
BEAWebLogic 
Enterprise 
Security™

Developing Security 
Providers

Product Version: 4.2
Revised: September 29, 2005





Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License 
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy 
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, 
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior 
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License 
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement 
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA 
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF 
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR 
FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, 
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE 
USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, 
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, 
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data 
Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, 
BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic 
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, 
BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic 
JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic 
Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA 
WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a 
service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights 
reserved by third parties.

All other trademarks are the property of their respective companies. 



Developing Security Providers v

Contents

1. Introduction to Developing Security Providers
About This Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

e-docs Web Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Related Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Audience for This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Prerequisites for This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Overview of the Development Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Types of Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

2. Security Provider Concepts
Authentication Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Users and Groups, Principals and Subjects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Java Authentication and Authorization Service (JAAS)  . . . . . . . . . . . . . . . . . . . . . . 2-2

Writing a JAAS LoginModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

LoginModule Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

JAAS Control Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

CallbackHandlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

How JAAS Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Identity Assertion Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Identity Assertion Providers and LoginModules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Identity Assertion and Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

How to Create New Token Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8



vi Developing Security Providers

How to Make New Token Types Available  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Passing Tokens for Perimeter Authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Principal Validation Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Principal Validation and Principal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

How Principal Validation Providers Differ From Other Types of Security Providers2-11

Security Exceptions Resulting from Invalid Principals . . . . . . . . . . . . . . . . . . . . . . 2-11

Authorization Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Role Mapping Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Security Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Dynamic Security Role Computation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Auditing Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Audit Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Auditing Events from Custom Security Providers. . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Credential Mapping Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

3. Design Considerations
General Architecture of a Security Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Security Services Provider Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Developing Security Providers using the SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Using ResourceActionBundle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

com.bea.security.spi.ProviderResource  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

com.bea.security.spi.ProviderAction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Using the ProviderAuditRecord Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Security Services Provider Interface MBeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Understanding why You Need an MBean Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Determining which SSPI MBeans to Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

Understanding the Basic Elements of an MBean Definition File  . . . . . . . . . . . . . . 3-11

Understanding the SSPI MBean Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15



Developing Security Providers vii

Understanding What the WebLogic MBeanMaker Provides . . . . . . . . . . . . . . . . . . 3-17

Initialization of the Security Provider Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

Creating a Simple Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Configuring an Existing Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Delegating Database Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

4. Developing Custom Security Providers
Types of Custom Security Providers Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Writing an MBean Definition File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Using the WebLogic MBeanMaker to Generate the MBean Type . . . . . . . . . . . . . . . . . . 4-6

About the Generated MBean Interface File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Creating Security Provider Runtime Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Creating Authentication Provider Runtime Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Implementing the AuthenticationProvider SSPI . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Implementing the JAAS LoginModule Interface . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Implementing Custom Exceptions for LoginModules  . . . . . . . . . . . . . . . . . . . 4-10

Creating Identity Assertion Runtime Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Implementing the AuthenticationProvider SSPI . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Implementing the IdentityAsserter SSPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Creating Principal Validation Provider Runtime Classes. . . . . . . . . . . . . . . . . . . . . 4-12

Implementing the PrincipalValidator SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Creating Role Mapping Provider Runtime Classes . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Implement the RoleProvider SSPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

Implement the RoleMapper SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

Implement the SecurityRole Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

Creating AuthorizationProvider Runtime Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

Implement the AuthorizationProvider SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

Implement the AccessDecision SSPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16



viii Developing Security Providers

Creating AdjudicationProvider Runtime Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

Implement the AdjudicationProvider SSPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

Implement the Adjudicator SSPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Creating Auditing Provider Runtime Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Implement the AuditProvider SSPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Implement the AuditChannel SSPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19

Creating Credential Mapping Provider Runtime Classes  . . . . . . . . . . . . . . . . . . . . 4-19

Implement the CredentialProvider SSPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20

Implement the Credential Mapper SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20

Creating an MBean JAR File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21

Deploying a Security Provider MJF File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

5. Auditing Events from Custom Security Providers
How Events are Audited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Security Services and the Auditor Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Adding Auditing to a Custom Security Provider  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Creating an Audit Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Implementing the AuditEvent SSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Implementing an AuditEvent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Audit Severity and the AuditSeverity Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

AuditContext Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

Obtain and Use the Auditor Service to Write Audit Events  . . . . . . . . . . . . . . . . . . . 5-8

ContextHandler Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

6. Code Examples for Developing Security Providers
Example: Creating the Runtime Classes for the Sample Authentication Provider . . . . . . 6-1

Example: Creating the Runtime Class for the Sample Identity Assertion Provider . . . . . 6-9

Example: Creating the Runtime Class for the Sample Authorization Provider . . . . . . . 6-12



Developing Security Providers ix

Example: Creating the Runtime Class for the Sample Role Mapping Provider . . . . . . . 6-15

Example: Creating the Runtime Class for the Sample Auditing Provider  . . . . . . . . . . . 6-19

Example: Implementation of the AuditRoleEvent Interface . . . . . . . . . . . . . . . . . . . . . . 6-21

Example: Obtaining and Using the Auditor Service to Write Role Audit Events. . . . . . 6-23

A. MBean Definition File Element Syntax
MBeanType Root Element  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1

MBeanAttribute Subelement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-3

Examples: Well-Formed and Valid MBean Definition Files  . . . . . . . . . . . . . . . . . . . . . .A-7



x Developing Security Providers



Developing Security Providers 1-1

C H A P T E R 1

Introduction to Developing Security 
Providers

About This Document
This document provides application developers with the information needed to develop custom 
security providers for use with BEA WebLogic Enterprise Security™ Security Service Modules. 
This document is organized as follows:

Chapter 1, “Introduction to Developing Security Providers,” which prepares you to learn 
more about developing security providers for use with WebLogic Enterprise Security. It 
specifies the audience and prerequisites for this guide, and provides an overview of the 
development process.

Chapter 2, “Security Provider Concepts,” which explains the concepts that you must 
understand to be able to develop custom security providers. This topic also includes a 
discussion about JAAS LoginModules.

Chapter 3, “Design Considerations,” describes the capabilities of the security providers 
shipped with BEA WebLogic Enterprise Security and the general architecture of a security 
provider, and provides background information about implementing Security Services 
Provider Interfaces (SSPIs) and generating MBean types. This section also suggests ways 
your custom security providers might work with databases that contain information 
security providers require. 

Chapter 4, “Developing Custom Security Providers,” provides instructions for 
implementing each type of security provider.

Chapter 5, “Auditing Events from Custom Security Providers,” explains how to add 
auditing capabilities to the custom security providers that you develop. 



I n t roduct i on  to  Deve lopi ng  Secur i t y  P rov ider s

1-2 Developing Security Providers

Chapter 6, “Code Examples for Developing Security Providers,” demonstrates how to write 
the code when developing custom security providers.

Appendix A, “MBean Definition File Element Syntax,” describes the attributes and syntax 
of the MBean Definition File.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available 
from the BEA dev2dev web site:
http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the Product Centers 
menu on the left side of the screen on the dev2dev page. Select More Product Centers. From the 
BEA Products list, choose WebLogic Enterprise Security 4.2. The home page for this product is 
displayed. From the Resources menu, choose Documentation 4.2. The home page for the 
complete documentation set for the product and release you have selected is displayed.

Related Information
The BEA corporate web site provides all documentation for BEA WebLogic Enterprise Security. 
Other BEA WebLogic Enterprise Security documents that may be of interest to the reader 
include:

Introduction to WebLogic Enterprise Security—This document summarizes the features of 
the BEA WebLogic® Enterprise Security products and presents an overview of the 
architecture and capabilities of the security services. It provides a starting point for 
understanding the family of BEA WebLogic Enterprise Security products.

BEA WebLogic Enterprise Security Administration Guide—This document provides a 
complete overview of the product and includes step-by-step instructions on how to perform 
various administrative tasks. 

Programming Security for Java Applications—This document describes how to implement 
security in Java applications. It includes descriptions of the Security Service Application 
Programming Interfaces and programming instructions for implementing security in Java 
applications.

BEA WebLogic Enterprise Security Policy Managers Guide—This document defines the 
policy model used by BEA WebLogic Enterprise Security, and describes how to import 
and export policy data.

http://dev2dev.bea.com
{DOCROOT}/secintro/index.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/programmersguide/index.html
{DOCROOT}/policymanager/index.html


Aud ience  fo r  Th is  Gui de

Developing Security Providers 1-3

Javadocs for Java API—This document provides reference documentation for the Java 
Application Programming Interfaces that are provided with and supported by this release of 
BEA WebLogic Enterprise Security.

Javadocs for Security Service Provider Interfaces—This document provides reference 
documentation for the Security Service Provider Interfaces that are provided with and 
supported by this release of BEA WebLogic Enterprise Security.

The following sections prepare you to learn more about developing security providers:

Audience for This Guide

Prerequisites for This Guide

Overview of the Development Process

Audience for This Guide
This book is designed for security and application developers who want to write their own 
security providers for use with BEA WebLogic Enterprise Security. It is assumed that those using 
this document are application developers who have a solid understanding of security concepts, 
and that no basic security concepts require explanation. It is also assumed that security and 
application developers are familiar with BEA WebLogic Enterprise Security and with Java 
programming. 

Prerequisites for This Guide
Prior to reading this guide, you should read the Introduction to BEA WebLogic Enterprise 
Security. This document describes how the product works and provides conceptual information 
that is helpful to understanding the necessary installation components.

Additionally, BEA WebLogic Enterprise Security includes many unique terms and concepts that 
you need to understand. These terms and concepts—which you will encounter throughout the 
documentation—are defined in the Glossary.

Overview of the Development Process
To develop a custom security provider, you perform the following tasks:

1. Make security provider design decisions.

2. Write an MBean Definition File for each security provider you want to develop.

{DOCROOT}/secintro/index.html
{DOCROOT}/secintro/index.html
{DOCROOT}/glossary/index.html
{DOCROOT}/javadocs/JavaAPI/index.html
{DOCROOT}/javadocs/SSPI/index.html


I n t roduct i on  to  Deve lopi ng  Secur i t y  P rov ider s

1-4 Developing Security Providers

3. Run each MBean Definition File file through the WebLogic MBean Maker.

4. Create the runtime classes for each security provider you want to develop.

5. Create the auditing event classes for each security provider from which events are audited 
(optional).

6. Run the files generated by the MBean Maker and the runtime class files through the 
WebLogic MBean Maker to produce an MBean JAR file.

Note: An MBean JAR file can contain multiple security providers, therefore you only need 
to run the MBean Maker once to produce the MBean JAR file.

7. Deploy the MJF file to the BEA WebLogic Enterprise Security systems from which you 
want to use the providers. 

Note: This includes copying the JAR file to both the Administration Application and the 
Security Service Module provider directories.

8. Use the Administration Console to configure the security providers.

9. Initialize the security provider databases.

Figure 1-1 illustrates the security provider development process. For detailed instructions for 
each of the development tasks, see Chapter 4, “Developing Custom Security Providers.”



Overv iew o f  the  Deve lopment  Pr ocess

Developing Security Providers 1-5

Figure 1-1  Developing Custom Security Provider Tasks

MBean Type
interface,

implementation and
information files

Run each MDF file
through the

WebLogic MBean
Maker

Write an MBean
Definition file (MDF)

Create Provider
Runtime Classes

Run all files through the WebLogic MBean Maker

MBean JAR File (MJF)

Produces

Input toInput to

Produces

Create Runtime
Classes for

Auditing Events

Input to

Input to
Run each MDF
file through the
MBean Maker

separately.

Write a
separate MDF
file for each

provider
being

developed.

Create
runtime

classes for
each provider

being
developed.

Create
auditing

event runtime
classes for

each provider
from which

events being
audited.

Perform
this task

once for all
providers

Create MJF file
for providers.

Deploy MJF
file for

providers.
Deploy the MJF File

Make design
decisions

Configure security providers and initialize providers
database

Step 1

Step 2

Step 3

Step 4 Step 5

Step 6

Step 7

Steps 8, 9



I n t roduct i on  to  Deve lopi ng  Secur i t y  P rov ider s

1-6 Developing Security Providers

Types of Providers
You use the SSPI provided with the product to create runtime classes for custom security 
providers, which are located in the weblogic.security.spi package. For more information 
about this package, see Javadocs for Security Service Provider Interfaces.

Table 1-1 maps the types of security providers and their components with the SSPI and other 
interfaces you use to develop them.

Table 1-1  Security Providers, Components, and Corresponding SSPI

Type/Component Interface

Authentication provider AuthenticationProvider

LoginModule (JAAS) LoginModule

Identity Assertion provider AuthenticationProvider

Identity Asserter IdentityAsserter

Principal Validation provider PrincipalValidator

Authorization AuthorizationProvider

Access Decision AccessDecision

Adjudication provider AdjudicationProvider

Adjudicator Adjudicator

Role Mapping provider RoleProvider

Role Mapper RoleMapper

Auditing provider AuditProvider

Audit Channel AuditChannel

Credential Mapping provider CredentialProvider

Credential Mapper CredentialMapper

{DOCROOT}/javadocs/SSPI/index.html


Developing Security Providers 2-1

C H A P T E R 2

Security Provider Concepts

To develop custom security providers, you need to know and understand the security concepts 
that relate to the type of security providers you are developing. This section describes the 
concepts of each type of security provider.

“Authentication Concepts” on page 2-1

“Identity Assertion Concepts” on page 2-7

“Principal Validation Concepts” on page 2-10

“Authorization Concepts” on page 2-12

“Role Mapping Concepts” on page 2-12

“Auditing Concepts” on page 2-13

“Credential Mapping Concepts”

Authentication Concepts
Before delving into the specifics of developing custom Authentication providers, it is important 
to understand the following concepts:

“Users and Groups, Principals and Subjects” on page 2-2

“Java Authentication and Authorization Service (JAAS)” on page 2-2



Secur i t y  P rov ide r  Concepts

2-2 Developing Security Providers

Users and Groups, Principals and Subjects
A user typically represents a person. A group is a category of users, classified by common traits 
such as job title. Categorizing users into groups makes it easier to control the access permissions 
for large numbers of users. Both users and groups can be used as principals. A principal is an 
identity assigned to a user or group as a result of authentication. The Java Authentication and 
Authorization Service (JAAS) requires that subjects be used as containers for authentication 
information, including principals. Each principal stored in the same subject represents a separate 
aspect of the same user’s identity, much like cards in a person’s wallet. (For example, an ATM 
card identifies someone to their bank, while a membership card identifies them to a professional 
organization to which they belong.) For more information about JAAS, see “Java Authentication 
and Authorization Service (JAAS)” on page 2-2. For additional information on the relationship 
of users and groups and the authorization service, see the Security Services in the Introduction to 
WebLogic Enterprise Security.

As part of a successful authentication, principals are signed and stored in a subject for future use. 
A Principal Validation provider signs principals, and an Authentication provider LoginModule 
actually stores the principals in the subject. Later, when a caller attempts to access a principal 
stored within a subject, a Principal Validation provider verifies that the principal has not been 
altered since it was signed, and the principal is returned to the caller (assuming all other security 
conditions are met). 

Note: For more information about Principal Validation providers and LoginModules, see 
“Principal Validation Concepts” on page 2-10 and “Writing a JAAS LoginModule” on 
page 2-3.

Any principal that is going to represent a user or group needs to implement the WLSUser and 
WLSGroup interfaces, available in the weblogic.security.spi package.

Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires 
authentication, the Java Authentication and Authorization Service (JAAS) classes allow you to 
reliably and securely authenticate to the client. JAAS implements a Java version of the Pluggable 
Authentication Module (PAM) framework that permits applications to remain independent from 
underlying authentication technologies. Therefore, the PAM framework allows the use of new or 
updated authentication technologies without requiring modifications to your application. 
Authentication providers use JAAS internally for authentication. Therefore, only developers of 
custom Authentication providers need to be concerned with JAAS implementation.

{DOCROOT}/secintro/services.html
{DOCROOT}/secintro/index.html
{DOCROOT}/secintro/index.html


Authent ica t ion Concepts

Developing Security Providers 2-3

This section covers the following topics:

“Writing a JAAS LoginModule” on page 2-3

“LoginModule Interface” on page 2-3

“JAAS Control Flags” on page 2-4

“CallbackHandlers” on page 2-5

Writing a JAAS LoginModule
Each Authentication Provider requires a LoginModule. LoginModules are responsible for 
authenticating users within the policy domain and for populating a subject with the necessary 
principals (users and groups). LoginModules that are not used for perimeter authentication also 
verify the proof material submitted (for example, a password). 

If there are multiple Authentication Providers configured within a policy domain, each one 
requires a LoginModule to store principals within the same subject. Therefore, if a principal that 
represents a user named Joe is added to the subject by one Authentication Provider LoginModule, 
any other Authentication Provider in the policy domain should be referring to the same person 
when they encounter Joe. In other words, the other Authentication Provider LoginModule should 
not attempt to add another principal to the subject that represents a user (for example, named 
Joseph) to refer to the same person. However, it is acceptable for another Authentication Provider 
LoginModule to add a principal of a type other than the name Joseph.

LoginModule Interface
You can write LoginModules that handle a variety of authentication mechanisms, including 
username and password combinations, smart cards, and biometric devices. You develop 
LoginModules by implementing the javax.security.auth.spi.LoginModule interface, that 
is based on the Java Authentication and Authorization Service (JAAS) and uses a subject as a 
container for authentication information. The LoginModule interface enables you to plug in 
different kinds of authentication technologies for use with a single application and the Security 
Framework supports multiple LoginModule implementations for multi-part authentication. 

You can also have dependencies across LoginModule instances or share credentials across those 
instances. However, the relationship between LoginModules and Authentication providers is 
one-to-one. In other words, to have a LoginModule that handles a retina scan authentication and 
a LoginModule that interfaces to a hardware device like a smart card, you must develop and 
configure two Authentication providers, each of which includes an implementation of the 



Secur i t y  P rov ide r  Concepts

2-4 Developing Security Providers

LoginModule interface. For more information, see “Implementing the JAAS LoginModule 
Interface” on page 4-9.

Note: You can also obtain LoginModules from third-party security vendors instead of 
developing your own.

JAAS Control Flags
If a policy domain has multiple Authentication Providers configured, the Control Flag attribute 
on the Authenticator Provider determines the order of execution. Generally, you configure the 
control flow of multiple Authentication providers using the Administration Console. For more 
information on specifying the order or authentication providers, see “JAAS Control Flags” on 
page 2-4. Setting each LoginModule control flag specifies how to handle a failure during the 
authentication process. The values for the Control Flag attribute are:

REQUIRED—This LoginModule must succeed. Even if it fails, authentication proceeds 
down the list of LoginModules for the configured Authentication Providers. This setting is 
the default.

REQUISITE—This LoginModule must succeed. If other Authentication Providers are 
configured and this LoginModule succeeds, authentication proceeds down the list of 
LoginModules. Otherwise, return control to the application.

SUFFICIENT—This LoginModule needs not succeed. If it does succeed, return control to 
the application. If it fails and other Authentication Providers are configured, authentication 
proceeds down the LoginModule list.

OPTIONAL—The user is allowed to pass or fail the authentication test of this 
Authentication Providers. However, if all Authentication Providers configured in a policy 
domain have the Control Flag set to OPTIONAL, the user must pass the authentication test 
of one of the configured providers.

Figure 2-1 illustrates a sample flow involving three different LoginModules that are part of three 
Authentication providers, and illustrates what happens to the subject for different authentication 
outcomes.



Authent ica t ion Concepts

Developing Security Providers 2-5

Figure 2-1  Sample LoginModule Flow

If you set the control flag for Custom Authentication Provider #1 to Required, the authentication 
failure in the User Authentication step causes the entire authentication process to fail. Also, if the 
user was not authenticated by the WebLogic Authentication provider (or custom Authentication 
provider #2), the entire authentication process fails. If the authentication process had failed in any 
of these ways, all three LoginModules would have been rolled back and the subject would not 
contain any principals. 

