BEA WebLogic Enterprise

Using Transactions

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Transactions

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-0OCSWED SIte....cueiiiceeiee e sr e b eraenaes X
HoW t0 Print the DOCUMENT..........cee ettt sttt e ere e X
Related INfOrmMation...........ocviiiiiiieeece e e e Xi
(0701 = ot AL U LS TR Xi
Documentation CONVENLIONSc.ccecueiieeieie e e e e eereesre e s sraesaeere e ens Xii

1. Introducing Transactions

Overview of Transactions in WebL ogic Enterprise Applications..................... 1-2
ACID Properties of TranSaCtionsccoceveieerreeneeinesiene e e 1-2
Supported Programming MOAElSooooiiiinine e 1-2
Supported APl MOEIS......cc.oiiee e e s 1-3
Support for BUSINESS TraNSaCtiONS.ceiiiueeereesieie e eeee e ereseesee s 1-4
Distributed Transactions and the Two-Phase Commit Protocal 1-4

When to USE TranSaCtioNS..........covueririe ittt ettt ettt 1-5

What Happens During @ TranSaCtioncoceoeeeienesie e e et 1-6
Transactions in WebL ogic Enterprise CORBA Applications.................... 1-6
Transactions in WebL ogic Enterprise EJB Applications..........ccccoceeeeene. 1-8
Transactions in WebL ogic Enterprise RMI Applications...........c.coceeueee. 1-11

Transactions SAMPIE COUE.........eii i e e 1-12
Transactions Sample CORBA ApPliCationcocovereieinneciesineneens 1-13
Transactions Sample EJB COdec.ooiieeiirine i 1-25
Transactions Sample RMI COdec.coviieeiiriniie e 1-27

2. Transaction Service
ADbOoUt the TranSaCtionN SEIVICEcceee i et e e 2-2

Using Transactions iii

iv

Capabilities and Limitations............ceoererireieseereeiee e e e 2-2

Lightweight Clients with Delegated Commitccccooeveviieieieneeeiine 2-3
Transaction Propagation (CORBA ONlY)cccoeveiiiniiii e reeeeens 2-4
TranSaCtion INEEGIILYooeieie e e 2-4
Transaction TErMINATONceveeirieeirieiriee e e e e 2-4
Flat TranSaCtioNSccveireeiieieeire s e e e 2-5
Interoperability Between Remote Clients and the WebL ogic Enterprise
DOMAIN ...ttt e e et et 2-5
Intradomain and Interdomain Interoperabilityccoccoeeeiiiiieniiie i 2-5
Network Interoperabilityoooeor e e 2-6
Relationship of the Transaction Service to Transaction Processing 2-6
PrOCESS FAIUMEceveieee et 2-7
Multithreaded Transaction Client SUPPOITccccverereriereriieie e 2-7
General CONSLIAINESc.ceveeereeerire et er e e 2-7
Transaction Service in CORBA ApPPlICatioNS.........ocoveeeeerinenie e 2-8
Getting Initial References to the TransactionCurrent Object..................... 2-9
CORBA Transaction ServiCe APocuieirerene e 2-9
CORBA Transaction Service APl EXENSIONS.........cceoueveireeineeincieeens 2-19
Notes on Using Transactions in WebL ogic Enterprise CORBA Applications
2-20
Transaction Service in EJB AppliCatioNnsS.........ccoccoe i veineeinnenieee e 2-23
Transaction Service in RMI Applications...........ccoveveieinneiiecinenee e 2-23
USerTransaCtion AP ... e 2-24
UserTransaction Methods............cooeireine s 2-24
Exceptions Thrown by UserTransaction Methods............ccoccoviiniiennnne. 2-26

Transactions in CORBA Server Applications

Integrating Transactionsin a WebL ogic Enterprise Client and Server Application
3-2

Transaction Support in CORBA Applications.......c.ccccevereeneieveenicie e 3-2

Making an Object Automatically Transactional............cccccveveceienernenne. 34

Enabling an Object to Participatein a Transactioncccocceeeveneeineenne. 35

Preventing an Object from Being Invoked While a Transaction Is Scoped ..
3-6

Excluding an Object from an Ongoing Transaction............ccoeeevereecieeeene 3-7

ASSIGNING POIICIES ..ottt et e e e e 37

Using Transactions

Using an XA ReSOUICE MaNaETcocereeueruernireeiereesiee e see s seseene e 3-8

Opening an XA ReSoUrCce ManNagErcccoeveeererene e seeneeie e seeneseeneennens 3-8
Closing an XA ReSOUrCE MaNagErcceoeeeeruerneneeieseereeie e seeeeneneene 3-10
Transactions and Object State Managementocoocoeoevereneeveeneenennenns 3-10
Delegating Object State Management to an XA Resource Manager 3-10
Waiting Until Transaction Work |s Complete Before Writing to the Database
3-11
User-defined EXCEPLIONScccooiiiiiiiiiieie et e e 3-13
About User-defined EXCEPLIONScccoiereireiiiierieeeirie e 3-13
Defining the EXCEPLION.coe it 3-13
Throwing the EXCEPLIONcui it 3-14
How the Transactions University Sample Application Works (C++ Only).... 3-14
About the Transactions University Sample Application............c.cccceeeenees 3-15
Transactional Model Used by the Transactions University Sample
APPHCALTON ...t 3-16
Object State Considerations for the University Server Application 3-17

Configuration Requirements for the Transactions Sample Application . 3-19

4. Transactions in CORBA Client Applications

Overview of WebL ogic Enterprise CORBA Transactionsccccoveeeeenennene 4-2
Summary of the Development Process for Transactionscccceceeeeeeinenneee 4-2
Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object..... 4-3
Crt EXAMPIE <.t s e 4-3
JAVE EXAMPIE....ceeee e e 4-3
Visual BasiC EXAMPIEoiuiie ittt e 4-4
Step 2: Use the TransactionCurrent Methods..........ccooevoereieveineeee e e 4-4
Crt BXAMPIE <.t e e e 4-6
JAVE EXAMPIE.....cceeeee e e e 4-6
Visual BasiC EXAMPIEoiuiie ittt e e 4-7

5. Transactions in EJB Applications

BEfOre Y OU BEJIN......couiieiieiee ettt et e s e ne e 5-2
General GUIEITNESc.eoieie et e et 5-2
Transaction AHDULEScoi i e 5-3
About Transaction Attributes for EJBS........cceoiieiiiriniee e 5-3
Transaction Attributes for Container-managed Transactions.................... 5-4

Using Transactions %

Vi

Transaction Attributes for Bean-managed Transactions..........ccccceeeveeeeee. 5-5

Participating in @ TranSaCtioNcocevereirerie e e 5-5
TranSaCtion SEMANTICS........ccuiiiiiiee et es e 5-5

Transaction Semantics for Container-managed Transactions................... 5-6

Transaction Semantics for Bean-managed Transactions.............ccoceveeeennne 59
SeSSI0N SYNCAIONIZATIONcvieiieiie et e e 5-10
Setting TransaCtion TIMEOULS.........cciuiiieie ittt st st st re e e 5-11
Handling Exceptionsin EJB TranSaCtionscc.ccoeueerneeieeenenieseseeseesienens 5-11

Transactions in RMI Applications

BEfOre YOU BOJIN ...ttt sttt e n e e 6-2
GeNneral GUIAEIINES.......coui ettt e e e e e e e 6-2

Transactions and the WebLogic Enterprise JDBC/XA Driver

BEfOre YOU BOJINccue ittt sttt 7-2
About Transactions and the WebL ogic Enterprise JDBX/XA Diriver............... 7-2
Support for Transactions Using the WebL ogic Enterprise JDBC/XA Driver
7-2
Local Versus Distributed (Global) Transactions.........c.cccveveneieneeneenne 7-4
Transaction Contexts in WebL ogic Enterprise JDBC/XA Connections.... 7-7
JDBC Accessibility in JavaMethodscocooeiiiiiiiiee e 7-8
JDBC/XA Accessibility in CORBA Methods...........ccooeieveiiiecieireeeeene 7-9
JDBC/XA Accessibility in EJB Methods..........cccooeieiiininece e 7-9
USING the IDBC/XA DIIVE ...ttt st s s e 7-12
Implementing Distributed TranSaCtionscooveeeiereie e 7-14
IMPOIting PaCKAJESoocie et 7-15
Initializing the TransactionCurrent Object Reference..........ccccoecveveeeneneen. 7-16
Finding the Connection Pool Via INDIccccceeeeiieiiecececeece e 7-16
Setting Up XA Distributed Transactions...........ccccooevereennneeiesesneneee e 7-17
Performing a Distributed Transactionccccceeeecie e e 7-17

Administering Transactions

M odifying the UBBCONFIG File to Accommodate Transactions................... 8-2
SUMMANY Of SEEPS....ceeee ettt e et s es 8-2
Step 1: Specify Application-wide Transactions in the RESOURCES Section

8-3

Using Transactions

Step 2: Create a Transaction Log (TLOG)ccevervenieiee e e 8-3
Step 3: Define Each Resource Manager (RM) and the Transaction Manager

Server in the GROUPS SECHONccvvicvineerinieriieieeree e 8-6
Step 4: Enable an Interface to Begin a Transactionccccovceveeeeivennene 8-8
Modifying the Domain Configuration File to Support Transactions (WebL ogic
ENErPriSe SEIVEIS)oiuiiiiiie ettt sttt e e s e s ens 8-11
Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters..........coooeveerirenueene. 8-11
Characteristicsof the AUTOTRAN and TRANTIME Parameters (WebL ogic
Enterprise CORBA and TuXedO SEfVEXS)cccceeerrerneeinernereeeenees 8-13
Sample Distributed Application Using Transactionsccoeeoeveveereeeneen. 8-14
RESOURCES SECHON.....ceiviueiereririeieieirestee s ssssese s sssse s s sesenas 8-14
MACHINES SECHON......cuiueireieietenire ettt st bbb st er e enas 8-15
GROUPS and NETWORK SECLIONS.......cceneerireeriieriieriiereie e 8-16
SERVERS, SERVICES, and ROUTING Sections.........ccccuveereneerinenes 8-17

Using Transactions Vii

viii Using Transactions

About This Document

This document explains how to use transactionsin CORBA, EJB, and RMI
applications that run in the BEA WebL ogic Enterprise™ environment.

This document covers the following topics:

Chapter 1, “Introducing Transactions,” introduces transactions in CORBA, EJB,
and RMI applications running in the WebLogic Enterprise environment.

Chapter 2, “Transaction Service,” describes the WebLogic Enterprise
Transaction Service.

Chapter 3, “Transactions in CORBA Server Applications,” describes how to
implement transactions in CORBA C++ and Java server applications.

Chapter 4, “Transactions in CORBA Client Applications,” describes how to
implement transactions in CORBA client applications.

Chapter 5, “Transactions in EJB Applications,” describes how to implement
transactions in EJB applications.

Chapter 6, “Transactions in RMI Applications,” describes how to implement
transactions in RMI applications.

Chapter 7, “Transactions and the WebLogic Enterprise JDBC/XA Driver,”
describes how to use the WebLogic Enterprise JDBC/XA driver in conjunctions
with distributed transactions in WebLogic Enterprise Java applications.

Chapter 8, “Administering Transactions,” describes how to administer
transactions in the WebLogic Enterprise environment.

Using Transactions iX

What You Need to Know

This document is intended primarily for application developers who are interested in
building transactional C++ and Java applications that run in the WebL ogic Enterprise
environment. It assumes afamiliarity with the WebL ogic Enterprise platform, C++ or
Java programming, and transaction processing concepts.

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

X Using Transactions

How to Print the Document

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA

Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see iebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company nhame and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using Transactions Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Using Transactions

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using Transactions Xiii

Xiv Using Transactions

CHAPTER

1 Introducing
Transactions

Thistopic includes the following sections:

m Overview of Transactionsin WebL ogic Enterprise Applications
m When to Use Transactions

m What Happens During a Transaction

m Transactions Sample Code

Using Transactions 1-1

1 Introducing Transactions

Overview of Transactions in WebLogic
Enterprise Applications

This topic includes the following sections:

ACID Properties of Transactions
Supported Programming Models
Supported APl Models

Support for Business Transactions

Distributed Transactions and the Two-Phase Commit Protocol

ACID Properties of Transactions

One of the most fundamental features of the WebL ogic Enterprise system is
transaction management. Transactions are ameans to guarantee that database
transactions are completed accurately and that they take on all the ACID properties
(atomicity, consistency, isolation, and durability) of a high-performance transaction.
WebL ogic Enterprise protects the integrity of your transactions by providing a
complete infrastructure for ensuring that database updates are done accurately, even
across a variety of resource managers (RMs). If any one of the operations fails, the
entire set of operationsisrolled back.

Supported Programming Models

WebL ogic Enterprise supports transactions in two different programming models:

m The Object Management Group Common Object Request Broker (CORBA) in

C++ and Java applications, in compliance with the The Common Object Request

Broker: Architecture and Specification, Revision 2.2, February 1998.

1-2 Using Transactions

Overview of Transactions in WebLogic Enterprise Applications

m The Sun Microsystems, Inc., Java 2 Platform, Enterprise Edition (J2EE).
WebL ogic Enterprise provides full support for transactions in Java applications
that use Enterprise JavaBeans, in compliance with the Enterprise JavaBeans
Specification 1.1, published by Sun Microsystems, Inc. WebL ogic Enterprise
also supports the Java Transaction APl (JTA) Specification version 1.0.1, also
published by Sun Microsystems, Inc.

Supported API Models

WebL ogic Enterprise supports two transaction APl models:

m CORBAservices Object Transaction Service (OTS) and the Java Transaction
Service (JTS).

WebL ogic Enterprise provides a C++ interface to the OTS and a Java interface
to the OTS and the JTS. The JTS is the Sun Microsystems, Inc. Javainterface
for transaction services, and is based on the OTS. The OTS and the JTS are
accessed through the or g. omg. CosTr ansact i ons. Curr ent environmental
object. For information about using the Tr ansact i onCur r ent environmental
object, see the C++ Bootstrap Object Programming Reference or the Java
Bootstrap Object Programming Reference.

m The Sun Microsystems, Inc. Java Transaction APl (JTA), which isused by:
¢ CORBA applications within BEA's TP Framework.

e Enterprise JavaBean (EJB) applications within the WebLogic Enterprise EJB
container.

¢ Remote Method Invocation (RMI) applications within the WebLogic
Enterprise infrastructure.

Only the application-level demarcation interface
(j avax. transacti on. User Tr ansacti on) is supported. For information about
JTA, see the following sources:

e The javax. transaction package description in thigeblLogic Enterprise
Javadoc.

e The Java Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site (www.sun.com).

Using Transactions 1-3

1 Introducing Transactions

Support for Business Transactions

OTS, JTS, and JTA each provide the following support for your business transactions:

m Creates aglobal transaction identifier when a client application initiates a
transaction.

m Workswith the WebL ogic Enterprise infrastructure to track objectsthat are
involved in atransaction and, therefore, need to be coordinated when the
transaction is ready to commit.

m Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

m Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group’s XA protocol. Almost all relational databases
support this standard.

m Executes the rollback procedure when the transaction must be stopped.

m Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

Distributed Transactions and the Two-Phase Commit
Protocol

WebLogic Enterprise supports distributed transactions and the two-phase commit
protocol for enterprise applications.distributed transaction is a transaction that
updates multiple resource managers (such as databases) in a coordinated manner.
two-phase commit protocol (2PC) is a method of coordinating a single transaction
across one or more resource managers. It guarantees data integrity by ensuring tha
transactional updates are committed in all of the participating databases, or are fully
rolled back out of all the databases, reverting to the state prior to the start of the
transaction.

