BEA WebLogic Enterprise

Scaling, Distributing,
and Tuning Applications

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Scaling, Distributing, and Tuning Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-0OCSWED SIte....cueiiiceeiee e sr e b eraenaes X
HoW t0 Print the DOCUMENT..........cee ettt sttt e ere e X
Related INfOrmMation...........ocviiiiiiieeece e e e Xi
(0701 = ot AL U LS TR Xi
Documentation CONVENLIONSc.ccecueiieeieie e e e e eereesre e s sraesaeere e ens Xii

1. Scaling WebLogic Enterprise Applications

About Scaling WebL ogic Enterprise AppliCationscoooeeeieeieieseneeieenen. 1-2
Application Scalability ReqUIrements..........cceereoeeereniene e 1-2
WebL ogic Enterprise Scalability FEatures...........ccooeeirineieieeneeeie e 1-2
Scalability Support for WebL ogic Enterprise Applications.............ccc.c..... 1-3

Using Object State Managementooeueerireeie e s sese e 1-4
ODbjeCt State MOUEIS.....ccue et 1-4
Implementing Stateless and Stateful Objects........cccoooviieievencniecee 1-6

Replicating Server Processes and Server GrOUPS.coeeeeeeereereseeseeresseeeneas 1-9
About Replicating Server Processes and Server Groupsccceeeeeeeneas 1-10
Configuration OPLIONS........cocuiuieerierieie ettt e e 1-11
Replicating Server PrOCESSEScocioeieirnreee ettt e 1-11
Replicating Server GrOUPSccoceuereereeiueee e sees e s enes 1-12

Using Multithreaded Java Servers (Java only)cccceeveveeiece e e e 1-13
About Multithreaded JaVa SEIVErS.........covieeirireee et 1-13
When to Use Multithreaded Java SErVErSccooeeiiveneieseereeee e 1-14
Coding RecommENdationscc.ecveeieiece e e 1-15
Configuring a Multithreaded Java SErverccccoveeeveeiceececsceeceeeee e 1-15

Using Factory-based Routing (CORBA ONlY)ccoevveeveveeie e 1-16

Scaling, Distributing, and Tuning Applications iii

About Factory-based ROULING.cooiiiiiiiie e 1-16

Characteristics of Factory-based ROULINGcceviveeirinieie e 1-17
How Factory-based Routing WOrKScccoiiiiineiie s 1-18
Configuring Factory-based Routing in the UBBCONFIG File................ 1-19
Multiplexing Incoming Client CONNECLIONScevereiereereeeee e 1-19
[HOP Listener and Handlercooriieiiiiine e 1-20
Increasing the Number of |SH Processes........ccocvvveieieeceiveeccee e, 1-20

2. Scaling CORBA C++ Server Applications

About Scaling the Production Sample Application............cccoeveiiiiicieninennes 2-2
DESION GOAISeiieceeeceee ettt arens 2-2
How the Application Has Been Scaledcccooeeiiiiiecinceee e 2-2

Changing thE OMG DLcueooviiectiecectece e enes 2-4

Using a Stateless Object MOdEl ..o s 2-4

Scaling by Replicating Server Processes and Server Groups...........cooeeeveeneeeens 2-5
Replicating Server Processes in the Production Application 2-6
Replicating Server Groups in the Production Application...........cccccceuee.e. 2-8
Configuring Replicated Server Processes and Groups in the Production

YN o] o[Tor= 1 o] o RSSO 2-9

Scaling with Factory-based ROULINGc.ccccevviieiirie e 2-11
About Factory-based Routing in the Production Application.................. 2-11
Configuring Factory-based Routing in the UBBCONFIG File................ 2-12
Implementing Factory-based Routing in a Factoryccccceeveeeenenans 2-15
What Happens at RUN TIMecuoiiiiiiiee e 2-16

Additional Design ConSiderations...........cccveieeirieiieeiesse s et 2-17
About the Additional Design Considerations............ccccoeecevieeveenreeveesene 2-17
Instantiating the Registrar and Teller Objects.......cccccvvevivieveciece e, 2-18

Ensuring That Student Registration Occurs in the Correct Server Group 2-19
Ensuring That the Teller Object Is Instantiated in the Correct Server Group.
2-21
Scaling the Application FUIther ..o 2-22

3. Scaling CORBA Java Server Applications

About Scaling the JIDBC Bankapp Sample Applicationcccooeeeeiinvcnnne, 3-2
DESION GOAIS ...ttt et ettt ere et e e ere e areas 3-2
How the Application Has Been Scaledcccooeeiiiiiecinince e 32

Scaling, Distributing, and Tuning Applications

Scaling with Object State Managementccocooeoeeirinieee e e 3-3

Scaling by Replicating Server Processes and Server Groups........cocoeeeeeeerenneas 34
Replicating Server Processes in the Bankapp Applicationcccc..... 3-4
Replicating Server Groups in the Bankapp Applicationc.ccccceovenene 3-6
Configuring Replicated Server Processes and Groups in the Bankapp

APPHICAITON ..ot et 3-7

Scaling with Factory-based ROULINGc.cooieeeieeriene e 3-10
About Factory-based Routing in the Bankapp Application 3-10
Configuring Factory-based Routing in the UBBCONFIG File................ 311
Implementing Factory-based Routing in a Factorycccccocveieenenees 312
What Happens at RUN TIMEccooiiie i e 3-14

Additional Design Considerations............ccccueeeeeeieiiecieiieceerese e se e 3-14
About the Additional Design Considerations.............ccceeeeverieevescesseeneenns 3-15
Instantiating the Teller ObJECt.........ccoi e e 3-15
Ensuring That Account Updates Occur in the Correct Server Group...... 3-16

Scaling the Application FUIther..............oiiiiininie e 3-16

Scaling EJB Applications

Scaling Tasks for EJB ProViderS........ccooooeieeinne e e 4-2
Using Stateless SeSSION BEANScvceecuveiececieceeee e v e 4-2
Minimizing State Information in Stateful Session Beans............ccccceueee. 4-3
Using Pooled CONNECLIONS........ccoviiiieieieeiececteerte ettt s 4-3
Implementing Methods for Bean Persistence..........ccvveveereneeneeicie e 4-3
Completing Transactions Efficiently ... 4-4
Implementing the Process-entity Design Patternccccceveeeencncenenne. 4-5

Scaling Tasks for Application Assemblers and Deployers.........ccooeveeeinenneee 4-5
Organizing EIBS iN GrOUPS.......ccueeeruereriereereeneeieseeseeeesesseseeaeseeseesseneeseas 4-6
Configuring the Persistent Storage Locationccccecevviveeicnneiieniecinns 4-6
Specifying the Method to Invoke Before Passivation............ococeeeeevenene 4-7
Deploying Stateful Session Beans on the IIOP Listener Node................... 4-7
Configuring the EJB CaChe........cccoveeieiviececeecee e 4-7

Scaling Tasks for System AdMINIStratorscce v eiece e 4-8
Removing Orphan Files for File-based Persistence..........coceveeeveneeneennn. 4-8
Scaling and Tuning the EJB Cache.......ccccccvviviivee s 4-9

Scaling, Distributing, and Tuning Applications %

5. Distributing Applications

Why Distribute an AppliCation?.........ccoieieieee et 5-2
About Distributing an AppliCationcooeiererireere e 5-2
Benefits of aDistributed Applicationcocooioeiiiinii e 5-2
Characteristics of Distributing an Applicationccccooeeiiieincnienene 5-3

Using Data-dependent Routing (BEA Tuxedo ServersOnly)cccocvereeenne. 5-4
About Data-dependent ROULINGcccoveveereiernieee e 5-4
Characteristics of Data-dependent ROULINGcceoverereeineennieeeeneeses 5-5
Sample Distributed AppliCationccooeoeeiriiiee e 5-5

Configuring the UBBCONFIG Fil€cooiiieiiece e 5-6
About the UBBCONFIG File in Distributed Applications.............ccceue... 5-6
Modifying the GROUPS SECtIONc.c.ccoeeviceiieicecceceeree et 5-7
Modifying the SERVICES SECHIONcccveiecieeceece et 5-8
Creating the ROUTING SECLIONooveviieciiciee e 5-10
Example of UBBCONFIG Sectionsin a Distributed Application 5-10

Configuring the factory_finder.ini (CORBA Applications Only)................... 5-11

M odifying the Domain Gateway Configuration Fileto Support Routing 5-11
About the Domain Gateway Configuration Filec.cccccovevviivcceeenenne, 5-12
Parametersin the DM_ROUTING Section of the DMCONFIG File (BEA

TUXEAO ONIY) ittt e et 5-12

6. Tuning Applications

Maximizing Application RESOUICEScceveiieeriirieeie e e eeese e e 6-2
When to Use MSSQ Sets (BEA Tuxedo Servers Only)cccceeeeeeeeeneenenne 6-2
Enabling Load BalanCiNgcccooerereenieinieieee e 6-4
About Load BalanCing........c.cceeieieeiececieceieeseereee e sreerae e s s 6-4
Two Waysto Measure Service Performance Time (BEA Tuxedo Servers
(O 011V TSRS 6-5
Configuring Replicated Server Processes and GroupsS.coceeeeeeeeerieseseesenne 6-5
Configuring Multithreaded Java SEIVErS........ccooviieierrieeiee e 6-7
Setting the OPENINFO Parameterccooveveiieveevieceeeee et 6-7
Configuring the Number of Threads.........c.cccovevveieiee e, 6-7
Configuring the Number of Concurrent ACCESSOIS.......cceveevveveereeveseennns 6-8
Assigning Priorities to Interfaces or SErviCes.........coevvveeviiieereeccee e 6-9
About Priorities to Interfaces or SErViCeS........ooouvieirinienie s 6-9

Scaling, Distributing, and Tuning Applications

Characteristics of the PRIO Parameteroooeeveveeeieieeecee e 6-9

Bundling Servicesinto Servers (BEA Tuxedo Servers Only)ccccoceveeeeee 6-10
About BUNdliNg SENVICEScoiieiieiie et 6-10
When to BUNAI@ SEIVICESooueviiiiiiieirieree e 6-10

Enhancing Efficiency with Application Parameters............ccoccoeeeenriecenecnenn 6-11
Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameterscccoeeverieieinie i 6-12
Setting the MAXGTT, MAXBUFTY PE, and MAXBUFSTY PE Parameters

6-13
Setting the SANITY SCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
ParamMetersooe ottt e e e 6-13

Setting Application Parameters ..o e 6-14

Determining |PC REQUITEMENLSccoiiiueruiriereie e s e 6-15

Measuring SYyStemM TraffiCccecceiiciecicce e e e 6-16
About System Traffic and Bottlenecks..........ccccvveveciee e cce e 6-17
Example of Detecting a System Bottleneckccocooeiinriiiiniccciinen 6-17
Detecting Bottlenecks on UNIX ..o e 6-18
Detecting Bottlenecks on WindoOWS NTcccocoveiicieiiiiiecne e 6-19

Scaling, Distributing, and Tuning Applications Vii

viii Scaling, Distributing, and Tuning Applications

About This Document

This document explains how to tune and scale CORBA, EJB, and RMI applications
that run in the BEA WebL ogic Enterprise™ (WLE) environment.

This document covers the following topics:

Chapter 1, “Scaling WebLogic Enterprise Applications,” describes how to scale
CORBA, EJB, and RMI applications that run in the WebLogic Enterprise
environment.

Chapter 2, “Scaling CORBA C++ Server Applications,” describes how to scale
CORBA C++ server applications using the Production sample application as an
example.

Chapter 3, “Scaling CORBA Java Server Applications,” describes how to scale
CORBA Java server applications using the sample Bankapp application as an
example.

Chapter 4, “Scaling EJB Applications,” describes how to scale WebLogic
Enterprise EJB applications.

Chapter 5, “Distributing Applications,” describes how to distribute applications
using the Production and Bankapp sample applications as examples.

Chapter 6, “Tuning Applications,” describes how to tune applications to
optimize performance.

Scaling, Distributing, and Tuning Applications iX

What You Need to Know

This document is intended primarily for application developers who are interested in
building scalable C++ and Java applications that run in the WebL ogic Enterprise
environment. It assumesafamiliarity with the WebL ogic Enterpriseplatform and C++
or Java programming.

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

X Scaling, Distributing, and Tuning Applications

How to Print the Document

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA

Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see the WebLogic Enterpildéography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company nhame and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Scaling, Distributing, and Tuning Applications Xi

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Scaling, Distributing, and Tuning Applications

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Scaling, Distributing, and Tuning Applications Xiii

Xiv Scaling, Distributing, and Tuning Applications

CHAPTER

1

Scaling WebLogic
Enterprise
Applications

Thistopic introduces key concepts and tasks for scaling WebL ogic Enterprise
applications. Thistopic includes the following sections:

About Scaling WebL ogic Enterprise Applications
Using Object State Management

Replicating Server Processes and Server Groups
Using Multithreaded Java Servers (Java only)
Using Factory-based Routing (CORBA only)

Multiplexing Incoming Client Connections

For more detailed information and examples for different types of WebL ogic
Enterprise applications, see the following topics:

Chapter 2, “Scaling CORBA C++ Server Applications”
Chapter 3, “Scaling CORBA Java Server Applications”
Chapter 4, “Scaling EJB Applications”

For RMI applications, sedsing RMI in a WebLogic Enterprise Environment

Scaling, Distributing, and Tuning Applications 1-1

1 Scaling WebLogic Enterprise Applications

About Scaling WebLogic Enterprise
Applications

This topic includes the following sections:
m Application Scalability Requirements
m WebL ogic Enterprise Scalability Features

m Scalability Support for WebL ogic Enterprise Applications

Application Scalability Requirements

Many applications perform adequately in an environment where between 1 to 10
server processes and 10 to 100 client applications are running. However, in an
enterprise environment, applications may need to support hundreds of execution
contexts (where the context can be athread or a process), tens of thousands of client
applications, and millions of objects at satisfactory performance levels.

Subjecting an application to exponentially increasing demands quickly reveals any
resource shortcomings and performance bottlenecks in the application. Scalability is
therefore an essential characteristic of WebL ogic Enterprise applications.

Y ou can build highly scalable WebL ogic Enterprise applications by:

m Adding parallel processing capability to enable the WebL ogic Enterprise domain
to process multiple client requests simultaneously.

m Sharing the processing load on the server applications across multiple machines.

WebLogic Enterprise Scalability Features

WebL ogic Enterprise supports large-scale application deployments by:

m Optimizing object state management

1-2 Scaling, Distributing, and Tuning Applications

About Scaling WebLogic Enterprise Applications

m Load balancing objects and requests across replicated server processes and
server groups

m For Javaapplications, using multithreaded Java servers, which are appropriate
for certain types of applications and processing environments

m For CORBA applications, using factory-based routing
m Using data-dependent routing (Tuxedo only)

m Multiplexing incoming client connections

Scalability Support for WebLogic Enterprise Applications

Table 1-1 shows how WebL ogic Enterprise scalability features support each type of
WebL ogic Enterprise application.

Table 1-1 Supported Scalability Features for WebL ogic Enterprise Applications

WebL ogic Enterprise CORBA C++ CORBAJava EJB RMI
Feature

Object state management Supported Supported Supported Not supported
Replicating server processes Supported Supported Supported Supported
and server groups

Using multithreaded servers ~ Not supported Supported Supported Supported
Factory-based routing Supported Supported Not supported Not supported
Multiplexing incoming client Supported Supported Supported Supported
connections

Notes: CORBA and EJB applications require slightly different configuration
parameters in the UBBCONFI G file. For more information, see “Creating a
Configuration File” in theAdministration Guide.

For RMI applications, callback objects are not scalable because they are not
subject to WebLogic Enterprise administration. For more information about
callback objects, see “Using RMI with Client-side CallbackdJdng RMI in

a WebL ogic Enterprise Environment.

Scaling, Distributing, and Tuning Applications 1-3

1 Scaling WebLogic Enterprise Applications

Using Object State Management

This topic includes the following sections:

m CORBA Object State Models

m EJB Object State Models

m Implementing Stateless and Stateful Objects

Object state management isafundamental concern of large-scal e client/server systems
becauseit is critical that such systems achieve optimized throughput and response
time. For more detailed information about using object state management, see the
following topics:

m For CORBA C++ applications, see “Using a Stateless Object Model” on page
2-4.

m For CORBA Java applications, see “Scaling with Object State Management” on
page 3-3.

m For EJB applications, see “Scaling Tasks for EJB Providers” on page 4-2.

m For all WebLogic Enterprise applications, see the technical aRickeess-Entity
Design Pattern.

Object State Models

This topic describes the following object state models:
m CORBA Object State Models

m EJB Object State Models

m RMI Object State Models

CORBA Object State Models

WebLogic Enterprise CORBA supports three object state management models:

1-4 Scaling, Distributing, and Tuning Applications

Using Object State Management

m Method-bound Objects
m Process-bound Objects
m Transaction-bound Objects

For more information about these models, see “Server Application Concepts” in
Creating CORBA C++ Server Applications.

Method-bound Objects

Method-bound objects are loaded into the machine’s memory only for the duration of
the client invocation. When the invocation is complete, the object is deactivated and
any state data for that object is flushed from memory. In this document, a
method-bound object is considered to kstasel ess object.

You can use method-bound objects to create a stateless server model in your
application. By using a stateless server model, you move requests that are already
directed to active objects to any available server, which allows concurrent execution
for thousands and even millions of objects. From the client application view, all the
objects are available to service requests. However, because the server application maps
objects into memory only for the duration of client invocations, few of the objects
managed by the server application are in memory at any given moment.

Process-bound Objects

Process-bound objects remain in memory beginning when they are first invoked until
the server process in which they are running is shut down. A process-bound object can
be activated upon a client invocation or explicitly before any client invocation (a
preactivated object). Applications can control the deactivation of process-bound
objects. In this document, a process-bound object is considered stabefuh object.

When appropriate, process-bound objects with a large amount of state data can remain
in memory to service multiple client invocations, thereby avoiding reading and writing
the object’s state data on each client invocation.

Transaction-bound Objects

Transaction-bound objects can also be considered stateful because, within the scope of
a transaction, they can remain in memory between invocations. If the object is
activated within the scope of a transaction, the object remains active until the

Scaling, Distributing, and Tuning Applications 1-5

1 Scaling WebLogic Enterprise Applications

transaction is either committed or rolled back. If the object is activated outside the
scope of atransaction, its behavior isthe same asthat of a method-bound object (it is
loaded for the duration of the client invocation).

EJB Object State Models

WebL ogic Enterprise implements the Enterprise JavaBeans 1.1 Specification
published by Sun Microsystems, Inc. WebL ogic Enterprise fully supports the three
EJB types defined in the specification:

m Sateless session beans are statel ess objects and are anal ogous to method-bound
objectsin CORBA applications.

m Sateful session beans are stateful objects and are anal ogous to process-bound
objectsin CORBA applications.

m Entity beans are stateful objects and are analogous to process-bound objectsin
CORBA applications.

For more information about these EJB types, see “Types of Beans Supported in
WebLogic Enterprise” in “The WebLogic Enterprise JavaBeans Programming
Environment” topic inGetting Sarted. For more information about object state
management in EJB applications, see “Scaling Tasks for EJB Providers” on page 4-

RMI Object State Models

In RMI applications, a conversational state exists between the client application and
the object instance. RMI objects remain in memory beginning when they are first
created for as long as the object exists or until the server process in which they are
running is shut down. For more information about RMI applicationsisewg RMI

in a WebL ogic Enterprise Environment.

Implementing Stateless and Stateful Objects

In general, application developers need to balance the costs of implementing statele
objects against the costs of implementing stateful objects.

1-6 Scaling, Distributing, and Tuning Applications

Using Object State Management

About Stateless and Stateful Objects

The decision to use statel ess or stateful objects depends on various factors. In the case

where the cost to initialize an object with its durable state is expensive—because, for
example, the object’s data takes up a great deal of space, or the durable state is located
on a disk very remote from the servant that activates it—it may make sense to keep the
object stateful, even if the object is idle during a conversation. In the case where the
cost to keep an object active is expensive in terms of machine resource usage, it may
make sense to make such an object stateless.