Note: For more information about the LoginModule control flag setting and the LoginModule 
interface, see the Java Authentication and Authorization Service (JAAS) 1.0 
LoginModule Developer’s Guide and the Java 2 Enterprise Edition, v1.4.2 API 
Specification Javadoc for the LoginModule interface, respectively.

CallbackHandlers
A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of 
arguments to be passed as complex objects to a method. An application implements a 
CallbackHandler and passes it to underlying security services so that they may interact with 
the application to retrieve specific authentication data, such as usernames and passwords, or to 
display certain information, such as error and warning messages. 

CallbackHandlers are implemented in an application-dependent fashion and the application 
developer must implement one for his application. For example, an HTML form (such as, a login 
page) could prompt the user for information or display an error message. Another implementation 
might choose to obtain information from an alternate source without asking the user.

Authentication Provider

Custom Authentication Provider
#2

LoginModule

LoginModule

User
Authenticated?

Principal
Created?

Control Flag
Setting

Yes,  p1

Yes,  p2

Required

Required

Optional

Subject

p1

p1, p2

Yes

Yes

NoNo N/A
Custom Authentication Provider

#1
LoginModule

http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/spi/LoginModule.html


Secur i t y  P rov ide r  Concepts

2-6 Developing Security Providers

Underlying security services make requests for different types of information by passing 
individual Callbacks to the CallbackHandler. The CallbackHandler implementation decides 
how to retrieve and display information depending on the Callbacks passed to it. For example, if 
the underlying service needs a username and password to authenticate a user, the service uses a 
NameCallback and PasswordCallback. The CallbackHandler can then request a username 
and password serially, or request both from a single pop-up window. 

How JAAS Works
Authentication using the JAAS classes and the Security Framework is performed in the following 
manner:

1. The client application creates a callback handler containing a callback that allows a provider 
to request authentication information from the application.

2. The client application passes the callback handler through the authentication service of the 
Java API into the Security Framework.

3. The Security Framework presents the callback handler to the LoginModule for the 
appropriate authentication provider.

4. The LoginModule uses the callback handler to request specific authentication information 
(e.g., username or password).

5. The client application is responsible for collecting the appropriate information to respond to 
the authentication callback. For example, this may include prompting for a username or 
password.

6. After the LoginModule collects all of the information required, it does one of the following:

Authentication success, returns a valid subject: 

– Principals (users and groups) are signed by a Principal Validation provider to ensure 
their authenticity between programmatic server invocations. For more information 
about Principal Validation providers, see “Principal Validation Concepts” on page 2-10.

– The LoginModule associates the signed principals with a subject representing the user 
or system process being authenticated. For more information about subjects and 
principals, see “Users and Groups, Principals and Subjects” on page 2-2.

Authentication failure, throws a exception (LoginException)

Note: For more information about LoginModules, see “Java Authentication and 
Authorization Service (JAAS)” on page 2-2.



Ident i t y  Asser t i on Concepts

Developing Security Providers 2-7

Identity Assertion Concepts
Before you develop an Identity Assertion provider, you need to understand the following 
concepts:

“Identity Assertion Providers and LoginModules” on page 2-7

“Identity Assertion and Tokens” on page 2-7

“Passing Tokens for Perimeter Authentication” on page 2-10

Identity Assertion Providers and LoginModules
When used with a LoginModule, Identity Assertion providers support single sign-on. For 
example, an Identity Assertion provider can generate a token from a digital certificate and that 
token can be passed around the system so that users are not asked to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:

Part of a custom Authentication provider you develop.

Part of the Authentication provider BEA developed and supplied with WebLogic 
Enterprise Security product.

Part of a third-party Authentication provider.

Unlike in a simple authentication situation, the LoginModules that Identity Assertion providers 
use do not verify proof material such as usernames and passwords; they simply verify that the 
user exists.

Note: For more information about LoginModules, see “Writing a JAAS LoginModule” on 
page 2-3.

Identity Assertion and Tokens
You develop Identity Assertion providers to support the specific types of tokens that you want to 
use to assert the identities of users or system processes. You can develop an Identity Assertion 
provider to support multiple token types, but you can configure the Identity Assertion provider 
so that it validates only one “active” token type. While you can have multiple Identity Assertion 
providers in a security service module with the ability to validate the same token type, only one 
Identity Assertion provider can actually perform the validation.

Note: Supporting token types means that the Identity Assertion provider runtime class (that is, 
the IdentityAsserter SSPI implementation) can validate the token type with its 



Secur i t y  P rov ide r  Concepts

2-8 Developing Security Providers

assertIdentity method. For more information, see “Implementing the 
AuthenticationProvider SSPI” on page 4-8.

The following sections show how to work with new token types:

“How to Create New Token Types” on page 2-8

“How to Make New Token Types Available” on page 2-8

How to Create New Token Types
If you develop a custom Identity Assertion provider, you can also create new token types. A 
token type is simply a piece of data represented as a string. The token types you create and use 
are completely up to you. As examples, the following token types are currently defined for the 
X.509 Identity Assertion provider: X.509, CSI.PrincipalName, CSI.ITTAnonymous, 
CSI.X509CertChain, and CSI.DistinguishedName. 

To create new token types, you create a new Java file and declare any new token types as constant 
variables of type String., as shown in Listing 2-1. The 
PerimeterIdentityAsserterTokenTypes.java file defines the names of the token types 
Test 1, Test 2, and Test 3 as strings.

Listing 2-1   PerimeterIdentityAsserterTokenTypes.java

package sample.security.providers.authentication.perimeterATN;

public class PerimeterIdentityAsserterTokenTypes

{

public final static String TEST1_TYPE = “Test 1”;
public final static String TEST2_TYPE = “Test 2”;
public final static String TEST3_TYPE = “Test 3”;

}

How to Make New Token Types Available
When you configure a custom Identity Assertion provider, the Supported Types field displays a 
list of the token types that the Identity Assertion provider supports. To configure the provider, use 
the Administration Console to select the token type that you want to make active.



Ident i t y  Asser t i on Concepts

Developing Security Providers 2-9

The content for the Supported Types field is obtained from the SupportedTypes attribute of the 
MBean Definition File (MDF) that you use to generate your custom Identity Assertion provider 
MBean type. An example from the sample Identity Assertion provider is shown in Listing 2-2. 

Listing 2-2   SampleIdentityAsserter MDF: Supported Types Attribute

<MBeanType>

...

<MBeanAttribute 

Name = "SupportedTypes"

Type = "java.lang.String[]"

Writeable = "false"

Default = "new String[] {&quot;SamplePerimeterAtnToken&quot;}"

/>

...

</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes attribute of 
the MBean Definition File (MDF). You can specify a default ActiveTypes attribute in the MDF 
so that it does not have to be set manually through the Administration Console. An example from 
the sample Identity Assertion provider is shown in Listing 2-3. 

Listing 2-3   Sample Identity Asserter MDF: Active Types Attribute Default Value

<MBeanAttribute 

Name= "ActiveTypes"

Type= "java.lang.String[]"

Default = "new String[] { &quot;SamplePerimeterAtnToken&quot; }"

/>

While setting a default value for the ActiveTypes attribute is convenient, only do this if you do 
not use another Identity Assertion provider to validate that token type. Otherwise, you may 
configure an invalid Security Service Module (where more than one Identity Assertion provider 



Secur i t y  P rov ide r  Concepts

2-10 Developing Security Providers

attempts to validate the same token type). Best practice dictates that all MDFs for Identity 
Assertion providers turn off the token type by default; then an administrator can manually make 
the token type active by configuring the Identity Assertion provider that validates it.

Note: If an Identity Assertion provider is not developed and configured to validate and accept 
a token type, the authentication process fails. 

Passing Tokens for Perimeter Authentication
To perform perimeter authentication, clients can pass tokens using HTTP headers, cookies, SSL 
certificates, or other mechanisms. For example, a string that is base 64-encoded, which enables 
the sending of binary data, can be sent to a servlet through an HTTP header. The value of this 
string can be a username or some other string representation of a user’s identity. The Identity 
Assertion provider used for perimeter authentication can then take that string and extract the 
username.

For example, when using the WebLogic Server 8.1 Security Service Module, if the token is 
passed through HTTP headers or cookies, the token is equal to the header or cookie value, and 
the resource container passes the token to the part of the Security Framework that handles 
authentication. The Security Framework then passes the token to the Identity Assertion provider, 
unchanged.

Principal Validation Concepts
Before you develop a Principal Validation provider, you need to understand the following 
concepts:

“Principal Validation and Principal Types” on page 2-10

“How Principal Validation Providers Differ From Other Types of Security Providers” on 
page 2-11

“Security Exceptions Resulting from Invalid Principals”

Principal Validation and Principal Types
The Principal Validation provider that is associated with the configured Authentication provider 
signs and verifies all the principals stored in the subject that are the type that the Principal 
Validation provider is designed to support. A Principal Validation provider is a special type of 
security provider that acts primarily as a “helper” to an Authentication provider. The main 



Pr inc i pa l  Va l idat i on Concepts

Developing Security Providers 2-11

function of a Principal Validation provider is to prevent malicious individuals from tampering 
with the principals stored in a subject.

Principal Validation providers support specific types of principals. For example, the WebLogic 
Principal Validation provider signs and verifies the authenticity of WebLogic Enterprise Security 
principals. 

How Principal Validation Providers Differ From Other Types of 
Security Providers
The AuthenticationProvider SSPI (as described in “Implementing the 
AuthenticationProvider SSPI” on page 4-12) includes a method called 
getPrincipalValidator. In this method, you return an instance of the Principal Validation 
provider runtime class to be used with the Authentication provider. The Principal Validation 
provider runtime class can be the one BEA provides or one you develop. An example of using 
the Principal Validation provider in an Authentication provider getPrincipalValidator 
method is shown in Listing 6-1, “SampleAuthenticationProviderImpl.java,” on page 6-2.

Because you generate MBean types for Authentication providers and configure Authentication 
providers using the Administration Application, you do not have to perform these steps for a 
Principal Validation provider.

Security Exceptions Resulting from Invalid Principals
When the Security Framework attempts an authentication (or authorization) operation, it checks 
the subject principals to see if they are valid. If a principal is not valid, the Security Framework 
throws a security exception indicating that the subject is invalid. A subject is invalid because:

A principal in the subject does not have a corresponding Principal Validation provider 
configured (which means there is no way for the Security Framework to validate the 
subject). 

Note: Because you can have multiple principals in a subject, each stored by the 
LoginModule of a different Authentication provider, the principals can have different 
Principal Validation providers.

A principal with an invalid signature was created as part of an attempt to compromise 
security.

A subject never had its principals signed.



Secur i t y  P rov ide r  Concepts

2-12 Developing Security Providers

Authorization Concepts
An Access Decision is the component of an Authorization provider that actually answers the 
question, “Is access allowed?” Specifically, an Access Decision asks whether a subject has 
permission to perform a given operation on a resource, with specific parameters in an application. 
Given this information, the Access Decision responds with a result of PERMIT, DENY, or ABSTAIN. 
For more information about Access Decisions, see “Implement the AccessDecision SSPI” on 
page 4-17.

Role Mapping Concepts
Before you develop a Role Mapping provider, you need to understand the following concepts:

“Security Roles” on page 2-12

“Dynamic Security Role Computation” on page 2-12

Security Roles
A security role is a named collection of users or groups that have similar permissions to access 
resources. Like groups, security roles allow you to control access to resources for several users 
at once. However, unlike groups, security roles can be scoped to resources and actions and are 
defined dynamically.

The SecurityRole interface in the weblogic.security.service package is used to represent 
the abstract notion of a security role. (For more information, see the Javadocs for Security Service 
Provider Interfaces for the SecurityRole interface.)

Mapping a principal to a security role grants the associated access permissions to that principal, 
as long as the principal is “in” the security role. For example, an application may define a security 
role called AppAdmin, which provides write access to a small subset of that application's 
resources. Any principal in the AppAdmin security role would then have write access to those 
resources. 

Many principals can be mapped to a single security role. For more information about principals, 
see “Users and Groups, Principals and Subjects” on page 2-2. Security roles are specified in the 
Administration Application. For more information, see the Administration Console online help.

Dynamic Security Role Computation
Dynamic security role computation is the term for the late binding of principals to security roles 
at runtime. The late binding occurs just prior to an authorization decision for a protected resource, 

{DOCROOT}/javadocs/SSPI/index.html
{DOCROOT}/javadocs/SSPI/index.html


Audi t ing Concepts

Developing Security Providers 2-13

regardless of whether the principal-to-security role association is statically defined or 
dynamically computed. Because of its placement in the invocation sequence, the result of any 
principal-to-security role computations can be taken as an authentication identity, as part of the 
authorization decision made for the request. 

This dynamic computation of security roles provides a very important benefit: users or groups 
can be granted a security role based on business rules. For example, a user may be allowed to be 
in a Manager security role only while the actual manager is away on an extended business trip. 
Dynamically computing this security role means that you do not need to change or redeploy your 
application to allow for such a temporarily arrangement. Further, you do not need to remember 
to revoke the special privileges when the actual manager returns, as you would if you temporarily 
added the user to a Managers group. 

Note: You typically grant users or groups security roles using the role conditions available in 
the Administration Console.

The role mapping provider can access information that comprises the context of the request, 
including the identity of the target (if available) and the parameter values of the request. The 
context information is typically used as values of parameters in an expression that is evaluated by 
the Role Mapping provider. You can define role mapping expressions or rules used by the 
WebLogic Enterprise Security Role Mapping provider through the Administration Console.

Auditing Concepts
Before you develop an Auditing provider, you need to understand the following concepts:

“Audit Channels” on page 2-13

“Auditing Events from Custom Security Providers” on page 2-13

Audit Channels
An audit channel is the component of an Auditing provider that determines whether a security 
event is audited and performs the actual recording of audit information.

Note: For more information about Audit Channels, see “Implement the AuditChannel SSPI” on 
page 4-20.

Auditing Events from Custom Security Providers
Each type of security provider can call the configured Auditing providers with a request to write 
out information about security-related events, before or after these events take place. For 



Secur i t y  P rov ide r  Concepts

2-14 Developing Security Providers

example, if a user attempts to access a withdraw method in a bank account application (to which 
they do not have access), the Authorization provider can request that this operation be recorded. 
Security-related events are only recorded when they meet or exceed the severity level specified 
in the configuration of the Auditing providers.

For information about how to post audit events from a custom security provider, see Chapter 5, 
“Auditing Events from Custom Security Providers.”

Credential Mapping Concepts
A subject or source of a resource request has security-related attributes called credentials. A 
credential may contain information used to authenticate the subject to new services. Such 
credentials include username and password combinations, Kerberos tickets, and public key 
certificates. Credentials can also contain data that allows a subject to perform certain activities. 
Cryptographic keys, for example, represent credentials that enable the subject to sign or encrypt 
data. 

A credential map is a mapping of credentials used by WebLogic Enterprise Security to 
credentials used in a legacy or any remote system that tells the WebLogic Enterprise Security 
system how to connect to a given resource in that system. In other words, credential maps allow 
WebLogic Enterprise Security to log in to a remote system on behalf of a subject that has already 
been authenticated. You can map credentials in this way by developing a Credential Mapping 
provider. 



Developing Security Providers 3-1

C H A P T E R 3

Design Considerations

Careful planning of development activities can greatly reduce the time and effort you spend 
developing custom security providers. The following sections provide information to help you 
make design decisions and to understand the process and components of the custom security 
provider development:

General Architecture of a Security Provider

Security Services Provider Interface

Developing Security Providers using the SSPI

Security Services Provider Interface MBeans

Initialization of the Security Provider Database



Des ign  Cons iderat i ons

3-2 Developing Security Providers

General Architecture of a Security Provider
Although you can develop different types of security providers, all security providers follow the 
same general architecture. Figure 3-1 illustrates the general architecture of a security provider.

Figure 3-1  Security Provider Architecture

Figure 3-1 shows the relationship between a single runtime class (MyFooProviderImpl) and an 
MBean type (MyFooMBean) file. To develop a custom security provider you write an MBean 
Definition File, the MyFooMBean MBean type file. The MyFooBean file extends the SSPI MBean 
(FooSSPIMBean). It is written in XML format. When you run the MBean Definition File through 
the WebLogic MBeanMaker, that utility generates the runtime class for the MBean type, 
MyFooMBean.java.

The process begins when a Security Service Module instance starts and the Security Framework:

1. Locates the MBean type associated with the security provider. MBean types are located in the 
MJF file for the provider in the /lib/providers directory.

2. Obtains the name of the security provider runtime class from the MBean type (if there are 
two runtime classes, the one that implements the Provider SSPI), and creates a new instance 
of the provider runtime class.

3. Passes in the appropriate MBean instance that the security provider uses to initialize (read 
configuration data) to the initialize() method of the security provider runtime class. 

implements

WebLogic
Enterprise
Security SSPI

Security Developer
Implementations

implements

Runtime Class (.java files)

FooProviderSSPI FooOtherSSPI

MyFooProviderImpl

MBean Type (.xml files)

FooSSPIMBean

MyFooMBean

extends

security framework uses to create
reads config data

Used to set configuration data (for
example, in the Administration
Application)



Secur i t y  Se rv ices  P rov ide r  I nt er face

Developing Security Providers 3-3

Therefore, both the runtime class or classes and the MBean type form what is called the 
security provider.

Security Services Provider Interface
You develop a custom security provider by first implementing the security service provider 
interface to create runtime classes. See “Types of Providers” on page 1-6 for a list of which one 
to implement for each type of security provider.

Each SSPI that ends in the suffix "Provider" (for example, CredentialProvider) exposes the 
services of a security provider to the Security Framework. This allows you to manipulate the 
security provider (initialize, start, stop, and so on). 

Figure 3-2  Provider SSPI

Figure 3-2 shows the SSPI provided with BEA WebLogic Enterprise Security. This SSPI extends 
the Security Provider interface (SecurityProvider.java) and its methods and exposes the 
security services to the framework. Because the custom security provider runtime classes 
implement a Security Provider interface, all such runtime classes must provide implementations 
for these inherited methods. Table 3-1 describes the security provider interface methods.

SecurityProvider.javaWebLogic Server
SSPIs

CredentialProvider.java

AuthenticationProvider.javaAuditProvider.java AdjudicationProvider.java

AuthorizationProvider.javaRoleProvider.java

all extend



Des ign  Cons iderat i ons

3-4 Developing Security Providers

To develop a custom security provider, you must create runtime classes that implement the 
security provider SSPI. Using a Credential Mapping provider as an example, Figure 3-3 
illustrates the inheritance hierarchy that is common to all SSPIs and shows how a runtime class, 
can implement the required interfaces. In this example, BEA supplies the SecurityProvider 
interface and the CredentialProvider and CredentialMapper SSPI. A single runtime class, 
MyCredentialMapperProviderImpl, implements the CredentialProvider and 
CredentialMapper SSPI.

Table 3-1  Security Provider Interface Methods

Method Description

initialize() This method takes two arguments: providerMBean and securityServices.

The providerMBean argument can be narrowed to the security provider MBean 
associated with the security provider. The MBean instance is created from the MBean 
type you generate and contains configuration data that allows the Administration 
Application to manage the custom security provider. If this configuration data is 
available, you can use the initialize method to extract it.

The securityServices argument is an object from which the custom security 
provider can obtain the Auditor service. For more information about the Auditor 
Service and auditing, see Creating Auditing Provider Runtime Classes and Auditing 
Events from Custom Security Providers

getDescription() Returns a brief textual description of the custom security provider. 

shutdown() Shuts down the custom security provider. 