1-4 Using Transactions

When to Use Transactions

When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WebL ogic Enterprise system.

m The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider atravel agent application. The client application needs to
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequentia order; for example, Strasbourg to
Paris, Paristo New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel

all the flight reservations made up to that point.

m The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

e Dataiscached in memory or written to a database during or after each
successive invocation.

e Dataiswritten to a database at the end of the conversation.

e Theclient application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

e At the end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

For example, consider an Internet-based online shopping cart application. Users
of the client application browse through an online catalog and make multiple
purchase selections. When the users are done choosing al the items they want to
buy, they proceed to check out and enter their credit card information to make
the purchase. If the credit card check fails, the shopping application needs a way

Using Transactions 1-5

1 Introducing Transactions

to cancel al the pending purchase selections in the shopping cart, or roll back
any purchase transactions made during the conversation.

m Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily CORBA, EJB, or RMI invocations.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

e Invoking the debit method on one account.
e Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

What Happens During a Transaction

This topic includes the following sections:
m Transactionsin WebL ogic Enterprise CORBA Applications
m Transactionsin WebL ogic Enterprise EJB Applications

m Transactionsin WebL ogic Enterprise RMI Applications

Transactions in WebLogic Enterprise CORBA Applications

Figure 1-1 illustrates how transactions work in a WebL ogic Enterprise CORBA
application.

1-6 Using Transactions

What Happens During a Transaction

Figure1-1 How TransactionsWork in a WebL ogic Enterprise CORBA
Application

CORBA C++ Client Get Student Details

Application

Get Course Details

Browse Courses

CORBA Java Client Register for Courses

Application

University Server

i . Application
: CORBA : A i
ActiveX Client . . v

Application

\ 4

University

Database

A Part of a Transaction

For CORBA applications, a basic transaction works in the following way:

1. Theclient application usesthe Boot st r ap object to return an object reference to
the Transact i onCur r ent object for the WebL ogic Enterprise domain.

2. A client application begins a transaction using the
Tobj : : Transacti onCurrent: : begi n() operation, and issues arequest to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of atransaction.

e |f acall to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the
transaction can be rolled back.

¢ |f no exceptions occur, the client application commits the current transaction
using the Tobj : : Transacti onCurrent: : comit () operation. This
operation ends the transaction and starts the processing of the operation.
The transaction is committed only if all of the participantsin the transaction
agree to commit.

Using Transactions 1-7

1 Introducing Transactions

3. TheTobj :: Transacti onCurrent:comnit () operation causesthe TP
Framework to call the transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update the database.

Transactions in WebLogic Enterprise EJB Applications

Figure 1-2 illustrates how transactions work in a WebL ogic Enterprise EJB
application.

Figure1-2 How TransactionsWork in aWebL ogic Enterprise EJB Application

EJB Client

» Server Application

Application . .
. . A
A Part of a Transaction v

Database

WebL ogic Enterprise supports two types of transactionsin WebL ogic Enterprise EJB
applications:

m |n container-managed transactions, the WebL ogic Enterprise EJB container
manages the transaction demarcation. Transaction attributes in the EJB
deployment descriptor determine how the WebL ogic Enterprise EJB container
handl es transactions with each method invocation. For more information about
the deployment descriptor, see the WebLogic EJB XML Reference.

m |n bean-managed transactions, the EJB manages the transaction demarcation.
The EJB makes explicit method invocations on the User Tr ansact i on object to

1-8 Using Transactions

What Happens During a Transaction

begin, commit, and roll back transactions. For more information about the
User Transact i on object, see “UserTransaction API” on page 2-24.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Container-managed Transactions

For EJB applications with container-managed transactions, a basic transaction works
in the following way:

1.

In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type @nsact i on-t ype element) for
container-managed demarcati@ot ai ner).

In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the default transaction attributegns- at t ri but e element) for the

EJB, which is one of the following setting&it Support ed, Requi r ed,

Support s, Requi r esNew; Mandat or y, or Never. For a detailed description of

these settings, see Section 11.6.2 in the Enterprise JavaBeans Specification 1.1,
published by Sun Microsystems, Inc.

Optionally, in the EJB’s deployment descriptor, the Bean Provider or Application
Assembler specifies the ans-att ri but e for one or more methods.

When a client application invokes a method in the EJB, the EJB container checks
thetrans-attri but e setting in the deployment descriptor for that method. If no
setting is specified for the method, the EJB uses the defat-attribute

setting for that EJB.

The EJB container takes the appropriate action depending on the applicable
trans-attribut e setting.

e [For example, if therans-attri but e setting isRequi r ed, the EJB
container invokes the method within the existing transaction context or, if the
client called without a transaction context, the EJB container begins a new
transaction before executing the method.

e In another example, if ther ans- at t ri but e setting iSvandat or y, the EJB
container invokes the method within the existing transaction context. If the
client called without a transaction context, the EJB container throws the
javax.transaction. Transacti onRequi r edExcept i on exception.

Using Transactions 1-9

1 Introducing Transactions

6. During invocation of the business method, if it is determined that a rollback is
reguired, the business method callsthe EJBCont ext . set Rol | backOnl y method,
which notifies the EJB container that the transaction is to be rolled back at the
end of the method invocation.

Note: Calling the EJBCont ext . Set Rol | backOnl y method is allowed only for
methods that have a meaningful transaction context.

7. At the end of the method execution and before the result is sent to the client, the
EJB container completes the transaction, either by committing the transaction or
rolling it back (if the EJBCont ext . Set Rol | backOnl y method was called).

Y ou can control transaction timeouts by setting thet r ans-t i neout - seconds
elementinthewebl ogi c- ej b- ext ensi ons. xm file. For moreinformation about the
webl ogi c- ej b- ext ensi ons. xnl file, see the WebL ogic Enterprise EJB XML
Reference. Y ou can also change this setting with the WebL ogic Enterprise EJB
Deployer, as described in Using the WebLogic Enterprise EJB Deployer .

Bean-managed Transactions

For EJB applicationswith bean-managed transaction demarcations, abasi ¢ transaction
worksin the following way:

1. Inthe EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type @nsact i on- t ype element) for
container-managed demarcati@a4n).

2. The client application uses JNDI to obtain an object reference to the
User Tr ansact i on object for the WebLogic Enterprise domain.

3. The client application begins a transaction usingJfee Tr ansact i on. begi n
method, and issues a request to the EJB through the EJB container. All operatior
on the EJB execute within the scope of a transaction.

e |If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back using tser Tr ansact i on. r ol | back
method.

¢ If no exceptions occur, the client application commits the current transaction
using theUser Tr ansact i on. conmi t method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

1-10 Using Transactions

What Happens During a Transaction

4. TheUser Transacti on. conmi t method causes the EJB container to call the
transaction manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

Transactions in WebLogic Enterprise RMI Applications

Figure 1-3 illustrates how transactions work in a WebL ogic Enterprise RMI
application.

Figure1-3 How TransactionsWork in aWebL ogic Enterprise RM1 Application

RMI Client

Application .
A o
‘ A

A
A Part of a Transaction

Database

» Server Application

For RMI client and server applications, abasi ¢ transaction works in the following way:

1. The application uses INDI to return an object reference to the User Tr ansact i on
object for the WebL ogic Enterprise domain.

Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during server
shutdown). For the duration of the transaction, the WebL ogic Enterprise
infrastructure does not perform any deactivation or activation.

Using Transactions 1-11

1 Introducing Transactions

2. Theclient application begins a transaction using the User Tr ansact i on. begi n
method, and issues arequest to the server application. All operations on the
server application execute within the scope of atransaction.

e If acdl to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the
transaction can be rolled back using the User Tr ansact i on. r ol | back
method.

¢ |f no exceptions occur, the client application commits the current transaction
using the User Tr ansact i on. conmi t method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participantsin the transaction agree to commit.

3. TheUser Transact i on. conm t method causes WebL ogic Enterprise to call the
transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

For guidelines about using transactions in RM| applications, see Chapter 6,
“Transactions in RMI Applications.”

Transactions Sample Code

This topic includes the following sections:
m Transactions Sample CORBA Application
m Transactions Sample EJB Code

m Transactions Sample RMI Code

1-12 Using Transactions

Transactions Sample Code

Transactions Sample CORBA Application

In the Transactions sample CORBA application, the operation of registering for
courses is executed within the scope of atransaction. The transaction model used in
the Transactions sample application is acombination of the conversational model and
the model in which asingle client invocation makes multiple individual operations on
a database.

Workflow for the Transactions Sample Application

The Transactions sample application works in the following way:

1. Students submit alist of courses for which they want to be registered.

2. For each coursein thelist, the server application checks whether:

The course isin the database.
The student is already registered for a course.

The student exceeds the maximum number of credits the student can take.

3. One of the following occurs:

If the course meets all the criteria, the server application registers the student
for the course.

If the course is not in the database or if the student is already registered for
the course, the server application adds the course to alist of coursesfor
which the student could not be registered. After processing all the
registration requests, the server application returnsthelist of coursesfor
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

If the student exceeds the maximum number of credits the student can take,
the server application returns a TooMany Cr edi t s user exception to the client
application. The client application provides a brief message explaining that
the request was rejected. The client application then rolls back the
transaction.

Figure 1-4 illustrates how the Transactions sample application works.

Using Transactions 1-13

1

Introducing Transactions

1-14

Figure1-4 Transactions Sample Application

CORBA C++ Client
Application

CORBA Java Client

get _student _detail s()
get _course_detail s()
br owse_cour ses()

regi ster_for_courses()

University Server

Application

ActiveX Client
Application

A Part of a Transaction

CORBA
Server

Application

A i
Y

University

Database

The Transactions sample application shows two ways in which a transaction can be

rolled back:

m Nonfatal. If the registration for a course fails because the courseis not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

m Fatal. If theregistration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client. The decision to roll back the
transaction also lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returnsthe TooManyOredi ts
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

Using Transactions

Transactions Sample Code

Note: For information about how transactions are implemented in CORBA/Java
WebL ogic Enterprise applications, see the Transactions Samplein the
WebL ogic Enterprise online documentation.

Development Steps

Thistopic describes the following development steps for writing a WebL ogic
Enterprise application that contains transaction processing code:

m Step 1: Writing the OMG IDL

m Step 2: Defining Transaction Policies for the Interfaces
m Step 3: Writing the Server Application

m Step 4: Writing the Client Application

m Step 5: Creating a Configuration File

The Transactions sample application is used to demonstrate these development steps.
The source files for the Transactions sample application are located in the

\'sanpl es\ cor ba\ uni versity directory of the WebL ogic Enterprise software. For
information about building and running the Transactions sample application, see the
Transactions Sample in the WebL ogic Enterprise online documentation.

The XA Bankapp sample application demonstrates how to use transactionsin Java
WebL ogic Enterprise applications. The source files for the XA Bankapp sample
application are located in the \ sanpl es\ cor ba\ bankapp_j ava\ XA directory of the
WebL ogic Enterprise software. For information about building and running the XA
Bankapp sample application, see the Bankapp Sample Using XA in the WebL ogic
Enterprise online documentation.

Step 1: Writing the OMG IDL

Y ou need to specify interfaces involved in transactions in Object Management Group
(OMG@G) Interface Definition Language (IDL) just as you would any other CORBA
interface. Y ou must also specify any user exceptions that might occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the
Regi strar interface and ther egi ster _for _cour ses() operation. The
regi ster_for_courses() operation hasaparameter, Not Regi st er edLi st , which

Using Transactions ~ 1-15

1

Introducing Transactions

1-16

returns to the client application the list of courses for which registration failed. If the
value of Not Regi st er edLi st isempty, then the client application commits the
transaction. Y ou also need to define the TooManyCr edi t s user exception.

Listing 1-1 includes the OMG IDL for the Transactions sample application.

Listing1-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys. cont
nmodul e UniversityT

{
typedef unsigned | ong Cour seNumnber;
typedef sequence<Cour seNunber> Cour seNunber Li st ;
struct Cour seSynopsi s
{
Cour seNumnber cour se_nunber ;
string title;
b
typedef sequence<Cour seSynopsi s> CourseSynopsi sLi st;
i nterface CourseSynopsi sEnuner at or
{
/I Returns a list of length O if there are no nore entries
Cour seSynopsi sLi st get _next _n(
in unsigned |long nunber _to get, // O = return all
out unsi gned | ong nunber _remai ni ng
)
voi d destroy();
b
typedef unsigned short Days;
const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRI DAY = 16;
}

/1 Classes restricted to same tine block on all schedul ed days,
/lstarting on the hour

struct Cl assSchedul e

{
Days class_days; // bitmask of days

unsi gned short start_hour; // whole hours in mlitary tine

Using Transactions

Transactions Sample Code

unsi gned short duration; // mnutes
}s
struct CourseDetails
{
Cour seNunber cour se_nunber;
doubl e cost ;
unsi gned short nunber_of credits;
Cl assSchedul e cl ass_schedul €;
unsi gned short nunber_of seats;
string title;
string pr of essor;
string descri ption;
}s

typedef sequence<CourseDetail s> CourseDet ai | sLi st;
typedef unsigned |ong Studentld;

struct StudentDetails

{
St udent | d student _i d;
string nane;
Cour seDet ai | sLi st regi stered_courses;
b
enum Not Regi st er edReason
{
Al r eadyRegi st er ed,
NoSuchCour se
b
struct Not Regi stered
{
Cour seNunber cour se_nunber;
Not Regi st eredReason not _regi st ered_reason;
b

typedef sequence<Not Regi st ered> Not Regi st eredLi st;

excepti on TooManyCredits

{
}s

/1 The Registrar interface is the main interface that all ows
//students to access the database.
interface Registrar

{

unsi gned short maxi mumcredits;

Cour seSynopsi sLi st

get _cour ses_synopsi s(
in string search_criteria,
in unsigned | ong nunber to_get,

Using Transactions ~ 1-17

1 Introducing Transactions

out unsigned | ong nunber _remai ni ng,
out Cour seSynopsi sEnuner at or rest

Cour seDet ai | sLi st get _courses_detail s(in CourseNunberLi st
courses);
StudentDetail s get_student _details(in Studentld student);
Not Regi st er edLi st regi ster_for_courses(
in Studentld st udent,
i n CourseNunberList courses
) raises (
TooManyCredits

)
I
/1 The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Regi strar find_registrar(
)
b

Step 2: Defining Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within a WebL ogic Enterprise application will handle transactions.
Table 1-1 describes the CORBA transaction policies.

Table1-1 CORBA Transaction Policies

Transaction Policy Description

al ways The interface must always be part of atransaction. If the
interface is not part of atransaction, a transaction will be
automatically started by the TP Framework.

i gnore The interface is not transactional. However, requests made to
this interface within a scope of atransaction are alowed. The
AUTOTRAN parameter, specified in the UBBCONFI Gfilefor this
interface, isignored.

1-18 Using Transactions

Transactions Sample Code

Table 1-1 CORBA Transaction Policies (Continued)

Transaction Policy Description

never The interface is not transactional. Objects created for this
interface can never beinvolved in atransaction. The WebL ogic
Enterprise system generates an exception
(I NVALI D_TRANSACTI ON) if an interface with thispolicy is
involved in atransaction.

opti onal Theinterface may be transactional. Objectscan beinvolvedina
transactionif therequest istransactional . Thistransaction policy
isthe default.

During development, you decide which interfaces will execute in a transaction by
assigning transaction policies in the following ways:

m For C++ server applicationsin CORBA, you specify transaction policiesin the
Implementation Configuration File (ICF). A template ICF fileis created by the
geni cf command. For more information about the ICFs, see “Implementation
Configuration File (ICF)” in theCORBA C++ Programming Reference.

m For Java server applications in CORBA, you specify transaction policies in the
Server Description File, written in Extensible Markup Language (XML). For
more information about Server Description files, see “Server Description File” in
the CORBA Java Programming Reference.

In the Transactions sample application, the transaction policy ektliet r ar
interface is set tal ways.

Step 3: Writing the Server Application

When using transactions in server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, you
would write a method implementation for thegi st er _f or _cour ses() operation.

