Oracle® Complex Event Processing
Getting Started Guide
Release 3.0

July 2008

Alpha/Beta Draft

ORACLE

Oracle Complex Event Processing Getting Started Guide, Release 3.0
Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to
the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages
incurred due to the use of this documentation.

Contents

Introduction and Roadmap

Document Scope and AUdIENCEottt
Oracle CEP Documentation Set.ttt
Guide to ThiS DOCUMENTttt e e e e

Samples for the Oracle CEP Application Developer.

Overview of Oracle Complex Event Processing

Introduction to Oracle Complex Event Processingcoovviinonn...
Conceptual Overviewof Oracle CEP i
Event Processing Networks i

USE CaSBS . v ettt et e e

Summary of Oracle CEP Features. ...t e

Supported Configurations

Oracle CEP Development Environment for Eclipse

N X SEPS . ottt

Oracle Complex Event Processing Examples

Overview of the Samples Provided in the Distribution Kit.
Using Visualizer With the Examples i ...
Increasing the Performance of the Examples

Setting Your Development Environment. i

WNAOWS .« o

Oracle Complex Event Processing Getting Started Guide

4.

iv

HelloWorld Example. o 3-6

Running the HelloWorld Example from the helloworld Domain. 3-7
Building and Deploying the HellowWorld Example from the Source Directory 3-8
Description of the Ant Targets to Build HelloWorld 3-9
Implementation of the HelloWorld Example 3-10
The HelloWorld EPN Assembly File. o it 3-12
The HelloWorld Component Configuration File 3-14
The XSD File that Describes the Extended HelloWorld Component Configuration 3-16
Foreign Exchange (FX) Example i 3-19
Running the Foreign Exchange Example. i, 3-20
Building and Deploying the Foreign Exchange Example from the Source Directory. . .
3-21
Description of the Ant Targetsto Build FX 3-22
Implementation of the FX Example. i i 3-23
The FX EPN Assembly File. 3-24
The FX Processor Configuration Files. 3-28
Signal Generation Example. 3-31
Running the Signal Generation Example. o . 3-32
Building and Deploying the Signal Generation Example from the Source Directory . . .
3-33
Description of the Ant Targets to Build Signal Generation 3-34

Installing Oracle Complex Event Processing

Before YOU BegiN 4-1
Installation OVErVIEW. o 4-2
Installing Oracle CEP in Graphical Mode: Main Steps. oot 4-2
Installing Oracle CEP in Console Mode: Main Stepst 4-5
Installing Oracle CEP in Silent Mode: Main Steps.cco i, 4-8

Oracle Complex Event Processing Getting Started Guide

Creating a silent.xml File for Silent-Mode Installation 4-10

Guidelines for Component Selection i i 4-11
Sample silent.xml File for Silent-Mode Installation. 4-12
Returning Exit Codes to the Command Window 4-12
Post-Installation Stepso 4-13

Oracle Complex Event Processing Getting Started Guide v

vi

Oracle Complex Event Processing Getting Started Guide

Introduction and Roadmap

This section describes the contents and organization of this guide—Oracle Complex Event
Processing Getting Started Guide.

e “Document Scope and Audience” on page 1-1
e “Oracle CEP Documentation Set” on page 1-2
e “Guide to This Document” on page 1-2

e “Samples for the Oracle CEP Application Developer” on page 1-2

Document Scope and Audience

This document is a resource for software developers who develop event driven real-time
applications. It also contains information that is useful for business analysts and system architects
who are evaluating Oracle Complex Event Processing (or Oracle CEP for short) or considering
the use of Oracle CEP for a particular application.

The topics in this document are relevant during the design, development, configuration,
deployment, and performance tuning phases of event driven applications. The document also
includes topics that are useful in solving application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with the Java programming language and Spring.

Oracle Complex Event Processing Getting Started Guide 1-1

Introduction and Roadmap

Oracle CEP Documentation Set

This document is part of a larger Oracle CEP documentation set that covers a comprehensive list
of topics. The full documentation set includes the following documents:

e Oracle CEP Getting Started

Oracle CEP Application Development Guide

Oracle CEP Administration and Configuration Guide

Oracle CEP EPL Reference Guide

Oracle CEP Reference Guide

Oracle CEP Release Notes

Oracle CEP Visualizer Help
See the main Oracle CEP documentation page for further details.

Guide to This Document

This document is organized as follows:

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the features of Oracle CEP.

e Chapter 2, “Overview of Oracle Complex Event Processing,” provides a conceptual
overview of Oracle CEP, typical use cases, definition of terms and acronyms, and an
overview of the programming model.

e Chapter 3, “Oracle Complex Event Processing Examples,” describes in detail two of the
examples provided in the distribution kit: HelloWorld and foreign exchange (FX).

e Chapter 4, “Installing Oracle Complex Event Processing,” describes how to install Oracle
CEP.

Samples for the Oracle CEP Application Developer

In addition to this document, Oracle provides a variety of code samples for Oracle CEP
application developers. The examples illustrate Oracle CEP in action, and provide practical
instructions on how to perform key development tasks.

1-2 Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/get_started/index.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html
http://e-docs.bea.com/wlevs/docs30/config_server/index.html
http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html
http://e-docs.bea.com/wlevs/docs30/reference/index.html
http://e-docs.bea.com/wlevs/docs30/notes/index.html
http://e-docs.bea.com/wlevs/docs30/index.html
http://e-docs.bea.com/wlevs/docs30/visualizer_help/index.html

Samples for the Oracle CEP Application Developer

Oracle recommends that you run some or all of the examples before programming and
configuring your own event driven application.

The examples are distributed in two ways:

e Pre-packaged and compiled in their own domain so you can immediately run them after
you install the product.

e Separately in a Java source directory so you can see a typical development environment
setup.

The following three examples are provided in both their own domain and as Java source in this
release of Oracle CEP:

e HelloWorld—Example that shows the basic elements of an Oracle CEP application. See
Hello World Example for additional information.

The Helloworld domain is located in
WLEVS_HOME\samples\domains\hel loworld_domain, where WLEVS_HOME refers to the
top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The HelloWorld Java source code is located in
WLEVS_HOME\samples\source\applications\helloworld.

e ForeignExchange (FX)—Example that includes multiple adapters, streams, and complex
event processor with a variety of EPL rules, all packaged in the same Oracle CEP
application. See Foreign Exchange (FX) Example for additional information.

The ForeignExchange domain is located in WLEVS_HOME\samples\domains\fx_domain,
where WLEVS_HOME refers to the top-level Oracle CEP directory, such as
c:\beahome\wlevs30.

The ForeignExchange Java source code is located in
WLEVS_HOME\samples\source\applications\fx.

e Signal Generation—Example that receives simulated market data and verifies if the price
of a security has fluctuated more than two percent, and then detects if there is a trend
occurring by keeping track of successive stock prices for a particular symbol.See Signal
Generation Example for additional information.

The Signal Generation domain is located in
WLEVS_HOME\samples\domains\signalgeneration_domain, where WLEVS_HOME refers
to the top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The Signal Generation Java source code is located in
WLEVS_HOME\samples\source\applications\signalgeneration.

Oracle Complex Event Processing Getting Started Guide 1-3

http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#helloworld
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#fx
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading

Introduction and Roadmap

1-4 Oracle Complex Event Processing Getting Started Guide

CHAPTERa

Overview of Oracle Complex Event
Processing

This section contains information on the following subjects:

“Introduction to Oracle Complex Event Processing” on page 2-1
“Use Cases” on page 2-4

“Summary of Oracle CEP Features” on page 2-5

“Supported Configurations” on page 2-6

“Next Steps” on page 2-7

Introduction to Oracle Complex Event Processing

Oracle Complex Event Processing, or Oracle CEP for short, is a low latency, Java based
middleware framework for event driven applications. It is a light weight application server which
connects to high volume data feeds and has a complex event processing engine (CEP) to match
events based on user defined rules.

Oracle CEP has the capability of deploying user Java code (POJOs) which contain the business
logic. Running the business logic within Oracle CEP provides a highly tuned framework for time
and event driven applications.

Conceptual Overview of Oracle CEP

The following graphic provides a high level view of an event-driven system:

Oracle Complex Event Processing Getting Started Guide 2-1

Overview of Oracle Complex Event Processing

. - Currency cross rate calculation
- Detection of clustered stock movement
- Best-effort stock trading
- Climate control (e.g. temperature drops
across several locations)

B

Reuters oomberg

queries

[
o=

LI AHARRRARRAR ‘
data feeds Q o
I
O console
O
O
ordinary events notable events
N O-OOOOO = O —»
— =
i @, ==
devices O == event subscribers
@, S
S O Real-Time
@ Event-Driveh Application
@)
Q back-end
sensors

analytic
engines

An event-driven system is generally comprised of several event sources, the real-time
event-driven (Oracle CEP) applications, and event sinks. The event sources generate streams of

ordinary event data. The Oracle CEP applications listen to the event streams, process these
events, and generate notable events. Event sinks receive the notable events.

Event sources, event-driven applications, and event sinks are de-coupled from each other; one
can add or remove any of these components without causing changes to the other components.

This is an attribute of event driven architectures.

2-2 Oracle Complex Event Processing Getting Started Guide

Introduction to Oracle Complex Event Processing

Event-driven applications are rule-driven. These rules, or queries, which are persisted using some
data store, are used for processing the inbound stream of events, and generating the outbound
stream of events. Generally, the number of outbound events is much lower than that of the
inbound events.

Oracle CEP is a middleware for the development of event-driven applications. An Oracle CEP
application is essentially an event-driven application.

Next, consider the application itself, which is hosted by the Oracle CEP infrastructure, a
light-weight container. It can be described by the following diagram:

=

An Oracle CEP application typically comprises of four main component types. Adapters interface
directly to the inbound event sources. Adapters understand the inbound protocol, and are
responsible for converting the event data into a normalized data that can be queried by a processor
(i.e. event processing agent, or processor). Adapters forward the normalized event data into
Streams. Streams are event processing endpoints. Among other things, streams are responsible
for queuing event data until the event processing agent can act upon it. The event processing agent
removes the event data from the stream, processes it, and may generate new events to an output
stream. The user code registers to listen to the output stream, and is triggered by the insertion of
a new event in the output stream. The user code is generally just a plain-old-Java-object (POJO).
The user application makes use of a set of external services, such as JMS, WS, and file writers,
to forward on the generated events to external event sinks.

Event Processing Networks

Adapters, streams, processors, and business logic POJOs can be connected arbitrarily to each
other, forming event processing networks (EPN). Examples of topologies of EPNSs are:

e Adapter > Stream > Business Logic POJO

Oracle Complex Event Processing Getting Started Guide 2-3

Overview of Oracle Complex Event Processing

Scenario: no processing is needed, aside adaptation from proprietary protocol to some
normalized model.

e Adapter > Stream > Processor > Stream > Business Logic POJO

Scenario: straight through processing to user code.

e Adapter > Stream > Processor > Stream > Business Logic POJO > Stream > Processor >
Stream-> Business Logic POJO

Scenario: two layers of event processing, the first processor creates causality between
events, and the second processor aggregates events into complex events.

EPNs have two important attributes.

First, event processing networks can be used to create hierarchy of processing agents, and thus
achieve very complex processing of events. Each layer of the EPN aggregates events of its layer
into complex events that become simple events in the layer above it.

A second attribute of event processing networks is that it helps with integrability, that is, the
quality of having separately developed components work correctly together. For example, one
can add user code and reference to external services at several places in the network.