Secur i t y  Se rv ices  P rov ide r  I nt er face

Developing Security Providers 3-5

Figure 3-3  Credential Mapping SSPI and a Single Runtime Class

However, Figure 3-3 illustrates only one way you can implement the SSPI, that is, by creating a 
single runtime class. If you prefer, as illustrated in Figure 3-4, you can create two runtime classes: 
one for the implementation of the Provider SSPI (for example, the CredentialProvider) and 
one for the implementation of the other SSPI (for example, the CredentialMapper SSPI).

When you choose to create two runtime classes, the class that implements the Provider SSPI acts 
as a factory for generating an instance of the runtime class that implements the other SSPI. For 
example, in Figure 3-4, MyCredentialMapperProviderImpl acts as a factory for generating 
MyCredentialMapperImpl.

Note: If you choose to create two runtime classes, remember to include both of them in the 
MBean JAR File when you use the WebLogic MBeanMaker to generate the security 
provider MBean type.

 SecurityProvider

 initialize()
 getDescription()
 shutdown()

  CredentialProvider

  getCredentialProvider()

extends

  CredentialMapper

  getCredentials()
  getCredentials()

WebLogic
Enterprise

Security SSPIs

Security Developer
ImplementationsMyCredentialMapperProviderImpl

  impls for all inherited methods

implements

implements



Des ign  Cons iderat i ons

3-6 Developing Security Providers

Figure 3-4  Credential Mapping SSPI and Two Runtime Classes

Developing Security Providers using the SSPI
BEA WebLogic Enterprise Security provides an extended version of the standard WebLogic  
Security Service Provider Interface (SSPI). Providers that you write to work in both environments 
must handle both WebLogic resources and extended ones.   Listing 3-1 shows how to use the 
instanceof operator in providers to check for extended resource. 

Listing 3-1   Adding Code to Providers to Check for Extended Resource

if ( myresource instanceof com.bea.security.spi.ResourceActionBundle ) {
        // This is a WLES resource that uses the enhanced SSPI.

} else {
        // This is a WLS resource. You must test further for more object 
        // types and handle them explicitly.
}

 SecurityProvider

 initialize()
 getDescription()
 shutdown()

  CredentialProvider

  getCredentialProvider()

extends
  CredentialMapper

  getCredentials()
  getCredentials()

WebLogic Enterprise
Security SSPIs

MyCredentialMapperProviderImpl

  impls for all inherited methods

implements implements

  MyCredentialMapperImpl

  impls for all inherited
methods

factory

Security Developer
Implementations



Secur i t y  Se rv ices  P rov ide r  I nt er face

Developing Security Providers 3-7

Using ResourceActionBundle
The com.bea.security.spi.ResourceActionBundle interface is a representation of a 
resource. As the name implies, this interface is merely a container for two other objects, 
ProviderResource and ProviderAction. ProviderResource is the resource portion of this 
object and ProviderAction is the action. The security provider understands which object is the 
operand and which is the verb.

com.bea.security.spi.ProviderResource
A ProviderResource object gives the provider a mechanism to parse this resource name 
without having to understand the intricacies of the specific format. The 
ProviderResource.getDeepEnumeration() method extracts a collection of 
NameValueTypes that can may be mapped into the internal representation of the provider for that 
resource. The ProviderResource.getEnumeration() method is another method that provides 
a set of ordered NameValueTypes, however, this method provides a shallow enumeration, 
breaking the resource into more coarsely grained pieces. How this resource is parsed is 
determined by the application developer by means of a naming authority.

A resource type directly relates to its naming authority. A resource that has a naming authority of 
“HR_URL” is considered a different kind of resource than one who has a naming authority of 
“INTERNET_URL,” even if both resources map to the same keys and values. You can get the name 
of a resource’s naming authority with the ProviderResource.getAuthorityName() method.

Additionally, a ProviderResource object can also return a reference to its parent resource 
(ProviderResource.getResourceParent() method), if available. Therefore, a provider does 
not have to know how to produce a parent from the resource; in fact, the resource and the action 
can have separate parents.

com.bea.security.spi.ProviderAction
A ProviderAction object is very similar to a ProviderResource. It can be enumerated, 
parented, and linked to its own naming authority name as well.



Des ign  Cons iderat i ons

3-8 Developing Security Providers

Using the ProviderAuditRecord Interface
BEA WebLogic Enterprise Security provides an extended version of the standard WebLogic  
Security Service Provider Interface (SSPI). Providers that you write to work in both environments 
must handle both WebLogic audit records and extended ones. Listing 3-2 shows how to use the 
instanceof operator in providers to check for extended audit records. 

Listing 3-2   Adding Code to Providers to Check for an Extended Audit Record

if ( myauditrecord instanceof com.bea.security.spi.ProviderAuditRecord) {

        // This is a WLES audit record that uses the enhanced SSPI.

} else {

        // This is a WLS audit record. You must test further for more object 

       // types and handle them explicitly.

}

A simple audit provider can use the toString() method to render the audit record as a string; 
thus, the provider does not require specific knowledge of the audit record type.

A more complex auditing provider that tracks events by many keys and needs to distinguish  
messages by various types and attributes, requires a data-driven method of event introspection. 
The Provider Audit Record Interface, com.bea.security.spi.ProviderAuditRecord, 
satisfies this requirement.

This interface addresses this requirement by employing a similar mechanism as is used to inspect 
resources. An audit event can be enumerated using the 
ProviderAuditRecord.getEnumeration() and getDeepEnumeration() methods. 

Additionally, the Provider Audit Record interface can associate an application context with an 
audit event.

This allows the auditing provider to select some context elements to audit when events occur. For 
example, when an audit event occurs, you may choose to audit the number of concurrent sessions, 
the time the user logged on, or some other application specific value propagated by the 
application context.



Secur i t y  Se rv ices  P rov ide r  In te r face  MBeans

Developing Security Providers 3-9

Security Services Provider Interface MBeans
The next task in developing a custom security provider is generating an MBean type for the 
custom security provider.

Understanding why You Need an MBean Type

Determining which SSPI MBeans to Extend

Understanding the Basic Elements of an MBean Definition File

Understanding the SSPI MBean Hierarchy

Understanding What the WebLogic MBeanMaker Provides

Understanding why You Need an MBean Type 
In addition to creating runtime classes for a custom security provider, you must also generate an 
MBean type. The term MBean is short for managed bean, a Java object that represents a Java 
Management eXtensions (JMX) manageable resource. MBeans are used to expose configuration 
to the provider runtime class.

Note: JMX is a specification created by Sun Microsystems that defines a standard management 
architecture, APIs, and management services. For more information, see the Java 
Management Extensions White Paper.

Determining which SSPI MBeans to Extend
You use MBean interfaces called SSPI MBeans to create MBean types. Based on the custom 
security provider you plan to develop, refer to Table 3-2 and locate the required SSPI MBean.

Table 3-2  Required SSPI MBeans

Type Package Name Required SSPI MBean

Authentication provider weblogic.management.security.
authentication

Authenticator

Identity Assertion provider weblogic.management.security.
authentication

IdentityAsserter

Authorization provider weblogic.management.security.
authorization

Authorizer

http://java.sun.com/products/JavaManagement/wp/
http://java.sun.com/products/JavaManagement/wp/


Des ign  Cons iderat i ons

3-10 Developing Security Providers

Understanding the Basic Elements of an MBean Definition File 
An MBean Definition File is an XML file used by the WebLogic MBeanMaker utility to generate 
the Java files that comprise an MBean type. All MBean Definition Files must extend a required 
SSPI MBean that is specific to the type of the security provider you have created. Listing 3-3 
shows a sample MBean Definition File and an explanation of its content follows.

Note: For a complete reference of MBean Definition File element syntax, see MBean 
Definition File Element Syntax.

Listing 3-3   SampleCredentialMapper.xml

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<!-- MBean Definition File (MDF) for the Sample Credential Mapper.

     Copyright (c) 2003 by BEA Systems, Inc.  All Rights Reserved.

-->

<!-- Declare your mbean.

Adjudication provider weblogic.management.security.
authorization

Adjudicator

Role Mapping provider weblogic.management.security.
authorization

RoleMapper

Auditing provider weblogic.management.security.
audit

Auditor

Credential Mapping provider weblogic.management.security.
credentials

CredentialMapper

Table 3-2  Required SSPI MBeans

Type Package Name Required SSPI MBean



Secur i t y  Se rv ices  P rov ide r  In te r face  MBeans

Developing Security Providers 3-11

     Since it is for an credential mapper, it must extend the

     weblogic.management.security.credentials.CredentialMapper or

     weblogic.management.security.credentials.DeployableCredentialMapper 

     mbean.

     Since this sample supports WLS RA deployments, it extends the

     weblogic.management.security.credentials.DeployableCredentialMapper

     mbean.

     The Name and DisplayName must be the same.

     They specify the name that will appear on the

     console for this provider.

     Note that since this is an xml document, you can't use double

     quotes directly.  Instead you need to use &quot;

     Note that setting "Writeable" to "false" on an attribute

     makes the attribute read-only.  The default is read-write.

-->

<MBeanType

 Name          = "SampleCredentialMapper"

 DisplayName   = "SampleCredentialMapper"

 Package       = "examples.security.providers.credentials"

 Extends       = 

"weblogic.management.security.credentials.DeployableCredentialMapper"

>



Des ign  Cons iderat i ons

3-12 Developing Security Providers

 <!-- You must set the value of the ProviderClassName attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to the name of the java class you wrote that implements the

      weblogic.security.spi.CredentialProvider or

      weblogic.security.spi.DeployableCredentialProvider interface.

      Since this sample supports WLS RA deployments, it implements

      the weblogic.security.spi.DeployableCredentialProvider interface.

      You can think of the provider's mbean as the factory

      for your provider's runtime implementation.

 -->

 <MBeanAttribute

  Name          = "ProviderClassName"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = 

"&quot;examples.security.providers.credentials.SampleCredentialMapperProvi

derImpl&quot;"

 />

 <!-- You must set the value of the Description attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to a brief description of your provider.

      It is displayed in the console.

 -->

 <MBeanAttribute



Secur i t y  Se rv ices  P rov ide r  In te r face  MBeans

Developing Security Providers 3-13

  Name          = "Description"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = "&quot;WLES Sample Credential Mapper Provider&quot;"

 />

 <!-- You must set the value of the Version attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to your provider's version.  There is no required format.

 -->

 <MBeanAttribute

  Name          = "Version"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = "&quot;1.0&quot;"

 />

 <!-- Add any custom attributes for your provider here.

      The sample credential mapper does not have any custom attributes.

  -->

</MBeanType>

The bold attributes in the <MBeanType> tag show that this MBean Definition File is named 
SampleCredentialMapper and that it extends the required SSPI MBean called 
DeployableCredentialMapper.

The ProviderClassName, Description, and Version attributes defined in the 
<MBeanAttribute> tags are required in any MBean Definition File used to generate MBean 



Des ign  Cons iderat i ons

3-14 Developing Security Providers

types for security providers because they define the basic configuration methods for the provider 
and are inherited from the base required SSPI MBean called Provider (see Figure 3-6). The 
ProviderClassName attribute is especially important. The value for the ProviderClassName 
attribute is the name of the security provider runtime class (that is, the implementation of the 
appropriate SSPI). The example runtime class shown in Listing 3-3 is 
SampleCredentialMapperProviderImpl.java. 

While not shown in Listing 3-3, you can include additional attributes in an MBean Definition File 
using the <MBeanAttribute> tag. Most custom attributes automatically appear in the Details tab 
for your custom security provider in the Administration Application (as shown in Figure 3-5).

Figure 3-5  Database Credential Mapping Provider Details Tab

Understanding the SSPI MBean Hierarchy 
All attributes specified in the required SSPI MBeans that your MBean Definition File extends (all 
the way up to the Provider base SSPI MBean) automatically appear in a Administration 
Application pages for the associated security provider. You use these attributes to configure your 
custom security providers. Figure 3-6 illustrates the SSPI MBean hierarchy for security providers 
using the Sample Credential Mapping MBean Definition File as an example.



Secur i t y  Se rv ices  P rov ide r  In te r face  MBeans

Developing Security Providers 3-15

Figure 3-6  SSPI MBean Hierarchy for Credential Mapping Providers

Implementing the hierarchy of SSPI MBeans in the Sample Credential Mapper MBean Definition 
File (shown in Figure 3-6) produces the page in the Administration Application that is shown in 
Figure 3-7. The full listing of the Sample Credential Mapper MBean Definition File is shown in 
Listing 3-2.

Provider

ProviderClassName
Description
Version

CredentialMapper

extends

WebLogic Server
SSPI MBeans

Required

extends

SampleCredentialMapper

ProviderClassName
Description
Version

Security Developer-Supplied MDF

DeployableCredentialMapper

extends



Des ign  Cons iderat i ons

3-16 Developing Security Providers

Figure 3-7  Sample Credential Mapper General Tab

The Name, Description, and Version fields are derived from attributes with the same names, 
inherited from the base required SSPI MBean called Provider and specified in the Sample 
Credential Mapper MBean Definition File. The DisplayName attribute in the Sample Credential 
Mapper MBean Definition File generates the value for the Name field, and that the Description 
and Version attributes generate the values for their respective fields as well.

Understanding What the WebLogic MBeanMaker Provides 
The WebLogic MBeanMaker is a command-line utility that takes an MBean Definition File as 
input and outputs an MBean Java interface. This Java interface can then be used in the custom 
security provider runtime class, through the 
weblogic.security.spi.SecurityProvider.initialize() method, to get configuration 
attributes. Figure 3-8 shows the operations performed by the WebLogic MBeanMaker utility.



I n i t ia l i za t i on  o f  the  Secur i t y  P rov i de r  Database

Developing Security Providers 3-17

Figure 3-8  What the WebLogic MBeanMaker Provides

Initialization of the Security Provider Database
You must initialize the security provider database with the default users, groups, security policies, 
security roles, or credentials that your providers need. The provider is not restricted to using a 
relational database. A provider can store users, groups, etc., in a variety of persistent stores as 
described in the Introduction to WebLogic Enterprise Security. 

Creating a Simple Database

Configuring an Existing Database

Delegating Database Initialization

Required SSPI MBean

Attribute 1

MDF

Custom Attribute 2

extends

WebLogic MBeanMaker

MBean Interface File

Attribute 1
Custom Attribute 2

extends

run through

outputs

{DOCROOT}/secintro/services.html


Des ign  Cons iderat i ons

3-18 Developing Security Providers

Creating a Simple Database
The first time you use a custom provider, it attempts to locate a database with the information 
needed to provide its security service. If the security provider fails to locate the database, it need 
to create one and populate it with the default users, groups, security policies, security roles, and 
credentials. This option may be useful for development and testing purposes.

Note: The sample security providers, available under Code Samples:WebLogic Enterprise 
Security on the dev2dev Web site, simply create and use a properties file as their database. 
For example, the sample Authentication provider creates a properties file that contains 
the necessary information about users and groups.

Configuring an Existing Database
If you already have a database (such as an external LDAP server), you can populate that database 
with the users, groups, security policies, security roles, and credentials that your providers 
require. Populating an existing database is accomplished using whatever tools you already have 
in place for performing these tasks. For information on setting up an external repository see, 
Configuring Metadirectories in the Administration Application Installation Guide. 

Once your database contains the necessary information, you must configure the security 
providers to look in that database. You accomplish this by adding custom attributes in your 
MBean Definition File. Some examples of custom attributes are the database host, port, 
password, and so on. You can use the Administration Application to configure these attributes to 
point to the database.

As an example, Listing 3-4 shows some custom attributes that are part of the LDAP 
Authentication provider MBean Definition File. These attributes allow an administrator to 
specify information about the LDAP Authentication provider database (an external LDAP 
server), so it can locate information about users and groups.

Listing 3-4   LDAPAuthenticator.xml

...<MBeanAttribute
Name = "UserObjectClass"
Type = "java.lang.String"
Default = "&quot;person&quot;"
Description = "The LDAP object class that stores users."
/>

{DOCROOT}/installadmin/radiantlogic.html
http://dev2dev.bea.com/codelibrary/code/ssp.jsp
http://dev2dev.bea.com/codelibrary/code/ssp.jsp


I n i t ia l i za t i on  o f  the  Secur i t y  P rov i de r  Database

Developing Security Providers 3-19

<MBeanAttribute
Name = "UserNameAttribute"
Type = "java.lang.String"
Default = "&quot;uid&quot;"
Description = "The attribute of an LDAP user object that specifies the name of 
the user."

/>

<MBeanAttribute
Name = "UserDynamicGroupDNAttribute"
Type = "java.lang.String"
Description = "The attribute of an LDAP user object that specifies the
distinguished names (DNs) of dynamic groups to which this user belongs.
If such an attribute does not exist, WebLogic Server determines if a
user is a member of a group by evaluating the URLs on the dynamic group.
If a group contains other groups, the URLs are evaluated for
any of the descendents of the group."

/>

<MBeanAttribute
Name = "UserBaseDN"
Type = "java.lang.String"
Default = "&quot;ou=people, o=example.com&quot;"
Description = "The base distinguished name (DN) of the tree in the LDAP 
directory that contains users."

/>
<MBeanAttribute
Name = "UserSearchScope"
Type = "java.lang.String"
Default = "&quot;subtree&quot;"
LegalValues = "subtree,onelevel"
Description = "Specifies how deep in the LDAP directory tree to search 
for Users.
Valid values are &lt;code&gt;subtree&lt;/code&gt;
and &lt;code&gt;onelevel&lt;/code&gt;."

/>

...

Delegating Database Initialization
If possible, initialization calls between a security provider and the security provider database are 
done by an intermediary class, referred to as a database delegator. Use of a database delegator 
is convenient because it hides the database and centralizes calls into the database. The database 



Des ign  Cons iderat i ons

3-20 Developing Security Providers

delegator should interact with the runtime class and the MBean type for the security provider, as 
shown in Figure 3-9. 

Figure 3-9  Database Delegator Class Positioning

Security Provider

Database Delegator

Runtime Class MBean Type

Database



Developing Security Providers 4-1

C H A P T E R 4

Developing Custom Security Providers

If the security providers that ship with the WebLogic Enterprise Security product do not meet 
your needs, you can develop custom security providers by following the steps outlined in 
“Overview of the Development Process” on page 1-3.

This section covers the following topics:

Types of Custom Security Providers Supported

Writing an MBean Definition File

Using the WebLogic MBeanMaker to Generate the MBean Type

Creating Security Provider Runtime Classes

Creating an MBean JAR File

Deploying a Security Provider MJF File



Deve lop ing  Custom Secur i t y  P rov ide rs

4-2 Developing Security Providers

Types of Custom Security Providers Supported
You can develop the following types of custom security providers:

Authentication Provider

An Authentication provider is used to prove the identity of users or system processes. 
Authentication providers also remember, transport, and make that identity information 
available to various components of a system through subjects when needed. During the 
authentication process, a Principal Validation provider provides additional security 
protections for the principals (users and groups) contained within the subject by signing 
and verifying the authenticity of those principals.

Identity Assertion Provider

An Identity Assertion provider is a specific form of Authentication provider that allows 
users or system processes to assert their identity using tokens (in other words, perimeter 
authentication). You can use an Identity Assertion provider in place of an Authentication 
provider if you create a LoginModule for the Identity Assertion provider, or in addition to 
an Authentication provider if you want to use the Authentication provider LoginModule. 
Identity Assertion providers enable perimeter authentication and support single sign-on.

Principal Validation Provider

Authentication providers rely on Principal Validation providers to sign and verify the 
authenticity of principals (users and groups) contained within a subject. Such verification 
provides an additional level of trust and may reduce the likelihood of malicious principal 
tampering. The authenticity of the principal is verified when making authorization 
decisions.

