3=\

THE ENTERPRISE MIDDLEWARE SOLUTION

BEA TUXEDO

TXRPC Guide

BEA TUXEDO Release 6.5
Document Edition 6.5
February 1999

Copyright
Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, TUXEDO, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO TxRPC Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

1. Introduction and Overview

General Description of TXRPCcoooiiiiiiiiiiiieceieeecee,

2. The Interface Definition Language

REFEIENCESeiiiiee it
uuidgen - Creating an IDL Template.........ccccocveeeriiiieeeeennenn.
Changes in the Language.ccceveeiriiieeiiiieie e
Changes Based on the TXRPC Specification.........................
Enhancements to the Languageccccovvveeeiiiieieiniieecnne

Enhancements that May Limit Portability
Features that Are Not Supported..........cccovvvveeiiiiieeeiiiiieeens
tidl - The IDL ComPIlercccvviiiiiiiieieee e

3. Writing RPC Client and Server Programs

INEFOAUCTION ...t
Prerequisite KNOWIEAQEceeveeiiiiiiiiiiiiiie e
Handling RemMOtENESS........ccooiiiiiiiiiiiiie e
Handling Status and Exception Returns..............ccccocuvee.
The Stub Support FUNCLIONS..........ceiiiiiiiiice e
RPC Header FileS ...
Portability of COEocuuiiiiiiiie e
Interactions With ATMI.........ooiiiiiiiii e
Interactions With TX ...

4. Building RPC Client and Server Programs

INEFOAUCTION ...
Prerequisite KNOWIEAQEcueveviiiiiiiiiiiiiieeee e

BEA TUXEDO TxRPC Guide

BUIldiNg @N RPC SEIVET ...ccciiiiiiiiiiiiiie et 4-

BUilding @an RPC ClENT......coiiiiiiiiiie et -2
Building a DOS Workstation RPC Clientccccooviiiiiiiiiiie e 4-3
Building a Windows Workstation RPC Client..............cccccooiiiiiinicnnnn. 4-3
Building an OS/2 Workstation RPC Client..........ccocuvvveiiiiiiiiiiiiee e 4-4
USING CH oottt e e e e e s ettt e e e e e s e e e s ettt e e eeeeeae e e e srnnnees 4-.
Interoperability with DCE/RPCcccoiiiiiiiici e 4-5
BEA TUXEDO Requester to DCE Service via BEA TUXEDO Gateway
4-6
DCE Requesterto BEATUXEDO Service Using BEATUXEDO Gateway
4-9
BEA TUXEDO Requester to DCE Service Using DCE-only 4-11
DCE Requester to BEA TUXEDO Service Using BEA TUXEDO-only
4-12
Building Mixed DCE/RPCand BEATUXEDO TxRPC Clientsand Servers
4-12

5. Running the Application

RUNNING the APPIICALIONuiiiiiiieii e 5-!
Prerequisite KNOWIEAQE..........uviiiiiiii et 5-
Configuring the ApPlICAtioNooiiiiiiiie e 5-1
Booting and Shutting Down the Applicationccocciieiiiiie e 5-2
AAMINISIFALION ...t 5-¢
Dynamic Service AdVErtiSEMENT..........couiuiiiiiiiiie it 5-3

A. A Sample Application

What This AppendiX IS ADOUL...........oiiiiiiiiiiie e A-1

SOME PrelimiNariES.ooiuuviie ettt A-

The rpcsimp APPHCALION ...c..eeiiie i e A-]

Step 1 - Create an Application DIreCtOrYcoccvueeereiieieeeniiieee e viieeens A-2

Step 2 - Set Environment Variablescccoiiiiiiiiii e A-

StEP 3 - COPY fES .o A-

Step 4 - LISt the FIleS.....eeiiii e A-
IDL Input File - Simp.idl.......oooiiiei e A-3

The Client Source Code - ClIeNt.C......oovviiiiiieiriiii e A-4

The Server Source Code - SEIVEI.C.....uuvieeriiiieeiiiiie e A-

iv BEA TUXEDO TxRPC Guide

Makefile - rpCSIMP.MKooiiiii e A-6

The Configuration File - ubbconfigccooceeiiieiii e, A-7

MS-DOS and Windows Makefile - rpcsimp.mak...........ccccccoeeennnnen. A-8

Windows Definition files - wclient.def and wsimpldll.def.............. A-11
Step 5 - Modify the Configurationcccoocoieinii e, A-12
Step 6 - Build the Application..........ccoooiiiiiiiiie e A-13
Step 7 - Load the Configuration............coccuueeiriiieiciiniie e A-13
Step 8 - Boot the Configurationcccovvieeiniiiin e A-13
Step 9 - RUN the CHENt ... e A-13
Step 10 - Monitor the RPC SEIVETccoviiviiiiiieee e A-14
Step 11 - Shut Down the Configurationccccev e A-15
SEEP 12 - ClEAN UP ittt A-15

B. A DCE-Gateway Application

What This AppendiX IS ADOUL.........cooiiiiiiiiiiiiiei et B-1
The DCE-Gateway ApPPHCALIONc..oeiiiiiiiiiiiiieie e B-2
Step 1 - Create an Application DIr€CLONYccuuveeiviiieeireiee e B-2
Step 2 - Set Environment Variables ..o B-3
Step 3 - CopY the FIleSoeiiiiiee e B-3
SteP 4 - LISt the FIlES...cco i B-3
IDL ACF File - SIMPACE.ACTcoiiiiiiieiiiiie e B-4
Binding Function - dcebind.C.........ccovviiiiiiieiniii e B-5
Entry Point VECtor - dCEEPV.C..uviiiiieiiieiiiiie e B-6
DCE Manager - ACEMQI.C ...uiiiiiiiiiianiiiieie ettt B-7
DCE SEerVEr - UCESEIVEI.C...uviieiiiiiiiiei ettt et B-9
Makefile - rpCSIMP.MKooiiiii e B-11
Step 5 - Modify the Configurationcccoovieiriiiii e B-13
Step 6 - Build the APPlICation..........ccooiiiiiiiiiie e B-13
Step 7 - Load the Configuration............coccvveeeriiiiieiiiiee e B-13
Step 8 - Configuring DCEcooiiiiiiiiiiiiie e B-14
Step 9 - Boot the Configurationccccevuvieeiniieie e B-15
Step 10 - RUN the CHENt ... B-15
Step 11 - Shut Down the Configurationccocceveiiieeieniiiiee e B-15
SEEP 12 - ClEAN UP coiiiiiiiie ittt B-15

BEA TUXEDO TxRPC Guide v

Vi BEA TUXEDO TxRPC Guide

CHAPTER

1 Introduction and
Overview

General Description of TXRPC

The TXRPC feature allows programmers to usengote procedure call (RPC)

interface, such that a client process can call a remote function (that is, a remote service)
in another process using a local function call. The application writer must specify the
operations (that is, procedures) and data types that are used as parameters to those
operations via an Interface Definition Language (IDDperationsare grouped

together in annterface An IDL compiler is used to generate substitute procedures
calledstubswhich allow the operation to be remote. An important concept to
understand from the beginning is that there are two fundamental levels of naming: the
interface has a name and within an interface, one or more operations are named. At
runtime, the interface is made available, which means that any of the operations in the
interface can be called; an individual operation within an interface cannot be made
available (if you need this, define the operation in its own interface).

Figure 1-1 illustrates how an RPC is made to look like a local procedure call.

BEA TUXEDO TxRPC Guide 1-1

1

Introduction and Overview

1-2

Figure 1-1 RPC Communication

PR Apparent [t Fatn App
CLiBfiE 4 L 2. 4]
Crnige [
dienk Server
1T il
TUZELD TUXEDD
Rinb=ie Riint e
Irpest parameeer: T
Foetimm afell ookt fouram e
Fcvaal Craka Path

The client application code calls one of the operations (functions) defined in the IDL
file. Instead of calling the actual function, which resides on the server side, the clien
stub is called. The client stub is generated by the IDL compiler based on the IDL inpu
file, which defines the data types and operations. For each operation, the input
parameters, return type, and output parameters are defined. The client stub takes tf
input parameters and converts them into a single buffer of data, sends the data to tt
server and waits for a response, and unpacks the buffer of data sent back from the
server (the return value and output parameters). The communication between the clie
and server processes, whether intra-machine or inter-machine is handled by the BE
TUXEDO system runtime.

On the server side, the runtime calls the server stub for the interface, also generated

the IDL compiler. This stub unpacks the data buffer that contains the input parameter:
in some cases it allocates space needed for output parameters of the operation, calls

operation and waits for it to return, packs the return value and output parameters int
a buffer and sends the response back to the client.

From the application perspective, it appears that a simple local procedure call is don
The stubs and the runtime hide the calling of a remote procedure in a non-local addre
space (process).

The steps for building an application using remote procedure calls is very similar to
building one without these calls. Most of the time will be spent writing the application
code for the client and the server (where the real application work is done). The BE/
TUXEDO system runtime frees the application programmer from worrying about
communications, translation of the data from the format used on the client machine
the format used on the server machine, and so forth. TXRPC may also be used to
communicate between servers.

BEA TUXEDO TxRPC Guide

General Description of TXRPC

In addition to the steps needed for building a monolithic application, it is necessary to
completely define the interface between the client and server. As stated earlier, the
interface contains the definition of data types and operations used for the remote
procedure calls. Normally, the name of the file containing the definition has a™

suffix; using this convention makes the file type self-documenting.

Every interface must have its own unique identifier. This “Universal Unique
Identifier” (UUID) consists of 128-bits that uniquely identify the interface among all
interfaces. The job of generating a UUID is done for the application programmer by
theuuidgen program. By running theuidgen program with thei option, it

generates an interface template that contains a new UUID. You can look at
Appendix A, “A Sample Application,” for a complete example (including code) for the
development of a simple RPC application; the first step illustrates how to run the
uuidgen command and the resulting output. More information about other options of
this command are given in theidgen (1) manual page.

The UUID is used at runtime to ensure that the client stub matches the server stub on
the receiving side. That is, the UUID is sent from the client to the server for validation
by the runtime BEA TUXEDO system, transparent to the application programmer.

Besides matching on the UUID, each interface also has a version number associated
with it. The version consists of a major and minor number. If a version number is not
specified as part of the interface definition, it defaults to 0.0. Thus, there may be
multiple versions of the same interface available. The client requests a particular
version of an interface by invoking the RPC in the stub generated from a patrticular
interface version. Different versions imply that data types or operation parameters or
returns have changed, or operations have been added to or deleted from the interface.
Thus, the client and server UUID’s and versions must match for a successful RPC. The
application programmer must ensure that versions of the interface that have the same
version numbers do provide the same (or a compatible) interface.

Once the template IDL is generatedubidgen , the application program must provide

a definition of all data types and operations in the interface. The language looks very
much like the declarative parts of C or C++ (without the procedural statements). Data
types are declared vigpedef statements, and the operations are declared via
function prototypes. Additional information is provided via |Bttributes Attributes
appear in the language within square brackets, for example, [in]. These provide
information about such things as pointer types (for example, whether or not a pointer
can be NULL at runtime), about parameters (for example, whether a parameter is for
input, output, or both), and much more. The IDL language and the associated compiler
are discussed further in Chapter 2, “The Interface Definition Language.”

BEA TUXEDO TxRPC Guide 1-3

1

Introduction and Overview

1-4

In addition to the IDL file, an optional Attribute Configuration File (ACF) may also be
provided to give additional attributes of the interface. Most important is the definition
of status variables in the operations for returning the status of each RPC operation. Ti
use of status variables will be discussed further in Chapter 3, “Writing RPC Client anc
Server Programs.” Attributes in the ACF file do not affect the communications
between the client and server (as do attributes in the IDL file), but generally have ar
impact on the interface between the application code and the generated stubs.

When using the BEA TUXEDO system runtime, the management of the binding
(connection) between the client and server is done transparently. There is no
information provided by the client or server application code to manage the
client/server binding. (In contrast, when using the OSF DCE runtime, considerable
effort by the programmer must be given to binding management. BEA TUXEDO
runtime does not support the OSF DCE runtime functions and ignores binding
attributes in IDL and ACF files.)

The IDL and optional ACF files are “compiled” using the IDL compiler. The compiler
first generates a header file that contains all of the type definitions and function
prototypes for the operations defined in the IDL file. This header file can be included
in application code that makes RPC calls defined in the interface. If the input files are
file .idl andfile .acf ,then the default header file namédilis .h . The compiler
generates stub code for both the client and server (for exafifgple,cstub.c and

file _sstub.c). These stub files were described earlier and contain the data
packaging and communications for the RPC. By default, the IDL compiler invokes the
C compiler to generate client and server stub object files (for exafitple, cstub.o

andfile _sstub.o) and the stub source files are removed. There are various IDL
compiler options to request, limit generation of, and keep source and object files, an
change the output file names and directories. Setédthg(1) reference page for

further details.

After completing the interface definition, the major portion of work is writing the
application code. The client code will call the operations defined in the interface, anc
the server code must implement the operations (note that a server can also act as a
client by calling an RPC). Further considerations regarding writing the application are
discussed in Chapter 2, “The Interface Definition Language.”

When the application code is completed, it's time to compile and link it together with
the BEA TUXEDO system runtime. Two programs are provided to simplify this
processbuildserver for the server, anbluildclient for the client. These

programs compile any source files and link the object and library files with the BEA

BEA TUXEDO TxRPC Guide

General Description of TXRPC

TUXEDO runtime to produce the executable files. These programs allow for alternate
compilers and compilation options to be specified. Seedituserver (1) and
buildclient (1) reference pages for further details.

The complete process for building a server and client are shown in the following two
figures. More details about building client and server programs on different platforms
are given in Chapter 4, “Building RPC Client and Server Programs.”

Figure 1-2 Building an RPC Server

Bigp 1

|: .-:u_-'_!;-;-\. " .| amp.idl |

TUREDG |

rishine

X
Wl T

stfieg b

o — - e —
N amp B I—r b b erwer —‘lll
Strp 2 | i . i
T St 3
TV | !
| libitps

In Figure 1-2, the process for building a server is illustrated.

1. Runuuidgen to generate a skeleton IDL filsirgp.idl) with auuID. Edit the
template IDL file to define the interface between the client and server using the
interface definition language.

2. Run the IDL compilertidl) usingsimp.idl and optionasimp.acf to
generate the interface header file and the server stub object file.

3. After writing the server application codeefver.c), runbuildserver to
compile it and link it with the server stub, BEA TUXEDO runtime, and TxRPC
runtime to generate an executable server.

