Oracle® Complex Event Processing
EPL Reference Guide

Release 3.0

July 2008

Alpha/Beta Draft

ORACLE

Oracle Complex Event Processing EPL Reference Guide, Release 3.0
Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to
the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages
incurred due to the use of this documentation.

Contents

1. Introduction and Roadmap

Document Scope and AUdIENCEottt e 1-1
Oracle CEP Documentation Set.ttt 1-2
Guide to ThiS DOCUMENE e e 1-2
Samples for the Oracle CEP Application Developer. 1-3

2. Overview of the Event Processing Language (EPL)

Overview of the EPL Language.o oo e 2-1
Event Representation 2-3
EVENt ODJECES . . . oot 2-3
Plain Old Java Object EVentsot 2-3
Map EVENES . . .o 2-3
EVENt Properties 2-4
Dynamic EVent Properties 2-6
BVeNt SINKS . . o 2-7
Processing Model. 2-8
EVENE StreamS o 2-8
SHding WINdows. oo 2-9
Row-Based Sliding Windows, 2-9
Time-Based Sliding Windows. 2-11

Batched WINdowsSo 2-12
Time-Based Batched Windows 2-12

Oracle Complex Event Processing EPL Reference Guide iii

Row-Based Batched WIindowst e 2-14

Subqueries and WHERE Clausest 2-14
AQOregation 2-16
USE CaSBS .« o vttt et ettt e 2-17
Computing Rates per Feed.ot 2-17
Computing Highest Priced Stocks 2-17
Segmenting Location Data. 2-18
Detecting Rapid Fall-off 2-18
Finding Network Anomalies 2-19
Detecting Absence of Event. 2-20
Summarizing Terminal Activity Datao 2-20
Reading Sensor Datao v 2-20
Combining Transaction EVENESttt 2-21
Monitoring Real-time Performance. ... 2-21
Finding Dropped Transaction Events.t 2-22

3. EPL Reference: Clauses

Overview of the Clauses You Can Use in an EPL Statement. 3-1
SELECT i 3-2
Choosing Specific Event Properties. i 3-2
USING EXPressioNnso oot e 3-3
Aliasing Event Properties.t e 3-3
Choosing All Event Properties.t 3-3
Selecting New and Old Events With ISTREAM and RSTREAM Keywords. 3-4
FROM L .o 3-4
MBI JOINS . et 3-6
OULEr JOINS . . o et 3-7
Subquery EXPressionsttt e 3-8

Oracle Complex Event Processing EPL Reference Guide

Parameterized SQL QUETIESottt e 3-8

RET AIN. . 3-10
Keeping AL EVENES. oot 3-11
Specifying Window Size 3-11
Specifying Batched Versus Sliding Windows 3-12
Specifying Time Interval 3-12

BASED ON ClausSeottt e 3-13
Specifying Property Namet 3-13
Using PARTION BY Clause to Partition Window. 3-13
Using WITH Clause to Keep Largest/Smallest/Unique Values. 3-14

MATCHING . .. e 3-15
FOLLOWED BY Operatorot 3-16
AND OPEeIatOr . . oottt 3-16
OR OPeratorttt e 3-17
NOT OPEIALOr. . . o v ottt e e e e e e 3-17
EVERY Operatorot 3-17
WITHIN Operatoro e e 3-19
Event Structure for Matched Pattern i 3-19

WHERE . . . 3-20

GROUP BY .o 3-20

HAVING . . 3-22
Interaction With MATCHING, WHERE and GROUP BY Clauses. 3-23

ORDER BY .o 3-24

OUT PUT L e e 3-24
Interaction With GROUP BY and HAVING Clauses 3-26

INSERT INTO. . .o e e e 3-26

Simple and Correlated SubqUeries. 3-28

Oracle Complex Event Processing EPL Reference Guide

4. EPL Reference: Operators

Overview of EPL Operatorst e 4-1
Arithmetic Operators. oo 4-2
Logical and Comparison Operators.ttt e 4-2
Concatenation OPEratorS.ottt ettt 4-2
BiNary Operatorsot 4-3
Array Definition Operator. e 4-3
Listand Range Operatorst e 4-4
IN OPBratOr .. .o 4-4
BETWEEN Operatorottt e e e e 4-5
StriNG OPEratorsot e 4-6
LIKE Operatorot e e 4-6
REGEXP Operator.o 4-6
Temporal OPErators.ttt et e e 4-7
FOLLOWED BY OpPEratorottt e e 4-7
WITHIN Operatoro e e 4-7
EVERY OPEratorottt e e e 4-8

5. EPL Reference: Functions

Single-row FUNCLIONS e e e e 5-1
The MIN and MAX FUNCLIONS. o 5-3
The COALESCE FUNCHION. o e 5-3
The CASE Control Flow Function.o i 5-3
The PREV FUNCLION.o e 5-4

Previous Event Per Group.o oo 5-5
RESIIICHIONSo 5-5
The PRIOR FUNCLIONo e 5-5
Comparison to the PREV Function 5-6

vi Oracle Complex Event Processing EPL Reference Guide

The INSTANCEOF FUNCLiONo ot e e e 5-6

The CAST FUNCLIONot e 5-7
The EXISTS FUNCLION . .. oot e 5-8
Aggregate FUNCLIONS. oo e 5-8
User-Defined functions 5-11

6. Programmatic Interface to EPL

Java Programming Interfaces 6-1

Oracle Complex Event Processing EPL Reference Guide vii

viii Oracle Complex Event Processing EPL Reference Guide

Introduction and Roadmap

This section describes the contents and organization of this guide—Oracle Complex Event
Processing EPL Reference Guide.

e “Document Scope and Audience” on page 1-1
e “Oracle CEP Documentation Set” on page 1-2
e “Guide to This Document” on page 1-2

e “Samples for the Oracle CEP Application Developer” on page 1-3

Document Scope and Audience

This document is a resource for software developers who develop event driven real-time
applications. It also contains information that is useful for business analysts and system architects
who are evaluating Oracle Complex Event Processing (or Oracle CEP for short) or considering
the use of Oracle CEP for a particular application.

The topics in this document are relevant during the design, development, configuration,
deployment, and performance tuning phases of event driven applications. The document also
includes topics that are useful in solving application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with the Java programming language and Spring.

Oracle Complex Event Processing EPL Reference Guide 1-1

Introduction and Roadmap

Oracle CEP Documentation Set

This document is part of a larger Oracle CEP documentation set that covers a comprehensive list
of topics. The full documentation set includes the following documents:

e Oracle CEP Getting Started

Oracle CEP Application Development Guide

Oracle CEP Administration and Configuration Guide

Oracle CEP EPL Reference Guide

Oracle CEP Reference Guide

Oracle CEP Release Notes

Oracle CEP Visualizer Help
See the main Oracle CEP documentation page for further details.

Guide to This Document

This document is organized as follows:

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the Oracle CEP documentation set and samples.

e Chapter 2, “Overview of the Event Processing Language (EPL),” describes the EPL
language at a high level, describes event data types, the processing model, and use cases.

e Chapter 3, “EPL Reference: Clauses,” provides reference information about the EPL
clauses, such as SELECT, RETAIN, and MATCHING.

e Chapter 4, “EPL Reference: Operators,” provides reference information about the operators
you can use in your EPL statements.

e Chapter 5, “EPL Reference: Functions,” provides reference information about the functions
you can use in your EPL statements.

e Chapter 6, “Programmatic Interface to EPL,” describes at a high-level the Java APIs.

1-2 Oracle Complex Event Processing EPL Reference Guide

http://e-docs.bea.com/wlevs/docs30/get_started/index.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html
http://e-docs.bea.com/wlevs/docs30/config_server/index.html
http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html
http://e-docs.bea.com/wlevs/docs30/reference/index.html
http://e-docs.bea.com/wlevs/docs30/notes/index.html
http://e-docs.bea.com/wlevs/docs30/index.html
http://e-docs.bea.com/wlevs/docs30/visualizer_help/index.html

Samples for the Oracle CEP Application Developer

Samples for the Oracle CEP Application Developer

In addition to this document, Oracle provides a variety of code samples for Oracle CEP
application developers. The examples illustrate Oracle CEP in action, and provide practical
instructions on how to perform key development tasks.

Oracle recommends that you run some or all of the examples before programming and
configuring your own event driven application.

The examples are distributed in two ways:

e Pre-packaged and compiled in their own domain so you can immediately run them after
you install the product.

e Separately in a Java source directory so you can see a typical development environment
setup.

The following three examples are provided in both their own domain and as Java source in this
release of Oracle CEP:

o HelloWorld—Example that shows the basic elements of an Oracle CEP application. See
Hello World Example for additional information.

The HelloWorld domain is located in
WLEVS_HOME\samples\domains\hel loworld_domain, where WLEVS_HOME refers to the
top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The HelloWorld Java source code is located in
WLEVS_HOME\samples\source\applications\helloworld.

e ForeignExchange (FX)—Example that includes multiple adapters, streams, and complex
event processor with a variety of EPL rules, all packaged in the same Oracle CEP
application. See Foreign Exchange (FX) Example for additional information.

The ForeignExchange domain is located in WLEVS_HOME\samples\domains\fx_domain,
where WLEVS_HOME refers to the top-level Oracle CEP directory, such as
c:\beahome\wlevs30.

The ForeignExchange Java source code is located in
WLEVS_HOME\samples\source\applications\fx.

e Signal Generation—Example that receives simulated market data and verifies if the price
of a security has fluctuated more than two percent, and then detects if there is a trend
occurring by keeping track of successive stock prices for a particular symbol.See Signal
Generation Example for additional information.

Oracle Complex Event Processing EPL Reference Guide 1-3

http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#helloworld
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#fx
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading

Introduction and Roadmap

The Signal Generation domain is located in
WLEVS_HOME\samples\domains\signalgeneration_domain, where WLEVS_HOME refers
to the top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The Signal Generation Java source code is located in
WLEVS_HOME\samples\source\applications\signalgeneration.

1-4 Oracle Complex Event Processing EPL Reference Guide

CHAPTERa

Overview of the Event Processing
Language (EPL)

This section contains information on the following subjects:
e “Overview of the EPL Language” on page 2-1

e “Event Representation” on page 2-3

“Processing Model” on page 2-8

“Use Cases” on page 2-17

Overview of the EPL Language

The Complex Event Processor module can be broken down into the following functional
components: event representation, processing model, programmatic interface, and language
specification.

Events are represented as POJOs following the JavaBeans conventions. Event properties are
exposed through getter methods on the POJO. When possible, the results from EPL statement
execution are also returned as POJOs. However, there are times when un-typed events are
returned such as when event streams are joined. In this case, an instance of the Map collection
interface is returned.

The EPL processing model is continuous: results are output as soon as incoming events are
received that meet the constraints of the statement. Two types of events are generated during
output: insert events for new events entering the output window and remove events for old events
exiting the output window. Listeners may be attached and notified when either or both type of
events occur.

Oracle Complex Event Processing EPL Reference Guide 2-1

Overview of the Event Processing Language (EPL)

2-2

Incoming events may be processed through either sliding or batched windows. Sliding windows
process events by gradually moving the window over the data in single increments, while batched
windows process events by moving the window over data in discrete chunks. The window size
may be defined by the maximum number of events contained or by the maximum amount of time
to keep an event.

The EPL programmatic interfaces allow statements to be individually compiled or loaded in bulk
through a URL. Statements may be iterated over, retrieved, started and stopped. Listeners may
be attached to statements and notified when either insert and/or remove events occur.

The Event Processor Language is a SQL-like language with SELECT, FROM, WHERE, GROUP BY,
HAVING and ORDER BY clauses. Streams replace tables as the source of data with events replacing
rows as the basic unit of data. Since events are composed of data, the SQL concepts of correlation
through joins, filtering through sub-queries, and aggregation through grouping may be effectively
leveraged. The INSERT INTO clause is recast as a means of forwarding events to other streams
for further downstream processing. External data accessible through JDBC may be queried and
joined with the stream data. Additional clauses such as the RETAIN, MATCHING, and OUTPUT
clauses are also available to provide the missing SQL language constructs specific to event
processing.

The RETAIN clause constraints the amount of data over which the query is run, essentially
defining a virtual window over the stream data. Unlike relational database systems in which
tables bound the extents of the data, event processing systems must provide an alternative, more
dynamic means of limiting the queried data.

The MATCHING clause detects sequences of events matching a specific pattern. Temporal and
logical operators such as AND, OR, and FOLLOWED BY enable both occurrence of and absence of
events to be detected through arbitrarily complex expressions.

The OUTPUT clause throttles results of statement execution to prevent overloading downstream
processors. Either all or a subset of the first or last resulting events may be passed on in either
time or row-based batches.

A series of use cases is presented in the last section to illustrate the language features under
realistic scenarios

Oracle Complex Event Processing EPL Reference Guide

Event Representation

Event Representation
Event Objects

An event is an immutable record of a past occurrence of an action or state change. Event
properties capture the state information for an event object. An event is represented by either a
POJO or a com.bea.wlevs.cep.event._MapEventObject that extends the java.util .Map
interface.

Table 2-1 Event Representation

Java Class Description

java.lang.Object Any Java POJO with getter methods following JavaBeans
conventions.

com.bea.wlevs.ede.api.MapEventObject Map events are key-values pairs

Plain Old Java Object Events

Plain old Java object (POJO) events are object instances that expose event properties through
JavaBeans-style getter methods. Events classes or interfaces do not have to be fully compliant to
the JavaBeans specification; however for the EPL engine to obtain event properties, the required
JavaBeans getter methods must be present.

EPL supports JavaBeans-style event classes that extend a super class or implement one or more
interfaces. Also, EPL statements can refer to Java interface classes and abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state
change or action that occurred in the past, the relevant event properties should not be changeable.
However this is not a hard requirement and the EPL engine accepts events that are mutable as
well.

Map Events

Events can also be represented by objects that implement the

com.bea.wlevs.ede.api .MapEventObject interface that extends the java.util.Map
interface. Event properties of Map events are the values of each entry accessible through the get
method exposed by the java.util _Map interface.

Oracle Complex Event Processing EPL Reference Guide 2-3

Overview of the Event Processing Language (EPL)

Entries in the Map represent event properties. Keys must be of type java.util.String for the
engine to be able to look up event property names specified by EPL statements. VValues can be of
any type. POJOs may also appear as values in a Map.

Event Properties

EPL expressions can include simple as well as indexed, mapped and nested event properties. The
table below outlines the different types of properties and their syntax in an event expression. This
syntax allows statements to query deep JavaBeans objects graphs, XML structures and Map
events.

Table 2-2 Event Properties

Type

Description Syntax Example

Simple A property that has a single value that may be retrieved. ~ name sensorld

The property type may be a primitive type (such as int,
or java. lang.String) or another complex type.