Role Mapping Provider

Role mapping is the process whereby principals (users or groups) are dynamically mapped 
to security roles at runtime. A Role Mapping provider determines which security roles 
apply to the principals stored a subject when the subject is attempting to perform an 
operation on a resource. Because this operation usually involves gaining access to the 
resource, Role Mapping providers are typically used with Authorization providers.

Authorization Provider

Authorization is the process whereby the interactions between users and resources are 
controlled, based on user identity or other information. In other words, authorization 
answers the question, What can you access? An Authorization provider is used to limit the 
interactions between users and resources to ensure integrity, confidentiality, and 
availability. 



Wri t ing an  MBean De f i n i t i on F i l e

Developing Security Providers 4-3

Adjudication Provider

Adjudication involves resolving any authorization conflicts that may occur when more than 
one Authorization provider is configured, by weighing the result of each Access Decision. 
An Adjudication provider tallies the results that multiple Access Decisions return, and 
determines the final PERMIT or DENY decision. An Adjudication provider may also specify 
what should be done when an answer of ABSTAIN is returned from a single Authentication 
provider.

Auditing Provider

An Auditing Provider processes information about operating requests and the outcome of 
those requests are collected, stored, and distributed for the purposes of non-repudiation. An 
Auditing provider provides this electronic trail of computer activity. 

Credential Mapping Provider

A Credential Mapping Provider uses a legacy system database to obtain an appropriate set 
of credentials to use to authenticate users to a target resource. A Credential Mapping 
provider employs credential mapping services and bring new types of credentials into the 
environment.

Writing an MBean Definition File
The MDF for the sample Authentication provider is called SampleAuthenticator.xml.

To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Listing 4-1   SampleAuthenticator.xml MDF File

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<!-- MBean Definition File (MDF) for the Sample Authenticator.

     Copyright (c) 2003 by BEA Systems, Inc. All Rights Reserved.

-->



Deve lop ing  Custom Secur i t y  P rov ide rs

4-4 Developing Security Providers

<!-- Declare your mbean.

     Since it is for an authenticator, it must extend the

     weblogic.management.security.authentication.Authenticator mbean.

     The Name and DisplayName cannot be the same.

     They specify the name to appear on the

     console for this provider.

     Because this is an xml document, you can't use double

     quotes directly. Instead you need to use &quot;

     Note that setting "Writeable" to "false" on an attribute

     makes the attribute read-only. The default is read-write.

-->

<MBeanType

 Name          = "SampleAuthenticator"

 DisplayName   = "SampleAuthenticator"

 Package       = "examples.security.providers.authentication"

 Extends       = 
"weblogic.management.security.authentication.Authenticator"

>

 <!-- You must set the value of the ProviderClassName attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to the name of the java class you wrote that implements the

      weblogic.security.spi.AuthenticationProvider interface.

      You can think of the provider's mbean as the factory

      for your provider's runtime implementation.

 -->



Wri t ing an  MBean De f i n i t i on F i l e

Developing Security Providers 4-5

 <MBeanAttribute

  Name          = "ProviderClassName"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = 
"&quot;examples.security.providers.authentication.SampleAuthenticationP
roviderImpl&quot;"

 />

 <!-- You must set the value of the Description attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to a brief description of your provider.

      It is displayed in the console.

 -->

 <MBeanAttribute

  Name          = "Description"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = "&quot;WLES Sample Authentication Provider&quot;"

 />

 <!-- You must set the value of the Version attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to your version of the provider. There is no required format.

 -->

 <MBeanAttribute

  Name          = "Version"

  Type          = "java.lang.String"

  Writeable     = "false"

  Default       = "&quot;1.0&quot;"

 />



Deve lop ing  Custom Secur i t y  P rov ide rs

4-6 Developing Security Providers

 <!-- Add any custom attributes for your provider here.

      The sample authenticator does not have any custom attributes.

-->

</MBeanType>

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so 
that they are appropriate for the type of custom security provider you are developing. 

3. Add any custom attributes. (that is, additional <MBeanAttribute> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in “MBean Definition File 
Element Syntax” on page A-1.

Using the WebLogic MBeanMaker to Generate the MBean Type
After you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The 
WebLogic MBeanMaker is a command-line utility that takes an MDF and outputs some 
intermediate Java files, including an MBean interface, an MBean implementation, and an 
associated MBean information file. Together, these intermediate files form the MBean type for 
your custom security provider. 

To generate the MBean type, follow these steps:

1. Create a new DOS shell.

2. Set the WebLogic Enterprise Security environment variable by calling 
WLES_HOME/bin/set-env.bat.

3. Type the following command:
java -DMDF=xmlfile -DFiles=filesdir -DcreateStubs=true 
weblogic.management.commo.WebLogicMBeanMaker

where:

-DMDF is a flag that instructs the WebLogic MBeanMaker to translate the MDF into code.

xmlFile is the MDF (the XML MBean Description File).



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-7

filesdir is the location where the WebLogic MBeanMaker places the intermediate files 
for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist 
in the location specified by filesdir, the existing files are overwritten.

Each time you use the -DcreateStubs=true flag, the MBeanMaker overwrites any 
existing MBean implementation file.

Note: The WebLogic MBeanMaker processes one MDF at a time. Therefore, you may have 
to repeat this process if you have multiple MDFs (in other words, multiple providers).

4. Proceed to “Creating an MBean JAR File” on page 4-21.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class uses to 
obtain configuration data. The initialize method uses the MBean interface file. Because the 
WebLogic MBeanMaker generates MBean types from the MDF you created, the generated 
MBean interface file has the same name as the MDF, appended with MBean. For example, the 
result of running the SampleAuthenticator MDF through the WebLogic MBeanMaker yields 
an MBean interface file called SampleAuthenticatorMBean.java.

Creating Security Provider Runtime Classes
This section describes how to create runtime classes for each type of provider. For more 
information about the SSPI and the methods described, see the Javadocs for Security Service 
Provider Interfaces.

Creating Authentication Provider Runtime Classes
To create the runtime classes for your custom Authentication provider, perform the following 
tasks:

Implementing the AuthenticationProvider SSPI

Implementing the JAAS LoginModule Interface

Implementing Custom Exceptions for LoginModules

For an example of how to create a runtime class for a custom Authentication provider, see 
“Example: Creating the Runtime Classes for the Sample Authentication Provider” on page 6-1.

{DOCROOT}/javadocs/SSPI/index.html
{DOCROOT}/javadocs/SSPI/index.html


Deve lop ing  Custom Secur i t y  P rov ide rs

4-8 Developing Security Providers

Implementing the AuthenticationProvider SSPI
To implement the AuthenticationProvider SSPI, provide implementations for the methods 
described in Table 3-1 and the weblogic.security.spi.AuthenticationProvider 
interface methods, described in Table 4-1.

Table 4-1  AuthenticationProvider Interface Methods

Method Description

getLoginModule
Configuration()

The getLoginModuleConfiguration method obtains information 
about the LoginModule associated with the Authentication provider, which 
is returned as an AppConfigurationEntry. The 
AppConfigurationEntry is a Java Authentication and Authorization 
Service (JAAS) class that contains the classname of the LoginModule; the 
LoginModule control flag (passed in through the MBean associated with 
the Authentication provider); and a configuration options map for the 
LoginModule (which allows other configuration information to be passed 
into the LoginModule). 

For more information about the AppConfigurationEntry class 
(located in the javax.security.auth.login package) and the 
control flag options for LoginModules, see the Java API Specification 
Javadoc AppConfigurationEntry class and the Configuration class. For 
more information about LoginModules, see “Writing a JAAS 
LoginModule” on page 2-3.

getAssertionModule
Configuration()

The getAssertionModuleConfiguration method obtains 
information about the LoginModule associated with the Identity Assertion 
provider, which is returned as an AppConfigurationEntry. The 
AppConfigurationEntry is a JAAS class that contains the classname 
of the LoginModule; the LoginModule control flag (passed in through the 
MBean associated with the Authentication provider); and a configuration 
options map for the LoginModule (which allows other configuration 
information to be passed into the LoginModule).

The implementation of the getAssertionModuleConfiguration 
method can be to return null, if you want the Identity Assertion provider 
to use the same LoginModule as the Authentication provider.

http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/AppConfigurationEntry.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/Configuration.html


Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-9

Implementing the JAAS LoginModule Interface
To implement the JAAS javax.security.auth.spi.LoginModule interface, provide 
implementations for the method described in Table 4-2.

getPrincipalValidator() The getPrincipalValidator method obtains a reference to the 
Principal Validation provider runtime class (that is, the Principal Validator 
SSPI implementation). In most cases, the Principal Validation provider 
supplied with the product can be used (see 
“SampleAuthenticationProviderImpl.java” on page 6-2 for an example of 
how to return the Principal Validation provider). For more information 
about Principal Validation providers, see “Creating Identity Assertion 
Runtime Classes” on page 4-11.

getIdentityAsserter() The getIdentityAsserter method obtains a reference to the Identity 
Assertion provider runtime class (that is, the Identity Asserter SSPI 
implementation). In most cases, the return value for this method is null 
(see Listing 6-1 for an example). For more information about Identity 
Assertion providers, see “Creating Identity Assertion Runtime Classes” on 
page 4-11.

Table 4-1  AuthenticationProvider Interface Methods (Continued)

Method Description



Deve lop ing  Custom Secur i t y  P rov ide rs

4-10 Developing Security Providers

For more information about the JAAS LoginModule interface and the methods described above, 
see the Java Authentication and Authorization Service (JAAS) 1.0 Developer’s Guide, and the 
Java 2 Enterprise Edition, v1.4.2 API Specification Javadoc for the LoginModule interface.

Implementing Custom Exceptions for LoginModules 
Optionally, you may want LoginModule that you write to throw a custom exception. The custom 
exception can be caught by your application and the appropriate action taken. For example, if the 

Table 4-2  LoginInterface Methods

Method Description

initialize() The initialize method initializes the LoginModule. It takes as arguments a 
subject in which to store the resulting principals, a CallbackHandler that the 
Authentication provider uses to call back to the container for authentication 
information, a map of any shared state information, and a map of configuration 
options (that is, any additional information you want to pass to the LoginModule). 

A CallbackHandler is a highly-flexible JAAS standard that allows a variable 
number of arguments to be passed as complex objects to a method. For more 
information about CallbackHandlers, see the Java 2 Enterprise Edition, v1.4.2 API 
Specification Javadoc for the CallbackHandler interface.

login() The login method attempts to authenticate the user and create principals for the 
user by calling back to the container for authentication information. If multiple 
LoginModules are configured (as part of multiple Authentication providers), this 
method is called for each LoginModule in the order that they are configured. 
Information about whether the login was successful (that is, whether principals were 
created) is stored for each LoginModule.

commit() The commit method attempts to add the principals created in the login method to 
the subject. This method is also called for each configured LoginModule (as part of 
the configured Authentication providers), and executed in order. Information about 
whether the commit was successful is stored for each LoginModule.

abort() The abort method is called for each configured LoginModule (as part of the 
configured Authentication providers), if any commits for the LoginModules failed; 
in other words, the relevant REQUIRED, REQUISITE, SUFFICIENT and 
OPTIONAL LoginModules did not succeed. The abort method removes those 
principals from the subject, effectively rolling back the actions performed.

logout() The logout method attempts to log the user out of the system. It also resets the 
subject so that its associated principals are no longer stored.

http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/spi/LoginModule.html


Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-11

LoginModule throws a PasswordChangeRequiredException, you can catch that exception 
within your application, and use it to forward users to a page that allows them to change their 
password.

You must make your custom exception available to both the Authentication provider (at build, 
compile, and runtime) and to your application at compile time. You can do this using either of the 
following two methods.

Method 1: Make Custom Exceptions Available through the System Classpath

1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule and 
Authentication Provider interfaces.

3. Put the custom exception class in the system classpath and the compiler path when 
compiling the security provider runtime class.

4. See “Using the WebLogic MBeanMaker to Generate the MBean Type” on page 4-6 for 
additional instructions.

Method 2: Make Custom Exceptions Available through the System Classpath and the 
Authentication Provider

1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule and 
Authentication Provider interfaces.

3. Put the custom exception class in the compiler path when compiling the security provider 
runtime class.

4. See “Using the WebLogic MBeanMaker to Generate the MBean Type” on page 4-6 for 
additional instructions.

5. Add the custom exception class to the MJF (MBean JAR File) generated by the WebLogic 
MBeanMaker.

6. Include the MJF in the compiler and system classpath when compiling and running your 
application.



Deve lop ing  Custom Secur i t y  P rov ide rs

4-12 Developing Security Providers

Creating Identity Assertion Runtime Classes
After creating any custom exceptions, you must create the runtime classes for your custom 
Identity Assertion provider. If you want to create a separate LoginModule for your custom 
Identity Assertion provider (that is, not use the LoginModule from your Authentication provider), 
you need to implement the JAAS LoginModule interface, as described in “Implementing the 
JAAS LoginModule Interface” on page 4-9.

For an example of how to create a runtime classes for a custom Identity Assertion provider, see 
“Example: Creating the Runtime Class for the Sample Identity Assertion Provider” on page 6-9.

Implementing the AuthenticationProvider SSPI
To implement the AuthenticationProvider SSPI, provide implementations for the Security 
Provider interface methods described in Table 3-1 and the 
weblogic.security.spi.AuthenticationProvider interface methods described in 
Table 4-1.

Note: When the LoginModule used for the Identity Assertion provider is the same as that used 
for an existing Authentication provider, implementations for the methods in the 
Authentication Provider SSPI (excluding the getIdentityAsserter method) for 
Identity Assertion providers can just return null. An example of this is shown in 
Listing 6-3.

Implementing the IdentityAsserter SSPI
To implement the IdentityAsserter SSPI, provide an implementation of the 
weblogic.security.spi.IdentityAsserter.assertIdentity() method, described in 
Table 4-3.



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-13

Creating Principal Validation Provider Runtime Classes 
To develop a custom Principal Validation provider:

Write your own UserImpl and GroupImpl classes by:

– Implementing the weblogic.security.spi.WLSUser and 
weblogic.security.spi.WLSGroup interfaces. 

– Implementing the java.io.Serializable interfaces.

Write your own PrincipalValidationImpl class by implementing the 
weblogic.security.spi.PrincipalValidator SSPI. For instructions, see 
“Implementing the PrincipalValidator SSPI”.

Implementing the PrincipalValidator SSPI
To implement the PrincipalValidator SSPI, provide implementations of the Principal Validator 
methods described in Table 4-4.

Table 4-3  IdentityAsserter SSPI Method

Method Description

assertIdentity() The assertIdentity method asserts an identity based on the token 
identity information that is supplied. In other words, the purpose of this 
method is to validate any tokens that are not currently trusted against 
trusted client principals. The type parameter represents the token type to 
be used for the identity assertion. Note that identity assertion types are case 
insensitive. The token parameter contains the actual identity information. 
The CallbackHandler returned from the assertIdentity method 
is passed to all configured Authentication provider LoginModules to 
perform principal mapping, and should contain the asserted username. If 
the CallbackHandler is null, this signifies that the anonymous user 
should be used. 

A CallbackHandler is a highly-flexible JAAS standard that allows a 
variable number of arguments to be passed as complex objects to a method. 
For more information about CallbackHandlers, see the Java 2 Enterprise 
Edition, v1.4.2 API Specification Javadoc for the CallbackHandler 
interface.

http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html


Deve lop ing  Custom Secur i t y  P rov ide rs

4-14 Developing Security Providers

Creating Role Mapping Provider Runtime Classes
To create the runtime classes for your custom Role Mapping provider, perform the following 
tasks:

“Implement the RoleProvider SSPI” on page 4-14

“Implement the RoleMapper SSPI” on page 4-14

“Implement the SecurityRole Interface” on page 4-14

For an example of how to create a runtime class for a custom Role Mapping provider, see 
“Example: Creating the Runtime Class for the Sample Role Mapping Provider” on page 6-15.

Implement the RoleProvider SSPI
To implement the RoleProvider SSPI, provide implementations for the methods described in 
Table 3-1 and the weblogic.security.spi.RoleProvider.getRoleMapper method 
described in Table 4-5.

Table 4-4  PrincipalValidator SSPI Methods

Method Description

validate The validate method takes a principal as an argument and attempts to 
validate it. In other words, this method verifies that the principal was not 
altered since it was signed.

sign The sign method takes a principal as an argument and signs it to assure 
trust. This allows the principal to later be verified using the validate 
method. 

Your implementation of the sign method should be a secret algorithm that 
malicious individuals cannot easily recreate. You can include that 
algorithm within the sign method itself, have the sign method call out to 
a server for a token it should use to sign the principal, or implement some 
other way of signing the principal.

getPrincipalBaseClass The getPrincipalBaseClass method returns the base class of 
principals that this Principal Validation provider knows how to validate 
and sign.



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-15

Implement the RoleMapper SSPI
To implement the RoleMapper SSPI, provide implementations for the 
weblogic.security.spi.RoleMapper.getRoles method described in Table 4-6.

Implement the SecurityRole Interface
The methods on the SecurityRole interface allow you to obtain basic information about a security 
role or to compare it to another security role. These methods are designed for the convenience of 
security providers.

Note: Security Role implementations are returned as a Map by the getRoles() method, keyed 
by role name.

Table 4-5  RoleProvider SSPI Method

Method Description

getRoleMapper The getRoleMapper method obtains the implementation of the Role 
Mapper SSPI. For a single runtime class called 
MyRoleProviderImpl.java, the implementation of the 
getRoleMapper method is:
return this;

If there are two runtime classes, then the implementation of the 
getRoleMapper method is:
return new MyRoleMapperImpl();

This is because the runtime class that implements the Role Provider SSPI 
is used as a factory to obtain classes that implement the Role Mapper SSPI.

Table 4-6  RoleMapper SSPI Method

Method Description

getRoles The getRoles method returns the security roles associated 
with a given subject for a specified resource, possibly using 
the optional information specified in the ContextHandler. 
For more information about Context Handlers, see 
“ContextHandler Object” on page 5-8. 



Deve lop ing  Custom Secur i t y  P rov ide rs

4-16 Developing Security Providers

To implement the Security Role interface, provide implementations for the 
weblogic.security.service.SecurityRole interface methods described in Table 4-7.

Creating AuthorizationProvider Runtime Classes 
To create the runtime classes for your custom Authorization provider, perform the following 
tasks:

“Implement the AuthorizationProvider SSPI” on page 4-15

“Implement the AccessDecision SSPI” on page 4-16

For an example of how to create a runtime class for a custom Authorization provider, see 
“Example: Creating the Runtime Class for the Sample Authorization Provider” on page 6-12.

Implement the AuthorizationProvider SSPI
To implement the AuthorizationProvider SSPI, provide implementations for the methods 
described in Table 3-1 and the method described in Table 4-8.

Table 4-7  SecurityRole Interface Methods

Method Description

equals The equals method returns TRUE if the security role passed in matches 
the security role represented by the implementation of this interface; 
otherwise it returns FALSE.

toString The toString method returns the security role, represented as a String.

hashCode The hashCode method returns a hashcode for the security role, 
represented as an integer.

getName The getName method returns the name of the security role, represented as 
a String.

getDescription The getDescription method returns a description of the security role, 
represented as a String. The description should describe the purpose of this 
security role.



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-17

Implement the AccessDecision SSPI
When you implement the AccessDecision SSPI, you must provide implementations for the 
methods described in Table 4-9.

Table 4-8  AuthorizationProvider SSPI Method

Method Description

getAccessDecision The getAccessDecision method obtains the implementation of the 
Access Decision SSPI. For a single runtime class called 
MyAuthorizationProviderImpl.java, the implementation of the 
getAccessDecision method is:
return this;

If there are two runtime classes, then the implementation of the 
getAccessDecision method is
return new MyAccessDecisionImpl();

This is because the runtime class that implements the Authorization 
Provider SSPI is used as a factory to obtain classes that implement the 
Access Decision SSPI.