If your WebLogic Enterprise application uses a database, you need to include in the
server application code that opens and closes an XA Resource Manager. These
operations are included in tiserver: :initial i ze() andServer: :rel ease()
operations of th&er ver object. Listing 1-2 shows the portion of the code for the
Server object in the Transactions sample application that opens and closes the XA
Resource Manager.

Using Transactions 1-19

1

Introducing Transactions

1-20

Note: For acomplete example of a C++ server application that implements
transactions, see the Transactions Samplein the WebL ogic Enterprise online
documentation. For an example of a Java server application that implements
transactions, see Bankapp Sample Using XA in the WebL ogic Enterprise
online documentation.

Listing 1-2 C++ Server Object in Transactions Sample Application

CORBA: : Bool ean Server::initialize(int argc, char* argv[])
{
TRACE METHOD(" Server::initialize");
try {
open_dat abase();
begi n_transactional ();
regi ster_fact();
return CORBA TRUE;

catch (CORBA : Exception& e) {
LOG(“CORBA exception : “ <<e);

}
catch (SamplesDBException& e) {
LOG(“Can’t connect to database”);

}
catch (...) {
LOG(“Unexpected database error : “ <<e);

}
catch (...) {
LOG(“Unexpected exception”);

cleanup();
return CORBA_FALSE;

}

void Server::release()

TRACE_METHOD(“Server::release”);

cleanup();

}

static void cleanup()

{
unregister_factory();
end_transactional();
close_database();

}

//Utilities to manage transaction resource manager

Using Transactions

Transactions Sample Code

CORBA: : Bool ean s_becane_transacti onal = CORBA FALSE;
static void begin_transactional ()

{
TP: : open_xa_rm();
s_becane_transactional = CORBA TRUE;
}
static void end_transactional ()
{
if(!s_becane_transactional){
return//cl eanup not necessary
}
try {
TP::close xa_ rm();
}
catch (CORBA:: Exception& e) {
LOG(“CORBA Exception : “ << e);
}
catch (...) {
LOG(“unexpected exception”);
}
s_became_transactional = CORBA_FALSE;
}

Step 4: Writing the Client Application
The client application needs code that performs the following tasks:

1. Obtains areference to the TransactionCurrent object from the Bootstrap
object.

2. Begins atransaction by invoking the Tobj:: TransactionCurrent::begin()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokes the register_for_courses() operation on the
Registrar ~ object, passing alist of courses.

Listing 1-3 illustrates the portion of the CORBA C++ client applicationsin the
Transactions sample application that illustrates the devel opment steps for transactions.

For an example of a CORBA Java client application that uses transactions, see
Bankapp Sample Using XA in the WebL ogic Enterprise online documentation. For an
example of using transactionsin an ActiveX client application, see Chapter 4,
“Transactions in CORBA Client Applications.”

Using Transactions 1-21

1

Introducing Transactions

Listing 1-3 Transactions Code for CORBA C++ Client Applications

CORBA: : Obj ect _var var _transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(var_transaction_current_oref.in());

/IBegin the transaction

var_transaction_current_oref->begin();

try {

/IPerform the operation inside the transaction
pointer_Registar_ref->register_for_courses(student_id, course_number _list);

//If operation executes with no errors, commit the transaction:
CORBA::Boolean report_heuristics = CORBA_TRUE;
var_transaction_current_ref->commit(report_heuristics);

}
catch (...) {
/If the operation has problems executing, rollback the
/ltransaction. Then throw the original exception again.
/If the rollback fails,ignore the exception and throw the
/loriginal exception again.

try {

var_transaction_current_ref->rollback();

}

catch (...) {
TP::userlog("rollback failed");

throw;

}

}

Step 5: Creating a Configuration File

1-22

Y ou need to add the following information to the configuration file for atransactional
WebL ogic Enterprise application:

m |nthe GROUPSection:

¢ Inthe OPENINFOparameter, include the information needed to open the
resource manager for the database. You obtain this information from the
product documentation for your database. Note that the default version of the
com.beasys.Tobj.Server.initialize method automatically opensthe
resource manager.

¢ Inthe CLOSEINFOparameter, include the information needed to close the
resource manager for the database. By default, the CLOSEINFOparameter is
empty.

Using Transactions

Transactions Sample Code

e Specify the TMSNAME and TMSCOUNT parameters to associate the XA resource
manager with a specified server group.

m Inthe SERVERS section, define a server group that includes both the server
application that includes the interface and the server application that manages
the database. This server group needs to be specified as transactional .

m Include the pathname to the transaction log (TLOG) in the TLOGDEVI CE
parameter. For more information about the transaction log, see Chapter 8,
“Administering Transactions.”

Listing 1-4 includes the portions of the configuration file that define this information
for the Transactions sample application.

Listing 1-4 Configuration Filefor Transactions Sample Application

* RESOURCES
| PCKEY 55432
DOVAI NI D wuniversity
MASTER S| TE1

MODEL SHM

LDBAL N

SECURI TY APP_PW
*MACHI NES

BLOTTO

LMD = SITE1

APPDI R = C:\ TRANSACTI ON_SAMPLE

TUXCONFI G=C: \ TRANSACTI ON_SAMPLE\ t uxconfi g
TLOGDEVI CE=C: \ APP_DI R TLOG

TLOGNAME=TLOG

TUXD R=" C: \ WLEdi r"

MAXWECLI ENTS=10

* GROUPS
SYS GRP
LM D = SITEL
GRPNO =1
ORA_GRP
LM D = SITEL
GRPNO =2

OPENI NFO = "ORACLE_XA: O acl e_XA+Sql Net =ORCL+Acc=P
/scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"
CLCSEINFO = ""

Using Transactions 1-23

1 Introducing Transactions

TMBNAME = "TMS_ORA"
TMSCOUNT = 2
* SERVERS
DEFAULT:
RESTART = Y
MAXGEN = 5
TMBYSEVT
SRVGRP = SYS GRP
SRID =1
TMFENAVE
SRVGRP = SYS GRP
SRID =2
CLOPT ="-A-- -N-M
TMFENAVE
SRVGRP = SYS GRP
SRID =3
CLOPT ="-A-- -N'
TMFENAVE
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F'
TM FRSVR
SRVGRP = SYS GRP
SRID =5
UNI VT_SERVER
SRVGRP = ORA GRP
SRID =1
RESTART = N
I sL
SRVGRP = SYS GRP
SRID =6
CLOPT = -A -- -n //MACH NENAVE: 2500
* SERVI CES

For information about the transaction log and defining parametersin the Configuration
file, see Chapter 8, “Administering Transactions.”

1-24 Using Transactions

Transactions Sample Code

Transactions Sample EJB Code

Thistopic provides a walkthrough of sample code fragments from aclassin an EJB
application. Thistopic includes the following sections:

m Importing Packages

m Initializing the UserTransaction Object

m Using JNDI to Return an Object Reference to the UserTransaction Object
m Starting a Transaction

m Completing a Transaction

The code fragments demonstrate using the User Tr ansact i on object for
bean-managed transaction demarcation. The deployment descriptor for this bean
specifies the transaction type (t r ansact i on-t ype element) for transaction
demarcation (Bean).

Note: These code fragments do not derive from any of the sample applications that
ship with WebL ogic Enterprise. They merely illustrate the use of the
User Transact i on object within an EJB application.

Importing Packages
Listing 1-5 shows importing the necessary packages for transactions, including:

B javax.transaction. User Transacti on. For alist of methods associated with
this object, see “UserTransaction Methods” on page 2-24.

m System exceptions. For a list of exceptions, see “Exceptions Thrown by
UserTransaction Methods” on page 2-26.

Listing 1-5 Importing Packages

i mport javax.nam ng.*;

i mport javax.transaction. User Transacti on;

i mport javax.transaction. Syst enExcepti on;

import javax.transaction. HeuristicM xedExcepti on
import javax.transaction. HeuristicRol | backException
i mport javax.transacti on. Not SupportedExcepti on

Using Transactions ~ 1-25

1 Introducing Transactions

i nport javax.transaction. Rol | backException
i nport javax.transaction. ||| egal StateException
i nport javax.transaction. SecurityException

Initializing the UserTransaction Object

Listing 1-6 showsinitializing an instance of the User Tr ansact i on object to null.

Listing 1-6 Initializing the User Transaction Object

User Transaction tx = nul |;

Using JNDI to Return an Object Reference to the UserTransaction Object

Listing 1-7 shows searching the INDI tree to return an object reference to the
User Tr ansact i on object for the appropriate WebL ogic Enterprise domain.

Listing 1-7 Performing a JDNI Lookup

try {
Context ctx = getlnitial Context();
tx = (UserTransaction)ctx. | ookup("j ava: conp/ User Transacti on");

Starting a Transaction

Listing 1-8 shows starting atransaction by calling the

j avax. transacti on. User Transact i on. begi n method. Database operations that
occur after thismethod invocation and prior to compl eting the transaction exist within
the scope of this transaction.

Listing 1-8 Starting a Transaction

t x. begin();

1-26 Using Transactions

Transactions Sample Code

Completing a Transaction

Listing 1-9 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

m If an exception was thrown, the application callsthe
javax.transaction. User Transact i on. r ol | back method if an exception
was thrown during any of the database operations.

m If no exception was thrown, the application calls the
j avax.transaction. User Tr ansact i on. comrmi t method to attempt to commit
the transaction after all database operations completed successfully. Calling this
method ends the transaction and starts the processing of the operation, causing
the WebL ogic Enterprise EJB container to call the transaction manager to
compl ete the transaction. The transaction is committed only if all of the
participants in the transaction agree to commit.

Listing1-9 Completing a Transaction

i f (got Exception){
try{
tx.rol | back();
}cat ch(Exception e){}

el sei f{
tx.commt();
}

Transactions Sample RMI Code

Thistopic provides awalkthrough of sample code fragments from a classin an RM|I
application. Thistopic includes the following sections:

m Importing Packages

Initializing the UserTransaction Object

Using JDNI to Return an Object Reference to the UserTransaction Object

Starting a Transaction

Using Transactions ~ 1-27

1 Introducing Transactions

m Completing a Transaction

The code fragments demonstrate using the User Tr ansact i on object for RMI
transactions. For guidelines about using transactionsin RM| applications, see

Chapter 6, “Transactions in RMI Applications.”

Note: These code fragments do not derive from any of the sample applications tha
ship with WebLogic Enterprise. They merely illustrate the use of the
User Tr ansact i on object within an RMI application.

Importing Packages

Listing 1-10 shows importing the necessary packages, including the following

packages used to handle transactions:

B javax.transaction. User Transacti on. For a list of methods associated with

this object, see “UserTransaction Methods” on page 2-24.

m System exceptions. For a list of exceptions, see “Exceptions Thrown by

UserTransaction Methods” on page 2-26.

Listing 1-10 Importing Packages

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

j avax
j ava.
j avax
j avax
j avax
j avax
j avax
j avax
j avax
j avax

. nam ng. *;
rm.*;

.transaction.
.transaction.
.transaction.
.transaction.
.transaction.
.transaction.
.transaction.
.transaction.

User Tr ansacti on;

Syst enExcepti on;

Heuri sti cM xedExcepti on
Heuri sti cRol | backException
Not Support edExcept i on

Rol | backExcepti on

Il egal St at eException
Securi tyException

Initializing the UserTransaction Object

Listing 1-11 shows initializing an instance of theer Tr ansact i on object to null.

1-28 Using Transactions

Transactions Sample Code

Listing 1-11 Initializing the User Transaction Object

User Transaction tx = null;

Using JDNI to Return an Object Reference to the UserTransaction Object

Listing 1-12 shows searching the INDI tree to return an object reference to the
User Transact i on object for the appropriate WebL ogic Enterprise domain.

Note: Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during
server shutdown). For the duration of the transaction, the WebL ogic
Enterprise infrastructure does not perform any deactivation or activation.

Listing 1-12 Performing a JDNI Lookup

try {
Context ctx = getlnitial Context();

tx = (UserTransaction)ct x. | ookup("java: conp/ User Transacti on");

Starting a Transaction

Listing 1-13 shows starting a transaction by calling the

javax.transacti on. User Tr ansact i on. begi n method. Database operations that
occur after this method invocation and prior to completing the transaction exist within
the scope of this transaction.

Listing 1-13 Starting a Transaction

tx. begi n();

Completing a Transaction
Listing 1-14 shows completing the transaction depending on whether an exception was

thrown during any of the database operations that were attempted within the scope of
this transaction:

Using Transactions ~ 1-29

1 Introducing Transactions

m |If an exception was thrown, the application calls the
j avax. transaction. User Transacti on. r ol | back method if an exception
was thrown during any of the database operations.

m I no exception was thrown, the application callsthe
j avax. transaction. User Transact i on. commi t method to attempt to commit
the transaction after all database operations completed successfully. Calling this
method ends the transaction and starts the processing of the operation, causing
WebL ogic Enterprise to call the transaction manager to complete the transaction.
Thetransaction is committed only if al of the participants in the transaction
agree to commit.

Listing 1-14 Completing a Transaction

i f(got Exception){
try{
tx. roll back();
}catch(Exception e){}

el sei f{
tx.commt();
}

1-30 Using Transactions

CHAPTER

2

Transaction Service

Thistopic includes the following sections:

About the Transaction Service
Capabilities and Limitations

Transaction Service in CORBA Applications
Transaction Service in EJB Applications
Transaction Service in RMI Applications

UserTransaction API

Thistopic provides the information that programmers need to write transactional
applications for the WebL ogic Enterprise system. Before you begin, you should read
Chapter 1, “Introducing Transactions.”

Using Transactions 2-1

2 Transaction Service

About the Transaction Service

WebL ogic Enterprise provides a Transaction Service that supports transactions in
CORBA, EJB, and RMI applications. The Transaction Service provides:

m Animplementation of the CORBAservices Object Transaction Service (OTS)
that is described in Chapter 10 of the CORBAservices: Common Object Services
Specification. This specification defines the interfaces for an object service that
provides transactional functions.

m Inthe WebL ogic Enterprise EJB container, an implementation of the transaction
services described in the Enterprise JavaBeans Specification 1.1, published by
Sun Microsystems, Inc.

For CORBA Java, EJB, and RMI applications, WebL ogic Enterprise dso providesthe

j avax. transact i on package, from Sun Microsystems, Inc., which implementsthe

Java Transaction APl (JTA) for Java applications. For more information about the

JTA, see the Java Transaction APl (JTA) Specification (version 1.0.1), published by

Sun Microsystems, Inc. For more information about the UserTransaction object that
applications use to demarcate transaction boundaries, see “UserTransaction API” ol
page 2-24.

Capabilities and Limitations

This topic includes the following sections:

m Lightweight Clients with Delegated Commit
m Transaction Propagation (CORBA Only)

m Transaction Integrity

Transaction Termination

Flat Transactions

Interoperability Between Remote Clients and the WebLogic Enterprise Domain

2-2 Using Transactions

Capabilities and Limitations

m Intradomain and Interdomain Interoperability

m Network Interoperability

m Relationship of the Transaction Service to Transaction Processing
m Process Failure

m Multithreaded Transaction Client Support

m General Constraints

These sections describe the capabilities and limitations of the Transaction Service that
supports CORBA and EJB applications:

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they are not in
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsible for ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources.

WebL ogic Enterprise remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on aserver machine. Client applications do not require a
local transaction server. The remote Tr ansact i onCur r ent implementation that
CORBA clients use, or the remote implementation of User Tr ansact i on that EJB or
RMI clients use, delegate the actual responsibility of transaction coordination to
transaction manager on the server.

Using Transactions 2-3

2 Transaction Service

Transaction Propagation (CORBA Only)

For CORBA applications, the CORBAservices Object Transaction Service
specification states that a client can choose to propagate a transaction context either
implicitly or explicitly. WebL ogic Enterprise provides implicit propagation. Explicit
propagation is strongly discouraged.

Note: For EJB and RMI applications, only implicit propagation is supported for
clients.