Nested A nested property is a property that lives within another ~ name.nestedname sensor.value

property of an event. Events represented as a Map may
only nest other POJO events and not other Map events.

Indexed An indexed property stores an ordered collection of name[index] sensor[0]

objects (all of the same type) that can be individually
accessed by an integer valued, non-negative index (or
subscript). Events represented as a Map do not support
Indexed properties.

Mapped A mapped property stores a keyed collection of objects name(‘key") sensor('light)

(all of the same type). As an extension to standard
JavaBeans APIs, EPL considers any property that accepts
a String-valued key a mapped property. Events
represented as a Map do not support Indexed properties.

2-4

Assume there is an EmployeeEvent event class as shown below. The mapped and indexed
properties in this example return Java objects but could also return Java language primitive types
(such as int or String). The Address object and Employee objects can themselves have
properties that are nested within them, such as a street-Name in the Address object or a name of
the employee in the Employee object.

public class EmployeeEvent {
public String getFirstName();

Oracle Complex Event Processing EPL Reference Guide

Event Representation

public Address getAddress(String type);
public Employee getSubordinate(int index);
public Employee[] getAllSubordinates();

}

Simple event properties require a getter-method that returns the property value. In the preceding
example, the getFirstName getter method returns the firstName event property of type
String.

Indexed event properties require either one of the following getter-methods:

e A method that takes an integer type key value and returns the property value, such as the
getSubordinate method.

e A method returns an array-type such as the getAl 1Subordinates getter method, which
returns an array of Employee.

In an EPL statement, indexed properties are accessed via the property[index] syntax.

Mapped event properties require a getter-method that takes a String type key value and returns
a property value, such as the getAddress method. In an EPL or event pattern statement, mapped
properties are accessed via the property ("key™) syntax.

Nested event properties require a getter-method that returns the nesting object. The getAddress
and getSubordinate methods are mapped and indexed properties that return a nesting object.
In an EPL statement, nested properties are accessed via the property .nestedProperty syntax.

All EPL statements allow the use of indexed, mapped and nested properties (or a combination of
these) at any place where one or more event property names are expected. The example below
shows different combinations of indexed, mapped and nested properties.

address("home®) .streetName

subordinate[0] .name="anotherName*
allSubordinates[1].name

subordinate[0] -address("home*™) .streetName

Similarly, the syntax can be used in EPL statements in all places where an event property name
is expected, such as in select lists, where clauses or join criteria.

SELECT firstName, address("work®), subordinate[0O].name, subordinate[1].name

FROM EmployeeEvent RETAIN ALL
WHERE address("work®).streetName = "Park Ave®

Oracle Complex Event Processing EPL Reference Guide 2-5

Overview of the Event Processing Language (EPL)

2-6

Dynamic Event Properties

Dynamic (or unchecked) properties are event properties that need not be known at statement
compilation time. Oracle CEP resolves these dynamic properties during runtime.

The idea behind dynamic properties is that for a given underlying event representation, the
properties are not necessarily known in advance. An underlying event may have additional
properties that are not known at statement compilation time, and these properties might need to
be queried on using an EPL statement. The concept is especially useful for events that represent
rich, object-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed,
mapped and nested properties can also be dynamic properties. The following table describes the
types of dynamic event properties and the syntax used to identify them.

Table 2-3 Syntax of Dynamic Properties

Event Property Type Syntax

Dynamic Simple name?

Dynamic Indexed name[index]?

Dynamic Mapped name(“key")?

Dynamic Nested name? .nestedPropertyName

Dynamic properties always return the java. lang.Object type. Dynamic properties return a
null value if the dynamic property does not exist on the events processed at runtime.

For example, consider an OrderEvent event that provides an item property. The item property
is of type Object and holds a reference to an instance of either a Service or Product; which
one is known only at runtime. Further assume that both the Service and Product classes
provide a property named price. Using a dynamic property, you can specify a query that obtains
the price property from either object (Service or Product), as shown in the following example:

SELECT item.price?
FROM OrderEvent RETAIN ALL EVENTS

As a second example, assume that the Service class contains a serviceName property that the
Product class does not contain. At runtime, the following query returns the value of the
serviceName property for Service objects; if, however, the query is run against a Product

Oracle Complex Event Processing EPL Reference Guide

Event Representation

object, the query returns a null value because Products do not contain the serviceName
property:

SELECT item.serviceName?

FROM OrderEvent RETAIN ALL EVENTS

Now consider the case where OrderEvent has multiple implementation classes, only some of
which have a timestamp property. The following query returns the timestamp property of those
implementations of the OrderEvent interface that feature the property:

SELECT timestamp?
FROM OrderEvent RETAIN ALL EVENTS

The preceding query returns a single column named timestamp? of type java. lang.Object.

When you nest dynamic properties, all properties under the dynamic property are also considered
dynamic properties. In the next example, the query asks for the direction property of the object
returned by the detail dynamic property:

SELECT detail?.direction
FROM OrderEvent RETAIN ALL EVENTS

The preceding query is equivalent to the following:

SELECT detail?.direction?
FROM OrderEvent RETAIN ALL EVENTS

The following functions are often useful in conjunction with dynamic properties:

e The CAST function casts the value of a dynamic property (or the value of an expression) to
a given type. See “The CAST Function” on page 5-7.

e The EX1STS function checks whether a dynamic property exists. It returns true if the
event has a property of that name, or false if the property does not exist on that event.
See “The EXISTS Function” on page 5-8.

e The INSTANCEOF function checks whether the value of a dynamic property (or the value of
an expression) is of any of the given types. See “The INSTANCEOF Function” on
page 5-6.

Event Sinks

Event sinks provide a means of receiving programmatic notifications when events occur that
meet the criteria specified in an EPL statement. Sinks may be notified when either:

Oracle Complex Event Processing EPL Reference Guide 2-1

Overview of the Event Processing Language (EPL)

e New events occur that meet the criteria specified in an EPL statement. These are termed
ISTREAM events.

e Old events that previously met the criteria specified in an EPL statement are pushed out of
the output window due to their expiration or due to new incoming events occurring that
take their place. These are termed RSTREAM events.

Detailed examples illustrating when each of these notifications occur are provided in “Processing
Model” on page 2-8.

To receive 1STREAM events, use the com.bea.wlevs.ede.api .EventSink interface. Your
implementation must provide a single onEvent method that the engine invokes when results
become available. With this interface, only the new events are sent to the listener.

public interface EventSink extends EventListener {
void onEvent(List<Object> newEvents)
throws RejectEventException;

}

The engine provides statement results to event sinks as a list of POJO or MapEventObject
instances. For wildcard selects, the result will match the original event object type that was sent
into the engine. For joins and select clauses with expressions, the resulting object will implement
the com.bea.wlevs.ede.api .MapEventObject interface

Processing Model

2-8

Event Streams

The EPL processing model is continuous: Listeners to statements receive updated data as soon as
the engine processes events for that statement, according to the statement's choice of event
streams, retain clause restrictions, filters and output rates.

In this section we look at the output of a very simple EPL statement. The statement selects an
event stream without using a data window and without applying any filtering, as follows:

SELECT * FROM Withdrawal RETAIN ALL

This statement selects all withdrawal events. Every time the engine processes an event of type
Withdrawal or any sub-type of withdrawal, it invokes all update listeners, handing the new
event to each of the statement's listeners.

Oracle Complex Event Processing EPL Reference Guide

Processing Model

The term insert stream denotes the new events arriving, and entering a data window or
aggregation. The insert stream in this example is the stream of arriving Wi thdrawal events, and
is posted to update listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. For this
diagram as well as the others in this section, the number in parenthesis is the value of the amount
property in the Withdrawal event.

UpdateListensr

e ’
Incoming Events Mew Evenls Oid Evenls

W (500) ——] i,
(100} ——= Wz

W{200) —= W

WalS0) —— Wy

Wil 150) - Wiy

Wil 300) ——] Wiy

Time

The example statement above results in only new events and no old events posted by the engine
to the statement's listeners because no RETAIN clause is specified.

Sliding Windows

There are two types of sliding windows: row-based and time-based. Each of these is discussed
in the following sections.

Row-Based Sliding Windows

A row-based sliding window instructs the engine to only keep the last N events for a stream. The
next statement applies a length window onto the withdrawal event stream. The statement serves
to illustrate the concept of data window and events entering and leaving a data window:

SELECT * FROM Withdrawal RETAIN 5 EVENTS

Oracle Complex Event Processing EPL Reference Guide 2-9

Overview of the Event Processing Language (EPL)

2-10

The size of this statement's window is five events. The engine enters all arriving Withdrawal
events into the window. When the window is full, the oldest withdrawal event is pushed out the
window. The engine indicates to update listeners all events entering the window as new events,
and all events leaving the window as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes
events leaving a data window, or changing aggregation values. In this example, the remove
stream is the stream of Withdrawal events that leave the length window, and such events are
posted to update listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows
the events posted to an update listener.

—

f \
Updatel istener

R
Incoming Events Length Window - 5 Evenls New Events Ol Evants

WiS00) —— W, |

W100) —— gl

Wal200) ——m

W50} ——

Wl 150) el

N
wii3en) —uf | E TE

Time

Wy Wy |

As before, all arriving events are posted as new events to update listeners. In addition, when event
W, leaves the length window on arrival of event Wy, it is posted as an old event to update

listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time
period. A time window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds
pass, the time window actively pushes the oldest events out of the window resulting in one or
more old events posted to update listeners.

EPL supports optional 1STREAM and RSTREAM keywords on SELECT clauses and on INSERT INTO
clauses. These instruct the engine to only forward events that enter or leave data windows, or
select only current or prior aggregation values, i.e. the insert stream or the remove stream.

Oracle Complex Event Processing EPL Reference Guide

Processing Model

Time-Based Sliding Windows

A time-based sliding window is a moving window extending to the specified time interval into
the past based on the system time. Time-based sliding windows enable us to limit the number of
events considered by a query, as do row-based sliding windows.

The next diagram serves to illustrate the functioning of a time window. For the diagram, we
assume a query that simply selects the event itself and does not group or filter events.

SELECT * FROM Withdrawal RETAIN 4 SECONDS

The diagram starts at a given time t and displays the contents of the time window at t+4 and t+5
seconds and so on.

UpdateListener

. Time Window —~ 4 seconds
Incoming Events New Events Old Events
At t+d At t+5 Att+ES At t+8
1
)
| t+1

=+2

Wy

R

BlE
=
=
=

Wa

t+7

s | — W,

The activity as illustrated by the diagram:

Oracle Complex Event Processing EPL Reference Guide 2-11

Overview of the Event Processing Language (EPL)

2-12

1. Attimet + 4 secondsaneventW, arrives and enters the time window. The engine reports
the new event to update listeners.

2. Attimet + 5 secondsan eventW, arrives and enters the time window. The engine reports
the new event to update listeners.

3. Attimet + 6.5 seconds an event W3 arrives and enters the time window. The engine
reports the new event to update listeners.

4. Attimet + 8 secondsevent W, leaves the time window. The engine reports the event as
an old event to update listeners.

As a practical example, consider the need to determine all accounts where the average withdrawal
amount per account for the last 4 seconds of withdrawals is greater then 1000. The statement to
solve this problem is shown below.

SELECT account, AVG(amount)

FROM Withdrawal RETAIN 4 SECONDS
GROUP BY account

HAVING amount > 1000

Batched Windows

Both row-based and time-based windows may be batched. The next sections explain each of
these concepts in turn.

Time-Based Batched Windows

The time-based batch window buffers events and releases them every specified time interval in
one update. Time-based batch windows control the evaluation of events, as does the length batch
window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we
assume a simple query as below:

SELECT * FROM Withdrawal RETAIN BATCH OF 4 SECONDS

The diagram starts at a given time t and displays the contents of the time window att + 4andt
+ 5 seconds and so on.

Oracle Complex Event Processing EPL Reference Guide

Processing Model

UpdateListener

Time Batch — 4 seconds

incoming Events New Events Old Events
At t+d At 43 At t+d At 1+6.5 At t+8

ED

N
T w| w,

+2

2 WZ

i
(&

T TN Wyand Wz

t+7

s e O\

Wiand Wz

m W

The activity as illustrated by the diagram:

1. Attimet + 1 secondsan event W, arrives and enters the batch. No call to inform update
listeners occurs.

2. Attimet + 3 secondsan eventW, arrives and enters the batch. No call to inform update
listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch.
The engine reports events W, and W, to update listeners.

4. Attimet + 6.5 secondsanevent W arrives and enters the batch. No call to inform update
listeners occurs.

Oracle Complex Event Processing EPL Reference Guide 2-13

Overview of the Event Processing Language (EPL)

2-14

5. Attime t + 8 seconds the engine processes the batched events and a starts a new batch. The
engine reports the event W3 as new data to update listeners. The engine reports the events W,

and W, as old data (prior batch) to update listeners.

Row-Based Batched Windows

A row-based window may be batched as well. For example, the following query would wait to
receive five events prior to doing any processing:

SELECT * FROM Withdrawal RETAIN BATCH OF 5 EVENTS

Once five events were received, the query would run and again wait for a new set of five events
prior to processing.

Subqueries and WHERE Clauses

Filters to event streams appear in a subquery expression and allow filtering events out of a given
stream before events enter a data window. This filtering occurs prior to the WHERE clause
executing. When possible, filtering should be done in a subquery as opposed to the WHERE
clause, since this will improve performance by reducing the amount of data seen by the rest of
the EPL statement.

The statement below shows a subquery that selects Withdrawal events with an amount value of
200 or more.

SELECT * FROM (SELECT * FROM Withdrawal WHERE amount >= 200) RETAIN 5
EVENTS

With the subquery, any Withdrawal events that have an amount of less then 200 do not enter the
window of the outer query and are therefore not passed to update listeners.

Oracle Complex Event Processing EPL Reference Guide

Processing Model

UpdatelListener

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events Amaunt==200 | |
W1(500) — Wy | |

| |

| |

W(100) — gl < | |
| |

| |

W3(200) ——m Ws | l
| |

| |

Wa(50) — g >< | |

| |

| |

Ws(150) — >< | |
| |

| |

We(300) — Wi | |
| |

Time

The WHERE clause and HAVING clause in statements eliminate potential result rows at a later stage
in processing, after events have been processed into a statement's data window or other views.

The next statement applies a WHERE clause to Withdrawal events instead of a subquery.
SELECT * FROM Withdrawal RETAIN 5 EVENTS WHERE amount >= 200

The WHERE clause applies to both new events and old events. As the diagram below shows,
arriving events enter the window regardless of the value of the "amount" property. However,
only events that pass the WHERE clause are handed to update listeners. Also, as events leave the
data window, only those events that pass the conditions in the WHERE clause are posted to update
listeners as old events.