Use Cases

The use cases for Oracle CEP span a variety of businesses:

e Financial: Algorithmic Trading

Automate stock trading based on market movement. Sample query: if, within any 20
second window, StockB rises by more than 2% and StockA does not, then automatically
buy StockA.

e Transportation: Security and Fraud Detection

Discover fraudulent activity by detecting patterns among events. Sample query: if a single
ID card is used twice in less than 5 seconds to gain access to a city’s subway system, alert
security for piggybacking.

e Energy and Telecommunications: Alarm Correlation

Reduce false positive alarms. Sample query: When 15 alarms are received within any 5
second window, but less than 5 similar alarms detected within 30 seconds, then do nothing.

e Health Care: Patient Monitoring

2-4 Oracle Complex Event Processing Getting Started Guide

Summary of Oracle CEP Features

Monitor the vital signs of a patient and perform some task if a particular event happens.
Sample query: When a change in medication is followed by a rise in blood pressure within
20% of maximum allowable for this patient within any 10 second window, alert nearest
nurse.

Summary of Oracle CEP Features

The following list summarizes the main features of Oracle CEP:

New in Version 3.0. Event Caching

New in Version 3.0. Event Record and Playback

New in Version 3.0. Built-in HTTP Publish-Subscribe Adapters
New in Version 3.0. Built-in JMS Adapters

New in Version 3.0. Visualizer Administration Console

New in Version 3.0. Clustering

An application server that supports deployment of Plain Old Java applications (POJOs), or
Spring applications, for handling large volumes of streaming data with low latency
requirements.

Oracle CEP applications are developed and deployed as event driven applications, that is, a
set of custom Spring tags is used to define the event processing network in the EPN
assembly file, which extends the standard Spring context file, of your application.

The application server contains a set of real time services that include a complex event
processor (CEP), adapters, and streams. The server is highly tuned for high message
throughput and low latency and deterministic behavior.

The complex event processor is a high performance, continuous query engine for
processing high volumes of streaming data. It has full support for filtering, correlation, and
aggregation of streaming data from one or more streams.

The Event Processing Language (EPL), a SQL-like language that allows event data from
streams to be declaratively filtered, correlated, aggregated, and merged, with the ability to
insert results into other streams for further downstream processing. You define the EPL
rules either in an XML file that configures the complex event processor or
programmatically using APIs.

Oracle Complex Event Processing Getting Started Guide 2-5

Overview of Oracle Complex Event Processing

e An Adapter SDK that provides all the tools you need to create adapters that listen to

incoming data feeds.

A set of product examples that show both a simple Hello World scenario to get you started
and more complex foreign exchange and algorithmic trading scenarios to showcase
additional features of Oracle CEP.

A load generator utility that simulates a data feed, useful for testing your application
without needing to connect to a live data feed.

A monitoring service that includes pre-built instrumentation for measuring throughput and
latency at the component level.

A static and dynamic configuration framework. Static configuration is performed using
XML files; dynamic configuration is performed by accessing configuration and runtime
MBeans using JMX and with the command-line utility wlevs._Admin.

Oracle CEP is built on the Oracle microServices Architecture (mSA) which uses an
OSGi-based framework to manage services provided by modules or feature sets. Oracle
mSA provides the following services:

— Jetty, an HTTP container for running servlets.

— javax.sql .DataSource implementation and thin JDBC drivers for accessing a
relational database.

— Logging and debugging.

— Authentication and authorization security.

Supported Configurations

For information on supported configurations, see Oracle Complex Event Processing 3.0 in
Supported Configurations: WebLogic.

Oracle CEP Development Environment for Eclipse

2-6

Oracle provides an IDE targeted specifically to programmers that want to develop Oracle CEP
applications. Oracle CEP Development Environment for Eclipse is a set of plugins for the Eclipse
IDE designed to help develop, deploy, and debug applications for Oracle CEP 3.0.

The key features of this IDE are as follows:

Oracle Complex Event Processing Getting Started Guide

../../../platform/suppconfigs/weblogic/wlevs20.html

Next Steps

Project creation wizards and templates to quickly get started building event driven
applications.

e Advanced editors for source files including Java and XML files common to Oracle CEP
applications.

Integrated server management to seamlessly start, stop, and deploy to Oracle CEP
instances all within the IDE.

e Integrated debugging.

e Event Processing Network (EPN) visual design views for orienting and navigating in event
processing applications.

Although it is not required or assumed that you are using this IDE, Oracle recommends that you
give itatry. For details, see Oracle CEP Development Environment for Eclipse.

Next Steps

e Install Oracle CEP 3.0. Chapter 4, “Installing Oracle Complex Event Processing.”

e Run the examples from their respective domains. See:
— “Running the HelloWorld Example from the helloworld Domain” on page 3-7
— “Running the Foreign Exchange Example” on page 3-20
— “Running the Signal Generation Example” on page 3-32

See “Overview of the Samples Provided in the Distribution Kit” on page 3-1 for overview
information.

e Understand how the sample applications have been programmed by viewing the source and
configuration files and then building them from their respective source directories. See:

— “Building and Deploying the HelloWorld Example from the Source Directory” on
page 3-8

— “Building and Deploying the Foreign Exchange Example from the Source Directory”
on page 3-21

— “Building and Deploying the Signal Generation Example from the Source Directory”
on page 3-33

e Create your own Oracle CEP domain. See Creating an Oracle CEP Domain.

Oracle Complex Event Processing Getting Started Guide 2-1

http://e-docs.bea.com/wlevs/docs30/config_server/domain.html
https://dev2devclub.bea.com/updates/wlevs-tools/3.0/

Overview of Oracle Complex Event Processing

e Create a new Oracle CEP application and deploy it to your new domain. See Creating
Oracle CEP Applications for a description of the programming model, details about the
various components that make up an application, and how they all fit together.

2-8 Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/create_apps/index.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html

CHAPTERa

Oracle Complex Event Processing
Examples

This section contains information on the following subjects:

“Overview of the Samples Provided in the Distribution Kit” on page 3-1
“Setting Your Development Environment” on page 3-3

“HelloWorld Example” on page 3-6

“Foreign Exchange (FX) Example” on page 3-19

“Signal Generation Example” on page 3-31

Overview of the Samples Provided in the Distribution Kit

Oracle Complex Event Processing, or Oracle CEP for short, includes three complete examples:
HelloWorld, which is a basic skeleton of a a typical Oracle CEP application, a Foreign Exchange
(FX) example that includes a multiple components, and a Signal Generation example that
simulates market trading and trend detection.

These examples are provided in two forms, as follows:

e Out-of-the-box sample domains pre-configured to deploy an assembled application. For

clarity, each example is deployed to its own domain. To deploy the application you simply
start a server in the domain.

The sample helloworld domain is located in
WLEVS_HOME\samples\domains\hel lowor 1d_domain, where WLEVS_HOME refers to the

Oracle Complex Event Processing Getting Started Guide 3-1

Oracle Complex Event Processing Examples

3-2

main Oracle CEP installation directory, such as d:\beahome2\wlevs30. See “Running the
HelloWorld Example from the helloworld Domain” on page 3-7 for details.

The sample foreign exchange domain is located in
WLEVS_HOME\samples\domains\fx_domain. See “Running the Foreign Exchange
Example” on page 3-20 for details.

The sample signal generation domain is located in
WLEVS_HOME\samples\domains\signalgeneration_domain. See “Running the Signal
Generation Example” on page 3-32 for details.

e The Java and configuration XML source for each sample is provided in a separate source
directory that describes a sample development environment.

The HelloWorld source directory is located in
WLEVS_HOME\samples\source\applications\hel loworld, where WLEVS_HOME refers
to the main Oracle CEP installation directory, such as d:\beahome2\wlevs30. See
“Implementation of the HelloWorld Example” on page 3-10 for details.

The Foreign Exchange source directory is located in
WLEVS_HOME\samples\source\applications\fx. See “Implementation of the FX
Example” on page 3-23 for details.

The Signal Generation source directory is located in
WLEVS_HOME\samples\source\applications\signalgeneration. See “” on
page 3-34 for details.

The samples use Ant as their development tool; for details about Ant and installing it on your
computer, see the Apache Ant Project.

Using Visualizer With the Examples

Oracle CEP Visualizer, or Visualizer for short, is a Web 2.0 application that consumes data from
Oracle CEP, displays it in a useful and intuitive way to system administrators and operators, and,
for specificied tasks, accepts data that is then passed back to Oracle CEP so as to change it
configuration.

Visualizer is itself an Oracle CEP application and is automatically deployed in each server
instance. To use it with the examples, be sure you have started the server (instructions provided
for each examples below) and then invoke the following URL in your browser:

http://host:9002

where host refers to the name of the computer hosting Oracle CEP; if it is the same as the
computer on which the browser is running you can use localhost.

Oracle Complex Event Processing Getting Started Guide

http://ant.apache.org/

Setting Your Development Environment

Security is disabled for the HelloWorld application, so you can click Logon at the login screen
without entering a username and password. For the FX and signal generation examples, however,
security is enabled, so use the following to logon:

User Id; wlevs
Password: wlevs

For more information about Visualizer, see Overview of Visualizer.

Increasing the Performance of the Examples

To increase the throughput and latency when running the examples, and Oracle CEP applications
in general, Oracle recommends the following:

e Use the JRockit JDK included in Oracle JRockit Real Time 3.0 and enable the
deterministic garbage collector by passing the -dgc parameter to the command that starts
the Oracle CEP instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the examples.
e When running Oracle CEP on a computer with a larger amount of memory, you should set
the load generator and server heap sizes appropriately for the size of the computer. On

computers with sufficient memory, Oracle recommend a heap size of 1 GB for the server
and between 512MB - 1GB for the load generator.

Setting Your Development Environment

You must set your development environment before you can start Oracle CEP instances and run
the examples. In particular, you must set the PATH and JAVA_HOME environment variables so
that you are using the correct version of the JRockit JDK (R27.6).

There are two ways in which the R27.6 version of JRockit might have been installed on your
computer:

e As part of the Oracle JRockit Real Time 3.0 installation. This version of the JRockit JDK
includes the deterministic garbage collector.

e As part of the Oracle CEP 3.0 installation. This version of the JRockit JDK does not
include the deterministic garbage collector, and is provided for testing purposes only.

Oracle Complex Event Processing Getting Started Guide 3-3

http://e-docs.bea.com/wlevs/docs30/visualizer_help/using.html
http://edocs.bea.com/wlrt/docs30/index.html
http://edocs.bea.com/wlrt/docs30/index.html

Oracle Complex Event Processing Examples

3-4

Although not required, Oracle recommends that you run Oracle CEP using the JRockit JDK
version included in Oracle JRockit Real Time 3.0 for best results; however, the following
procedures describe how to set your environment for either case.

For clarity, it is assumed in the following procedures that you installed Oracle JRockit Real Time
and Oracle CEP in different home directories; however, it is also possible to install both products
in the same home directory. If you do this, both products will install JRockit, although in different
directories:

e Oracle CEP installs its version of JRockit in the jrockit-R27.6.0-23-1.5.0_15
directory.

e Oracle JRockit Real Time, installs its version of JRockit in the
jrockit-realtime20_150_11 directory.

Windows

1. Update your PATH environment variable to include the bin directory of the JRockit JDK.
Also, be sure that your PATH environment variable includes the bin directory of your Ant
installation.

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0:

If you installed Oracle JRockit Real Time 3.0 in the d:\beahome_wlrt directory and Ant
is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set
PATH=d:\beahome_wlrt\jrockit-realtime20_150_11\bin;d:\ant\bin;%PATH%

If using the JRockit JDK installed with Oracle CEP 3.0:

If you installed Oracle CEP 3.0 in the d:\beahome_wlevs directory and Ant is installed in
the d:\ant directory, set your PATH environment variable as shown:

prompt> set
PATH=d:\beahome_wlevs\jrockit-R27.6.0-23-1_.5.0_15\bin;d:\ant\bin;%PATH%

2. Ensure that the JAVA_HOME variable in the server start script points to the correct JRockit JDK.
If it does not, edit the script.