Figure 1-3 Building an RPC Client

| Amp 5l | TUXELD
l runliine

s ezt i edl 3

gt h— =
1 nemip b — buildclient —{LI
alep 4 | i -
- T

alep &

| me—

The process for building a client is illustrated in Figure 1-3.

BEA TUXEDO TxRPC Guide 1-5

1 introduction and Overview

4. Using the IDL file created in Step 1, run the IDL compitelt () to generate the
interface header file and the client stub object file.

5. After writing the client application codelient.c), runbuildclient to
compile it and link it with the client stub, BEA TUXEDO runtime, and TxRPC
runtime to generate an executable client.

After building the application client and server, the application can be configured anc
booted, and the client run. This is discussed in Chapter 5, “Running the Application.

1-6 BEA TUXEDO TxRPC Guide

CHAPTER

2 The Interface
Definition Language

This chapter deals with the use of the Interface Definition Language (IDL).

References

BEA TUXEDO TxRPC supports the IDL grammar and associated functionality as
described in Chapter 3 (“Interface Definition LanguageP@E: REMOTE
PROCEDURE CALI(Doc Code: P312 ISBN 1-872630-95-2). This book is available
from the following.

X/OPEN Company Ltd (Publications)
P O Box 109

Penn

High Wycombe

Bucks HP10 8NP

United Kingdom

Tel: +44 (0) 494 813844
Fax: +44 (0) 494 814989

The X/OPEN document is the ultimate authority on the language and rules adhered to
for the BEA TUXEDO product. Note that the X/OPEN TxRPC IDL-only interface is
supported (parts of the document concerning the DCE binding and runtime do not
apply). The X/OPEN document is based on the OSF DCE AES/RPC document. There
are several books containing tutorials and programmer’s guides that can be used,

BEA TUXEDO TxRPC Guide 2-1

2 Thenterface Definition Language

although most will not contain the latest features. The programmer’s guide available
from OSF isOSF DCE Application Development Gujgeiblished by Prentice-Hall
(Englewood Cliffs, New Jersey, 07632).

The X/OPEN Preliminary Specification for TXRPC Communication Application
Programming Interfacés also available from X/OPEN (see above). TXRPC adds
transaction support for RPCs to the original X/OPEN RPC interface.

uuidgen - Creating an IDL Template

2-2

A Universal Unique Identifier (UUID) is used to uniquely identify an interface. The
uuidgen command is used to generate UUIDs. The output might look something like
the following.

$ uuidgen -i > simp.id|

$ cat simp.idl
[uuid(816A4780-A76B-110F-9B3F-930269220000)]
interface INTERFACE

{
}

This template is then used to create the IDL input file for the application (adding type
definitions, constants, and operations).

If both the BEA TUXEDO and DCHhuidgen commands are available, the DCE
command can and should be used to generate the template (the DCE version will mao
likely have a machine-specific approach to getting the node address, as described
below).

The BEA TUXEDO systemuidgen command is similar to the DCE command with
the exception that the option (which generates a UUID string as an initialized C
structure), and the option (which translates an old style UUID string to the new
format) are not supported. See thdgen (1) reference page for details of the
interface.

BEA TUXEDO TxRPC Guide

Changes in the Language

Theuuidgen command requires a 48-bit node address as described in ISO/IEC 8802-3
(ANSV/IEEE 802.3). There is no platform-independent way to determine this value,
and it may not be available at all on some machines (a workstation, for example). The
following approach is used for the BEA TUXEDO systeuitigen command:

4 If the NADDRenvironment variable is set to a value of the form
num.num.num.num.num.num Wherenumis between 0 and 255, inclusive, it is
taken to be an Internet-style address and converted to a 48-bit node address. This
allows conformance with the use of the 8802-3 node address. It also allows users
who do not have access to this address to use another value, most likely the
Internet address (which it the same as the 8802-3 address). If the Internet
address is used, the lastn.num should be 0.0 (because Internet addresses are
only 32-bit addresses).

4 If the NADDRenvironment variable is not set and if tN§éNADDRNvironment
variable is set to a value of the fomnnnnnnnnnnnnnnn it is taken to be a
hexadecimal network address, as used in Workstation. Again note thatbis is
the 8802-3 address, and the last 16 bits will be treated as zeros.

4 If neither theNADDRhor thewSNADDRNvironment variable is set (and if not
DOS, Windows, or OS/2), thename for the machine is used to look up the
machine entry iretc/hosts to get the Internet-style address.

4 If the first three choices are not available, a warning is printed and
00.00.00.00.00.00 is used. This is not desirable because it reduces the chance of
generating a unique UUID.

Changes in the Language

The IDL compiler recognizes the IDL grammar and generates stub functions based on
the input. The grammar and its semantics are fully described in both the X/OPEN and
OSF/DCE references listed earlier in this chapter. The grammar will be recognized in
its entirety with some changes as described in the following sections.

BEA TUXEDO TxRPC Guide 2-3

2 Thenterface Definition Language

Changes Based on the TXRPC Specification

The following are changes to the base X/OPEN RPC specification that are defined b
the X/IOPEN TxRPC Specification:

4 The most important enhancement from the TXxRPC specification is the addition
of the[transaction_optional] and|transaction_mandatory] attributes
in the interface and operation attributes in the IDL file.
[transaction_optional] indicates that if the RPC is done while in a
transaction, the remote service is done as part of the transaction. The
[transaction_mandatory] attribute requires that the RPC be done within a
transaction. Without these attributes, the remote service is not part of any
transaction of which the client may be part.

4 Binding types and attributes are not required by X/OPEN TxRPC IDL-only. The
binding attributes arfhandle] , [endpoint] , [auto_handle]
[implicit_handle] , and[explicit_handle] . They are recognized higl
but not supported (these attributes are ignored). Alsbdie t type is not
treated specially (it is transmitted as any other defined type is transmitted,
without treatment as a handle).

4 Pipes are not required by X/OPEN TxRPC IDL-omly. supports pipes only
in[locall mode; that is, they can be specified for header file, but not stub,
generation.

¢ Thelidempotent] , [maybe] , andbroadcast] attributes are not required by
X/OPEN TxRPC IDL-only. They are ignored by

2-4 BEA TUXEDO TxRPC Guide

Enhancements to the Language

Enhancements to the Language

The following are enhancements to the X/OPEN RPC specification. In most cases, the
language has been enhanced to more closely follow the C language, simplifying the
porting of existing interfaces (converting from ANSI C to IDL prototypes).

L4

In the X/OPEN Specification, character constants and character strings are
limited to the portable set, thatdgace (0x20) throughilde (0x7e). Other
characters in the character set (0x01 through 0xff) are allowed, as in OSF DCE
RPC.

As in C, the following operators are treated as punctuators.
[[8&? | & ==l==<<>><=>=<>+-% !~

This means that white space need not follow or precede identifiers or numbers if
preceded or followed by one of these tokens. (The IDL specification requires
white space, asia=b+3 ', instead of allowinga=b+3'.) This also seems to

be the behavior of the OSF DCE IDL compiler.

The published X/OPEN specification restricts field and parameter names from
matching type names. This restriction effectively puts all names in a single name
space. This restriction does not match C, C++, or the OSF IDL compiler, and is
not enforced.

The X/OPEN specification does not allow anonymous enumerations as
parameter or function results and does not allow anonymous structures or unions
as the targets of pointers. Each of these is allowed by the OSF DCE IDL
compiler. These restrictions are not enforced; in each case, a name, based on the
interface name and version, is generated for use during marshalling.

Enumeration values (constants) may be used in integer constant expressions (as
in C). This also seems to be the behavior of the DCE IDL compiler.

BEA TUXEDO TxRPC Guide 2-5

2 Thenterface Definition Language

2-6

4 As currently defined in the XIOPEN RPC specification, the grammar does not

allow for a pointer in front of an operation declaration, for example,
long *op(void);

nor does it allow for structure or union returns. While this could be considered
correct (everything could be hidden in a defined type), the DCE IDL compiler
and, of course, C compiler allow a much richer operation return. The supported
grammar will be

[operation_attributes] < type_spec > < declarator >
where<declarator > must contain &function_declarator > (Ifa
<function_declarator > does not exist, then a variable is declared, which

results in an error.) Declaring an array of operations or an operation returning an
array (both allowed by this grammar) will be detected and flagged as an error.

The<ACS_type declaration > takes<ACS_named_type > values, just as the
IDL <type_declaration > takes a list of declarators. This seems to be the
behavior of the DCE IDL compiler.

Fielded buffers created and manipulated with the Field Manipulation Language
(FML) are an integral part of many BEA TUXEDO applications. Fielded buffers
are supported as a new base type in the IDL. They are indicated by the keyword:
FBFRfor 16-bit buffers an&BFR32 for 32-bit buffers and must always be

defined as a pointer (for exampkBFR * or FBFR32 *). A fielded buffer

cannot be defined as the base typetypedef . They can be used in structure
fields and as parameters. They can be used as the base type in an array or poin
(either full or reference pointer). However, conformant and varying arrays of
fielded buffers are not supported.

There are several restrictions in the OSF IDL compiler that are not documented
in the AES or X/OPEN RPC specification. These are enforced in the BEA
TUXEDO IDL compiler:

4+ A transmitted type used imdgnsmit_as()] cannot have the
[represent_as] attribute.

4 A union arm may not be or containraf[] pointer.

4 If a conformant and/or varying array appears in a structure, the array size
attribute variable may not be a pointer (that is, it must be a non-pointer,
integer element within the structure).

BEA TUXEDO TxRPC Guide

Enhancements to the Language

Enhancements that May Limit Portability

There are four additional BEA TUXEDO enhancements to the X/OPEN RPC
specification that, while making the specification more C-like, are not supported in the
OSF DCE IDL compiler and thus have the effect of limiting portability of the IDL file:

L4

String concatenation is supported (as in ANSI C). That is,
const char *str = “abc” “def”;

is treated the same as

const char *str = “abcdef”;

Escaped newlines are allowed in string constants. That is,

const char *str = “abc\
def”;

is treated the same as

const char *str = “abcdef”;

Enumeration values may also be used in union cases and are treated as integers
(that is, automatic conversion is provided as in C).

The restriction that the type of eaclnion_case label > must be that
specified by theswitch_type_spec > will not be enforced. Instead, the type
will be coerced as is done with case statements in a C switch statement.

BEA TUXEDO TxRPC Guide 2-7

2 Thenterface Definition Language

Features that Are Not Supported

2-8

The following seven features are not supported inidthe compiler:

4 The migration attributefg1_struct] , [vi_enum] , [v1_string] , and
[vl_array] are recognized but not supported (these appear in the OSF IDL
specification but not the X/OPEN specification).

4 Function pointers (defined in the OSF/DCE document) are supported only in
[locall mode (as in OSF/DCE).

4 An exact match is required on interface version minor between the client and the
server (the XIOPEN RPC specification allows for the server version minor to be
greater than or equal to the version minor specified by the client).

4 On machines with 32-bit longs, integer literal values are limited to -2**31 to
2**31. This means that unsigned long integer values in the range 2**31+1 to
2**32-1 are not supported. This also seems to be the behavior of the DCE IDL
compiler.

4 Context handles are supported onlyideal] mode. Interfaces cannot be
written that use context handles to maintain state across operations.

4 TheJout-of-line] ACS attribute is ignored. This feature is not defined in a
way that will support interoperation between different implementations (e.g.,
with the OSF IDL compiler).

¢ Thelheap] ACS attribute is ignored.

BEA TUXEDO TxRPC Guide

tidl - The IDL Compiler

tidl - The IDL Compiler

The interface for the IDL compiler is not specified in any X/OPEN specification.

For DCE application portability, the BEA TUXEDO system IDL compiler has a
similar interface to the DCE IDL compiler, with the following exceptions:

L4

The command name gl instead ofdl so an application can easily
reference either when both appear in the same environment.

The-bug option, which generates buggy behavior for interoperability with
earlier versions of the software, has no effect. ‘hhebug option also has no
effect.

The-space_opt option, which optimizes the code for space, is ignored. Space
is always optimized.

A new option,-use_const , is supporteduse_const generates ANSI C

const Statements instead #define statements for constant definitions. This

gets around an annoying problem where a constant defined in the IDL file

collides with another name in the file using a C-preprocessor definition, but is
properly in another name space when defined as a C constant. Use of this feature
will limit portability of the IDL file.

On DOS and OS/2, thikeep object ~ option is not supported and theep

all option will generate C source code only. By default, the IDL compiler
generates C source code for the stubs and then compiles them automatically. The
automatic compilation of the stubs is not done on DOS and OS/2 (the equivalent
of -keep c_source due to memory limitations on these platforms. Also, only

the client stub is generated; server stub generation is not supported on DOS and
OS/2 (to reduce the size of ti@t executable).

By default,/lib/cpp , /usr/ccs/lib/cpp , Or /ust/lib/cpp (whichever is
found first) is the command used to preprocess the input IDL and ACF files. On
DOS and 0S/2, the default is to not pre-process IDL and ACS files.

By default, the IDL compiler takes an input IDL file and generates the client and server
stub object files. Thekeep c_source option generates only the C source files, and
the-keep all option keeps both the C source and object files. The sample RPC
application (listed in Appendix A, “A Sample Application,”) uses tkezp object

option to generate the object files.

BEA TUXEDO TxRPC Guide 2-9

2 Thenterface Definition Language

By default, at most 50 errors are printedibly . If you want to see them all (and have
more than 50 errors), use tleeror all option. The error output is normally printed

to thestderr , butis printed on the standard output on DOS and OS/2 platforms (since
there is no standard mechanism to redirect the standard error on these platforms).

See theidl (1) reference page for details on the many other options that are available

2-10 BEA TUXEDO TxRPC Guide

CHAPTER

3 Writing RPC Client and
Server Programs

Introduction

This chapter describes programming issues when writing the client code that calls the
remote procedure calls, and providing server code for the remote operations. Sample
client and server source files are given in Appendix A, “A Sample Application.”

Prerequisite Knowledge

This section is written for a C language programmer developing the application client
and server software.

BEA TUXEDO TxRPC Guide 3-1

3 Writing RPC Client and Server Programs

Handling Remoteness

The goal of TXRPC is to provide procedure calls transparently between a client in on
address space and a server in another address space, potentially on different machir
However, because the client and server are not in the same address space, there a
some things to remember:

4 Because the client and server are in different address spaces, potentially on
different machines, memory is not assumed to be shared. Program state (for
example, open file descriptors) and global variables are not shared between the
client and server. Any state information required must be passed from the client
to the server and then back to the client for subsequent calls.