Oracle Complex Event Processing EPL Reference Guide 2-15

Overview of the Event Processing Language (EPL)

2-16

Updatelistener

Filter:
Incoming Events Length Window — 5 Events Amount==200 New Events Old Events
|
Wi(500) ——p | W,
|
|
W(100) — o] 3 |
|
|
W3(200) ——pm : W,
|
oo — (EFE) X
|
|
wow —s ([l w]w]w]) X |
|
wisoo) —s ([(] o))] o
|

Time

The WHERE clause can contain complex conditions while event stream filters are more restrictive
in the type of filters that can be specified. The next statement's WHERE clause applies the ceil
function of the java. lang.Math Java library class in the where clause. The INSERT INTO clause
makes the results of the first statement available to the second statement:

INSERT INTO BigWithdrawal
SELECT * FROM Withdrawal RETAIN ALL WHERE Math.ceil(amount) >= 200
SELECT * FROM BigWithdrawal RETAIN ALL

Aggregation

Statements that aggregate events via aggregations functions also post remove stream events as
aggregated values change. Consider the following statement that alerts when two Withdrawal
events have been received:

Oracle Complex Event Processing EPL Reference Guide

Use Cases

SELECT COUNT(*) AS mycount
FROM Withdrawal RETAIN ALL
HAVING COUNT(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update
listeners. The value of the mycount property on that new event is 2. Additionally, when the engine
encounters the third withdrawal event, it posts an old event to update listeners containing the
prior value of the count. The value of the mycount property on that old event is also 2.

The ISTREAM or RSTREAM keyword can be used to eliminate either new events or old events
posted to update listeners. The next statement uses the 1STREAM keyword causing the engine to
call the update listener only once when the second Withdrawal event is received:

SELECT ISTREAM COUNT(*) AS mycount
FROM Withdrawal RETAIN ALL
HAVING COUNT(*) = 2

Use Cases

The use cases below illustrate through examples usage of various language features.

Computing Rates per Feed

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for
each market data feed.

We can use an EPL statement that batches together 1 second of events from the market data event
stream source. We specify the feed and a count of events per feed as output values. To make this
data available for further processing, we insert output events into the TicksPerSecond event
stream:

INSERT INTO TicksPerSecond

SELECT feed, COUNT(*) AS cnt
FROM MarketDataEvent
RETAIN BATCH OF 1 SECOND
GROUP BY feed

Computing Highest Priced Stocks

For computing the highest priced stocks, we define a sliding window that retains 100 events for
each unique stock symbol where the block size of the trade is greater than 10. For example, if

Oracle Complex Event Processing EPL Reference Guide 2-11

Overview of the Event Processing Language (EPL)

2-18

there are 5,000 stock symbols, then 5,000 x 100 or 5,000,000 events would be kept. Only
MarketTrade events with a block size of greater than 10 will enter the window and only the 100
highest priced events will be retained.

The results will be grouped by stock symbol and ordered alphabetically with stock symbols
having an average price of less than 100 being filtered from the output.

SELECT symbol, AVG(price)

FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
RETAIN 100 EVENTS WITH LARGEST price PARTITION BY symbol
GROUP BY symbol

HAVING AVG(price) >= 100

ORDER BY symbol

Segmenting Location Data

We detect the route a car is taking based on the car location event data that contains information
about the location and direction of a car on a highway. We first segment the data by carld to
isolate information about a particular car and subsequently segment by expressway, direction and
segment to plot its direction. We are then able to calculate the speed of the car based on this
information.

The first PARTITION BY carId groups car location events by car while the following PARTITION
BY expressway PARTITION BY direction further segment the data by more detailed location
and direction property values. The number of events retained, 4 in this query, applies to the
maximum number kept for the last PARTITION BY clause. Thus at most 4 events will be kept
for each distinct segment property value.

SELECT carld, expressway, direction,
SUM(segment)/(MAX(timestamp)-MIN(timestamp)) AS speed

FROM CarlLocationEvent

RETAIN 4 events

PARTITION BY carld PARTITION BY expressway PARTITION BY direction

Detecting Rapid Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls
below 75% of the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using
the TicksPerSecond events computed by the prior statement and averaging the last 10 seconds.

Oracle Complex Event Processing EPL Reference Guide

Use Cases

Next, we compare the current rate with the moving average and filter out any rates that fall below
75% of the average:

SELECT feed, AVG(cnt) AS avgCnt, cnt AS feedCnt
FROM TicksPerSecond
RETAIN 10 seconds
GROUP BY feed
HAVING cnt < AVG(cnt) * 0.75

Finding Network Anomalies

A customer may be in the middle of a check-in when the terminal detects a hardware problem or
when the network goes down. In that situation we want to alert a team member to help the
customer. When the terminal detects a problem, it issues an outOfOrder event. A pattern can
find situations where the terminal indicates out-of-order and the customer is in the middle of the
check-in process:

SELECT ci.term
MATCHING ci:=Checkin FOLLOWED BY
(OutOfOrder (term.id=ci.term.id) AND NOT
(Cancelled (term.id=ci.term.id) OR
Completed (term.id=ci.term.id)) WITHIN 3 MINUTES)

Each self-service terminal can publish any of the four events below.
e Checkin - Indicates a customer started a check-in dialogue.
e Cancelled - Indicates a customer cancelled a check-in dialogue.

Completed - Indicates a customer completed a check-in dialogue.

e OutOfOrder - Indicates the terminal detected a hardware problem

All events provide information about the terminal that published the event, and a timestamp. The
terminal information is held in a property named term and provides a terminal id. Because all
events carry similar information, we model each event as a subtype to a base class
TerminalEvent, which will provide the terminal information that all events share. This enables
us to treat all terminal events polymorphically, which simplifies our queries by allowing us to
treat derived event types just like their parent event types.

Oracle Complex Event Processing EPL Reference Guide 2-19

Overview of the Event Processing Language (EPL)

2-20

Detecting Absence of Event

Because Status events arrive in regular intervals of 60 seconds, we can make use of temporal
pattern matching using the MATCHING clause to find events that did not arrive in time. We can use
the WITHIN operator to keep a 65 second window to account for a possible delay in transmission
or processing and the NOT operator to detect the absence of a Status event with a term. id equal
to T1:

SELECT "terminal 1 is offline”
MATCHING NOT Status(term.id = "T1") WITHIN 65 SECONDS
OUTPUT FIRST EVERY 5 MINUTES

Summarizing Terminal Activity Data

By presenting statistical information about terminal activity to our staff in real-time we enable
them to monitor the system and spot problems. The next example query simply gives us a count
per event type every 1 minute. We could further use this data, available through the
CountPerType event stream, to join and compare against a recorded usage pattern, or to just
summarize activity in real-time.

INSERT INTO CountPerType

SELECT type, COUNT(*) AS countPerType
FROM TerminalEvent

RETAIN 10 MINUTES

GROUP BY type

OUTPUT ALL EVERY 1 MINUTE

Reading Sensor Data

In this example an array of RFID readers sense RFID tags as pallets are coming within the range
of one of the readers. A reader generates XML documents with observation information such as
reader sensor ID, observation time and tags observed. A statement computes the total number of
tags per reader sensor 1D within the last 60 seconds.

SELECT ID AS sensorld, SUM(countTags) AS numTagsPerSensor
FROM AutoldRFIDExample

RETAIN 60 SECONDS

WHERE Observation[0].Command = "READ_PALLET_TAGS_ONLY"
GROUP BY 1D

Oracle Complex Event Processing EPL Reference Guide

Use Cases

Combining Transaction Events

In this example we compose an EPL statement to detect combined events in which each
component of the transaction is present. We restrict the event matching to the events that arrived
within the last 30 minutes. This statement uses the INSERT INTO syntax to generate a
CombinedEvent event stream.

INSERT INTO CombinedEvent(transactionld, customerld, supplierld,
latencyAC, latencyBC, latencyAB)
SELECT C.transactionld, customerld, supplierld,
C.timestamp - A.timestamp,
C.timestamp - B.timestamp,
B.timestamp - A.timestamp
FROM TxnEventA A, TxnEventB B, TxnEventC C
RETAIN 30 MINUTES
WHERE A.transactionld = B.transactionld AND
B.transactionld = C.transactionld

Monitoring Real-time Performance

To derive the minimum, maximum and average total latency from the events (difference in time
between A and C) over the past 30 minutes we can use the EPL below. In addition, in order to
monitor the event server, a dashboard Ul will subscribe to a subset of the events to measure
system performance such as server and end-to-end latency. It is not feasible to expect a Ul to
monitor every event flowing through the system, so there must be a way of rate limiting the output
to a subset of the events that can be handled by the monitoring application. Only the single last
event or all events can be output.

SELECT MIN(latencyAC) as minLatencyAC,
MAX(latencyAC) as maxLatencyAC,
AVG(latencyAC) as avgLatencyAC

FROM CombinedEvent

RETAIN 30 MINUTES

GROUP BY customerld

OUTPUT LAST 50 EVERY 1 SECOND

Oracle Complex Event Processing EPL Reference Guide 2-21

Overview of the Event Processing Language (EPL)

Finding Dropped Transaction Events

An OUTER JOIN allows us to detect a transaction that did not make it through all three events.
When TxnEventA or TxnEventB events leave their respective time windows consisting of the
last 30 minutes of events, EPL filters out rows in which no EventC row was found.

SELECT *

FROM TxnEventA A
FULL OUTER JOIN TxnEventC C ON A.transactionld = C.transactionld

FULL OUTER JOIN TxnEventB B ON B.transactionld = C.transactionld

RETAIN 30 MINUTES
WHERE C.transactionld is null

2-22 Oracle Complex Event Processing EPL Reference Guide

EPL Reference: Clauses

This section provides information on the following topics:

“Overview of the Clauses You Can Use in an EPL Statement” on page 3-1
“SELECT” on page 3-2
“FROM” on page 3-4
“RETAIN” on page 3-10
“MATCHING” on page 3-15
“WHERE” on page 3-20
“GROUP BY” on page 3-20
“HAVING” on page 3-22
“ORDER BY” on page 3-24
“OUTPUT” on page 3-24
“INSERT INTO” on page 3-26

“Simple and Correlated Subqueries” on page 3-28

Overview of the Clauses You Can Use in an EPL Statement

The top-level BNF for the event processing language (EPL) is as follows:

Oracle Complex Event Processing EPL Reference Guide 3-1

EPL Reference: Clauses

[INSERT INTO insert_into_def]
SELECT select _list
{ FROM stream_source_list / MATCHING pattern_expression }
[WHERE search_conditions]
[GROUP BY grouping_expression_list]
[HAVING grouping_search_conditions]
[ORDER BY order_by expression_list]
[OUTPUT output_specification]

Literal keywords are not case sensitive. Each clause is detailed in the following sections. For
information on the built-in operators and functions, see Chapter 4, “EPL Reference: Operators,
and Chapter 5, “EPL Reference: Functions.”

SELECT

3-2

The SELECT clause is required in all EPL statements. The SELECT clause can be used to select all
properties using the wildcard *, or to specify a list of event properties and expressions. The
SELECT clause defines the event type (event property names and types) of the resulting events
published by the statement, or pulled from the statement.

The SELECT clause also offers optional ISTREAM and RSTREAM keywords to control how events
are posted to update listeners attached to the statement.

The syntax for the SELECT clause is summarized below.

SELECT [RSTREAM | ISTREAM] (expression_list | *)

The following examples use the FROM clause which defines the sources of the event data. The
FROM clause is described in “FROM?” on page 3-4.

Choosing Specific Event Properties
To choose the particular event properties to return:

SELECT event_property [, event property] [, ---]
FROM stream def

The following statement selects the count and standard deviation of the volume for the last 100
stock tick events.

SELECT COUNT, STDDEV(volume)
FROM StockTick RETAIN 100 EVENTS

Oracle Complex Event Processing EPL Reference Guide

SELECT

Using Expressions

The SELECT clause can contain one or more expressions.

SELECT expression [, expression] [, ---1
FROM stream def

The following statement selects the volume multiplied by price for a time batch of the last 30
seconds of stock tick events.

SELECT volume * price
FROM StockTick RETAIN BATCH OF 30 SECONDS

Aliasing Event Properties

Event properties and expressions can be aliased using below syntax.
SELECT [event_property | expression] AS identifier [,.]

The following statement selects volume multiplied by price and specifies the name volPrice for
the event property.

SELECT volume * price AS volPrice
FROM StockTick RETAIN 100 EVENTS

Choosing All Event Properties

The syntax for selecting all event properties in a stream is:

SELECT *
FROM stream def

The following statement selects all of the StockTick event properties for the last 30 seconds:

SELECT *
FROM StockTick RETAIN 30 SECONDS

In a join statement, using the SELECT * syntax selects event properties that contain the events
representing the joined streams themselves.

The * wildcard and expressions can also be combined in a SELECT clause. The combination
selects all event properties and in addition the computed values as specified by any additional
expressions that are part of the SELECT clause. Here is an example that selects all properties of
stock tick events plus a computed product of price and volume that the statement names
pricevolume:

Oracle Complex Event Processing EPL Reference Guide 3-3

EPL Reference: Clauses

SELECT *, price * volume AS pricevolume
FROM StockTick RETAIN ALL

Selecting New and 0ld Events With ISTREAM and RSTREAM
Keywords

The optional 1STREAM and RSTREAM keywords in the SELECT clause define the event stream
posted to update listeners to the statement. If neither keyword is specified, the engine posts both
insert and remove stream events to statement listeners. The insert stream consists of the events
entering the respective window(s) or stream(s) or aggregations, while the remove stream consists
of the events leaving the respective window(s) or the changed aggregation result. Insert and
remove events are explained in more detail in “Event Sinks” on page 2-7.

By specifying the ISTREAM keyword you can instruct the engine to only post insert stream events
to update listeners. The engine will then not post any remove stream events. By specifying the
RSTREAM keyword you can instruct the engine to only post remove stream events to update
listeners. The engine will then not post any insert stream events.

The following statement selects only the events that are leaving the 30 second time window.

SELECT RSTREAM *
FROM StockTick RETAIN 30 SECONDS

The ISTREAM and RSTREAM keywords in the SELECT clause are matched by same-name keywords
available in the INSERT INTO clause as explained in “INSERT INTO” on page 3-26. While the
keywords in the SELECT clause control the event stream posted to update listeners to the
statement, the same keywords in the insert into clause specify the event stream that the engine
makes available to other statements.

FROM

3-4

Either the FROM or the MATCHING clause is required in all EPL statements. The FROM clause
specifies one or more event streams as the source of the event data. The MATCHING clause is
discussed in “MATCHING” on page 3-15.

FROM stream_expression [inner_join | outer_join]

with inner_join specified as a comma separated list of stream expressions:

(, stream_expression)*

and outer_join defined as:

Oracle Complex Event Processing EPL Reference Guide

FROM

((LEFT|RIGHT|FULL) OUTER JOIN stream_expression ON prop_name = prop_name)*

Inner joins are discussed in detail in “Inner Joins” on page 3-6 while outer joins are discussed in
“Quter Joins” on page 3-7.