The server start script (called startwlevs.cmd) is located in the main domain directory.
For example, the HelloWorld domain is located in

WLEVS_HOME\samples\domains\hel loworld_domain, where WLEVS_HOME refers to the
main Oracle CEP installation directory, such as d:\beahome_wlevs\wlevs30.

Oracle Complex Event Processing Getting Started Guide

Setting Your Development Environment

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0, the set
command should be as follows:

set JAVA HOME=d:\beahome_wlrt\jrockit-realtime20_150 11

If using the JRockit JDK installed with Oracle CEP 3.0, the set command should be
as follows:

set JAVA HOME=d:\beahome_wlevs\jrockit-R27.6.0-23-1.5.0_15

3. Set the JAVA_HOME variable in your own development environment to point to the JRockit
JDK.

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0:

prompt> set JAVA HOME=d:\beahome wlrt\jrockit-realtime20_ 150 11

If using the JRockit JDK installed with Oracle CEP 3.0:

prompt> set JAVA_HOME=d:\beahome_wlevs\jrockit-R27.6.0-23-1.5.0_15

To make it easier to reset your development environment after logging out of a session, you can
create a command file, such as setEnv.cmd, that contains these set commands.

You can also set these environment variables permanently on your Windows computer by
invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the
Environment Variables button. You can set the environment variables for the current user or for
the entire system.

UNIX

1. Update your PATH environment variable to include the bin directory of the JRockit JDK.
Also, be sure that your PATH environment variable includes the bin directory of your Ant
installation.

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0:

If you installed Oracle JRockit Real Time in the /beahome_wl rt directory and Ant is
installed in the Zant directory, set your PATH environment variable as shown:

prompt> PATH=/beahome_wlrt/jrockit-realtime20_ 150 11/bin:/ant/bin:$PATH
If using the JRockit JDK installed with Oracle CEP 3.0:

If you installed Oracle CEP in the /beahome_wlevs directory and Ant is installed in the
/ant directory, set your PATH environment variable as shown:

Oracle Complex Event Processing Getting Started Guide 3-5

Oracle Complex Event Processing Examples

prompt>
PATH=/beahome_wlevs/jrockit-R27.6.0-23-1.5.0_15/bin:/ant/bin:$PATH

Ensure that the JAVA_HOME variable in the server start script points to the correct JRockit JDK.
If it does not, edit the script.

The server start script (called startwlevs.sh) is located in the main domain directory.
For example, the HelloWorld domain is located in

WLEVS_HOME/samples/domains/hel loworld_domain, where WLEVS_HOME refers to the
main Oracle CEP installation directory, such as /beahome_wlevs/wlevs30.

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0, the JAVA_HOME
variable should be set as follows:

JAVA_HOME=/beahome_wlrt/jrockit-realtime20_150 11

If using the JRockit JDK installed with Oracle CEP 3.0, the JAVA_HOME variable
should be set as follows:

JAVA_HOME=/beahome_wlevs/jrockit-R27.6.0-23-1.5.0_15

. Set the JAVA_HOME variable in your development environment to point to the JRockit JDK.

If using the JRockit JDK installed with Oracle JRockit Real Time 3.0:
prompt> JAVA_HOME=/beahome_wlrt/jrockit-realtime20_150 11

If using the JRockit JDK installed with Oracle CEP 3.0:

prompt> JAVA_HOME=/beahome_wlevs/jrockit-R27.6.0-23-1.5.0_15

To make it easier to reset your environment after logging out of a session, you can create a
command file, such as setEnv.sh, that contains these commands.

HelloWorld Example

3-6

The first example that shows how to create an Oracle CEP application is the ubiquitous
HelloWorld. The following diagram shows the components that make up the application and how
they fit together, which together make up the HelloWorld event processing network:

Oracle Complex Event Processing Getting Started Guide

HelloWorld Example

Figure 3-1 The HelloWorld Event Processing Network

helloworldInstream helloworldOutstream

helloworldAdapter helloworldProcessor helloworldBean

The example includes the following components:

e helloworldAdapter—Component that simply generates Hello World messages every
second. In a real-world scenario, this component would typically read a stream of data
from a source, such as a data feed from a financial institution, and convert it into a stream
of events that the complex event processor can understand. The HelloWorld application
also includes a HelloWorldAdapterFactory that creates instances of HelloWorldAdapter.

e helloworldInstream—Component that streams the events generated by the adapter (in
this case Hello World messages) to the complex event processor.

e helloworldProcessor—Component that simply forwards the messages from the
hel lowor IdAdapter component to the POJO that contains the business logic. Ina
real-world scenario, this component would typically execute additional and possibly much
more complex processing of the events from the stream, such as selecting a subset of
events based on a property value, grouping events, and so on.

e helloworldOutstream—Component that streams the events processed by the complex
event processor to the POJO that contains the user-defined business logic.

e helloworldBean—PQOJO component that simply prints out a message every time it
receives a batch of messages from the processor via the output stream. In a real-world
scenario, this component would contain the business logic of the application, such as
running reports on the set of events from the processor, sending appropriate emails or
alerts, and so on.

Running the HelloWorld Example from the helloworld
Domain

To run the HelloWorld application that is pre-deployed to the hel lowor Id domain, you simply
start an instance of Oracle CEP, as described in the following steps:

Oracle Complex Event Processing Getting Started Guide 3-7

Oracle Complex Event Processing Examples

3-8

1. Open a command window and change to the helloworld domain directory, located in
WLEVS_HOME\samples\domains\hel lowor Id_domain directory, where WLEVS_HOME
refers to the main Oracle CEP installation directory, such as d:\beahome2\wlevs30.

prompt> cd d:\beahome2\wlevs30\samples\domains\helloworld_domain

2. Ensure the environment is set correctly in the server startup script; see “Setting Your
Development Environment” on page 3-3.

3. Start Oracle CEP by running the startwlevs.cmd (Windows) or startwlevs.sh (UNIX)
command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

After server status messages scroll by, you should see the following message printed to the output
about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

Building and Deploying the HelloWorld Example from the
Source Directory

The HelloWorld sample source directory contains the Java source, along with other required
resources such as configuration XML files, that make up the HelloWorld application. The
build.xml Ant file contains targets to build and deploy the application to the helloworld domain;
see “Description of the Ant Targets to Build Hello World” on page 3-9 for details.

To build and deploy the HelloWorld application, follow these steps:

1. Open a new command window and change to the HelloWorld source directory, located in
WLEVS_HOME\samples\source\applications\hel loworld, where WLEVS_HOME refers
to the main Oracle CEP installation directory, such as d:\beahome2\wlevs30.

prompt> cd d:\beahome2\wlevs30\samples\source\applications\helloworld

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Execute the all Ant target to compile and create the application JAR file:

Oracle Complex Event Processing Getting Started Guide

HelloWorld Example

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:
prompt> ant deploy
WARNING: This target overwrites the existing helloworld application JAR file in the
domain directory.
5. If Oracle CEP for the helloworld domain is not running, you must restart it using the start
script:

prompt> cd d:\beahome2\wlevs30\samples\domains\helloworld_domain
prompt> stopwlevs.cmd
prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc
For details, see Stopping and Starting the Server.

After server status messages scroll by, you should see the following message printed to the output
about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is running
correctly.

Description of the Ant Targets to Build Hello World

The bui Id.xml file, located in the top level of the HelloWorld source directory, contains the
following targets to build and deploy the application:

e clean—This target removes the dist and output working directories under the current
directory.

e al1—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.helloworld_3.0.0.0.jar, and places the generated JAR file
into a dist directory below the current directory.

e deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility. See
Deployer Command-Line Reference for complete reference information about the
Deployer utility.

Oracle Complex Event Processing Getting Started Guide 3-9

http://e-docs.bea.com/wlevs/docs30/config_server/server.html#start_stop
http://e-docs.bea.com/wlevs/docs30/reference/deployer.html

Oracle Complex Event Processing Examples

3-10

Implementation of the HelloWorld Example

The implementation of the HelloWorld example generally follows the main steps for creating an
Oracle CEP application; refer to that section for a task-oriented procedure that describes the
typical development process.

The HelloWorld example, because it is relatively simple, does not use all the components and
configuration files described in the general procedure for creating an Oracle CEP application. All
the files of the example are located relative to the
WLEVS_HOME\samples\source\applications\helloworld directory, where WLEVS_HOME
refers to the main Oracle CEP installation directory such as c:\beahome\wlevs30. Oracle
recommends that you use this example directory setup in your own environment, although it is
obviously not required.

The files used by the HelloWorld example include:

e An EPN assembly file that describes each component in the application and how all the
components are connected together. The EPN assembly file extends the standard Spring
context file. The file also registers the event types used in the application. You are required
to include this XML file in your Oracle CEP application.

In the example, the file is called com.bea.wlevs.example.hel loworld-context.xml
and is located in the META-INF/spring directory.

For details, see “The HelloWorld EPN Assembly File” on page 3-12.

e Java source file for the hel lowor 1dAdapter component.

In the example, the the file is called Hel loWor 1dAdapter . java and is located in the
src/com/bea/wlevs/adapter/example/hel loworld directory.

For a detailed description of this file and how to program the adapter Java files in general,
see Programming the Adapter Class: Guidelines.

e Java source file that describes the Hel lowWor 1dEvent event type.

In the example, the file is called Hel loWorldEvent . java and is located in the
src/com/bea/wlevs/event/example/hel loworld directory.

For a detailed description of this file, as well as general information about programming
event types, see Creating Event Types.

e An XML file that configures the hel lowor IdProcessor, hel lowor ldAdapter, and
hellowor IdOutstream components. An important part of this file is the set of EPL rules
that select the set of events that the HelloWorld application processes. You also use the

Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/create_apps/overview.html#main_steps
http://e-docs.bea.com/wlevs/docs30/create_apps/overview.html#main_steps
http://e-docs.bea.com/wlevs/docs30/create_apps/adapters.html#program_adapter
http://e-docs.bea.com/wlevs/docs30/create_apps/overview.html#create_event_types

HelloWorld Example

XML configuration file to enabled monitoring. You are required to include a processor
configuration file in your Oracle CEP application, although the adapter and stream
configuration is optional.

In the example, the file is called config.xml and is located in the META- INF/wlevs
directory.

For details, see “The HelloWorld Component Configuration File” on page 3-14.

e An XSD Schema file that describes the XML file that configures the
helloworldProcessor and hel lowor ldAdapter components. This XSD file is
optional and only required if your application extends the default configuration Schema for
the components; the HelloWorld application extends the default adapter configuration.

In the example, the file is called helloworld.xsd and is located in the
src/main/resources/extension directory.

For details, see “The XSD File that Describes the Extended HelloWorld Component
Configuration” on page 3-16.

e A Java file that implements the hel lowor 1dBean component of the application, a POJO
that contains the business logic.

In the example, the file is called Hel loWorldBean . java and is located in the
src/com/bea/wlevs/example/hel loworld directory.

For details about this file, and programming the business logic POJO in general, see
Programming Business Logic: Guidelines.

o A MANIFEST . MF file that describes the contents of the OSGi bundle that will be deployed
to Oracle CEP.

In the example, the MANIFEST .MF file is located in the META- INF directory

See Assembling an Oracle CEP Application: Main Steps for information about creating
this file, as well as a description of creating the OSGi bundle that you deploy to Oracle
CEP.

The HellowWorld example uses a bui 1d.xml1 Ant file to compile, assemble, and deploy the OSGi
bundle; see “Building and Deploying the HelloWorld Example from the Source Directory” on
page 3-8 for a description of this bui 1d.xml file if you also use Ant in your development
environment.

