
Scaling, Distributing,

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

and Tuning Applications

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Scaling, Distributing, and Tuning Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Scaling WebLogic Enterprise Applications
About Scaling WebLogic Enterprise Applications ... 1-2

Application Scalability Requirements.. 1-2

WebLogic Enterprise Scalability Features ... 1-2

Scalability Support for WebLogic Enterprise Applications....................... 1-3

Using Object State Management ... 1-4

Object State Models ... 1-4

Implementing Stateless and Stateful Objects ... 1-6

Replicating Server Processes and Server Groups.. 1-9

About Replicating Server Processes and Server Groups 1-10

Configuration Options.. 1-11

Replicating Server Processes .. 1-11

Replicating Server Groups .. 1-12

Using Multithreaded Java Servers (Java only) .. 1-13

About Multithreaded Java Servers ... 1-13

When to Use Multithreaded Java Servers .. 1-14

Coding Recommendations ... 1-15

Configuring a Multithreaded Java Server .. 1-15

Using Factory-based Routing (CORBA only) .. 1-16
Scaling, Distributing, and Tuning Applications iii

About Factory-based Routing... 1-16

Characteristics of Factory-based Routing ... 1-17

How Factory-based Routing Works .. 1-18

Configuring Factory-based Routing in the UBBCONFIG File................ 1-19

Multiplexing Incoming Client Connections .. 1-19

IIOP Listener and Handler.. 1-20

Increasing the Number of ISH Processes ... 1-20

2. Scaling CORBA C++ Server Applications
About Scaling the Production Sample Application... 2-2

Design Goals .. 2-2

How the Application Has Been Scaled .. 2-2

Changing the OMG IDL.. 2-4

Using a Stateless Object Model... 2-4

Scaling by Replicating Server Processes and Server Groups............................ 2-5

Replicating Server Processes in the Production Application 2-6

Replicating Server Groups in the Production Application 2-8

Configuring Replicated Server Processes and Groups in the Production
Application ... 2-9

Scaling with Factory-based Routing ... 2-11

About Factory-based Routing in the Production Application 2-11

Configuring Factory-based Routing in the UBBCONFIG File................ 2-12

Implementing Factory-based Routing in a Factory 2-15

What Happens at Run Time ... 2-16

Additional Design Considerations... 2-17

About the Additional Design Considerations... 2-17

Instantiating the Registrar and Teller Objects .. 2-18

Ensuring That Student Registration Occurs in the Correct Server Group 2-19

Ensuring That the Teller Object Is Instantiated in the Correct Server Group .
2-21

Scaling the Application Further... 2-22

3. Scaling CORBA Java Server Applications
About Scaling the JDBC Bankapp Sample Application 3-2

Design Goals .. 3-2

How the Application Has Been Scaled .. 3-2
iv Scaling, Distributing, and Tuning Applications

Scaling with Object State Management .. 3-3

Scaling by Replicating Server Processes and Server Groups............................ 3-4

Replicating Server Processes in the Bankapp Application 3-4

Replicating Server Groups in the Bankapp Application 3-6

Configuring Replicated Server Processes and Groups in the Bankapp
Application ... 3-7

Scaling with Factory-based Routing .. 3-10

About Factory-based Routing in the Bankapp Application 3-10

Configuring Factory-based Routing in the UBBCONFIG File 3-11

Implementing Factory-based Routing in a Factory.................................. 3-12

What Happens at Run Time ... 3-14

Additional Design Considerations... 3-14

About the Additional Design Considerations... 3-15

Instantiating the Teller Object.. 3-15

Ensuring That Account Updates Occur in the Correct Server Group 3-16

Scaling the Application Further... 3-16

4. Scaling EJB Applications
Scaling Tasks for EJB Providers ... 4-2

Using Stateless Session Beans ... 4-2

Minimizing State Information in Stateful Session Beans 4-3

Using Pooled Connections ... 4-3

Implementing Methods for Bean Persistence... 4-3

Completing Transactions Efficiently ... 4-4

Implementing the Process-entity Design Pattern 4-5

Scaling Tasks for Application Assemblers and Deployers 4-5

Organizing EJBs in Groups.. 4-6

Configuring the Persistent Storage Location ... 4-6

Specifying the Method to Invoke Before Passivation 4-7

Deploying Stateful Session Beans on the IIOP Listener Node 4-7

Configuring the EJB Cache.. 4-7

Scaling Tasks for System Administrators ... 4-8

Removing Orphan Files for File-based Persistence 4-8

Scaling and Tuning the EJB Cache .. 4-9
Scaling, Distributing, and Tuning Applications v

5. Distributing Applications
Why Distribute an Application? .. 5-2

About Distributing an Application ... 5-2

Benefits of a Distributed Application .. 5-2

Characteristics of Distributing an Application .. 5-3

Using Data-dependent Routing (BEA Tuxedo Servers Only) 5-4

About Data-dependent Routing .. 5-4

Characteristics of Data-dependent Routing ... 5-5

Sample Distributed Application .. 5-5

Configuring the UBBCONFIG File .. 5-6

About the UBBCONFIG File in Distributed Applications 5-6

Modifying the GROUPS Section ... 5-7

Modifying the SERVICES Section .. 5-8

Creating the ROUTING Section .. 5-10

Example of UBBCONFIG Sections in a Distributed Application 5-10

Configuring the factory_finder.ini (CORBA Applications Only)................... 5-11

Modifying the Domain Gateway Configuration File to Support Routing 5-11

About the Domain Gateway Configuration File 5-12

Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA
Tuxedo Only) .. 5-12

6. Tuning Applications
Maximizing Application Resources ... 6-2

When to Use MSSQ Sets (BEA Tuxedo Servers Only) 6-2

Enabling Load Balancing ... 6-4

About Load Balancing.. 6-4

Two Ways to Measure Service Performance Time (BEA Tuxedo Servers
Only) ... 6-5

Configuring Replicated Server Processes and Groups 6-5

Configuring Multithreaded Java Servers ... 6-7

Setting the OPENINFO Parameter ... 6-7

Configuring the Number of Threads .. 6-7

Configuring the Number of Concurrent Accessors 6-8

Assigning Priorities to Interfaces or Services.. 6-9

About Priorities to Interfaces or Services... 6-9
vi Scaling, Distributing, and Tuning Applications

Characteristics of the PRIO Parameter .. 6-9

Bundling Services into Servers (BEA Tuxedo Servers Only) 6-10

About Bundling Services ... 6-10

When to Bundle Services .. 6-10

Enhancing Efficiency with Application Parameters.. 6-11

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters .. 6-12

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
6-13

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters .. 6-13

Setting Application Parameters .. 6-14

Determining IPC Requirements ... 6-15

Measuring System Traffic .. 6-16

About System Traffic and Bottlenecks .. 6-17

Example of Detecting a System Bottleneck .. 6-17

Detecting Bottlenecks on UNIX ... 6-18

Detecting Bottlenecks on Windows NT... 6-19
Scaling, Distributing, and Tuning Applications vii

viii Scaling, Distributing, and Tuning Applications

le

e
an

le
n

s
About This Document

This document explains how to tune and scale CORBA, EJB, and RMI applications
that run in the BEA WebLogic Enterprise™ (WLE) environment.

This document covers the following topics:

n Chapter 1, “Scaling WebLogic Enterprise Applications,” describes how to sca
CORBA, EJB, and RMI applications that run in the WebLogic Enterprise
environment.

n Chapter 2, “Scaling CORBA C++ Server Applications,” describes how to scal
CORBA C++ server applications using the Production sample application as
example.

n Chapter 3, “Scaling CORBA Java Server Applications,” describes how to sca
CORBA Java server applications using the sample Bankapp application as a
example.

n Chapter 4, “Scaling EJB Applications,” describes how to scale WebLogic
Enterprise EJB applications.

n Chapter 5, “Distributing Applications,” describes how to distribute application
using the Production and Bankapp sample applications as examples.

n Chapter 6, “Tuning Applications,” describes how to tune applications to
optimize performance.
Scaling, Distributing, and Tuning Applications ix

e at

sing

tion
ent
rise

 you

ree
What You Need to Know

This document is intended primarily for application developers who are interested in
building scalable C++ and Java applications that run in the WebLogic Enterprise
environment. It assumes a familiarity with the WebLogic Enterprise platform and C++
or Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for f
from the Adobe Web site at http://www.adobe.com/.
x Scaling, Distributing, and Tuning Applications

How to Print the Document

g,

s.

date

r the

ou

mer

tion:
Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programmin
and Java programming, see the WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and up
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation fo
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if y
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informa

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Scaling, Distributing, and Tuning Applications xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
xii Scaling, Distributing, and Tuning Applications

Documentation Conventions
{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Scaling, Distributing, and Tuning Applications xiii

xiv Scaling, Distributing, and Tuning Applications

CHAPTER
1 Scaling WebLogic
Enterprise
Applications

This topic introduces key concepts and tasks for scaling WebLogic Enterprise
applications. This topic includes the following sections:

n About Scaling WebLogic Enterprise Applications

n Using Object State Management

n Replicating Server Processes and Server Groups

n Using Multithreaded Java Servers (Java only)

n Using Factory-based Routing (CORBA only)

n Multiplexing Incoming Client Connections

For more detailed information and examples for different types of WebLogic
Enterprise applications, see the following topics:

n Chapter 2, “Scaling CORBA C++ Server Applications”

n Chapter 3, “Scaling CORBA Java Server Applications”

n Chapter 4, “Scaling EJB Applications”

n For RMI applications, see Using RMI in a WebLogic Enterprise Environment
Scaling, Distributing, and Tuning Applications 1-1

1 Scaling WebLogic Enterprise Applications
About Scaling WebLogic Enterprise
Applications

This topic includes the following sections:

n Application Scalability Requirements

n WebLogic Enterprise Scalability Features

n Scalability Support for WebLogic Enterprise Applications

Application Scalability Requirements

Many applications perform adequately in an environment where between 1 to 10
server processes and 10 to 100 client applications are running. However, in an
enterprise environment, applications may need to support hundreds of execution
contexts (where the context can be a thread or a process), tens of thousands of client
applications, and millions of objects at satisfactory performance levels.

Subjecting an application to exponentially increasing demands quickly reveals any
resource shortcomings and performance bottlenecks in the application. Scalability is
therefore an essential characteristic of WebLogic Enterprise applications.

You can build highly scalable WebLogic Enterprise applications by:

n Adding parallel processing capability to enable the WebLogic Enterprise domain
to process multiple client requests simultaneously.

n Sharing the processing load on the server applications across multiple machines.

WebLogic Enterprise Scalability Features

WebLogic Enterprise supports large-scale application deployments by:

n Optimizing object state management
1-2 Scaling, Distributing, and Tuning Applications

About Scaling WebLogic Enterprise Applications

 not
ut
n Load balancing objects and requests across replicated server processes and
server groups

n For Java applications, using multithreaded Java servers, which are appropriate
for certain types of applications and processing environments

n For CORBA applications, using factory-based routing

n Using data-dependent routing (Tuxedo only)

n Multiplexing incoming client connections

Scalability Support for WebLogic Enterprise Applications

Table 1-1 shows how WebLogic Enterprise scalability features support each type of
WebLogic Enterprise application.

Notes: CORBA and EJB applications require slightly different configuration
parameters in the UBBCONFIG file. For more information, see “Creating a
Configuration File” in the Administration Guide.

For RMI applications, callback objects are not scalable because they are
subject to WebLogic Enterprise administration. For more information abo
callback objects, see “Using RMI with Client-side Callbacks” in Using RMI in
a WebLogic Enterprise Environment.

Table 1-1 Supported Scalability Features for WebLogic Enterprise Applications

WebLogic Enterprise
Feature

CORBA C++ CORBA Java EJB RMI

Object state management Supported Supported Supported Not supported

Replicating server processes
and server groups

Supported Supported Supported Supported

Using multithreaded servers Not supported Supported Supported Supported

Factory-based routing Supported Supported Not supported Not supported

Multiplexing incoming client
connections

Supported Supported Supported Supported
Scaling, Distributing, and Tuning Applications 1-3

1 Scaling WebLogic Enterprise Applications

on
Using Object State Management

This topic includes the following sections:

n CORBA Object State Models

n EJB Object State Models

n Implementing Stateless and Stateful Objects

Object state management is a fundamental concern of large-scale client/server systems
because it is critical that such systems achieve optimized throughput and response
time. For more detailed information about using object state management, see the
following topics:

n For CORBA C++ applications, see “Using a Stateless Object Model” on page
2-4.

n For CORBA Java applications, see “Scaling with Object State Management”
page 3-3.

n For EJB applications, see “Scaling Tasks for EJB Providers” on page 4-2.

n For all WebLogic Enterprise applications, see the technical article Process-Entity
Design Pattern.

Object State Models

This topic describes the following object state models:

n CORBA Object State Models

n EJB Object State Models

n RMI Object State Models

CORBA Object State Models

WebLogic Enterprise CORBA supports three object state management models:
1-4 Scaling, Distributing, and Tuning Applications

Using Object State Management

n of
and

dy
tion
he
 maps

until
ct can

emain
ting

ope of
n Method-bound Objects

n Process-bound Objects

n Transaction-bound Objects

For more information about these models, see “Server Application Concepts” in
Creating CORBA C++ Server Applications.

Method-bound Objects

Method-bound objects are loaded into the machine’s memory only for the duratio
the client invocation. When the invocation is complete, the object is deactivated
any state data for that object is flushed from memory. In this document, a
method-bound object is considered to be a stateless object.

You can use method-bound objects to create a stateless server model in your
application. By using a stateless server model, you move requests that are alrea
directed to active objects to any available server, which allows concurrent execu
for thousands and even millions of objects. From the client application view, all t
objects are available to service requests. However, because the server application
objects into memory only for the duration of client invocations, few of the objects
managed by the server application are in memory at any given moment.

Process-bound Objects

Process-bound objects remain in memory beginning when they are first invoked
the server process in which they are running is shut down. A process-bound obje
be activated upon a client invocation or explicitly before any client invocation (a
preactivated object). Applications can control the deactivation of process-bound
objects. In this document, a process-bound object is considered to be a stateful object.

When appropriate, process-bound objects with a large amount of state data can r
in memory to service multiple client invocations, thereby avoiding reading and wri
the object’s state data on each client invocation.

Transaction-bound Objects

Transaction-bound objects can also be considered stateful because, within the sc
a transaction, they can remain in memory between invocations. If the object is
activated within the scope of a transaction, the object remains active until the
Scaling, Distributing, and Tuning Applications 1-5

1 Scaling WebLogic Enterprise Applications

e 4-2.

and
t
are

teless
transaction is either committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a method-bound object (it is
loaded for the duration of the client invocation).

EJB Object State Models

WebLogic Enterprise implements the Enterprise JavaBeans 1.1 Specification
published by Sun Microsystems, Inc. WebLogic Enterprise fully supports the three
EJB types defined in the specification:

n Stateless session beans are stateless objects and are analogous to method-bound
objects in CORBA applications.

n Stateful session beans are stateful objects and are analogous to process-bound
objects in CORBA applications.

n Entity beans are stateful objects and are analogous to process-bound objects in
CORBA applications.

For more information about these EJB types, see “Types of Beans Supported in
WebLogic Enterprise” in “The WebLogic Enterprise JavaBeans Programming
Environment” topic in Getting Started. For more information about object state
management in EJB applications, see “Scaling Tasks for EJB Providers” on pag

RMI Object State Models

In RMI applications, a conversational state exists between the client application
the object instance. RMI objects remain in memory beginning when they are firs
created for as long as the object exists or until the server process in which they
running is shut down. For more information about RMI applications, see Using RMI
in a WebLogic Enterprise Environment.

Implementing Stateless and Stateful Objects

In general, application developers need to balance the costs of implementing sta
objects against the costs of implementing stateful objects.
1-6 Scaling, Distributing, and Tuning Applications

Using Object State Management

e, for
ocated
p the
 the
t may

tion,
ous
bject
n:

 that

se
oups.

er
g

e

 the

ar

lient

istics:
About Stateless and Stateful Objects

The decision to use stateless or stateful objects depends on various factors. In the case
where the cost to initialize an object with its durable state is expensive—becaus
example, the object’s data takes up a great deal of space, or the durable state is l
on a disk very remote from the servant that activates it—it may make sense to kee
object stateful, even if the object is idle during a conversation. In the case where
cost to keep an object active is expensive in terms of machine resource usage, i
make sense to make such an object stateless.

By managing object state in a way that is efficient and appropriate for your applica
you can maximize your application’s ability to support large numbers of simultane
client applications that use large numbers of objects. The way that you manage o
state depends on the specific characteristics and requirements of your applicatio

n For CORBA applications, you do this by assigning the method activation policy
to these objects, which has the effect of deactivating idle object instances so
machine resources can be allocated to other object instances.

n For EJB applications, you use stateless session beans when possible, becau
they are load balanced, on a per-request basis, within a group and across gr

When to Use Stateless Objects

Stateless objects generally provide good performance and optimal usage of serv
resources, because server resources are never used when objects are idle. Usin
stateless objects is a good approach to implementing server applications and ar
particularly appropriate when:

n The client application waits for user input between invocations on the object.

n The client request contains all the data needed by the server application, and
server can process the client request using only that data.

n The object has high access rates, but low access rates from any one particul
client application.

By making an object stateless, you can generally assure that server application
resources are not being reserved unnecessarily while waiting for input from the c
application.

An application that employs a stateless object model has the following character
Scaling, Distributing, and Tuning Applications 1-7

1 Scaling WebLogic Enterprise Applications
n Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

n An incoming client request is sent to the first available server process. After the
request has been satisfied, the application state disappears and the server
application is available for another client application request.

n Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

n Successive requests on an object from a given client application may be
processed by a different server process.

n The overall system performance of a machine that is running stateless objects is
usually enhanced.

When to Use Stateful Objects

A stateful object, once activated, remains in memory until a specific event occurs, such
as the process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Using stateful objects is recommended when:

n An object is used frequently by a large number of client applications, such as
long-lived, well-known objects. When the server application keeps these objects
active, the client application typically experiences minimal response time in
accessing them. These active objects are shared by many client applications, and
therefore relatively few objects of this type exist in memory.

