o° o%%,

;7 !
Py ea

BEA TUXEDO

Reference Manual

Section 3C —
C Functions

BEA TUXEDO 6.5 for WLE 5.1
Documen t Edition 6.5
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO Reference M anual

Document Edition Date Software Version

6.5 May 2000 BEA TUXEDO 6.5 for WLE 5.1

Section 3C - C Functions

TNEFO(BC) c ettt ettt ettt ettt e eb et e et et n et eneere e 2
AEMsetbl ockingNOOK(3)......ccveoeeeiererieee et 29
P =@ =T [0 4 1= TV () TSRS 31
AEPISDIOCKEA(3) ...vevvevieieriieti et et 34
AEPsetblockinghooK(3) ... cc.oiverere et s 35
ABEWadAtyPESW(3) ... v eeeee et se e e 37
AEWISDIOCKEA(3)...veeiieeiieiieeiiee ettt 40
AEWsethlockinghOoK(3)cureiieieireree e 41
ABEWSEUNSOI(3) ..ottt sttt e s erens 43
o101 (=T o) RS SRRPR 44
(o 10 1= () TSR 51
(07 (0] 0= 02) USROS 52
(o g T T o Lo 1) OSSO 54
(0L o LT 1 () RS 55
(o (o T (0] 40 1) PSSRSO 58
FOrMIPEINE(S) .t e e e 60
LR LR LIRS o () TSRS 62
OP_MKEME(3) ..ttt e e e et ea e 64
MBSKPIE(B) ettt ettt et st sr e 67
101070 1) PSSP 68
Nl 1aNgINFO(3)uviieiiieie e e 70
FECOMP(3) +erv v erieeneentereeeestete e ettt s e e sae e et see st et es e e se et ene et eraesne et 71
FPC_SM_AIIOCAEE(3) ... ettt e 76
rpC_SM_Client free(3) ..o e 78
rpc_sm_disable alocate(3)coevvveeieciee e e 79
rpc_sm_enable alloCate(3)ccevveeieiecieie e e 80
0o LI == () ISR 8l
rpc_sm_set client_aloc free(3) ... e, 82
rpc_sm_swap _client_aloc free(3)coceveeeve e, 83
1SS 10 oz 1=) ISR 85
SEFEITON(B) cuveeeeetietiecte et cte et e e e e e e e e e er e e e e sreeraesresraesresraenteereens 87
SEFLME(3) vttt et ettt sttt re e 88
L1000 0 () OSSR 91
102 Tor= 16 SRS 93

BEA Tuxedo Reference Manual iii

iv

L7020 [g3or) SRR 96

EPBAVEITISE(3) . ettt et e e e 99
L0 1 Lo () USSR 101
EPDEGIN(B) -t e s 103
EPOrOAACASE(3) ... eeeee et e 105
L0 L RS ST 108
100z T o= 1) OSSO 113
EPCHKBULN(BEC) ... ettt e e 114
EPCHKUNSOI (3) ...ttt e e e 115
70 oi 0= () USSR 117
EPCOMIMIT(B) -ttt et s et e 118
[70]000 10101 oi {62) USSR 121
L10]000 10177 4 {6 o USSR 124
EPCIYPEPW(3) vttt ettt e s et e eees 126
EPAEQUEUE(B) ...ttt ettt e e et et 127
L70]0[ES o0 1) F USSR 134
EPENQUEUE(S) ...ttt et et st e b et e enes 136
EPEITOIAELAI] (BC) -.veveeeee ettt e e 143
EPFOPWAIT(3) ..t e e e e 145
EPFTEE(3) et e e et s 147
100 1< =10 (0015 () F SRR 148
EPOELIEV(B) ettt e e 149
EPOELIPIY (D) c-eveeeeie ettt e e e s 150
L7l o g 0] (<) FO USSR 154
Lo TR TE () RS 155
L1010, 17 €<) ST SP 161
L00] 0= 0T () ST 164
L10] 01011 () ST 165
L1 010== 1 Lo ot C) ISR 169
1101 L= 02V () ISR 171
101 E=S 01 () TSR 176
L0 C=: (0 [(o) TSR 178
L0 1STo 001 () TSRS 182
L1015T= g0 [) ST S 184
1101 AV o =T) ST 187

BEA Tuxedo Reference Manual

EPSELUNSOI () -ttt e e e 190

1105 o0 (<) TSP S 192
10 L 0T () ISR 193
TPSLrErrOrdetail(3) . ..o.eoeeeeeeereeiee e e e e 194
TPSUDSCIIDE(BC) ..t e e 195
EPSUSPENA(B) -ttt ettt se e e e e n e e enes 201
100 (0] < (o) SRR 203
10T o {) TSR 204
L1010 0T) TS 205
110147701) USSR 206
TPUNBAVETISE(3B) -eeveeve ettt et e 207
TPUNSUDSCITDE(3) ... e 208
TRY (B) 1ttt sieesire sttt sttt st se st se s e s sttt ettt se st et nente e 210
L0 0 T=: 0 V]) ISR 218
EUXPULENV(B) -ttt ettt ettt s s enes 219
L0 L= 0 (= 01V () IS 220
Lol o = e 1 1) TSRS 222
Lo e o= =T () IS 224
Lo e o101 011 () IS 226
L T 0101 (<) RSOSSN 228
Lo 0] 0= () ISR 230
Lo 0] 1 o= ot 1) TSR 232
IX_Set COMMIL_FELUIN(3) ..cueieeiiee ettt 234
tx_set transaction_control(3)......cceveeviereieiesiee e 236
tX_set transaction_timeouULt(3)........ccveveveinieseiriie et 238
(V1S =g oo () PR 240
USIGNAI(3) 1o vieriecie ettt ettt r s e st sraesaesnaennesreenneas 243
L0 1o D= 1) TSRS 246
pCo [<) ST 247
pCo =T [011 oV Iy TR 249
bCo o0 0] o] 1=) PR 250
(o R v (=7 = (]) PR 253
pCo = L]0 = 1) TSR 254

BEA Tuxedo Reference Manual \%

Vi BEA Tuxedo Reference Manual

About This Document

The Tuxedo 6.5 Reference Manual for BEA WebLogic Enterprise™ 5.1 includes the
following components:

m “Section 1 — Commands” provides information about shell-level commands
included with Tuxedo® and WebLogic Enterprise software.

m “Section 3C — C Functions” describes C language functions that comprise the
Application-Transaction Monitor Interface (ATMI). ATMI provides routines to
open and close resources, manage transactions, manage typed buffers, and
invoke request/response and conversational service calls.

m “Section 3CBL — COBOL Functions” describes the COBOL bindings for the
ATMI interface.

m “Section 3 FML — FML Commands” describes C language functions for
defining and manipulating Field Manipulation Language (FML) storage
structures.

m “Secrtion 5 — File Formats and Data Descriptions” describes various files and
tables. This includes the configuration fileBBCONFI G andTUXCONFI G and the
Tuxedo Management Information Base (TMIB) classes that provide an interface
for managing WLE or Tuxedo systems.

What You Need to Know

This document is intended for administrators who configure operational parameters
that support mission-critical BEA WebLogic Enterprise and BEA Tuxedo systems.

BEA Tuxedo Reference Manaul Vii

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product

Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise

documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise

documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dittp://www.adobe.corh

Related Information

viii

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java

programming, see the WLEibliography in the WebLogic Enterprise online
documentation.

BEA Tuxedo Reference Manaul

Documentation Conventions

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA Systems, Inc. professionals who
create and update the WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problemsinstalling and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

BEA Tuxedo Reference Manaul iX

X

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in asyntax line. The braces themsel ves should

never be typed.

Indicates optiona itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

BEA Tuxedo Reference Manaul

Documentation Conventions

Convention Iltem

| Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

BEA Tuxedo Reference Manaul Xi

Xii BEA Tuxedo Reference Manaul

Section 3C - C Functions

BEA TUXEDO Reference Manual 1

intro(3¢)

intro(3¢)

Name

Description

Communication

Paradigms

BEA TUXEDO

system request

2

/response
client/server
model

i nt r o(3c)-introduction to the application-transaction monitor interface.

The application-transaction monitor interface provides the interface between the
application and the transaction processing system. Thisinterface is known asthe
ATMI interface. It provides routinesto open and close resources, managetransactions,
manage typed buffers, and invoke regquest/response and conversationa service calls.

Theroutines described in the ATMI reference pagesimply a particular model of
communication. This model is expressed in terms of how client and server processes
can communicate using reguest and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated
data. Request/response services can receive exactly one request (upon entering the
service routine) and send at most one reply (upon returning from the service routine).
Conversational services, on the other hand, are invoked by connection requests along
with a means of referring to the open connection (that is, a descriptor used in calling
subsequent connection routines). Once the connection has been established and the
service routine invoked, either the connecting program or the conversational service
can send and receive data as defined by the application until the connection is torn
down.

Note that a process can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational service
reguests. Thefollowing sections describe the two communication paradigmsin greater
detail.

With regard to request/response communication, a client is defined as a process that
can send requests and receive replies. By definition, clientscannot receive requests nor
send replies. A client can send any humber of requests, and can wait for the replies
synchronously or receive (some limited number of) the replies at its convenience. In
certain cases, aclient can send arequest that hasno reply. t pi nit andt pt er mallow
aclient to join and leave aBEA TUXEDO system application.

A reguest/response server is a process that can receive one (and only one) service
reguest at atime and send at most one reply to that request. While a server isworking
on a particular request, it can act like a client by initiating request/response or
conversational requestsand receiving their replies. In such acapacity, aserveriscalled
arequester. Note that both client and server processes can be requesters (in fact, a
client can be nothing but a requester).

BEA TUXEDO Reference Manual

intro(3c¢)

Conversational
Client/server
Model

A reguest/response server can forward a request to another request/response server.
Here, the server passes a ong the request it received to another server and does not
expect areply. It istheresponsibility of the last server in the chain to send thereply to
the original requester. Use of theforwarding routine ensuresthat the original requester
ultimately receivesitsreply.

Servers and service routines offer a structured approach to writing BEA TUXEDO
system applications. In a server, the application writer can concentrate on the work
performed by the service rather than communications details such as receiving
requests and sending replies. Because many of the communication details are handled
by BEA TUXEDO system’smai n, the application must adhere to certain conventions
when writing a service routine. At the time a server finishes its service routine, it can
send areply usingt pr et ur n or forward the request usingt pf or war d. A serviceis not
allowed to perform any other work nor isit allowed to communicate with any other
process after thispoint. Thus, aservice performed by aserver isstarted when arequest
is received and ended either when areply is sent or the request is forwarded.

Concerning request and reply messages, thereis an inherent difference between the
two: arequest has no associated context beforeit is sent, but areply does. For example,
when sending arequest, the caller must supply addressing information, whereasareply
isalwaysreturned to the process that originated the request, that is, addressing context
is maintained for areply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themsel vesin the
parameters and descriptions of the routines described int pcal | (3c) .

When arequest message is sent, it is sent at aparticular priority. The priority affects
how arequest isdegqueued: when a server degueues requests, it dequeues the onewith
the highest priority. To prevent starvation, the oldest request is dequeued every so
often regardless of priority. By default, arequest’s priority is associated with the
service name to which the request is being sent. Service names can be given priorities
at configurationtime (seeubbconf i g(5)). A default priority isused if noneisdefined.
In addition, the priority can be set at runtime using aroutine, t pspri o(3c) . By doing
so, the caller can override the configuration or default priority when the message is
sent.

With regard to conversational communication, aclient isdefined as a process that can
initiate a conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once the
connection has been established and the service routine invoked, either the connecting
program or the conversational service can send and receive data as defined by the
application until the connectionistorn down. The conversationis half-duplex in nature

BEA TUXEDO Reference Manual 3

intro(3¢)

4

Message
Delivery

Message
Sequencing

such that one side of the connection has control and can send data until it gives up

control to the other side. While the connection is established, the server is “reservec
such that no other process can establish a connection with the server. As with a
request/response server, the conversational server can act as a requester by initiati
other requests or connections with other servers. Unlike a request/response server,
conversational server can not forward a request to another server. Thus, a
conversational service performed by a server is started when a request is received a
ended when the final reply is sent via et ur n.

Once the connection is established, the connection descriptor implies any context
needed regarding addressing information for the participants. Messages can be sen
and received as needed by the application. There is no inherent difference between t
request and reply messages and no notion of priority of messages.

Sending and receiving messages, whether in conversation mode or request/respon:
mode, implies communication between two units of an application. The great majority
of messages lead to a reply or at least an acknowledgment, so that is an assurance 1
the message was received. There are, however, certain messages (some originatec
the system, others originated by an application) where a reply or acknowledgment is
not expected. For example, the system can send an unsolicited message using

t pnot i fy without theTPACK flag, or an application can send a message using

t pacal | with theTPNOREPLY flag. If the message queue of the receiving program is
full, the message is dropped.

If the sending and receiving side are on different machines, the communication take
place between bridge processes that send and receive messages across a network.
raises the additional possibility of hon-delivery due to a circuit failure. Even when
either of these conditions leads to the positing of an event dntoGmessage, it is

not easy to associate the eventiotG message with the non-arrival of a particular
message.

Because the BEA TUXEDO system is designed to handle large volumes of messags
across broad networks, it is not programmed to detect and correct the small percenta
of failures-to-deliver described in the preceding paragraphs. For that reason, there c:
be no guarantee that every message will be delivered.

In the conversational model, for messages being exchanged psingd and

t pr ecv, a sequence number is added to the message header and messages are rece
in the order in which they are sent. If a server or client gets a message out of order, tt
conversation is stopped, any transaction in progress is rolled back, and message
LIBTUX 1572 “Bad Conversational Sequence Number,” islogged.

BEA TUXEDO Reference Manual

intro(3c¢)

Queued
Message Model

ATMI
Transactions

In the Request/Response model, messages are not sequenced by the system. If the
application logic implies a sequence, it isthe responsibility of the application to
monitor and control it. The parallel message transmi ssion made possible by the support
of multiple network addresses for bridge processes increases the possibility that
messages will not be received in the order sent. An application that is concerned about
this may choose to specify a single network address for each bridge process, add
sequence numbers to their messages or require periodic acknowledgments.

The BEA TUXEDO system queued message model allows for enqueueing arequest
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting areply via a queued response message. The ATMI
verbs that queue messages and dequeue responses are t penqueue(3c) and

t pdequeue(3c) . They can be called from any type of BEA TUXEDO system
application processes: client, server, or conversational.

The queued message facility is an X A-compliant resource manager. Messages are
enqueued and degqueued within transactions to ensure one-time-only processing.

BEA TUXEDO system supports two setsof mutually exclusive verbsfor defining and
managing transactions: BEA TUXEDO's ATMI transaction demarcation verbs (which
are prefaced witht p) and X/Open’s TX Interface (whose verbs are prefaced witht x_).
Because X/Open used ATMI’s transaction demarcation verbs as the base for the TX
Interface, the syntax and semantics of the TX Interface arequite similar to ATMI. This
section isan overview of ATMI’s transaction concepts. The next section introduces
additional concepts of the TX Interface.

A transaction in the BEA TUXEDO system is used to define asingle logical unit of
work that either wholly succeeds or has no effect whatsoever. A transaction alows
work performed in many processes, at possibly different sites, to be treated as an
atomic unit of work. The initiator of atransaction normally usest pbegi n and either
tpcommi t ort pabort to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing

t psuspend. Another process may take over the role of the initiator of a suspended
transaction by issuing t pr esune. Asatransaction initiator, aprocess must call one of
t psuspend, t pconmi t, Or t pabor t . Thus, one process can start a transaction that
another may finish.

If aprocess calling aservice isin transaction mode, then the called service routine is
also placed in transaction mode on behalf of the same transaction. Otherwise, whether
the serviceisinvoked in transaction mode or not depends on options specified for the
servicein the configuration file. A servicethat is not invoked in transaction mode can
define multipl e transactions between the time it isinvoked and the time it ends. On the

BEA TUXEDO Reference Manual 5

intro(3¢)

TX Transactions

6

Chained and
Unchained
Transactions

other hand, a service routine invoked in transaction mode can participate in only one
transaction, and work on that transaction is completed upon termination of the service
routine. Note that a connection cannot be upgraded to transaction mode: if t pbegi n is
called while a conversation exists, the conversation remains outside of the transaction
(that is, asif t pconnect had been called with the TPNOTRAN flag).

A service routinejoining atransaction that was started by another processiscalled a
participant. A transaction can have several participants. A service can beinvokedto do
work on the same transaction more than once. Only the initiator of atransaction (that
is, aprocess either calling t pbegi n or t presune) can call t pconmi t or t pabort .
Parti cipantsinfluence the outcome of atransaction by usingt pr et ur n or t pf or war d.
These two calls signify the end of a service routine and indicate that the routine has
finished its part of the transaction.

Transactions defined by the TX Interface are practically identical with those defined
by the ATMI verbs. An application writer may use either set of verbs when writing
clients and service routines. In fact, the BEA TUXEDO system does not require all
client and server processes within a single application to use one set of verbs or the
other. However, the two verb sets may not be used together within a single process
(that is, aprocess cannot call t pbegi n and later call t x_commi t).

TheTX Interface hastwo callsfor opening and closing resource managersin aportable
manner, t x_open and t x_cl ose, respectively. Transactions are started with

t x_begi n and completed with either t x_conmmi t or t x_r ol | back. t x_i nf o isused
to retrieve transaction information, and there are three calls to set options for
transactions: t x_set _conmi t _return, tx_set transaction_control, and
tx_set_transaction_timeout. The TX Interface has no equivalentsto ATMI’s

t psuspend and t pr esumne.

In addition to the semanticsand rules defined for ATMI transactions, the TX Interface
has some additional semantics that are worth introducing here. First, service routine
writerswanting to usethe TX Interface must supply their ownt psvri ni t routinethat
calst x_open. Thedefault BEA TUXEDO system-suppliedt psvri ni t callst popen.
The samerule appliesfor t psvr done: if the TX Interface is being used, then service
routine writers must supply their own tpsvrdone that callst x_cl ose.

Second, the TX Interface has two additional semantics not found in ATMI. These are
chained and unchained transactions, and transaction characteristics.

The TX Interface supports chained and unchained modes of transaction execution. By
default, clients and service routines execute in the unchained mode; when an active
transaction is completed, a new transaction does not begin until t x_begi n iscalled.

BEA TUXEDO Reference Manual

intro(3c¢)

Transaction
Characteristics

Error Handling

In the chained mode, a new transaction starts implicitly when the current transaction
completes. That is, whent x_conmi t ortx_rol | back iscalled, the BEA TUXEDO
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control . Transtions between the chained and unchained
mode affect the behavior of thenextt x_commi t ortx_rol | back call. The call to
tx_set_transaction_control doesnot put the caller into or take it out of
transaction mode.

Sincet x_cl ose cannot be called when the caller isin transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the current
transaction before calling t x_cl ose.

A client or aservice routine may call t x_i nf o to obtain the current values of their
transaction characteristics and to determine whether they are executing in transaction
mode.

The state of an application process includes several transaction characteristics. The
caller specifiestheseby callingt x_set _* functions. When aclient or aserviceroutine
setsthevalue of acharacteristic, it remainsin effect until the caller specifiesadifferent
vaue. When the caller obtains the value of a characteristic viat x_i nf o, it does not
change the value.

Most of the ATMI functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. Thisis usually -1 or error, or O
for abad field identifier (BADFLDI D) or address. The error type is also made available
in the external integer t per rno. t per rno isnot cleared on successful cals, so it
should be tested only after an error has been indicated.

tperrordetail canbeusedasthefirst step of athreestep procedureto get additional
detail about an error in the most recent BEA TUXEDO system call on the current
thread. t per r or det ai | returns an integer which is then used as an argument to
tpstrerrordetail toretrieve apointer to astring that contains the error message.
The pointer can then be used as an argument to user | og or tof pri nt .

Thet pstrerror function is provided to produce a message on the standard error
output. It takes one argument, an integer (found in t per r no) and returns a pointer to
the text of an error message in LI BTUX_CAT. The pointer can be used as an argument
touser| og.

BEA TUXEDO Reference Manual 7

intro(3¢)

8

Timeouts

The error codes that can be produced by an ATMI function are described on each
ATMI reference page. The F_error and F_er r or 32 functions are provided to
produce a message on the standard error output. They take one parameter, a string;
print the argument string appended with a colon and a blank; and then print an error
message followed by a newline character. The error message displayed is the one
defined for the error number currently in F_er ror or F_err or 32, which is set when
€errors occur.

Fstrerror,andits counterpart, Fst r er r or 32, can be used to retrieve the text of an
error message from a message catal og; it returns a pointer that can be used as an
argument to userlog.

Theerror codes that can be produced by an FML function are described on each FML
reference page.

There are three types of timeoutsin the BEA TUXEDO system: oneis associated with
the duration of atransaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller regains
control. Thethird is aservice timeout and occurs when a call exceeds the number of
seconds specified in the SVCTI MEQUT parameter in the SERVI CES section of the
configuration file.

Thefirst kind of timeout is specified when atransaction is started with t pbegi n (see
t pbegi n(3c) for details). The second kind of timeout can occur when using the BEA
TUXEDO system communication routines defined in t pcal | (3c). Callers of these
routinestypically block when awaiting areply that hasyet to arrive, although they can
also block trying to send data (for example, if request queues are full). The maximum
amount of time a caller remains blocked is determined by aBEA TUXEDO system
configuration file parameter (see the BLOCKTI ME parameter in ubbconf i g(5) for
details).

Blocking timeouts are performed by default when the call er isnot in transaction mode.
When aclient or server isin transaction mode, it is subject to the timeout value with
which the transaction was started and is not subject to the blocking timeout value
specified in the UBBCONFI Gfile.

When atransaction timeout occurs, replies to asynchronous requests made in
transaction mode become ‘‘stale.” That is, if a process is waiting for a particular
asynchronous reply for arequest sent in transaction mode and a transaction timeout
occurs, the descriptor for that reply becomes stale (invalid). Similarly, if atransaction
timeout occurs, an event is generated on the connection descriptor associated with the

BEA TUXEDO Reference Manual

intro(3c¢)

transaction and that descriptor becomesinvalid. On the other hand, if a blocking
timeout occurs, the descriptor is still valid and the waiting process can re-issue the call
to await thereply.

The service timeout mechanism provides away for the system to kill processes that
may be frozen by some unknown or unexpected system error. When a service timeout
occurs in arequest/response service, the BEA TUXEDO system kills the server
process that is executing the frozen service and returns error code TPESVCERR. If a
servicetimeout occursin aconversational service, the TP_EVSVCERR event isreturned.

Beginning in Release 6.4, some additional detail is provided beyond the TPESVCERR
error code. If a service fails due to exceeding the timeout threshold, an event,
. SysSer vi ecTi neout , is posted.

Dynamic By default, aserver's services are advertised when it is booted and unadvertised when
Service itisshut down. If aserver needsto control at run time the set of servicesthat it offers,
Advertisements it cando so by callingt padverti se andt punadver ti se. Theseroutines affect only
the services offered by the calling server unlessthat server belongsto amultiple server,
single queue (M SSQ) set. Because all serversinan MSSQ set must offer the same set
of services, these routines also affect the advertisements of al servers sharing the
caller's MSSQ set.

Buffer Initially, aprocesshasno buffers. Before sending amessage, abuffer must be allocated
Management usingt pal | oc. The sender’sdata can then be placed in the buffer and sent. Thisbuffer
hasaspecific structure. The particular structureis denoted by the t ype argument to the
t pal I oc function. Since some structures can need further classification, asubtype can

also be given (for example, a particular type of C structure).

When receiving a message, a buffer is required into which application data can be
received. This buffer must be one originally gotten from t pal | oc. Note that a BEA
TUXEDO system server, in its mai n, allocates a buffer whose address is passed to a
request/response or conversational service upon invoking the service (see

t pser vi ce(3c) for details on how this buffer is treated).

Buffers used for receiving messages are treated slightly differently than those used for
sending: the size and address usually change upon receipt of a message, since the
system internally swaps the buffer passed into the receive call with internal buffersit
used to processthe buffer. A buffer may grow, or it may shrink whenitisreceived into.

It depends on the amount of data sent by the sender, and the internal data flow needed

to get it from sender to received. Many factors could affect the buffer size, including
compression, receiving amessage from adifferent machine type, and the action of the
buffer type’spost r ecv function (se@uf f er (3c)). The buffer sizes in /WS clients are
usually different from those in native clients.

BEA TUXEDO Reference Manual 9

intro(3¢)

10

Buffer Type
Switch

It isbest to think of the receive buffer asa placeholder, rather than the actual container
that will receive the message. The system sometimes uses the size of the buffer you
passasahint, so it does help if it is big enough to hold the expect reply.

On the sending side, buffer types that might be filled to less than their allocated
capacity (for example, FML or STRING buffers) send only the amount used. A 100K
FML 32 buffer with one integer field in it is sent as amuch smaller buffer, containing
only that integer.

This means that the receiver will receive a buffer smaller than what was originally

allocated by the sender, yet larger than the data that was sent. For example, if a

STRING buffer of 10K bytes is allocated, and the string “HELLO" is copied into it,
only the six bytes are sent, and the receiver will probably end up with a buffer that is
around 1K or 4K bytes. (It may be larger or smaller, depending on other factors.) The
BEA TUXEDO system guarantees only that a received message will contain all of the
data that was sent, not that it will also contain all of the free space.

The process receiving the reply is responsible for noting size changes in the buffer
(usingt pt ypes) and reallocating it if necessary. All of the BEA TUXEDO system
routines that change a receiver’s buffer return information about the amount of data i
the buffer, so it should become standard practice to check the buffer size every time
reply is received.

One can send and receive messages using the same data buffer. Alternatively, a
different data buffer can be allocated for each message. It is usually the caller's
responsibility to free its buffers withpf r ee. However, in limited cases, the BEA
TUXEDO system frees the caller's buffer. Further details about buffer usage are
explained in the descriptions of the communication routines.

Thet nt ype_sw_t structure provides a description necessary when adding new buffer
types to a process' buffer type switchy t ypesw. The switch elements are defined in

t ypesw(5). The function names used in this entry are templates for the actual functior
names defined by the BEA TUXEDO system or by applications adding their own
buffer types. These names map to the switch elements very simply: the template nam
are made by taking each function pointer's element name and prependitigr
example, the elemenhi t buf has the function name ni ni t buf).

The element; ype, must be non-NULL and at most 8 characters in length. If this
element is not unique in the switch, tremt ype must be non-NULL.

The elementubt ype, can be NULL, a string of at most 16 characters, or the wild card
character, “*”. The combination ofype andsubt ype must uniquely identify an
element in the switch.

BEA TUXEDO Reference Manual

intro(3c¢)

Unsolicited
Notification

A given type can have multiple subtypes. If all subtypes are to be treated the same for

a given type, then the wild card character, “*”, can be used. Note that the function,

t pt ypes, can be used to determine a buffer's type and subtype if subtypes need to be
distinguished. If some subset of the subtypes within a particular type are to be treated
individually, and the rest are to be treated identically, then those that are to be singled
out with specific subtype values should appear in the switch before the subtype
designated with the wild card. Thus, searching for types and subtypes in the switch is
done from top to bottom, and the wild card subtype entry accepts any "leftover" type
matches.

The elementf| t si ze is used when allocating or re-allocating a buffer. The
semantics of pal | oc andt preal | oc are such that the larger d@ffl t si ze and the
routines'si ze parameter is used to create or re-allocate a buffer. For some types of
structures, like a fixed sized C structure, the buffer size should equal the size of the
structure. Ifdf I t si ze is set to this value, then the caller may not need to specify the
buffer's length to routines in which a buffer is passédt si ze can be 0 or less;
however, ift pal | oc ort preal | oc is called and theisi ze parameter is also less than
or equal to 0, then the routine will fail. It is not recommended tdfsetsi ze to a

value less than 0.

There are four basic buffer types that come with the BEA TUXEDO sysSi&RRAY
(character array possibly containing NULL characters which is neither encoded nor
decoded during transmissioigTRI NG (NULL-terminated character arraygyL (and
FML32: Fielded Buffers), andl Ew(and VIEW32: simple C structures). Note that all
views are handled by the same set of routines and that the name of a particular view is
its subtype name.

Two of these buffer types have synonymsoCTET is a synonym foCARRAY, and
bothX_C_TYPE andX_COWMON are synonyms fovl EW X_C_TYPE supports all the
same elements &sEWwwherea_COVMON supports only longs, shorts, and characters.
X_COvMON should be used when both C and COBOL programs are communicating.

An application wishing to supply its own buffer type can do so by adding an instance
to thet m t ypeswarray. Whenever a new buffer type is added or one is deleted, care
should be taken to leave a NULL entry at the end of the array. Note that a buffer type
with a NULL name is not permitted. An application client or server is linked with the
new buffer type switch by explicitly specifying the source or object file name on the
bui | dser ver (1) orbui I dcl i ent (1) command line using-& option argument.

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. The first is the broadcast
mechanism supported bybr oadcast . This function allows application clients,

BEA TUXEDO Reference Manual 11

intro(3¢)

servers, and administrators to broadcast typed buffer messages to a set of clients
selected on the basis of the names assigned to them. The names assigned to clients are
determined in part by the application by the information passed in the TPINIT typed
buffer at t pi ni t time and in part by the system based on the processor at which the
client accesses the application.

The second method isthe notification of aparticular client asidentified from an earlier
or current service request. Each service reguest contains a unique client identifier that
identifies the originating client for the service request. t pcal | 'sand t pf or war d’s
from within a service routine do not change the originating client for that chain of
service reguests. Client identifiers can be saved and passed between application
servers. Theroutinet pnot i fy is used to notify clients identified in this manner.

Clanguage Thefollowing return code and flag definitions are used by the ATMI routines. For an
ATMIReturn application to work with different transaction monitors without change or
Codesand recompilation, each system must define its flags and return codes as stated here.
Other
Definitions
/*
* The follow ng definitions nmust be included in atm.h
*/
/* Flags to service routines */
#def i ne TPNOBLOCK 0x00000001 /* non-bl ocking send/rcv */
#def i ne TPSI GRSTRT 0x00000002 /* restart rcv on interrupt */
#defi ne TPNOREPLY 0x00000004 /* no reply expected */
#def i ne TPNOTRAN 0x00000008 /* not sent in transaction node */
#defi ne TPTRAN 0x00000010 /* sent in transacti on node */
#def i ne TPNOTI ME 0x00000020 /* no timeout */
#defi ne TPABSOLUTE 0x00000040 /* absol ute val ue on tnsetprio */
#def i ne TPGETANY 0x00000080 /* get any valid reply */
#def i ne TPNOCHANGE 0x00000100 /* force incomng buffer to match */
#def i ne RESERVED BI T1 0x00000200 /* reserved for future use */
#def i ne#defi ne TPCONV 0x00000400 /* conversational service */
#def i ne TPSENDONLY 0x00000800 /* send-only node */
#def i ne TPRECVONLY 0x00001000 /* recv-only node */
#def i ne TPACK 0x00002000 /* */
/* Flags to tpreturn - also defined in xa.h */
#define TPFAI L 0x20000000 /* service FAILURE for tpreturn */
#define TPEXIT 0x08000000 /* service FAILURE with server exit
#def i ne TPSUCCESS 0x04000000 /* service SUCCESS for tpreturn */

12

BEA TUXEDO Reference Manual

intro(3c¢)

/* Flags to tpscnt - Valid TP_COVM T_CONTRCL
* characteristic val ues

*/
#defi ne TP_CMI_LOGGED 0x01 /* return after commt
* decision is | ogged */
#defi ne TP_CMI_COWPLETE 0x02 /* return after commt has

* conpleted */

[* client identifier structure */

struct clientid_t {

long clientdata[4]; /* reserved for internal
* use */

}

typedef struct clientid_t CLIENTID,

/* interface to service routines */
struct tpsvcinfo {

name[32] ;

I ong fl ags; /* describes service attributes */
char *data; /* pointer to data */

long len; /* request data |length */

int cd; /* connection descriptor

*if (flags TPCONV) true */

| ong appkey; /* application authentication client
* key */

CLIENTID cltid; /* client identifier for originating
* client */

b

typedef struct tpsvci nfo TPSVC NFO

/* tpinit(3c) interface structure */

#defi ne MAXTI DENT 30
struct tpinfo_t {

char usr name[MAXTI DENT+2] ; /* client user name */
char cl t name[MAXTI DENT+2] ; /* app client name */
char passwd[MAXTI DENT+2] ; /* application password */
I ong fl ags; /* initialization flags */

| ong dat al en; /* length of app specific

* data */

| ong dat a; /* placehol der for app

* data */
h

typedef struct tpinfo_t TPINT;

BEA TUXEDO Reference Manual 13

intro(3¢)

/* The transaction id structure passed to tpsuspend(3c) and tpresune(3c)

struct tp_tranid_t {

/*

*/

Internally defined */

0x00000007 /* unsolicited notification
* mask */
0x00000001 /* signal based

*

0x00000002

*

0x00000004

*

0x00000008

*

0x00000010

*

long info[6];

b
typedef struct tp_tranid_t TPTRAN D
/* Flags for TPINIT */

#def i ne TPU_MASK

#define TPU SI G

#define TPU D P

#define TPU_ I GN

#defi ne TPSA_FASTPATH

#defi ne TPSA_PROTECTED
/* [Qtpgctl _t data structure

#def i ne TMONAVELEN
#def i ne TMVSA DLEN
#def i ne TMCORRI DLEN

struct tpqctl _t {

| ong
| ong

flags;
deq_ti ne;

| ong
| ong
| ong

priority;
di agnosti c;
appkey;

| ong ur code;
CLIENTID cltid;

char mnsgi d[TMVBG DLEN] ;
char corrid[TMCORRI DLEN] ;
char repl yqueue][TMONAMVELEN+1] ;

char fail urequeue[TMONAMELEN+1] ;

h
typedef struct tpqctl_t TPQCTL;

14 BEA TUXEDO Reference Manual

/*

notification */

/* di p-in based
notification */

/* ignore unsolicited
messages */

/* System access
fastpath */

/* System access

protected */

*/

control parameters to queue */
primtives */

i ndi cat es which val ues are set
absolute/relative time for */
dequeui ng */

enqueue priority */

indi cates reason for failure */
application authentication */
client key */

application user-return code */
client identifier for */
originating client */

id of nmessage before which */
to queue */

correlation id used */

to identify nessage */

queue name for reply */

message */

queue name for failure */
message */

*/

intro(3c¢)

I*1Q
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

structure el enents that

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

/* error

extern

TPNOFLAGS
TPQCORRI D
TPQFAI LUREQ
TPQBEFOREMSG D
TPQGETBYMSG D
TPQVSG D
TPGPRI ORI TY
TPQTOP

TPQWAI T
TPQREPLYQ
TPQTI ME_ABS
TPQTI ME_REL
TPQGETBYCORRI D

return codes */
nt tperrno;

extern | ong tpurcode;

are valid -
0x00000
0x00001
0x00002
0x00004
0x00008
0x00010
0x00020
0x00040
0x00080
0x00100
0x00200
0x00400
0x00800

/* tperrno values - error codes */

* The man pages expl ain the context

* error

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

codes can return

TPM NVAL
TPEABORT
TPEBADDESC
TPEBLOCK
TPEI NVAL
TPELIM T
TPENOENT
TPECS
TPEPERM
TPEPROTO
TPESVCERR
TPESVCFAI L
TPESYSTEM
TPETI ME
TPETRAN
TPGOTSI G
TPERVERR
TPElI TYPE
TPEOTYPE
TPERELEASE
TPEHAZARD
TPEHEURI STI C
TPEEVENT
TPEVATCH
TPEDI AGNOSTI C

©CoOoO~NOOOOWNEO

set

in flags */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* m nimum error

no flags set

set/ get
set/ get

enqueue before nmessage id */

-- no get */
correlation id */

failure queue */

dequeue by nsgid */

get
set/ get

message priority */

enqueue at queue top */

wait for dequeuing */
set/ get
set absolute tine */
set relative tine */
dequeue by corrid */

reply queue */

in which the follow ng

nmessage */

BEA TUXEDO Reference Manual

nmsgi d of enq/ deq nessage */

15

intro(3¢)

#def i ne TPEM B 25
#def i ne TPMAXVAL 26 /* maxi mum error nessage */
/* conversations - events */
#def i ne TPEV_DI SCONI MM 0x0001
#def i ne TPEV_SVCERR 0x0002
#def i ne TPEV_SVCFAI L 0x0004
#def i ne TPEV_SVCSUCC 0x0008
#def i ne TPEV_SENDONLY 0x0020
/* [Q diagnosti c codes */
#def i ne QVElI NVAL -1
#def i ne QVEBADRM D -2
#def i ne QVENOTOPEN -3
#def i ne QVETRAN -4
#def i ne QVEBADVBG D -5
#def i ne QVESYSTEM -6
#def i ne QVEOCS -7
#def i ne QVENOTA -8
#def i ne QVEPROTO -9
#def i ne QVEBADQUEUE -10
#def i ne QVENOVSG -11
#def i ne QVEI NUSE -12
#def i ne QVENCSPACE -13
/* Event Broker Messages */
#def i ne TPEVSERVI CE 0x00000001
#def i ne TPEVQUEUE 0x00000002
#def i ne TPEVTRAN 0x00000004
#def i ne TPEVPERSI ST 0x00000008

/* Subscription Control Structure */
struct tpevctl _t {
long fl ags;
char namel[XATM _SERVI CE_NAME_LENGTH] ;
char name2[XATM _SERVI CE_NAME_LENGTH] ;

TPQCTL qctl;
h
typedef struct tpevctl_t TPEVCTL;

Clanguage TX Thefollowing return code and flag definitions are used by the TX routines. For an
Return Codes application to work with different transaction monitors without change or
and Other recompilation, each system must define its flags and return codes as stated here.
Definitions

#def i ne TX H VERSI ON 0 /* current version of this
* header file */

16 BEA TUXEDO Reference Manual

intro(3c¢)

/*

* Transaction identifier

*/

#def i ne Xl DDATASI ZE 128 /* size in bytes */

struct xid_ t {
| ong fornmatl D /* format identifier */
Il ong gtrid_ | ength; /* value not to exceed 64 */
| ong bqual _| engt h; /* value not to exceed 64 */
char dat a[XI DDATASI ZE] ;

b

typedef struct xid_t XD

/*

* Avalue of -1 in formatID neans that the XID is null.

*/

/*

* Definitions for tx_ routines

*/

/* commt return val ues */

typedef | ong COMWM T_RETURN,

#defi ne TX COW T_COVPLETED 0
#define TX COW T_DECI SI ON_LOGGED 1

/* transaction control val ues */
typedef | ong TRANSACTI ON_CONTRCO.;
#defi ne TX _UNCHAI NED 0O
#define TX CHAI NED 1

/* type of transaction tineouts */
typedef | ong TRANSACTI ON_TI MEQUT;

/* transaction state val ues */
typedef | ong TRANSACTI ON_STATE;
#define TX ACTIVE O
#define TX TI MEOUT_ROLLBACK ONLY 1
#defi ne TX ROLLBACK ONLY 2

/* structure popul ated by tx_info */

struct tx_info_t {
Xl D xi d;
COW T_RETURN when_return;
TRANSACTI ON_CONTROL transaction_control;
TRANSACTI ON_TI MEQUT transaction_ti neout;
TRANSACTI ON_STATE transaction_state;

I

typedef struct tx_info_t TXI NFQ

/*
* tx_ return codes

BEA TUXEDO Reference Manual 17

intro(3¢)

* (transacti on nmanager reports to application)

*/
#def i ne TX_NOT_SUPPORTED 1 /* option not supported */
#define TX OK 0 /* normal execution */
#def i ne TX OUTSI DE -1 /* application is in an RM
* |ocal transaction */
#def i ne TX ROLLBACK -2 /* transaction was rolled
* back */
#define TX M XED -3 /* transaction was
* partially committed and
* partially rolled back */
#def i ne TX HAZARD -4 |/* transaction may have been
* partially commtted and
* partially rolled back */
#def i ne TX PROTOCOL_ERROR -5 /* routine invoked in an
* i nproper context */
#def i ne TX ERROR -6 /* transient error */
#define TX FAIL -7 /* fatal error */
#def i ne TX_EI NVAL -8 /* invalid argunments were
* given */
#def i ne TX _COWM TTED -9 /* transaction has
* heuristically commtted */
#defi ne TX NO BEG N -100 /* transaction commtted plus

* new transaction coul d not
* be started */
#defi ne TX ROLLBACK NO BEG N (TX_ROLLBACK+TX _NO BEG N)
/* transaction rollback plus
* new transaction coul d not
* be started */
#define TX M XED NO BEG N (TX_M XED+TX_NO BEG N)
/* m xed plus new transaction
* could not be started */
#defi ne TX HAZARD NO BEG N (TX_HAZARD+TX _NO BEG N
/* hazard plus new transaction
* could not be started */
#define TX COW TTED NO BEG N (TX_COW TTED+TX_NO BEG N)
/* heuristically commtted plus
* new transaction coul d not
* be started */

ATMI State The BEA TUXEDO system keepstrack of the state for each process and verifies that

Transitions legal state transitions occur for the various function calls and options. The state
information includes the process type (request/response server, conversationa server,
or client), theinitialization state (uninitialized or initialized), the resource management
state (closed or open), the transaction state of the process, and the state of all

18 BEA TUXEDO Reference Manual

intro(3c¢)

asynchronous request and connection descriptors. When an illega state transition is
attempted, the called functionfails, settingt per r no to TPEPROTO. Thelegal statesand
transitions for thisinformation are described in the following tables.

The table below indicates which functions request/response servers, conversational

servers, and clientsare allowed to call. Notethat t psvrinit andt psvrdone are not

in thistable since these functions are not called by applications (that is, they are
application-supplied functions that are invoked by the BEA TUXEDO system).

Function Call Permissions

Function Process Type
Request/response Conversational Client
Server Server Server
t pabort Y Y Y
t pacal | Y Y Y
t padverti se Y Y N
tpal l oc Y Y Y
t pbegin Y Y Y
t pbr oadcast Y Y Y
t pcal | Y Y Y
t pcancel Y Y Y
t pchkaut h Y Y Y
t pchkunsol N N Y
t pcl ose Y Y Y
t pconmi t Y Y Y
t pconnect Y Y Y
t pdequeue Y Y Y
t pdi scon Y Y Y
t penqueue Y Y Y
t pf orwar d Y N N
tpfree Y Y Y
t pgetl ev Y Y Y

BEA TUXEDO Reference Manual

19

intro(3¢)

20

Function Call Permissions

Function Process Type
Request/response Conversational Client
Server Server Server
tpgetrply Y Y Y
tpgprio Y Y Y
tpinit N N Y
tpnotify Y Y Y
t popen Y Y Y
t ppost Y Y Y
tprealloc Y Y Y
tprecv Y Y Y
tpresune Y Y Y
tpreturn Y Y N
tpscnt Y Y Y
t psend Y Y Y
tpservice Y Y N
t pset unsol N N Y
tpsprio Y Y Y
t psubscri be Y Y Y
t psuspend Y Y Y
tpterm N N Y
t pt ypes Y Y Y
tpunadvertise Y Y N
tpunsubscribe Y Y Y

Theremaining state tables are for both clients and servers, unless otherwise noted.
Keep in mind that because some functions can not be called by both clientsand servers
(for example, t pi ni t), certain state transitions shown below may not be possible for
both process types. The above table should be consulted to determine whether the
process in question is allowed to call a particular function.

BEA TUXEDO Reference Manual

intro(3c¢)

Thefollowing state table indicates whether or not a client process has been initialized
and registered with the transaction manager. Note that this table assumes the use of

t pi ni t, whichisoptional. That is, a client may implicitly join an application by
issuing one of many ATMI verbs (for example, t pconnect ort pcal I). A client must
uset pi ni t when either application authenticationisrequired (seet pi ni t (3c) andthe
description of the SECURITY keyword in ubbconf i g(5)) or the client wishes to
directly access an X A-compliant resource manager (seet pi ni t (3c)).