A stream_expression may simply define the name of the event type used as the source of the
stream data, or in more complex scenarios define either a subquery expression as a nested EPL
statement or a parameterized SQL query to access JDBC data. In all of these cases, the
stream_expression may optionally include an alias as an identifier to qualify any ambiguous
property name references in other expressions and a RETAIN clause to define the window of
stream data seen by the rest of the query:

(stream_name | subquery_expr | param_sql_query) [[AS] alias]] [RETAIN
retain_expr]

subquery_expr: (epl_statement)

param_sql_query: database_name ("parameterized_sql_query®)

The subquery_expr defines a subquery or nested EPL statement in parenthesis. A subquery is
used to pre-filter event stream data seen by the outer EPL statement. For example, the following
query would restrict the data seen by the outer EPL statement to only StockTick events coming
from a Reuters feed.

SELECT stockSymbol, AVG(price)

FROM (SELECT * FROM StockTick WHERE feedName = "Reuters®)
RETAIN 1 MINUTE PARTITION BY stockSymbol

GROUP BY stockSymbol

Subqueries may be arbitrarily nested, but may not contain an INSERT INTO or an OUTPUT clause.
Unlike with a top level EPL statement, a RETAIN clause is optional within a subquery. Subquery
expressions are discussed in more detail in “Subquery Expressions” on page 3-8.

The param_sql_query specifies a parameterized SQL query in quotes surrounded by parenthesis
that enables reference and historical data accessible through JDBC to be retrieved. The
database_name identifies the name of the database over which the query will be executed.
Configuration information is associated with this database name to establish a database
connection, control connection creation and removal, and to setup caching policies for query
results. Parameterized SQL queries are discussed in more detail in “Parameterized SQL Queries”
on page 3-8.

The RETAIN clause defines the quantity of event data read from the streams listed in the FROM
clause prior to query processing. Each stream may have its own RETAIN clause if each require
different retain policies. Otherwise, the RETAIN clause may appear at the end of the FROM clause

Oracle Complex Event Processing EPL Reference Guide 3-5

EPL Reference: Clauses

3-6

for it to apply to all streams. Essentially the RETAIN clause applies to all streams that appear
before it in the FROM clause.

For example, in the following EPL statement, five StockTick events will be retained while three
News events will be retained:

SELECT t.stockSymbol, t.price, n.summary
FROM StockTick t RETAIN 5 EVENTS, News n RETAIN 3 EVENTS
WHERE t.stockSymbol = n.stockSymbol

However, in the following statement, four StockTick and four News events will be retained:

SELECT t.stockSymbol, t.price, n.summary
FROM StockTick t, News n RETAIN 4 EVENTS
WHERE t.stockSymbol = n.stockSymbol

With the exception of subquery expressions, all stream sources must be constrained by a RETAIN
clause. Thus at a minimum the FROM clause must contain at least one RETAIN clause at the end

for top level EPL statements. The external data from parameterized SQL queries is not affected
by the RETAIN clause. The RETAIN clause is discussed in more detail in “RETAIN” on page 3-10.

Inner Joins

Two or more event streams can be part of the FROM clause and thus both streams determine the
resulting events. The WHERE clause lists the join conditions that EPL uses to relate events in two
or more streams. If the condition is failed to be met, for example if no event data occurs for either
of the joined stream source, no output will be produced.

Each point in time that an event arrives to one of the event streams, the two event streams are
joined and output events are produced according to the where-clause.

This example joins two event streams. The first event stream consists of fraud warning events for
which we keep the last 30 minutes. The second stream is withdrawal events for which we consider
the last 30 seconds. The streams are joined on account number.

SELECT fraud.accountNumber AS accntNum,
fraud.warning AS warn, withdraw.amount AS amount,
MAX(fraud.timestamp, withdraw.timestamp) AS timestamp,
"withdrawlFraud® AS desc
FROM FraudWarningEvent AS fraud RETAIN 30 MIN,
WithdrawalEvent AS withdraw RETAIN 30 SEC
WHERE fraud.accountNumber = withdraw.accountNumber

Oracle Complex Event Processing EPL Reference Guide

FROM

Outer Joins

Left outer joins, right outer joins and full outer joins between an unlimited number of event
streams are supported by EPL. Depending on the LEFT, RIGHT, or FULL qualifier, in the absence
of event data from either stream source, output may still occur.

If the outer join is a left outer join, there will be an output event for each event of the stream on
the left-hand side of the clause. For example, in the left outer join shown below we will get output
for each event in the stream RFidEvent, even if the event does not match any event in the event
stream OrderList.

SELECT *
FROM RfidEvent AS rfid
LEFT OUTER JOIN
OrderList AS orderlist
ON rfid.itemld = orderList.itemld
RETAIN 30 SECONDS

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the
stream on the right-hand side of the clause. For example, in the right outer join shown below we
will get output for each event in the stream OrderList, even if the event does not match any
event in the event stream RfidEvent.

SELECT *
FROM RfidEvent AS rfid
RIGHT OUTER JOIN
OrderList AS orderlist
ON rfid.itemld = orderList.itemld
RETAIN 30 SECONDS

For all types of outer joins, if the join condition is not met, the select list is computed with the
event properties of the arrived event while all other event properties are considered to be null.

SELECT *
FROM RfidEvent AS rfid
FULL OUTER JOIN
OrderList AS orderlist
ON rfid.itemld = orderList.itemld
RETAIN 30 SECONDS

The last type of outer join is a full outer join. In a full outer join, each point in time that an event
arrives to one of the event streams, one or more output events are produced. In the example

Oracle Complex Event Processing EPL Reference Guide 3-7

EPL Reference: Clauses

3-8

below, when either an RfidEvent or an OrderList event arrive, one or more output event is
produced.

Subquery Expressions

A subquery expression is a nested EPL statement that appears in parenthesis in the FROM clause.
A subguery may not contain an INSERT INTO clause or an OUTPUT clause, and unlike top level
EPL statements, a RETAIN clause is optional.

Subquery expressions execute prior to their containing EPL statement and thus are useful to
pre-filter event data seen by the outer statement. For example, the following query would
calculate the moving average of a particular stock over the last 100 StockTick events:

SELECT AVG(price)
FROM (SELECT * FROM StockTick WHERE stockSymbol = "ACME®)
RETAIN 100 EVENTS

If the WHERE clause had been placed in the outer query, StockTick events for other stock symbols
would enter into the window, reducing the number of events used to calculate the average price.

In addition, a subquery may be used to a) transform the structure of the inner event source to the
structure required by the outer EPL statement or b) merge multiple event streams to form a single
stream of events. This allows a single EPL statement to be used instead of multiple EPL
statements with an INSERT INTO clause connecting them. For example, the following query
merges transaction data from EventA and EventB and then uses the combined data in the outer
query:
SELECT custld, SUM(latency)
FROM (SELECT A.customerld AS custld, A.timestamp -B.timestamp AS latency
FROM EventA A, EventB B
WHERE A.txnld = B.txnld)
RETAIN 30 MIN
GROUP BY custld

A subquery itself may contain subqueries thus allowing arbitrary levels of nesting.

Parameterized SQL Queries

Parameterized SQL queries enable reference and historical data accessible through JDBC to be
queried via SQL within EPL statements. In order for such data sources to become accessible to
EPL, some configuration is required.

The following restrictions currently apply:

Oracle Complex Event Processing EPL Reference Guide

FROM

e Only one event stream and one SQL query may be joined; Joins of two or more event
streams with an SQL query are not supported.

e Constraints specified in the RETAIN clause are ignored for the stream for the SQL query;
that is, one cannot create a time-based or event-based window on an SQL query. However
one can use the INSERT INTO syntax to make join results available to a further statement.

e Your database software must support JDBC prepared statements that provide statement
metadata at compilation time. Most major databases provide this function.

The query string is single or double quoted and surrounded by parentheses. The query may
contain one or more substitution parameters. The query string is passed to your database software
unchanged, allowing you to write any SQL query syntax that your database understands,
including stored procedure calls.

Substitution parameters in the SQL query string take the form ${event_property_name}. The
engine resolves event_property_name at statement execution time to the actual event property
value supplied by the events in the joined event stream.

The engine determines the type of the SQL query output columns by means of the result set
metadata that your database software returns for the statement. The actual query results are
obtained via the getObject on java.sql .ResultSet.

The sample EPL statement below joins an event stream consisting of CustomerCal IEvent
events with the results of an SQL query against the database named MyCustomerDB and table
Customer:

SELECT custld, cust_name

FROM CustomerCallEvent,

MyCustomerDB (" SELECT cust_name FROM Customer WHERE cust_id = ${custld} ")
RETAIN 10 MINUTES

The example above assumes that CustomercCal IEvent supplies an event property named
custld. The SQL query selects the customer name from the Customer table. The WHERE clause
in the SQL matches the Customer table column cust_id with the value of custld in each
CustomerCal 1Event event. The engine executes the SQL query for each new

CustomerCal IEvent encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event.
Else the engine generates one output event for each row returned by the SQL query. An outer join
as described in the next section can be used to control whether the engine should generate output
events even when the SQL query returns no rows.

Oracle Complex Event Processing EPL Reference Guide 3-9

EPL Reference: Clauses

The next example adds a time window of 30 seconds to the event stream CustomerCal IEvent.
It also renames the selected properties to customerName and customerld to demonstrate how
the naming of columns in an SQL query can be used in the SELECT clause in the EQL query. The
example uses explicit stream names via the AS keyword.

SELECT customerld, customerName
FROM CustomerCallEvent AS cce RETAIN 30 SECONDS,
MyCustomerDB
("'SELECT cust_id AS customerld, cust_name AS customerName
FROM Customer WHERE cust_id = ${cce.custld}'") AS cq

Any window, such as the time window, generates insert events as events enter the window, and
remove events as events leave the window. The engine executes the given SQL query for each
CustomerCal IEvent in both the insert stream and the remove stream cases. As a performance
optimization, the ISTREAM or RSTREAM keywords in the SELECT clause can be used to instruct the
engine to only join insert or remove events, reducing the number of SQL query executions.

Parameterized SQL queries may be used in outer joins as well. Use a left outer join, such as in
the next statement, if you need an output event for each event regardless of whether or not the
SQL query returns rows. If the SQL query returns no rows, the join result populates null values
into the selected properties.

SELECT custld, custName
FROM CustomerCallEvent AS cce

LEFT OUTER JOIN

MyCustomerDB

("'SELECT cust_id, cust_name AS custName
FROM Customer WHERE cust_id = ${cce.custld}') AS cq

ON cce.custld = cqg.cust_id

RETAIN 10 MINUTES

The statement above always generates at least one output event for each CustomerCal IEvent,
containing all columns selected by the SQL query, even if the SQL query does not return any
rows. Note the ON expression that is required for outer joins. The ON acts as an additional filter to
rows returned by the SQL query.

RETAIN

At least one RETAIN clause is a required in the FROM clause. The RETAIN clause applies to all
stream sources listed in the FROM clause that precedes it. Conceptually it defines a window of

3-10 Oracle Complex Event Processing EPL Reference Guide

RETAIN

event data for each stream source over which the query will be executed. The RETAIN clause has
the following syntax:

RETAIN

(ALL [EVENTS]) |

([BATCH OF]
(integer (EVENT]EVENTS)) | (time_interval (BASED ON prop_name)*)
(WITH [n] (LARGEST | SMALLEST | UNIQUE) prop_name)*
(PARTITION BY prop_name)*)

Each aspect of the RETAIN clause is discussed in detail below.

Keeping All Events

To keep all events for a stream source, specify the ALL [EVENTS] in the RETAIN clause.

SELECT AVG(price)
FROM StockTick RETAIN ALL EVENTS

In this case, the average price will be calculated based on all StockTick events that occur. Care
must be taken with this option, however, since memory may run out when making calculations
that require all or part of each event object to be retained under high volume scenarios. One such
example would be in calculating a weighted average.

Specifying Window Size

The amount of event data to keep when running the query may be determined in two ways. The
first option is to specify the maximum number of events kept. For example, the query below
would keep a maximum of 100 StockTick events on which the average price would be
computed:

SELECT AVG(price)
FROM StockTick RETAIN 100 EVENTS

As each new StockTick event comes in, the average price would be computed, with a maximum
of 100 events being used for the calculation.

The second option is to specify the time interval in which to collect event data. For example, the
query below would keep 1 minute's worth of StockTick events and compute the average price
for this data:

SELECT AVG(price)
FROM StockTick RETAIN 1 MINUTE

Oracle Complex Event Processing EPL Reference Guide 3-11

EPL Reference: Clauses

3-12

In this case, as each new StockTick event comes in, again the average price would be computed.
However, events that arrived more than one minute ago would be removed from the window with
the average price being recalculated based on the remaining events in the window.

Specifying Batched Versus Sliding Windows

By default, the windows holding event data are sliding. With sliding windows, as a new event
enters the window, an old events fall off the end of the window once the window is at capacity.
Sliding windows cause the query to be re-executed as each new event enters and/or old event
leaves the window. An alternative is to specify that the event data should be batched prior to
query execution. Only when the window is full, is the query is executed. After this, new event
data will again be collected until the window is once again full at which time the query will be
re-executed.

For example, the query below would batch together 100 events prior to executing the query to
compute the average price:

SELECT AVG(price)
FROM StockTick RETAIN BATCH OF 100 EVENTS

Once executed, it would batch the next 100 events together prior to re-executing the query.

For more detail on sliding versus batched windows, see “Processing Model” on page 2-8.

Specifying Time Interval

The time interval for the RETAIN clause may be specified in days, hours, minutes, seconds, and/or
milliseconds:

time_interval:
[day-part] [hour-part][minute-part][seconds-part][milliseconds-part]

day-part: number (‘‘days™ | "day')

hour-part: number (“hours™ | "hour™ | "hr')

minute-part: number (minutes" | "minute™ | "min")

seconds-part: number (“'seconds"™ | "second" | "'sec')

milliseconds-part: number ("'milliseconds” | "millisecond” | "msec" | "ms"™)

Some examples of time intervals are:

10 seconds
10 minutes 30 seconds
20 sec 100 msec

Oracle Complex Event Processing EPL Reference Guide

RETAIN

0.5 minutes
1 day 2 hours 20 minutes 15 seconds 110 milliseconds

BASED ON Clause

By default, the elapse of a time interval is based on the internal system clock. However, in some
cases, the time needs to be based on a timestamp value appearing as an event property. In this
case, the BASED ON clause may be used to specify the property name containing a long-typed
timestamp value. In this example, the StockTick events would be expected to have a
timestamp property of type long whose value would control inclusion into and removal from the
window:

SELECT AVG(price)
FROM StockTick RETAIN 1 MINUTE BASED ON timestamp

When using the BASED ON clause, each stream source listed in the FROM clause must have an
associated timestamp property listed or Oracle CEP will throw an exception.