Note: You should carefully consider how objects will potentially be involved in
a transaction. An object can be bound to a particular process temporarily
(transaction-bound) or permanently (process-bound). An object that is
involved in a transaction cannot be invoked by another client application
or object (WebLogic Enterprise will likely return an error indicating that
the object is busy). Stateful objects that are intended to be used by a large
number of client applications can create bottlenecks if they are involved in
transactions frequently or for long durations.

n A client application must invoke successive operations on an object to complete
a transaction, and the client application is not idle while it waits for user input
between invocations. If the object were deactivated between invocations, there
would be a degradation of response time because state would be written and read
1-8 Scaling, Distributing, and Tuning Applications

Replicating Server Processes and Server Groups
between each invocation. In EJB applications, stateful objects can be passivated
at any time. Such behavior may not be appropriate for transactions. You should
consider holding server resources in exchange for better response time.

Stateful objects have the following behavior:

n State information is maintained between server invocations, and the object
typically remains dedicated to a given client application for a specified duration.
Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

n When one or more stateful objects use a lot of machine resources, server
performance for tasks and processes not associated with the stateful object may
be lower than with a stateless server model.

For example, if an object has a lock on a database and is caching large amounts
of data in memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction.

Replicating Server Processes and Server
Groups

This topic includes the following sections:

n About Replicating Server Processes and Server Groups

n Configuration Options

n Replicating Server Processes

n Replicating Server Groups

For more detailed information about replicating server processes and server groups,
see the following topics:

n “Configuring Replicated Server Processes and Groups” on page 6-5
Scaling, Distributing, and Tuning Applications 1-9

1 Scaling WebLogic Enterprise Applications

 and

 and

plit
g is

the

:

ers

ns
e

ed or
date

s.

upport
n For CORBA C++ applications, see “Scaling by Replicating Server Processes
Server Groups” on page 2-5

n For CORBA Java applications, see “Scaling by Replicating Server Processes
Server Groups” on page 3-4

n For EJB applications, see “Scaling Tasks for System Administrators” on page
4-8

About Replicating Server Processes and Server Groups

The WebLogic Enterprise environment allows CORBA objects and EJBs to be
deployed across multiple servers to provide additional failover reliability and to s
the client’s workload through load balancing. WebLogic Enterprise load balancin
enabled by default. For more information about configuring load balancing, see
“Enabling Load Balancing” on page 6-4. For more information about distributing
application workload using BEA Tuxedo features, see Chapter 5, “Distributing
Applications.”

The WebLogic Enterprise architecture provides the following server organization

n Groups. Individual servers can be combined to form a group. A group of serv
runs on a single machine. Typically, the servers in a group access common
resources (such as a database).

n Domains. Machines can be combined to form a domain. A domain is
administered centrally. Multiple domains are administered separately. Domai
can also be interconnected and requests can be transparently routed from on
domain to another. However, each domain is independently administered.

This architecture allows new servers, groups, or machines to be dynamically add
removed, to adapt the application to high- or low-demand periods, or to accommo
internal changes required to the application. The WebLogic Enterprise run time
provides load balancing and failover by routing requests across available server

System administrators can scale a WebLogic Enterprise application by:

n Replicating Server Processes. Increase the number of server processes to s
more active objects within a group and load balancing among servers.
1-10 Scaling, Distributing, and Tuning Applications

Replicating Server Processes and Server Groups

n the
ted

 the
s
n Replicating Server Groups. Increase the number of server groups so that
WebLogic Enterprise can balance the load by distributing processing requests
across multiple server machines.

Configuration Options

You can configure server applications as:

n A single machine with one or more server processes implementing one or more
interfaces. For Java, the servers can be single-threaded or multithreaded. For
C++, the servers are single-threaded only.

n Multiple machines with multiple server processes and multiple interfaces.

You can add more parallel processing capability to client/server applications by
replicating server processes or add more threads. You can add more server groups to
split processing across resource managers. For CORBA applications, you can
implement factory-based routing, as described in “Using Factory-based Routing
(CORBA only)” on page 1-16.

Replicating Server Processes

System administrators can scale an EJB application by replicating the servers to
support more concurrent active objects, or process more concurrent requests, o
server node. To configure replicated server processes, see “Configuring Replica
Server Processes and Groups” on page 6-5.

Benefits

The benefits of using replicated server processes include:

n Load balancing incoming requests.

n Processing client requests on any server within a group. As requests arrive in
WebLogic Enterprise domain for the server group, WebLogic Enterprise route
the request to the least busy server process within that group.
Scaling, Distributing, and Tuning Applications 1-11

1 Scaling WebLogic Enterprise Applications

 at

ps.

e that
ique

at are

very
some

aded

tures
.
g

 type
e (such
g to

n.

ss
n Improving the server application’s performance by using multiple server
processes. Instead of having one server process handling one client request
one time, multiple server processes are available to handle multiple client
requests simultaneously.

n Providing failover protection in the event that one of the server processes sto

Guidelines

To achieve the maximum benefit of using replicated server processes, make sur
the CORBA objects or entity beans instantiated by your server application have un
object IDs. This allows a client invocation on an object to cause the object to be
instantiated on demand, within the bounds of the number of server processes th
available, and not queued up for an already active object.

You should also consider the trade-off between providing better application reco
by using multiple processes versus more efficient performance using threads (for
types of application patterns and processing environments).

Better failover occurs only when you add processes, not threads. For information about
using single-threaded and multithreaded Java servers, see “When to Use Multithre
Java Servers” on page 1-14.

Replicating Server Groups

Server groups are unique to WebLogic Enterprise and are key to the scalability fea
of WebLogic Enterprise. A group contains one or more servers on a single node
System administrators can scale a WebLogic Enterprise application by replicatin
server groups and configuring load balancing within a domain.

Replicating a server group involves defining another server group with the same
of servers and resource managers to provide parallel access to a shared resourc
as a database). CORBA applications, for example, can use factory-based routin
split processing across the database partitions.

The UBBCONFIG file specifies how server groups are configured and where they ru
By using multiple server groups, WebLogic Enterprise can:

n Spread the processing load for a given application or set of applications acro
additional machines.
1-12 Scaling, Distributing, and Tuning Applications

Using Multithreaded Java Servers (Java only)

sses

ring

mum

gic
can
ic

rprise
n For CORBA applications, use factory-based routing to send one set of requests
on a given interface to one group, and another set of requests on the same
interface to another group.

To configure replicated server groups, see “Configuring Replicated Server Proce
and Groups” on page 6-5.

Using Multithreaded Java Servers (Java
only)

This topic includes the following sections:

n About Multithreaded Java Servers

n When to Use Multithreaded Java Servers

n Coding Recommendations

n Configuring a Multithreaded Java Server

For instructions on how to configure Java servers for multithreading, see “Configu
Multithreaded Java Servers” on page 6-7.

Note: C++ servers are single-threaded only.

About Multithreaded Java Servers

System administrators can scale a WebLogic Enterprise application by enabling
multithreading in Java servers, and by tuning configuration parameters (the maxi
number of server worker threads that can be created) in the application’s UBBCONFIG
file.

WebLogic Enterprise Java supports the ability to configure multithreaded WebLo
Enterprise Java applications. A multithreaded WebLogic Enterprise Java server
service multiple object requests simultaneously, while a single-threaded WebLog
Enterprise Java server runs only one request at a time. Running a WebLogic Ente
Scaling, Distributing, and Tuning Applications 1-13

1 Scaling WebLogic Enterprise Applications
Java server in multithreaded mode or in single-threaded mode is transparent to the
application programmer. Programs written to WebLogic Enterprise Java run without
modification in both modes.

Server worker threads are started and managed by the WebLogic Enterprise Java
software rather than an application program. Internally, WebLogic Enterprise Java
manages a pool of available server worker threads. If a Java server is configured to be
multithreaded, then when a client request is received, an available server worker thread
from the thread pool is scheduled to execute the request. Each active object has an
associated thread, and while the object is active, the thread is busy. When the request
is complete, the worker thread is returned to the pool of available threads.

Note: In this release, you should not establish multiple threads programmatically in
your server implementation code. Only worker threads that are created by the
run-time WebLogic Enterprise Java server software can access the WebLogic
Enterprise Java infrastructure, which means that your Java server application
should not create a Java thread from a worker thread and then attempt to begin
a new transaction in the thread. You can, however, start threads in your server
application to perform other, non-WebLogic Enterprise operations.

When to Use Multithreaded Java Servers

Deploying multithreaded Java servers is appropriate for many, but not all, WebLogic
Enterprise Java applications. The potential for a performance gain from a
multithreaded Java server depends on whether:

n The application is running on a single- or a multiprocessor machine.

n The application is CPU-intensive or I/O-intensive.

If the application is running on a single-processor machine and the application is
CPU-intensive only (for example, without any I/O), in most cases the multithreaded
Java server will not increase performance. In fact, due to the overhead of switching
between threads, using a multithreaded Java server in this configuration might result
in a performance loss rather than a gain.

In general, however, WebLogic Enterprise Java applications almost always perform
better when running on multithreaded Java servers. Multiple multithreaded servers
should be configured to distribute the load across servers. If only a single server is
configured, that server’s queue could fill up quickly.
1-14 Scaling, Distributing, and Tuning Applications

Using Multithreaded Java Servers (Java only)

vers”
Coding Recommendations

The code used in a multithreaded WebLogic Enterprise server application appears the
same as a single-threaded application. However, if you plan to configure your Java
server applications to be multithreaded, or you want to have the option do so in the
future, consider the following recommendations:

n Do not start threads in your Java server code, and keep threading transparent in
your source files.

n Write thread-safe code in your server and client code. Use standard Java
synchronization techniques to make sure that static variables are properly
synchronized. For more information about Java synchronization techniques, see
the Java Language Specification published by Sun Microsystems, Inc.

n Configure the Java server as single-threaded if your application uses JNI code to
access ATMI. Alternatively, a mulithreaded Java server can access Tuxedo
services using Java Enterprise Tuxedo (JET), as described in Using Java
Enterprise Tuxedo.

n Configure the Java server as multithreaded if an XA-enabled version of Java
server is built using buildXAJS. The server must be configured to support
multithreaded mode.

n Include one of the following identifiers in each message if your client or server
application sends messages to the user log (ULOG):

l Object ID

l Thread name

l Transaction ID (if the object is transactional)

Configuring a Multithreaded Java Server

To configure a multithreaded Java server, you change settings in the application’s
UBBCONFIG file. For information about defining the UBBCONFIG parameters to
implement a multithreaded Java server, see “Configuring Multithreaded Java Ser
on page 6-7.
Scaling, Distributing, and Tuning Applications 1-15

1 Scaling WebLogic Enterprise Applications

e

iven

cifies
n
e

or the
nts
Using Factory-based Routing (CORBA only)

This topic includes the following sections:

n About Factory-based Routing

n How Factory-based Routing Works

n Configuring Factory-based Routing in the UBBCONFIG File

This topic introduces factory-based routing in WebLogic Enterprise CORBA
applications. For more detailed information about using factory-based routing, see the
following topics:

n For CORBA C++ applications, see “Configuring Factory-based Routing in the
UBBCONFIG File” on page 2-12.

n For CORBA Java applications, see “Configuring Factory-based Routing in th
UBBCONFIG File” on page 3-11.

About Factory-based Routing

Factory-based routing is a feature that lets you send a client request to a specific server
group. Using factory-based routing, you can distribute that processing load for a g
application across multiple machines, because you can determine the group and
machine in which a given object is instantiated.

Routing is performed when a factory creates an object reference. The factory spe
field information in its call to the WebLogic Enterprise TP Framework to create a
object reference. The TP Framework executes the routing algorithm based on th
routing criteria that you define in the ROUTING section of an application’s UBBCONFIG
file. The resulting object reference has, as its target, an appropriate server group f
handling of method invocations on the object reference. Any server that impleme
the interface in that server group is eligible to activate the servant for the object
reference.
1-16 Scaling, Distributing, and Tuning Applications

Using Factory-based Routing (CORBA only)

e
The activation of CORBA objects can be distributed by server group based on defined
criteria, in cooperation with a system designer. Different implementations of CORBA
interfaces can be supplied in different groups. This feature enables you to replicate the
same CORBA interface across multiple server groups, based on defined,
group-specific differences.

The system designer of the application must communicate the factory-based routing
criteria to the system administrator. In the BEA Tuxedo system, an FML field used for
a service invocation can be used for routing. You can independently discover this
information because there is no service request message data or associated buffer
information available for routing. Routing is performed at the factory level and not on
a method invocation on the target CORBA object.

The primary benefit of factory-based routing is that it provides a simple means to scale
up an application, and invocations on a given interface in particular, across a growing
deployment environment. Distributing the deployment of an application across
additional machines is strictly an administrative function that does not require you to
recode or rebuild the application.

Characteristics of Factory-based Routing

Factory-based routing has the following characteristics:

n An implementation of a particular CORBA interface can exist in more than one
server process, as shown in “Configuring Factory-based Routing in the
UBBCONFIG File” on page 2-12.

n Multiple CORBA interfaces can reside in a single server group.

n All server processes in a particular server group do not need to use the same
CORBA interfaces.

n The factory object implementation can indirectly control the location of the
created CORBA object by supplying application-specific routing information.

n Routing uses the Bulletin Board criteria and occurs in a server call.

n All instances that offer a given interface within a group must support the sam
version of the implementation.
Scaling, Distributing, and Tuning Applications 1-17

1 Scaling WebLogic Enterprise Applications
How Factory-based Routing Works

To implement factory-based routing, you change the way your factories create object
references.

n You coordinate with the system designer to determine the fields and values to be
used as the basis for routing.

n For each interface, you need to configure factory-based routing. The interface
definition for the factory must specify the parameter that represents the routing
criteria used to determine the group ID.

n In the UBBCONFIG file, you need to define the following information:

l Routing criteria identifier for a CORBA interface in the INTERFACES section.

l As many server groups as are required for distributing the system in the
GROUPS section.

l Routing criteria in the ROUTING section.

l Groups, machines, and databases as required.

n An object with a given interface and OID can be simultaneously active in two
different groups if those two groups both contain the same object
implementation. This can be avoided if your factories generate unique OIDs. To
guarantee that only one object instance of a given interface name and OID is
available at any one time in your domain, you must either:

n Use factory-based routing to ensure that objects with a particular OID
are always routed to the same group, or

n Configure your domain so that a given object implementation is in only
one group.

If multiple clients have an object reference that contains a given interface name
and OID, the reference will always be routed to the same object instance.

Thereafter, the object reference will contain additional information that is used to
provide an indication of where the target server exists. Factory-based routing is
performed once per CORBA object, when the object reference is created.
1-18 Scaling, Distributing, and Tuning Applications

Multiplexing Incoming Client Connections

IG

gure
t

in

g, in
ite
f
t.
Configuring Factory-based Routing in the UBBCONFIG
File

Routing criteria specify the data values used to route requests to a particular server
group. To configure factory-based routing, you define routing criteria in the ROUTING
section of the UBBCONFIG file (for each interface for which requests are routed). For
more detailed information about configuring factory-based routing, see the following
topics:

n For CORBA C++, see “Configuring Factory-based Routing in the UBBCONFIG
File” on page 2-12.

n For CORBA Java, see “Configuring Factory-based Routing in the UBBCONF
File” on page 3-11.

To configure factory-based routing across multiple domains, you must also confi
the factory_finder.ini file to identify factory objects that are used in the curren
(local) domain but that are resident in a different (remote) domain. For more
information, see “Configuring Multiple Domains (WebLogic Enterprise System)”
the Administration Guide.

Multiplexing Incoming Client Connections

This topic includes the following sections:

n IIOP Listener and Handler

n Increasing the Number of ISH Processes

System administrators can scale a WebLogic Enterprise application by increasin
the UBBCONFIG file, the number of incoming client connections that an application s
supports. WebLogic Enterprise provides a multicontexted, multistated gateway o
listener/handlers to handle the multiplexing of all the requests issued by the clien
Scaling, Distributing, and Tuning Applications 1-19

1 Scaling WebLogic Enterprise Applications
IIOP Listener and Handler

The IIOP Listener (ISL) enables access to WebLogic Enterprise objects by remote
WebLogic Enterprise clients that use IIOP. The ISL is a process that listens for remote
clients requesting IIOP connections. The IIOP Handler (ISH) is a multiplexor process
that acts as a surrogate on behalf of the remote client. Both the ISL and ISH run on the
application site. An application site can have one or more ISL processes and multiple
associated ISH processes. Each ISH is associated with a single ISL.

The client connects to the ISL process using a known network address. The ISL
balances the load among ISH processes by selecting the best available ISH and passing
the connection directly to it. The ISL/ISH manages the context on behalf of the
application client. For more information about ISL and ISH, see the description of ISL
in the Commands, Systems Processes, and MIB Reference.

Increasing the Number of ISH Processes

System administrators can scale a WebLogic Enterprise application by increasing the
number of ISH processes on an application site, thereby enabling the ISL to load
balance among more ISH processes. By default, an ISH can handle up to 10 client
connections. To increase this number, pass the optional CLOPT -x mpx-factor
parameter to the ISL command, specifying in mpx-factor the number of ISH client
connections each ISH can handle (up to 4096), and therefore the degree of
multiplexing, for the ISH. Increasing the number of ISH processes may affect
application performance as the application site services more concurrent processes.

System administrators can tune other ISH options as well to scale WebLogic
Enterprise applications. For more information, see the description of ISL in the
Commands, Systems Processes, and MIB Reference.
1-20 Scaling, Distributing, and Tuning Applications

CHAPTER
2 Scaling CORBA C++
Server Applications

This topic includes the following sections:

n About Scaling the Production Sample Application

n Changing the OMG IDL

n Using a Stateless Object Model

n Scaling by Replicating Server Processes and Server Groups

n Scaling with Factory-based Routing

n Additional Design Considerations

n Scaling the Application Further

Using the Production sample application as an example, this topic demonstrates
scaling an WebLogic Enterprise CORBA C++ application to increase its processing
capability. Before you begin, be sure to read:

n Chapter 1, “Scaling WebLogic Enterprise Applications,” for a comprehensive
introduction to tuning and scaling WebLogic Enterprise applications.

n Production Sample Application in the WebLogic Enterprise online
documentation.
Scaling, Distributing, and Tuning Applications 2-1

2 Scaling CORBA C++ Server Applications
About Scaling the Production Sample
Application

The Production sample application provides the same end-user functionality as the
Wrapper sample application. The Production sample application demonstrates how to
use features of the WebLogic Enterprise software to scale an existing WebLogic
Enterprise application.

