations on methods)

TaskControl allows all the method-level annotations from TaskBaseControl.

TaskControl defines the following additional method-level annotations:

TaskBatch Control
The TaskBatchControl encapsulates low-level access to a batch of task instances. It does not
provide event services (for these, you must use TaskControl). Methods on a control extension
of TaskBatchControl can define custom task selectors that define the batch or group of task
instances upon which the method will act.

The TaskBatchControl extends TaskBaseControl, and thus provides all system methods
from TaskBaseControl. It does not define any additional system methods.

Control-level Annotations for TaskBatchControl
The TaskBatchControl supports the select control-level annotations. This acts as a default
selector for methods on the control extension.

Table 4-1 Method-level Annotations for TaskControl

Annotation Name Description

TaskPlanAnno Annotation Defines the task plan to be associated with a control. Either this or the
TaskCreate annotation is required on a TaskControl.

TaskEventAnno
Annotation

Callback methods only. Allows a callback method to describe
subscriptions to events of a given type, and to define the method signature
of that callback to the Worklist event framework. Event header information
can be passed to individual parameters in the callback method based on the
configuration provided in this annotation. In addition, a full TaskEvent
instance can also be passed.

Using Work l i s t Cont ro ls

4-16 Using Worklist

Method-level Annotations for TaskBatchControl
TaskBatchControl supports the following method-level annotation:

Merging Parameter Values with Annotation Values
Some annotations support parameter markers within them that can be replaced at runtime with
the values of parameters provided in a method invocation. This allows dynamic data to be
combined with static data from the annotation.

Annotations that support runtime parameter markers are marked with the
@SupportsParameters annotation.

public @interface @SupportsParameters {

 String markerBegin() default "{";

 String markerEnd() default "}";

}

Any annotation field of type String can be annotated with the @SupportsParameters
annotation. Any unescaped parameter markers in the annotation string value will be interpreted
as replaceable parameters. For example:

public @interface TestAnno {

 @SupportsParameters

 String hasParams();

 String noParams();

}

and

public interface MyTest {

 @TestAnno(hasParams="Param1 has value {param1} and param2 = {param2}")

Annotation
Name

Description Fields That Support Parameters

TaskQueryAn
no Annotation

Defines the query used to fetch the task
instances to be manipulated in the batch

All except queryParamName and
propertyValue

Creat ing Work l is t Cont ro ls

Using Worklist 4-17

 public void testHasParams(int param1, String param2);

 @TestAnno(noParams="Param1 has value {param1} and param2 = {param2}")

 public void testNoParams(int param1, String param2);

}

In this case, a call to testHasParams with param1=1 and param2="Two" yields an effective
runtime value for hasParams of:

Param1 has value 1 and param2 = Two

whereas a call to noParams with param1=1 and param2="Two" yields an effective runtime value
for noParams of:

Param1 has value {param1} and param2 = {param2}

Note: Javadoc does not show meta-annotations such as the @SupportsParameters
annotation. Refer to the method-level annotations table for the worklist controls for an
indication if a given field supports parameters.

Creating Worklist Controls
You can create Task Control and Task Batch Controls and use these controls in a business
process.

Creating a Task Control
You can create a task control using any of the following methods:

Creating from the Select a Wizard dialog and from the Data Palette in the Process
perspective. For more information, see “Creating a Task Control from the Select a Wizard
Dialog” on page 4-17 and “Creating a Task Control from the Data Palette in Process
Perspective” on page 4-19.

Using the Task Plan Control Generator. For more information, see “Creating a Worklist
Control Using Task Control Generator” on page 4-24.

Manually creating the control. For more information, see “Manually Creating Task Control
and Task Batch Control” on page 4-28

Creating a Task Control from the Select a Wizard Dialog
To create a Task Control that will trigger the creation of a task instance:

Using Work l i s t Cont ro ls

4-18 Using Worklist

1. Select the <web project name>/src folder and click Ctrl+N. The Select a Wizard dialog
appears.

Note: The Web project corresponds to the Web application of Worklist that acts as the user
interface for the system. For more information, see “Worklist Application” on
page 2-9.

2. Click the next to WebLogic Integration Controls and select Task. Click Next. The Create
Control page of the Insert Control: Task dialog appears.

Figure 4-1 Creating a Task Control

3. Enter the name of the Task Control in the Name field.

4. Click Next. The Task Plan page of the Insert Control: Task dialog appears.

5. Click Browse to locate the task plan. The Task Plan Selection dialog appears.

Creat ing Work l is t Cont ro ls

Using Worklist 4-19

Figure 4-2 Selecting the Task Plan

6. Select the plan and click OK to continue.

7. Click Finish to add the new Task Control to the business process.

8. Select File > Save or use Ctrl+S to save the JPD file.

The task control is created based on the selected task plan. You can see the <task control
name>.java file in the Package Explorer View.

Note: To use the methods in this control, drag and drop the .java file from the Package
Explorer View into the Data palette View.

Creating a Task Control from the Data Palette in Process Perspective
To create a task control:

1. Make sure that the Process perspective is available. For more information, see “Selecting a
Perspective” on page 1-6.

2. Select the business process file in <web project name>/src/<process folder name>
and open it with the Process Editor.

Note: The Web project corresponds to the Web application of Worklist that acts as the user
interface for the system. For more information, see “Worklist Application” on
page 2-9.

Using Work l i s t Cont ro ls

4-20 Using Worklist

3. Click the down arrow in the Data Palette View.

Figure 4-3 Data Palette View

4. Select Integration Controls > Task.

Figure 4-4 Integration Controls

The Insert Control : Task dialog appears.

Creat ing Work l is t Cont ro ls

Using Worklist 4-21

Figure 4-5 Insert Worklist Control

5. Enter the field name and specify the point at which the control should be inserted in the
business process. If required, select the Make this a control factory that can create
multiple instances at runtime check box and click Next. The Create Control dialog
(Figure 4-1) appears.

6. Enter the name of the Task Control in the Name field.

7. Click Next. The Task Plan page of the Insert Control: Task dialog appears.

8. Click Browse and locate the task plan, and then click OK to continue.

9. Click Finish to add the new Task Control to the business process.

10. Select File → Save or use Ctrl+S to save the JPD file.

The task control is created based on the selected task plan. You can see the <task control
name>.java file in the Package Explorer View. You can also see the new control listed in the
Data Palette View.

Figure 4-6 Worklist Controls listed in Data Palette View

Using Work l i s t Cont ro ls

4-22 Using Worklist

Creating a Task Batch Control
You can create a task batch control using any of the following methods.

Creating from the Select a Wizard dialog and from the Data Palette in the Process
perspective. For more information, see “Creating a Task Batch Control from the Select a
Wizard Dialog” on page 4-22 and “Creating a Task Batch Control from the Data Palette in
Process Perspective” on page 4-23

Using the Task Plan Control Generator. For more information, see “Creating a Worklist
Control Using Task Control Generator” on page 4-24.

Manually creating the control. “Manually Creating Task Control and Task Batch Control”
on page 4-28

Creating a Task Batch Control from the Select a Wizard Dialog
To create a Task Batch Control:

1. Select the <web project name>/src folder and click Ctrl+N. The Select a Wizard dialog
appears.

Note: The Web project corresponds to the Web application of Worklist that acts as the user
interface for the system. For more information, see “Worklist Application” on
page 2-9.

2. Click the next to WebLogic Integration Controls and select Task Batch. Click Next. The
Create Control page of the Insert Control: Task Batch dialog appears.

3. Enter the name of the Task Batch Control in the Name field.

4. Click Next. The Task Plan Selection page of the Insert Control: Task Batch dialog appears.

Creat ing Work l is t Cont ro ls

Using Worklist 4-23

Figure 4-7 Select Task Plans

5. Select the required task plan and click Finish.

6. Select File > Save or use Ctrl+S to save the JPD file.

The task batch control is created. You can view the <task batch control name>.java file in
the Package Explorer View.

Note: To use the methods in this control, drag and drop the .java file from the Package
Explorer View into the Data palette View.

Creating a Task Batch Control from the Data Palette in Process Perspective
To create a task batch control:

1. Make sure that the Process perspective is available. For more information, see “Selecting a
Perspective” on page 1-6.

2. Select the business process file in <web project name> / src / <process folder
name> and open it with the Process Editor.

3. Click the down arrow in the Data Palette View (Figure 4-3).

4. Select Integration Controls > Task Batch (Figure 4-4). The Insert Control : Task Batch dialog
appears.

Using Work l i s t Cont ro ls

4-24 Using Worklist

5. Enter the field name and specify the point at which the control should be inserted in the
business process. If required, select the Make this a control factory that can create
multiple instances at runtime check box and click Next. The Create Control dialog appears.

6. Enter the name of the Task Batch Control in the Name field.

7. Click Next. The Task Plan Selection dialog appears.

8. Select the required task plans.

9. Click Finish to add the new Task Batch Control to the business process.

10. Select File > Save or use Ctrl+S to save the JPD file.

The task batch control is created based on the selected task plan. You can see the <task control
name>.java file in the Package Explorer View. You can also see the new control listed in the
Data Palette View.

Creating a Worklist Control Using Task Control Generator
You can use TaskControlGenTask, the Task Control Generator, to create an Apache Beehive
control for a task plan. The generated control uses the TaskControl. A developer can change the
annotations of the generated controls as required.

For generic information about custom controls, see Developing Custom Controls.

Generated controls take into account the constructors, steps, and actions defined in the task plan.
They contain appropriate methods for creating tasks, taking actions on them, responding to events
on them, and getting/setting system and user-defined property information for them.

Design the control interface to ensure that it contains:

One method for every defined constructor in the task plan

An inner interface for each non-terminal step in the task plan.

A single inner interface should be generated within the generated control interface for each
non-terminal step on the task plan.

The inner interface for a step should contain a single getTaskControl method to allow
the client to obtain a reference to the control that hosts the step interface. The inner
interface should also contain a method for each action defined on the step. These methods
allow the client to work the task through its life cycle from creation to completion. The
methods (with the exception of getTaskControl) within the step's inner interface should
represent the allowed actions on that step.

http://e-docs.bea.com/wlw/docs101/guide/controls/custom/navCustomControls.html

Creat ing Work l is t Cont ro ls

Using Worklist 4-25

A value in an inner Step enum representing each step in the task plan.

This is an inner enum definition intended to enumerate the possible steps tasks of this type
can be in. This enum is used to indicate the current step of the task instance from the
method (generated on every generated task control extension).

A method (on an inner interface) for each action on a step.

For every inner interface generated for a non-terminal step, a single getter method should
be generated to fetch that step's interface. This interface may be retrieved at any time (and
with any step as the current step for the task). However, the action methods for this
interface should be called only when the step represented by this interface is the current
step for the task.

A setter and getter for each property defined on the task plan.

For every property on the task plan, a single getter and setter method should be generated.
These methods should be strongly typed and should be named for the property they
represent.

A callback interface defining events representing:

– The arrival of the task into any step (including terminal ones) on the task plan (the
event is named for the step (example onMyFirstStep() and onMySecondStep())

– The standard event types defined by Worklist (these will be inherited from the
TaskControl.Callback interface

For every generated control extension, there should be exactly one inner interface that
defines callback methods associated with events on the task. This callback interface should
extend TaskControl.Callback, and thus inherit the callbacks for standard
Worklist-defined events.

In addition, a callback method is generated for each step in the task plan (including the
terminal steps). These events should be fired and callbacks called when the task arrives at
the step for which the event is named.

Running the Task Control Generator
You can run the Task Control Generator:

From the command-line using its main method

By calling it from another Java client

From an Ant task that wraps the Java API.

Using Work l i s t Cont ro ls

4-26 Using Worklist

Running the Task Control Generator from a Java Client or Command Line
The Java class name is com.bea.wli.worklist.build.TaskControlGen in the
WL_HOME/integration/lib/worklist-client.jar file.

To run the generator from a Java client of the command line, type:
java com.bea.wli.worklist.build.TaskControlGen <options>

where options are listed in the following table:

Running the Task Control Generator from Ant
The Ant task class name is com.bea.wli.worklist.build.TaskControlGenTask in the
WL_HOME/integration/lib/worklist-client.jar file.

Table 4-2 Command line options for running the task control generator

Option Name Description

-taskPlan The file location of the .task file that should be compiled. Required.

-outputDir The directory where the generated control source should be output. Required.

-hostAppRootDir The root directory of EAR holding the .task file. Optional.

Can be the EARContent directory of a Java EE EAR project in Workshop. This
root is used to calculate a relative path for the task plan relative to the root of
the EAR. This relative path in turn is used in the default calculation of the
package name for the generated control interface file. If you specify the parent
directory of the .task file as the hostAppRootDir, the control interface will
be placed in the default Java package. If not specified, the absolute path of
the task type is used (potentially in the calculation of the Java package name for
the generated control interface)

-packageName The package name of the generated source. Optional.

If the package name is not specified, the package name is derived from the task
plan path. The package is calculated by replacing “/” in the path with “.”,
removing spaces, and replacing invalid package characters with “_”.

-interfaceName The name of the interface. Optional.

If this value is not specified, the interface name is derived from the task plan
path. The control interface name is taken from the last step in the task plan path,
where spaces are removed, and invalid class name characters are replaced with
'_'.

Creat ing Work l is t Cont ro ls

Using Worklist 4-27

Note: We recommend that you import the task with a taskdef named task-control-gen.