Objects that are related to transaction contexts that are passed around using explicit
transaction propagation should not be mixed with implicit transaction propagation
APIs. It should be noted, however, that explicit propagation does not place any
constraintson when transacti onal methods can be processed. Thereisno guaranteethat
all transactional methods will be completed before the transaction is committed.

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
commi t will not succeed unless all transactional objectsinvolved in the transaction
have completed the processing of their transactional requests. If implicit transaction
propagation is used, the Transaction Service provides checked transaction behavior
that isequivalent to that provided by the request/responseinterprocess communication
models defined by The Open Group. For CORBA applications, for example, the
Transaction Service performsr epl y checks, conmi t checks, and r esune checks, as
described in the CORBAservices Object Transaction Service Specification.

Unchecked transaction behavior relies completely on the application to provide
transaction integrity. If explicit propagation is used, the Transaction Service does not
provide checked transaction behavior and transaction integrity is not guaranteed.

Transaction Termination

WebL ogic Enterprise allows transactions to be terminated only by the client that
created the transaction.

2-4 Using Transactions

Capabilities and Limitations

Note: The client may be a server object that requests the services of another object.

Flat Transactions

WebL ogic Enterprise implements the flat transaction model. Nested transactions are
not supported.

Interoperability Between Remote Clients and the
WebLogic Enterprise Domain

WebL ogic Enterprise supports remote clients invoking methods on server objectsin
different WebL ogic Enterprise domains in the same transaction.

Remote clients with multiple connections to the same WebL ogic Enterprise domain
may make invocations to server objects on these separate connections within the same
transaction.

Intradomain and Interdomain Interoperability

For C++ (but not Java) applications, WebL ogic Enterprise supports native clients
invoking methods on server objectsin the WebL ogic Enterprise domain. In addition,
WebL ogic Enterprise supports server objectsinvoking methods on other objectsin the
same or in different processes within the same WebL ogic Enterprise domain.

In WebL ogic Enterprise applications, transactions can span multiple domains as long
as factory-based routing is properly configured across multiple domains. To support
transactions across multiple domains, you must configurethef act ory_f i nder . i ni
file to identify factory objectsthat are used in the current (local) domain but that are
resident in a different (remote) domain. For more information, see “Configuring
Multiple Domains (WebLogic Enterprise System)” in thdministration Guide.

Using Transactions 2-5

2

Transaction Service

Network Interoperability

A client application can have only one active bootstrap object and

Transact i onCurrent object within asingle domain. WebL ogic Enterprise does not
support exporting or importing transactions to or from remote WebL ogic Enterprise
domains.

However, transactions can encompass multiple domainsin a serial fashion. For
example, a server with atransaction active in Domain A can communicate with a
server in Domain B within the context of that same transaction.

Relationship of the Transaction Service to Transaction

Processing

2-6

The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standardsin the following ways:

m Support for BEA Tuxedo ATMI servers. Servers using the WebL ogic

Enterprise Transaction Service can make invocations on other BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) server processes in the
same domain. In addition, ATMI services can invoke CORBA objects in both
transactional and non-transactional contexts, both within the same domain and
across domainsviaa TDOMAINS gateway. However, WebL ogic Enterprise
does not support remote clients or native clients invoking ATMI servicesin the
WebL ogic Enterprise domain.

Support for The Open Group XA interface. The Open Group Resource
Managers are resource managers that can be involved in a distributed transaction
by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface. WebL ogic Enterprise supports interaction with The Open
Group Resource Managers.

Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) is the transactional protocol defined by the I nternational
Organization for Standardization (I SO). WebL ogic Enterprise does not support
interactions with OSI TP transactions.

Using Transactions

Capabilities and Limitations

Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2
is atransactional protocol defined by IBM. WebL ogic Enterprise does not
support interactions with LU 6.2 transactions.

Support for the ODMG standard. ODMG-93 is a standard defined by the
Object Database Management Group (ODMG) that describes a portable interface
to access Object Database Management Systems. WebL ogic Enterprise does not
support interactions with ODMG transactions.

Process Failure

The Transaction Service monitors the participants in a transaction for failures and
inactivity. The BEA Tuxedo system provides management tools for keeping the
application running when failures occur. Because WebL ogic Enterpriseis built upon
the existing BEA Tuxedo transaction management system, it inherits the Tuxedo
capabilities for keeping applications running.

Multithreaded Transaction Client Support

WebL ogic Enterprise supports multithreaded clients for non-transactional clients. For
transactional clients, WebL ogic Enterprise supports only single-threaded client
implementation. Clients cannot make transaction requests concurrently in multiple
threads.

General Constraints

The following constraints apply to the Transaction Service:

In WebL ogic Enterprise, a client or a server object cannot invoke methods on an
object that is infected with (or participating in) another transaction. The method
invocation issued by the client or the server will return an exception.

For CORBA applications, a server application object using transactions from the
WebL ogic Enterprise Transaction Service library requires the TP Framework
functionality. For more information about the TP Framework, see “TP
Framework” in theaCORBA C++ Programming Reference.

Using Transactions 2-7

2

Transaction Service

m For CORBA applications, areturn from ther ol | back method on the Cur r ent

object is asynchronous. Similarly, for EJB and RMI applications, areturn from
ther ol | back method on the User Tr ansact i on object is asynchronous.

As aresult, the objects that were infected by (or participating in) the rolled back
transaction get their states cleared by WebL ogic Enterprise a little later.
Therefore, no other client can infect these objects with adifferent transaction
until WebL ogic Enterprise clears the states of these objects. This condition exists
for avery short amount of time and is typically not noticeable in a production
application. A simple workaround for this race condition is to try the appropriate
operation after a short (typically a 1-second) delay.

In WebL ogic Enterprise, clients using third-party implementations of the
CORBAservices Object Transaction Service (for CORBA applications) or the
Java Transaction API (for Java applications) are not supported.

In WebL ogic Enterprise CORBA applications, clients may not make one-way
method invocations within the context of atransaction to server objects having
the NEVER, OPTI ONAL, or ALWAYS transaction policies.

No error or exception will be returned to the client because it is a one-way

method invocation. However, the method on the server object will not be

executed, and an appropriate error message will be written to the log. Clients

may make one-way method invocations within the context of a transaction to

server objects with the | GNORE transaction policy. In this case, the method on the
server object will be executed, but not in the context of a transaction. For more
information about the transaction policies, see “Server Description File” in the
CORBA Java Programming Reference or “Implementation Configuration File
(ICF)” in the CORBA C++ Programming Reference.

Transaction Service in CORBA Applications

2-8

This topic includes the following sections:
m Getting Initial References to the TransactionCurrent Object
m CORBA Transaction Service API

m CORBA Transaction Service AP| Extensions

Using Transactions

Transaction Service in CORBA Applications

m Noteson Using Transactions in WebL ogic Enterprise CORBA Applications

These sections describe how WebL ogic Enterprise implements the OTS, with
particular emphasis on the portion of the CORBA services Object Transaction Service
that is described as implementation-specific. They describe the OT S application
programming interface (API) that you use to begin or terminate transactions, suspend
or resume transactions, and get information about transactions.

Getting Initial References to the TransactionCurrent
Object

To access the Transaction Service APl and the extension to the Transaction Service
API asdescribed later in this chapter, an application needs to complete the following
operations:

1. Create aBoot st r ap object. For more information about creating a Boot st r ap
object, see “C++ Bootstrap Object Programming Reference” iG@RBA C++
Programming Reference.

2. Invoke theresol ve initial _reference("TransactionCurrent") method
on theBoot st r ap object. The invocation returns a standard CORBA object
pointer. For a description of thBaot st r ap object method, see tiORBA C++
Programming Reference.

3. If an application requires only the Transaction Service APls, it should issue an
org.onmg. CosTransact i ons. Current. narrow() (in Java) or
CosTransactions:: Current::_narrow) (in C++) on the object pointer
returned from step 2 above.

If an application requires the Transaction Service APIs with the extensions, it
should issue aom beasys. Tobj . Transacti onCurrent. narrow() (in Java)

or Tobj : : Transacti onCurrent::_narrow() (in C++) on the object pointer
returned from step 2 above.

CORBA Transaction Service API

This topic includes the following sections:

Using Transactions 2-9

2 Transaction Service

m Data Types

m Exceptions

m Current Interface

m Control Interface

m TransactionalObject Interface

These sections describe the CORBA-based components of the CosTr ansact i ons
modul esthat WebL ogic Enterpriseimplementsto support the Transaction Service. For
more information about these components, see Chapter 10 of the CORBAservices:
Common Object Services Specification.

Data Types

Listing 2-1 shows the supported data types.

Listing 2-1 Data Types Supported by the Transaction Service

enum Status {

St at usActi ve,

St at usMar kedRol | back,
St at usPrepar ed,

St at usComm t t ed,

St at usRol | edBack,

St at usUnknown,

St at usNoTr ansact i on,
St at usPrepari ng,
StatusConmi tti ng,

St at usRol | i ngBack

}s

/1 This information cones from CORBAservices: Common (bj ect
// Services Specification, p. 10-15. Revi sed Edition:
/1 March 31, 1995. Updated: March 1997. Used wi th perm ssion by OMG

Exceptions

Listing 2-2 shows the supported exceptionsin IDL code.

2-10 Using Transactions

Transaction Service in CORBA Applications

Listing 2-2 Exceptions Supported by the Transaction Service

/1 Heuristic exceptions

exception HeuristicMxed {};
exception HeuristicHazard {};

/1 Gt her transaction-specific exceptions
excepti on Subtransacti onsUnavail able {};
excepti on NoTransaction {};

exception InvalidControl

{};

excepti on Unavail able {};

Table 2-1 describes the exceptions.

Note: Thisinformation comes from CORBAservices. Common Object Services
Specification, pages 10-16, 19, 20. Revised Edition: March 31, 1995. Updated:
March 1997. Used with permission by OMG.

Table 2-1 Exceptions Supported by the Transaction Service

Exception

Description

Heuristi cM xed

A request raises this exception to report that a heuristic
decision was made and that some rel evant updates have been
committed and others have been rolled back.

Heuri sti cHazard

A request raises this exception to report that a heuristic
decision was made, that the disposition of all relevant
updatesis not known, and that for those updates whose
disposition is known, either all have been committed or all
have been rolled back. Therefore, theHeur i sti cM xed
exception takes priority over the Heur i sti cHazar d
exception.

Subt ransacti onsUnava
ilable

This exception israised for the Cur r ent interface begi n
method if the client already has an associated transaction.

NoTr ansacti on

This exception israised for the Cur r ent interface
rol | back and r ol | back_onl y methodsif thereisno
transaction associated with the client thread.

Using Transactions 2-11

Transaction Service

Table 2-1 Exceptions Supported by the Transaction Service (Continued)

Exception Description

I nval i dContr ol Thisexceptionisraised for the Cur r ent interfacer esune
method if the parameter isnot valid in the current execution
environment.

Unavai | abl e This exception israised for the Cont r ol interface

get _term nator andget_coordi nat or methodsif
the Cont r ol interface cannot provide the requested object.

Current Interface

2-12

The cur rent interface defines methods that allow a client of the Transaction Service
to explicitly manage the association between threads and transactions. The Cur r ent
interface al so defines methods that simplify the use of the Transaction Service for most
applications. These methods can be used to begin and end transactions, to suspend and
resume transactions, and to obtain information about the current transaction.

TheCosTr ansact i ons module definesthe Cur r ent interface (shownin Listing 2-3).

Listing 2-3 Current Interfaceidl

/1 Current transaction
interface Current : CORBA::Current {
voi d begin()
rai ses(Subt ransacti onsUnavai l abl e) ;
void commit(in bool ean report_heuristics)
rai ses(
NoTr ansact i on,
Heuri sticM xed,
Heuri sticHazard
)
voi d roll back()
rai ses(NoTransacti on);
voi d roll back_only()
rai ses(NoTransacti on);
Status get_status();
string get_transaction_nane();
void set_tinmeout(in unsigned |ong seconds);
Control get_control ();
Control suspend();

Using Transactions

Transaction Service in CORBA Applications

void resune(in Control which)
rai ses(lnvalidControl);

}

/1 This information cones from CORBAservi ces: Conmon (bj ect

// Services Specification, p. 10-18. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
1 OMG

Table 2-2 provides a description of the Cur r ent transaction methods.

Note: Thisinformation comes from CORBAservices. Common Object Services
Specification, pages 10-18, 19, 20. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Table 2-2 Transaction Methodsin the Current Object

M ethod Description

begi n Creates a new transaction. The transaction context of the
client thread ismodified so that the thread is associated with
the new transaction. If the client thread is currently
associated with a transaction, the
Subtransacti onsUnavai | abl e exceptionisraised. If
the client thread cannot be placed in transaction mode dueto
an error while starting the transaction, the standard system
exception | NVALI D_TRANSACTI ONisraised. If the call
was made in an improper context, the standard system
exception BAD_| NV_CORDER is raised.

Using Transactions ~ 2-13

2 Transaction Service

Table 2-2 Transaction Methodsin the Current Object (Continued)

Method Description

commi t If thereisno transaction associ ated with the client thread, the
NoTr ansact i on exception israised.

If the call was made in an improper context, the standard
system exception BAD_| NV_ORDER is rai sed.

If the system decides to roll back the transaction, the
standard exception TRANSACTI ON_ROLLEDBACK israised
and the thread’s transaction context is setutbl .

A Heuri sti cM xed exception is raised to report that a
heuristic decision was made and that some relevant updates
have been committed and others have been rolled back. A
Heuri sti cHazar d exception is raised to report that a
heuristic decision was made, and that the disposition of all
relevant updates is not known; for those updates whose
disposition is known, either all have been committed or all
have been rolled back. Thieur i sti cM xed exception
takes priority over théleur i st i cHazar d exception. If a
heuristic exception is raised or the operation completes
normally, the thread’s transaction exception context is set to
nul | .

If the operation completes normally, the thread's transaction
context is set toul | .

rol | back If there is no transaction associated with the client thread, the
NoTr ansact i on exception is raised.

If the call was made in an improper context, the standard
system exceptioBAD | NV_ORDER is raised.

If the operation completes normally, the thread's transaction
context is set toul | .

rol | back_only If there is no transaction associated with the client thread, the
NoTr ansact i on exception is raised. Otherwise, the
transaction associated with the client thread is modified so
that the only possible outcome is to roll back the transaction.

get _status If there is no transaction associated with the client thread, the
St at usNoTr ansact i on value is returned. Otherwise,
this method returns the status of the transaction associated
with the client thread.

2-14 Using Transactions

Transaction Service in CORBA Applications

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod Description

get _transacti on_nane If thereisno transaction associated with the client thread, an
empty string is returned. Otherwise, this method returns a
printable string describing the transaction (specifically, the
Xl Dasspecified by The Open Group). Thereturned string is
intended to support debugging.

set _tinmeout This method modifies a state variabl e associated with the
target object that affects the time-out period associated with
transactions created by subsequent invocationsof thebegi n
method.

Theinitial transaction timeout value is 300 seconds. Calling
set _timeout () with an argument value larger than zero
specifies anew timeout value. Calling set _t i meout ()
with a zero argument sets the timeout val ue back to the
default of 300 seconds.

After calling set _ti meout (), transactions created by
subsequent invocations of begi n are subject to being rolled
back if they do not complete before the specified number of
seconds after their creation.

Note: Theinitia transaction timeout value is 300
seconds. If atransaction is started via AUTOTRAN
instead of the begi n method, then the timeout
valueisdetermined by the TRANTI ME valuein the
WebL ogic Enterprise configuration file. For more
information, see Chapter 8, “Administering
Transactions.”

get _control If the client is not associated with a transactionuhl
object reference is returned. Otherwis€pat r ol objectis
returned that represents the transaction context currently
associated with the client thread. This object may be given to
ther esune method to reestablish this context.

Using Transactions ~ 2-15

2

Transaction Service

2-16

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod

Description

suspend

Using Transactions

If the client thread is not associated with atransaction, anull
object reference is returned.