4 The division of labor between the client and server has some advantages, such :
providing more modularity of the software and the ability to do the work near
the resources required to do the work. However, it may also mean more
complexity in dealing with issues related to distributed processing, such as
communication problems, independent unavailability of either the client or
server, and so forth. Errors resulting from the increased complexity may require
different handling from those in an interface designed for local procedure calls.
The handling of errors involved in communications and/or the remote process is
covered in the next section.

Handling Status and Exception Returns

3-2

In the X/OPEN RPC specification, non-application errors are returned via status
parameters or a status returnfadlt_status value is returned if there is an RPC
server failure and eomm_status value is returned if there is a communications
failure. Status returns are specified by defining an operation return valug¢oat]an

parameter of typerror_status_t in the IDL file, and declaring the same operation
or parameter to have tlffault_status] and/or[comm_status] attribute in the
ACF file.

BEA TUXEDO TxRPC Guide

Introduction

For example, an operation defined in an IDL file as:
error_status_t op([in,out]long *parm1, [out]error_status_t *commstat);

with a definition in the corresponding ACF file as:

[fault_status]op([comm_status]jcommstat);

returns an error from the server via the operation return, and an error in
communications via the second parameter. Its use in the client code could be as
follows:

if (op(&parm1, &commstat) != 0 || commstat != 0) /* handle error */

The advantage of using status returns is that the error can be handled immediately at
the point of failure for fine-grained error recovery.

The disadvantage of using status returns is that the remote function has additional
parameters that the local version of the function does not have. Additionally,
fine-grained error recovery can be tedious and error prone (for example, some cases
may be missing).

DCE defines a second mechanism called exception handling. It is similar to C++
exception handling.

The application delimits a block of C or C++ code in which an exception may be raised
with theTRY, CATCHCATCH_ALL andENDTRYstatementstRYindicates the beginning

of the block.CATCHis used to indicate an exception-handling block for a specific
exception, anATCH_ALLIs used to handle any exceptions for which there is not a
CATCHstatementENDTRYends the blocktRY blocks are nested such that if an
exception cannot be handled at a lower level, the exception can be raised to a higher
level block using thRERAISE statement. If an exception is raised out of any exception
handling block, the program writes a message to the log and exits. Details of the
exception handling macros and an example are given iTRY{8c) reference page.

In addition to exceptions generated by the communications and server for an RPC call,
exceptions are also generated for lower level exceptions, specifically operating system
signals. These exceptions are documented oMRiS&c) reference page.

BEA TUXEDO TxRPC Guide 3-3

3 Writing RPC Client and Server Programs

The Stub Support Functions

3-4

There are a large number of run-time support functions (over 100) defined in the
X/OPEN RPC specification. These functions need not all be supported in an X/OPEN
TXRPC IDL-only environment. Most of these functions relate to binding and
management which are done transparently for BEA TUXEDO clients and servers.

One area that affects application portability is the management of memory allocated
for stub input and output parameters and return values. The Stub Memory Manageme
routines are supported in TXRPC runtime with the exception of the two routines to
handle threads. The status-returning functions are

4 rpc_sm_allocate
rpc_sm_client_free
rpc_sm_disable_allocate

rpc_sm_enable_allocate

¢

¢

¢

4 rpc_sm_free
4 rpc_sm_set _client_alloc_free
4 rpc_sm_set_server_alloc_free
¢

rpc_sm_swap_client_alloc_free

The equivalent exception-returning functions are
rpc_ss_allocate

rpc_ss_client_free

rpc_ss_disable_allocate

rpc_ss_enable_allocate

rpc_ss_free

rpc_ss_set_client_alloc_free
rpc_ss_set_server_alloc_free

¢
¢
¢
¢
¢
¢
¢
¢

rpc_ss_swap_client_alloc_free
See the manual pages for details of using these functions.

The runtime functions are containedimrpc ; building RPC clients and servers is
discussed in the next section.

BEA TUXEDO TxRPC Guide

Introduction

Here are a few tips regarding memory management.

4 When a BEA TUXEDO client calls a client stub, it ugsasloc andfree by
default. All space will be freed on return from the client stub except space
allocated forfout] pointers (including implicifout] pointers in the return
value of the operation). To make freeingamft] pointers easier, call

rpc_ss_enable_allocate (), and setlloc /free torpc_ss_alloc ()/
rpc_ss_free () before calling the RPC by calling
rpc_ss_set_client_alloc_free (). Thenrpc_ss_disable_allocate () can

be used to free all of the allocated memory. For example, to simplify freeing
space returned from a client stub the following could be used.

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);
ptr = remote_call_returns_pointer();
[* use returned pointer here */

rpc_ss_disable_allocate(); /* this frees ptr */

4 When a BEA TUXEDO server stub is executed that calls an application
operation, memory allocation using:_ss_allocate is always enabled in the
server stub. Thgenable_allocate] attribute in the ACF file has no effect. All
memory will be freed in the server before returning the response to the client. (In
DCE, memory allocation is enabled onlyjifr] fields or parameters exist, or
the programmer explicitly specifi¢anable_allocate] J)

4 When a server stub calls an application operation which in turn calls a client
stub (that is, when a server acts as a client by calling an RPC), the
rpc_ss_set_client_alloc_free () function must be called to set up
allocation such that any space allocated will be freed when the operation returns.
This is done by calling

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);

¢ When callingrpc_ss_allocate () orrpc_sm_allocate (), remember to cast
the output to match the data type of the pointer being set. For example

long *ptr;
ptr = (long *)rpc_ss_allocate(sizeof(long));

BEA TUXEDO TxRPC Guide 3-5

3 Writing RPC Client and Server Programs

RPC Header Files

3-6

To ensure that stubs from both DCE/RPC and TxRPC can be compiled in the same
environment, different header file names are used in the TXRPC implementation. Thi
should not affect the application programmer since these header files are automatical
included in the interface header file generated by the IDL compiler. However, an
application program may wish to view these headers to see how a type or function i
defined. The new header file names are listed here.

L4

dce/nbase.h , dce/nbase.idl - renamedpcitbase.n andrpc/thase.idl
Contain the declarations for pre-declared tygpes_status_t ,
ISO_LATIN_1 , ISO_MULTI_LINGUAL, andiSO_UCS

dcelidlbase.h - renamedpc/tidibase.h . Contains the IDL base types, as
defined in the specification (for exampie!, boolean ,idl_long_int), and
the function prototypes for the stub functions.

dce/pthread_exc.h - renamedpc/texc.n . Contains th@RY CATCH
exception handling macros.

dce/rpests.h - renamedpc/trpcsts.h . Contains the exception and status
value definitions for the RPC interface.

These header files are locatedituXDIR/include/rpc . The TXRPC IDL compiler
will look in $TUXDIR/include by default as the “system IDL directory.”

BEA TUXEDO TxRPC Guide

Introduction

Portability of Code

The output from the IDL compiler is generated in a way to allow it to be compiled in

a large number of environments (see the next chapter for a discussion of compilation).
However, there are some constructs that don’t work in various environments. Here are
a few known problems.

When compiling with Classic (non-ANSI) C, “pointers to arrays” are not allowed. For
example:

typedef long array[10][10];
func()

{

array t1,

array *t2;

t2 = &tl; /* &ignored, invalid assignment */
func2(&tl); /* & ignored */

This will make it difficult to pass “pointers to arrays” to operations as parameters in a
portable fashion.

When using an array of strings where the string attribute is applied to a multi-byte
structure, the results will not be as desired if the compiler pads the structure. This is
not the normal case (most compilers do not pad a structure that contains only character
fields), but at least one occurrence is known to exist.

Constant values are, by default, implemented by generatidefine for each

constant. This means that names used for constants should not be used for any other
names in the IDL file or any imported IDL files. A TXRPC-specific option onitihe
compiler,-use_const , may be used to get around this problem in an ANSI C
environment. This option will causenst declarations instead @gfiefine

definitions to be generated. The constant values will be declared in the client and server
stubs, and any other source file including the header file will simplgxgeh

const declarations. Note that this has the restriction that the client and server stubs
may not be compiled into the same executable file (or duplicate definition errors will
occur).

BEA TUXEDO TxRPC Guide 3-7

3 Writing RPC Client and Server Programs

3-8

There are several restrictions in the C++ environment:

4 Do not use the same name faygedef and a structure or union tag, unless the
typedef name matches thwruct orunion name.

struct t1 {
long s1;

h
typedef struct t1 t1; /* ok */
typedef long t1; /* error */

4 Do not hide a structure or union tag declaration inside another structure or union
declaration and then reference it outside.

struct t1 {
struct t2 {
long s2;
}sl;
HtL;
typedef struct t3 {
struct t2 s3; /* t2 undefined error */
HS;

4 Some compiler warnings may be generated. These include the following:
4 Warnings that automatic variables are declared but not used

4 Warnings that a variable is used before being set when referenced in
sizeof () as in the following case.

long *ptr;
ptr = (long *)malloc(sizeof(*ptr) * 4);

When coding the client and server application software, you should use the data type
generated by the IDL compiler, as definedpotidibase.h (listed as Emitted

Macro in the following table). For instance, if you udeng instead of

idl_long_int , then the data type may be 32 bits on some platforms and 64 bits on
others;idl_long_int will be 32 bits on all platforms. Here is a table that lists the
generated data types.

BEA TUXEDO TxRPC Guide

Introduction

IDL Type Size Emitted Macro C Type
boolean 8 bits idl_boolean unsigned char
char 8 bits idl_char unsigned char
byte 8 bits idl_byte unsigned char
small 8 bits idl_small_int char
short 16 bits idl_short_int short
long 32 bits idl_long_int Machines with 32-bit longlong
Machines with 64-bit longint
hyper 64 bits idl_hyper_int Machines with 32-bit long:
Big Endian
struct
{
long high;
unsigned long low;
}
Little Endian
struct
{
unsigned long low;
long high;
}
Machines with 64-bit long:
long
unsigned 8 bits idl_usmall_int unsigned char
small
unsigned 16 bits idl_ushort_int short
short
unsigned 32 bits idl_ulong_int Machines with 32-bit longlong
long Machines with 64-bit longint

BEA TUXEDO TxRPC Guide

3-9

3 Writing RPC Client and Server Programs

3-10

IDL Type Size Emitted Macro C Type
unsigned 64 bits idl_uhyper_int Machines with 32-bit long:
hyper Big Endian

struct

{

unsigned long high;
unsigned long low;
}
Little Endian
struct

{unsigned long low;
unsigned long high;

}

Machines with 64-bit long:

unsigned long

float 32 bits idl_short_float float

double 64 bits idl_long_float double

void * pointer idl_void_p_t void *
handle_t pointer handle_t handle_t

As in C, there are several classes of identifiers in the IDL. Names within each class

(that is, scope or name space) must be unique:

4 Constant, typedef, operation, and enumeration member names are in one name

space.

4 Structure, union, and enumeration tags are in another name space.

4 Structure and union member names at the same level must be unique within the

structure or union in which they are defined.

4 Parameter names within the operation prototype in which they are defined must

be unique.

Note that an anonymous structure or union (without a tag and not defined as part of

typedef) cannot be used for an operation return or a parameter.

BEA TUXEDO TxRPC Guide

Introduction

Interactions with ATMI

The TXRPC executables use the BEA TUXEDO system to do the RPC
communications. Other BEA TUXEDO interfaces and communications mechanisms
can be used within the same clients and servers that are using the RPC calls. Thus, it
is possible to have a single client making Request/Response calls (for example

tpcall ,tpacall , andtpgetrply), making conversational callgpéonnect ,

tpsend , tprecv , andtpdiscon), and accessing the stable quepengueue and
tpdequeue). When a client makes the first call to the BEA TUXEDO software, either

an RPC call, any of these other communications calls, or any other ATMI call (such as
a call for buffer allocation or unsolicited notification), the client automatically joins the
application. However, if the application is running with security turned on or if the
client must run as part of a particular resource manager grouppittien () must be

called explicitly to join the application. See tpait (3c) reference page for further
details, and a list of options that can be explicitly set. When an application completes
work using the BEA TUXEDO systenpterm () should be called explicitly to leave

the application and free up any associated resources. If this is not done for native
(non-Workstation) clients, the monitor detects this, prints a warning irs¢hieg (),

and frees up the resources. In the case of Workstation clients, the resources may not be
freed up and eventually the Workstation Listener or Handler will run out of resources
to accept new clients.

As with clients, servers can use any of the communication paradigms in the role of
client. However, a server cannot provide (advertise) both conversational services and
RPC services within the same server; as described later, an RPC server must be marked
as non-conversational. Although it is possible to mix ATMI request/response and RPC
services within the same server, this is not recommended. One further restriction is that
RPC operations cannot cglteturn () or tpforward (). Instead, RPC operations

must return as they would if called locally. Any attempt to wedturn () or

tpforward () from an RPC operation will be intercepted and an error will be returned

to the client (exceptiorpc_x_fault_unspec or statuspc_s_fault_unspec).

Two functions available to servers but not to clientstgeeinit () and

tpsvrdone (), which are called when the server starts up and when it is shut down.
Since the server must call open before receiving any TXxRPC operation requests,
tpsvrinit () is a good place to call it. The defapktvrinit () function already calls
tx_open ().

BEA TUXEDO TxRPC Guide 3-11

3 Writing RPC Client and Server Programs

Interactions with TX

3-12

The TX functions provide an interface for transaction demarcakiasegin () and
tx_commit () ortx_rollback () encapsulate any work, including communications,
within a transaction. Other primitives are provided to set transaction timeout, declare
the transaction as chained or unchained, and retrieve transaction information. These
are discussed in detail in tXdOPEN TX Specificatiorand reviewed in th¥/OPEN
TxRPC SpecificatiariTheX/OPEN TxRPC Specificationdicates the interactions
between TX and RPC. These are summarized as follows:

4 An interface or an operation can have [trnsaction_optionall attribute
which indicates that if the RPC is called within a transaction, the work done in
the called operation will be part of the transaction.

4 An interface or an operation can have [thensaction_mandatory] attribute
which indicates that the RPC must be called within a transaction or the
txrpc_x_not_in_transaction exception is returned.

4 If neither of these attributes is specified, then the work in the called operation is
not part of any transaction that may be active in the caller.

4 If a TXRPC operation is called in the server andpen () has not been called,
atxrpc_x_no_tx_open_done exception is returned to the caller.