Table 4-9  AccessDecision SSPI Methods

Method Description

isAccessAllowed The isAccessAllowed method uses information contained within the subject 
to determine if the requestor is allowed to access a protected resource. The 
isAccessAllowed method can be called prior to or after a request, and returns 
values of PERMIT, DENY, or ABSTAIN. If multiple Access Decisions are 
configured and return conflicting values, an Adjudication provider is needed to 
determine a final result. For more information, see “Creating 
AdjudicationProvider Runtime Classes” on page 4-17.

isProtectedResource The isProtectedResource method determines if the specified resource is 
protected, without incurring the cost of an actual access check. It is only a 
lightweight mechanism because it does not compute a set of security roles that can 
be granted to the subject.



Deve lop ing  Custom Secur i t y  P rov ide rs

4-18 Developing Security Providers

Creating AdjudicationProvider Runtime Classes
To create the runtime classes for your custom Adjudication provider, perform the following tasks:

Implement the AdjudicationProvider SSPI 

Implement the Adjudicator SSPI

Implement the AdjudicationProvider SSPI
To implement the AdjudicationProvider SSPI, provide implementations for the methods 
described in Table 3-1 and the 
weblogic.security.spi.AdjudicationProvider.getAdjudicator method described in 
Table 4-10.

Table 4-10  AdjudicationProvider SSPI Method

Method Description

getAdjudicator The getAdjudicator method obtains the implementation of the 
Adjudicator SSPI. For a single runtime class called 
MyAdjudicationProviderImpl.java, the implementation of the 
getAdjudicator method is:
return this;

If there are two runtime classes, then the implementation of the 
getAdjudicator method is:
return new MyAdjudicatorImpl();

This is because the runtime class that implements the Adjudication 
Provider SSPI is used as a factory to obtain classes that implement the 
Adjudicator SSPI.



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-19

Implement the Adjudicator SSPI
To implement the Adjudicator SSPI, provide implementations for the methods described in 
Table 4-11.

Creating Auditing Provider Runtime Classes
To create the runtime classes for your custom Auditing provider, perform the following tasks:

Implement the AuditProvider SSPI

Implement the AuditChannel SSPI

For an example of how to create a runtime class for a custom Auditing provider, see “Example: 
Creating the Runtime Class for the Sample Auditing Provider” on page 6-19.

Implement the AuditProvider SSPI
To implement the AuditProvider SSPI, provide implementations for the methods described in 
Table 3-1 and the weblogic.security.spi.AuditProvider.getAuditChannel method 
described in Table 4-12.

Table 4-11  Adjudicator SSPI Method

Method Description

initialize The initialize method initializes the names of all the configured 
Authorization provider Access Decisions called to supply a result for the 
“Is access allowed?” The accessDecisionClassNames parameter 
can be used by an Adjudication provider in its adjudicate method to 
favor a result from a particular Access Decision.

adjudicate The adjudicate method determines the answer to the “Is access 
allowed?” given all the results from the configured Authorization provider 
Access Decisions.



Deve lop ing  Custom Secur i t y  P rov ide rs

4-20 Developing Security Providers

Implement the AuditChannel SSPI
To implement the AuditChannel SSPI, provide an implementation for the 
weblogic.security.spi.AuditChannel.writeEvent method described in Table 4-13.

Creating Credential Mapping Provider Runtime Classes 
To create the runtime classes for your custom Credential Mapping provider, perform the 
following tasks:

Implement the CredentialProvider SSPI

Implement the Credential Mapper SSPI

Table 4-12  AuditProvider SSPI Method

Method Description

getAuditChannel The getAuditChannel method obtains the implementation of the Audit 
Channel SSPI. For a single runtime class called 
MyAuditProviderImpl.java, the implementation of the 
getAuditChannel method is:
return this;

If there are two runtime classes, then the implementation of the 
getAuditChannel method is
return new MyAuditChannelImpl();

This is because the runtime class that implements the Audit Provider SSPI 
is used as a factory to obtain classes that implement the Audit Channel 
SSPI.

Table 4-13  AuditChannel SSPI Method

Method Description

writeEvent The writeEvent method writes an audit record based on the 
information specified in the AuditEvent object that is passed in. 
For more information about AuditEvent objects, see “Creating an 
Audit Event” on page 5-3.



Creat ing  Secur i t y  P rov i de r  Runt ime Cl asses

Developing Security Providers 4-21

Implement the CredentialProvider SSPI
To implement the CredentialProvider SSPI, provide implementations for the methods described 
in Table 3-1 and the 
weblogic.security.spi.CredentialProvider.getCredentialProvider method 
described in Table 4-14.

Implement the Credential Mapper SSPI
To implement the Credential Mapper SSPI, you must provide implementations for the 
weblogic.security.spi.CredentialMapper methods described in Table 4-15.

Table 4-14  CredentialProvider SSPI Method

Method Description

getCredentialProvider The getCredentialProvider method obtains the implementation of the 
Credential Mapper SSPI. For a single runtime class called 
MyCredentialMapperProviderImpl.java (as in Figure 3-3), the 
implementation of the getCredentialProvider method is:
return this;

If there are two runtime classes, then the implementation of the 
getCredentialProvider method is:
return new MyCredentialMapperImpl();

This is because the runtime class that implements the Credential Provider SSPI 
is used as a factory to obtain classes that implement the Credential Mapper 
SSPI.



Deve lop ing  Custom Secur i t y  P rov ide rs

4-22 Developing Security Providers

Creating an MBean JAR File 
After you run your MDF through the WebLogic MBeanMaker to generate your custom MBean 
files, you need to package the MBean files and the runtime classes for the custom security 
provider into an MBean JAR file. The WebLogic MBeanMaker automates this process.

To create an MJF for your custom security provider, follow these steps:

1. Create a new DOS shell.

2. Set the WebLogic Enterprise Security environment variable by calling 
WLES_HOME/bin/set-env.bat.

3. Type the following command:
java -DMJF=jarfile -DFiles=filesdir 
weblogic.management.commo.WebLogicMBeanMaker

where:

-DMJF is a flag instructing the WebLogic MBeanMaker to build an MBean JAR file 
containing the new provider.

Table 4-15  Credential Mapper SSPI Methods

Method Description

getCredentials() Format: public java.util.Vector 
getCredentials(Subject requestor, Subject initiator, 
Resource resource, String[] credentialTypes);

The getCredentials method obtains the appropriate set of credentials 
for the target resource, based on the identity of the initiator. This version of 
the method returns a list of matching credentials for all of the principals 
within the subject (as a vector) by consulting the database for the remote 
system.

getCredentials() Format: public java.lang.Object 
getCredentials(Subject requestor, String initiator, 
Resource resource, String[] credentialTypes);

The getCredentials method obtains the appropriate set of credentials 
for the target resource, based on the identity of the initiator. This version of 
the method returns one credential for the specified subject (as an object) by 
consulting the database for the remote system.



Dep loy ing  a Secur i t y  Pr ov ide r  MJF  F i l e

Developing Security Providers 4-23

jarfile is the name for the MBean JAR file.

filesdir is the location where the WebLogic MBeanMaker looks for the files to JAR into 
the MBean JAR file.

Compilation occurs at this point, so errors are possible. If jarfile is provided and no 
errors occur, an MBean JAR file is created with the specified name. 

Notes: If you want to update an existing MBean JAR file, simply delete the MBean JAR file and 
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource option that 
controls whether to include source files in the resulting MBean JAR file. Source files 
include both the generated source and the MBean definition file itself. The default is 
false. This option is ignored when -DMJF is not used.

The resulting MBean JAR file can be deployed into your WebLogic Enterprise Security 
environment or distributed for installation into other WebLogic Enterprise Security 
environments.

Deploying a Security Provider MJF File
To deploy a security provider, copy the MJF file into the following directory:

PRODUCT_HOME\lib\providers 

where:

PRODUCT_HOME is the top-level installation directory for BEA WebLogic Enterprise 
Security product.

Note: You must copy the file to both the machine on which the Security Service Module is 
installed and to the Administration Server. You must copy the file to any and all 
instances of Security Service Modules that use the new provider.

This deploys your custom security provider—that is, you can configure the custom security 
provider from the Administration Application and us it with your Security Service Module 
instance. 



Deve lop ing  Custom Secur i t y  P rov ide rs

4-24 Developing Security Providers



Developing Security Providers 5-1

C H A P T E R 5

Auditing Events from Custom Security 
Providers

The sections covers the following topics:

How Events are Audited

Security Services and the Auditor Service

Adding Auditing to a Custom Security Provider

How Events are Audited
Auditing is the process whereby information about operating requests and the outcome of those 
requests are collected, stored, and distributed for the purposes of non-repudiation. Auditing 
providers capture this electronic trail of computer activity. 

Each type of security provider can call the configured Auditing providers with a request to write 
out information about security-related events, before or after these events take place. For 
example, if a user attempts to access a withdraw method in a bank account application (to which 
they should not have access), the Authorization provider can request that this operation be 
recorded. Security-related events are only recorded when they meet or exceed the severity level 
specified in the configuration of the Auditing providers.

The following sections provide the background information you need to understand before 
adding auditing capability to your custom security providers, and provide step-by-step 
instructions for adding auditing capability to a custom security provider:

Security Services and the Auditor Service

Adding Auditing to a Custom Security Provider



Aud i t i ng  Events  f r om Custom Secur i t y  P rov ide rs

5-2 Developing Security Providers

Security Services and the Auditor Service 
The SecurityServices object passed to a provider during initialization allows providers to 
retrieve services from the Security Framework. One of these services is the auditor service which 
you can use in a custom provider to audit events.

The SecurityServices object implements the 
weblogic.security.spi.SecurityServices interface, which contains the 
getAuditorService method used to retrieve the auditor service. 

The auditor service provides security providers with auditing capabilities, through the 
providerAuditWriteEvent method. The Security Framework forwards this event to the 
standard writeEvent of the audit channel. For more information about the writeEvent method, 
see “Implement the AuditChannel SSPI” on page 4-20. For more information about AuditEvent 
objects, see “Creating an Audit Event” on page 5-3.) The Auditor Service interface includes the 
providerAuditWriteEvent method, described in Table 5-1.

Security providers designed with auditing capabilities need to obtain the Auditor Service as 
described in “Obtain and Use the Auditor Service to Write Audit Events” on page 5-8.

Adding Auditing to a Custom Security Provider
To add auditing capability to your custom security provider, perform the following tasks:

Creating an Audit Event 

Obtain and Use the Auditor Service to Write Audit Events

Table 5-1  providerAuditWriteEvent Method

Method Description

providerAuditWriteEvent The providerAuditWriteEvent method gives security providers 
write access to the object in the Security Framework that calls the 
configured Auditing providers. The event parameter is an AuditEvent 
object that contains the audit criteria, including the type of event to audit 
and the audit severity level. For more information about Audit Events and 
audit severity levels, see “Creating an Audit Event” on page 5-3 and “Audit 
Severity and the AuditSeverity Class” on page 5-7, respectively.



Add ing  Aud i t ing  to  a  Custom Secur i t y  Pr ov ide r

Developing Security Providers 5-3

Examples for each of these tasks are provided in “Example: Implementation of the 
AuditRoleEvent Interface” on page 6-21 and “Example: Obtaining and Using the Auditor 
Service to Write Role Audit Events” on page 6-23, respectively.

Note: If your custom security provider is to record audit events, be sure to include any classes 
created as a result of these steps in the MBean JAR File for the custom security provider 
(that is, in addition to the other files that are required).

Creating an Audit Event
Security providers must provide information about the events you want audited, such as the type 
of event and the audit severity. Audit Events contain this information and other contextual data 
that is understandable to a configured Auditing provider. For information on how to create an 
Audit Event, see the following sections:

Implementing the AuditEvent SSPI 

Implementing an AuditEvent Interface

Implement the Provider Audit Record (described in “Using the ProviderAuditRecord 
Interface” on page 3-8)

In addition to the procedures for creating an audit event, the section covers the following topics:

Audit Severity and the AuditSeverity Class

AuditContext Interface

Implementing the AuditEvent SSPI
To implement the AuditEvent SSPI, provide implementations for the methods described in 
Table 5-2.



Aud i t i ng  Events  f r om Custom Secur i t y  P rov ide rs

5-4 Developing Security Providers

Implementing an AuditEvent Interface
There are several sub-interfaces of the AuditEvent SSPI that are provided for your convenience, 
and that can assist you in structuring and creating Audit Events. An Audit Channel can use each 
of these interfaces (that is, a runtime class that implements the Audit Channel SSPI), to more 
effectively determine the instance types of extended event type objects for a certain type of 
security provider. For example, the an Audit Channel can use the AuditAtnEvent interface to 
determine the instance types of extended authentication event type objects. For more information, 
see “Audit Channels” on page 2-13 and “Implement the AuditChannel SSPI” on page 4-20. It is 
recommended, but not required, that you implement one of the Audit Event interfaces.The 
following sections provide information on how to implement the Audit Event interfaces:

AuditAtnEvent Interface

AuditAtzEvent and AuditPolicyEvent Interfaces

AuditMgmtEvent Interface

Table 5-2  AuditEvent SSPI Methods

Method Description

getEventType The getEventType method returns a string representation of the event type 
being audited, as used by the Audit Channel (that is, the runtime class that 
implements the Audit Channel SSPI). For example, the event type for the 
BEA-provided implementation is “Authentication Audit Event”. For 
more information, see “Audit Channels” on page 2-13 and “Implement the 
AuditChannel SSPI” on page 4-20.

getFailureException The getFailureException method returns an Exception object used by 
the Audit Channel to obtain audit information, in addition to the information 
provided by “toString” on page 5-5.

getSeverity The getSeverity method returns the severity level value associated with the 
event type being audited, as used by the Audit Channel. This allows the Audit 
Channel to make the decision about whether or not to audit. For more 
information, see “Audit Severity and the AuditSeverity Class” on page 5-7.

toString The toString method returns pre-formatted audit information to the Audit 
Channel.



Add ing  Aud i t ing  to  a  Custom Secur i t y  Pr ov ide r

Developing Security Providers 5-5

AuditAtnEvent Interface
The AuditAtnEvent interface helps Audit Channels determine instance types of extended 
authentication event type objects. To implement the AuditAtnEvent interface, provide 
implementations for the methods described in Table 5-2 and the AuditAtnEvent interface 
methods, described in Table 5-3.

Note: The AuditAtnEvent convenience interface extends both the AuditEvent and 
AuditContext interfaces. For more information about the AuditContext interface, see 
AuditContext Interface.

AuditAtzEvent and AuditPolicyEvent Interfaces
The AuditAtzEvent and AuditPolicyEvent interfaces help Audit Channels determine 
instance types of extended authorization event type objects. 

Table 5-3  AuditAtnEvent Interface Methods

Method Description

getUsername The getUsername method returns the username associated with the 
authentication event.

AtnEventType The AtnEventType method returns an event type that represents the 
authentication event. The specific authentication event types are: 

AUTHENTICATE—simple authentication using a username and password 
occurred.

ASSERTIDENTITY—perimeter authentication based on tokens occurred.

IMPERSONATEIDENTITY—client identity was established using the 
supplied client username.

VALIDATEIDENTITY—authenticity (trust) of the principals within the 
supplied subject was validated.

USERLOCKED—a user account was locked because of invalid login 
attempts.

USERUNLOCKED—a lock on a user account was cleared.

USERLOCKOUTEXPIRED—a lock on a user account expired.

toString The toString method returns the specific authentication information to 
audit, represented as a string.



Aud i t i ng  Events  f r om Custom Secur i t y  P rov ide rs

5-6 Developing Security Providers

Note: The difference between the AuditAtzEvent interface and the AuditPolicyEvent 
interface is that the latter only extends the AuditEvent interface. It does not extend the 
AuditContext interface. For more information about the AuditContext interface, see 
AuditContext Interface. 

To implement the AuditAtzEvent or AuditPolicyEvent interface, provide implementations 
for the methods described in Table 5-2 and the AuditPolicyEvent interface methods, described 
in Table 5-4. To implement the AuditAtzEvent interface, you must also provide implementation 
for the methods defined by the AuditContext interface (see “AuditContext Interface” on 
page 5-8).

AuditMgmtEvent Interface
The AuditMgmtEvent interface helps Audit Channels determine instance types of extended 
security management event type objects. You must implement the methods described in 
Table 5-2.

AuditRoleEvent Interface
The AuditRoleEvent interface helps Audit Channels determine instance types of extended role 
mapping event type objects. They contain no methods that you must implement, but maintain the 
best practice structure for an Audit Event implementation. You must implement the methods 
described in Table 5-2 and Table 5-6 as described in “AuditContext Interface” on page 5-8).

AuditCredentialMappingEvent
The AuditCredentialMappingEvent interface helps Audit Channels determine instance types 
of credential mapping event type objects. You must implement the methods described in 
Table 5-5.

Table 5-4  AuditPolicyEvent interface Methods

Method Description

getSubject The getSubject method returns the subject associated with the 
authorization event (that is, the subject attempting to access the resource).

getResource The getResource method returns the resource associated with the 
authorization event the subject is attempting to access.



Add ing  Aud i t ing  to  a  Custom Secur i t y  Pr ov ide r

Developing Security Providers 5-7

AuditRoleDeploymentEvent
The AuditRoleDeploymentEvent provides a convenience interface for Auditing providers to 
determine the instance types of extended AuditEvent type objects. You must implement the 
methods described in Table 5-2.

Audit Severity and the AuditSeverity Class
The audit severity is the level at which a security provider wants to record audit events. When a 
configured Auditing provider receive a request to audit, it examines the severity level of events 
taking place. If the severity level of an event is greater than or equal to the level an Auditing 
provider was configured with, that Auditing provider records the audit data. 

The AuditSeverity class, which is part of the weblogic.security.spi package, provides 
audit severity levels as both numeric and text values to the Audit Channel (that is, the Audit 
Channel SSPI implementation) through the AuditEvent object. The numeric severity value is 
used in logic, and the text severity value is used in the composition of the audit record output. For 
more i

nformation about the Audit Channel SSPI and the AuditEvent object, see Implement the 
AuditChannel SSPI and “Creating an Audit Event” on page 5-3, respectively.

Table 5-5  AuditCredentialMappingEvent Interface Methods

Method Description

getCredentialTypes Gets the string array of credential types requested in the getCredential 
operation associated with this AuditCredentialMappingEvent.

getInitiatorString Gets the initiator of the getCredential operation associated with this 
AuditCredentialMappingEvent. 

getInitiatorSubject Gets the subject of the initiator of the getCredential operation associated 
with this AuditCredentialMappingEvent. 

getRequestorSubject Gets the requestor subject of the getCredential operation associated with 
this AuditCredentialMappingEvent.

getResource           Gets the resource of the getCredential operation associated with this 
AuditCredentialMappingEvent



Aud i t i ng  Events  f r om Custom Secur i t y  P rov ide rs

5-8 Developing Security Providers

AuditContext Interface
Some of the Audit Event interfaces extend the AuditContext interface to indicate that an 
implementation also contains contextual information. This contextual information can then be 
used by Audit Channels. For more information, see “Audit Channels” on page 2-13 and 
“Implement the AuditChannel SSPI” on page 4-20. The Audit Context interface includes the 
getContext method, described in Table 5-6.

Obtain and Use the Auditor Service to Write Audit Events
To obtain and use the Auditor Service to write audit events from a custom security provider, 
follow these steps:

1. Use the getAuditorService method on the SecurityServices object to return the Audit 
Service. 

Note: Recall that a SecurityServices object is passed into a security provider 
implementation of a “Provider” SSPI as part of the initialize method. (For more 
information, see Table 3-1.) An AuditorService object is only returned if an 
Auditing provider is configured. 