By managing object state in a way that is efficient and appropriate for your application,
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. The way that you manage object
state depends on the specific characteristics and requirements of your application:

m For CORBA applications, you do this by assigningrtbehod activation policy
to these objects, which has the effect of deactivating idle object instances so that
machine resources can be allocated to other object instances.

m For EJB applications, you use stateless session beans when possible, because
they are load balanced, on a per-request basis, within a group and across groups.

When to Use Stateless Objects

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Using
stateless objects is a good approach to implementing server applications and are
particularly appropriate when:

m The client application waits for user input between invocations on the object.

m The client request contains all the data needed by the server application, and the
server can process the client request using only that data.

m The object has high access rates, but low access rates from any one particular
client application.

By making an object stateless, you can generally assure that server application
resources are not being reserved unnecessarily while waiting for input from the client
application.

An application that employs a stateless object model has the following characteristics:

Scaling, Distributing, and Tuning Applications 1-7

1 Scaling WebLogic Enterprise Applications

m [nformation about and associated with an invocation is not maintained after the
server application has finished executing a client request.

m Anincoming client request is sent to the first available server process. After the
reguest has been satisfied, the application state disappears and the server
application is available for another client application request.

m Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

m Successive requests on an object from a given client application may be
processed by a different server process.

m Theoverall system performance of amachine that is running statel ess objectsis
usually enhanced.

When to Use Stateful Objects

1-8

A stateful object, once activated, remainsin memory until aspecific event occurs, such
asthe process in which the object exists is shut down, or the transaction in which the
object is activated is compl eted.

Using stateful objects is recommended when:

m Anobject is used frequently by alarge number of client applications, such as
long-lived, well-known objects. When the server application keeps these objects
active, the client application typically experiences minimal response timein
accessing them. These active objects are shared by many client applications, and
therefore relatively few objects of this type exist in memory.

Note: You should carefully consider how objects will potentially be involved in
atransaction. An object can be bound to a particular process temporarily
(transaction-bound) or permanently (process-bound). An object that is
involved in atransaction cannot be invoked by another client application
or object (WebL ogic Enterprise will likely return an error indicating that
the object is busy). Stateful objects that are intended to be used by alarge
number of client applications can create bottlenecksif they areinvolvedin
transactions frequently or for long durations.

m A client application must invoke successive operations on an object to complete
atransaction, and the client application is not idle while it waits for user input
between invocations. If the object were deactivated between invocations, there
would be a degradation of response time because state would be written and read

Scaling, Distributing, and Tuning Applications

Replicating Server Processes and Server Groups

between each invocation. In EJB applications, stateful objects can be passivated
at any time. Such behavior may not be appropriate for transactions. You should
consider holding server resources in exchange for better response time.

Stateful objects have the following behavior:

m State information is maintained between server invocations, and the object

typically remains dedicated to a given client application for a specified duration.
Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

When one or more stateful objects use alot of machine resources, server
performance for tasks and processes not associated with the stateful object may
be lower than with a stateless server model.

For example, if an object has alock on a database and is caching large amounts
of datain memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of atransaction.

Replicating Server Processes and Server

Groups

Thistopic includes the following sections:

About Replicating Server Processes and Server Groups
Configuration Options
Replicating Server Processes

Replicating Server Groups

For more detailed information about replicating server processes and server groups,
see the following topics:

“Configuring Replicated Server Processes and Groups” on page 6-5

Scaling, Distributing, and Tuning Applications 1-9

Scaling WebLogic Enterprise Applications

m For CORBA C++ applications, see “Scaling by Replicating Server Processes anc
Server Groups” on page 2-5

m For CORBA Java applications, see “Scaling by Replicating Server Processes an
Server Groups” on page 3-4

m For EJB applications, see “Scaling Tasks for System Administrators” on page
4-8

About Replicating Server Processes and Server Groups

1-10

The WebLogic Enterprise environment allows CORBA objects and EJBs to be
deployed across multiple servers to provide additional failover reliability and to split
the client’s workload through load balancing. WebLogic Enterprise load balancing is
enabled by default. For more information about configuring load balancing, see
“Enabling Load Balancing” on page 6-4. For more information about distributing the
application workload using BEA Tuxedo features, see Chapter 5, “Distributing
Applications.”

The WebLogic Enterprise architecture provides the following server organization:

m Groups. Individual servers can be combined to form a group. A group of servers
runs on a single machine. Typically, the servers in a group access common
resources (such as a database).

m Domains. Machines can be combined to form a domain. A domain is
administered centrally. Multiple domains are administered separately. Domains
can also be interconnected and requests can be transparently routed from one
domain to another. However, each domain is independently administered.

This architecture allows new servers, groups, or machines to be dynamically added ¢
removed, to adapt the application to high- or low-demand periods, or to accommodat
internal changes required to the application. The WebLogic Enterprise run time
provides load balancing and failover by routing requests across available servers.

System administrators can scale a WebLogic Enterprise application by:

m Replicating Server Processes. Increase the number of server processes to supp
more active objects within a group and load balancing among servers.

Scaling, Distributing, and Tuning Applications

Replicating Server Processes and Server Groups

m Replicating Server Groups. Increase the number of server groups so that
WebL ogic Enterprise can balance the load by distributing processing requests
across multiple server machines.

Configuration Options

Y ou can configure server applications as:

m A single machine with one or more server processes implementing one or more
interfaces. For Java, the servers can be single-threaded or multithreaded. For
C++, the servers are single-threaded only.

m Multiple machines with multiple server processes and multiple interfaces.

Y ou can add more parallel processing capability to client/server applications by
replicating server processes or add more threads. Y ou can add more server groups to
split processing across resource managers. For CORBA applications, you can
implement factory-based routing, as described in “Using Factory-based Routing
(CORBA only)” on page 1-16.

Replicating Server Processes

System administrators can scale an EJB application by replicating the servers to
support more concurrent active objects, or process more concurrent requests, on the
server node. To configure replicated server processes, see “Configuring Replicated
Server Processes and Groups” on page 6-5.

Benefits
The benefits of using replicated server processes include:

m Load balancing incoming requests.

m Processing client requests on any server within a group. As requests arrive in the
WebLogic Enterprise domain for the server group, WebLogic Enterprise routes
the request to the least busy server process within that group.

Scaling, Distributing, and Tuning Applications 1-11

1 Scaling WebLogic Enterprise Applications

Guidelines

m Improving the server application’s performance by using multiple server
processes. Instead of having one server process handling one client request at
one time, multiple server processes are available to handle multiple client
requests simultaneously.

m Providing failover protection in the event that one of the server processes stops.

To achieve the maximum benefit of using replicated server processes, make sure th
the CORBA objects or entity beans instantiated by your server application have uniqu
object IDs. This allows a client invocation on an object to cause the object to be
instantiated on demand, within the bounds of the number of server processes that a
available, and not queued up for an already active object.

You should also consider the trade-off between providing better application recovery
by using multiple processes versus more efficient performance using threads (for son
types of application patterns and processing environments).

Better failover occurs only when you add processgtghreads. For information about
using single-threaded and multithreaded Java servers, see “When to Use Multithread
Java Servers” on page 1-14.

Replicating Server Groups

Server groups are unique to WebLogic Enterprise and are key to the scalability feature
of WebLogic Enterprise. A group contains one or more servers on a single node.
System administrators can scale a WebLogic Enterprise application by replicating
server groups and configuring load balancing within a domain.

Replicating a server group involves defining another server group with the same typ
of servers and resource managers to provide parallel access to a shared resource (s
as a database). CORBA applications, for example, can use factory-based routing to
split processing across the database partitions.

The UBBCONFI Gfile specifies how server groups are configured and where they run.
By using multiple server groups, WebLogic Enterprise can:

m Spread the processing load for a given application or set of applications across
additional machines.

1-12 Scaling, Distributing, and Tuning Applications

Using Multithreaded Java Servers (Java only)

m For CORBA applications, use factory-based routing to send one set of requests
on agiven interface to one group, and another set of requests on the same
interface to another group.

To configure replicated server groups, see “Configuring Replicated Server Processes
and Groups” on page 6-5.

Using Multithreaded Java Servers (Java
only)

This topic includes the following sections:

m About Multithreaded Java Servers

m When to Use Multithreaded Java Servers
m Coding Recommendations

m Configuring a Multithreaded Java Server

For instructions on how to configure Java servers for multithreading, see “Configuring
Multithreaded Java Servers” on page 6-7.

Note: C++ servers are single-threaded only.

About Multithreaded Java Servers

System administrators can scale a WebLogic Enterprise application by enabling
multithreading in Java servers, and by tuning configuration parameters (the maximum
number of server worker threads that can be created) in the applicaBBaaNFI G

file.

WebLogic Enterprise Java supports the ability to configure multithreaded WebLogic
Enterprise Java applications. A multithreaded WebLogic Enterprise Java server can
service multiple object requests simultaneously, while a single-threaded WebLogic
Enterprise Java server runs only one request at a time. Running a WebLogic Enterprise

Scaling, Distributing, and Tuning Applications ~ 1-13

1 Scaling WebLogic Enterprise Applications

Javaserver in multithreaded mode or in single-threaded mode is transparent to the
application programmer. Programs written to WebL ogic Enterprise Java run without
modification in both modes.

Server worker threads are started and managed by the WeblL ogic Enterprise Java
software rather than an application program. Internally, WebL ogic Enterprise Java
manages a pool of available server worker threads. If a Java server is configured to be
multithreaded, then when aclient request isreceived, an available server worker thread
from the thread pool is scheduled to execute the request. Each active object has an
associated thread, and while the object is active, the thread is busy. When the request
is complete, the worker thread is returned to the pool of available threads.

Note: Inthisrelease, you should not establish multiple threads programmatically in
your server implementation code. Only worker threads that are created by the
run-time WebL ogic Enterprise Java server software can access the WebL ogic
Enterprise Java infrastructure, which means that your Java server application
should not create a Javathread from aworker thread and then attempt to begin
anew transaction in thethread. Y ou can, however, start threadsin your server
application to perform other, non-WebL ogic Enterprise operations.

When to Use Multithreaded Java Servers

1-14

Deploying multithreaded Java serversis appropriate for many, but not all, WebL ogic
Enterprise Java applications. The potential for a performance gain from a
multithreaded Java server depends on whether:

m Theapplication isrunning on a single- or a multiprocessor machine.
m Theapplication is CPU-intensive or 1/O-intensive.

If the application isrunning on a single-processor machine and the application is
CPU-intensive only (for example, without any 1/0), in most cases the multithreaded
Java server will not increase performance. In fact, due to the overhead of switching
between threads, using a multithreaded Java server in this configuration might result
in a performance loss rather than a gain.

In general, however, WebL ogic Enterprise Java applications amost always perform
better when running on multithreaded Java servers. Multiple multithreaded servers
should be configured to distribute the load across servers. If only asingle server is
configured, that server’s queue could fill up quickly.

Scaling, Distributing, and Tuning Applications

Using Multithreaded Java Servers (Java only)

Coding Recommendations

The code used in a multithreaded WebL ogic Enterprise server application appears the
same as a single-threaded application. However, if you plan to configure your Java
server applications to be multithreaded, or you want to have the option do so in the
future, consider the following recommendations:

m Do not start threads in your Java server code, and keep threading transparent in
your source files.

m Write thread-safe code in your server and client code. Use standard Java
synchronization techniques to make sure that static variables are properly
synchronized. For more information about Java synchronization techniques, see
the Java L anguage Specification published by Sun Microsystems, Inc.

m Configure the Java server as single-threaded if your application uses JNI code to
access ATMI. Alternatively, a mulithreaded Java server can access Tuxedo
services using Java Enterprise Tuxedo (JET), as described in Using Java
Enterprise Tuxedo.

m Configure the Java server as multithreaded if an X A-enabled version of Java
server is built using bui | dXAJS. The server must be configured to support
multithreaded mode.

m Include one of the following identifiersin each message if your client or server
application sends messages to the user log (ULOG):

e Object ID
e Thread name
e Transaction ID (if the object is transactional)

Configuring a Multithreaded Java Server

To configure a multithreaded Java server, you change settings in the application’s
UBBCONFI Gfile. For information about defining théBBCONFI G parameters to

implement a multithreaded Java server, see “Configuring Multithreaded Java Servers”
on page 6-7.

Scaling, Distributing, and Tuning Applications 1-15

1 Scaling WebLogic Enterprise Applications

Using Factory-based Routing (CORBA only)

This topic includes the following sections:

m About Factory-based Routing

m How Factory-based Routing Works

m Configuring Factory-based Routing in the UBBCONFIG File

This topic introduces factory-based routing in WebL ogic Enterprise CORBA
applications. For more detailed information about using factory-based routing, see the
following topics:

m For CORBA C++ applications, see “Configuring Factory-based Routing in the
UBBCONFIG File” on page 2-12.

m For CORBA Java applications, see “Configuring Factory-based Routing in the
UBBCONFIG File” on page 3-11.

About Factory-based Routing

Factory-based routing is a feature that lets you send a client request to a speafic
group. Using factory-based routing, you can distribute that processing load for a give!
application across multiple machines, because you can determine the group and
machine in which a given object is instantiated.

Routing is performed when a factory creates an object reference. The factory specifie
field information in its call to the WebLogic Enterprise TP Framework to create an
object reference. The TP Framework executes the routing algorithm based on the
routing criteria that you define in tiR®UTI NG section of an application'9BBCONFI G

file. The resulting object reference has, as its target, an appropriate server group for tl
handling of method invocations on the object reference. Any server that implements
the interface in that server group is eligible to activate the servant for the object
reference.

1-16 Scaling, Distributing, and Tuning Applications

Using Factory-based Routing (CORBA only)

The activation of CORBA objects can be distributed by server group based on defined
criteria, in cooperation with a system designer. Different implementations of CORBA
interfaces can be supplied in different groups. Thisfeature enablesyou to replicate the
same CORBA interface across multiple server groups, based on defined,
group-specific differences.

The system designer of the application must communicate the factory-based routing
criteriato the system administrator. In the BEA Tuxedo system, an FM. field used for
a service invocation can be used for routing. Y ou can independently discover this
information because there is no service request message data or associated buffer
information available for routing. Routing is performed at the factory level and not on
amethod invocation on the target CORBA object.

The primary benefit of factory-based routing isthat it providesasimple meansto scale
up an application, and invocations on a given interface in particular, acrossagrowing
deployment environment. Distributing the deployment of an application across
additional machinesis strictly an administrative function that does not reguire you to
recode or rebuild the application.

Characteristics of Factory-based Routing

Factory-based routing has the following characteristics:

m Animplementation of aparticular CORBA interface can exist in more than one
server process, as shown in “Configuring Factory-based Routing in the
UBBCONFIG File” on page 2-12.

m Multiple CORBA interfaces can reside in a single server group.

m All server processes in a particular server groupalmeed to use the same
CORBA interfaces.

m The factory object implementation can indirectly control the location of the
created CORBA object by supplying application-specific routing information.

m Routing uses the Bulletin Board criteria and occurs in a server call.

m All instances that offer a given interface within a group must support the same
version of the implementation.

Scaling, Distributing, and Tuning Applications ~ 1-17

1 Scaling WebLogic Enterprise Applications

How Factory-based Routing Works

To implement factory-based routing, you change the way your factories create object
references.

m You coordinate with the system designer to determine the fields and values to be
used as the basis for routing.

m For each interface, you need to configure factory-based routing. The interface
definition for the factory must specify the parameter that represents the routing
criteria used to determine the group ID.

m Inthe UBBCONFI Gfile, you need to define the following information:
e Routing criteriaidentifier for a CORBA interface in the | NTERFACES section.

e Asmany server groups as are required for distributing the system in the
GROUPS section.

e Routing criteriain the ROUTI NG section.

e Groups, machines, and databases as required.

m An object with agiven interface and OID can be simultaneously active in two
different groups if those two groups both contain the same object
implementation. This can be avoided if your factories generate unique OIDs. To
guarantee that only one object instance of a given interface name and OID is
available at any one time in your domain, you must either:

m Usefactory-based routing to ensure that objects with a particular OID
are aways routed to the same group, or

= Configure your domain so that a given object implementation isin only
one group.

If multiple clients have an object reference that contains a given interface name
and OID, the reference will always be routed to the same object instance.

Thereafter, the object reference will contain additional information that is used to
provide an indication of where the target server exists. Factory-based routing is
performed once per CORBA object, when the object reference is created.

1-18 Scaling, Distributing, and Tuning Applications

Multiplexing Incoming Client Connections

Configuring Factory-based Routing in the UBBCONFIG
File

Routing criteria specify the data values used to route reguests to a particular server
group. To configure factory-based routing, you define routing criteriain the ROUTI NG
section of the UBBCONFI Gfile (for each interface for which requests are routed). For
more detailed information about configuring factory-based routing, see the following
topics:

m For CORBA C++, see “Configuring Factory-based Routing in the UBBCONFIG
File” on page 2-12.

m For CORBA Java, see “Configuring Factory-based Routing in the UBBCONFIG
File” on page 3-11.

To configure factory-based routing across multiple domains, you must also configure
thefactory_finder.ini file to identify factory objects that are used in the current
(local) domain but that are resident in a different (remote) domain. For more
information, see “Configuring Multiple Domains (WebLogic Enterprise System)” in
the Administration Guide.

Multiplexing Incoming Client Connections

This topic includes the following sections:
m |IOP Listener and Handler
m Increasing the Number of ISH Processes

System administrators can scale a WebLogic Enterprise application by increasing, in
the UBBCONFI Gfile, the number of incoming client connections that an application site
supports. WebLogic Enterprise provides a multicontexted, multistated gateway of
listener/handlers to handle the multiplexing of all the requests issued by the client.

Scaling, Distributing, and Tuning Applications ~ 1-19

1 Scaling WebLogic Enterprise Applications

IIOP Listener and Handler

The IlOP Listener (ISL) enables access to WebL ogic Enterprise objects by remote
WebL ogic Enterprise clientsthat use ||OP. The | SL isaprocessthat listens for remote
clientsrequesting 11OP connections. The [lOP Handler (ISH) is amultiplexor process
that acts as a surrogate on behalf of the remote client. Both the ISL and I SH run on the
application site. An application site can have one or more |SL processes and multiple
associated | SH processes. Each ISH is associated with asingle ISL.

The client connects to the I SL process using a known network address. The ISL
balancestheload among | SH processes by selecting the best available | SH and passing
the connection directly to it. The ISL/ISH manages the context on behalf of the
application client. For moreinformation about | SL and ISH, see the description of 1SL
in the Commands, Systems Processes, and MIB Reference.

Increasing the Number of ISH Processes

1-20

System administrators can scale a WebL ogic Enterprise application by increasing the
number of ISH processes on an application site, thereby enabling the ISL to load
balance among more | SH processes. By default, an ISH can handle up to 10 client
connections. To increase this number, pass the optional CLOPT - x npx-f act or
parameter to the ISL command, specifying in npx- f act or the number of ISH client
connections each ISH can handle (up to 4096), and therefore the degree of
multiplexing, for the ISH. Increasing the number of ISH processes may affect
application performance as the application site services more concurrent processes.

System administrators can tune other |SH options as well to scale WebL ogic
Enterprise applications. For more information, see the description of ISL in the
Commands, Systems Processes, and MIB Reference.

Scaling, Distributing, and Tuning Applications

CHAPTER

2

Scaling CORBA C++
Server Applications

Thistopic includes the following sections:

About Scaling the Production Sample Application
Changing the OMG IDL

Using a Statel ess Object Model

Scaling by Replicating Server Processes and Server Groups
Scaling with Factory-based Routing

Additional Design Considerations

Scaling the Application Further

Using the Production sample application as an example, this topic demonstrates
scaling an WebL ogic Enterprise CORBA C++ application to increase its processing
capability. Before you begin, be sure to read:

Chapter 1, “Scaling WebLogic Enterprise Applications,” for a comprehensive
introduction to tuning and scaling WebLogic Enterprise applications.