Oracle Complex Event Processing Getting Started Guide 3-11

http://e-docs.bea.com/wlevs/docs30/create_apps/deploy.html#assemble
http://e-docs.bea.com/wlevs/docs30/create_apps/pojo.html#program_pojo

Oracle Complex Event Processing Examples

The HelloWorld EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing network by
declaring the components of the application and how they are all connected, or in other word,
which components listen to which other components. Oracle CEP provides a set of custom Spring
tags used to declare the network. You also use the EPN assembly file to register the event types
used by your application and its EPL rules.

You use the EPN assembly file in the typical way to define the application component beans in
the Spring application context; the application components beans are those implemented with
Java classes, such as adapters and the POJO that contains the business logic.

For full reference information about the custom Spring tags, see Oracle CEP Custom Spring Tags
Reference or the XSD Schema file that defines the tags.

The following example shows the EPN assembly file used in the HelloWorld sample application;
see the explanation after the example for details about the entries in bold.

<?xml version="1.0" encoding=""UTF-8"?>
<beans xmlIns="http://www.springframework.org/schema/beans"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:osgi="http://www.springframework.org/schema/osgi"
xmIns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemalLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/Zosgi
http://www._springframework.org/schemaZosgi/spring-osgi . xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs._xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="'HelloWorldEvent'>

<wlevs:class>com._bea.wlevs.event.example_helloworld.HelloWworldEvent</wlevs:cla
ss>
</wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class=""com.bea.wlevs.adapter.example._helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message' value="HelloWorld - the
currenttime is:"'/>
</wlevs:adapter>

<wlevs:processor id="helloworldProcessor" />

3-12 Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/reference/spring_tags.html
http://e-docs.bea.com/wlevs/docs30/reference/spring_tags.html
http://e-docs.bea.com/wlevs/docs30/reference/schemas.html#epn_assembly_xsd

HelloWorld Example

<wlevs:stream id="helloworldInstream" >
<wlevs:listener ref="helloworldProcessor'/>
<wlevs:source ref="helloworldAdapter"/>
</wlevs:stream>

<wlevs:stream id="helloworldOutstream” manageable=""true">
<wlevs:listener>
<bean class="com.bea.wlevs.example._helloworld._HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor'/>
</wlevs:stream>

</beans>

In the preceding example:

e The <wlevs:event-type-repository> entry registers the event types that are used
throughout the application; in the HelloWorld application, there is just a single event type:
HelloWor 1dEvent, implemented with the
com.bea.wlevs.event.example._helloworld.HelloWorldEvent class. Oracle CEP
automatically creates instances of this data type when needed. You can also reference this
data type in the EPL rules of the application.

e The <wlevs:adapter>, <wlevs:processor>, and <wlevs:stream> entries together
define the event processor network by declaring each component in the network; the
following bullets describe the configuration of each component.

e The <wlevs:adapter> tag defines the adapter component of the HelloWorld application:

<wlevs:adapter id="helloworldAdapter""
class=""com.bea.wlevs.adapter.example._helloworld.HelloWorldAdapter"
>

<wlevs:instance-property name="message" value="HelloWorld - the
currenttime is:'/>
</wlevs:adapter>

The id attribute specifies a unique identifier for this component; the id will be referenced
later by other components. The class attribute specifies the class that implements the
adapter; in this case it is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter

The <wlevs: instance-property> child tag passes an instance variable to adapter
instance; the name of the variable is message and the value is Hel loWorld - the
current time is: .

e The <wlevs:processor> tag defines the processor component of the application:

<wlevs:processor id="helloworldProcessor" />

Oracle Complex Event Processing Getting Started Guide 3-13

Oracle Complex Event Processing Examples

3-14

The id attribute functions the same as that of <wlevs:adapter>.

e The <wlevs:stream> tags defines the two stream components of the application:

<wlevs:stream id="helloworldInstream"” >
<wlevs:listener ref="helloworldProcessor'/>
<wlevs:source ref="helloworldAdapter"/>
</wlevs:stream>

<wlevs:stream id="helloworldOutstream’” manageable="true">
<wlevs:listener>
<bean class=""com.bea.wlevs.example._helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>
</wlevs:stream>

The id attribute for streams functions the same as that of <wlevs:adapter>. The
manageab le attribute enables monitoring of the stream; by default the manageability of
components is disabled.

The <wlevs:stream id="helloworldInstream"> tag uses the <wlevs: listener>
child tag to specify that the hel lowor IdProcessor listens to the stream, and the
<wlevs:source> child tag to specify that the stream gets its events from the
hellowor 1dAdapter component.

The <wlevs:stream id="helloworldOutstream'> tag also uses these listener and
source tags. One difference, however, is that it directly nests the definition of the business
logic POJO in the <wlevs: listener> tag rather than reference a unique identifier. In this
case, the nested tag is a standard Spring <bean> that specifies that the POJO is
implemented with the com.bea.wlevs.example.helloworld.Hel loWorldBean class.

The HelloWorld Component Configuration File

The HelloWorld application contains a single complex event processor, a single adapter, and a
single stream, all configured with the following XML file:

<?xml version="1.0" encoding=""UTF-8"?>

<helloworld:config
xmlns:helloworld="http://www.bea.com/ns/wlevs/example/helloworld">

<processor>

<name>hel lowor ldProcessor</name>
<rules>
<rule id="helloworldRule"><![CDATA[select * from HelloWorldEvent

retain 1 event]]></rule>

Oracle Complex Event Processing Getting Started Guide

HelloWorld Example

</rules>
</processor>

<adapter>

<name>hel lowor ldAdapter</name>

<message>HelloWorld - the current time is:</message>
</adapter>

<stream>
<name>hel lowor ldOutstream</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>
</stream>

</helloworld:config>

If your application contains multiple processors, adapters or streams, you can either declare them
all in a single configuration file, or create separate configuration files for each component; the
method you chose depends on which you find easier to manage.

For each component you configure, you must add the <name> child element to explicitly declare
the specific component to which you are referring. The value of the <name> element must
correspond to the component’s unique identifier of its declaration in the EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

<wlevs:processor id="helloworldProcessor" ...>

Then its corresponding XML configuration would be as follows:

<processor>
<name>hel lowor IdProcessor</name>

</processor>

The HelloWorld example uses a single configuration file for one processor with the name
helloworldProcessor, one adapter with the name hel lowor 1dAdapter, and one stream with
the name hel lowor IdOutstream. These names correspond with the declaration of the
components in the EPN assembly file.

Note: When you create the configuration file for the components of your application, you can
use the default configuration XSD Schema files, or create a custom one if you want to
add additional elements. In the HelloWorld application, the adapter uses a custom
configuration, and thus has its own XSD Schema file that describes the configuration file.

Oracle Complex Event Processing Getting Started Guide 3-15

Oracle Complex Event Processing Examples

3-16

Because the HelloWorld application uses an extended XSD schema when configuring its
components, the corresponding configuration XML file must identify the namespace for
this schema rather than the default schema. In the preceding example:

<helloworld:config
xmIns:helloworld="http://www._bea.com/ns/wlevs/example/helloworld">

See “The XSD File that Describes the Extended HelloWorld Component Configuration”
on page 3-16 for details.

The <processor> element configures the processor component. The most important part of the
processor configuration is the declaration of the set of Event Processing Language (EPL) rules
that this processor executes; these rules select the set of events that are eventually passed to the
application business object. Each rule is declared with a <rule> element using an XML
V[CDATA[. . .]] section; all rules are grouped together with a single <rules> element. You can
define as many rules as you want for a particular processor.

The HelloWorld application has just a single very simple rule:

select * from HelloWorldEvent retain 1 event

This rule selects all events of type Hel loWor 1dEvent, but retains only one event at a time in its
window. For additional information and examples about using EPL, see the EPL Reference
Guide.

The <adapter> element configures the adapter component. The most important thing to note
about the hel loworldAdapter is that it has a custom element, <message>. The Java
implementation of the adapter receives this information from Oracle CEP and then uses it in its
code.

The <stream> element configures the hel lowor 1dOutstream component. The <max-size>
and <max-threads> elements specify the maximum size of the stream and the maximum number
of threads assigned to the stream, respectively.

The XSD File that Describes the Extended HelloWorld
Component Configuration

Oracle CEP provides a default XSD Schema that describes the XML file which configures the
components (processor, adapters, streams) of your application. If this Schema is adequate for
your application, then you do not need to create an XSD file of your own.

Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html
http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html
http://e-docs.bea.com/wlevs/docs30/reference/schemas.html#component_xsd

HelloWorld Example

However, sometimes it is helpful to extend the default component configuration with custom
configuration information for your specific application; for example, the HelloWorld adds a
<message> element that specifies the text of the message created by the hel lowor 1dAdapter
component, as shown in “The HelloWorld Component Configuration File” on page 3-14.

If you want to extend the default configuration of the components, then you must also provide
your own XSD schema file that describes the format of the new configuration files. This XSD
schema file must describe the extended configurations, as well as the overall format of the
configuration file. The HelloWorld application extends the default adapter configuration, but
uses the default processor and stream configurations. The XSD file is shown below; see the
explanation after the schema for a description of the sections in bold:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.bea.com/ns/wlevs/example/helloworld"
xmIns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmIns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmiIns:wlevs="http://www.bea.com/ns/wlevs/config/application”

targetNamespace=""http://www.bea.com/ns/wlevs/example/helloworld"

elementFormDefault="unqualified" attributeFormDefault="unqualified"”
Jxb:extensionBindingPrefixes="xjc" jxb:version="1.0">

<xs:annotation>
<xs:appinfo>
<jxb:schemaBindings>
<jxb:package name='‘com.bea.adapter.wlevs.example_.helloworld"/>
</jxb:schemaBindings>
</xs:appinfo>
</xs:annotation>

<xs:import namespace="http://www.bea.com/ns/wlevs/config/application
schemaLocation="wlevs_application_config.xsd"/>

<xs:element name="config">
<xs:complexType>
<xs:choice maxOccurs="unbounded'>
<xs:element name="adapter" type="HelloWorldAdapterConfig'/>
<xs:element name=""processor" type="wlevs:DefaultProcessorConfig"/>
<xs:element name="'stream" type="wlevs:DefaultStreamConfig" />
</xs:choice>
</xs:complexType>
</xs:element>

<xs:complexType name="HelloWorldAdapterConfig">
<xs:complexContent>

Oracle Complex Event Processing Getting Started Guide 3-17

Oracle Complex Event Processing Examples

<xs:extension base="wlevs:AdapterConfig">
<Xs:sequence>
<xs:element name="message' type="'xs:string'/>
</Xs:sequence>
</Xxs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

The important things to note about the preceding XSD file are:

e The <xs:schema targetNamespace. .> entry defines the target namespace; the name
can be anything you want.

e The <jxb:schemaBindings> entry specifies that Oracle CEP should use JAXB to
generate a Java class represents the XML contents of the configuration file; the server then
passes this Java class to the adapter. The <jxb:package> child specifies the package name
of this Java class, in this case com.bea.adapter.wlevs.example._helloworld.

e The <xs: import> entry specifies the Oracle CEP XSD file to import; this file defines the
default configuration file and the schema types defined in this imported XSD can then be
references in the custom XSD.

e The <xs:element name="config'> lays out the structure of the custom configuration
file. In particular, it says that the root element is <config> and it has three possible child
elements, <adapter>, <processor>, and <stream>.

The schema type of the <adapter> element is Hel loWor 1dAdapterConfig, defined later
in this custom XSD file. The schema types of the <processor> and <stream> elements
are the default configuration types for processors and streams:

wlevs:Defaul tProcessorConfig and wlevs:Defaul tStreamConfig, respectively.
These types are defined in the imported XSD file wlevs_application_config.xsd. In
other words, only the adapter configuration is being changed in the custom XSD file.

e The <xs:complexType name="Hel loWorldAdapterConfig"> entry defines what the
HelloWorldAdapterConfig schema type looks like. In particular, it uses as a base the
default adapter configuration, wlevs:AdapterConfig, defined in the imported XSD file
wlevs_application_config.xsd., but then adds a new element called <message> of
data type string.