A server is placed in theinitialized state by the BEA TUXEDO system’s nai n before
itst psvri ni t functionisinvoked, and it is placed in the uninitialized state by the
BEA TUXEDO system'smai n after itst psvr done function hasreturned. Notethat in
all of the state tables shown below, an error return from afunction causes the process
to remain in the same state, unless otherwise noted.

Initialization Sates

Function States
Uninitialized Initialized
lo 1

tpal |l oc lo Iq
t pchkaut h lo I
tpfree lo I
tpinit I I
tpreal |l oc lo I
t pset unsol lo I
tpterm lo lo
t ptypes () 1
all others (seethe I1 I1
following note)

Note: all others” refers to the remaining ATMI calls

The remaining state tables assume a precondition of state | (regardless of whether a

process arrived in this state Vipi ni t or the BEA TUXEDO systemisai n).

The following table indicates the state of a client or server with respect to whether or

not a resource manager associated with the process has been initialized.

BEA TUXEDO Reference Manual 21

intro(3¢)

Resour ce M anagement States

Function States
Closed Open
Ro R4
t popen Ry Ry
tpcl ose Ro Ro
t pbegi n R1
t pconmi t Ry
t pabort Ry
t psuspend Ry
tpresunme Ry
tpservice with flag TPTRAN Ry
all others Ro Ry

Thefollowing state table indicates the state of aprocess with respect to whether or not
the process is associated with atransaction. For servers, transitionsto statesT and T
assume a precondition of state R (for example, t popen has been called with no
subsequent call tot pcl ose or t pt er m).

22 BEA TUXEDO Reference Manual

intro(3c¢)

Transaction Sate of Process

Function State
Not in transaction Initiator Participant
To T1 T2
t pbegin
t pabort To
t pcommi t To
t psuspend To
t presune T To
tpservicewithflag T,
TPTRAN
tpservice (not in To
transacti on node)
tpreturn To To
t pf orwar d To To
tpcl ose Ro
tpterm lo To
all others To T T

The following state table indicates the state of a single request descriptor returned by

tpacal | .

BEA TUXEDO Reference Manual

23

intro(3¢)

24

Asynchronous Request Descriptor States

Function States
No Descriptor | Valid Descriptor
Ao Ay

t pacal | Aq
tpgetrply Ag
t pcancel A"
t pabort Ag AOT
t pconmi t Ag AOT
tpsuspend | Ag Ali
tpreturn Ag Ag
tpforward | Ag Ag
tpterm lo lo
all others Ag Aq

Note: * This state change occurs only if the descriptor is not associated with the
caller’s transaction.

t This state change occurs only if the descriptor is associated with the caller"
transaction.

T If the descriptor is associated with the caller's transaction} tisers pend
returns a protocol error.

The following state table indicates the state of a connection descriptor returned by
t pconnect or provided by a service invocation in thesvCl NFO structure. For
primitives that do not take a connection descriptor, the state changes apply to all
connection descriptors, unless otherwise noted.

BEA TUXEDO Reference Manual

intro(3c¢)

The states are as follows:

4 Cg- No descriptor

4 C,-tpconnect descriptor send-only

4 C,-tpconnect descriptor receive-only

4 C3- TPSVCI NFOdescriptor send-only

4 C, - TPSVCI NFOdescriptor receive-only

Connection Request Descriptor Sates

Function/Event

Cob, C C, C3 C4

t pconnect with TPSENDONLY

t pconnect with TPRECVONLY

tpservice with flag TPSENDONLY Cj¥

tpservice with flag TPRECVONLY C,t

tprecv/no event G, Cy
t precv/ TPEV_SENDONLY C, Cs
t precv/ TPEV_DI SCONI M Co Co
t precv/ TPEV_SVCERR Co

t precv/ TPEV_SVCFAI L Co

t precv/ TPEV_SVCSUCC Co

t psend/ no event C1 Cs
tpsend with flag TPRECVONLY C, Cy

t psend/ TPEV_DI SCONI M Co Co

t psend/ TPEV_SVCERR Co

t psend/ TPEV_SVCFAI L Co

BEA TUXEDO Reference Manual

25

intro(3¢)

Connection Request Descriptor States

Function/Event States
Co Cq C, C3 C4

tpterm (client only) Co Co
tpcommt (originator only) Co Cof Gt
tpsuspend (originator only) Co C, Tt Gttt
tpabort (originator only) Co Cof Gt
t pdi scon Co Co
tpreturn (CONV server) Co Co Co GCo
tpforward (CONV server) Co Co Co GCo
all others e C C, C; C4

Note: * If processisin transaction mode and TPNOTRAN not specified, the
connection is in transaction mode.

T If theTPTRAN flag is set, the connection is in transaction mode.
T If the connection is not in transaction mode, no state change.

t1 If the connection is in transaction mode, thesuspend returns a protocol
error.

TXState The BEA TUXEDO system ensures that a process calls the TX verbs in a legal
Transitions sequence. When an illegal state transition is attempted (that is, a call from a state wi
a blank transition entry), the called function returns TX_PROTOCOL_ERROR. The
legal states and transitions for the TX primitives are shown in the table below. Calls
that return failure do not make state transitions, except where described by specific
state table entries. Any BEA TUXEDO system client or server is allowed to use the
TX verbs.

26 BEA TUXEDO Reference Manual

intro(3c¢)

The states are defined below:

4 S;: No RMs have been opened or initialized. A process cannot start a global
transaction until it has successfully called tx_open.

4 S, A process has opened its RM but is not in a transaction. Its
transaction_control characteristicis TX_UNCHAINED.

4 S3: A process has opened its RM but is not in a transaction. Its
transaction_control characteristicis TX_CHAINED.

4 S4: A process has opened its RM and isin atransaction. Its
transaction_control characteristicis TX_UNCHAINED.

4 S5: A process has opened its RM and isin atransaction. Its
transaction_control characteristicis TX_CHAINED.

Function States

S S S S S
tx_begin S S
tx_cl ose S S S
tx_commit -> TX SET1 ST &
tx_commt -> TX SET2 S,
tx_info S S S &
tx_open S S S S 9
tx_rol I back -> TX SET1 ST &
tx_roll back -> TX SET2 S,
tx_set_conmit_return S S S 0§
tx_set _transaction_control S S & &
control = TX CHAI NED
tx_set _transaction_control SS 5 S S
control = TX UNCHAI NED
tx_set_transaction_ti meout S S S &

BEA TUXEDO Reference Manual 27

intro(3¢)

28

See Also

Note: TX_SET1 denotes any of TX_OK, TX_ROLLBACK, TX_MIXED,

TX_HAZARD, or TX_COMMITTED (TX_ROLLBACK isnot returned by
tx_rol | back and TX_COMMITTED is not returned by t x_comni t).

TX_SET2 denotesany of TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or
TX_COMMITTED_NO_BEGIN (TX_ROLLBACK_NO_BEGIN isnot
returned by t x_r ol | back and TX_COMMITTED_NO_BEGIN is not
returned by t x_commi t).

If TX_FAIL isreturned on any call, the application processis in an undefined
state with respect to the above table.

Whent x_i nf o returns either TX_ROLLBACK_ONLY or
TX_TIMEOUT_ROLLBACK_ONLY inthe transaction state information,
the transaction is marked rollback-only and will be rolled back whether the
application program callst x_conmi t ortx_rol | back.

buf f er (3¢), t pser vi ce(3c), t padvertise(3c),t pal | oc(3c), t pbegi n(3c),
t pcal I (3c), t pconnect (3c), t pi ni t (3¢), t popen(3c), t uxt ypes(5), t ypesw(5)

BEA TUXEDO Reference Manual

AEMsetblockinghook(3)

AEMsetblockinghook(3)

Name

Synopsis

Description

Return Values

Errors

Portability

AEMset bl ocki nghook (3)- establish an application-specific blocking hook function

#i ncl ude <atni.h>
i nt AEMset bl ocki nghook(_TM FARPRCC)

AEMset bl ocki nghook() is an “ATMI Extension for Mac” that allows a Mac task to
install a new function which the ATMI networking software uses to implement
blocking ATMI calls. It taks a pointer to the procedure instance address of the blocking
function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
functionAEMset bl ocki nghook() gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
execut e operation in non-blocking node
if error
br eak;
if operation conplete
br eak;
whi | e(Bl ocki ngHook())

}

AEMset bl ocki nghook() returns a pointer to the procedure-instance of the previously
installed blocking function. The application or library that calls the

AEMset bl ocki nghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned bgEMset bl ocki nghook() and eventually use

AEMset bl ocki nghook (NULL) to restore the default mechanism.)

AEMset bl ocki nghook() returns NULL on error and setger r no to indicate the error
condition.

Under the following conditiorAEMset bl ocki nghook() fails and setsper r no to:

[TPEPROTC)
AEMset bl ocki nghook() was called while a blocking operation is in
progress.

This interface is supported only in Mac clients.

BEA TUXEDO Reference Manual 29

AEMsetblockinghook(3)

Notices The blocking function is reset after t pt er n(3) iscalled by the application.

30 BEA TUXEDO Reference Manual

AEOaddtypesw(3)

AEQaddtypesw(3)

Name

Synopsis

Description

Return Values

Errors

Portability

Notices

AECaddt ypesw(3)-install or replace a user defined buffer type at execution time

#i ncl ude <atni.h>
#i ncl ude <tntypes. h>

int FAR PASCAL AEQCaddt ypesw(TMTYPESW *newt ype)

AEOaddtypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to
install a new, or replace an existing user defined buffer type at execution time. The
argument to this function is a pointer t@®r YPESWstructure that contains the
information for the buffer type to be installed.

If the t ype and thesubt ype match an existing buffer type already installed, then all
the information is replaced with the new buffer type. If the information does not match
thet ype and thesubt ype fields, then the new buffer type is added to the existing types
registered with the BEA TUXEDO system. For new buffer types, make sure that the
WSH(1) and other BEA TUXEDO system processes involved in the call processing
have been built with the new buffer type.

The function pointers in theMrYPESWarray should appear in the Module Definition
file of the application in th&EXPORTS section.

The application can also use the BEA TUXEDO system’s defined buffer type routines.
The application and the BEA TUXEDO system'’s buffer routines can be intermixed in
one user defined buffer type.

AECaddt ypesw() returns the number of user buffer types in the system on success.
AECaddt ypesw() returns -1 on error and setser r no to indicate the error condition.

Under the following conditiorAECaddt ypesw() fails and setsper r no to:

[TPEI NVAL]
AECaddt ypesw() was called and thieype parameter was NULL.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

This interface is supported only in Windows clients. The preferred way to install a type
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to the
BEA TUXEDO Administrator's Guid®r more information.

FAR PASCAL isused only for the 16 bit OS/2 environment.

BEA TUXEDO Reference Manual 31

AEOaddtypesw(3)

Examples

#i ncl ude <os2. h>
#include <atm . h>
#i ncl ude <tmypes. h>

nt FAR PASCAL Nfinit(char FAR *, |ong);

nt (FAR PASCAL * | pFinit)(char FAR *, long);
nt FAR PASCAL Nfreinit(char FAR *, long);

nt (FAR PASCAL * | pFreinit)(char FAR *, long);
nt FAR PASCAL Nfuninit(char FAR *, long);

i
i
i
i
i
int (FAR PASCAL * | pFuninit)(char FAR *, long);

TMIYPESW newtype =

{

“MYFML", 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
_froute

I3

newtype.initbuf = Nfinit;
newtype.reinitbuf = Nfreinit;
newtype.uninitbuf = Nfuninit;

if(AEOaddtypesw(newtype) == -1) {
userlog(“AEOaddtypesw failed %s", tpstrerror(tperrno));
}

int
FAR PASCAL
Nfinit(char FAR *ptr, long len)

return(l);

int
FAR PASCAL
Nfreinit(char FAR *ptr, long len)

return(l);
}
int
FAR PASCAL
Nfuninit(char FAR *ptr, long mdlen)

return(l);

32 BEA TUXEDO Reference Manual

AEOaddtypesw(3)

The application Module Definition File:

; EXAMPLE. DEF file
NAME EXAMPLE
DESCRI PTION ' EXAMPLE for OS/ 2’
EXETYPE oS/ 2
EXPORTS
Nfinit

Nfreinit
Nf uni ni t

See Also buf fer(3), bui | dwsh(1),typesw(5)

BEA TUXEDO Reference Manual

33

AEPisblocked(3)

AEPisblocked(3)
Name AEPi sbl ocked- determineif ablocking call isin progress
Synopsis #i ncl ude <atmi . h>
int far pascal AEPi sbl ocked(voi d)
Description AEPi sbl ocked() is an “ATMI Extension for OS/2 Presentation Manager” that allows

Return Values

Errors
Portability

Comments

See Also

a OS/2 PM task to determine if it is executing while waiting for a previous blocking
call to complete.

AEPi sbl ocked() returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.

No errors are returned.
This interface is supported only in OS/2 PM clients.

Although a blocking ATMI call appears to an application as though it “blocks,” the
OS/2 PM ATMI DLL has to relinquish the processor to allow other applications to run.
This means that it is possible for the application which issued the blocking call to be
re-entered, depending on the message(s) it receives. In this instance, the

AEPi sbl ocked() function can be used to ascertain whether the task has been
re-entered while waiting for an outstanding blocking call to complete. Note that ATMI
prohibits more than one outstanding call per thread.

AEPset bl ocki nghook()

34 BEA TUXEDO Reference Manual

AEPsetblockinghook(3)

AEPsetblockinghook(3)

Name

Synopsis

Description

AEPset bl ocki nghook-establish an application-specific blocking hook function

#i ncl ude <atni.h>
int _TM FARPROC far pascal AEPsetbl ocki nghook(_TM FARPROC)

AEPset bl ocki nghook() is an “ATMI Extension for OS/2 Presentation Manager” that
allows a OS/2 PM task to install a new function which the ATMI networking software
uses to implement blocking ATMI calls. It taks a pointer to the function address of the
blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
functionAEPset bl ocki nghook() gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
execut e operation in non-blocking node
if error
br eak;
if operation conplete
br eak;
whi | e(Bl ocki ngHook())

}

The default BlockingHook() function is equivalent to:

BOOL far pascal
wi n_def aul t (voi d)

{
QVBG qnsg;
HAB hab;
BOOL ret;
/* get the next nessage if any */
hab = W nQueryAnchor Bl ock(HAND DESKTOP) ;
if (ret = WnPeekMsg(hab, gnmsg, NULL, 0, 0, PM REMOVE)) {
/* if we got one, process it */
W nDi spat chMsg(hab, qmsg);
/* TRUE if we got a nessage */
return(ret);
}

BEA TUXEDO Reference Manual 35

AEPsetblockinghook(3)

Return Values

36

Errors

Portability
Notices

See Also

TheAEPset bl ocki nghook() function isprovided to support those applicationswhich
reguire more complex message processing - for example, those employing the MDI
(multiple document interface) model. It isnot intended as amechanism for performing
genera application functions. In particular, no ATMI functions may be issued from a
custom blocking hook function.

AEPset bl ocki nghook () returns a pointer to the function address of the previously

installed blocking function. The application or library that callsthe

AEPset bl ocki nghook () function should save this return value so that it can be

restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned b§EPset bl ocki nghook() and eventually use

AEPset bl ocki nghook (NULL) to restore the default mechanism.)

AEPset bl ocki nghook() returns NULL on error and setger r no to indicate the error
condition.

Under the following conditiomEPset bl ocki nghook() fails and setsperr no to:

[TPEPROTC)
AEPset bl ocki nghook() was called while a blocking operation is in
progress.

This interface is supported only in OS/2 PM clients.
The blocking function is reset aftept er m(3) is called by the application.

AEPi sbl ocked()

BEA TUXEDO Reference Manual

AEWaddtypesw(3)

AEWaddtypesw(3)

Name

Synopsis

Description

Return Values

Errors

Portability

AEWAddt ypesw-install or replace a user defined buffer type at execution time

#i ncl ude <atni.h>
#i ncl ude <tntypes. h>

int FAR PASCAL AEWAddt ypesw(TMTYPESW *newt ype)

AEVAddt ypesw() is an “ATMI Extension for Windows” that allows a Windows task to
install a new, or replace an existing user defined buffer type at execution time. The
argument to this function is a pointer t@®r YPESWstructure that contains the
information for the buffer type to be installed.

If the t ype and thesubt ype match an existing buffer type already installed, then all
the information is replaced with the new buffer type. If the information does not match
thet ype and thesubt ype fields, then the new buffer type is added to the existing types
registered with BEA TUXEDO system. For new buffer types, make sure that the
WSH(1) and other BEA TUXEDO system processes involved in the call processing
have been built with the new buffer type.

The function pointers in themMryPESWarray should be obtained by using the
MakeProclInstance() function, and these functions should appear in the Module
Definition file of the applications in thEXPORTS section.

The application can also use the BEA TUXEDO system'’s defined buffer type routines
like _dfl tinitbuf (), etc. The application and the BEA TUXEDO system’s buffer
routines can be intermixed in one user defined buffer type.

AEVAddt ypesw() returns the number of user buffer types in the system on success.
AEWAddt ypesw() returns -1 on error and setser r no to indicate the error condition.

Under the following conditiorAEwaddt ypesw() fails and setsper r no to:

[TPEI NVAL]
AEWAddt ypesw() was called and thieype parameter was NULL.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

This interface is supported only in Windows clients. The preferred way to install a type
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to the
BEA TUXEDO Administrators Guide for more information.

BEA TUXEDO Reference Manual 37

AEWaddtypesw(3)

Notices In the Windows 3.x 16 bit environment, the buffer type information is reset after
t pt er m(3) is called by the application. FAR PASCAL isused only for the 16 bit
Windows 3.x environment.

Examples

#i ncl ude <wi ndows. h>
#include <atm . h>
#i ncl ude <tntypes. h>

nt FAR PASCAL Nfinit(char FAR *, |ong);

nt (FAR PASCAL * | pFinit)(char FAR *, |ong);
nt FAR PASCAL Nfreinit(char FAR *, long);

nt (FAR PASCAL * | pFreinit)(char FAR *, long);
nt FAR PASCAL Nfuninit(char FAR *, long);

nt (FAR PASCAL * | pFuninit)(char FAR *, long);

TMIYPESW newtype =

{

" MYFM", " 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
_froute

}s

| pFinit = MakeProclnstance(Nfinit, hlnst);
| pFreinit = MakeProclnstance(Nfreinit, hlnst);
| pFuni nit = MakeProcl nstance(Nfuninit, hlnst);

newt ype.initbuf = IpFinit;
newt ype.reinitbuf = |pFreinit;
newt ype. uni ni tbuf = | pFuninit;
i f (AEVAddt ypesw(newt ype) == -1) {
user | og(" AEWAddt ypesw failed %", tpstrerror(tperrno));
}
i nt
FAR PASCAL
Nfinit(char FAR *ptr, |ong |en)
{
return(1);
}
i nt
FAR PASCAL
Nfreinit(char FAR *ptr, long | en)
{

38 BEA TUXEDO Reference Manual

AEWaddtypesw(3)

return(l);

}

int
FAR PASCAL
Nf uni nit(char FAR *ptr, |ong ndl en)

return(l);

The application Module Definition File:
; EXAMPLE. DEF file
NAVE EXAVPLE
DESCRI PTI ON ' EXAMPLE for M crosoft W ndows’
EXETYPE W NDOWS
EXPORTS
Nfinit

Nfreinit
Nf uni ni t

See Also buffer(3), bui | dwsh(l1), typesw(5)

BEA TUXEDO Reference Manual 39

AEWisblocked(3)

AEWisblocked(3)

Name AEW sbl ocked-determineif ablocking cal isin progress

Synopsis #i ncl ude <atmi . h>
int far pascal AEW sbl ocked(voi d)

Description ~ AEW sbl ocked() is an “ATMI Extension for Windows” that allows a Windows task to
determine if it is executing while waiting for a previous blocking call to complete.

Return Values ~ AEW sbl ocked() returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.

Errors No errors are returned.
Portability = This interface is supported only in DOS Windows clients.

Comments Although a blocking ATMI call appears to an application as though it “blocks,” the
Windows ATMI DLL has to relinquish the processor to allow other applications to run.
This means that it is possible for the application which issued the blocking call to be
re-entered, depending on the message(s) it receives. In this instance, the
AEWisblocked() function can be used to ascertain whether the task has been re-enter
while waiting for an outstanding blocking call to complete. Note that ATMI prohibits
more than one outstanding call per thread.

See Also AEWet bl ocki nghook()

40 BEA TUXEDO Reference Manual

AEWsetblockinghook(3)

AEWsetblockinghook(3)

Name

Synopsis

Description

AEWet bl ocki nghook- establish an application-specific blocking hook function

#i ncl ude <atni.h>
int FARPROC far pascal AEWet bl ocki nghook(FARPRQOC)

AEWet bl ocki nghook() is an “ATMI Extension for Windows” that allows a

Windows task to install a new function which the ATMI networking software uses to
implement blocking ATMI calls. It takes a pointer to the procedure instance address of
the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
functionAEWset bl ocki nghook() gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
execut e operation in non-blocking node
if error
br eak;
if operation conplete
br eak;
whi | e(Bl ocki ngHook())

}

The default BlockingHook() function is equivalent to:

BOOL far pascal
wi n_def aul t (voi d)

{
MSG nmsg;
BOOL ret;
/* get the next nessage if any */
if (ret = PeekMessage(nsg, NULL, O, 0, PM REMOVE)) {
/* if we got one, process it */
Transl at eMessage(nsg) ;
Di spat chMessage(nsg) ;
/* TRUE if we got a nessage */
return(ret);
}

BEA TUXEDO Reference Manual 41

AEWsetblockinghook(3)

Return Values

42

Errors

Portability
Notices

See Also

TheAEWset bl ocki nghook() function isprovided to support those applicationswhich
reguire more complex message processing-for example, those employing the MDI
(multiple document interface) model. It isnot intended as amechanism for performing
genera application functions. In particular, no ATMI functions may be issued from a
custom blocking hook function. Note that the blocking hook function should return O
to terminate the loop and non-zero to continue looping.

AEWet bl ocki nghook () returns a pointer to the procedure-instance of the previously
installed blocking function. The application or library that callsthe

AEWet bl ocki nghook () function should save this return value so that it can be

restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned b§EWset bl ocki nghook() and eventually use

AEWet bl ocki nghook (NULL) to restore the default mechanism.)

AEWet bl ocki nghook() returns NULL on error and setger r no to indicate the error
condition.

Under the following conditiordEVg et bl ocki nghook() fails and setsperr no to:

[TPEPROTC)
AEWet bl ocki nghook() was called while a blocking operation is in
progress.

This interface is supported only in DOS Windows clients.
The blocking function is reset aftept er m(3) is called by the application.

AEW sbl ocked()

BEA TUXEDO Reference Manual

AEWsetunsol(3)

AEWsetunsol(3)

Name

Synopsis

Description

Return Values

Errors

Portability

Notices

See Also

AEWet unsol - post Windows message for TUXEDO unsolicited event

#i ncl ude <wi ndows. h>
#i ncl ude <atm . h>
int far pascal AEWetunsol (HAND hwWwhd, WORD wivsQ)

In certain Microsoft Windows programming environmentsit is natural and convenient
for the BEA TUXEDO system’s unsolicited messages to be posted to the Windows
event message queue.

AEWet unsol () controls which window to notifyhWid, and which Windows message
type to postusg. When a TUXEDO unsolicited message arrives, a Windows
message is posteldPar amis set to the BEA TUXEDO system buffer pointer, or zero
if none. Ifl Par amis non-zero, the application must agllf r ee(3) to release the
buffer.

If wMsg is zero, any future unsolicted messages will be logged and ignored.
AEWet unsol () returns \-1 on failure and setser r no to indicate the error condition.

Under the following conditions#\EWet unsol () fails and setsper r no to:

[TPESYSTEM
A BEA TUXEDO system error has occurred The exact nature of the error is
written to a log file.

[TPECS]
An operating system error has occurred.

This interface is supported only in Microsoft Windows clients.

AEWet unsol () posting of Windows messages may not be activated simultaneously
with at pset unsol () callback routine. The most recemtset unsol () or
AEWet unsol () request controls how unsolicited messages will be handled.

t pset unsol (3)

BEA TUXEDO Reference Manual 43

buffer(3¢)

buffer(3¢)

int

Name buf f er (3c) -semantics of elementsint m ype_sw t

Synopsis

/* Initialize a new data buffer */

_tmnitbuf(char *ptr, long | en)

int

/* Re-initialize a re-allocated data buffer */

_tnreinitbuf(char *ptr, long |en)

int

/* Un-initialize a data buffer to be freed */

_tmunini tbuf(char *ptr, long |en)

| ong

/* Process buffer before sending */

_tnpresend(char *ptr, long dlen, |ong ndl en)

voi d

/* Process buffer after sending */

_tnpostsend(char *ptr, long dlen, |ong nmdlen)

| ong

/* Process buffer after receiving */

tnpostrecv(char *ptr, long dlen, |ong ndlen)

I_ong /* Encode/decode a buffer to/froma transm ssion format */
_tmencdec(int op, char *encobj, |long elen, char *obj, |ong olen)
i nt /* Determne server group for routing based on data */ _tnroute(char

*routing_nanme, char *service, char *data, long \ len, char *group)

int

/* Evaluate boolean expression on buffer’s data */ _tmfilter(char *ptr,

long dlen, char *expr, long exprlen)

int

[* Extract buffer’s data based on format string */ _tmformat(char *ptr,

long dlen, char *fmt, char *result, long \ maxresult)

44

Description This page describes the semantics of the elements and routines defined in the

tmtype_sw_t structure. These descriptions are necessary for adding new buffer types
to aprocess buffer type switch, tm_typesw . The switch elements are defined in
typesw(5) . Thefunction namesused in thisentry are templatesfor the actual function
names defined by the BEA TUXEDO system as well as by applications adding their
own buffer types. The names map to the switch elements very simply: the template
names are made by taking each function pointer's element name and prepending _tm
(for example, the element initbuf ~ has the function name _tminitbuf).

The element type must be non-NULL and up to 8 charactersin length. The element
subtype can be NULL, a string of up to 16 characters, or the wild card character, “*”.
If t ype is not unique in the switch, themabt ype must be used; the combination of

t ype andsubt ype must uniquely identify an element in the switch.

A given type can have multiple sub-types. If all sub-types are to be treated the same
for a given type, then the wild card character, “*", can be used. Note that the functior
t pt ypes can be used to determine a buffer's type and sub-type if sub-types need to t
distinguished. If some subset of the sub-types within a particular type are to be treate
individually, and the rest are to be treated identically, then those which are to be

BEA TUXEDO Reference Manual

buffer(3c)

Routine
Specifics

_tminitbuf

_tmreinitbuf

singled out with specific sub-type values should appear in the switch before the
sub-type designated with thewild card. Thus, searching for types and sub-typesin the
switch is done from top to bottom, and the wild card sub-type entry accepts any
“leftover” type matches.

df I t si ze is used when allocating or re-allocating a buffer. The largef lafsi ze

and the routinesi ze parameter is used to create or re-allocate a buffer. For some
types of structures, like a fixed sized C structure, the buffer size should equal the size
of the structure. Ifif | t si ze is set to this value, then the caller may not need to specify
the buffer's length to routines in which a buffer is pasgeld.si ze can be 0 or less;
however, ift pal | oc ort preal | oc is called and itsi ze parameter is also less than

or equal to 0, then the routine will fail. It is not recommended tdfsetsi ze to a

value less than 0.

The names of the functions specified below are template names used within the BEA
TUXEDO system. Any application adding new routines to the buffer type switch must
use names that correspond to real functions, either provided by the application or
library routines. If a NULL function pointer is stored in a buffer type switch entry, the
BEA TUXEDO system calls a default function that takes the correct number and type
of arguments, and returns a default value.

_tminitbuf is called from withint pal | oc after a buffer has been allocated. It is
passed a pointer to the new buffery, along with its size so that the buffer can be
initialized appropriatelyl en is the larger of the length passed inpal | oc and the
default specified inif | t si ze in that type's switch entry. Note thatr will never be
NULL due to the semantics opal | oc andt preal | oc. Upon successful returpt r

is returned to the caller opal | oc.

If a single switch entry is used to manipulate many sub-types, then the writer of
_tminitbuf can use ptypes to determine the sub-type.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success,t mi ni t buf returns 1. If the function fails, it returns -1 causing
t pal | oc to also return failure settirntgper r no to TPESYSTEM

_tnreinitbuf behaves the same asni ni t buf except it is used to re-initialize a
re-allocated buffer. It is called from withirpr eal | oc after the buffer has been
re-allocated.

If no buffer re-initialization needs to be performed, specify a NULL function pointer.
Upon success,t nmrei ni t buf returns 1. If the function fails, it returns -1 causing

t preal | oc to also return failure settinger r no to TPESYSTEM

BEA TUXEDO Reference Manual 45

buffer(3¢)

46

_tmuninitbuf

_tmpresend

_tmpostsend

_tmuni ni t buf iscalled by t pf r ee before the data buffer isfreed. _t muni ni t buf is
passed a pointer to the application portion of adatabuffer, along with itssize, and can
be used to clean up any structures or state information associated with that buffer. pt r
will never be NULL duetot pfree’ssemantics. Notethat _t muni ni t buf should not
free the buffer itself.

If no processing needs to be performed before freeing a buffer, specify a NULL
function pointer.

Upon success, _t nuni ni t buf returns 1. If the function fails, it returns -1 causing
t pf r ee to print alog message.

_tnpresend iscalled beforeabufferissentint pcal | , t pacal | , t pconnect,

t psend, t pbr oadcast , t pnotify, tpreturn,ortpforward.Itisalso called after
_tnrout e but before _t mencdec. If ptr isnon-NULL, pre-processing is performed
on abuffer beforeitis sent. _t npr esend’sfirst argument, pt r, isthe application data
buffer passed into the send call. Its second argument, d/ en, is the data's length as
passed into the send call. Its third argument, nol en, isthe actual size of the buffer in
which the data resides.

One important requirement on this function isthat it ensures that when the function
returns, the data pointed to by pt r can be sent “as is.” That is, sinaarencdec is

called only if the buffer is being sent to a dissimilar machinepr esend must ensure
upon return that no elementpnr's buffer is a pointer to data that is not contiguous to
the buffer.

If no pre-processing needs to be performed on the data and the amount of data the cal
specified is the same as the amount that should be sent, specify a NULL function
pointer. The default routine returnsen and does nothing to the buffer.

Upon success,t npr esend returns the amount of data to be sent. If the function fails,
it returns -1 causingt npr esend's caller to also return failure settinger r no to
TPESYSTEM

_tnpost send is called after a buffer is senttipcal | ,t pbroadcast, tpnotify,

tpacal |, tpconnect, ortpsend. This routine allows any post-processing to be
performed on a buffer after it is sent and before the function returns. Because the buffi
passed into the send call should not be different upon returpost send is called to
repair a buffer changed by npr esend. This function's first argumengy r, points to

the data sent as a result ofipr esend. The data's length, as returned from
_tnpresend, is passed in as this function's second argunaént;. The third
argumentpa! en, is the actual size of the buffer in which the data resides. This routine
is called only whemt r is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.

BEA TUXEDO Reference Manual

buffer(3c)

_tmpostrecv

_tmencdec

_tpost recv iscalled after abuffer is received, and possibly decoded, in
tpgetrply, tpcall, tprecv, orintheBEA TUXEDO system’sserver abstraction,
and beforeit isreturned to the application. If pt r isnon-NULL, _t npost recv alows
post-processing to be performed on abuffer after it isreceived and beforeit isgiven to
theapplication. Itsfirst argument, pt r, pointsto the data portion of the buffer received.
Its second argument, d/ en, specifies the data's size coming into _t npostr ecv. The
third argument, ol en, specifies the actual size of the buffer in which the data resides.

If _t npost r ecv changesthe datalength in post-processing, it must return the data’s
new length. The length returned is passed up to the application in amanner dependent
on the call used (for example, t pcal | setsthe data length in one of its arguments for
the caller to check upon return).

The buffer’s size might not be large enough for post-processing to succeed. If more
spaceisrequired, _t npost r ecv returnsthe negative absolute value of the desired
buffer size. The calling routine then resizes the buffer, and calls _t npostrecv a
second time.

If no post-processing needs to be performed on the data and the amount of data
received isthe same as the amount that should be returned to the application, specify
aNULL function pointer. The default routine returns d/ en and does nothing to the
buffer.

On success, _t npost r ecv returns the size of the data the application should be made
aware of when the buffer is passed up from the corresponding receive call. If the
function fails, it returns -1 causing _t npost r ecv’s caller to return failure, setting

t perrno to TPESYSTEM

_t mencdec is used to encode/decode a buffer sent/received over a network to/from a
machine having different data representations. The BEA TUXEDO system
recommends the use of XDR; however, any encoding/decoding scheme can be used
that obeys the semantics of this routine.

Thisfunctioniscalledby t pcal I, tpacall, tpbroadcast, tpnotify,

tpconnect, tpsend, tpreturn, ortpforward toencodethecaller'sbuffer only
when it is being sent to an “unlike” machine. In these callsencdec is called after
both_t nr out e and_t npr esend, respectively. Recall from the description of

_t nmpr esend that the buffer passed intonencdec contains no pointers to data that is
not contiguous to the buffer.

On the receiving endpr ecv, tpgetrply,the receive half afpcal I and the server
abstraction all callt mencdec to decode a buffer after they have received it from an
‘unlike” machine but before callingt npost r ecv.

BEA TUXEDO Reference Manual 47

buffer(3¢)

48

_tmroute

_tmencdec’sfirst argument, op, specifies whether the function is encoding or
decoding data. op can be one of TMENCODE or TVDECODE.

When op is TMENCODE, encobj pointsto abuffer allocated by the BEA TUXEDO
system where the encoded version of the data will be copied. The un-encoded data
residesin obj . That is, when op is TMENCODE, _t nencdec transforms obj to its
encoded format and places the result in encobj . The size of the buffer pointed to by
encobj isspecified by el en andisat least four times the size of the buffer pointed to
by obj whose lengthis ol en. ol en isthe length returned by _t npr esend.
_tmencdec returnsthe size of the encoded datain encobj (that is, the amount of data
to actually send). _t mrencdec should not free either of the buffers passed into the
function.

When op is TMDECODE, encobj pointsto abuffer allocated by the BEA TUXEDO
system where the encoded version of the data resides as read off a communication
endpoint. The length of the buffer is el en. obj pointsto abuffer that is at least the
same size as the buffer pointed to by encobj into which the decoded datais copied.
Thelength of obj isol en. Asobj isthe buffer ultimately returned to the application,
this buffer may be grown by the BEA TUXEDO system before calling _t nencdec to
ensure that it is large enough to hold the decoded data. _t mencdec returns the size of
the decoded datain obj . After _t nencdec returns, _t npost recv is called with obj
passed asits first argument, _t nencdec’s return value asits second, and o/ en asits
third. _t mencdec should not free either of the buffers passed into the function.

_tmencdec iscaled only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar
machines exist in the network, specify a NULL function pointer. The default routine
returns either o/ en (op equals TMENCODE) or el en (op equals TMDECCDE).

On success, _t mencdec returns a non-negative length as described above. If the
function fails, it returns -1 causing _t mencdec’s caller to return failure, setting
t per rno to TPESYSTEM

Thedefault for message routing isto route amessage to any available server group that
offers the desired service. Each service entry in the UBBCONFI Gfile can specify the
logical name of some routing criteria for the service using the ROUTI NG parameter.
Multiple services can share the same routing criteria. In the case that a service has a
routing criteria name specified, _t nr out e isused to determine the server group to
which amessage is sent based on datain the message. This mapping of datato server
group is called “data-dependent routingt’hr out e is called before a buffer is sent
(and before t npresend and_t nencdec are called) inpcal I, tpacall,

t pconnect, andt pf orwar d.

BEA TUXEDO Reference Manual

buffer(3c)

routi ng_nane isthe logical name of the routing criteria (as specified in the
UBBCONFI Gfile) and is associated with every service that needs data dependent
routing. ser vi ce isthe name of the service for which the request is being made. The
parameter dat a pointsto the datathat is being transmitted in therequest and / en isits
length. Unlike the other routines described in these pages, _t nr out e iscalled even
when pt r isNULL. The gr oup parameter is used to return the name of the group to
which the request should be routed. This group hame must match one of the group
names listed in the UBBCONFI Gfile (and one that is active at the time the group is
chosen). If the request can go to any available server providing the specified service,
gr oup should be set to the NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL function
pointer. The default routine sets gr oup to the NULL string and returns 1.

Upon success, _t nr out e returns 1. If the function fails, it returns -1 causing
_tnrout e’scaller to also return failure; asaresult, t perr no isset to TPESYSTEM |f

_t nrout e fails because arequested server or service is not available, t perr no isset
to TPENCENT.

If group is set to the name of an invalid server group, the function calling _t nr out e
will return an error and set t per r no to TPESYSTEM

_tmfilter _tnfilter iscalled by the Event Broker server to anayze the contents of a buffer
posted by t ppost . An expression provided by the subscriber (t psubscri be) is
evaluated with respect to the buffer’'s contents. If the expressionistrue, _tnfilter
returns 1 and the Event Broker performs the subscription’s notification action.
Otherwise, if _tnfilter returnsO, the Event Broker does not consider this posting a
“match” for the subscription.

If exprlenis-1,expr is interpreted as a null-terminated character string. Otherwise
expr is interpreted asxpr !/ en bytes of binary data. Aaxpr/ en of 0 indicates no
expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The
default routine returns 1 if there is no expression exfr is an empty null-terminated
string. Otherwise the default routine returns 0.

_tmformat _t nf or mat is called by the Event Broker server to convert a buffer's data into a
printable string, based on a format specification nafmed The Event Broker
converts posted buffers to strings as inputfggr I og or syst emnotification actions.

BEA TUXEDO Reference Manual 49

buffer(3¢)

50

See Also

Theoutput isstored asacharacter string in the memory location pointedto by resul t.
Upto maxr esul t bytesarewritteninresul t, including aterminating null character.
If resul t isnot large enough, _t nf or mat truncates its output. The output string is
always null terminated.

On success, _t nf or mat returns a non-negative integer. 1 means success, 2 means the
output string is truncated. If the function fails, it returns -1 and stores an empty string
inresult.

If formatting does not apply to this buffer type, specify aNULL function pointer. The
default routine succeeds and returns an empty stringinresul t .

t pacal | (3c), t pal | oc(3c), t pcal | (3c), t pconnect (3c), t pdi scon(3c),
t pf ree(3c), t pget r pl y(3c), t pgpri o(3c), t preal | oc(3c), t precv(3c),
t psend(3c), t pspri o(3c), t pt ypes(3c)

BEA TUXEDO Reference Manual

catgets(3)

catgets(3)
Name

Synopsis

Description

Diagnostics

See Also

cat get s-read a program message

#i ncl ude <nl _types. h>
char *catgets (nl _catd catd, int set_num int nmsg_num char *s)

cat get s attempts to read message nsg_num in set set _num from the message
catalogue identified by cat d. cat d is a catalogue descriptor returned from an earlier
call to cat open(3). s pointsto a default message string which will be returned by
cat get s if theidentified message catalogue is not currently available.

If the identified message is retrieved successfully, cat get s returns a pointer to an
internal buffer area containing the null terminated message string. If the cal is
unsuccessful because the message catal ogue identified by cat d is not currently
available, apointer to s isreturned.

cat open(3).

BEA TUXEDO Reference Manual 51

catopen(3)

catopen(3)

52

Name

Synopsis

Description

cat open, cat cl ose-open/close a message catalogue

#i nclude <nl _types. h>
nl _catd catopen (char *nanme, int oflag)
int catclose (nl_catd catd)

cat open opensamessage catalogue and returns a catal ogue descriptor. nane specifies

the name of the message catalogue to be opened. If nane contains a/*” then nane
specifies a pathname for the message catalogue. Otherwise, the environment variat
NLSPATH is used. INLSPATH does not exist in the environment, or if a message
catalogue cannot be opened in any of the paths specifistdSPyTH, then the default

path is used (see _t ypes(5)).

The names of message catalogues, and their location in the filestore, can vary from ol
system to another. Individual applications can choose to name or locate message
catalogues according to their own special needs. A mechanism is therefore required
specify where the catalogue resides.

TheNLSPATH variable provides both the location of message catalogues, in the form
of a search path, and the naming conventions associated with message catalogue fil
For example:

NLSPATH=/ nl sl i b/ %./ %N. cat : / nl sl i b/ %N/ %

The metacharactesintroduces a substitution field, whexe substitutes the current
setting of the. ANG environment variable (see following section), asidubstitutes the
value of thenane parameter passeddat open. Thus, in the above examptat open
will search irv nl sl i b/ $LANG nane. cat, then in/ nl sl i b/name/$LANG, for the
required message catalogue.

NLSPATH will normally be set up on a system wide basis (e.g.eirc/ profil e) and
thus makes the location and naming conventions associated with message catalogL
transparent to both programs and users.

The full set of metacharacters is:

BEA TUXEDO Reference Manual

catopen(3)

Diagnostics

See Also

M etacharacters

9%\ The value of the name parameter passed to cat open.

%. Thevalue of LANG.

% Thevalue of the language element of LANG

% Thevalue of the territory element of LANG.

% Thevalue of the codeset element of LANG.

%46 A single %.

The LANG environment variabl e provides the ability to specify the user’s requirements
for native languages, local customs and character set, asan ASCII string in the form
LANG=I anguage[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has aterminal that operates
in 1SO 8859/1 codeset, would want the setting of the LANG variable to be as follows:

LANG=De_A. 88591

With this setting it should be possible for the user to find relevant cataloguesif they
exist.

If the LANG variableis not set then the value of LC_MESSAGES as returned by
set | ocal e(3) isused. If thisisNULL then the default path as defined innl _t ypes(5)
is used.

of | ag isreserved for future use and should be set to 0. The results of setting thisfield
to any other value are undefined.

cat cl ose closes the message catalogue identified by cat d.

If successful, cat open returns amessage catal ogue descriptor for use on subseguent
callsto cat get s(3) and cat cl ose(3). Otherwise cat open() returns(nl _catd) - 1.
cat cl ose returns O if successful, otherwise -1.

cat get s(3), setl ocal e(3), nl _types(5).

BEA TUXEDO Reference Manual 53

change_atts(3)

change_atts(3)

Name

Synopsis

Description

Examples

change_at t s- change field attributes on form

#include <fm . h>

int change_ atts(fbfr,fldid,occno,atts)
FBFR *fbfr;

FLDI D fldid;

int occno;

char *atts;

change_at t s isafunction caled by a server to alter dynamically field attributeson a
form displayed by a data entry program. change_at t s() adds a special field to fbf r,
which isinterpreted by a data entry program upon receiving the fielded buffer. f/ di d
and occno specify the field on the form whose attributes are to change. If two fields
on the form haveidentical f/ di d and occno, both will change. at t s should point to a
string of attributes. The available attributes are those allowed in the f | ags field of a
UFORM script, with the exception of the Hand | attributes, which are not allowed.
Literal fields may not be altered to become protected or unprotected fields, and
protected and unprotected fields may not be altered to become literal fields. It is not
necessary for at t s to point to acompletelist of attributes. Only those attributes which
are to change need be included. For example, afield that is described as secret and
unprotected on the UFORM script, can be changed to secret and protected with aP as
its at t s argument. at t s may also point to the string RESTORE, in which case al of the
original attributes specified by the UFORM script are restored, and the dynamic
attributes are forgotten.

Serversinwhich change_at t s() iscalled must link inl i bt fr m a withthe-f option
of buildserver(1).