Production Sample Application in the WebLogic Enterprise online
documentation.

Scaling, Distributing, and Tuning Applications 2-1

2 Scaling CORBA C++ Server Applications

About Scaling the Production Sample
Application

The Production sample application provides the same end-user functionality as the
Wrapper sample application. The Production sample application demonstrates how to
use features of the WebL ogic Enterprise software to scale an existing WebL ogic
Enterprise application.

This section includes the following topics:
m Design Goals
m How the Application Has Been Scaled

Design Goals

The primary design goal of the Production sample application is to significantly
increase the number of client applications it can accommodate by:

m Processing, in parallel and on one machine, client requests on multiple objects
that implement the same interface.

m Directing reguests on behalf of certain studentsto one machine, and other
students to other machines.

m Adding more machines to share the processing load.

How the Application Has Been Scaled

To accommodate these design goal s, the Production sample application has been
scaled by:

m Implementing a stateless object model to scale up the number of client requests
the server process can manage simultaneously.

2-2 Scaling, Distributing, and Tuning Applications

About Scaling the Production Sample Application

m Replicating the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured (the ORA_GRP and
APP_GRP server groups defined in the UBBCONFI Gfile).

m Replicating the ORA_GRP and APP_GRP server groups on an additional server
machine, Production Machine 2, and also partitioning the database.

m Assigning unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups.

e RegistrarFactory
e Registrar
e TellerFactory

e Teller

This makes these objects available on a per-client application (and not
per-process) basis, thereby accommodating a parallel processing capability.

m Implementing factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Note: To make the Production sample application easy to use, this application is
configured on the WebL ogic Enterprise software kit to run on one machine,
using one database. The examples shown in this chapter, however, show
running this application on two machines using two databases.

The Production sample application is designed so that it can be configured to
run on several machines and to use multiple databases. Changing the
configuration to multiple machines and databases involves modifying the
UBBCONFI Gfile and partitioning the databases, which isdescribed in “Scaling
the Application Further” on page 2-22.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meet its scalability goals.

Scaling, Distributing, and Tuning Applications 2-3

2 Scaling CORBA C++ Server Applications

Changing the OMG IDL

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() andfind_teller() operaionson, respectively, the

Regi strar Fact ory and Tel | er Fact or y objects. These two operations need to be
modified to require, respectively, a student ID and account number, which are needed

to implement factory-based routing. See “Scaling with Factory-based Routing” on

page 2-11 to read about how the Production sample application implements and us
factory-based routing.

Using a Stateless Object Model

2-4

This section describes how object state management is used witlgthe r ar and

Tel | er objects in the Production sample applications to increase the application’s
scalability. For an introduction to object state management, see “Using Object State
Management” on page 1-4.

To increase scalability, thegi st rar andTel | er objects are configured in the
Production server application with thet hod activation policy. Theret hod
activation policy assigned to these two objects results in the following behavior
changes:

m Whenever these objects are invoked, they are instantiated by the WebLogic
Enterprise domain in the appropriate server group.

m After the invocation is complete, the WebLogic Enterprise domain deactivates
these obijects.

With the Basic through the Wrapper sample applicationsRdbest r ar object was
process-boundo(ocess activation policy). All client requests on tRegi st rar

object invariably went to the same object instance in the memory of the server
machine. The Basic sample application design may be adequate for a small-scale
deployment. However, as client application demands increase, client requests on th
Regi strar object eventually become queued, and response time drops.

Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

However, when the Regi st rar and Tel | er objects are stateless (net hod activation
policy), and the server processes that manage these objects are replicated, the

Regi strar and Tel | er objects can process multiple client requestsin parallel. The
only constraint on the number of simultaneous client requests that these objects can
handle isthe number of server processes that are available that can instantiate the
Regi strar and Tel | er objects. These statel ess objects, thereby, make for more
efficient use of machine resources and reduced client response time.

Most importantly, so that WebL ogic Enterprise can instantiate copies of the

Regi strar and Tel | er objectsin each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, the
factories for those objects must assign unique object I Ds to them.

For the WebL ogic Enterprise application to instantiate copies of the Regi strar and
Tel | er objectsin each of the replicated server application processes, each copy of the
Regi strar and Tel | er objects have an unique object ID (OID). The factories that
create these objects are responsible for assigning them unique OIDs. For information
about generating unique object I1Ds, see Creating CORBA C++ Server Applications.
For more information about other design considerations, see “Additional Design
Considerations” on page 2-17.

Scaling by Replicating Server Processes and
Server Groups

This topic includes the following sections:
m Replicating Server Processes in the Production Application
m Replicating Server Groups in the Production Application

m Configuring Replicated Server Processes and Groups in the Production
Application

This topic describes how the Production sample application was scaled by replicating
server processes and server groups. For an introduction to this topic, see “Replicating
Server Processes and Server Groups” on page 1-9.

Scaling, Distributing, and Tuning Applications 2-5

2 Scaling CORBA C++ Server Applications

Replicating Server Processes in the Production
Application
This section describes how the Production sample application replicates server

applications. For an introduction to thisfeature, see “Replicating Server Processes” on
page 1-11.

Figure 2-1 shows the replicate8A GRP andAPP_GRP groups running on a single
machine.

m The University server application, BEA Tuxedo Teller Application, and Oracle7
TMS server processes are replicated withinaR& GRP group.

m The Billing server process is replicated within &Re_GRP group.

2-6 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

Figure2-1 Replicated Server Groupsin the Production Sample

Production Machine

ORA_GRP \ ' APP_GRP

University Server =\ Billing Server

RegistrarFactory \

Registrar

—_

CourseSynopsis \
Enumerator II \

|
|
|
|
|
|
\ |
|
|
|
|
|
I

BEA TUXEDO \

Teller Application \
debit()

Database credit) \

current_balance() \

o

Oracle7
Database Server

When arequest arrivesfor either of these groups, the WebL ogic Enterprise domain has
severa server processes available that can process the request, and the WebL ogic
Enterprise domain can choose the server process that is the least busy.

In Figure 2-1, note the following points:

m At any time, there may be no more than oneinstance of the Regi st r ar Fact ory,
Regi strar, Tel | er Factory, or Tel | er objects within a given server process.

m There may be any number of Cour seSynopsi sEnuner at or objectsin any
University server process.

Scaling, Distributing, and Tuning Applications 2-7

2 Scaling CORBA C++ Server Applications

Replicating Server Groups in the Production Application

This section describes how the Production sample application replicates server groups.
For an introduction to this feature, see “Replicating Server Groups” on page 1-12.

Figure 2-2 shows the Production sample application groups replicated on another
machine, as specified in the applicationB8CONFI Gfile, asORA_GRP2 and
APP_GRP2.

Figure2-2 Replicating Server GroupsAcross Machines

Production Machine 1 Production Machine 2
r ORA_GRP1 I |r APP GRP1 : |r ORA_GRP2 I |r APP GRP2 :
I _ I _
| | | I | | |
University | l I l University | l I
Server | | | Billing Server | | Server | | | Billing Server |
A | | !
- || | | = || |
|| | I || |
|| | I || |
| | | I | | |
Databasel | | —— — — ——— — | Database2 | | —— — — — — ——

BEA TUXEDO
Teller

BEA TUXEDO
Teller

Oracle7
Database
Server

Oracle7
Database
Server

I I
I I
I I
I I
I I
Application | Application |
I I
I I
I I
I I
I I
I I

In Figure 2-2, the only difference between the content of the groups on Production
Machines 1 and 2 is the database:

m The database on Production Machine 1 contains student and account informatiol
for students with IDs betwedr®0001 and100005.

2-8 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

m The database on Production Machine 2 contains student and account information
for students with IDs between 100006 and 100010.

Note: The course information table in both databases is identical.

Note that the student information in a given database may be completely unrelated to
the account information in the same database.

For more information about how the Producti on sampl e application uses factory-based
routing to distribute the application’s processing load across multiple machines, see
“Scaling with Factory-based Routing” on page 2-11.

Configuring Replicated Server Processes and Groups in
the Production Application

Listing 2-1 shows excerpts from tllBOUPS andSERVERS sections of th&/BBCONFI G
file for the Production sample application.

Listing 2-1 GROUPS and SERVERS Sectionsin a UBBCONFIG File

* GROUPS

APP_GRP1
LM D = SITELl
GRPNO =2
TMSNAME = TMS

APP_GRP2
LM D = SITELl
GRPNO =3
TMSNAME = TMS

ORA_GRP1
LM D = SITELl
GRPNO =4
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEI NFO = ""
TMSNAME = "TMS_CORA"

ORA_GRP2
LM D = SITELl
GRPNO =5
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEI NFO = ""

Scaling, Distributing, and Tuning Applications 2-9

2 Scaling CORBA C++ Server Applications

TVMBNAME = "TMs_ORA"

* SERVERS
By default, activate 2 instances of each server
and all ow the adm nistrator to activate up to 5
instances of each server

DEFAULT:
M N =2
MAX =5

tell p_server
SRVGRP = ORA_GRP1
SRVID = 10
RESTART = N

tell p_server
SRVGRP = ORA_GRP2
SRVID =10
RESTART = N

bi Il p_server
SRVGRP = APP_GRP1
SRVID =10
RESTART = N

bi Il p_server
SRVGRP = APP_GRP2
SRVID =10
RESTART = N

uni vp_server
SRVGRP = ORA_GRP1
SRVID = 20
RESTART = N

uni vp_server
SRVGRP = ORA_GRP2
SRVID = 20
RESTART = N

2-10 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

Scaling with Factory-based Routing

Thistopic includes the following sections:

m About Factory-based Routing in the Production Application
m Configuring Factory-based Routing in the UBBCONFIG File
m Implementing Factory-based Routing in a Factory

m What Happens at Run Time

This topic describes how the Production sample application was scaled using
factory-based routing. For an introduction to factory-based routing, see“Using
Factory-based Routing (CORBA only)” on page 1-16.

About Factory-based Routing in the Production
Application

This section describes how the Production sample application uses a factory-based
routing. For an introduction to this feature, see “Using Factory-based Routing
(CORBA only)” on page 1-16.

You can use factory-based routing to expand the load-balancing and scalability
features of WebLogic Enterprise. In the Production sample application, you can use
factory-based routing to send requests to register one subset of students to one
machine, and requests for another subset of students to another machine. As you
increase your application’s processing capability, you can easily modify the
factory-based routing in your application to add more machines.

The primary design consideration regarding implementing factory-based routing in the
Production sample application is in choosing the value on which routing is based. The
Production sample application uses factory-based routing in the following ways:

m Requests from client applications to ®eyi st r ar object are routed based on
the student ID. Requests from studentli®001 to 100005 go to Production
Machine 1. Requests from student1D0006 to 100010 go to Production
Machine 2.

Scaling, Distributing, and Tuning Applications 2-11

Scaling CORBA C++ Server Applications

m Requests from the Regi st r ar object tothe Tel | er object are routed based on
account number. Billing requests for account 200010 to 200014 go to
Production Machine 1. Billing requests for account 200015 to 200019 go to
Production Machine 2.

Configuring Factory-based Routing in the UBBCONFIG
File

2-12

The University Production sample application demonstrates how to implement
factory-based routing. The | NTERFACES, ROUTI NG, and GROUPS sections from the
ubb_b. nt configuration file show how you can implement factory-based routingin a
WebL ogic Enterprise application. Y ou can find the ubb_p. nt or ubb_p. nk
UBBCONFI Gfilesfor this sample in the directory where the WebL ogic Enterprise
softwareisinstalled (seethe\ sanpl es\ cor ba\ uni ver si t y\ producti on
subdirectory).

The UBBCONFI Gfile must specify the following datain thel NTERFACES and ROUTI NG
sections, as well as how groups and machines are identified.

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the kinds of
criteriaon which the interface routes. This section specifiestherouting criteriavia
an identifier, FACTORYRQUTI NG as shown in Listing 2-2.

Listing 2-2 INTERFACES Section of a UBBCONFIG File

| NTERFACES
"I DL: beasys. coni Uni versi tyP/ Regi strar:1.0"
FACTORYROUTI NG = STU I D
"I DL: beasys. conl Bil lingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM

Listing 2-2 showsthe fully qualified interface names for the two interfacesin the
Production sample in which factory-based routing is used. The

FACTORYROUTI NGidentifier specifies the names of the routing values, which are
STU_| Dand ACT_NUM respectively.

Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

2. The ROUTI NG section specifies the parametersin Table 2-1 for each routing value.

Table 2-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Production sample, the type of
routing is factory-based routing. Therefore, this parameter is defined as
FACTCRY.

FI ELD Specifiesthe variable name that the factory insertsin the routing val ue.

In the Production sample, the field parameters are st udent _i d and
account _nunber, respectively.

FI ELDTYPE Specifies the data type of the routing value. In the Production sample,
the field types for st udent _i d and account _nunber arel ong.

RANGES Specifies the values that are routed to each group.

Listing 2-3 shows the ROUTI NG section of the UBBCONFI Gfile used in the
Production sample application.

Listing 2-3 ROUTING Section of the UBBCONFIG File

ROUTI NG
STU ID
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001- 100005: ORA_GRP1, 100006- 100010: ORA_GRP2"
ACT_NUM
FI ELD = "account _nunber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010- 200014: APP_GRP1, 200015- 200019: APP_GRP2"

Listing 2-3 shows that Regi st r ar object references for students with IDsin one
range are routed to one server group, and Regi st r ar object references for
students with IDs in another range are routed to another group. Likewise,

Tel | er object references for accounts in one range are routed to one server

Scaling, Distributing, and Tuning Applications ~ 2-13

2 Scaling CORBA C++ Server Applications

group, and Tel | er object references for accounts in another range are routed to
another group.

The groups specified by the RANGES identifier in the ROUTI NG section of the
UBBCONFI Gfile need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1, and
ORA_GRP2. These groups need to be configured, and the machines on which they
run need to be identified.

Listing 2-4 shows the GROUPS section of the Production sample UBBCONFI Gfile,
in which the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the
names in the GROUPS section match the group names specified in the ROUTI NG
section. Thisis critical for factory-based routing to work correctly. Furthermore,
any change in the way groups are configured in an application must be reflected
in the ROUTI NG section. (Note that the Production sample packaged with the
WebL ogic Enterprise software is configured to run entirely on one machine.
However, you can easily configure this application to run on multiple machines.)

Listing 2-4 GROUPS Section of a UBBCONFIG File

* GROUPS
APP_CRP1
LM D = SITE1
GRPNO =2
TMSNAME = TMB
APP_CRP2
LM D = SITE1
GRPNO =3
TMSNAME = TMB
ORA_GRP1
LM D = SITE1
GRPNO =4
OPENI NFO =
" ORACLE_XA: Or acl e_XA+Acc=P/scott/ti ger+SesTnm=100+LogDi r =. +MaxCur =5"
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"
ORA_GRP2
LM D = SITE1
GRPNO =5
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/ scott/ti ger+SesTnm=100+LogD r =. +MaxCur =5"
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"

2-14

Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing in the way the invocation to the
TP: : create_obj ect _ref erence() operation isimplemented. This operation has
the C++ binding in Listing 2-5.

Listing 2-5 C++ Binding for create_object_reference

CORBA: : Cbj ect _ptr TP::create_object _reference (
const char* interfaceNane,
const Portabl eServer::oid &troid,
CORBA: : NVIist_ptr criteria);

Thethird parameter to this operation, cri teri a, specifiesalist of named valuesto be
used for factory-based routing. To implement factory-based routing in afactory, you
needto buildtheNw i st . Theuse of factory-based routing isoptiona andis dependent
on this argument. Instead of using factory-based routing, you can pass avalue of 0
(zero) for this argument.

As stated previoudly, the Regi st r ar Fact or y object in the Production sample
application specifiesthe value STU_I D. This value must exactly match the following
information in the UBBCONFI Gfile:

m The routing name, type, and allowable values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section.

m Therouting criteria name, field, and field type specified in the ROUTI NG section.
TheRegi st rar Fact or y object inserts the student ID into the NVI i st using the code
shown in Listing 2-6.

Listing 2-6 NVlist in the Registrar Factory Object

/1 put the student id (which is the routing criteria)
/1 into a CORBA NVLi st:

CORBA: : NVLi st _var v_criteria;

TP::orb()->create list(1l, v criteria.out());
CORBA: : Any any;

Scaling, Distributing, and Tuning Applications 2-15

2 Scaling CORBA C++ Server Applications

any <<= (CORBA:: Long)student;
v_criteria->add_val ue("student _id", any, 0);

The Regi st rar Fact ory object hasthe invocation to the
TP: : creat e_obj ect _r ef er ence() operation, shown in Listing 2-7, passing the
NVl i st created in Listing 2-6.

Listing 2-7 Invoking create object_referencein the RegistrarFactory Object

/1 create the registrar object reference using
/1l the routing criteria :
CORBA: : Obj ect _var v_reg_oref =
TP:: creat e_obj ect _reference(
Uni versityP:: tc Registrar->id(),
obj ect _id,
v_criteria.in()

The Production sample application also uses factory-based routing in the
Tel | er Fact ory object to determine the group in which Tel | er objects should be
instantiated based on an account number.

What Happens at Run Time

When you implement factory-based routing in a factory, WebL ogic Enterprise
generates an object reference. Thefollowing exampl e showshow the client application
gets an object reference to aRegi st rar object when factory-based routing is
implemented.

1. Theclient application invokes the Regi st r ar Fact or y object, requesting a
reference to aRegi st rar object. The request includes a student 1D.

2. TheRegi strar Fact ory insertsthe student ID into an Nv1 i st , which is used as
the routing criteria.

2-16 Scaling, Distributing, and Tuning Applications

Additional Design Considerations

3. TheRegi strarFactory invokesthe TP: : cr eat e_obj ect _ref erence()
operation, passing the Regi st r ar interface name, a unique OID, and the
NVI i st.

4. WebL ogic Enterprise compares the contents of the routing tables with the value
inthe NVl i st to determine agroup ID.

5. WebL ogic Enterprise inserts information about the group into the object
reference.

When the client application subsequently invokes an object using the object reference,
WebL ogic Enterprise routes the request to the group specified in the object reference.

Note: If you usethe process-entity design pattern, you should use cautionin how you
implement factory-based routing. The object can service only those entities
that are contained in the group’s database.

Additional Design Considerations

This topic includes the following sections:

m About the Additional Design Considerations

m Instantiating the Registrar and Teller Objects

m Ensuring That Student Registration Occurs in the Correct Server Group

m Ensuring That the Teller Object Is Instantiated in the Correct Server Group

About the Additional Design Considerations

When designing theegi st rar andTel | er objects, you should ensure that:

m TheRegistrar andTel | er objects work properly for the Production
deployment environment; namely, across multiple replicated server processes
and multiple groups. Given that the University and Billing server processes are
replicated, the design must consider how these two objects should be
instantiated.

Scaling, Distributing, and Tuning Applications ~ 2-17

Scaling CORBA C++ Server Applications

m Client requestsfor registration and billing operations for a given student go to
the correct server group, given that the two server groups in the Production
WebL ogic Enterprise domain each deal with different databases.

These objects must have unique object IDs (Ol Ds) and must be method-bound (that is,
they must have the met hod activation policy assigned to them).

Instantiating the Registrar and Teller Objects

2-18

In the University server applications that are less sophisticated than the Production
sample application, the run-time behavior of the Regi strar and Tel | er objectswas
simpler:

m Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

m Since there was only one server group running in the WebL ogic Enterprise
domain, and only one University and Billing server process in the group, all
client requests were directed to the same objects. As multiple client requests
arrived in the WebL ogic Enterprise domain, these objects each processed one
client request at one time.

m Because there was only one instance of each object in the server processesin
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, because the University and Billing server processes are now replicated,
WebL ogic Enterprise must be able to differentiate among multiple instances of the
Regi strar and Tel | er objects. For example, if there are two University server
processes running in a group, WebL ogic Enterprise must have a means to distinguish
between the Regi st r ar object running in the first University server process and the
Regi st rar object running in the second University server process. To distinguish
multiple instances of these objects, each object instance must be unique.