If the associated transaction isin a state such that the only
possible outcome of the transaction is to be rolled back, the
standard system exception TRANSACTI ON_ROLLEDBACK
israised and the client thread becomes associated with no
transaction.

If the call was made in an improper context, the standard
system exception BAD_| NV_ORDER israised. The caller's
state with respect to the transaction is not changed.

Otherwise, an object isreturned that represents the
transaction context currently associated with the client
thread. The same client can subsequently give this object to
the r esune method to reestablish this context. In addition,
the client thread becomes associated with no transaction.

Note: Asdefined in The Common Object Request
Broker: Architecture and Specification, Revision
2.2, February 1998, the standard system exception
TRANSACTI ON_ROLLEDBACK indicates that the
transaction associated with the request has already
been rolled back or has been marked to roll back.
Thus, the requested method either could not be
performed or was not performed because further
computation on behalf of the transaction would be
fruitless.

Transaction Service in CORBA Applications

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod Description

resume If the client thread is already associated with a transaction
whichisin astate such that the only possible outcome of the
transaction isto be rolled back, the standard system
exception TRANSACTI ON_ROLLEDBACK israised and the
client thread becomes associated with no transaction.

If the call was made in an improper context, the standard
system exception BAD | NV_ORDER s raised.

If the system is unable to resume the global transaction
because the caller is currently participating in work outside
any global transaction with one or more resource managers,
the standard system exception | NVALI D_TRANSACTI ONis
raised.

If the parameter isanul | object reference, the client thread
becomes associated with no transaction. If the parameter is
valid in the current execution environment, the client thread
becomes associated with that transaction (in place of any
previous transaction). Otherwise, the | nval i dCont r ol
exception israised.

Note: Seesuspend for adefinition of the standard
system exception TRANSACT| ON_RCOLLEDBACK.

Control Interface

The Cont r ol interface allows a program to explicitly manage or propagate a
transaction context. An object that supportsthe Cont r ol interfaceisimplicitly
associ ated with one specific transaction.

Listing 2-4 showsthe Cont r ol interface, which is defined in the CosTr ansact i ons
module.

Listing 2-4 Control Interface

interface Control {
Term nator get _term nator()
rai ses(Unavai |l abl e);
Coor di nat or get _coordi nator ()

Using Transactions ~ 2-17

2

Transaction Service

rai ses(Unavai |l abl e);

}s

/1 This information cones from CORBAservices: Common (bj ect

// Services Specification, p. 10-21. Revised Edition:

/1 March 31, 1995. Updated: Novenmber 1997. Used with perm ssion by
/1 OMG

The Cont rol interfaceisused only in conjunction with the suspend and r esune
methods.

TransactionalObject Interface

2-18

Theor g. ong. CosTransact i ons. Transact i onal Obj ect interface (in Java) or
CosTransactions: : Transact i onal Obj ect (in C++) isused by an object to
indicate that it istransactional. By supporting thisinterface, an object indicates that it
wants the transaction context associated with the client thread to be propagated on
reguests to the object. However, this interface is no longer needed. For details on
transaction policies that need to be set to infect objects with transactions, see “Server
Description File” in theaCORBA Java Programming Reference or “Implementation
Configuration File (ICF)” in theCORBA C++ Programming Reference.

TheCosTr ansact i ons module defines ther ansact i onal Obj ect interface (shown
in Listing 2-5). Theor g. ong. CosTr ansacti ons. Transact i onal Cbj ect interface
defines no methods. It is simply a marker.

Listing 2-5 TransactionalObject Interface

interface Transacti onal bj ect {

}s

/1 This information cones from CORBAservices: Common (bj ect

// Services Specification, p. 10-30. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
/1 OMG

Using Transactions

Transaction Service in CORBA Applications

Other CORBAservices Object Transaction Service Interfaces

All other CORBAservices Object Transaction Service interfaces are not supported.
Note that the Cur r ent interface described earlier is supported only if it has been
obtained from the Boot st r ap object. The Contr ol interface described earlier is
supported only if it has been obtained using the get _cont rol and the suspend
methods on the Cur r ent object.

CORBA Transaction Service AP| Extensions

Thistopic describes specific extensions to the CORBA services Transaction Service
API described earlier. The APIsin thistopic enable an application to open or close an
Open Group Resource Manager.

The following APIs help facilitate participation of resource managersin adistributed
transaction by allowing their two-phase commit protocol to be controlled viaThe Open
Group XA interface.

Thefollowing definitionsand interfaces are defined inthe com beasys. Tobj module
(in Java) or Tobj module (in C++).

Exception

The following exception is supported:

exception RVailed {};

A reguest raises this exception to report that an attempt to open or close aresource
manager failed.

TransactionCurrent Interface

Thisinterface supports all the methods of the Cur r ent interfacein the

CosTransact i ons module and is described in “Java Bootstrap Object Programming
Reference” in the CORBA Java Programming Reference or in “C++ Bootstrap Object
Programming Reference” in the CORBA C++ Programming Reference. Additionally,
this interface supports APIs to open and close the resource manager.

Listing 2-6 shows th&r ansact i onCurr ent interface, which is defined in thbj
module.

Using Transactions ~ 2-19

2

Transaction Service

Listing 2-6 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
voi d open_xa_rm)
rai ses(RMail ed);
void close_xa_rm))
rai ses(Rnfail ed);

Table 2-3 describes APIs that are specific to the resource manager. For more
information about these APIs, see the CORBA Java Programming Reference or the
CORBA C++ Programming Reference.

Table 2-3 Resource Manager APIsfor the Current Interface

Method Description

open_xa_rm This method opens The Open Group Resource Manager to which this
processislinked. A RM ai | ed exception israised if thereis afailure
while opening the resource manager.

Any attemptsto invokethis method by remoteclientsor the native clients
raises the standard system exception NO_| MPLEMENT.

cl ose_xa_rm Thismethod closes The Open Group Resource Manager to which this
processislinked. An RM ai | ed exceptionisraised if thereisafailure
while closing the resource manager. A BAD_| NV_ORDER standard
system exception israised if the function was called in an improper
context (for example, the caller isin transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises the standard system exception NO_| MPLEMENT.

Notes on Using Transactions in WebLogic Enterprise
CORBA Applications

2-20

Consider the following guidelines when integrating transactions into your WebL ogic
Enterprise CORBA client/server applications:

m Nested transactions are not permitted in the WebL ogic Enterprise system.

Using Transactions

Transaction Service in CORBA Applications

You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one; however,
the object that suspends the transaction is the only object that can subsequently
resume the transaction.)

The object that starts atransaction is the only entity that can end the transaction.
(In astrict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that isinvoked within
the scope of atransaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

WebL ogic Enterprise does not support concurrent transactions. Objects can be
involved with only one transaction at onetime. An object isinvolved in a
transaction for the duration of the entire transaction, and is available to be
involved in a different transaction only after the current transaction is completed.

WebL ogic Enterprise does not queue regquests to objects that are currently
involved in atransaction. If a non-transactional client application attempts to
invoke an operation on an object that is currently in atransaction, the client
application receives the following error message:

Java

or g. ong. CORBA. OBJ_ADAPTER
C++

CORBA: : OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receivesthe
following error message:

Java
org. ong. CORBA. | NVALI D_TRANSACTI ON
C++

CORBA: : | NVALI D_TRANSACTI ON

For transaction-bound objects, consider doing all state handling in the
com beasys. Tobj _Ser vant . deact i vat e_obj ect method (in Java) or
Tobj _Servant Base: : deacti vat e_obj ect () operation (in C++). This makes

Using Transactions 2-21

2

Transaction Service

2-22

it easier for the object to handle its state properly, because the outcome of the
transaction is known at the time that deact i vat e_obj ect () isinvoked.

For method-bound objects that have several operations, but only a few that affect
the object’s durable state, consider doing the following:

e Assign theopti onal transaction policy.

e Scope any write operations within a transaction, by making invocations on
theTr ansacti onCur rent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with theal ways transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application, note
the following:

e |If the server application marks the transaction for rollback only and the
server throws a CORBA exception, the client application receives the
CORBA exception.

e |If the server application marks the transaction for rollback only and the
server doesot throw a CORBA exception, the client application receives the
OBJ_ADAPTER exception. In this case, the WebLogic Enterprise system
automatically rolls back the transaction. However, the client application is
completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.

If the client application initiates a transaction, and the server application marks
the transaction for a rollback, one of the following occurs:

e |If the server throws a CORBA exception, the client application receives a
CORBA exception.

e |If the server doesot throw a CORBA exception, the client application
receives th@RANSACTI ON_ROLLEDBACK exception.

Using Transactions

Transaction Service in EJB Applications

Transaction Service in EJB Applications

The WebL ogic Enterprise EJB container provides a Transaction Service that supports
the two types of transactions in WebL ogic Enterprise EJB applications:

m Container-managed transactions. |n container-managed transactions, the
WebL ogic Enterprise EJB container manages the transaction demarcation.
Transaction attributes in the EJB deployment descriptor determine how the
WebL ogic Enterprise EJB container handles transactions with each method
invocation.

m Bean-managed transactions. In bean-managed transactions, the EJB manages
the transaction demarcation. The EJB makes explicit method invocations on the
User Transact i on object to begin, commit, and roll back transactions. For more
information about User Tr ansact i on methods, see “UserTransaction API” on
page 2-24.

For an introduction to transaction management in EJB applications, see “Transactions
in WebLogic Enterprise EJB Applications” on page 1-8, and “Transactions Sample
EJB Code” on page 1-25.

Transaction Service in RMI Applications

WebLogic Enterprise provides a Transaction Service that supports transactions in
WebLogic Enterprise RMI applications. In RMI applications, the client or server
application makes explicit method invocations onuker Tr ansact i on object to
begin, commit, and roll back transactions.

For more information abouser Tr ansact i on methods, see “UserTransaction API”

on page 2-24. For an introduction to transaction management in RMI applications, see
“Transactions in WebLogic Enterprise RMI Applications” on page 1-11, and
“Transactions Sample RMI Code” on page 1-27.

Using Transactions 2-23

2 Transaction Service

UserTransaction API

This topic includes the following sections:
m UserTransaction Methods
m Exceptions Thrown by UserTransaction Methods

WebL ogic Enterprise providesthee j avax. t ransact i on package, from Sun
Microsystems, Inc., which implements the Java Transaction API (JTA) for Java
applications. Thej avax. User Tr ansact i on interface supports transaction
management for CORBA Java applications as well asfor bean-managed transactions
in EJB applications. For moreinformation about the JTA, seethe Java Transaction AP
(JTA) Specification (version1.0.1) published by Sun Microsystems, Inc. For adetailed
description of thej avax. tr ansact i on interface, see the package description in the
WebL ogic Enterprise Javadoc.

UserTransaction Methods

Table 2-4 describes the methods in the User Tr ansact i on object.

Table 2-4 Methodsin the User Transaction Object

Method Name Description

begi n Starts a transaction on the current thread.

commi t Commits the transaction associated with the current
thread.

2-24 Using Transactions

UserTransaction API

Table 2-4 Methodsin the User Transaction Object (Continued)

M ethod Name

Description

get St at us

Returns the transaction status, or
STATUS _NO TRANSACTI ONif no transaction is
associated with the current thread.
One of the following values:
STATUS_ACTI VE
STATUS_COW TTED
STATUS_COW TTI NG
STATUS_MARKED ROLLBACK
STATUS_NO _TRANSACTI ON
STATUS_PREPARED
STATUS_PREPARI NG
STATUS_ROLLEDBACK
STATUS_ROLLI NG_BACK
STATUS_UNKNOAN

rol | back

Rolls back the transaction associated with the current
thread.

set Rol | backOnl y

Marks the transaction associated with the current thread
so that the only possible outcome of the transaction isto
roll it back.

set Transact i onTi neout

Specifies the timeout value for the transactions started by
the current thread with the begi n method. If an
application has not called the begi n method, then the
Transaction Service uses a default value for the
transaction timeout.

Using Transactions ~ 2-25

2

Transaction Service

Exceptions Thrown by UserTransaction Methods

2-26

Table 2-5 describes exceptions thrown by methods of the User Tr ansact i on object.

Table 2-5 Exceptions Thrown by User Transaction M ethods

Exception

Description

Heuri sti cM xedException

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
committed while others have been rolled back.

Heuri sti cRol | backExcepti on

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
rolled back.

Not Support edExcepti on

Thrown when the requested operation is not
supported (such as a nested transaction).

Rol | backExcepti on

Thrown when the transacti on has been marked for
rollback only or the transaction has been rolled
back instead of committed.

11l egal St at eExcepti on

Thrownif the current thread is not associated with
atransaction.

SecurityException

Thrown to indicate that the thread is not allowed
to commit the transaction.

Syst enExcept i on

Thrown by the transaction manager to indicate
that it has encountered an unexpected error
conditionthat preventsfuture transaction services
from proceeding.

Using Transactions

CHAPTER

3 Transactions in CORBA
Server Applications

Thistopic includes the following sections:

m Integrating Transactions in a WebL ogic Enterprise Client and Server Application
m Transactions and Object State Management

m User-defined Exceptions

These sections describe how to integrate transactions into a WebL ogic Enterprise
server application. Before you begin, you should read Chapter 1, “Introducing
Transactions.”

Using Transactions 31

3

Transactions in CORBA Server Applications

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

This topic includes the following sections:

Transaction Support in CORBA Applications

Making an Object Automatically Transactional

Enabling an Object to Participate in a Transaction

Preventing an Object from Being Invoked While a Transaction |'s Scoped
Excluding an Object from an Ongoing Transaction

Assigning Policies

Using an XA Resource Manager

Opening an XA Resource Manager

Closing an XA Resource Manager

Transaction Support in CORBA Applications

3-2

WebL ogic Enterprise supports transactions in the following ways:

The client or the server application can begin and end transactions explicitly by
using callson the Transact i onCurr ent object. For details about the

Transacti onCurrent object, see Chapter 4, “Transactions in CORBA Client
Applications.”

You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA Resource
Manager and database when you want to delegate all the transaction commit an
rollback responsibilities to that resource manager.

Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

m Objectsinvolved in atransaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of atransaction, the object
caninvoker ol | back_onl y() ontheTransacti onCurrent object to mark the
transaction for rollback only. This prevents the current transaction from being
committed. An object may need to mark atransaction for rollback if an entity,
typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

m Objectsinvolved in atransaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of atransaction that is about to be committed, these
objects are polled by the WebL ogic Enterprise system immediately before the
resource managers prepare to commit the transaction. In this sense, polling
means invoking the object’s
com beasys. Tobj _Servant . deact i vat e_obj ect method (in Java) or
Tobj _Servant Base: : deacti vat e_obj ect () operation (in C++) and passing a
reason value.

When an object is polled, the object may veto the current transaction by
invokingr ol | back_onl y() on theTransacti onCurrent object. In addition, if
the current transaction is to be rolled back, objects have an opportunity to skip
any writes to a database. If no object vetoes the current transaction, the
transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to determine the transactional behavior you want in your objects.
Note that these policies apply to an interface and, therefore, to all operations on all
objects implementing that interface.

Note: If a server application manages an object that you want to be able to participate
in a transaction, thger ver object for that application must invoke the
com beasys. Tobj . TP. open_xa_rmand
com beasys. Tobj . TP. cl ose_xa_r mmethods (in Java), or the
TP: : open_xa_rn() andTP: : cl ose_xa_r n() operations (in C++). For more
information about database connections, see “Opening an XA Resource
Manager” on page 3-8.

Using Transactions 3-3

3

Transactions in CORBA Server Applications

Making an Object Automatically Transactional

34

TheWebL ogic Enterprise system providestheal ways transactional policy, whichyou

can define on an object’s interface to have the WebLogic Enterprise system start a
transaction automatically when that object is invoked and a transaction has not alreac
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither the
server application, nor the object implementation, needs to invoke the

Transacti onCurrent object in this situation; the WebLogic Enterprise system
automatically invokes th&r ansacti onCur r ent object on behalf of the server
application.