2. Instantiate the Audit Event you created in “Implementing the AuditEvent SSPI” on page 5-3 
and send it to the Auditor Service through the 
AuditService.providerAuditWriteEvent method.

ContextHandler Object
A ContexHandler is a class interface that obtains additional context and container-specific 
information from a resource container, and provides that information to security providers 
making access or role mapping decisions. The ContextHandler interface provides a way for an 
internal container to pass additional information to a Security Framework call, so that a security 
provider can obtain contextual information beyond what is provided by the arguments to a 

Table 5-6  AuditContext Interface Method

Method Description

getContext The getContext method returns a ContextHandler object used by the 
runtime class (that is, the Audit Channel SSPI implementation) to obtain 
additional audit information. For more information about 
ContextHandlers, see “ContextHandler Object” on page 5-8.



Add ing  Aud i t ing  to  a  Custom Secur i t y  Pr ov ide r

Developing Security Providers 5-9

particular method. A ContextHandler is essentially a name/value list and as such, it requires 
that a security provider know what names to look for. In other words, use of a ContextHandler 
requires close cooperation between the resource container and the security provider.) Each 
name/value pair in a ContextHandler is known as a context element, and is represented by a 
ContextElement object.

A context handler is included with some event types to allow an audit provider to extract other 
information about the state of the application server at the time of the audit event. The auditing 
provider may log this other contextual information as a way to elaborate on the event and provide 
other useful information about the causes of the event.



Aud i t i ng  Events  f r om Custom Secur i t y  P rov ide rs

5-10 Developing Security Providers



Developing Security Providers 6-1

C H A P T E R 6

Code Examples for Developing Security 
Providers

This section includes the following security provider code examples:

Example: Creating the Runtime Classes for the Sample Authentication Provider

Example: Creating the Runtime Class for the Sample Identity Assertion Provider

Example: Creating the Runtime Class for the Sample Authorization Provider

Example: Creating the Runtime Class for the Sample Role Mapping Provider

Example: Creating the Runtime Class for the Sample Auditing Provider

Example: Implementation of the AuditRoleEvent Interface

Example: Obtaining and Using the Auditor Service to Write Role Audit Events

Example: Creating the Runtime Classes for the Sample 
Authentication Provider

Listing 6-1 shows the SampleAuthenticationProviderImpl.java class, which is one of two 
runtime classes for the sample Authentication provider. This runtime class includes 
implementations for:

The three methods inherited from the SecurityProvider interface: initialize, 
getDescription and shutdown



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-2 Developing Security Providers

The four methods in the AuthenticationProvider SSPI: the 
getLoginModuleConfiguration, getAssertionModuleConfiguration, 
getPrincipalValidator, and getIdentityAsserter methods.

Note: The bold face code in Listing 6-1 highlights the class declaration and the method 
signatures.

Listing 6-1   SampleAuthenticationProviderImpl.java

package examples.security.providers.authentication;

import java.util.HashMap;
import javax.security.auth.login.AppConfigurationEntry;
import javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag;
import weblogic.management.security.ProviderMBean;
import weblogic.security.provider.PrincipalValidatorImpl;
import weblogic.security.spi.AuthenticationProvider;
import weblogic.security.spi.IdentityAsserter;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;

public final class SampleAuthenticationProviderImpl implements 
AuthenticationProvider
{

private String description;
private SampleAuthenticatorDatabase database;
private LoginModuleControlFlag controlFlag;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SampleAuthenticationProviderImpl.initialize");
SampleAuthenticatorMBean myMBean = (SampleAuthenticatorMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SampleAuthenticatorDatabase(myMBean);

String flag = myMBean.getControlFlag();
if (flag.equalsIgnoreCase("REQUIRED")) {
controlFlag = LoginModuleControlFlag.REQUIRED;

} else if (flag.equalsIgnoreCase("OPTIONAL")) {
controlFlag = LoginModuleControlFlag.OPTIONAL;

} else if (flag.equalsIgnoreCase("REQUISITE")) {
controlFlag = LoginModuleControlFlag.REQUISITE;

} else if (flag.equalsIgnoreCase("SUFFICIENT")) {
controlFlag = LoginModuleControlFlag.SUFFICIENT;

} else {
throw new IllegalArgumentException("invalid flag value" + flag);



Example :  C rea t ing  the  Runt ime C lasses  fo r  the  Sample  Authent ica t ion  Pr ov ide r

Developing Security Providers 6-3

}
}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleAuthenticationProviderImpl.shutdown");
}

private AppConfigurationEntry getConfiguration(HashMap options)
{

options.put("database", database);
return new 
AppConfigurationEntry(

"examples.security.providers.authentication.SampleLoginModuleImpl",
controlFlag,
options

);
}

public AppConfigurationEntry getLoginModuleConfiguration()
{

HashMap options = new HashMap();
return getConfiguration(options);

}

public AppConfigurationEntry getAssertionModuleConfiguration()
{

HashMap options = new HashMap();
options.put("IdentityAssertion","true");
return getConfiguration(options);

}

public PrincipalValidator getPrincipalValidator() 
{

return new PrincipalValidatorImpl();
}

public IdentityAsserter getIdentityAsserter()
{

return null;
}

}



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-4 Developing Security Providers

Listing 6-2 shows the SampleLoginModuleImpl.java class, which is one of two runtime 
classes for the sample Authentication provider. This runtime class implements the JAAS 
LoginModule interface (as described in “Implementing the JAAS LoginModule Interface” on 
page 4-9), and therefore includes implementations for its initialize, login, commit, abort, 
and logout methods.

Note: The bold face code in Listing 6-2 highlights the class declaration and the method 
signatures.

Listing 6-2   SampleLoginModuleImpl.java

package examples.security.providers.authentication;

import java.io.IOException;
import java.util.Enumeration;
import java.util.Map;
import java.util.Vector;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;

final public class SampleLoginModuleImpl implements LoginModule 
{

private Subject subject;
private CallbackHandler callbackHandler;
private SampleAuthenticatorDatabase database;

// Determine whether this is a login or assert identity 
private boolean isIdentityAssertion;

// Authentication status
private boolean loginSucceeded;
private boolean principalsInSubject;
private Vector principalsForSubject = new Vector();



Example :  C rea t ing  the  Runt ime C lasses  fo r  the  Sample  Authent ica t ion  Pr ov ide r

Developing Security Providers 6-5

public void initialize(Subject subject, CallbackHandler callbackHandler, Map             
sharedState, Map options)
{

// only called (once!) after the constructor and before login

System.out.println("SampleLoginModuleImpl.initialize");
this.subject = subject;
this.callbackHandler = callbackHandler;

// Check for Identity Assertion option
isIdentityAssertion =

"true".equalsIgnoreCase((String)options.get("IdentityAssertion"));

database = (SampleAuthenticatorDatabase)options.get("database");
}

public boolean login() throws LoginException 
{

// only called (once!) after initialize

System.out.println("SampleLoginModuleImpl.login");

// loginSucceeded should be false
// principalsInSubject should be false
// user should be null
// group should be null

Callback[] callbacks = getCallbacks();

String userName = getUserName(callbacks);

if (userName.length() > 0) {
if (!database.userExists(userName)) {

throwFailedLoginException("Authentication Failed: User " + userName 
+ " doesn't exist.");

}
if (!isIdentityAssertion) {
String passwordWant = null;
try {

passwordWant = database.getUserPassword(userName);
} catch (NotFoundException shouldNotHappen) {}

String passwordHave = getPasswordHave(userName, callbacks);
if (passwordWant == null || !passwordWant.equals(passwordHave)) {

throwFailedLoginException(
"Authentication Failed: User " + userName + " bad password. " +
"Have " + passwordHave + ".  Want " + passwordWant + "." 

);
}

}
} else { 



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-6 Developing Security Providers

// anonymous login - let it through?
System.out.println("\tempty userName");
}

loginSucceeded = true;
principalsForSubject.add(new WLSUserImpl(userName));
addGroupsForSubject(userName);

return loginSucceeded;
}

public boolean commit() throws LoginException
{

// only called (once!) after login

// loginSucceeded should be true or false
// principalsInSubject should be false
// user should be null if !loginSucceeded, null or not-null otherwise
// group should be null if user == null, null or not-null otherwise

System.out.println("SampleLoginModule.commit");
if (loginSucceeded) {

subject.getPrincipals().addAll(principalsForSubject);
principalsInSubject = true;
return true;

} else {
return false;

}
}

public boolean abort() throws LoginException 
{

// The abort method is called to abort the authentication process. This is
// phase 2 of authentication when phase 1 fails. It is called if the
// LoginContext's overall authentication failed.

// loginSucceeded should be true or false
// user should be null if !loginSucceeded, otherwise null or not-null
// group should be null if user == null, otherwise null or not-null
// principalsInSubject should be false if user is null, otherwise 

true 
// or false

System.out.println("SampleLoginModule.abort");
if (principalsInSubject) {

subject.getPrincipals().removeAll(principalsForSubject);
principalsInSubject = false;

}



Example :  C rea t ing  the  Runt ime C lasses  fo r  the  Sample  Authent ica t ion  Pr ov ide r

Developing Security Providers 6-7

return true;
}

public boolean logout() throws LoginException
{

// should never be called
System.out.println("SampleLoginModule.logout");
return true;

}

private void throwLoginException(String msg) throws LoginException
{

System.out.println("Throwing LoginException(" + msg + ")");
throw new LoginException(msg);

}

private void throwFailedLoginException(String msg) throws 
FailedLoginException

{
System.out.println("Throwing FailedLoginException(" + msg + ")");
throw new FailedLoginException(msg);

}

private Callback[] getCallbacks() throws LoginException
{

if (callbackHandler == null) {
throwLoginException("No CallbackHandler Specified");

}

if (database == null) {
throwLoginException("database not specified");

}

Callback[] callbacks;
if (isIdentityAssertion) {

callbacks = new Callback[1];
} else {

callbacks = new Callback[2];
callbacks[1] = new PasswordCallback("password: ",false);

}
callbacks[0] = new NameCallback("username: ");

try {
callbackHandler.handle(callbacks);

} catch (IOException e) {
throw new LoginException(e.toString());

} catch (UnsupportedCallbackException e) {
throwLoginException(e.toString() + " " + e.getCallback().toString());

}



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-8 Developing Security Providers

return callbacks;
}

private String getUserName(Callback[] callbacks) throws LoginException
{

String userName = ((NameCallback)callbacks[0]).getName();
if (userName == null) {

throwLoginException("Username not supplied.");
}
System.out.println("\tuserName\t= " + userName);
return userName;

}

private void addGroupsForSubject(String userName)
{

for (Enumeration e = database.getUserGroups(userName);
e.hasMoreElements();) {

String groupName = (String)e.nextElement();
System.out.println("\tgroupName\t= " + groupName);
principalsForSubject.add(new WLSGroupImpl(groupName));

}
}

private String getPasswordHave(String userName, Callback[] callbacks) throws 
LoginException
{

PasswordCallback passwordCallback = (PasswordCallback)callbacks[1];
char[] password = passwordCallback.getPassword();
passwordCallback.clearPassword();
if (password == null || password.length < 1) {

throwLoginException("Authentication Failed: User " + userName + ".  
Password not supplied");

}
String passwd = new String(password);
System.out.println("\tpasswordHave\t= " + passwd);
return passwd;

}

}



Example :  C r ea t ing  the  Runt ime  C lass f or  the  Sample  Ident i t y  Asser t i on  Pr ov ide r

Developing Security Providers 6-9

Example: Creating the Runtime Class for the Sample Identity 
Assertion Provider

Listing 6-3 shows the SampleIdentityAsserterProviderImpl.java class, which is the 
runtime class for the sample Identity Assertion provider. This runtime class includes 
implementations for:

The three methods inherited from the SecurityProvider interface: initialize, 
getDescription, and shutdown 

The four methods in the AuthenticationProvider SSPI: the 
getLoginModuleConfiguration, getAssertionModuleConfiguration, 
getPrincipalValidator, and getIdentityAsserter methods 

The method in the IdentityAsserter SSPI: the assertIdentity method.

Note: The bold face code in Listing 6-3 highlights the class declaration and the method 
signatures.

Listing 6-3   SampleIdentityAsserterProviderImpl.java

package examples.security.providers.identityassertion;

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.AppConfigurationEntry;
import weblogic.management.security.ProviderMBean;
import weblogic.security.spi.AuthenticationProvider;
import weblogic.security.spi.IdentityAsserter;
import weblogic.security.spi.IdentityAssertionException;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;

public final class SampleIdentityAsserterProviderImpl implements 
AuthenticationProvider, IdentityAsserter
{

final static private String TOKEN_TYPE   = "SamplePerimeterAtnToken";
final static private String TOKEN_PREFIX = "username=";

private String description; 

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SampleIdentityAsserterProviderImpl.initialize");
SampleIdentityAsserterMBean myMBean = (SampleIdentityAsserterMBean)mbean;



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-10 Developing Security Providers

description = myMBean.getDescription() + "\n" + myMBean.getVersion();
}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleIdentityAsserterProviderImpl.shutdown");
}

public AppConfigurationEntry getLoginModuleConfiguration()
{

return null;
}

public AppConfigurationEntry getAssertionModuleConfiguration()
{

return null;
}

public PrincipalValidator getPrincipalValidator() 
{

return null;
}

public IdentityAsserter getIdentityAsserter()
{

return this;
}

public CallbackHandler assertIdentity(String type, Object token) throws 
IdentityAssertionException
{

System.out.println("SampleIdentityAsserterProviderImpl.assertIdentity");
System.out.println("\tType\t\t= "  + type);
System.out.println("\tToken\t\t= " + token);

if (!(TOKEN_TYPE.equals(type))) {
String error = "SampleIdentityAsserter received unknown token type \"" 

+ type + "\"." + " Expected " + TOKEN_TYPE;
System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

if (!(token instanceof byte[])) {
String error = "SampleIdentityAsserter received unknown token class \"" 

+ token.getClass() + "\"." + " Expected a byte[].";
System.out.println("\tError: " + error);



Example :  C r ea t ing  the  Runt ime  C lass f or  the  Sample  Ident i t y  Asser t i on  Pr ov ide r

Developing Security Providers 6-11

throw new IdentityAssertionException(error);
}

byte[] tokenBytes = (byte[])token;
if (tokenBytes == null || tokenBytes.length < 1) {

String error = "SampleIdentityAsserter received empty token byte 
array";

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

String tokenStr = new String(tokenBytes);

if (!(tokenStr.startsWith(TOKEN_PREFIX))) {
String error = "SampleIdentityAsserter received unknown token string 

\"" 
+ type + "\"." + " Expected " + TOKEN_PREFIX + "username";

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

String userName = tokenStr.substring(TOKEN_PREFIX.length());
System.out.println("\tuserName\t= " + userName);
return new SampleCallbackHandlerImpl(userName);

}

}

Listing 6-4 shows the sample CallbackHandler implementation that is used along with the 
SampleIdentityAsserterProviderImpl.java runtime class. This CallbackHandler 
implementation is used to send the username back to an Authentication provider’s LoginModule.

Listing 6-4   SampleCallbackHandlerImpl.java

package examples.security.providers.identityassertion;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

/*package*/ class SampleCallbackHandler implements CallbackHandler
{

private String userName;



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-12 Developing Security Providers

/*package*/ SampleCallbackHandlerImpl(String user)
{

userName = user;
}

public void handle(Callback[] callbacks) throws UnsupportedCallbackException
{

for (int i = 0; i < callbacks.length; i++) {

Callback callback = callbacks[i];

if (!(callback instanceof NameCallback)) {
throw new UnsupportedCallbackException(callback, "Unrecognized 

Callback");
}

NameCallback nameCallback = (NameCallback)callback;
nameCallback.setName(userName);

}
}

}

Example: Creating the Runtime Class for the Sample 
Authorization Provider

Listing 6-5 shows the SampleAuthorizationProviderImpl.java class, which is the runtime 
class for the sample Authorization provider. This runtime class includes implementations for:

The three methods inherited from the SecurityProvider interface: initialize, 
getDescription and shutdown 

The method inherited from the AuthorizationProvider SSPI: the getAccessDecision 
method.

The two methods in the AccessDecision SSPI: the isAccessAllowed and 
isProtectedResource methods.

Note: The bold face code in Listing 6-5 highlights the class declaration and the method 
signatures.



Example :  C rea t ing  the  Runt i me  C lass  fo r  t he  Sample  Autho r i za t i on  Pr ov ide r

Developing Security Providers 6-13

Listing 6-5   SampleAuthorizationProviderImpl.java

package examples.security.providers.authorization;

import java.security.Principal;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AccessDecision;
import weblogic.security.spi.DeployableAuthorizationProvider;
import weblogic.security.spi.Direction;
import weblogic.security.spi.InvalidPrincipalException;
import weblogic.security.spi.Resource;
import weblogic.security.spi.ResourceCreationException;
import weblogic.security.spi.ResourceRemovalException;
import weblogic.security.spi.Result;
import weblogic.security.spi.SecurityServices;

public final class SampleAuthorizationProviderImpl implements 
AuthorizationProvider, AccessDecision
{

private String description;
private SampleAuthorizerDatabase database;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SampleAuthorizationProviderImpl.initialize");
SampleAuthorizerMBean myMBean = (SampleAuthorizerMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SampleAuthorizerDatabase(myMBean);

}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleAuthorizationProviderImpl.shutdown");
}

public AccessDecision getAccessDecision()
{



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-14 Developing Security Providers

return this;
}

public Result isAccessAllowed(Subject subject, Map roles, Resource resource, 
ContextHandler handler, Direction direction) throws 

InvalidPrincipalException
{

System.out.println("SampleAuthorizationProviderImpl.isAccessAllowed");
System.out.println("\tsubject\t= " + subject);
System.out.println("\troles\t= " + roles);
System.out.println("\tresource\t= " + resource);
System.out.println("\tdirection\t= " + direction);

Set principals = subject.getPrincipals();

for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {

return isAccessAllowed(res, principals, roles);
}

}
return Result.ABSTAIN;

}

public boolean isProtectedResource(Subject subject, Resource resource) throws 
InvalidPrincipalException 
{

System.out.println("SampleAuthorizationProviderImpl.
isProtectedResource");

System.out.println("\tsubject\t= " + subject);
System.out.println("\tresource\t= " + resource);

for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {

return true;
}

}
return false;

}

private Result isAccessAllowed(Resource resource, Set principals, Map roles)
{

for (Enumeration e = database.getPolicy(resource); e.hasMoreElements();) 
{
String principalOrRoleNameAllowed = (String)e.nextElement();
if (WLSPrincipals.getEveryoneGroupname().

equals(principalOrRoleNameAllowed) || 
(WLSPrincipals.getUsersGroupname().equals(principalOrRoleNameAllowed)
&& !principals.isEmpty()) || principalsOrRolesContain(principals, 
roles, principalOrRoleNameAllowed)) 
{



Example :  C reat ing  the  Runt ime  C lass  fo r  the  Sample  Ro le  Mapp ing  Pr ov ide r

Developing Security Providers 6-15

return Result.PERMIT;
}

}
return Result.DENY;

}
}

Example: Creating the Runtime Class for the Sample Role 
Mapping Provider

Listing 6-6 shows the SampleRoleMapperProviderImpl.java class, which is the runtime 
class for the sample Role Mapping provider. This runtime class includes implementations for:

The three methods inherited from the SecurityProvider interface: initialize, 
getDescription and shutdown.

The method inherited from the RoleProvider SSPI: the getRoleMapper method.

The method in the RoleMapper SSPI: the getRoles method.

Note: The bold face code in Listing 6-6 highlights the class declaration and the method 
signatures.