To make each Regi strar and Tel | er object unique, the factories for those objects
must change the way in which they make object referencesto them. For example, when
the Regi st r ar Fact ory object in the Basic sample application created an object
reference to the Regi strar object, the TP: : cr eat e_obj ect _r ef erence()

Scaling, Distributing, and Tuning Applications

Additional Design Considerations

operation specified an OID that consisted only of the string r egi st rar . However, in
the Production sample application, the same TP: : cr eat e_obj ect _ref erence()
operation uses a generated unique OID instead.

Asaresult of giving each Regi st rar and Tel | er object aunique OID, multiple
instances of these objects may be running simultaneously in the WebL ogic Enterprise
domain. This characteristic istypical of the stateless object model, and is an example
of how the WebL ogic Enterprise domain can be highly scalable while it offers high
performance.

Finally, because unique Regi st rar and Tel | er objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remain idlein memory. The Production server application addressesthis
issue by assigning the net hod activation policy to these two objects in the
Implementation Configuration File (ICF).

Ensuring That Student Registration Occurs in the Correct
Server Group

The primary scalability advantage of using replicated server groupsis being able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the University sample applications, itiscritical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide on how many databases to use.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information is identical. Having
identical course information in both databases is not a problem because the course
information isread-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain

Scaling, Distributing, and Tuning Applications ~ 2-19

2 Scaling CORBA C++ Server Applications

2-20

identical datafor students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updatesto
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
reguests to one machine, and another set to the other machine. How factory-based
routingisimplemented inthe Regi st r ar Fact or y object dependsontheway inwhich
references to Regi st rar objects are created.

For example, when the client application sends a request to the Regi st r ar Fact ory

object to get an object referenceto aRegi st r ar object, the client application includes
astudent ID in that request. The client application must use the object reference that

the Regi st r ar Fact or y object returns to make all subsequent invocationson a

Regi strar object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes thet _st udent _det ai | s() operation on the

Regi strar object, the client application can be assured thagdbest r ar object is
active in the server group associated with the database containing data for that stude

To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes thénd_r egi st rar () operation on the
Regi strar Fact ory object. Included in this invocation is the studentld0003.

2. WebLogic Enterprise routes the client request toReiy st r ar Fact or y object.

3. TheRegi strar Fact ory object uses the student ID to create an object reference
to aRegi strar object inORA_GRP1, based on the routing information in the
UBBCONFI Gfile, and returns that object reference to the client application.

4. The client application invokes thegi st er _f or_cour ses() operation on the
Registrar object.

5. WebLogic Enterprise receives the client request and routes it to the server group
specified in the object reference. In this case, the client request goes to the
University server process @RA_GRP1, which is on Production Machine 1.

6. The University server process instantiat®ed st r ar object and sends the
client invocation to it.

Scaling, Distributing, and Tuning Applications

Additional Design Considerations

The Regi st r ar Fact or y object from the preceding scenario returns to the client
application a unique reference to a Regi st r ar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has adatabase containing student
datafor studentswith IDs in the range 100001 to 100005. Therefore, when the client
application sends subsequent reguests to this Regi st r ar object on behalf of agiven
student, the Regi st r ar object interacts with the correct database.

Ensuring That the Teller Object Is Instantiated in the
Correct Server Group

WhentheRegi strar objectneedsaTel | er object, theRegi strar objectinvokesthe
Tel | er Fact ory object, using the Tel | er Fact or y object reference cached in the
University Server object.

However, because factory-based routing isused in the Tel | er Fact or y object, the
Regi strar object passes the student’s account number wheRetfiest r ar object
requests a reference tael | er object. This way, th&el | er Fact ory object creates
a reference to @el | er object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the
system administrator configures the server groups and the databases properly.
In particular, the system administrator must make sure that a match exists
between the routing criteria specified in the routing tables and the databases to
which requests using those criteria are routed. Using the Production sample as
an example, the database in a given group must contain the correct student and
account information for the requests that are routed to that group.

Scaling, Distributing, and Tuning Applications ~ 2-21

2 Scaling CORBA C++ Server Applications

Scaling the Application Further

2-22

In the future, the system administrator of the Production sample application may want
to add capacity to the WebL ogic Enterprise domain. For example, the University may
eventually experience alarge increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system, encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator can continually add capacity by:

m Replicating the server groups in the Production sample application across
additional machines.

The system administrator must modify the UBBCONFI Gfile to specify the
additional server groups, the server processes that run in those groups, and the
machines on which the server groupsrun.

m Changing the factory-based routing tables.

For example, instead of routing to the two existing groups in the Production
sample application, the system administrator can modify the routing rules in the
UBBCONFI Gfile to partition the application further among additional server
groups added to the WebL ogic Enterprise domain. Any modification to the
routing tables must match the information for the configured server groups and
machines in the UBBCONFI Gfile.

Note: If you add capacity to an existing WebL ogic Enterprise application that usesa
database, you must also consider the impact on how the database is set up,
particularly when you are using factory-based routing. For example, if the
Production sample application is distributed across six machines, the database
on each machine must be set up appropriately and in accordance with the
routing tables in the UBBCONFI Gfile.

Scaling, Distributing, and Tuning Applications

CHAPTER

3

Scaling CORBA Java
Server Applications

Using the JDBC Bankapp sample application as an example, this topic demonstrates
scaling a WebL ogic Enterprise CORBA Java application to increase its processing
capability. Thistopic includes the following sections:

m About Scaling the JDBC Bankapp Sample Application

m Scaling with Object State Management

m Scaling by Replicating Server Processes and Server Groups
m Scaling with Factory-based Routing

m Additional Design Considerations

m Scaling the Application Further

Before you begin, be sure to read Chapter 1, “Scaling WebLogic Enterprise
Applications,” for a comprehensive introduction to tuning and scaling WebLogic
Enterprise applications. For information about building and running the JDBC
Bankapp sample application, see Bankapp Sample Using JDBC in the WebLogic
Enterprise online documentation.

Note: Some of the Bankapp examples in this topic include sample code tloat is
implemented in the sample Bankapp files that ship with WebLogic Enterprise.

Scaling, Distributing, and Tuning Applications 31

3 Scaling CORBA Java Server Applications

About Scaling the JDBC Bankapp Sample
Application

This topic includes the following sections:
m Design Goals
m How the Application Has Been Scaled

Design Goals

The primary design goal of the JIDBC Bankapp sample application is to significantly
increase the number of client applications it can accommodate by:

m Processing in parallel, and on one machine, client requests on multiple objects
that implement the same interface.

m Directing reguests on behalf of certain bank automated teller machines (ATMs)
to one machine, and other ATM s to other machines.

m Adding more machines to share the processing load.

How the Application Has Been Scaled

To accommodate these design goal's, the JIDBC Bankapp sample application has been
scaled by:

m Implementing a stateless object model to scale up the number of client requests
the server process can manage simultaneously.

m Replicating the Tel | er and Tel | er Fact ory server processes within the groups
in which they are configured.

m Replicating the groups described previously on an additional machine.

3-2 Scaling, Distributing, and Tuning Applications

Scaling with Object State Management

m Assigning unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups:

e TellerFactory

e Teller

This makes these objects available on a per-client application (and not
per-process) basis, thereby accommodating a parallel processing capability.

m Implementing factory-based routing to direct client requests on behalf of some
ATMsto one machine, and other ATMs to another machine.

m Setting up threads for the Tel | er object. For related information, also see
“Using Multithreaded Java Servers (Java only)” on page 1-13.

The sections that follow describe how the JDBC Bankapp sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets it scalability goals.

Scaling with Object State Management

This section describes how object state management is used with tlee objects

in the Bankapp sample application to increase the application’s scalability. For an
introduction to object state management, see “Using Object State Management” on
page 1-4.

For example, the Bankapp samptg | er object could use theet hod activation

policy. Thenet hod activation policy assigned to this object means that the object is
activated whenever a client request arrives for it. Tdie er object remains in

memory only for the duration of one client invocation, which is appropriate in cases
where the Process-Entity design pattern is recommended. For more information about
the Process-Entity design pattern, see the technical drtiotess-Entity Design

Pattern.

As the number of clients issuing requests onmiie er object increases, WeblLogic
Enterprise can:

m Instantiate th@el | er object for each client request that arrives. Client requests
are not queued for an existifigl | er object, which would likely be the case if
theTel | er object were process-bound.

Scaling, Distributing, and Tuning Applications 3-3

3 Scaling CORBA Java Server Applications

m Perform load balancing by instantiating the Tel | er object on the least busy
Server process or group.

Scaling by Replicating Server Processes and
Server Groups

This topic includes the following sections:
m Replicating Server Processes in the Bankapp Application
m Replicating Server Groups in the Bankapp Application

m Configuring Replicated Server Processes and Groups in the Bankapp
Application

This topic describes how the BankApp server application was scaled by replicating
server processes and server groups. For an introduction to thistopic, see “Replicating
Server Processes and Server Groups” on page 1-9.

Replicating Server Processes in the Bankapp Application

Figure 3-1 shows the Bankapp server application replicated BaNie GROUP1
group. The replicated servers are running on a single machine.

3-4 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

Figure3-1 Replicated Serversin the Bankapp Sample

Production Machine

BANK_GROUP1

| I
I I
: Bankapp Server Bankapp Server2 :
| I
I I
| TellerFactory TellerFactory I
I I
| I
I I
| Teller Teller |
I I
I I
I I
| I
I I
| RDBMS I
| Database Transaction |
| Manager Server |
I I
| I

—_—,_—,— e — —— e — — e e ———

When arequest arrives for this group, WebL ogic Enterprise has several server
processes available that can process the request, and WebL ogic Enterprise can choose
the server process that is the least busy.

In Figure 3-1, note the following:

m At any time, there may be no more than one instance of the Tel | er Fact ory
object within a given server process.

m There may be any number of Tel | er objectsin any Bankapp server process.

Scaling, Distributing, and Tuning Applications 3-5

3 Scaling CORBA Java Server Applications

Replicating Server Groups in the Bankapp Application

Figure 3-2 shows the Bankapp sample application groups replicated on another
machine, as specified in the applicationBBCONFI Gfile.

Figure3-2 Replicating Server GroupsAcross Machines

Production Machine 1 Production Machine 2

BANK_GROUP1 BANK_GROUP2

Bankapp Server Bankapp Server

TellerFactory TellerFactory

- RDBMS - RDBMS
Transaction Transaction
Database Manager Database Manager
Server Server

I
I
I
I
I
I
I
I
I
| Teller
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
| Teller
I
I
I
I
I
I
I
I
I

Note: In the simple example shown in Figure 3-2, the content of the databases on

Production Machines 1 and 2 is identical. Each database contains all of the

account records for all of the account IDs. Only the processing is distributed,
based on the ATMaf m D field). A more realistic example would distribute

the data and processing based on ranges of bank account IDs.

For more information about how the Bankapp sample application uses factory-base:
routing to distribute the application’s processing load across multiple machines, see
“Scaling with Factory-based Routing” on page 3-10.

3-6 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

Configuring Replicated Server Processes and Groups in
the Bankapp Application

Listing 3-1 shows excerpts from the GROUPS and SERVERS sections of the UBBCONFI G

file for a Bankapp sample application.

Note: These configuration settings are not used with the Bankapp sample provided
with the WebL ogic Enterprise software.

Listing 3-1 Excerptsfrom GROUPS and SERVERS Section of UBBCONFIG

* RESOURCES
| PCKEY
DOVAI NI D
MASTER
MODEL
LDBAL

*MACHI NES
"TRI XI E'

* GROUPS
SYS GRP

BANK_GROUP1

BANK_GROUP2

* SERVERS

By defaul t,

55432
sinple
SI TE1
SHM

LMD

APPDI R
TUXCONFI G
TUXDI R
MAXCLI ENTS

LMD
GRPNO

LM D
GRPNO

LM D
GRPNO

in 24 hours.

#
DEFAULT:

RESTART =Y

MAXGEN = 5

Scaling, Distributing, and Tuning Applications

restart a server if it crashes,

SI TE1

"c:\ bankapp\j dbc\."

"c:\ bankapp\j dbc\.\tuxconfig"
"c:\nBdir"

= 10

SI TE1

SI TE1

SI TE1

up to 5 times

3-7

3 Scaling CORBA Java Server Applications

3-8

H H oHH

H* H H H*

H* H H

Start the Tuxedo System Event Broker. This event broker
must be started before any servers providing the
NameManager Servi ce.
TMSYSEVT

SRVGRP = SYS GRP

SRVID = 1
TMFFNAME is a MB provided server that runs the
obj ect-transacti onal managenent services. This includes the
NameManager and Fact oryFi nder servi ces.

The NaneManager service is a M3-specific service
that maintains a mappi ng of application-supplied nanes to
obj ect references.

Start the NameManager Service (-N option). This nane
manager is being started as a Master (-Moption).
TMFFENAMVE
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A-- -N-M
Start a slave NaneManager Service
TMFFENAMVE
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -N'
Start the FactoryFinder (-F) service
TMFFENAMVE
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -N -F"
Start the JavaServer in Bank_G oupl

JavaSer ver
SRVGRP = BANK_GROUP1
SRVID = 5
CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
SYSTEM ACCESS=FASTPATH

Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

RESTART = N

Start the JavaServer in Bank_G oup2
#

JavaServer
SRVGRP = BANK_ GROUP2

SRVID = 6

CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_ 1"
SYSTEM ACCESS=FASTPATH

RESTART = N

Start the listener for 11OP clients

#

Specify the host name of your server machine as
well as the port. A typical port nunber is 2500
#

I SL
SRVGRP = SYS_GRP
SRVID = 7
CLOPT = "-A -- -n // TR XI E: 2468"

*SERVI CES

*| NTERFACES
"1 DL: beasys. coml BankApp/ Tel | er: 1. 0"
FACTORYRQUTI NG=at mi D

* ROUTI NG
atnm D

TYPE = FACTORY

FIELD = "atm D'

FI ELDTYPE = LONG

RANGES = "1-5: BANK_GROUP1,
6-10: BANK GROUPZ,
*: BANK_GROUP1

Scaling, Distributing, and Tuning Applications 39

3 Scaling CORBA Java Server Applications

Scaling with Factory-based Routing

This topic includes the following sections:

m About Factory-based Routing in the Bankapp Application

m Configuring Factory-based Routing in the UBBCONFIG File
m Implementing Factory-based Routing in a Factory

m What Happens at Run Time

This topic describes how the BankApp server application was scaled using
factory-based routing. For an introduction to factory-based routing, see “Using
Factory-based Routing (CORBA only)” on page 1-16.

About Factory-based Routing in the Bankapp
Application

3-10

You can use factory-based routing to expand the load-balancing and scalability
features of WebLogic Enterprise. In the Bankapp sample application, you can use
factory-based routing to send requests to a subset of ATMs to one machine, and
requests for another subset of ATMSs to another machine. As you increase your
application’s processing capability, you can easily modify the factory-based routing in
your application to add more machines.

The primary design consideration regarding implementing factory-based routing in the
Bankapp sample application is in choosing the value on which routing is based. The
following sections describe how factory-based routing works in the JDBC Bankapp
sample application. Client application requests torthe er object are routed based

on a teller number:

m Requests for one subset of teller numbers are routed to one group.

m Requests on behalf of another subset of teller numbers are routed to another
group.

Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

Configuring Factory-based Routing in the UBBCONFIG
File

The UBBCONFI Gfile must specify the following datain the | NTERFACES and ROUTI NG
sections, as well as how groups and machines are identified.

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the kinds of
criteria on which the interface routes. This section specifiesthe routing criteriavia
an identifier, FACTORYROUTI NG as shown in Listing 3-2.

Listing 3-2 Sample INTERFACES Section

* | NTERFACES
"1 DL: beasys. conl BankApp/ Tel l er: 1. 0"
FACTORYROUTI NG = atm D

Listing 3-2 shows the fully qualified Interface Repository ID for an interface in
the extended Bankapp sample in which factory-based routing is used. The
FACTORYROUTI NGidentifier specifies the name of the routing value, at m D.

2. The ROUTI NG section specifies the parameters in Table 3-1 for each routing value.

Table 3-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifiesthe type of routing. In the Bankapp sample, the type of routing
is factory-based routing. Therefore, this parameter is defined as
FACTCRY.

FI ELD Specifies the name that the factory insertsin the routing value. In the

extended Bankapp sample, the field parameter isat ni D.

FI ELDTYPE Specifies the datatype of the routing value. In the Bankapp sample, the
field typefor at M DisLONG

RANGES Specifies the values that are routed to each group.

Scaling, Distributing, and Tuning Applications 3-11

3

Scaling CORBA Java Server Applications

Listing 3-3 shows the ROUTI NG section of the UBBCONFI Gfile used in the
Bankapp sample application.

Listing 3-3 Sample ROUTING Section

* ROUTI NG
atnm D

TYPE = FACTORY

FIELD = "atm D"

FI ELDTYPE = LONG

RANGES = "1-5: BANK_GROUPL,
6-10: BANK GROUPZ,
*: BANK_GROUP1

Listing 3-3 showsthat Tel | er object references for ATMsin one range are
routed to one server group, and Tel | er object references for ATMsin other
ranges are routed to other groups. As shown in Figure 3-2, BANK_GROUP1 and
BANK_GROUP?2 reside on different production machines.

Implementing Factory-based Routing in a Factory

3-12

Factories implement factory-based routing in the way in which the invocation to the
com beasys. Tobj . TP. cr eat e_obj ect _r ef er ence method is implemented.

Listing 3-4 shows the Java binding for this operation.

Listing 3-4 JavaBinding for create_object_reference

public static org.ong. CORBA. bj ect
create_object _reference(java.lang. String interfaceNaneg,
java.lang. String stroid,
org. ong. CORBA. NVLi st criteria)
throws | nvalidlnterface,
I nval i dObj ectld

Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

Thecriteria specifiesalist of named values that can be used to provide
factory-based routing for the object reference. The use of factory-based routing is
optional and isdependent on thisargument. | nstead of using factory-based routing, you
can pass avaue of 0 (zero) for thisargument. To implement factory-based routing in
afactory, you need to build the Nv1 i st .

As stated previoudly, the Tel | er Fact or y object in the Bankapp sample application
specifiesthevalueat m D. Thisvalue must exactly match the following information in
the UBBCONFI Gfile:

m Therouting name, type, and allowable values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section.

m Therouting criteria name, field, and field type specified in the ROUTI NG section.

Note: Listing 3-5isnot part of the Bankapp sample code, but isincluded here to
illustrate factory-based routing. The Tel | er Fact or y object inserts the bank
account number into the NV i st using the following code.

Listing 3-5 Sample of Factory-Based Routing

/1 Put the atm D (which is the routing criteria)

/] into a CORBA NVList. The atm D cones fromthe

/1 tellerNane that is passed in as an input paraneter;
/1 tellerNanme should have the form Teller<atm D>

int atm D = Integer.parselnt (tellerNanme. substring(6));
any.insert_long(atmD);

/l Create the N\Mlist and add the atmiD to the list.

org.ong. CORBA. NVLi st criteria = TP.orb().create list(1);
criteria.add _value("atm D', any, 0);

/1 Create the object reference.

org.ong. CORBA. Obj ect teller_oref =
TP. create_obj ect _reference(
BankApp. Tel l erHel per.id(), // Repository ID
tel | er Nanme, /1 Cbject ID
criteria /1 Routing Criteria

)

Scaling, Distributing, and Tuning Applications 3-13

3 Scaling CORBA Java Server Applications

What Happens at Run Time

When you implement factory-based routing in a factory, WebL ogic Enterprise
generates an object reference. Thefollowing exampl e showshow the client application
gets an object referenceto aTel | er object when factory-based routing is
implemented:

1

5.