For additional details about extending the configuration of an adapter, see Extending the
Configuration of an Adapter.

3-18 Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/create_apps/adapters.html#extend_config
http://e-docs.bea.com/wlevs/docs30/create_apps/adapters.html#extend_config

Foreign Exchange (FX) Example

Foreign Exchange (FX) Example

The foreign exchange example, called FX for simplicity, is a more complex example than the
HelloWorld one because it includes multiple processors that handle information from multiple
data feeds. In the example, the data feeds are simulated using the Oracle CEP load generator
utility. The following diagram describes the FX event processing network:

Figure 3-2 FX Event Processing Network

<:> fxMarketAmerQut

fxMarketAmer preprocessorAmer

spreaderin
fxMarketAsiaOut spreaderOut G
xMarketAsiaOu -~ -

| \
—
fxMarketAsia preprocessorAsia/ spreader outputBean

fxMarketEuroQut
> Legend

fxMarketEuro preprocessorEuro D Adapter

o

—p» Stream

I:l Processor

Business Object
(P0JO)

In the scenario, three data feeds, simulated using the load generator, send a constant pair of values
from different parts of the world; the value pairs consist of a currency pair, such as USDEUR for
US dollar - European euro, and an exchange rate between the two currencies. The fxMarketXXx
adapters receive the data from the feeds, convert them into events, and pass them to the
preprocessorXxX processors. Each processor performs an initial stale check to ensure that no
event is more than ten seconds old and then a boundary check to ensure that the exchange rate
between the two currencies is within a current boundary. The server also only selects a specific

Oracle Complex Event Processing Getting Started Guide 3-19

Oracle Complex Event Processing Examples

3-20

currency pair from a particular stream; for example, the server selects USDEUR from the
simulated American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a different
processor, called spreader, joins all events across all providers, calculates the mid-point
between the maximum and minimum rate, and then applies a trader-specified spread. Finally, the
processor forwards the rate to the POJO that contains the business code; in this example, the
POJO simply publishes the rate to clients.

The Oracle CEP monitor is configured to watch if the event latency in the last step exceeds some
threshold, such as no updated rates in a 30 second time-span, and if there is too much variance
between two consecutive rates for the same currency pair. Finally, the last rate of each currency
pair is forwarded to the dashboard.

Running the Foreign Exchange Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful
computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB
of RAM.

To run the Foreign Exchange (FX) application that is pre-deployed to the fx_domain domain, you
simply start an instance of Oracle CEP, as described in the following steps:

1. Open a command window and change to the fx domain directory, located in
WLEVS_HOME\samples\domains\fx_domain directory, where WLEVS_HOME refers to the
main Oracle CEP installation directory, such as d:\beahome2\wlevs30.

prompt> cd d:\beahome2\wlevs30\samples\domains\fx_domain

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Start Oracle CEP by running the startwlevs.cmd (Windows) or startwlevs.sh (UNIX)
command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

The FX application is now ready to receive data from the data feeds.

4. To simulate an American data feed, open a new command window and set your environment
as described in “Setting Your Development Environment” on page 3-3.

Oracle Complex Event Processing Getting Started Guide

Foreign Exchange (FX) Example

5. Change to the WLEVS_HOME\uti Is\load-generator directory, where WLEVS_HOME refers
to the main Oracle CEP installation directory, such as d:\beahome2\wlevs30.

6. Run the load generator using the fxAmer .prop properties file:
prompt> runloadgen.cmd fxAmer.prop

7. Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties file:
prompt> runloadgen.cmd fxAsia.prop

8. Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop properties file:

prompt> runloadgen.cmd fxEuro.prop

After the server status messages scroll by in the command window from which you started the
server, and the three load generators start, you should see messages similar to the following being
printed to the server command window:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

These messages indicate that the Foreign Exchange example is running correctly. The output
shows the cross rates of US dollars to Japanese yen and US dollars to UK pounds sterling.

Building and Deploying the Foreign Exchange Example from
the Source Directory

The Foreign Exchange (FX) sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the FX application. The

bui ld.xml Ant file contains targets to build and deploy the application to the fx_domain domain,
as described in “Description of the Ant Targets to Build FX” on page 3-22.

To build and deploy the FX application, follow these steps:

1. Open a new command window and change to the FX source directory, located in
WLEVS_HOME\samples\source\applications\fx, where WLEVS_HOME refers to the main
Oracle CEP installation directory, such as d:\beahome2\wlevs30.

prompt> cd d:\beahome2\wlevs30\samples\source\applications\fx

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Execute the all Ant target to compile and create the application JAR file:

Oracle Complex Event Processing Getting Started Guide 3-21

Oracle Complex Event Processing Examples

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:
prompt> ant deploy
WARNING: This target overwrites the existing helloworld application JAR file in the
domain directory.
5. If Oracle CEP for the fx_domain domain is running, you must restart it using the start script
to deploy this new FX JAR file:

prompt> cd d:\beahome2\wlevs30\samples\domains\fx_domain
prompt> stopwlevs.cmd
prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc
For details, see Stopping and Starting the Server.
6. If the load generators required by the FX application are not running, start them as described
in “Running the Foreign Exchange Example” on page 3-20.
After server status messages scroll by, you should see the following message printed to the
output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running correctly.

Description of the Ant Targets to Build FX
The bui Id.xml file, located in the top-level directory of the FX source, contains the following
targets to build and deploy the application:

e clean—This target removes the dist and output working directories under the current
directory.

e all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.fx_3.0.0.0.jar, and places the generated JAR file into a
dist directory below the current directory.

3-22 Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/config_server/server.html#start_stop

Foreign Exchange (FX) Example

e deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility. See
Deployer Command-Line Reference for complete reference information about the
Deployer utility.

Implementation of the FX Example

The implementation of the foreign exchange (FX) example generally follows the main steps for
creating an Oracle CEP application; refer to that section for a procedure that describes the typical
development process.

All the files of the FX example are located relative to the
WLEVS_HOME\samples\source\appl ications\fx directory, where WLEVS_HOME refers to the
main Oracle CEP installation directory such as c:\beahome\wlevs30. Oracle recommends that
you use this example directory setup in your own environment, although it is obviously not
required.

The files used by the FX example include:

e A EPN assembly file that describes each component in the application and how all the
components are connected together. You are required to include this XML file in your
Oracle CEP application.

In the example, the file is called com.bea.wlevs.example.fx-context.xml and is
located in the META-INF/spring directory.

For details, see “The FX EPN Assembly File” on page 3-24.

e Two XML files that configure the processor components of the application.

The first XML file configures the preprocessorAmer, preprocessorAsia, and
preprocessorEuro components, all in a single file. This XML file includes the EPL
rules that select particular currency pairs from particular simulated market feeds and
executes the boundary conditions described in the example overview. In the example, this
file is called preprocessors.xml and is located in the META- INF/wlevs directory.

The second XML file configures the spreader processor. This component joins together
all the events that were selected by the pre-processors, calculates an internal price for the
particular currency pair, and then calculates the cross rate. This file is called
spreader.xml and is located in the META-INF/wlevs directory.

For details, see “The FX Processor Configuration Files” on page 3-28.

e A Java file that implements the OutputBean component of the application, a POJO that
contains the business logic. This POJO prints out to the screen the events that it receives,

Oracle Complex Event Processing Getting Started Guide 3-23

http://e-docs.bea.com/wlevs/docs30/create_apps/overview.html#main_steps
http://e-docs.bea.com/wlevs/docs30/create_apps/overview.html#main_steps
http://e-docs.bea.com/wlevs/docs30/reference/deployer.html

Oracle Complex Event Processing Examples

3-24

programmed in the onEvent method. The POJO also registers into the event type
repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean. java and is located in the
src/com/bea/wlevs/example/fx directory.

For additional information about the Oracle CEP APIs referenced in the POJO, see the
Oracle CEP Javadocs.

e A Java file that implements the ForeignExchangeBui IderFactory, which is the factory
that generates ForeignExchangeEvents.

In the example, the file is called ForeignExchangeBui lderFactory . java and is located
in the src/com/bea/wlevs/example/fx directory.

For additional information about the Oracle CEP APIs referenced in
ForeignExchangeBui lderFactory, see the Oracle CEP Javadocs.

e A MANIFEST . MF file that describes the contents of the OSGi bundle that will be deployed
to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META- INF directory

See Assembling an Oracle CEP Application: Main Steps for information about creating
this file, as well as a description of creating the OSGi bundle that you deploy to Oracle
CEP.

The FX example uses a bui Id.xml Ant file to compile, assemble, and deploy the OSGi bundle;
see “Building and Deploying the Foreign Exchange Example from the Source Directory” on
page 3-21 for a description of this bui ld.xml file if you also use Ant in your development
environment.

The FX EPN Assembly File

The following example shows the EPN assembly file used in the FX sample application; see the
explanation after the example for details about the entries in bold.

Note: See the first few paragraphs of “The HellowWorld EPN Assembly File” on page 3-12 for
a brief overview of the EPN assembly file. For full reference information about the
custom Spring tags, see Oracle CEP Custom Spring Tags Reference or the XSD Schema
file that defines the tags.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/reference/spring_tags.html
http://e-docs.bea.com/wlevs/docs30/create_apps/deploy.html#assemble
http://e-docs.bea.com/wlevs/docs30/reference/schemas.html#epn_assembly_xsd
http://e-docs.bea.com/wlevs/docs30/reference/schemas.html#epn_assembly_xsd
http://e-docs.bea.com/wlevs/docs30/javadocs/wlevs/index.html
http://e-docs.bea.com/wlevs/docs30/javadocs/wlevs/index.html

Foreign Exchange (FX) Example

xmIns:osgi="http://www.springframework.org/schema/osgi"

xmIns:wlevs="http://www.bea.com/ns/wlevs/spring"

xsi:schemalLocation=""
http://www.springframework.org/schema/beans
http://www._springframework.org/schema/beans/spring-beans.xsd
http://www._springframework.org/schemaZosgi
http://www.springframework.org/schema/Zosgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs._xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="ForeignExchangeEvent'>

<wlevs:class>com.bea.wlevs._example.fx.OutputBean$ForeignExchangeEvent</wle
vs:class>

<wlevs:property name="builderFactory">

<bean id="builderFactory"

class="com.bea.wlevs.example.fx.ForeignExchangeBui lderFactory'/>

</wlevs:property>

</wlevs:event-type>
</wlevs:event-type-repository>

<I-- Assemble EPN (event processing network) -->

<wlevs:adapter id="fxMarketAmer" provider="loadgen'>
<wlevs:instance-property name="port" value="9011"/>
</wlevs:adapter>

<wlevs:adapter id="fxMarketAsia" provider="loadgen">
<wlevs:instance-property name="port" value="9012"/>
</wlevs:adapter>

<wlevs:adapter id="fxMarketEuro'" provider="loadgen'>
<wlevs:instance-property name="port" value='"9013"/>
</wlevs:adapter>

<wlevs:processor id="preprocessorAmer" listeners="spreaderlin'/>
<wlevs:processor id="preprocessorAsia" listeners="spreaderlIn'/>
<wlevs:processor id="preprocessorEuro” listeners="spreaderin'/>

<wlevs:stream id=""fxMarketAmerOut'>
<wlevs:listener ref="preprocessorAmer"/>

Oracle Complex Event Processing Getting Started Guide 3-25

Oracle Complex Event Processing Examples

<wlevs:source ref="fxMarketAmer'/>
</wlevs:stream>

<wlevs:stream id="fxMarketAsiaOut''>
<wlevs:listener ref='"preprocessorAsia'"/>
<wlevs:source ref="fxMarketAsia'/>
</wlevs:stream>

<wlevs:stream id="fxMarketEuroOut">
<wlevs:listener ref="preprocessorEuro"/>
<wlevs:source ref="fxMarketEuro"/>
</wlevs:stream>

<wlevs:stream id="spreaderOut' manageable="true">
<wlevs:listener>
<I-- Create business object -->
<bean id="outputBean"
class="com.bea.wlevs.example.fx.OutputBean"
autowire="byName"/>
</wlevs:listener>
</wlevs:stream>

<!-- The processor id needs to be well known so that it can import the
rules config -->

<wlevs:processor id="'spreader'>
<wlevs:listener ref="spreaderOut'/>
</wlevs:processor>

<wlevs:stream id="spreaderin'>
<wlevs:listener ref="spreader'/>
</wlevs:stream>

</beans>

In the preceding example:

e The <wlevs:event-type-repository> entry registers the event types that are used
throughout the application; in the FX application, there is just a single event type:
ForeignExchangeEvent, implemented with the ForeignExchangeEvent inner class of
the com.bea.wlevs.example.fx.OutputBean POJO class. The <wlevs:property
name="bui lderFactory"> child tag specifies that the event builder factory class in the

3-26 Oracle Complex Event Processing Getting Started Guide

Foreign Exchange (FX) Example

FX application is implemented by the
com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory

Oracle CEP automatically creates instances of the ForeignExchangeEvent type when
needed. You can then reference this data type in the EPL rules of the application, the
adapter Java class, and the POJO.

e The set of <wlevs:adapter>, <wlevs:processor>, and <wlevs:stream> entries set up
the event processor network by declaring each component in the network. The network
consists of three adapters, four processors, and five streams, as described in “FX Event
Processing Network™ on page 3-19.