This section includes the following topics:

n Design Goals

n How the Application Has Been Scaled

Design Goals

The primary design goal of the Production sample application is to significantly
increase the number of client applications it can accommodate by:

n Processing, in parallel and on one machine, client requests on multiple objects
that implement the same interface.

n Directing requests on behalf of certain students to one machine, and other
students to other machines.

n Adding more machines to share the processing load.

How the Application Has Been Scaled

To accommodate these design goals, the Production sample application has been
scaled by:

n Implementing a stateless object model to scale up the number of client requests
the server process can manage simultaneously.
2-2 Scaling, Distributing, and Tuning Applications

About Scaling the Production Sample Application
n Replicating the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured (the ORA_GRP and
APP_GRP server groups defined in the UBBCONFIG file).

n Replicating the ORA_GRP and APP_GRP server groups on an additional server
machine, Production Machine 2, and also partitioning the database.

n Assigning unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups.

l RegistrarFactory

l Registrar

l TellerFactory

l Teller

This makes these objects available on a per-client application (and not
per-process) basis, thereby accommodating a parallel processing capability.

n Implementing factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Note: To make the Production sample application easy to use, this application is
configured on the WebLogic Enterprise software kit to run on one machine,
using one database. The examples shown in this chapter, however, show
running this application on two machines using two databases.

The Production sample application is designed so that it can be configured to
run on several machines and to use multiple databases. Changing the
configuration to multiple machines and databases involves modifying the
UBBCONFIG file and partitioning the databases, which is described in “Scaling
the Application Further” on page 2-22.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meet its scalability goals.
Scaling, Distributing, and Tuning Applications 2-3

2 Scaling CORBA C++ Server Applications

 uses

’s
tate

s

le
n the
Changing the OMG IDL

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() and find_teller() operations on, respectively, the
RegistrarFactory and TellerFactory objects. These two operations need to be
modified to require, respectively, a student ID and account number, which are needed
to implement factory-based routing. See “Scaling with Factory-based Routing” on
page 2-11 to read about how the Production sample application implements and
factory-based routing.

Using a Stateless Object Model

This section describes how object state management is used with the Registrar and
Teller objects in the Production sample applications to increase the application
scalability. For an introduction to object state management, see “Using Object S
Management” on page 1-4.

To increase scalability, the Registrar and Teller objects are configured in the
Production server application with the method activation policy. The method
activation policy assigned to these two objects results in the following behavior
changes:

n Whenever these objects are invoked, they are instantiated by the WebLogic
Enterprise domain in the appropriate server group.

n After the invocation is complete, the WebLogic Enterprise domain deactivate
these objects.

With the Basic through the Wrapper sample applications, the Registrar object was
process-bound (process activation policy). All client requests on the Registrar
object invariably went to the same object instance in the memory of the server
machine. The Basic sample application design may be adequate for a small-sca
deployment. However, as client application demands increase, client requests o
Registrar object eventually become queued, and response time drops.
2-4 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

ating
ating
However, when the Registrar and Teller objects are stateless (method activation
policy), and the server processes that manage these objects are replicated, the
Registrar and Teller objects can process multiple client requests in parallel. The
only constraint on the number of simultaneous client requests that these objects can
handle is the number of server processes that are available that can instantiate the
Registrar and Teller objects. These stateless objects, thereby, make for more
efficient use of machine resources and reduced client response time.

Most importantly, so that WebLogic Enterprise can instantiate copies of the
Registrar and Teller objects in each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, the
factories for those objects must assign unique object IDs to them.

For the WebLogic Enterprise application to instantiate copies of the Registrar and
Teller objects in each of the replicated server application processes, each copy of the
Registrar and Teller objects have an unique object ID (OID). The factories that
create these objects are responsible for assigning them unique OIDs. For information
about generating unique object IDs, see Creating CORBA C++ Server Applications.
For more information about other design considerations, see “Additional Design
Considerations” on page 2-17.

Scaling by Replicating Server Processes and
Server Groups

This topic includes the following sections:

n Replicating Server Processes in the Production Application

n Replicating Server Groups in the Production Application

n Configuring Replicated Server Processes and Groups in the Production
Application

This topic describes how the Production sample application was scaled by replic
server processes and server groups. For an introduction to this topic, see “Replic
Server Processes and Server Groups” on page 1-9.
Scaling, Distributing, and Tuning Applications 2-5

2 Scaling CORBA C++ Server Applications

7
Replicating Server Processes in the Production
Application

This section describes how the Production sample application replicates server
applications. For an introduction to this feature, see “Replicating Server Processes” on
page 1-11.

Figure 2-1 shows the replicated ORA_GRP and APP_GRP groups running on a single
machine.

n The University server application, BEA Tuxedo Teller Application, and Oracle
TMS server processes are replicated within the ORA_GRP group.

n The Billing server process is replicated within the APP_GRP group.
2-6 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups
Figure 2-1 Replicated Server Groups in the Production Sample

When a request arrives for either of these groups, the WebLogic Enterprise domain has
several server processes available that can process the request, and the WebLogic
Enterprise domain can choose the server process that is the least busy.

In Figure 2-1, note the following points:

n At any time, there may be no more than one instance of the RegistrarFactory,
Registrar, TellerFactory, or Teller objects within a given server process.

n There may be any number of CourseSynopsisEnumerator objects in any
University server process.

University Server

Production Machine

ORA_GRP APP_GRP

Oracle7
Database Server

RegistrarFactory

Registrar

CourseSynopsis
Enumerator

BEA TUXEDO
Teller Application

debit()
credit()
current_balance()

Database

TellerFactory

Teller

Billing ServerUniversity Server
Scaling, Distributing, and Tuning Applications 2-7

2 Scaling CORBA C++ Server Applications

r

n

ation
Replicating Server Groups in the Production Application

This section describes how the Production sample application replicates server groups.
For an introduction to this feature, see “Replicating Server Groups” on page 1-12.

Figure 2-2 shows the Production sample application groups replicated on anothe
machine, as specified in the application’s UBBCONFIG file, as ORA_GRP2 and
APP_GRP2.

Figure 2-2 Replicating Server Groups Across Machines

In Figure 2-2, the only difference between the content of the groups on Productio
Machines 1 and 2 is the database:

n The database on Production Machine 1 contains student and account inform
for students with IDs between 100001 and 100005.

Production Machine 1

APP_GRP1ORA_GRP1

Production Machine 2

APP_GRP2ORA_GRP2

University
Server Billing Server

University
Server Billing Server

Database 1 Database 2

BEA TUXEDO
Teller

Application

BEA TUXEDO
Teller

Application

Oracle7
Database

Server

Oracle7
Database

Server
2-8 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups

see
n The database on Production Machine 2 contains student and account information
for students with IDs between 100006 and 100010.

Note: The course information table in both databases is identical.

Note that the student information in a given database may be completely unrelated to
the account information in the same database.

For more information about how the Production sample application uses factory-based
routing to distribute the application’s processing load across multiple machines,
“Scaling with Factory-based Routing” on page 2-11.

Configuring Replicated Server Processes and Groups in
the Production Application

Listing 2-1 shows excerpts from the GROUPS and SERVERS sections of the UBBCONFIG
file for the Production sample application.

Listing 2-1 GROUPS and SERVERS Sections in a UBBCONFIG File

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
Scaling, Distributing, and Tuning Applications 2-9

2 Scaling CORBA C++ Server Applications
 TMSNAME = "TMS_ORA"

*SERVERS
 # By default, activate 2 instances of each server
 # and allow the administrator to activate up to 5
 # instances of each server
 DEFAULT:
 MIN = 2
 MAX = 5
 tellp_server
 SRVGRP = ORA_GRP1
 SRVID = 10
 RESTART = N
 tellp_server
 SRVGRP = ORA_GRP2
 SRVID = 10
 RESTART = N

 billp_server
 SRVGRP = APP_GRP1
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP2
 SRVID = 10
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP1
 SRVID = 20
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP2
 SRVID = 20
 RESTART = N
2-10 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing

sed

use

u

 the
. The
Scaling with Factory-based Routing

This topic includes the following sections:

n About Factory-based Routing in the Production Application

n Configuring Factory-based Routing in the UBBCONFIG File

n Implementing Factory-based Routing in a Factory

n What Happens at Run Time

This topic describes how the Production sample application was scaled using
factory-based routing. For an introduction to factory-based routing, see “Using
Factory-based Routing (CORBA only)” on page 1-16.

About Factory-based Routing in the Production
Application

This section describes how the Production sample application uses a factory-ba
routing. For an introduction to this feature, see “Using Factory-based Routing
(CORBA only)” on page 1-16.

You can use factory-based routing to expand the load-balancing and scalability
features of WebLogic Enterprise. In the Production sample application, you can
factory-based routing to send requests to register one subset of students to one
machine, and requests for another subset of students to another machine. As yo
increase your application’s processing capability, you can easily modify the
factory-based routing in your application to add more machines.

The primary design consideration regarding implementing factory-based routing in
Production sample application is in choosing the value on which routing is based
Production sample application uses factory-based routing in the following ways:

n Requests from client applications to the Registrar object are routed based on
the student ID. Requests from student ID 100001 to 100005 go to Production
Machine 1. Requests from student ID 100006 to 100010 go to Production
Machine 2.
Scaling, Distributing, and Tuning Applications 2-11

2 Scaling CORBA C++ Server Applications
n Requests from the Registrar object to the Teller object are routed based on
account number. Billing requests for account 200010 to 200014 go to
Production Machine 1. Billing requests for account 200015 to 200019 go to
Production Machine 2.

Configuring Factory-based Routing in the UBBCONFIG
File

The University Production sample application demonstrates how to implement
factory-based routing. The INTERFACES, ROUTING, and GROUPS sections from the
ubb_b.nt configuration file show how you can implement factory-based routing in a
WebLogic Enterprise application. You can find the ubb_p.nt or ubb_p.mk
UBBCONFIG files for this sample in the directory where the WebLogic Enterprise
software is installed (see the \samples\corba\university\production
subdirectory).

The UBBCONFIG file must specify the following data in the INTERFACES and ROUTING
sections, as well as how groups and machines are identified.

1. The INTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the kinds of
criteria on which the interface routes. This section specifies the routing criteria via
an identifier, FACTORYROUTING, as shown in Listing 2-2.

Listing 2-2 INTERFACES Section of a UBBCONFIG File

INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

Listing 2-2 shows the fully qualified interface names for the two interfaces in the
Production sample in which factory-based routing is used. The
FACTORYROUTING identifier specifies the names of the routing values, which are
STU_ID and ACT_NUM, respectively.
2-12 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing
2. The ROUTING section specifies the parameters in Table 2-1 for each routing value.

Listing 2-3 shows the ROUTING section of the UBBCONFIG file used in the
Production sample application.

Listing 2-3 ROUTING Section of the UBBCONFIG File

ROUTING
 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"
 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

Listing 2-3 shows that Registrar object references for students with IDs in one
range are routed to one server group, and Registrar object references for
students with IDs in another range are routed to another group. Likewise,
Teller object references for accounts in one range are routed to one server

Table 2-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Production sample, the type of
routing is factory-based routing. Therefore, this parameter is defined as
FACTORY.

FIELD Specifies the variable name that the factory inserts in the routing value.
In the Production sample, the field parameters are student_id and
account_number, respectively.

FIELDTYPE Specifies the data type of the routing value. In the Production sample,
the field types for student_id and account_number are long.

RANGES Specifies the values that are routed to each group.
Scaling, Distributing, and Tuning Applications 2-13

2 Scaling CORBA C++ Server Applications
group, and Teller object references for accounts in another range are routed to
another group.

3. The groups specified by the RANGES identifier in the ROUTING section of the
UBBCONFIG file need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1, and
ORA_GRP2. These groups need to be configured, and the machines on which they
run need to be identified.

Listing 2-4 shows the GROUPS section of the Production sample UBBCONFIG file,
in which the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the
names in the GROUPS section match the group names specified in the ROUTING
section. This is critical for factory-based routing to work correctly. Furthermore,
any change in the way groups are configured in an application must be reflected
in the ROUTING section. (Note that the Production sample packaged with the
WebLogic Enterprise software is configured to run entirely on one machine.
However, you can easily configure this application to run on multiple machines.)

Listing 2-4 GROUPS Section of a UBBCONFIG File

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO =
"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
2-14 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing
Implementing Factory-based Routing in a Factory

Factories implement factory-based routing in the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has
the C++ binding in Listing 2-5.

Listing 2-5 C++ Binding for create_object_reference

CORBA::Object_ptr TP::create_object_reference (
 const char* interfaceName,
 const PortableServer::oid &stroid,
 CORBA::NVlist_ptr criteria);

The third parameter to this operation, criteria, specifies a list of named values to be
used for factory-based routing. To implement factory-based routing in a factory, you
need to build the NVlist. The use of factory-based routing is optional and is dependent
on this argument. Instead of using factory-based routing, you can pass a value of 0
(zero) for this argument.

As stated previously, the RegistrarFactory object in the Production sample
application specifies the value STU_ID. This value must exactly match the following
information in the UBBCONFIG file:

n The routing name, type, and allowable values specified by the FACTORYROUTING
identifier in the INTERFACES section.

n The routing criteria name, field, and field type specified in the ROUTING section.

The RegistrarFactory object inserts the student ID into the NVlist using the code
shown in Listing 2-6.

Listing 2-6 NVlist in the RegistrarFactory Object

// put the student id (which is the routing criteria)
// into a CORBA NVList:
CORBA::NVList_var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA::Any any;
Scaling, Distributing, and Tuning Applications 2-15

2 Scaling CORBA C++ Server Applications
any <<= (CORBA::Long)student;
v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has the invocation to the
TP::create_object_reference() operation, shown in Listing 2-7, passing the
NVlist created in Listing 2-6.

Listing 2-7 Invoking create_object_reference in the RegistrarFactory Object

// create the registrar object reference using
// the routing criteria :
CORBA::Object_var v_reg_oref =
 TP::create_object_reference(
 UniversityP::_tc_Registrar->id(),
 object_id,
 v_criteria.in()
);

The Production sample application also uses factory-based routing in the
TellerFactory object to determine the group in which Teller objects should be
instantiated based on an account number.

What Happens at Run Time

When you implement factory-based routing in a factory, WebLogic Enterprise
generates an object reference. The following example shows how the client application
gets an object reference to a Registrar object when factory-based routing is
implemented.

1. The client application invokes the RegistrarFactory object, requesting a
reference to a Registrar object. The request includes a student ID.

2. The RegistrarFactory inserts the student ID into an NVlist, which is used as
the routing criteria.
2-16 Scaling, Distributing, and Tuning Applications

Additional Design Considerations

s
re
3. The RegistrarFactory invokes the TP::create_object_reference()
operation, passing the Registrar interface name, a unique OID, and the
NVlist.

4. WebLogic Enterprise compares the contents of the routing tables with the value
in the NVlist to determine a group ID.

5. WebLogic Enterprise inserts information about the group into the object
reference.

When the client application subsequently invokes an object using the object reference,
WebLogic Enterprise routes the request to the group specified in the object reference.

Note: If you use the process-entity design pattern, you should use caution in how you
implement factory-based routing. The object can service only those entities
that are contained in the group’s database.

Additional Design Considerations

This topic includes the following sections:

n About the Additional Design Considerations

n Instantiating the Registrar and Teller Objects

n Ensuring That Student Registration Occurs in the Correct Server Group

n Ensuring That the Teller Object Is Instantiated in the Correct Server Group

About the Additional Design Considerations

When designing the Registrar and Teller objects, you should ensure that:

n The Registrar and Teller objects work properly for the Production
deployment environment; namely, across multiple replicated server processe
and multiple groups. Given that the University and Billing server processes a
replicated, the design must consider how these two objects should be
instantiated.
Scaling, Distributing, and Tuning Applications 2-17

2 Scaling CORBA C++ Server Applications
n Client requests for registration and billing operations for a given student go to
the correct server group, given that the two server groups in the Production
WebLogic Enterprise domain each deal with different databases.

These objects must have unique object IDs (OIDs) and must be method-bound (that is,
they must have the method activation policy assigned to them).

Instantiating the Registrar and Teller Objects

In the University server applications that are less sophisticated than the Production
sample application, the run-time behavior of the Registrar and Teller objects was
simpler:

n Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

n Since there was only one server group running in the WebLogic Enterprise
domain, and only one University and Billing server process in the group, all
client requests were directed to the same objects. As multiple client requests
arrived in the WebLogic Enterprise domain, these objects each processed one
client request at one time.

n Because there was only one instance of each object in the server processes in
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, because the University and Billing server processes are now replicated,
WebLogic Enterprise must be able to differentiate among multiple instances of the
Registrar and Teller objects. For example, if there are two University server
processes running in a group, WebLogic Enterprise must have a means to distinguish
between the Registrar object running in the first University server process and the
Registrar object running in the second University server process. To distinguish
multiple instances of these objects, each object instance must be unique.

To make each Registrar and Teller object unique, the factories for those objects
must change the way in which they make object references to them. For example, when
the RegistrarFactory object in the Basic sample application created an object
reference to the Registrar object, the TP::create_object_reference()
2-18 Scaling, Distributing, and Tuning Applications

Additional Design Considerations
operation specified an OID that consisted only of the string registrar. However, in
the Production sample application, the same TP::create_object_reference()
operation uses a generated unique OID instead.

As a result of giving each Registrar and Teller object a unique OID, multiple
instances of these objects may be running simultaneously in the WebLogic Enterprise
domain. This characteristic is typical of the stateless object model, and is an example
of how the WebLogic Enterprise domain can be highly scalable while it offers high
performance.

Finally, because unique Registrar and Teller objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remain idle in memory. The Production server application addresses this
issue by assigning the method activation policy to these two objects in the
Implementation Configuration File (ICF).

Ensuring That Student Registration Occurs in the Correct
Server Group

The primary scalability advantage of using replicated server groups is being able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the University sample applications, it is critical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide on how many databases to use.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information is identical. Having
identical course information in both databases is not a problem because the course
information is read-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain
Scaling, Distributing, and Tuning Applications 2-19

2 Scaling CORBA C++ Server Applications

tudent.

ce

oup
identical data for students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updates to
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. How factory-based
routing is implemented in the RegistrarFactory object depends on the way in which
references to Registrar objects are created.