The client application invokesthe Tel | er Fact or y object, requesting a reference
toaTel | er object. The request includes ateller name, which includes an at ni D.

TheTel | er Fact ory insertsthe at ml Dinto an NV i st , which is used as the
routing criteria.

TheTel | er Fact ory invokes the
com beasys. Tobj . TP: : creat e_obj ect _r ef er ence method, passing the
Tel | er Interface Repository 1D, aunique OID, and the NVl i st .

WebL ogic Enterprise compares the content of the routing tables with the value in
the NVl i st to determine a group ID.

WebL ogic Enterprise inserts the group 1D into the object reference.

When the client application subsequently invokes an object using the object reference,
WebL ogic Enterprise routes the request to the group specified in the object reference.

Note: If you usethe process-entity design pattern, you should use caution in how you

implement factory-based routing. The object can service only those entities
that are contained in the group’s database.

Additional Design Considerations

3-14

This topic includes the following sections:

About the Additional Design Considerations
Instantiating the Teller Object

Ensuring That Account Updates Occur in the Correct Server Group

Scaling, Distributing, and Tuning Applications

Additional Design Considerations

About the Additional Design Considerations

When designing the Tel | er object, you should ensure that:

m TheTel | er object works properly for the Bankapp deployment environment;
namely, across multiple replicated server processes and multiple groups.

m Client requests for account inquiries, withdrawals, and transfersin a given
account go to the correct server group, given that the four server groups in the
extended Bankapp WebL ogic Enterprise domain each interact with different
databases.

These obj ects must have unique object | Ds (Ol Ds) and must be method-bound (that is,
they must have the met hod activation policy assigned to them).

Instantiating the Teller Object

Because the extended Bankapp server is now replicated, the WebL ogic Enterprise
domain must have be able to differentiate among multiple instances of the Tel | er
object. For example, if there are two Bankapp server processes running in agroup,
WebL ogic Enterprise must be able to distinguish between aTel | er object runningin
the first Bankapp server processand aTel | er object running in the second Bankapp
server process. To distinguish multiple instances of these objects, each object instance
must be unique.

To make each Tel | er object unique, the factories for those objects must change the

way in which they make object references to them. For example, when the

Tel | er Fact or y object in the original Bankapp sample application created an object
reference to the Tel | er object, the

com beasys. Tobj . TP: : cr eat e_obj ect _r ef er ence method specified an OID that
consisted only of the string t el | er Name. However, in the extended Bankapp sample
application discussed in this chapter, the same cr eat e_obj ect _r ef er ence method
uses a generated unique OI D instead.

Asaresult of giving each Tel | er object aunique OID, multiple instances of these
objects may be running simultaneously in the Webl ogic Enterprise domain. This
characteristic istypica of the stateless object model, and is an example of how the
WebL ogic Enterprise domain can be highly scalable while it offers high performance.

Scaling, Distributing, and Tuning Applications ~ 3-15

3 Scaling CORBA Java Server Applications

Finally, becauseuniqueTel | er objectsneed to be brought into memory for each client
reguest on them, it iscritical that these objects be deactivated when theinvocationson
them are compl eted so that any object state associated with them does not remain idle
in memory. The Bankapp server application addresses this issue by assigning the

met hod activation policy to the Tel | er object in the XML-based Server Description
File.

Ensuring That Account Updates Occur in the Correct
Server Group

The primary scalability advantage of using replicated server groupsis being able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the JIDBC Bankapp sample application, it is
critical that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The JDBC Bankapp sample application uses factory-based routing to send one set of
reguests to one machine, and another set to the other machine. How factory-based
routing isimplemented in the Tel | er Fact or y object depends on how references to
Tel | er objects are created.

Scaling the Application Further

3-16

In the future, the system administrator of the Bankapp sample application may want to
add capacity to the WebL ogic Enterprise domain. For example, the bank may
eventually have alarge increase in automated teller machines (ATMSs). This can be
done without modifying or rebuilding the application.

The system administrator can continually add capacity by:

Scaling, Distributing, and Tuning Applications

Scaling the Application Further

m Replicating the Bankapp sample application server groups across additional
machines.

The system administrator must modifying the UBBCONFI Gfile to specify the
additional groups, the server processes that run in those groups, and the
machines on which they run.

m Changing the factory-based routing tables.

For example, instead of routing to the four groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFI Gfile to
partition the application further among the new groups added to the WebL ogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in the UBBCONFI Gfile.

Note: If you add capacity to an application that uses a database, you must aso
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Bankapp sample application
is distributed across six machines, the database on each machine must be set
up appropriately and in accordance with the routing tables in the UBBCONFI G
file.

Scaling, Distributing, and Tuning Applications 3-17

3 Scaling CORBA Java Server Applications

3-18 Scaling, Distributing, and Tuning Applications

CHAPTER

A4

Scaling EJB
Applications

Thistopic describes the EJB application scaling tasks associated with the EJB
architectureroles specified in Chapter 3 of the Enterprise JavaBeans Specification 1.1,
publish by Sun Microsystems, Inc. The WebL ogic Enterprise JavaServer provides an
implementation of the EJB container as defined in this specification.

Thistopic includes the following sections:

m Scaling Tasks for EJB Providers

m Scaling Tasks for Application Assemblers and Deployers
m Scaling Tasks for System Administrators

Before you begin, be sure to read Chapter 1, “Scaling WebLogic Enterprise
Applications,” for a comprehensive introduction to tuning and scaling WebLogic
Enterprise applications. The concepts in that chapter apply to EJB applications as well.
The main difference is that factory-based routingpissupported in EJB applications.

In addition, for an introduction to using EJB applications in the WebLogic Enterprise
environment, see “Developing WebLogic Enterprise EJB Application&eiting
Started.

Scaling, Distributing, and Tuning Applications 4-1

4 Scaling EJB Applications

Scaling Tasks for EJB Providers

This topic includes the following sections:

m Using Stateless Session Beans

m Minimizing State Information in Stateful Session Beans
m Using Pooled Connections

m Implementing Methods for Bean Persistence

m Completing Transactions Efficiently

m Implementing the Process-entity Design Pattern

For agenera discussion about using stateful and stateless objects, see “Using Object
State Management” on page 1-4.

Using Stateless Session Beans

4-2

EJB Providers can increase application scalability by using stateless session beans
wherever appropriate. With stateless session beans, the WebLogic Enterprise EJB
container can freely pool instances, allocate instances as needed, and apply load
balancing strategies to distribute the load across different servers within the domain.

Stateless session beans can be load balanced on a per-request basis. With every met
invocation, a stateless session bean can be relocated to the least busy server withir
group oracross groups within a domain. For more information about stateless session
beans, see “Types of Beans Supported in WebLogic Enterprise” in “The WebLogic
Enterprise JavaBeans Programming Environment” top&eitting Started.

Although stateless session beans by definition do not have a persistent state for clie
applications, thegan have instance variables that retain values while the EJB remains
in an instance pool on the server. This WebLogic Enterprise feature allows EJB

Providers to implement highly scalable EJBs. For example, suppose a stateless sess
bean invokes methods on a CORBA object. Normally, for each method invocation, the
EJB needs to make two calls: one to obtain an object reference, and another to invol
the method. However, the EJB can store the object reference in an instance variabls

Scaling, Distributing, and Tuning Applications

Scaling Tasks for EJB Providers

Thereafter, when an application invokes amethod on the EJB, it can beretrieved from
the pool if it isavailable in the pool. The application can then check the instance
variable for avalid value; if it is valid, the application can avoid making an extracall
to obtain the object reference.

Minimizing State Information in Stateful Session Beans

EJB Providers can increase application scalability by minimizing, in stateful session
beans, the state information that must be stored and retrieved during passivation and
reactivation.

Stateful objects (stateful session beans and entity beans) are generally more resource
intensive than statel ess objects because they all ocate and exclusively reserve resources
during the private conversation with the client. After the stateisallocated for an object,
the object remains linked to that server for the duration of the method invocation or the
transaction. Stateful session beans can be load balanced using any server that supports
the bean within the group only (not across groups).

Using Pooled Connections

EJB Providers can increase application scalability by using pooled database
connections. The JDBC connection pool optimizes performance for database
connections by reducing the overhead associated with opening each connection. For
more information about configuring and using JDBC connection pools, see Using
JDBC Connection Pooling.

Implementing Methods for Bean Persistence

To optimize application performance, the WebL ogic Enterprise EJB container
manages the passivation and reactivation of stateful objects (stateful session beansand
entity beans) automatically, based on available system resources. The container can
pool instances of abean and decide when an instance can be removed from the pool to
provide a more efficient use of system resources. The WebL ogic Enterprise EJB
container may passivate an object after a method invocation.

Scaling, Distributing, and Tuning Applications 4-3

4 Scaling EJB Applications

Note: An object will not be passivated while it participatesin atransaction. The
WebL ogic Enterprise EJB container may passivate it only after the transaction
iscompleted.

The WebL ogic Enterprise EJB container manages load balancing with passivated
objects. After it is passivated, the WebL ogic Enterprise EJB container can relocate an
object to the least busy server within the group aslong as the object isidle (there are
no pending reguests on that object). Thisis particularly important when the bean
accesses adatabase using cursors, because these cursorscould becomeinvalid after the
passivation (the EJB container can reactivate the bean on a different server).

For stateful session beans and entity beans, EJB Providers can increase application
scalability by implementing the ej bPassi vat e and ej bAct i vat e methods in an
efficient manner. For more information about persistence in EJB applications, see
“EJBs and Persistence” in “The WebLogic Enterprise JavaBeans Programming
Environment” topic inGetting Sarted.

Finally, for stateful session beans with container-managed persistence, EJB Provide
should favor using JDBC-based persistence over file-based persistence. File-based
persistence is generally less scalable. If the client process crashes (for example, the
network connection is lost or the client machine is turned off), the file is not
automatically removed. An accumulation of these files can slow performance.

Completing Transactions Efficiently

4-4

EJB Providers can increase application scalability by completing transactions
efficiently. An object cannot be passivated while it is participating in a transaction. For
example, EJB Providers can specify the timeout period for transactions in EJB
applications. If the duration of a transaction exceeds the specified timeout setting, the
the Transaction Service rolls back the transaction automatically. For more information
see “Transactions in EJB Applications”lilsing Transactions.

Scaling, Distributing, and Tuning Applications

Scaling Tasks for Application Assemblers and Deployers

Implementing the Process-entity Design Pattern

EJB Providers can increase application scalability by using the process-entity design
pattern instead of entity beans for database access. The process-entity design pattern
moves database access |ogic onto the server process, which achieves the following
benefits:

m It reducesthe server load, asthe server no longer needs to manage thousands
(even millions) of entity beans, each requiring transaction overhead.

m It minimizes network traffic between client applications and servers.

For more information, see the technical article Process-Entity Design Pattern.

Scaling Tasks for Application Assemblers
and Deployers

Thistopic includes the following sections:

m Organizing EJBsin Groups

m Configuring the Persistent Storage L ocation

m Specifying the Method to Invoke Before Passivation

m Deploying Stateful Session Beans on the [1OP Listener Node
m Configuring the EJB Cache

Application Assemblers and Deployers contribute to the scal ability of EJB

applications by determining the optimum combinations of EJBs in an application’s
EJB JAR files. When partitioning EJBs, Application Assemblers and Deployers
should consider the topology and resource management capabilities provided by the
deployment environment. Deployers and system administrators usually collaborate on
such decisions.

Scaling, Distributing, and Tuning Applications 4-5

4 Scaling EJB Applications

Organizing EJBs in Groups

When deploying EJBs, consider organizing them in particular groups:
m Wherever possible, objects that call each other should be in the same group.

m EJIBsthat access the same resource manager should be placed on the same group
and might be packaged together in asingle EJB JAR file.

Configuring the Persistent Storage Location

4-6

Stateful session beans use file-based persistent storage. For stateful session beans, the
WebL ogic Enterprise EJB container creates apst or e subdirectory in the $APPDI R
directory to store the state information when stateful bean are passivated. When
deploying WebL ogic Enterprise applications, you should locate the pst or e directory
in alocal file system and not on a NFS mounted directory.

Y ou can change the location of the pst or e directory by specifying the
<per si st ence- st ore-di rect ory-root > element inthe
webl ogi c- ej b- extensions. xnl file,asshownin Listing 4-1.

Listing 4-1 Configuring for Persistent Storage

<per si st ence- st ore- descri ptor>
<persistence-store-fil e>
<persi stence-store-directory-root>
/ usr/ e/ pst or e</ per si st ence-store-directory-root>
</ persi stence-store-file>
</ persi stence-st ore-descriptor>

For more information about the webl ogi c- ej b- ext ensi ons. xm file, seethe
WebL ogic Enterprise EJB XML Reference. Y ou can also change this setting with the
WebL ogic Enterprise EJB Deployer, as described in Using the WebLogic Enterprise
EJB Deployer.

Scaling, Distributing, and Tuning Applications

Scaling Tasks for Application Assemblers and Deployers

Specifying the Method to Invoke Before Passivation

If astateful beanisinvolved in atransaction, the container |oads and stores the bean at
appropriate times during the transaction, but does not activate or passivate the bean. If
a stateful bean is not involved in atransaction, the methods ej bLoad and ej bSt or e
are called before and after each method invocation on the bean. As stated in the
Enterprise JavaBeans Specification 1.1, these |oad and store operations ensure that
stale datais not used.

For stateful EJBs, you can specify the EJB method that is called beforethe EJB is
stored by setting thei s- nodi f i ed- met hod- name element in the

webl ogi c-ej b-ext ensi ons. xm file. Thei s- nodi fi ed- net hod- nane e ement
pointsto the method that is called before the EJB is stored. For moreinformation about
thewebl ogi c- ej b- ext ensi ons. xn file, see the WebL ogic Enterprise EJB XML
Reference. Y ou can also change this setting with the WebL ogic Enterprise EJB
Deployer, as described in Using the WebL ogic Enterprise EJB Deployer.

Deploying Stateful Session Beans on the IIOP Listener
Node

Stateful session beans are conversational and therefore many messages could go to the

same bean. To reduce traffic across machines, deploy stateful session beans on the

node on which the IIOP Listener (ISL) runs. Clients access the WebL ogic Enterprise

EJB container by establishing a network connection and using the RMI on [1OP

protocol toinvoke EJBs. Thel SL load balancesincoming client connections. For more
information about ISL, see “Multiplexing Incoming Client Connections” on page 1-19.

Configuring the EJB Cache

If an application encounters thebl ogi c. ej b. i nt er nal . CacheFul | Excepti on

exception for stateful beans, try to change the capacity of the cache or turn caching off.
This exception is thrown when the WebLogic Enterprise EJB container does not find
any beans that can be flushed (that is, beans in cache are either in a transaction or in a
method invocation). This exception is never raised if caching is off. This exception is
logged in thedLOG and aRenot eExcept i on exception, with a nested

Scaling, Distributing, and Tuning Applications 4-7

4 Scaling EJB Applications

org. omg. CORBA. | NTERNAL exception, isreturned to the client. Any client transaction
involved in the request receiving the system exception CacheFul | Except i on will be
rolled back.

EJB caching is enabled by default. Disable EJB caching for individual beans only
when necessary. Y ou can disable caching for an individual bean by setting the

i s- cacheabl e element in thewebl ogi c- ej b- ext ensi ons. xm file. For more
information about the webl ogi c- ej b- ext ensi ons. xnl file, seethe WebL ogic
Enterprise EJB XML Reference. Y ou can a so change this setting with the WebL ogic
Enterprise EJB Deployer, as described in Using the WebLogic Enterprise EJB
Deployer.

Scaling Tasks for System Administrators

System administrators contribute to the scalability of EJB applications by configuring
and tuning the deployment environment for optimum application performance. System
Administrators can increase application performance by:

m Replicating servers and server groups, as described in “Replicating Server
Processes and Server Groups” on page 1-9.

m Using multithreaded Java servers, as described in “Using Multithreaded Java
Servers (Java only)” on page 1-13. In general, EJB applications perform better
when running on multithreaded Java servers.

m Supporting additional incoming client connections, as described in
“Multiplexing Incoming Client Connections” on page 1-19.

m Removing Orphan Files for File-based Persistence, as described later in this
section.

m Scaling and Tuning the EJB Cache, as described later in this section.

Removing Orphan Files for File-based Persistence

System administrators should periodically remove orphan files associated with stateft
session beans that use file-based persistence.

4-8 Scaling, Distributing, and Tuning Applications

Scaling Tasks for System Administrators

With file-based persistence, WebL ogic Enterprise stores the bean’s state in a file in a
directory, which is either thgst or e subdirectory in théAPPDI R directory, or the
directory specified by the setting of ther si st ence- st or e-di r ect or y-r oot

XML element in theaxebl ogi c- ej b- ext ensi ons. xni file. If the client process
crashes (for example, the network connection is lost or the client machine is turned
off), the file is not automatically removed. An accumulation of these files can slow
performance.

System Administrators can create startup scripts that delete these files whenever the
WebLogic Enterprise environment is shut down and restarted. For more information,
see “Starting and Shutting Down Applications” in #dministration Guide. For more
information about monitoring and tuning the performance of a WebLogic Enterprise
system, see “Monitoring a Running System” in &uministration Guide. For more
information about theebl ogi c- ej b- ext ensi ons. xni file, see the WebLogic
EnterpriseEJB XML Reference.

Scaling and Tuning the EJB Cache

System administrators can scale and tune EJB applications by using the WebLogic
Enterprise caching features for entity beans and stateful session beans. The WebLogic
Enterprise EJB container supports caching beans across method invocations as well as
across transactions. This capability improves performance by significantly reducing
the frequency of beans being passivated. EJB caching is enabled by default for stateful
beans.

A cached stateful bean is normally stored (passivated) only if it is unused for a period
of time. You can configure an optional cache flush time, if desired. A bean may be
considered unused if other beans are being used more frequently and the bean is the
least recently used bean. The bean may also be passivated if the cache flush time
occurs and the bean is not presently active within a method call or a transaction.

Mechanisms For Managing the WebLogic Enterprise EJB Cache

EJB caching is enabled by default for stateful session beans and entity beans in the EJB
container. You can set up caching using the following mechanisms:

m Via the WebLogic EJB extensions to the deployment descriptor DTD. You can
use thea s- cacheabl e element to disable caching for individual beans. For
more information, see “Configuring the EJB Cache” on page 4-7.

Scaling, Distributing, and Tuning Applications 4-9

4 Scaling EJB Applications

m ViaJavaServer parameters in the UBBCONFI Gfile. You can configure the
following two settings for bean caching:

e AXEJBCACHE isthe maximum number of beans that can be cached at any
onetime.

e FEJBCACHE FLUSHisthe number of minutes between cache flushes, when the
bean cache is to be flushed by the system. Y ou can specify the number of
minutes between cache flushes. At the interval specified by the cache flush
time, all beansthat are not currently in atransaction or a method invocation
are passivated and their memory isfreed.

For more information about these parameters, see “Creating a Configuration
File” in the Administration Guide.

Tuning the Cache

4-10

Sizing the bean cache correctly is very important. If you are using multithreaded
servers, the cache should at least be the number of threads in the server. If the cach
smaller than the number of threads, applications could encounter the

CacheFul | Except i on exception because all the beans (one per thread) are active in
a method invocation.

The optimum number of beans to maintain in the cache should be based on how ma
beans can be active simultaneously in the server process. This number is determine

by:

m How long a bean will remain active in a server before it can be removed or is
dormant.

m How many threads the server has.
Note the following regarding tuning and scaling the bean cache:

m While a bean is cached in a server process, all requests for the bean return to th
server process that has cached the bean. Caching a bean effectively disables loz
balancing for the bean. The advantage of caching a bean is that caching saves &
lot of activation and passivation, which involves persistent storage 1/0 and uses
Java File Serialization to store conversational state.

Every bean is passivated immediately after creation to give an opportunity to
balance the load. This approach incurs at least two 1/O cycles during the
lifecycle of a stateful bean, even though the lifecycle may be relatively short.