Each component is given a unique 1D which can be referenced by other components when
they declare their listeners and sources.
e The <wlevs:adapter> entries specify the three adapters, for example:

<wlevs:adapter id="fxMarketAmer" provider="loadgen'>
<wlevs:instance-property name="port" value='"9011"/>
</wlevs:adapter>

The provider="loadgen™ attribute of each <wlevs:adapter> specifies that the adapters
get their data from the Oracle CEP load generator utility. The
<wlevs: instance-property> child tag specifies the port number to which the adapter
should listen.

e The <wlevs:processor> entries specify the four complex event processors, for example:

<wlevs:processor id="preprocessorAmer" listeners="spreaderlin'/>

The listeners attribute, common to all component tags, specifies the component that
listens to the processor; in this case, it is a stream called spreaderin.

You can also use a <wlevs: listeners> child tag to specify the listeners of a component:

<wlevs:processor id="'spreader'>
<wlevs:listener ref="spreaderOut'/>
</wlevs:processor>

In the example, the spreaderout stream listens to the spreader processor.

e The <wlevs:stream> entries specify the four streams, for example:

<wlevs:stream id=""fxMarketAmerOut'>
<wlevs:listener ref="preprocessorAmer"/>
<wlevs:source ref="fxMarketAmer'/>
</wlevs:stream>

Oracle Complex Event Processing Getting Started Guide 3-21

Oracle Complex Event Processing Examples

As with all components, you can use the <wlevs: listener> and <wlevs:source> child
tags to specify the other components that act as listeners and sources for this component.

In the example, the preprocessorAmer processor listens to the fxvMarketAmerOut
stream, which in turn listens to the fxvMarketAmer adapter.

The following example shows how you can nest the definition of a component inside a
<wlevs:listener> tag:

<wlevs:stream id="spreaderOut' manageable="true">
<wlevs:listener>
<I-- Create business object -->
<bean id="outputBean"
class=""com.bea.wlevs.example.fx.OutputBean"
autowire="byName"/>
</wlevs:listener>
</wlevs:stream>
In the example, the outBean POJO, declared as a standard Spring bean using the <bean>
tag, listens to the spreaderout stream. The manageable=""true" attribute of the
spreaderOut stream enables monitoring of the stream; by default the manageability of
components is disabled

The FX Processor Configuration Files

The FX application uses four processors: three to handle the three data feeds and one that joins
the resulting events. The first three processors are configured in a single XML file, called
preprocessor.xml, as shown

<?xml version="1.0" encoding="UTF-8"?>
<nl:config xmIns:nl="http://www.bea.com/ns/wlevs/config/application”
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<processor>
<name>preprocessorAmer</name>
<rules>
<rule id="UsdToEurRule"><I[CDATAL

insert into ForeignExchangeEvent

select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate
from (select * from StockTick where symbol="USDEUR") retain 1 sec
where lastPrice < 3.0 and lastPrice > 0.25

3-28 Oracle Complex Event Processing Getting Started Guide

Foreign Exchange (FX) Example

11></rule>
</rules>
</processor>

<processor>
<name>preprocessorAsia</name>
<rules>
<rule id="EurToJpyRule"><ITCDATAL

insert into ForeignkExchangeEvent
select avg(lastPrice) as price, "EUR" as fromRate, "JPY" as toRate

from (select * from StockTick where symbol="EURJPY") retain 1 sec
where lastPrice < 200.0 and lastPrice > 100.0

11></rule>
</rules>
</processor>

<processor>
<name>preprocessorEuro</name>

<rules>
<rule id="EurToGbpRule"><![CDATAL
insert into ForeignExchangeEvent
select avg(lastPrice) as price, "EUR" as fromRate, "GBP" as toRate
from (select * from StockTick where symbol="EURGBP") retain 1 sec
where lastPrice < 1.5 and lastPrice > 0.5

11></rule>
</rules>
</processor>

</nl:config>

The three processors in this file are all essentially the same; the differences lie only in the values
used in the EPL queries for querying different items from the data feeds and applying different
boundary conditions. For this reason, this section will discuss just a single one of the processors:

preprocessorAmer.
The EPL rule fired for the american data feed is:

insert into ForeignExchangeEvent
select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate

Oracle Complex Event Processing Getting Started Guide 3-29

Oracle Complex Event Processing Examples

from (select * from StockTick where symbol="USDEUR") retain 1 sec
where lastPrice < 3.0 and lastPrice > 0.25

To understand the query, one must look at the various clauses, as follows:

e The insert clause specifies that any event selected by this EPL rule should be inserted
into ForeignExchangeEvent; this is the object that the next processor in the network,
spreader, performs its own EPL query against.

e The from clause specifies that the processor should accept only those items from the
StockTick data feed in which the symbol value is USDEUR (US dollar - European euro
exchange) and should reject all other items. The from clause specifies also specifies that
the window of time for which this EPL query executes is 1 second.

e The where clause specifies the boundary condition to ensure that the rates for a particular
item from the feed fall within an accepted range; in this case, the LastPrice for a
particular item from the feed must be between $3.00 and $0.25.

e The select clause specifies which values from the selected item should be inserted into
the ForeignExchangeEvent object; in this case, the average of all prices in the window (1
second), and then the USD and EUR symbols to specify the to and from currency rates.

The spreader processor is configured with the spreader.xml file, as shown:
<?xml version="1.0" encoding="UTF-8"?>

<nl:config xmlns:nl1="http://www.bea.com/ns/wlevs/config/application”
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<processor>
<name>spreader</name>
<rules>
<rule id="spreaderRule"><![CDATAL

select ((a.price * b.price) + 0.05) as internalPrice, a.fromRate ||
b.toRate as crossRate

from ForeignExchangeEvent a, ForeignExchangeEvent b

retain 10 sec with unique a.toRate partition by a.fromRate

where a.toRate = b.fromRate and a.fromRate != b.toRate

11></rule>
</rules>
</processor>

</nl:config>

3-30 Oracle Complex Event Processing Getting Started Guide

Signal Generation Example

In the spreader EPL rule:

e The from and where clauses join two events from the ForeignExchangeEvent object
(which contains events selected by the three preprocessorxxx components) where the
value of the toRate and fromRate are the same. The from clause also sets the processing
window, again of 1 second.

e The select clause calculates an internal price of a particular currency, which averages the
to and from rate of a the currency plus a fee of $.05, and also calculates a cross rate, which
is defined as the price of one currency in terms of another currency in the market of a third
country.

The result of this query is then sent to the business object POJO.

For additional information and examples about using EPL, see the EPL Reference Guide.

Signal Generation Example

The signal generation sample application receives simulated market data and verifies if the price
of a security has fluctuated more than two percent. The application also detects if there is a trend
occurring by keeping track of successive stock prices for a particular symbol; if more than three
successive prices fluctuate more than two percent, this is considered a trend.

The application simulates a market data feed using the Oracle CEP load generator utility; in this
example, the load generator generates up to 10,000 messages per second. The example includes
an HTML dashboard which displays the matched events along with the latencies; events consist
of a stock symbol, a timestamp, and the price.

The example demonstrates very low latencies, with minimum latency jitter under high
throughputs. Once the application starts running, the processor matches an average of 800
messages per second. If the application is run on the minimum configured system, the example
shows very low average latencies (30-300 microsecond, on average) with minimal latency spikes
(low milliseconds).

The example computes and displays latency values based on the difference between a timestamp
generated on the load generator and timestamp on Oracle CEP. Computing valid latencies
requires very tight clock synchronization, such as 1 millisecond, between the computer running
the load generator and the computer running Oracle CEP. For this reason, Oracle recommends
running both the load generator and Oracle CEP on a single multi-CPU computer where they will
share a common clock.

Oracle Complex Event Processing Getting Started Guide 3-31

http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html

Oracle Complex Event Processing Examples

3-32

Running the Signal Generation Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful
computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB
of RAM.

The signalgeneration_domain domain contains a single application: the signal generation
sample application. To run the signal generation application, you simply start an instance of
Oracle CEP in the domain, as described in the following steps:

1. Openacommand window and change to the signalgeneration_domain domain directory,
located in WLEVS_HOME\samples\domains\signalgeneration_domain directory, where
WLEVS_HOME refers to the main Oracle CEP installation directory, such as
d:\beahome2\wlevs30.

prompt> cd d:\beahome2\wlevs30\samples\domains\signalgeneration_domain

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Start Oracle CEP by running the startwlevs.cmd (Windows) or startwlevs.sh (UNIX)
command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc
The signal generation application is now ready to receive data from the data feeds.
On Windows you can also start the server using the Start menu:

Start > All Programs > Oracle CEP 3.0 > Examples > Start Signal Generation
Example Server

4. To simulate a data feed, use a load generator programmed specifically for the example, as
described in the following steps:

a. Open anew command window .

b. Change to the WLEVS_HOME\samples\domains\signalgeneration_domain\utils
directory, where WLEVS_HOME refers to the main Oracle CEP installation directory, such
as d:\beahome2\wlevs30.

c. Run the startbataFeed command:

Oracle Complex Event Processing Getting Started Guide

Signal Generation Example

prompt> startDataFeed.cmd
On Windows you can also start the load generator using the Start menu:
Start > All Programs > Oracle CEP 3.0 > Examples > Start Load Generator
Invoke the example dashboard by starting a browser and openeing the following HTML page:
http://host:-9002/algo/dashboard.html

Replace host with the name of the computer on which Oracle CEP is running; if it’s the
same computer as your browser, you can use localhost.

On Windows you can also start the dashboard using the Start menu:

Start > All Programs > Oracle CEP 3.0 > Examples > Start Signal Generation
Console

In the browser, click the Start Button on the HTML page. You should start seeing the events
that match the EPL rules configured for this example.

Building and Deploying the Signal Generation Example from
the Source Directory

The signal generation sample source directory contains the Java source, along with other required
resources, such as configuration XML files, EPN assembly file, and DOJO client Javascript
libraries, that make up the signal generation application. The bui 1d.xmI Ant file contains targets
to build and deploy the application to the signalgeneration_domain domain, as described in
“Description of the Ant Targets to Build Signal Generation” on page 3-34.