The following Ant script describes how to use TaskControlGenTask:

<!-- Set some initial properties -->

<property environment="env"/>

<property name="wl.home" value="${env.WL_HOME}"/>

<property name="worklist-client.jar"

location="${wl.home}/integration/lib/worklist-client.jar"/>

<property name="build.dir" value="<some dir to hold build output>"/>

<!-- Define the task to Ant -->

<taskdef name="task-control-gen"

classname="com.bea.wli.worklist.build.TaskControlGenTask"

classpath="${worklist-client.jar}"/>

<!-- Give us a place to build control source files into -->

<mkdir dir="${build.dir}/controlsrc"/>

<task-control-gen

taskPlanFile="<see command-line section -taskPlan arg>"

outputDir="${build.dir}/controlsrc"

hostAppRootDir="<see command-line section -hostAppRootDir arg>"

packageName="<see command-line section -packageName arg">

interfaceName="<see command-line section -interfaceName arg">

<classpath>

<!-- Add this so TaskControlGen can see the needed classes. You can also add

your own classes (e.g. XMLBeans classes as needed) -->

<pathelement location="${worklist-client.jar}"/>

</classpath>

</task-control-gen>

Using Work l i s t Cont ro ls

4-28 Using Worklist

Manually Creating Task Control and Task Batch Control
The Task Control Generator and the Worklist Control wizards should be viewed as shortcuts to
creating Worklist controls in ways that users commonly need. However, you may create
TaskControl and TaskBatchControl extensions manually if they like. The only requirement
for these extensions is that they extend TaskControl or TaskBatchControl and are marked
with @ControlExtension at the interface level.

You may add any number of methods to these control extensions and mark them up using any of
the annotations supported for the given type of control. It may be appropriate to create your own
custom control extensions in the following cases (and possibly others as well)

You want a control interface that uses different names for methods than those generated for
you by the Task Control Generator or Worklist Control wizards.

The users of the control do not need to see all the methods generated by the Worklist tools,
and you want to define a very focused and lightweight control.

You do not want to use the inner step interface paradigm of the task controls generated by
the Task Control Generator. You can create separate task controls for each step interface,
and simply use the correct control at the correct step in the task plan.

In all these cases, you can start with a control as generated by the Worklist tools, and then
manually update the control interface as desired.

Using Task and Task Batch Controls in Business
Processes

This section provides information about using business process files (JPDs) and Worklist
Controls to support the integration of human actors and automated actors. Automated actors
interact with the JPD and human actors interact with Worklist User Portal.

As with other built-in controls in Workshop for WebLogic Platform, you use the controls by
adding instances of the controls to your business process. Subsequently, you invoke operations
on the controls at the point in the business process at which you want to integrate the
business-user logic.

To design the interaction of a Task or Task Batch control with a business process, you must
decide which methods on the control you want to call from the business process to support the
business logic.

Using Task and Task Batch Cont ro ls in Bus iness P rocesses

Using Worklist 4-29

In the same way that you design the interactions between business processes and other controls
in WebLogic Workshop, you can bind the Worklist control method to the appropriate control
node in your business process (Control Send, Control Receive, and Control Send with Return).
You do this in the Design View by simply dragging a control method from the Data Palette onto
the business process at the point in your business process at which you want to design the logic.
After you create an instance of a Task or Task Batch control, you can invoke its methods from
within your business processes to perform operations on task instances. Your business processes
can also wait to receive callbacks from task instances. Note that the Task and Task Batch controls
can be extended to add customized methods and additional callbacks.

You can create a task instance using a Task Control or Task Batch Control in a JPD. During this
process, you need to create a business process file and a Task Control or Task Batch Control,
deploy the process. If required, you can create a sample task to validate the task instance creation.

You can use worklist controls in your business process by:

Creating a Business Process

Creating Worklist Controls

Invoking the Task Plan Constructor from the Business Process

Deploying and Validating the Business Process

Creating a Business Process
To create a business process that will use the worklist controls:

1. In the Package Explorer view, right-click the <web project name>\src folder, and select
New > Folder. The New Folder dialog appears.

2. Enter the name of the folder in which the business process files are stored.

3. Click Finish.

4. Select the project folder and press Ctrl+N. The Select a Wizard dialog appears.

5. Select WebLogic Integration > Process and click Next. The New Process File dialog appears.

6. Enter a name for the business process file. This creates a JPD process file <process
name>.java under the process folder.

7. Click Finish to complete the process. The new JPD in design view is displayed in the IDE
browser.

Using Work l i s t Cont ro ls

4-30 Using Worklist

Figure 4-8 New JPD Using Worklist Control

8. Double-click Select Start Event (Start node). A screen that allows you to select the manner in
which the business process should be invoked appears.

Figure 4-9 Invoking a business process

9. Select the manner in which the business process is invoked and click Close. For example,
select Invoked via a Client Request. The JPD design view is refreshed and the Start node is
named Client Request.

10. Double-click Client Request node to configure it.

Using Task and Task Batch Cont ro ls in Bus iness P rocesses

Using Worklist 4-31

Figure 4-10 Configuring Client Request

11. In the General Settings tab, click Add to display a dialog box for defining parameters. Create
parameters and configure their types based on the user properties required for the task.

Using Work l i s t Cont ro ls

4-32 Using Worklist

Figure 4-11 Add Parameters

12. Click the Receive Data tab to create new variables and assign them the respective parameters
created in the previous step.

Figure 4-12 Assigning Variables to Parameters

13. Click Close to continue.

Using Task and Task Batch Cont ro ls in Bus iness P rocesses

Using Worklist 4-33

Invoking the Task Plan Constructor from the Business
Process
To invoke the task instance creation constructor to the business process.

1. Right click the <worklist business process name>.java file in the Package Explorer
pane and select Open With → Process Editor option. Ensure the JPD is displayed in the
Design tab and that you are using the Process Perspective.

2. From the Data Palette View on the bottom right corner of the IDE, navigate to <control name>
folder in the Controls folder and select the method that you want to invoke in the business
process.

Constructor methods on the control will have the name of the constructor defined in the
task plan, and will take a task name as the first argument in the method signature.
Constructor methods also return the step interface for the start step designated by the
constructor in the task plan.

Figure 4-13 Selecting the Control Method

3. Drag and drop the selected method into the JPD, between the Client Request and the Finish
nodes.

4. Double click the method (displayed as a node in the Design View) and configure the Send
Data properties.

Using Work l i s t Cont ro ls

4-34 Using Worklist

Figure 4-14 Map the Send Data Variables with the Control Parameters

5. Map the receive data variables for the method to variables in the business process. Click
Receive Data, accept the given data type of the return value from the control method
invocation, and then give a variable name, which will hold the returned step interface.

Figure 4-15 Map Receive Data Variable

6. Optionally, take actions on the task using the returned step interface from step 5. Note that the
process designer does not treat the step interface as a separate control. Because of this, you
will need to use perform nodes to invoke the methods of the step interface. You must write
the code manually to invoke these methods. You may choose to have one perform node for

Using Task and Task Batch Cont ro ls in Bus iness P rocesses

Using Worklist 4-35

each method you call, or you can group many method calls into a single perform node. The
benefit of the “one method per perform node” approach is that you will get a graphical
representation of the methods being called on the task just by looking at the process flow
graph.

7. Click Close and save the JPD.

Deploying and Validating the Business Process
To deploy and validate the business process:

1. Select the JPD is selected in the Package Explorer View and select the Run > Run menu
option.

After successful deployment the JPD process page is launched in the IDE browser.

2. Click the Test Form tab of the process browser.

Figure 4-16 Business Process in Test Form Page

3. Enter the test values in their respective fields.

4. Click ClientRequest to execute the process with the test values. After a successful execution,
the TestForm tab is refreshed

5. Start a Worklist User Portal session and log in using the user credentials.

The Assigned Tasks portlet box displays the task instance created by a JPD using a Control.

Using Work l i s t Cont ro ls

4-36 Using Worklist

Using Worklist 5-1

C H A P T E R 5

Worklist Event-based Services

This section describes advanced topics for use by a Java programmer in BEA Workshop for
WebLogic. It provides information about:

Task Change Events

EventHandler Modules

Default Reporting Store

Email Notification

MessageBroker and JPD Integration

Custom Task Event Listeners

Custom Assignment Handlers

Task Change Events
Worklist defines task change events that can be triggered when there is a change in the state of a
task. Worklist accepts subscriptions for events from interested parties (called listeners) and
notifies them when events they have expressed interest in occur. Listeners can then take
appropriate actions based on the events that occur to a task.

Work l i s t Event-based Serv i ces

5-2 Using Worklist

Event Delivery Paths
The possible paths taken by events generated by Worklist could be the Worklist reporting
subsystem, web services listeners, and plain Java listeners.

Figure 5-1 Event Delivery Paths

Note: The listeners shown in the illustration are all Worklist event listeners and are internal
system-level listeners. Custom task event listeners are plugged into this tree via
.listener files and are registered as siblings of the Worklist default event listeners.

Events
Worklist defines a set of event types to support both runtime and reporting event scenarios. The
assumption is that the only real difference between the two usages of events is that reporting more
clearly requires both the old and new values of a change in a task. Runtime use of events could
conceivably be satisfied to simply retrieve the current value from the task. We assume that in any
case a task property is updated, the consumer of the event will query current property values using
the Worklist API.

The following table defines the events that are produced by Worklist in response to various
operations on a task. All events contain the following data items (accessible via Java methods on
the com.bea.wli.worklist.api.events.data.TaskEvent interface):

Event Type

TaskId

Task Change Events

Using Worklist 5-3

TaskName

TaskPlanId

Creator

Owner

Claimant

AssigneeList (AssigneeDefinition[])

Caller (user name of the user that caused the change)

Timestamp (long value representing local system time)

ServerName (name of the WebLogic Server from which this event originated)

HostApplicationName (The name of the application on which this task change occurred).

Summary (A summary string that gives relevant information about the event in a localized
message format).

The following table lists any additional fields added to a specific event type:

Event Type When Extra Fields Event Object Type

CREATE Task is created. Will be followed by a step
change event and an assigned or claimed
event that will arrive separately after the
create event.

TaskData, and Initial
Property names for
task.

(sync listeners only -
Initial Property
Values)

TaskCreateEvent

ASSIGN Task is assigned, either directly or as a result
of moving to a new step, or taking an assign
action on the step.

NewAssigneeList,
OldAssigneeList

TaskAssignEvent

CLAIM Task is claimed, either directly or as a result
of moving to a new step, or taking an assign
action on the step. If a task is auto-claimed,
only the claimed event is sent. Not the
assigned event.

NewClaimant,
OldClaimant,

(if auto-claimed -
NewAssigneeList,
OldAssigneeList)

TaskClaimEvent

RETURN Task is returned Reason, OldClaimant TaskReturnEvent

Work l i s t Event-based Serv i ces

5-4 Using Worklist

TAKE_ACTION An action is taken. May be followed by
• a STEP_CHANGE event after a work

action that targets a different step.
• assign/claim events if the task was

assigned/claimed (after arriving at the
new step after a work action, or after an
assign action).

• a return event after a return action.
• complete, abort events after a work

action if the new current step is a
complete or abort step.

NewStep, OldStep,
Action, Property
Names for Action

(sync listeners only -
NewValue for
properties)

TaskStepActionEv
ent

STEP_CHANGE The current step of the task changes. This
can happen administratively or via a work
action.

NewStep, OldStep TaskStepChangeE
vent

SET_USER_PR
OPERTY

A task plan-defined property is updated
directly via
WorklistTaskUser.setTaskProper
ties(). If the property is updated as part of
taking an action, the names of the modified
props will be represented on the
TAKE_ACTION event.

PropertyName

(sync listeners only -
OldValue,
NewValue)

TaskUpdate
PropertyEvent

SUSPEND A task is suspended Reason TaskAdminEvent

RESUME A task is resumed Reason TaskAdminEvent

SET_ERROR A task is set to error state Reason TaskAdminEvent

CLEAR_ERROR A task is reset from error set Reason TaskAdminEvent

COMPLETE A task is completed Reason TaskAdminEvent

ABORT A task is aborted Reason TaskAdminEvent

REACTIVATE A task is reactivated Reason,
NewCurrentStep,
OldCurrentStep

TaskReactivateEve
nt

Event Type When Extra Fields Event Object Type

Task Change Events

Using Worklist 5-5

System Properties and TaskUpdateBuiltInProperty Events
The following system properties may (when updated) cause a TaskUpdateBuiltInProperty
event to be delivered from Worklist. Other system properties are read-only and will not cause
update events. These property names match the enumeration values from the Worklist
com.bea.wli.worklist.api.taskplan.SystemProperty enumeration.

TASK_NAME

DESCRIPTION (Deprecated, and only from 8.1.x API)

COMMENT

PRIORITY

OWNER

IS_OWNER_GROUP

SET_CURRENT
_STEP

A task has it's current step forcibly set. Will
be followed by a STEP_CHANGE event
indicating the arrival of the task into the new
step.

May be followed by assign, claim, complete,
or abort events depending on the new
current step.

Reason,
OldCurrentStep,
NewCurrentStep

TaskSetCurrentSte
p Event

SET_SYSTEM_
PROPERTY

Any system property is set directly via
WorklistTaskUser.setTaskProper
ties() or one of the setTask<Name>()
methods.

For information on which system properties
generate this type of event, see “System
Properties and TaskUpdateBuiltInProperty
Events” on page 5-5.

PropertyName

(sync listeners only -
OldValue,
NewValue)

TaskUpdateBuiltIn
PropertyEvent

STEP_EXPIRE A step of a task was not completed before its
scheduled completion date.

ScheduledExpireDat
eTime, StepName

TaskStepExpireEv
ent

TASK_EXPIRE A task was not completed before its
scheduled completion date.

ScheduledExpireDat
eTime

TaskExpireEvent

Event Type When Extra Fields Event Object Type

Work l i s t Event-based Serv i ces

5-6 Using Worklist

CURRENT_STEP_COMPLETION_DUE_DATE

CURRENT_STEP_CLAIM_DUE_DATE (Deprecated, and only from 8.1.x API)

TASK_COMPLETION_DUE_DATE

TASK_TIME_ESTIMATE

STEP_TIME_ESTIMATES

Controlling Events Per-Task Plan
Various types of BEA-provided event listeners can perform producer-side filtering to limit the
number of events sent to their external endpoints. This filtering is controlled by event
configuration contained in the EventHandler configuration module. For more information, see
“EventHandler Modules” on page 5-15.