Thefollowing changes a field from secret and bold to non-secret and non-bold.
change_atts(fbfr, fldid, occno, “NO”);

Any codethat uses change_atts () must link inlibtfrm.a . The following example
shows how libtfrm.a should be specified on abuildserver (1) command line.

buildserver -s PRTFORM -f ${TUXDIR}/lib/formprint.o -f lib/libtfrm.a

54

Diagnostics

See Also

change_atts () returns a1 on success. It has two return codes to indicate failure. It
returns a zero on afailed fielded buffer operation. In this case, Ferror containsthe
reason for failure. It returns a\-1 on all other failures.

buildserver (1), compilation (5), TUXEDO Data Entry System Guide

BEA TUXEDO Reference Manual

decimal(3)

decimal(3)
Name deci nal -decimal conversion and arithmetic routines
Synopsis

#include “decimal.h”

int

Iddecimal(cp, len, np) /* load a decimal */
char*cp; /* input: location of compacted format */
int

len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */
void

stdecimal(np, cp, len) [* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of compacted format */
int len; /* input: length of compacted format */

int

deccmp(nl, n2) /* compare two decimal numbers */
dec_t*ni1; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

int

dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; [* input: number to be converted */
char*cp; /* output: number after conversion */

int len; /* input: length of output string */

int right; /* input: number of places to right of decimal point */
int

deccvasc(cp, len, np) [* convert ascii to dec_t */
char*cp; /* input: number to be converted */

int len; /* input: maximum length of number to be converted */
dec_t*np; /* output: number after conversion */
int

dectoint(np, ip) /* convert int to dec_t */
dec_t*np; /* input: number to be converted */

int *ip; /* output: number after conversion */

int

deccvint(in, np) /* convert dec_t to int */

intin; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

BEA TUXEDO Reference Manual

55

decimal(3)

i nt

dect ol ong(np, |ngp) /* convert dec_t to long */
dec_t*np; /* input: nunmber to be converted */

| ong*Il ngp; /* output: nunber after conversion */
i nt

deccvl ong(l ng, np) /* convert long to dec_t */

I ongl ng; /* input: nunber to be converted */
dec_t*np; /* output: nunber after conversion */

i nt

dect odbl (np, dbl p) /* convert dec_t to double */
dec_t*np; /* input: nunber to be converted */
doubl e *dbl p; /* output: nunber after conversion */

i nt

deccvdbl (dbl, np) /* convert double to dec_t */
doubl e *dbl /* input: nunber to be converted */
dec_t*np; /* output: nunber after conversion */

i nt

dectoflt(np, fltp) /* convert dec_t to float */
dec_t*np; /* input: nunber to be converted */
float*fltp; /* output: nunber after conversion */

i nt

deccvflt(flt, np) /* convert float to dec_t */
double *flt; /* input: nunber to be converted */
dec_t*np; /* output: nunber after conversion */

i nt

decadd(*nl, *n2, *n3) /* add two deci mal nunbers */
dec_t*nil,; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; /* output: sum*/

i nt

decsub(*nl, *n2, *n3) /* subtract two deci mal nunbers */
dec_t*nil,; /* input: mnuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

i nt

decrmul (*nl, *n2, *n3) /* multiply two deci mal nunbers */
dec_t*nil,; /* input: multiplicand */

dec_t*n2; /* input: multiplicand */

dec_t *n3; /* output: product */

i nt

decdiv(*nl, *n2, *n3) /* divide two deci mal nunbers */
dec_t*nil,; /* input: dividend */

dec_t*n2; /* input: divisor */

dec_t *n3; /* output: quotient */

56

BEA TUXEDO Reference Manual

decimal(3)

Description

Native Decimal
Representation

Return Value

These functions are provided as part of the CICS instantiation of the /Host Extension.
The functions allow storage, conversion, and manipulation of packed decimal dataon
the BEA TUXEDO system. Note that the format in which the decimal datatypeis
represented on the BEA TUXEDO system is different from its representation under
CICS.

Decimals are represented on native BEA TUXEDO system nodes using the dec_t
structure. This definition of this structure is asfollows:

#defi ne DECSI ZE 16

struct deciml {
short dec_exp; /* exponent base 100 */
short dec_pos; /* sign: 1=pos, O=neg, -1=null */
short dec_ndgts; /* nunber of significant digits */

char dec_dgts[DECSI ZE]; /* actual digits base 100 */
i;/pedef struct decinal dec_t;
It should never be necessary for programmersto directly access the dec_t structure,
but it is presented here nevertheless to give an understanding of the underlying data
structure. If large amounts of decimal data need to be stored, the st deci mal () and
I ddeci mal () functions may be used to obtain a more compact format. dect oasc(),
dect oi nt (), dect ol ong(), dect odbl (), and dect of | t () allow the conversion of
decimalsto other data types. deccvasc(), deccvi nt (), deccvl ong(), deccvdbl (),
and deccvf | t () allow the conversion of other datatypes to the decimal datatype.
deccnp() isthefunction which comparestwo decimals. It returns-1if thefirst decimal
isless than the second, O if the two decimals are equal, and 1 if the first decimal is
greater than the second. A negative value other than -1 isreturned if either of the
argumentsisinvalid. decadd(), decsub(), decnul (), and decdi v() perform arithmetic
operations on decimal numbers.

Unless otherwise stated, these functions return 0 on success and a negative value on
error.

BEA TUXEDO Reference Manual 57

do_form(3)

do_form(3)

58

Name

Synopsis

Description

Examples

do_f or mform display subroutine
#include “fml.h”

FBFR *
do_form(formname, fbfr)
char *formname;

FBFR **fbfr;

do_form () displays f or mnane, collects input from a user, and returns a pointer to a
fielded buffer containing theinformation entered on aform. If theform was exited with
the abort function key, or by pressing the break key, then NULL isreturned. On a
system error, (FBFR*)-1 is returned. f or rmane should be afile output by mo(1). If

f or mane begins with adash (/) the given path is searched; otherwise, f or mane is
searched for inthedirectorieslisted in the MASKPATHnvironment variable. f or mane
shouldincludethe .M file extension. When do_form () iscalled, f bf r iseither apointer
to apointer to afielded buffer, apointer to NULL, or aNULL pointer. If it isapointer
toNULL oraNULL pointer, do_form () allocatesthefielded buffer. If itisnot NULL,
information contained in the fielded buffer isdisplayed on the screen. Upon return, the
value contained in f bf r, if itisnot aNULL pointer, points to afielded buffer
containing the screen content. If the value returned by the functionisnot aNULL and
not a-1, then it points to the same fielded buffer. It isthe caller’s responsibility to free
the fielded buffer pointed to by f bf r by calling tpfree (), regardless of the return
value of the function. do_form () callsformexit () on disastrous conditions. A default
version of formexit () exists in $TUXDIR/lib/libtfrm.a . do_form uses

tpalloc (3) to allocate abuffer and tpfree (3) must be used to free the fielded buffer.

Application-defined function keys can be used (including re-mapping the default
command and control keys) by exporting the file name in the UDFK environment
variable. Thefile format is described in udfk (5).

This example displays the form supplied in a command line argument and writes the
resulting fielded buffer on the standard outpui.

main(argc,argv)
int argc; char *argv(];
{
FBFR *fbfr, *fbfr1;
fofr = (FBFR *)NULL;
fofrl = do_form(argv[1],fbfr);
if (fbfrl == (FBFR *)NULL)
fprintf(stderr, “user quit\en”);
else if (fbfrl == (FBFR *)-1)

BEA TUXEDO Reference Manual

do_form(3)

Diagnostics

Notices

CAVEAT

See Also

fprintf(stderr,\0"system error\en”);
else

Fprint(fbfrl);
tpfree(fbfr);

If the form was exited with a transmit-form key (i.e., when a service would be called
in mio (1)), apointer to afielded buffer isreturned. If the form was exited with an abort
function key, or with the break key, NULL isreturned and the f bf r argument contains
the pointer to the fielded buffer (if it isnot aNULL pointer). On errors, such as
malloc (3) failures, or failure to read afile, a (FBFR*)-1 is returned.

The form displayed allows full shell escapes.
When compiling, use
buildclient -o outputfile -f “appfiles” -I -Itfrm -1 -lcurses -l -Im

where out put f i | e isthe executable name, and appfi I es are application files
needed.

do_form () isnot designed to work with menu hierarchies, specifically calling services
from within the hierarchy. When atransmit-form key is entered from a form,
do_form () returnsthe associated fielded buffer. If the form is not atop-level form,
do_form () popsall levels of formsand returns. Datais not propagated up the menu
hierarchy, and the current state (the position within the menu hierarchy) islost.

mio (1), malloc (3) inaUNIX System reference manual, TUXEDO Data Entry
System GQui de, TUXEDO FM. Gui de

BEA TUXEDO Reference Manual 59

formprint(3)

formprint(3)

60

Name

Synopsis

Description

f or npri nt -print aform

#include “fml.h”

extern int LINES;

extern int COLS;
formprint(frmname,fbfr,cmd)
char *frmname;

FBFR *fbfr;

char *cmd;
form1print(frmname,fbfr file,formfeed, lines, pages)
char *frmname;

FBFR *fbfr;

FILE *file;

char *formfeed;

int *lines;

int *pages;
form2print(frmname,fbfr,buffer,formfeed, lines, pages)
char *frmname;

FBFR *fbfr;

char *buffer;

char *formfeed;

int *lines;

int *pages;

The formprint routines accept the name of aform, f r mane, and afielded buffer,

f bf r, and replace field areas on the form with the contents of the fielded buffer. The
resulting form is output in a format suitable for printing. The default value for LINES
is66; for COLSIt is 132. The routines differ, in that each directs its output to another
medium. All three routines have f r rnanme and f bf r as common parameters. f r rnane
should be the name of a standard UFORM form, without the .M suffix. If fr mmane is
null, the name of the form is assumed to be in the reserved FORMNAM field in the
fielded buffer.

formprint () placesits output in atemporary file, and then executes cnd on that file.
%sshould be substituted for the temporary file name wherever thetemporary file name
would appear in the cnd string. If cndisnull, Ip %s is assumed to be the command
string. If the USPOOL DIR environment variableis set, thetemporary fileiscreated in
the SUSPOOLDIR directory, otherwise the temporary fileis created in /tmp .

formlprint () placesitsoutputin fi/l e. The f or nf eed string is output at the end of
each page. Upon successful return, page is set to the number of pages output, and

I'i nes is set to the number of lines on the last page. The number of pages output isthe
same as the number of pages on the form.

BEA TUXEDO Reference Manual

formprint(3)

Examples

Diagnostics

Notices

See Also

forn2print () isidentical to f or mipri nt (), except instead of placing its output in
file,itplacesitsoutputin buffer. buf fer should be large enough to handle any
anticipated (and unanticipated) output.

formprint(NULL,fbfr,”cat %s >/devi/ity”) is an acceptable invocation of
formprint . It sends the form named in the reserved FORMNAM field of the fielded
buffer to /deviity

These routinesreturn 1 on success and \-1 on failure.

Itisnot possibleto link these routines and the curses (3) library (libcurses.a) into
one program.

FRMPRT5), curses (3X) inaUNIX System reference manual

BEA TUXEDO Reference Manual 61

frmmisc(3)

frmmisc(3)

62

Name

Synopsis

Description

f r mm sc-miscellaneous forms routines
#include “fml.h”

extern char *extmskpath; /* maskpath */
extern char *extcache; /* mask cache */

int frmval(frmname,fbfr,fldid,oc,errmsg)

char *frmname; /* form name, without the .M suffix */
FBFR *fbfr; /* fielded buffer to be validated */
FLDID *fldid; /* field id of field in error */

int *oc; /* occurrence number of field in error */
char **errmsg; /* error message for incorrect field */

int frmflds(frmname,fldids,occs,max)

char *frmname; /* form name, without the .M suffix */
FLDID *fldids; [* points to array of field ids */

int *occs; [* points to array of occurrences */

int max; /* size of fldids and occs arrays */

frmval () validates afielded buffer, f bf r, based on the validations present in the
compiled mask fr rane. It returns 1if f bf r passesthe validation, \-1if fr mane is
non-existent or can't be read in for any reason, and O if f bf r failsthe validations. In
thelast case f/ di d and occno point to the field id and occurrence number of the field
inerror. er r msg points to acharacter array that containsthe error message that would
appear on the form’s status line if the form were actually displayed on the screen. The
value pointed to by err nsg isvalid only until the next call of frmval ().

frmflds () returnsthe number of fields present in f r mane and placesthefieldidsand
occurrence numbers of thosefieldsin arraysf/ di ds and occs respectively. Only max
fields are placed in the arrays, however the actual number of fields on the mask is

alwaysreturned. frmflds () returnsa\-1 if it couldn’t access f r mane for any reason.

Prior to calling these routines extmskpath ~ should be set to the mask path, and
extcache should be set to the mask cache address (see loadfiles(1)). When these
routines are called from within avalidation function that is linked into mio(1) it is not
necessary to initialize these variables because they are initialized by mio . For the
routines listed above, f r rname should be passed as the form name without the .M
suffix.

Programs callling these functions should be linked with the following libraries in the
given order:

BEA TUXEDO Reference Manual

frmmisc(3)

$TUXDI R/ 1ib/1ibtfrm a,
$TUXDI R/ i b/1ibfm . a,
$TUXDI R/ 1'i b/ 1'i bgp. a,

and the standard math |ibrary.

Notices The callers of these routines may want to supply their own version of formexi t, a
routine that iscalled in fatal situations, such asmal | oc failures.

See Also 1 oadfil es(1), mi o(1)

BEA TUXEDO Reference Manual 63

gp_mktime(3)

gp_mktime(3)

64

Name

Synopsis

Description

gp_mkt i me-converts atm structure to a calendar time

#i nclude <tine.h>
time_t gp_nktinme (struct tm*tineptr);

gp_nkt i me() convertsthetime represented by the tm structure pointed to by ¢ i mept r
into a calendar time (the number of seconds since 00:00:00 UTC, January 1, 1970).

The tm structure has the following format.

struct tm{

int tmsec; /* seconds after the mnute [0, 61] */
int tmmn; /* mnutes after the hour [0, 59] */
int tm hour; /* hour since mdnight [0, 23] */

int tm nday; /* day of the nmonth [1, 31] */

int tmnon; /* nonths since January [0, 11] */

int tmyear; /* years since 1900 */

int tmwday; /* days since Sunday [0, 6] */

int tmyday; /* days since January 1 [0, 365] */
int tmisdst; /* flag for daylight savings tine */

b

In addition to computing the calendar time, gp_nkt i me hormalizes the supplied tm
structure. The original values of the t m wday and t m yday components of the
structure are ignored, and the original values of the other components are not restricted
totherangesindicated in the definition of the structure. On successful completion, the
values of the t m wday and t m yday components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values
forced to be within the appropriate ranges. The final value of t m nday isnot set until
t m non and t m year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, at m hour of -1 means 1 hour before midnight, t m nday
of 0 meansthe day preceding the current month, and ¢ m non of -2 means 2 months
before January of t m year.

If t m i sdst ispositive, theoriginal valuesare assumed to bein the alternatetimezone.
If it turns out that the alternate timezone is not valid for the computed calendar time,
then the components are adjusted to the main timezone. Likewise, if tm_isdst is zero,
the original values are assumed to be in the main timezone and are converted to the
alternate timezone if the main timezone isnot valid. If t m i sdst is negative, the
correct timezone is determined and the components are not adjusted.

BEA TUXEDO Reference Manual

gp_mktime(3)

Example

See Also

Notices

Portability

Local timezone informationisused asif gp_nkt i me had calledt zset .

gp_nkt i me returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-1.

What day of the week is July 4, 20017

#i ncl ude <stdio. h>
#i ncl ude <tine. h>

static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wdnesday",
"Thur sday", "Friday", "Saturday", "-unknown-"

h

struct tmtime_str;
[*.00%]
time_str.tmyear
time_str.tmnon
time_str.tmnday
time_str.tmhour
time_str.tmmn
time_str.tmsec
time_str.tm.i sdst
if (gp_nktine(tinme_str)
time_str.tmwday=7;
printf("%\en", wday[time_str.tmwday]);

2001 - 1900;
7 - 1;

L | T I T VI 1|
' POO N
[FERES

1
1
'
e
—

cti me(3C), get env(3C), ti mezone(4)

t m year of thetm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

On systems where the C compilation system aready providesthe ANSI C nkti ne
function, gp_nkt i me simply calls nkt i me to do the conversion. Otherwise, the
conversion is provided directly in gp_nkt i nme.

In the later case, the TZ environment variable must be set. Note that in many
installations, TZ isset to the correct val ue by default when the user logson. The default
valuefor TZ, if not set, is GMTO. The format for TZ is the following.

stdof fset[dst[offset],[start[tinme],end[tinme]]]

BEA TUXEDO Reference Manual 65

gp_mktime(3)

stdand dst
Three or more bytesthat are the designation for the standard (st d) and
daylight savings time (dst) timezones. Only st disrequired, if dst is
missing, then daylight savingstime does not apply inthislocale. Upper- and
lower-case |etters are allowed. Any characters except aleading colon (3),
digits, acomma (,), aminus (-) or aplus (+) are allowed.

of fset
Indicates the value one must add to the local time to arrive at Coordinated
Universal Time. The of fset hasthe form: hh[:mm{:ss]] The minutes (nm)
and seconds (ss) are optional. The hour (hh) isrequired and may beasingle
digit. The of fset following st disrequired. If no of f set follows dst
daylight savingstime is assumed to be one hour ahead of standard time. One
or more digits may be used; the valueis always interpreted as a decimal
number. The hour must be between 0 and 24, and the minutes (and seconds)
if present between 0 and 59. Out of range values may cause unpredictable
behavior. If preceded by a‘‘-", the timezone s east of the Prime Meridian;
otherwise it iswest (which may be indicated by an optional preceding ‘‘+”
sign).

start/ti me,endltine
Indicates when to change to and back from daylight savings time, where
st ar t /time describes when the change from standard time to daylight
savingstimeoccurs, and end/t i me describeswhen the change back happens.
Each t i ne field describes when, in current local time, the change is made.
Theformats of st art and end are one of the following:

Jn
TheJulian day n (1 n 365). Leap days are not counted. That is, inall
years, February 28 isday 59 and March 1 isday 60. Itisimpossible
to refer to the occasional February 29.

n
The zero-based Julian day (0 n 365). Leap days are counted, and it
ispossible to refer to February 29.

Mmn. d

The dth day, (0 d 6) of week n of month m of the year (1 n 5,1 m12),
whereweek 5 means ‘‘the last d-day in month n¥ which may occurin
either the fourth or the fifth week). Week 1 is the first week in which the
dth day occurs. Day zero is Sunday.

Implementation specific defaults are used for st art and endif theseoptional fields
are not given.

The ti ne hasthesameformat as of fset except that no leading sign (‘*-" or
““+") is dlowed. Thedefault, if ti meisnot given is 02:00:00.

66 BEA TUXEDO Reference Manual

maskprt(3)

maskprt(3)
Name

Synopsis

Description

Example

See Also

maskprt - send mask to FRMPRT server

maskprt (fbfr)
FBFR \ (**fbfr;

Thefunction maskpr t () isused to print afielded buffer according to aform definition.
It could be used, for example, to get a hard copy of the form. maskpr t () sends the
formatted buffer to the BEA TUXEDO system supplied server called FRVPRT(5). The
buffer must be of type FM_, and must be obtained by a call to tpalloc(3). FRVPRT()
accepts the buffer, printsit into a UNIX text file, then calls acommand to output the
file.

maskprt () callst pacal I (3) to send the message to FRVPRT(5). It fails [TPNCENT] if
FRVPRT(5) is not an active server.

maskprt (xxxbuf) ;

FRVPRT(5), t pal | oc(3), t pcal | (3)

BEA TUXEDO Reference Manual 67

mods(3)

mods(3)

68

Name

Synopsis

Description

nods- modified mask field routines

#include “fml.h”
#include “mods.h”

get_mods(fbfr,mod_array,size_mod_array)
FBFR *fbfr;

struct track_mods *mod_array;

int size_mod_array;

mods_needed(fbfr)
FBFR *fbfr;

set_mods(fbfr,fldid,occno,cmd)
FBFR *fbfr;

FLDID fldid;

int occno;

char *cmd;

int fld_mod(fbfr, fldid, occno)
FBFR *fbfr;

FLDID fldid;

int occno;

Themods routines are used by servers communicating with mio (1) to determinewhich
mask fields have been modified. All the routines described below, have f bf r astheir
first argument. f bf r isthe fielded buffer returned to a server by mio.

get_mods () placesthefldid and occurrence numbers of fields that have been
modified on amio mask into an array of structures, nod_ar r ay, supplied by the caller.
Only si ze_npd_ar r ay entrieswill bemadein nod_ar r ay. mods_needed () should be
called to determine the actual si ze _nod_ar r ay needed to hold all modified field
entries. Once afield has been changed on a mask, it will exist in the list of modified
fields until one of the following three things happens: a new mask is displayed, the
modified field is reset with a call to set_mods (), or the user clears the entire screen
with the clear screen function key. get_mods () returnsa-1 on an error, and a
non-negative number indicating the number of entriesplaced in nod_ar ray on
success. When an error indication isreturned, Ferror contains the reason for the error.

BEA TUXEDO Reference Manual

mods(3)

Notices

See Also

mods_needed() returns the number of entries needed in nod_ar r ay to hold all
modified field information returned by get _nods(). It returnsa-1 on an interna
failure, in which case Fer r or contains the reason for failure. The value returned by
mods_needed() may be passed directly to get _nods(). If get _nods() findsa-1inits
si ze_nod_arr ay parameter it will also return a0.

set _nods() sets the modified status of al fields on an ni o mask with field identifier
f1 di d and occurence number occno based on cnd. cnd may be either of the strings
“MOD_SET” or “MOD_RESET; enclosed in quotation marks as shown. If cnd is
“MOD_RESET"the indicated fields are not returned in the modified list until they are
changed again. If cndis*MOD_SET"theindicated fields aways appear in the modified
list, until one of the three conditions listed under the get_mods () routine is met. If
f1di diszerothen cnd appliesto al protected and unprotected fields on the mask.
set_mods () returnsa 0 on aninvalid cnd, a-1 on an FML error, in which case the
reason for the error isin Ferror , and a1l on success. If the Ferror iSFNOSPACEhe
caller should Frealloc(3) the fielded buffer and try again.

fid_mod () returnsalif afield specified by f/ di d and occno wasmodified. It returns
a0 if the specified field was not modified, and a-1 on an internal error. Theinternal
error isusually due to afailed malloc (3).

Servers in which mods routines are called must link in libtfrm.a with the -f option
of buildserver(1).

Only modifications to fields done through the standard input are tracked.
Modifications from other sources, such as asynchronous updates, are not tracked.

buildserver (1), Frealloc (3), TUXEDO FML Guide

BEA TUXEDO Reference Manual 69

nl_langinfo(3)

nl_langinfo(3)

70

Name

Synopsis

Description

Diagnostics

Notices

See Also

nl _I angi nf o-language information

#i nclude <nl _types. h>
#i ncl ude <l angi nfo. h>

char *nl langinfo (nl _itemitem;

nl _I angi nf o returns a pointer to a null-terminated string containing information
relevant to aparticular language or cultural area defined in the programslocale. The
manifest constant names and values of i t em are defined by | angi nf o. h.

For example:
nl | angi nfo (ABDAY_1);

would return a pointer to the strin@i“nf’ if the identified language was French and a
French locale was correctly installed; adutt” if the identified language was English.

If setl ocal e(3) has not been called successfully, drafigi nf o(5) data for a
supported language is either not availablétarm is not defined therein, then

nl _I angi nf o returns a pointer to the corresponding string in the C locale. In all
localesnl _I angi nf o returns a pointer to an empty string ffemcontains an invalid
setting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls td _I angi nf o may overwrite the array.

setl ocal e(3),strftime(3),1 angi nf o(5),nl _t ypes(5).

BEA TUXEDO Reference Manual

recomp(3)

recomp(3)

Name

Synopsis

Description

Regular
Expressions

reconp, r emat ch-regular expression compile/execute

char *reconp(pattern-1, [pattern-2, ...], 0)
char *pattern-1, [*pattern-2, ...];
extern int _Cerrnbr;

extern char *_Cerrnsg[];

char *rematch(pat, text, [substr-0, ..., substr-9,] 0);
char *pat, *text, [*substr-0, ..., *substr-9];

extern char *_Moegin;

extern int _Merrnbr;
extern char *_Merrmsg[];
ext ern char _Eol;

Theroutines, reconp() and r emat ch(), provide aregular expression pattern matching
scheme for C. There are two parts: a pattern compiler, r econp(); and a pattern
interpreter, r emat ch(). They are, in effect and in spirit, extensions of the standard
routines, r egcnp(3) and r egex(3)

Significant features are the inclusion of regular expression alternation and portability
of the code.

r econp() compiles apattern, inthe form of aregular expression, into an intermediate
code sequence. r emat ch() then searches user text for a pattern match by interpreting
the codes.

The code sequence, an array of characters, can be computed off-line by the command
r ex(1), which reads regular expressions from the standard input and writes the
corresponding character arraysto the standard output. The output can then be included
in aregular C compile.

The patterns for these routines are given with regular expressions, much like those
used in the UNIX System editor, ed(1). The alternation operator, (]), has been added
along with some other practical things. In general, however, there should be few
surprises.

Regular expressions (REs) are constructed by applying any of the following
production rules one or more times.

BEA TUXEDO Reference Manual 71

recomp(3)

Regular Expressions

Rule

Matching Text

character

itself (character isany ASCI| character except the special ones mentioned below).

\ character

itself except as follows:
4 \\-- newline

¢ \t--tab

4 \\b -- backspace

4 \\r - carriage return
4 \\f -- formfeed

\ speci al -character

itsunspecial self. The specid charactersare.* + ?2 | () [{ and \\.
. -- any character except the end-of-line character (usually newline or null).

~ -- beginning of theline.

$ -- end-of-line character.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
rangeis given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or “_". To be included in
the class, a hyphen, “-", must be escaped (preceded by a “\\") or appear first or last
in the class. A literal “]” must be escaped or appear first in the class. A literal “*”
must be escaped if it appears first in the class.

[fclass] any character in the complement of the class with respect to the ASCII character set,
excluding the end-of-line character.

RE RE the sequence. (catenation)

RE | RE either the [efRE or the rightRE. (left to right alternation)

RE * zero or more occurrences RE.

RE + one or more occurrences RE.

RE ? zero or one occurrences RE.

RE { n} n occurrences dRE. n must be between 0 and 255, inclusive.

RE{m n} m throughn occurrences dRE, inclusive. A missingnis taken to be zero. A
missingn denotegnor more occurrences &E.

(RE) explicit precedence/grouping.

(RE) $n the text matchindRE is copied into theith user buffern may be 0 thru 9. User

buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

72 BEA TUXEDO Reference Manual

recomp(3)

recomp -
Regular
Expression
Compiler

There are three level s of precedence. In order of decreasing binding strength they are:
4 catenation closure (*,+ 2,{...})
4 catenation

¢ alternation (|)
Asindicated above, parentheses are used to give explicit precedence.

r econp() concatenates its arguments up to aterminating zero into asingle expression.
The expression isthen compiled into a character array whose addressisreturned asthe
function value.

Space for the array is obtained from the standard C routine, mal | oc(3), and may be
released (by the user) with a call to the standard f r ee(3) routine.

reconp() returnsazero (NULL) value if the pattern cannot be processed. The reason
isindicated by a global variable, _Cer rnbr, which is set to a non-zero value on any
failure. _Cer rnbr may be used directly or as an index into atable of error messages,
_Cerrnsg._Cerrnbr isreset on each cal toreconp(). The possible values for
_Cerrnbr and the corresponding messages from _Cer r nsg are given below.

Regular Expression Compiler

_Cerrnbr _Cerrnsg[_Cerrnbr]

O uOkn

1 “Syntax error at catolnbr, char thar™

(colnbr is the position where the error is discoverddy is the character at
that position)

“Out of node storage”

“Out of vector storage”

“Too many OR's”

a| b W[N

“More than 255 repetitions”
(a number in ther'E{...}" construct is greater than 255)

6 “Negative range”
(a range for a character class or a closure is given backward)

7 “Out of heap storage”
(mal | oc failed)

BEA TUXEDO Reference Manual 73

recomp(3)

Conditions that cause _Cer r nbr valuesof 2, 3, and 4 relate to the size of r econp()’s
internal data structures and are unlikely to occur.

Thefirst and second characters of the code array form the least significant byte and the
most significant byte, respectively, of an unsigned 16 bit quantity that givesthelength,
in bytes, of the entire array. Thisvalue will prove useful for copying or otherwise
manipulating the array.

rematch - r emat ch() interprets the code sequence produced by r econp() to search a user string

Regular for amatch. When amatch isfound, r emat ch() returns asits value the address of the

Expression first character beyond the matching text (which may then be used as the text argument

Matcher inasubsequent call tor emat ch()). Also, the variable _Megi n is set to the address of
the first character of the matching text.

Any text matching a specified sub-pattern (see £) $ n” above) is copied into
the corresponding user buffer, providing one was supplied on the call. All supplied
user buffers are reset on eacmat ch() call and filled only on a successful match.

Note:r emat ch(), unlike its role model, egex(3), requires a zero terminating
argument.

remat ch() returns NULL if no match can be found or if something else goes wrong.
If no match is found the variableler r nbr , is set to zero. If something worse happens
it is set to a non-zero value. As abovker r nbr serves as an index for a table of
diagnostic messages as indicated below.

_Merrnbr _Merrnsg[_Merrnbr]

0 uokﬂ
(If r emat ch() returned NULL, no match was found)

1 “Too many closures”
2 “Line too long”
3 “Corrupt vector”

(checkr econp() for failure)

4 “More than 10 substr args”
(User probably forgot to terminatemat ch() arguments with a zero)

5 “Too many assignments”

74 BEA TUXEDO Reference Manual

recomp(3)

Example

Implementation

Notices

See Also

_Merrnbr valuesof 1, 2, or 5 are not likely to occur. They relate to the size of data
structures used by r emat ch().

Thevariable_Eol is the current end-of-line character. It is initialized\to™but may
be changed by the user to other reasonable values {&9., The end-of-line
character determines what the special charagtenatches.

The following program scans its input for C identifiers and prints each one on a
separate line.

#i ncl ude <stdi o. h>
mai n()

char *reconp(), *rematch();
char *pat Vect, *cursor, |ine[100], usrBuf[100];

patVect = reconp("([a-zA-Z][a-zA-Z0-9_]*)%$0", 0);

while (gets(line)) {
cursor = line;
whi l e (cursor=remat ch(patVect, cursor, usrBuf, 0))
printf("%n", usrBuf);

}
}

Note the use of the variableyr sor, to indicate a successful match as well as to
provide (on success) the starting point for the next search. A less courageous
programmer would cheakeconp()'s return value and restrict the length of the pattern
match to the receiving buffer's size (e.g., "{0,98}" instead of "*").

reconp() andr emat ch() are written in portable C codeeconp() employs YACC,

which accounts for the fact that it is bigger and somewhat slower than its counterpart,
regcnp(3). The intermediate code producedrkeygonp() is generally more compact

than that of egcnp(3).

remat ch() is about the same size and has about the same speed as its counterpart,
regex(3).

Support for the functions described in this manual page will be withdrawn in Release
5.0 of the BEA TUXEDO system.

rex(1),ed(1) in a UNIX System reference manuadgcnp(3), mal | oc(3), f r ee(3),
regex(3) in a UNIX System reference manual

BEA TUXEDO Reference Manual 75

rpc_sm_allocate(3)

rpc_sm_allocate(3)

76

Name

Synopsis

Description

rpc_sm al | ocat e, rpc_ss_al | ocat e-allocates memory within the RPC stub
memory management scheme

#i ncl ude <rpc/rpc. h>
idl_void p_t rpc_smallocate(unsigned32 size, unsigned32 *status)
idl_void p_t rpc_ss_all ocate(unsi gned32 size)

Applications call r pc_sm al | ocat e(3) to alocate memory within the RPC stub
memory management scheme. The input parameter, si ze, specifiesin bytes, the size
of memory to be allocated. Before a call to thisroutine, the stub memory management
environment must have been established. For service codethat is called from the server
stub, the stub itself normally establishes the necessary environment. When
rpc_sm al | ocat e is used by code that is not called from the stub, the application
must establish the required memory management environment by calling

rpc_sm enabl e_al | ocat e(3).

Specifically, if the parameters of a server stub include any pointers other than those
used for passing parameters by reference or the [enabl e_al | ocat e] attribute is
specified for the operation in the ACS file, then the environment is automatically set
up. Otherwise, the environment must be set up by the application by calling
rpc_smenabl e_al |l ocat e.

When the stub establishes the memory management environment, the stub itself frees
any memory allocated by r pc_sm al | ocat e. The application can free such memory
before returning to the calling stub by calling r pc_sm f r ee(3).

When the application establishes the memory management environment, it must free
any memory allocated, either by calling r pc_sm f r ee or by caling
rpc_sm di sabl e_al | ocat e(3).

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Always returned. The return value is used to determine failure.

rpc_ss_al | ocat e is the exception-returning version of this function and has no
st at us output parameter. No exceptions are raised.

BEA TUXEDO Reference Manual

rpc_sm_allocate(3)

Return Values On success, the routines return apointer to the allocated memory. Note that in the |SO
standard C environments, i dl _void_p_t isdefined asvoi d * and in other
environmentsis defined as char *. Insufficient memory is reported by returing a
NULL pointer.

See Also rpc_sm free(3),rpc_sm enabl e_al | ocate(3), rpc_sm di sabl e_al | ocat e(3),
BEA TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual 77

rpc_sm_client_free(3)

rpc_sm_client_free(3)

Name

Synopsis

rpc_smclient_free,rpc_ss_client_free-frees memory returned from aclient
stub

#i ncl ude <rpc/rpc. h>
void rpc_smclient free (idl _void p_t node to free, unsigned32 *status)
void rpc_ss client _free (idl _void p_t node_to free)

Description

Return Values

78

See Also

Therpc_sm client_free routine releases memory allocated and returned from a
client stub. The input parameter, node_t o_fr ee, specifies a pointer to memory
returned from a client stub. Note that in the | SO standard C environments,

idl _void_p_t isdefined asvoi d * and in other environmentsisdefined as char *.

Thisroutine enables aroutineto deallocate dynamically allocated memory returned by
an RPC call without knowledge of the memory management environment from which
it was called.

Note that thisroutine is always called from client code, even if the code can is
executing as part of a server.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_ss_client_free isthe exception-returning version of thisfunction and has no
st at us output parameter. No exceptions are raised.

None.

rpc_smfree(3),rpc_smset_client_alloc_free(3),
rpc_sm swap_client_alloc_free(3), TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual

rpc_sm_disable_allocate(3)

rpc_sm_disable_allocate(3)

Name

Synopsis

Description

Return Values

See Also

rpc_sm_disable alocate, rpc_sm_disable allocate-rel eases resources and all ocated
memory within the stub memory management scheme

#i ncl ude <rpc/rpc. h>
void rpc_smdi sabl e_al | ocat e(unsi gned32 *status);
void rpc_ss_disable_allocate(void);

Therpc_sm di sabl e_al | ocat e routine releases al resources acquired by a call to
rpc_sm enabl e_al | ocat e(3), and any memory allocated by calls to
rpc_sm al | ocat e(3) after the call tor pc_sm enabl e_al | ocat e was made.

Therpc_sm enabl e_al | ocate andr pc_sm di sabl e_al | ocat e routines must be
used in matching pairs. Calling this routine without a previous matching call to
rpc_sm enabl e_al | ocat e resultsin unpredictable behavior.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine compl eted successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_di sabl e_al | ocat e isthe exception-returning version of this function and
has no st at us output parameter. No exceptions are raised.

None.

rpc_sm al |l ocat e(3), rpc_sm enabl e_al | ocat e(3), BEATUXEDO TxRPC Guide

BEA TUXEDO Reference Manual 79

rpc_sm_enable_allocate(3)

rpc_sm_enable_allocate(3)

Name

Synopsis

Description

Return Values

80

See Also

rpc_sm enabl e_al | ocat e, r pc_ss_enabl e_al | ocat e-enables the stub memory
management environment

#i ncl ude <rpc/rpc. h>
void rpc_sm enabl e_al | ocat e(unsi gned32 *st at us)
void rpc_ss_enabl e_al | ocat e(voi d)

Applications can call r pc_sm enabl e_al | ocat e to establish a stub memory
management environment in cases where one is not established by the stub itself. A
stub memory management environment must be established before any calls are made
torpc_sm al | ocat e(3). For service code called from the server stub, the stub
memory management environment isnormally established by the stub itself. Code that
is called from other contexts needsto call r pc_sm enabl e_al | ocat e before calling
rpc_sm al | ocat e (eg., if theservice codeis called directly instead of from the stub).

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_enabl e_al | ocat e istheexception-returning version of thisfunction and has
no st at us output parameter. The following exceptions are raised by this routine.

rpc_x_no_mnenory
Insufficient memory available to set up necessary data structures.

None.

rpc_sm al | ocat e(3), rpc_sm di sabl e_al | ocat e(3), TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual

rpc_sm_free(3)

rpc_sm_free(3)

Name

Synopsis

Description

Return Values

See Also

rpc_smfree, rpc_ss_free-freesmemory allocated by the rpc_sm_alocate
routine

#i ncl ude <rpc/rpc. h>
void rpc_smfree(idl _void p t node to free, unsigned32 *status)
void rpc_ss free(idl _void p_ t node to free)

Applications call rpc_sm fr ee to release memory alocated by rpc_sm_allocate(3).
The input parameter, node_t o_f r ee, specifies a pointer to memory allocated by
rpc_sm al | ocat e. Note that in I1SO standard C environments, i dl _void_p_t is
defined asvoi d * and in other environmentsis defined aschar *.

When the stub allocates memory within the stub memory management environment,
service code called from the stub can also user pc_sm f r ee to release memory
allocated by the stub.

Unpredictable behavior resultsif r pc_ss_f r ee iscalled with apointer to memory not
allocated by r pc_sm al | ocat e or memory allocated by r pc_sm al | ocat e, but not
the first address of such an allocation.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine compl eted successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_free isthe exception-returning version of this function and has no st at us
output parameter. No exceptions are raised.

None.

rpc_sm al | ocat e(3), TUXEDO TxRPC Qui de

BEA TUXEDO Reference Manual 81

rpc_sm_set_client_alloc_free(3)

rpc_sm_set_client_alloc_free(3)

Name rpc_smset client_alloc_free,rpc_ss_set _client_alloc_free-setsthe
memory allocation and freeing mechanisms used by the client stubs

Synopsis #i ncl ude <rpc/rpc. h>
void rpc_smset_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl_void p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl_void p_t ptr))

Description Therpc_sm set_cli ent _al | oc_fr ee routine overrides the default routines that
the client stub usesto manage memory. Theinput parameters, p_al | ocat e and
p_free specify memory allocator and free routines. The default memory
management routines are ISO C mal 1 oc() and f r ee() except when the remote call
occurs within server code in which case the memory management routines must be
rpc_ss_al l ocate(3)and rpc_ss_free(3).

The output parameter, st at us, returnsthe status code from this routine. This status
codeindicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_all oc_freeistheexception-returningversion of thisfunction
and has no st at us output parameter. The following exceptions are raised by this
routine.

rpc_x_no_mnenory
Insufficient memory available to set up necessary data structures.

Return Values None.

82

See Also rpc_sm all ocat e(3), rpc_sm free(3), BEATUXEDO TxRPC Guide

BEA TUXEDO Reference Manual

rpc_sm_swap _client_alloc_free(3)

rpc_sm_swap_client_alloc_free(3)

Name

Synopsis

Description

rpc_smswap_client_alloc_free,
rpc_ss_swap_client_all oc_free-exchanges current memory allocation and
freeing mechanism used by client stubs with one supplied by client

#i ncl ude <rpc/rpc. h>
void rpc_smswap_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl_void p_t ptr)
idl_void pt (**p_p_old_allocate)(unsigned | ong size)
void (**p_p_old free)(idl _void p_t ptr),
unsi gned32 *status)

void rpc_ss _swap_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl_void p_t ptr)
idl_void pt (**p_p_old_allocate)(unsigned | ong size)
void (**p_p_old free)(idl _void p t ptr))

Therpc_sm swap_client_all oc_free routine exchangesthe current allocate and
free mechanisms used by the client stubs for routines supplied by thecaller. Theinput
parameters, p_al | ocat e and p_fr ee, specify new memory alocation and free
routines. The output parameters, p_p_ol d_al I ocateand p_p_ol d_free returnthe
memory allocation and free routines in use before the call to this routine.

When acallableroutineisan RPC client, it may need to ensure which allocate and free
routines are used, despite the mechanism its caller had selected. This routine allows
scoped replacement of the allocation/free mechanism to allow this.

The output parameter, st at us, returns the status code from thisroutine. This status
codeindicateswhether theroutine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_swap_client_all oc_free isthe exception-returning version of this
function and hasno st at us output parameter. The following exceptionsare raised by
thisroutine.

BEA TUXEDO Reference Manual 83

rpc_sm_swap_client_alloc_free(3)

rpc_x_no_mnenory
Insufficient memory available to set up necessary data structures.

Return Values None.

See Also rpc_sm all ocat e(3), rpc_sm free(3),rpc_smset_client_alloc_free(3),
BEA TUXEDO system Qui de

84 BEA TUXEDO Reference Manual

setlocale(3)

setlocale(3)

Name

Synopsis

Description

Files

set | ocal e-modify and query a program’s locale

#i ncl ude <l ocal e. h>
char *setlocale (int category, const char *|ocale);

set | ocal e selects the appropriate piece of the program’s locale as specified by the
cat egor y and | ocal e arguments. The cat egor y argument may have the following
values:

LC_CTYPE
LC_NUMERI C
LC TI ME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC ALL

These names are defined inthe | ocal e. h header file. For theBEA TUXEDO system
compatibility functions, set | ocal e alowsonly asingle ! ocal e for al categories.
Setting any category istreated the same asLC_ALL, which names the program’s entire
locae.

A value of “C” for/ ocal e specifies the default environment.

A value of " for! ocal e specifies that the locale should be taken from an environment
variable. The environment variallaNGis checked for a locale.

At program startup, the equivalent of
setl ocal e(LC ALL, "C")

is executed. This has the effect of initializing each category to the locale described by
the environment “C”.

If a pointer to a string is given féocal e, set | ocal e attempts to set the locale for all

the categories tbocal e. Thel ocal e must be a simple locale, consisting of a single
locale. Ifset 1 ocal e fails to set the locale for any category, a null pointer is returned
and the program's locale for all categories is not changed. Otherwise, locale is returned.

A null pointer for/ ocal e causeset | ocal e to return the current locale associated
with thecat egor y. The program's locale is not changed.

$TUXDI R/ 1 ocal e/ C/ LANG NFO - ti nme and noney dat abase for the Clocal e

$TUXDI R/ 1 ocal e/ I ocal e/ * - | ocale specific information for each
local e $TUXDI R/ | ocal e/ O * _CAT - text messages for the Clocale

BEA TUXEDO Reference Manual 85

setlocale(3)

Note A composite localeisnot supported. A composite locale is a string beginning with a
“I", followed by the locale of each category, separated by a “/".

See Also cti me(3C),ct ype(3C),get dat e(3C),I ocal econv(3C),pri nt f (3S),
strftime(3C),strtod(3C),environ(5), mkl angi nf o(1)

86 BEA TUXEDO Reference Manual

strerror(3)

strerror(3)

Name

Synopsis

Description

See Also

st rerror -get error message string

#i ncl ude <string. h>
char \(**strerror (int errnum;

st rerror mapsthe error number in er r numto an error message string, and returns a
pointer to that string. st r er r or uses the same set of error messages as per ror . The

returned string should not be overwritten.

perror (3)

BEA TUXEDO Reference Manual

87

strftime(3)

strftime(3)

Name strfti me-convert date and time to string
Synopsis #i ncl ude <time.h>

size_ t *strftime (char *s, size_t nmaxsize, const char *format, const
struct tm*tineptr);

Description strfti me places charactersinto the array pointed to by s as controlled by the string
pointed to by f or mat . The f or mat string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null character)
are copied unchanged into the array. For st r f t i me, no morethan naxsi ze characters
are placed into the array.

If format is (char *)0, then the locale’s default format is used. The default format is
thesameas" %" .

Each directive isreplaced by appropriate characters as described in the following list.
The appropriate characters are determined by the LC_TI ME category of the program’s
locale and by the values contained in the structure pointed to by ti nept r.