Listing 6-6   SampleRoleMapperProviderImpl.java

package examples.security.providers.roles;

import java.security.Principal;
import java.util.Collections;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.DeployableRoleProvider;
import weblogic.security.spi.Resource;
import weblogic.security.spi.RoleCreationException;
import weblogic.security.spi.RoleMapper;



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-16 Developing Security Providers

import weblogic.security.spi.RoleRemovalException;
import weblogic.security.spi.SecurityServices;

public final class SampleRoleMapperProviderImpl implements RoleProvider, 
RoleMapper
{

private String description;
private SampleRoleMapperDatabase database;
private static final Map NO_ROLES = Collections.unmodifiableMap(new 

HashMap(1));

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SampleRoleMapperProviderImpl.initialize");
SampleRoleMapperMBean myMBean = (SampleRoleMapperMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SampleRoleMapperDatabase(myMBean);

}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleRoleMapperProviderImpl.shutdown");
}

public RoleMapper getRoleMapper()
{

return this;
}

public Map getRoles(Subject subject, Resource resource, ContextHandler 
handler)
{

System.out.println("SampleRoleMapperProviderImpl.getRoles");
System.out.println("\tsubject\t= " + subject);
System.out.println("\tresource\t= " + resource);

Map roles = new HashMap();
Set principals = subject.getPrincipals();

for (Resource res = resource; res != null; res = res.getParentResource()) 
{

getRoles(res, principals, roles);
}

getRoles(null, principals, roles);



Example :  C reat ing  the  Runt ime  C lass  fo r  the  Sample  Ro le  Mapp ing  Pr ov ide r

Developing Security Providers 6-17

if (roles.isEmpty()) {
return NO_ROLES;

}

return roles;
}

private void getRoles(Resource resource, Set principals, Map roles)
{

for (Enumeration e = database.getRoles(resource); e.hasMoreElements();) 
{

String role = (String)e.nextElement();
if (roleMatches(resource, role, principals)) 
{

roles.put(role, new SampleSecurityRoleImpl(role, "no 
description"));

}
}

}

private boolean roleMatches(Resource resource, String role, Set 
principalsHave)
{

for (Enumeration e = database.getPrincipalsForRole(resource, role); 
e.hasMoreElements();) 

{
String principalWant = (String)e.nextElement();
if (principalMatches(principalWant, principalsHave)) 
{

return true;
}

}
return false;

}

private boolean principalMatches(String principalWant, Set principalsHave)
{

if (WLSPrincipals.getEveryoneGroupname().equals(principalWant) ||
(WLSPrincipals.getUsersGroupname().equals(principalWant) && 
!principalsHave.isEmpty()) || (WLSPrincipals.getAnonymousUsername().
equals(principalWant) && principalsHave.isEmpty()) ||
principalsContain(principalsHave, principalWant)) 
{

return true;
}

return false;
}

private boolean principalsContain(Set principalsHave, String 
principalNameWant)



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-18 Developing Security Providers

{
for (Iterator i = principalsHave.iterator(); i.hasNext();) 
{

Principal principal = (Principal)i.next();
String principalNameHave = principal.getName();
if (principalNameWant.equals(principalNameHave)) 
{

return true;
}

}
return false;

}
}

Listing 6-7 shows the sample SecurityRole implementation that is used along with the 
SampleRoleMapperProviderImpl.java runtime class.

Listing 6-7   SampleSecurityRoleImpl.java

package examples.security.providers.roles;

import weblogic.security.service.SecurityRole;

public class SampleSecurityRoleImpl implements SecurityRole
{

private String _roleName;
private String _description;
private int _hashCode;

public SampleSecurityRoleImpl(String roleName, String description)
{

_roleName = roleName;
_description = description;
_hashCode = roleName.hashCode() + 17;

}

public boolean equals(Object secRole)
{

if (secRole == null) 
{

return false;
}

if (this == secRole) 
{



Exampl e :  C r ea t i ng  the  Runt ime  C lass f or  the  Sample  Aud i t ing  Pr ov ide r

Developing Security Providers 6-19

return true;
}

if (!(secRole instanceof SampleSecurityRoleImpl)) 
{

return false;
}

SampleSecurityRoleImpl anotherSecRole = (SampleSecurityRoleImpl)secRole;

if (!_roleName.equals(anotherSecRole.getName())) 
{

return false;
}

return true;
}

public String toString () { return _roleName; }
public int hashCode () { return _hashCode; }
public String getName () { return _roleName; }
public String getDescription () { return _description; }

}

Example: Creating the Runtime Class for the Sample Auditing 
Provider

Listing 6-8 shows the SampleAuditProviderImpl.java class, which is the runtime class for 
the sample Auditing provider. This runtime class includes implementations for:

The three methods inherited from the SecurityProvider interface: initialize, 
getDescription and shutdown.

The method inherited from the AuditProvider SSPI: the getAuditChannel method.

The method in the Audit Channel SSPI: the writeEvent method.

Note: The bold face code in Listing 6-8 highlights the class declaration and the method 
signatures.



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-20 Developing Security Providers

Listing 6-8   SampleAuditProviderImpl.java

package examples.security.providers.audit;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import weblogic.management.security.ProviderMBean;
import weblogic.security.spi.AuditChannel;
import weblogic.security.spi.AuditEvent;
import weblogic.security.spi.AuditProvider;
import weblogic.security.spi.SecurityServices;

public final class SampleAuditProviderImpl implements AuditChannel, 
AuditProvider
{

private String description;
private PrintStream log;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SampleAuditProviderImpl.initialize");

description = mbean.getDescription() + "\n" + mbean.getVersion();

SampleAuditorMBean myMBean = (SampleAuditorMBean)mbean;
File file = new File(myMBean.getLogFileName());
System.out.println("\tlogging to " + file.getAbsolutePath());

try {
log = new PrintStream(new FileOutputStream(file), true);

} catch (IOException e) {
throw new RuntimeException(e.toString());

}
}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleAuditProviderImpl.shutdown");
log.close();

}

public AuditChannel getAuditChannel()
{



Example :  Imp lementa t ion  o f  t he  Audi tRol eEvent  I nt er face

Developing Security Providers 6-21

return this;
}

public void writeEvent(AuditEvent event)
{

// Write the event out to the sample Auditing provider’s log file using
// the event's "toString" method.
log.println(event);

}
}

Example: Implementation of the AuditRoleEvent Interface
Listing 6-9 shows the MyAuditRoleEventImpl.java class, which is a sample implementation 
of an Audit Event convenience interface (in this case, the AuditRoleEvent convenience 
interface). This class includes implementations for:

The four methods inherited from the AuditEvent SSPI: getEventType, 
getFailureException, getSeverity and toString 

One additional method: getContext, which returns additional contextual information via 
the ContextHandler.

Note: The bold face code in Listing 6-9 highlights the class declaration and the method 
signatures.

Listing 6-9   MyAuditRoleEventImpl.java

package mypackage;

import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuditRoleEvent;

import weblogic.security.spi.AuditSeverity;

import weblogic.security.spi.Resource;

/*package*/ class MyAuditRoleEventImpl implements AuditRoleEvent

{

private Subject subject;

private Resource resource;



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-22 Developing Security Providers

private ContextHandler context;

private String details;

private Exception failureException;

/*package*/ MyAuditRoleEventImpl(Subject subject, Resource resource, 

ContextHandler context, String details, Exception

failureException) {

this.subject = subject;

this.resource = resource;

this.context = context;

this.details = details;

this.failureException = failureException;

}

public Exception getFailureException()

{

return failureException;

}

public AuditSeverity getSeverity()

{

return (failureException == null) ? AuditSeverity.SUCCESS :

AuditSeverity.FAILURE;

}

public String getEventType()

{

return "MyAuditRoleEventType";

}

public ContextHandler getContext()

{

return context;

}

public String toString()

{

StringBuffer buf = new StringBuffer();

buf.append("EventType:" + getEventType() + "\n");

buf.append("\tSeverity: " +

getSeverity().getSeverityString());



Example :  Obta in ing  and  Us ing the  Aud i to r  Se rv i ce  to  Wr i te  Rol e  Aud i t  Events

Developing Security Providers 6-23

buf.append("\tSubject: " +

SubjectUtils.displaySubject(getSubject());

buf.append("\tResource: " + resource.toString());

buf.append("\tDetails: " + details);

if (getFailureException() != null) {

buf.append("\n\tFailureException:" +

getFailureException());

}

return buf.toString();

}

}

Example: Obtaining and Using the Auditor Service to Write Role 
Audit Events

Listing 6-10 illustrates how a custom Role Mapping provider’s runtime class (called 
MyRoleMapperProviderImpl.java) would obtain the Auditor Service and use it to write out 
audit events. 

Note: The MyRoleMapperProviderImpl.java class relies on the 
MyAuditRoleEventImpl.java class from Listing 6-10.

Listing 6-10   MyRoleMapperProviderImpl.java

package mypackage;

import javax.security.auth.Subject;

import weblogic.management.security.ProviderMBean;

import weblogic.security.SubjectUtils;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuditorService;

import weblogic.security.spi.RoleMapper;

import weblogic.security.spi.RoleProvider;

import weblogic.security.spi.Resource;

import weblogic.security.spi.SecurityServices;



Code  Examples  fo r  Deve loping  Secur i t y  P rov ide rs

6-24 Developing Security Providers

public final class MyRoleMapperProviderImpl implements RoleProvider, 

RoleMapper 

{

private AuditorService auditor;

public void initialize(ProviderMBean mbean, SecurityServices 

services) 

{

auditor = services.getAuditorService();

...

}

public Map getRoles(Subject subject, Resource resource,

ContextHandler handler)

{

...

if (auditor != null) 

{

auditor.providerAuditWriteEvent(

new MyRoleEventImpl(subject, resource, context, 

"why logging this event", 

null); // no exception occurred

}

...

}

}



Developing Security Providers A-1

C H A P T E R A

MBean Definition File Element Syntax

An MBean Definition File is an input file to the WebLogic MBeanMaker utility that uses the file 
to create an MBean type for managing a custom security provider. An MBean Definition File 
must be formatted as a well-formed and valid XML file that describes a single MBean type. The 
following sections describe all the elements and attributes available for use in a valid MBean 
Definition File:

MBeanType Root Element

MBeanAttribute Subelement

Examples: Well-Formed and Valid MBean Definition Files

MBeanType Root Element
An MBean Definition File must contain one root element called MBeanType that has the 
following syntax:

<MBeanType Name= string optional_attributes>
subelements 

</MBeanType> 

The MBeanType element must include a Name attribute that specifies the internal, programmatic 
name of the MBean type. To specify a name that is visible in a user interface, use the 
DisplayName attribute. Other attributes are optional.



MBean  Def in i t i on  F i l e  E lement  Syn tax

A-2 Developing Security Providers

The following is a simplified example of an MBeanType root element:

<MBeanType Name=“MyMBean“ Package=“com.mycompany“> 
<MBeanAttribute Name=“MyAttr“ Type=“java.lang.String“ Default=“&quot;Hello 

World&quot;“/> 
</MBeanType> 

Table A-1 describes the attributes you can use with the MBeanType root element.

Table A-1  MBeanType Root Element Attributes

Attribute Allowed 
Values

Description

Abstract true/false A true value specifies that the MBean type cannot be 
instantiated (like any abstract Java class), though other 
MBean types can inherit its attributes. If you specify true, 
you must create other non-abstract MBean types for 
carrying out configuration tasks. If you do not specify a 
value for this attribute, the assumed value is false.

Deprecated true/false Indicates that the MBean type is deprecated. This 
information appears in the generated Java source. If you do 
not specify this attribute, the assumed value is false.

Description String An arbitrary string associated with the MBean type that 
appears in various locations, such as the Javadoc for 
generated classes. There is no default or assumed value.

Note: To specify a description that is visible in a user 
interface, use the DisplayName and 
DisplayMessage attributes.

DisplayMessage String The message that a user interface displays to describe the 
MBean type. There is no default or assumed value.

The DisplayMessage may be a paragraph used in Tool 
Tips or in Help.

DisplayName String The name that a user interface displays to identify 
instances of MBean types. For an instance of type X, the 
default DisplayName is "instance of type X."

Extends Pathname A fully qualified MBean type name that this MBean type 
extends. See also Implements.



MBeanAt t r ibu te  Sube lement

Developing Security Providers A-3

MBeanAttribute Subelement
You must supply one instance of an MBeanAttribute subelement for each attribute in your 
MBean type. The MBeanAttribute subelement must be formatted as follows:

Implements Comma-
separated list

A comma-separated list of fully qualified MBean type 
names that this MBean type implements. 

See also Extends.

Name String Mandatory attribute that specifies the internal, 
programmatic name of the MBean type.

Package String Specifies the package name of the MBean type and 
determines the location of the class files that the WebLogic 
MBeanMaker creates. If you do not specify this attribute, 
the MBean type is placed in the Java default package. 

Note: Two or more MBean type names can be the same 
as long as the package name varies.

VersionID Long Translates to the Java serialVersionUID. The 
provided values are placed directly into the generated 
implementation file in the following form:
static final long serialVersionUID = 
<user provided ID>;

Users who change an MBean class in an incompatible way 
will need to modify the serialVersionUID (using 
VersionID) to get Java serialization to work correctly.

For more information about serialVersionUID, see 
the Java 2 Platform Standard Edition

Writeable true/false A true value allows the MBean API attributes to be set 
through the Administration Console. If you do not specify 
this attribute in MBeanType or MBeanAttribute, the 
assumed value is true.

When specified in the MBeanType element, this value is 
considered the default for individual MBeanAttribute 
subelements.

Table A-1  MBeanType Root Element Attributes (Continued)

Attribute Allowed 
Values

Description

http://java.sun.com/j2se/


MBean  Def in i t i on  F i l e  E lement  Syn tax

A-4 Developing Security Providers

<MBeanAttribute Name=string optional_attributes /> 

The MBeanAttribute subelement must include a Name attribute, which specifies the internal, 
programmatic name of the Java attribute in the MBean type. (To specify a name that is visible in 
a user interface, use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanAttribute subelement within an MBeanType 
element:

<MBeanType Name=“MyMBean“ Package=“com.mycompany“> 
<MBeanAttribute Name= “WhenToCache“ 
Type=“java.lang.String“
LegalValues=“cache-on-reference,cache-at-initialization,cache-never“ 
Default= “&quot;cache-on-reference&quot;“
/>

</MBeanType> 

Table A-2 describes the attributes available to the MBeanAttribute subelement.

Table A-2  MBeanAttribute Subelement Attributes

Attribute Allowed 
Values

Description

Default String The default value of the MBeanAttribute.

The value of this attribute is a Java expression that must evaluate 
to an object of a type that is compatible with the data type for this 
attribute.

If you do not specify this attribute, the assumed value is null. If 
you use this assumed value and if you set the LegalNull 
attribute to false, then an exception is thrown by the WebLogic 
MBeanMaker and WebLogic Server.

DefaultString String Same as Default, but can be used if the type of the attribute is 
String. If Default is used for a string attribute, the value must 
be enclosed in quotation marks (&quot; in the XML document). 
If DefaultString is used, the quotation marks should be 
omitted.

Deprecated true/false Indicates that the MBean attribute is deprecated. This 
information appears in the generated Java source. If you do not 
specify this attribute, the assumed value is false.



MBeanAt t r ibu te  Sube lement

Developing Security Providers A-5

Description String An arbitrary string associated with the MBean attribute that 
appears in various locations, such as the Javadoc for generated 
classes. There is no default or assumed value.

Note: To specify a description that is visible in a user interface, 
use the DisplayName and DisplayMessage 
attributes. 

DisplayMessage String The message that a user interface displays to describe the MBean 
attribute. There is no default or assumed value.

The DisplayMessage may be a paragraph used in Tool Tips 
or in Help.

DisplayName String The name that a user interface displays to identify the MBean 
attribute.

Encrypted true/false A true value indicates that this MBean attribute is encrypted 
when it is set in the Administration Application. If you do not 
specify this attribute, the assumed value is false. A true value 
is the only valid value for single-valued attributes (that is, non- 
array types).

IsIs true/false Specifies whether a generated Java interface uses the JMX 
is<AttributeName> method to access the boolean value of 
the MBean attribute (as opposed to the get<AttributeName> 
method). If you do not specify this attribute, the assumed value 
is false.

LegalNull true/false Specifies whether null is an allowable value for the current 
MBeanAttribute subelement. If you do not specify this 
attribute, the assumed value is true.

LegalValues Comma-
separated list 

Specifies a fixed set of allowable values for the current 
MBeanAttribute subelement. If you do not specify this 
attribute, the MBean attribute allows any value of the type that is 
specified by the Type attribute.

Note: The items in the list must be convertible to the data type 
that is specified by the subelement’s Type attribute.

Table A-2  MBeanAttribute Subelement Attributes (Continued)

Attribute Allowed 
Values

Description



MBean  Def in i t i on  F i l e  E lement  Syn tax

A-6 Developing Security Providers

Max String The value of this attribute is limited to a single numeric primitive 
value represented as a string.

For numeric MBean attribute types only, provides a numeric 
value that represents the inclusive maximum value for the 
attribute. If you do not specify this attribute, the value can be as 
large as the data type allows.

Min String The value of this attribute is limited to a single numeric primitive 
value represented as a string.

For numeric MBean attribute types only, provides a numeric 
value which represents the inclusive minimum value for the 
attribute. If you do not specify this attribute, the value can be as 
small as the data type allows.

Name String Mandatory attribute that specifies the internal, programmatic 
name of the MBean attribute.

Type Java class 
name 

The fully qualified classname of the data type of this attribute. If 
you do not specify this attribute, the assumed value is 
java.lang.String. The value of this attribute is one of the 
following:
java.lang.String

java.lang.String[]

java.lang.Integer

java.lang.Integer[]

Writeable true/false A true value allows an MBeanAttribute’s value to be set in 
the Administration Application. If you do not specify this 
attribute in MBeanType or MBeanAttribute, the assumed 
value is true.

When specified in the MBeanType element, this value is 
considered the default for individual MBeanAttribute 
subelements.

Table A-2  MBeanAttribute Subelement Attributes (Continued)

Attribute Allowed 
Values

Description



Examples :  We l l -Fo rmed  and  Va l i d  MBean  Def in i t i on  F i l es

Developing Security Providers A-7

Examples: Well-Formed and Valid MBean Definition Files
Listing A-1 provides of an example of an MBean Definition File that uses many of the attributes 
described in this Appendix. It shows the used to generate the MBean type for a Sample Audit 
provider.

Listing A-1   SampleAuditor.xml

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<!-- MBean Definition File (MDF) for the Sample Auditor.

     Copyright (c) 2003 by BEA Systems, Inc.  All Rights Reserved.

-->

<!-- Declare your mbean.

     Since it is for an auditor, it must extend the

     weblogic.management.security.audit.Auditor mbean.

     The Name and DisplayName must be the same.

     They specify the name that will appear on the

     console for this provider.

     Note that since this is an xml document, you can't use double

     quotes directly.  Instead you need to use &quot;

     Note that setting "Writeable" to "false" on an attribute



MBean  Def in i t i on  F i l e  E lement  Syn tax

A-8 Developing Security Providers

     makes the attribute read-only.  The default is read-write.

-->

<MBeanType

 Name          = "SampleAuditor"

 DisplayName   = "SampleAuditor"

 Package       = "examples.security.providers.audit"

 Extends       = "weblogic.management.security.audit.Auditor"

>

 <!-- You must set the value of the ProviderClassName attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to the name of the java class you wrote that implements the

      weblogic.security.spi.AuditProvider interface.

      You can think of the provider's mbean as the factory

      for your provider's runtime implementation.