Event Dispatch Modes (Quality of Service)
Worklist defines a Java listener interface (see “Custom Task Event Listeners” on page 5-43
section) that Java clients can use to receive events when changes occur on a task instance. A
listener can specify the quality of service it requires from Worklist. This quality of service is
defined in terms of:

Synchronous vs. Asynchronous Delivery

Critical vs. Non-Critical Handling

Synchronous delivery means the listener is called on the stack from the same thread that caused
the event to be created. Asynchronous delivery means that the event is placed on a queue and then
delivered to the listener on a different thread than the thread that caused the event to be created.

Listeners may indicate their preferred dispatching mode when registering via their .listener
file.

A critical listener is a listener that absolutely must receive and process all events for which it has
subscribed and which may set an error on the task if the event cannot be consumed successfully.
A non-critical listener is a listener that can tolerate lost events and may not successfully process
some events without setting an error on the task for the event. Events destined for asynchronous
critical listeners are put into a reliable and persistent queue and are delivered even in the face of
a server crash. Events for non-critical listeners are delivered with no persistence and are not
guaranteed to survive a server crash.

Task Change Events

Using Worklist 5-7

Listeners registered as a synchronous critical listener can exercise some amount of control over
task changes by throwing an exception from its onTaskEvent() method. If a synchronous
critical listener throws an exception from onTaskEvent(), the current transaction (the one that
caused the event in the first place) is rolled back. In this case, the change is effectively undone.
The task instance is not put into the error state, because to do so requires a live database
transaction that can be committed.

All critical listeners are notified of events before non-critical listeners. If a critical listener throws
an exception, no further dispatching of the current event is done (and the transaction holding the
task change is rolled back).

Note: System administrators should carefully examine any Worklist application containing
.listener files. They should scrutinize any .listener file that registers itself as a
synchronous user, as this listener will run under the identity of the user making the
updates to the tasks that caused the events. Thus, the listener code can do anything the
original user could do. Only trusted code should be allowed to deploy as a synchronous
listener.

EventListener Interface
Listeners implement a Java listener interface and are plugged into the event delivery mechanism
using this listener implementation. Java listeners must implement the following listener interface:

public interface TaskEventListener {

 /**

 * Get the name assigned to this listener

 */

 public String getName();

 /**

 * Get the name for this listener

 */

 public void setName(String name);

 /**

 * Set any properties configured for this TaskEventListener in the custom

Work l i s t Event-based Serv i ces

5-8 Using Worklist

 * module that deployed it. This method is only called if properties are

 * available (example specified in the deployment descriptor for the

 * custom module).

 * @param properties

 */

 public void setProperties(Map<String, Property> properties);

 /**

 * Initialize any resources needed to start handling events in

 * onTaskEvent().

 * @throws com.bea.wli.worklist.api.ManagementException

 */

 public void initialize()

 throws ManagementException;

 /**

 * Destroy this instance and release any resources obtained in initialize

 * or during calls to onTaskEvent().

 * @throws ManagementException

 */

 public void destroy()

 throws ManagementException;

 /**

 * Handle the given event.

 * @throws VetoException If any error occurs processing the event. How

 * this exception is handled by Worklist depends on how the listener

Task Change Events

Using Worklist 5-9

 * is registered (sync/async, critical/non-critical)

 */

 public void onTaskEvent(TaskEvent event)

 throws VetoException;

}

where TaskEvent is:

public interface TaskEvent

 extends Serializable {

 /**

 * The type of event this event instance represents. Listeners can use

 * this property for simple filtering. In order to obtain event

 * type-specific properties from the event, listeners should cast this

 * event to the appropriate event class based on the runtime type of this

 * event instance.

 */

 public TaskEvent.Type getEventType();

 /**

 * ID of the task that was changed.

 */

 public String getTaskId();

 /**

 * Name of the task that was changed

 */

 public String getTaskName();

Work l i s t Event-based Serv i ces

5-10 Using Worklist

 /**

 * ID of the task that was changed.

 */

 public TaskPlanId getTaskPlanId();

 /**

 * User that created this task.

 */

 public String getCreator();

 /**

 * Current owner at the time this event was created.

 */

 public String getOwner();

 /**

 * Current claimant at the time this event was created.

 */

 public String getClaimant();

 /**

 * Current assignee list at the time this event was created.

 */

 public AssigneeDefinition[] getAssigneeList();

 /**

Task Change Events

Using Worklist 5-11

 * Current admin state at the time this event was created.

 */

 public AdminState.Type getAdminState();

 /**

 * Current working state at the time this event was created.

 */

 public WorkingState.Type getWorkingState();

 /**

 * User name of the user that caused the change.

 */

 public String getCaller();

 /**

 * Timestamp (long value representing local system time).

 */

 public long getTimestamp();

 /**

 * The name of the server upon which this task change occurred.

 */

 public String getServerName();

 /**

 * A summary of the most relevant information in this event, limited to

 * 100 characters.

Work l i s t Event-based Serv i ces

5-12 Using Worklist

 */

 public String getSummary();

 /**

 * Enumeration for different types of events. Note that the CLAIM_EXPIRE,

 * START and STOP event types are deprecated and should not be used in new

 * development.

 */

 public enum Type {

 CREATE,

 ASSIGN,

 CLAIM,

 RETURN,

 TAKE_ACTION,

 STEP_CHANGE,

 SET_USER_PROPERTY,

 //PROPERTY_SET_LOCKSTATE,

 SUSPEND,

 RESUME,

 SET_ERROR,

 CLEAR_ERROR,

 COMPLETE,

 ABORT,

 REACTIVATE,

 SET_CURRENT_STEP,

 SET_SYSTEM_PROPERTY,

 CLAIM_EXPIRE_81X, // deprecated

Task Change Events

Using Worklist 5-13

 STEP_EXPIRE,

 TASK_EXPIRE,

 START_81X, // deprecated

 STOP_81X; // deprecated

 public String getValue() {

 return this.name();

 }

 public static Type getFromOrdinal(int ordinal) {

 Type[] types = Type.class.getEnumConstants();

 for (int i=0; i < types.length; i++) {

 if (types[i].ordinal() == ordinal) {

 return types[i];

 }

 }

 return types[0];

 }

 };

}

Notes: A listener must be coded with the following points in mind:

It must have a public no-arg constructor. Use the setProperties() method to obtain
external configuration, the initialize() method to obtain or initialize any external
resources, and the destroy() method to release those resources.

Work l i s t Event-based Serv i ces

5-14 Using Worklist

If a synchronous critical listener throws an exception from the onTaskEvent() method,
the processing of the action that caused the event is aborted and the current transaction is
rolled back (thus undoing the action that caused the event).

If a synchronous non-critical listener throws an exception from the onTaskEvent()
method, the exception is logged and execution will continue normally.

If an asynchronous critical listener throws an exception from the onTaskEvent() method

– the task is placed into an error state with the message from the exception as the error
message

– the event is placed back onto the queue and delivery is retried (up to a configurable
maximum number of retries and with a configurable retry delay. The configuration of
this is done via JMS)

If an asynchronous non-critical listener throws an exception from the onTaskEvent()
method, the exception is logged, the message is removed from the queue (not retried) and
execution will continue normally.

Synchronous listeners have access to property values delivered in CREATE,
TAKE_ACTION, SET_USER_PROPERTY, and SET_SYSTEM_PROPERTY event types.
Asynchronous listeners receive these events with the property values cleared out.
Asynchronous listeners must use the Worklist API to obtain property values for the
properties indicated (by name) on the event.

So, developers should only register listeners as critical when it is really necessary to the business
that the listener receives all events it intends to consume. Also, developers should take
precautions not to throw exceptions unless it is absolutely necessary to do so.

Installing EventListeners
See the “Deploying Custom Event Listeners” on page 6-9 section for details.

Event Listener and Run-As Identity
Synchronous listeners (critical or non-critical) run under the identity on the thread that created
the event being handled. Asynchronous listeners run under the identity configured for the
TaskEventDispatcher MDB (by default this is anonymous, but can be overridden via the
WebLogic Server Administration Console).

Note: System administrators should carefully examine any Worklist application containing
.listener files. They should scrutinize any .listener file that registers itself as a
synchronous user, as this listener will run under the identity of the user making the

EventHandle r Modules

Using Worklist 5-15

updates to the tasks that caused the events. Thus, the listener code can do anything the
original user could do. Only trusted code should be allowed to deploy as a synchronous
listener.

EventHandler Modules
The EventHandler module is a configuration module that is used to define configuration for the
delivery of reporting, email notification, and other types of events.

An EventHandler module is deployed as part of a Worklist host application. It is a WebLogic
Server configuration module that can be added to the host application to configure the delivery
of events for tasks of the types defined in that host application.

The configuration of an event handler includes some general information as well as
listener-type-specific elements. An event handler defines:

A unique name for the handler within the host application

The task plans this handler is designed to work with. Handlers can be global (all task
plans) or list specific task plans by their Task Plan ID

A disabled flag, which if true, forces the runtime to ignore the handler while the flag is set.
Other handlers remain in force.

One or more event subscriptions

An event subscription also contains general and listener-type-specific elements. An event
subscription defines:

A unique name for the subscription within this handler

A list of one or more event types that are applicable to this subscription. Subscriptions can
be applied to all event types by setting a ForAllEventTypes flag on the subscription.

A disabled flag, which if true, forces the runtime to ignore the subscription while the flag
is set. Other subscriptions on this handler and other handlers remain in force.

Listener type-specific sections to configure the delivery of the given event types to the
listener's endpoint.

The listener type-specific sections are defined for the needs of these types of listeners:

Email Notification

Reporting

Work l i s t Event-based Serv i ces

5-16 Using Worklist

MessageBroker

At runtime, event subscriptions in a handler are collected together with the event subscriptions
from all other handlers in the application. These subscriptions are additive with each other. The
event configuration in a given event handler is merged additively with the configuration of all
other event handlers (including the default Worklist event handlers).

Event Handler File
An EventHandler is defined in a .handler file as an XML document. The XML content must
conform to a schema for EventHandlers. EventHandler (.handler) files can be edited in the
Workshop IDE using the EventHandler editor plug-in.

Note: Once a .handler file exists in an application, you may edit the configuration it contains
using Worklist Console. This allows you to make your best judgement for the event types
that must be handled, and then fine tune the handling at runtime.

Deployment
The EventHandler module is deployed when the host application (and task plans it contains) are
deployed. At runtime, the various listener types consult the deployed EventHandlers to determine
if an event is of interest to their type of listener, and if so deliver it to their endpoint. This delivery
is controlled and configured by the listener-type-specific configuration in the handler.

For more information, see the “Deploying Event Handlers” on page 6-3 section.

Event Handler Editors
Worklist Console provides a facility to edit event handlers, and the listener-type-specific
configuration within them. For more information, see “Changing the Event Handler Details” in
Worklist Administration.

The BEA Workshop for WebLogic IDE has no direct support for editing .handler or
.listener, etc. files. However, the IDE registers these types of files as custom modules. This
allows them to be deployed automatically (with no other action on the part o the user). However,
editing these files is manual, and should be done according to the examples given in the
respective sections of this document.

Default Event Configuration
Worklist deploys a single default event handler, called WorklistEventHandler that defines event
delivery for the following types of listeners:

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Defau l t Repor t ing Sto re

Using Worklist 5-17

Email Notification

Reporting

MessageBroker

This file is included as part of the Worklist J2EE application library and is a global event handler
(applies to all task plans). You can use Worklist Console to change the default event
configuration in this handler. For more information, see “Changing the Event Handler Details”
in Worklist Administration.

Default Reporting Store
An event-based mechanism that allows a customer to detect changes to the Worklist runtime
repository and make corresponding changes to their own reporting repository is available.
Worklist does not dictate or be aware of, in any way, the design of the customer reporting
repository. In addition, an interface for customer-provided reporting repositories is defined to
make task history information available to Worklist clients.

For out-of-the-box reporting use, Worklist provides a default reporting repository and a default
reporting facility that allows you to glean some amount of long-term reporting information
without having to implement your own reporting repository.

Note: If your application requires information that is not easily gleaned from the default
reporting repository, consider defining your own reporting repository. You can attach
this repository to Worklist events and even disable the default reporting store completely,
if desired. For more information, see “Task Change Events” on page 5-1.

Task History
For some types of tasks, where a task has been is equally as important as where the task was
defined to go. In most of these cases, the task can be loosely defined to move through some
broadly scoped steps, but in general, the actual path of the task, the human actors it will be
associated with, and so on are not known in detail ahead of time.

An example of such a task is the handling of customer service trouble tickets or the resolution and
tracking of defects in a software or hardware product. In these cases, there is a general procedure
put in place to track all types of trouble and defects, but each case has its own significantly unique
considerations. In such a case, the history of a task may be critical to helping human actors that
subsequently encounter the task or are associated with it. For example, a software defect may at
first appear to be in one software component, but upon investigation by a software engineer
attached to the first component, it is determined the defect is in a second software component.

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Work l i s t Event-based Serv i ces

5-18 Using Worklist

Here, the analysis and findings of the first engineer may be critical to the second engineer in
finding and fixing the problem.

Task History Provider
A Task History interface is defined as:

package com.bea.wli.worklist.api.config;

/**

 * Defines a provider of task history information. This provider

 * may be registered for all task plans or selected task plans.

 */

public interface TaskHistoryProvider {

 public void setProperties(Property[] props);

 public void initialize()

 throws ManagementException;

 public TaskHistory getTaskHistory(String taskId)

 throws RemoteException, ManagementException;

 public void destroy()

 throws ManagementException;

}

public interface TaskHistory {

 /**

 * Get an iterator over all events that have occurred for this task

Defau l t Repor t ing Sto re

Using Worklist 5-19

 * from the startDate to the endDate (inclusive).

 */

 public TaskEventIterator

 getTaskEvents(Date startDate, Date endDate)

 throws RemoteException, ManagementException;

 /**

 * Reconstruct the state of a task on a given date. The provider

 * should use its history information up to the given date in

 * constructing the returned TaskData. If providers do not support this

 * they should throw NotSupportedException.