For example, when the client application sends a request to the RegistrarFactory
object to get an object reference to a Registrar object, the client application includes
a student ID in that request. The client application must use the object reference that
the RegistrarFactory object returns to make all subsequent invocations on a
Registrar object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes the get_student_details() operation on the
Registrar object, the client application can be assured that the Registrar object is
active in the server group associated with the database containing data for that s

To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes the find_registrar() operation on the
RegistrarFactory object. Included in this invocation is the student ID 1000003.

2. WebLogic Enterprise routes the client request to any RegistrarFactory object.

3. The RegistrarFactory object uses the student ID to create an object referen
to a Registrar object in ORA_GRP1, based on the routing information in the
UBBCONFIG file, and returns that object reference to the client application.

4. The client application invokes the register_for_courses() operation on the
Registrar object.

5. WebLogic Enterprise receives the client request and routes it to the server gr
specified in the object reference. In this case, the client request goes to the
University server process in ORA_GRP1, which is on Production Machine 1.

6. The University server process instantiates a Registrar object and sends the
client invocation to it.
2-20 Scaling, Distributing, and Tuning Applications

Additional Design Considerations

 the
perly.
s
es to
le as
t and
The RegistrarFactory object from the preceding scenario returns to the client
application a unique reference to a Registrar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing student
data for students with IDs in the range 100001 to 100005. Therefore, when the client
application sends subsequent requests to this Registrar object on behalf of a given
student, the Registrar object interacts with the correct database.

Ensuring That the Teller Object Is Instantiated in the
Correct Server Group

When the Registrar object needs a Teller object, the Registrar object invokes the
TellerFactory object, using the TellerFactory object reference cached in the
University Server object.

However, because factory-based routing is used in the TellerFactory object, the
Registrar object passes the student’s account number when the Registrar object
requests a reference to a Teller object. This way, the TellerFactory object creates
a reference to a Teller object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that
system administrator configures the server groups and the databases pro
In particular, the system administrator must make sure that a match exist
between the routing criteria specified in the routing tables and the databas
which requests using those criteria are routed. Using the Production samp
an example, the database in a given group must contain the correct studen
account information for the requests that are routed to that group.
Scaling, Distributing, and Tuning Applications 2-21

2 Scaling CORBA C++ Server Applications
Scaling the Application Further

In the future, the system administrator of the Production sample application may want
to add capacity to the WebLogic Enterprise domain. For example, the University may
eventually experience a large increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system, encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator can continually add capacity by:

n Replicating the server groups in the Production sample application across
additional machines.

The system administrator must modify the UBBCONFIG file to specify the
additional server groups, the server processes that run in those groups, and the
machines on which the server groups run.

n Changing the factory-based routing tables.

For example, instead of routing to the two existing groups in the Production
sample application, the system administrator can modify the routing rules in the
UBBCONFIG file to partition the application further among additional server
groups added to the WebLogic Enterprise domain. Any modification to the
routing tables must match the information for the configured server groups and
machines in the UBBCONFIG file.

Note: If you add capacity to an existing WebLogic Enterprise application that uses a
database, you must also consider the impact on how the database is set up,
particularly when you are using factory-based routing. For example, if the
Production sample application is distributed across six machines, the database
on each machine must be set up appropriately and in accordance with the
routing tables in the UBBCONFIG file.
2-22 Scaling, Distributing, and Tuning Applications

CHAPTER

rise.
3 Scaling CORBA Java
Server Applications

Using the JDBC Bankapp sample application as an example, this topic demonstrates
scaling a WebLogic Enterprise CORBA Java application to increase its processing
capability. This topic includes the following sections:

n About Scaling the JDBC Bankapp Sample Application

n Scaling with Object State Management

n Scaling by Replicating Server Processes and Server Groups

n Scaling with Factory-based Routing

n Additional Design Considerations

n Scaling the Application Further

Before you begin, be sure to read Chapter 1, “Scaling WebLogic Enterprise
Applications,” for a comprehensive introduction to tuning and scaling WebLogic
Enterprise applications. For information about building and running the JDBC
Bankapp sample application, see the Bankapp Sample Using JDBC in the WebLogic
Enterprise online documentation.

Note: Some of the Bankapp examples in this topic include sample code that is not
implemented in the sample Bankapp files that ship with WebLogic Enterp
Scaling, Distributing, and Tuning Applications 3-1

3 Scaling CORBA Java Server Applications
About Scaling the JDBC Bankapp Sample
Application

This topic includes the following sections:

n Design Goals

n How the Application Has Been Scaled

Design Goals

The primary design goal of the JDBC Bankapp sample application is to significantly
increase the number of client applications it can accommodate by:

n Processing in parallel, and on one machine, client requests on multiple objects
that implement the same interface.

n Directing requests on behalf of certain bank automated teller machines (ATMs)
to one machine, and other ATMs to other machines.

n Adding more machines to share the processing load.

How the Application Has Been Scaled

To accommodate these design goals, the JDBC Bankapp sample application has been
scaled by:

n Implementing a stateless object model to scale up the number of client requests
the server process can manage simultaneously.

n Replicating the Teller and TellerFactory server processes within the groups
in which they are configured.

n Replicating the groups described previously on an additional machine.
3-2 Scaling, Distributing, and Tuning Applications

Scaling with Object State Management

es

n
 on

 is

es
about

ts
n Assigning unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups:

l TellerFactory

l Teller

This makes these objects available on a per-client application (and not
per-process) basis, thereby accommodating a parallel processing capability.

n Implementing factory-based routing to direct client requests on behalf of some
ATMs to one machine, and other ATMs to another machine.

n Setting up threads for the Teller object. For related information, also see
“Using Multithreaded Java Servers (Java only)” on page 1-13.

The sections that follow describe how the JDBC Bankapp sample application us
replicated server processes and server groups, object state management, and
factory-based routing to meets it scalability goals.

Scaling with Object State Management

This section describes how object state management is used with the Teller objects
in the Bankapp sample application to increase the application’s scalability. For a
introduction to object state management, see “Using Object State Management”
page 1-4.

For example, the Bankapp sample Teller object could use the method activation
policy. The method activation policy assigned to this object means that the object
activated whenever a client request arrives for it. The Teller object remains in
memory only for the duration of one client invocation, which is appropriate in cas
where the Process-Entity design pattern is recommended. For more information
the Process-Entity design pattern, see the technical article Process-Entity Design
Pattern.

As the number of clients issuing requests on the Teller object increases, WebLogic
Enterprise can:

n Instantiate the Teller object for each client request that arrives. Client reques
are not queued for an existing Teller object, which would likely be the case if
the Teller object were process-bound.
Scaling, Distributing, and Tuning Applications 3-3

3 Scaling CORBA Java Server Applications
n Perform load balancing by instantiating the Teller object on the least busy
server process or group.

Scaling by Replicating Server Processes and
Server Groups

This topic includes the following sections:

n Replicating Server Processes in the Bankapp Application

n Replicating Server Groups in the Bankapp Application

n Configuring Replicated Server Processes and Groups in the Bankapp
Application

This topic describes how the BankApp server application was scaled by replicating
server processes and server groups. For an introduction to this topic, see “Replicating
Server Processes and Server Groups” on page 1-9.

Replicating Server Processes in the Bankapp Application

Figure 3-1 shows the Bankapp server application replicated in the BANK_GROUP1
group. The replicated servers are running on a single machine.
3-4 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups
Figure 3-1 Replicated Servers in the Bankapp Sample

When a request arrives for this group, WebLogic Enterprise has several server
processes available that can process the request, and WebLogic Enterprise can choose
the server process that is the least busy.

In Figure 3-1, note the following:

n At any time, there may be no more than one instance of the TellerFactory
object within a given server process.

n There may be any number of Teller objects in any Bankapp server process.

Production Machine

BANK_GROUP1

Database
RDBMS

Transaction
Manager Server

TellerFactory

Teller

Bankapp Server

TellerFactory

Teller

Bankapp Server2
Scaling, Distributing, and Tuning Applications 3-5

3 Scaling CORBA Java Server Applications

 on
he
ted,

ased
see
Replicating Server Groups in the Bankapp Application

Figure 3-2 shows the Bankapp sample application groups replicated on another
machine, as specified in the application’s UBBCONFIG file.

Figure 3-2 Replicating Server Groups Across Machines

Note: In the simple example shown in Figure 3-2, the content of the databases
Production Machines 1 and 2 is identical. Each database contains all of t
account records for all of the account IDs. Only the processing is distribu
based on the ATM (atmID field). A more realistic example would distribute
the data and processing based on ranges of bank account IDs.

For more information about how the Bankapp sample application uses factory-b
routing to distribute the application’s processing load across multiple machines,
“Scaling with Factory-based Routing” on page 3-10.

Production Machine 1

BANK_GROUP1

TellerFactory

Teller

Bankapp Server

Database

RDBMS
Transaction

Manager
Server

Production Machine 2

BANK_GROUP2

TellerFactory

Teller

Bankapp Server

Database

RDBMS
Transaction

Manager
Server
3-6 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups
Configuring Replicated Server Processes and Groups in
the Bankapp Application

Listing 3-1 shows excerpts from the GROUPS and SERVERS sections of the UBBCONFIG
file for a Bankapp sample application.

Note: These configuration settings are not used with the Bankapp sample provided
with the WebLogic Enterprise software.

Listing 3-1 Excerpts from GROUPS and SERVERS Section of UBBCONFIG

*RESOURCES
 IPCKEY 55432
 DOMAINID simple
 MASTER SITE1
 MODEL SHM
 LDBAL Y

*MACHINES
 "TRIXIE"
 LMID = SITE1
 APPDIR = "c:\bankapp\jdbc\."
 TUXCONFIG = "c:\bankapp\jdbc\.\tuxconfig"
 TUXDIR = "c:\m3dir"
 MAXCLIENTS = 10

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
 BANK_GROUP2
 LMID = SITE1
 GRPNO = 3

*SERVERS
 # By default, restart a server if it crashes, up to 5 times
 # in 24 hours.
 #
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
Scaling, Distributing, and Tuning Applications 3-7

3 Scaling CORBA Java Server Applications

 # Start the Tuxedo System Event Broker. This event broker
 # must be started before any servers providing the
 # NameManager Service.
 #
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 # TMFFNAME is a M3 provided server that runs the
 # object-transactional management services. This includes the
 # NameManager and FactoryFinder services.

 # The NameManager service is a M3-specific service
 # that maintains a mapping of application-supplied names to
 # object references.

 # Start the NameManager Service (-N option). This name
 # manager is being started as a Master (-M option).
 #

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 # Start a slave NameManager Service
 #

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 # Start the FactoryFinder (-F) service
 #

 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -N -F"

 # Start the JavaServer in Bank_Group1
 #
 JavaServer
 SRVGRP = BANK_GROUP1
 SRVID = 5
 CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
 SYSTEM_ACCESS=FASTPATH
3-8 Scaling, Distributing, and Tuning Applications

Scaling by Replicating Server Processes and Server Groups
 RESTART = N

 # Start the JavaServer in Bank_Group2
 #

 JavaServer
 SRVGRP = BANK_GROUP2
 SRVID = 6
 CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
 SYSTEM_ACCESS=FASTPATH
 RESTART = N

 # Start the listener for IIOP clients
 #
 # Specify the host name of your server machine as
 # well as the port. A typical port number is 2500
 #

 ISL
 SRVGRP = SYS_GRP
 SRVID = 7
 CLOPT = "-A -- -n //TRIXIE:2468"

*SERVICES

*INTERFACES
 "IDL:beasys.com/BankApp/Teller:1.0"
 FACTORYROUTING=atmID

*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1
Scaling, Distributing, and Tuning Applications 3-9

3 Scaling CORBA Java Server Applications

e

g in

 the
The
pp

Scaling with Factory-based Routing

This topic includes the following sections:

n About Factory-based Routing in the Bankapp Application

n Configuring Factory-based Routing in the UBBCONFIG File

n Implementing Factory-based Routing in a Factory

n What Happens at Run Time

This topic describes how the BankApp server application was scaled using
factory-based routing. For an introduction to factory-based routing, see “Using
Factory-based Routing (CORBA only)” on page 1-16.

About Factory-based Routing in the Bankapp
Application

You can use factory-based routing to expand the load-balancing and scalability
features of WebLogic Enterprise. In the Bankapp sample application, you can us
factory-based routing to send requests to a subset of ATMs to one machine, and
requests for another subset of ATMs to another machine. As you increase your
application’s processing capability, you can easily modify the factory-based routin
your application to add more machines.

The primary design consideration regarding implementing factory-based routing in
Bankapp sample application is in choosing the value on which routing is based.
following sections describe how factory-based routing works in the JDBC Banka
sample application. Client application requests to the Teller object are routed based
on a teller number:

n Requests for one subset of teller numbers are routed to one group.

n Requests on behalf of another subset of teller numbers are routed to another
group.
3-10 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing
Configuring Factory-based Routing in the UBBCONFIG
File

The UBBCONFIG file must specify the following data in the INTERFACES and ROUTING
sections, as well as how groups and machines are identified.

1. The INTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the kinds of
criteria on which the interface routes. This section specifies the routing criteria via
an identifier, FACTORYROUTING, as shown in Listing 3-2.

Listing 3-2 Sample INTERFACES Section

*INTERFACES
 "IDL:beasys.com/BankApp/Teller:1.0"
 FACTORYROUTING = atmID

Listing 3-2 shows the fully qualified Interface Repository ID for an interface in
the extended Bankapp sample in which factory-based routing is used. The
FACTORYROUTING identifier specifies the name of the routing value, atmID.

2. The ROUTING section specifies the parameters in Table 3-1 for each routing value.

Table 3-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Bankapp sample, the type of routing
is factory-based routing. Therefore, this parameter is defined as
FACTORY.

FIELD Specifies the name that the factory inserts in the routing value. In the
extended Bankapp sample, the field parameter is atmID.

FIELDTYPE Specifies the data type of the routing value. In the Bankapp sample, the
field type for atmID is LONG.

RANGES Specifies the values that are routed to each group.
Scaling, Distributing, and Tuning Applications 3-11

3 Scaling CORBA Java Server Applications
Listing 3-3 shows the ROUTING section of the UBBCONFIG file used in the
Bankapp sample application.

Listing 3-3 Sample ROUTING Section

*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1

Listing 3-3 shows that Teller object references for ATMs in one range are
routed to one server group, and Teller object references for ATMs in other
ranges are routed to other groups. As shown in Figure 3-2, BANK_GROUP1 and
BANK_GROUP2 reside on different production machines.

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing in the way in which the invocation to the
com.beasys.Tobj.TP.create_object_reference method is implemented.

Listing 3-4 shows the Java binding for this operation.

Listing 3-4 Java Binding for create_object_reference

public static org.omg.CORBA.Object
 create_object_reference(java.lang.String interfaceName,
 java.lang.String stroid,
 org.omg.CORBA.NVList criteria)
 throws InvalidInterface,
 InvalidObjectId
3-12 Scaling, Distributing, and Tuning Applications

Scaling with Factory-based Routing
The criteria specifies a list of named values that can be used to provide
factory-based routing for the object reference. The use of factory-based routing is
optional and is dependent on this argument. Instead of using factory-based routing, you
can pass a value of 0 (zero) for this argument. To implement factory-based routing in
a factory, you need to build the NVlist.

As stated previously, the TellerFactory object in the Bankapp sample application
specifies the value atmID. This value must exactly match the following information in
the UBBCONFIG file:

n The routing name, type, and allowable values specified by the FACTORYROUTING
identifier in the INTERFACES section.

n The routing criteria name, field, and field type specified in the ROUTING section.

Note: Listing 3-5 is not part of the Bankapp sample code, but is included here to
illustrate factory-based routing. The TellerFactory object inserts the bank
account number into the NVlist using the following code.

Listing 3-5 Sample of Factory-Based Routing

// Put the atmID (which is the routing criteria)
// into a CORBA NVList. The atmID comes from the
// tellerName that is passed in as an input parameter;
// tellerName should have the form: Teller<atmID>

int atmID = Integer.parseInt (tellerName.substring(6));
any.insert_long(atmID);

// Create the NVlist and add the atmID to the list.

org.omg.CORBA.NVList criteria = TP.orb().create_list(1);
criteria.add_value("atmID", any, 0);

// Create the object reference.

org.omg.CORBA.Object teller_oref =
 TP.create_object_reference(

 BankApp.TellerHelper.id(), // Repository ID
 tellerName, // Object ID

 criteria // Routing Criteria
);
Scaling, Distributing, and Tuning Applications 3-13

3 Scaling CORBA Java Server Applications
What Happens at Run Time

When you implement factory-based routing in a factory, WebLogic Enterprise
generates an object reference. The following example shows how the client application
gets an object reference to a Teller object when factory-based routing is
implemented:

1. The client application invokes the TellerFactory object, requesting a reference
to a Teller object. The request includes a teller name, which includes an atmID.

2. The TellerFactory inserts the atmID into an NVlist, which is used as the
routing criteria.

3. The TellerFactory invokes the
com.beasys.Tobj.TP::create_object_reference method, passing the
Teller Interface Repository ID, a unique OID, and the NVlist.

4. WebLogic Enterprise compares the content of the routing tables with the value in
the NVlist to determine a group ID.

5. WebLogic Enterprise inserts the group ID into the object reference.

When the client application subsequently invokes an object using the object reference,
WebLogic Enterprise routes the request to the group specified in the object reference.

Note: If you use the process-entity design pattern, you should use caution in how you
implement factory-based routing. The object can service only those entities
that are contained in the group’s database.

Additional Design Considerations

This topic includes the following sections:

n About the Additional Design Considerations

n Instantiating the Teller Object

n Ensuring That Account Updates Occur in the Correct Server Group
3-14 Scaling, Distributing, and Tuning Applications

Additional Design Considerations
About the Additional Design Considerations

When designing the Teller object, you should ensure that:

n The Teller object works properly for the Bankapp deployment environment;
namely, across multiple replicated server processes and multiple groups.

n Client requests for account inquiries, withdrawals, and transfers in a given
account go to the correct server group, given that the four server groups in the
extended Bankapp WebLogic Enterprise domain each interact with different
databases.

These objects must have unique object IDs (OIDs) and must be method-bound (that is,
they must have the method activation policy assigned to them).