4 TxRPC allowsx_rollback () to be called from an operation to mark the
transaction as rollback-only, such that any work performed on behalf of the
transaction will be ultimately rolled back. It is recommended in this case that the
application also return an application-level error to the caller indicating that the
transaction will be rolled back.

Other changes or restrictions for the IDL defined by the TXxRPC specification have
been described earlier in the discussion about the IDL itself.

BEA TUXEDO TxRPC Guide

CHAPTER

4 Building RPC Client
and Server Programs

Introduction

This chapter deals with building client and server programs using the IDL stubs.

Prerequisite Knowledge

The BEA TUXEDO TxRPC programmer should be familiar with the C compilation
system and building BEA TUXEDO clients and servers. Building BEA TUXEDO
clients and servers is covered in BEA TUXEDO Programmer's GuidBuilding
workstation clients is covered in tBEA TUXEDO Workstation Guide

Building an RPC Server

RPC servers are built and configured in much that same way that ATMI
Request/Response servers are. In fact, the service name space for RPC and
Request/Response servers is the same. However, the names advertised for RPC
services are different. For Request/Response servers, a service name is mapped to a
procedure. For RPC servers, a service name is mapped to an IDL interface name. The
RPC service advertised will beénterface >v<major >_<minor >, where

<interface > is the interface name, arthajor > and<minor > are the major and

minor numbers of the version, as specified (or defaulted to 0.0) in the interface

BEA TUXEDO TxRPC Guide 4-1

4 Building RPC Client and Server Programs

definition. Because the service name is limited to 15 characters, this limits the lengtt
of the interface name to 13 characters minus the number of digits in the major and
minor version numbers. This also implies that an exact match is used on major AND
minor version numbers because of the way name serving is done in the BEA TUXEDC
system. Note that the interface, and not individual operations, are advertised (similal
to DCE/RPC). The server stub automatically takes care of calling the correct operatiol
within the interface.

RPC servers are built using theldserver ~ command. We recommend using the
option to specify the service (interface) names at compilation time. The server can the
be booted using tha option to get the services automatically advertised. This
approach is used in the sample application, as shown in Appendix A, “A Sample
Application.”

Thebuildserver ~ command automatically links in the BEA TUXEDO libraries.
However, the RPC runtime must be linked in explicitly. This is done by specifying the
-f-Itrpc option after any application files on theildserver line. Normally, the
output of thaidl command is a server stub object file. This can be passed directly to
thebuildserver ~ command. Note that the server stub and the application source,
object, and library files implementing the operations should be specified ahead of th
runtime library, also using the option. See the makefil@csimp.mk , in

Appendix A, “A Sample Application,” for an example.

Building an RPC Client

4-2

A native RPC client is built using thaildclient command. This command
automatically links in the BEA TUXEDO libraries. However, the RPC runtime must
be linked in explicitly. This is done by specifying tidtrpc option after any
application files on theuildclient command line. Normally, the output of tiu#
command is a client stub object file. This can be passed directly boikfutient
command. Note that the client stub and the application source, object, and library file
executing the remote procedure calls should be specified ahead of the runtime librar
also using thef option. For an example, see the makefitasimp.mk in

Appendix A, “A Sample Application.”

To build a UNIX Workstation client, simply add the option to thebuildclient
command line so that the Workstation libraries are linked in instead of the native
libraries.

BEA TUXEDO TxRPC Guide

Introduction

Building a DOS Workstation RPC Client

On DOS, theidl command does not generate object files (due to memory
limitations). The output aofdl is simply the C source file for the client stub. Like any
application source files, the source file for the client stub must be compiled to an object
file using a compiler in the DOS environment. Remember to use the same memory
model when compiling each of the object files. Another thing to watch out for in this
environment is that file names are limited to 8 characters (with 3 for extension). It may
be necessary to use thestub option to specify the output file name for the stub file.

A DOS RPC client is built using thmildclt ~ command, specifying the appropriate
memory model. This command automatically links in the BEA TUXEDO System
Workstation libraries. However, the RPC runtime must be linked in explicitly. This is
done by specifying thé Itrpc.lib option after any application object files on the
buildelt ~ command line (the library for the medium memory modeitipc.lio).

Note that the client stub and the application source, object, and library files executing
the remote procedure calls should be specified ahead of the runtime library, also using
the-f option. For an example, see the makefitlgsimp.mak in Appendix A, “A

Sample Application.”

Building a Windows Workstation RPC Client

Compilation of the client stub for Windows is similar to the DOS compilation, but
requires theD_TM_WIN definition as a compilation option. This ensures that the
correct function prototypes for the TXRPC and BEA TUXEDO system runtime
functions are used. While the client stub source is the same, it must be compiled
specially to handle the fact that the text and data segments for the DLL will be different
from the code calling it. The header file and stub are automatically generated to allow
for the declarations to be changed easily, using C pre-processor definitions. The
definition_TMF (for “far”) appears before all pointers in the header file ardFis
automatically defined as far " if _TM_WINis defined.

In most cases, using standard librariesptieiclt ~ command can be used to link the
client, and thew option must be specified (for Windows). The library to be used is
wtrpc.lib . Appendix A, “A Sample Application,” shows a case whieuidclt

cannot be used because non-standard (QuickWin) libraries are being used.

BEA TUXEDO TxRPC Guide 4-3

4 Building RPC Client and Server Programs

The sample also shows how to create a Dynamic Link Library (DLL) using the client
stub. This usage will be very popular when used with a visual application builder tha
requires DLL use (where the application code cannot be statically linked in). Windows
functions are traditionally declared to have thascal calling convention. The

header file and stub are automatically generated to allow for the declarations to be
changed easily, using C pre-processor definitiongX(for “eXport”) appears before

all declared functions. By default, this definition is defined to nothing. When
compiling a stub for inclusion in a DLL;TMXshould be defined tofar _pascal

Also, the files to be included in the DLL must be compiled with the large memory
model. Since usingpascal automatically converts the function names to upper case
in the library, it is a good idea to run with tipert case option turned on, which

does additional validation to see if two declared names differ only in case.

A complete example of building a Windows DLL is shown in Appendix A, “A Sample
Application.”

Note: A compilation error may occur if a TXRPC client includésiows.h , due to
a duplicatauid_t definition. It will be necessary for the application to either
not includewindows.h (because it is included already) or to include it within
a different file in the application.

Building an 0S/2 Workstation RPC Client

Compilation of OS/2 clients is similar to that for DOS or Windows clients. However,
the-D_TM_0OS2option must be specified when compiling for OS/2. The library to be
used istrpc.lib for character mode OS/2 apitpc.lib for use with Presentation
Manager. As in the case of Windows, all pointers in data structures and parameters a
treated as far (4-byte) pointers.

Using C++

4-4

Clients and servers can be built using C or C++, interchangeably. The header files ar
generated stub source files are defined in such a way that all Stub Support functions
and generated operations allow for complete interoperability between C++ and C.
They are declared with C linkage, that is, as extern “C,” so that name mangling is
turned off.

BEA TUXEDO TxRPC Guide

Introduction

The stub object files can be built using C++ by specifgiogc for the-cc_cmd

option oftidl . ThecCcommand can be used to compile and link client and server
programs by setting and exporting theenvironment variable before running
buildclient andbuildserver . For example:

tidl -cc_cmd “CC -c” -keep all t.idl
CC=CC buildserver -o server -s tvl_0 -f “-I. t_sstub.o server.c -ltrpc”

In the DOS, Windows, and OS/2 environments, C++ compilation is normally
accomplished via a flag on the compilation command line or a configuration option
rather than a different command name. Use the appropriate options to get C++
compilation.

Interoperability with DCE/RPC

The BEA TUXEDO TxRPC compiler uses the same IDL interface as OSF/DCE but
the generated stubs do not use the same protocol. Thus, a BEA TUXEDO TxRPC stub
cannot directly communicate with a stub generated by the DCE IDL compiler.

However, it is possible to have the following interoperations between DCE/RPC and
BEA TUXEDO TxRPC:

4 Client side stubs from both DCE and BEA TUXEDO TxRPC can be called from
the same program (either client or server).

4 A BEA TUXEDO server stub can call application code that calls a DCE client
stub (as well as a BEA TUXEDO TxRPC client stub).

4 A DCE server (manager) can call application code that calls a BEA TUXEDO
TxRPC client stub.

The following sections show possible interactions between BEA TUXEDO TXRPC
and OSF/DCE. In each case, the originator of the request is called the requester. This
term is used instead of “client” because the requester could, in fact, be a DCE or BEA
TUXEDO service making a request of another service. The terms “client” and “server”
refer to the client and server stubs generated by the IDL compilers (eithed DCIE

or BEA TUXEDOtidl (1)); these terms are used for consistency with the DCE and
TxRPC terminology. Finally, the term “application service” is used for the application
code that implements the procedure that is being called remotely (it is generally
transparent whether the invoking software is the server stub generated by DCE or BEA
TUXEDO).

BEA TUXEDO TxRPC Guide 4-5

4 Building RPC Client and Server Programs

BEA TUXEDO Requester to DCE Service via BEA TUXEDO Gateway

blds_dce [-0

[

4-6

idl_file

Figure 4-1 BEA TUXEDO Requester to DCE Service via BEA TUXEDO
Gateway

T T T iE DCE Applicabin

Fom quester [[T Server Clisnd Serwer Sermce

The first approach uses a “gateway” such that the BEA TUXEDO client stub invokes
a BEA TUXEDO server stub, via TXRPC, that has a DCE client stub linked in (instead
of the application services) that invokes the DCE services, via DCE RPC. The
advantage to this approach is that it is not necessary to have DCE on the client platfor
(e.g., in the case of NETWARE or Workstation platforms such as DOS). In fact, the
set of machines running BEA TUXEDO and the set of machines running DCE could
be disjoint except for one machine where all such gateways are running. This also
provides a migration path with the ability to move services between BEA TUXEDO
and DCE.

A sample application that implements this approach is described in Appendix B, “A
DCE-Gateway Application.”

In this configuration, the requester is built as a normal BEA TUXEDO client or server.
Similarly, the server is built as a normal DCE server. The additional step is to build the
gateway process which acts as a BEA TUXEDO server using a TXRPC server stub ar
a DCE client using a DCE/RPC client stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of thields_dce (1) command, which builds a BEA TUXEDO
server with DCE linked in.

The usage foblds_dce is as follows.

output_file][idl_options] [f firstfiles][lastfile 1\
-]

The command takes as input one or more IDL files so that the gateway can handle or
or more interfaces. For each one of these fiidis, is run to generate a server stub and
idl is run to generate a client stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries for compilation and linking. If you are developing
in a new environment, it may be necessary to modify the command to add the option
and libraries for your environment.

BEA TUXEDO TxRPC Guide

Introduction

This command compiles the source files in such a way (®itMBCEGWdefined) that
memory allocation is always done usipg_ss_allocate (3c) and

rpc_ss_free (3c). This ensures that memory is freed on return from the BEA
TUXEDO server. The use obTMDCEGWIso includes DCE header files instead of
BEA TUXEDO TxRPC header files.

The IDL output object files are compiled, optionally with specified application files
(using the £ and + options), to generate a BEA TUXEDO server using

buildserver (1). The name of the executable server can be specified with the -
option.

When running this configuration, the DCE server would be started first in the
background, then the BEA TUXEDO configuration including the DCE gateway would
be booted, and then the requester would be run. Note that the DCE gateway is
single-threaded so you will need to configure and boot as many gateway servers as you
want concurrently executing services.

There are several optional things to consider when building this gateway.

Setting the DCE Login Context

First, as a DCE client, it is normal that the process runs as some DCE principal. There
are two approaches to getting a login context. One approach is to “log in” to DCE. In
some environments, this occurs simply by virtue of logging into the operating system.
In many environments, it requires runnifeg_login . If the BEA TUXEDO server is
booted on the local machine, then it is possible taleanlogin , then runtmboot (1)

and the booted server will inherit the login context. If the server is to be booted on a
remote machine which is done indirectly isten (1), it is necessary to run

dce_login before startinglisten . In each of these cases, all servers booted in the
session will be run by the same principal. The other drawback to this approach is that
the credentials will eventually expire.

The other alternative is to have the process set up and maintain its own login context.
Thetpsvrinit ~ (3c) function provided for the server can set up the context and then
start a thread that will refresh the login context before it expires. Sample code to do
this is provided irsTUXDIR/lib/dceserver.c ; it must be compiled with the
-DTPSVRINIT option to generate a simpjgsvrinit function. (It can also be used as
themain() for a DCE server, as described in the following section.) This code is
described in further detail in Appendix B, “A DCE-Gateway Application.”

BEA TUXEDO TxRPC Guide 4-7

4 Building RPC Client and Server Programs

Using DCE Binding Handles

BEA TUXEDO TxRPC does not support binding handles. When sending an RPC from
the requester’s client stub to the server stub within the gateway, the BEA TUXEDO
system handles all of the name resolution and choosing the server, doing load
balancing between available servers. However, when going from the gateway to the
DCE server, it is possible to use DCE binding. If this is done, it is recommended tha
two versions of the IDL file be used in the same directory or that two different
directories be used to build the requester, and the gateway and server. The former
approach of using two different file names is shown in the example with the IDL file
linked to a second name. In the initial IDL file, no binding handles or binding attributes
are specified. With the second IDL file, which is used to generate the gateway and
DCE server, there is an associated ACF file that specifies [explicit_handle] such that
binding handle is inserted as the first parameter of the operation. From the BEA
TUXEDO server stub in the gateway, a NULL handle will be generated (because
handles aren’t supported). That means that somewhere between the BEA TUXEDO
server stub and the DCE client stub in the gateway, a valid binding handle must be
generated.

This can be done by making use of the manager entry point vector. By default, the I1DI
compiler defines a structure with a function pointer prototype for each operation in the
interface, and defines and initializes a structure variable with default function names
based on the operation names. The structure is defined as

<INTERF>_v< major >_<minor >_epv_t< INTERF>_v<major >_<minor >_S_epv

4-8

where<INTERF> is the interface name arehajor >.< minor > is the interface version.
This variable is dereferenced when calling the server stub functions. The IDL compile|
option,-no_mepv , inhibits the definition and initialization of this variable, allowing

the application to provide it in cases where there is a conflict or difference in function
names and operation names. In the case where an application wants to provide expli
or implicit binding instead of automatic binding, #he_mepv option can be

specified, and the application can provide a structure definition that points to function:
taking the same parameters as the operations but different (or static) names. The
functions can then create a valid binding handle that is passed, either explicitly or
implicitly, to the DCE/RPC client stub functions (using the actual operation names).