Scaling, Distributing, and Tuning Applications

Scaling Tasks for System Administrators

This could change in the future based on customer input regarding the pattern in
which stateful beans are used.

In general, BEA recommends not flushing the cache frequently. However, after a
cache flush, all the beans not then active (in a method or a transaction) are again
available for load balancing to servers supporting the bean.

If a server processin which a cached bean exists crashes, there is no recovery of
that bean'’s state.

Every bean cache entry potentially uses an Active Object Map (AOM) entry.
The default 1,000 objects in the AOM parameter specified iWBBEONFI Gfile
may be insufficient if you have many server processes with many large caches.

Scaling, Distributing, and Tuning Applications 4-11

4 Scaling EJB Applications

4-12 Scaling, Distributing, and Tuning Applications

CHAPTER

5 Distributing
Applications

Thistopic includes the following sections:

m Why Distribute an Application?

m Using Data-dependent Routing (BEA Tuxedo Servers Only)

m Configuring the UBBCONFIG File

m Configuring the factory_finder.ini (CORBA Applications Only)

m Modifying the Domain Gateway Configuration File to Support Routing

Thistopic describes how to distribute applications in the WebL ogic Enterprise

environment, using a CORBA application asan example. However, the concepts apply

to EJB applications as well. For more information about EJB applications, see “Scaling
Tasks for Application Assemblers and Deployers” on page 4-5.

Scaling, Distributing, and Tuning Applications 5-1

5 Distributing Applications

Why Distribute an Application?

This topic includes the following sections:

m About Distributing an Application

m Benefits of aDistributed Application

m Characteristics of Distributing an Application

About Distributing an Application

Distributing an application enables you to select which parts of an application should

be grouped together logically and where these groups should run. Y ou distribute an

application by creating more than one entry in the GROUPS section of the UBBCONFI G
file, and by dividing application resources or tasks among the groups. Creating groups
of servers enablesyou to partition avery large application into its component business

applications, and to assure that each of these into logical componentsis of a
manageable size and in an optimal location.

Benefits of a Distributed Application

The benefits of a distributed application include:

m Scalability. To increase the load that an application can sustain:

Place extra server processes in agroup.

Add machines to the application and redistribute the groups across the
machines.

Replicate a group onto other machines within the application and use load
balancing.

Segment a database and use data-dependent routing to reach the groups
dealing with these separate database segments (the BEA Tuxedo system).

5-2 Scaling, Distributing, and Tuning Applications

Why Distribute an Application?

With the WebL ogic Enterprise system, you can use factory-based routing to

distribute the processing of a particular CORBA interface across multiple server
groups and, if desired, across multiple machines. This feature allows you to

distribute the processing load, which can prevent the processing bottlenecks that
occur when concurrent, resource-intensive applications compete for the available
CPU, memory, disk I/O, and network resources. For an example of using
factory-based routing, see “Scaling with Factory-based Routing” on page 2-11.

For more information about WebLogic Enterprise scalability features, see
Chapter 1, “Scaling WebLogic Enterprise Applications.”

Ease of Development and Maintenance. The separation of the business
application logic into services or components that communicate through
well-defined messages or interfaces allows both development and maintenance
to be similarly separated and thereby simplified.

Reliability. When multiple machines are in use and one fails, the remainder can
continue operation. Similarly, when multiple server processes are within a group
and one fails, the others are available to perform work. Finally, if a machine
should fail, but there are multiple machines within the application, these other
machines can be used to handle the load.

Coordination of Autonomous Actions. If you have separate applications, you
can coordinate autonomous actions, as a single logidadf work, among
applications Autonomous actions are actions that involve multiple server groups
and multiple resource manager interfaces.

Characteristics of Distributing an Application

A distributed application:

Enlarges the client and/or server model.
Establishes multiple server groups.

Enables transparent access to BEA Tuxedo services or WebLogic Enterprise
interfaces.

In BEA Tuxedo, allows data-dependent partitioning of data.

Scaling, Distributing, and Tuning Applications 5-3

5 Distributing Applications

m In WebL ogic Enterprise, allows partitioning of CORBA objects in multiple
groups across multiple machines, or distributing application factory interfaces
and application interfaces.

m Enables management of multiple resources.

m Supports a networked model.

Using Data-dependent Routing (BEA Tuxedo
Servers Only)

This topic includes the following sections:

m About Data-dependent Routing

m Characteristics of Data-dependent Routing
m Sample Distributed Application

Note: Thistopic appliesto BEA Tuxedo serversonly.

About Data-dependent Routing

Data-dependent routing isamechanism whereby a service request isrouted by aclient
(or aserver acting as a client) to a server within a specific group based on adatavaue
contained within the buffer that is sent. Within theinternal code of aservicecall, BEA
Tuxedo chooses adestination server by comparing adatafield with the routing criteria
it finds in the Bulletin Board shared memory.

For any given service, arouting criteriaidentifier can be specified in the SERVI CES
section of the UBBCONFI Gfile. The routing criteriaidentifier (in particular, the
mapping of data rangesto server groups) is specified in the ROUTI NG section.

5-4 Scaling, Distributing, and Tuning Applications

Using Data-dependent Routing (BEA Tuxedo Servers Only)

Characteristics of Data-dependent Routing

Data-dependent routing has the following characteristics:

The service request assigned to a server in the group is based on a data value.
Routing uses the Bulletin Board criteria and occursin a server call.

Therouting criteriaidentifier for a service is specified in the SERVI CES section
of the UBBCONFI Gfile.

The routing criteriaidentifier is defined in the ROUTI NG section of the
UBBCONFI Gfile.

Sample Distributed Application

Table 5-1 illustrates how client requests are routed to servers. In this example, a

b

anking application called bankapp uses data-dependent routing. For bankapp, there

are three groups (BANKB1, BANKB2, and BANKB3), and two routing criteria
(Account _I Dand Br anch_| D). The services W THDRAW DEPCSI T, and | NQUI RY are
routed using the Account _I Dfield. The services OPEN and CLOSE are routed using the

B

ranch_I Dfield.

Table5-1 Data Dependent Routing Criteria for Sample Distributed Application

Server Group Routing Criteria Services
BANKB1 Account _I D: 10000 - 49999 W THDRAW DEPCSI T, and
I NQUI RY
Branch_ID. 1 - 4 OPEN and CLOSE
BANKB2 Account _I D: 50000 - 79999 W THDRAW DEPCSI T, and
I NQUI RY
Branch_ID: 5 - 7 OPEN and CLOSE
BANKB3 Account _|I D: 80000 - W THDRAW DEPCSI T, and
109999 I NQUI RY
Branch_ID: 8 - 10 OPENand CLOSE

Scaling, Distributing, and Tuning Applications 5-5

5 Distributing Applications

Configuring the UBBCONFIG File

This topic includes the following sections:

About the UBBCONFIG File in Distributed Applications
Modifying the GROUPS Section

Modifying the SERVICES Section

Creating the ROUTING Section

Example of UBBCONFIG Sectionsin a Distributed Application

For more information about the UBBCONFI Gfile, see “Creating a Configuration File”
in the Administration Guide.

About the UBBCONFIG File in Distributed Applications

5-6

The UBBCONFI Gfile contains a description of either data-dependent routing (BEA
Tuxedo) or factory-based routing (WebLogic Enterprise CORBA), as follows:

The GROUPS section is populated with as many server groups as are required for
distributing the system. This allows the system to route a request to a server in a
specific group. These groups can all reside on the sameiditenpde) or, if

there is networking, the groups can reside on different siFesde).

For data-dependent routing in BEA Tuxedo, #E&VI CES section must list the
routing criteria for each service that usesraTI NG parameter.

Note: If a service has multiple entries, each with a diffe&RWGRP parameter,
all such entries must sSROUTI NG the same way to ensure consistency for
that service. A service can route only on one field, which must be the same
for all the same services.

For factory-based routing in WebLogic Enterprise,ItREERFACES section must
list the name of the routing criteria for each CORBA interface that uses the
FACTORYROUTI NG parameter. This parameter is set to the name of a routing
criteria defined in th&®oUTI NG section.

Scaling, Distributing, and Tuning Applications

Configuring the UBBCONFIG File

m Add aROUTI NG section to the configuration file to show mappings between data
ranges and groups so that the system can send the request to a server in a
specific group. Each ROUTI NG section item contains an identifier that isused in
the | NTERFACES section (for WebL ogic Enterprise) or in the SERVI CES section

(for BEA Tuxedo).

Modifying the GROUPS Section

The parameters in the GROUPS section implement two important aspects of distributed

transaction processing:

m They associate agroup of serverswith a particular LM D and a particular
instance of a resource manager.

m By allowing asecond LM D to be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the M GRATE

option is specified.

Table 5-2 describes the parameters in the GROUPS section.

Table 5-2 Parameters Specified in the GROUPS Section

Parameter

M eaning

LMD

LM Dmust be assigned in the MACH NES section to indicate that
this server group runson this particular machine. A second LM D
value can be specified (separated from the first by a comma) to
name an aternate machine to which this server group can be
migrated if theM GRATE option hasbeen specified. Serversin the
group must specify RESTART=Y to migrate.

GRPNO

Associates a numeric group number with this server group. The
number must be greater than zero (0) and less than 30000. It must
be unique among entries in the GROUPS section in this
configuration file. (Required)

TVBNAME

Specifies which transaction management server (TMS) should be
associated with this server group.

Scaling, Distributing, and Tuning Applications 5-7

5 Distributing Applications

Table 5-2 Parameters Specified in the GROUPS Section (Continued)

Par ameter Meaning

TMSCOUNT Specifieshow many copies of TMSNAME should be started for this
server group. The minimum valueis 2. If not specified, the
defaultis 3. All TMBNAME servers started for a server group are
automatically set up in an MSSQset. (Optional)

OPENI NFO Specifies information needed to open a particular instance of a
particular resource manager, or it indicates that such information
isnot required for this server group. When aresource manager is
named in the OPENI NFO parameter, information such as the
name of the database and the access mode isincluded. The entire
value string must be enclosed in double quotes and must not be
more than 256 characters. The format of the OPENI NFOstring is
dependent on the requirements of the vendor providing the
underlying resource manager. The string required by the vendor
must be prefixed withr m_nane:, which isthe published name of
the vendor’s transaction (XA) interface followed immediately by
acolon (2).

The OPENI NFO parameter isignored if TMSNAME is not set or is
set to TMVS. If TMSNAME is set but the OPENI NFOstring is set to
the null string (" ") or if this parameter does not appear on the
entry, it means that a resource manager exists for the group but
does not require any information for executing an open operation.

CLCSEI NFO Specifiesinformation the resource manager needswhen closing a
database. The parameter can be omitted or the null string can be
specified. The default isthe null string.

Modifying the SERVICES Section

5-8

The SERVI CES section contains parameters that control the way application services
are handled. An entry line in this section is associated with a service by itsidentifier
name. Because the same service can be link edited with more than one server, the
SRVGRP parameter is provided to tie the parameters for an instance of aserviceto a
particular group of servers.

Scaling, Distributing, and Tuning Applications

Configuring the UBBCONFIG File

Parameters to Modify

Three parameters in the SERVI CES section are particularly related to DTP: ROUTI NG,
AUTOTRAN, and TRANTI ME.

Table 5-3 describes the parameters in the SERVI CES section.

Table 5-3 Parameters Specified in the SERVICES Section

Parameter

M eaning

ROUTI NG

Pointsto an entry in the ROUTI NG section where data-dependent
routing is specified for transactions that request this service.

AUTOTRAN

Determines whether atransaction should be started automatically
if amessage received by thisservice isnot already in transaction
mode.The default is N. Use of the parameter should be
coordinated with the programmers that code the servicesfor your
application. CORBA applications only.

TRANTI ME

Specifies atimeout value, in seconds, for transactions
automatically started in this service. The default is 30 seconds.
Required only if AUTOTRAN=Y and another timeout value is
needed. CORBA and RMI applications only.

Note: AUTOTRAN and TRANTI ME apply to CORBA and RMI applications only. For
EJB applications, the AUTOTRAN parameter isignored and the transaction
timeout is specified inthe <t r ans- t i meout - seconds> XML element in the
webl ogi c-ej b-ext ensi ons. xm file. For more information, see
“Transactions in EJB Applications” idsing Transactions.

Sample SERVICES Section

Listing 5-1 shows a samp&ERVI CES section.

Listing5-1 Sample SERVICES Section

*SERVI CES

W THDRAW ROUTI NG=ACCOUNT_I D

Scaling, Distributing, and Tuning Applications 5-9

5 Distributing Applications

DEPCSI T ROUTI NG=ACCOUNT_I D
OPEN_ACCT ROUTI NG=BRANCH_| D

Creating the ROUTING Section

For information about ROUTI NG parameters that support BEA Tuxedo data-dependent
routing or the WebL ogic Enterprise factory-based routing, see “Creating a
Configuration File” in theAdministration Guide.

Example of UBBCONFIG Sections in a Distributed
Application

Listing 5-2 shows a samplBBCONFI Gfile that contains theROUPS, SERVI CES, and
ROUTI NG sections of a configuration file to accomplish data-dependent routing in the
BEA Tuxedo system.

Listing 52 Sample UBBCONFIG File

* CROUPS

BANKB1 GRPNC=1

BANKB2 GRPNO=2

BANKB3 GRPNO=3

#

*SERVI CES

W THDRAW ROUTI NG=ACCOUNT_I D
DEPCSI T ROUTI NG=ACCOUNT_I D
I NQUI RY ROUTI NG=ACCOUNT_I D
OPEN_ACCT ROUTI NG=BRANCH_I| D
CLOSE_ACCT ROUTI NG=BRANCH_I| D
#

*ROUTI NG

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE="FML”
RANGES="MIN - 9999:%,
10000-49999:BANKB1,
50000-79999:BANKB2,
80000-109999:BANKB3,

kM

5-10 Scaling, Distributing, and Tuning Applications

Configuring the factory_finder.ini (CORBA Applications Only)

BRANCH_ID FIELD=BRANCH_ID BUFTYPE="FML"
RANGES="MIN - 0:*,
1-4:BANKB1,
5-7:BANKB2,
8-10:BANKBS3,

ok

Configuring the factory_finder.ini (CORBA
Applications Only)

For CORBA applications, to configurefactory-based routing across multiple domains,
you must configure the factory_finder.ini fileto identify factory objectsthat are
used in the current (local) domain but that are resident in a different (remote) domain.
For more information, see “Configuring Multiple Domains (WebLogic Enterprise
System)” in theAdministration Guide.

Modifying the Domain Gateway
Configuration File to Support Routing

This topic includes the following sections:
m About the Domain Gateway Configuration File

m Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA
Tuxedo Only)

This section is specific to BEA Tuxedo and explains how and why you need to modify
the domain gateway configuration to support routing. For more information about the
domain gateway configuration file, see “Configuring Multiple Domains (WebLogic
Enterprise System)” in th&dministration Guide.

Scaling, Distributing, and Tuning Applications ~ 5-11

5 Distributing Applications

About the Domain Gateway Configuration File

The Domain gateway configuration information is stored in a binary file called
BDMCONFI G. The DMCONFI G file (ASCII) is created and edited with any text editor.
The compiled BDMCONFI Gfile can be updated while the systemis running by using the
dmadni n(1) command.

Y ou must have one BDMCONFI Gfilefor each BEA Tuxedo application that requiresthe
Domains functionality. System access to the BDMCONFI Gfile is provided through the
Domains administrative server, DMADM5). When a gateway group is booted, the
gateway administrative server, GWADM5), requests from the DMADMserver acopy of the
configuration required by that group. The GwaDMserver and the DMADM server also
ensure that run-time changes to the configuration are reflected in the corresponding
Domain gateway groups.

Note: For more information about modifying the DMCONFI Gfile, see “Configuring
Multiple Domains (WebLogic Enterprise System)” in #hdministration
Guide.

Parameters in the DM_ROUTING Section of the
DMCONFIG File (BEA Tuxedo Only)

The DM _ROUTI NG section provides information for data-dependent routing of service
requests usingM_, VI EW X_C_TYPE, andX_COWMON typed buffers. Lines within the

DM _ROUTI NGsection have the for®Rl TERI ON_NAVE, whereCRI TERI ON_NAME is the
(identifier) name of the routing entry specified in 8&RvI CES section. The

CRI TERI ON_NAME entry may contain no more than 15 characters.

Parameters to Specify

Table 5-4 describes the parameters inDMeROUTI NG section.

5-12 Scaling, Distributing, and Tuning Applications

Modifying the Domain Gateway Configuration File to Support Routing

Table 5-4 Parameters Specified inthe DM_ROUTING Section

Parameter Description

FIELD=identifier Specifiesthe name of the routing field. It must contain 30
characters or fewer. Thisfield is assumed to be a field name
identified in an FM field table (for FML buffers) or an FML
VI Ewtable (for VI EW X_C_TYPE, or X_COWON buffers). The
FLDTBLDI Rand FI ELDTBLS environment variables are used
to locate FML field tables; the VI EWDI R and VI EWFI LES
environment variables are used to locate FML VI EWtables. If a
field inan FML32 buffer isused for routing, it must have afield
number less than or equal to 8191.

BUFTYPE = Specifieslist of typesand subtypes of data buffersfor which this
"typel[: subtypel] routing entry isvalid. The types are restricted to FM_, VI EW

, subtype2 . . . X_C_TYPE, and X_COMVON.

1115 type2[: subtyp nq gjhtype can be specified for type FM_, and subtypes are
e?[oo 1 required for the other types (* is not allowed).

Duplicate type/subtype pairs cannot be specified for the same
routing criteria name; more than one routing entry can have the
same criteria name aslong as the type/subtype pairs are unique.
This parameter is required.

If multiple buffer types are specified for asingle routing entry,
the data types of the routing field for each buffer type must be

the same. (If thefield value is not set (for FM_ buffers), or does
not match any specific range, and awildcard range has not been
specified, then an error isreturned to the appli cation processthat
requested the execution of the remote service.)

Scaling, Distributing, and Tuning Applications ~ 5-13

5 Distributing Applications

Table 5-4 Parameters Specified in the DM_ROUTING Section (Continued)

Parameter

Description

RANGES
="rangel: rdonif,r
ange2:rdon?2 ...]"

Specifies the ranges and associated remote domain names
(RDOM) for the routing field. The string must be enclosed in
double quotes, with the format of a comma-separated ordered
list of r ange/ RDOMpairs.

A rangeis either asingle value (signed numeric value or
character string in single quotes), or arange of the form lower -
upper (wherelower and upper are both signed numeric vauesor
character stringsin single quotes). The value of lower must be
less than or equal to upper. A single quote embedded in a
character string value (such as “O'Brien”), must be preceded
by two backd ashes (“O\\'Brien”).

m UseMIN to indicate the minimum value for the data type of
the associated FIELD . For strings and carrays, it is the null
string; for character fields, itis O; for numeric values, it is
the minimum numeric value that can be stored in the field.

m Use MAXto indicate the maximum value for the datatype of
the associated FIELD . For strings and carrays, it is
effectively an unlimited string of octal-255 characters; for a
character field, itisasingle octal-255 character; for numeric
values, it isthe maximum numeric value that can be stored
in the field.

Thus, MIN - -5 isall numberslessthan or equal to -5 , and
6 - MAX isall numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of arange
indicates any values not covered by the other ranges previously
seen in the entry. Only one wildcard range is allowed per entry
and it should be last (ranges following it are ignored).

Routing Field Description

Therouting field can be of any datatype supported in FM. or VI EW A numeric routing
field must have numeric range values, and a string routing field must have string range

values.

String range valuesfor string, carray, and character field types must be placed inside a
pair of single quotation marksand cannot be preceded by asign. Short and long integer
values are a string of digits, optionally preceded by a plus (+) or minus (-) sign.

5-14 Scaling, Distributing, and Tuning Applications

Modifying the Domain Gateway Configuration File to Support Routing

Floating point numbers are of the form accepted by the C compiler or at of () : an
optional sign, followed by a string of digits optionally containing a decimal point, and
an optional e or E followed by an optional sign or space, and an integer.