Specifying Property Name

A property may be referred to by simply using its property name within the RETAIN clause.
However, if ambiguities exist because the same property name exists in more than one stream
source in the FROM clause, it must be prefixed with its alias name followed by a period (similar to
the behavior of properties referenced in the SELECT clause).

Using PARTION BY Clause to Partition Window

The PARTITION BY clause allows a window to be further subdivided into multiple windows
based on the unique values contained in the properties listed. For example, the following query
would keep 3 events for each unique stock symbol:

SELECT stockSymbol, price
FROM StockTick RETAIN 3 EVENTS PARTITION BY stockSymbol

Conceptually this is similar to the GROUP BY functionality in SQL or EPL. However, the
PARTITION BY clause only controls the size and subdivision of the window and does not cause
event data to be aggregated as with the GROUP BY clause. However, in most cases, the
PARTITION BY clause is used in conjunction with the GROUP BY clause with same properties
specified in both.

Oracle Complex Event Processing EPL Reference Guide 3-13

EPL Reference: Clauses

3-14

The following examples illustrate the interaction between PARTITION BY and GROUP BY. Inthe
first example, with the absence of the PARTITION BY clause, a total of 10 events will be kept
across all stock symbols.

SELECT stockSymbol, AVG(price)
FROM StockTick RETAIN 10 EVENTS
GROUP BY stockSymbol

The average price for each unique set of stock symbol will be computed based on these 10 events.
If a stock symbol of AAA comes into the window, it may cause a different stock symbol such as
BBB to leave the window. This would cause the average price for both the AAA group as well as
the BBB group to change.

The second example includes the PARTITION BY clause and the GROUP BY clause.

SELECT stockSymbol, AVG(price)
FROM StockTick RETAIN 10 EVENTS PARTITION BY stockSymbol
GROUP BY stockSymbol

In this case, 10 events will be kept for each unique stock symbol. If a stock symbol of AAA comes
into the window, it would only affect the sub-window associated with that symbol and not other
windows for different stock symbols. Thus, in this case, only the average price of AAA would be
affected.

Using WITH Clause to Keep Largest/Smallest/Unique Values

The WITH clause allows the largest, smallest, and unique property values to be kept in the
window. For example, to keep the two highest priced stocks, the following statement would be
used:

SELECT stockSymbol, price
FROM StockTick RETAIN 2 EVENTS WITH LARGEST price

In the case of time-based windows, the [n] qualifier before the LARGEST or SMALLEST keyword
determines how many values are kept. For example, the following statement would keep the two
smallest prices seen over one minute:

SELECT stockSymbol, price
FROM StockTick RETAIN 1 MINUTE WITH 2 SMALLEST price

In the absence of this qualifier, the single largest or smallest value is kept.

Oracle Complex Event Processing EPL Reference Guide

MATCHING

The UNIQUE qualifier causes the window to include only the most recent among events having
the same value for the specified property. For example, the following query would keep only the
last stock tick for each unique stock symbol:

SELECT *
FROM StockTick RETAIN 1 DAY WITH UNIQUE stockSymbol

Prior events of the same property value would be posted as old events by the engine.

MATCHING

Either a MATCHING or a FROM clause must appear in an EPL statement. The MATCHING clause is
an alternate mechanism for determining which events are used by the EPL statement. It allows
for the detection of a series of one or more events occurring that satisfies a specified pattern.
Pattern expressions consist of references to streams separated by logical operators such as AND,
OR, and FOLLOWED BY to define the sequence of events that compose the pattern. You may include
an optional RETAIN clause, as specified in “RETAIN” on page 3-10, to define the characteristics
of the window containing the matched events. The MATCHING clause executes prior to the WHERE
or HAVING clauses.

The MATCHING clause syntax is as follows:

MATCHING pattern_expression [RETAIN retain_clause]

with pattern_expression having the following syntax:

[NOT]EVERY] stream_expression
((AND | OR | [NOT] FOLLOWED BY) stream_expression)*
[WITHIN time_interval]

You can use the NOT operator to detect the absence of an event and the EVERY operator to control
how pattern matching continues after a match. The stream_expression is a stream source name
optionally bound to a variable and filtered by a parenthesized expression:

stream_expression: [var_name:=]stream name [(Filter_expression)]

Alternatively, a stream_expression may itself be a pattern_expression allowing for
arbitrarily complex nesting of expressions:

The var_name is bound to the event object occurring that triggers the match. It may be
referenced as any other event property in filter expressions that follow as well as in other clauses
such as the SELECT and WHERE clauses. The stream_name may optionally be followed by a
parenthesized expression to filter the matching events of that type. The expression act as a
precondition for events to enter the corresponding window and has the same syntax as a WHERE

Oracle Complex Event Processing EPL Reference Guide 3-15

EPL Reference: Clauses

3-16

clause expression. Previously bound variables may be used within the expression to correlate
with already matched events.

The time_interval is a time interval as specified in “Specifying Time Interval” on page 3-12
that follows the optional WITHIN keyword to determine how long to wait before giving up on the
preceding expression to be met.

In the example below we look for RFIDEvent event with a category of ""Perishable followed
by an RFIDError within 10 seconds whose id matches the ID of the matched RF IDEvent object.

SELECT *

MATCHING a:=RFIDEvent(category="Perishable™)
FOLLOWED BY RFIDError(id=a.id) WITHIN 10 seconds

RETAIN 1 MINUTE

The following sections discuss the syntax, semantics, and additional operators available in the
MATCHING clause to express temporal constraints for pattern matching.

FOLLOWED BY Operator

The FOLLOWED BY temporal operator matches on the occurrence of several event conditions in a
particular order. It specifies that first the left hand expression must turn true and only then will
the right hand expression be evaluated for matching events.

For example, the following pattern looks for event A and if encountered, looks for event B:

A FOLLOWED BY B

This does not mean that event A must immediately be followed by event B. Other events may
occur between the event A and the event B and this expression would still evaluate to true. If
this is not the desired behavior, used the NOT operator as described in “NOT Operator” on
page 3-17.

AND Operator

The AND logical operator requires both nested pattern expressions to turn true before the whole
expression returns true. In the context of the MATCHING clause, the operator matches on the
occurrence of several event conditions but not necessarily in a particular order.

For example, the following pattern matches when both event A and event B are found:
A AND B

Oracle Complex Event Processing EPL Reference Guide

MATCHING

The pattern matches on any sequence of A followed by B in either order. In addition, it is not
required that a B event immediately follow an A event - other events may appear in between the
occurrence of an A event and a B event for this expression to return true.

OR Operator

The OR logical operator requires either one of the expressions to turn true before the whole
expression returns true. In the context of the MATCHING clause, the operator matches on the
occurrence of either of several event conditions but not necessarily in a particular order.

For example, the following pattern matches for either event A or event B:
A OR B

The following would detect all stock ticks that are either above a certain price or above a certain
volume.

StockTick(price > 1.0) OR StockTick(volume > 1000)

NOT Operator

The NOT operator negates the truth value of an expression. In the context of the MATCHING clause,
the operator allows the absence of an event condition to be detected.

The following pattern matches only when an event A is encountered followed by event B but only
if no event C was encountered before event B.

(A FOLLOWED BY B) AND NOT C

EVERY Operator

The EVERY operator indicates that the pattern sub-expression should restart when the
sub-expression qualified by the EVERY keyword evaluates to true or false. In the absence of the
EVERY operator, an implicit EVERY operator is inserted as a qualifier to the first event stream
source found in the pattern not occurring within a NOT expression.

The EVERY operator works like a factory for the pattern sub-expression contained within. When
the pattern sub-expression within it fires and thus quits checking for events, the EVERY causes the
start of a new pattern sub-expression listening for more occurrences of the same event or set of
events.

Oracle Complex Event Processing EPL Reference Guide 3-17

EPL Reference: Clauses

Every time a pattern sub-expression within an EVERY operator turns true the engine starts a new
active sub-expression looking for more event(s) or timing conditions that match the pattern
sub-expression.

Let's consider an example event sequence as follows:

A, B, C; B, A, D; A; By E; A, F; By

Example Description

EVERY (A FOLLOWED BY B) Detectevent A followed by event B. At the time when B occurs the pattern

matches, then the pattern matcher restarts and looks for event A again.
1. Matches on B4 for combination {A;, B}
2. Matches on B3 for combination {A,, B3}

3. Matches on B, for combination {A;, B4}

EVERY A FOLLOWED BY B The pattern fires for every event A followed by an event B.

1. Matches on B4 for combination {A;, B}
2. Matches on B3 for combination {A,, Bz} and {A;, B3}
3. Matches on B, for combination {A;, B4}

EVERY A FOLLOWED BY EVERY B The pattern fires for every event A followed by every event B, in other

words, all combinations of A followed by B.

1. Matches on B, for combination {A;, B}

2. Matches on B, for combination {A;, By}

3. Matches on B3 for combination {A;, B3}, {A,, Bz} and {Az, B3}
4

Matches on B4 for combination {A;, Bs}, {A>. Ba}, {A3. Bi},
and {A4, B}

3-18

The examples show that it is possible that a pattern fires for multiple combinations of events that
match a pattern expression.

Let's consider the EVERY operator in conjunction with a sub-expression that matches three events
that follow each other:

EVERY (A FOLLOWED BY B FOLLOWED BY C)

The pattern first looks for event A. When event A arrives, it looks for event B. After event B
arrives, the pattern looks for event C. Finally, when event C arrives the pattern matches. The
engine then starts looking for event A again.

Oracle Complex Event Processing EPL Reference Guide

MATCHING

Assume that between event B and event C a second event A, arrives. The pattern would ignore
the A, entirely since it's then looking for event C. As observed in the prior example, the EVERY
operator restarts the sub-expression A FOLLOWED BY B FOLLOWED BY C only when the
sub-expression fires.

In the next statement the every operator applies only to the A event, not the whole sub-expression:

EVERY A FOLLOWED BY B FOLLOWED BY C

This pattern now matches for any event A that is followed by an event B and then event C,
regardless of when the event A arrives. This can often be impractical unless used in combination
with the AND NOT syntax or the RETAIN syntax to constrain how long an event remains in the
window.

WITHIN Operator

The WITHIN qualifier acts like a stopwatch. If the associated pattern expression does not become
true within the specified time period it is evaluated by the engine as false. The WITHIN qualifier
takes a time period as a parameter as specified in “Specifying Time Interval” on page 3-12.

This pattern fires if an A event arrives within 5 seconds after statement creation.
A WITHIN 5 SECONDS
This pattern fires for all A events that arrive within 5 second intervals.
This pattern matches for any one A or B event in the next 5 seconds.
(A or B) WITHIN 5 SECONDS
This pattern matches for any two errors that happen 10 seconds within each other.
A(status="ERROR") FOLLOWED BY B(status="ERROR") WITHIN 10 SECONDS
This pattern matches when a Status event does not occur within 10 seconds:
NOT Status WITHIN 10 SECONDS

Event Structure for Matched Pattern

The structure of the events produced when a pattern matches is determined by the structure of the
union of the variables bound within the MATCHING clause. Thus variable bindings must be present
in order to retrieve data from the matched events.

For example, given the following pattern:

tick:=StockTick FOLLOWED BY news:=News(stockSymbol = tick.stockSymbol)

Oracle Complex Event Processing EPL Reference Guide 3-19

EPL Reference: Clauses

Events that match would have a composite event type with two properties: a tick property with a
type of StockTick and a news property with a type of News.

WHERE

The WHERE clause is an optional clause in EPL statements. Using the WHERE clause event streams
can be joined and events can be filtered. Aggregate functions may not appear in a WHERE clause.
To filter using aggregate functions, the HAVING clause should be used.

WHERE aggregate_free_expression

Comparison operators =, <, >, >=, <=, I=, <>, IS NULL, IS NOT NULL and logical combinations
using AND and OR are supported in the WHERE clause. Some examples are listed below.

.. -WHERE fraud.severity = 5 AND amount > 500
... WHERE (orderltem.orderld IS NULL) OR (orderltem.class != 10)
... WHERE (orderltem.orderld = NULL) OR (orderltem.class <> 10)

... WHERE itemCount / packageCount > 10

GROUP BY

3-20

The GROUP BY clause is optional in EPL statements. The GROUP BY clause divides the output of
an EPL statement into groups. You can group by one or more event property names, or by the
result of computed expressions. When used with aggregate functions, GROUP BY retrieves the
calculations in each subgroup. You can use GROUP BY without aggregate functions, but generally
this can produce confusing results.

For example, the below statement returns the total price per symbol for all StockTickEvents in
the last 30 seconds:

SELECT symbol, SUM(price)
FROM StockTickEvent RETAIN 30 SEC
GROUP BY symbol

The syntax of the GROUP BY clause is:

GROUP BY arregate_free_expression [, arregate_free_expression] [, ..]

EPL places the following restrictions on expressions in the GROUP BY clause:

e Expressions in the GROUP BY clause cannot contain aggregate functions

Oracle Complex Event Processing EPL Reference Guide

GROUP BY

e Event properties that are used within aggregate functions in the SELECT clause cannot also
be used in a GROUP BY expression

You can list more then one expression in the GROUP BY clause to nest groups. Once the sets are
established with GROUP BY, the aggregation functions are applied. This statement posts the
median volume for all stock tick events in the last 30 seconds grouped by symbol and tick data
feed. EPL posts one event for each group to statement update listeners:

SELECT symbol, tickDataFeed, MEDIAN(volume)
FROM StockTickEvent RETAIN 30 SECONDS
GROUP BY symbol, tickDataFeed

In the statement above the event properties in the select list (symbol and tickDataFeed) are also
listed in the GROUP BY clause. The statement thus follows the SQL standard which prescribes
that non-aggregated event properties in the select list must match the GROUP BY columns.

EPL also supports statements in which one or more event properties in the select list are not listed
in the GROUP BY clause. The statement below demonstrates this case. It calculates the standard
deviation for the last 30 seconds of stock ticks aggregating by symbol and posting for each event
the symbol, tickDataFeed and the standard deviation on price.

SELECT symbol, tickDataFeed, STDDEV(price)
FROM StockTickEvent RETAIN 30 SECONDS
GROUP BY symbol

The above example still aggregates the price event property based on the symbol, but produces
one event per incoming event, not one event per group.

Additionally, EPL supports statements in which one or more event properties in the GROUP BY
clause are not listed in the select list. This is an example that calculates the mean deviation per
symbol and tickDataFeed and posts one event per group with symbol and mean deviation of
price in the generated events. Since tickDataFeed is not in the posted results, this can
potentially be confusing.