This is shown in the example in Appendix B, “A DCE-Gateway Application.” The file
dcebind.c generates the binding handle, and the entry point vector and associated
functions are shown idceepv.c

Note that to specify th@o_mepv option when using thads_dce , the-i-no_mepv

option must be specified so that the option is passed through to the IDL compiler. Thi
is shown in the makefilepcsimp.mk , in Appendix B, “A DCE-Gateway

Application.”

BEA TUXEDO TxRPC Guide

Introduction

Authenticated RPC

Now that we have a login context and a handle, it is possible to use authenticated RPC
calls. As part of setting up the binding handle, it is also possible to annotate the binding
handle for authentication by callimgc_binding_set_auth_info (). This is shown

as part of generating the binding handl@dabind.c in Appendix B, “A

DCE-Gateway Application.” This sets up the authentication (and potentially
encryption) between the gateway and the DCE server. If the requester is a BEA
TUXEDO server, then it is guaranteed to be running as the BEA TUXEDO
administrator. For more information about authentication for BEA TUXEDO clients,
seeAdministering the BEA TUXEDO System

Transactions

OSF/DCE does not support transactions. That means that if the gateway is running in
a group with a resource manager and the RPC comes into the BEA TUXEDO client
stub in transaction mode, the transaction willswotay to the DCE server. There is

not much you can do to solve this; just be aware of it.

DCE Requester to BEA TUXEDO Service Using BEA TUXEDO Gateway

Figure 4-2 DCE Requester to BEA TUXEDO Service Using BEA TUXEDO
Gateway

CiCE CCE o DCE T o T Applicabin
Fom et [M 151 Server Clheng Serwer Sermce

In this figure, the DCE requester uses a DCE client stub to invoke a DCE service which
calls the BEA TUXEDO client stub (instead of the application services), which
invokes the BEA TUXEDO service (via TXRPC). Note that in this configuration, the
client has complete control over the DCE binding and authentication. The fact that the
application programmer builds the middle server means that the application also
controls the binding of the DCE server to BEA TUXEDO service. This approach
would be used in the case where the DCE requester does not want to directly link in
and call the BEA TUXEDO system.

Themain() for the DCE server should be based on the code provided in
$TUXDIR/lib/dceserver.c . If you already have your own template for tiain()
of a DCE server, there are a few things that may need to be added or modified.

BEA TUXEDO TxRPC Guide 4-9

4 Building RPC Client and Server Programs

bldc_dce [-0

[l

4-10

First,tpinit ~ (3c) should be called to join the BEA TUXEDO application. If
application security is configured, then additional information may be needed in the
TPINIT buffer such as the user name and application password. Prior to exiting,
tpterm (3c) should be called to cleanly terminate participation in the BEA TUXEDO
application. If you look aticeserver.c , you will see that by compiling it with
-DTCLIENT, code is included that calisinit ~ andtpterm . The code that sets up the
TPINIT buffer must be modified appropriately for your application. To provide more
information with respect to administration, it might be helpful to indicate that the client
is a DCE client in either the user or client name (the example sets the client name tc
DCECLIENT). This information shows up when printing client information from the
administration interface.

Second, since the BEA TUXEDO system software is not thread-safe, the threading

level passed tgpc_server_listen must be set to one. In the samgdeserver.c
the threading level is set to 1 if compiled wiTELIENT and to the default,
rpc_c_listen_max_calls_default , otherwise.

In this configuration, the requester is built as a normal DCE client or server. Similarly,
the server is built as a normal BEA TUXEDO server. The additional step is to build
the gateway process, which acts as a BEA TUXEDO client using a TXRPC client stub
and a DCE server, using a DCE/RPC server stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of thieldc_dce (1) command which builds a BEA TUXEDO
client with DCE linked in.

The usage fobldc_dce is as follows.

output_file 1 [-w] [idl_options] [-f firstfiles]\
1[idl_file]

The command takes as input one or more IDL files so that the gateway can handle or
or more interfaces. For each one of these fiidis, is run to generate a client stub and
idl is run to generate a server stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries. If you are developing in a new environment, it
may be necessary to modify the command to add the options and libraries for your
environment. The source is compiled in such a way (thMDCEGWefined) that
memory allocation is always done usimg_ss_allocate (3c) and

rpc_ss_free (3c) to ensure that memory is freed on return. The uSET6fDCEG#ISO
includes DCE header files instead of BEA TUXEDO TXRPC header files.

The IDL output object files are compiled, optionally with specified application files
(using the £ and + options), to generate a BEA TUXEDO client using

buildclient ~ (1). Note that one of the files included should be the equivalent of the
dceserver.o , compiled with theBTCLIENT option.

BEA TUXEDO TxRPC Guide

Introduction

The name of the executable client can be specified withotbption.

When running this configuration, the BEA TUXEDO configuration must be booted
before starting the DCE server so that it can join the BEA TUXEDO application before
listening for DCE requests.

BEA TUXEDO Requester to DCE Service Using DCE-only

Figure 4-3 BEA TUXEDO Requester to DCE Service Using DCE-only

T DCE - [sCE Apphcibim
Raqueser | Client EEe Seruice

The approach assumes that the DCE environment is directly available to the client (this
can be a restriction or disadvantage in some configurations). The client program has
direct control over the DCE binding and authentication. Note that this is presumably a
mixed environment in which the requester is either a BEA TUXEDO service that calls
DCE services, or a BEA TUXEDO client (or server) that calls both BEA TUXEDO
and DCE services.

When compiling BEA TUXEDO TxRPC code that will be used mixed with DCE code,
the code must be compiled such that DCE header files are used instead of the TxRPC
header files. This is done by definimyrmMDCE&t compilation time, both for client and
server stub files and for your application code. If you are generating object files from
tidl , you must add thec_opt -DTMDCE option to the command line. The

alternative is to generatesource from the IDL compiler and pass this C source (not
object files) tabldc_dce or blds_dce as in the following examples.

tidl -keep c_source -server none t.idl

idl -keep c_source -server none dce.idl

bldc_dce -o output_file -f client.c -f t_cstub.c -f dce_cstub.c
or

blds_dce -o output_file -s service -f server.c -f t_cstub.c -f dce_cstub.c

In this example, we are not building a gateway procesisiso files cannotbe

specified to théuild commands. Also note that thiels_dce command cannot

figure out the service name associated with the server so it must be supplied on the
command line using the -option.

BEA TUXEDO TxRPC Guide 4-11

4 Building RPC Client and Server Programs

DCE Requester to BEA TUXEDO Service Using BEA TUXEDO-only

Figure 4-4 DCE Requester to BEA TUXEDO Service Using BEA TUXEDO-only

IT - T Apphcibin

Fie st Chent T S erEice

In this final case, the DCE requester calls the BEA TUXEDO client stub directly.

Again, DTMDCHEnust be used at compilation time, both for client and server stub files
and for your application code. In this case the requester must be a BEA TUXEDO
client.

tidl -keep c_source -client none t.idl
bldc_dce -o output_file -f -DTCLIENT -f dceserver.c -f t_cstub.c

Note thaticeserver.c should caltpinit ~ (3c) to join the application angterm (3c)
to leave the application, as was discussed earlier.

Building Mixed DCE/RPC and BEA TUXEDO TxRPC Clients and Servers

This section summarizes the rules to follow if you are compiling a mixed client or
server without using thiddc_dce orblds_dce commands:

4 When compiling the generated client and server stubs, and compiling the client
and server application software that includes the header file generateid by
TMDCHnust be defined (for examp®TMDCE=). This causes some DCE
header files to be used instead of the BEA TUXEDO TXRPC header files. Also,
some versions of DCE have a DCE compilation shell that adds the proper
directories for the DCE header files and ensures the proper DCE definitions for
the local environment. This shell should be used instead of directly using the C
compiler. The DCE/RPC compiler and TMDCE definition can be specified using
the-cc_cmd option ontidl . For example,

tidl -cc_cmd “/opt/dce/bin/cc -c -DTMDCE=1" simp.idI
or

tidl -keep c_source simp.idl
/opt/dce/bin/cc -DTMDCE=1 -c -I. -I$TUXDIR/include simp_cstub.c
/opt/dce/bin/cc -DTMDCE=1 -c -I. -I$TUXDIR/include client.c

4-12 BEA TUXEDO TxRPC Guide

Introduction

On a system without such a compiler shell, it might look like the following:

cc < DCE options >-DTMDCE=1 -c -I. -I1%(TUXDIR)/include \
-l/usr/include/dce simp_cstub.c

Refer to the DCE/RPC documentation for your environment.

4 |If the server makes an RPC call, then client_alloc_free() should be
called to set the use qfc_ss_allocate() andrpc_ss_free() , as described
earlier.

4 When linking the executable, ugérpc instead ofitrpc to get a version of
the BEA TUXEDO TxRPC run-time that is compatible with DCE/RPC. For
example,

buildclient -o client -f client.o -f simp_cstub.o -f dce_cstub.o \
-f-ldrpc -f-Idce -f-Ipthreads -f-Ic_r

or

CC=/opt/dce/bin/cc buildclient -d “ “ -f client.o -f simp_cstub.o \
-f dce_cstub.o -f -Idrpc -o client

Assume thasimp_cstub.o ~ was generated higl anddce_cstub.o was
generated bidl . The first example shows building the client without a DCE
compiler shell; in this case, the DCE libraride), threads library

(-lpthreads), and re-entrant C libraryl¢ r) must be explicitly specified.

The second example shows the use of a DCE compiler shell which transparently
includes the necessary libraries. In some environments, the libraries included by
buildserver andbuildclient for networking and XDR will conflict with the
libraries included by the DCE compiler shell (there may be reentrant versions of
these libraries). In this case, théldserver ~ andbuildclient libraries may

be modified using thed option. If a link problem occurs, trying using*

to leave out the networking and XDR libraries, as shown in the example above.
If the link still fails, try running the command without the option and with the

-v option to determine the libraries that are used by default; then use the

option to specify a sub-set of the libraries if there is more than one. The correct
combination of libraries is environment-dependent because the networking,
XDR, and DCE libraries vary from one environment to another.

4 Mixing DCE and BEA TUXEDO TxRPC stubs is not currently supported on
DOS, Windows, or OS/2.

BEA TUXEDO TxRPC Guide 4-13

4 Building RPC Client and Server Programs

4-14 BEA TUXEDO TxRPC Guide

CHAPTER

5 Running the
Application

Running the Application

This chapter deals with running TXRPC programs in the client/server architecture.

Prerequisite Knowledge

The BEA TUXEDO system administrator modifying the configuration to add RPC
servers should be familiar with creating an ASCII configuration file (the format is
described irubbconfig (5)) and loading the binary configuration usingoadcf

These activities are describedAdministering the BEA TUXEDO Systdiris
document will not repeat the information provided there.

Configuring the Application

When configuring an RPC server, it is configured the same as a Request/Response
server. One entry is needed in BBRVERage for each RPC server or group of RPC
servers. fJAXcan be set to a value greater than one to configure multiple RPC servers
with one entry.) ArRQADDRan optionally be specified so that multiple instances of

an RPC server share the same request queue (multiple servers, single queue

BEA TUXEDO TxRPC Guide 5-1

S Running the Application

configuration). TheCONvparameter must be not specified or must be set to N (for
example CONvV=) See the sample configuration file in Appendix A, “A Sample
Application.”

If a server will be part of a transaction, then it must be in a group on a machine that he
aTLOGDEVICE TheGROUP®Ntry must be configured withTmMSNAMENd an
OPENINFOstring that are used to access the associated resource manager.

It is optional to specifisERVICESentries. If specified, the service name must be the
name described in the previous chapter, based on the interface name and version
number. This entry is needed only if you want to give a specific load, priority, or
transaction time that is different than the defaults. It can also be used to turn on the
AUTOTRANeature, which ensures that a transaction is automatically started for the
service if the in-coming request is not in transaction mode. Do not use the service entt
to specify buffer typeBUFTYPEsince the only buffer type handleddaRRAY Also,

do not speciffiROUTINGbecause routing is not supported for RPC requests.

Thetmloadef (1) command is used to load the ASCII configuration file into a binary
TUXCONFIGfile before the application is booted.

Note that entries for RPC servers can be added to a booted application using the
tmconfig (1) command.

Booting and Shutting Down the Application

5-2

When the configuration has been modified, boot the application usiogt (1). The
application is shut down usingshutdown (1). See the example in Appendix A, “A
Sample Application.”

The RPC servers are booted and shut down in the same way that Request/Respons
servers are. They can be booted or shut down as part of the entire configuration witl
the-y option, as part of a group with the option, as part of a logical machine with
the-l option, or by server name with the option.

BEA TUXEDO TxRPC Guide

Running the Application

Administration

RPC servers appear as Request/Response servers in the administration interfaces. As
mentioned abovemconfig (1) can be used for dynamic reconfiguration of RPC

servers and services. Ttweadmin (1) command can be used to monitor RPC servers.
The RPC server name and associated run-time information (for example, services or
operations run, load, and so forth) can be printed usingntugnin printserver

command. The RPC services (interfaces) that are available can be printed using
printservice . For samples of the output, see the example in Appendix A, “A Sample
Application.”

Dynamic Service Advertisement

RPC services can be dynamically controlled in the same way that Request/Response
services can be controlled. Remember that the service name is not the operation name,
but the interface name and version number, as described earlier. Normally, the service
name is specified at the time thaildserver is run using thes option and
automatically advertised when the server is booted withAtheption. Service

(interface) names can be dynamically advertised either draemin using theadv
command or from within the server using thadvertise ~ (3c) function. Service
(interface) names can be dynamically unadvertised eithertfnadmin using the

unadv command or from within the server using thénadvertise ~ (3c) function.

Service names can also be temporarily suspended and unsuspended (resumed) from
tmadmin . Note that unadvertising or suspending a service name makes all operations
defined in the associated interface unavailable.

BEA TUXEDO TxRPC Guide 5-3

S Running the Application

5-4 BEA TUXEDO TxRPC Guide

APPENDIX

A A Sample Application

What This Appendix Is About

This appendix contains a description of a 1-client, 1-server application ealeap
that uses TXRPC. The source files for this interactive application are distributed with
the BEA TUXEDO software, except they are not included in the RTK binary delivery.

Some Preliminaries

Before you can run this example, the BEA TUXEDO software must be installed so that
the files and commands referred to in this chapter are available.