Assign theal ways transactional policy to an object’s interface when:

m The object writes to a database and you want all the database commit or rollbacl
responsibilities delegated to an XA Resource Manager whenever this object is
invoked.

m You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the XML-based Server Description File (in Java) or
Implementation Configuration File (in C++):

Activation Policies Transaction Policy
m process al ways
m et hod

m transaction

Note: Database cursors cannot span transactions. However, in C++, the
Cour seSynopsi sEnumer at or object in the WebLogic Enterprise University
sample applications uses a database cursor to find matching course synopst
from the University database. Because database cursors cannot span
transactions, thect i vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCour seSynopsi sEnuner at or object.

Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of atransaction, you
canassigntheopt i onal transaction policies to that object’s interface. dpei onal
transaction policy may be appropriate for an object that does not perform any database
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when they are specified in the XML-based Server
Description File (in Java) or Implementation Configuration File (in C++) for that
object’s interface, to make an object optionally transactional:

Activation Policies Transaction Policy
m process opti onal
m et hod

m transaction

When the transaction policydst i onal , if the AUTOTRAN parameter is enabled in the
application’sUBBCONFI Gfile, the implementation is transactional. Servers containing
transactional objects must be configured within a group associated with an
XA-compliant Resource Manager.

If the object does perform database write operations, and you want the object to be able
to participate in a transaction, assigninggheays transactional policy is generally a
better choice. However, if you prefer, you can usenthé onal policy and

encapsulate any write operations within invocations ofTitleasact i onCur r ent

object. That is, within your operations that write data, scope a transaction around the
write statements by invoking tifeansacti onCur r ent object to, respectively, begin

and commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and, therefore, more streamlined.

Note: When choosing the transaction policies to assign to your objects, make sure
you are familiar with the requirements of the XA Resource Manager you are
using. For example, some XA Resource Managers (such as the Oracle 7
Transaction Manager Server) require that any object participating in a

Using Transactions 3-5

3

Transactions in CORBA Server Applications

transaction scope their database read operations, in addition to write
operations, within atransaction (you can still scope your own transactions,
however). Other resource managers, such as Oracle8i, do not require a
transaction context for read and write operations. If an application attempts a
write operation without a transaction context, Oracle8i will start alocal
transaction implicitly, in which case the application needsto commit the local
transaction explicitly.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

3-6

In many cases, it may be critical to exclude an object from atransaction. If such an

object isinvoked during a transaction, the object returns an exception, which may

cause the transaction to be rolled back. The WebL ogic Enterprise system providesthe

never transaction policy, which you can assign to an object'’s interface to specifically
prevent that object from being invoked within the course of a transaction, even if the
current transaction is suspended.

This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back, such as for an object that writes data to a disk that is not
managed by an XA Resource Manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the XML-based Server Description File
(in Java) or Implementation Configuration File (in C++):

Activation Policies Transaction Policy
B process never
m et hod

Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of atransaction but also keep that object from being apart of the transaction. If
such an object isinvoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebL ogic Enterprise system providesthei gnor e
transaction policy for this purpose.

Thei gnor e transaction policy may be appropriate for an object such as afactory that
typically does not write datato disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of atransaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the Server Description File (in Java) or
Implementation Configuration File (in C++):

Activation Policies Transaction Policy
m process i gnore
m et hod

Assigning Policies

For information about how to create a Server Description File (in Java) or
Implementation Configuration File (in C++) and specify policies on objects, see
“Step 5: Define the object activation and transaction policies” in “Steps for Creating a
WebLogic Enterprise Server Application” @reating Java Server Applications, or

“Step 4: Define the in-memory behavior of objects” in “Steps for Creating a WebLogic
Enterprise Server Application” i@reating C++ Server Applications.

Using Transactions 3-7

3 Transactions in CORBA Server Applications

Using an XA Resource Manager

The Transaction Manager Server (TMS) handles object state data automatically. For
example, the XA Bankapp sample C++ application in the

dri ve:\ M3di r\ sanpl es\ cor ba\ bankapp_j ava\ XAdirectory usesthe Oracle TMS
as an example of arelational database management service (RDBMS).

Using any XA Resource Manager imposes specific requirements on how different
objects managed by the server application may read and write data to that database,
including the following:

m Some XA Resource Managers, such as Oracle?, require that all database
operations be scoped within a transaction. This means that all method
invocations on the DBaccess object need to be scoped within a transaction
because this object reads from a database. The transaction can be started either
by the client or by the WebL ogic Enterprise system.

Other XA Resource Managers, such as Oracle8i, do not require atransaction
context for read and write operations. If an application attempts a write operation
without a transaction context, Oracle8i will start alocal transaction implicitly, in
which case the application needs to commit the local transaction explicitly.

m When atransaction is committed or rolled back, the XA Resource Manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA Resource Manager ensures that all
database updates are made permanent. Likewise, if there isarollback, the XA
Resource Manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA Resource Managers actually makes the design
problems associated with handling object state data in the event of a rollback
much simpler. Transactional objects can always del egate the commit and
rollback responsibilities to the XA Resource Manager, which greatly simplifies
the task of implementing a server application.

Opening an XA Resource Manager

This section describes how to open the XA Resource Manager in Javaand C++.

3-8 Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Opening an XA Resource Manager in Java

If an object’s interface has th¢ways oropti onal transaction policy, you must
invoke thecom beasys. Tobj . TP. open_xa_r mmethod in the

com beasys. Tobj . Server.initialize method in the Server object that supports
this object. You must build a special version of the JavaServer by usimgj théxAl S
command, if your object performs database operations.

In the SERVERS section of the applicationdBBCONFI G file, you must use the
JavaSer ver XA element in place afavaSer ver to associate the XA Resource
Manager with a specified server groupaaSer ver uses the null RM.)

The resource manager is opened using the information providedGRERIENFO
parameter, which is in th@ROUPS section of th&BBCONFI Gfile. Note that the default
version of theom beasys. Tobj . Server . i niti al i ze method automatically opens
the resource manager.

If you have an object that participates in a transaction but does not actually perform
database operations (the object typically hasphé onal transaction policy), you

still need to include an invocation to them beasys. Tobj . TP. open_xa_rm

method.

Opening an XA Resource Manager in C++

If an object’s interface has th¢ways oropti onal transaction policy, you must

invoke theTP: : open_xa_r n() operation in th&erver: :initialize() operation

in the Server object. The resource manager is opened using the information provided
in the OPENI NFO parameter, which is in theROUPS section of theJBBCONFI Gfile.

Note that the default version of tBerver: :initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction—the object typically has thy& i onal transaction policy—you still need
to include an invocation to theP: : open_xa_r () operation. In that invocation,
specify theNULL resource manager.

Using Transactions 39

3

Transactions in CORBA Server Applications

Closing an XA Resource Manager

If your Server object’som beasys. Tobj . Server.initial i ze method (in Java) or
Server::initialize() operation (in C++) opens an XA Resource Manager, you
must include the following invocation in tlkem beasys. Tobj . Ser ver . r el ease
method (in Java) aBer ver: : rel ease() operation (in C++):

Java
com beasys. Tobj . TP. cl ose_xa rm();
C++

TP::close xa rm();

Transactions and Object State Management

This topic includes the following sections:
m Delegating Object State Management to an XA Resource Manager
m Waiting Until Transaction Work Is Complete Before Writing to the Database

If you need transactions in your WebLogic Enterprise client and server application,

you can integrate transactions with object state management in a few different ways
In general, the WebLogic Enterprise system can automatically scope the transactior
for the duration of an operation invocation without requiring you to make any changes
to your application’s logic or the way in which the object writes durable state to disk.

Delegating Object State Management to an XA Resource
Manager

3-10

Using an XA Resource Manager, such as Oracle, generally simplifies the design
problems associated with handling object state data in the event of a rollback. (The
Oracle Resource Manager is used in the WebLogic Enterprise University sample C+:
applications). Transactional objects can always delegate the commit and rollback

Using Transactions

Transactions and Object State Management

responsibilities to the XA Resource Manager, which greatly simplifies the task of
implementing a server application. This meansthat process- or method-bound objects
involved in atransaction can write to a database during transactions, and can depend
on the resource manager to undo any data written to the database in the event of a
transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

Thet ransact i on activation policy is agood choice for objects that maintain statein
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thet r ansact i on activation policy to
an object, the object:

m Isbrought into memory when it is first invoked within the scope of atransaction.
m Remainsin memory until the transaction is either committed or rolled back.

When thetransaction work is complete, the WebL ogic Enterprise system invokes each
transaction-bound objecttm beasys. Tobj _Servant . deact i vat e_obj ect
method (in Java) Ofobj _Ser vant Base: : deact i vat e_obj ect () operation (in
C++), passing aeason code that can be eithBR_TRANS_COWM TTI NG or
DR_TRANS_ABORTED. If the variable iDR_TRANS_COWM TTI NG, the object can invoke
its database write operations. If the variablBRSTRANS_ABORTED, the object skips
its write operations.

When to Assign the Transaction Activation Policy

Assigning the r ansact i on activation policy to an object may be appropriate in the
following situations:

® You want the object to write its persistent state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

m You want to provide the object with the ability to veto a transaction that is about
to be committed.

Using Transactions 3-11

3 Transactions in CORBA Server Applications

If the WebL ogic Enterprise system passes the reason DR_TRANS_COMM TTI NG,
the object can, if necessary, invoker ol | back_onl y() on the

Transacti onCurrent object. Note that if you do make an invocation to

rol | back_onl y() from within the

com beasys. Tobj _Ser vant . deacti vat e_obj ect method (in Java) or

Tobj _Ser vant Base: : deact i vat e_obj ect () operation (in C++), then
deacti vat e_obj ect () isnhot invoked again.

m You want to provide the object with the ability to perform batch updates.

m You have an object that islikely to be invoked multiple times during the course
of asingle transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

Transaction Policies to Use with the Transaction Activation Policy

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the XML-basec
Server Description File (in Java) or Implementation Configuration File (in C++):

Activation Policy Transaction Policy

transaction al ways oropt i onal

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside the&com beasys. Tobj _Servant. deact i vate_obj ect method
(in Java) orTobj _Ser vant Base: : deact i vat e_obj ect () operation (in
C++). The only valid invocations transaction-bound objects can make inside
deacti vat e_obj ect () are write operations to the database.

Also, if you have an object that is involved in a transaction, the Server object
that manages that object must include invocations to open and close the XA
Resource Manager, even if the object does not write any data to disk. (If you
have a transactional object that does not write data to disk, you specify the
NULL resource manager.) For more information about opening and closing ar
XA Resource Manager, see “Opening an XA Resource Manager” on page 3-¢
and “Closing an XA Resource Manager” on page 3-10.

3-12 Using Transactions

User-defined Exceptions

User-defined Exceptions

Thistopic includes the following sections:
m About User-defined Exceptions
m Defining the Exception

m Throwing the Exception

About User-defined Exceptions

Including a user-defined exception in a WebL ogic Enterprise client/server application
involves the following steps:

1. Inyour OMG IDL file, define the exception and specify the operationsthat can use
it.

2. Intheimplementation file, include code that throws the exception.

3. Intheclient application source file, include code that catches and handles the
exception.

For exampl e, the Transactions sample C++ application includes an instance of a
user-defined exception, TooManyCr edi t s. This exception isthrown by the server
application when the client application tries to register a student for a course, and the
student has exceeded the maximum number of coursesfor which he or she can register.
When the client application catches thisexception, the client application rolls back the
transaction that registers a student for a course. This section explains how you can
define and implement user-defined exceptionsin your WebL ogic Enterprise
client/server application, using the TooManyCr edi t s exception as an example.

Defining the Exception

Inthe OMG IDL filefor your client/server application:

Using Transactions ~ 3-13

3 Transactions in CORBA Server Applications

1. Definethe exception and define the data sent with the exception. For example, the
TooManyCr edi t s exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooMany Cr edi t s exception contains the following OMG IDL

statements.
exception TooManyCredits
{
unsi gned short maxi mumcredits;
I

2. Inthe definition of the operations that throw the exception, include the exception.
The following example shows the OMG IDL statements for the
regi ster_for_courses() operationontheRegistrar interface:

Not Regi st er edLi st regi ster_for_courses(
in Studentld st udent,
i n CourseNunmber Li st courses

) raises (
TooManyCredits

)

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, asin the following C++ example.

if (...){
UniversityZ: : TooManyCredits e;
e. maxi mum credits = 18;
throw e;

How the Transactions University Sample
Application Works (C++ Only)

This topic includes the following sections:

m About the Transactions University Sample Application

3-14 Using Transactions

How the Transactions University Sample Application Works (C++ Only)

m Transactiona Model Used by the Transactions University Sample Application
m Object State Considerations for the University Server Application

m Configuration Requirements for the Transactions Sample Application

About the Transactions University Sample Application

To implement the student registration process, the Transactions sample application
does the following:

m Theclient application obtains a reference to the Tr ansact i onCur r ent object
from the Boot st r ap object.

m When the student submits the list of courses for which he or she wantsto
register, the client application:

a. Beginsatransaction by invoking the Cur rent : : begi n() operation on the
Tr ansact i onCur r ent object.

b. Invokestheregi ster_for_courses() operation ontheRegi strar object,
passing alist of courses.

m Theregister_for_courses() operation onthe Regi st rar object processes
the registration request by executing a loop that does the following iteratively for
each coursein thelist:

a. Checksto see how many credits the student is already registered for.

b. Adds the course to the list of courses for which the student is registered.

The Regi st r ar object checks for the following potentia problems, which
prevent the transaction from being committed:

e Thestudent is already registered for the course.
e A courseinthelist does not exist.

e The student exceeds the maximum credits allowed.

m As defined in the application’s OMG IDL, thegi ster _for_courses()
operation returns a parameter to the client applicaienRegi st er edLi st ,
which contains a list of the courses for which the registration failed.

Using Transactions ~ 3-15

3

Transactions in CORBA Server Applications

If the Not Regi st er edLi st value is empty, the client application commits the
transaction.

If the Not Regi st er edLi st value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

m |f theregistration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Regi st rar object returnsa
TooManyCr edi t s exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

3-16

The basic design rationale for the Transactions sample application isto handle course
registrations in groups, as opposed to one at atime. Thisdesign hel ps to minimize the
number of remote invocations on the Regi st r ar object.

In implementing this design, the Transactions sample application shows one model of

the use of transactions, which were described in “Integrating Transactions in a
WebLogic Enterprise Client and Server Application” on page 3-2. The model is as
follows:

m The client begins a transaction by invoking begi n() operation on the
Transacti onCurrent object, followed by making an invocation to the
regi ster_for_courses() operation on th@egi strar object.

TheRegi strar object registers the student for the courses for which it can, and
then returns a list of courses for which the registration process was unsuccessful
The client application can choose to commit the transaction or roll it back. The
transaction encapsulates this conversation between the client and the server
application.

m Theregister_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.

Using Transactions

How the Transactions University Sample Application Works (C++ Only)

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needsto consider the implications on object
state, particularly in the event of arollback. In cases where there is arollback, the
server application must ensure that al| affected obj ects have their durable state restored
to the proper state.

Because the Regi st r ar object is being used for database transactions, a good design

choice for this object isto make it transactional (assign the al ways transaction policy

to this object’s interface). If a transaction has not already been scoped when this object
is invoked, the WebLogic Enterprise system will start a transaction automatically.

By making theRegi st r ar object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA Resource Manager, and since the object is guaranteed to be in
a transaction when the object writes to a database, the object does not have any
rollback or commit responsibilities because the XA Resource Manager takes
responsibility for these database operations on behalf of the object.

TheRegi st r ar Fact ory object, however, can be excluded from transactions because

this object does not manage data that is used during the course of a transaction. By
excluding this object from transactions, you minimize the processing overhead implied
by transactions.