 */

 public TaskData getTaskAtDate(Date date)

 throws NotSupportedException, ManagementException, RemoteException;

}

public interface TaskEventIterator {

 public boolean hasNext()

 throws RemoteException;

 public TaskChangeEvent next()

 throws RemoteException, ManagementException;

}

When you implement the custom reporting repository, you may optionally define your own
TaskHistoryProvider implementation and then register that implementation globally or for
selected task plans. The TaskHistoryProvider is registered by deploying a TaskHistoryProvider
custom module. For more information see the “Deploying Custom Task History Providers” on
page 6-18 section for details.

Worklist provides the WorklistTaskUser.getTaskHistory() method as a front-end to the
server-side TaskHistoryProvider.

public interface WorklistTaskUser {

Work l i s t Event-based Serv i ces

5-20 Using Worklist

 …

 /**

 * Is the task plan associated with a task history

 * provider. If this returns true, you can reasonably expect to get

 * non-empty results from getTaskEvents().

 */

 public boolean isTaskHistoryProvided(TaskPlan taskType);

 /**

 * Get all events that have occurred, sorted by date, on this task

 * from the start date to the end date (inclusive). If no task history

 * is available for this task, an empty array is returned. This may

 * happen if the date range falls in during a period of inactivity

 * for the task, or it may indicate that no task history information

 * is being captured for tasks of this type.

 */

 public TaskEvent[] getTaskEvents(String taskId,

 Date startDate, Date endDate)

 throws ManagementException, RemoteException;

 …

}

Worklist provides a TaskHistoryProvider implementation for the Worklist default reporting
store. This default TaskHistoryProvider is registered automatically as a global provider, thus
applying to all task plans.

At most one TaskHistoryProvider can be associated with any given task plan. If a custom
TaskHistoryProvider is registered for a given task plan, that provider becomes the sole provider

Defau l t Repor t ing Sto re

Using Worklist 5-21

of task history information for that task plan (replacing the default/global TaskHistoryProvider).
Registering a global TaskHistoryProvider replaces the default TaskHistoryProvider. This should
be done with caution, and only when a global TaskEventListener has been registered that will
take responsibility for capturing task events need to generate the task history for all task plans.

Reporting Store Design
The reporting store is intended to provide at least the level of reporting functionality available in
Worklist 8.1 with the added benefit of being able to do queries over live and historical data (in
8.1, records that had been archived had to be queried separately from the information in the
Worklist runtime store).

The technical design goal of the reporting store is to store as much data as possible with the
smallest processing overhead as possible. It is assumed that the reporting process or user interface
can absorb the processing hit for focused tasks in the reporting store more easily than the runtime
can absorb the processing hit across all events it generates.

Business Goals
The business goal of the reporting store is to support the following general types of queries:

Audit/update trail for a particular task instance

– When was this task created?

– What steps did it progress through?

– Who took the action to move from step A to step B and when was it taken?

Gathering statistics

– How long are tasks of a given type taking to complete?

– What percentage of tasks of a given type are completing normally and what percentage
are being aborted or encountering errors?

– How many tasks of a given type is a given user completing?

– How long is it taking for a given user to complete tasks of a given type?

– How many tasks of a given type have we processed this week?

Task Plan-specific queries. For example,

– Based on the purchase orders for this month, what companies are we paying the most
money to? (This query might be based on the PurchaseOrder task plan, and look into

Work l i s t Event-based Serv i ces

5-22 Using Worklist

the purchase order property of PurchaseOrder tasks, calculating the total amount of the
purchase order, and the payee for the purchase order).

– Based on the expense reports for this quarter, how much money have we spent on hotel
expenses? (This query might use the expense report property of ExpenseReport tasks,
and look for all the items marked as Hotel, between the first and last day of the month).

Database Schema
The following diagram shows an example of the reporting store schema. For a few examples of
how the reporting store may be used to retrieve data to satisfy the business goals set out in
“Business Goals” on page 5-21, see “Sample Queries” on page 5-23.

Defau l t Repor t ing Sto re

Using Worklist 5-23

Figure 5-2 Reporting Store Schema

Sample Queries
Example: Show me everything that has happened with task XYZ to date

select * from WLI_WORKLIST_RPT_TASKEVENT

Work l i s t Event-based Serv i ces

5-24 Using Worklist

 where TASK_ID='XYZ'

 order by TIMESTAMP

Example: Who took the action to move task XYZ from step A to step B, and when was it taken?

select e.CALLER, e.TIMESTAMP

 from WLI_WORKLIST_RPT_TASKEVENT e, WLI_WORKLIST_RPT_TASKACTION a

 where e.TASK_ID = 'XYZ' and

 e.TASK_EVENT_ID = a.TASK_EVENT_ID and

 a.OLD_STEP_NAME = 'A' and a.NEW_STEP_ID = 'B'

Example: How long is it taking for Bob to complete CustomerRefund tasks?

select avg(complete.TIMESTAMP - create.TIMESTAMP)

 from WLI_WORKLIST_RPT_TASKEVENT create, WLI_WORKLIST_RPT_TASKEVENT

complete,

 WLI_WORKLIST_RPT_TASKINFO info

 where create.EVENT_TYPE = 'TaskCreate' and

 complete.EVENT_TYPE = 'TaskComplete' and

 create.TASK_ID = complete.TASK_ID and

 info.TASK_ID = create.TASK_ID and

 info.TASK_TYPE_ID = 'CustomerTasks:1.0/CustomerRefund:1.0'

 info.OWNER = 'Bob'

 group by info.TASK_ID

Example: How many CustomerRefund tasks have been processed this week?

select count(TASK_ID)

 from WLI_WORKLIST_RPT_TASKEVENT

 where EVENT_TYPE = 'TaskComplete' and

 TASK_TYPE_ID = 'CustomerTasks:1.0/CustomerRefund:1.0' and

 TIMESTAMP > [long millis for start of week] and

 TIMESTAMP < [long millis for end of week]

 group by EVENT_TYPE

Defau l t Repor t ing Sto re

Using Worklist 5-25

Example: Based on the expense reports for this quarter, how much money has been spent on
hotel expenses?

Note: This query might use the Hotel Charges property of ExpenseReport tasks. The task plan
designer would have to foresee the need to query on hotel expenses and create a field to
hold those expenses apart from other information in the expense report document. Let us
assume you want to know your hotel expenses were between the first and last day of the
month.

select event.TASK_ID, prop.VALUE, event.TIMESTAMP

 from WLI_WORKLIST_RPT_TASKEVENT event, WLI_WORKLIST_RPT_TASKPROPERTY prop

 where event.EVENT_TYPE = 'TaskComplete' and

 event.TASK_TYPE_ID = 'EmployeeTasks:1.0/ExpenseReport:1.0' and

 prop.TASK_ID = event.TASK_ID and

 event.TIMESTAMP > [long millis for the start of month] and

 event.TIMESTAMP < [long millis for the end of month] and

 prop.NAME = 'Hotel Charges'

 order by event.TASK_ID, event.TIMESTAMP

Note: It is assumed here that you cannot actually calculate the amount of the hotel expense in
each ExpenseReport task. Some database types allow you to convert field values from
one data type to another. In databases that support such conversions, you could convert
Hotel Charges to a float or currency value and then group and sum the resulting values.

Reporting Event Filtering
Producer-side filtering allows you to exclude certain event types from being reported into the
default reporting store. For more information, see “Controlling Events Per-Task Plan” on
page 5-6.

A reporting event configuration section is defined within the EventHandler event subscription to
indicate if the event types for the subscription should be delivered to the default reporting store.
If no such configuration is present for a subscription, no reporting events are delivered as a result
of handling that subscription at runtime. If no subscription in any handler for the host application
defines that a given event types should be delivered to the default reporting store, then the event
is ignored by the default reporting store.

The default Worklist event handler defines all event types to be of interest to the default reporting
store. If required, this default configuration may be changed using Worklist Console.

Work l i s t Event-based Serv i ces

5-26 Using Worklist

Email Notification
Worklist provides a measure of control over business tasks involving human interaction. Tasks
are associated with human actors in several ways:

Task Creator

Task Owner

Assignee

Claimant

These human actors often need to be notified of changes to the tasks they are associated with. The
most common example of this is when a task is assigned to a group of human actors. In this case,
those actors may not be immediately aware that they have had a task assigned to them. If they
regularly have to open Worklist User Portal (or any custom task UI) refresh it regularly, they will
see their tasks appear in their Assigned Tasks portlet in the Worklist User Portal. However, if they
do not regularly use and refresh their Worklist User Portal, then an alternate method of
notification is needed. Most people today have an email client open at all times. Thus, email
becomes a powerful tool for notification.

This section provides information about how Worklist support notifications via email.

Worklist allows configuration of email notifications from the task plan definition. This
configuration involves choosing the event types that cause an email notification, the actors to
whom those notifications should go, and what the body of the email will look like.

Specifying Actors for Email Notification
You can specify actors in terms of their affinity to a task (Creator, Owner, Claimant, Assignee),
or by user name (no direct association with the task). In addition, you can use custom email
recipient calculators to allow the email address of an actor or actors to be calculated dynamically
at runtime. For more information, see “Deploying EMail Recipient Calculators” on page 6-13.

By specifying a task affinity or user name as an email recipient, you implicitly take responsibility
for ensuring that these actors have email addresses configured for them in Worklist Console. For
more information, see “Setting the E-mail Address of a User” in Worklist Administration in
Using Worklist Console.

Note: The email notification subsystem logs warnings whenever it cannot find the email
address for a configured actor.

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Emai l Not i f i cat ion

Using Worklist 5-27

Email Recipient Calculators
For cases where the proper recipient for a given type of email notification cannot be known in
advance, the email address can be calculated to be used dynamically at runtime.

These calculators allow a user to augment the To: list of the e-mail messages that are sent to
recipients in response to a Worklist Task Event. For example, there is a Task Plan that defines
how to handle the approval of purchase orders. In cases of very expensive purchase orders,
perhaps the controller for a business unit should be notified via e-mail when the purchase order
is created. The default email notification configuration cannot express this requirement. In this
case, the user could implement the EmailRecipientCalculator interface, place the
implementation in the application that hosts the Task Plan and then have the implementation
return the controller's e-mail address any time a CREATE Task Event is received where the
PurchaseOrderAmount property is over a given amount.

Note: The calculator implementation can be parameterized at deployment time (by a custom
module descriptor, .email file, in the host application) to allow the amount to be
specified, or to pass in some address for an external service that can be used to look up
the amount.

/**

 * Defines a pluggable implementation of a calculator that can produce the

 * email addresses of actors that are to receive email notifications for

 * a given TaskEvent. This interface is really only intended to provide a

 * simple facility for augmenting the To: list for emails that are already

 * getting sent from the default email subsystem in Worklist. If you need

 * to control the subject, body, or other attributes of emails being sent,

 * you should define your own custom event listener from which you can send

* custom emails.

 * <p>

 * Implementations of this interface MUST provide a public

 * default (no arg) constructor. Implementations must make no assumptions

 * about the lifecycle of their instances nor their relationship to other

 * instances. Lifecycle is controlled entirely via the initialize() and

* destroy() methods.

Work l i s t Event-based Serv i ces

5-28 Using Worklist

 */

public interface EmailRecipientCalculator {

 /**

 * Set any properties configured for this EmailRecipientCalculator in the

 * custom module that deployed it. This method is only called if

properties

 * are available (e.g. specified in the deployment descriptor for the

custom

 * module). Note this method (if called at all) is called prior to the

 * call to the initialize lifecycle method.

 * @param properties

 */

 public void setProperties(Property[] properties);

 /**

 * Initialize any resources needed to start calculating email addresses

in

 * getEmailRecipientsForEvent().

 * @throws com.bea.wli.worklist.api.ManagementException

 */

 public void initialize()

 throws ManagementException;

 /**

 * Destroy this instance and release any resources obtained in initialize

 * or during calls to getEmailRecipientsForEvent().

 * @throws ManagementException

Emai l Not i f i cat ion

Using Worklist 5-29

 */

 public void destroy()

 throws ManagementException;

 /**

 * Calculate the email addresses for any actors that should receive email

 * notification for the given event. If no email notifications are to be

 * sent, this method may return null or an empty array.

 * @param event The event for which email notifications are to be sent.

 * @param currentRecipients This is a set of email addresses to which

 * the email for this event will already be sent. This set is a

 * copy of the set that will be used to populate the To: list on the

 * email, so adding/removing items in this set has no effect.

 * @return An array of email addresses for actors that should get email

 * notifications in response to the event. These actors will

 * receive an email with a pre-determined subject and body. The

 * body will contain a URL to the task that caused this event. The

 * URL may optionally be calculated by installing a

 * TaskURLCalculator.

 * @throws ManagementException If any error occurs calculating

recipients.

 * This error will be logged to the server log, but otherwise

 * will not alter the handling of this event.

 * @see TaskURLCalculator

 */

 public String[] getEmailRecipientsForEvent(TaskEvent event,

 Set<String> currentRecipients)

 throws ManagementException;

Work l i s t Event-based Serv i ces

5-30 Using Worklist

}

To install an email recipient calculator implementation that implements the above interface,
define a custom module in your host application that defines the class name of the
implementation and any properties needed to initialize that instance before it can calculate
recipients. For more information, see “Deploying EMail Recipient Calculators” on page 6-13.

EMail Delivery Mechanism
E-mail is sent using the JavaMail API. The mail session that is to be used for sending the e-mails
is indicated in the Worklist System Instance configuration in Worklist console. This
configuration is the name of a mail session configured in WebLogic Server (via the WebLogic
Server Administration Console). For more information, see “Changing the Worklist System
Instance Configuration” in Worklist Administration in Using Worklist Console, Create a Mail
Session in The WebLogic Server Administration Console help and Programming JavaMail with
WebLogic Server in Developing Applications with WebLogic Server.

Make sure that the JavaMail session must define the name of the SMTP host to which Worklist
will deliver emails. This is done by specifying a session property of the name:

mail.smtp.host=<SMTP Host name or IP Address>

For example, a Microsoft Exchange server or ISP SMTP server can be specified here.