Instantiating the Teller Object

Because the extended Bankapp server is now replicated, the WebLogic Enterprise
domain must have be able to differentiate among multiple instances of the Teller
object. For example, if there are two Bankapp server processes running in a group,
WebLogic Enterprise must be able to distinguish between a Teller object running in
the first Bankapp server process and a Teller object running in the second Bankapp
server process. To distinguish multiple instances of these objects, each object instance
must be unique.

To make each Teller object unique, the factories for those objects must change the
way in which they make object references to them. For example, when the
TellerFactory object in the original Bankapp sample application created an object
reference to the Teller object, the
com.beasys.Tobj.TP::create_object_reference method specified an OID that
consisted only of the string tellerName. However, in the extended Bankapp sample
application discussed in this chapter, the same create_object_reference method
uses a generated unique OID instead.

As a result of giving each Teller object a unique OID, multiple instances of these
objects may be running simultaneously in the WebLogic Enterprise domain. This
characteristic is typical of the stateless object model, and is an example of how the
WebLogic Enterprise domain can be highly scalable while it offers high performance.
Scaling, Distributing, and Tuning Applications 3-15

3 Scaling CORBA Java Server Applications
Finally, because unique Teller objects need to be brought into memory for each client
request on them, it is critical that these objects be deactivated when the invocations on
them are completed so that any object state associated with them does not remain idle
in memory. The Bankapp server application addresses this issue by assigning the
method activation policy to the Teller object in the XML-based Server Description
File.

Ensuring That Account Updates Occur in the Correct
Server Group

The primary scalability advantage of using replicated server groups is being able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the JDBC Bankapp sample application, it is
critical that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The JDBC Bankapp sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. How factory-based
routing is implemented in the TellerFactory object depends on how references to
Teller objects are created.

Scaling the Application Further

In the future, the system administrator of the Bankapp sample application may want to
add capacity to the WebLogic Enterprise domain. For example, the bank may
eventually have a large increase in automated teller machines (ATMs). This can be
done without modifying or rebuilding the application.

The system administrator can continually add capacity by:
3-16 Scaling, Distributing, and Tuning Applications

Scaling the Application Further
n Replicating the Bankapp sample application server groups across additional
machines.

The system administrator must modifying the UBBCONFIG file to specify the
additional groups, the server processes that run in those groups, and the
machines on which they run.

n Changing the factory-based routing tables.

For example, instead of routing to the four groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFIG file to
partition the application further among the new groups added to the WebLogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in the UBBCONFIG file.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Bankapp sample application
is distributed across six machines, the database on each machine must be set
up appropriately and in accordance with the routing tables in the UBBCONFIG
file.
Scaling, Distributing, and Tuning Applications 3-17

3 Scaling CORBA Java Server Applications
3-18 Scaling, Distributing, and Tuning Applications

CHAPTER

 well.
.

ise
4 Scaling EJB
Applications

This topic describes the EJB application scaling tasks associated with the EJB
architecture roles specified in Chapter 3 of the Enterprise JavaBeans Specification 1.1,
publish by Sun Microsystems, Inc. The WebLogic Enterprise JavaServer provides an
implementation of the EJB container as defined in this specification.

This topic includes the following sections:

n Scaling Tasks for EJB Providers

n Scaling Tasks for Application Assemblers and Deployers

n Scaling Tasks for System Administrators

Before you begin, be sure to read Chapter 1, “Scaling WebLogic Enterprise
Applications,” for a comprehensive introduction to tuning and scaling WebLogic
Enterprise applications. The concepts in that chapter apply to EJB applications as
The main difference is that factory-based routing is not supported in EJB applications

In addition, for an introduction to using EJB applications in the WebLogic Enterpr
environment, see “Developing WebLogic Enterprise EJB Applications” in Getting
Started.
Scaling, Distributing, and Tuning Applications 4-1

4 Scaling EJB Applications

ans
JB
d
ain.

 method
ithin a
sion
ic

 client
ins

ession
, the
nvoke
iable.
Scaling Tasks for EJB Providers

This topic includes the following sections:

n Using Stateless Session Beans

n Minimizing State Information in Stateful Session Beans

n Using Pooled Connections

n Implementing Methods for Bean Persistence

n Completing Transactions Efficiently

n Implementing the Process-entity Design Pattern

For a general discussion about using stateful and stateless objects, see “Using Object
State Management” on page 1-4.

Using Stateless Session Beans

EJB Providers can increase application scalability by using stateless session be
wherever appropriate. With stateless session beans, the WebLogic Enterprise E
container can freely pool instances, allocate instances as needed, and apply loa
balancing strategies to distribute the load across different servers within the dom

Stateless session beans can be load balanced on a per-request basis. With every
invocation, a stateless session bean can be relocated to the least busy server w
group or across groups within a domain. For more information about stateless ses
beans, see “Types of Beans Supported in WebLogic Enterprise” in “The WebLog
Enterprise JavaBeans Programming Environment” topic in Getting Started.

Although stateless session beans by definition do not have a persistent state for
applications, they can have instance variables that retain values while the EJB rema
in an instance pool on the server. This WebLogic Enterprise feature allows EJB
Providers to implement highly scalable EJBs. For example, suppose a stateless s
bean invokes methods on a CORBA object. Normally, for each method invocation
EJB needs to make two calls: one to obtain an object reference, and another to i
the method. However, the EJB can store the object reference in an instance var
4-2 Scaling, Distributing, and Tuning Applications

Scaling Tasks for EJB Providers
Thereafter, when an application invokes a method on the EJB, it can be retrieved from
the pool if it is available in the pool. The application can then check the instance
variable for a valid value; if it is valid, the application can avoid making an extra call
to obtain the object reference.

Minimizing State Information in Stateful Session Beans

EJB Providers can increase application scalability by minimizing, in stateful session
beans, the state information that must be stored and retrieved during passivation and
reactivation.

Stateful objects (stateful session beans and entity beans) are generally more resource
intensive than stateless objects because they allocate and exclusively reserve resources
during the private conversation with the client. After the state is allocated for an object,
the object remains linked to that server for the duration of the method invocation or the
transaction. Stateful session beans can be load balanced using any server that supports
the bean within the group only (not across groups).

Using Pooled Connections

EJB Providers can increase application scalability by using pooled database
connections. The JDBC connection pool optimizes performance for database
connections by reducing the overhead associated with opening each connection. For
more information about configuring and using JDBC connection pools, see Using
JDBC Connection Pooling.

Implementing Methods for Bean Persistence

To optimize application performance, the WebLogic Enterprise EJB container
manages the passivation and reactivation of stateful objects (stateful session beans and
entity beans) automatically, based on available system resources. The container can
pool instances of a bean and decide when an instance can be removed from the pool to
provide a more efficient use of system resources. The WebLogic Enterprise EJB
container may passivate an object after a method invocation.
Scaling, Distributing, and Tuning Applications 4-3

4 Scaling EJB Applications

iders
sed
, the

 For

, then
tion,
Note: An object will not be passivated while it participates in a transaction. The
WebLogic Enterprise EJB container may passivate it only after the transaction
is completed.

The WebLogic Enterprise EJB container manages load balancing with passivated
objects. After it is passivated, the WebLogic Enterprise EJB container can relocate an
object to the least busy server within the group as long as the object is idle (there are
no pending requests on that object). This is particularly important when the bean
accesses a database using cursors, because these cursors could become invalid after the
passivation (the EJB container can reactivate the bean on a different server).

For stateful session beans and entity beans, EJB Providers can increase application
scalability by implementing the ejbPassivate and ejbActivate methods in an
efficient manner. For more information about persistence in EJB applications, see
“EJBs and Persistence” in “The WebLogic Enterprise JavaBeans Programming
Environment” topic in Getting Started.

Finally, for stateful session beans with container-managed persistence, EJB Prov
should favor using JDBC-based persistence over file-based persistence. File-ba
persistence is generally less scalable. If the client process crashes (for example
network connection is lost or the client machine is turned off), the file is not
automatically removed. An accumulation of these files can slow performance.

Completing Transactions Efficiently

EJB Providers can increase application scalability by completing transactions
efficiently. An object cannot be passivated while it is participating in a transaction.
example, EJB Providers can specify the timeout period for transactions in EJB
applications. If the duration of a transaction exceeds the specified timeout setting
the Transaction Service rolls back the transaction automatically. For more informa
see “Transactions in EJB Applications” in Using Transactions.
4-4 Scaling, Distributing, and Tuning Applications

Scaling Tasks for Application Assemblers and Deployers

’s

 the
te on
Implementing the Process-entity Design Pattern

EJB Providers can increase application scalability by using the process-entity design
pattern instead of entity beans for database access. The process-entity design pattern
moves database access logic onto the server process, which achieves the following
benefits:

n It reduces the server load, as the server no longer needs to manage thousands
(even millions) of entity beans, each requiring transaction overhead.

n It minimizes network traffic between client applications and servers.

For more information, see the technical article Process-Entity Design Pattern.

Scaling Tasks for Application Assemblers
and Deployers

This topic includes the following sections:

n Organizing EJBs in Groups

n Configuring the Persistent Storage Location

n Specifying the Method to Invoke Before Passivation

n Deploying Stateful Session Beans on the IIOP Listener Node

n Configuring the EJB Cache

Application Assemblers and Deployers contribute to the scalability of EJB
applications by determining the optimum combinations of EJBs in an application
EJB JAR files. When partitioning EJBs, Application Assemblers and Deployers
should consider the topology and resource management capabilities provided by
deployment environment. Deployers and system administrators usually collabora
such decisions.
Scaling, Distributing, and Tuning Applications 4-5

4 Scaling EJB Applications
Organizing EJBs in Groups

When deploying EJBs, consider organizing them in particular groups:

n Wherever possible, objects that call each other should be in the same group.

n EJBs that access the same resource manager should be placed on the same group
and might be packaged together in a single EJB JAR file.

Configuring the Persistent Storage Location

Stateful session beans use file-based persistent storage. For stateful session beans, the
WebLogic Enterprise EJB container creates a pstore subdirectory in the $APPDIR
directory to store the state information when stateful bean are passivated. When
deploying WebLogic Enterprise applications, you should locate the pstore directory
in a local file system and not on a NFS mounted directory.

You can change the location of the pstore directory by specifying the
<persistence-store-directory-root> element in the
weblogic-ejb-extensions.xml file, as shown in Listing 4-1.

Listing 4-1 Configuring for Persistent Storage

<persistence-store-descriptor>
 <persistence-store-file>
 <persistence-store-directory-root>
/usr/me/pstore</persistence-store-directory-root>
 </persistence-store-file>
 </persistence-store-descriptor>

For more information about the weblogic-ejb-extensions.xml file, see the
WebLogic Enterprise EJB XML Reference. You can also change this setting with the
WebLogic Enterprise EJB Deployer, as described in Using the WebLogic Enterprise
EJB Deployer.
4-6 Scaling, Distributing, and Tuning Applications

Scaling Tasks for Application Assemblers and Deployers

19.

g off.
 find
 or in a
n is
Specifying the Method to Invoke Before Passivation

If a stateful bean is involved in a transaction, the container loads and stores the bean at
appropriate times during the transaction, but does not activate or passivate the bean. If
a stateful bean is not involved in a transaction, the methods ejbLoad and ejbStore
are called before and after each method invocation on the bean. As stated in the
Enterprise JavaBeans Specification 1.1, these load and store operations ensure that
stale data is not used.

For stateful EJBs, you can specify the EJB method that is called before the EJB is
stored by setting the is-modified-method-name element in the
weblogic-ejb-extensions.xml file. The is-modified-method-name element
points to the method that is called before the EJB is stored. For more information about
the weblogic-ejb-extensions.xml file, see the WebLogic Enterprise EJB XML
Reference. You can also change this setting with the WebLogic Enterprise EJB
Deployer, as described in Using the WebLogic Enterprise EJB Deployer.

Deploying Stateful Session Beans on the IIOP Listener
Node

Stateful session beans are conversational and therefore many messages could go to the
same bean. To reduce traffic across machines, deploy stateful session beans on the
node on which the IIOP Listener (ISL) runs. Clients access the WebLogic Enterprise
EJB container by establishing a network connection and using the RMI on IIOP
protocol to invoke EJBs. The ISL load balances incoming client connections. For more
information about ISL, see “Multiplexing Incoming Client Connections” on page 1-

Configuring the EJB Cache

If an application encounters the weblogic.ejb.internal.CacheFullException
exception for stateful beans, try to change the capacity of the cache or turn cachin
This exception is thrown when the WebLogic Enterprise EJB container does not
any beans that can be flushed (that is, beans in cache are either in a transaction
method invocation). This exception is never raised if caching is off. This exceptio
logged in the ULOG and a RemoteException exception, with a nested
Scaling, Distributing, and Tuning Applications 4-7

4 Scaling EJB Applications

er

teful
org.omg.CORBA.INTERNAL exception, is returned to the client. Any client transaction
involved in the request receiving the system exception CacheFullException will be
rolled back.

EJB caching is enabled by default. Disable EJB caching for individual beans only
when necessary. You can disable caching for an individual bean by setting the
is-cacheable element in the weblogic-ejb-extensions.xml file. For more
information about the weblogic-ejb-extensions.xml file, see the WebLogic
Enterprise EJB XML Reference. You can also change this setting with the WebLogic
Enterprise EJB Deployer, as described in Using the WebLogic Enterprise EJB
Deployer.

Scaling Tasks for System Administrators

System administrators contribute to the scalability of EJB applications by configuring
and tuning the deployment environment for optimum application performance. System
Administrators can increase application performance by:

n Replicating servers and server groups, as described in “Replicating Server
Processes and Server Groups” on page 1-9.

n Using multithreaded Java servers, as described in “Using Multithreaded Java
Servers (Java only)” on page 1-13. In general, EJB applications perform bett
when running on multithreaded Java servers.

n Supporting additional incoming client connections, as described in
“Multiplexing Incoming Client Connections” on page 1-19.

n Removing Orphan Files for File-based Persistence, as described later in this
section.

n Scaling and Tuning the EJB Cache, as described later in this section.

Removing Orphan Files for File-based Persistence

System administrators should periodically remove orphan files associated with sta
session beans that use file-based persistence.
4-8 Scaling, Distributing, and Tuning Applications

Scaling Tasks for System Administrators

ed
w

r the
tion,

ise

gic
Logic
ell as

ing
ateful

riod
e

is the
e

.

e EJB

With file-based persistence, WebLogic Enterprise stores the bean’s state in a file in a
directory, which is either the pstore subdirectory in the $APPDIR directory, or the
directory specified by the setting of the persistence-store-directory-root
XML element in the weblogic-ejb-extensions.xml file. If the client process
crashes (for example, the network connection is lost or the client machine is turn
off), the file is not automatically removed. An accumulation of these files can slo
performance.

System Administrators can create startup scripts that delete these files wheneve
WebLogic Enterprise environment is shut down and restarted. For more informa
see “Starting and Shutting Down Applications” in the Administration Guide. For more
information about monitoring and tuning the performance of a WebLogic Enterpr
system, see “Monitoring a Running System” in the Administration Guide. For more
information about the weblogic-ejb-extensions.xml file, see the WebLogic
Enterprise EJB XML Reference.

Scaling and Tuning the EJB Cache

System administrators can scale and tune EJB applications by using the WebLo
Enterprise caching features for entity beans and stateful session beans. The Web
Enterprise EJB container supports caching beans across method invocations as w
across transactions. This capability improves performance by significantly reduc
the frequency of beans being passivated. EJB caching is enabled by default for st
beans.

A cached stateful bean is normally stored (passivated) only if it is unused for a pe
of time. You can configure an optional cache flush time, if desired. A bean may b
considered unused if other beans are being used more frequently and the bean
least recently used bean. The bean may also be passivated if the cache flush tim
occurs and the bean is not presently active within a method call or a transaction

Mechanisms For Managing the WebLogic Enterprise EJB Cache

EJB caching is enabled by default for stateful session beans and entity beans in th
container. You can set up caching using the following mechanisms:

n Via the WebLogic EJB extensions to the deployment descriptor DTD. You can
use the is-cacheable element to disable caching for individual beans. For
more information, see “Configuring the EJB Cache” on page 4-7.
Scaling, Distributing, and Tuning Applications 4-9

4 Scaling EJB Applications

ache is

e in

many
ined

o the
s load
es a
es

n Via JavaServer parameters in the UBBCONFIG file. You can configure the
following two settings for bean caching:

l MAXEJBCACHE is the maximum number of beans that can be cached at any
one time.

l EJBCACHE_FLUSH is the number of minutes between cache flushes, when the
bean cache is to be flushed by the system. You can specify the number of
minutes between cache flushes. At the interval specified by the cache flush
time, all beans that are not currently in a transaction or a method invocation
are passivated and their memory is freed.

For more information about these parameters, see “Creating a Configuration
File” in the Administration Guide.

Tuning the Cache

Sizing the bean cache correctly is very important. If you are using multithreaded
servers, the cache should at least be the number of threads in the server. If the c
smaller than the number of threads, applications could encounter the
CacheFullException exception because all the beans (one per thread) are activ
a method invocation.

The optimum number of beans to maintain in the cache should be based on how
beans can be active simultaneously in the server process. This number is determ
by:

n How long a bean will remain active in a server before it can be removed or is
dormant.

n How many threads the server has.

Note the following regarding tuning and scaling the bean cache:

n While a bean is cached in a server process, all requests for the bean return t
server process that has cached the bean. Caching a bean effectively disable
balancing for the bean. The advantage of caching a bean is that caching sav
lot of activation and passivation, which involves persistent storage I/O and us
Java File Serialization to store conversational state.

Every bean is passivated immediately after creation to give an opportunity to
balance the load. This approach incurs at least two I/O cycles during the
lifecycle of a stateful bean, even though the lifecycle may be relatively short.
4-10 Scaling, Distributing, and Tuning Applications

Scaling Tasks for System Administrators

s.
This could change in the future based on customer input regarding the pattern in
which stateful beans are used.