Object Policies Defined for the Registrar Object

To make theregi st r ar object transactional, the ICF file specifies #heays
transaction policy for thBegi str ar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies forRéxg st r ar

interface:
Activation Policy Transaction Policy
process al ways

Using Transactions ~ 3-17

3

Transactions in CORBA Server Applications

Object Policies Defined for the RegistrarFactory Object

ToexcludetheRegi st rar Fact or y object from transactions, the | CF file specifiesthe
i gnor e transaction policy for the Regi st r ar interface. Therefore, in the Transaction
sample application, the I CF file specifies the following object policies for the

Regi st rar Fact ory interface:

Activation Policy Transaction Policy

process ignore

Using an XA Resource Manager in the Transactions Sample Application

3-18

The Transactions sample application uses the Oracle Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA Resource
Manager imposes specific requirements on how different objects managed by the
server application may read and write datato that database, including the following:

m Some XA Resource Managers, such as Oracle7, require that all database
operations be scoped within a transaction. This means that the
Cour seSynopsi sEnuner at or object needsto be scoped within atransaction
because this object reads from a database.

m When atransaction is committed or rolled back, the XA Resource Manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA Resource Manager ensures that all
database updates are made permanent. Likewise, if there isarollback, the XA
Resource Manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA Resource Managers actually makes the design
problems associated with handling object state data in the event of a rollback
much simpler. Transactional objects can always del egate the commit and
rollback responsibilities to the XA Resource Manager, which greatly simplifies
the task of implementing a server application.

Using Transactions

How the Transactions University Sample Application Works (C++ Only)

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle Transaction Manager Server (TMS).
To use the Oracle database, you must include specific Oracle-provided filesin the
server application build process. For more information about building, configuring,
and running the Transactions sample application, see the Bankapp Sample Using XA
in the WebL ogic Enterprise online documentation. For more information about the
configurable settingsin the UBBCONFI Gfile, see “Modifying the UBBCONFIG File to
Accommodate Transactions” on page 8-2.

Using Transactions 3-19

3 Transactions in CORBA Server Applications

3-20 Using Transactions

CHAPTER

A4

Transactions in CORBA
Client Applications

Thistopic includes the following sections:

Overview of WebL ogic Enterprise CORBA Transactions

Summary of the Devel opment Process for Transactions

Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object
Step 2: Use the TransactionCurrent Methods

Thistopic describes how to use transactions in CORBA C++, CORBA Java, and
ActiveX client applications for the WebL ogic Enterprise software. Before you begin,
you should read Chapter 1, “Introducing Transactions.”

For an example of how transactions are implemented in working client applications,
see theBankapp Sample Using XA in the WebLogic Enterprise online documentation.
For an overview of the TransactionCurrent object, see “Client Application
Development Concepts” i@reating CORBA Client Applications.

Using Transactions 4-1

4 Transactions in CORBA Client Applications

Overview of WebLogic Enterprise CORBA
Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. Thetransactionsin the WebL ogic Enterprise software allow
client applications to begin and terminate transactions and to get the status of
transactions. The WebL ogic Enterprise software uses transactions as defined in the
CORBAservices Object Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a WebL ogic Enterprise client/server application will handle
transactions. Transaction policies are defined in the Implementation Configuration
File (ICF) for C++ server applications, or inthe Server Descriptionfile (XML) for Java
server applications. Generally, the ICF file or the Server Description file for the
available interfacesis provided to the client programmer by the application designer.

If you prefer, you can use the Transaction application programming interface (API)
defined inthe j avax.transacti on package that is shipped with the WeblL ogic
Enterprise (Java) software.

Summary of the Development Process for
Transactions

4-2

To add transactions to a client application, complete the following steps:
m Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object
m Step 2: Use the TransactionCurrent Methods

Therest of this topic describes these steps using portions of the client applications in
the Transactions University sample application. For information about the
Transactions University sample application, see the Bankapp Sample Using XA in the
WebL ogic Enterprise online documentation.

Using Transactions

Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object

The Transactions University sample application islocated in the following directory
on the WebL ogic Enterprise software kit:

m For Microsoft Windows NT systems:
drive:\w edi r\ sanpl es\ cor ba\uni versi ty\transactions

m For UNIX systems:
drive:/w edir/sanpl es/ corba/ university/transactions

Step 1: Use the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Boot st r ap object to obtain an object reference to the Transact i onCurr ent
object for the specified WebL ogic Enterprise domain. For more information about the
Tr ansact i onCur r ent object, see “Client Application Development Concepts” in
Creating CORBA Client Applications.

The following C++, Java, and Visual Basic examples illustrate hoBdbiest r ap
object is used to return thieansact i onCurr ent object.

C++ Example

CORBA: : (bj ect _var var_transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(
var_transaction_current_oref.in());

Java Example

org.omg.CORBA.Object transCurObj =
gBootstrapObjRef.resolve_initial_references(
“TransactionCurrent”);

Using Transactions 4-3

4 Transactions in CORBA Client Applications

org. ong. CosTransactions. Current gTransCur=
org. ong. CosTransacti ons. Curr ent Hel per. narrow(transCur Cbj) ;

Visual Basic Example

Set obj Transacti onCurrent =
objBootstrap.CreateObject(“Tobj. TransactionCurrent”)

Step 2: Use the TransactionCurrent Methods

The TransactionCurrent object has methods that allow aclient application to
manage transactions. These methods can be used to begin and end transactions and to
obtain information about the current transaction.

Note: Alternatively, a CORBA Javaclient could use the UserTransaction ~ object
instead.

Table 4-1 describes the methods in the TransactionCurrent object.

Table4-1 Methodsin the TransactionCurrent Object

Method Description

begin Creates a new transaction. Future operations take place
within the scope of this transaction. When aclient
application begins a transaction, the default transaction
timeout is300 seconds. Y ou can changethisdefault, using
theset_timeout method.

commit Ends the transaction successfully. Indicates that all
operations on this client application have completed
successfully.

rollback Forces the transaction to roll back.

rollback_only Marksthe transaction so that the only possible actionisto
roll back. Generally, this method is used only in server
applications.

4-4 Using Transactions

Step 2: Use the TransactionCurrent Methods

Table4-1 Methodsin the TransactionCurrent Object (Continued)

M ethod Description

suspend Suspends participation in the current transaction. This
method returns an object that identifiesthetransaction and
alowsthe client application to resume the transaction

later.
resume Resumes participation in the specified transaction.
get _status Returns the status of a transaction with a client
application.

get _transacti on_nane Returns a printable string describing the transaction.

set _ti meout M odifies the timeout period associated with transactions.
The default transaction timeout value is 300 seconds. If a
transaction is automatically started instead of explicitly
started with the begi n method, the timeout valueis
determined by the value of the TRANTI ME parameter in
the UBBCONFI Gfile. For more information about setting
the TRANTI ME parameter, see Chapter 8, “Administering
Transactions.”

get _control Returns a control object that represents the transaction.

A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj : : Transact i onCurrent : : begi n method. This method does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If acall to any of these operations raises an exception (either
explicitly or as aresult of acommunications failure), the exception can be caught
and the transaction can be rolled back.

3. UsetheTobj:: TransactionCurrent:: conmm t method to commit the current
transaction. This method ends the transaction and starts the processing of the
operation. The transaction is committed only if all of the participantsin the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application callsthe Tobj : : Transacti onCurrent: conm t method or the

Using Transactions 4-5

4 Transactions in CORBA Client Applications

Tobj : : Transact i onCurrent: rol | back method.Thefollowing C++, Java, and
Visual Basic examplesillustrate using a transaction to encapsul ate the operation
of astudent registering for aclass:

C++ Example

//Begin the transaction
transaction_current _oref->begin();
try {
/I Performthe operation inside the transaction
poi nter_Registar_ref->regi ster_for_courses(student _id, course_nunber list);

/11f operation executes with no errors, commt the transaction:
CORBA: : Bool ean report _heuristics = CORBA TRUE;
transaction_current _ref->commt(report_heuristics);

}

catch (CORBA: : Exception &) {

/11f the operation has probl ems executing, rollback the

//transaction. Then throw the original exception again.

/11f the roll back fails,ignore the exception and throw the

/loriginal exception again.

try {
transaction_current_ref->roll back();

}
catch (CORBA: : Exception &) {
TP: :userl og("rol |l back failed");

t hr ow;

}

Java Example

try{
gTransCur. begin();

/I Performthe operation inside the transaction
not _registered =
gRegi strar Cbj Ref . regi ster_for_courses(student _id, sel ected_course_nunbers);

if (not_registered !'= null)

/11f operation executes with no errors, conmmt the transaction

4-6 Using Transactions

Step 2: Use the TransactionCurrent Methods

bool ean report_heuristics = true;
gTransCur. commi t (report_heuri stics);

} el se gTransCur.roll back();

} catch(org. ong. CosTransacti ons. NoTransaction nte) {
System.err.printin(“NoTransaction: “ + nte);

System.exit(1);

} catch(org.omg.CosTransactions.SubtransactionsUnavailable e) {
System.err.printin(“Subtransactions Unavailable: “ + e);
System.exit(1);

} catch(org.omg.CosTransactions.HeuristicHazard e) {
System.err.printin(*HeuristicHazard: “ + e);

System.exit(1);

} catch(org.omg.CosTransactions.HeuristicMixed e) {
System.err.printin(“HeuristicMixed: “ + e);

System.exit(1);

}

Visual Basic Example

' Begin the transaction
objTransactionCurrent.begin
' Try to register for courses

NotRegisteredList = objRegistrar.register_for_courses(mStudentlD,
CourselList, exception)
If exception.EX_majorCode = NO_EXCEPTION then
' Request succeeded, commit the transaction
Dim report_heuristics As Boolean
report_heuristics = True
objTransactionCurrent.commit report_heuristics
Else
' Request failed, Roll back the transaction

objTransactionCurrent.rollback

MsgBox "Transaction Rolled Back"
End If

Using Transactions

4 Transactions in CORBA Client Applications

4-8 Using Transactions

CHAPTER

5

Transactions in EJB
Applications

Thistopic includes the following sections:

Before You Begin

General Guidelines
Transaction Attributes
Participating in a Transaction
Transaction Semantics
Session Synchronization

Setting Transaction Timeouts

Thistopic describes how to integrate transactions in Enterprise JavaBeans (EJBS)
applications that run under BEA WebL ogic Enterprise. Before you begin, you should
read Chapter 1, “Introducing Transactions.”

Using Transactions 5-1

5 Transactions in EJB Applications

Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

m “Transactions in WebLogic Enterprise EJB Applications” on page 1-8
m “Transactions Sample EJB Code” on page 1-25

This document describes the BEA implementation of transactions in Enterprise
JavaBeans. The information in this document supplements the Enterprise JavaBear
Specification 1.1, published by Sun Microsystems, Inc.

Note: Before proceeding with the rest of this chapter, you must be thoroughly
familiar with theentire contents of the EJB Specification 1.1 document,
particularly the concepts and material presented in Chapter 11, “Support for
Transactions.”

For general information about implementing Enterprise JavaBeans in WebLogic
Enterprise applications, see “Developing WebLogic Enterprise EJB Applications” in
Getting Sarted.

General Guidelines

The following general guidelines apply when implementing transactions in EJB
applications for WebLogic Enterprise:

m Weblogic Enterprise fully supports the EJB Specification 1.1. EJB applications
must comply fully with this specification, including all of the various rules,
requirements, and limitations that apply to entity beans, stateful session beans,
and stateless session beans.

m The EJB specification allows for flat transactions only. Transactions cannot be
nested.

m The EJB specification allows for distributed transactions that span multiple
resources (such as databases) and supports the two-phase commit protocol. Fol

5-2 Using Transactions

Transaction Attributes

more information, see Chapter 7, “Transactions and the WebLogic Enterprise
JDBC/XA Driver.”

m For EJB applications running under WebLogic EnterpriseAtH@TRAN setting
(if specified) in thd NTERFACES section of theJBBCONFI Gfile is ignored.

m Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

m Be sure to tune the EJB cache to ensure maximum performance in transactional
EJB applications. For more information, see “Scaling EJB Applications” in
Scaling, Distributing, and Tuning Applications.

For general guidelines about the WebLogic Enterprise Transaction Service, see
“Capabilities and Limitations” on page 2-2.

Transaction Attributes

This topic includes the following sections:
m About Transaction Attributes for EJBs
m Transaction Attributes for Container-managed Transactions

m Transaction Attributes for Bean-managed Transactions

About Transaction Attributes for EJBs

Transaction attributes determine how transactions are managed in EJB applications.
For each EJB, the transaction attribute specifies whether transactions are demarcated
by the WebLogic Enterprise EJB container (container-managed transactions) or by the
EJB itself (bean-managed transactions). The setting ofrth@sact i on-t ype

element in the deployment descriptor determines whether an EJB is
container-managed or bean-managed. See Chapter 16, “Deployment Descriptor,” in
the EJB Specification 1.1, for more information abouttthensact i on-t ype

element.

Using Transactions 5-3

5 Transactions in EJB Applications

In general, the use of container-managed transactionsis preferred over bean-managed
transactions because application coding issimpler. For example, in contai ner-managed
transactions, transactions do not need to be started explicitly.

WebL ogic Enterprise fully supports method-level transaction attributes as defined in
Section 11.4.1 in the EJB Specification 1.1.

Transaction Attributes for Container-managed
Transactions

For container-managed transactions, the transaction attribute is specified in the

cont ai ner -t ransact i on element inthe depl oyment descriptor. Container-managed
transactionsinclude al Entity beans and any stateful or stateless session beans with a
transacti on-type set to Cont ai ner . For more information about these elements,
see Chapter 16, “Deployment Descriptor,” in the EJB Specification 1.1.

The Application Assembler can specify the following transaction attributes for EJBs
and their business methods:

® Not Supported

® Supports

® Required

® Requir esNew

m Mandat ory

m Never

For a detailed explanation about how the WebL ogic Enterprise EJB container responc
to these rans- at tri but e settings, see section 11.6.2 in the EJB Specification 1.1.

For EJBs with container-managed transactions, the EJBs have no access to the
j avax. transaction. User Transact i on interface, and the entering and exiting
transaction contexts must match. In addition, EJBs with container-managed
transactions have limited support for ## Rol | backOnl y andget Rol | backOnl y
methods of th¢ avax. ej b. EJBCont ext interface, where invocations are restricted
by rules specified in the EJB Specification 1.1.

5-4 Using Transactions

Participating in a Transaction

Transaction Attributes for Bean-managed Transactions

For bean-managed transactions, the bean specifies transaction demarcations using
methodsin thej avax. t ransact i on. User Tr ansact i on interface. Bean-managed
transactionsinclude any stateful or stateless session beanswith at r ansact i on-type
set to Bean. Entity beans cannot use bean-managed transactions.

For statel ess session beans, the entering and exiting transaction contexts must match.
For stateful session beans, the entering and exiting transacti on contexts may or may not
match. If they do not match, the Webl ogic Enterprise EJB container maintains
associ ations between the bean and the nonterminated transaction.

Session beans with bean-managed transactions cannot usethe set Rol | backOnl y and
get Rol | backOnl y methods of thej avax. ej b. EJBCont ext interface.

Participating in a Transaction

When the EJB Specification 1.1 uses the phrase “participating in a transaction,” BEA
interprets this to mean that the bean meets either of the following conditions:

m The bean is invoked in a transactional context (container-managed transaction).

m The bean begins a transaction using the UserTransaction APl in a bean method
invoked by the client (bean-managed transaction), and itrdmesispend or
terminate that transaction upon completion of the corresponding bean method
invoked by the client.

Transaction Semantics

This topic contains the following sections:
m Transaction Semantics for Container-managed Transactions

m Transaction Semantics for Bean-managed Transactions

Using Transactions 5-5

5 Transactions in EJB Applications

The EJB Specification 1.1 describes semantics that govern transaction processing
behavior based on the EJB type (entity bean, statel ess session bean, or stateful session
bean) and the transaction type (contai ner-managed or bean-managed). These
semantics describe the transaction context at the time a method is invoked and define
whether the EJB can accessmethodsinthej avax. tr ansacti on. User Transact i on
interface. EJB applications must be designed with these semanticsin mind.