Note: The email notification subsystem logs errors when a configured JavaMail session cannot
be found at runtime.

Event Types
Worklist can deliver a number of different event types in response to changes on a task. Worklist
defines the most common events of interest to human actors to be:

CREATE

ASSIGN

CLAIM

RETURN

SUSPEND

RESUME

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/pagehelp/Mailcreatemailsessionpagetitle.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/pagehelp/Mailcreatemailsessionpagetitle.html
http://e-docs.bea.com/wls/docs100/programming/javamail.html
http://e-docs.bea.com/wls/docs100/programming/javamail.html

Emai l Not i f i cat ion

Using Worklist 5-31

SET_ERROR

CLEAR_ERROR

COMPLETE

ABORT

REACTIVATE

STEP_EXPIRE

TASK_EXPIRE

If no specific event type configuration is given for a task plan, the above list is assumed. Task
plan designers and Worklist administrators are free to modify this list as required by their specific
business cases.

By default, each of the above event types are configured to be sent to a specific set of human
actors associated with the task that was changed. The following table describes the default e-mail
recipients for each event type and the email template that is used to create the subject and body
of the e-mail. Again, task plan designers and Worklist administrators are free to modify this
configuration if needed.

By default, email templates are localized to the default locale of the server (not the e-mail client).
Event notifications can be configured to be delivered in other locales, if required.

Note: This default configuration specifies a JavaMail session with a JNDI name of
WorklistMailSession. You must define a JavaMail session of this name in order to
utilize this default configuration. For more information, see Create a Mail Session in The
WebLogic Server Administration Console help

http://e-docs.bea.com/wls/docs100/ConsoleHelp/pagehelp/Mailcreatemailsessionpagetitle.html

Work l i s t Event-based Serv i ces

5-32 Using Worklist

.

Table 5-1 Text templates of Subject and Body of E-mail Messages

Event Type Default Recipients Subject Template Body Template

CREATE Creator, Owner Task '{1}' has been created Task '{1}' has been created
by {2} and is owned by {3}.
Task comment is:

{4}

To see details for this task,
go to this URL:

{0}

ASSIGN Assignees Task '{1}' has been assigned
to you

Task '{1}' has been assigned
to you. To see details for this
task, go to this URL:

{0}

CLAIM Owner, Claimant Task '{1}' has been claimed Task '{1}' has been claimed
by {2}. To see details for this
task, go to this URL:

{0}

RETURN Owner Task '{1}' has been returned Task '{1}' has been returned
by {2}. The reason given
was:

{3}

To see details for this task,
go to this URL:

{0}

TAKE_ACTI
ON

Task '{1}' has had action {2}
taken on it

Task '{1}' has had action {2}
taken on it from step {3} and
is now in step {4}. To see
details for this task, go to this
URL:

{0}

Emai l Not i f i cat ion

Using Worklist 5-33

STEP_CHA
NGE

Task '{1}' has moved from
step {2} to step {3}

Task '{1}' has moved from
step {2} to step {3}. To see
details for this task, go to this
URL:

{0}

SET_USER_
PROPERTY

Task '{1}' has had property
{2} set on it

Task '{1}' has had property
{2} set on it. To see details
for this task, go to this URL:

{0}

PROPERTY_
SET_LOCKS
ET

Task '{1}' has had property
set {2}'s lock state changed

Task '{1}' has had property
set {2}'s lock state changed
from {3} to {4}. To see
details for this task, go to this
URL:

{0}

SUSPEND Creator, Owner, Claimant Task '{1}' has been
suspended

Task '{1}' has been
suspended. The reason given
was:

{2}

To see details for this task,
go to this URL:

{0}

RESUME Creator, Owner, Claimant Task '{1}' has been resumed Task '{1}' has been resumed.
The reason given was:

{2}

To see details for this task,
go to this URL:

{0}

Table 5-1 Text templates of Subject and Body of E-mail Messages

Event Type Default Recipients Subject Template Body Template

Work l i s t Event-based Serv i ces

5-34 Using Worklist

SET_ERROR Creator, Owner, Claimant Task '{1}' has been set into
an error state

Task '{1}' has been set into
an error state. The reason
given was:

{2}

To see details for this task,
go to this URL:

{0}

CLEAR_ER
ROR

Creator, Owner, Claimant Task '{1}' has had its error
state cleared

Task '{1}' has had its error
state cleared. The reason
given was:

{2}

To see details for this task,
go to this URL:

{0}

COMPLETE Creator, Owner, Claimant Task '{1}' has been
completed

Task '{1}' has completed.
The reason given was:

{2}

To see details for this task,
go to this URL:

{0}

ABORT Creator, Owner, Claimant Task '{1}' has been aborted Task '{1}' has been aborted.
The reason given was:

{2}

To see details for this task,
go to this URL:

{0}

Table 5-1 Text templates of Subject and Body of E-mail Messages

Event Type Default Recipients Subject Template Body Template

Emai l Not i f i cat ion

Using Worklist 5-35

REACTIVA
TE

Creator, Owner, Claimant Task '{1}' has been
reactivated

Task '{1}' has been
reactivated. The reason
given was:

{2}

To see details for this task,
go to this URL:

{0}

SET_CURRE
NT_STEP

Creator, Owner, Claimant Task '{1}' has had its current
step set

Task '{1}' has had its current
step set. The reason given
was:

{2}

The old step was {3} and the
new step is {4}. To see
details for this task, go to this
URL:

{0}

SET_BUILTI
N_PROPERT
Y

Task '{1}' has had system
property {2} set on it

Task '{1}' has had system
property {2} set on it. To see
details for this task, go to this
URL:

{0}

STEP_EXPI
RE

Creator, Owner, Claimant Task '{1}' at step {2} has
past its completion due date

Task '{1}' at step {2} has
past its completion due date
of {3,time,full} on
{3,date,full}. To see details
for this task, go to this URL:

{0}

TASK_EXPI
RE

Creator, Owner, Claimant Task '{1}' has past its
completion due date

Task '{1}' has past its
completion due date of
{2,time,full} on
{2,date,full}. To see details
for this task, go to this URL:

{0}

Table 5-1 Text templates of Subject and Body of E-mail Messages

Event Type Default Recipients Subject Template Body Template

Work l i s t Event-based Serv i ces

5-36 Using Worklist

Calculating Task URLs
Each email template (body template) shown in the previous table has a marker for a URL that
may be used to navigate directly to the task UI of the task. The TaskURLCalculator interface is
available for this purpose.

public interface TaskURLCalculator {

 public URL getURLForTask(String taskId)

 throws ManagementException;

}

A custom module that allows individual Worklist host applications to specify their own custom
URL calculator. This is necessary if the Worklist host application also provides a custom
Worklist or Task UI that requires a specific or custom URL for navigation to the task. Only one
TaskURLCalculator can be registered at any given time.

Worklist provides a default TaskURLCalculator implementation that calculates URLs
appropriate for use with the default Worklist User Portal.

A new method is available in WorklistTaskUser in the Worklist API to calculate the URL for a
task (using the registered or default calculator)

public interface WorklistTaskUser {

 …

 public URL getURLForTask(String taskId)

 throws ManagementException, RemoteException;

 …

}

Email Templates
Table 5-1 lists the text templates that are used for as the subject and body of the e-mail message.
Information from the underlying Worklist task event is substituted into the templates to generate
the full text that goes into the e-mail message.

These templates are defined in the WorklistEMail text formatter file and are localized into any
language supported by WebLogic Integration. If required, you can customize these template by
directly editing the WorklistEmailTextFormatter.properties file located in the
worklist.jar file.

MessageBroker and JPD In tegrat ion

Using Worklist 5-37

Email Notification Configuration and EventHandler Modules
The configuration for email notification is defined in a listener-type-specific section of an
EventHandler module. This module is also used to define configuration for reporting events and
other types of events. For more information, see “EventHandler Modules” on page 5-15.

The email configuration of an event handler maps task event types to the actors who should
receive e-mail notification when events of a given type occur. Mapping event types to actors for
any task plan augments (not replaces) the default event notification configuration for that task
plan. In other words, the email configuration given in the configuration module is merged with
the default configuration for a given task plan.

MessageBroker and JPD Integration
Worklist may be used directly from a Worklist Portal, or via Worklist API. One of the primary
interfaces to Worklist in this API is the Worklist controls. Worklist controls are primarily hosted
within WebLogic Integration Process Definitions (JPD). Controls are sufficient to ensure a robust
integration in cases where the JPD instantiates or knows the task IDs of the tasks it will work with.
However, sometime the JPD does not know the task IDs it will work with, and in some cases, a
user may want the creation or modification of a task to cause the creation of a JPD instance.

In such scenarios, JPD MessageBroker is used to deliver messages to a JPD from event channels.
These channels can have a semantic attached to them and allow message filters to control delivery
of these messages to consumers. This is an ideal mechanism to allow existing JPD instances to
become aware of task instances as needed (by responding to events of a given type from a given
task plan for instance). This mechanism, via static subscriptions, also allows a JPD instance to be
created in response to a task event.

Worklist Channel
Worklist delivers events to a MessageBroker channel when changes occur to tasks of any type
using the following Worklist channel:

/WorklistEvent

So, a JPD may define a MessageBroker static or dynamic subscription using the
/WorklistEvent channel name (and any relevant header fields in a filter) to receive Worklist
events it is interested in. This channel is a rawdata channel and has messages with a body that
is a serialized TaskEvent instance. The actual runtime type of the TaskEvent instance depends on
the event type for the event. For more information, see “Task Change Events” on page 5-1.

Work l i s t Event-based Serv i ces

5-38 Using Worklist

You need to deserialize the bytes of the MessageBroker message using
ObjectInputStream.readObject(), and cast the resulting object to a TaskEvent. An example
JPD is given below:

@com.bea.wli.jpd.Process(

 process="<process name=\"WorklistControlStatefulControlReceive\">\n"

+

 " <clientRequest name=\"Client Request\"

method=\"clientRequest\"/>\n" +

 "</process>"

)

public class HandleTaskEvent implements com.bea.jpd.ProcessDefinition

{

 public String _x0;

 static final long serialVersionUID = 1L;

 @MessageBroker.StaticSubscription(channelName = "/WorklistEvent",

 messageMetaData="{meta}",

 messageBody = "{body}")

 public void clientRequest(TaskEventMetadataDocument meta,

 Object body)

 throws IOException, ClassNotFoundException {

 RawData rawData = (RawData)body;

 ByteArrayInputStream bais = new

ByteArrayInputStream(rawData.byteValue());

 ObjectInputStream ois = new ObjectInputStream(bais);

 TaskEvent event = (TaskEvent)ois.readObject();

 System.out.println("## Got TaskEvent in JPD: " + event.getSummary());

 this._x0 = event.getSummary();

MessageBroker and JPD In tegrat ion

Using Worklist 5-39

 }

}

Event Types
Events are delivered to the Worklist MessageBroker channel as they occur in the Worklist engine.
The MessageBroker listener is capable of sending any defined task event to MessageBroker. By
default, only the following events are delivered via MessageBroker

CREATE

STEP_CHANGE

SET_CURRENT_STEP

COMPLETE

ABORT

SET_ERROR/CLEAR_ERROR

REACTIVATE

STEP_EXPIRE

TASK_EXPIRE

Event delivery may be customized on a per-task plan or global basis. For more information, see
“MessageBroker Event Configuration and EventHandler Modules” on page 5-42.

Message Header Fields
Each task event posted to MessageBroker is posted to a single Worklist channel. This message
has a number of header fields to allow filtering of messages at the point of consumption in the
JPD. The various message header fields are:

TaskPlanId - The ID of the TaskPlan for the task upon which the event occurred

EventType - The type of event that occurred

TaskId - The ID of the task upon which the event occurred

Timestamp - The date and time the event occurred

Claimant - The name of the claimant for the task

Work l i s t Event-based Serv i ces

5-40 Using Worklist

This message header fields are delivered as an XMLBean event metadata object of the type

com.bea.wli.worklist.xml.TaskEventMetadataDocument

as defined in the Worklist.xsd schema

Note: This schema is available from BEA Workshop for WebLogic IDE by creating a Worklist
application with a utility project and adding system schemas to that project. The
XMLBean is available in the worklist-client.jar public jar file).

Example Process:

package process;

import java.util.Date;

import com.bea.jpd.ProcessDefinition;

import com.bea.jpd.JpdContext;

import org.apache.beehive.controls.api.bean.Control;

import java.io.ByteArrayInputStream;

import java.io.ObjectInputStream;

@com.bea.wli.common.XQuery(prolog="declare namespace ns0 =

\"http://www.bea.com/wli/worklist/xml\";")

@com.bea.wli.jpd.Process(process =

"<process name=\"StaticMBWithNoXQuery\">" +

" <clientRequest name=\"Subscription\" method=\"subscription\"/>" +

" <perform name=\"Print Event Info\" method=\"perform\"/>" +

"</process>")

public class StaticMBWithAndFilterValue implements ProcessDefinition {

 public com.bea.wli.worklist.xml.TaskEventMetadataDocument _e1;

 public com.bea.data.RawData _rd;

MessageBroker and JPD In tegrat ion

Using Worklist 5-41

 @com.bea.wli.jpd.Context

 JpdContext context;

 static final long serialVersionUID = 1;

 @com.bea.wli.control.broker.MessageBroker.StaticSubscription(xquery =

"fn:concat($metadata/ns0:taskPlanId, $metadata/ns0:eventType)",

filterValueMatch = "/Loans/Loan Approval:1.0:LoanAppCREATE", channelName =

"/WorklistEvent", messageBody = "{x0}", messageMetaData = "{x1}")

 public void subscription(com.bea.data.RawData x0,

 com.bea.wli.worklist.xml.TaskEventMetadataDocument

x1) {

 // #START: CODE GENERATED - PROTECTED SECTION - you can safely add

code above this comment in this method. #//

 // input transform

 // parameter assignment

 this._rd = x0;

 this._e1 = x1;

 // #END : CODE GENERATED - PROTECTED SECTION - you can safely add

code below this comment in this method. #//

 }

 public void perform() throws Exception {

 Date dt = new Date();

 StringBuffer sb = new StringBuffer();

 sb.append("\n\n[" + dt.getTime() + "]\t ++++++++

StaticMBWithAndFilterValue : GOT MB Event in JPD with Filter Value Match

+++++ " + new Date());

Work l i s t Event-based Serv i ces

5-42 Using Worklist

 sb.append("[" + dt.getTime() + "]\t Event Info: " + this._e1);

 sb.append("[" + dt.getTime() + "]\t Is Raw Data NULL? " + (this._rd

== null ? true : false));

 sb.append("[" + dt.getTime() + "]\t

--

--");

 try {

 ByteArrayInputStream baos =

 new ByteArrayInputStream(_rd.byteValue());

 ObjectInputStream ois = new ObjectInputStream(baos);

 TaskEvent event = (TaskEvent)ois.readObject();

 sb.append("[" + dt.getTime() + "]\t Event object summary: " +

event.getSummary());

 } catch (Exception e) {

 sb.append("[" + dt.getTime() + "]\t Event object (error): " +

e.toString());

 }

 System.out.println(sb);

 }

}

MessageBroker Event Configuration and EventHandler
Modules
Task events are delivered to MessageBroker via an EventHandler. By default, Worklist defines a
single EventHandler with a default event configuration. For more information, see “Event Types”
on page 5-30. However, Worklist administrators can modify this configuration globally or for
specific task plans using Worklist Console. For more information, see “Changing the Event
Handler Details” in Worklist Administration.