In general, BEA recommends not flushing the cache frequently. However, after a
cache flush, all the beans not then active (in a method or a transaction) are again
available for load balancing to servers supporting the bean.

n If a server process in which a cached bean exists crashes, there is no recovery of
that bean’s state.

n Every bean cache entry potentially uses an Active Object Map (AOM) entry.
The default 1,000 objects in the AOM parameter specified in the UBBCONFIG file
may be insufficient if you have many server processes with many large cache
Scaling, Distributing, and Tuning Applications 4-11

4 Scaling EJB Applications
4-12 Scaling, Distributing, and Tuning Applications

CHAPTER

aling
5 Distributing
Applications

This topic includes the following sections:

n Why Distribute an Application?

n Using Data-dependent Routing (BEA Tuxedo Servers Only)

n Configuring the UBBCONFIG File

n Configuring the factory_finder.ini (CORBA Applications Only)

n Modifying the Domain Gateway Configuration File to Support Routing

This topic describes how to distribute applications in the WebLogic Enterprise
environment, using a CORBA application as an example. However, the concepts apply
to EJB applications as well. For more information about EJB applications, see “Sc
Tasks for Application Assemblers and Deployers” on page 4-5.
Scaling, Distributing, and Tuning Applications 5-1

5 Distributing Applications
Why Distribute an Application?

This topic includes the following sections:

n About Distributing an Application

n Benefits of a Distributed Application

n Characteristics of Distributing an Application

About Distributing an Application

Distributing an application enables you to select which parts of an application should
be grouped together logically and where these groups should run. You distribute an
application by creating more than one entry in the GROUPS section of the UBBCONFIG
file, and by dividing application resources or tasks among the groups. Creating groups
of servers enables you to partition a very large application into its component business
applications, and to assure that each of these into logical components is of a
manageable size and in an optimal location.

Benefits of a Distributed Application

The benefits of a distributed application include:

n Scalability. To increase the load that an application can sustain:

l Place extra server processes in a group.

l Add machines to the application and redistribute the groups across the
machines.

l Replicate a group onto other machines within the application and use load
balancing.

l Segment a database and use data-dependent routing to reach the groups
dealing with these separate database segments (the BEA Tuxedo system).
5-2 Scaling, Distributing, and Tuning Applications

Why Distribute an Application?

1.

ce

an
up

r

With the WebLogic Enterprise system, you can use factory-based routing to
distribute the processing of a particular CORBA interface across multiple server
groups and, if desired, across multiple machines. This feature allows you to
distribute the processing load, which can prevent the processing bottlenecks that
occur when concurrent, resource-intensive applications compete for the available
CPU, memory, disk I/O, and network resources. For an example of using
factory-based routing, see “Scaling with Factory-based Routing” on page 2-1

For more information about WebLogic Enterprise scalability features, see
Chapter 1, “Scaling WebLogic Enterprise Applications.”

n Ease of Development and Maintenance. The separation of the business
application logic into services or components that communicate through
well-defined messages or interfaces allows both development and maintenan
to be similarly separated and thereby simplified.

n Reliability. When multiple machines are in use and one fails, the remainder c
continue operation. Similarly, when multiple server processes are within a gro
and one fails, the others are available to perform work. Finally, if a machine
should fail, but there are multiple machines within the application, these othe
machines can be used to handle the load.

n Coordination of Autonomous Actions. If you have separate applications, you
can coordinate autonomous actions, as a single logical unit of work, among
applications. Autonomous actions are actions that involve multiple server groups
and multiple resource manager interfaces.

Characteristics of Distributing an Application

A distributed application:

n Enlarges the client and/or server model.

n Establishes multiple server groups.

n Enables transparent access to BEA Tuxedo services or WebLogic Enterprise
interfaces.

n In BEA Tuxedo, allows data-dependent partitioning of data.
Scaling, Distributing, and Tuning Applications 5-3

5 Distributing Applications
n In WebLogic Enterprise, allows partitioning of CORBA objects in multiple
groups across multiple machines, or distributing application factory interfaces
and application interfaces.

n Enables management of multiple resources.

n Supports a networked model.

Using Data-dependent Routing (BEA Tuxedo
Servers Only)

This topic includes the following sections:

n About Data-dependent Routing

n Characteristics of Data-dependent Routing

n Sample Distributed Application

Note: This topic applies to BEA Tuxedo servers only.

About Data-dependent Routing

Data-dependent routing is a mechanism whereby a service request is routed by a client
(or a server acting as a client) to a server within a specific group based on a data value
contained within the buffer that is sent. Within the internal code of a service call, BEA
Tuxedo chooses a destination server by comparing a data field with the routing criteria
it finds in the Bulletin Board shared memory.

For any given service, a routing criteria identifier can be specified in the SERVICES
section of the UBBCONFIG file. The routing criteria identifier (in particular, the
mapping of data ranges to server groups) is specified in the ROUTING section.
5-4 Scaling, Distributing, and Tuning Applications

Using Data-dependent Routing (BEA Tuxedo Servers Only)
Characteristics of Data-dependent Routing

Data-dependent routing has the following characteristics:

n The service request assigned to a server in the group is based on a data value.

n Routing uses the Bulletin Board criteria and occurs in a server call.

n The routing criteria identifier for a service is specified in the SERVICES section
of the UBBCONFIG file.

n The routing criteria identifier is defined in the ROUTING section of the
UBBCONFIG file.

Sample Distributed Application

Table 5-1 illustrates how client requests are routed to servers. In this example, a
banking application called bankapp uses data-dependent routing. For bankapp, there
are three groups (BANKB1, BANKB2, and BANKB3), and two routing criteria
(Account_ID and Branch_ID). The services WITHDRAW, DEPOSIT, and INQUIRY are
routed using the Account_ID field. The services OPEN and CLOSE are routed using the
Branch_ID field.

Table 5-1 Data Dependent Routing Criteria for Sample Distributed Application

Server Group Routing Criteria Services

BANKB1 Account_ID: 10000 - 49999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 1 - 4 OPEN and CLOSE

BANKB2 Account_ID: 50000 - 79999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 5 - 7 OPEN and CLOSE

BANKB3 Account_ID: 80000 -
109999

WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 8 - 10 OPEN and CLOSE
Scaling, Distributing, and Tuning Applications 5-5

5 Distributing Applications

for
in a

r
ame
Configuring the UBBCONFIG File

This topic includes the following sections:

n About the UBBCONFIG File in Distributed Applications

n Modifying the GROUPS Section

n Modifying the SERVICES Section

n Creating the ROUTING Section

n Example of UBBCONFIG Sections in a Distributed Application

For more information about the UBBCONFIG file, see “Creating a Configuration File”
in the Administration Guide.

About the UBBCONFIG File in Distributed Applications

The UBBCONFIG file contains a description of either data-dependent routing (BEA
Tuxedo) or factory-based routing (WebLogic Enterprise CORBA), as follows:

n The GROUPS section is populated with as many server groups as are required
distributing the system. This allows the system to route a request to a server
specific group. These groups can all reside on the same site (SHM mode) or, if
there is networking, the groups can reside on different sites (MP mode).

n For data-dependent routing in BEA Tuxedo, the SERVICES section must list the
routing criteria for each service that uses the ROUTING parameter.

Note: If a service has multiple entries, each with a different SRVGRP parameter,
all such entries must set ROUTING the same way to ensure consistency fo
that service. A service can route only on one field, which must be the s
for all the same services.

n For factory-based routing in WebLogic Enterprise, the INTERFACES section must
list the name of the routing criteria for each CORBA interface that uses the
FACTORYROUTING parameter. This parameter is set to the name of a routing
criteria defined in the ROUTING section.
5-6 Scaling, Distributing, and Tuning Applications

Configuring the UBBCONFIG File
n Add a ROUTING section to the configuration file to show mappings between data
ranges and groups so that the system can send the request to a server in a
specific group. Each ROUTING section item contains an identifier that is used in
the INTERFACES section (for WebLogic Enterprise) or in the SERVICES section
(for BEA Tuxedo).

Modifying the GROUPS Section

The parameters in the GROUPS section implement two important aspects of distributed
transaction processing:

n They associate a group of servers with a particular LMID and a particular
instance of a resource manager.

n By allowing a second LMID to be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the MIGRATE
option is specified.

Table 5-2 describes the parameters in the GROUPS section.

Table 5-2 Parameters Specified in the GROUPS Section

Parameter Meaning

LMID LMID must be assigned in the MACHINES section to indicate that
this server group runs on this particular machine. A second LMID
value can be specified (separated from the first by a comma) to
name an alternate machine to which this server group can be
migrated if the MIGRATE option has been specified. Servers in the
group must specify RESTART=Y to migrate.

GRPNO Associates a numeric group number with this server group. The
number must be greater than zero (0) and less than 30000. It must
be unique among entries in the GROUPS section in this
configuration file. (Required)

TMSNAME Specifies which transaction management server (TMS) should be
associated with this server group.
Scaling, Distributing, and Tuning Applications 5-7

5 Distributing Applications
Modifying the SERVICES Section

The SERVICES section contains parameters that control the way application services
are handled. An entry line in this section is associated with a service by its identifier
name. Because the same service can be link edited with more than one server, the
SRVGRP parameter is provided to tie the parameters for an instance of a service to a
particular group of servers.

TMSCOUNT Specifies how many copies of TMSNAME should be started for this
server group. The minimum value is 2. If not specified, the
default is 3. All TMSNAME servers started for a server group are
automatically set up in an MSSQ set. (Optional)

OPENINFO Specifies information needed to open a particular instance of a
particular resource manager, or it indicates that such information
is not required for this server group. When a resource manager is
named in the OPENINFO parameter, information such as the
name of the database and the access mode is included. The entire
value string must be enclosed in double quotes and must not be
more than 256 characters. The format of the OPENINFO string is
dependent on the requirements of the vendor providing the
underlying resource manager. The string required by the vendor
must be prefixed with rm_name:, which is the published name of
the vendor’s transaction (XA) interface followed immediately by
a colon (:).

The OPENINFO parameter is ignored if TMSNAME is not set or is
set to TMS. If TMSNAME is set but the OPENINFO string is set to
the null string ("") or if this parameter does not appear on the
entry, it means that a resource manager exists for the group but
does not require any information for executing an open operation.

CLOSEINFO Specifies information the resource manager needs when closing a
database. The parameter can be omitted or the null string can be
specified. The default is the null string.

Table 5-2 Parameters Specified in the GROUPS Section (Continued)

Parameter Meaning
5-8 Scaling, Distributing, and Tuning Applications

Configuring the UBBCONFIG File
Parameters to Modify

Three parameters in the SERVICES section are particularly related to DTP: ROUTING,
AUTOTRAN, and TRANTIME.

Table 5-3 describes the parameters in the SERVICES section.

Note: AUTOTRAN and TRANTIME apply to CORBA and RMI applications only. For
EJB applications, the AUTOTRAN parameter is ignored and the transaction
timeout is specified in the <trans-timeout-seconds> XML element in the
weblogic-ejb-extensions.xml file. For more information, see
“Transactions in EJB Applications” in Using Transactions.

Sample SERVICES Section

Listing 5-1 shows a sample SERVICES section.

Listing 5-1 Sample SERVICES Section

*SERVICES

WITHDRAW ROUTING=ACCOUNT_ID

Table 5-3 Parameters Specified in the SERVICES Section

Parameter Meaning

ROUTING Points to an entry in the ROUTING section where data-dependent
routing is specified for transactions that request this service.

AUTOTRAN Determines whether a transaction should be started automatically
if a message received by this service is not already in transaction
mode.The default is N. Use of the parameter should be
coordinated with the programmers that code the services for your
application. CORBA applications only.

TRANTIME Specifies a timeout value, in seconds, for transactions
automatically started in this service. The default is 30 seconds.
Required only if AUTOTRAN=Y and another timeout value is
needed. CORBA and RMI applications only.
Scaling, Distributing, and Tuning Applications 5-9

5 Distributing Applications

the
DEPOSIT ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID

Creating the ROUTING Section

For information about ROUTING parameters that support BEA Tuxedo data-dependent
routing or the WebLogic Enterprise factory-based routing, see “Creating a
Configuration File” in the Administration Guide.

Example of UBBCONFIG Sections in a Distributed
Application

Listing 5-2 shows a sample UBBCONFIG file that contains the GROUPS, SERVICES, and
ROUTING sections of a configuration file to accomplish data-dependent routing in
BEA Tuxedo system.

Listing 5-2 Sample UBBCONFIG File

*GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
*SERVICES
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID
CLOSE_ACCT ROUTING=BRANCH_ID
#
*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MIN - 9999:*,
 10000-49999:BANKB1,
 50000-79999:BANKB2,
 80000-109999:BANKB3,
 :”
5-10 Scaling, Distributing, and Tuning Applications

Configuring the factory_finder.ini (CORBA Applications Only)

dify
 the
c
BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”
 RANGES=”MIN - 0:*,
 1-4:BANKB1,
 5-7:BANKB2,
 8-10:BANKB3,
 :”

Configuring the factory_finder.ini (CORBA
Applications Only)

For CORBA applications, to configure factory-based routing across multiple domains,
you must configure the factory_finder.ini file to identify factory objects that are
used in the current (local) domain but that are resident in a different (remote) domain.
For more information, see “Configuring Multiple Domains (WebLogic Enterprise
System)” in the Administration Guide.

Modifying the Domain Gateway
Configuration File to Support Routing

This topic includes the following sections:

n About the Domain Gateway Configuration File

n Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA
Tuxedo Only)

This section is specific to BEA Tuxedo and explains how and why you need to mo
the domain gateway configuration to support routing. For more information about
domain gateway configuration file, see “Configuring Multiple Domains (WebLogi
Enterprise System)” in the Administration Guide.
Scaling, Distributing, and Tuning Applications 5-11

5 Distributing Applications

ce
About the Domain Gateway Configuration File

The Domain gateway configuration information is stored in a binary file called
BDMCONFIG. The DMCONFIG file (ASCII) is created and edited with any text editor.
The compiled BDMCONFIG file can be updated while the system is running by using the
dmadmin(1) command.

You must have one BDMCONFIG file for each BEA Tuxedo application that requires the
Domains functionality. System access to the BDMCONFIG file is provided through the
Domains administrative server, DMADM(5). When a gateway group is booted, the
gateway administrative server, GWADM(5), requests from the DMADM server a copy of the
configuration required by that group. The GWADM server and the DMADM server also
ensure that run-time changes to the configuration are reflected in the corresponding
Domain gateway groups.

Note: For more information about modifying the DMCONFIG file, see “Configuring
Multiple Domains (WebLogic Enterprise System)” in the Administration
Guide.

Parameters in the DM_ROUTING Section of the
DMCONFIG File (BEA Tuxedo Only)

The DM_ROUTING section provides information for data-dependent routing of servi
requests using FML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the
DM_ROUTING section have the form CRITERION_NAME, where CRITERION_NAME is the
(identifier) name of the routing entry specified in the SERVICES section. The
CRITERION_NAME entry may contain no more than 15 characters.

Parameters to Specify

Table 5-4 describes the parameters in the DM_ROUTING section.
5-12 Scaling, Distributing, and Tuning Applications

Modifying the Domain Gateway Configuration File to Support Routing
Table 5-4 Parameters Specified in the DM_ROUTING Section

Parameter Description

FIELD = identifier Specifies the name of the routing field. It must contain 30
characters or fewer. This field is assumed to be a field name
identified in an FML field table (for FML buffers) or an FML
VIEW table (for VIEW, X_C_TYPE, or X_COMMON buffers). The
FLDTBLDIR and FIELDTBLS environment variables are used
to locate FML field tables; the VIEWDIR and VIEWFILES
environment variables are used to locate FML VIEW tables. If a
field in an FML32 buffer is used for routing, it must have a field
number less than or equal to 8191.

BUFTYPE =
"type1[:subtype1[
,subtype2 . . .
]][;type2[:subtyp
e3[, . . .]]] . .
."

Specifies list of types and subtypes of data buffers for which this
routing entry is valid. The types are restricted to FML, VIEW,
X_C_TYPE, and X_COMMON.

No subtype can be specified for type FML, and subtypes are
required for the other types (* is not allowed).

Duplicate type/subtype pairs cannot be specified for the same
routing criteria name; more than one routing entry can have the
same criteria name as long as the type/subtype pairs are unique.
This parameter is required.

If multiple buffer types are specified for a single routing entry,
the data types of the routing field for each buffer type must be
the same. (If the field value is not set (for FML buffers), or does
not match any specific range, and a wildcard range has not been
specified, then an error is returned to the application process that
requested the execution of the remote service.)
Scaling, Distributing, and Tuning Applications 5-13

5 Distributing Applications
Routing Field Description

The routing field can be of any data type supported in FML or VIEW. A numeric routing
field must have numeric range values, and a string routing field must have string range
values.

String range values for string, carray, and character field types must be placed inside a
pair of single quotation marks and cannot be preceded by a sign. Short and long integer
values are a string of digits, optionally preceded by a plus (+) or minus (-) sign.

RANGES
="range1:rdom1[,r
ange2:rdom2 ...]"

Specifies the ranges and associated remote domain names
(RDOM) for the routing field. The string must be enclosed in
double quotes, with the format of a comma-separated ordered
list of range/RDOM pairs.

A range is either a single value (signed numeric value or
character string in single quotes), or a range of the form lower -
upper (where lower and upper are both signed numeric values or
character strings in single quotes). The value of lower must be
less than or equal to upper. A single quote embedded in a
character string value (such as “O'Brien”), must be preceded
by two backslashes (“O\\'Brien”).

n Use MIN to indicate the minimum value for the data type of
the associated FIELD . For strings and carrays, it is the null
string; for character fields, it is 0; for numeric values, it is
the minimum numeric value that can be stored in the field.

n Use MAX to indicate the maximum value for the data type of
the associated FIELD . For strings and carrays, it is
effectively an unlimited string of octal-255 characters; for a
character field, it is a single octal-255 character; for numeric
values, it is the maximum numeric value that can be stored
in the field.

Thus, MIN - -5 is all numbers less than or equal to -5 , and
6 - MAX is all numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of a range
indicates any values not covered by the other ranges previously
seen in the entry. Only one wildcard range is allowed per entry
and it should be last (ranges following it are ignored).

Table 5-4 Parameters Specified in the DM_ROUTING Section (Continued)

Parameter Description
5-14 Scaling, Distributing, and Tuning Applications

Modifying the Domain Gateway Configuration File to Support Routing
Floating point numbers are of the form accepted by the C compiler or atof(): an
optional sign, followed by a string of digits optionally containing a decimal point, and
an optional e or E followed by an optional sign or space, and an integer.