To build and deploy the signal generation application, follow these steps:

1.

Open a new command window and change to the signal generation source directory, located
in WLEVS_HOME\samples\source\applications\signalgeneration, where
WLEVS_HOME refers to the main Oracle CEP installation directory, such as
d:\beahome2\wlevs30

prompt> cd
d:\beahome2\wlevs30\samples\source\applications\signalgeneration

Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

Execute the al I Ant target to compile and create the application JAR file:

prompt> ant all

Oracle Complex Event Processing Getting Started Guide 3-33

Oracle Complex Event Processing Examples

3-34

4. Execute the deploy Ant target to deploy the application JAR file to the
WLEVS_HOME\samples\domains\signalgeneration_domain\applications\signalg
eneration directory:
prompt> ant deploy

WARNING: This target overwrites the existing signal generation application JAR file in
the domain directory.

5. If Oracle CEP for the signalgeneration_domain domain is running, you must restart it using
the start script to deploy this new JAR file:

prompt> cd WLEVS_HOME\samples\domains\signalgeneration_domain
prompt> stopwlevs.cmd
prompt> startwlevs.cmd

If you are using the JRockit JDK included in Oracle JRockit Real Time 3.0, enable the
deterministic garbage collector by passing the -dgc parameter to the startwlevs
command:

prompt> startwlevs.cmd -dgc

For details, see Stopping and Starting the Server.

6. If the load generator required by the signal generation application is not running, start it as
described in “Running the Signal Generation Example” on page 3-32.

7. Invoke the example dashboard as described in “Running the Signal Generation Example” on
page 3-32.

Description of the Ant Targets to Build Signal Generation

The bui Id.xml file, located in the top-level directory of the FX source, contains the following
targets to build and deploy the application:

e clean—This target removes the dist and output working directories under the current
directory.

e alI—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.signalgen_3.0.0.0.jar, and places the generated JAR file
into a dist directory below the current directory.

e deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility. See
Deployer Command-Line Reference for complete reference information about the
Deployer utility.

Oracle Complex Event Processing Getting Started Guide

http://e-docs.bea.com/wlevs/docs30/config_server/server.html#start_stop
http://e-docs.bea.com/wlevs/docs30/reference/deployer.html

CHAPTERa

Installing Oracle Complex Event
Processing

This section contains information on the following subjects:

“Before You Begin” on page 4-1

“Installation Overview” on page 4-2

“Installing Oracle CEP in Graphical Mode: Main Steps” on page 4-2
“Installing Oracle CEP in Console Mode: Main Steps” on page 4-5
“Installing Oracle CEP in Silent Mode: Main Steps” on page 4-8

“Post-Installation Steps” on page 4-13

Before You Begin

Before you install Oracle Complex Event Processing 3.0 (or Oracle CEP for short):

Optionally install Oracle JRockit Real Time 3.0. Oracle recommends this step if your
applications require low latency. Oracle CEP 3.0 performs optionally when it can access
certain features from Oracle JRockit Real Time, in particular the JRockit deterministic
garbage collector. Oracle CEP includes its own version of JRockit, but it does not include
the deterministic garbage collector.

You can download the Oracle JRockit Real Time 3.0 distribution from the Oracle Web site
at http://commerce.bea.com.

Oracle Complex Event Processing Getting Started Guide 4-1

http://commerce.bea.com/showproduct.jsp?family=WLRT&major=2.0&minor=-2

Installing Oracle Complex Event Processing

WARNING: Be sure you install the version of Oracle JRockit Real Time that includes
JRockit 5.0. The version that includes JRockit 1.4.2 is not compatible with
Oracle CEP 3.0.

o Install Apache Ant, a Java-based build tool. For details, see the Apache Ant Project.

Installation Overview

You install Oracle CEP using a standard Oracle installation program. The program can be used
in the following modes:

e Graphical mode

Graphical-mode installation is an interactive, GUI-based method for installing your
software. It can be run on both Windows and UNIX systems. See “Installing Oracle CEP in
Graphical Mode: Main Steps” on page 4-2.

WARNING: If you want to run graphical-mode installation, the console attached to the
machine on which you are installing the software must support a Java-based
GUI. All consoles for Windows systems support Java-based GUIs, but not all
consoles for UNIX systems do. If you attempt to start the installation program
in graphical mode on a system that cannot support a graphical display, the
installation program automatically starts console-mode installation.

e Console mode

Console-mode installation is an interactive, text-based method for installing your software
from the command line, on either a UNIX system or a Windows system. See “Installing
Oracle CEP in Console Mode: Main Steps” on page 4-5.

e Silent mode

Silent-mode installation is a non-interactive method of installing your software that
requires the use of an XML properties file for selecting installation options. You can run
silent-mode installation in either of two ways: as part of a script or from the command line.
Silent-mode installation is a way of setting installation configurations only once and then
using those configurations to duplicate the installation on many machines. See “Installing
Oracle CEP in Silent Mode: Main Steps” on page 4-8.

Installing Oracle CEP in Graphical Mode: Main Steps

The Oracle CEP graphical installation program is self-explanatory, however, you can follow
these steps for more information.

4-2 Oracle Complex Event Processing Getting Started Guide

http://ant.apache.org/

Installing Oracle CEP in Graphical Mode: Main Steps

1. Log in to the Windows or UNIX computer on which you want to install Oracle CEP.
Be sure you log in to the computer as the user that will be the main administrator of the
Oracle CEP installation.
2. Download the product distribution file for the platform on which you want to install Oracle
CEP.
You can download your software from the Oracle Web site at http://commerce.bea.com.
3. Launch the installation program in graphical mode using the commands listed in the
following table appropriate for your platform.
Platform Instructions
Windows Using Windows Explorer, double-click the wlevs30_win32.exe file
from its download directory.
UNIX Open a command window, change to the download directory, and enter
these commands:
prompt> chmod a+x filename.bin
prompt> ./filename.bin
In these commands, £i lename . bin is the name of the installation
program specific to your platform, for example,
wlevs30_linux32.binand wlevs30_solaris64.bin.
If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:
prompt> _/filename.bin
-log=C:\logs\server_install.log
4. After the installation program has finished loading, you will see the standard Welcome
window.
Click Next.
5. Inthe Choose BEA_HOME Directory window, you can specify either an existing

BEA_HOME directory or create a new one. Oracle recommends that you use the same
BEA_HOME directory into which you installed Oracle JRockit Real Time, if applicable.

The BEA_HOME directory is the main installation directory for many Oracle products,
such as c:\beahome. You can have one or many BEA_ HOME directories on your
computer, whichever suits your development and production environments best.

Oracle Complex Event Processing Getting Started Guide 4-3

http://commerce.bea.com/showproduct.jsp?family=WLEVS&major=2.0&minor=-2

Installing Oracle Complex Event Processing

44

If you decide to install into an existing BEA_HOME directory, the installer program
checks if the directory includes the version of JRockit required by this release of Oracle
CEP. If it finds the required JRockit installation, it does not install a new one. If, however,
the installer program does not find an appropriate JRockit installation, then the program
installs its own version in the BEA_HOME directory.

Use the Browse button to browse your computer for an existing or new BEA_HOME
directory.

Click Next.

In the Choose Install Type window, you can choose whether to install the complete version
of Oracle CEP (recommended) or whether you want to pick the individual components of the
product that you want to install.

Click Next.

If you chose Custom in the preceding step, you will see the Choose Products and Components
window. Check the components you want to install.

Note: In this version of Oracle CEP, the only component you can install separately is the
Event Server Samples.

Click Next.

In the Choose Product Installation Directories, you can change the default name of the home
directory of Oracle CEP, wlevs30.

Although you can name this directory anything you want, Oracle recommends that you use
the default name for clarity and standardization. For example, the documentation assumes
that you install into the wlevs30 directory.

Click Next.

If you are installing on Windows, and you logged in as a user with Administrator privileges,
then you will see the Choose Shortcut Location window where you can choose where you
want the Start Menu folder to appear. The following table describes the options available:

Oracle Complex Event Processing Getting Started Guide

Installing Oracle CEP in Console Mode: Main Steps

If you select. .. The following occurs . . .

All Users Recommended. All users registered on the machine are provided with
access to the installed software. Subsequently, if users without
Administrator privileges use the Configuration Wizard from this
installation to create domains, Start menu shortcuts to the domains are not
created. In this case, users can manually create shortcuts in their local Start
menu folders, if desired.

Local user Other users registered on this machine will not have access to the Start
menu entries for this installation.

If you logged in as a user without Administrator privileges, the Start menu entries are
created in your user's local Start menu folder.

Click Next.

The installer program installs Oracle CEP. The Installation Complete window indicates that
the product was installed successfully.

10. Click Done to exit the program.

Installing Oracle CEP in Console Mode: Main Steps

Console-mode installation is an interactive, text-based method for installing your software from
the command line, on either a UNIX or Windows system.

When installing in console-mode, respond to the prompts in each section by entering the number
associated with your choice or by pressing Enter to accept the default. To exit the installation
process, enter exit (or x, for short) in response to any prompt. To review or change your
selection, enter previous (or p, for short) at the prompt. To proceed to the following window,
enter next (or n, for short).

Note: In the following procedure, Windows conventions (such as back-slashes in pathnames)
are used, for example, C:\bea\wlevs30. When entering pathnames on a UNIX system,
be sure to use UNIX conventions, instead. For example, use forward slashes in
pathnames, such as /home/bea/wlevs30.

The following procedure steps you through the installation program.

1. Log in to the Windows or UNIX computer on which you want to install Oracle CEP.

Oracle Complex Event Processing Getting Started Guide 4-5

Installing Oracle Complex Event Processing

Be sure you log in to the computer as the user that will be the main administrator of the
Oracle CEP installation.

2. Download the product distribution file for the platform on which you want to install Oracle
CEP.

You can download your software from the Oracle Web site at http://commerce.bea.com.

3. Launch the installation program in console mode using the commands listed in the following
table appropriate for your platform.

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:

prompt> wlevs30_win32.exe -mode=console
If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> wlevs30_win32.exe -mode=console

-log=C:\logs\server_install.log

UNIX Open a command window, change to the download directory, and enter
these commands:

prompt> chmod a+x filename.bin
prompt> _./filename.bin -mode=console
In these commands, i lename . bin is the name of the installation

program specific to your platform, for example,
wlevs30_linux32.binand wlevs30_solaris64.bin.

If you want to create an installation log, use the
-log=Ffull_path_to_log_file option; for example:

prompt> _/filename.bin -mode=console
-log=C:\logs\server_install._log

4. At the Welcome prompt, type next (or n for short) or press Enter to continue with the
installation process.

5. Inthe Choose BEA_HOME Directory window, the list of known home directories (if any)
appear, as well as an option to create a new one. Oracle recommends that you use the same
BEA_HOME directory into which you installed Oracle JRockit Real Time, if applicable.

4-6 Oracle Complex Event Processing Getting Started Guide

http://commerce.bea.com/showproduct.jsp?family=WLEVS&major=2.0&minor=-2

10.

Installing Oracle CEP in Console Mode: Main Steps

The BEA_HOME directory is the main installation directory for many Oracle products,
such as c:\beahome. You can have one or many BEA_HOME directories on your
computer, whichever suits your development and production environments best.

If you decide to install into an existing BEA_HOME directory, the installer program
checks if the directory includes the version of JRockit required by this release of Oracle
CEP. If it finds the required JRockit installation, it does not install a new one. If, however,
the installer program does not find an appropriate JRockit installation, then the program
installs its own version in the BEA_HOME directory.

Type 1 to create a new BEA_home directory, or type the number of the existing
BEA_HOME directory.

If you chose 1 to create a new BEA_HOME directory, the installation program guides you
through the required steps to create the new BEA_HOME. Be sure to enter the full path of the
BEA_HOME directory, for example C:\beahome2. If you specify a directory that does not
exist, the installation program creates it for you.