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Custom Task Event L is teners

Using Worklist 5-43

The configuration for MessageBroker event delivery is defined as part of an EventHandler
module. This module is also used to define configuration for email notification, reporting events
and other types of events. For more information, see “EventHandler Modules” on page 5-15.

The MessageBroker event configuration of an event handler indicates task event types that are to
be sent to MessageBroker. Indicating an event type within the MessageBroker event
configuration enables that event for delivery via MessageBroker. Enabling event types for any
task plan augments (not replaces) the default event notification configuration for that task plan.
In other words, the configuration given in the configuration module is merged with the default
configuration for a given task plan.

Custom Task Event Listeners
Worklist allows you to listen to runtime events (see “Task Change Events” on page 5-1) and take
any action in response to those events. Your listener can request synchronous or asynchronous
event delivery and can request to be registered as a critical or non-critical listener. For more
information, see “Event Dispatch Modes (Quality of Service)” on page 5-6.

Your custom task event listener implements the TaskEventListener interface (see “Task
Change Events” on page 5-1). You can then register your listener by including a .listener file
in your application. For more information, see “Deploying Custom Event Listeners” on page 6-9.

Custom Assignment Handlers
You can assign users to specific tasks using Worklist. These default assignment facilities should
be sufficient for a large number of assignment scenarios. However, in some cases, the default
assignment facilities in Worklist may not be enough. In these cases, you can provide a custom
assignment handler that allows you to control the assignment process for your tasks.

Custom assignment handlers take full control of the assignment process. They may be appropriate
in cases where special load balancing or availability checking logic is required. A custom
assignment handler can be applied to specific task plans or globally to all task plans.

Note: Only one global assignment handler can be present at any given time, so this option
should be used carefully. Applying a global assignment handler overrides any previously
applied handler (including the default Worklist assignment handler).

A custom assignment handler must implement the following interface:

com.bea.wli.worklist.api.config.AssignmentHandler

Work l i s t Event-based Serv i ces

5-44 Using Worklist

and must provide a public default (no arg) constructor. Custom assignment handlers must not
expect to control how many instances of the handler that are instantiated nor the lifecycle of any
given instance. The lifecycle of a given handler instance is controlled via the initialize() and
destroy() lifecycle methods.

A summary of this interface is as follows. For more information about the complete interface, see
the Worklist API JavaDoc available at
http://edocs/wli/docs92/worklist.javadoc/index.html

/**

 * Describes an assignment algorithm that can be used to assign a task

 * of a given type to users as candidates for claiming the task. This

algorithm

 * may optionally choose to claim the task in the name of a designated

 * candidate user. Implementations of this interface MUST provide a public

 * default (no arg) constructor. Implementations must make no assumptions

about

 * the lifecycle of their instances nor their relationship to other

instances.

 * Lifecycle is controlled entirely via the initialize() and destroy()

methods.

 */

public interface AssignmentHandler {

 /**

 * Request object passed to an assignment handler when Worklist is

 * requesting the assignment of a task.

 */

 public class Request {

 private String _taskId;

 private String[] _candidateUserIds;

http://edocs/wli/docs92/worklist.javadoc/index.html

Custom Ass ignment Hand le rs

Using Worklist 5-45

 private CandidateListHandling _handling;

 private boolean _availabilityCheckEnabled;

 private WorkloadRequest _workloadRequest;

 …

 }

 /**

 * Response object an assignment handler returns describing the

assignment

 * decision that has been made for the task.

 */

 public interface Response {

 /**

 * Assignee list as calculated by the assignment handler, or

 * null to accept the assignee list that was used to generate the

 * candidate user id list.

 */

 AssigneeDefinition[] getNewAssigneeList();

 /**

 * The user id of the user who should be made the claimant of the task,

 * or null if no claimant was chosen.

 */

 String getClaimant();

 }

Work l i s t Event-based Serv i ces

5-46 Using Worklist

 /**

 * Set any properties that were configured with this assignment

 * handler. Note that the value should be obtained from the default value

 * of the provided properties.

 * @param props

 */

 public void setProperties(Property[] props);

 /**

 * Initialize this instance in preparation for calls on assignTask()

 * @throws ManagementException if any error occurs that would prevent

 * this instance from properly handling calls to assignTask()

 */

 public void initialize()

 throws ManagementException;

 /**

 * Make assignment decisions for the given task. The given list of

 * candidate claimant user names may be used by this method, or ignored.

 * The candidate user name list is derived from the assignee list for the

 * current step of the task, or the assignee list passed to

 * WorklistTaskAdmin.assignTask(). This method MUST NOT actually modify

 * the task to reflect the claimant it chooses (if any) or cause any

 * other side effects to the task. Assignment decisions are communicated

 * back to the caller via the returned Response instance.

 * @param request A Request instance containing the information needed to

 * assign a task.

Custom Ass ignment Hand le rs

Using Worklist 5-47

 * @return A Response instance indicating any newly calculated assignee

 * list to be used for this task, and any claimant chosen for the

 * task.

 * @throws AssignmentException if any authorization or logical error

happens

 * during assignment.

 * @throws ManagementException If any other error occurs during

assignment.

 */

 public Response

 assignTask(Request request)

 throws AssignmentException, ManagementException;

 …

 /**

 * Release any resources obtained in the call to initialize or calls to

 * assignTask().

 * @throws ManagementException If any error occurs releasing resources.

 */

 public void destroy()

 throws ManagementException;

}

The assignment handler implementation is registered by deploying an assignment handler
configuration module within the Worklist host application. For more information, see
“Deploying Custom Assignment Handlers” on page 6-6.

At runtime, a registered assignment handler is invoked via its assignTask method. It receives a
candidate list, the ID of the task that is being assigned and parameters that are intended as hints
to guide the execution of the custom assignment handler. The handling and

Work l i s t Event-based Serv i ces

5-48 Using Worklist

enableLoadBalancingAvailabilityCheck parameters may be used by the assignment
handler, but this is not required.

The assignment handler is free to make use of any information in the task (including its type,
properties, and so on.) in making assignment and claim decisions. Any decision made by the
handler is communicated back to the caller of the assignTask() method via the returned
Response instance.

The Response object can define a newly calculated assignee list (null indicates the old list should
still be used) and any claimant for the task (null means no claimant was chosen). The assignment
handler must not attempt to force the claiming of the task (for example, by calling
WorklistTaskUser.claimTask()) or call any method in the Worklist API that causes side
effects on the task.

The assignment handler's assignTask() method is used by Worklist to handle applying any
updated assignee list or claimant information to the task after the return.

Note: An assignment handler configuration module can specify configuration properties that
may be used by the assignment handler at runtime. Such properties may parameterize and
control the behavior of the handler at runtime. Any configuration properties specified for
the assignment handler are provided to the assignment handler implementation at the
time the handler instance is created via a call to the setProperties() method. For
more information, see “Deploying Custom Assignment Handlers” on page 6-6.

Using Worklist 6-1

C H A P T E R 6

Extending the Capabilities of your
Application with Custom Modules

Custom modules in your application can be used to add extra custom metadata and services into
your application. You may add any of the following services to your application:

Task Plans (.task file) to register a new task plan. These task plans may refer to specific
schema file. In such a scenario, those schema files must also be deployed and present in
the application.

Event Handler (.handler file) to configure default Worklist listeners (reporting, email,
MessageBroker, control).

Assignment Handler (.assign file) to configure and register custom assignment handlers.

Task Event Listener (.listener file) to configure and register custom task event listeners.

EmailRecipientCalculator (.email file) to calculate the e-mail address of the recipients of
an e-mail notification and send it dynamically at runtime.

TaskURLCalculator (.taskurl file) to calculate the URL required to navigate directly to
the task UI for the task.

TaskHistoryProvider (.history file) to retrieve task history of the task associated with
this provider.

Deploying Task Plans
Any application can have task plans installed into it to become a task plan host application. Task
plans are defined as .task files within a task plan host application. However, in order to get these
task plans registered into a task plan registry so that they can be used, you must first install them

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-2 Using Worklist

into a task plan host application, and deploy that task plan host application to a WebLogic Server
instance.

The Workshop for WebLogic plugin for Worklist handles installing .task files in your
application for you. So, when you create a task plan in Workshop for WebLogic IDE, it is
automatically installed in your host application. However, if you are not using Workshop for
WebLogic, Worklist provides a command-line and Ant task for installing task plans into a host
application. Both these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed task plans.

Task Plan Source Directory - The path to a directory containing the .task files to be
deployed.

This directory may exist either inside or outside the application directory. If it is outside,
the .task files are copied to a location within the application directory that matches the
location of the source .task file relative to the specified task plan source directory. If the
source directory is inside the application directory, no file copying is done.

The command-line and Ant utilities scan the source directory for .task files and then register
all the .task files found for deployment with the task plan host application.

Using the command-line utility to install task plans into a host application:
java com.bea.wli.worklist.build.InstallTaskPlan <options>

The options and arguments to this command are defined as follows:

-appRootDir - Holds the META-INF directory for the target application.

-taskTypeSrcDir - Holds the .task files to be installed into the target application. If this
directory is a child of appRootDir, no file copying is done. If not, the .task files found under
this directory (recursively) are copied into the same relative path within the target application at
the root of the application.

Using Ant utility to install task plans into a host application:

<project name="MyProject">

...

<taskdef name="install-tasktype-in-app"

classname="com.bea.wli.worklist.build.InstallTaskPlanTask"

classpath="${<Classpath that includes WebLogic Integration's

public.jar}"/>

Dep loy ing Event Hand le rs

Using Worklist 6-3

<install-tasktype-in-app

appRootDir="${<Host application's root directory>}"

taskTypeSrcDir="${<Source directory of your TaskPlan>}"/>

...

</project>

Deploying Schemas in your Application
You need to deploy schemas in your application based on requirement or to support Task Plans
that are associated with specific schemas.

Task plans installed within your application can refer to XMLBean data types. These data type
references can define custom variants that are specific XMLBean types compiled from schemas
you provide. Those schemas must be provided in the same application (or at least be visible from
the application) that hosts the task plans. The simplest and recommended approach for this is to
create a Schemas project at the root of your application, and include the schema XSD files under
a src directory in that project. The build facility within the Workshop for WebLogic IDE can be
used to compile those schemas to XMLBeans.

Deploying Event Handlers
You can define your own event handlers to control the operation of the Worklist-defined listeners
of these types:

Email Notification

Reporting

MessageBroker

Your event handler can be associated with one or more task plans, and/or event types, or it can
be applied globally. If the handler is associated with specific task plans, the configuration it
contains will only be used for the associated task plans or event types. If an event handler is
applied globally, it may be used by any task and any type of event.

To use an event handler, you must install the event handler into the Worklist host application. To
install your event handler:

Create an EventHandler module descriptor (.handler) file in your Worklist host
application

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-4 Using Worklist

Note: The schema of this descriptor is available in the worklist-config-binding.jar
file as schema-0.xsd. For a sample of this descriptor file, see “Sample of an Event
Handler Descriptor File” on page 6-5.

Run the InstallEventHandler utility to install your event handler into the Worklist host
application.

The Workshop for WebLogic plugin for Worklist automatically installs the event handler when
you create the .handler file, so you need not do this manually when you use Workshop for
WebLogic. However, if you are not using Workshop for WebLogic, Worklist provides a
command-line and Ant task for installing event handlers into a Worklist host application. Both
these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed event listener.

Handler Source Directory - The path to a directory containing the .handler files to be
installed.

This directory may exist either inside or outside the application directory. If it is outside,
the .handler files is copied to a location within the application directory that matches the
location of the source .handler file relative to the specified source directory. If the source
directory is inside the application directory, no file copying is done.

The command-line and Ant utilities scan the source directory for .handler files, and then
register all the files found for deployment with the host application.

Using the command-line utility to install event handlers into a host application:

java com.bea.wli.worklist.build.InstallEventHandler <options>

The options to this command are defined as follows:

-appRootDir - Holds the META-INF directory for the target application.

-handlerSrcDir - Holds the .handler files to be installed into the target application. If this
directory is a child of appRootDir, no file copying is done. If not, the .handler files found under
this directory (recursively) are copied into the same relative path within the target application at
the root of the application.

Using the Ant utility to install event handlers into a host application:

<project name="MyProject">

...

Dep loy ing Event Hand le rs

Using Worklist 6-5

<taskdef name="install-eventhandler-in-app"

classname="com.bea.wli.worklist.build.InstallEventHandlerTask"

classpath="${<Classpath that includes WebLogic Integration's

public.jar}"/>

<install-eventhandler-in-app

appRootDir="${<Host application's root directory>}"

handlerSrcDir="${<Source directory of your event handler>}"/>

...