When afield value matches a range, the associated RDOMVval ue specifies the remote
domain to which the request should be routed. An RDOMvalue of * indicates that the
request can go to any remote domain known by the gateway group. Within a

r ange/ RDOMpair, the range is separated from the RDOMby a: (colon).

Example of a Five-Site Domain Configuration Using Routing

Listing 5-3 shows a configuration file that defines a five-site domain configuration. It
has four bank branch domains communicating with a Central Bank Branch. Three of
the bank branches run within other BEA Tuxedo system domains. The fourth branch
runs under the control of another TP domain, and OSI-TPisused in thecommunication
with that domain. The example shows the BEA Tuxedo Domain gateway
configuration file from the Central Bank point of view. In the DM_TDOMAI N section,
this example shows a mirrored gateway for b01.

Listing5-3 DMCONFIG Filefor a Five-Site Domains Configuration

BEA TUXEDO DOVAI N CONFI GURATI ON FI LE FOR THE CENTRAL BANK

#
#

* DM _LOCAL_DOVAI NS

<l ocal domai n name> <Gateway Group nane> <donmi n type> <domain i d> <l og devi ce>

[<audit |og>] [<blocktinme>]
[<log nane>] [<log offset>] [<log size>]
[<maxrdon®] [<maxrdtran>] [<maxtran>]
[<maxdat al en>] [<security>]
[<tuxconfig>] [<tuxoffset>]
#
#
DEFAULT: SECURI TY = NONE
c01 GWGRP = bankgl
TYPE = TDOVAI N
DOMAI NI D = " BA. CENTRALO1"
DMILOGDEV = "/ usr/apps/ bank/ DMILOG'
DMTLOGNAME = " DMTLG_C01"
c02 GWGRP = bankg2

TYPE = CSI TP
DOVAI NI D = " BA. CENTRALO1"

Scaling, Distributing, and Tuning Applications

5-15

5 Distributing Applications

#

DMILOGDEV = "/ usr/ apps/ bank/ DMILOG'
DMILOGNAME = "DMILG (02"

NWDEVI CE = " OSI TP"

URCH = " ABCD"'

* DM_REMOTE_DOVAI NS
#<renote domai n nane> <donmmin type> <domain id>

#
b0o1 TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO1"
b02 TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO2"
b03 TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO3"
b04 TYPE = COSI TP
DOVAI NI D = " BA. BANKO4"
URCH = " ABCD'
#
* DM_TDOVAI N
#
<l ocal or renote domai nname> <network address> [nwdevi ce]
#
Local network addresses
c01 NWADDR = "//newyor k. acrre. com 65432" NVDEVI CE ="/ dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVI CE ="/ dev/t cp"

Renote network addresses: second b0l specifies a mirrored gateway

b0o1 NWADDR = "//192.11.109. 5: 1025" NWDEVI CE = "/dev/tcp"
b0o1 NWADDR = "//194.12.110. 5: 1025" NWDEVI CE = "/dev/tcp"
b02 NWADDR = "//dal | as. acnme. com 65432" NWDEVI CE = "/dev/tcp"
b03 NWADDR = "//192.11.109. 156: 4244" NWDEVI CE = "/dev/tcp"
#
*DM OSI TP
#
#<l ocal or renote domai n name> <apt> <aeq>
[<aet>] [<acn>] [<apid>] [<aeid>]
[<profile>]
#
c02 APT = "BA. CENTRALO1"
AEQ = "TUXEDO. R 4. 2. 1"
AET = "{1.3.15.0.3},{1}"
ACN = "XATM "
b04 APT = "BA. BANKO4"
AEQ = "TUXEDO. R 4. 2. 1"
AET = "{1.3.15.0.4},{1}"
ACN = "XATM "

*DM_LOCAL_SERVI CES
#<service_nane> [<Local Domai n name>] [<access control >]

#
#

5-16

[<i nbuftype>] [<outbuftype>]

Scaling, Distributing, and Tuning Applications

[<exported svcnane>]

Modifying the Domain Gateway Configuration File to Support Routing

open_act ACL = branch

cl ose_act ACL = branch

credit

debi t

bal ance

| oan LDOM = c02 ACL = | oans

*DM_REMOTE_SERVI CES
#<servi ce_nane> [<Renot e donai n name>] [<local domain nanme>]

[<rempote svcnane>] [<routing>] [<conv>]
[<trantine>] [<inbuftype>] [<outbuftype>]
#

tlr_add LDOM = c01 ROUTI NG = ACCOUNT

tlr_bal LDOM = c01 ROUTI NG = ACCOUNT

tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"

*DM_RQUTI NG
<routing criteria> <fiel d> <typed buffer> <ranges>
#

ACCOUNT FI ELD = branchid BUFTYPE ="VI EW account"
RANGES ="M N - 1000: b01, 1001-3000:b02, *:b03"

*DM ACCESS CONTROL

#<acl nanme> <Renote dommin |ist>

#

branch ACLI ST

| oans ACLI ST

b01, b02, b03
b04

Scaling, Distributing, and Tuning Applications ~ 5-17

5 Distributing Applications

5-18 Scaling, Distributing, and Tuning Applications

CHAPTER

6

Tuning Applications

Thistopic includes the following sections:

For more information about monitoring WebL ogic Enterprise applications, see

Maximizing Application Resources

When to Use MSSQ Sets (BEA Tuxedo Servers Only)
Enabling Load Balancing

Configuring Replicated Server Processes and Groups
Configuring Multithreaded Java Servers

Assigning Prioritiesto Interfaces or Services
Bundling Servicesinto Servers (BEA Tuxedo Servers Only)
Enhancing Efficiency with Application Parameters
Setting Application Parameters

Determining |PC Reguirements

Measuring System Traffic

“Monitoring a Running System” in th&dministration Guide.

Scaling, Distributing, and Tuning Applications

6-1

6 Tuning Applications

Maximizing Application Resources

Making correct decisions in the following areas can improve the functioning of your
WebL ogic Enterprise or BEA Tuxedo applications:

m When to use MSSQ sets (BEA Tuxedo).

m How to assign load factors.

m How to package interfaces and/or servicesinto servers.
m How to set application parameters.

m How to tune operating system | PC parameters.

m How to detect and eliminate bottl enecks.

When to Use MSSQ Sets (BEA Tuxedo
Servers Only)

Note: MSSQ sets are not supported in WebL ogic Enterprise.

Table 6-1 describes when to use MSSQ sets with BEA Tuxedo servers.

Table6-1 When and When Not to Use MSSQ Sets
Use M SSQ Sets When Do Not Use M SSQ Sets When

There are several, but not too many servers. Thereis alarge number of servers.
(A compromiseisto use many M SSQ sets.)

Buffer sizes are not too large. Buffer sizesare large enough to exhaust one
queue.

The servers offer identical sets of services. Services are different for each server.

6-2 Scaling, Distributing, and Tuning Applications

When to Use MSSQ Sets (BEA Tuxedo Servers Only)

Table 6-1 When and When Not to Use M SSQ Sets (Continued)

Use M SSQ Sets When Do Not Use MSSQ SetsWhen
The messages involved are reasonably L ong messages are being passed to the
sized. services causing the queue to be exhausted.

This causes nonblocking sends to fail, or
blocking sends to block.

Optimization and consistency of service Optimization and consistency of service
turnaround time is paramount. turnaround time is not critical.

Thefollowing two anal ogies hel p to show why using M SSQ setsis sometimes, but not
always, beneficial:

m An application in which MSSQ sets are used appropriately is similar to a bank,
where all the tellers offer the same services and customers wait in line for the
first available teller. This efficient arrangement ensures the best use of available
services.

m An application in which it is better to avoid using MSSQ setsis similar to a
supermarket, where each cashier offers a different set of services: some accept
cash only, some accept credit cards, and still others serve only customers buying
fewer than ten items.

Scaling, Distributing, and Tuning Applications 6-3

6 Tuning Applications

Enabling Load Balancing

This topic includes the following sections:
m About Load Balancing

m Two Ways to Measure Service Performance Time (BEA Tuxedo Servers Only)

About Load Balancing

6-4

On BEA Tuxedo systems, you can control whether aload balancing algorithm is used
on the system as awhole. With load balancing, aload factor is applied to each service
within the system, and you can track the total load on every server. Every service
request is sent to the qualified server that isleast loaded.

Note: On WebL ogic Enterprise systems, load balancing is enabled automatically.
Y ou cannot disable load balancing by specifying LDBAL=N.

To determine how to assign load factors (located in the SERVI CES section), run an
application continually and calcul ate the average time it takes for each serviceto be
performed. Assigh a LOAD value of 50 (LQAD=50) to any service that requires the
average amount of timethat you calculated. Any service taking longer to execute than
the calculated average should have a LOAD>50. Any servicetaking lessto execute than
the calculated average should have a LQAD<50.

A LoADfactor isassigned to each service performed, which keepstrack of thetotal 1oad
of servicesthat each server has performed. Each service request is routed to the server
with the smallest total load. The routing of that request causes the server’s total to be
increased by the LoaD factor of the service requested.

Y ou can aso apply LOAD factors to interfaces. For more information about LOAD
factors, see “Creating a Configuration File” in thadministration Guide.

Scaling, Distributing, and Tuning Applications

Configuring Replicated Server Processes and Groups

Two Ways to Measure Service Performance Time
(BEA Tuxedo Servers Only)

Y ou can measure service performance time in one of the following ways:

m Enter servopts -r intheconfiguration file. The - r option causesalog of
services performed to be written to standard error. You can then use the
t xr pt (1) command to analyze thisinformation. For details about ser vopt s(5)
andt xr pt (1), see “Section 1 - Commands” in tREA Tuxedo Reference
Manual.

m Insert calls ta i me(2) at the beginning and end of a service routine. Services
that take the longest time receive the highest load. Those that take the shortest
time receive the lowest load. For details aliaute(2), see a UNIX system
reference manual.

Configuring Replicated Server Processes
and Groups

To configure replicated server processes and groups in the WebLogic Enterprise
domain, complete the following steps:

1. Edit the application’sBBCONFI G file using a text editor.

2. In theGROUPS section, specify the names of the groups you want to configure.

Scaling, Distributing, and Tuning Applications 6-5

6 Tuning Applications

6-6

3. Inthe SERVERS section, specify the parametersin Table 6-2 for the server process
you want to replicate.

Table 6-2 Parameters Specified in the SERVERS Section

Parameter Description
Server m For Java, thisis the name of the executable file for the Java server,
application name plus the name of the JAR file that will be dynamically loaded with

the server boots.

m For C++, thisis the name of the executable file that contains the
application server.

GROUP Specifies the name of the group to which the server process belongs. If
you are replicating a server process across multiple groups, specify the
server process once for each group.

SRVI D Specifiesanumeric identifier, giving the server process a unique
identity.
M N Specifiesthe number of instances of the server processto start when you

start the application.

MAX Specifies the maximum number of server processes that can be running
a any onetime.

The M Nand MAX parameters determine the degree to which a given server
application can process requests on a given interface in parallel. During run
time, the system administrator can examine resource bottlenecks and start
additional server processes, if necessary, thereby scaling the application. For
more information, see “Monitoring a Running Application” in the
Administration Guide.

Note: TheMmax parameter controls the maximum number of instances. However,
WebLogic Enterprise does not spawn instances automatically. The systen
will automatically start up to the specifi®iN number of instances.
BetweenM N andMaX, the system administrator will need to spawn new
instances manually. One#X is reached, an error will be returned by
t nboot , t madmi n, or theTM B API.

Scaling, Distributing, and Tuning Applications

Configuring Multithreaded Java Servers

Configuring Multithreaded Java Servers

Thistopic includes the following sections:

m Setting the OPENINFO Parameter

m Configuring the Number of Threads

m Configuring the Number of Concurrent Accessors

For more information about multithreaded Java servers, see “Using Multithreaded
Java Servers (Java only)” on page 1-13.

Setting the OPENINFO Parameter

To configure a multithreaded Java server, you mustradeads=t r ue to the
CPENI NFO parameter in theROUPS section of theJBBCONFI Gfile, as shown in
Listing 6-1.

Listing 6-1 Adding Threads=trueto the OPENINFO Parameter

OPENI NFO=" CRACLE_XA: Or acl e_XA+Acc=P/ scott/ti ger +SesTnm=100+LogDi r =
. +MaxCur =5+Thr eads=t rue"

Configuring the Number of Threads

You can establish the number of threads for a Java server application by usikig the
opt i on to theJavaSer ver parameter. This parameter is used inSERVERS section

of the application’$JBBCONFI Gfile. For a description of themoptions, see “Creating

a Configuration File” in thé\dministration Guide.

For multithreaded WebL ogic Enterprise Java servers, you must account for the number
of worker threads that each server is configured to run. Worker threads are threads that
are started and managed by the WebLogic Enterprise Java software, as opposed to

Scaling, Distributing, and Tuning Applications 6-7

6 Tuning Applications

threads started and managed by an application program. Internally, WebL ogic
Enterprise Java manages a pool of available worker threads. When a client request is
received, an available worker thread from the thread pool is scheduled to execute the
request. Thereis one thread per active object, and while the object is active, the thread
isbusy. When the request isdone, theworker thread isreturned to the pool of available
threads.

Configuring the Number of Concurrent Accessors

6-8

The MAXACCESSERS parameter in the applicationt8BCONFI Gfile sets the maximum
number of concurrent accessors of a WebLogic Enterprise system. Accessors incluc
native and remote clients, servers, and administration processes.

A single-threaded server counts as one accessor. For a multithreaded Java server, |
number of accessors can be up to twice the maximum number of worker threads the
the server is configured to run, plus one for the server itself. However, to calculate a
MAXACCESSERS value for a WebLogic Enterprise system running multithreaded
serversdo not simply double the existingAXACCESSERS value of the whole system.
Instead, you add up the accessors for each multithreaded server.

For example, assume that you have three multithreaded Java servers in your syster
m Java server A is configured to run three worker threads.

m Java server B is configured to run four worker threads.

m Java server C is configured to run five worker threads.

The accessor requirement of these servers is calculated by using the following formul
[(3*2) + 1] + [(4*2) + 1] + [(5*2) + 1] = 27 accessors

Scaling, Distributing, and Tuning Applications

Assigning Priorities to Interfaces or Services

Assigning Priorities to Interfaces or Services

Thistopic includes the following sections:
m About Prioritiesto Interfaces or Services

m Characteristics of the PRIO Parameter

About Priorities to Interfaces or Services

Y ou can exert significant control over the flow of datain an application by assigning
prioritiesto BEA Tuxedo services using the PRI O parameter. For an application
running on aBEA Tuxedo system, you can specify the PRI Oparameter for each service
named in the SERVI CES section of the application\dBBCONFI Gfile.

For example, Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority
of 50 and Interface C has a priority of 70. An interface requested for C is always
dequeued before a request for A or B. Requests for A and B are dequeued equally with
respect to one another. The system dequeues every tenth request in first-in, first-out
(FIFO) order to prevent a message from waiting indefinitely on the queue.

For Tuxedo and native C++ CORBA applications (but not Java applications), you can
also dynamically change a priority with thespri o() call. Only preferred clients

should be able to increase the service priority. In a system on which servers perform
service requests, the server cantcpdlpri o() to increase the priority of its interface

or service calls so the user does not wait in line for every interface or service request
that is required.

Characteristics of the PRIO Parameter

ThePRI Oparameter should be used carefully. Depending on the order of messages on
the queue (for example, A, B, and C), some (such as A and B) will be dequeued only
one in ten times. This means reduced performance and potential slow turnaround time
on the service.

The characteristics of tHRRI O parameter are as follows:

Scaling, Distributing, and Tuning Applications 6-9

6 Tuning Applications

m It determines the priority of an interface or a service on the server’s queue.

m The highest assigned priority gets first preference. This interface or service
should occur less frequently.

m A lower priority message does not remain forever enqueued, because every tent
message is retrieved on a FIFO basis. Response time should not be a concern o
the lower priority interface or service.

Assigning priorities enables you to provide more efficient service to the most
important requests and slower service to the less important requests. You can also gi
priority to specific users or in specific circumstances.

Bundling Services into Servers (BEA Tuxedo
Servers Only)

This topic includes the following sections:
m About Bundling Services

m When to Bundle Services

About Bundling Services

The easiest way to package services into server executables is to not package therr
all. Unfortunately, if you do not package services, the number of server executables
and also message queues and semaphores, rises beyond an acceptable level. There
trade-off between not bundling services and bundling services too much.

When to Bundle Services

You should bundle services for the following reasons:

6-10 Scaling, Distributing, and Tuning Applications

Enhancing Efficiency with Application Parameters

Functional similarity. If some services are similar in their rolein the
application, you can bundle them in the same server. The application can offer
all or none of them at agiven time. An example isthe bankapp application, in
which the W THDRAW DEPCSI T, and | NQUI RY services are all teller operations.
Administration of services becomes simpler.

Similar libraries. For example, if you have three services that use the same
100K library and three services that use different 100K libraries, bundling the
first three services saves 200K . Often, functionally equivalent services have
similar libraries.

Filling the queue. Bundle only as many services into a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively little to
the size of an executable, and nothing to the number of queues in the system.
Once the queueisfilled, however, the system performance degrades and you
must create more executables to compensate.

Placement of call-dependent services. Avoid placing, in the same server, two
(or more) servicesthat call each other. If you do so, the server will issue a call to
itself, causing a deadlock.

Enhancing Efficiency with Application
Parameters

Thistopic includes the following sections:

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters

Setting the MAXGTT, MAXBUFTY PE, and MAXBUFSTY PE Parameters

Setting the SANITY SCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters

Y ou can set these application parameters to enhance the efficiency of your system.

Scaling, Distributing, and Tuning Applications 6-11

6 Tuning Applications

Setting the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

6-12

The MAXACCESSERS, MAXSERVERS, MAXI NTERFACES, and MAXSERVI CES parameters
increase semaphore and shared memory costs, so you should choose the minimum
value that satisfies the needs of the system. Y ou should also allow for the variation in
the number of clients accessing the system at the same time. Defaults may be
appropriate for a generous allocation of 1PC resources. However, it is prudent to set
these parameters to the lowest appropriate val ues for the application.

For multithreaded WebL ogic Enterprise Javaservers, you must account for the number
of worker threads that each server is configured to run. The MAXACCESSERS parameter
sets the maximum number of concurrent accessors of a WebL ogic Enterprise system.
Accessors include native and remote clients, servers, and administration processes.

A single-threaded server counts as one accessor. For a multithreaded Java server, the
number of accessors can be up to twice the maximum number of worker threads that
the server is configured to run, plus one for the server itself. However, to calculate a
MAXACCESSERS value for a WebL ogic Enterprise system running multithreaded
servers, do not simply double the existing MAXACCESSERS value of the whole system.
Instead, you add up the accessors for each multithreaded server.

For example, assume that your system has three multithreaded Java servers:
m Javaserver A is configured to run three worker threads.

m Javaserver B isconfigured to run four worker threads.

m Javaserver Cisconfigured to run five worker threads.

The accessor requirement of these serversis calculated by using thefollowing formula:

[(3*2) + 1] + [(4*2) + 1] + [(5*2) + 1] = 27 accessors

Scaling, Distributing, and Tuning Applications

Enhancing Efficiency with Application Parameters

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

Y ou should increase the value of the MAXGTT parameter if the product of multiplying
the number of clients in the system times the percentage of time they are committing
atransaction is closeto 100. Thismay require agreat number of clients, depending on
the speed of commit. If you increase MAXGTT, you should also increase TLOGSI ZE
accordingly for every machine. Y ou should set MAXGTT to 0 for applicationsthat do not
use distributed transactions.

Y ou can limit the number of buffer types and subtypes allowed in the application with
the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for
MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, you can
omit MAXBUFTYPE. However, if you intend to use many different Vi Ewsubtypes, you
may want to set MAXBUFSTYPE to exceed its current default of 32.