When a field value matches a range, the associated RDOM value specifies the remote
domain to which the request should be routed. An RDOM value of * indicates that the
request can go to any remote domain known by the gateway group. Within a
range/RDOM pair, the range is separated from the RDOM by a : (colon).

Example of a Five-Site Domain Configuration Using Routing

Listing 5-3 shows a configuration file that defines a five-site domain configuration. It
has four bank branch domains communicating with a Central Bank Branch. Three of
the bank branches run within other BEA Tuxedo system domains. The fourth branch
runs under the control of another TP domain, and OSI-TP is used in the communication
with that domain. The example shows the BEA Tuxedo Domain gateway
configuration file from the Central Bank point of view. In the DM_TDOMAIN section,
this example shows a mirrored gateway for b01.

Listing 5-3 DMCONFIG File for a Five-Site Domains Configuration

BEA TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL_DOMAINS
<local domain name> <Gateway Group name> <domain type> <domain id> <log device>
[<audit log>] [<blocktime>]
[<log name>] [<log offset>] [<log size>]
[<maxrdom>] [<maxrdtran>] [<maxtran>]
[<maxdatalen>] [<security>]
[<tuxconfig>] [<tuxoffset>]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 DOMAINID = "BA.CENTRAL01"
Scaling, Distributing, and Tuning Applications 5-15

5 Distributing Applications
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
*DM_REMOTE_DOMAINS
#<remote domain name> <domain type> <domain id>
#
b01 TYPE = TDOMAIN
 DOMAINID = "BA.BANK01"
b02 TYPE = TDOMAIN
 DOMAINID = "BA.BANK02"
b03 TYPE = TDOMAIN
 DOMAINID = "BA.BANK03"
b04 TYPE = OSITP
 DOMAINID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
<local or remote domainname> <network address> [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#<local or remote domain name> <apt> <aeq>
[<aet>] [<acn>] [<apid>] [<aeid>]
[<profile>]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_LOCAL_SERVICES
#<service_name> [<Local Domain name>] [<access control>] [<exported svcname>]
[<inbuftype>] [<outbuftype>]
#

5-16 Scaling, Distributing, and Tuning Applications

Modifying the Domain Gateway Configuration File to Support Routing
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LDOM = c02 ACL = loans
*DM_REMOTE_SERVICES
#<service_name> [<Remote domain name>] [<local domain name>]
[<remote svcname>] [<routing>] [<conv>]
[<trantime>] [<inbuftype>] [<outbuftype>]
#
tlr_add LDOM = c01 ROUTING = ACCOUNT
tlr_bal LDOM = c01 ROUTING = ACCOUNT
tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"
*DM_ROUTING
<routing criteria> <field> <typed buffer> <ranges>
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#<acl name> <Remote domain list>
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04
Scaling, Distributing, and Tuning Applications 5-17

5 Distributing Applications
5-18 Scaling, Distributing, and Tuning Applications

CHAPTER
6 Tuning Applications

This topic includes the following sections:

n Maximizing Application Resources

n When to Use MSSQ Sets (BEA Tuxedo Servers Only)

n Enabling Load Balancing

n Configuring Replicated Server Processes and Groups

n Configuring Multithreaded Java Servers

n Assigning Priorities to Interfaces or Services

n Bundling Services into Servers (BEA Tuxedo Servers Only)

n Enhancing Efficiency with Application Parameters

n Setting Application Parameters

n Determining IPC Requirements

n Measuring System Traffic

For more information about monitoring WebLogic Enterprise applications, see
“Monitoring a Running System” in the Administration Guide.
Scaling, Distributing, and Tuning Applications 6-1

6 Tuning Applications
Maximizing Application Resources

Making correct decisions in the following areas can improve the functioning of your
WebLogic Enterprise or BEA Tuxedo applications:

n When to use MSSQ sets (BEA Tuxedo).

n How to assign load factors.

n How to package interfaces and/or services into servers.

n How to set application parameters.

n How to tune operating system IPC parameters.

n How to detect and eliminate bottlenecks.

When to Use MSSQ Sets (BEA Tuxedo
Servers Only)

Note: MSSQ sets are not supported in WebLogic Enterprise.

Table 6-1 describes when to use MSSQ sets with BEA Tuxedo servers.

Table 6-1 When and When Not to Use MSSQ Sets

Use MSSQ Sets When Do Not Use MSSQ Sets When

There are several, but not too many servers. There is a large number of servers.
(A compromise is to use many MSSQ sets.)

Buffer sizes are not too large. Buffer sizes are large enough to exhaust one
queue.

The servers offer identical sets of services. Services are different for each server.
6-2 Scaling, Distributing, and Tuning Applications

When to Use MSSQ Sets (BEA Tuxedo Servers Only)
The following two analogies help to show why using MSSQ sets is sometimes, but not
always, beneficial:

n An application in which MSSQ sets are used appropriately is similar to a bank,
where all the tellers offer the same services and customers wait in line for the
first available teller. This efficient arrangement ensures the best use of available
services.

n An application in which it is better to avoid using MSSQ sets is similar to a
supermarket, where each cashier offers a different set of services: some accept
cash only, some accept credit cards, and still others serve only customers buying
fewer than ten items.

The messages involved are reasonably
sized.

Long messages are being passed to the
services causing the queue to be exhausted.
This causes nonblocking sends to fail, or
blocking sends to block.

Optimization and consistency of service
turnaround time is paramount.

Optimization and consistency of service
turnaround time is not critical.

Table 6-1 When and When Not to Use MSSQ Sets (Continued)

Use MSSQ Sets When Do Not Use MSSQ Sets When
Scaling, Distributing, and Tuning Applications 6-3

6 Tuning Applications
Enabling Load Balancing

This topic includes the following sections:

n About Load Balancing

n Two Ways to Measure Service Performance Time (BEA Tuxedo Servers Only)

About Load Balancing

On BEA Tuxedo systems, you can control whether a load balancing algorithm is used
on the system as a whole. With load balancing, a load factor is applied to each service
within the system, and you can track the total load on every server. Every service
request is sent to the qualified server that is least loaded.

Note: On WebLogic Enterprise systems, load balancing is enabled automatically.
You cannot disable load balancing by specifying LDBAL=N.

To determine how to assign load factors (located in the SERVICES section), run an
application continually and calculate the average time it takes for each service to be
performed. Assign a LOAD value of 50 (LOAD=50) to any service that requires the
average amount of time that you calculated. Any service taking longer to execute than
the calculated average should have a LOAD>50. Any service taking less to execute than
the calculated average should have a LOAD<50.

A LOAD factor is assigned to each service performed, which keeps track of the total load
of services that each server has performed. Each service request is routed to the server
with the smallest total load. The routing of that request causes the server’s total to be
increased by the LOAD factor of the service requested.

You can also apply LOAD factors to interfaces. For more information about LOAD
factors, see “Creating a Configuration File” in the Administration Guide.
6-4 Scaling, Distributing, and Tuning Applications

Configuring Replicated Server Processes and Groups

st

Two Ways to Measure Service Performance Time
(BEA Tuxedo Servers Only)

You can measure service performance time in one of the following ways:

n Enter servopts -r in the configuration file. The -r option causes a log of
services performed to be written to standard error. You can then use the
txrpt(1) command to analyze this information. For details about servopts(5)
and txrpt(1), see “Section 1 - Commands” in the BEA Tuxedo Reference
Manual.

n Insert calls to time(2) at the beginning and end of a service routine. Services
that take the longest time receive the highest load. Those that take the shorte
time receive the lowest load. For details about time(2), see a UNIX system
reference manual.

Configuring Replicated Server Processes
and Groups

To configure replicated server processes and groups in the WebLogic Enterprise
domain, complete the following steps:

1. Edit the application’s UBBCONFIG file using a text editor.

2. In the GROUPS section, specify the names of the groups you want to configure.
Scaling, Distributing, and Tuning Applications 6-5

6 Tuning Applications

er,
tem

3. In the SERVERS section, specify the parameters in Table 6-2 for the server process
you want to replicate.

The MIN and MAX parameters determine the degree to which a given server
application can process requests on a given interface in parallel. During run
time, the system administrator can examine resource bottlenecks and start
additional server processes, if necessary, thereby scaling the application. For
more information, see “Monitoring a Running Application” in the
Administration Guide.

Note: The MAX parameter controls the maximum number of instances. Howev
WebLogic Enterprise does not spawn instances automatically. The sys
will automatically start up to the specified MIN number of instances.
Between MIN and MAX, the system administrator will need to spawn new
instances manually. Once MAX is reached, an error will be returned by
tmboot, tmadmin, or the TMIB API.

Table 6-2 Parameters Specified in the SERVERS Section

Parameter Description

Server
application name

n For Java, this is the name of the executable file for the Java server,
plus the name of the JAR file that will be dynamically loaded with
the server boots.

n For C++, this is the name of the executable file that contains the
application server.

GROUP Specifies the name of the group to which the server process belongs. If
you are replicating a server process across multiple groups, specify the
server process once for each group.

SRVID Specifies a numeric identifier, giving the server process a unique
identity.

MIN Specifies the number of instances of the server process to start when you
start the application.

MAX Specifies the maximum number of server processes that can be running
at any one time.
6-6 Scaling, Distributing, and Tuning Applications

Configuring Multithreaded Java Servers

e

mber
s that
d to
Configuring Multithreaded Java Servers

This topic includes the following sections:

n Setting the OPENINFO Parameter

n Configuring the Number of Threads

n Configuring the Number of Concurrent Accessors

For more information about multithreaded Java servers, see “Using Multithreaded
Java Servers (Java only)” on page 1-13.

Setting the OPENINFO Parameter

To configure a multithreaded Java server, you must add Threads=true to the
OPENINFO parameter in the GROUPS section of the UBBCONFIG file, as shown in
Listing 6-1.

Listing 6-1 Adding Threads=true to the OPENINFO Parameter

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=
.+MaxCur=5+Threads=true"

Configuring the Number of Threads

You can establish the number of threads for a Java server application by using th-M

option to the JavaServer parameter. This parameter is used in the SERVERS section
of the application’s UBBCONFIG file. For a description of the -M options, see “Creating
a Configuration File” in the Administration Guide.

For multithreaded WebLogic Enterprise Java servers, you must account for the nu
of worker threads that each server is configured to run. Worker threads are thread
are started and managed by the WebLogic Enterprise Java software, as oppose
Scaling, Distributing, and Tuning Applications 6-7

6 Tuning Applications

clude

er, the
 that

te a

stem:

mula:
threads started and managed by an application program. Internally, WebLogic
Enterprise Java manages a pool of available worker threads. When a client request is
received, an available worker thread from the thread pool is scheduled to execute the
request. There is one thread per active object, and while the object is active, the thread
is busy. When the request is done, the worker thread is returned to the pool of available
threads.

Configuring the Number of Concurrent Accessors

The MAXACCESSERS parameter in the application’s UBBCONFIG file sets the maximum
number of concurrent accessors of a WebLogic Enterprise system. Accessors in
native and remote clients, servers, and administration processes.

A single-threaded server counts as one accessor. For a multithreaded Java serv
number of accessors can be up to twice the maximum number of worker threads
the server is configured to run, plus one for the server itself. However, to calcula
MAXACCESSERS value for a WebLogic Enterprise system running multithreaded
servers, do not simply double the existing MAXACCESSERS value of the whole system.
Instead, you add up the accessors for each multithreaded server.

For example, assume that you have three multithreaded Java servers in your sy

n Java server A is configured to run three worker threads.

n Java server B is configured to run four worker threads.

n Java server C is configured to run five worker threads.

The accessor requirement of these servers is calculated by using the following for

[(3*2) + 1] + [(4*2) + 1] + [(5*2) + 1] = 27 accessors
6-8 Scaling, Distributing, and Tuning Applications

Assigning Priorities to Interfaces or Services

iority

y with
t-out

 can

form

uest

es on
 only
 time
Assigning Priorities to Interfaces or Services

This topic includes the following sections:

n About Priorities to Interfaces or Services

n Characteristics of the PRIO Parameter

About Priorities to Interfaces or Services

You can exert significant control over the flow of data in an application by assigning
priorities to BEA Tuxedo services using the PRIO parameter. For an application
running on a BEA Tuxedo system, you can specify the PRIO parameter for each service
named in the SERVICES section of the application’s UBBCONFIG file.

For example, Server 1 offers Interfaces A, B, and C. Interfaces A and B have a pr
of 50 and Interface C has a priority of 70. An interface requested for C is always
dequeued before a request for A or B. Requests for A and B are dequeued equall
respect to one another. The system dequeues every tenth request in first-in, firs
(FIFO) order to prevent a message from waiting indefinitely on the queue.

For Tuxedo and native C++ CORBA applications (but not Java applications), you
also dynamically change a priority with the tpsprio() call. Only preferred clients
should be able to increase the service priority. In a system on which servers per
service requests, the server can call tpsprio() to increase the priority of its interface
or service calls so the user does not wait in line for every interface or service req
that is required.

Characteristics of the PRIO Parameter

The PRIO parameter should be used carefully. Depending on the order of messag
the queue (for example, A, B, and C), some (such as A and B) will be dequeued
one in ten times. This means reduced performance and potential slow turnaround
on the service.

The characteristics of the PRIO parameter are as follows:
Scaling, Distributing, and Tuning Applications 6-9

6 Tuning Applications

tenth
rn of

o give

hem at
les,

here is a
n It determines the priority of an interface or a service on the server’s queue.

n The highest assigned priority gets first preference. This interface or service
should occur less frequently.

n A lower priority message does not remain forever enqueued, because every
message is retrieved on a FIFO basis. Response time should not be a conce
the lower priority interface or service.

Assigning priorities enables you to provide more efficient service to the most
important requests and slower service to the less important requests. You can als
priority to specific users or in specific circumstances.

Bundling Services into Servers (BEA Tuxedo
Servers Only)

This topic includes the following sections:

n About Bundling Services

n When to Bundle Services

About Bundling Services

The easiest way to package services into server executables is to not package t
all. Unfortunately, if you do not package services, the number of server executab
and also message queues and semaphores, rises beyond an acceptable level. T
trade-off between not bundling services and bundling services too much.

When to Bundle Services

You should bundle services for the following reasons:
6-10 Scaling, Distributing, and Tuning Applications

Enhancing Efficiency with Application Parameters
n Functional similarity. If some services are similar in their role in the
application, you can bundle them in the same server. The application can offer
all or none of them at a given time. An example is the bankapp application, in
which the WITHDRAW, DEPOSIT, and INQUIRY services are all teller operations.
Administration of services becomes simpler.

n Similar libraries. For example, if you have three services that use the same
100K library and three services that use different 100K libraries, bundling the
first three services saves 200K. Often, functionally equivalent services have
similar libraries.

n Filling the queue. Bundle only as many services into a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively little to
the size of an executable, and nothing to the number of queues in the system.
Once the queue is filled, however, the system performance degrades and you
must create more executables to compensate.

n Placement of call-dependent services. Avoid placing, in the same server, two
(or more) services that call each other. If you do so, the server will issue a call to
itself, causing a deadlock.

Enhancing Efficiency with Application
Parameters

This topic includes the following sections:

n Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters

n Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters

n Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters

You can set these application parameters to enhance the efficiency of your system.
Scaling, Distributing, and Tuning Applications 6-11

6 Tuning Applications
Setting the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES parameters
increase semaphore and shared memory costs, so you should choose the minimum
value that satisfies the needs of the system. You should also allow for the variation in
the number of clients accessing the system at the same time. Defaults may be
appropriate for a generous allocation of IPC resources. However, it is prudent to set
these parameters to the lowest appropriate values for the application.

For multithreaded WebLogic Enterprise Java servers, you must account for the number
of worker threads that each server is configured to run. The MAXACCESSERS parameter
sets the maximum number of concurrent accessors of a WebLogic Enterprise system.
Accessors include native and remote clients, servers, and administration processes.

A single-threaded server counts as one accessor. For a multithreaded Java server, the
number of accessors can be up to twice the maximum number of worker threads that
the server is configured to run, plus one for the server itself. However, to calculate a
MAXACCESSERS value for a WebLogic Enterprise system running multithreaded
servers, do not simply double the existing MAXACCESSERS value of the whole system.
Instead, you add up the accessors for each multithreaded server.

For example, assume that your system has three multithreaded Java servers:

n Java server A is configured to run three worker threads.

n Java server B is configured to run four worker threads.

n Java server C is configured to run five worker threads.

The accessor requirement of these servers is calculated by using the following formula:

[(3*2) + 1] + [(4*2) + 1] + [(5*2) + 1] = 27 accessors
6-12 Scaling, Distributing, and Tuning Applications

Enhancing Efficiency with Application Parameters
Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

You should increase the value of the MAXGTT parameter if the product of multiplying
the number of clients in the system times the percentage of time they are committing
a transaction is close to 100. This may require a great number of clients, depending on
the speed of commit. If you increase MAXGTT, you should also increase TLOGSIZE
accordingly for every machine. You should set MAXGTT to 0 for applications that do not
use distributed transactions.

You can limit the number of buffer types and subtypes allowed in the application with
the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for
MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, you can
omit MAXBUFTYPE. However, if you intend to use many different VIEW subtypes, you
may want to set MAXBUFSTYPE to exceed its current default of 32.

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters

If a system is running on slower processors (for example, due to heavy usage), you can
increase the timing parameters: SANITYCAN, BLOCKTIME, and individual transaction
timeouts. If networking is slow, you can increase the value of the BLOCKTIME,
BBLQUERY, and DBBLWAIT parameters.
Scaling, Distributing, and Tuning Applications 6-13

6 Tuning Applications
Setting Application Parameters

Table 6-3 describes the system parameters available for tuning an application.

Table 6-3 System Parameters for Application Tuning

Parameters Action

MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES

Set the smallest satisfactory value because of
IPC cost.

Allow for extra clients.

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

If you use many different VIEW subtypes,
increase the value of MAXBUFSTYPE.

BLOCKTIME, TRANTIME, and
SANITYSCAN

Increase the value for a slow system.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase values for slow networking.
6-14 Scaling, Distributing, and Tuning Applications

Determining IPC Requirements

cation.
Determining IPC Requirements

The values of different system parameters determine IPC requirements. You can use
the tmboot -c command to test a configuration’s IPC needs. The values of the
following parameters affect the IPC needs of an application:

n MAXACCESSERS

n REPLYQ

n RQADDR (that allows MSSQ sets to be formed)

n MAXSERVERS

n MAXSERVICES

n MAXGTT

Table 6-4 describes the system parameters that affect the IPC needs of an appli

Table 6-4 Tuning IPC Parameters

Parameter(s) Action

MAXACCESSERS Equals the number of semaphores.