 -->

 <MBeanAttribute

  Name        = "ProviderClassName"

  Type        = "java.lang.String"

  Writeable   = "false"

  Default     = 

"&quot;examples.security.providers.audit.SampleAuditProviderImpl&quot;"

 />

 <!-- You must set the value of the Description attribute

      (inherited from the weblogic.management.security.Provider mbean)



Examples :  We l l -Fo rmed  and  Va l i d  MBean  Def in i t i on  F i l es

Developing Security Providers A-9

      to a brief description of your provider.

      It is displayed in the console.

 -->

 <MBeanAttribute

  Name        = "Description"

  Type        = "java.lang.String"

  Writeable   = "false"

  Default     = "&quot;WLES Sample Audit Provider&quot;"

 />

 <!-- You must set the value of the Version attribute

      (inherited from the weblogic.management.security.Provider mbean)

      to your provider's version.  There is no required format.

 -->

 <MBeanAttribute

  Name        = "Version"

  Type        = "java.lang.String"

  Writeable   = "false"

  Default     = "&quot;1.0&quot;"

 />

 <!-- Add any custom attributes for your provider here.

      The sample auditor adds a custom attribute named

      LogFileName.  It contains the pathname of the

      file that the sample auditor should write its

      audit log to.



MBean  Def in i t i on  F i l e  E lement  Syn tax

A-10 Developing Security Providers

      The sample auditor's runtime implementation

      (SampleAuditProviderImpl) will read the value

      of this attribute from its mbean.

-->

 <MBeanAttribute

  Name        = "LogFileName"

  Type        = "java.lang.String"

  Default     = "&quot;SampleAuditor.log&quot;"

 />

</MBeanType>



Developing Security Providers i-11

Index

A
Access Decision

relationship to Authorization providers 2-12
Access Decisions

definition 2-12
Active Types

attribute in MBean Definition Files (MDFs) 
for Identity Assertion providers 2-9

defaulting 2-9
field in Administration Application 2-9

adjudication
definition 4-3

Adjudication providers
custom

main steps for developing 4-17
purpose 4-3

AdjudicationProvider SSPI
methods 4-17

Adjudicator SSPI
methods 4-18

Administration Application
ActiveTypes field for Identity Assertion 

providers 2-9
custom attributes 3-14
SSPI MBeans, effect on 3-15
Supported Types field for Identity Assertion 

providers 2-9
architecture of a security provider 3-2
argument-passing mechanisms

CallbackHandler 2-5
CallbackHandlers 4-9, 4-12

attributes

custom, appearance in Administration 
Application 3-14

attributes for MBean Definition File (MDF) 
elements

MBeanAttribute subelement A-4
MBeanType (root) element A-2

attributes, custom
appearance in Administration Application 

3-14
using to configure an existing security 

provider database 3-19
Audit Channels

purpose 2-13
audit context

definition 5-8
audit events

creating 5-3
definition 5-3
using the Auditor Service to write 5-8

example 6-23
audit severity

definition 5-7
AuditChannel SSPI

methods 4-19
AuditContext interface

methods 5-8
AuditEvent SSPI

convenience interfaces 5-4
AuditAtnEvent

example 6-21
methods 5-4

AuditAtzEvent
methods 5-5



i-12 Developing Security Providers

AuditMgmtEvent 5-6
AuditPolicyEvent

methods 5-5
AuditRoleDeploymentEvent 5-6
AuditRoleEvent 5-6

methods 5-3
auditing 2-13

definition 4-3, 5-1
from a custom security provider 5-2

example 5-1
Auditing providers

example of creating runtime classes 6-19
purpose 4-3, 5-1

Auditor Service
obtaining and using to write audit events 5-8

example 6-23
AuditProvider SSPI

methods 4-18
authentication

enabling different technologies with 
LoginModules 2-3

perimeter
passing tokens 2-10

use of CallbackHandler 2-5
use of CallbackHandlers 4-9, 4-12

Authentication providers
example of creating runtime classes 6-1
purpose 4-2
relationship

to LoginModules 2-3
to Principal Validation providers 2-10, 

4-2
AuthenticationProvider SSPI

methods 4-8, 4-11
getPrincipalValidator 2-11

authorization
definition 4-2

Authorization providers
example of creating runtime classes 6-12
purpose 4-2
relationship

to Access Decisions 2-12
use with Role Mapping providers 4-2

AuthorizationProvider SSPI
methods 4-15

B
base required SSPI MBean 3-14

C
CallbackHandler

definition 2-5
CallbackHandlers

definition 4-9, 4-12
example of creating 6-11

configuring
an existing database for use with security 

providers 3-19
Identity Assertion providers for use with 

token types 2-8, 2-9
context

audit
definition 5-8

control flag setting for LoginModules 2-5
Credential Mapping providers

purpose 4-3
credential mappings

definition 2-14, 4-3
CredentialMapper SSPI

methods 4-20
CredentialProvider SSPI

methods 4-20
credentials

default
security provider database initialization 

3-18
definition 2-14

custom
Authentication provider 2-7

custom attributes
in Administration Application 3-14



Developing Security Providers i-13

using to configure an existing security 
provider database 3-19

D
database delegator 3-21
database, security provider

initializing 3-18
default users, groups, roles, policies, 

credentials 3-18
declarative security roles 2-12
default users, groups, roles, policies, and 
credentials

security provider database initialization 3-18
defaulting the ActiveTypes attribute for Identity 
Assertion providers 2-9
developing custom security providers

main steps
Adjudication 4-17

options for Principal Validation 4-12
process 1-3

dynamic security role computation 2-12
definition 2-12

E
element syntax for MBean Definition Files 
(MDFs) A-1

examples A-7
MBeanConstructor subelement A-7
MBeanType (root) element A-1
understanding 3-11

enabling different authentication technologies 
with LoginModules 2-3
events, audit

creating 5-3
definition 5-3
using the Auditor Service to write 5-8

example 6-23
exceptions, security

resulting from invalid principals 2-11
extending and implementing SSPI MBeans 3-10

F
file, MBean interface

definition 4-7
flag

control 2-5

G
getEventType 5-3
getFailureException 5-4
getPrincipalValidator method in 
AuthenticationProvider SSPI 2-11
getRoleMapper

method 4-14
getSeverity 5-4
groups

default
security provider database initialization 

3-18
definition 2-2
WebLogic Server 2-2

I
Identity Assertion providers 2-7

configuring in the Administration 
Application 2-8

ActiveTypes field 2-9
Supported Types field 2-9

defaulting the Active Types attribute 2-9
difference from Authentication providers 

4-2
example of creating runtime classes 6-9
purpose 4-2
use of separate LoginModule 2-7
use of tokens 2-7

creating new 2-8
IdentityAsserter SSPI

methods 4-12
inheritance hierarchy

SSPI MBeans 3-15



i-14 Developing Security Providers

initialization
security provider database 3-18

default users, groups, roles, policies, 
credentials 3-18

interface
SecurityRole 2-12

interfaces
AuditContext

methods 5-8
AuditEvent convenience 5-4

AuditAtnEvent 5-4
example implementation 6-21

AuditAtzEvent 5-5
AuditMgmtEvent 5-6
AuditPolicyEvent 5-5
AuditRoleDeploymentEvent 5-6
AuditRoleEvent 5-6

SecurityRole 4-14
SecurityServices

methods 5-2
WLSGroup 2-2
WLSUser 2-2

J
Java Authentication and Authorization Service 
(JAAS)

CallbackHandler 2-5
CallbackHandlers 4-9, 4-12
subject’s use of 2-2
use of LoginModules 2-3

Java Management eXtensions (JMX) 
specification 3-10

L
LoginModule 2-7

enabling different authentication 
technologies 2-3

purpose 2-3
use

with Identity Assertion providers 2-7

LoginModule interface
methods 4-9

LoginModules
control flag setting 2-5
example implementation 6-4
Java Authentication and Authorization 

Service (JAAS) use of 2-3
relationship to Authentication providers 2-3

M
mappings

credential
definition 2-14, 4-3

role
definition 4-2

MBean Definition Files (MDFs)
definition A-1
description 3-11
element syntax A-1

examples A-7
MBeanAttribute subelement

attributes A-4
MBeanConstructor subelement A-7
understanding 3-11

Identity Assertion providers
ActiveTypes attribute 2-9
Supported Types attribute 2-9

sample 3-11
use of by WebLogic MBeanMaker utility 

3-11, 3-17
using custom attributes/operations to 

configure an existing security 
provider database 3-19

MBean interface file
definition 4-7

MBean JAR Files (MJFs)
creating with WebLogic MBeanMaker 

utility 4-21
MBean types

generating



Developing Security Providers i-15

from SSPI MBeans 3-6
with WebLogic MBeanMaker utility 

4-6
purpose 3-10

MBeans
definition 3-10

MBeanType (root) element in MBean Definition 
Files (MDFs)

attributes A-2
syntax A-1

methods
AdjudicationProvider SSPI 4-17
Adjudicator SSPI 4-18
AuditAtnEvent convenience interface 5-4
AuditAtzEvent convenience interface 5-5
AuditChannel SSPI 4-19
AuditContext interface 5-8
AuditEvent SSPI 5-3
AuditPolicyEvent convenience interface 5-5
AuditProvider SSPI 4-18
AuthenticationProvider SSPI 4-8, 4-11

getPrincipalValidator 2-11
AuthorizationProvider SSPI 4-15
CredentialMapper SSPI 4-20
CredentialProvider SSPI 4-20
IdentityAsserter SSPI 4-12
LoginModule interface 4-9
PrincipalValidator SSPI 4-13
RoleMapper SSPI 4-14
RoleProvider SSPI 4-14
SecurityProvider interface 3-3
SecurityServices interface 5-2

P
perimeter authentication

passing tokens 2-10
policies, security

default
security provider database initialization 

3-18

principal validation
principal types 2-10

Principal Validation providers
custom

options for developing 4-12
purpose 2-2
relationship

to Authentication providers 2-10, 4-2
principals

definition 2-2
invalid 2-11

PrincipalValidator SSPI
methods 4-13

process
for developing custom security providers 

1-3

R
role computation 2-13
role mapping

definition 4-2
Role Mapping providers

example of creating runtime classes 6-15
purpose 4-2
use

with Authorization providers 4-2
RoleProvider SSPI

methods 4-14
roles

declarative 2-12
default

security provider database initialization 
3-18

dynamic computation 2-12
definition 2-12

roles, security
definition 2-12

runtime classes
creating using security service provider 

interfaces (SSPIs)



i-16 Developing Security Providers

Adjudication providers 4-17
Authentication providers 4-7
AuthenticationProvider example 

implementation 6-1
Authorization providers 4-15
AuthorizationProvider example 

implementation 6-12
CallbackHandler example 

implementation 6-11
Identity Assertion providers 4-11
IdentityAsserter example 

implementation 6-9
LoginModule example implementation 

6-4
Role Mapping providers 4-13
RoleProvider example implementation 

6-15
SecurityRole example implementation 

6-18

S
sample MBean Definition File (MDF) 3-11
security policies

default
security provider database initialization 

3-18
security provider

Adjudication
purpose 4-3

Auditing
purpose 4-3, 5-1

auditing from 5-2
Authentication

difference from Identity Assertion 
providers 4-2

relationship
to Principal Validation providers

4-2
Authorization

purpose 4-2

use with Role Mapping providers 4-2
Credential Mapping

purpose 4-3
custom

auditing from 5-1, 5-2
general architecture 3-2
Identity Assertion

configuring
for use with token types 2-8

difference from Authentication 
providers 4-2

purpose 4-2
initializing a database for

default users, groups, roles, policies, 
credentials 3-18

initializing a database for use with 3-18
interfaces

for generating MBean types 3-6
interfaces, for creating runtime classes 3-3
Principal Validation

relationship
to Authentication providers 4-2

Role Mapping
purpose 4-2

security provider databases
initializing 3-18

default users, groups, roles, policies, 
credentials 3-18

security providers
Adjudication

custom
main steps for developing 4-17

Auditing
example of creating runtime classes 

6-19
auditing from

example 5-1
Authentication

example of creating runtime classes 6-1
purpose 4-2
relationship



Developing Security Providers i-17

to LoginModules 2-3
Authorization

example of creating runtime classes 
6-12

relationship
to Access Decisions 2-12

Identity Assertion
example of creating runtime classes 6-9
use of separate LoginModule 2-7
use of tokens 2-7

Principal Validation
custom

options for developing 4-12
purpose 2-2
relationship

to Authentication providers 4-2
process for developing 1-3
Role Mapping

example of creating runtime classes 
6-15

use with Authorization providers 4-2
samples

Auditing provider 6-19
Authentication provider 6-1
Authorization provider 6-12
Identity Assertion provider 6-9
Role Mapping provider 6-15

security service provider interfaces (SSPIs)
AdjudicationProvider 4-17
Adjudicator 4-18
AuditChannel 4-19
AuditEvent 5-3
AuditEvent convenience interfaces 5-4
AuditProvider 4-18
AuthenticationProvider 4-8, 4-11

getPrincipalValidator method 2-11
AuthorizationProvider 4-15
creating runtime classes

Adjudication providers 4-17
Authentication providers 4-7

AuthenticationProvider example 
implementation 6-1

Authorization providers 4-15
AuthorizationProvider example 

implementation 6-12
Identity Assertion providers 4-11
IdentityAsserter example 

implementation 6-9
LoginModule example implementation 

6-4
Role Mapping providers 4-13
RoleProvider example implementation 

6-15
SecurityRole example implementation 

6-18
CredentialMapper 4-20
CredentialProvider 4-20
IdentityAsserter 4-12
PrincipalValidator 4-13
RoleMapper 4-14
RoleProvider 4-14

SecurityProvider interface
methods 3-3

SecurityRole interface 2-12, 4-14
SecurityServices interface

methods 5-2
purpose 5-2

SecurityServices object 5-8
severity, audit

definition 5-7
single sign-on

using Identity Assertion providers and 
LoginModules 2-7

specification, Java Management eXtensions 
(JMX) 3-10
SSPI MBeans

base required 3-14
definition 3-10
determining which to extend and implement 

3-10
inheritance hierarchy 3-15



i-18 Developing Security Providers

using to generate MBean types 3-6
subinterfaces of the AuditEvent SSPI 5-4
subject

definition 2-14
subjects

definition 2-2
Supported Types

attribute in MBean Definition Files (MDFs) 
for Identity Assertion providers 2-9

field in Administration Application 2-9
syntax, MBean Definition File (MDF) elements 
A-1

examples A-7
MBeanAttribute subelement

attributes A-4
MBeanConstructor subelement A-7
MBeanType (root) element A-1

attributes A-2

T
tokens

passing for perimeter authentication 2-10
types

configuring Identity Assertion 
providers for use with 2-8

creating new 2-8
definition 2-8
for identity assertion 2-7

toString 5-4
types

principal 2-10
tokens

configuring Identity Assertion 
providers for use with 2-8

creating new 2-8
definition 2-8
for identity assertion 2-7

U
users

default
security provider database initialization 

3-18
definition 2-2
WebLogic Server 2-2

utility, WebLogic MBeanMaker
use of MDFs 3-11, 3-17
what it provides 3-17

W
WebLogic MBeanMaker utility

creating MBean JAR Files (MJFs) 4-21
generating MBean types 4-6
use of MDFs 3-11, 3-17
what it provides 3-17

WLSGroup interface 2-2
WLSUser interface 2-2


	Introduction to Developing Security Providers
	About This Document
	Product Documentation on the dev2dev Web Site
	Related Information

	Audience for This Guide
	Prerequisites for This Guide
	Overview of the Development Process
	Types of Providers

	Security Provider Concepts
	Authentication Concepts
	Users and Groups, Principals and Subjects
	Java Authentication and Authorization Service (JAAS)
	Writing a JAAS LoginModule
	LoginModule Interface
	JAAS Control Flags
	CallbackHandlers
	How JAAS Works


	Identity Assertion Concepts
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	How to Create New Token Types
	How to Make New Token Types Available

	Passing Tokens for Perimeter Authentication

	Principal Validation Concepts
	Principal Validation and Principal Types
	How Principal Validation Providers Differ From Other Types of Security Providers
	Security Exceptions Resulting from Invalid Principals

	Authorization Concepts
	Role Mapping Concepts
	Security Roles
	Dynamic Security Role Computation

	Auditing Concepts
	Audit Channels
	Auditing Events from Custom Security Providers

	Credential Mapping Concepts

	Design Considerations
	General Architecture of a Security Provider
	Security Services Provider Interface
	Developing Security Providers using the SSPI
	Using ResourceActionBundle
	com.bea.security.spi.ProviderResource
	com.bea.security.spi.ProviderAction

	Using the ProviderAuditRecord Interface

	Security Services Provider Interface MBeans
	Understanding why You Need an MBean Type
	Determining which SSPI MBeans to Extend
	Understanding the Basic Elements of an MBean Definition File
	Understanding the SSPI MBean Hierarchy
	Understanding What the WebLogic MBeanMaker Provides

	Initialization of the Security Provider Database
	Creating a Simple Database
	Configuring an Existing Database
	Delegating Database Initialization


	Developing Custom Security Providers
	Types of Custom Security Providers Supported
	Writing an MBean Definition File
	Using the WebLogic MBeanMaker to Generate the MBean Type
	About the Generated MBean Interface File

	Creating Security Provider Runtime Classes
	Creating Authentication Provider Runtime Classes
	Implementing the AuthenticationProvider SSPI
	Implementing the JAAS LoginModule Interface
	Implementing Custom Exceptions for LoginModules
	Method 1: Make Custom Exceptions Available through the System Classpath
	Method 2: Make Custom Exceptions Available through the System Classpath and the Authentication Pr...


	Creating Identity Assertion Runtime Classes
	Implementing the AuthenticationProvider SSPI
	Implementing the IdentityAsserter SSPI

	Creating Principal Validation Provider Runtime Classes
	Implementing the PrincipalValidator SSPI

	Creating Role Mapping Provider Runtime Classes
	Implement the RoleProvider SSPI
	Implement the RoleMapper SSPI
	Implement the SecurityRole Interface

	Creating AuthorizationProvider Runtime Classes
	Implement the AuthorizationProvider SSPI
	Implement the AccessDecision SSPI

	Creating AdjudicationProvider Runtime Classes
	Implement the AdjudicationProvider SSPI
	Implement the Adjudicator SSPI

	Creating Auditing Provider Runtime Classes
	Implement the AuditProvider SSPI
	Implement the AuditChannel SSPI

	Creating Credential Mapping Provider Runtime Classes
	Implement the CredentialProvider SSPI
	Implement the Credential Mapper SSPI


	Creating an MBean JAR File
	Deploying a Security Provider MJF File

	Auditing Events from Custom Security Providers
	How Events are Audited
	Security Services and the Auditor Service
	Adding Auditing to a Custom Security Provider
	Creating an Audit Event
	Implementing the AuditEvent SSPI
	Implementing an AuditEvent Interface
	AuditAtnEvent Interface
	AuditAtzEvent and AuditPolicyEvent Interfaces
	AuditMgmtEvent Interface
	AuditRoleEvent Interface
	AuditCredentialMappingEvent
	AuditRoleDeploymentEvent

	Audit Severity and the AuditSeverity Class
	AuditContext Interface

	Obtain and Use the Auditor Service to Write Audit Events
	ContextHandler Object


	Code Examples for Developing Security Providers
	Example: Creating the Runtime Classes for the Sample Authentication Provider
	Example: Creating the Runtime Class for the Sample Identity Assertion Provider
	Example: Creating the Runtime Class for the Sample Authorization Provider
	Example: Creating the Runtime Class for the Sample Role Mapping Provider
	Example: Creating the Runtime Class for the Sample Auditing Provider
	Example: Implementation of the AuditRoleEvent Interface
	Example: Obtaining and Using the Auditor Service to Write Role Audit Events

	MBean Definition File Element Syntax
	MBeanType Root Element
	MBeanAttribute Subelement
	Examples: Well-Formed and Valid MBean Definition Files

	Index