</project>

Sample of an Event Handler Descriptor File
Create an Event Handler descriptor file in your application that looks something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<java:event-handler xmlns:java="java:com.bea.wli.worklist.config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<java:global-handler>false</java:global-handler>

<java:handled-task-type-id>/MyFolder/MyTaskPlan:1.0</java:handled-task-t

ype-id>

<java:name>My Handler</java:name>

<java:event-subscription>

<java:name>CREATE/ASSIGN Subs</java:name>

<java:event-type><java:type>CREATE</java:type></java:event-type>

<java:event-type><java:type>ASSIGN</java:type></java:event-type>

<java:email-event-subscription>

<java:java-mail-session-jndi-name>MyMailSession</java:java-mail-sessio

n-jndi-name>

<java:from-name>Me@bea.com</java:from-name>

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-6 Using Worklist

<java:actor>

<java:name>me</java:name>

<java:type>User</java:type>

</java:actor>

</java:email-event-subscription>

</java:event-subscription>

</java:event-handler>

Deploying Custom Assignment Handlers
You can define your own custom assignment handlers by implementing the following Java
interface:

com.bea.wli.worklist.api.config.AssignmentHandler

Your custom assignment handler can be associated with one or more task plans or can be applied
globally. If the handler is associated with specific task plans, it is called whenever a task of that
task plan is assigned to users. If an assignment handler is applied globally, it replaces any
previously applied handler (including the Worklist default handler) within the Worklist system
instance that receives the deployment of the handler (usually the local system instance in a
stand-alone Worklist application scenario). The new global handler is called when any task is
assigned to users.

Note: Applying an assignment handler globally should be done with caution as you may
overwrite a previously installed custom handler.

To use of a custom assignment handler, you need to install it into the Worklist host application.
To install your custom assignment handler:

Create a CustomAssignmentHandler module descriptor (.assign file) in your Worklist
host application

Note: The schema of this descriptor is available in the worklist-config-binding.jar
file as schema-0.xsd. For a sample of this descriptor file, see “Sample of an
Assignment Handler Descriptor File” on page 6-8.

Deploy ing Custom Ass ignment Hand le rs

Using Worklist 6-7

Make sure that the implementation class of your handler and the classes it depends on are
in the APP-INF\lib directory of the Worklist host application as .jar files or in the
APP-INF\classes directory as individual class files.

Run the InstallAssignmentHandler utility to install your custom assignment handler
into the Worklist host application.

The Workshop for WebLogic plugin for Worklist automatically installs the assignment handler
when you create the .assign file, so you need not do this manually when you use Workshop for
WebLogic. However, if you are not using Workshop for WebLogic, Worklist provides a
command-line and Ant task for installing assignment handlers into a Worklist host application.
Both these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed assignment handler.

Handler Source Directory - The path to a directory that contains the .assign files to be
installed.

This directory may exist either inside or outside the application directory. If it is outside,
the .assign files are copied to a location within the application directory that matches the
location of the source .assign file relative to the specified source directory. If the source
directory is inside the application directory, no file copying is done.

These utilities scan the source directory for .assign files and then register all the files found for
deployment with the host application.

Using the command-line utility to install assignment handlers into a host application:

java com.bea.wli.worklist.build.InstallAssignmentHandler <options>

The options to this command are defined as follows:

-appRootDir - Holds the META-INF directory for the target application.

-handlerSrcDir - Holds the .assign files to be installed into the target application. If this
directory is a child of appRootDir, no file copying is done. If not, the .assign files found under
this directory (recursively) are copied into the same relative path within the target application at
the root of the application.

Using the Ant utility to install assignment handlers into a host application:

<project name="MyProject">

...

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-8 Using Worklist

<taskdef name="install-assignmenthandler-in-app"

classname="com.bea.wli.worklist.build.InstallAssignmentHandlerTask"

classpath="${<Some Classpath that includes WebLogic Integration's

public.jar}"/>

<install-assignmenthandler-in-app

appRootDir="${<Host Application's root dir>}"

handlerSrcDir="${<Source directory of your handler>}"/>

...

</project>

Sample of an Assignment Handler Descriptor File
Create an assignment handler descriptor file in your application that looks something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<custom-assignment-handler-set

xmlns ="java:com.bea.wli.worklist.config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<custom-assignment-handler>

<global-handler>false</global-handler>

<!-- One or more handled-task-type-id elements if this is not a global

handler -->

<handled-task-type-id>/MyFolder/MyTaskPlan:1.0</handled-task-type-id>

<handled-task-type-id>/MyFolder/MyOtherTaskPlan:2.0</handled-task-type

-id>

<implementation-class-name>com.acme.mystuff.MyAssignmentHandler

</implementation-class-name>

<!-- Any properties you might need to properly construct your handler.

Only string values are supported. These will be passed to the setProperties

method of your AssignmentHandler impl -->

<property>

Deploy ing Custom Event L is teners

Using Worklist 6-9

<name>ConstructorProp1</name>

<value>Value for prop 1</value>

</property>

</custom-assignment-handler>

</custom-assignment-handler-set>

Deploying Custom Event Listeners
You can define your own custom EventListeners by implementing the following Java interface:

com.bea.wli.worklist.api.events.TaskEventListener

Your custom listener may be associated with one or more task plans, event types, or can be
applied globally. If the listener is associated with specific task plans, or event types, it is called
when a task of that type is modified in a way that creates an event of the desired type. If the
listener is applied globally, it is called when any event occurs on any type of task.

To use a task event listener, you must install it into the Worklist host application as follows:

Create a TaskEventListener module descriptor (.listener) file in your Worklist host
application.

Note: The schema for this descriptor is available in the worklist-config-binding.jar
file as schema-0.xsd. For a sample of this descriptor file, see “Sample of an Event
Listener Descriptor File” on page 6-10.

Make sure that the implementation class of your listener and the classes it depends on are
in the APP-INF\lib directory of the Worklist host application as .jar files or in the
APP-INF\classes directory as individual class files.

Run the InstallTaskEventListener utility to install your custom event listener into the
Worklist host application.

The Workshop for WebLogic plugin for Worklist automatically installs the custom event listener
when you create the .listener file, so you need not do this manually when you use Workshop
for WebLogic. However, if you are not using Workshop for WebLogic, Worklist provides a
command-line and Ant task for installing custom event listeners into a Worklist host application.
Both these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed event listener.

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-10 Using Worklist

Listener Source Directory - The path to a directory containing the .listener files to be
installed. This folder may exist either inside or outside the application directory. If it is
outside, the .listener files will be copied to a location within the application directory
that matches the location of the source .listener file relative to the specified source
directory. If the source directory is inside the application directory, no file copying is done.

These utilities scan the source directory for .listener files and then register all the files found
for deployment with the host application.

Using the command-line utility to install event listeners into a host application:
java com.bea.wli.worklist.build.InstallTaskEventListener <options>

The options to this command are defined as follows:

-appRootDir - Holds the META-INF directory for the target application.

-listenerSrcDir - Holds the .listener files to be installed into the target application. If
this directory is a child of appRootDir, no file copying is done. If not, the .listener files found
under this directory (recursively) are copied into the same relative path within the target
application at the root of the application.

Using the Ant utility to install event listeners into a host application:
<project name="MyProject">

...

<taskdef name="install-taskeventlistener-in-app"

classname="com.bea.wli.worklist.build.InstallTaskEventListenerTask"

classpath="${<Some Classpath that includes WebLogic Integration's

public.jar}"/>

<install-taskeventlistener-in-app

appRootDir="${<Host Applications's root dir>}"

listenerSrcDir="${<Source directory of your listener>}"/>

...

</project>

Sample of an Event Listener Descriptor File
Create a task event listener descriptor (.listener) file in your application that looks something
like this:

Deploy ing Custom Event L is teners

Using Worklist 6-11

<?xml version="1.0" encoding="ISO-8859-1"?>

<task-event-listener

 xmlns ="java:com.bea.wli.worklist.config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- Unique name in the app -->

 <name>MyTaskEventListener</name>

 <!-- If global, task-plan-id elements are ignored -->

 <global-listener>false</global-listener>

 <!-- One or more task-plan-id elements if this is not a global

 listener -->

 <task-plan-id>/MyFolder/MyTaskPlan:1.0</task-plan-id>

 <task-plan-id>/MyFolder/MyOtherTaskPlan:1.0</task-plan-id>

 <!-- If true, event-type elements are ignored -->

 <for-all-event-types>false</for-all-event-types>

 <!-- One or more event types if this is not applied for all event types

 -->

 <event-type>CREATE</event-type>

 <event-type>COMPLETE</event-type>

 <event-type>ABORT</event-type>

 <!-- Dispatch Mode (careful, sync listeners are dispatched in the same

 thread in which the task update occurs, and thus runs as the user

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-12 Using Worklist

 that caused the update. Async listeners run as the run-as principal

 for the TaskEventDispatcherMDB (anonymous by default, but configurable

 in the WLS console) -->

 <sync>true</sync>

 <!-- Criticality -->

 <critical>true</critical>

 <!-- TaskEventListener Impl Class Name (must have public no-arg

constructor) -->

 <implementation-class-name>

 demo.MyTaskEventListener

 </implementation-class-name>

 <!-- Any properties you might need to properly construct your listener.

 Only string values are supported. These will be passed to the

 setProperties method of your TaskEventListener impl -->

 <property>

 <name>Prop1</name>

 <value>Hello</value>

 </property>

</task-event-listener>

The above listener descriptor would install an instance of
com.acme.mystuff.MyTaskEventListener and make it applicable to tasks of type:

MyFolder/MyTaskPlan:1.0

MyFolder/MyOtherTaskPlan:2.0

and events of types:

Dep loy ing EMai l Rec ip ient Ca lcu lato rs

Using Worklist 6-13

CREATE

COMPLETE

ABORT

The listener instance is constructed using a no-arg constructor, and then it's setProperties
method is called with the properties specified in the property elements, followed by it's
initialize method.

Deploying EMail Recipient Calculators
You can define your own custom email recipient calculator by implementing the following Java
interface:

com.bea.wli.worklist.api.config.EmailRecipientCalculator

The custom e-mail recipient calculator is applied globally and is invoked any time an e-mail
notification is sent. When you install an EmailRecipientCalculator, any previously applied
calculator within the Worklist system instance that receives the deployment of the calculator
(usually the local system instance in a stand-alone Worklist application scenario) is replaced. The
new global calculator is called when any e-mail notification is sent from the Worklist email
subsystem.

To use an email recipient calculator, you must install it into the Worklist host application as
follows:

Create an EmailRecipientCalculator module descriptor (.email file) in your Worklist host
application

Note: The schema for this descriptor is available from the
worklist-config-binding.jar file as schema-0.xsd. For a sample of this
descriptor file, see “Sample of an Email Recipient Calculator Descriptor File” on
page 6-15.

Make sure that the implementation class of your calculator and the classes it depends on
are in the APP-INF\lib directory of the Worklist host application as .jar files or in the
APP-INF\classes directory as individual class files.

Run the InstallEmailRecipientCalculator utility to install your calculator into the
Worklist host application.

The Workshop for WebLogic plugin for Worklist automatically installs the calculator when you
create the .email file, so you need not do this manually when you use Workshop for WebLogic.
However, if you are not using Workshop for WebLogic, Worklist provides a command-line and

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-14 Using Worklist

Ant task for installing the email recipient calculators into a Worklist host application. Both these
utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed email recipient calculator.

Calculator Source Directory - The path to a directory containing the .email files to be
installed. This directory may exist either inside or outside the application directory. If it is
outside, the .email files are copied to a location within the application directory that
matches the location of the source .email file relative to the specified source directory. If
the source directory is inside the application directory, no file copying is done.

These utilities scan the source directory for .email files and then register all the files found for
deployment with the host application.

Using the command-line utility to install email recipient calculator into a host application:
java com.bea.wli.worklist.build.InstallEmailRecipientCalculator <options>

The options to this command are defined as follows:

 -appRootDir - Holds the META-INF directory for the target application.

 -calculatorSrcDir - Holds the .email files to be installed into the target application. If
this dirrectory is a child of appRootDir, no file copying is done. If not, the .email files found
under this directory (recursively) are copied into the same relative path within the target
application at the root of the application.

Using the Ant utility to install email recipient calculator into a host application:
<project name="MyProject">

 ...

 <taskdef name="install-emailrecipientcalculator-in-app"

classname="com.bea.wli.worklist.build.InstallEmailRecipientCalculatorTask"

 classpath="${<Some Classpath that includes WebLogic Integration's

public.jar}"/>

 <install- emailrecipientcalculator -in-app

 appRootDir="${<Host Application's root directory>}"

 calculatorSrcDir="${<Source directory of your calculator>}"/>

 ...

</project>

Deplo y ing Task URL Ca lcu lato rs

Using Worklist 6-15

Sample of an Email Recipient Calculator Descriptor File
Create an email recipient calculator module descriptor (.email) file in your application that
looks something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<java:email-recipient-calculator

 xmlns:java="java:com.bea.wli.worklist.config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<java:implementation-class-name>com.bea.wli.worklist.test.testEmailNotific

ation.EmailRecipientCalculatorImpl</java:implementation-class-name>

 <java:property>

 <java:name>EmailDomainAddr</java:name>

 <java:value>custom.worklist.drt.com</java:value>

 </java:property>

</java:email-recipient-calculator>

Deploying Task URL Calculators
You can define your own custom task URL calculator by implementing the following Java
interface:

com.bea.wli.worklist.api.config.TaskURLCalculator

Your calculator is applied globally, and is invoked any time an email notification is sent. When
you install a TaskURLCalculator, any previously applied calculator within the Worklist system
instance that receives the deployment of the calculator (usually the local system instance in a
stand-alone Worklist application scenario) is replaced. The new global calculator is called when
any email notification is sent from the Worklist email subsystem.