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters

If asystemisrunning on slower processors (for example, dueto heavy usage), you can
increase the timing parameters: SANI TYCAN, BLOCKTI ME, and individual transaction
timeouts. If networking is slow, you can increase the value of the BLOCKTI ME,
BBLQUERY, and DBBLWAI T parameters.

Scaling, Distributing, and Tuning Applications 6-13

6 Tuning Applications

Setting Application Parameters

6-14

Table 6-3 describes the system parameters available for tuning an application.

Table 6-3 System Parametersfor Application Tuning

Parameters

Action

MAXACCESSERS, MAXSERVERS,
MAXI NTERFACES, and MAXSERVI CES

Set the smallest satisfactory value because of
IPC cost.

Allow for extraclients.

MAXGT T, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

If you use many different VI EWsubtypes,
increase the value of MAXBUFSTYPE.

BLOCKTI ME, TRANTI ME, and
SANI TYSCAN

Increase the value for adow system.

BLOCKTI ME, TRANTI ME, BBLQUERY, and
DBBLWAI T

Increase values for slow networking.

Scaling, Distributing, and Tuning Applications

Determining IPC Requirements

Determining IPC Requirements

The values of different system parameters determine | PC requirements. Y ou can use
thet nboot -c¢ command to test a configuration’s IPC needs. The values of the
following parameters affect the IPC needs of an application:

m MAXACCESSERS
m REPLYQ

® RQADDR (that allowsvBsQ sets to be formed)
m VAXSERVERS

m MAXSERVI CES

B MAXGIT

Table 6-4 describes the system parameters that affect the IPC needs of an application.

Table 6-4 Tuning |PC Parameters

Parameter(s) Action

MAXACCESSERS Equals the number of semaphores.

Number of message queuesis aimost equal to MAXACCESSERS + the
number of serverswith reply queues (the number of serversin MSSQ
set + the number of M5SQ sets).

MAXSERVERS, While MAXSERVERS, MAXSERVI CES, MAXGTT, and the overal size
MAXSERVI CES, of the ROUTI NG, GROUP, and NETWORK sections affect the size of
andMVAXGTT shared memory, an attempt to devise formulas that correlate these

parameters can become complex. Instead, simply runt mboot - c or
tm oadcf - c to calculate the minimum IPC resource requirements
for your application.

Scaling, Distributing, and Tuning Applications 6-15

6 Tuning Applications

Table 6-4 Tuning |PC Parameters (Continued)

Par ameter (s)

Action

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size of aqueuein bytesmust be large
enough to handle the largest message in the application, and to
typically be 75 to 85 percent full. A smaller percentage is wasteful.
A larger percentage causes message sends to block too frequently.

Set the maximum size for a message to handle the largest buffer that
the application sends.

Maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the
application’s operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This may be a trial and error process in
which tunables are estimated before the application is run and are
adjusted after running under performance analysis.

For a large system, analyze the effect of parameter settings on the size
of the operating system kernel. If unacceptable, reduce the number of

application processes or distribute the application to more machines to

reduceMAXACCESSERS.

Measuring System Traffic

6-16

This topic includes the following sections:

About System Traffic and Bottlenecks

Example of Detecting a System Bottleneck

Detecting Bottlenecks on UNIX

Detecting Bottlenecks on Windows NT

For more information about monitoring WebL ogic Enterprise applications and
measuring traffic, see “Monitoring a Running System” inAldeninistration Guide.

Scaling, Distributing, and Tuning Applications

Measuring System Traffic

About System Traffic and Bottlenecks

Bottlenecks can occur in your system when traffic volume nears resource capacity.
Y ou can measure service traffic using a global counter in your implementation code.

For example, in Tuxedo applications, whent psvri ni t () isinvoked at boot time, you
can initialize aglobal counter and record a starting time. Subsequently, each time a
particular serviceis called, the counter isincremented. When the server is shut down
by invoking the t psvr done() function, thefina count and the ending time are
recorded. This mechanism allows you to determine how busy a particular serviceis
over a specified period of time.

Note: For CORBA C++ applications, usethe Server: :initialize() and
Server: :rel ease() operations. For CORBA Java applications, use the
Server.initializeandServer.rel ease methods.

In BEA Tuxedo, bottlenecks can originate from data flow patterns. The quickest way
to detect bottlenecks is to begin with the client and measure the amount of time
required by relevant services.

Example of Detecting a System Bottleneck

Suppose Client 1 requires 4 seconds to print to the screen. Callstot i me(2) determine
that thet pcal | to service A isthe culprit with a 3.7 second delay. Service A is
monitored at the top and bottom and takes 0.5 seconds. Thisimplies that a queue may
be clogged, which was determined by using the pg command.

On the other hand, suppose service A takes 3.2 seconds. The individua parts of
Service A can be bracketed and measured. Perhaps Service A issuesat pcal | to
Service B, which requires 2.8 seconds. It should then be possible to isolate queue time
or message send blocking time. Once the relevant amount of time has been identified,
the application can be retuned to handle the traffic.

Using ti me(2), you can measure the duration of the following:
m The entire client program.
m A client service request only.

m The entire service function.

Scaling, Distributing, and Tuning Applications 6-17

6 Tuning Applications

m The service function making a service request (if any).

Detecting Bottlenecks on UNIX

On UNIX systems, the sar (1) command provides valuable performance information
that can be used to find system bottlenecks. Y ou can use the sar (1) command to:

m Sample cumulative activity counters in the operating system at predetermined
intervals.

m Extract datafrom a system file.

Table 6-5 describes the sar (1) command options.

Table 6-5 sar(1) Command Options

Option Description

-u Gathers CPU utilization numbers, including the portion
of the time running in user mode, running in system
mode, idle with some process waiting for block 1/0,
and otherwise idle.

-b Reports buffer activity, including transfers per second
of databetween system buffersand disk, or other block
devices.

-C Reports system call activity. Thisincludes system calls

of al types, aswell as specific system calls such as
f or k(2) and exec(2).

-wW M onitors system swapping activity. Thisincludesthe
number of transfers for swap-ins and swap-outs.

-q Reports average queue lengths while occupied and the
percent of time occupied.

-m Reports message and system semaphore activities,
including the number of primitives per second.

-p Reports paging activity, including the address
trand ation page faults, page faults and protection
errors, and the vaid pages reclaimed for freelists.

6-18 Scaling, Distributing, and Tuning Applications

Measuring System Traffic

Table 6-5 sar(1) Command Options (Continued)

Option Description

-r Reports unused memory pages and disk blocks,
including the average number of pagesavailableto user
processes and the disk blocks available for process

swapping.

Note: Some UNIX platforms do not provide the sar (1) command, but offer
equivalent commands instead. BSD, for example, offersthei ost at (1)
command. Sun offers per f met er (1).

Detecting Bottlenecks on Windows NT

On Windows NT, use the Performance Monitor to collect system information and
detect bottlenecks. Click the Start button and select Programs, then Administration
Tools, and then click NT Performance Monitor.

Scaling, Distributing, and Tuning Applications 6-19

6 Tuning Applications

6-20 Scaling, Distributing, and Tuning Applications

Index

A

Application Assemblers, scaling tasks 4-5
application parameters

setting 6-14

using 6-11
application scalability requirements 1-2
AUTOTRAN parameter 5-9

BBLQUERY parameter 6-13, 6-14
BLOCKTIME parameter 6-13, 6-14
bottlenecks, detecting 6-17
bundling services
about bunding services 6-10
when to bundle services 6-10

C

CacheFull Exception 4-7

caching
configuring the EJB cache 4-7
EJBCACHE_FLUSH parameter 4-10
MAXEJBCACHE parameter 4-10
tuning the EJB cache 4-9

CLOSEINFO parameter 5-8

connection pooling 4-3

create object_reference() operation 2-15

customer support contact information xi

D

data-dependent routing
about data-dependent routing
5-4
characteristics 5-5
sample application 5-5
using (Tuxedo only) 5-4
DBBLWAIT parameter 6-13, 6-14
Deployers, scaling tasks 4-5
distributing applications
about distributing applications 5-2
benefits 5-2
characteristics of adistributed
application 5-3
domain gateway file and routing 5-11
factory-based routing in multiple
domains 5-11
sample application 5-5
UBBCONFIG file 5-10
DMCONFIG file
about the DMCONFIG file 5-12
DM_ROUTING section 5-12
example 5-15
documentation, where to find it x
domain gateway configuration file
(DMCONFIG) 5-11

E

EJB cache 4-7
EJB Providers

Scaling, Distributing, and Tuning Applications -1

bean persistence 4-3

pooled connections, using 4-3

process-entity design pattern 4-5

scalling tasks 4-2

stateful session beans, minimizing 4-3

stateless session beans, using 4-2

transactions, completing efficiently 4-4
EJBCACHE_FLUSH parameter 4-10
entity beans

persistence 4-3

process-entity design pattern 4-5

F

factory_finder.ini 5-11
factory-based routing
about factory-based routing 1-16
characteristics of 1-17
configuring 1-19
in JDBC Bankapp sample
application 3-11
in Production sample application 2-
12
configuring for multiple domains 5-11
how it works 1-18
implementing in afactory 2-15, 3-12
in JDBC Bankapp sample application 3-
10
in Production sample application 2-11
file-based persistence 4-9

G

GROUP parameter 6-6
GRPNO parameter 5-7

[1OP Handler (ISH)
about the ISH 1-20
increasing the number of ISH processes

[-2 Scaling, Distributing, and Tuning Applications

1-20
[1OP Listener (ISL) 1-20, 4-7
interfaces, assigning priorities to 6-9
iostat(1) command 6-19
I PC requirements
determining 6-15—6-16
tuning parameters 6-15
tuning queue-related kernel parameters
6-16
is-modified-method-name element 4-7

J

JDBC Bankapp sample application
additional design considerations 3-14
design goals 3-2
factory-based routing 3-10
how it has been scaled 3-2
object state management 3-3
replicating server groups 3-6
replicating server processes 3-4
scaling the application further 3-16
UBBCONFIG file 3-7

JDBC connection pooling 4-3

K

kernel parameters, tuning 6-16

L

LMID parameter 5-7
load balancing
about load balancing 6-4
enabling 6-4
measuring service performance time 6-5

M

MAX parameter 6-6

MAXACCESSERS parameter 6-12, 6-14, 6-
15

MAXBUFSTY PE parameter 6-13, 6-14
MAXBUFTY PE parameter 6-13, 6-14
MAXEJBCACHE parameter 4-10
MAXGTT parameter 6-13, 6-14, 6-15
MAXINTERFACES parameter 6-12, 6-14
MAXSERVERS parameter 6-12, 6-14, 6-15
MAXSERVICES parameter 6-12, 6-14, 6-15
method-bound objects 1-5
MIN parameter 6-6
M SSQ sets
example 6-3
using 6-2
multiple server single queue (M SSQ) 6-2
multiplexing incoming client connections 1-
19
multithreading
about multithreaded Java servers 1-13
coding recommendations 1-15
configuring
number of concurrent accessors 6-8
number of threads 6-7
OPENINFO parameter 6-7
when to use 1-14

0

object state management
in JDBC Bankapp sample application 3-
3
in Production sample application 2-4
object state models
CORBA applications 1-4
EJB applications 1-6
RMI applications 1-6
object state models
stateful objects 1-6
stateless objects 1-6
objects
method-bound 1-5
process-bound 1-5
stateful objects 1-7

stateless objects 1-7
transaction-bound 1-5
OMG IDL, Production sample application 2-
4
OPENINFO parameter 5-8

P

perfmeter(1) command 6-19
performance time, servopts(5) -r option 6-5
performance, measuring 6-5
persistence
file-based persistence 4-9
implementing methods 4-3
is-modified-method-name element 4-7
persistence-store-directory-root element
4-6
removing orphan files 4-8
persistence-store-directory-root element 4-6
pooled connections 4-3
printing product documentation x
PRIO parameter 6-9
priorities
assigning to interfaces or services 6-9
PRIO parameter 6-9
process-bound objects 1-5
process-entity design pattern 4-5
Production sample application
additional design considerations 2-17
changing the OMG IDL 2-4
design goals 2-2
factory-based routing 2-11
how it has been scaled 2-2
replicating server groups 2-8
replicating server processes 2-6
scaling the application further 2-22
stateless object model 2-4
UBBCONFIG file 2-9

Scaling, Distributing, and Tuning A pplications -3

R

related information xi
replicating
about replicating server processes and
server groups 1-10
configuration options 1-11
Server groups
about replicating server groups 1-12
in JDBC Bankapp sample
application 3-6
in Production sample application 2-
8
Server processes
about replicating server processes 1-
11
benefits of 1-11
guidelines for 1-12
JDBC Bankapp sample application
3-4
Production sample application 2-6
resources, maximizing application 6-2—6-14
ROUTING parameter 5-9

S

SANITYSCAN parameter 6-13, 6-14
sar(1) command 6-18
scalability
features 1-2
requirements 1-2
support, in WLE applications 1-3
scaling tasks
Application Assemblers 4-5
Deployers 4-5
EJB Providers 4-2
System Administrators 4-8
server groups
about replicating 1-10
replicating 1-12
server processes
about replicating 1-10

-4 Scaling, Distributing, and Tuning Applications

replicating 1-11
SERVERS section
EJBCACHE_FLUSH parameter 4-10
MAXEJBCACHE parameter 4-10
servopts(5) 6-5
SRVID parameter 6-6
stateful objects
about stateful objects 1-7
when to use 1-8
stateful session beans
minimizing state information 4-3
persistence 4-3
stateless objects
about stateless objects 1-7
when to use 1-7
stateless session beans
using 4-2
support
technical xi
System Administrators, scaling tasks for 4-8

T
time(2) option 6-5
tmboot(1) -c command 6-15
TMSCOUNT parameter 5-8
TMSNAME parameter 5-7
traffic, measuring system 6-16—6-19
transaction-bound objects 1-5
transactions, in EJB applications 4-4
TRANTIME parameter 5-9, 6-14
tsprio call 6-9
tuning applications 6-1-6-19
determining IPC requirements 6-15
maximizing application resources 6-2
bundling services into servers 6-10
enabling load balancing 6-4
measuring system traffic 6-16
detecting a system bottleneck 6-17
using application parameters 6-11, 6-12,
6-13

U

UBBCONFIG file
distributed application example 5-10
GROUPS section
CLOSEINFO parameter 5-8
GRPNO parameter 5-7
LMID parameter 5-7
OPENINFO parameter 5-8, 6-7
TMSCOUNT parameter 5-8
TMSNAME parameter 5-7
in JDBC Bankapp sample application 3-
7
in Production sample application 2-9
ROUTING section 5-10
SERVERS section
GROUP parameter 6-6
MAX parameter 6-6
MIN parameter 6-6
SRVID parameter 6-6
SERVICES section
AUTOTRAN parameter 5-9
ROUTING parameter 5-9
sample 5-9
TRANTIME parameter 5-9

Scaling, Distributing, and Tuning A pplications [-5

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Scaling WebLogic Enterprise Applications
	About Scaling WebLogic Enterprise Applications
	Application Scalability Requirements
	WebLogic Enterprise Scalability Features
	Scalability Support for WebLogic Enterprise Applications

	Using Object State Management
	Object State Models
	CORBA Object State Models
	EJB Object State Models
	RMI Object State Models

	Implementing Stateless and Stateful Objects
	About Stateless and Stateful Objects
	When to Use Stateless Objects
	When to Use Stateful Objects

	Replicating Server Processes and Server Groups
	About Replicating Server Processes and Server Groups
	Configuration Options
	Replicating Server Processes
	Benefits
	Guidelines

	Replicating Server Groups

	Using Multithreaded Java Servers (Java only)
	About Multithreaded Java Servers
	When to Use Multithreaded Java Servers
	Coding Recommendations
	Configuring a Multithreaded Java Server

	Using Factory-based Routing (CORBA only)
	About Factory-based Routing
	Characteristics of Factory-based Routing
	How Factory-based Routing Works
	Configuring Factory-based Routing in the UBBCONFIG File

	Multiplexing Incoming Client Connections
	IIOP Listener and Handler
	Increasing the Number of ISH Processes

	2 Scaling CORBA C++ Server Applications
	About Scaling the Production Sample Application
	Design Goals
	How the Application Has Been Scaled

	Changing the OMG IDL
	Using a Stateless Object Model
	Scaling by Replicating Server Processes and Server Groups
	Replicating Server Processes in the Production Application
	Replicating Server Groups in the Production Application
	Configuring Replicated Server Processes and Groups in the Production Application

	Scaling with Factory-based Routing
	About Factory-based Routing in the Production Application
	Configuring Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations
	About the Additional Design Considerations
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	Scaling the Application Further

	3 Scaling CORBA Java Server Applications
	About Scaling the JDBC Bankapp Sample Application
	Design Goals
	How the Application Has Been Scaled

	Scaling with Object State Management
	Scaling by Replicating Server Processes and Server Groups
	Replicating Server Processes in the Bankapp Application
	Replicating Server Groups in the Bankapp Application
	Configuring Replicated Server Processes and Groups in the Bankapp Application

	Scaling with Factory-based Routing
	About Factory-based Routing in the Bankapp Application
	Configuring Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations
	About the Additional Design Considerations
	Instantiating the Teller Object
	Ensuring That Account Updates Occur in the Correct Server Group

	Scaling the Application Further

	4 Scaling EJB Applications
	Scaling Tasks for EJB Providers
	Using Stateless Session Beans
	Minimizing State Information in Stateful Session Beans
	Using Pooled Connections
	Implementing Methods for Bean Persistence
	Completing Transactions Efficiently
	Implementing the Process-entity Design Pattern

	Scaling Tasks for Application Assemblers and Deployers
	Organizing EJBs in Groups
	Configuring the Persistent Storage Location
	Specifying the Method to Invoke Before Passivation
	Deploying Stateful Session Beans on the IIOP Listener Node
	Configuring the EJB Cache

	Scaling Tasks for System Administrators
	Removing Orphan Files for File-based Persistence
	Scaling and Tuning the EJB Cache
	Mechanisms For Managing the WebLogic Enterprise EJB Cache
	Tuning the Cache

	5 Distributing Applications
	Why Distribute an Application?
	About Distributing an Application
	Benefits of a Distributed Application
	Characteristics of Distributing an Application

	Using Data-dependent Routing (BEA Tuxedo Servers Only)
	About Data-dependent Routing
	Characteristics of Data-dependent Routing
	Sample Distributed Application

	Configuring the UBBCONFIG File
	About the UBBCONFIG File in Distributed Applications
	Modifying the GROUPS Section
	Modifying the SERVICES Section
	Parameters to Modify
	Sample SERVICES Section

	Creating the ROUTING Section
	Example of UBBCONFIG Sections in a Distributed Application

	Configuring the factory_finder.ini (CORBA Applications Only)
	Modifying the Domain Gateway Configuration File to Support Routing
	About the Domain Gateway Configuration File
	Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA Tuxedo Only)
	Parameters to Specify
	Routing Field Description
	Example of a Five-Site Domain Configuration Using Routing

	6 Tuning Applications
	Maximizing Application Resources
	When to Use MSSQ Sets (BEA Tuxedo Servers Only)
	Enabling Load Balancing
	About Load Balancing
	Two Ways to Measure Service Performance Time (BEA�Tuxedo Servers Only)

	Configuring Replicated Server Processes and Groups
	Configuring Multithreaded Java Servers
	Setting the OPENINFO Parameter
	Configuring the Number of Threads
	Configuring the Number of Concurrent Accessors

	Assigning Priorities to Interfaces or Services
	About Priorities to Interfaces or Services
	Characteristics of the PRIO Parameter

	Bundling Services into Servers (BEA Tuxedo Servers Only)
	About Bundling Services
	When to Bundle Services

	Enhancing Efficiency with Application Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

	Setting Application Parameters
	Determining IPC Requirements
	Measuring System Traffic
	About System Traffic and Bottlenecks
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX
	Detecting Bottlenecks on Windows NT

	Index