SELECT symbol, AVEDEV(price)
FROM StockTickEvent RETAIN 30 SECONDS
GROUP BY symbol, tickDataFeed

Expressions are also allowed in the GROUP BY list:

SELECT symbol * price, count(*)
FROM StockTickEvent RETAIN 30 SECONDS
GROUP BY symbol * price

Oracle Complex Event Processing EPL Reference Guide 3-21

EPL Reference: Clauses

If the GROUP BY expression results in a null value, the null value becomes its own group. All null
values are aggregated into the same group. The COUNT (expression) aggregate function does
not count null values and the COUNT returns zero if only null values are encountered.

You can use a WHERE clause in a statement with GROUP BY. Events that do not satisfy the
conditions in the WHERE clause are eliminated before any grouping is done. For example, the
statement below posts the number of stock ticks in the last 30 seconds with a volume larger then
100, posting one event per group (symbol).

SELECT symbol, count(*)

FROM StockTickEvent RETAIN 30 SECONDS
WHERE volume > 100

GROUP BY symbol

HAVING

3-22

The HAVING clause is optional in EPL statements. Use the HAVING clause to pass or reject events
defined by the GROUP BY clause. The HAVING clause sets conditions for the GROUP BY clause in
the same way WHERE sets conditions for the SELECT clause, except the WHERE clause cannot
include aggregate functions, while HAVING often does.

HAVING expression

This statement is an example of a HAVING clause with an aggregate function. It posts the total
price per symbol for the last 30 seconds of stock tick events for only those symbols in which the
total price exceeds 1000. The HAVING clause eliminates all symbols where the total price is equal
or less then 1000.

SELECT symbol, SUM(price)

FROM StockTickEvent RETAIN 30 SEC
GROUP BY symbol

HAVING SUM(price) > 1000

To include more than one condition in the HAVING clause combine the conditions with AND, OR or
NOT. This is shown in the statement below which selects only groups with a total price greater
then 1000 and an average volume less then 500.

SELECT symbol, SUM(price), AVG(volume)

FROM StockTickEvent RETAIN 30 SEC

GROUP BY symbol

HAVING SUM(price) > 1000 AND AVG(volume) < 500

Oracle Complex Event Processing EPL Reference Guide

HAVING

A statement with the HAVING clause should also have a GROUP BY clause. If you omit GROUP BY,
all the events not excluded by the WHERE clause return as a single group. In that case HAVING acts
like a WHERE except that HAVING can have aggregate functions.

The HAVING clause can also be used without GROUP BY clause as the below example shows. The
example below posts events where the price is less then the current running average price of all
stock tick events in the last 30 seconds.

SELECT symbol, price, AVG(price)
FROM StockTickEvent RETAIN 30 SEC
HAVING price < AVG(price)

Interaction With MATCHING, WHERE and GROUP BY Clauses

When an EPL statement includes subqueries, a MATCHING clause, WHERE conditions, a GROUP BY
clause, and HAVING conditions, the sequence in which each clause executes determines the final
result:

1. Any subqueries present in the statement run first. The subqueries act as a filter for events to
enter the window of the outer query

2. The event stream's filter conditions in the MATCHING clause, if present, dictates which events
enter a window. The filter discards any events not meeting filter criteria.

3. The WHERE clause excludes events that do not meet its search condition.
4. Aggregate functions in the SELECT list calculate summary values for each group.

5. The HAVING clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, WHERE, GROUP BY and HAVING clauses in one
statement with a SELECT clause containing an aggregate function.

SELECT tickDataFeed, STDDEV(price)

FROM (SELECT * FROM StockTickEvent WHERE symbol="ACME®)
RETAIN 10 EVENTS

WHERE volume > 1000

GROUP BY tickDataFeed

HAVING STDDEV(price) > 0.8

EPL filters events using the subquery for the event stream StockTickEvent. In the example
above, only events with symbol ACME enter the window over the last 10 events, all other events
are simply discarded. The WHERE clause removes any events posted into the window (events

Oracle Complex Event Processing EPL Reference Guide 3-23

EPL Reference: Clauses

entering the window and event leaving the window) that do not match the condition of volume
greater then 1000. Remaining events are applied to the STDDEV standard deviation aggregate
function for each tick data feed as specified in the GROUP BY clause. Each tickDataFeed value
generates one event. EPL applies the HAVING clause and only lets events pass for tickDataFeed
groups with a standard deviation of price greater then 0.8.

ORDER BY

The ORDER BY clause is optional in EPL. It is used for ordering output events by their properties,
or by expressions involving those properties. For example, the following statement batches 1
minute of stock tick events sorting them first by price and then by volume.

SELECT symbol
FROM StockTickEvent RETAIN BATCH OF 1 MINUTE
ORDER BY price, volume

Here is the syntax for the ORDER BY clause:
ORDER BY expression [ASC | DESC] [, expression [ASC | DESC] [,.11

EPL places the following restrictions on the expressions in the ORDER BY clause:

o All aggregate functions that appear in the ORDER BY clause must also appear in the SELECT
expression.

Otherwise, any kind of expression that can appear in the SELECT clause, as well as any alias
defined in the SELECT clause, is also valid in the ORDER BY clause.

OUTPUT

3-24

The OUTPUT clause is optional in EPL and is used to control or stabilize the rate at which events
are output. For example, the following statement batches old and new events and outputs them at
the end of every 90 second interval.

SELECT *
FROM StockTickEvent RETAIN 5 EVENTS
OUTPUT EVERY 90 SECONDS

Here is the syntax for output rate limiting:
OUTPUT [ALL | ((FIRST | LAST) [number]] EVERY number [EVENTS | time_unit]

where

Oracle Complex Event Processing EPL Reference Guide

OUTPUT

time_unit: MIN | MINUTE | MINUTES | SEC | SECOND | SECONDS | MILLISECONDS
| mMs

The ALL keyword is the default and specifies that all events in a batch should be output. The batch
size can be specified in terms of time or number of events.

The FIRST keyword specifies that only the first event in an output batch is to be output. The
optional number qualifier allows more than one event to be output. The FIRST keyword instructs
the engine to output the first matching event(s) as soon as they arrive, and then ignore matching
events for the time interval or number of events specified. After the time interval elapsed, or the
number of matching events has been reached, the same cycle starts again.

The LAST keyword specifies to only output the last event at the end of the given time interval or
after the given number of matching events have been accumulated. The optional number qualifier
allows more than one event to be output.

The time interval can also be specified in terms of minutes or milliseconds; the following
statement is identical to the first one.

SELECT *
FROM StockTickEvent RETAIN 5 EVENTS
OUTPUT EVERY 1.5 MINUTES

A second way that output can be stabilized is by batching events until a certain number of events
have been collected. The next statement only outputs when either 5 (or more) new or 5 (or more)
old events have been batched.

SELECT *
FROM StockTickEvent RETAIN 30 SECONDS
OUTPUT EVERY 5 EVENTS

Additionally, event output can be further modified by the optional LAST keyword, which causes
output of only the last event(s) to arrive into an output batch. For the example below, the last five
events would be output every three minutes.

SELECT *
FROM StockTickEvent RETAIN 30 SECONDS
OUTPUT LAST 5 EVERY 3 MINUTES

Using the FIRST keyword you can be notified at the start of the interval. This allows one to be
immediately notified each time a rate falls below a threshold.

SELECT *
FROM TickRate RETAIN 30 SECONDS

Oracle Complex Event Processing EPL Reference Guide 3-25

EPL Reference: Clauses

WHERE rate < 100
OUTPUT FIRST EVERY 60 SECONDS

Interaction With GROUP BY and HAVING Clauses

The OUTPUT clause interacts in two ways with the GROUP BY and HAVING clauses. First, in the
OUTPUT EVERY n EVENTS case, the number n refers to the number of events arriving into the
GROUP BY clause. That is, if the GROUP BY clause outputs only 1 event per group, or if the arriving
events do not satisfy the HAVING clause, then the actual number of events output by the statement
could be fewer than n.

Second, the LAST and ALL keywords have special meanings when used in a statement with
aggregate functions and the GROUP BY clause. The LAST keyword specifies that only groups
whose aggregate values have been updated with the most recent batch of events should be output.
The ALL keyword (the default) specifies that the most recent data for all groups seen so far should
be output, whether or not these groups' aggregate values have just been updated.

INSERT INTO

3-26

The INSERT INTO clause is optional in EPL. This clause can be specified to make the results of
a statement available as an event stream for use in further statements. The clause can also be used
to merge multiple event streams to form a single stream of events.

INSERT INTO CombinedEvent

SELECT A.customerld AS custld, A.timestamp - B.timestamp AS latency
FROM EventA A, EventB B RETAIN 30 MIN

WHERE A.txnld = B.txnld

The INSERT INTO clause in the above statement generates events of type CombinedEvent. Each
generated CombinedEvent event has two event properties named custld and latency. The
events generated by the above statement can be used in further statements. For example, the
statement below uses the generated events.

SELECT custld, SUM(latency)
FROM CombinedEvent RETAIN 30 MIN
GROUP BY custlid

The INSERT INTO clause can consist of just an event type alias, or of an event type alias and one
or more event property names. The syntax for the INSERT INTO clause is as follows:

INSERT [ISTREAM | RSTREAM] INTO event_type_alias [(prop_name [,prop_name,
L.-11) 1

Oracle Complex Event Processing EPL Reference Guide

INSERT INTO

The ISTREAM (default) and RSTREAM keywords are optional. If neither keyword is specified, the
engine supplies the insert stream events generated by the statement to attached update listeners.
The insert stream consists of the events entering the respective window(s) or stream(s). If the
RSTREAM keyword is specified, the engine supplies the remove stream events generated by the
statement. The remove stream consists of the events leaving the respective window(s).

The event_type_alias is an identifier that names the events generated by the engine. The
identifier can be used in statements to filter and process events of the given name.

The engine also allows update listeners to be attached to a statement that contain an INSERT INTO
clause.

To merge event streams, simply use the same event_type_alias identifier in any EPL
statements that you would like to be merged. Make sure to use the same number and names of
event properties and that event property types match up.

EPL places the following restrictions on the INSERT INTO clause:

e The number of elements in the SELECT clause must match the number of elements in the
INSERT INTO clause if the clause specifies a list of event property names

o If the event type alias has already been defined by a prior statement and the event property
names and types do not match, an exception is thrown at statement creation time.

The example statement below shows the alternative form of the INSERT INTO clause that
explicitly defines the property names to use.

INSERT INTO CombinedEvent (custld, latency)
SELECT A.customerld, A.timestamp - B.timestamp
FROM EventA A, EventB B RETAIN 30 MIN

WHERE A.txnld = B.txnld

The RSTREAM keyword is used to indicate to the engine to generate only remove stream events.
This can be useful if we want to trigger actions when events leave a window rather then when
events enter awindow. The statement below generates CombinedEvent events when EventA and
EventB leave the window after 30 minutes.

INSERT RSTREAM INTO CombinedEvent

SELECT A.customerld AS custld, A.timestamp - B.timestamp AS latency
FROM EventA A, EventB B RETAIN 30 MIN

WHERE A.txnld = B.txnld

Oracle Complex Event Processing EPL Reference Guide 3-21

EPL Reference: Clauses

Simple and Correlated Subqueries

3-28

A subquery is a SELECT within another statement. EPL supports subqueries in the SELECT clause
and in the WHERE clause of EPL statements. Subqueries provide an alternative way to perform
operations that would otherwise require complex joins. Subqueries can also make statements
more readable than complex joins.

EPL supports both simple subqueries as well as correlated subqueries. In a simple subquery, the
inner query is not correlated to the outer query. The following example shows a simple subquery
within a SELECT clause:

SELECT assetld,

(SELECT zone

FROM ZoneClosed.std: lastevent) AS lastClosed
FROM RFIDEvent

If the inner query is dependent on the outer query, it is referred to as a correlated subquery, as
shown in the following example. In the query, the WHERE clause in the inner query involves a
stream from the outer query:

SELECT *
FROM RfidEvent AS RFID
WHERE "Dock 1° =
(SELECT name
FROM Zones RETAIN ALL EVENTS WITH UNIQUE zoneld
WHERE zoneld = RFID.zoneld)

The preceding example shows a subquery in the WHERE clause. The statement selects RF1D events
in which the zone name matches a string constant based on zone ID. The statement uses the WITH
UNIQUE subclause in the RETAIN clause to guarantee that only the last event per zone ID is held
from processing by the subquery.

The following example is a correlated subquery within a SELECT clause. In this query, the
SELECT clause retrieves the zone name by means of a subquery against the Zones set of events
correlated by zone id:

SELECT zoneld,
(SELECT name
FROM Zones RETAIN ALL EVENTS WITH UNIQUE zoneld
WHERE zoneld = RFID.zoneld) AS name

FROM RFIDEvent

Oracle Complex Event Processing EPL Reference Guide

Simple and Correlated Subqueries

When a simple or correlated subquery returns multiple rows, Oracle CEP returns a null value as
the subquery result. To limit the number of events returned by a subquery, consider using WITH
UNIQUE or PARTITION BY in the RETAIN clause.

The SELECT clause of a subquery also allows wildcard selects, which return as an event property
the underlying event object of the event type as defined in the FROM clause. An example:

SELECT

(SELECT *

FROM MarketData RETAIN 1 EVENT) AS md
MATCHING WITHIN 10 SECONDS

The output events of the preceding statement contain the underlying MarketData event in a
property named md. The statement populates the last MarketData event into a property named
md every 10 seconds following the pattern definition, or populates a null value if no MarketData
event has been encountered so far.

The following restrictions apply to subqueries:

e The subquery stream definition must define a data window or other view to limit subquery
results, reducing the number of events held for subquery execution.

e You cannot use aggregation functions in subqueries. Instead, use the INSERT into clause to
provide aggregation results for use in subqueries

e Subqueries can consist only of a SELECT clause, a FROM clause, and a WHERE clause. The
GROUP BY and HAVING clauses, as well as joins, outer-joins and output rate limiting are not
permitted within subqueries.

The performance of your statement that contains one or more subqueries principally depends on
two parameters. First, if your subquery correlates one or more columns in the subquery stream
with the enclosing statement's streams using equals (=), Oracle CEP automatically builds the
appropriate indexes for fast row retrieval based on the key values correlated (joined). The second
parameter is the number of rows found in the subquery stream and the complexity of the filter
criteria (WHERE clause), as each row in the subquery stream must evaluate against the WHERE
clause filter.

Oracle Complex Event Processing EPL Reference Guide 3-29

EPL Reference: Clauses

3-30 Oracle Complex Event Processing EPL Reference Guide

EPL Reference: Operators

This section contains information on the following subjects:
e “Overview of EPL Operators” on page 4-1
e “Arithmetic Operators” on page 4-2
e “Logical and Comparison Operators” on page 4-2
e “Concatenation Operators” on page 4-2
e “Binary Operators” on page 4-3
e “Array Definition Operator” on page 4-3
e “List and Range Operators” on page 4-4
e “String Operators” on page 4-6

e “Temporal Operators” on page 4-7

Overview of EPL Operators

The precedence of arithmetic and logical operators in EPL follows Java standard arithmetic and
logical operator precedence.