The rpcsimp Application

rpcsimp is a very basic BEA TUXEDO application that uses TXRPC. It has one
application client and one server. The client calls the remote procedure calls
(operations)o_upper() andto_lower() , which are implemented in the server. The
operationto_upper() converts a string from lower case to upper case and returns it
to the client, whilao_lower() ~ converts a string from upper case to lower case and
returns it to the client. When each procedure call returns, the client displays the string
output on the user’s screen.

What follows is a procedure to build and run the example.

BEA TUXEDO TxRPC Guide A-1

APPENDIX

Step 1 - Create an Application Directory

1. Make a directory fompcsimp andcd to it.

mkdir rpcsimpdir

cd rpcsimpdir

Note: This is suggested so you will be able to see clearlypdsmp files you
have at the start and the additional files you create along the way. Use the
standard shelltfin/sh) or the Korn shell; do not use the C sheth().

Step 2 - Set Environment Variables

1. Set and export the necessary environment variables.

TUXDIR=<pathname of the BEA TUXEDO System root directory >
TUXCONFIG=pathname of your present working directory >/TUXCONFIG
PATH=$PATH:$TUXDIR/bin

SVR4, Unixware

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib

HPUX

SHLIB_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib

RS6000

LIBPATH=$LD_LIBRARY_PATH:$TUXDIR/lib

export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH SHLIB_PATH LIBPATH

Note: You needrUXDIRandPATHto be able to access files in the BEA TUXEDO
directory structure and to execute BEA TUXEDO commands. You need to
setTUXCONFIGo be able to load the configuration file. It may also be
necessary to set an environment variable (for example,
LD_LIBRARY_PATH if shared objects are being used.

Step 3 - Copy files

1. Copy thepcsimp files to the application directory.
cp $STUXDIR/apps/rpcsimp/* .

You will be editing some of the files and making them executable, so it is best to
begin with a copy of the files rather than the originals delivered with the
software.

BEA TUXEDO TxRPC Guide A-2

APPENDIX

Step 4 - List the Files

1. List the files.

$ls

client.c
rpcsimp.mak
rpcsimp.mk
server.c
simp.idl
ubbconfig
weclient.def
wsimpdll.def
$

Note: This list does not include files that are used in the DCE-Gateway example
described in Appendix B, “A DCE-Gateway Application.”

The files that make up the application are described in the following sections.
IDL Input File - simp.idI

Listing A-1 simp.idl

[uuid(C996A680-9FC2-110F-9AEF-930269370000), version(1.0) |

interface changecase

[* change a string to upper case */
void to_upper([in, out, string] char *str);

[* change a string to lower case */
void to_lower([in, out, string] char *str);

}

This file defines a single interfacehangecase version 1.0, with two operations,

to_upper andto_lower . Each of the operations takes a NULL-terminated character
string, that is both an input and output parameter. Because no ACF file is provided,
status variables are not used and the client program must be able to handle exceptions.
Each operation has a void return indicating that no return value is gensiraped.

is used to generate the stub functions (see below).

BEA TUXEDO TxRPC Guide A-3

A A Sample Application

The Client Source Code - client.c

A-4

Listing A-2 client.c

#include <stdio.h>
#include "simp.h"
#include "atmi.h"

main(argc, argv)

int argc;

char **argv;

{
idl_char str[100];
unsigned char error_text[100];
int status;

if (argc > 1) {/* use command line argument if it exists */
(void) strncpy(str, argv[1], 100);

str[99] = "\0';
}
else

(void) strcpy(str, "Hello, world");
TRY

to_upper(str);
(void) fprintf(stdout, "to_upper returns: %s\n", str);
to_lower(str);
(void) fprintf(stdout, "to_lower returns: %s\n", str);
/* control flow continues after ENDTRY */
CATCH_ALL
exc_report(THIS_CATCH); /* print to stderr */
(void) tpterm();
exit(1);
ENDTRY

(void) tpterm();
exit(0);

The headesimp.h , which is generated by the IDL compiler basediom.idl , has

the function prototypes for the two operations. Sihe.h header also includes the
header files for the RPC runtime functions (none appear in this example) and exceptic
handling. Theatmi.h header file is included becauperm() is called. If an

argument is provided on the command line, then it is used for the conversion to uppe
and lower case (the default beingflo world). Exception handling is used to

catch any errors. For example, exceptions are generated for unavailable servers,
memory allocation failures, communication failures, and so forth TRiyélock

BEA TUXEDO TxRPC Guide

The rpcsimp Application

encapsulates the two remote procedure calls. If an error occurs, the execution will jump
to theCATCH_ALLblock which converts the exceptiorHIS_CATCH into a string,

prints it to the standard error output usétxg_report , and exits. Note that in both the
abnormal and normal executiapterm() is called to leave the application

gracefully. If this is not done, a warning is printed in dkerlog() for

non-workstation clients, and resources are tied up (until the connection times out, for
workstation clients).

The Server Source Code - server.c

Listing A-3 server.c

#include <stdio.h>
#include <ctype.h>
#include "tx.h"
#include "simp.h"
int

tpsvrinit(argc, argv)
int argc;

char **argyv;

if (tx_open() != TX_OK) {
(void) userlog("tx_open failed");
return(-1);

(void) userlog("tpsvrinit() succeeds.");
return(1);

'

void

to_upper(str)

idl_char *str;

{
idl_char *p;
for (p=str; *p !="\0'; p++)
*p = toupper((int)*p);
return;

}

void
to_lower(str)
idl_char *str;

{
idl_char *p;
for (p=str; *p !="\0'; p++)
*p = tolower((int)*p);
return;

}

BEA TUXEDO TxRPC Guide A-5

A A Sample Application

As withclient.c , this file includesimp.h .

Italsoincludesx.h becausex_open() is called (as required by tltdOPEN TxRPC
Specification even if no resource manager is accesset)s\Ainit() function is
provided to ensure that open() is called once at boot time. On failurg, is

returned and the server fails to boot. This is done automatically, so you may not nee
to supply it.

The two operation functions are provided to do the application work, in this case,
converting to upper and lower case.

Makefile - rpcsimp.mk

Listing A-4 rpcsimp.mk

CC=cc

CFLAGS=
TIDL=$(TUXDIR)/bin/tidl
LIBTRPC=-Itrpc

all: client server

TUXEDO client
client: simp.h simp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildclient \
-oclient -fclient.c -fsimp_cstub.o -f$(LIBTRPC)

TUXEDO server
server: simp.h simp_sstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildserver \
-oserver -s changecasevl_0 -fserver.c -fsimp_sstub.o \
-f$(LIBTRPC)

simp_cstub.o simp_sstub.o simp.h: simp.idl
$(TIDL) -cc_cmd "$(CC) $(CFLAGS) -¢" simp.idl
#
THIS PART OF THE FILE DEALING WITH THE DCE GATEWAY IS OMMITTED
#

Cleanup
clean::
rm -f *.0 server $(ALL2) ULOG.* TUXCONFIG
rm -f stderr stdout *stub.c *.h simpdce.idl gwinit.c
clobber: clean

A-6 BEA TUXEDO TxRPC Guide

The rpcsimp Application

Themakefile builds the executable client and server programs.

The part of themakefile dealing with the DCE Gateway (described in Appendix B,
“A DCE-Gateway Application,”) is omitted from the figure.

The client is dependent on thimp.h header file and the client stub object file.
buildclient is executed to create the output client executable, usingjetine:
source file, the client stub object file, and thpc RPC runtime library.

The server is dependent on tiep.h header file and the server stub object file.
buildserver is an output server executable, usingdteer.c source file, the
server stub object file, and thepc ~ RPC runtime library.

The client and server stub object files andghg.h header file are all created by
running thetidl compiler on the IDL input file.

Theclean target removes any files that are created while building or running the
application.

The Configuration File - ubbconfig

The following is a sample ASCII configuration file. The machine nama®CONFIG
TUXDIR, andAPPDIR must be set based on your configuration.

Listing A-5 ubbconfig

*RESOURCES
IPCKEY 187345
MODEL SHM
MASTER SITE1l
PERM 0660
*MACHINES
<UNAME LMID=SITE1
TUXCONFIG="< TUXCONFIG"
TUXDIR="< TUXDIR>"
APPDIR="< APPDIR>"
MAXWSCLIENTS=10
*GROUPS
GROUP1 LMID=SITE1 GRPNO=1
*SERVERS
server SRVGRP=GROUP1 SRVID=1
#WSL SRVGRP=GROUP1 SRVID=2 RESTART=Y GRACE=0
CLOPT="-A---n< address >-x10-m1-M10-d < device >"
#

BEA TUXEDO TxRPC Guide A-7

A A Sample Application

TUXEDO-to-DCE Gateway

#simpgw SRVGRP=GROUP1 SRVID=2
*SERVICES

*ROUTING

The lines foMAXWSCLIENT&NndWSLwould be uncommented and are used for a
Workstation configuration. The literakddress > for the Workstation listener must
be set as described in thsI(5) reference page.

MS-DOS and Windows Makefile - rpcsimp.mak

Listing A-6 rpcsimp.mak

Model for dos client
MODEL=L

WINMODEL=M

Generate MS-DOS Client
dos: client.exe

simp.c: simp.IDL
TIDL -cstub simp.c -keep c_source -server none simp.IDL
client.obj: client.c
CL -I. -c -A$(MODEL) client.c
simp.obj: simp.c
CL -I. -c -A$(MODEL) simp.c
client.exe: simp.obj client.obj
buildclt -v -m$(MODEL) -cm -o client.exe -f "/ST:15000 /CO" \
-f client.obj -f simp.obj -f$(MODEL)trpc.lib -I$(MODEL) \
libsock.lib

Generate Windows client using MSC QuickWin
win: wclient.exe
wsimp.C: simp.IDL
TIDL -cstub wsimp.c -keep c_source -server none simp.IDL
wclient.c: client.c
copy client.c wclient.c
wclient.obj: wclient.c
CL /mQ -A$(WINMODEL) -I. -D_TM_WIN -Od -c wclient.C
wsimp.obj: wsimp.c
CL /mQ -A$(WINMODEL) -I. -D_TM_WIN -Od -c wsimp.C
wclient.exe: wsimp.obj wclient.obj
link wclient.obj wsimp.obj, wclient.exe , NUL, /NOD wtrpc \
wtuxws libw $(WINMODEL)libcewq Wlibsock,wclient.def

A-8 BEA TUXEDO TxRPC Guide

The rpcsimp Application

Generate DLL
Must be built with large model
dll: WSIMPDLL.DLL
simpdll.C: simp.IDL
TIDL -cstub simpdll.c -keep c_source -server none simp.IDL
simpdll.OBJ: simpdIl.C
CL -D_TMX="_far _pascal" -AL -I. -Aw -G2swx -Zp -D_TM_WIN -Od \
-c simpdIl.C

WSIMPDLL.DLL: simpdIl.OBJ
LINK simpdIl.OBJ , WSIMPDLL.DLL /CO /ALIGN:16, NUL, /NOD \
WLIBTRPC WTUXWS WLIBSOCK LIBW LDLLCEW, WSIMPDLL.DEF
RC -K WSIMPDLL.DLL
IMPLIB WSIMPDLL.LIB WSIMPDLL.DLL

clean:

if exist resptmp del resptmp

if exist simp.c del simp.c

if exist simp.h del simp.h

if exist wsimp.c del wsimp.c

if exist wclient.c del wclient.c

if exist simpdll.c del simpdll.c

del *.obj

del *.exe

if exist wsimpdlIl.lib del wsimpdil.lib
if exist wsimpdIl.dll del wsimpdil.dl|

Building MS-DOS and Windows clients is different enough from native clients that a
separate makefile is desirable. Tiigkefile builds an executable MS-DOS client, a
quick Windows client using Microsoft QuickWin, and a Windows Dynamic Link
Library (DLL).

The DOS target builds an MS-DOS client. The first step is to exagdiuteon the IDL

input file (the same one that is used for native clients and servers), listed above. Due
to the filename limitations, thestub option is used to rename the output file

simp.c . Also note that theservernone option is used to inhibit output of the server
stub.

The client stub is simply compiled into an object fiieyp.obj . The example uses the
“large” memory model and the Microsoft C compiler, but the model could be “large”
and a different compiler could be used. Theoption is used to include the generated
headersimp.h , in the current directory. Similarly, the client application program,
client.c ,is compiled to the object filgient.obj

BEA TUXEDO TxRPC Guide A-9

A A Sample Application

A-10

Finally, buildclt ~ is called to link object files and libraries to form the executable,
clientexe . The-v option prints out the commands being executednthaption is
used to specify the large memory model, and¢heption is used to specify the
Microsoft C compiler (sebuildclt (1) for further details). The first option sets the
stack size, the second and thirdoptions include the object files, amttpc.lib (the
RPC runtime library) is also included using aoption. The networking library,
mlibsock.lib (Novell's Lan Workplace for MS-DOS), is included using aption.

Before running this client, the application must be booted (as described below) and th
WSNADDRNvVironment variable must be set. (SeeBR& TUXEDO Workstation
Guidefor further details.)

Thewin target builds a Windows client using the Microsoft QuickWin feature.
(Borland’s Easy Win provides similar functionality.) It allows a character-based C
program to be compiled and run as a Windows program, without modification. The
client stub is generated, as above, with a “w” prefisirgp.c). The client code is

copied to a new name and compiled. The compilation option invokes the

QuickWin feature, as does the use ofitbeewg library on thdink command line.

It is important to remember that when compiling any Windows program that uses the
BEA TUXEDO software;D_TM_WIN must be defined. Thauidclt command

cannot be used because non-standard libraries are being used the link the executak
Thelink command line contains the client stub and application object files, the RPC
and BEA TUXEDO system libraries, and the Windows, QuickWin, and networking
libraries. The definition filewclient.def , is listed below; it simply sets a valid heap
and stack size.

Themakefile does not demonstrate building OS/2 programs. Compilation is similar
to the MS-DOS example above, but with the correct options for these platforms.
Remember to use thB_TM_0S2when compiling for OS/2. See thenkapp sample
application unde$TUXDIR/apps/iws for examples of complete applications for these
platforms.

Themakefile does include a more interesting feature not shown ibahieapp

sample, the creation of a DLL. One common use of the TXRPC interface operations i
to create one or more interfaces for use in applications via a dynamic link library. Use
of a DLL is necessary for most visual builders (such as Visual Basic, Gupta SQL
Windows, and others) where the programmer simply indicates the name of a DLL,
specifies a function prototype, and calls the function directly from the application.