Directives

%6 sameas %

% locale’s abbreviated weekday name

%A locale’s full weekday name

% locale's abbreviated month name

98 locale's full month name

% locale’s appropriate date and time representation

% locale’s date and time representation as produced by date(1)

%l day of month (01-31)

% date as Yom/%d/%y

% day of month (1-31; single digits are preceded by a blank)

% locale’'s abbreviated month name.

88 BEA TUXEDO Reference Manual

strftime(3)

Directives
%+ hour (00-23)
% hour (01-12)
% day number of year (001 - 366)
%mn month number (01 - 12)
%M minute (00-59)
% sameas\
% locale’s equivalent of either AM or PM
% time as %I:%M:%S [AM|PM]
MR time as %H:%M
%5 seconds (00 - 61), allowsfor leap seconds
% insertatab
%l time as %H:%M: %S
%J) week number of year (00 - 53), Sunday isthe first day of week 1
%v weekday number (0-6), Sunday =0
9NV week number of year (00 - 53), Monday isthe first day of week 1
%« locale’s appropriate date representation
%X locale’s appropriate time representation
% year within century (00 - 99)
%Y year asccyy (e.g. 1986)
% time zone name or no characters if no time zone exists

The difference between %4Jand %amMiesin which day is counted asthefirst of the week.
Week number 01 isthefirst week in January starting with a Sunday for 94J or aM onday
for vwv Week number 00 contains those days before the first Sunday or Monday in
January for %J and % respectively.

BEA TUXEDO Reference Manual 89

strftime(3)

90

Selecting the
Output
Language
Timezone

Examples

Files

See Also

If the total number of resulting characters including the terminating null character is
not more than naxsi ze, strfti me, returns the number of characters placed into the
array pointed to by s not including the terminating null character. Otherwise, zero is
returned and the contents of the array are indeterminate.

By default, the output of st rfti ne, appearsin US English. The user can request that
theoutput of st rf t i me bein aspecific language by settingthe ! ocal e for cat egor y
LC TIMEinsetl ocal e(3).

Thetimezone is taken from the environment variable Tz. See ct i me(3C) for a
description of TZ.

The example illustratesthe use of st rf t i me. It shows what the string in st r would
look like if the structure pointed to by ¢ npt r contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A % % %", tnptr)
Thisresultsin st r containing "Thursday Aug 28 240".

$TUXDI R/ | ocal e/ | ocal el LANG NFO- file containing compiled local e-specific date
and time information

nkl angi nf o(1), set | ocal e(3)

BEA TUXEDO Reference Manual

tpabort(3)

tpabort(3)
Name

Synopsis

Description

Return Values

Errors

t pabort-routine for aborting current transaction

#i ncl ude <atni.h>
int tpabort(long flags)

t pabor t () signifies the abnormal end of atransaction. When this call returns, all
changes made to resources during the transaction are undone. Like t pconmi t (3), this
function can becalled only by theinitiator of atransaction. Participants (that is, service
routines) can expresstheir desire to have atransaction aborted by callingt pr et ur n(3)
with TPFAI L.

If t pabort () iscalled while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller'stransaction are nolonger valid. Call descriptors not associated with the
caller'stransaction remain valid.

For each open connection to a conversational server in transaction mode, t pabor t ()
will send aTPEV_DI SCONI MMevent to the server, whether or not the server has control
of a connection. Connections opened beforet pbegi n(3) or with the TPNOTRAN flag
(that is, not in transaction mode) are not affected.

Currently, t pabor t ()’'ssoleargument, f / ags, isreserved for future use and should be
setto 0.

t pabort () returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pabor t () fails and setst perr no to:

[TPEI NVAL]
f1 ags isnot equal to 0. The caller's transaction is not affected.

[TPEHEURI STI C]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD]
Dueto somefailure, thework done on behalf of thetransaction can have been
heuristically completed.

[TPEPROTC]
t pabort () was called in an improper context (for example, by a participant).

[TPESYSTEM

BEA TUXEDO Reference Manual 91

tpabort(3)

92

A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

Notices When using t pbegi n(3), t pcomi t (3) and t pabor t () to delineate aBEA TUXEDO
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t (3) or t pabor t ().

See Also t pbegi n(3),t pcommi t (3), t pget | ev(3)

BEA TUXEDO Reference Manual

tpacall(3)

tpacall(3)
Name

Synopsis

Description

t pacal | -routine for sending a service request

#i ncl ude <atni.h>
int tpacall(char *svc, char *data, long len, long flags)

t pacal I () sends a request message to the service named by svc. The request is sent
out at the priority defined for svc unless overridden by aprevious call to t pspri o(3).
If dat aisnon-NULL, it must point to abuffer previously allocated by t pal | oc(3) and
I en should specify the amount of data in the buffer that should be sent. Note that if
dat a points to abuffer of atype that does not require alength to be specified, (for
example, an FM_ fielded buffer), then / enisignored (and may be0). If dat aisNULL,
I enisignored and arequest is sent with no data portion. Thetype and sub-type of dat a
must match one of the types and sub-types recognized by svc. Note that for each
request sent while in transaction mode, a corresponding reply must ultimately be
received.

Following isalist of valid f/ ags.

TPNOTRAN

If the caller isin transaction mode and thisflag is set, then when svc is
invoked, it is not performed on behalf of the caller's transaction. If svc
belongs to a server that does not support transactions, then this flag must be
set when the caller isin transaction mode. Notethat svc may still be invoked
in transaction mode but it will not bethe sametransaction: a svc may have as
aconfiguration attribute that it is automatically invoked in transaction mode.
A callerintransaction modethat setsthisflagisstill subject to thetransaction
timeout (and no other). If a service fails that was invoked with thisflag, the
caller'stransaction is not affected.

TPNOREPLY
Informs tpacall () that areply is not expected. When TPNOREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When the
caller isin transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK
Therequestisnot sent if ablocking condition exists (for example, theinternal
buffersinto which the message is transferred are full). When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

BEA TUXEDO Reference Manual 93

tpacall(3)

Return Values

94

Errors

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isre-issued. tpacal() fails and

Upon successful completion, t pacal | () returnsadescriptor that can beusedto receive
the reply of the request sent. Otherwise it returns avalue of \-1 and setst per rno to
indicate the error condition.

Under the following conditions, t pacal | () failsand setst per r no to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, svc isNULL, dat a does not
point to space allocated with t pal | oc(3), or f/ ags areinvaid).

[TPENCENT]
Cannot send to svc because it does not exist or isa conversational service.

[TPEI TYPE]
The type and sub-type of dat a is not one of the allowed types and sub-types
that svc accepts.

[TPELI M T]
The caller’'s request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply, and is not sent on behalf of the caller’s

BEA TUXEDO Reference Manual

tpacall(3)

transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
tpacall() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred. If a message queue on aremote
location isfilled, TPEOS may be returned even if t pacal | returned
successfully.

See Also tpalloc(3),tpcall (3),tpcancel (3),tpgetrpl y(3),tpgprio(3),tpsprio(3)

BEA TUXEDO Reference Manual 95

tpadmcall(3)

tpadmcalli(3)

96

Name

Synopsis

Description

t padncal | -administer unbooted application

#include <atm . h>
#include <fm 32. h>
#i ncl ude <t padm h>

int tpadntall (FBFR32 *i nbuf, FBFR32 **outbuf, |ong flags)

t padncal | isused toretrieve and update attributes of an unbooted application. It may
also be used in an active application to perform direct retrievals of alimited set of
attributes without requiring communication to an external process. Thisverb provides
sufficient capability such that complete system configuration and administration can
take place through system provided interface routines.

i nbuf isapointer to an FML32 buffer previously allocated with t pal | oc(3) that
contains the desired administrative operation and its parameters.

out buf isthe address of a pointer to the FM L 32 buffer that should contain the results.
out buf must point to an FML 32 buffer originally allocated by t pal I oc(3). If the
same buffer isto be used for both sending and receiving, out buf should be set to the
address of i nbuf .

Currently, t padncal | ()'slast argument, 1 ags, isreserved for future use and must be
set to 0.

M B(5) should be consulted for generic information on construction of administrative
requests. TM_ M B(5) and APPQ_M B(5) should be consulted for information on the
classes that are accessible through t padncal | ().

There are four modes in which callsto t padncal | () can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only
operations permitted areto SET aNEW T_DOMAIN class object, thus
defining an initial configuration for the application, and to GET and SET
objects of the classes defined in APPQ_M B(5).

Mode 2: Unbooted, Configured Application:
Thecaller isassigned administrator or other privileges based on acomparison
of their uid/gid to that defined in the configuration for the administrator on
thelocal system. The caller may GET and SET any attributesfor any classin
T™M M B(5) and APPQ_M B(5) for which they have the appropriate
permissions. Note that some classes contain only attributes that are
inaccessible in an unbooted application and attempts to access these classes
will fail.

BEA TUXEDO Reference Manual

tpadmcall(3)

Environment

Variables

Notices

Return Values

Errors

Mode 3: Booted Application, Unattached Process:
Thecaller isassigned administrator or other privilegesbased on acomparison
of their uid/gid to that defined in the configuration for the administrator on
the local system. The caller may GET any attributes for any classin
T™ M B(5) for which they have the appropriate permissions. Similarly, the
caller may GET and SET any attributesfor any classin APPQ_M B(5), subject
to class-specific restrictions. Attributes accessible only while ACTIVE will
not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigned at t pi ni t ()
time. Thecaller may GET any attributes for any classin TM_M B(5) for which
they have the appropriate permissions. Additionally, the caller may GET and
SET any attributes for any class in APPQ M B(5), subject to class-specific
restrictions.

Accessto and update of binary BEA TUXEDO system application configuration files
through this interface routine is controlled through the use of UNIX System
permissions on directory and file names.

The following environment variables must be set prior to calling this routine.

TUXCONFI G
File or device name where the binary BEA TUXEDO system configuration
file for this application is or should be stored.

Use of the TA_OCCURS attribute on GET requestsis not supported when using
t padntal | (). GETNEXT requests are not supported when using t padncal | ().

t padncal | returns 0 on success and -1 on failure.

Under the following conditions, t padntal | () fails and setst per r no to one of the
following values. Except for TPEI NVAL, the caller’s output buffer, out buf , will be
modifiedtoincludeTA_ERROR, TA_STATUSand possibly TA_BADFLD attributes
to further qualify the error condition. See M B(5), TM_M B(5), and APPQ M B(5) for an
explanation of possible error codes returned in this fashion.

[TPEI NVAL]
Invalid arguments were specified. The f/ ags valueisinvalid or i nbuf or
out buf are not pointers to typed buffers of type “FML32.”

BEA TUXEDO Reference Manual 97

tpadmcall(3)

[TPEM B]
The administrative request failed. out buf is updated and returned to the
caller with FML 32 fields indicating the cause of the error asis discussed in
M B(5) and TM_M B(5).

[TPEPROTC)
t padncal | () was called in an improper context.

[TPERELEASE]
t padncal | () was called with the TUXCONFIG environment variable
pointing to a different rel ease version configuration file.

[TPEGCS]
An operating system error has occurred. A numeric value representing the
system call that failed isavailable in Uuni xerr .

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to user | og(3).

Interoperability ~ This interface supports access and update to the local configuration file and bulletin
board only; therefore, there are no interoperability concerns.

Portability =~ Thisinterfaceisavailableonly on UNIX System sitesrunning BEA TUXEDO Release
5.0 or later.

Files ${TUXDIR}/lib/libtmib.a, ${ TUXDIR}/lib/libgm.a,
${ TUXDIR}/lib/libtmib.so.r e/ >, ${ TUXDIR}/libllibgm.so.r el >

See Also M B(5), TM_M B(5), APPQ M B(5), EVENT_M B(5), ACL_M B(5), Ws_M B(5), BEA
TUXEDO Admi ni strator’s Qui de

98 BEA TUXEDO Reference Manual

tpadvertise(3)

tpadvertise(3)

Name tpadverti se(3)-routine for advertising a service name

Synopsis #i ncl ude <atmi . h>
int tpadvertise(char *svcnane, void (*func)(TPSVCINFO *))

Description t padverti se allows aserver to advertise the servicesthat it offers. By default, a
server’'s services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to amultiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of al servers sharing an MSSQ set.

t padverti se advertises svcnane for the server (or the set of servers sharing the

caller's MSSQ set). svcnane should be 15 characters or less, but cannot be NULL or

the NULL string (*"). (See *SERVICES section afbconf i g(5).)f unc is the address

of a BEA TUXEDO system service function. This function will be invoked whenever

a request fosvcnane is received by the servetunc cannot be NULL. Explicitly
specified function names (seer vopt s(5)) can be up to 128 characters long. Names
longer than 15 characters are accepted and truncated to 15 characters. Users should
make sure that truncated names do not match other service names.

If svcnane is already advertised for the server @&ndc matches its current function,
thent padverti se returns success (this includes truncated names that match already
advertised names). Howeversifcnane is already advertised for the server butc

does not match its current function, then an error is returned (this can happen if
truncated names match already advertised names).

Service names starting with dot (.) are reserved for administrative services. An error
will be returned if an application attempts to advertise one of these services.

Return Values t padverti se returns -1 on error and setser r no to indicate the error condition.
Errors Under the following conditions,padverti se fails and setsperr no to:

[TPEI NVAL]
svenane is NULL or the NULL string (*"),or begins with a “.” of unc is
NULL.

[TPELI M T]
svcnane cannot be advertised because of space limitations. (See
MAXSERVICES in the *RESOURCES sectionafbconf i g(5).)

BEA TUXEDO Reference Manual 99

tpadvertise(3)

[TPEMATCH]
svcnane is already advertised for the server but with a function other than
f unc. Although the function fails, svcnane remains advertised with its
current function (that is, f unc does not replace the current function).

[TPEPROTC)
t padverti se wascaled in an improper context (for example, by aclient).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

See Also tpservice(3c), t punadverti se(3c)

100 BEA TUXEDO Reference Manual

tpalloc(3)

tpalloc(3)
Name

Synopsis

Description

Return Values

Errors

t pal I oc(3)-routine for allocating typed buffers

#i ncl ude <atni.h>
char * tpalloc(char *type, char *subtype, long size)

t pal I oc() returnsa pointer to a buffer of type t ype. Depending on the type of buffer,
both subt ype and si ze are optional. The BEA TUXEDO system provides a variety
of typed buffers, and applications are free to add their own buffer types. Consult

t uxt ypes(5) for more details.

If subtypeisnon-NULL int nt ype_swfor aparticular buffer type, then subt ype
must be specified when t pal | oc() is called. The allocated buffer will be at least as
large asthe larger of si ze and df | t si ze, wheredf | t si ze is the default buffer size
specified in t mt ype_swfor the particular buffer type. For buffer type STRI NGthe
minimum is 512 bytes; for buffer types FM_ and VI Ewthe minimum is 1024 bytes.

Note that only the first eight bytes of ¢ ype and the first 16 bytes of subt ype are
significant.

Because some buffer types require initialization before they can be used, t pal I oc()

initializes a buffer (in a BEA TUXEDO system-specific manner) after it is allocated

and before it is returned. Thus, the buffer returned to the caller is ready for use. Note
that unless theinitiaization routine cleared the buffer, the buffer is not initialized to

zeros by t pal | oc().

Upon successful completion, t pal | oc() returnsapointer to a buffer of the appropriate
type aligned on along word; otherwise, it returns NUL L and setst per r no to indicate
the condition.

Under the following conditions, t pal | oc() fails and setst perr no to:

[TPEI NVAL]
Invalid arguments were given (for example, t ype isNULL).

[TPENCENT]
No entry int nt ype_sw matches t ype and, if non-NULL, subt ype.

[TPEPROTC)
t pal I oc() wascaled in an improper context.

BEA TUXEDO Reference Manual 101

tpalloc(3)

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is

written to alog file.

[TPEGCS]
An operating system error has occurred.

Usage If buffer initialization fails, the allocated buffer isfreed and t pal | oc() failsreturning
NULL.

This function should not be used in concert with nal | oc(3c), r eal | oc(3c), or
free(3c) inthe C library (for example, a buffer allocated with t pal I oc() should not
be freed with f r ee()).

Two buffer types are supported by any compliant implementation of the BEA
TUXEDO system extension. Detailsareini nt r o(3c).

See Also t pfree(3c), tpreall oc(3c), t pt ypes(3c)

102 BEA TUXEDO Reference Manual

tpbegin(3)

tpbegin(3)
Name

Synopsis

Description

Return Values

t pbegi n-routine for beginning a transaction

#i ncl ude <atni.h>
int tpbegin(unsigned |ong tineout, |ong flags)

A transaction in the BEA TUXEDO system is used to define asingle logical unit of

work that either wholly succeeds or has no effect whatsoever. A transaction alows

work being performed in many processes, at possibly different sites, to betreated asan

atomic unit of work. Theinitiator of atransaction usest pbegi n() and either

t pcommi t (3) or t pabort (3) to delineate the operations within a transaction. Once

t pbegi n() is caled, communication with any other program can place the latter (of
necessity, a server) in “transaction mode” (that is, the server's work becomes part of
the transaction). Programs that join a transaction are called participants. A transaction
always has one initiator and can have several participants. Only the initiator of a
transaction can catlpconmi t (3) ort pabor t (3). Participants can influence the
outcome of a transaction by the return values(s) they use when they call

t pr et ur n(3). Once in transaction mode, any service requests made to servers are
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections that it
initiated to conversational servers, these connections will not be upgraded to
transaction mode. It is as if tMeNOTRANflag had been specified on theconnect (3)

call.

t pbegi n()'s first argumentt i meout , specifies that the transaction should be allowed

at least i meout seconds before timing out. Once a transaction times out it must be
marked abort-only. If i meout is 0, then the transaction is given the maximum number
of seconds allowed by the system before timing out (that is, the time-out value equals
the maximum value for an unsigned long as defined by the system).

Currently,t pbegi n()'s second argument/ ags, is reserved for future use and must
be set to 0.

t pbegi n() returns \-1 on error and setser r no to indicate the error condition.

BEA TUXEDO Reference Manual 103

tpbegin(3)

Errors Under the following conditions, t pbegi n() failsand setst per r no to:

[TPEI NVAL]
flags isnot equal to 0.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred
starting the transaction.

[TPEPROTC)
t pbegi n() was called in an improper context (for example, the caler is
already in transaction mode).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

Notices When usingt pbegi n(), t pcomni t (3), and t pabor t (3) to delineatea BEA TUXEDO
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t (3) or t pabor t (3). See bui | dser ver (1) for details on
linking resource managersthat meet the XA interfaceinto aserver such that operations
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also t pabort (3),tpcomi t (3), t pget | ev(3), t pscnt (3)

104 BEA TUXEDO Reference Manual

tpbroadcast(3)

tpbroadcast(3)
Name tpbroadcast -routine to broadcast notification by name
Synopsis #i ncl ude <atmi . h>
int tpbroadcast(char *Imd, char *usrnanme, char *cltnane,
char *data, long len, long flags)
Description t pbroadcast () allows aclient or server to send unsolicited messages to registered

clients within the system. The target client set consists of those clients matching
identifiers passed to t pbr oadcast (). Wildcards can be used in specifying identifiers.

I'mi d, usrnane, and ¢! t nane arelogical identifiers used to select thetarget client set.
A NULL value for any argument constitutes awildcard for that argument. A wildcard
argument matches all client identifiers for that field. A O-length string for any
argument matches only 0-length client identifiers. Each identifier must meet the size
restrictions defined for the system to be considered valid, that is, each identifier must
be between 0 and MAXTI DENT charactersin length.

The data portion of the request is pointed to by dat a, abuffer previously allocated by
t pal 1 oc(3). I en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require alength to be specified (for example, an FM. fielded
buffer), then I en isignored (and may be 0). Also, dat a may be NULL, inwhich case
I enisignored. The buffer passes through the typed buffer switch routines just as any
other outgoing or incoming message would; for example, encode/decode are
performed automatically.

Following isalist of valid f/ ags.

TPNOBLOCK
Therequestisnot sent if ablocking condition exists (for example, theinternal
buffersinto which the message is transferred are full).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued. Upon successful return from t pbr oadcast (), the message
has been delivered to the system for forwarding to the selected clients.
t pbr oadcast () does not wait for the messageto be delivered to each selected
client.

BEA TUXEDO Reference Manual 105

tpbroadcast(3)

Return Values

Errors

Portability

Usage

t pbr oadcast () returns\-1 on failure and setst per r no to indicate the error condition.

Under the following conditions, t pbr oadcast () fails, sendsno broadcast messagesto
application clients, and setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, identifiers too long or invalid
flags). Note that use of anillegal LM Dwill cause tpbroadcast() to fail and
return TPEI NVAL. However, non-existent user or client nameswill simply
successfully broadcast to no one.

[TPETI ME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pbr oadcast () was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

Theinterfaces described int pnot i f y(3) are supported on native site UNIX-based
processors. In addition, the routinest pbr oadcast () and t pchkunsol () aswell asthe
functiont pset unsol () are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system due
to signd restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (See the description of the * RESOURCES NOTI FY
parameter in ubbconf i g(5) for a detailed discussion of notification methods.)

106 BEA TUXEDO Reference Manual

tpbroadcast(3)

Note that signaling of clientsis always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based notification. The id for the application administrator is identified as part
of the configuration file for the application.

If signal-based notification is selected for aclient, then certain ATMI calls can fail,
returning TPGOTSI G due to receipt of an unsolicited message if TPSI GRSTRT is not
specified. See ubbconf i g(5) and t pi ni t (3) for more information on notification
method selection.

See Also tpalloc(3),tpinit(3),tpnotify(3),tptern(3), ubbconfig(b)

BEA TUXEDO Reference Manual 107

tpcall(3)

tpcall(3)

108

Name

Synopsis

Description

t pcal | (3)-routine for sending service request and awaiting its reply

int tpcall(char *svc, char *idata, long ilen, char **odata, |ong \
*ol en, long flags)

t pcal I sendsarequest and synchronously awaitsitsreply. A call to this functionis
the same as calling t pacal | (3c) immediately followed by t pget r pl y(3c). t pcal |
sends a reguest to the service named by svc. The request is sent out at the priority
defined for svc unless overridden by a previouscall to t pspri o(3c). The dataportion
of arequest ispointed to by i dat a, abuffer previously allocated by t pal | oc(3c).

i I en specifies how much of i dat a to send. Note that if i dat a points to a buffer of a
typethat does not require alength to be specified, (for example, an FM_ fielded buffer),
then i I enisignored (and may be 0). Also, i dat amay be NULL, inwhichcase i/ en
isignored. Thetype and sub-type of i dat a must match one of the types and sub-types
recognized by svc.

odat a isthe address of a pointer to the buffer where areply isread into, and o/ en
pointsto the length of that reply. * odat a must point to abuffer originally allocated by
t pal | oc. If the samebuffer isto be used for both sending and receiving, odat a should
be set to the address of i dat a. FML and FM_32 buffers often assume a minimum size
of 4096 bytes; if the reply islarger than 4096, the size of the buffer isincreased to a
sizelarge enough to accommodate the data being returned. Also, if i dat aand* odat a
were equal whent pcal | wasinvoked, and * odat a is changed, then i dat a no longer
pointsto avalid address. Using the old address can lead to data corruption or process
exceptions.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

Thereceive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) areply buffer changed in size, compare itstotal size beforet pget rply
wasissued with */ en. Seei nt r o(3c) for moreinformation about buffer management.

If *ol en is 0 upon return, then the reply has no data portion and neither * odat a nor
the buffer it points to were modified. It is an error for * odat a or ol ento be NULL.

BEA TUXEDO Reference Manual

tpcall(3)

Return Values

Following isalist of valid f/ ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc is

invoked, it isnot performed on behalf of the caller’'stransaction. Notethat svc
may still be invoked in transaction mode but it will not be the same
transaction: a svc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
setsthisflag is still subject to the transaction timeout (and no other). If a
service fails that wasinvoked with this flag, the caller’s transaction is not
affected.

TPNOCHANGE
By default, if abuffer is received that differsin type from the buffer pointed

to by * odat a, then* odat a's buffer type changes to the received buffer'stype
so long as the receiver recognizes the incoming buffer type. When thisflagis
set, the type of the buffer pointed to by * odat a is hot allowed to change. That
is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to by * odat a.

TPNOBLOCK
Therequestisnot sent if ablocking condition exists (for example, theinternal

buffersinto which the message is transferred are full). Note that this flag
applies only to the send portion of tpcall: the function may block waiting for
the reply. When TPNOBLOCK is not specified and a blocking condition exists,
the caller blocks until the condition subsides or atimeout occurs (either
transaction or blocking timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to

be immune to blocking timeouts. However, if the caller isin transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system

call isre-issued.

Upon successful return fromt pcal I or upon return where t per r no is set to
TPESVCFAI L, t pur code contains an application defined value that was sent as part of
tpreturn(3c).tpcal | returns-1 on error and setst per r no to indicate the error
condition. If acall fails with a particular t per r no value, a subsequent call to

BEA TUXEDO Reference Manual 109

tpcall(3)

110

Errors

t perrordetai | (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the t per r or det ai | (3c) reference
page for more information.

Under thefollowing conditions, t pcal | failsand setst per r no to one of the following
values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

[TPEI NVAL]

Invalid arguments were given (for example, svc isNULL or f/ ags are
invalid).

[TPENCENT]
Can not send to svc because it does not exist, or it isaconversational service,
or the name provided begins with adot (.).

[TPEI TYPE]
Thetype and sub-type of i dat a isnot one of the allowed types and sub-types
that svc accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caler; or,
TPNOCHANGE was set in f | ags and the type and sub-type of * odat a do not
match the type and sub-type of the reply sent by the service. Neither * odat a,
its contents, nor * o/ enis changed. If the service request was made on behalf
of the caller’s current transaction, then the transaction is marked abort-only
since thereply is discarded.

[TPETRAN]
svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. In either case, neither * odat a, its contents, nor * o/ en is changed.
If atransaction timeout occurred, then with one exception, any attempts to
send new requests or receive outstanding replieswill fail with TPETI ME until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller’s transaction
(that is, tpacall with TPNOTRAN, TPNOBLOCK, and TPNOREPLY Set).

BEA TUXEDO Reference Manual

tpcall(3)

[TPESVCFAI L]

The serviceroutine sending the caller’'sreply called tpreturn(3c) with TPFAI L.
Thisisan application-level failure. The contents of the service'sreply, if one
was sent, isavailablein thebuffer pointedto by * odat a. If the service request
was made on behalf of the caller’s current transaction, then the transaction is
marked abort-only. Note that so long as the transaction has not timed out,
further communication may be performed before aborting the transaction and
that any work performed on behalf of the caller’s transaction will be aborted
upon transaction completion (that is, for subsequent communication to have
any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]

A service routine encountered an error either in tpreturn(3c) or tpforward(3c)
(for example, bad arguments were passed). No reply datais returned when
thiserror occurs (that is, neither * odat a, its contents, nor * o/ en is changed).
If the service request was made on behalf of the caller’s transaction (that is,
TPNOTRAN wWas not set), then the transaction is marked abort-only. Note that
so long as the transaction has not timed out, further communication may be
performed before aborting the transaction and that any work performed on
behalf of the caller'stransaction will be aborted upon transaction completion
(thatis, for subsequent communication to have any lasting effect, it should be
done with TPNOTRAN set). If either SVCTI MEQUT in the ubbconfi g file or
TA_SVCTI MEQUT in the TM_M B is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]

A blocking condition was found on the send call and TPNOBLOCK was
specified.

[TPGOTSI G

A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC]

tpcal I wascalledin animproper context.

[TPESYSTEM

[TPECS]

A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

An operating system error has occurred. If a message queue on aremote
location isfilled, TPEOS may be returned even if t pcal | returned
successfully.

BEA TUXEDO Reference Manual 111

tpcall(3)

See Also tpal I oc(3c),t pacal | (3c), t perrordetail (3c), t pf or war d(3c), t pf r ee(3c),
t pgpri o(3c), t preal | oc(3c), t pret urn(3c), t pspri o(3c),
tpstrerrordetail (3c), tptypes(3c)

112 BEA TUXEDO Reference Manual

tpcancel(3)

tpcancel(3)

Name

Synopsis

Description

Return Values

Errors

See Also

t pcancel -routine for canceling a call descriptor for outstanding reply

#i ncl ude <atni.h>
int tpcancel (int cd)

t pcancel () cancels acall descriptor, cd, returned by t pacal | (3). Itisan error to
attempt to cancel a call descriptor associated with a transaction.

Upon success, cd isno longer valid and any reply received on behalf of cd will be
silently discarded.

t pcancel () returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pcancel () failsand setst per r no to:

[TPEBADDESC]
cdisaninvalid descriptor.

[TPETRAN]
cd() is associated with the caller’s transaction. cd remains valid and the
caller's current transaction is not affected.

[TPEPROTC)
tpcancel () was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

t pacal I (3)

BEA TUXEDO Reference Manual 113

tpchkauth

(3¢)

tpchkauth(3¢)

Name

Synopsis

Description

Return Values

Errors

Interoperability

Portability

See Also

t pchkaut h-routine for checking if authentication reguired to join an application
#i nclude <atm . h>
i nt tpchkaut h(void)

t pchkaut h() checksif authentication is required by the application configuration.
Thisistypically used by application clients prior to calling t pi ni t (3c) to determineif
apassword should be obtained from the user.

t pchkaut h() returns one of the following non-negative values on success.

TPNOAUTH
indicates that no authentication is required.

TPSYSAUTH
indicates that system authentication only is required.

TPAPPAUTH
indicates that both system and application specific authentication are
required.

It returns-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pchkaut h() failsand setst per r no to:

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pchkaut h() isavailable only on sites running Release 4.2 or later.

Theinterfaces described in t pchkaut h(3c) are supported on UNIX, Windows, and
MS-DOS operating systems. However, signal-based notification is not supported on
16-bit Windows or MS-DOS platforms. If it isselected at t pi ni t () time, then a
user | og(3c) message is generated and the method is automatically set to dip-in.

t pi ni t (3c)

114 BEA TUXEDO Reference Manual

tpchkunsol(3)

tpchkunsol(3)

Name

Synopsis

Description

Return Values

Errors

Portability

t pchkunsol-routine for checking for unsolicited message

#i ncl ude <atni.h>
int tpchkunsol (voi d)

t pchkunsol () isused by aclient to trigger checking for unsolicited messages. Calls
to thisroutine in a client using signal-based notification do nothing and return
immediately. This call has no arguments. Callsto thisroutine can result in calls to an
application-defined unsolicited message handling routine by the BEA TUXEDO
system libraries.

Upon successful completion, t pchkunsol () returns the number of unsolicited
messages dispatched; otherwise it returns\-1 on failure and sets t per r no to indicate
the error condition.

Under the following conditions, t pchkunsol () failsand setst per r no to:

[TPEPROTC)
t pchkunsol () was called in animproper context (for example, from withina
server).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnot i f y(3) are supported on native site UNIX-based
processors. In addition, the routinest pbr oadcast () andt pchkunsol () aswell asthe
functiont pset unsol () are supported on UNIX and MS-DOS workstation processors.

Clientsthat select signal-based notification may not be signal-able by the system due
to signal restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client isnotified then and
thereafter via dip-in notification. (See the description of the * RESOURCES NOTI FY
parameter in ubbconf i g(5) for adetailed discussion of notification methods.) Note
that signaling of clients is always done by the system so that the behavior of
notification is consistent regardl ess of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based notification. The ID for the application administrator isidentified as part
of the configuration file for the application.

BEA TUXEDO Reference Manual 115

tpchkunsol(3)

If signal-based notification is selected for a client, then certain ATMI calls can fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified. See ubbconfi g(5) andt pi ni t (3) for more information on notification

method selection.

See Also t pbroadcast (3), t pi nit (3), t pnoti fy(3), t pset unsol (3)

116 BEA TUXEDO Reference Manual

tpclose(3)

tpclose(3)
namsSe

Synopsis

Description

Return Values

Errors

See Also

tpclose-routine for closing a resource manager

#i ncl ude <atni.h>
int tpclose(void)

t pcl ose() tears down the association between the caller and the resource manager to
whichitislinked. Since resource managers differ intheir cl ose semantics, the
specific information needed to close a particular resource manager is placed in a
configuration file.

If aresource manager isalready closed (thatis, t pcl ose() iscalled morethan once),
no action istaken and successis returned.

t pcl ose() returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pcl ose() failsand setst per r no to:

[TPERVERR]
A resource manager failed to close correctly. Moreinformation concerning
thereason aresource manager failed to close can be obtained by interrogating
aresource manager in its own specific manner. Notethat any callsto
determine the exact nature of the error hinder portability.

[TPEPROTC]
t pcl ose() was called in an improper context (for example, while the caller
isin transaction mode).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alogfile.

[TPECS]
An operating system error has occurred.

t popen(3)

BEA TUXEDO Reference Manual 117

tpcommit(3)

tpcommit(3)

118

Name

Synopsis

Description

t pcommi t -routine for committing current transaction

#i nclude <atm . h>
int tpconmt(long flags)

t pcommi t () signifies the end of atransaction, using a two-phase commit protocol to
coordinate participants. t pconmi t () can be called only by theinitiator of atransaction.
If any of the participants cannot commit the transaction (for example, they call

t pr et ur n(3) with TPFAI L), then the entire transaction is aborted and t pconmi t ()
fails. That is, all of the work involved in the transaction is undone. If al participants
agree to commit their portion of the transaction, then this decision is logged to stable
storage and al participants are asked to commit their work.

Depending on the setting of the TP_COMM T_CONTROL characteristic (seet pscnt (3)),
t pcomi t () can return successfully either after the commit decision has been logged
or after the two-phase commit protocol has completed. If t pcomni t () returns after the
commit decision has been logged but before the second phase has completed
(TP_CMI_LOGGED), then all participants have agreed to commit the work they did on
behalf of the transaction and should fulfill their promise to commit the transaction
during the second phase. However, because t pcommi t () isreturning before the second
phase has completed, there is a hazard that one or more of the participants can
heuristically completetheir portion of thetransaction (in amanner that isnot consistent
with the commit decision) even though the function has returned success.

If the TP_COWM T_CONTROL characteristicis set suchthat t pcommi t () returns after the
two-phase commit protocol has completed (TP_CMI_COMPLETE), then itsreturn value
reflectsthe exact status of the transaction (that is, whether the transaction heuristically
completed or not).

Note that if only a single resource manager is involved in atransaction, then a

one-phase commit is performed (that is, the resource manager is not asked whether or
not it can commit; it is simply told to commit). In this case, the TP_COMM T_CONTROL
characteristic has no bearing and t pconmi t () will return heuristic outcomesif present.

If t pconmi t () iscalled while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller’stransaction are no longer valid. Call descriptorsnot associated with the
caller’s transaction remain valid.

BEA TUXEDO Reference Manual

tpcommit(3)

Return Values

Errors

t pcommi t () must be called after all connections associated with the caller’'stransaction
are closed (otherwise TPEABORT isreturned, the transaction is aborted and these
connections are disconnected in a disorderly fashion with a TPEV_DI SCONI MMevent).
Connections opened before t pbegi n(3) or with the TPNOTRAN flag (that is,
connections not in transaction mode) are not affected by callsto t pcommi t () or

t pabort (3).

Currently, t pconmi t ()'s sole argument, f/ ags, is reserved for future use and must be
setto 0.

t pcommi t () returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pconmi t () failsand setst per r no to:

[TPEI NVAL]
f1 ags isnot equal to 0. The caller's transaction is not affected.

[TPETI ME]
The transaction timed out and the status of the transaction is unknown (that
is, it can have been either committed or aborted). Note that if the transaction
timed out and its status is known to be aborted, then TPEABORT is returned.

[TPEABCRT]
The transaction could not commit because either the work performed by the
initiator or by one or more of its participants could not commit. Thiserror is
also returned if t pconmi t () is called with outstanding replies or open
conversational connections.

[TPEHEURI STI C]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD]
Dueto somefailure, thework done on behalf of thetransaction can have been
heuristically completed.

[TPEPROTC]
t pcommi t () wascalled inan improper context (for example, by aparticipant).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

BEA TUXEDO Reference Manual 119

tpcommit(3)

[TPEGCS]
An operating system error has occurred.

Notices When using t pbegi n(), t pconmi t () and t pabort () to delineate aBEA TUXEDO
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t () or t pabor t (). See bui | dser ver (1) for detailson
linking resource managersthat meet the XA interfaceinto aserver such that operations
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also t pabort (3), t pbegi n(3), t pconnect (3), t pget | ev(3), t pr et urn(3), t pscnt (3)

120 BEA TUXEDO Reference Manual

tpconnect(3)

tpconnect(3)
Name

Synopsis

Description

t pconnect -routine for establishing a conversational service connection
#i ncl ude <atni.h>

int tpconnect(char *svc, char *data, long len, long flags)

t pconnect () alows aprogram to set up a half-duplex connection to a conversational
service, sve. The name must be one of the conversational service names posted by a
conversational server.

Aspart of setting up a connection, the caller can pass application defined data to the
listening program. If the caller chooses to pass data, then dat a must point to a buffer
previously alocated by t pal | oc(3). / en specifies how much of the buffer to send.
Note that if dat a points to a buffer of atype that does not require alength to be
specified, (for example, an FM fielded buffer), then / en isignored (and may be 0).
Also, dat a can be NULL inwhich case I en isignored (no application datais passed
to the conversationa service). The type and sub-type of dat a must match one of the
types and sub-typesrecognized by svc. dat a and I en are passed to the conversational
serviceviathe TPSVC NFOstructure with which the serviceisinvoked; the service does
not haveto cal t pr ecv(3) to get the data.

Following isalist of valid f/ ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc is
invoked, it isnot performed on behalf of the caller’'stransaction. Notethat svc
may still be invoked in transaction mode but it will not be the same
transaction: a sve may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
setsthisflag is still subject to the transaction timeout (and no other). If a
service fails that wasinvoked with this flag, the caller’s transaction is not
affected.

TPSENDONLY
The caller wantsthe connection to be set up initially such that it can only send
data and the called service can only receive data (that is, the caller initially
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.

BEA TUXEDO Reference Manual 121

tpconnect(3)

Return Values

122

Errors

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the service
being called initially has control of the connection). Either TPSENDONLY or
TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the message is
sent are full). Note that this flag applies only to the send portion of
t pconnect (); the function may block waiting for an acknowledgement from
the server. When TPNOBLOCK is not specified and ablocking condition exists,
the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted call is
re-issued.

Upon successful completion, t pconnect () returns a descriptor that is used to refer to
the connection in subsequent calls. Otherwiseit returns\-1 and setst per rno to
indicate the error condition.

Under the following conditions, t pconnect () failsand setst per r no to an error code
listed below. (Unless otherwise noted, failure does not affect the caller’stransaction, if
one exists)

[TPEI NVAL]
Invalid arguments were given (for example, svc iSNULL, dat a is
non-NULL and does not point to a buffer allocated by t pal | oc(3),
TPSENDONLY or TPRECVONLY was hot specified in f/ ags, or f | ags are
otherwise invalid).

[TPENCENT]
Cannot initiate a connection to svc because it does not exist or is not a
conversational service.

BEA TUXEDO Reference Manual

tpconnect(3)

See Also

[TPEI TYPE]
The type and subtype of dat a is not one of the allowed types and subtypes
that svc accepts.

[TPELI M T]
The caller's request was not sent because the maximum number of
outstanding connections has been reached.

[TPETRAN]
svc belongs to a program that does not support transactions and TPNOTRAN
was not set.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified. If atransaction timeout occurred, then any attempts to send or
receive messages on any connections or to start a new connection will fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t pconnect () was caled in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

tpal 1 oc(3), t pdi scon(3), t precv(3), t psend(3), t pservi ce(3)

BEA TUXEDO Reference Manual 123

tpconvert(3¢)

tpconvert(3¢)

Name

Synopsis

Description

Return Values

t pconver t -convert structures to/from string representations

#include <atm . h>
#i ncl ude <xa. h>

int tpconvert(char *strrep, char *binrep, |long flags)

t pconver t () converts the string representation of interface structures (st r r ep) to or
from the binary representation (bi nr ep).

Both the direction of the conversion and the interface structure type are determined
from the f 1 ags argument. To convert a structure from binary representation to string
representation, the programmer must set the TPTOSTRI NG hit in f/ ags. To convert a
structure from string to binary the programmer must clear the bit. The following flags
are defined to indicate the particular structure type to be converted; only one may be
specified at atime:

TPCONVCLTI D
Convert CLIENTID (see atmi.h).

TPCONVTRANI D
Convert TPTRANID (see atmi.h).

TPCONVXI D
Convert XID (see xa.h).

For conversions from binary to string representation, st r r ep should be at least
TPCONVMAXSTR characters in length.

Note that unequal string versions of TPTRANI Dand Xl D values may be considered
equal by the system when accessing TM M B(5) classesthat allow these values as key
fields (for example, T_TRANSACTI ON or T_ULGG). Therefore, string values for these
data types should not be fabricated or manipulated by application programs.

TM M B(5) guarantees that only objects matching the global transaction identified by
the string are returned when one of these valuesis used as a key field.

t pconvert () returns -1 on failure and setst per r no to indicate the error condition.

124 BEA TUXEDO Reference Manual

tpconvert(3¢)

Errors

Portability

See Also

Under the following conditions, t pconver t () fails and setst per r no to one of the
following values.

[TPEI NVAL]
Invalid arguments were specified. st rrep or bi nrep isaNULL pointer, or
f1 ags does not indicate exactly one structure type.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed is availablein Uuni xerr .

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to userlog(3).

Thisinterfaceisavailable only on BEA TUXEDO Release 5.0 or later. Thisinterface
is available on workstation platforms.

t pservi ce(3), t presume(3), t psuspend(3), t x_i nf o(3), TM_M B(5)

BEA TUXEDO Reference Manual 125

tpcryptpw(3)

tpcryptpw(3)
Name

Synopsis

Description

Return Values

Errors

Portability

Files

See Also

t pcr ypt pw-encrypt application password in administrative request

#include <atm . h>
#include <fm 32. h>

int tpcrypt pw FBFR32 *buf)

t pcr ypt pw() is used to encrypt the application password stored in an administrative
reguest buffer prior to sending the request for servicing. Application passwords are
stored as string valuesusing the FM L 32 field identifier TA_ PASSWORD. Thisencryption
isnecessary to insure that clear text passwords are not compromised and that
appropriate propagation of the update can take place to all active application sites.
Additional system fields may be added to the callers buffer and existing fields may be
modified to satisfy the request.

t pcr ypt pw() returns -1 on failure and setst per r no to indicate the error condition.

Under the following conditions, t pcr ypt pw() failsand setst per r no to one of the
following values:

[TPEI NVAL]
Invalid arguments were specified. The buf valueis NULL, does not point to
aFML 32 typed buffer or appdir could not be determined from theinput buffer
or the environment.

[TPEPERM
The calling process did not have the appropriate permissions necessary to
perform the requested task.

[TPEGCS]
An operating system error has occurred. A numeric value representing the
system call that failed isavailable in Uuni xerr .

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to userlog(3).

Thisinterfaceisavailable only on UNIX System sitesrunning BEA TUXEDO Release
5.0 or later. Thisinterface is not available to workstation clients.

H TUXDIR}/lib/libtmib.a, ${ TUXDIR}/lib/libtmib.so.<r el >
M B(5), TM_M B(5), BEA TUXEDO Administrator's Guide

126 BEA TUXEDO Reference Manual

tpdequeue(3)

tpdequeue(3)

Name

Synopsis

Description

t pdequeue-routine to dequeue a message from a queue

#i ncl ude <atni.h>
i nt tpdequeue(char *gspace, char *gname, TPQCTL *ctl, char **data,
long *len, long flags)

t pdequeue() dequeues a message for processing from the queue named by gnane in
the gspace queue space.