Oracle Complex Event Processing EPL Reference Guide 4-1

EPL Reference: Operators

Arithmetic Operators

The table below outlines the arithmetic operators available.

Table 4-1 Arithmetic Operators

Operator Description

+, - As unary operators they denote a positive or negative expression. As binary
operators they add or subtract.

*/ Multiplication and division are binary operators.

% Modulo binary operator.

Logical and Comparison Operators

The table below outlines the logical and comparison operators available.

Table 4-2 Logical and Comparison Operators

Operator Description

NOT Returns true if the following condition is false, returns fal se if it is true.

OR Returns true if either component condition is true, returns false if both
are false

AND Returns true if both component conditions are true, returns false if

either is false

= 1=, <, > <=, >= <> Comparison operators

Concatenation Operators

The table below outlines the concatenation operators available.

4-2 Oracle Complex Event Processing EPL Reference Guide

Binary Operators

Table 4-3 Concatenation Operators

Operator Description

Concatenates character strings

Binary Operators

The table below outlines the binary operators available.

Table 4-4 Binary Operators

Operator Description

&

Bitwise AND if both operands are numbers; conditional AND if both
operands are Boolean.

Bitwise OR if both operands are numbers; conditional OR if both operands
are Boolean.

Bitwise exclusive OR (XOR)

Array Definition Operator

The { and } curly braces are array definition operators following the Java array initialization
syntax. Arrays can be useful to pass to user-defined functions or to select array data in a SELECT
clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression
is allowed within array definitions including constants, arithmetic expressions or event
properties. This is the syntax of an array definition:

{ [expression [,expression [,..111 }
Consider the next statement that returns an event property named actions. The engine populates
the actions property as an array of java. lang.-String values with a length of 2 elements. The

first element of the array contains the observation property value and the second element the
command property value of RFIDEvent events.

Oracle Complex Event Processing EPL Reference Guide 4-3

EPL Reference: Operators

SELECT {observation, command} AS actions
FROM RFIDEvent RETAIN ALL

The engine determines the array type based on the types returned by the expressions in the array
definition. For example, if all expressions in the array definition return integer values then the
type of the array is java. lang. Integer[]. If the types returned by all expressions are a
compatible number types, such as integer and double values, the engine coerces the array element
values and returns a suitable type, java. lang.Double[] in this example. The type of the array
returned is Object[] if the types of expressions cannot be coerced or return object values. Null
values can also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

SELECT *
FROM RFIDEvent RETAIN ALL
WHERE Filter.myFilter(zone, {1,2,3})

List and Range Operators

44

This section describes the following two operations:
o “IN Operator” on page 4-4
e “BETWEEN Operator” on page 4-5

IN Operator

The IN operator determines if a given value matches any value in a list. The syntax of the operator
is:

test_expression [NOT] IN (expression [,expression [,..1])

The test_expression is any valid expression. The IN keyword is followed by a list of
expressions to test for a match. The optional NOT keyword specifies that the result of the predicate
be negated.

The result of an IN expression is of type Boolean. If the value of test_expression is equal to
any expression from the comma-separated list, the result value is true. Otherwise, the result
value is False. All expressions must be of the same type or a type compatible with
test_expression.

The next example shows how the IN keyword can be applied to select certain command types of
RFIDEvents:

Oracle Complex Event Processing EPL Reference Guide

List and Range Operators

SELECT *
FROM RFIDEvent RETAIN ALL
WHERE command IN ("OBSERVATION®, “SIGNAL®)

The statement is equivalent to:

SELECT *
FROM RFIDEvent RETAIN ALL
WHERE command = "OBSERVATION® OR symbol = “"SIGNAL®

BETWEEN Operator

The BETWEEN operator specifies a range to test. The syntax of the operator is:

test_expression [NOT] BETWEEN begin_expression AND end_expression

The test_expression is any valid expression and is the expression to test for the range being
inclusively within the expressions defined by begin_expression and end_expression. The
NOT keyword specifies that the result of the predicate be negated.

The result of a BETWEEN expression is of type Boolean. If the value of test_expression is
greater then or equal to the value of begin_expression and less than or equal to the value of
end_expression, the result is true.

The next example shows how the BETWEEN keyword can be used to select events with a price
between 55 and 60 (inclusive).

SELECT *
FROM StockTickEvent RETAIN ALL
WHERE price BETWEEN 55 AND 60

The equivalent expression without using the BETWEEN keyword is:

SELECT *
FROM StockTickEvent RETAIN ALL
WHERE price >= 55 AND price <= 60

The begin_expression and end_expression may occur in either order without affecting the
query. For example, the following is equivalent to the above example:

SELECT *
FROM StockTickEvent RETAIN ALL
WHERE price BETWEEN 60 AND 55

Oracle Complex Event Processing EPL Reference Guide 4-5

EPL Reference: Operators

String Operators

46

This section describes the following string operators:
e “LIKE Operator” on page 4-6
e “REGEXP Operator” on page 4-6

LIKE Operator

The LIKE operator provides standard SQL pattern matching. SQL pattern matching allows you
to use _ to match any single character and % to match an arbitrary number of characters (including
zero characters). In EPL, SQL patterns are case-sensitive by default. The syntax of LIKE is:

test_expression [NOT] LIKE pattern_expression [ESCAPE string_literal]

The test_expression is any valid expression yielding a String type or a numeric result. The
optional NOT keyword specifies that the result of the predicate be negated. The LIKE keyword is
followed by any valid standard SQL pattern_expression yielding a String-typed result. The
optional ESCAPE keyword signals the escape character used to escape the _ and % values in the
pattern.

The result of a LIKE expression is of type Boolean. If the value of test_expression matches
the pattern_expression, the result value is true. Otherwise, the result value is false. An
example for the LIKE keyword is shown below.

SELECT *
FROM PersonLocationEvent RETAIN ALL
WHERE name LIKE "%Jack%"

In this example the WHERE clause matches events where the suffix property is a single _
character.

SELECT *
FROM PersonLocationEvent RETAIN ALL
WHERE suffix LIKE "!_ " ESCAPE "I*

REGEXP Operator

The REGEXP operator is a form of pattern matching based on regular expressions implemented
through the Java java.util . regex package. The syntax of REGEXP is:

test_expression [NOT] REGEXP pattern_expression

Oracle Complex Event Processing EPL Reference Guide

Temporal Operators

The test_expression is any valid expression yielding a String type or a numeric result. The
optional NOT keyword specifies that the result of the predicate be negated. The REGEXP keyword
is followed by any valid regular expression pattern_expression yielding a String-typed result.

The result of a REGEXP expression is of type Boolean. If the value of test_expression matches
the regular expression pattern_expression, the result value is true. Otherwise, the result
value is false.

An example for the REGEXP operator is below.

SELECT *
FROM PersonLocationEvent RETAIN ALL
WHERE name REGEXP "*Jack**

Temporal Operators

This section describes the following temporal operations:
e “FOLLOWED BY Operator” on page 4-7
e “WITHIN Operator” on page 4-7
e “EVERY Operator” on page 4-8

FOLLOWED BY Operator

The FOLLOWED BY operator specifies that first the left hand expression must turn true and only
then is the right hand expression evaluated for matching events.

For example, the following pattern looks for event A and if encountered, looks for event B:
A FOLLOWED BY B

This does not mean that event A must immediately be followed by event B. Other events may
occur between the event A and the event B and this expression would still evaluate to true. If
this is not the desired behavior, the NOT operator can be used.

WITHIN Operator

The WITHIN qualifier acts like a stopwatch. If the associated pattern expression does not become
true within the specified time period it is evaluated by the engine as false. The WITHIN qualifier
takes a time period as a parameter as specified in “Specifying Time Interval” on page 3-12.

This pattern fires if an A event arrives within 5 seconds after statement creation.

Oracle Complex Event Processing EPL Reference Guide 4-7

EPL Reference: Operators

4-8

A WITHIN 5 seconds

This pattern fires for all A events that arrive within 5 second intervals.

EVERY Operator

The EVERY operator indicates that the pattern sub-expression should restart when the
sub-expression qualified by the EVERY keyword evaluates to true or false. In the absence of the
EVERY operator, an implicit EVERY operator is inserted as a qualifier to the first event stream
source found in the pattern not occurring within a NOT expression.

The EVERY operator works like a factory for the pattern sub-expression contained within. When
the pattern sub-expression within it fires and thus quits checking for events, the EVERY causes the
start of a new pattern sub-expression listening for more occurrences of the same event or set of
events.

Every time a pattern sub-expression within an EVERY operator turns true the engine starts a new
active sub-expression looking for more event(s) or timing conditions that match the pattern
sub-expression.

This pattern fires when an A event is followed by a B event and continues attempting to match
again after the B event:

EVERY (A FOLLOWED BY B)

This pattern also fires when an A event is followed by a B event, but continues attempting to
match again after the A event:

EVERY A FOLLOWED BY B

The EVERY in this pattern is optional, since it would implicitly be placed here if it was absent.

Oracle Complex Event Processing EPL Reference Guide

EPL Reference: Functions

This section contains information on the following subjects:
e “Single-row Functions” on page 5-1
e “Aggregate functions” on page 5-8

e “User-Defined functions” on page 5-11

Single-row Functions

Single-row functions return a single value for every single result row generated by your
statement. These functions can appear anywhere where expressions are allowed.

EPL allows static Java library methods as single-row functions, and also features built-in
single-row functions.

EPL auto-imports the following Java library packages:
e java.lang.*
e java.math._*
e java.text.*

e java.util.*
Thus Java static library methods can be used in all expressions as shown in below example:

SELECT symbol, Math.round(volume/1000)
FROM StockTickEvent RETAIN 30 SECONDS

Oracle Complex Event Processing EPL Reference Guide 5-1

EPL Reference: Functions

Other arbitrary Java classes may also be used, however their names must be fully qualified or
configured to be imported. For more information, see “User-Defined functions” on page 5-11.

The table below outlines the built-in single-row functions available.

Table 5-1 Built-In Single-Row Functions

Single-row Function

Result

MAX(expression, expression [, expression [,..])

Returns the highest numeric
value among the two or more
comma-separated expressions.

MIN(expression, expression [, expression [,..])

Returns the lowest numeric
value among the two or more
comma-separated expressions.

COALESCE(expression, expression [, expression [,..])

Returns the first non-null value
in the list, or null if there are no
non-null values.

CASE value
WHEN compare_value THEN result
[WHEN compare_value THEN result ..]
[ELSE result]

END

Returns result where the first
value equals
compare_value.

CASE value
WHEN condition THEN result
[WHEN condition THEN result .]
[ELSE result]

END

Returns the result for the first
condition that is true.

PREV(expression, event_property)

Returns a property value of a
previous event, relative to the
event order within a data
window.

PRIOR(integer, event_property)

Returns a property value of a
prior event, relative to the
natural order of arrival of
events

5-2 Oracle Complex Event Processing EPL Reference Guide

Single-row Functions

The MIN and MAX Functions

The MIN and MAX functions take two or more expression parameters. The min function returns the
lowest numeric value among these comma-separated expressions, while the MAX function returns
the highest numeric value. The return type is the compatible aggregated type of all return values.

The next example shows the MAX function that has a Double return type and returns the value 1. 1.

SELECT MAX(1, 1.1, 2 * 0.5)
FROM ...

The MIN function returns the lowest value. The statement below uses the function to determine
the smaller of two timestamp values.

SELECT symbol, MIN(ticks.timestamp, news.timestamp) AS minT
FROM StockTickEvent AS ticks, NewsEvent AS news RETAIN 30 SECONDS
WHERE ticks.symbol = news.symbol

The MIN and MAX functions are also available as aggregate functions. See “Aggregate functions”
on page 5-8 for a description of this usage.

The COALESCE Function

The result of the COALESCE function is the first expression in a list of expressions that returns a
non-null value. The return type is the compatible aggregated type of all return values.

This example returns a String type result with a value of foo.

SELECT COALESCE(NULL, =foo®)
FROM ...

The CASE Control Flow Function

The CASE control flow function has two versions. The first version takes a value and a list of
compare values to compare against, and returns the result where the first value equals the
compare value. The second version takes a list of conditions and returns the result for the first
condition that is true.

The return type of a CASE expression is the compatible aggregated type of all return values.

The example below shows the first version of a CASE statement. It has a String return type and
returns the value one.

SELECT CASE 1 WHEN 1 THEN "one® WHEN 2 THEN "two" ELSE "more® END
FROM ...

Oracle Complex Event Processing EPL Reference Guide 5-3

EPL Reference: Functions

5-4

The second version of the CASE function takes a list of conditions. The next example has a
Boolean return type and returns the Boolean value true.

SELECT CASE WHEN 1>0 THEN true ELSE false END
FROM ...

The PREV Function

The PREV function returns the property value of a previous event. The first parameter denotes the

ith previous event in the order established by the data window. The second parameter is a property
name for which the function returns the value for the previous event.

This example selects the value of the price property of the second previous event from the current
Trade event.

SELECT PREV(2, price)
FROM Trade RETAIN 10 EVENTS

Because the PREV function takes the order established by the data window into account, the
function works well with sorted windows. In the following example the statement selects the
symbol of the three Trade events that had the largest, second-largest and third-largest volume.

SELECT PREV(0O, symbol), PREV(1, symbol), PREV(2, symbol)
FROM Trade RETAIN 10 EVENTS WITH LARGEST volume

Theith previous event parameter can also be an expression returning an Integer type value. The
next statement joins the Trade data window with a RankSelectionEvent event that provides a
rank property used to look up a certain position in the sorted Trade data window:

SELECT PREV(rank, symbol)
FROM Trade, RankSelectionEvent RETAIN 10 EVENTS WITH LARGEST volume

The PREV function returns a NULL value if the data window does not currently hold the ith
previous event. The example below illustrates this using a time batch window. Here the PREV
function returns a null value for any events in which the previous event is not in the same batch
of events. The PRIOR function as discussed below can be used if a null value is not the desired
result.

SELECT PREV(1, symbol)
FROM Trade RETAIN BATCH OF 1 MINUTE

Oracle Complex Event Processing EPL Reference Guide

Single-row Functions

Previous Event Per Group

The combination of the PREV function and the PARTITION BY clause returns the property value
for a previous event in the given group.

For example, assume we want to obtain the price of the previous event of the same symbol as the
current event.

The statement that follows solves this problem. It partitions the window on the symbol property
over a time window of one minute. As a result, when the engine encounters a new symbol value
that it hasn't seen before, it creates a new window specifically to hold events for that symbol.
Consequently, the PREV function returns the previous event within the respective time window
for that event's symbol value.

SELECT PREV(1, price) AS prevPrice
FROM Trade RETAIN 1 MIN PARTITION BY symbol

Restrictions
The following restrictions apply to the PREV functions and its results:

e The function always returns a nul I value for remove stream (old data) events.

e The function may only be used on streams that are constrained by a RETAIN clause.