Themakefile takes the output of the IDL compiler and creates a DLL,
wsimpdil.dll (the source for the client application, assumed to be written with a
visual builder, is not provided). The client stub is generated exactly the same as for th

BEA TUXEDO TxRPC Guide

The rpcsimp Application

native and MS-DOS clients (in theakefile |, it is renamedimpdil.c to

differentiate it from the MS-DOS client). Special Windows options (for Microsoft C,
for example;Aw -G2swx -Zp) are used to generate the DLL object file, and the
-D_TM_WIN option is used for BEA TUXEDO Workstation.

Because the DLL always has a different data segment and text segment from the
application code calling it, all pointers provided to and returned from the operations
must be declared as far (4-byte) pointers. Similarly, functions are declared as far. Also,
Windows functions are traditionally declared to have #ecal calling convention.

The header file and stub are automatically generated to easily allow for the declarations
to be changed, using C pre-processor definitions. The definitiar(for far) appears
before all pointers in the header file and is automatically defined as _far when
compiling for Windows or OS/2. Similarly;TMX (for eXport) appears before all
declared functions. By defaultfMXis defined to nothing. When compiling a stub for
inclusion in a DLL,_TMXshould be defined usin®_TMX="_far _pascal” . Also,

the files to be included in the DLL must be compiled with the large memory model.

Once thesimpdll.obj object file is created using the compiler, the DLL,
WSIMPDLL.DLL, is created using the linker, including the object file, the RPC and BEA
TUXEDO System libraries, the Windows library, the networking library, and the
definition file, wsimpdil.def (listed below). The resource compiler is run on the
resulting DLL, andmplib is executed to generate the output libravg)MPDLL.LIB,

used for linking with applications.

Windows Definition files - wclient.def and wsimpldil.def

Listing A-7 wclient.def

NAME WINDOWAPI

EXETYPE WINDOWS 3.0

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE

HEAPSIZE 1024

STACKSIZE 8096

This definition file is used when linking the Windows client program.

BEA TUXEDO TxRPC Guide A-11

A A Sample Application

Listing A-8 wsimpdIl.def

LIBRARY WSIMPDLL
PROTMODE
DESCRIPTION 'TUXEDO /RPC SAMPLE DLL'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD SINGLE
HEAPSIZE 1024
SEGMENTS WEPSEG PRELOAD FIXED
JEXETYPE WINDOWS
EXPORTS

TO_UPPER @1

TO_LOWER @2

This definition file is used when linking the DLL file. Note that it lists the two
operation nhames. They are upper case because functions declared witts¢hle
modifier are converted to upper case.

Step 5 - Modify the Configuration

A-12

Edit the ASCllubbconfig configuration file to provide location-specific information
(for example, your own directory pathnames and machine name), as described in th
next step. The text to be replaced is enclosed in angle brackets. You need to substitt
the full pathname forUXDIR, TUXCONFIG andAPPDIR, and the name of the machine

on which you are running. Here is a summary of the required values.

TUXDIR
The full pathname of the root directory of the BEA TUXEDO software, as set
above.

TUXCONFIG
The full pathname of the binary configuration file, as set above.

APPDIR
The full pathname of the directory in which your application will run.

UNAME
The machine name of the machine on which your application will run; this is
the output of the UNIX commandhame -n .

BEA TUXEDO TxRPC Guide

The rpcsimp Application

For a Workstation configuration, theAXWSCLIENT&NdWSLlines must be
uncommented and theaddress > must be set for the Workstation Listener. (See
wslI(5) for further details.)

Step 6 - Build the Application

Build the client and server programs by running the following.

make -f rpcsimp.mk TUXDIR=$TUXDIR

Step 7 - Load the Configuration

Load the binarffTuxCONFIGconfiguration file by running the following.

tmloadcf -y ubbconfig

Step 8 - Boot the Configuration

Boot the application by running the following.

tmboot -y

Step 9 - Run the Client

1. The native client program can be run by optionally specifying a string to be
converted first to upper case, and then to lower case, as shown in the following.

$ client HeLIO

to_upper returns: HELLO
to_lower returns: hello

$

BEA TUXEDO TxRPC Guide A-13

A A Sample Application

2. When running on Workstation, set SSNADDRnNvironment variable to match
the address specified for the WSL program. The MS-DOS client program can be
run in exactly the same manner as the native client. The Windows client can be
run by executing

>win wclient

Note: The dynamic link library may be used in a separately developed
application such as a visual builder.

Step 10 - Monitor the RPC Server

You can monitor the RPC server usingdmin (1). In the following examplesr and

psc are used to view the information for tfever program. Note that the length of
the RPC service name causes it to be truncated in terse mode (indicated by the “+”
verbose mode can be used to get the full name.

Listing A-9 tmadmin psr and psc Output

$ tmadmin
> psr
a.out Name Queue Name Grp Name ID RgDone Load Done Current Service

BBL 587345 SITE1 0 O 0 (IDLE)
server 00001.00001 GROUP1 1 2 100 (IDLE)
> psc

Service Name Routine Name a.out Name Grp Name ID Machine # Done Status

ADJUNCTBB ADJUNCTBB BBL SITE1l 0 SITE1l 0 AVAIL
ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITEl 0 AVAIL
changecasev+ changecasev+ server GROUP1 1 SITE1 2 AVAIL

> verbose
Verbose now on.

> psc -g GROUP1
Service Name: changecasevl_0
Service Type: USER
Routine Name: changecasevl_0
a.out Name: /home/sdf/trpc/rpcsimp/server
Queue Name: 00001.00001
Process ID: 8602, Machine ID: SITE1

A-14 BEA TUXEDO TxRPC Guide

The rpcsimp Application

Group ID: GROUP1, Server ID: 1
Current Load: 50
Current Priority: 50
Current Trantime: 30
Requests Done: 2
Current status: AVAILABLE
> quit

Step 11 - Shut Down the Configuration

Shut down the application by running the following.

tmshutdown -y

Step 12 - Clean Up

Clean up the created files by running the following.

make -f rpcsimp.mk clean

BEA TUXEDO TxRPC Guide A-15

A A Sample Application

A-16 BEA TUXEDO TxRPC Guide

APPENDIX

B A DCE-Gateway
Application

What This Appendix Is About

This appendix builds on thepsimp application described in Appendix A, “A Sample
Application.” The server is changed to be an OSF/DCE server and a gateway is used
so that the BEA TUXEDO client can communicate with the server using explicit
binding and authenticated RPCs.

Again, the source files for this interactive application are distributed with the BEA
TUXEDO software development kit.

This chapter will explain how to install, configure, and run the sample application. It
requires quite a bit of knowledge about DCE, and a DCE tutorial is beyond the scope
of this document. For further reading, Gyide to Writing DCE Applicationsy John
Shirley, et. al., published by O'Reilly and Associates, Inc.

BEA TUXEDO TxRPC Guide B-1

B A DCE-Gateway Application

The DCE-Gateway Application

This application is an extension to tpesimp application. As before, the client calls
the remote procedure calls (operatiotosypper () andto_lower ().

In this case, the RPC goes from the BEA TUXEDO client to the DCE Gateway proces
that forwards the request to a DCE server. To make this example more realistic, the
communications from the Gateway process to the DCE server use explicit binding
instead of automatic binding and an authenticated RPC.

What follows is a procedure to build and run the example. The client can run on any
platform described in Appendix A, “A Sample Application.” There is no difference in
building or running the client and it will not be described further in this chapter. The
gateway and DCE server must run on a POSIX platform that also has DCE software
installed on it. This chapter will not discuss installation or compilation of the clients
on the Workstation platforms.

The sample programs have been tested on HP’s “DCE/9000” and DEC’s “Digital DCE
for DCE OSF/1 AXP.” It should work on other platforms that conform to OSF/DCE
software standards.

Step 1 - Create an Application Directory

B-2

Make a directory forpcsimp andcd to it.

mkdir rpcsampdir
cd rpcsampdir

Note: This is suggested so you will be able to see clearlyptisenp files you have
at the start and the additional files you create along the way. Use the standar
shell (bin/sh) or the Korn shell; do not use the C shesh().

BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

Step 2 - Set Environment Variables

Set and export the necessary environment variables.

TUXDIR=<pathname of the BEA TUXEDO root directory>
TUXCONFIG=pathname of your present working directory> ftuxconfig
PATH=$PATH:$TUXDIR/bin

SVR4, Unixware

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib

HPUX

SHLIB_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib

RS6000

LIBPATH=$LD_LIBRARY_PATH:$TUXDIR/lib

export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH SHLIB_PATH LIBPATH

You needrUXDIR andPATHto be able to access files in the BEA TUXEDO directory
structure and to execute BEA TUXEDO commands. You need TWEEONFIG0 be
able to load the configuration file. It may also be necessary to set an environment
variable (for example,D_LIBRARY_PATH if shared objects are being used.

Step 3 - Copy the Files

Copy therpcsimp files to the application directory.
cp $STUXDIR/apps/rpcsimp/* .

You will be editing some of the files and making them executable, so it is best to begin
with a copy of the files rather than with the originals delivered with the software.

Step 4 - List the Files

List the files.

$ls

client.c
dcebind.c
dceepv.c
dcemgr.c
dceserver.c
rpcsimp.mk

BEA TUXEDO TxRPC Guide B-3

B A DCE-Gateway Application

simp.idl
simpdce.acf
ubbconfig

$

(Some files that are not referenced in this section are omitted).

The files that make up the application are described in the following sections. The
client.c ,simp.idl , andubbconfig files (described in Appendix A, “A Sample
Application,”) are not discussed further.

IDL ACF File - simpdce.acf

B-4

Listing B-1 simpdce.acf

[explicit_handle]interface changecase

}

Thesimp.idl file used in the earlier example will be used to build the gateway and
the DCE server. However, since it is being compiled by both the DCE and BEA
TUXEDO IDL compilers, two different versions of teenp.n header file are being
generated with the same name. Additionally, we wish to use an ACF file in this
example so that we can specify explicit binding for the server, but not for the client.
The recommended approach is to link the IDL file to a second file name within the
same directory, using one for TXRPC without binding and one for DCE/RPC with an
explicit handle. In this caseimp.id | is renamedimpdce.idl and the associated
ACF file issimpdce.acf . The makefile createsmpdce.idl and when the IDL
compiler is executed, it also will finimpdce.acf . Note that the ACF file is used
simply to indicate that all operations in the interface will use explicit handles. Because
the operations are defined in the IDL file without [handle] parameters as the first
parameter, one will be added automatically to the function prototype and to the stub
function calls.

BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

Binding Function - dcebind.c

In the interest of space, the source codel¢ebind.c is not included here but can be
found in$TUXDIR/apps/rpcsimp

This file has a functiordobind (), that does the following three things:

L4

It gets a binding handle for the DCE server with the desired interface
specification and gets the associated endpoint for a fully resolved handle.

It does some authentication of the server by getting the principal name for the
server and checking the Security registry to see if the principal is a member of a
specified group.

It also annotates the binding handle so that an authenticated RPC is done. The
protection level is packet level integrity (mutual authentication on every call
with a packethecksum) using DCE private key authentication and DCE
PAC-based authorization.

The following things need to be modifieddoebind.c

L4

<HOSP needs to be changed to the name of the host machine where the DCE
server will be run. This is part of the service name that is put into the directory
and follows the convention that the service name ends with . You may
choose to get rid of the suffix entirely (if you do, the same change needs to be
made indceserver.c).

<SERVER_PRINCIPAL_GROUPmMust be changed to the group associated with the
DCE principal running the server. It is used as part of the mutual authentication.

The server principal group must be created by runmngdit as

cell_admin , the server principal must be created, an account must be added for
the principal with the group, and a key table must be created for the server. You
must also create a principal and account for yourself to run the client. An
example script to create these DCE entities is shown in the section “Step 8 -
Configuring DCE.”

BEA TUXEDO TxRPC Guide B-5

B A DCE-Gateway Application

Entry Point Vector - dceepv.c

Listing B-2 dceepv.c

#include <simpdce.h> /* header generated by IDL compiler */
#include <dce/rpcexc.h> /* RAISE macro */

static void myto_upper(rpc_binding_handle_t hdl, idl_char *str);
static void myto_lower(rpc_binding_handle_t hdl, idl_char *str);

/*

* A manager entry point vector is defined so that we can generate
* a valid DCE binding handle to go to the DCE server.

* Note that the input handle to entry point functions will always

* be NULL since TUXEDO TxRPC doesn't support handles.

*

/* Manager entry point vector with two operations */
changecase_v1_0_epv_t changecase vl _0_s_epv ={
myto_upper,

myto_lower

h
int dobind(rpc_binding_handle_t *hdl);

void
myto_upper(rpc_binding_handle_t hdl, idl_char *str)

rpc_binding_handle_t handle;

if (dobind(&handle) 0) { /* get binding handle for server */
userlog("binding failed");

RAISE(rpc_x_invalid_binding);

}

to_upper(handle, str); /* call DCE client stub */

}

void
myto_lower(rpc_binding_handle_t hdl, idl_char *str)

rpc_binding_handle_t handle;

if (dobind(&handle) 0) { /* get binding handle for server */
userlog("binding failed");

RAISE(rpc_x_invalid_binding);

to_lower(handle, str); /* call DCE client stub */

}

B-6 BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

dceepv.c contains the manager entry point vector used in the gateway. It is called by
the BEA TUXEDO server stub and calls the DCE client stub. The data type for the
structure is defined isimpdce.h , which is included imiceepv.c , and it is initialized

with the local functionsnyto_upper() andmyto_lower() . Each of these functions
simply callsdobind() to get the binding handle that has been annotated for
authenticated RPC and calls the associated client stub function.

DCE Manager - dcemgr.c

Listing B-3 dcemgr.c

#include <stdio.h>

#include <ctype.h>

#include "simpdce.h" /* header generated by IDL compiler */
#include <dce/rpcexc.h> /* RAISE macro */

#include <dce/dce_error.h> /* required to call dce_error_ing_text */
#include <dce/binding.h> /* binding to registry */

#include <dce/pgo.h> /* registry i/f */

#include <dce/secidmap.h> /* translate global name -> princ name */

void
checkauth(rpc_binding_handle_t handle)

int error_stat;

static unsigned char error_string[dce_c_error_string_len];
sec_id_pac_t *pac; /* client pac */

unsigned_char_t *server_principal_name; /* requested server principal */
unsigned32 protection_level; /* protection level */
unsigned32 authn_svc; [* authentication service */
unsigned32 authz_svc; [* authorization service */
sec_rgy_handle_t rgy_handle;

error_status_t status;

/*

* Check the authentication parameters that the client

* selected for this call.