By default, the message at the top of the queue is dequeued. The default order of
messages on the queue is defined when the queue is created. The application can
request a particular message for degueuing by specifying its message identifier using
the ct | parameter. ct ! flags can aso be used to indicate that the application wants to
wait for amessage, in the case where a message is not currently available. See the
section below describing this parameter.

dat a is the address of a pointer to the buffer into which a messageisread, and/ en
points to the length of that message. * dat a must point to abuffer originally allocated
by t pal I oc(3). To determine whether a message buffer changed in size, compareits
(total) sizebeforet pdequeue() wasissued with */ en. If *I enislarger, then the buffer
has grown; otherwise, the buffer has not changed size. Note that * dat a may change
for reasons other than the buffer’s size increased. If */ en is 0 upon return, then the
message dequeued has no data portion and neither * dat a nor the buffer it pointsto
were modified. It isan error for * dat a or / en to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mode and
the TPNOTRAN flag is not set. This has the effect that if t pdequeue() returns

successfully and the call er's transaction iscommitted successfully, then the messageis
deleted from the queue. If the caller'stransaction is rolled back either explicitly or as
theresult of atransaction timeout or some communication error, then the message will
be left on the queue (that is, the deletion of the message from the queue isaso rolled

back). This can be exploited to “peek” at a message on the queue, rolling back the

transaction to leave the message on the queue (note that this cannot be done in

TPNOTRAN mode as described below). It is not possible to enqueue and dequeue the

same message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in

transaction mode, or tHPNOTRAN flag is set. The message is dequeued in a separate

transaction. If a communication error or a timeout occurs (either transaction or
blocking timeout), the application will not know whether or not the message was
successfully dequeued and the message may be lost.

BEA TUXEDO Reference Manual 127

tpdequeue(3)

128

Following isalist of valid f I ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then the messageis not
dequeued within the same transaction as the caller. A caller in transaction
mode that setsthisflagisstill subject to the transaction timeout (and no other)
when degueuing the message. |f message dequeuing fails, the caller’s
transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists (for example, the
internal buffersinto which the message is transferred are full). If such a
condition occurs, the call failsand t per r no is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsidesor atimeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAIT option is specified.

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When thisflag is set, thetype of the buffer pointed to by * dat aisnot allowed
to change. By default, if a buffer isreceived that differsin type from the
buffer pointed to by * dat a, then * dat a's buffer type changes to the received
buffer'stype so long asthe receiver recognizestheincoming buffer type. That
is, the type and sub-type of the dequeued message must match the type and
sub-type of the buffer pointed to by * dat a.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isre-issued. When TPSI GRSTRT is not specified and asignal interruptsa
system call, then t pdequeue() failsand t per r no is set to TPGOTSI G.

If t pdequeue() returns successfully, the application can retrieve additional
information about the message using ct / data structure. The information may include
the message identifier for the dequeued message, a correlation identifier that should
accompany any reply or failure message so that the originator can correlate the
message with the original request, the name of areply queue if areply isdesired, and
the name of the failure queue on which the application can queue information
regarding failure to dequeue the message. This is described below.

BEA TUXEDO Reference Manual

tpdequeue(3)

Control
Parameter

The TPQCTL structure is used by the application program to pass and retrieve

parameters associated with dequeuing the message. The f 1 ags element of TPQCTL is
used to indicate what other elementsin the structure are valid.

Oninputtot pdequeue(), thefollowing elements may be setinthe TPQCTL structure:

long fl ags;

char nsgid[32];
char corrid[32];

/*

*

/*
/*

*

i ndi cates whi ch of the val ues
are set */

id of message to dequeue */
correlation identifier of
nmessage to dequeue */

Following isalist of valid bitsfor the f I ags parameter controlling input information
for t pdequeue().

TPNCOFLAGS
No flags are set. No information is taken from the control structure.

TPQCETBYMSA D
If set, it requests that the message identified by ct/ - >nsgi d be dequeued.

The message identifier would be one that was returned by a prior call to

t penqueue(3). Notethat the messageidentifier isnot valid if the message has
moved from one queue to ancther; in this case, use the correlation identifier.
This option cannot be used with the TPQWAI T option.

TPQCGETBYCORRI D
If set, it requests that the message with the correlation identifier specified by
ct | ->corri dbedequeued. The correlation identifier would be one that the
application specified when enqueuing the message with t penqueue(). This
option cannot be used with the TPQAAI T option.

TPOQMI T

On output from t pdequeue(), the following elements may be set in the TPQCTL

If set, it indicates that an error should not be returned if the queue is empty.
Instead, the process should block until a message is available.

structure:

| ong

| ong
char
char

char
char

flags;

priority;
nsgi d[32] ;
corrid[32];

repl yqueue[16] ;
failurequeue[16];

/*

i ndi cates whi ch of the val ues

* should be set */

/*
/*
/*

*
/*
/*

enqueue priority */

id of message dequeued */
correlation identifier used to
identify the nessage */

queue nanme for reply */

queue name for failure */

BEA TUXEDO Reference Manual

129

tpdequeue(3)

130

| ong di agnosti c; /* reason for failure */

| ong appkey; /* application authentication client
* key */

| ong urcode; /* user-return code */

CLIENTID cltid; /* client identifier for originating

* client */

Followingisalist of valid bitsfor the f I ags parameter controlling output information
fromt pdequeue(). If the flag bit is turned on when t pdequeue() is called, then the

associated element in the structure is popul ated if avail able and the bit remains set. If
the vaueis not available, the flag bit will be turned off after t pdequeue() completes.

TPQPRI ORI TY
If set and thevalueis available, the priority at which the message was queued
isstoredinct/->priority. Thepriority isin therange 1 to 100, inclusive,
and the higher the number, the higher the priority (that is, a message with a
higher number is dequeued before a message with alower number).

TPQVSG D
If set and the call tot pdequeue() was successful, the message identifier will
bestored in ct/ - >nsgi d.

TPQCORR! D
If set and the call tot pdequeue() was successful and the message was queued
with a correlation identifier, the value will be stored in ct I - >corri d. Any
reply to a queue must have this correlation identifier.

TPQREPLYQ
If set and the message is associated with areply queue, the value will be
stored in ct I - >r epl yqueue. Any reply to the message should go to the
named reply queue within the same queue space as the request message.

TPQFAI LUREQ
If set and the message is associated with afailure queue, the value will be
storedin ct I - >f ai | ur equeue. Any failure message should go to the named
failure queue within the same queue space as the request message.

If the call tot pdequeue() failed and t per r no is set to TPEDIAGNOSTIC, avaue
indicating the reason for failureisreturnedin ct I - >di agnost i c. The possible values
are defined below in the DIAGNOSTICS section.

Additionally on output, ct / - >appkey is set to application authentication key,
ctl->cltidissettotheidentifier for the client originating the request, and

ct ! ->urcode is set to the user-return code value that was set when the message was
enqueued.

BEA TUXEDO Reference Manual

tpdequeue(3)

Return Values

Errors

If the ct I parameter isNULL, theinput flags are considered to be TPNOFLAGS and
no output information is made available to the application program.

Thisfunction returns\-1 on error and setst per r no to indicate the error condition.

Under the following conditions, t pdequeue() fails and setst per r no to one of the
following (unless otherwise noted, failure does not affect the caller’stransaction, if one
exists):

[TPEI NVAL]
Invalid arguments were given (for example, gnane isNULL, dat a does not
point to space allocated with t pal | oc(3) or f/ ags are invalid).

[TPENCENT]
Cannot access the gspace because it is not available (the associated
TMQUEUE(S) server is not available).

[TPEOTYPE]
Either the type and sub-type of the dequeued message are not known to the
caller; or, TPNOCHANGE was setin f | ags and the type and sub-type of * dat a
do not match the type and sub-type of the dequeued message. Regardless,
neither * dat a, its contents nor */ en are changed. When this error occurs, the
transaction is marked abort-only and the message will remain on the queue.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI VE were specified. If a
transaction timeout occurred, any attempts to dequeue new messageswill fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t pdequeue() was caled in an improper context. There is no effect on the
gueue or the transaction.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file. Thereis no effect on the queue.

[TPECS]
An operating system error has occurred. There is no effect on the queue.

BEA TUXEDO Reference Manual 131

tpdequeue(3)

132

Diagnostic

[TPEDI AGNOSTI C]
Degueuing a message from the specified queue failed. The reason for failure
can be determined by the diagnostic value returned viact /| structure.

Thefollowing diagnostic values are returned during the dequeuing of a message.

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying to
start atransaction in which to dequeue the message.

[QVEBADMSG D)
An invalid message identifier was specified for dequeuing.

[QVEI NUSE]
When dequeuing amessage by correlation or messageidentifier, the specified
message is in-use by another transaction. Otherwise, all messages currently
on the queue are in-use by other transactions.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog
file.

[QVECE]
An operating system error has occurred.

[QVEABORTED)]
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QVEPROTC)|
A dequeue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

BEA TUXEDO Reference Manual

tpdequeue(3)

[QVENOVBG]
No message was avail able for dequeuing.

See Also TMQUEUE(S), t pal | oc(3), t penqueue(3)

BEA TUXEDO Reference Manual 133

tpdiscon(3)

tpdiscon(3)

Name

Synopsis

Description

Return Values

134

Errors

t pdi scon-routine for taking down a conversational service connection

#i nclude <atm . h>
int tpdiscon(int cd)

t pdi scon() immediately tears down the connection specified by cd and generates a
TPEV_DI SCONI MMevent on the other end of the connection.

t pdi scon() can becalled only by theinitiator of the conversation. t pdi scon() cannot
be called within a conversational service on the descriptor with which it wasinvoked.
Rather, aconversational service must uset pr et ur n(3) to signify that it has completed
its part of the conversation. Similarly, even though a program communicating with a
conversational servicecanissuet pdi scon(), the preferred way istolet the servicetear
down the connection in t pr et ur n(3); doing so ensures correct results.

t pdi scon() causesthe connection to betorn downimmediately (that is, abortiverather
than orderly). Any datathat hasnot yet reached its destination may belost. t pdi scon()
can beissued even when the program on the other end of the connection is participating
in the caller’s transaction. In this case, the transaction must be aborted. Also, the caller
does not need to have control of the connection when t pdi scon() iscalled.

t pdi scon() function returns\-1 on error and setst per r no to indicate the error
condition.

Under the following conditions, t pdi scon() fails and setst per r no to:

[TPEBADDESC]
cd isinvalid or isthe descriptor with which a conversational service was
invoked.

[TPETI ME]
A timeout occurred. The descriptor isno longer valid.

[TPEPROTC)
tpdiscon() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file. The descriptor is no longer valid.

[TPEGCS]
An operating system error has occurred. The descriptor isno longer valid.

BEA TUXEDO Reference Manual

tpdiscon(3)

See Also tpabort (3), t pcommi t (3), t pconnect (3), t precv(3), t pret urn(3), t psend(3)

BEA TUXEDO Reference Manual 135

tpenqueue(3)

tpenqueue(3)

136

Name

Synopsis

Description

t penqueue-routine to enqueue a message

#i nclude <atm . h>
i nt tpenqueue(char *qspace, char *gname, TPQCTL *ctl, char *data,
long len, long flags)

t penqueue() stores a message on the queue named by gnane in the gspace queue
space. A queue spaceis a collection of queues, one of which must be gnane.

When the messageisintended for aBEA TUXEDO system server, the gnanme matches
the name of a service provided by a server. The system provided server,
TMQFORWARD(5), provides a default mechanism for dequeuing messages from the
gueue and forwarding them to serversthat provide aservice matching the queue name.
If the originator expected areply, then the reply to the forwarded service request is
stored on the originator’s (stable) queue. The originator will dequeuethereply message
at a subsequent time. Queues can a so be used for areliable message transfer
mechanism between any pair of BEA TUXEDO system processes (clients and/or
servers). In this case, the queue name does not match a service name but some agreed
upon title for transferring the message.

If dat aisnon-NULL, it must point to abuffer previously allocated by t pal | oc(3) and
I en should specify the amount of datain the buffer that should be queued. Note that if
dat a pointsto a buffer of atype that does not require a length to be specified (for
example, an FM_ fielded buffer), then / enisignored. If dat aisNULL, / enisignored
and a message is queued with no data portion.

The message is queued at the priority defined for gspace unless overridden by a
previous call to t pspri o(3).

If the caller is within atransaction and the TPNOTRAN flag is not set, the message is
gueued in transaction mode. This has the effect that if t penqueue() returns
successfully and the call er'stransaction is committed successfully, then the messageis
guaranteed to be available subsequent to the transaction completing. If the caller’s
transaction is rolled back either explicitly or asthe result of a transaction timeout or
some communication error, then the message will be deleted from the queue (that is,
the placing of the message on the queue is aso rolled back). It isnot possible to
engueue then degueue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction
mode, or the TPNOTRAN flag is set. In this case, the queued message is stored on the
gueuein aseparate transaction. Oncet penqueue() returns successfully, the submitted

BEA TUXEDO Reference Manual

tpenqueue(3)

message is guaranteed to be available. If acommunication error or atimeout occurs
(either transaction or blocking timeout), the application will not know whether or not
the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the application
viact ! data structure as described below; the default queue ordering is set when the
gueue is created.

Following isalist of valid f/ ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then the messageis not
gueued within the sametransaction asthe caller. A caller in transaction mode
that setsthisflag is still subject to the transaction timeout (and no other) when
gueuing the message. If message queuing fails, the caller’'s transaction is not
affected.

TPNOBLOCK
The messageis not enqueued if a blocking condition exists (for example, the
internal buffersinto which the message istransferred are full). If such a
condition occurs, the call failsand t per r no is set to TPEBLOCK. When
TPNOBLOCK is hot specified and ablocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued. When TPSI GRSTRT is nhot specified and asignal interrupts a
system call, then t penqueue() failsand t per r no is set to TPGOTSI G

Additiona information about queuing the message can be specified viact | data
structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an absolute
or rel ative time after which aqueued message is made available; acorrelation identifier
that aids in correlating areply or failure message with the queued message; the name
of aqueuetowhich areply should be enqueued; and the name of aqueue to which any
failure message should be enqueued.

BEA TUXEDO Reference Manual 137

tpenqueue(3)

138

Control
Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associ ated with enqueuing the message. The f I ags element of TPQCTL is
used to indicate what other elements in the structure are valid.

Oninputtot penqueue(), thefollowing elementsmay be set inthe TPQCTL structure:

I ong flags; /* indicates which of the val ues
* are set */
| ong deq_tine; /* absolute/rel ative for dequeuing */
long priority; /* enqueue priority */
| ong urcode; /* user-return code */
char msgi d[32] ; /* id of message before which to queue
* request */
char corrid[32]; /* correlation identifier used to
* identify the msg */
char repl yqueue[16]; /* queue name for reply nessage */

char failurequeue[16]; /* queue nane for failure nmessage */

Thefollowing isalist of valid bits for the f I ags parameter controlling input
information for t penqueue().

TPNOFLAGS
No flags or values are set. No information istaken from the control structure.

TPQTCOP
Setting this flag bit indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering. TPQTCP and TPQBEFOREMSG D are mutually exclusive

flags.

TPQBEFOREMSG D
Setting this flag bit indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by ct / - >nsgi d.
This request may not be granted depending on whether or not the queue was
configured to alow overriding the queue ordering. TPQTOP and
TPQBEFOREMSG D are mutually exclusive flags.

TPQTI ME_ABS
If set, the message is made available after the time specified by
ctl->deq_tinme. The deq_ti ne isan absolute time value as generated by
time() or mkti me() (the number of seconds since 00:00:00 UTC, January 1,
1970). TPQTI ME_ABS and TPQTI ME_REL are mutually exclusive flags.

BEA TUXEDO Reference Manual

tpenqueue(3)

TPQTI ME_REL
If set, the message is made available after atimerelative to the completion of
the queuing transaction. ct / - >deq_t i ne specifiesthe number of secondsto
delay after the transaction compl etes before the submitted message should be
available. TPQTI ME_ABS and TPQTI ME_REL are mutually exclusive flags.

TPQPRI ORI TY
If set, the priority a which the message should be enqueued is stored in
ctl->priority.Thepriority must bein the range 1 to 100, inclusive. The
higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with alower number).

TPQCORRI D
If set, the correlation identifier value specified in\%ct | - >corri dis
available when a message is dequeued with t pdequeue(3). Thisidentifier
accompanies any reply or failure message that is queued such that an
application can correlate areply with a particular request. The entire value
should beinitialized (e.g., padded with null characters) such that thevalue can
be matched at alater time.

TPQREPLYQ
If set, areply queue named in ct/ - >r epl yqueue is associated with the

gueued message. Any reply to themessagewill be queued to the named queue
within the same queue space as the request message. This string must be
NULL terminated (maximum 15 charactersin length).

TPQFAI LUREQ
If set, afailure queue namedin ct/ - >f ai | ur equeue is associated with the
gueued message. If afailure occurs when the enqueued messageis
subsequently dequeued, afailure messagewill go to the named queue within
the same queue space as the original request message. This string must be
NULL terminated (maximum 15 charactersin length).

Additionally, the ur code element of TPQCTL can be set with auser-return code. This
value will be returned to the application that dequeues the message.

On output from t penqueue(), the following elements may be set in the TPQCTL :

structure: long flags; /* indicates which of the val ues
* are set */

char nsgid[32]; /* id of enqueued nessage */

| ong di agnosti c; /* indicates reason for failure */

BEA TUXEDO Reference Manual 139

tpenqueue(3)

Return Values

140

Errors

Followingisalist of valid bitsfor the f I ags parameter controlling output information
fromt penqueue(). If the flag bit is turned on when t penqueue() is called, then the

associated element in the structure is popul ated if avail able and the bit remains set. If
the vaueis not available, the flag bit will be turned off after t penqueue() completes.

TPQVSG D
If set and the call to t penqueue() was successful, the message identifier will
be stored in ct/ - >nsgi d.

If the call tot penqueue() failed and t per r no is set to TPEDIAGNOSTIC, avaue
indicating the reason for failureisreturnedin ct I - >di agnost i c. The possible values
are defined below in the DIAGNOSTICS section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no
output information is made available to the application program.

This function returns\-1 on error and setst per r no to indicate the error condition.
Otherwise, the message has been successfully queued when t penqueue() returns.

Under the following conditions, t penqueue() failsand setst per r no to the following
values (unless otherwise noted, failure does not affect the caller’s transaction, if one
exists):

[TPEI NVAL]
Invalid arguments were given (for example, gspace isNULL, dat a does not
point to space allocated with t pal | oc(3), or f/ ags areinvaid).

[TPENCENT]
Cannot access the gspace because it is not available (the associated
TMQUEUE(5) server is not available).

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI ME was specified. If a
transaction timeout occurred, any attemptsto enqueue new messages will fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

BEA TUXEDO Reference Manual

tpenqueue(3)

Diagnostic

[TPEPROTC]
t penqueue() was caled in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

[TPEDI AGNOSTI C]
Enqueuing amessage on the specified queuefailed. Thereason for failure can
be determined by the diagnostic returned via ct / .

The following diagnostic values are returned during the enqueuing of a message.

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
Aninvalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]
The call was made withthe TPNOTRAN flag and an error occurred trying to
start a transaction in which to enqueue the message.

[QVEBADVSG D
An invalid message identifier was specified.

[QVESYSTEM
A system error has occurred. The exact nature of the error is writtento alog
file.

[QvECS]
An operating system error has occurred.

[QVEABCRTED)]
The operation was aborted. When executed within a global transaction, the

global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

BEA TUXEDO Reference Manual 141

tpenqueue(3)

[QVEPROTC)|
An engueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENCSPACE]
There is no space on the queue for the message.

See Also TMQFORWARD(5), TMQUEUE(S), gp_rkt i me(3), t pal | oc(3), t pacal | (3), t pi ni t (3),
t pspri o(3)

142 BEA TUXEDO Reference Manual

tperrordetail(3c¢)

tperrordetail(3¢)

Name

Synopsis

Description

Return Values

t perrordet ai | (3c)-get additional detail about an error generated from the last BEA
TUXEDO system call

#i ncl ude <atni.h>
int tperrordetail (I ong flags)

tperrordetail returnsadditional detail related to an error produced by thelast BEA
TUXEDO system routine called in the current thread. t perr or det ai | returnsa
numeric value that is also represented by a symbolic name. If the last BEA TUXEDO
system routine called in the current thread did not produce an error, then
tperrordetail will returnzero. Therefore, t perr or det ai | should be called after
an error has been indicated; that is, when t per r no has been set.

Currently f1 ags isreserved for future use and must be set to O.
tperrordetail returnsa-1onerror and setst per r no to indicate the error condition.

These are the symbolic names and meaning for each numeric vaue that
t perrordetai |l may return. The order in which these are listed isnot significant and
does not imply precedence.

TPED_SVCTI MEQUT
A server was terminated due to a service timeout. The service timeout is
controlled by the value of SVCTI MEQUT in the ubbconfi g file or
TA_SVCTI MEQUT in T_SERVER and T_SERVI CE classesin the TM M B.

TPED_TERM
A Workstation client has been disconnected from the application.

TPED_NOUNSCOLHANDLER
A client does not have an unsolicited handler set. The TPACK flagisusedina
t pnot i f y(3c) call and thetarget of thet pnot i f y(3c) isinaBEA TUXEDO
session, but it has not set an unsolicited notification handler. When
tpnot i f y(3c) fals, t per rno isset to TPENOENT. A subsequent call to
t perrordet ai | (3c) with no intermediate ATMI calls returns
TPED_NOUNSCLHANDLER.

TPED_NOCLI ENT
No client exists. The TPACK flagisused in at pnot i fy call but thereisno
target for t pnot i f y(3c). When t pnoti f y(3c) fails, t perrno is set to
TPENCENT. A subsequent call to t per r or det ai | (3c) with no intermediate
ATMI callsreturns TPED_NOCLI ENT.

BEA TUXEDO Reference Manual 143

tperrordetail(3¢)

144

TPED_CLI ENTDI SCONNECTED
A Jolt client is disconnected currently. The TPACK flagisused in a
t pnoti fy(3c) cal andthetarget of t pnot i f y(3c) isacurrently disconnected
Jolt client. When t pnot i f y(3c) fails, acall tot perrordet ai | (3c) with no
intermediate ATMI calls returns TPED_CL| ENTDI SCONNECTED.

TPED_DOVAI NUNREACHABLE
A domain is unreachable. Specifically, adomain that has been configured to
satisfy arequest that alocal domain cannot service, was not reachable when
arequest was made. If, after the request failure, acall is made to
t perrordetai | (3c) with no intermediate ATMI calls,
TPED_DOMAI NUNREACHABLE is returned.
When callsto t pcal | (3c), t pget r pl y(3c), and t pr ecv(3c) fail because of
an unreachable domain, TPED_DOVAI NUNREACHABLE is returned. The
following table indicates the corresponding values returned by t per r no.

ATMI Call tperrno Error Detail

tpcal | TPESVCERR TPED_DOVAI NUNREACHABL E

tpgetrply TPESVCERR TPED_DOVAI NUNREACHABL E

tprecv TPEEVENT TPED_DOVAI NUNREACHABL E
TPEV_SVCERR

Note: The TPED _DOVAI NUNREACHABLE feature appliesto BEA TUXEDO
Domainsonly. It doesnot apply to other domains products such as Connect
OSI TP Domains and Connect SNA Domains.

Errors Under the following conditionst per ror det ai | failsand setst perr no to the
following:

TPEI NVAL
f 1 ags not set to zero

See Also i ntro(3c),tpstrerrordetail (3c),t perrno(5)

BEA TUXEDO Reference Manual

tpforward(3)

tpforward(3)

Name t pf or war d(3)-routine for forwarding a service request to another service routine

Synopsis #i ncl ude <atmi . h>
void tpforward(char *svc, char *data, long len, long flags)

Description t pf or war d alows a service routine to forward a client’s request to another service
routine for further processing. t pf or war d actsliket pret ur n(3) in that it isthe last
call madein aserviceroutine. Liket pr et ur n(3), t pf or war d should be called from
within the service routine dispatched to ensure correct return of control to the BEA
TUXEDO system dispatcher. t pf or war d cannot be called from within a
conversational service.

Thisfunction forwards a request to the service named by svc using data pointed to by
dat a. The service name must not begin with adot. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine returnsto
the communication manager dispatcher and the server isfree to do other work. Note
that because no reply is expected from a forwarded request, the request may be
forwarded without error to any service routinein the same executable as the service
that forwarded the request.

If the service routineisin transaction mode, t pf or war d putsthe caller’s portion of the
transaction in astate where it may be completed when the originator of the transaction
issues either t pcomi t (3) or t pabort (3). If atransaction was explicitly started with
t pbegi n(3) while in a service routine, the transaction must be ended with either

t pcommi t (3) or t pabort (3) beforecalling t pf or war d. Thus, all servicesin a
“forward chain” are either all started in transaction mode or none are.

The last server in a forward chain sends a reply back to the originator of the request
usingt pr et ur n(3). In essence pf or war d transfers to another server the
responsibility of sending a reply back to the awaiting requester.

t pf or war d should be called after receiving all replies expected from service requests
initiated by the service routine. Any outstanding replies which are not received will
automatically be dropped by the communication manager dispatcher upon receipt. In
addition, the descriptors for those replies become invalid and the request is not
forwarded tosvc.

dat a points to the data portion of a reply to be sentalfa is non-NULL, it must point

to a buffer previously obtained by a calt fml | oc(3). If this is the same buffer passed

to the service routine upon its invocation, then its disposition is up to the BEA
TUXEDO system dispatcher; the service routine writer does not have to worry about
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passedttpf or war d is not the same one with which the service

BEA TUXEDO Reference Manual 145

tpforward(3)

Return Values

146

Errors

See Also

isinvoked, then t pf or war d will free that buffer. / en specifiesthe amount of the data
buffer to be sent. If dat a points to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), then / enisignored (and can be 0). If
dat aisNULL, then / en isignored and a request with zero length datais sent.

The f I ags argument is reserved for future use and should be set to O (zero).

A service routine does not return any value to its caller, the communication manager
dispatcher. Thus, t pf or war d isdeclared as avoid. Seet pr et ur n(3c) for amore
extensive discussion.

If any errors occur either in the handling of the parameters passed to the function or in

its processing, a “failed” message is sent back to the original requester (unless no rep
is to be sent). The existence of outstanding replies or subordinate connections, or th
caller's transaction being marked abort-only, qualify as failures which generate failec
messages.

If either SVCTI MEQUT in the ubbconfig file ofA_SVCTI MEOUT in theTM M Bis
non-zero, the eventPEV_SVCERRs returned when a service timeout occurs.

Failed messages are detected by the requester witlPESECERR error indication.
When such an error occurs, the caller's data is not sent. Also, this error causes the
caller's current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forwarding
the request, the requester waiting for a reply with eitheal I (3), ort pget rpl y(3)

will get aTPETI ME error return. Also, the waiting requester will not receive any data.
Service routines, however, are expected to terminate using tgithetrur n(3) or

t pf orwar d. A conversational service routine must ugeet ur n(3), and cannot use

t pf orwar d.

If a service routine returns without using eithpr et ur n(3) ort pf or war d (that is, it

uses the C languaget ur n statement or simply “falls out of the function”) or if

t pf orwar d is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be marked stale. If the server was in transaction mode at tf
time of failure, the transaction is marked abort-only. Note also that if either

t preturn(3) ort pf or war d are used outside of a service routine (for example, in
clients, or int psvri ni t (3) ort psvrdone(3)), then these routines simply return

having no effect.

t pal 1 oc(3),t pconnect (3),tpreturn(3),tpservice(3),tpstrerrordetail (3¢)

BEA TUXEDO Reference Manual

tpfree(3)

tpfree(3)
Name

Synopsis

Description

Return Values

Usage

See Also

t pf r ee-routine for freeing atyped buffer

#i ncl ude <atni.h>
void tpfree(char *ptr)

The argument to t pf r ee() isapointer to a buffer previously obtained by either

tpal l oc(3) ort preal | oc(3). If pt r isSNULL, no action occurs. Undefined results
will occur if pt r does not point to atyped buffer (or if it pointsto space previously
freed with t pf r ee()). Inside service routines, t pf r ee() returns and does not free the
buffer if pt r pointsto the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed as part
of freeing a buffer. t pf r ee() removes any of these associations (in a communication
manager-specific manner) before a buffer isfreed.

Oncet pf r ee() returns, pt r should not be passed as an argument to any BEA
TUXEDO system routine or used in any other manner.

t pf r ee() does not return any value to itscaller. Thus, it is declared as a void.

This function should not be used in concert with mal | oc(3C;), real | oc(3C;) or
free(3C;) intheClibrary (for example, abuffer allocated witht pal | oc(3) should not
be freed with f r ee(3C)).

intro(3),tpalloc(3),tprealloc(3)

BEA TUXEDO Reference Manual 147

tpgetadmkey(3)

tpgetadmkey(3)
Name t pget adnkey-get administrative authentication key.
Synopsis #i ncl ude <atmi . h>
I ong t pgetadnkey(TPINI T *t pi nf o)
Description t pget adnkey() isavailable for application use by an application specific

Return Values

148

Errors

Portability

See Also

authentication server. It returns an application security key suitable for assignment
to the indicated user for the purpose of administrative authentication. This routine
must becalled with aclient name (i.e., t pi nf o- >cl t nane) of either t psysadmor

t psysop; otherwise, avalid administrative key will not be returned.

A non-0 value with the high-order bit (0x80000000) set is returned on success,
otherwise O isreturned. Zero may bereturnedif ¢ pi nf oisNULL, t pi nf o- >cl t nanme
isnot t psysadmor t psysop, or lastly if the effective user id is not the configured
application administrator for this site.

A zero return valueis the only indication that a valid administrative key was not
assigned.

Thisinterfaceisavailable only on UNIX System sitesrunning BEA TUXEDO Release
5.0 or later.

t paddusr (1), t pi ni t (3), AUTHSVR(5), BEA TUXEDO Administrator's Guide

BEA TUXEDO Reference Manual

tpgetlev(3)

tpgetlev(3)
Name

Synopsis
Description

Return Values

Errors

Notices

See Also

t pget | ev-routine for checking if atransactionisin progress

#i ncl ude <atm . h>
int tpgetlev()

t pget | ev() returnstothecaller the current transaction level. Currently, the only levels
defined are 0 and 1.

Upon successful completion, t pget | ev() returns either a0 to indicate that no
transaction isin progress, or 1 to indicate that a transaction isin progress; otherwise,
t pget | ev() returns\-1 on error and setst per r no to indicate the error condition.

Under the following conditions, t pget | ev() failsand setst per r no to:

[TPEPROTC)
tpgetlev() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When usingt pbegi n(3), t pcomi t (3) andt pabor t (3) todelineateaBEA TUXEDO
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t (3) or t pabor t (3). See bui | dser ver (1) for details on
linking resource managersthat meet the X A interfaceinto a server such that operations
performed by that resource manager are part of aBEA TUXEDO system transaction.

t pabort (3), t pbegi n(3), t pconmi t (3), t pscnt (3)

BEA TUXEDO Reference Manual 149

tpgetrply(3)

tpgetrply(3)

150

Name

Synopsis

Description

t pget r pl y(3c)-routine for getting a reply from a previous request

#i nclude <atm . h>
int tpgetrply(int *cd, char **data, long */en, |ong flags)

t pget r pl y(3c) returns areply from a previously sent request. This function'sfirst
argument, cd, points to a call descriptor returned by t pacal | (3c). By default, the
function waits until the reply matching * cd arrives or atimeout occurs.

dat a must be the address of apointer to abuffer previously allocated by t pal | oc(3c)
and / en should point to along that t pget r pl y(3c) setsto the amount of data
successfully received. Upon successful return, * dat a pointsto a buffer containing the
reply and */ en contains the size of the data. FML and FML 32 buffers often assume a
minimum size of 4096 bytes; if the reply is larger than 4096, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

Thereceive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) areply buffer changed in size, compare itstotal size beforet pget rply
wasissued with */ en. Seei nt r o(3c) for moreinformation about buffer management.

If *I enisO, then thereply has no data portion and neither * dat a nor the buffer it points
to were modified.

It isan error for *dat a or / ento be NULL.

Following isalist of valid f I ags.

TPGETANY
Thisflag signifiesthat t pget r pl y should ignore the descriptor pointed to by
cd, return any reply available and set cd to point to the call descriptor for the
reply returned. If no repliesexist, t pget r pl y by default will wait for one to
arrive.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed
toby * dat a, then * dat a'sbuffer type changes to thereceived buffer'stype so

BEA TUXEDO Reference Manual

tpgetrply(3)

Return Values

Errors

long asthereceiver recognizestheincoming buffer type. When thisflagis set,
the type of the buffer pointed to by * dat a is hot allowed to change. That is,
the type and sub-type of the received buffer must match the type and sub-type
of the buffer pointed to by * dat a.

TPNOBLOCK
t pget r pl y doesnot wait for the reply to arrive. If thereply isavailable, then

t pget r pl y getsthe reply and returns. When this flag is not specified and a
reply is not available, the caller blocks until the reply arrives or atimeout
occurs (either transaction or blocking timeout).

TPNOTI ME
Thisflag signifies that the caller iswilling to block indefinitely for its reply

and wantsto beimmune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system

call isre-issued.
Except as noted below, * cd isno longer valid after itsreply isreceived.

Upon successful return fromt pget r pl y or upon return wheret perr no is set to
TPESVCFAI L, t pur code contains an application defined value that was sent as part of
tpreturn.tpgetrply returns-1 on error and setst per r no to indicate the error
condition.

Under the following conditions, t pget r pl y(3c) failsand setst per r no asindicated
below. Notethat if TPGETANY isnot set, then * cd isinvalidated unless otherwise stated.
If TPGETANY is set, then cd points to the descriptor for the reply on which the failure
occurred; if an error occurred before areply could be retrieved, then cd pointsto O.
Also, the failure does not affect the caller’s transaction, if one exists, unless otherwise
stated. If acall fails with aparticular t per r no vaue, a subseguent call to

t perrordet ai | (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the t per r or det ai | (3c) reference
page for more information.

[TPEI NVAL]
Invalid argumentsweregiven (for example, cd, dat a, *dat aor | enisNULL
or f1 ags areinvalid). If cdisnon-NULL, then itis still valid after this error
and the reply remains outstanding.

BEA TUXEDO Reference Manual 151

tpgetrply(3)

152

[TPEOTYPE]

Either the type and sub-type of the reply are not known to the caler; or,
TPNOCHANGE was set in f | ags and the type and sub-type of * dat a do not
match the type and sub-type of the reply sent by the service. Regardless,
neither * dat a, its contents nor */ en are changed. If the reply was to be
received on behalf of the caller's current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESC]

cd points to an invalid descriptor.

[TPETI ME]

A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified. In either case, neither * dat a, its contents nor */ en are changed.
* cdremainsvalid unlessthecaller isin transaction mode (and TPGETANY was
not set). If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply and is not sent on behalf of the caller’'s
transaction (that is, t pacal I (3c) with TPNOTRAN, TPNOBLOCK and
TPNOREPLY set).

[TPESVCFAI L]

The service routine sending the caller'sreply called t pr et ur n with TPFAI L.
Thisisan application-level failure. The contents of the service'sreply, if one
was sent, is available inthe buffer pointed to by * dat a. If the service request
was made on behalf of the caller’s transaction, then the transaction is marked
abort-only. Note that so long as the transaction has not timed out, further
communi cation may be performed before compl etely aborting the transaction
and that any work performed on behalf of the caller’s transaction will be
aborted upon transaction completion (that is, for subsequent communication
to have any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]

A serviceroutine encountered an error either int pr et ur n or t pf or war d (for
example, bad arguments were passed). No reply datais returned when this
error occurs (that is, neither * dat a, its contents nor * / en are changed). If the
service request was made on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that so long as the transaction has not
timed out, further communication may be performed before completely

BEA TUXEDO Reference Manual

tpgetrply(3)

See Also

aborting the transaction and that any work performed on behalf of the caller's
transaction will be aborted upon transaction completion (that is, for
subsequent communication to have any lasting effect, it should be done with
TPNOTRAN set). If either SVCTI MEOUT in the ubbconfi g file or

TA_SVCTI MEQUT in the TM_M B is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. * cd remains

valid.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t pget rpl y was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is

writtento alog file.

[TPECS]
An operating system error has occurred. If a message queue on aremote
location isfilled, TPEOS may possibly be returned.

t pacal I (3c), t pal I oc(3c), t pcancel (3c), t perror det ai | (3c), t preal | oc(3c),
tpreturn(3c), t pstrerrordetail (3¢), t pt ypes(3c)

BEA TUXEDO Reference Manual 153

tpgprio(3)

tpgprio(3)

Name

Synopsis

Description

Return Values

154

Errors

See Also

t pgpri o-routine for getting a service request priority

#i nclude <atm . h>
int tpgprio(void)

t pgpri o() returnsthe priority for the last request sent or received. Priorities can range
from 1 to 100, inclusive, with 100 being the highest priority. t pgpr i o() may becalled
aftert pcal | (3) ort pacal I (3), (alsot penqueue(3), or t pdequeue(3), assuming the
gueued management facility isinstalled), and the priority returned is for the request
sent. Also, t pgpr i o() may be called within aserviceroutineto find out at what priority
the invoked service was sent. t pgpr i o() may be called any number of times and will
return the same value until the next request is sent.

Since the conversation primitivesare not associated with priorities, issuing t psend(3)
or t pr ecv(3) has no affect on the priority returned by t pgpr i o(). Also, thereis no
priority associated with a conversational service routineunlessat pcal | (3) or

t pacal | (3) is done within that service.

Upon success, t pgpr i of) returnsarequest’s priority; otherwiset pgpri o() returns\-1
on error and setst per r no to indicate the error condition.

Under the following conditions, t pgpr i o() failsand setst per r no to:

[TPENCENT]
t pgpri o() was called and no requests (viat pcal | (3) ort pacal | (3)) have
been sent, or it is called within aconversational service for which no requests
have been sent.

[TPEPROTC)
t pgpri o() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pacal | (3),tpcal | (3), t pdequeue(3), t penqueue(3), t pservi ce(3), t pspri o(3)

BEA TUXEDO Reference Manual

tpinit(3)

tpinit(3)
Name

Synopsis

Description

t pi ni t (3)-routine for joining an application

#i ncl ude <atm . h>
int tpinit(TPINIT *tpinfo)

t pi ni t () allowsaclient tojoin aBEA TUXEDO system application. Before a client
can use any of the BEA TUXEDO system communication or transaction routines, it
must first join aBEA TUXEDO system application. Because calling t pi ni t () is
optional, a client may also join an application by calling many ATMI routines (for
example, t pcal | (3)) which transparently call t pi ni t () witht pi nf o setto NULL. A
client may want to call t pi ni t () directly so that it can set the parameters described
below. Inaddition, t pi ni t () must be used when application authentication is required
(see the description of the SECURITY keyword in ubbconf i g(5)), or when the
application wishes to supply its own buffer type switch (seet ypesw(5)). After

t pi ni t () successfully returns, the client can initiate service requests and define
transactions.

If t pi ni t () iscalled more than once (that is, after the client has already joined the
application), no action is taken and successis returned.

t pi ni t ()’'s argumentt pi nf o, is a pointer to a typed buffer of typel NI T and a
NULL sub-type TPI NI T is a buffer type that isypedef ed in theat ni . h header file.
The buffer must be allocated wiaal | oc() prior to callingt pi ni t (3). The buffer
should be freed usingf r ee(3) after callingt pi ni t (). TheTPI NI T typed buffer
structure includes the following members:

char usr nane[MAXTI DENT+2] ;
char cl t nanme[MAXTI DENT+2] ;
char passwd[MAXTI DENT+2] ;
char gr pnane[MAXTI DENT+2] ;
| ong fl ags;

| ong dat al en;

| ong dat a;

usr nane, cl t nane, gr pname andpasswd are all NULL-terminated stringasr nanme
is a name representing the calldrt nane is a client name whose semantics are
application defined. The valugscl i ent is reserved by the system for e nane
field. Theusr name andcl t nane fields are associated with the client pitni t () time

and are used for both broadcast notification and administrative statistics retrieval. They

should not have more characters tWaRTI DENT, which is defined as 3@asswd is

an application password in unencrypted format that is used for validation against the

application password. Thesswd is limited to 30 charactergr pnane is used to

BEA TUXEDO Reference Manual 155

tpinit(3)

156

associate the client with a resource manager group name. If gr pnane isset to a
O-length string, then the client is not associated with a resource manager and isin the
default client group. The value of gr pname must be the null string (0-length string) for
/WS clients. Note that gr pnane isnot related to ACL GROUPS.

Thesetting of f | ags isused toindicate both the client-specific notification mechanism
and the mode of system access. These settings may override the application default;
however, in the event that they cannot, t pi ni t () will print awarning in alog file,
ignore the setting and return the application default setting in the flags element upon
return from t pi ni t (). For client notification, the possible values for f | ags are as
follows:

TPU_SI G-Select unsolicited notification by signals.
TPU_DI P-Select unsolicited notification by dip-in.
TPU_I G\-ignore unsolicited notification.

Only one of the above flags can be used at atime. If the client does not select a
notification method viathe flags field, then the application default method will be set
in the flags field upon return from t pi ni t ().

For setting the mode of system access, the possible values for f | ags are asfollows:
TPSA_FASTPATH-Set system access to fastpath.
TPSA_PROTECTED-Set system access to protected.

Only one of the above flags can be used at atime. If the client does not select a
notification method or a system access mode via the flags field, then the application
default method(s) will be set in the flags field upon return fromt pi ni t (). See
ubbconfi g(5) for details on both client notification methods and system access
modes.

dat al en isthe length of the application specific datathat follows. The buffer type
switch entry for the TPI NI T typed buffer sets thisfield based on the total size passed
in for the typed buffer (the application data size isthe total size less the size of the
TPI NI T structureitself plusthe size of the data placehol der asdefined in the structure).
dat a isaplace holder for variable length data that is forwarded to an application
defined authentication service. It is dways the last element of this structure.

BEA TUXEDO Reference Manual

tpinit(3)

Return Values

Errors

Interoperability

A macro, TPI NI TNEED, is available to determine the size TPI NI T buffer necessary to
accommodate a particular desired application specific data length. For example, if 8
bytes of application specific data are desired, TPI NI TNEED(8) will return the required
TPI NI T buffer size.

A NULL vauefor t pi nf o isallowed for applications not making use of the
authentication feature of the BEA TUXEDO system. Clientsusing aNULL argument
will get defaults of O-length stringsfor usr nane, cl t name and passwd, no flags set,
and no application data.

t pi ni t () returns -1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pi ni t () fails and setst per r no to:

[TPEI NVAL]
Invalid arguments were specified. t pi nf o isnon-NULL and does not point
to atyped buffer of type TPI NI T.

[TPENCENT]
The client cannot join the application because of space limitations.

[TPEPERM
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application specific authentication, or use of restricted names.

[TPEPROTC]
t pi ni t () was called in an improper context (for example, the caller isa
server).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

t pchkaut h(3c) and anon-NULL value for the TPI NI T typed buffer argument of
t pi ni t () are available only on sites running Release 4.2 or later.

BEA TUXEDO Reference Manual 157

tpinit(3)

Portability

Environment

158

Variables

Theinterfaces described in t pi ni t (3c) are supported on UNIX System, Windows,
and MS-DOS operating systems. However, signal-based notification is not supported
on 16-bit Windows or MS-DOS platforms. If it isselected at t pi ni t () time, then a
user | og(3c) message is generated and the method is automatically set to dip-in.

WSENVFI LE-isused withint pi ni t () when invoked by aworkstation client. It indicates

a file containing environment variable settings that should be set in the caller’'s
environment. Seeonpi | ati on(5) for more details on environment variable settings
necessary for workstation clients. Note that this file is processed onlytwhent ()

is called and not before.

WBNADDR-is used withirt pi ni t () when invoked by a workstation client. It indicates
the network address(es) of the workstation listener that is to be contacted for access
the application.

TCP/IP addresses may be specified in the following forms:
// host. nanme: port_nunber

//#. #. # #:port_nunmber

In the first format, the domain finds an addressHast nane using the local name
resolution facilities (usually DNShost nane must be the local machine, and the local
name resolution facilities must unambiguously resebsg nane to the address of the
local machine.