In the Choose Install Type window, you can choose whether to install the complete version
of Oracle CEP (recommended) or whether you want to pick the individual components of the
product that you want to install.

Enter 1 for a complete install or 2 for a custom install.

If you chose Custom in the preceding step, you will see the Choose Components to Install
window. Enter the numbers in brackets to toggle the components you want to install.

Note: In this version of Oracle CEP, the only component you can install separately is the
Samples.

Enter next (or n) when you have chosen the components.

In the Choose Product Installation Directories, you can change the default name of the home
directory of Oracle CEP, wlevs30, by entering a new value.

Although you can name this directory anything you want, Oracle recommends that you use
the default name for clarity and standardization. For example, the documentation assumes
that you install into the wlevs30 directory.

Enter next (or n) when you are done.

If you are installing on Windows, and you logged in as a user with Administrator privileges,
then you will see the Choose Shortcut Location window where you can choose where you
want the Start Menu folder to appear. The following table describes the options available:

Oracle Complex Event Processing Getting Started Guide 4-7

Installing Oracle Complex Event Processing

If you select. .. The following occurs . . .

1 "All Users" Recommended. All users registered on the machine are provided with
access to the installed software. Subsequently, if users without
Administrator privileges use the Configuration Wizard from this
installation to create domains, Start menu shortcuts to the domains are not
created. In this case, users can manually create shortcuts in their local Start
menu folders, if desired.

2 "Local user" Other users registered on this machine will not have access to the Start
menu entries for this installation.

If you logged in as a user without Administrator privileges, the Start menu entries are
created in your user's local Start menu folder.

Enter the appropriate number.

The installer program installs Oracle CEP. The Installation Complete window indicates that
the product was installed successfully.

11. Type exit to exit the program.

Installing Oracle CEP in Silent Mode: Main Steps

Silent-mode installation is a non-interactive method of installing your software that requires the
use of an XML properties file for selecting installation options. To install using silent mode:

1. Log in to the Windows or UNIX computer on which you want to install Oracle CEP.

Be sure you log in to the computer as the user that will be the main administrator of the
Oracle CEP installation.

2. Download the product distribution file for the platform on which you want to install Oracle
CEP.

You can download your software from the Oracle Web site at http://commerce.bea.com.

3. Create a silent.xml file that defines the configuration settings normally entered by a user
during an interactive installation process. See “Creating a silent.xml File for Silent-Mode
Installation” on page 4-10.

4-8 Oracle Complex Event Processing Getting Started Guide

http://commerce.bea.com/showproduct.jsp?family=WLEVS&major=2.0&minor=-2

Installing Oracle CEP in Silent Mode: Main Steps

Note: Incorrect entries in the silent.xml file can cause installation failures. To help you
determine the cause of a failure, we recommend that you create a log file when you
launch the installation program.

4. Launch the installation program in silent mode using the commands in the following table
appropriate for your platform.

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:
prompt> wlevs30_win32.exe -mode=silent
-silent_xml=path_to_xml_file

In the preceding command, path_to_xml_Fi le is the full pathname of
the silent.xml template file you created in the preceding step.

If you want to create an installation log, use the

-log=Ffull_path_to_log_file option; for example:
prompt> wlevs30_win32.exe -mode=silent
-silent_xml=path_to_xml_file
-log=C:\logs\server_install.log

UNIX Open a command window, change to the download directory, and enter
these commands:

prompt> chmod a+x filename.bin

prompt> _./filename.bin -mode=silent
-silent_xml=path_to_xml_file

In these commands, i lename . bin is the name of the installation
program specific to your platform, for example,
wlevs30_linux32.binand wlevs30_solaris64._bin, and
path_to_xml_fileisthe full pathname of the silent.xml template
file you created in the preceding step.

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:
prompt> ./filename.bin -mode=silent

-silent_xml=path_to_xml_file
-log=C:\logs\server_install._log

An Oracle Installer window is displayed, indicating that the files are being extracted. No
other prompt or text is displayed.

Oracle Complex Event Processing Getting Started Guide 4-9

Installing Oracle Complex Event Processing

The installation is complete when the Oracle Installer window disappears.

See “Returning Exit Codes to the Command Window” on page 4-12 for getting
information about the success or failure of the silent installation.

Creating a silent.xml File for Silent-Mode Installation

When you install Oracle CEP in silent mode, the installation program uses an XML file
(silent.xml) to determine which installation options should be implemented.

To create a silent.xml file, follow these steps:

1. Using your favorite text edit, create an empty file called silent.xml on the computer on
which you want to install Oracle CEP in silent mode.

2. Copy the contents of the sample XML file, shown in “Sample silent.xml File for Silent-Mode
Installation” on page 4-12, into your own silent.xml file.

3. Inthe silent.xml file you just created, edit the values for the keywords shown in Table 4-1
to reflect your configuration.

For example, if you want to install into the BEA_HOME directory e:\beahome, update
the corresponding <data-value> element as follows

<data-value name="BEAHOME" value="‘e:\beahome' />

4. Save the file in the directory of your choice.

Table 4-1 Values for the silent.xml File

For this data-value name... Enter the following value...

BEAHOME The full pathname for the BEA_HOME directory of
your choice.

USER_INSTALL_DIR The full pathname for the directory where you want to

install your Oracle CEP software.

4-10

Oracle Complex Event Processing Getting Started Guide

Tahle 4-1 Values for the silent.xml File

Installing Oracle CEP in Silent Mode: Main Steps

For this data-value name...

Enter the following value...

INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER

Windows only. Specify:

e true, or yes, to create the shortcuts in the All
Users folder.

* false, or no, to create the shortcuts in the local
users folder.

The user performing the installation must have
Administrator privileges to install the Start menu
shortcuts in the All Users folder.

The default value for this parameter, if you do not
specify it, is true.

COMPONENT_PATHS

Specify the components and subcomponents of
Oracle CEP you want to install on your system. Use
the following values:

WebLogic Event Server

WebLogic Event Server/Event Server

WebLogic Event Server/Event Server
Samples

For additional information about entering these
values, see “Guidelines for Component Selection” on
page 4-11.

If you do not include the COMPONENT_PATHS
data-value name in the silent.xml file, the
complete Oracle CEP product is installed.

Guidelines for Component Selection

Use the following guidelines when you specify values for the COMPONENT_PATHS data-value

name:

e When you specify a product component to be installed, all subcomponents that are
installed by default in a complete installation are also installed. For example, the following
entry installs both Oracle CEP and the samples:

<data-value name=""COMPONENT_PATHS" value="WebLogic Event Server" />

Oracle Complex Event Processing Getting Started Guide 4-1

Installing Oracle Complex Event Processing

e To install multiple components or subcomponents, separate the components with a bar (]).
Do not leave a space before or after the bar.

e To specify subcomponents, you must specify a component/subcomponent combination for
each entry. For example, to explicitly install Oracle CEP and the samples, enter the
following line in the file:

<data-value name=""COMPONENT_PATHS" value="WebLogic Event Server/Event
Server|WebLogic Event Server/Event Server Samples' />

Note: Because this release of Oracle CEP includes only the server itself and samples, the
preceding example is equivalent to the example in the first bullet.

Sample silent.xml File for Silent-Mode Installation

<?xml version="1.0" encoding=""UTF-8"7?>
<I-- Silent installer option: -mode=silent -silent_xml=C:\bea\silent_xml -->

<bea-installer>
<input-fields>
<data-value name="BEAHOME" value="C:\bea" />
<data-value name="USER_INSTALL_DIR" value="C:\bea\wlevs30" />
<data-value name="INSTALL_SHORTCUT_IN_ALL_ USERS_FOLDER" value="'yes" />
<data-value name="COMPONENT_PATHS" value="WebLogic Event Server' />
</input-fields>
</bea-installer>

Returning Exit Codes to the Command Window

When run in silent mode, the installation program generates exit codes that indicate the success
or failure of the installation. These exit codes are shown in the following table.

Table 4-2 Exit Codes

Code Description

0 Installation completed successfully

-1 Installation failed due to a fatal error

-2 Installation failed due to an internal XML parsing error

Listing 4-1 provides a sample Windows command file that invokes the installation program in
silent mode and echoes the exit codes to the command window from which the script is executed.

4-12 Oracle Complex Event Processing Getting Started Guide

Post-Installation Steps

Listing 4-1 Sample Windows Command File Displaying Silent-Mode Exit Codes

rem Execute the installer in silent mode

@echo off

wlevs30 _win32.exe -mode=silent -silent_xml=C:\downloads\silent.xml
-log=C:\logs\products_silent.log

@rem Return an exit code to indicate success or failure of installation
set exit_code=%ERRORLEVEL%

@echo.

@echo Exitcode=%exit_code%
@echo.

@echo Exit Code Key

@echo --—---————————-

@echo O=Installation completed successfully

@echo -1=Installation failed due to a fatal error

@echo -2=Installation failed due to an internal XML parsing error
@echo.

Post-Installation Steps

After installing Oracle CEP:

e Try out the product examples. For information about the examples and how to run them,
see Chapter 3, “Oracle Complex Event Processing Examples.”

e Create your own Oracle CEP domain. See Creating an Oracle CEP Domain.

e Create an Oracle CEP application and deploy it to your new domain. See Creating Oracle
CEP Applications for a description of the programming model, details about the various
components that make up an application, and how they all fit together.

Oracle Complex Event Processing Getting Started Guide 4-13

http://e-docs.bea.com/wlevs/docs30/config_server/domain.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html

Installing Oracle Complex Event Processing

4-14 Oracle Complex Event Processing Getting Started Guide

	Oracle® Complex Event Processing
	Release 3.0

	Oracle Complex Event Processing Getting Started Guide, Release 3.0
	Introduction and Roadmap
	Document Scope and Audience
	Oracle CEP Documentation Set
	Guide to This Document
	Samples for the Oracle CEP Application Developer

	Overview of Oracle Complex Event Processing
	Introduction to Oracle Complex Event Processing
	Conceptual Overview of Oracle CEP
	Event Processing Networks

	Use Cases
	Summary of Oracle CEP Features
	Supported Configurations
	Oracle CEP Development Environment for Eclipse
	Next Steps

	Oracle Complex Event Processing Examples
	Overview of the Samples Provided in the Distribution Kit
	Using Visualizer With the Examples
	Increasing the Performance of the Examples

	Setting Your Development Environment
	Windows
	UNIX

	HelloWorld Example
	Running the HelloWorld Example from the helloworld Domain
	Building and Deploying the HelloWorld Example from the Source Directory
	Description of the Ant Targets to Build Hello World

	Implementation of the HelloWorld Example
	The HelloWorld EPN Assembly File
	The HelloWorld Component Configuration File
	The XSD File that Describes the Extended HelloWorld Component Configuration

	Foreign Exchange (FX) Example
	Running the Foreign Exchange Example
	Building and Deploying the Foreign Exchange Example from the Source Directory
	Description of the Ant Targets to Build FX

	Implementation of the FX Example
	The FX EPN Assembly File
	The FX Processor Configuration Files

	Signal Generation Example
	Running the Signal Generation Example
	Building and Deploying the Signal Generation Example from the Source Directory
	Description of the Ant Targets to Build Signal Generation

	Installing Oracle Complex Event Processing
	Before You Begin
	Installation Overview
	Installing Oracle CEP in Graphical Mode: Main Steps
	Installing Oracle CEP in Console Mode: Main Steps
	Installing Oracle CEP in Silent Mode: Main Steps
	Creating a silent.xml File for Silent-Mode Installation
	Guidelines for Component Selection
	Sample silent.xml File for Silent-Mode Installation
	Returning Exit Codes to the Command Window

	Post-Installation Steps