*
rpc_binding_ing_auth_client(
handle, /* input handle */

(rpc_authz_handle_t *)&pac, /* returned client pac */
&server_principal_name, /* returned requested server princ */
&protection_level, /* returned protection level */

&authn_svc, /* returned authentication service */
&authz_svc, [* returned authorization service */
&status);

if (status !=rpc_s_okK) {

BEA TUXEDO TxRPC Guide B-7

B A DCE-Gateway Application

dce_error_ing_text(status, error_string, &error_stat);
fprintf(stderr, "%s %s\n", “ing_auth_client failed",
error_string);
RAISE(rpc_x_invalid_binding);
return;
}
/*
* Make sure that the caller has specified the required
* level of protection, authentication, and authorization.
*/
if (protection_level = rpc_c_protect_level_pkt_integ ||
authn_svc !=rpc_c_authn_dce_secret ||
authz_svc = rpc_c_authz_dce) {
fprintf(stderr, "not authorized");
RAISE(rpc_x_invalid_binding);
return;
}

return;

}

void

to_upper(rpc_binding_handle_t handle, idl_char *str)
idl_char *p;
checkauth(handle);

I* Any ACL or reference monitor checking could be done here */

[* Convert to upper case */
for (p=str; *p !1="\0"; p++)

*p = toupper((int)*p);
return;

}

void
to_lower(rpc_binding_handle_t handle, idl_char *str)

idl_char *p;

checkauth(handle);

I* Any ACL or reference monitor checking could be done here */
I* Convert to lower case */

for (p=str; *p !I="\0"; p++)

*p = tolower((int)*p);
return;

B-8 BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

dcemgr.c has the manager code for the DCE server.chhekauth() ~ function is a
utility function to check the authentication of the client (level of protection,
authentication, and authorization). Each of the operationgper andto_lower |,
calls this function to validate the client and then does the operation itself. In an
application using Access Control Lists, the ACL checking would be done after the
authentication checking and before the work of the operation.

DCE Server - dceserver.c

In the interest of space, the source codeifeserver.c is not included here. There
are several modifications needed for this file based on your environment:

4 <HOS? needs to be changed to the name of the host machine where the DCE
server will be run. This is part of the service name that is put into the directory
and follows the convention that the service names ends with . You may
choose to get rid of the suffix entirely (if you do, the same change needs to be
made indcebind.c).

¢ <DIRECTORY¥ needs to be set to the full pathname of the directory where you
will create the server key table. The key table is created by executing the
following.

rgy_edit
ktadd -p SERVER_PRINCIPAL-pw PASSWORD SERVER _KEYTAB

q

whereSERVER_PRINCIPALIsS the DCE principal under which the server will be run,
PASSWORB the password associated with the principal, $#RVER_KEYTAB the
name of the server key table.

<PRINCIPAL> must be changed to the name of the DCE principal under which the
server will be run.

The ANNOTATIONcan be changed to an annotation to be stored in the directory entry
for the server.

dceserver.c is actually used twice in the application: once asihie() for the
DCE server and again (linked gavinit.c and compiled withBTPSVRINIT in the
makefile) as thepsvrinit() for the DCE gateway.

BEA TUXEDO TxRPC Guide B-9

B A DCE-Gateway Application

When compiled without extra macro definitions, this file generatesir) (with
argc andargv command line options) for a DCE server that does the following:

4+ Registers its interfaces
4 Creates its server binding information and endpoints

4 Establishes its DCE login context for the server principal using information in
the server key table

Registers its authentication information

Gets its bindings and registers the information in the endpoint map
Exports the binding information to the directory name space
Optionally, adds its name to a group in the name space

Listens for requests

* & & & o o

Cleans up aftetpc_server_listen returns
The program could be modified to look at and use its command line options.

When compiled withBTCLIENT, this file generatesmain() as above but calls

tpinit () to join the BEA TUXEDO application as a client, and callerm () before
exiting. This would be used for a DCE gateway for calls coming from DCE to BEA
TUXEDO (such that the process is a DCE server and a BEA TUXEDO client).

When compiled withBTPSVRINIT, this file generatestasvrinit () (with argc and
argv server command line options) for a BEA TUXEDO server that does the
following:

4+ Establishes its DCE login for the principal using the information in the server
key table

4 Registers its authentication information
4 Callstx_open to open any resource managers associated with the server
The program could be modified to look at and use its command line options.

In each of these cases, the login context is established by calling

establish_identity , which gets the network identity for the server, uses the
server’s secret key from the key table file to unseal the identity, and sets the login
context for the process. Two threads are started: one to refresh the login context jus
before it expires, and a second thread to periodically change the server’s secret key

B-10 BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

Makefile - rpcsimp.mk

Listing B-4 rpcsimp.mk

CC=cc
CFLAGS=
TIDL=$(TUXDIR)/bin/tidl
LIBTRPC=-Itrpc
all: client server
TUXEDO client
client: simp.h simp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildclient -oclient \
-fclient.c -fsimp_cstub.o -f$(LIBTRPC)
#
OMIT TUXEDO server
#

TUXEDO Gateway example

Uses TUXEDO client above plus a gateway server and a DCE server

#

#

Alpha FLAGS/LIBS

#DCECFLAGS=-D_SHARED_LIBRARIES -Dalpha -D_REENTRANT -w -I. \
-l/usr/include/dce -I$(TUXDIR)/include

#DCELIBS=-ldce -Ipthreads -lc_r -Imach -Im

#

#

HPUX FLAGS/LIBS

#DCECFLAGS=-Aa -D_HPUX_SOURCE -D_REENTRANT -I. \
-l/usrfinclude/reentrant -I${TUXDIR}/include

#DCELIBS=-WI,-Bimmediate -WI,-Bnonfatal -Idce -Ic_r -Im

#

IDL=idl

ALL2=client simpgw dceserver
all2: $(ALL2)

TUXEDO-to-DCE Gateway
simpdce.idl: simp.idl

rm -f simpdce.idl

In simp.idl simpdce.idl

gwinit.c: dceserver.c

rm -f gwinit.c
In dceserver.c gwinit.c

BEA TUXEDO TxRPC Guide B-11

B A DCE-Gateway Application

gwinit.o: gwinit.c
$(CC) -c $(DCECFLAGS) -DTPSVRINIT gwinit.c

dceepv.o: dceepv.c simpdce.h
$(CC) -c $(DCECFLAGS) dceepv.c

dcebind.o: dcebind.c simpdce.h
$(CC) -¢c $(DCECFLAGS) dcebind.c

simpgw: simpdce.idl gwinit.o dcebind.o dceepv.o
blds_dce -i -no_mepv -o simpgw -f -g -f gwinit.o -f\
dcebind.o -f dceepv.o simpdce.idl

DCE server
simpdce_sstub.o simpdce.h: simpdce.idl
$(IDL) -client none -keep object simpdce.idl

dceserver.o: dceserver.c simpdce.h
$(CC) -¢c $(DCECFLAGS) dceserver.c

dcemgr.o: dcemgr.c simpdce.h
$(CC) -¢c $(DCECFLAGS) dcemgr.c

dceserver: simpdce_sstub.o dceserver.o dcemgr.o
$(CC) dceserver.o simpdce_sstub.o dcemgr.o -0 dceserver \
$(DCELIBS)

Cleanup

clean::
rm -f *.0 server $(ALL2) ULOG.* TUXCONFIG
rm -f stderr stdout *stub.c *.h simpdce.idl gwinit.c

clobber: clean

B-12

Themakefile builds the executable client, gateway, and DCE server programs.

Before building the softwaregcsimp.mk must be modified to set the correct options
and libraries for building the DCE server. As sent out, the makefile contains the prope
settings for several platforms. Based on the platform that you are using, uncommeni
(delete the pound sign) in front of the correct pabOECFLAG®ndDCELIBS

variables, or add your own definitions for a different platform.

Briefly reviewing the makefile, the client is built in the same fashion as in Appendix A,
“A Sample Application.” The DCE gateway is built by passsimgpdce.idl to

blds_dce , which builds a BEA TUXEDO server that acts as a gateway to DCE. Also
included argywinit.o (a version oficeserver.c compiled with BPTPSVRINIT),
dobind.o (to get the binding handle for the DCE server), assbpv.o (the manager

BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

entry point vector). Note thatno_mepv is specified so that the IDL compiler does
not generate its own manager entry point vector. The DCE server is built compiling
simpdce.idl with the DCE IDL compiler, and includirdggeserver.o and

dcemgr.o .

Step 5 - Modify the Configuration

1. Modify the ASCllubbconfig configuration file as described Appendix A, “A
Sample Application.” (This step is mandatory.)

2. In theSERVERSsectioncomment outheserver line by putting a pound sige)
at the beginning of the line. (Do not comment outdbeserver line.)

Step 6 - Build the Application

1. Before building the software, you must modifgsimp.mk to set the correct
options and libraries for building the DCE server, as described above.

2. Build the client and server programs by running the following.

make -f rpcsimp.mk TUXDIR=$TUXDIR all2

Step 7 - Load the Configuration

Load the binarff uxCONFIGconfiguration file by running the following.

tmloadcf -y ubbconfig

BEA TUXEDO TxRPC Guide B-13

B A DCE-Gateway Application

Step 8 - Configuring DCE

B-14

To set up DCE entities for running this example, as described earlier, you must
customize (for your environment) identifiers in all capital letters.

4+ If you already have a DCE principal for yourself, you do not need to create
MYGROUMYPRINCIPAL, or the associated account.

4 This example assumes that tle#t_admin password is the defaulice . (You
can change this password as necessary.)

¢ TheSERVER_PRINCIPALmMust be the same as the BEA TUXEDO administrator
identifier, because the server must be booted as the BEA TUXEDO
administrator and the server must be able to read the server key table.

Listing B-5 DCE Configuration

$ dce_login cell_admin -dce-

$rgy_edit

> domain group

>add SERVER_PRINCIPAL_GROUP

>add MYGROUP

> domain principal

>add SERVER_PRINCIPAL

> add MYPRINCIPAL

> domain account

> add SERVER_PRINCIPAL -g SERVER_PRINCIPAL_GROUP -0 none -pw \
SERVERPASSWORD -mp -dce-

> add MYPRINCIPAL -g MYGROUP -0 none -pw MYPASSWORD -mp -dce-

> ktadd -p SERVER_PRINCIPAL -pw SERVERPASSWORD -f SERVER_KEYTAB

>q

$ chown SERVER_PRINCIPAL SERVER_KEYTAB

$ chmod 0600 SERVER_KEYTAB

BEA TUXEDO TxRPC Guide

The DCE-Gateway Application

Step 9 - Boot the Configuration

1. Log in asSERVER_PRINCIPAL(the owner of the server key table).

2. Start the DCE server by running the following.

dceserver &

The messagserver ready is displayed just before the DCE server starts
listening for requests.

3. Boot the BEA TUXEDO application by running the following.

tmboot -y

Step 10 - Run the Client

The client program can be run by optionally specifying a string to be converted, first
to upper case, and then to lower case.

$ client HeLIO

to_upper returns: HELLO

to_lower returns: hello

$

Step 11 - Shut Down the Configuration

1. Shut down the application by running the following.
tmshutdown -y

2. Stop the DCE server.

Step 12 - Clean Up

Clean up the created files by running the following.

make -f rpcsimp.mk clean

BEA TUXEDO TxRPC Guide B-15

B A DCE-Gateway Application

B-16 = BEA TUXEDO TxRPC Guide

	Copyright
	Contents
	1 Introduction and Overview
	General Description of TxRPC

	2 The Interface Definition Language
	References
	uuidgen - Creating an IDL Template
	Changes in the Language
	Changes Based on the TxRPC Specification
	Enhancements to the Language
	Enhancements that May Limit Portability

	Features that Are Not Supported
	tidl - The IDL Compiler

	3 Writing RPC Client and Server Programs
	Introduction
	Prerequisite Knowledge
	Handling Remoteness
	Handling Status and Exception Returns
	The Stub Support Functions
	RPC Header Files
	Portability of Code
	Interactions with ATMI
	Interactions with TX

	4 Building RPC Client and Server Programs
	Introduction
	Prerequisite Knowledge
	Building an RPC Server
	Building an RPC Client
	Building a DOS Workstation RPC Client
	Building a Windows Workstation RPC Client
	Building an OS/2 Workstation RPC Client
	Using C++
	Interoperability with DCE/RPC
	BEA TUXEDO Requester to DCE Service via BEA TUXEDO Gateway
	DCE Requester to BEA TUXEDO Service Using BEA TUXEDO Gateway
	BEA TUXEDO Requester to DCE Service Using DCE-only
	DCE Requester to BEA TUXEDO Service Using BEA TUXEDO-only
	Building Mixed DCE/RPC and BEA TUXEDO TxRPC Clients and Servers

	5 Running the Application
	Running the Application
	Prerequisite Knowledge
	Configuring the Application
	Booting and Shutting Down the Application
	Administration
	Dynamic Service Advertisement

	A A Sample Application
	What This Appendix Is About
	Some Preliminaries

	The rpcsimp Application
	Step 1 - Create an Application Directory
	Step 2 - Set Environment Variables
	Step 3 - Copy files
	Step 4 - List the Files
	IDL Input File - simp.idl
	The Client Source Code - client.c
	The Server Source Code - server.c
	Makefile - rpcsimp.mk
	The Configuration File - ubbconfig
	MS-DOS and Windows Makefile - rpcsimp.mak
	Windows Definition files - wclient.def and wsimpldll.def

	Step 5 - Modify the Configuration
	Step 6 - Build the Application
	Step 7 - Load the Configuration
	Step 8 - Boot the Configuration
	Step 9 - Run the Client
	Step 10 - Monitor the RPC Server
	Step 11 - Shut Down the Configuration
	Step 12 - Clean Up

	B A DCE-Gateway Application
	What This Appendix Is About
	The DCE-Gateway Application
	Step 1 - Create an Application Directory
	Step 2 - Set Environment Variables
	Step 3 - Copy the Files
	Step 4 - List the Files
	IDL ACF File - simpdce.acf
	Binding Function - dcebind.c
	Entry Point Vector - dceepv.c
	DCE Manager - dcemgr.c
	DCE Server - dceserver.c
	Makefile - rpcsimp.mk

	Step 5 - Modify the Configuration
	Step 6 - Build the Application
	Step 7 - Load the Configuration
	Step 8 - Configuring DCE
	Step 9 - Boot the Configuration
	Step 10 - Run the Client
	Step 11 - Shut Down the Configuration
	Step 12 - Clean Up