In the second example, the strings. #. # is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decimal numbe
represents the IP address of the local machine.

In both of the above formatgor t _nunber is the TCP port number at which the
domain process will listen for incoming requegtsr t _nunber can either be a
number between 0 and 65535 or a namgoltft _nunber is a name, then it must be
found in the network services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the
characters “Ox”. Each character after the initial “0x” is a number between 0 and 9 or :
letter between A and F (case insensitive). The hexadecimal format is useful for
arbitrary binary network addresses such as IPX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be the sa
as that specified for the NLSADDR parameter in the NETWORK section of the
configuration file.

BEA TUXEDO Reference Manual

tpinit(3)

M ore than one address can be specified if desired by specifying acomma-separated list
of pathnames for WSNADDR Addresses are tried in order until a connection is
established. Any member of an address list can be specified as a parenthesized
grouping of pipe-separated network addresses. For example:

WENADDR=(/ / mlL. acrre. com 3050| / / n2. acne. com 3050),// 8. acrre. com 3050
For users running under Windows, the address string would look like this:
set WSNADDR=(// mlL. acne. com 30507|// 2. acme. com 3050),//nB. acne. com 3050

The carat (") is needed to escape the pipe (]).

The BEA TUXEDO system randomly selects one of the parenthesized addresses. This
strategy distributes the load randomly across a set of listener processes. Addresses
aretried in order until a connection is established. Use the value specified in the

application configuration file for the workstation listener to be caled. If the value

begins with the characters “Ox™, it is interpreted as a string of hex-digits; otherwise,
it is interpreted as ASCII characters.

WBDEVI CE-is used within pi ni t () when invoked by a workstation client. It indicates

the device name to be used to access the network. This variable is used by workstation
clients and ignored for native clients. Note that certain supported transport level
network interfaces do not require a device name; for example, sockets and NetBIOS.
Workstation clients supported by such interfaces need not swsDifgv1 CE.

WSTYPE-is used withirt pi ni t () when invoked by a workstation client to negotiate
encode/decode responsibilities with the native site. This variable is optional for
workstation clients and ignored for native clients.

WBRPLYMAX-is used byt pi ni t () to set the maximum amount of core memory that
should be used for buffering application replies before they are dumped to file. The
default for this parameter varies with each instantiation. The instantiation specific
Programmer’s Guide should be consulted for further information.

TMM NENCRYPTBI TS-When connecting to the BEA TUXEDO system, require at least
this minimum level of encryption. “0” means no encryption, while “40” and “128”
specify the encryption key length (in bits). If this minimum level of encryption cannot
be met, link establishment will fail. The default is “0".

TMVAXENCRYPTBI TS-When connecting to the BEA TUXEDO system, negotiate
encryption up to this level. “0” means no encryption, while “40” and “128" specify the
encryption length (in bits). The default is “128”

BEA TUXEDO Reference Manual 159

tpinit(3)

Warning Signal restrictions may prevent the system using signal-based notification even though
it hasbeen selected by aclient. When this happens, the system generates alog message
that it is switching notification for the selected client to dip-in and the client isnotified
then and thereafter via dip-in notification. (See ubbconf i g(5) description of the
* RESOURCES NOTI FY parameter for a detailed discussion of notification methods.)
Note that signaling of clientsis always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based natification. The ID for the application administrator isidentified as part
of the configuration for the application.

If signal-based notification is selected for a client, then certain ATMI calls may fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified.

See Also t pt ern(3)

160 BEA TUXEDO Reference Manual

tpnotify(3)

tpnotify(3)
Name

Synopsis

Description

t pnot i f y-routine for sending notification by client identifier

#i ncl ude <atni.h>
int tpnotify(CLIENTID *clientid, char *data, |ong | en, long flags)

tpnot i fy() alowsaclient or server to send an unsolicited message to an individual
client.

clientidisapointertoaclient identifier saved from the TPSVCI NFO structure of a
previous or current service invocation, or passed to a client via some other
communications mechanism (for example, retrieved via the administration interface).

The data portion of the request is pointed to by dat a, abuffer previously allocated by
t pal I oc(3). I en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require alength to be specified, (for example, an FM. fielded

buffer) then / en isignored (and may be 0). Also, dat a may be NULL in which case
I enisignored.

Upon successful return fromt pnot i f y(), the message has been delivered to the
system for forwarding to the identified client. If the TPACK flag was set, a successful
return means the message has been received by the client. Furthermore, if theclient has
registered an unsolicited message handler, the handler will have been called.

Following isalist of valid I ags.

TPACK
The request is sent and the caller blocks until an acknowledgement message
is received from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the
notification (for example, the internal buffersinto which the messageis
transferred are full).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call is reissued.

BEA TUXEDO Reference Manual 161

tpnotify(3)

Unlessthe TPACK flag is set, t pnot i f y() does not wait for the message to be
delivered to the client.

Return Values t pnoti fy() returns-1 on failure and setst per r no to indicate the error condition. If a
call failswith aparticular t per r no value, a subsequent call to t per r or det ai | (3¢)
with no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer to thet per r or det ai | (3c) reference page for more
information.

Errors Under the following conditions, t pnot i f y() fails and setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, invaid flags).

[TPENCENT]
Thetarget client does not exist or does not have an unsolicited handler set and
the TPACK flag is set.

[TPETI ME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified, or TPACK was set but ho acknowledgment was received and
TPNOTI ME was not specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pnoti fy() wascaled in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

[TPERELEASE]
When the TPACK is set and the target is a client from a prior release of BEA
TUXEDO that does not support the acknowledgment protocol.

162 BEA TUXEDO Reference Manual

tpnotify(3)

See Also intro(3),tpall oc(3),tpbroadcast (3), t pchkunsol (3),
tperrordetail (3c),t pi ni t (3),tpsetunsol (3),tpstrerrordetail (3c),
t pt er m(3)

BEA TUXEDO Reference Manual 163

tpopen(3)

tpopen(3)
Name

Synopsis

Description

Return Values

Errors

See Also

t popen-routine for opening a resource manager

#i nclude <atm . h>
i nt tpopen(void)

t popen() opens the resource manager to which the caller is linked. At most one
resource manager can belinked to the caller. Thisfunction is used in place of resource
manager-specific open calls and alows a service routine to be free of calls that may
hinder portability. Since resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager isplaced in a
configuration file.

If aresource manager is already open (that is, t popen() is called more than once), no
action is taken and success is returned.

t popen() returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t popen() fails and setst per r no to:

[TPERVERR]
A resource manager failed to open correctly. More information concerning
thereason aresource manager failed to open can be obtained by interrogating
aresource manager in its own specific manner. Note that any callsto
determine the exact nature of the error hinder portability.

[TPEPROTC)
t popen() was called in an improper context (for example, by aclient that has
not joined a BEA TUXEDO system server group).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pcl ose(3)

164 BEA TUXEDO Reference Manual

tppost(3)

tppost(3)
Name

Synopsis

Description

t ppost -post an event

#i ncl ude <atni.h>
int tppost(char *eventnane, char *data, long len, long flags)

The caller usest ppost to post an event and any accompanying data. The event is
named by event name and dat a, if not NULL, pointsto the data. The posted event and
its data are dispatched by the BEA TUXEDO system event broker to all subscribers
whose subscriptions successfully evaluate against event nanme and whose optional
filter rules successfully evaluate against dat a.

event nane isaNULL-terminated string of at most 31 characters. event nane’sfirst
character cannot be a dot (*.”) as this character is reserved as the starting character for
all events defined by the BEA TUXEDO system itself.

If dat ais non-NULL, it must point to a buffer previously allocated Ipyl | oc(3) and

I en should specify the amount of data in the buffer that should be posted with the
event. Note that iflat a points to a buffer of a type that does not require a length to be
specified (for example, an FML fielded buffer), them is ignored. Ifdat ais NULL,

I enis ignored and the event is posted with no data.

Whent ppost is used within a transaction, the transaction boundary can be extended
to include those servers and/or stable-storage message queues notified by the event
broker. When a transactional posting is made, some of the recipients of the event
posting are notified on behalf of the poster's transaction (for example, servers and
gueues), while some are not (for example, clients).

If the poster is within a transaction and RNOTRAN flag is not set, the posted event

goes to the event broker in transaction mode such that it dispatches the event as part of
the poster's transaction. The broker dispatches transactional event notifications only to
those service routine and stable-storage queue subscriptions that used the TPEVTRAN
bit setting in thect I - >f I ags parameter passedtpsubscri be(3). Client

notifications, and those service routine and stable-storage queue subscriptions that did
not use the TPEVTRAN bit setting in the/ - >f | ags parameter passed to

t psubscri be(3), are also dispatched by the event broker but not as part of the posting
process’ transaction.

Following is a list of validf/ ags.

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the event posting
is not made on behalf of the caller's transaction. A caller in transaction mode

BEA TUXEDO Reference Manual 165

tppost(3)

Return Values

166

Errors

that setsthisflagisstill subject to the transaction timeout (and no other) when
posting events. If the event posting fails, the caller's transaction is not
affected.

TPNOREPLY
Informst ppost not to wait for the event broker to process all subscriptions
for event nanme before returning. When TPNOREPLY iS Set, t pur code issetto
zero regardless of whether t ppost returns successfully or not. When the
caler isin transaction mode, this setting cannot be used unless TPNOTRAN S
also set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call failsand t per r no is set to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isre-issued. When TPSI GRSTRT is not specified and asignal interruptsa
system call, then t ppost failsandt perr no is set to TPGOTSI G

Upon successful return from t ppost , t pur code contains the number of event
notifications dispatched by the event broker on behalf of event nane (that is, postings
for those subscriptions whose event expression evaluated successfully against

event nane and whose filter rule evaluated successfully against dat a). Upon return
wheret perrno isset to TPESVCFAI L, t pur code contains the number of
non-transactional event notifications dispatched by the event broker on behalf of
event nane. This function returns -1 on error and setst per r no to indicate the error
condition.

Under thefollowing conditions, t ppost failsand setst per r no to one of the following
values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

[TPEI NVAL]
Invalid arguments were given (for example, event nanme isNULL).

BEA TUXEDO Reference Manual

tppost(3)

[TPENOENT]
Cannot accessthe BEA TUXEDO system Event Broker.

[TPETRAN]
The caller isin transaction mode, TPNOTRAN was not set and t ppost
contacted an event broker that does not support transaction propagation (that
is, TMUSREVT(5) isnot running in a BEA TUXEDO system group that
supports transactions).

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
time-out occurred and the transaction is to be aborted; otherwise, a blocking
time-out occurred and neither TPNOBLOCK nor TPNOTI MVE were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPESVCFAI L]
The event broker encountered an error posting atransactional event to either
a service routine or to a stable storage queue on behalf of the caller’'s
transaction. The caller’s current transaction is marked abort-only. When this
error isreturned, t pur code contains the number of non-transactional event
notifications dispatched by the event broker on behalf of event nane;
transactional postings are not counted since their effectswill be aborted upon
completion of the transaction. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller's transaction
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be done with TPNOTRAN
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t ppost was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

BEA TUXEDO Reference Manual 167

tppost(3)

[TPEGCS]
An operating system error has occurred.

See Also t psubscri be(3), t punsubscri be(3), EVENTS(5), TMUSREVT(5), TMBYSEVT(5)

168 BEA TUXEDO Reference Manual

tprealloc(3)

tprealloc(3)

Name

Synopsis

Description

Return Values

Errors

t pr eal | oc-routine to change the size of atyped buffer

#i ncl ude <atni.h>
char * tprealloc(char *ptr, long size)

t pr eal | oc() changes the size of the buffer pointed to by ptr to si ze bytes and
returns a pointer to the new (possibly moved) buffer. Similar to t pal | oc(3), the size
of the buffer will be at least as large asthe larger of si ze and df | t si ze, where

df I t si ze isthe default buffer size specifiedint nt ype_sw. If thelarger of thetwo is
less than or equal to zero, then the buffer is unchanged and NULL is returned. A
buffer's type remains the same after it is re-allocated. After this function returns
successfully, the returned pointer should be used to reference the buffer; pt r should
no longer be used. The buffer’s contents will not change up to the lesser of the new and
old sizes.

Some buffer types require initialization before they can be used. t pr eal | oc()
re-initializes a buffer (in a communication manager-specific manner) after it is
re-allocated and beforeit isreturned. Thus, the buffer returned to the caller isready for
use.

Upon successful completion, t preal | oc() returns a pointer to a buffer of the
appropriate type aligned on along word; otherwiseit returns NULL and setst per r no
to indicate the error condition.

If the re-initiaization function fails, t pr eal | oc() fails returning NULL and the
contents of the buffer pointed to by pt r may not be valid. Under the following
conditions, t pr eal | oc() fails and setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to abuffer
originally allocated by t pal | oc(3)).

[TPEPROTC)
t preal | oc() wascaled in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

BEA TUXEDO Reference Manual 169

tprealloc(3)

Usage If buffer re-initialization fails, t pr eal | oc() fails returning NULL and the contents of
the buffer pointed to by pt r may not be valid. This function should not be used in
concert with mal 1 oc(3C), real | oc(3C) or f r ee(3C) inthe C library (for example, a
buffer allocated with t pr eal | oc() should not be freed with f r ee()).

See Also tpal I oc(3),tpfree(3),tptypes(3)

170 BEA TUXEDO Reference Manual

tprecv(3)

tprecv(3)
Name

Synopsis

Description

t pr ecv(3) -routine for receiving a message in a conversational connection

#i ncl ude <atni.h>
int tprecv(int cd, char **data, long *len, long flags, long \
*revent)

t pr ecv() is used to recei ve data sent across an open connection from another program.

t precv()'s first argumentcd, specifies on which open connection to receive data.
is a descriptor returned from eithgrconnect (3) or theTPSVCI NFO parameter to the
service. The second argumetif a, is the address of a pointer to a buffer previously
allocated byt pal 1 oc(3c).

dat a must be the address of a pointer to a buffer previously allocategghby oc (3c)
and/ en should point to a long thapr ecv() sets to the amount of data successfully
received. Upon successful returmiat a points to a buffer containing the reply and
*| en contains the size of the buffénL andrFML32 buffers often assume a minimum
size of 4096 bytes; if the reply is larger than 4096 bytes, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used sent. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) a reply buffer changed in size, compare its total size hgfosev was

issued with*/ en. Seei ntr o(3) for more information about buffer management.

If 1 enis 0, then no data was received and neitlat a nor the buffer it points to
were modified. It is an error fafat a, *dat a or/ en to be NULL.

t precv() can be issued only by the program that does not have control of the
connection.

BEA TUXEDO Reference Manual 171

tprecv(3)

172

Following isalist of valid f I ags.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed

to by *dat a, then *dat a's buffer type changes to the received buffer’s type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to hyat a is not allowed to change. That

is, the type and sub-type of the received buffer must match the type and
subtype of the buffer pointed to byt a.

TPNOBLOCK
t pr ecv() does not wait for data to arrive. If data is already available to

receive, then precv() gets the data and returns. When this flag is not
specified and no data is available to receive, the caller blocks until data
arrives.

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to

be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If a signal interrupts the underlying receive system call, then the call is

reissued.

If an event exists for the descriptot], thent pr ecv() will return setting per r no to
TPEEVENT. The event type is returnedievent . Data can be received along with the
TPEV_SVCSUCC, TPEV_SVCFAI L, andTPEV_SENDONLY events. Valid events for

t precv() are as follows.

TPEV_DI SCONI MM
Received by the subordinate of a conversation, this event indicates that the

originator of the conversation has either issued an immediate disconnect or
the connection viapdi scon(3c), or it issued pr et ur n(3c),t pconmi t (3c)

ort pabor t () with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. The descriptor used for the connection is no longer valid.

BEA TUXEDO Reference Manual

tprecv(3)

Return Values

TPEV_SENDONLY
The program on the other end of the connection has relinquished control of

the connection. The recipient of thisevent isallowed to send data but cannot
receive any data until it relinquishes control.

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the

subordinate of the conversation hasissued t pr et ur n(3c). t pr et ur n(3c)
encountered an error that precluded the service from returning successfully.
For example, bad arguments may have been passed to t pr et ur n(3c) or

t pr et ur n(3c) may have been called while the service had open connections
to other subordinates. Due to the nature of this event, any application defined
dataor return code are not available. The connection has been torn down and
isno longer avalid descriptor. If this event occurred as part of the cd
recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCFAI L

Received by the originator of a conversation, this event indicates that the

subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it cafjedt ur n(3c)
with TPFAI L or TPEXI T). If the subordinate service was in control of this
connection whempr et ur n(3c) was called, then it can pass an application
defined return value and a typed buffer back to the originator of the

connection. As part of ending the service routine, the server has torn down the
connection. Thus;d is no longer a valid descriptor. If this event occurred as
part of the recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC

Received by the originator of a conversation, this event indicates that the

subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it calpe@t ur n(3c)

with TPSUCCESS). As part of ending the service routine, the server has torn
down the connection. Thusd is no longer a valid descriptor. If the recipient
is in transaction mode, then it can either commit (if it is also the initiator) or

abort the transaction causing the work done by the server (if also in
transaction mode) to either commit or abort.

Upon return from pr ecv() whererevent is set to eitheTPEV_SvVCSUCC or

TPEV_SVCFAI L, thet pur code global contains an application defined value that was

sent as part afpr et ur n(3).t pr ecv() returns -1 on error and sefser r no to indicate
the error condition. If a call fails with a particutarer r no value, a subsequent call to

BEA TUXEDO Reference Manual 173

tprecv(3)

t perrordetai | (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the t per r or det ai | (3c) reference
page for more information.

Errors Under the following conditions, t pr ecv() fails and sets tperrno to:

[TPEI NVAL]
Invalid arguments were given (for example, datais not the address of a

pointer to a buffer alocated by t pal | oc(3c) or f I ags areinvalid).

[TPECTYPE]
Either the type and subtype of theincoming buffer are not known to the caller,

or TPNOCHANGE was set in f / ags and the type and subtype of *dat a do not
match the type and subtype of the incoming buffer. Regardless, neither

*dat a, its contents nor */ en are changed. If the conversation is part of the
caller's current transaction, then the transaction is marked abort-only because
the incoming buffer is discarded.

[TPEBADDESC]
cdisinvalid.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction

timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified. In either case, neither *dat a nor its contents are changed. If a
transaction timeout occurred, then any attempts to send or receive messages
on any connections or to start a new connection will fail with TPETI ME until
the transaction has been aborted.

[TPEEVENT]
An event occurred and itstype is available in revent. Thereis arelationship

between the [TPETI ME] and the [TPEEVENT] return codes. Whilein
transaction mode, if thereceiving side of aconversationisblockedont pr ecv
and the sending side callst pabor t , then the receiving side gets areturn code
of [TPEVENT] with an event of TPEV_DI SCONI MM However, if the sending
side callst pabor t beforethe receiving side callst pr ecv, then the
transaction may have already been removed from the GTT, which causes

t pr ecv tofail withthe[TPETI ME] code.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

174 BEA TUXEDO Reference Manual

tprecv(3)

[TPEPROTQ
t pr ecv() was called in animproper context (for example, the connection was

established such that the calling program can only send data).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is

writtento alog file.

[TPECS]
An operating system error has occurred.

Usage A server can pass an application defined return value and typed buffer when calling
t pr et ur n(3c). The return value isavailable in the global variable ¢ pur code and the
buffer is availablein dat a.

See Also tpall oc(3), t pconnect (3), t pdi scon(3), t perrordet ai | (3c), t psend(3),
t pservi ce(3),t pstrerrordetail (3c)

BEA TUXEDO Reference Manual 175

tpresume(3)

tpresume(3)

Name

Synopsis

Description

Return Value

176

Errors

t pr esunme-resume aglobal transaction

#i nclude <atm . h>
int tpresume(TPTRANID *tranid, long fl ags)

t pr esune() is used to resume work on behalf of a previously suspended transaction.
Once the caller resumes work on atransaction, it must either suspend it with
t psuspend(3), or complete it with one of t pconmi t (3) or t pabort (3) at alater time.

The caller must ensure that its linked resource managers have been opened (via
t popen(3)) beforeit can resume work on any transaction.

t pr esunme() places the caller in transaction mode on behalf of the global transaction
identifier pointed to by ¢t r ani d. Itisan error for t rani d to be NULL.

Currently, fI ags are reserved for future use and must be set to 0.
t pr esunme() returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pr esune() fails and setst per r no to:

[TPEI NVAL]
Either t rani disaNULL pointer, it points to a non-existent transaction
identifier (including previously completed or timed-out transactions), or it
points to atransaction identifier that the caller is not allowed to resume. The
caller’s state with respect to the transaction is not changed.

[TPEMATCH]
t rani d pointsto atransaction identifier that another process has aready
resumed. The caller's state with respect to the transaction is not changed.

[TPETRAN]
The BEA TUXEDO system is unable to resume the global transaction
because the caller is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be resumed. The caller’s state with
respect to the local transaction is unchanged.

[TPEPROTC)
t pr esunme() was caled in an improper context (for example, the caller is
already in transaction mode). The caller’s state with respect to the transaction
is not changed.

BEA TUXEDO Reference Manual

tpresume(3)

Notes

See Also

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is

writtento alog file.

[TPECS]
An operating system error has occurred.

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (Seet popen(3) for details.)

A process resuming a suspended transaction must reside on the same logical machine
(LMID) asthe process that suspended the transaction. For a workstation client, the
workstation handler (WSH) to which it is connected must reside on the same logical
machine as the handler for the workstation client that suspended the transaction.

t pabort (3), t pcomni t (3), t popen(3), t psuspend(3)

BEA TUXEDO Reference Manual 177

tpreturn(3c)

tpreturn(3¢)

178

Name

Synopsis

Description

t pr et ur n(3c)-routine for returning from a service routine

void tpreturn(int rval, long rcode, char *data, long /en, long \
fl ags)

t pr et ur n indicatesthat aserviceroutine hascompleted. t pr et ur n actslikear et ur n
statement in the C language (that is, when t pr et ur n is called, the service routine
returns to the BEA TUXEDO system dispatcher). It is recommended that t pr et urn
be called from within the service routine dispatched to ensure correct return of control
to the BEA TUXEDO system dispatcher.

t pr et ur n isused to send a service's reply message. If the program receiving the reply
iswaitingineithert pcal | (3c),t pgetr pl y(3c), ort pr ecv(3c), then after asuccessful
cal tot pret urn, thereply isavailablein the receiver's buffer.

For conversational services, t pr et ur n also tears down the connection. That is, the
service routine cannot call t pdi scon(3c) directly. To ensure correct results, the
program that connected to the conversational service should not call t pdi scon(3c);
rather, it should wait for notification that the conversationa service has completed
(that is, it should wait for one of the events, like TPEV_SVCSUCC or TPEV_SVCFAI L,
sent by t pr et ur n).

If the service routine was in transaction mode, t pr et ur n places the service’s portion
of the transaction in a state where it may be either committed or rolled back when the
transaction is completed. A service may be invoked multipletimes as part of the same
transaction so it is not necessarily fully committed nor rolled back until either

t pcomi t (3c) or t pabort (3c) iscaled by the originator of the transaction.

t pr et ur n should be called after receiving al replies expected from service requests
initiated by the service routine. Otherwise, depending on the nature of the service,
either aTPESVCERR status or aTPEV_SVCERR event will bereturned to the program that
initiated communi cation with the service routine. Any outstanding replies that are not
received will automatically be dropped by the communication manager. In addition,
the descriptors for those replies become invalid.

t pr et ur n should be called after closing al connectionsinitiated by the service.
Otherwise, depending on the nature of the service, either a TPESVCERR or a
TPEV_SVCERR event will be returned to the program that initiated communication with
the serviceroutine. Also, animmediate disconnect event (that is, TPEV_DI SCONI MM) is
sent over all open connections to subordinates.

BEA TUXEDO Reference Manual

tpreturn(3c¢)

Since a conversationa service has only one open connection which it did not initiate,
the communication manager knows over which descriptor data (and any event) should
be sent. For this reason, a descriptor isnot passed to t pr et ur n.

Thefollowing isadescription of t pr et ur n 'sarguments. rval can be set to one of the
following.

TPSUCCESS

TPFAI L

TPEXI T

The service hasterminated successfully. If datais present, thenit will be sent
(barring any failures processing the return). If the caller isin transaction
mode, thent pr et ur n places the caller’s portion of the transaction in a state
such that it can be committed when the transaction ultimately commits. Note
that acall tot pr et ur n does not necessarily finalize an entire transaction.
Also, even though the caller indicates success, if there are any outstanding
replies or open connections, if any work done within the service caused its
transaction to be marked rollback-only, then afailed messageis sent (that is,
the recipient of thereply receivesa TPESVCERR indication or aTPEV_SVCERR
event). Note that if atransaction becomes rollback-only while in the service
routine for any reason, then rval should be set to TPFAI L. If TPSUCCESS is
specified for a conversational service, a TPEV_SVCSUCC event is generated.

The service hasterminated unsuccessfully from an application standpoint. An
error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receives a TPSVCFAI L indication or a
TPEV_SVCFAI L event. If the caller isin transaction mode, thent pr et urn
marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failures in processing the return, the
caller'sdatais sent, if present. One reason for not sending the caller's datais
that a transaction timeout has occurred. In this case, the program waiting for
the reply will receive an error of TPETI ME. If TPFAI L is specified for a
conversationa service, a TPEV_SVCFAI L event is generated.

Thisvaueisthe same as TPFAI L, with respect to completing the service, but
the server will exit after the transaction is rolled back and the reply is sent
back to the requester. If the server is restartable, then the server will
automatically be restarted.

If rval is not set to one of these three values, then it defaultsto TPFAI L.

An application defined return code, rcode, may be sent to the program receiving the
service reply. This code is sent regardless of the setting of rval aslong as areply can
be successfully sent (that is, aslong as the receiving call returns success or

BEA TUXEDO Reference Manual 179

tpreturn(3c)

TPESVCFAI L). In addition, for conversationa services, thiscode can be sent only if the
service routine has control of the connection when it issues t pr et ur n. The value of
rcode is availablein the receiver in the variable, t pur code.

data pointsto the data portion of areply to be sent. If dataisnon-NULL, it must point
to abuffer previously obtained by acall to t pal | oc(3c). If thisisthe same buffer
passed to the service routine upon its invocation, then its disposition is up to the BEA
TUXEDO system dispatcher; the service routine writer does not have to worry about
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passed to t pr et ur n isnot the same one with which the service
isinvoked, then t pr et ur n will free that buffer. len specifies the amount of the data
buffer to be sent. If data points to a buffer which does not require alength to be
specified, (for example, an FML fielded buffer), then len isignored (and can be 0).

If dataisNULL, thenlenisignored. Inthiscase, if areply isexpected by the program
that invoked the service, then areply is sent with no data. If no reply is expected, then
t pr et ur n frees data as necessary and returns sending no reply.

Currently, flagsis reserved for future use and must be set to O (if set to anon-zero
value, the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event).

If the service is conversational, there are two cases where the caller’s return code and
the data portion are not transmitted:

4 if the connection has already been torn down when the call is made (that is, the
caller has received TPEV_DI SCONI MMon the connection), then this call simply
ends the service routine and rolls back the current transaction, if one exists.

4 if thecaler does not have control of the connection, either TPEV_SVCFAI L or
TPEV_SVCERRIs sent to the originator of the connection as described above.
Regardless of which event the originator receives, no datais transmitted;
however, if the originator receives the TPEV_SVCFAI L event, the return codeis
available in the originator's t pur code variable.

Return Values A service routine does not return any value to its caller, the BEA TUXEDO system

180

dispatcher; thus, it isdeclared as avoi d. Service routines, however, are expected to
terminate using either t pr et ur n or t pf or war d(3c). A conversational serviceroutine

must use't pr et ur n, and cannot use't pf or war d(3c). If a service routine returns

without using either t pr et ur n or t pf or war d(3c) (that is, it uses the C language

r et ur n statement or just simply “falls out of the function”x@f or war d(3c) is called
from a conversational server, the server will print a warning message in the log and
return a service error to the service requester. In addition, all open connections to

BEA TUXEDO Reference Manual

tpreturn(3c¢)

Errors

See Also

subordinates will be disconnected immediately, and any outstanding asynchronous
replieswill be dropped. If the server wasin transaction mode at the time of failure, the
transaction is marked rollback-only. Note also that if either t preturn or

t pf or war d(3c) are used outside of a service routine (for example, in clients, or in
tpsvrini t (3c) ort psvr done(3c)), then theseroutines simply return having no effect.

Sincet pr et ur n ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
causet per r no to be set to TPESVCERR for a program receiving the service's outcome
viaeither t pcal | (3c) or t pget r pl y(3c), and cause the event, TPEV_SVCERR, to be
sent over the conversation to a program using t psend(3c) or t pr ecv(3c).

If either SVCTI MEQUT in the ubbconfi g fileor TA_SVCTI MEOUT inthe TM M B is
non-zero, the event TPEV_SVCERR is returned when a service timeout occurs.

tperrordetail (3c) andt pstrerrordetail (3c) can be used to get additional
information about an error produced by the last BEA TUXEDO system routine called
in the current thread. If an error occurred, t perr or det ai | returns a numeric value
that can be used asanargumenttotrstrerrordetai | toretrievethetext of theerror
detail.

t pal 1 oc(3c),t pcal | (3c),t pconnect (3c), t pf or war d(3c) t pr ecv(3c), t psend(3c),
t pser vi ce(3c)

BEA TUXEDO Reference Manual 181

tpscmt(3)

tpsamt(3)

182

Name

Synopsis

Description

t pscnt -routine for setting when t pconmi t () should return

#i nclude <atm . h>
int tpscnt(long flags)

t pscnt () setsthe TP_COWM T_CONTROL characteristic to the value specifiedin f/ ags.
The TP_COVM T_CONTROL characteristic affects the way t pconmi t (3) behaves with
respect to returning control to itscaller. A program can call t pscnt () regardless of
whether it isin transaction mode or not. Note that if the caller is participating in a
transaction that another program must commit, thenitscall tot pscnt () doesnot affect
that transaction. Rather, it affects subsequent transactions that the caller will commit.

In most cases, atransaction is committed only when a BEA TUXEDO system thread
of control callst pcommi t (3). Thereis one exception: when a serviceis dispatched in
transaction mode because the AUTOTRAN variable in the * SERVI CES section of the
UBBCONFIG file is enabled, then the transaction completes upon calling

t preturn(3).If t pf or war d(3) iscalled, then the transaction will be completed by the
server ultimately caling t pr et ur n(3). Thus, the setting of the TP_COVM T_CONTROL
characteristic in the service that callst pr et ur n(3) determines when t pcommi t (3)
returnscontrol withinaserver. If t pcomi t (3) returnsaheuristic error code, the server
will write amessage to alog file.

When aclient joinsa BEA TUXEDO system application, the initial setting for this
characteristic comes from a configuration file. (See the CMIRET variable in the
* RESOURCES section of ubbconfi g(5))

Following are the valid settings for f/ ags.

TP_CMI_LOGGED
Thisflagindicatesthat t pcomni t (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. Thissetting allowsfor faster response
to the caller of t pconmi t (3) although there isarisk that atransaction
participant might decide to heuristically complete (that is, abort) itswork due
totiming delayswaiting for the second phaseto complete. If thisoccurs, there
isnoway toindicatethissituationto thecaller sincet pconmi t (3) hasalready
returned (although the BEA TUXEDO system writes a message to alog file
when a resource manager takes a heuristic decision). Under normal
conditions, participantsthat promise to commit during the first phase will do
so during the second phase. Typically, problems caused by network or site

BEA TUXEDO Reference Manual

tpscmt(3)

Return Values

Errors

Notices

See Also

failures are the sources for heuristic decisions being made during the second
phase.

TP_CMI_COMPLETE
Thisflag indicates that t pconmi t (3) should return after the two-phase
commit protocol has finished completely. This setting allows for
t pcommi t (3) toreturn an indication that a heuristic decision occurred during
the second phase of commit.

Upon success, t pscnt () returns the previous value of the TP_COVM T_CONTROL
characteristic; otherwiseit returns -1 on error and setst per r no to indicate the error
condition.

Under the following conditions, t pscnt () fails and setst per r no to:

[TPEI NVAL]
fl ags isnot one of TP_CMI_LOGGED or TP_CMI_COVPLETE.

[TPEPROTC)
t pscnt () was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When usingt pbegi n(3), t pcomi t (3) andt pabor t (3) todelineateaBEA TUXEDO
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () or t pabort (). Seebui | dser ver (1) for detailson
linking resource managersthat meet the X A interfaceinto a server such that operations
performed by that resource manager are part of aBEA TUXEDO system transaction.

t pabort (3), t pbegi n(3), t pcommi t (3), t pget | ev(3)

BEA TUXEDO Reference Manual 183

tpsend(3)

tpsend(3)

184

Name

Synopsis

Description

t psend(3)-routine for sending a message in a conversational connection

#i nclude <atm . h>
int tpsend(int cd, char *data, long /en, long flags, |long *revent)

t psend isused to send data across an open connection to another program. The caller
must have control of the connection. t psend’s first argument, cd, specifies the open
connection over which datais sent. cd is a descriptor returned from either

t pconnect (3c) or the TPSVCI NFO parameter passed to a conversational service.

The second argument, dat a, must point to a buffer previously allocated by

t pal | oc(3c). I en specifies how much of the buffer to send. Note that if dat a points
to abuffer of atype that does not require alength to be specified (for example, an FM.
fielded buffer), then ! enisignored (and may be 0). Also, dat a canbe NULL inwhich
case | enisignored (no application datais sent - this might be done, for instance, to
grant control of the connection without transmitting any data). The type and sub-type
of dat a must match one of the types and sub-types recognized by the other end of the
connection.

Following isalist of valid f I ags.

TPRECVONLY
Thisflag signifiesthat, after the caller'sdatais sent, the caller gives up control
of the connection (that is, the caller can not issue any moret psend cals).
When the receiver on the other end of the connection receives the data sent
by t psend, it will also receive an event (TPEV_SENDONLY) indicating that it
has control of the connection (and can not issue more any t pr ecv(3c) calls).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, theinternal buffersinto which the message is transferred are full).
When TPNOBLOCK is not specified and a blocking condition exists, the caller
blocks until the condition subsides or atimeout occurs (either transaction or
blocking timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued.

BEA TUXEDO Reference Manual

tpsend(3)

Return Values

If an event exists for the descriptor, cd, thent psend will fail without sending the
caller'sdata. The event typeisreturned in revent . Valid eventsfor t psend are as
follows:

TPEV_DI SCONI MM
Received by the subordinate of a conversation, this event indicates that the

originator of the conversation has issued an immediate disconnect on the
connection viat pdi scon(3c), oritissuedt pr et urn(3c), t pconmi t (3c) or
t pabor t (3c) with the connection still open. Thisevent isalso returned to the
originator or subordinate when a connection is broken dueto a
communications error (for example, a server, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the

subordinate of the conversation hasissued t pr et ur n(3c) without having
control of the conversation. In addition, t pr et ur n(3c) has been issued in a
manner different from that described for TPEV_SVCFAI L below. This event
can be caused by an ACL permissions violation; that is, the originator does
not have permission to connect to the receiving process. This event is not
returned at thetimethet pconnect isissued, but isreturned with the first

t psend (following at pconnect with flag TPSENDONLY) or t pr ecv
(following at pconnect with flag TPRECVONLY). A system event and alog
message are al so generated.

TPEV_SVCFAI L
Received by the originator of a conversation, this event indicates that the

subordinate of the conversation hasissued t pr et ur n(3c) without having
control of the conversation. In addition, t pr et ur n(3c) was issued with the
rval setto TPFAI L or TPEXI T and dat a to NULL.

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), datain transit may be lost. The descriptor used for the
connection is no longer valid. If the two programs were participating in the same
transaction, then the transaction has been marked abort-only.

If the value of either SVCTI MEQUT in the ubbconf i g fileor TA_SVCTI MEQUT in the
TM_M B is non-zero, TPESVCERR is returned when a service timeout occurs.

Upon return from t psend where r event is set to either TPEV_SVCSUCC or
TPEV_SVCFAI L, thet pur code global contains an application-defined value that was
sent as part of t pret ur n. The function t psend returns -1 on error and setst per rno
to indicate the error condition. Also, if an event exists and no errors were encountered,
t psend returns-1 and t per rno is set to [TPEEVENT] .

BEA TUXEDO Reference Manual 185

tpsend(3)

186

Errors

See Also

Under the following conditions, t psend(3c) fails and setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, dat a does not point to a buffer
allocated by t pal | oc(3c) or f/ ags areinvalid).

[TPEBADDESC]
cdisinvalid.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. In either case, no changesaremadeto * dat a, itscontentsnor */ en.
If atransaction timeout occurred, then any attempts to send or receive
messages on any connections or to start a new connection will fail with
TPETI ME until the transaction has been aborted.

[TPEEVENT]
An event occurred. dat a is not sent when thiserror occurs. The event typeis
returned in r event .

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t psend was called in an improper context (for example, the connection was
established such that the calling program can only receive data).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pal | oc(3c), t pconnect (3c), t pdi scon(3c), t precv(3c), t pservi ce(3c)

BEA TUXEDO Reference Manual

tpservice(3)

tpservice(3)
Name

Synopsis

Description

t pser vi ce-template for service routines

#i ncl ude <atni.h> /[* Cinterface */

voi d tpservi ce(TPSVCI NFO *svcinfo) [/* C++ interface - must have
* C linkage */

extern “C” void tpservice(TPSVCINFO *svcinfo)

tpservice () isthe template for writing service routines. This template is used for
servicesthat receiverequestsviatpcall (3), tpacall (3) or tpforward ~ (3) routinesas
well as by services that communicate viatpconnect (3), tpsend (3) and tprecv (3)
routines.

Serviceroutines processing requests madeviaeither tpcall (3) or tpacall (3) receive
at most oneincoming message (inthe dat a element of svci nf 0) and send at most one
reply (upon exiting the service routine with tpreturn ~ (3)).

Conversational services, onthe other hand, areinvoked by connection requests with at
most one incoming message along with a means of referring to the open connection.
When aconversational service routineisinvoked, either the connecting program or the
conversationa service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(i.e., it sendsdata) until it explicitly gives up control to the other side of the connection.

Concerning transactions, service routines can participate in at most one transaction if
invoked in transaction mode. Asfar as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routineis not
invoked in transaction mode, then the service routine may originate as many
transactions as it wants using tpbegin (3), tpcommit (3), and tpabort (3). Note that
tpreturn (3) is not used to complete a transaction. Thus, it isan error to call

tpreturn (3) with an outstanding transaction that originated within the serviceroutine.

Service routines are invoked with one argument: svci nf o, apointer to a service
information structure. This structure includes the following members:

char name[32];
char *data;
long len;

long flags;

int cd;

long appkey;

CLIENTID cltid;

name is populated with the service name that the requester used to invoke the service.

BEA TUXEDO Reference Manual 187

tpservice(3)

188

The setting of 1 ags upon entrance to a service routine indicates attributes which the
service routine may want to note. Following are the possible values for f/ ags.

TPCONV
A connection request for aconversation has been accepted and the descriptor
for the conversation is available in cd. If not set, then thisisa
reguest/response service and cd is not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
Thecaller isnot expecting areply. Thisoption will not be set if TPCONV i s set.

TPSENDONLY
The serviceisinvoked such that it can only send data across the connection
and the program on the other end of the connection can only receive data. This
flag is mutually exclusive with TPRECVONLY and may be set only when
TPCONV isalso set.

TPRECVONLY
The serviceisinvoked such that it can only receive data from the connection
and the program on the other end of the connection can only send data. This
flag is mutually exclusive with TPSENDONLY and may be set only when
TPCONV isalso set.

dat a pointsto the data portion of arequest message and / en isthe length of the data.
The buffer pointed to by dat a was allocated by t pal | oc(3) in the communication
manager. This buffer may be grown by the user with t pr eal | oc(3); however, it
cannot be freed by the user. It is recommended that this buffer be the one passed to
either t pr et ur n(3) or t pf or war d(3) when the service ends. If a different buffer is
passed to those routines, then that buffer isfreed by them. Notethat the buffer pointed
to by dat a will be overwritten by the next service request even if this buffer is not
passed tot pr et ur n(3) or t pf or war d(3). dat amay be NULL if no dataaccompanied
the request. In thiscase, | en will be 0.

When TPCONV issetin f/ ags, cd isthe connection descriptor that can be used with
t psend(3) and t pr ecv(3) to communicate with the program that initiated the
conversation.

BEA TUXEDO Reference Manual

tpservice(3)

Return Values

Errors

See Also

appkey isset to the application key assigned to the requesting client by the application
defined authentication service. Thiskey valueis passed along with any and all service
requests made while within this invocation of the service routine. appkey will have a
value of -1 for originating clients that do not pass through the application
authentication service.

cl tidistheunique client identifier for the originating client associated with this
service request. The definition of this structure is made available to the application in
at mi . h solely so that client identifiers may be passed between application serversif
necessary. Therefore, the semantics of the fields defined bel ow are not documented
and applications should not manipulate the contents of CLIENTID structures. Doing
so will invalidate the structures. The CLIENTID structure includes the following
member:

| ong clientdatal4];

Note that for C++, the service function must have C linkage. Thisis done by declaring
the function as ‘extern “C.”

A service routine does not return any value to its caller, the communication manager
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminate using eitherpr et ur n(3) ort pf or war d(3). A conversational service

routine must usepr et ur n(3), and cannot usef or war d(3). If a service routine

returns without using eithepr et ur n(3) ort pf or war d(3) (i.e., it uses the C language

r et ur n statement or just simply “falls out of the function”)tqf or war d(3) is called

from a conversational server, the server will print a warning message in a log file and
return a service error to the originator or requester. All open connections to
subordinates will be disconnected immediately, and any outstanding asynchronous
replies will be marked stale. If the server was in transaction mode at the time of failure,
the transaction is marked abort-only. Note also that if eithest ur n(3) or

t pf or war d(3) are used outside of a service routine (e.g., in clients, or in

tpsvrini t (3) ort psvrdone(3)), then these routines simply return having no effect.

Sincet pr et ur n(3) ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function's caller. Such errors
cause perrno to be set tadPESVCERR for a program receiving the service's outcome
via eithent pcal | (3) ort pget r pl y(3), and cause the evemPEV_SVCERR, to be sent
over the conversation to a program ugipgend(3) ort pr ecv(3).

servopt s(5),t pal | oc(3),t pbegi n(3),t pcal | (3),t pconnect (3), t pf or war d(3),
tpreturn(3)

BEA TUXEDO Reference Manual 189

tpsetunsol(3)

tpsetunsol(3)

Name

Synopsis

Description

Return Values

190

Errors

t pset unsol -routine for setting the method of handling unsolicited messages

#i nclude <atm . h>

void (*tpsetunsol (void (_TMDLLENTRY *)(*di sp) (char *data, |ong
len, long flags))) \

(char *data, long len, long flags)

t pset unsol () allowsaclient to identify the routine that should be invoked when an
unsolicited message isreceived by the BEA TUXEDO system libraries. Before the
first call tot pset unsol (), any unsolicited messages received by the BEA TUXEDO
system libraries on behalf of theclient arelogged and ignored. A call to t pset unsol ()
with aNULL function pointer has the same effect. The method used by the system for
notification and detection is determined by the application default, which can be
overridden on a per-client basis (seet pi ni t (3)).

The function pointer passed on the call to t pset unsol () must conform to the
parameter definition given. dat a points to the typed buffer received and / en isthe
length of the data. f/ ags are currently unused. dat a can be NULL if no data
accompanied the notification. dat a may be of a buffer type/subtype that is not known
by the client, in which case the message data is unintelligible.

dat a can not befreed by application code. However, the system freesit and invalidates
the data area following return.

Processing within the application unsolicited message handling routineis restricted to
thefollowing BEA TUXEDO system calls: t pal | oc(3),t pget | ev(3),t preal | oc(3)
t pt ypes(3),t pf ree(3).