To use a Task URL Calculator, you must install it into the Worklist host application as follows:

Create a Task URL Calculator module descriptor (.taskurl file) in your Worklist host
application.

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-16 Using Worklist

Note: The schema for this descriptor is available from the
worklist-config-binding.jar file as schema-0.xsd. For a sample of this
descriptor file, see “Sample of a Task URL Calculator Descriptor File” on page 6-17.

Make sure that the implementation class of your calculator and the classes it depends on
are in the APP-INF\lib directory of the Worklist host application as .jar files or in the
APP-INF\classes directory as individual class files.

Run the InstallTaskURLCalculator utility to install your calculator into the Worklist
host application.

The Workshop for WebLogic plugin for Worklist automatically installs the calculator when you
create the .taskurl file, so you need not do this manually when you use Workshop for
WebLogic. However, if you are not using Workshop for WebLogic, Worklist provides a
command-line and Ant task for installing the task URL calculators into a Worklist host
application. Both these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed calculator.

Calculator Source Directory - The path to a directory containing the .taskurl files to
be installed. This directory may exist either inside or outside the application directory. If it
is outside, the .taskurl files is copied to a location within the application directory that
matches the location of the source .taskurl file relative to the specified source directory.
If the source directory is inside the application directory, no file copying is done.

These utilities scan the source directory for .taskurl files and then register all the files found
for deployment with the host application.

Using the command-line utility to install task URL calculators into a host application:
java com.bea.wli.worklist.build.InstallTaskURLCalculator <options>

The options to this command are defined as follows:

 -appRootDir - Holds the META-INF directory for the target application.

 -calculatorSrcDir - Holds the .taskurl files to be installed into the target application.
If this directory is a child of appRootDir, no file copying is done. If not, the .taskurl files found
under this directory (recursively) are copied into the same relative path within the target
application at the root of the application.

Using the Ant utility to install task URL calculators into a host application:
<project name="MyProject">

Deplo y ing Task URL Ca lcu lato rs

Using Worklist 6-17

 ...

 <taskdef name="install-taskurlcalculator-in-app"

classname="com.bea.wli.worklist.build.InstallTaskURLCalculatorTask"

 classpath="${<Classpath that includes WebLogic Integration's

public.jar}"/>

 <install-taskurlcalculator-in-app

 appRootDir="${<Host Application's root directory>}"

 calculatorSrcDir="${<Source directory of your calculator>}"/>

 ...

</project>

Sample of a Task URL Calculator Descriptor File
Create a Task URL Calculator module descriptor (.taskurl) file in your application that looks
something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<java:task-url-calculator

 xmlns:java="java:com.bea.wli.worklist.config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<java:implementation-class-name>com.bea.wli.worklist.test.testURLCalculato

rImpl</java:implementation-class-name>

 <java:property>

 <java:name>MyProperty</java:name>

 <java:value>My Custom Value</java:value>

 </java:property>

</java:task-url-calculator>

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-18 Using Worklist

Deploying Custom Task History Providers
You can define your own custom task history providers by implementing the following Java
interface:

com.bea.wli.worklist.api.config.TaskHistoryProvider

Your custom task history provider can be associated with one or more task plans or can be applied
globally. If the provider is associated with specific task plans, it is called whenever task history
is requested for a task of that type. If it is applied globally, it replaces any previously applied
provider (including the Worklist default provider) within the Worklist system instance that
receives the deployment of the provider (usually the local system instance in a stand-alone
Worklist application scenario). The new global provider is called when task history is requested
for a task of any type.

Note: Applying a task history provider globally should be done with caution as you may
overwrite a previously installed custom provider.

To use a custom task history provider, you must install it into the Worklist host application as
follows:

Create a Task History Provider module descriptor (.history file) in your Worklist host
application

Note: The schema for this descriptor is available from the
worklist-config-binding.jar file as schema-0.xsd. For a sample of this
descriptor file, see “Sample of a Custom Task History Provider Descriptor File” on
page 6-19.

Make sure that the implementation class of your provider and the classes it depends on are
in the APP-INF\lib directory of the Worklist host application as .jar files or in the
APP-INF\classes directory as individual class files.

Run the InstallTaskHistoryProvider utility to install your provider into the Worklist
host application.

Note: The Workshop for WebLogic plugin for Worklist does not automatically install the
provider as with other modules. You must do this manually to deploy your provider
deployed at runtime.

Worklist provides a command-line and Ant task for installing custom providers into a Worklist
host application. Both these utilities require the following arguments:

Application Root Directory - The path to the root of the application that will receive the
installed task history provider.

Deploy ing Cus tom Task H is to ry P rov iders

Using Worklist 6-19

Provider Source Directory - The path to a directory containing the .history files to be
installed. This directory may exist either inside or outside the application directory. If it is
outside, the .history files are copied to a location within the application directory that
matches the location of the source .history file relative to the specified source directory.
If the source directory is inside the application directory, no file copying is done.

These utilities scan the source directory for .history files and then register all the files found
for deployment with the host application.

Using the command-line utility to install task history providers into a host application:
java com.bea.wli.worklist.build.InstallTaskHistoryProvider <options>

The options to this command are defined as follows:

 -appRootDir - Holds the META-INF directory for the target application

 -providerSrcDir - Holds the .history files to be installed into the target application. If
this directory is a child of appRootDir, no file copying is done. If not, the .history files found
under this directory (recursively) are copied into the same relative path within the target
application at the root of the application.

Using the Ant utility to install task history providers into a host application:
<project name="MyProject">

 ...

 <taskdef name="install-taskhistoryprovider-in-app"

classname="com.bea.wli.worklist.build.InstallTaskHistoryProviderTask"

 classpath="${<Some Classpath that includes WebLogic Integration's

public.jar}"/>

 <install-taskhistoryprovider-in-app

 appRootDir="${<Host Application's root dir>}"

 providerSrcDir="${<Source directory of your provider >}"/>

 ...

</project>

Sample of a Custom Task History Provider Descriptor File
Create a task history provider descriptor (.history) file in your application that looks something
like this:

Extending the Capabi l i t i es o f you r App l icat ion w i th Custom Modules

6-20 Using Worklist

<?xml version="1.0" encoding="ISO-8859-1"?>

<task-history-provider

 xmlns ="java:com.bea.wli.worklist.config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <global-handler>false</global-handler>

 <!-- One or more handled-task-type-id elements if this is not a global

 provider -->

 <handled-task-type-id>/MyFolder/MyTaskPlan:1.0</handled-task-type-id>

<handled-task-type-id>/MyFolder/MyOtherTaskPlan:2.0</handled-task-type-id>

 <implementation-class-name>

 com.acme.mystuff.MyTaskHistoryProvider

 </implementation-class-name>

 <!-- Any properties you might need to properly construct your provider.

 Only string values are supported. These will be passed to the

 setProperties method of your TaskHistoryProvider impl -->

 <property>

 <name>ConstructorProp1</name>

 <value>Value for prop 1</value>

 </property>

</task-history-provider>

Using Worklist 7-1

C H A P T E R 7

Using Worklist Console

Worklist Console allows you to manage and monitor Worklist tasks, users, and the business
calendar.

Worklist Console provides a navigation menu containing several modules for performing focused
operations. Table 7-1lists the modules available in Worklist Console and summarizes the tasks
associated with each of those modules.

Using Work l i s t Conso le

7-2 Using Worklist

Table 7-1 Worklist Module

Module Associated Tasks

Worklist For information about each of the following tasks, see Worklist Administration.

Overview of the Worklist Module
Security Policies
Listing and Locating Worklist System Instances
Managing Sessions
Changing the Worklist System Instance Configuration
Setting the Global Worklist System Instance Policies
Setting the Worklist System Instance Policies
Setting the Global Task Plan Policies
Setting the Task Plan Policies
Purging Tasks
Listing and Locating Event Handlers
Changing the Event Handler Details
Listing and Locating Event Subscriptions
Adding Event Subscriptions
Changing Event Subscriptions
Deleting Event Subscriptions
Viewing Task Plan Details
Changing Task Plan Details
Listing and Locating Worklist Tasks
Constructing a Custom Query for Task Instances
Viewing and Changing Task Details
Updating Task State
Claiming a Task for a User
Assigning a Task to User or Group
Deleting Tasks
Managing User Profiles
Setting the E-mail Address of a User
Reassigning Work to a User
Listing and Locating Work Substitute Rules
Adding a Work Substitute Rule
Changing a Work Substitute Rule
Deleting a Work Substitute Rule

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

Star t ing Work l is t Conso le

Using Worklist 7-3

Starting Worklist Console
Access to Worklist Console is password protected.

To start Worklist Console:

1. Open the following URL in your Web browser:
http://host name:port/worklistconsole

Here, host name is the host name or IP address of the WebLogic Server administrative
server, and port is the server listening port.

Worklist User For information about each of the following tasks, see User Management.

Overview of the User Management Module
WebLogic Integration Users, Groups, and Roles
Security Provider Requirements for User Management
Listing and Locating Users
Adding a User
Viewing and Changing User Properties
Listing and Locating Groups
Adding a Group
Viewing and Changing Group Properties
Listing and Locating Roles
Adding a Role
Constructing a Role Statement
Viewing and Changing Role Conditions
Deleting Users, Groups, or Roles

Business
Calendar

For information about each of the following tasks, see Business Calendar
Configuration.

About Business Calendars and Business Time Calculations
Overview of the Business Calendar Module
Listing and Locating Business Calendars
Adding a Business Calendar
Viewing and Changing Business Calendars
Defining a Time Period Rule
Associating Business Calendars with Users
Exporting and Importing Business Calendars
Deleting Business Calendars

Module Associated Tasks

http://edocs.bea.com/wli/docs102/worklistadminhelp/users.html
http://edocs.bea.com/wli/docs102/worklistadminhelp/businesscalendar.html
http://edocs.bea.com/wli/docs102/worklistadminhelp/businesscalendar.html

Using Work l i s t Conso le

7-4 Using Worklist

2. Enter the username and password when prompted.

Note: To log into Worklist Console, you must be a valid WebLogic Server user. However,
the actions that you can do and the information that you can see depends upon your
security policy. For more information, see “Security Policies” in Worklist
Administration. For the sample integration domain, the default login details are:
username: weblogic
password: weblogic

The Worklist Console home page is displayed.

http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html
http://edocs.bea.com/wli/docs102/worklistadminhelp/worklist.html

	About Worklist
	Key Terms in Worklist
	Worklist Scenario
	About Perspectives
	Selecting a Perspective
	Task Plan Perspective
	Process Perspective
	Page Flow Perspective

	Creating and Managing Worklist Task Plans
	About Tasks and Task Plans
	Administrative and Working States
	Global Actions
	Worklist Properties
	Task Plan Properties
	System Properties
	User Properties

	Worklist Application
	Overview of Creating Task Plans
	Steps
	Actions and Connections
	Work Action
	Assign Action
	Return Action
	Assign to Next User
	Connections

	Constructors
	Candidate List Handling
	Load Balancing

	Steps in Creating a Task Plan

	Before you Begin
	Creating a Domain
	Configuring a Domain to Run WLI Business Process and Worklist
	Configuring a Domain to Run Worklist

	Configuring a Server
	Starting Workshop for WebLogic Platform

	Creating a Worklist Application
	Creating a Task Plan
	Adding Steps and Actions to a Task Plan
	Defining a Constructor for the Task Plan
	Setting the System Properties of a Step
	Assignment Instructions

	Setting the System Properties of an Action
	Creating User Properties of the Task Plan

	Validating a Task Plan
	Importing a Task Plan
	Deploying a Task Plan
	Changing a Task Plan

	Using and Customizing User Portal
	About Worklist User Portal
	Customizing Worklist User Portal
	Login to Worklist

	Using Worklist Controls
	About Worklist Controls
	TaskBaseControl
	Method-level Annotations for TaskBaseControl

	Task Control
	Method-level Annotations for TaskControl

	TaskBatch Control
	Merging Parameter Values with Annotation Values

	Creating Worklist Controls
	Creating a Task Control
	Creating a Task Control from the Select a Wizard Dialog
	Creating a Task Control from the Data Palette in Process Perspective

	Creating a Task Batch Control
	Creating a Task Batch Control from the Select a Wizard Dialog
	Creating a Task Batch Control from the Data Palette in Process Perspective

	Creating a Worklist Control Using Task Control Generator
	Running the Task Control Generator
	Running the Task Control Generator from a Java Client or Command Line
	Running the Task Control Generator from Ant

	Manually Creating Task Control and Task Batch Control

	Using Task and Task Batch Controls in Business Processes
	Creating a Business Process
	Invoking the Task Plan Constructor from the Business Process
	Deploying and Validating the Business Process

	Worklist Event-based Services
	Task Change Events
	Event Delivery Paths
	Events
	Controlling Events Per-Task Plan
	Event Dispatch Modes (Quality of Service)
	EventListener Interface
	Installing EventListeners
	Event Listener and Run-As Identity

	EventHandler Modules
	Event Handler File
	Deployment
	Event Handler Editors
	Default Event Configuration

	Default Reporting Store
	Task History
	Task History Provider

	Reporting Store Design
	Business Goals
	Database Schema
	Sample Queries
	Reporting Event Filtering

	Email Notification
	Specifying Actors for Email Notification
	Email Recipient Calculators

	EMail Delivery Mechanism
	Event Types
	Calculating Task URLs
	Email Templates
	Email Notification Configuration and EventHandler Modules

	MessageBroker and JPD Integration
	Worklist Channel
	Event Types
	Message Header Fields
	MessageBroker Event Configuration and EventHandler Modules

	Custom Task Event Listeners
	Custom Assignment Handlers

	Extending the Capabilities of your Application with Custom Modules
	Deploying Task Plans
	Deploying Schemas in your Application

	Deploying Event Handlers
	Deploying Custom Assignment Handlers
	Deploying Custom Event Listeners
	Deploying EMail Recipient Calculators
	Deploying Task URL Calculators
	Deploying Custom Task History Providers

	Using Worklist Console