The PRIOR Function

The PRIOR function returns the property value of a prior event. The first parameter is an integer
value that denotes the ith prior event in the natural order of arrival. The second parameter is a
property name for which the function returns the value for the prior event.

This example selects the value of the price property of the second prior event to the current Trade
event.

SELECT PRIOR(2, price)
FROM Trade RETAIN ALL

The PRIOR function can be used on any event stream or view and does not require a stream to be
constrained by a RETAIN clause as with the PREV function. The function operates based on the
order of arrival of events in the event stream that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of
Trade events, posting results every minute. The SELECT clause employs the PRIOR function to
select the current average and the average before the current average:

Oracle Complex Event Processing EPL Reference Guide 5-5

EPL Reference: Functions

SELECT AVG(volume) AS avgVolume, PRIOR(1, avgVolume)
FROM TradeAverages RETAIN BATCH OF 1 MINUTE

Comparison to the PREV Function

The PRIOR function is similar to the PREV function. The key differences between the two
functions are as follows:

e The PREV function returns previous events in the order provided by the window, while the
PRIOR function returns prior events in the order of arrival in the stream.

e The PREV function requires a RETAIN clause while the PRIOR function does not.

e The PREV function returns the previous event taking into account any grouping. The PRIOR
function returns prior events regardless of any grouping.

e The PREV function returns a null value for remove stream events, i.e. for events leaving a
data window. The PRIOR function does not have this restriction.

The INSTANCEOF Function

The INSTANCEOF function returns a boolean value indicating whether the type

of value returned by the expression is one of the given types. The first parameter to the
INSTANCEOF function is an expression to evaluate. The second and subsequent parameters are
Java type names.

The INSTANCEOF function determines the return type of the expression at runtime by evaluating
the expression, and compares the type of object returned by the expression to the defined types.
If the type of object returned by the expression matches any of the given types, the function
returns true. If the expression returned null or a type that does not match any of the given types,
the function returns false.

The INSTANCEOF function is often used in conjunction with dynamic (unchecked) properties.
Dynamic properties are properties whose type is not known at compile type.

The following example uses the INSTANCEOF function to select different properties based on the
type:
SELECT
CASE

WHEN INSTANCEOF(item, com.mycompany.Service) THEN serviceName?
WHEN INSTANCEOF(item, com.mycompany.Product) THEN productName?

5-6 Oracle Complex Event Processing EPL Reference Guide

Single-row Functions

END
FROM OrderEvent

The INSTANCEOF function returns false if the expression tested by INSTANCEOF returned null.

Valid parameters for the type parameter are:
e Any of the Java built-in types: int, long, byte, short, char, double, float, string,
where string is a short notation for java. lang.String. The type name is not

case-sensitive. For example, the following function tests if the dynamic price property is
either of type float or type double:

INSTANCEOF(price?, double, float)
e The fully-qualified class name of the class to test, for example:

INSTANCEOF(product, org.myproducer.Product)
Valid parameters for the type parameter list are:

The INSTANCEOF function considers an event class's superclasses as well as all the directly or
indirectly-implemented interfaces by superclasses.

The CAST Function

The CAST function casts the return type of an expression to a designated type. The function
accepts two parameters: the first parameter is the property hame or expression that returns the
value to be casted and the second parameter is the type to cast to.

Valid parameters for the second (type) parameter are:

e Any of the Java built-in types: int, long, byte, short, char, double, float, string,
where string is a short notation for java. lang.String. The type name is not
case-sensitive. For example:

cast(price, double)
e The fully-qualified class name of the class to cast to, for example:

cast(product, org.myproducer.Product)

The CAST function is often used to provide a type for dynamic (unchecked) properties. Dynamic
properties are properties whose type is not known at compile type. These properties are always
of type java. lang.Object.

The following example shows how to use the CAST function to cast the price dynamic property
of an item in the OrderEvent to a double value.

Oracle Complex Event Processing EPL Reference Guide 5-1

EPL Reference: Functions

SELECT CAST(item.price?, double)
FROM OrderEvent

The CAST function returns a null value if the expression result cannot be casted to the desired type,
or if the expression result itself is null.

The CAST function adheres to the following type conversion rules:

e For all numeric types, the CAST function utilitzes java. lang.Number to convert numeric
types, if required.

e For casts to string or java. lang.String, the CAST function calls toString on the
expression result.

e For casts to other objects, including application objects, the CAST function considers a Java
class's superclasses as well as all directly or indirectly-implemented interfaces by
superclasses .

The EXISTS Function

The EX1STS function returns a boolean value indicating whether the dynamic property, provided
as a parameter to the function, exists on the event. The EX1STS function accepts a single dynamic
property name as its only parameter.

Use the EXISTS function with dynamic (unchecked) properties. Dynamic properties are
properties whose type is not known at compile type. Dynamic properties return a null value if the
dynamic property does not exist on an event, or if the dynamic property exists but the value of
the dynamic property is null.

The following example of using the EX1STS function returns true if the item property contains
an object that has a serviceName property. It returns false if the item property is null, or if the
i tem property does not contain an object that has a property named serviceName:

SELECT EXISTS(item.serviceName?)
FROM OrderEvent

Aggregate functions

The aggregate functions are SUM, AVG, COUNT, MAX, MIN, MEDIAN, STDDEV, AVEDEV. Y0u can use
aggregate functions to calculate and summarize data from event properties. For example, to find
out the total price for all stock tick events in the last 30 seconds:

5-8 Oracle Complex Event Processing EPL Reference Guide

Aggregate functions

SELECT SUM(price)
FROM StockTickEvent RETAIN 30 SECONDS

Here is the syntax for aggregate functions:
aggregate_function([ALL | DISTINCT] expression)

You can apply aggregate functions to all events in an event stream window or other view, or to
one or more groups of events. From each set of events to which an aggregate function is applied,
EPL generates a single value.

The expression is usually an event property name. However it can also be a constant, function, or
any combination of event property names, constants, and functions connected by arithmetic
operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the
price was doubled:

SELECT AVG(price * 2)
FROM StockTickEvent RETAIN 30 SECONDS

You can use the optional keyword DISTINCT with all aggregate functions to eliminate duplicate
values before the aggregate function is applied. The optional keyword ALL which performs the
operation on all events is the default.

The MIN and MAX aggregate functions are also available as single row functions. See “The MIN
and MAX Functions” on page 5-3 for a description of this usage.

The syntax of the aggregation functions and the results they produce are shown in table below.

Tahle 5-2 Aggregate Functions

Aggregate Function Result

SUM(TALL|DISTINCT] expression) Totals the (distinct) values in the expression, returning
a value of long, double, float or integer type
depending on the expression.

AVG(TALL|DISTINCT] expression) Average of the (distinct) values in the expression,
returning a value of doubl e type.

COUNT([ALL|DISTINCT] expression) Number of the (distinct) non-null values in the
expression, returning a value of long type.

COUNT(*) Number of events, returning a value of long type.

Oracle Complex Event Processing EPL Reference Guide 5-9

EPL Reference: Functions

Tahle 5-2 Aggregate Functions

Aggregate Function Result

MAX([ALLIDISTINCT] expression) Highest (distinct) value in the expression, returning a

value of the same type as the expression itself returns.

MINC[ALL|DISTINCT] expression) Lowest (distinct) value in the expression, returning a

value of the same type as the expression itself returns.

MEDIANC[ALL|DISTINCT] expression) Median (distinct) value in the expression, returning a

value of double type.

STDDEV([ALL|DISTINCT] expression) Standard deviation of the (distinct) values in the

expression, returning a value of double type.

AVEDEV([ALL|DISTINCT] expression) Mean deviation of the (distinct) values in the

expression, returning a value of double type.

TREND(expression) Number of consecutive up ticks (as positive number),

down ticks (as negative number), or no change (as zero)
for expression.

5-10

You can use aggregation functions in a SELECT clause and in a HAVING clause. You cannot use
aggregate functions in a WHERE clause, but you can use the WHERE clause to restrict the events to
which the aggregate is applied. The next query computes the average and sum of the price of
stock tick events for the symbol ACME only, for the last 10 stock tick events regardless of their
symbol.

SELECT "ACME stats® AS title, AVG(price) AS avgPrice, SUM(price) AS
sumPrice

FROM StockTickEvent RETAIN 10 EVENTS

WHERE symbol="ACME*"

In the preceding example the length window of 10 elements is not affected by the WHERE clause,
in other words, all events enter and leave the length window regardless of their symbol. If we only
care about the last 10 ACME events, we need to add a MATCHING clause as shown below.

SELECT "ACME stats®™ AS title, AVG(price) AS avgPrice, SUM(price) AS
sumPrice

FROM (SELECT * FROM StockTickEvent WHERE symbol="ACME®)

RETAIN 10 EVENT

Oracle Complex Event Processing EPL Reference Guide

User-Defined functions

You can use aggregate functions with any type of event property or expression, with the
following restriction:

e You can use SUM, AVG, MEDIAN, STDDEV, AVEDEV with numeric event properties only

EPL ignores any null values returned by the event property or expression on which the aggregate
function is operating, except for the COUNT(*) function, which counts null values as well. All
aggregate functions return null if the data set contains no events, or if all events in the data set
contain only null values for the aggregated expression.

User-Defined functions

A user-defined function can be invoked anywhere as an expression itself or within an expression.
The function must simply be a public static method that the class loader can resolve at statement
creation time. The engine resolves the function reference at statement creation time and verifies
parameter types.

The example below assumes a class MyClass that exposes a public static method myFunction
accepting two parameters, and returning a numeric type such as double.

SELECT 3 * MyClass.myFunction(price, volume) as myValue

FROM StockTick RETAIN 30 SECONDS
User-defined functions also take array parameters as this example shows. “Array Definition
Operator” on page 4-3 outlines in more detail the types of arrays produced.

SELECT *
FROM RFIDEvent RETAIN 10 MINUTES
WHERE com.mycompany.rfid.MyChecker.islnZone(zone, {10, 20, 30})

Oracle Complex Event Processing EPL Reference Guide 5-11

EPL Reference: Functions

5-12 Oracle Complex Event Processing EPL Reference Guide

CHAPTERa

Programmatic Interface to EPL

This section contains information on the following subjects:

e “Java Programming Interfaces” on page 6-1

Java Programming Interfaces

The Java programmatic interface for the EPL is rooted at the
com.bea.wlevs.ede.api.Processor interface. This interface provides methods to load,
compile, start, stop, and retrieve EPL statements.

EPL statements are loaded and compiled individually through the following method:

Statement createStatement(String query) throws StatementException;

If the query fails to compile, a StatementException will be thrown. Alternatively, multiple
statements may be loaded from a URL using the following method:

List<Statement> loadStatements (URL location) throws
MultiStatementException;

If the queries fail to compile, a Mul tiStatementException will be thrown. The structure of
the rules file is explained in the section Configuring the Complex Event Processor Rules.
Individual queries compiled through the createStatement are not persisted and have no effect
on the rule files located at the URL location.

The com.bea.wlevs.ede.api .Statement interface allows event sinks to be attached to an
EPL statement using the following method:

void addEventSink (EventSink listener);

Oracle Complex Event Processing EPL Reference Guide 6-1

http://e-docs.bea.com/wlevs/docs30/create_apps/processor.html

Programmatic Interface to EPL

The engine calls the following method on the ccom.bea.wlevs.ede.api .EventSink interface
when events are added to the output window as a result of executing the statement:

void onEvent (List newEvents);

For more information, see the complete Oracle CEP Javadocs.

6-2 Oracle Complex Event Processing EPL Reference Guide

http://e-docs.bea.com/wlevs/docs30/javadocs/wlevs/index.html

	Oracle® Complex Event Processing
	Release 3.0

	Oracle Complex Event Processing EPL Reference Guide, Release 3.0
	Introduction and Roadmap
	Document Scope and Audience
	Oracle CEP Documentation Set
	Guide to This Document
	Samples for the Oracle CEP Application Developer

	Overview of the Event Processing Language (EPL)
	Overview of the EPL Language
	Event Representation
	Event Objects
	Plain Old Java Object Events
	Map Events
	Event Properties
	Dynamic Event Properties
	Event Sinks

	Processing Model
	Event Streams
	Sliding Windows
	Row-Based Sliding Windows
	Time-Based Sliding Windows

	Batched Windows
	Time-Based Batched Windows
	Row-Based Batched Windows

	Subqueries and WHERE Clauses
	Aggregation

	Use Cases
	Computing Rates per Feed
	Computing Highest Priced Stocks
	Segmenting Location Data
	Detecting Rapid Fall-off
	Finding Network Anomalies
	Detecting Absence of Event
	Summarizing Terminal Activity Data
	Reading Sensor Data
	Combining Transaction Events
	Monitoring Real-time Performance
	Finding Dropped Transaction Events

	EPL Reference: Clauses
	Overview of the Clauses You Can Use in an EPL Statement
	SELECT
	Choosing Specific Event Properties
	Using Expressions
	Aliasing Event Properties
	Choosing All Event Properties
	Selecting New and Old Events With ISTREAM and RSTREAM Keywords

	FROM
	Inner Joins
	Outer Joins
	Subquery Expressions
	Parameterized SQL Queries

	RETAIN
	Keeping All Events
	Specifying Window Size
	Specifying Batched Versus Sliding Windows
	Specifying Time Interval
	BASED ON Clause

	Specifying Property Name
	Using PARTION BY Clause to Partition Window
	Using WITH Clause to Keep Largest/Smallest/Unique Values

	MATCHING
	FOLLOWED BY Operator
	AND Operator
	OR Operator
	NOT Operator
	EVERY Operator
	WITHIN Operator
	Event Structure for Matched Pattern

	WHERE
	GROUP BY
	HAVING
	Interaction With MATCHING, WHERE and GROUP BY Clauses

	ORDER BY
	OUTPUT
	Interaction With GROUP BY and HAVING Clauses

	INSERT INTO
	Simple and Correlated Subqueries

	EPL Reference: Operators
	Overview of EPL Operators
	Arithmetic Operators
	Logical and Comparison Operators
	Concatenation Operators
	Binary Operators
	Array Definition Operator
	List and Range Operators
	IN Operator
	BETWEEN Operator

	String Operators
	LIKE Operator
	REGEXP Operator

	Temporal Operators
	FOLLOWED BY Operator
	WITHIN Operator
	EVERY Operator

	EPL Reference: Functions
	Single-row Functions
	The MIN and MAX Functions
	The COALESCE Function
	The CASE Control Flow Function
	The PREV Function
	Previous Event Per Group
	Restrictions

	The PRIOR Function
	Comparison to the PREV Function

	The INSTANCEOF Function
	The CAST Function
	The EXISTS Function

	Aggregate functions
	User-Defined functions

	Programmatic Interface to EPL
	Java Programming Interfaces