Upon success, t pset unsol () returns the previous setting for the unsolicited message
handling routine (NULL isasuccessful return indicating that no message handling
function had been set previously); otherwise, it returns TPUNSOLERR and setst per r no
to indicate the error condition.

Under the following conditions, t pset unsol () fails and setst per r no to:

[TPEPROTC)
t pset unsol () was called in an improper context (e.g., from within a server).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

BEA TUXEDO Reference Manual

tpsetunsol(3)

[TPECS]
An operating system error has occurred.

Portability =~ Theinterfacesdescribedint pnot i f y(3) are supported on native site UNIX-based and
Windows NT processors. In addition, theroutinest pbr oadcast () andt pchkunsol ()
aswell asthe function t pset unsol () are supported on UNIX and MS-DOS
workstation processors.

See Also tpinit(3),tptern(3)

BEA TUXEDO Reference Manual 191

tpsprio(3)

tpsprio(3)
Name

Synopsis

Description

Return Values

Errors

See Also

t pspri o-routine for setting service request priority

#i nclude <atm . h>
int tpsprio(prio, flags)

t pspri o) setsthe priority for the next request sent or forwarded. The priority set
affects only the next request sent. (Priority can also be set for messages enqueued or
dequeued by t penqueue(3) or t pdequeue(3) if the queued message facility is
installed.) By default, the setting of pri o increments or decrements a service's default
priority up to amaximum of 100 or down to aminimum of 1 depending onits sign,
where 100isthe highest priority. The default priority for arequest isdetermined by the
service to which the request is being sent. This default may be specified
administratively (see ubbconf i g(5)), or take the system default of 50. t pspri o() has
no effect on messages sent viat pconnect (3) or t psend(3).

Following isalist of valid flags.

TPABSOLUTE
The priority of the next request should be sent out at the absol ute value of
pri o. The absolute value of pri o must be within the range 1 and 100,
inclusive, with 100 being the highest priority. Any value outside of thisrange
causes a default value to be used.

t pspri o() returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pspri o() failsand setst per r no to:

[TPEI NVAL]
fl ags areinvalid.

[TPEPROTC)
t pspri o() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pacal | (3),tpcal | (3), t pdequeue(3), t penqueue(3), t pgpri o(3)

192 BEA TUXEDO Reference Manual

tpstrerror(3)

tpstrerror(3)

Name

Synopsis

Description

Return Values

Errors

Example

See Also

t pstrerror (3)-get error message string for aBEA TUXEDO system error

#i ncl ude <atm . h>
char *
tpstrerror(int err)

tpstrerror()isused to retrieve the text of an error message from L1 BTUX_CAT. err
isthe error code setint per r no when aBEA TUXEDO system function call returnsa
- 1 or other failure value.

Y ou can use the pointer returned by t pst r er r or () asan argument to user | og(3c) or
the UNIX function f pri nt f (3).

If errisaninvalid error code, t pstrerror () returnsaNULL. On success, thefunction
returns a pointer to a string that contains the error message text.

tpstrerror () returnsaNULL on error, but does not set t per r no.

#i ncl ude <atm . h>

char *p;

if (tpbegin(10,0) == -1) {
p = tpstrerror(tperrno);

userlog(“%s”, p);

(void)tpabort(0);

(void)tpterm();

exit(1);

}

Fstrerror (3), userlog (3c)

BEA TUXEDO Reference Manual 193

tpstrerrordetail(3)

tpstrerrordetail(3)

Name tpstrerrordetail -get error detail message string for aBEA TUXEDO system error

Synopsis #i ncl ude <atmi . h>
char * tpstrerrordetail (int err, long flags)

Description t pstrerrordetail () isusedtoretrievethetext of an error detail of aBEA TUXEDO
system error. err isthe vauereturned by t per r or det ai | (3).

The user can use the pointer returned by t pst rerr or det ai | asan argument to
user | og(3c) or the UNIX function f pri nt f (3).

Currently f 1 ags isreserved for future use and must be set to O.

Return Values If err isaninvalid error code, t pst rerrordet ai | returnsaNULL. On success, the
function returns a pointer to a string that contains the error detail message text.

Errors tpstrerrordetail returnsaNULL on error, but does not set t perr no.

Example #include <atni.h> .

int ret;

char *p;

if (tpbegin(10,0) == -1) {
ret=tperrordetail (0);
if (ret == -1) {

(void) fprintf(stderr, “tperrordetail() failed\n");
(void) fprintf(stderr, “tperrno = %d, %s\n”,
tperrno, tpstrerror(tperrno));

}
else if (ret 1= 0) {

(void) fprintf(stderr, “errordetail:%s\n”,
tpstrerrordetail(ret, 0);
1

}

See Also intro (3c), tperrordetail (3c), tpstrerror ~ (3c), userlog (3c), tpermo (5)

194 BEA TUXEDO Reference Manual

tpsubscribe(3¢)

tpsubscribe(3¢)
Name tpsubscri be-subscribeto an event
Synopsis #i ncl ude <atmi . h>
| ong t psubscribe(char *event expr, char *filter, TPEVCTL *ctl, |ong
flags)
Description The caller usest psubscri be to subscribeto an event or set of events named by

event expr . Subscriptions are maintained by the BEA TUXEDO system Event
Broker, TMUSREVT(5), and are used to notify subscribers when events are posted via
t ppost (3). Each subscription specifies a notification method which can take one of
three forms: client notification, service calls, or message enqueuing to stable-storage
gueues. Notification methods are determined by the subscriber’s process type and the
arguments passed to t psubscr i be.

The event or set of events being subscribed to is named by event expr, a

NUL L -terminated string of at most 255 characters containing aregular expression. For
example, if event expr is “\ e\ e. . *”, the caller is subscribing to all system-generated
events; ifevent expr is “\ e\ e. SysServer . *”, the caller is subscribing to all
system-generated events related to servees.efit expr is “[A-Z] . *”, the caller is
subscribing to all user events starting with A-Zewlent expr is “. *(ERR| err) . *”,

the caller is subscribing to all user events containing either the substring “ERR” or the
substring “err” (for example, “account_error” and “ERROR_STATE" events would
both qualify).

If presentfilter is a string containing a boolean filter rule associated with

event expr that must be evaluated successfully before the event broker posts the
event. Upon receiving an event to be posted, the event broker applies the filter rule, if
one exists, to the posted event's data. If the data passes the filter rule, the event broker
invokes the notification method associated weitlent expr; otherwise, the broker

does not invoke the associated notification method. The caller can subscribe to the
same event multiple times with different filter rules.

Filter rules are specific to the typed buffers to which they are applied. For FML and
view buffers, the filter rule is a string that can be passed to each's boolean expression
complier (seebool co(3) andFvbool co(3), respectively) and evaluated against the
posted buffer (seebool ev(3) andrvbool ev(3), respectively). For STRING buffers,

the filter rule is a regular expression. All other buffer types require customized filter
evaluators (sebuf f er (3) andt ypesw(5) for details on adding customized filter
evaluators)fi I t er is a NULL-terminated string of at most 255 characters.

BEA TUXEDO Reference Manual 195

tpsubscribe(3¢)

196

If the subscriber isaBEA TUXEDO system client processand ct / isNULL, thenthe
event broker sends an unsolicited message to the subscriber when the event to which
it subscribed is posted. That is, when an event name is posted that evaluates
successfully against event expr , the event broker teststhe posted dataagainst thefilter
rule associated with event expr . If the data passes the filter rule or if thereisno filter
rule for the event, then the subscriber receives an unsolicited notification along with
any data posted with the event. In order to receive unsolicited notifications, the client
must register (viat pset unsol (3)) an unsolicited message handling routine. If aBEA
TUXEDO system server processcalst psubscri be withaNULL ct/ parameter,
then t psubscri be fails setting t per r no to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the event broker's list of active subscriptions before exiting (see

t punsubscri be(3) for details). Usingt punsubscri be’'swild-card handle, -1, clients

can conveniently remove all of their “non-persistent” subscriptions which include
those associated with the unsolicited notification method (see the description of
TPEVPERSIST below for subscriptions and their associated notification methods tha
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the event broker will remove them when it detects that the client i
no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to servic
routines or to stable-storage queues, therctheparameter must point to a valid
TPEVCTL structure. This structure contains the following elements:

| ong flags;
char nanel[32];
char nane2[32];
TPQCTL gctl;

The following is a list of valid bits for thet / - >f I ags element controlling options for
event subscriptions.

TPEVSERVI CE
Setting this flag bit indicates that the subscriber wants event notifications to
be sent to the BEA TUXEDO system service routine named/in>nane1.
That is, when an event name is posted that evaluates successfully against
event expr, the event broker tests the posted data against the filter rule
associated witlevent expr . If the data passes the filter rule or if there is no
filter rule for the event, then a service request is sett te>nane1 along
with any data posted with the event. The service name/in>nanel can be
any valid BEA TUXEDO system service name and it may or may not be
active at the time the subscription is made. Service routines invoked by the

BEA TUXEDO Reference Manual

tpsubscribe(3¢)

event broker should return with no reply data. That is, they should call
t pr et ur n(3) with aNULL data argument. Any data passed tot pr et ur n(3)
will be dropped. TPEV SERVICE and TPEV QUEUE are mutually exclusive

flags.

If TPEVTRAN isasosetinct/ - >f 1 ags, then if the process calling

t ppost (3) isin transaction mode, the event broker calls the subscribed
service routine such that it will be part of the poster’s transaction. Both the
event broker, TMUSREVT(5), and the subscribed service routine must belong
to server groups that support transactions (see ubbconf i g(5) for details). If
TPEVTRAN isnot setin ct/ - >f I ags, then the event broker calls the
subscribed service routine such that it will not be part of the poster's
transaction.

TPEVQUEUE
Setting this flag bit indicates that the subscriber wants event notificationsto
be enqueued to the queue space named in ct / - >nane1 and the queue named
in ct ! ->nanme2. That is, when an event name is posted that eval uates
successfully against event expr , the event broker tests the posted data
against the filter rule associated with event expr . If the data passes the filter
rule or if thereis no filter rule for the event, then the event broker enqueues a
message to the queue space named in ct / - >nane1 and the queue named in
ct | - >nane2 along with any data posted with the event. The queue space and
gueue name can be any valid BEA TUXEDO system queue space and queue
name, either of which may or may not exist at the time the subscription is
made.

ct!->qgct | can contain options further directing the event broker’s

enqueuing of the posted event. If no options are specified, then

ctl->qct!. flags should be set to TPNOFLAGS. Otherwise, options can

be set as described in the “Control Parameter” subsection of the

t penqueue(3) manual page (specifically, see the section describing the valid
list of flags controlling input information farpenqueue(3)).

TPEVSERVICE and TPEVQUEUE are mutually exclusive flags.

If TPEVTRAN is also set iret | - >f I ags, then if the process calling

t ppost (3) is in transaction mode, the event broker enqueues the posted event
and its data such that it will be part of the poster's transaction. The event
broker, TMUSREVT(5), must belong to a server group that supports
transactions (segbbconf i g(5) for details). If TPEVTRAN is not set in

ct!->fl ags, then the event broker enqueues the posted event and its data
such that it will not be part of the poster's transaction.

BEA TUXEDO Reference Manual 197

tpsubscribe(3¢)

198

TPEVTRAN

Setting this flag bit indicates that the subscriber wants the event notification
for this subscription to be included in the poster'stransaction, if one exists. If
thisflag bit is not set, then any events posted for this subscription will not be
done on behalf of any transaction in which the poster is participating. This
flag can be used with either TPEV SERVICE or TPEVQUEUE.

TPEVPERSI ST

By default, the BEA TUXEDO system Event Broker del etes subscriptions
when the resource to which it is posting is not available (for example, the
event broker cannot accessa service routine and/or aqueue space/queue name
associated with an event subscription). Setting this flag bit indicates that the
subscriber wants this subscription to persist across such errors (usually
because the resource will become available again in the future). When this
flag bit is not used, the event broker will remove this subscription if it
encounters an error accessing either the service name or queue space/queue
name designated in this subscription.

If thisflag bit is used with TPEVTRAN and the resource is not available at
the time of event notification, then the event broker will return to the poster
suchthat itstransaction must be aborted. That is, even though the subscription
remainsintact, the resource’s unavail ability will causethe poster'stransaction
to fail.

If the event broker’s list of active subscriptions already contains a subscription that
matches the one being requested by t psubscr i be, then the function fails setting

t per rno to TPEMATCH. For a subscription to match an existing one, both

event expr and fi I t er must match those of asubscription already in the event
broker's activelist of subscriptions. In addition, depending on the notification method,
other criteria are used to determine matches.

If the subscriberisaBEA TUXEDO system client processand ct / iSNULL (such that
the caller receives unsolicited notifications when events are posted), then its
system-defined client identifier (known as a CLIENTID) isalso used to detect
matches. That is, t psubscri be failsif event expr, fil t er, and the caller's
CLIENTID match those of a subscription already known to the event broker.

If the caller has set ¢t/ - >f | ags to TPEVSERVICE, thent psubscri be falsif
eventexpr, filter,andtheservice namesetin ct/ - >name1 match those of a
subscription already known to the event broker.

BEA TUXEDO Reference Manual

tpsubscribe(3¢)

Return Values

For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in addition to event expr and 7 i I t er, when
determining matches. The correlation identifier can be used to differentiate among
severa subscriptions for the same event expression and filter rule, destined for the
same queue. Thus, if the caller has set ct I - >f I ags to TPEVQUEUE, and
TPQCOORIDisnotsetinct | - >qgct I . f1 ags,thent psubscri be failsif event expr,
filter,thequeue space name set in ct/ - >nane1, and the queue name set in

ct | - >name2 match those of a subscription (which also does not have a correlation
identifier specified) already known to the event broker. Further, if TPQCOORID is set
inctl->qctl.flags,thent psubscri be falsif event expr,filter,ctl->nanel,
ct!->nanme2,and ct! - >qct | . corri d match those of a subscription (which hasthe
same correlation identifier specified) already known to the event broker.

Following isalist of valid f/ ags for t psubscri be:

TPNOBLOCK
The subscriptionisnot madeif ablocking condition exists. If such acondition
occurs, the call failsand t per r no is set to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued. When TPSI GRSTRT is nhot specified and asignal interrupts a
system call, then t psubscri be failsandt per r no is set to TPGOTSI G.

Upon successful completion, t psubscri be returns ahandle that can be used to
remove this subscription from the event broker’slist of active subscriptions. Otherwise
the function returns -1 and setst per r no to indicate the error condition. Either the
subscriber or any other processis allowed to use the returned handle to delete this
subscription.

BEA TUXEDO Reference Manual 199

tpsubscribe(3¢)

200

Errors

See Also

Under the following conditions, t psubscri be fails and setst per r no to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, event expr isNULL).

[TPENCENT]
Cannot access the BEA TUXEDO system Event Broker.

[TPELI M T]
The subscription failed because the event broker's maximum number of
subscriptions has been reached.

[TPEMATCH]
The subscription failed because it matched one already listed with the event
broker.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t psubscri be was caled in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

buf f er (3), EVENTS(5), EVENT_M B(5), Fbool co(3), Fbool ev(3), Fvbool co(3),
Fvbool ev(3), r econp(3), TMSYSEVT(5), TMUSREVT(5), t penqueue(3), t ppost (3),
t pset unsol (3), t punsubscri be(3), t uxt ypes(5), t ypesw(5), ubbconf i g(5)

BEA TUXEDO Reference Manual

tpsuspend(3)

tpsuspend(3)

Name

Synopsis

Description

Return Value

t psuspend-suspend aglobal transaction

#i ncl ude <atni.h>
int tpsuspend(TPTRANID *tranid, |ong flags)

t psuspend() isused to suspend the transaction active in the caller's process. A
transaction begun with t pbegi n(3) may be suspended with t psuspend(). Either the
suspending process or another process may uset pr esume(3) to resume work on a
suspended transaction. When t psuspend() returns, the caller isno longer in
transaction mode. However, while atransaction is suspended, all resources associated
with that transaction (such as database | ocks) remain active. L ike an active transaction,
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of t psuspend() must
have been theinitiator of thetransaction by explicitly callingt pbegi n().t psuspend()
may also be called by a process other than the originator of the transaction (for
example, a server that receives arequest in transaction mode). In the latter case, only
the caller of t psuspend() may call t pr esune() to resume that transaction. This case
isallowed so that a process can temporarily suspend atransaction to begin and do some
work in another transaction before compl eting the original transaction (for example, to
run atransaction to log a failure before rolling back the original transaction).

t psuspend() returnsin the space pointed to by t r ani dthe transaction identifier being
suspended. The caller is responsible for allocating the space to which t r ani d points.
Itisan error for t rani d to be NULL.

To ensure success, the caller must have completed all outstanding transactional
communication with serversbeforeissuingt psuspend(). That is, the caller must have
received all replies for requests sent with t pacal | (3) that were associated with the
caller'stransaction. Also, the caller must have closed al connections with
conversationa services associated with the caller’s transaction (i.e., t pr ecv(3) must
have returned the TPEV_SVCSUCC event). If either ruleis not followed, then

t psuspend() fails, the caller’s current transaction is not suspended and all
transactional communi cation descriptors remain valid. Communication descriptors not
associ ated with the caller’s transaction remain valid regardless of the outcome of

t psuspend().

Currently, fI ags are reserved for future use and must be set to 0.

t psuspend() returns\-1 on error and setst per r no to indicate the error condition.

BEA TUXEDO Reference Manual 201

tpsuspend(3)

202

Errors

See Also

Under the following conditions, t psuspend() failsand setst per r no to:

[TPEI NVAL]
tranidisaNULL pointer or f/ ags isnot 0. The caler's state with respect
to the transaction is not changed.

[TPEABORT]
The caller’s active transaction has been aborted. All communication
descriptors associated with the transaction are no longer valid.

[TPEPROTC)
tpsuspend() was called in an improper context (for example, the caller is not
in transaction mode). The caller’s state with respect to the transaction is not
changed.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pacal | (3),t pbegi n(3), t precv(3), t pr esume(3)

BEA TUXEDO Reference Manual

tpsvrdone(3¢)

tpsvrdone(3¢)

Synopsis

Description

Usage

See Also

t psvr done(3c)-BEA TUXEDO system server termination routine

#i ncl ude <atni.h>
voi d tpsvrdone(void)

The BEA TUXEDO system server abstraction callst psvr done after it has finished
processing service requests but before it exits. When thisroutineisinvoked, the server
is gtill part of the system but its own services have been unadvertised. Thus, BEA
TUXEDO system communication can be performed and transactions can be defined in
thisroutine. However, if t psvr done returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA TUXEDO system will
close its connections, ignore any pending replies and abort the transaction before the
Server exits.

If aserver is shut down by the invocation of t nshut down -y, services are suspended
and the ability to perform communication or to begin transactionsin t psvrdone is
limited.

If an application does not provide this routine in a server, then the default version
provided by the BEA TUXEDO systemiscalled instead. The default t psvr done calls
t pcl ose and user | og to announce that the server is about to exit.

If either t pr et urn(3c) or t pf orwar d(3c) iscalledint psvr done, it sSimply returns
having no effect.

servopt s(5), t pcl ose(3c), t psvri nit (3c)

BEA TUXEDO Reference Manual 203

tpsvrinit(3)

tpsvrinit(3)

Name

Synopsis

Description

Return Values

204

Usage

See Also

t psvri ni t (3)-the BEA TUXEDO system server initialization routine

#i nclude <atm . h>
int tpsvrinit(int argc, char **argv)

The BEA TUXEDO system server abstraction callst psvri ni t () during its
initialization. Thisroutineis called after the thread of control has become a server but
before it handles any service requests; thus, BEA TUXEDO system communication
may be performed and transactions may be defined in this routine. However, if

t psvri ni t () returns with open connections, asynchronous replies pending or while
till in transaction mode, the BEA TUXEDO system will close the connections, ignore
replies pending, abort the transaction, and the server will exit gracefully.

If an application does not provide thisroutine in a server, then the default version
provided by the BEA TUXEDO system is called instead. The default t psvri ni t ()
calst popen() and user | og() to announce that the server has successfully started.

Application-specific options can be passed into aserver and processed in t psvri ni t ()
(seeservopt s(5)). The options are passed through argc and argv. Since get opt (3C)
isused ina BEA TUXEDO system server abstraction, opt ar g, opt i nd and opt er r
may be used to control option parsing and error detectionint psvri ni t ().

If an error occursint psvri ni t (), the application can cause the server to exit
gracefully (and not take any service requests) by returning -1. The application should
not call exi t (2) itself.

A negative return value will cause the server to exit gracefully.

If either t pret urn() or t pf or war d() are used outside of a service routine (e.g., in
clients, orint psvri ni t () ort psvr done()), then these routines simply return having
no effect.

get opt (3C), ser vopt s(5), t popen(3), t psvr done(3)

BEA TUXEDO Reference Manual

tpterm(3)

tpterm(3)
Name

Synopsis

Description

Return Values

Errors

See Also

t pt er mroutine for leaving an application

#i ncl ude <atni.h>

int tptermvoid)

t pt er m() removes aclient from a BEA TUXEDO system application. If the client is
in transaction mode, then the transaction is rolled back. When t pt er n() returns
successfully, the caller can no longer communicate with any other program nor can it

participate in any transactions. Any outstanding conversations are immediately
disconnected.

If t pt er m() is called more than once (that is, after the caller has already left the
application), no action is taken and successis returned.

t pt er m() returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pt er n() fails and setst per r no to:

[TPEPROTC)
t pt er m() was called in an improper context (for example, the caller isa
server).

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

t pi ni t (3)

BEA TUXEDO Reference Manual 205

tptypes(3)

tptypes(3)
Name

Synopsis

Description

Return Values

Errors

See Also

t pt ypes-routine to determineinformation about a typed buffer

#i nclude <atm . h>
|l ong tptypes(char *ptr, char *type, char *subtype)

t pt ypes() takes asitsfirst argument a pointer to adata buffer and returnsthe type and
subtype of that buffer in its second and third arguments, respectively. pt r must point
to abuffer gotten from t pal | oc(3). If t ype and subt ype are non-NULL, then the
function populates the character arrays to which they point with the names of the
buffer's type and subtype, respectively. If the names are of their maximum length (8
for t ype, 16 for subt ype), the character array is not null-terminated. If no subtype
exists, then the array pointed to by subt ype will contain aNULL string.

Note that only the first eight bytes of t ype and the first 16 bytes of subt ype are
populated.

Upon success, t pt ypes() returns the size of the buffer; otherwise it returns\-1 upon
failure and setst per r no to indicate the error condition.

Under the following conditions, t pt ypes() failsand setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to a buffer
gotten from \% tpall oc(3)).

[TPEPROTC)
t pt ypes() was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pal 1 oc(3),t pfree(3),tpreal |l oc(3)

206 BEA TUXEDO Reference Manual

tpunadvertise(3)

tpunadvertise(3)
Name tpunadverti se-routine for unadvertising a service name
Synopsis #i ncl ude <atmi . h>
int tpunadvertise(char *svcnane)

Description t punadverti se() allowsaserver to unadvertise aservice that it offers. By default, a
server’s services are advertised when it is booted and they are unadvertised when it is
shutdown.

All servers belonging to amultiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of al servers sharing an MSSQ set.
t punadverti se() removes svcnane as an advertised service for the server (or the set
of servers sharing the caller's MSSQ set). svcnane cannot be NULL or the NULL
string (*“). Also, svcnane should be 15 characters or less. (See *SERVICES section
of ubbconfi g(5)). Longer names will be accepted and truncated to 15 characters. Care
should be taken such that truncated names do not match other service names.
Return Values t punadverti se() returns \-1 on error and setser r no to indicate the error condition.
Errors Under the following conditions,punadver ti se() fails and setsper r no to:
[TPEI NVAL]
svenane is NULL or the NULL string ().
[TPENCENT]
svcnane is not currently advertised by the server.
[TPEPROTC)
t punadverti se() was called in an improper context (for example, by a
client).
[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.
[TPECS]
An operating system error has occurred.
See Also tpadvertise(3)

BEA TUXEDO Reference Manual 207

tpunsubscribe(3)

tpunsubscribe(3)
Name tpunsubscri be-unsubscribe to an event
Synopsis #i ncl ude <atmi . h>
i nt tpunsubscribe(long subscription, [ong flags)
Description Thecaller usest punsubscri be to remove an event subscription or a set of event

208

subscriptions from the TUXEDO System Event Broker's list of active subscriptions.
subscri pt i onisan event subscription handle returned by t psubscri be(3). Setting
subscri ption to thewild-card value, -1, directst punsubscr i be to unsubscribe to
all non-persistent subscriptions previously made by the calling process. Non-persistent
subscriptions are those made without the TPEV PERSI ST bit setting in the

ct!->fl ags parameter of t psubscri be(3). Persistent subscriptions can be deleted
only by using the handle returned by t psubscri be(3).

Note that the -1 handle removes only those subscriptions made by the calling process
and not any made by previous instantiations of the caller (for example, a server that
dies and restarts cannot use the wild-card to unsubscribe to any subscriptions made by
the original server).

Following isalist of valid f I ags.

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call failsand t per r no is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsidesor atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isre-issued. When TPSI GRSTRT is not specified and asignal interruptsa
system call, then t punsubscri be failsand t per rno is set to TPGOTSI G

BEA TUXEDO Reference Manual

tpunsubscribe(3)

Return Values

Errors

See Also

Upon completion of t punsubscr i be, t pur code() contains the number of
subscriptions deleted (zero or greater) from the event broker’s list of active
subscriptions. t pur code may contain anumber greater than 1 only when the wild-card
handle, -1, isused. Also, t pur code may contain a number greater than 0 even when
t punsubscri be completes unsuccessfully (that is, when thewild-card handleisused,
the event broker may have successfully removed some subscriptions before it
encountered an error deleting others). t punsubscri be returns -1 on error and sets

t per r no to indicate the error condition.

Under the following conditions, t punsubscri be failsand setst per r no to one of the
following values. (Unless otherwise noted, failure does not affect the caller’'s
transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, subscri ptionisaninvalid
subscription handle).

[TPENCENT]
Cannot access the BEA TUXEDO system event broker.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLCOCK nor TPNOTI VE were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t punsubscri be was called in an improper context.

[TPESYSTEM
A BEA TUXEDO system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

EVENTS(5), EVENT_M B(5), TMSYSEVT(5), TMUSREVT(5), t ppost (3), t psubscri be(3)

BEA TUXEDO Reference Manual 209

TRY(3)

TRY(3)

210

Name

Synopsis

Description

TRY-exception-returning interface
#i ncl ude <texc.h>

TRY

try bl ock

[CATCH(exception_nane) handl er bl ock]
[CATCH _ALL handl! er_bl ock]

ENDTRY

TRY

try bl ock

FI NALLY
finally block
ENDTRY

RAI SE(excepti on_nane)
RERAI SE

/* declare exception */
EXCEPTI ON excepti on_nane;

/* initialize address (application) exception */
EXCEPTI ON_I NI T(EXCEPTI ON excepti on_nane)

/* intialize status exception (nmap status to exception */
exc_set _stat us(EXCEPTI ON *excepti on_nane, |ong status)

/* map status exception to status */
exc_get _stat us(EXCEPTI ON *excepti on_nane, |ong *status)

/* conpare exceptions */
exc_nmat ches(EXCEPTI ON *el, EXCEPTION *e2)

/* print error to stderr */
voi d exc_report (EXCEPTI ON *exception)

The TRY/CATCH interface provides a mechanism to handle exceptions without the
use of status variables (e.g., er r no or status variables passed back from an RPC
operation). These macros are defined in texc.h and this header is automatically
included in any header files generated by tidl(1).

TheTRY try_ bl ock isablock of C or C++ declarations and statementsin which an
exception may beraised (code that is not associated with raising an exception should
beplaced before or afterthe t r y_bl ock). Each TRY/ENDTRY pair constitutes a “scope”,

BEA TUXEDO Reference Manual

TRY(3)

with respect to exceptions (not unlike C scoping), or aregion of code over which

exceptions are caught. These scopes can be properly nested. When an exception is

raised, an error isreported to the application by searching the active scopes for actions

written to handle (“absorb”) an exceptioPA[CH or CATCH_ALL clauses) or complete

the scopesH NALLY clauses). If a scope does not handle an exception, the scope is torn
down with the exception raised at the next higher level (unwinding the stack of
exception scopes). Execution resumes at the point after which the exception is handled;
there is no provision for resuming execution at the point of error. If the exception is not
handled by any scope, the program is terminated (a message is written to the log via
userlog(3) and abort(3) is called).

Zero or more occurrences @ATCH (except i on_nane) hand! er_bl ock may be
provided. Eacthandl er_bl ock is a block of C or C++ declarations and statements in
which the associated excepti@xept i on_nane) is processed (normally, actions are
specified for recovery from the failure). If an exception is raised by a statement in
try bl ock, then the firsCATCH clause that matches the exception is executed.

Within aCATCH or CATCH_ALL hand! er_bl ock, the current exception can be
referenced by the EXCEPTION pointe#ll S_CATCH (e.g., for logic based on or
printing the exception value).

If the exception is not handled by one of @@ CH clauses, then tH@&TCH_ALL clause

is executed. By default, no further action is taken for an exception that is handled by a
CATCH or CATCH_ALL clause. If naCATCH_ALL clause exists, then the exception is

raised at thery_ bl ock at the next higher level, assuming thatthe b/ ock is

nested within anothetry bl ock. If an ANSI C compiler is used, register and

automatic variables that are used in the handler blocks should be declared with the
vol ati | e attribute (as is true of any blocks that esej np/ | ongj np). Also note that

output parameters and return values from the functions that can generate an exception
are indeterminate.

Within aCATCH or CATCH_ALL hand! er_bl ock, the current exception can be

propagated to the next higher level (the exception is “reraised”) usirREE#¢ SE
statement. Th@ERAI SE statement must appear lexically within the scope of a

handl er_bl ock (that is, not within a function called by thend! er _bl ock). Any
exception that is caught but not fully handled should be reraised. In many cases, a
CATCH_ALL handler should reraise the exception because the handler is not written to
handle every exception. The application should also be written such that an exception
is raised to the proper scope such that the handler blocks take the appropriate actions
and modify the appropriate state (e.qg., if an exception occurs while opening a file, the
handler function for that level should not try to close the unopened file).

BEA TUXEDO Reference Manual 211

TRY(3)

212

An exception can be raised from anywhere by using the RAI SE(except i on_nane)
statement. This statement causes the exception to start propagating at the current
try bl ock and will bereraised until it is handled.

TheFI NALLY clause can be used to specify an epilogue block of code that is executed
afterthe t ry_bl ock, whether or not an exception israised. If an exceptionisraisedin
thetry bl ock,itisreraised afterthefi nal | y_bl ock isexecuted. This clause can be
used to avoid replicating epilogue code twice, oncein a CATCH_ALL clause, and again
after the ENDTRY. It is normally used to execute cleanup activities, restoring invariants
(e.0., shared data, locks) as the scopes are unwound, whether or not exceptions are
raised (that is, on both normal and abnormal exits from the block). Note (in the
SYNOPSIS) that aFI NALLY clause cannot be used with a CATCHor CATCH_ALL clause
forthesametry bl ock; usenested try bl ocks.

The ENDTRY statement must be used to complete the TRY block, sinceit contains code
that must be executed to make sure that exceptions are handled and the context is
cleaned up. A try_bl ock, handl er_bl ock, or fi nal I y_bl ock must not contain a
r et ur n, non-loca jump, or any other means of leaving the block such that the ENDTRY
isnot reached (e.g. got o, break, continue, | ongjnp(3)).

Thisinterfaceis provided to handle exceptions from RPC operations. However, thisis
agenericinterfacethat can be used for any application. An exception is declared to be
of type EXCEPTION. (Thisisacomplex datatype; don't try to useit like along
integer.) There are two types of exceptions. They are declared in the same manner but
initialized differently.

One type of exception is used to propagate status values associated with operating
system signals and exceptions raised by the RPC run-time primitives. For each status
value, an exception has been pre-defined (for example, exceptionr pc_x_no_menory
isdefined for statusr pc_s_no_menor y); these are declared inthetrpcsts.h header file.
While not necessary (since the status exceptions are pre-defined), a status exception
can be declared by the application and initialized with theexc_set _st at us() macro
which takes a pointer to the EXCEPTION to be initialized, and the status value. The
status value associated with a st at us exception can be retrieved using the

exc_get _st at us() macro. It takes a pointer to the EXCEPTION and a pointer to the
variablein which the status value is to be returned; the value of themacro isOif itisa
st at us exception, and -1 otherwise.

The second type of exception is used to define application exceptions. It isinitialized
by calling the EXCEPTION_INIT() macro. The address of the exception is stored as
the value within the addr ess exception. Note that thisvalue isvalid only within a
single address space and will changeif the exception isan automatic variable. For this
reason, an addr ess exception should be declared as a static or external variable, not

BEA TUXEDO Reference Manual

TRY(3)

When To Use
Exception and
Status Returns

an automatic or register variable. Theexc_get _st at us() macrowill evaluateto-1 for
an addr ess exception. Using the exc_set _st at us() macro on this exception will
make it a st at us exception.

The exc_mat ches macro can be used to compare two exceptions. To compare equal,
the exceptions must both be the same type and have the same value (e.g., the same
status value for st at us exceptions, or the same addresses for addr ess exceptions).
This comparison is used for the CATCH clause, described above.

When status exceptions are raised, a common part of handling the exception might be
to print out the status val ue, or better yet, astring indicating what statusvalue occurred.
If the string is to be printed to the standard error output, then the function
exc_report () can be called with apointer to the st at us exception to print the string
in one operation.

CATCH ALL

{
exc_report(TH S_CATCH);

}
ENDTRY

If something else isto be done with the string (e.g., printing the error to the userlog),
exc_get _st at us() canbeused on TH S_CATCHto get the statusvalue (remember that
THI S_CATCHis already a pointer to an EXCEPTI ON, hot an EXCEPTI ON), and
dce_error_ing_text () can be used to get the string value associated with the status
value.

CATCH ALL
{

unsi gned | ong status_to_convert;
unsi gned char error_text[200];
int status;

exc_get status(TH S _CATCH, status_to_convert);
dce_error_ing_text(status_to_convert, error_text, status);
userlog(“%s”, (char *)error_text);

}
ENDTRY

The status of RPC operations can be determined portably by defining status variables
for each operation ([comm_status] and [fault_status] parameters are defined viathe
Attribute Configuration File). The status-returning interface is the only interface
provided in the X/OPEN RPC specification. The fault_status attribute indicates that
errors occurring on the server due to incorrectly specified parameter values, resource
constraints, or coding errors be reported by an additional status argument or return
value. Similarly, the comm_status attribute indicates that RPC communications

BEA TUXEDO Reference Manual 213

TRY(3)

failures be reported by an additiona status argument or return value. Using status
values works well for fine-grained error handling (on a per-call basis) with recovery
specified for each possible error on each call, and where it is necessary to retry from
the point of failure. The disadvantageisthat it isnot transparent whether or not the call
islocal or remote. The remote call has additional status parameters, or a status return
value instead of being avoid return. Thus, the application must have procedure
declarations adjusted between local and distributed code.

For application portability from an OSF/DCE environment, the TRY/CATCH
exception-returning interface is also provided. Thisinterface may not be provided in
all environments. However, it has the advantage that procedure declarations need not
be adjusted between local and distributed code, maintaining existing interfaces. The
checking for errors can be simplified such that each procedure call does not have
specific failure checking or recovery code. If an error isnot handled at somelevel, then
the program exits with a system error message such that the error is detected and can
be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

Built-in The following exceptions are “built-in” to the use of this exception interface. The first
Exceptions TRY clause sets up a signal handler to catch the signals list below if they are not
currently ignored or caught; the other exceptions are defined only for DCE program
portability.

Built-1n Exceptions

Exception Description

exc_e SIGBUS An unhandled SIGBUS signd occurred.
exc_e SIGEMT An unhandled SIGEMT signal occurred.
exc_e SIGFPE An unhandled SIGFPE signal occurred.
exc_ e SIGILL An unhandled SIGILL signal occurred.
exc_e SIGIOT An unhandled SIGIOT signal occurred.
exc_e SIGPIPE An unhandled SIGPIPE signal occurred.
exc_e SIGSEGV An unhandled SIGSEGV signal occurred.
exc e SIGSYS An unhandled SIGSY S signd occurred.
exc_e SIGTRAP An unhandled SIGTRAP signa occurred.
exc_e SIGXCPU An unhandled SIGXCPU signal occurred.

214 BEA TUXEDO Reference Manual

TRY(3)

Built-1n Exceptions

Exception

Description

exc_e SIGXFSZ

An unhandled SIGXFSZ signal occurred.

pthread_e badparam

pthread_e defer_q_full

pthread_e_existence

pthread_e in_use

pthread_e _nostackmem

pthread_e_nostack

pthread_e signal_qg_full

pthread_e_stackovf

pthread_e_unimp

pthread_e use_error

exc_e decovf

exc_e exquota

exc_e fltdiv

exc_e fltovf

exc_e fltund

exc_e illaddr

exc_e insfmem

exc_e intdiv

exc_e intovf

exc_e _nopriv

exc_e privinst

exc_e resaddr

exc_e resoper

exc_e subrng

exc_e_uninitexc

BEA TUXEDO Reference Manual

215

TRY(3)

These same exception codes are also defined with the “_e” at the end of the name (e.
exc_e_SIGBUS is also defined as exc_SIGBUS_e). Equivalent status codes are
defined with similar names butthe “_e " is changedto“_s_" (e.g., exc_e_SIGBUS is
equivalent to the exc_s_SIGBUS status code).

Caveats In OSF/DCE, the header file is named exc_handling.h; the BEA TUXEDO system
header file is texc.h. It is not possible for the same source file to use both DCE and
BEA TUXEDO system exception handling. Further, within a program, the handling of
signal exceptions can only be done by either DCE or the BEA TUXEDO system, not
both. See the TXRPC Guide for a discussion of integrating BEA TUXEDO
system/TxRPC stubs and OSF/DCE stubs in a single program.

When linking a program using this interfa¢@UxDl R/ | i b/ 1 i bt r pc. a must be
included.

Examples Here is an example C source file that uses exceptions.
#i ncl ude <texc.h>
EXCEPTI ON badopen_e; /* declare exception for bad open() */

doi t (char *fil enane)

EXCEPTI ON_I NI T(badopen_e); /* initialize exception */
TRY get_and_update_data(fil enane); /* do the operation */
CATCH(badopen_eg) /* exception - open() failed */
fprintf(stderr, “Cannot open %s\en”, filename);
CATCH_ALL /* handle other errors */

/* handle rpc service not available, ... */
exc_report(THIS_CATCH)
ENDTRY
}
/*
* Open output file
* Get the remote data item
* Write out to file
*/
get_and_update_data(char *filename)

FILE *fp;

if (fp == fopen(filename)) == NULL) /* open output file */
RAISE(badopen_e); [* raise exception */

TRY

* in this block, file is opened successfully -
* use associated FINALLY to close file

*/

long data;

216 BEA TUXEDO Reference Manual

TRY(3)

/*

* Execute RPC call - exceptions are raised to the calling
* function, doit()

*/

data = renote_get _data();
fprintf(fp, “%ld\en”, data);
FINALLY
/* Whether or not exceptions are raised, close the file */
fclose(fp);
ENDTRY

}
See Also tidl (1), abort (2),userlog (3), TUXEDO TxRPC Gui de

BEA TUXEDO Reference Manual 217

tuxgetenv(3)

tuxgetenv(3)

Name

Synopsis

Description

Return Values

218

Portability

See Also

t uxget env-return value for environment name

#i nclude <atm . h>
char *tuxgetenv(char *nane)

t uxget env() searches the environment list for a string of the form nane=val ue and,
if the string is present, returns a pointer to the val ue in the current environment.
Otherwise, it returns a null pointer.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including those
platformsthat don't normally have environment variables.

Note that t uxget env is case-sensitive.
t uxget env() returns a pointer to the string if present and a null pointer otherwise.

On M SWindows, thisfunction overcomestheinability to share environment variables
between an application and a Dynamic Link Library. The TUXEDO /WS DLL
maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed when t pt er m(3c) is
called from a Windows application. The value of an environment variable could be
changed after the application program callst pt er n{3c).

It isrecommended that upper case variable names be used for the DOS, Windows,
0S/2, and NetWare environments. (t uxr eadenv(3c) convertsall environment
variable names to upper case.)

t uxput env(3), t uxr eadenv(3)

BEA TUXEDO Reference Manual

tuxputenv(3)

tuxputenv(3)

Name

Synopsis

Description

Return Values

Portability

See Also

t uxput env(3)-change or add value to environment

#i ncl ude <atni.h>
int tuxputenv(char *string)

st ring points to a string of the form “name=valuedxput env makes the value of
the environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed $0 biyng becomes part of the
environment.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including those
platforms that don't normally have environment variables.

Note thatt uxput env is case-sensitive.

t uxput env() returns a non-zero integer if it was unable to obtain enough space via
malloc for an expanded environment, otherwise zero.

On MS Windows, this function overcomes the inability to share environment variables
between an application and a Dynamic Link Library. The BEA TUXEDO system /WS
DLL maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed iphenn(3c) is

called from a Windows application. The value of an environment variable could be
changed after the application program cafiser n(3c).

We recommend using upper case variable names for the DOS, Windows, and OS/2,
environments.t(uxr eadenv(3c) converts all environment variable names to upper
case.)

t uxget env(3), t uxr eadenv(3)

BEA TUXEDO Reference Manual 219

tuxreadenv(3)

tuxreadenv(3)
Name tuxr eadenv-add variablesto the environment from afile
Synopsis #i ncl ude <atmi . h>
int tuxreadenv(char *file, char *|abel)
Description t uxr eadenv reads a file containing environment variables and adds them to the

220

environment, independent of platform. These variables are available using
t uxget env(3) and can be reset using t uxput env(3).

The format of the environment file is as follows.

4+ Any leading space or tab characters on each line are ignored and are not
considered in the following points.

4 Linescontaining variables to be put into the environment are of the form
vari abl e=val ue

or

set vari abl e=val ue

where var i abl e must begin with an alphabetic or underscore character and contain
only aphanumeric or underscore characters, and val ue may contain any character
except newline.

4+ Within the val ve, strings of the form ${ env} are expanded using variables

already in the environment (forward referencing is not supported and if avalue
isnot set, the variable is replaced with the empty string). Backslash (\) may be
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded val ue is placed into the environment.

Lines beginning with dlash (/), pound sign (#), semicolon (;), or exclamation
point () are treated as comments and ignored. Lines beginning with other
characters besides these comment characters, aleft square bracket, or an
alphabetic or underscore character are reserved for future use; their useis
undefined.

4 Thefileis partitioned into sections by lines beginning with left square bracket

(D), which acts asalabel. The label will be silently truncated if longer than 31
characters. The format of alabel is

[I abel]

BEA TUXEDO Reference Manual

tuxreadenv(3)

Example

Return Values

Portability

See Also

where | abel follows the samerulesfor var i abl e above (lineswith invalid
I abel values areignored).

4 Variable lines between the top of the file and the first label are put into the
environment for al labels (thisis the global section). Other variables are put into
the environment only if the label matches the label specified for the application.
A label of [] will indicate the global section.

If fileisNULL, then adefault file nameisused. The fixed file names are asfollows:

DOS, W ndows, OS2, NT: C:\ TUXEDO TUXEDO. ENV

MAC:. TUXEDO ENV in the system preferences directory
NETWARE: SYS: SYSTEM TUXEDQO. ENV

PCSI X: [usr/tuxedo/ TUXEDO. ENV or /var/ opt/tuxedo/ TUXEDO. ENV

If 1 abel iSNULL, then only variablesin the global section are put into the
environment. For other valuesof / abel , theglobal section variablesplusany variables
in asection matching the / abel are put into the environment.

An error messageisprinted totheuser | og() if thereisamemory failure, if anon-null
file name does not exit, or if anon-null label does not exist.

Here is an example environment file.