Number of message queues is almost equal to MAXACCESSERS + the
number of servers with reply queues (the number of servers in MSSQ
set + the number of MSSQ sets).

MAXSERVERS,
MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and the overall size
of the ROUTING, GROUP, and NETWORK sections affect the size of
shared memory, an attempt to devise formulas that correlate these
parameters can become complex. Instead, simply run tmboot -c or
tmloadcf -c to calculate the minimum IPC resource requirements
for your application.
Scaling, Distributing, and Tuning Applications 6-15

6 Tuning Applications

e
f

o
Measuring System Traffic

This topic includes the following sections:

n About System Traffic and Bottlenecks

n Example of Detecting a System Bottleneck

n Detecting Bottlenecks on UNIX

n Detecting Bottlenecks on Windows NT

For more information about monitoring WebLogic Enterprise applications and
measuring traffic, see “Monitoring a Running System” in the Administration Guide.

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size of a queue in bytes must be large
enough to handle the largest message in the application, and to
typically be 75 to 85 percent full. A smaller percentage is wasteful.
A larger percentage causes message sends to block too frequently.

Set the maximum size for a message to handle the largest buffer that
the application sends.

Maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the
application’s operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This may be a trial and error process in
which tunables are estimated before the application is run and are
adjusted after running under performance analysis.

For a large system, analyze the effect of parameter settings on the siz
of the operating system kernel. If unacceptable, reduce the number o
application processes or distribute the application to more machines t
reduce MAXACCESSERS.

Table 6-4 Tuning IPC Parameters (Continued)

Parameter(s) Action
6-16 Scaling, Distributing, and Tuning Applications

Measuring System Traffic
About System Traffic and Bottlenecks

Bottlenecks can occur in your system when traffic volume nears resource capacity.
You can measure service traffic using a global counter in your implementation code.

For example, in Tuxedo applications, when tpsvrinit() is invoked at boot time, you
can initialize a global counter and record a starting time. Subsequently, each time a
particular service is called, the counter is incremented. When the server is shut down
by invoking the tpsvrdone() function, the final count and the ending time are
recorded. This mechanism allows you to determine how busy a particular service is
over a specified period of time.

Note: For CORBA C++ applications, use the Server::initialize() and
Server::release() operations. For CORBA Java applications, use the
Server.initialize and Server.release methods.

In BEA Tuxedo, bottlenecks can originate from data flow patterns. The quickest way
to detect bottlenecks is to begin with the client and measure the amount of time
required by relevant services.

Example of Detecting a System Bottleneck

Suppose Client 1 requires 4 seconds to print to the screen. Calls to time(2) determine
that the tpcall to service A is the culprit with a 3.7 second delay. Service A is
monitored at the top and bottom and takes 0.5 seconds. This implies that a queue may
be clogged, which was determined by using the pq command.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of
Service A can be bracketed and measured. Perhaps Service A issues a tpcall to
Service B, which requires 2.8 seconds. It should then be possible to isolate queue time
or message send blocking time. Once the relevant amount of time has been identified,
the application can be retuned to handle the traffic.

Using time(2), you can measure the duration of the following:

n The entire client program.

n A client service request only.

n The entire service function.
Scaling, Distributing, and Tuning Applications 6-17

6 Tuning Applications
n The service function making a service request (if any).

Detecting Bottlenecks on UNIX

On UNIX systems, the sar(1) command provides valuable performance information
that can be used to find system bottlenecks. You can use the sar(1) command to:

n Sample cumulative activity counters in the operating system at predetermined
intervals.

n Extract data from a system file.

Table 6-5 describes the sar(1) command options.

Table 6-5 sar(1) Command Options

Option Description

-u Gathers CPU utilization numbers, including the portion
of the time running in user mode, running in system
mode, idle with some process waiting for block I/O,
and otherwise idle.

-b Reports buffer activity, including transfers per second
of data between system buffers and disk, or other block
devices.

-c Reports system call activity. This includes system calls
of all types, as well as specific system calls such as
fork(2) and exec(2).

-w Monitors system swapping activity. This includes the
number of transfers for swap-ins and swap-outs.

-q Reports average queue lengths while occupied and the
percent of time occupied.

-m Reports message and system semaphore activities,
including the number of primitives per second.

-p Reports paging activity, including the address
translation page faults, page faults and protection
errors, and the valid pages reclaimed for free lists.
6-18 Scaling, Distributing, and Tuning Applications

Measuring System Traffic
Note: Some UNIX platforms do not provide the sar(1) command, but offer
equivalent commands instead. BSD, for example, offers the iostat(1)
command. Sun offers perfmeter(1).

Detecting Bottlenecks on Windows NT

On Windows NT, use the Performance Monitor to collect system information and
detect bottlenecks. Click the Start button and select Programs, then Administration
Tools, and then click NT Performance Monitor.

-r Reports unused memory pages and disk blocks,
including the average number of pages available to user
processes and the disk blocks available for process
swapping.

Table 6-5 sar(1) Command Options (Continued)

Option Description
Scaling, Distributing, and Tuning Applications 6-19

6 Tuning Applications
6-20 Scaling, Distributing, and Tuning Applications

Index

A
Application Assemblers, scaling tasks 4-5
application parameters

setting 6-14
using 6-11

application scalability requirements 1-2
AUTOTRAN parameter 5-9

B
BBLQUERY parameter 6-13, 6-14
BLOCKTIME parameter 6-13, 6-14
bottlenecks, detecting 6-17
bundling services

about bunding services 6-10
when to bundle services 6-10

C
CacheFullException 4-7
caching

configuring the EJB cache 4-7
EJBCACHE_FLUSH parameter 4-10
MAXEJBCACHE parameter 4-10
tuning the EJB cache 4-9

CLOSEINFO parameter 5-8
connection pooling 4-3
create_object_reference() operation 2-15
customer support contact information xi

D
data-dependent routing

about data-dependent routing
 5-4

characteristics 5-5
sample application 5-5
using (Tuxedo only) 5-4

DBBLWAIT parameter 6-13, 6-14
Deployers, scaling tasks 4-5
distributing applications

about distributing applications 5-2
benefits 5-2
characteristics of a distributed

application 5-3
domain gateway file and routing 5-11
factory-based routing in multiple

domains 5-11
sample application 5-5
UBBCONFIG file 5-10

DMCONFIG file
about the DMCONFIG file 5-12
DM_ROUTING section 5-12
example 5-15

documentation, where to find it x
domain gateway configuration file

(DMCONFIG) 5-11

E
EJB cache 4-7
EJB Providers
Scaling, Distributing, and Tuning Applications I-1

5

-

bean persistence 4-3
pooled connections, using 4-3
process-entity design pattern 4-5
scalling tasks 4-2
stateful session beans, minimizing 4-3
stateless session beans, using 4-2
transactions, completing efficiently 4-4

EJBCACHE_FLUSH parameter 4-10
entity beans

persistence 4-3
process-entity design pattern 4-5

F
factory_finder.ini 5-11
factory-based routing

about factory-based routing 1-16
characteristics of 1-17
configuring 1-19

in JDBC Bankapp sample
application 3-11

in Production sample application 2-
12

configuring for multiple domains 5-11
how it works 1-18
implementing in a factory 2-15, 3-12
in JDBC Bankapp sample application 3-

10
in Production sample application 2-11

file-based persistence 4-9

G
GROUP parameter 6-6
GRPNO parameter 5-7

I
IIOP Handler (ISH)

about the ISH 1-20
increasing the number of ISH processes

1-20
IIOP Listener (ISL) 1-20, 4-7
interfaces, assigning priorities to 6-9
iostat(1) command 6-19
IPC requirements

determining 6-15–6-16
tuning parameters 6-15
tuning queue-related kernel parameters

6-16
is-modified-method-name element 4-7

J
JDBC Bankapp sample application

additional design considerations 3-14
design goals 3-2
factory-based routing 3-10
how it has been scaled 3-2
object state management 3-3
replicating server groups 3-6
replicating server processes 3-4
scaling the application further 3-16
UBBCONFIG file 3-7

JDBC connection pooling 4-3

K
kernel parameters, tuning 6-16

L
LMID parameter 5-7
load balancing

about load balancing 6-4
enabling 6-4
measuring service performance time 6-

M
MAX parameter 6-6
MAXACCESSERS parameter 6-12, 6-14, 6

15
I-2 Scaling, Distributing, and Tuning Applications

MAXBUFSTYPE parameter 6-13, 6-14
MAXBUFTYPE parameter 6-13, 6-14
MAXEJBCACHE parameter 4-10
MAXGTT parameter 6-13, 6-14, 6-15
MAXINTERFACES parameter 6-12, 6-14
MAXSERVERS parameter 6-12, 6-14, 6-15
MAXSERVICES parameter 6-12, 6-14, 6-15
method-bound objects 1-5
MIN parameter 6-6
MSSQ sets

example 6-3
using 6-2

multiple server single queue (MSSQ) 6-2
multiplexing incoming client connections 1-

19
multithreading

about multithreaded Java servers 1-13
coding recommendations 1-15
configuring

number of concurrent accessors 6-8
number of threads 6-7
OPENINFO parameter 6-7

when to use 1-14

O
object state management

in JDBC Bankapp sample application 3-
3

in Production sample application 2-4
object state models

CORBA applications 1-4
EJB applications 1-6
RMI applications 1-6

object state models
stateful objects 1-6
stateless objects 1-6

objects
method-bound 1-5
process-bound 1-5
stateful objects 1-7

stateless objects 1-7
transaction-bound 1-5

OMG IDL, Production sample application 2-
4

OPENINFO parameter 5-8

P
perfmeter(1) command 6-19
performance time, servopts(5) -r option 6-5
performance, measuring 6-5
persistence

file-based persistence 4-9
implementing methods 4-3
is-modified-method-name element 4-7
persistence-store-directory-root element

4-6
removing orphan files 4-8

persistence-store-directory-root element 4-6
pooled connections 4-3
printing product documentation x
PRIO parameter 6-9
priorities

assigning to interfaces or services 6-9
PRIO parameter 6-9

process-bound objects 1-5
process-entity design pattern 4-5
Production sample application

additional design considerations 2-17
changing the OMG IDL 2-4
design goals 2-2
factory-based routing 2-11
how it has been scaled 2-2
replicating server groups 2-8
replicating server processes 2-6
scaling the application further 2-22
stateless object model 2-4
UBBCONFIG file 2-9
Scaling, Distributing, and Tuning Applications I-3

,
R
related information xi
replicating

about replicating server processes and
server groups 1-10

configuration options 1-11
server groups

about replicating server groups 1-12
in JDBC Bankapp sample

application 3-6
in Production sample application 2-

8
server processes

about replicating server processes 1-
11

benefits of 1-11
guidelines for 1-12
JDBC Bankapp sample application

3-4
Production sample application 2-6

resources, maximizing application 6-2–6-14
ROUTING parameter 5-9

S
SANITYSCAN parameter 6-13, 6-14
sar(1) command 6-18
scalability

features 1-2
requirements 1-2
support, in WLE applications 1-3

scaling tasks
Application Assemblers 4-5
Deployers 4-5
EJB Providers 4-2
System Administrators 4-8

server groups
about replicating 1-10
replicating 1-12

server processes
about replicating 1-10

replicating 1-11
SERVERS section

EJBCACHE_FLUSH parameter 4-10
MAXEJBCACHE parameter 4-10

servopts(5) 6-5
SRVID parameter 6-6
stateful objects

about stateful objects 1-7
when to use 1-8

stateful session beans
minimizing state information 4-3
persistence 4-3

stateless objects
about stateless objects 1-7
when to use 1-7

stateless session beans
using 4-2

support
technical xi

System Administrators, scaling tasks for 4-8

T
time(2) option 6-5
tmboot(1) -c command 6-15
TMSCOUNT parameter 5-8
TMSNAME parameter 5-7
traffic, measuring system 6-16–6-19
transaction-bound objects 1-5
transactions, in EJB applications 4-4
TRANTIME parameter 5-9, 6-14
tsprio call 6-9
tuning applications 6-1–6-19

determining IPC requirements 6-15
maximizing application resources 6-2

bundling services into servers 6-10
enabling load balancing 6-4

measuring system traffic 6-16
detecting a system bottleneck 6-17

using application parameters 6-11, 6-12
6-13
I-4 Scaling, Distributing, and Tuning Applications

U
UBBCONFIG file

distributed application example 5-10
GROUPS section

CLOSEINFO parameter 5-8
GRPNO parameter 5-7
LMID parameter 5-7
OPENINFO parameter 5-8, 6-7
TMSCOUNT parameter 5-8
TMSNAME parameter 5-7

in JDBC Bankapp sample application 3-
7

in Production sample application 2-9
ROUTING section 5-10
SERVERS section

GROUP parameter 6-6
MAX parameter 6-6
MIN parameter 6-6
SRVID parameter 6-6

SERVICES section
AUTOTRAN parameter 5-9
ROUTING parameter 5-9
sample 5-9
TRANTIME parameter 5-9
Scaling, Distributing, and Tuning Applications I-5

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Scaling WebLogic Enterprise Applications
	About Scaling WebLogic Enterprise Applications
	Application Scalability Requirements
	WebLogic Enterprise Scalability Features
	Scalability Support for WebLogic Enterprise Applications

	Using Object State Management
	Object State Models
	CORBA Object State Models
	EJB Object State Models
	RMI Object State Models

	Implementing Stateless and Stateful Objects
	About Stateless and Stateful Objects
	When to Use Stateless Objects
	When to Use Stateful Objects

	Replicating Server Processes and Server Groups
	About Replicating Server Processes and Server Groups
	Configuration Options
	Replicating Server Processes
	Benefits
	Guidelines

	Replicating Server Groups

	Using Multithreaded Java Servers (Java only)
	About Multithreaded Java Servers
	When to Use Multithreaded Java Servers
	Coding Recommendations
	Configuring a Multithreaded Java Server

	Using Factory-based Routing (CORBA only)
	About Factory-based Routing
	Characteristics of Factory-based Routing
	How Factory-based Routing Works
	Configuring Factory-based Routing in the UBBCONFIG File

	Multiplexing Incoming Client Connections
	IIOP Listener and Handler
	Increasing the Number of ISH Processes

	2 Scaling CORBA C++ Server Applications
	About Scaling the Production Sample Application
	Design Goals
	How the Application Has Been Scaled

	Changing the OMG IDL
	Using a Stateless Object Model
	Scaling by Replicating Server Processes and Server Groups
	Replicating Server Processes in the Production Application
	Replicating Server Groups in the Production Application
	Configuring Replicated Server Processes and Groups in the Production Application

	Scaling with Factory-based Routing
	About Factory-based Routing in the Production Application
	Configuring Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations
	About the Additional Design Considerations
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	Scaling the Application Further

	3 Scaling CORBA Java Server Applications
	About Scaling the JDBC Bankapp Sample Application
	Design Goals
	How the Application Has Been Scaled

	Scaling with Object State Management
	Scaling by Replicating Server Processes and Server Groups
	Replicating Server Processes in the Bankapp Application
	Replicating Server Groups in the Bankapp Application
	Configuring Replicated Server Processes and Groups in the Bankapp Application

	Scaling with Factory-based Routing
	About Factory-based Routing in the Bankapp Application
	Configuring Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations
	About the Additional Design Considerations
	Instantiating the Teller Object
	Ensuring That Account Updates Occur in the Correct Server Group

	Scaling the Application Further

	4 Scaling EJB Applications
	Scaling Tasks for EJB Providers
	Using Stateless Session Beans
	Minimizing State Information in Stateful Session Beans
	Using Pooled Connections
	Implementing Methods for Bean Persistence
	Completing Transactions Efficiently
	Implementing the Process-entity Design Pattern

	Scaling Tasks for Application Assemblers and Deployers
	Organizing EJBs in Groups
	Configuring the Persistent Storage Location
	Specifying the Method to Invoke Before Passivation
	Deploying Stateful Session Beans on the IIOP Listener Node
	Configuring the EJB Cache

	Scaling Tasks for System Administrators
	Removing Orphan Files for File-based Persistence
	Scaling and Tuning the EJB Cache
	Mechanisms For Managing the WebLogic Enterprise EJB Cache
	Tuning the Cache

	5 Distributing Applications
	Why Distribute an Application?
	About Distributing an Application
	Benefits of a Distributed Application
	Characteristics of Distributing an Application

	Using Data-dependent Routing (BEA Tuxedo Servers Only)
	About Data-dependent Routing
	Characteristics of Data-dependent Routing
	Sample Distributed Application

	Configuring the UBBCONFIG File
	About the UBBCONFIG File in Distributed Applications
	Modifying the GROUPS Section
	Modifying the SERVICES Section
	Parameters to Modify
	Sample SERVICES Section

	Creating the ROUTING Section
	Example of UBBCONFIG Sections in a Distributed Application

	Configuring the factory_finder.ini (CORBA Applications Only)
	Modifying the Domain Gateway Configuration File to Support Routing
	About the Domain Gateway Configuration File
	Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA Tuxedo Only)
	Parameters to Specify
	Routing Field Description
	Example of a Five-Site Domain Configuration Using Routing

	6 Tuning Applications
	Maximizing Application Resources
	When to Use MSSQ Sets (BEA Tuxedo Servers Only)
	Enabling Load Balancing
	About Load Balancing
	Two Ways to Measure Service Performance Time (BEA�Tuxedo Servers Only)

	Configuring Replicated Server Processes and Groups
	Configuring Multithreaded Java Servers
	Setting the OPENINFO Parameter
	Configuring the Number of Threads
	Configuring the Number of Concurrent Accessors

	Assigning Priorities to Interfaces or Services
	About Priorities to Interfaces or Services
	Characteristics of the PRIO Parameter

	Bundling Services into Servers (BEA Tuxedo Servers Only)
	About Bundling Services
	When to Bundle Services

	Enhancing Efficiency with Application Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

	Setting Application Parameters
	Determining IPC Requirements
	Measuring System Traffic
	About System Traffic and Bottlenecks
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX
	Detecting Bottlenecks on Windows NT

	Index