TUXDI R=/ usr/ t uxedo
[applicationl]

this is a coment

/* this is a comment */
#this is a conment

//this is a comment

FI ELDTBLS=appl_fl ds

FLDTBLDI R=/ usr/ appl/ udat aobj
[application2]

FI ELDTBLS=app2_f I ds

FLDTBLDI R=/ usr/ app2/ udat aobj

t uxr eadenv () returnsnon-zero if it was unable to obtain enough space viamal | oc for
an expanded environment or was unable to open and read anon-NULL filename,
otherwise zero.

In the DOS, Windows, OS/2, and NetWare environments, t uxr eadenv() convertsall
environment variable names to upper case.

t uxget env(3), t uxput env(3)

BEA TUXEDO Reference Manual 221

tx_begin(3)

tx_begin(3)

Name

Synopsis

Description

Optional Set-up

Return Value

222

Errors

t x_begi n-begin aglobal transaction

#i ncl ude <tx. h>
int tx_begin(void)

t x_begi n() isused to place the calling thread of control in transaction mode. The
calling thread must first ensure that itslinked resource managers have been opened (via
t x_open(3)) before it can start transactions. t x_begi n() fails (returning
[TX_PROTOCOL_ERROR])) if the caller isalready in transaction mode or t x_open()
has not been called.

Once in transaction mode, the calling thread must call t x_conmi t (3) or

t x_r ol | back(3) to complete its current transaction. There are certain cases related to
transaction chaining where t x_begi n() does not need to be called explicitly to start a
transaction. Seet x_conmi t () and t x_r ol | back() for details.

tx_set _transaction_ti neout (3)
Upon successful completion, t x_begi n() returns TX_OK, a non-negative return val ue.

Under the following conditions, t x_begi n() fails and returns one of these negative
values:

[TX_OUTSI DE]
The transaction manager is unable to start a global transaction because the
calling thread of control is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller’s state with
respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caler is
already in transaction mode). The caller’s state with respect to transaction
mode is unchanged.

BEA TUXEDO Reference Manual

tx_begin(3)

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered atransient error trying to start anew transaction. When thiserror
isreturned, the caller is not in transaction mode. The exact nature of the error
iswrittento alog file.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When thiserror isreturned, the caller is not
in transaction mode. The exact nature of the error is written to alog file.

See Also tx_conmit (3),tx_open(3),tx_rol | back(3),tx_set_transaction_timeout (3)

Warnings X A-compliant resource managers must be successfully opened to be included in the
global transaction. (Seet x_open(3) for details.) Both the X/Open TX interface and the
X-Windows system defines the type XID. It is not possible to use both X-Windows
callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 223

tx_close(3)

tx_close(3)

Name

Synopsis

Description

Return Value

224

Errors

t x_cl ose-close a set of resource managers

#i ncl ude <tx. h>
int tx_close(void)

t x_cl ose() closes a set of resource managersin a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

t x_cl ose() closesall resource managersto which the caller islinked. Thisfunctionis
used in place of resource-manager-specific “close” calls and allows an application
program to be free of calls which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

t x_cl ose() should be called when an application thread of control no longer wishes
to participate in global transactions_cl ose() fails (returning
[TX_PROTOCOL_ERRORY)) if the caller is in transaction mode. That is, no resource
managers are closed even though some may not be participating in the current
transaction.

Whent x_cl ose() returns success (TX_OK), all resource managers linked to the
calling thread are closed.

Upon successful completiony_cl ose() returnsTX_OK, a non-negative return value.

Under the following conditions x_cl ose() fails and returns one of these negative
values:

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller is in
transaction mode). No resource managers are closed.

[TX_ERRCR]
Either the transaction manager or one or more of the resource managers
encountered a transient error. The exact nature of the error is written to a loc
file. All resource managers that could be closed are closed.

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transactior
manager and/or one or more of the resource managers can no longer perfor
work on behalf of the application. The exact nature of the error is written to a

BEA TUXEDO Reference Manual

tx_close(3)

log file.
See Also tx_open(3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 225

tx_commit(3)

tx_commit(3)

Name

Synopsis

Description

OPTIONAL
SET-UP

Return Value

226

Errors

t x_conmi t -commit aglobal transaction

#i ncl ude <tx. h>
int tx_commt(void)

t x_commi t () isused to commit the work of the transaction active in the caller’'sthread
of control.

If the t ransacti on_control characteristic (see

tx_set _transaction_control (3)) is TX_UNCHAI NED, then when t x_conmi t ()
returns, the caller isno longer in transaction mode. However, if the

transact i on_cont rol characteristic is TX_CHAI NED, then whent x_conmi t ()
returns, the caller remainsin transaction mode on behalf of a new transaction (see the
RETURN VALUE and ERRORS sections below).

4 tx_set_comit_return(3)

4 tx_set_transaction_control (3)

4 tx_set_transaction_timeout (3)

Upon successful completion, t x_conmi t () returns TX_OK, anon-negativereturn val ue.

Under the following conditions, t x_conmi t () fails and returns one of these negative
values:

[TX_NO BEG N|
The current transaction committed successfully; however, a new transaction
could not be started and the caller is no longer in transaction mode. This
return value may occur only whenthet r ansact i on_cont r ol characteristic
iS TX_CHAI NED.

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In
addition, if the t ransact i on_cont r ol characteristicis TX_CHAI NED, anew
transaction is started.

[TX_ROLLBACK_NO BEG N]
Thetransaction could not commit and has been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the t ransact i on_cont r ol
characteristic is TX_CHAI NED.

BEA TUXEDO Reference Manual

tx_commit(3)

See Also

Warnings

[TX_M XED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the t r ansacti on_cont r ol
characteristic is TX_CHAI NED, a new transaction is started.

[TX_M XED_NO BEG N]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller isno longer in transaction mode. This return val ue can occur only
whenthetransaction_control characteristicis TX_CHAI NED.

[TX_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAI NED, anew transaction is
started.

[TX_HAZARD_NO BEG N|
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the t r ansact i on_cont r ol
characteristic is TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller isnot
in transaction mode). The caller’s state with respect to transaction modeis not
changed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittentoa
log file. The caller’s state with respect to the transaction is unknown.

t x_begi n(3), tx_set_comit_return(3),tx_set_transaction_control (3),
tx_set_transaction_timeout (3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 227

tx_info(3)

tx_info(3)
Name

Synopsis

Description

Return Value

t x_i nf o-return global transaction information

#i ncl ude <tx. h>
int tx_info(TXI NFO *info)

t x_i nf o() returns global transaction information in the structure pointed to by i nf o.
In addition, this function returns avalue indicating whether the caller is currently in
transaction mode or not. If i nf o isnon-null, then t x_i nf o() populates a TXINFO
structure pointed to by i nf o with global transaction information. The TXINFO
structure contains the following elements:

Xl D Xi d;

COW T_RETURN when_ret urn;
TRANSACTI ON_CONTROL transaction_control;
TRANSACTI ON_TI MEQUT transaction_ti neout;
TRANSACTI ON_STATE transacti on_st ate;

If t x_i nf o() is called in transaction mode, then xi d will be populated with a current
transaction branch identifier and t r ansact i on_st at e will contain the state of the
current transaction. If the caller isnot in transaction mode, xi d will be popul ated with
the null X1D (see <tx.h> for details). In addition, regardless of whether the caller isin
transaction mode, when_ret urn, t ransacti on_control , and

transaction_ti meout containthe current settings of the commi t_ret ur n and
transaction_cont rol characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the
next transaction is started. Thus, it may not reflect the timeout value for the caller’s
current global transaction since callsmadetot x_set _transacti on_ti meout (3)
after the current transaction was begun may have changed its value.

If i nfoisnull, no TXINFO structure is returned.

If the caller isin transaction mode, then 1 isreturned. If the caller isnot in transaction
mode, then O is returned.

228 BEA TUXEDO Reference Manual

tx_info(3)

Errors

See Also

Warnings

Under the following conditions, t x_i nf o() fails and returns one of these negative
values:

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open(3)).

[TX_FAI L]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswrittento alog file.

tx_open(3),t x_set _commit_return(3),tx_set_transaction_control (3),
tx_set_transaction_timeout (3)

Within the same global transaction, subsequent callsto t x_i nf o() are guaranteed to
provide an XD with the same gt r i d component, but not necessarily the same bqual
component. Both the X/Open TX interface and the X-Windows system defines the
type XID. It isnot possibleto use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 229

tx_open(3)

tx_open(3)

Name

Synopsis

Description

Return Value

230

Errors

t x_open-open a set of resource managers

#i ncl ude <tx. h>
int tx_open(void)

t x_open() opens a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

t x_open() attemptsto open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” calls
and allows an application program to be free of calls which may hinder portability.
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by ea
resource manager.

If t x_open() returnsTX_ERROR, then no resource managers are openx_Ibpen()
returnsTX_ok, some or all of the resource managers have been opened. Resource
managers that are not open will return resource-manager-specific errors when access
by the applicationt x_open() must successfully return before a thread of control
participates in global transactions.

Oncet x_open() returns success, subsequent calisxtmpen() (before an intervening
call tot x_cl ose(3)) are allowed. However, such subsequent calls will return success,
and the TM will not attempt to re-open any RMs.

Upon successful completionx_open() returnsTX_OK, a hon-negative return value.

Under the following conditions,x_open() fails and returns one of these negative
values:

[TX_ERRCR]
Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open. The exact
nature of the error is written to a log file.

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered a fatal errarX_FAI L is returned it pi ni t (3) is not called
before the call to x_open in a secure application (SECURITY APP_PW).
The nature of the error is such that the transaction manager and/or one or

BEA TUXEDO Reference Manual

tx_open(3)

more of the resource managers can no longer perform work on behalf of the
application. The exact nature of the error is written to alog file.

See Also tx_cl ose(3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 231

tx_rollback(3)

tx_rollback(3)

Name

Synopsis

Description

OPTIONAL
SET-UP

Return Value

232

Errors

t x_r ol | back-roll back a global transaction

#i ncl ude <tx. h>
int tx_roll back(void)

t x_rol | back() isused to roll back the work of the transaction active in the caller’s
thread of control.

If the t ransacti on_control characteristic (see

tx_set _transacti on_control (3)) is TX_UNCHAI NED, then when t x_r ol | back()
returns, the caller isno longer in transaction mode. However, if the

transact i on_cont rol characteristic is TX_CHAI NED, then whent x_r ol | back()
returns, the caller remainsin transaction mode on behalf of a new transaction (see the
RETURN VALUE and ERRORS sections below).

4 tx_set_transaction_control (3)
4 tx_set_transaction_timeout (3)

Upon successful completion, t x_r ol | back() returns TX_OK, a hon-negative return
value.

Under thefollowing conditions, t x_r ol | back() failsand returns one of these negative
values:

[TX_NO BEG N|
The current transaction rolled back; however, a new transaction could not be
started and the caller isno longer in transaction mode. This return value may
occur only whenthet ransacti on_cont r ol characteristic is TX_CHAI NED.

[TX_M XED]
Thework done on behalf of the transaction was partially committed and
partialy rolled back. In addition, if the t ransact i on_cont r ol
characteristic is TX_CHAI NED, a new transaction is started.

[TX_M XED_NO BEG N|
Thework done on behalf of the transaction was partially committed and
partialy rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
whenthet ransacti on_cont rol characteristic is TX_CHAI NED.

BEA TUXEDO Reference Manual

tx_rollback(3)

See Also

Warnings

[TX_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAI NED, a new transaction is
started.

[TX_HAZARD_NO BEG N|
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the t r ansact i on_cont r ol
characteristic is TX_CHAI NED.

[TX_COWM TTED]
The work done on behalf of the transaction was heuristically committed. In
addition, if thet ransact i on_cont r ol characteristicis TX_CHAI NED, anew
transaction is started.

[TX_COMM TTED_NO BEG N]
The work done on behalf of the transaction was heuristically committed. In
addition, anew transaction could not be started and the caller isno longer in
transaction mode. This return value can occur only when the
transaction_control characteristic is TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller isnot
in transaction mode).

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittentoa
log file. The caller’s state with respect to the transaction is unknown.

t x_begi n(3), tx_set _transaction_control (3),
tx_set_transaction_timeout (3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 233

tx_set_commit_return(3)

tx_set_commit_return(3)

Name

Synopsis

Description

Return Value

234

tx_set_commit_return-Set conmit_return characteristic

#i ncl ude <tx. h>
int tx_set_commit_return(COV T_RETURN when_r eturn)

tx_set _conmit _return() setsthe conmi t _r et ur n characteristic to the value
specified in when_r et ur n. This characteristic affectsthe way t x_comi t (3) behaves
with respect to returning control toitscaller. t x_set _commi t _r et ur n() may be
called regardless of whether its caller isin transaction mode. This setting remainsin
effect until changed by a subsequent call tot x_set _conmi t _ret urn().

Theinitia setting for this characteristic is TX_COvM T_COVPLETED.
Following are the valid settings for when_ret ur n.

TX_COWM T_DECI S| ON_LOGGED
Thisflagindicatesthat t x_commi t (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. Thissetting allowsfor faster response
tothecaller of t x_conmmi t (3). However, thereisarisk that a transaction will
have a heuristic outcome, in which case the caller will not find out about this
situation viareturn codes from t x_conmi t (3). Under normal conditions,
participants that promise to commit during the first phase will do so during
the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX_COWMM T_COMPLETED
Thisflag indicatesthat t x_commi t (3) should return after the two-phase
commit protocol has finished completely. This setting allows the caller of
t x_conmi t (3) to seereturn codes that indicate that a transaction had or may
have had heuristic results.

Upon successful completion, t x_set _conmi t _r et ur n() returns TX_OK, a
non-negative return value.

BEA TUXEDO Reference Manual

tx_set_commit_return(3)

Errors

See Also

Warnings

Under thefollowing conditions, tx_set_commit_return() does not change the setting of
the conmi t _r et ur n characteristic and returns one of these negative values:

[TX_EI NVAL]
when_ret ur nisnot one of TX_COVM T_DECI SI ON_LOGGED or
TX_COWM T_COVPLETED.

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open(3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

tx_commi t (3), t x_open(3), t x_i nf o(3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 235

tx_set_transaction_control(3)

tx_set_transaction_control(3)

Name

Synopsis

Description

Return Value

236

Errors

tx_set _transaction_control -set t ransacti on_cont rol characteristic

#i ncl ude <tx. h>
int tx_set_transaction_control (TRANSACTI ON_ CONTRCL control)

tx_set _transaction_control () setsthetransacti on_control characteristicto
the value specified in cont r ol . This characteristic determines whether t x_commi t (3)
andt x_rol | back(3) start a new transaction before returning to their caller.

tx_set _transacti on_control () may be called regardless of whether the
application program isintransaction mode. This setting remainsin effect until changed
by a subsequent call tot x_set _t ransacti on_control ().

Theinitia setting for this characteristic is TX_UNCHAI NED.
Following are the valid settings for cont r of .

TX_UNCHAI NED
Thisflag indicatesthat t x_conmi t (3) and t x_r ol | back(3) should not start
anew transaction before returning to their caller. The caller must issue
t x_begi n(3) to start a new transaction.

TX_CHAI NED
Thisflag indicatesthat t x_comi t (3) and t x_r ol | back(3) should start a
new transaction before returning to their caller.

Upon successful completion, t x_set _transacti on_control () returns TX_OK, a
non-negative return value.

Under the following conditions, t x_set _t ransact i on_cont r ol () does not change
the setting of the t ransact i on_cont r ol characteristic and returns one of these
negative values:

[TX_EI NVAL]
cont rol isnot one of TX_UNCHAI NED or TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open(3)).

[TX_FAI L]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

BEA TUXEDO Reference Manual

tx_set_transaction_control(3)

See Also tx_begi n(3), t x_commi t (3), t x_open(3), t x_rol | back(3), t x_i nf o(3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 237

tx_set_transaction_timeout(3)

tx_set_transaction_timeout(3)

Name

Synopsis

Description

Return Value

238

Errors

See Also

tx_set_transaction_timeout-Set t ransacti on_ti neout characteristic

#i ncl ude <tx. h>
int tx_set_transaction_ti meout (TRANSACTI ON_TI MEOUT ti meout)

tx_set _transaction_tineout () setsthetransacti on_ti meout characteristicto
the value specified in t i meout . Thisvalue specifies the time period in which the
transaction must compl ete before becoming susceptible to transaction timeout; that is,
the interval between the AP calling t x_begi n(3) and t x_conmi t (3) or

tx_rol | back(3).tx_set _transaction_ti meout () may be called regardless of
whether itscaller isin transaction mode or not. If t x_set _t ransacti on_ti neout ()
iscalledintransaction mode, thenew t i meout value does not take effect until the next
transaction.

Theinitia t ransact i on_t i meout valueis 0 (no timeout).

ti meout specifies the number of seconds allowed before the transaction becomes
susceptible to transaction timeout. It may be set to any value up to the maximum value
for al ong as defined by the system. A ti neout value of zero disables the timeout
feature.

Upon successful completion, t x_set _transacti on_ti meout () returns TX_OK, a
non-negative return value.

Under the following conditions, t x_set _t ransacti on_t i meout () does not change
the setting of the t ransact i on_t i meout characteristic and returns one of these
negative values:

[TX_EI NVAL]
Thetimeout value specified isinvalid.

[TX_PROTOCOL_ERROR]
The function was called in an improper context. For example, the caller has
not yet called t x_open(3).

[TX_FAI L]
The transaction manager encountered an error. The nature of the error issuch
that the transaction manager can no longer perform work on behalf of the
application. The exact nature of the error is written to alog file.

t x_begi n(3), t x_conmi t (3), t x_open(3), t x_r ol | back(3), t x_i nf o(3)

BEA TUXEDO Reference Manual

tx_set_transaction_timeout(3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA TUXEDO Reference Manual 239

userlog(3)

userlog(3)

240

Name

Synopsis

Description

user | og-write a message to the BEA TUXEDO system central event log

#include “userlog.h”
extern char *proc_name;

int userlog (format [,arg] . ..)
char *format;

userlog () acceptsaprintf (3S) styleformat specification, with afixed output file-the
BEA TUXEDO system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows: If the shell variable ULOGPFXs set, its valueis used as the prefix for the
filename. If ULOGPFXs not set, ULOG s used. The prefix is determined the first time
userlog () iscalled. Each timeuserlog () is called the date is determined, and the
month, day, and year are concatenated to the prefix as mmddyyto set the name for the
file. The first time aprocess writesto the userlog, it first writes an additional message
indicating the associated BEA TUXEDO system version.

The message is then appended to the file. With this scheme, processes that call
userlog () on successive days will write into different files.

M essages are appended to the log file with atag made up of the time (hhmmss), system
name, process name, and process-id of the calling process. The tag is terminated with
acolon (:). The name of the process is taken from the pathname of the external

variableproc_name . If proc_name hasvalue NULL, the printed nameis set to ?proc .

BEA TUXEDO system-generated error messages in the log file are prefixed by a
unigque identification string of the form:

<catalog>:number>:

This string gives the name of the internationalized catalog containing the message
string, plus the message number. By convention, BEA TUXEDO system-generated
error messages are used only once, so the string uniquely identifies alocation in the
source code.

If the last character of the f or mat specification is not anewline character, userlog ()
appends one.

If the first character of the shell variable ULOGDEBU®G 1 or y, the message sent to
userlog () isaso written to the standard error of the calling process, using the
forintf (3S) function.

BEA TUXEDO Reference Manual

userlog(3)

Portability

Examples

Errors

Diagnostics

user | og() isused by the BEA TUXEDO system to record a variety of events.

The user | og mechanism is entirely independent of any database transaction logging
mechani sm.

Theuser | og() interfaceis supported on UNIX and MS-DOS operating systems. The
system name produced as part of thelog messageishot availableon MS-DOS systems;
therefore, the value PC is used as the system name for MS-DOS systems.

If the variable ULOGPFX isset to/ appl i cati on/ | ogs/ | og and if thefirst call to
user | og() occurred on 9/7/90, the log file created is named
/ appl i cation/l ogs/| og. 090790. If the call:

userlog(“"UNKNOWN USER '%s' (uid=%d)", usrname, uid);

is made at 4:22:14pm on the UNIX System file named m1by thesec program, whose
process-id is 23431, and the variable usrname contains the string “sxx”, and the
variableui d contains the integer 123, the following line appears in the log file:

162214. ml! sec. 23431: UNKNOMAN USER ’ sxx’ (uid=123)

If the message is sent to the central event log while the process is in transaction mode,
the user log entry has additional components in the tag. These components consist of
the literalgt ri d followed by three ong hexadecimal integers. The integers uniquely
identify the global transaction and make up what is referred to as the global transaction
identifier. This identifier is used mainly for administrative purposes, but it does make
an appearance in the tag that prefixes the messages in the central event log. If the
foregoing message is written to the central event log in transaction mode, the resulting
log entry will look like this:

162214.1 ogsys! security.23431: gtrid x2 x24e1b803 x239: UNKNOAN USER
"sxx' (uid=123)

If the shell variablé)LOGDEBUG has a value of, the log message is also written to the
standard error of the program nansedurity.
user | og hangs if the message sent to it is larger Bu#sI Z as defined ikt di 0. h

user | og() returns the number of characters output, or a negative value if an output
error was encountered. Output errors include the inability to open, or write to the
current log file. Inability to write to the standard error, whieQGDEBUG is set, is not
considered an error.

BEA TUXEDO Reference Manual 241

userlog(3)

Notices It isrecommended that applications’ use of user | og messages be limited to messages
that can be used to help debug application errors; flooding the log with incidental
information can make it hard to spot actual errors.

See Also printf(3S)inaUNIX reference manual

242 BEA TUXEDO Reference Manual

Usignal(3)

Usignal(3)
Name

Synopsis

Description

Catching
Signals

Deferring and
Restoring
Signals

Usi gnal -signal handling in a BEA TUXEDO system environment
#include “Usignal.h”

UDEFERSIGS)()
UENSURESIGS()
UGDEFERLEVEL()
URESUMESIGS()
USDEFERLEVEL (level)

int (*Usignal(sig,func)()
int sig;

int (*func)();

void Usiginit()

Many of the facilities provided by the BEA TUXEDO system software require
concurrent access to data structures in shared memory. Processes accessing the shared
data structuresrun in user mode, and are thus interruptable by signals sent to them. In
order to ensure the consistency of the shared data structures, it is important that the
operations which access them not be interrupted by the receipt of certain UNIX
signals. The functions described in this section provide protection against the most
common signals, and are used internally by much of the BEA TUXEDO system code.
Additionally, they are available to applications to prevent the untimely arrival of a
signal.

The idea behind the BEA TUXEDO system signa handling package isthat signals
should be deferrable while in critical code sections. To this end, signals are not
immediately processed when received. Instead, aBEA TUXEDO system routine first
catches the sent signal. If it is safe to process the signal, the specified action for the
signal istaken. If itisnot safe to processthe signal when it arrives, the arrival isnoted,
but the processing is deferred until the user indicates that the critical section of code
has been terminated.

User code that uses calls rmopen () or tpinit () should catch signals through the use
of the Usignal () function. Usignal () behaves likethe UNIX signal (2) system call,
except that Usignal () first arranges for the signal to be caught by an internal routine
before dispatching the user routine.

The callsdescribed in this section need only be used if application code wishesto defer
signals. In general, these routines are called automatically by BEA TUXEDO system
routines to protect themselves from untimely signal arrival.

BEA TUXEDO Reference Manual 243

Usignal(3)

244

Notices

BEA TU

Before deferring or restoring signals, the mechanism must be initialized. Thisis done
automatically for BEA TUXEDO system clientswhenthey call t pi ni t () and for BEA
TUXEDO system servers. It is aso done the first time that the application calls

Usi gnal (). It can be done explicitly by calling Usi gi ni t ().

The UDEFERSI GS() macro should be used when entering a section of critical code.
After UDEFERSI GS() iscalled, signalsare held in a pending state. The URESUMVESI GS()
macro should be invoked when the critical section is exited. Note that signal deferrals
stack. The stack isimplemented via a counter which isinitially set to zero. When
signals are deferred by a call to UDEFERSI GS(), the counter isincremented. When
signals are resumed, by a call to URESUMVESI GS(), the counter is decremented. If a
signal arrives whilethe counter is non-zero, the processing of the signal is deferred. If
the counter is zero when the signal arrives, the signal is processed immediately. If
signal resumption causes the counter to be become zero (i.e. prior to the resumption it
had value 1), any signals that arrived during the deferral period are processed. In
general, each call to UDEFERSI GS() should have a counterpart call to URESUMVESI GS().

UDEFERSI GS increments the deferral counter, but returnsthe val ue of the counter prior
to its incrementation. The macro UENSURESI GS() may be used to explicitly set the
deferral counter to zero (and thusforce the processing of deferred signals), in case the
user wishes to protect against unmatching UDEFERSI GS() and URESUMESI GS().

The function UGDEFERLEVEL () returns the current setting of the deferral counter. The
macro USDEFERLEVEL (level) allows the setting of a specific deferral level.
UGDEFERLEVEL () and USDEFERLEVEL () are useful to set the counter appropriately in
set j np/ | ongj np situations where a set of deferrals/resumes are bypassed. The idea
isto save the value of the counter when set j np iscalled, viaacall to
UGDEFERLEVEL (), and to restore it viaacall to USDEFERLEVEL () when thel ongj np is
performed.

Usi gnal providessignal deferral for thefollowing signals: SI GHUP,SI G NT, SI GQUI T,
SI GALRM SI GTERM, Sl GUSR1, and SI GUSR2. Handling requests for all other signal
numbers are passed directly to si gnal () by Usi gnal . Signals may be deferred for a
considerable time. For thisreason, during signa deferral, individual signal arrivalsare
counted. When it is safe to process a signal that may have arrived many times, the
signal’s processing routine is iteratively called to process each arrival of the signal.
Before each call the default action for the signal isinstantiated. The ideaisto handle
the deferred occurrences of the signa asif they happened in quick succession in safe
code.

XEDO Reference Manual

Usignal(3)

Files

See Also

In general, users should not mix callstosi gnal (2) and Usi gnal () for the same signal.
The recommended procedure isto go through Usi gnal , so that it is always aware of
the state of the signal. Sometimes it may be necessary, such as when an application
wants to use alarms within BEA TUXEDO system services. To do this, Usi gi ni t ()
should be called to initialize the signal deferring mechanism. Then si gnal () can be
called to override the mechanism for the desired signal. To restore the deferring
mechanism for the signa, it is necessary to call Usi gnal () for the signa with
SIG_IGN, and then again with the desired signal-handling function.

The shell variable Ul MVEDSI GS can be used to override the deferral of signals. If the
value of this variable begins with the letter y asin:

U MVEDSI GS=y

signalsarenot intercepted (and thus not deferred) by the Usi gnal code. In suchacase,
acall to Usi gnal is passed immediately to si gnal (2).

Usi gnal isnot available under DOS operating systems.
Usignal.h

si gnal (2) inaUNIX System reference manual

BEA TUXEDO Reference Manual 245

Uunix_err(3)

Uunix_err(3)

246

Name

Synopsis

Description

Examples

Uuni x_er r -print UNIX system call error
#i ncl ude Uuni x. h

void Uuni x_err(s)
char *s;

WhenaBEA TUXEDO system function callsaUNI X system call that detectsan error,
an error isreturned. The external integer Uuni xer r isset to avalue (asdefined in

Uuni x. h) that identifiesthe system call that returned the error. In addition, the system
call setserrno to avalue (asdefined in er r no. h) that tellswhy the system call failed.

The Uuni x_er r () function is provided to produce a message on the standard error
output, describing the last system call error encountered during a call to a BEA
TUXEDO system function. It takes one argument, a string. The function printsthe
argument string, then acolon and ablank, followed by the name of the system call that
failed, the reason for failure, and a newline. To be of most use, the argument string
should include the name of the program that incurred the error. The system call error
number istaken from the external variable Uuni xer r, thereason istaken fromer r no.
Both variables are set when errors occur. They are not cleared when non-erroneous
calls are made.

To simplify variant formatting of messages, the array of message strings
extern char *Uuni xnmsg[];

isprovided; Uuni xer r can be used as an index into this table to get the name of the
system call that failed (without the newline).

#incl ude Uuni x. h
extern int Uunixerr, errno;

if((fd=open(“myfile”, 3, 0660)) == -1)
{

Uunixerr = UOPEN;
Uunix_err(“myprog”);
exit(1);

}

BEA TUXEDO Reference Manual

xdr(3l)

xdr(3I)
Name

Description

Index to
Routines

xdr -library routines for external data representation

XDRroutines alow C programmersto describe arbitrary data structuresin a
machine-independent fashion. Data for communications calls are transmitted using

these routines.

The following table lists XDR routines and the manual reference pages on which they

are described:
XDR Routines
XDR Routine Manual Refer ence Page
xdr _array xdr _conpl ex(3l)
xdr _bool xdr _si npl e(3l)
xdr _bytes xdr _conpl ex(3l)
xdr _char xdr _si npl e(3l)

xdr _destr oy

xdr _create(3l)

xdr _doubl e

xdr _si npl e(3l)

xdr _enum xdr _si npl e(3l)
xdr _fl oat xdr _si npl e(3l)
xdr_free xdr _si npl e(3l)
xdr _get pos xdr _adm n(3l)

xdr _inline

xdr _adm n(3l)

xdr _int

xdr _si npl e(3l)

xdr _| ong

xdr _si npl e(3l)

xdr _opaque

xdr _conpl ex(3l)

xdr _poi nt er

xdr _conpl ex(31)

xdr _reference

xdr _conpl ex(3l)

xdr _set pos

xdr _adm n(3l)

xdr _short

xdr _sinmple(3l)

xdr_string

xdr _conpl ex(3l)

BEA TUXEDO Reference Manual

247

xdr(3l)

XDR Routines

XDR Routine Manual Reference Page

xdr _u_char xdr_si npl e(3I)
xdr_u_| ong xdr_si npl e(3I)
xdr_u_short xdr _si npl e(31)
xdr _uni on xdr_conpl ex(3l)
xdr _vect or xdr_conpl ex(3l)
xdr_void xdr_si npl e(3I)

xdr_wrapstring xdr _conpl ex(3l)

xdr mem creat e xdr _create(3l)

xdrstdi o _create xdr_create(3l)

See Also xdr _adni n(3l), xdr _conpl ex(3l), xdr _creat e(3l), xdr_si npl e(3I)

248 BEA TUXEDO Reference Manual

xdr_admin(3l)

xdr_admin(3I)

Name

Description

Routines

See Also

xdr _admi n, xdr _get pos, xdr _i nl i ne, xdr _set pos-library routines for external
data representation

XDR library routines allow C programmers to describe arbitrary data structuresin a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

#i ncl ude <rpc/ xdr. h>

u_int xdr_getpos(const XDR *xdrs)

long *

bool _t

A macro that invokes the get-position routine associated with the XDR stream,
xdr s. Theroutinereturnsan unsigned integer, which indicatesthe position of
the XDR byte stream. A desirable feature of XDR streamsis that simple
arithmetic works with this number, although the XDR stream instances need
not guarantee this. Therefore, applications written for portability should not
depend on this feature.

xdr _inline(XDR *xdrs, const int |en)

A macro that invokes the in-line routine associated with the XDR stream,
xdr s. The routine returns a pointer to a contiguous piece of the stream’s
buffer; I en is the byte length of the desired buffer. Note: pointer is cast to

I ong *.Warning: xdr _i nl i ne may return NULL (0) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

xdr _set pos(XDR *xdrs, const u_int pos)

A macro that invokes the set position routine associated with the XDR stream
xdr s. The parameter pos isaposition value obtained from xdr _get pos. This
routine returns 1 if the XDR stream was repositioned, and 0 otherwise.
Warning: itisdifficult to reposition sometypesof XDR streams, so thisroutine
may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

xdr _conpl ex(3l), xdr _cr eat e(3l), xdr _si npl e(3l).

BEA TUXEDO Reference Manual 249

xdr_complex(3l)

xdr_complex(3I)

250

Name

Description

Routines

xdr _conpl ex: xdr _array, xdr _byt es, xdr _opaque, xdr _poi nter,
xdr _reference, xdr _string, xdr_uni on, xdr _vect or, xdr _w apstri ng-library
routines for externa data representation

XDR library routines allow C programmers to describe complex data structuresin a
machine-independent fashion. Protocol s such as communications calls use these
routines to describe the format of the data. These routines are the XDR library routines
for complex data structures. They require the creation of XDR stream [see
xdr_create(3l)].

#i ncl ude <rpc/xdr. h>

bool t xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep, const

u_int maxsize, const u_int elsize, const xdrproc_t el proc)
xdr _ar r ay translatesbetween variable-length arrays and their corresponding
external representations. The parameter ar r p isthe address of the pointer to
the array, while si zep isthe address of the element count of the array; this
element count cannot exceed maxsi ze. The parameter el si ze isthesi zeof
each of the array’s elements, and e/ pr oc is an XDR routine that translates
between the array elements’ C form and their externa representation. This
routine returns 1 if it succeeds, 0 otherwise.

bool t xdr_bytes(XDR *xdrs, char **sp, u_int *sizep, const

u_int maxsize)
xdr _byt es tranglates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string islocated at address si zep; strings cannot be longer than
maxsi ze. Thisroutine returns 1 if it succeeds, 0 otherwise.

bool _t xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt)
xdr _opaque translates between fixed size opague data and its external
representation. The parameter cp isthe address of the opaque object, and cnt
isitssizein bytes. Thisroutine returns 1 if it succeeds, 0 otherwise.

bool _t xdr_pointer(XDR *xdrs, char **objpp, u_int objsize,

const xdrproc_t xdrobj)
Likexdr _r ef er ence except that it serializes NULL pointers, whereas
xdr _ref er ence doesnot. Thus, xdr _poi nt er can represent recursive data
structures, such as binary trees or linked lists.

BEA TUXEDO Reference Manual

xdr_complex(3l)

bool t xdr_reference(XDR *xdrs, caddr_t *pp, u_int size,
const xdrproc_t proc)
xdr _r ef erence provides pointer chasing within structures. The parameter

pp isthe address of the pointer; si ze isthe si zeof the structure that *pp
points to; and pr oc is an XDR procedure that trand ates the structure between
itsC form and itsexternal representation. Thisroutinereturns 1 if it succeeds,
0 otherwise. Warning: this routine does not understand NULL pointers. Use
xdr _poi nt er instead.

bool t xdr_string(XDR *xdrs, char **sp, const u_int naxsize)
xdr _stri ng translates between C strings and their corresponding external
representations. Strings cannot be longer than naxsi ze. Note: sp isthe
address of the string's pointer. This routine returns 1 if it succeeds, 0
otherwise.

bool t xdr_uni on(XDR *xdrs, enumt *dscnp, char *unp,

const struct xdr_discri m*choi ces, const bool t (*defaul tarn) (const

XDR *, const char *, const int))
xdr _uni on translates between a discriminated C uni on and its
corresponding external representation. It first trand ates the discriminant of
the union located at dscnp. Thisdiscriminant isalways an enum t . Next the
union located at unp is translated. The parameter choi ces isa pointer to an
array of xdr _di scri mstructures. Each structure contains an ordered pair of
[val ue, proc]. If theunion’sdiscriminant is equal to the associated val ve,
then the pr oc iscalled to trandate the union. The end of the xdr _di scrim
structure array is denoted by aroutine of value NULL. If the discriminant isnot
found in the choi ces array, then the def aul t ar mprocedureiscalled (if itis
not NULL). Returns 1 if it succeeds, 0 otherwise.

bool t xdr_vector (XDR *xdrs, char *arrp, const u_int size,

const u_int elsize, const xdrproc_t elproc)
xdr _vect or trandates between fixed-length arrays and their corresponding
external representations. The parameter ar r p is the address of the pointer to
the array, while si ze isis the element count of the array. The parameter
el si ze isthesi zeof each of the array’s elements, and el pr oc is an XDR
routine that translates between the array elements’ C form and their external
representation. This routine returns 1 if it succeeds, 0 otherwise.

bool t xdr_wrapstring(XDR *xdrs, char **sp)
A routine that calls xdr_string(xdr s, sp, maxui nt); where maxui nt isthe

maximum value of an unsigned integer. Many routines, such asxdr _arr ay,
xdr _poi nter and xdr _vect or take afunction pointer of type xdr proc_t,
which takes two arguments. xdr _st ri ng, one of the most frequently used
routines, requires three arguments, while xdr _wr apstri ng only requires
two. For theseroutines, xdr _wr apst ri ng isdesirable. Thisroutinereturns 1
if it succeeds, 0 otherwise.

BEA TUXEDO Reference Manual 251

xdr_complex(3l)

See Also xdr _adni n(3l), xdr _creat e(3l), xdr _si npl e(3I).

252 BEA TUXEDO Reference Manual

Xxdr_create(3l)

xdr_create(3l)

Name

Description

Routines

See Also

xdr _create: xdr_destr oy, xdr rem cr eat e, xdr st di o_cr eat e-library routines
for external data representation stream creation

XDR library routines allow C programmers to describe arbitrary data structuresin a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be created
before any data can be translated into XDR format.

#i ncl ude <rpc/ xdr. h>

voi d xdr_destroy(XDR *xdrs)
A macro that invokes the destroy routine associated with the XDR stream,
xdr s. Destruction usually involves freeing private data structures associated
with the stream. Using xdr s after invoking xdr _dest r oy isundefined.

voi d xdrmem create(XDR *xdrs, const caddr_t addr, const u_int size,
const enum xdr_op op)
Thisroutineinitializesthe XDR stream object pointed to by xdr s. The stream’s
datais written to, or read from, a chunk of memory at location addr whose
length is no more than si ze bytes long. The op determines the direction of
the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

void xdrstdi o _create(XDR *xdrs, FILE *file, const enum xdr_op op)
Thisroutine initializes the XDR stream object pointed to by xdrs. The XDR
stream dataiswritten to, or read from, the standard 1/0 stream fi / e. The
parameter op determinesthe direction of the XDR stream (either XDR_ENCCDE,
XDR_DECODE, or XDR_FREE). Warning: the destroy routine associated with
such XDR streams callsf f 1 ush onthe fi I e stream, but never f cl ose [see
fcl ose(39)].

fcl ose(39), read(2), rpc(3l),wite(2), xdr _adni n(3l), xdr _conpl ex(3l),
xdr _si npl e(3l).

BEA TUXEDO Reference Manual 253

xdr_simple(3l)

xdr_simple(3l)

254

Name

Description

Routines

xdr _si npl e: xdr _bool , xdr _char, xdr _doubl e, xdr _enum xdr _f 1 oat,
xdr_free,xdr _int,xdr_|ong,xdr_short,xdr_u_char,xdr_u_| ong,
xdr _u_short, xdr _voi d-library routinesfor external data representation

XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(3l)].

#i ncl ude <rpc/xdr. h>

bool _t

bool _t

bool _t
bool _t
bool _t

xdr _bool (XDR *xdrs, bool _t *bp)

xdr _bool translates between booleans (C integers) and their external
representations. When encoding data, thisfilter produces values of either 1 or
0. Thisroutine returns 1 if it succeeds, 0 otherwise.

xdr_char (XDR *xdrs, char *cp)

xdr _char translates between C characters and their external representations.
Thisroutinereturns1 if it succeeds, 0 otherwise. Note: encoded charactersare
not packed, and occupy 4 byteseach. For arrays of characters, itisworthwhile
to consider xdr _byt es, xdr _opaque Or xdr _stri ng [Seexdr _bytes,

xdr _opaque and xdr _st ri ng in xdr _conpl ex(3l)].

xdr_doubl e(XDR *xdrs, double *dp)
xdr _doubl e translates between C doubl e precision numbers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_enun({ XDR *xdrs, enumt *ep)
xdr _enumtranslates between C enuns (actually integers) and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_float (XDR *xdrs, float *fp)
xdr _fl oat translates between C f | oat s and their external representations.
Thisroutinereturns 1 if it succeeds, 0 otherwise.

void xdr_free(xdrproc_t proc, char *objp)

Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it pointsto is freed
(recursively).

BEA TUXEDO Reference Manual

xdr_simple(3I)

See Also

bool _t

bool _t

bool _t

bool _t

bool _t

bool _t

bool _t

xdr _int(XDR *xdrs, int *ip)
xdr _i nt translates between C integers and their external representations.
Thisroutine returns 1 if it succeeds, 0 otherwise.

xdr _| ong(XDR *xdrs, long *Ip)
xdr _| ong translates between C | ong integers and their external
representations. Thisroutine returns 1 if it succeeds, 0 otherwise.

xdr _short (XDR *xdrs, short *sp)
xdr _short translates between C shor t integersand their external
representations. Thisroutine returns 1 if it succeeds, 0 otherwise.

xdr _u_char (XDR *xdrs, char *ucp)
xdr _u_char translates between unsi gned C characters and their external
representations. Thisroutine returns 1 if it succeeds, 0 otherwise.

xdr _u_l ong(XDR *xdrs, unsigned |ong *ul p)
xdr _u_| ong translates between C unsi gned | ong integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr _u_short (XDR *xdrs, unsigned short *usp)
xdr _u_short translates between C unsi gned short integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr _voi d(voi d)
Thisroutine always returns 1. It may be passed to RPC routines that require
afunction parameter, where nothing isto be done.

rpc(3l), xdr _admi n(3l), xdr _conpl ex(3l), xdr _cr eat e(3l).

BEA TUXEDO Reference Manual 255

xdr_simple(3l)

256 BEA TUXEDO Reference Manual

	Copyright
	Section 3C - C Functions
	intro(3c)
	AEMsetblockinghook(3)
	AEOaddtypesw(3)
	AEPisblocked(3)
	AEPsetblockinghook(3)
	AEWaddtypesw(3)
	AEWisblocked(3)
	AEWsetblockinghook(3)
	AEWsetunsol(3)
	buffer(3c)
	catgets(3)
	catopen(3)
	change_atts(3)
	decimal(3)
	do_form(3)
	formprint(3)
	frmmisc(3)
	gp_mktime(3)
	maskprt(3)
	mods(3)
	nl_langinfo(3)
	recomp(3)
	rpc_sm_allocate(3)
	rpc_sm_client_free(3)
	rpc_sm_disable_allocate(3)
	rpc_sm_enable_allocate(3)
	rpc_sm_free(3)
	rpc_sm_set_client_alloc_free(3)
	rpc_sm_swap_client_alloc_free(3)
	setlocale(3)
	strerror(3)
	strftime(3)
	tpabort(3)
	tpacall(3)
	tpadmcall(3)
	tpadvertise(3)
	tpalloc(3)
	tpbegin(3)
	tpbroadcast(3)
	tpcall(3)
	tpcancel(3)
	tpchkauth(3c)
	tpchkunsol(3)
	tpclose(3)
	tpcommit(3)
	tpconnect(3)
	tpconvert(3c)
	tpcryptpw(3)
	tpdequeue(3)
	tpdiscon(3)
	tpenqueue(3)
	tperrordetail(3c)
	tpforward(3)
	tpfree(3)
	tpgetadmkey(3)
	tpgetlev(3)
	tpgetrply(3)
	tpgprio(3)
	tpinit(3)
	tpnotify(3)
	tpopen(3)
	tppost(3)
	tprealloc(3)
	tprecv(3)
	tpresume(3)
	tpreturn(3c)
	tpscmt(3)
	tpsend(3)
	tpservice(3)
	tpsetunsol(3)
	tpsprio(3)
	tpstrerror(3)
	tpstrerrordetail(3)
	tpsubscribe(3c)
	tpsuspend(3)
	tpsvrdone(3c)
	tpsvrinit(3)
	tpterm(3)
	tptypes(3)
	tpunadvertise(3)
	tpunsubscribe(3)
	TRY(3)
	tuxgetenv(3)
	tuxputenv(3)
	tuxreadenv(3)
	tx_begin(3)
	tx_close(3)
	tx_commit(3)
	tx_info(3)
	tx_open(3)
	tx_rollback(3)
	tx_set_commit_return(3)
	tx_set_transaction_control(3)
	tx_set_transaction_timeout(3)
	userlog(3)
	Usignal(3)
	Uunix_err(3)
	xdr(3I)
	xdr_admin(3I)
	xdr_complex(3I)
	xdr_create(3I)
	xdr_simple(3I)