Transaction Semantics for Container-managed
Transactions

For container-managed transactions, transaction semantics vary for each bean type.

Transaction Semantics for Stateful Session Beans

Table 5-1 describes the transaction semantics for stateful session beans in
contai ner-managed transactions.

Table5-1 Transaction Semanticsfor Sateful Session Beansin
Container-managed Transactions

Method Transaction Context at the Can Access
Timethe Method Was User Transaction
Invoked Methods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bOreate() Unspecified No

ej bRermove() Unspecified No

ej bActivate() Unspecified No

ej bPassi vat e() Unspecified No

Business method Y es or No based on transaction No
attribute

af t er Begi n() Yes No

5-6 Using Transactions

Transaction Semantics

Table5-1 Transaction Semantics for Stateful Session Beansin
Container-managed Transactions (Continued)

M ethod Transaction Context at the Can Access
Timethe Method Was User Transaction
Invoked M ethods?

bef or eConpl eti on() Yes No

af t er Conpl eti on() No No

Transaction Semantics for Stateless Session Beans

Table 5-2 describes the transaction semantics for stateless session beans in
contai ner-managed transactions.

Table 5-2 Transaction Semantics for Stateless Session Beansin
Container-managed Transactions

Method Transaction Context at the Can Access
Timethe Method Was User Transaction
Invoked M ethods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified No

ej bRenmove() Unspecified No

Business method Y es or No based on transaction No
attribute

Using Transactions 5-7

5 Transactions in EJB Applications

Transaction Semantics for Entity Beans

Table 5-3 describes the transaction semantics for entity beansin container-managed
transactions.

Table 5-3 Transaction Semanticsfor Entity Beansin Container-managed
Transactions

Method Transaction Context at the Can Access
Timethe Method Was UserTransaction
Invoked M ethods?
Constructor Unspecified No
set Enti t yCont ext () Unspecified No
unset EntityContext() Unspecified No
ej bOreate() Determined by transaction No
atribute of matching create
ej bPost Creat e() Determined by transaction No
atribute of matching create
ej bRermove() Determined by transaction No
atribute of matching remove
ej bFi nd() Determined by transaction No
atribute of matching find
ej bActivate() Unspecified No
ej bPassi vat e() Unspecified No
ej bLoad() Determined by transaction No

attribute of business method that
invoked ej bLoad()

ej bSt ore() Determined by transaction No
atribute of business method that
invoked ej bSt or e()

Business method Y es or No based on transaction No
attribute

5-8 Using Transactions

Transaction Semantics

Transaction Semantics for Bean-managed Transactions

For bean-managed transactions, the transaction semantics differ between stateful and
statel ess session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans

Table 5-4 describes the transaction semantics for stateful session beansin
bean-managed transactions.

Table5-4 Transaction Semantics for Stateful Session Beansin Bean-managed
Transactions

M ethod Transaction Context at the Can Access
Timethe Method Was User Transaction
Invoked M ethods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified Yes

ej bRenove() Unspecified Yes

ej bActivate() Unspecified Yes

ej bPassi vat e() Unspecified Yes

Business method Typicaly, no unless a previous Yes

method execution on the bean
had completed whilein a
transaction context

aft er Begi n() Not applicable Not applicable
bef or eConpl eti on() Not applicable Not applicable
af t er Conpl eti on() Not applicable Not applicable

Using Transactions 5-9

5

Transactions in EJB Applications

Transaction Semantics for Stateless Session Beans

Table 5-5 describes the transaction semantics for statel ess session beans in

bean-managed transactions.

Table 5-5 Transaction Semanticsfor Stateless Session Beansin Bean-managed

Transactions

Method Transaction Context at the Can Access
Timethe Method Was User Transaction
Invoked M ethods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bOreate() Unspecified Yes

ej bRermove() Unspecified Yes

Business method No Yes

Session Synchronization

5-10

A stateful session bean using contai ner-managed transactions can implement the

j avax. ej b. Sessi onSynchr oni zat i on interface to provide transaction
synchronization notifications. In addition, all methods on the stateful session bean
must support one of the following transaction attributes: REQUI RES_NEW MANDATORY

or REQUI RED. For more information about the

j avax. ej b. Sessi onSynchr oni zat i on interface, see Section 6.5.3 in the EJB

Specification 1.1.

If a bean implements Sessi onSynchr oni zat i on, the WebL ogic Enterprise EJB
container will typically make the following callbacks to the bean during transaction

commit time:

m afterBegin()

m beforeConpl etion()
m afterConpletion()

Using Transactions

Setting Transaction Timeouts

Setting Transaction Timeouts

Bean providers can specify the timeout period for transactionsin EJB applications. If
the duration of atransaction exceeds the specified timeout setting, then the Transaction
Service rolls back the transaction automatically.

Timeouts are specified according to the transaction type:

m Container-managed transactions. The Bean Provider configures the
trans-ti meout - seconds XML element in the
webl ogi c-ej b-ext ensi ons. xm file. For more information, see the EJB XML
Reference.

m Bean-managed transactions. An application calls the
User Transact i on. set Transact i onTi meout method.

Handling Exceptions in EJB Transactions

WebL ogic Enterprise EJB applications need to catch and handle specific exceptions
thrown during transactions. For detailed information about handling exceptions, see
Chapter 12, “Exception handling,” in the EJB Specification 1.1 published by Sun
Microsystems, Inc.

For more information about how exceptions are thrown by business methods in EJB
transactions, see the following tables in Section 12.3: Table 8 (for container-managed
transactions) and Table 9 (for bean-managed transactions).

For a client’s view of exceptions, see Section 12.4, particularly Section 12.4.1
(application exceptions), Section 12.4.2\a. r ni . Renot eExcept i on), Section
12.4.2.1avax. transaction. Transact i onRol | edBackExcept i on), and Section
12.4.2.2 {avax. transaction. Transact i onRequi r edExcept i on).

Using Transactions 5-11

5 Transactions in EJB Applications

5-12 Using Transactions

CHAPTER

© Transactions in RM|
Applications

Thistopic includes the following sections:
m BeforeYou Begin
m General Guidelines

Thistopic describes how to integrate transactions in RM|I applications that run under
BEA WebL ogic Enterprise.

Using Transactions 6-1

6

Transactions in RMI Applications

Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

m “Transactions in WebLogic Enterprise RMI Applications” on page 1-11

m “Transactions Sample RMI Code” on page 1-27

For more information about RMI applications, $ésng RMI in a WebLogic
Enterprise Environment.

General Guidelines

6-2

The following general guidelines apply when implementing transactions in RMI
applications for WebLogic Enterprise:

WebLogic Enterprise allows for flat transactions only. Transactions cannot be
nested.

For RMI applications running under WebLogic Enterprise AWEOTRAN setting
(if specified) in thad NTERFACES section of theJBBCONFI Gfile is ignored.

Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

For RMI applications, callback objects are not recommended for use in
transactions because they are not subject to WebLogic Enterprise administration
For more information about callback objects, see “Using RMI with Client-side
Callbacks” inUsing RMI in a WebLogic Enterprise Environment.

For general guidelines about the WebLogic Enterprise Transaction Service, see
“Capabilities and Limitations” on page 2-2.

Using Transactions

CHAPTER

{ Transactions and the

WebLogic Enterprise
JDBC/XA Driver

Thistopic includes the following sections:

m BeforeYou Begin

m About Transactions and the WebL ogic Enterprise JIDBX/XA Driver
m JDBC Accessihility in Java Methods

m Using the IDBC/XA Driver

m Implementing Distributed Transactions

Thistopic describes how to integrate transactions with CORBA Java, EJB, and RM|I
applications that use the WebL ogic Enterprise JDBC/XA driver and run under BEA
WebL ogic Enterprise. Before you begin, you should read Chapter 1, “Introducing
Transactions.”

Using Transactions 7-1

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

Before You Begin

This chapter describes handling transactions in CORBA Java, EJB, and RMI
applications that use the WeblL ogic Enterprise JDBC/XA driver to connect to
resources.

For EJB applications, the information in this document supplements the Enterprise
JavaBeans Specification 1.1 published by Sun Microsystems, Inc. For general
information about implementing Enterprise JavaBeans in WebL ogic Enterprise
applications, see “Developing WebLogic Enterprise EJB ApplicationsGeiting
Started.

About Transactions and the WebLogic
Enterprise JDBX/XA Driver

This topic includes the following sections:
m Support for Transactions Using the WebLogic Enterprise JDBC/XA Driver
m Local Versus Distributed (Global) Transactions

m Transaction Contexts in WebLogic Enterprise JDBC/XA Connections

Support for Transactions Using the WebLogic Enterprise
JDBC/XA Driver

WebLogic Enterprise provides a multithreaded JDBC/XA driver for Oracle
Corporation’s Oracle8latabase management system. The WebLogic Enterprise
JDBC/XA driver fully supports XA, the bidirectional system-level interface between
a transaction manager and a resource manager of the X/Open Distributed Transactit
Processing (DTP) model. This driver is available to CORBA Java, EJB, and RMI
applications and runs in the WebLogic Enterprise environment only.

7-2 Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver

Pooled Connections

Java applications use the WebL ogic Enterprise JDBC/XA driver to establish
concurrent connections to multiple Oracle8i databases via their associated resource
managers. For distributed transactions, applications must obtain database connections
from the JDBC connection pool. (However, thisis not arequirement for other
jdbcKonadriversin local transaction mode or for third-party drivers.) Thereafter,
applications perform database operations using standard JDBC API calls.

A JDBC connection is governed by the pooled connection lifecycle in the JIDBC
connection pool. As such, the application server might implicitly close JDBC/XA
connectionsto enforce certain personality-specific transactional resource restrictions,

as described in “JDBC Accessibility in Java Methods” on page 7-8. For more
information about using WebLogic Enterprise JDBC connection pools with WebLogic
Enterprise JDBC/XA driver, see “Using JDBC Connection PoolindgJsimg the

JDBC Drivers.

Characteristics of JavaServerXA

TheJavaSer ver XA server hosts the WebLogic Enterprise JDBC/XA driver. The
JavaServerXA has the following characteristics:

m JavaSer ver XA s truly multithreaded.

m MultithreadediavaSer ver XA cannot use JNI to make database access calls. If
an application intends to use JNI to make database accesg@adlSer ver XA
must be configured to be single-threaded.

m JavaSer ver XA is still subject to other general multithreaded Java server
constraints, as described in “Configuring Multithreaded Java Servers” in Tuning
and Scaling Applications.

m EachJavaSer ver XA application can host the WebLogic Enterprise JDBC
connection pools that connect to one resource manager only (the resource
manager of the Tuxedo group).

Using Transactions 7-3

v

Transactions and the WebLogic Enterprise JDBC/XA Driver

Supported JDBC Standards

WebL ogic Enterprise fully supportsthe JDBC 1.22 API (corefunctionality), the JDBC
2.0 Core API, and the distributed transactions (thej avax. sql . Dat aSour ce API),
connection pooling, and INDI capabilitiesin the JDBC 2.0 Optional Package API. See
Using the JDBC Driversfor acomplete list of WebL ogic Enterprise-supported
JDBC 2.0 features.

Local Versus Distributed (Global) Transactions

7-4

WebL ogic Enterprise applications using the WebL ogic Enterprise JDBC/XA driver
can perform local transactions as well as distributed (also called global) transactions.
A local transaction involves updatesto a single resource manager (such asadatabase),
while a distributed transaction involves updates across multiple resource managers.

The WebL ogic Enterprise JDBC/XA driver never startsalocal transaction on behalf

of an application. However, if the application performs database operations without

first explicitly starting a distributed transaction, then these database operations occur
within an “unspecified transaction context” and WebLogic Enterprise delegates the
responsibility of handling this situation to the database.

In Oracle8i, for example, the database might start a local transaction to perform suc
database operations.

m If autocommit is disabled, then it is the application's responsibility to explicitly
complete the local transaction by calling fleax. sql . Connecti on. commi t
orj avax. sql . Connecti on. rol | back methods.

m If autocommit is enabled, then operations are committed automatically.

Failure to commit a local transaction may resulkAER_OUTSI DE error (indicating

that the resource manager is performing work outside a distributed transaction) on
subsequent distributed transaction operations, which includes beginning a distribute
transaction. It is the responsibility of the application to be aware of the transaction
context at any point and to complete distributed or local transactions appropriately.

Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver

Differences Between Local and Distributed Transactions

Table 7-1 lists differences between local and distributed transactions.

Table 7-1 Differences Between Local and Distributed Transactions

Category Local Transactions

Distributed Transactions

Resource Single database / resource
M anagers/Databases manager

Can span across multiple
resource managers

Transaction Can use the following API:
Demarcation API j ava. sql . Connecti on

Can use either of following APIs:
CORBA API

org. ong. CosTransacti on
Transacti onCurrent API
EJB API:

j avax. transaction
User Transacti on AP

Autocommit Can be enabled or disabled

Must be disabled

Configuring the ENABLEXA Parameter in the UBBCONFIG

To use the WebL ogic Enterprise JDBC/XA driver, you must specify the ENABLEXA
parameter (ENABLEXA=Y) in the JDBCCONNPOOLS section of the UBBCONFI G, as shown
inListing 7-1. Inthisexample, distributed transactions are enabled for the bank_pool

connection pool.

Note: Thissetting applies only to the WebL ogic Enterprise JDBC/XA driver.

Listing 7-1 Specifying JDBCCONNPOOL S| nformation in UBBCONFIG

JDBCCONNPOOL S
bank_pool
SRVGRP = BANK_GROUP1
SRVI D =2
DRI VER = "webl ogi c. j dbc20. oci 815. Dri ver"
URL = "j dbc: webl ogi c: oracl e: Beg-1 ocal "
PROPS = "user=scott; password=tiger; server=Beqg-Local "
ENABLEXA =Y
I NI TCAPACI TY =2
MAXCAPACI TY = 10

Using Transactions 7-5

Transactions and the WebLogic Enterprise JDBC/XA Driver

CAPACI TYI NCR
CREATEONSTARTUP

For more information about configuring JDBC connection pools, see “Using JDBC
Connection Pooling” itJsing the JDBC Drivers.

Demarcating Transaction Boundaries for Local and Distributed Transaction
Contexts

7-6

Applications must carefully and explicitly demarcate transaction boundaries betweer
distributed and local transaction contexts. For example, when an application uses th
WebLogic Enterprise JDBC/XA driver to connect to a database:

m By default, the autocommit feature is automatically disabled because it is
assumed that transactions will be distributed.

m For that application to perform local transactions with autoconaftér (
completing the distributed transaction), it must explicitly enable autocommit by
callingj avax. sql . Connecti on. set Aut oCommi t (true).

After completing local transactions, the application must then disable
autocommitbefore beginning a new distributed transaction. Listing 7-2 provides
a simple example to illustrate switching between a distributed and local
transaction.

Listing 7-2 Switching Between Distributed and L ocal Transactions

/1 Assunes that javax.transaction. UserTransaction (tx) and
/1 java.sqgl.Connection (con) were initialized previously

/1 Begin a distributed transaction

Systemout. println("Beginning distributed transaction...");

t x. begin();

/| Dat abase operations within scope of transaction tx

i f (got Exception){

try{

tx. roll back();
Systemout.println("rolled back transaction");
}catch(Exception e){}

el sei f{

Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver

tx.comit();
Systemout.println("conmtted transaction");
}
/1 Local transactions
conn. set AutoConm t (true)
... [Dat abase operations]...
conn. set Aut oConmi t (f al se)
/1 Begin another distributed transaction
Systemout. println("Beginning distributed transaction...");
tx. begi n();

Transaction Contexts in WebLogic Enterprise JDBC/XA
Connections

For WebL ogic Enterprise IDBC/XA connections, database operations will aways be
performed in the current transaction context. For example, an application might obtain
aJDBC/XA connection in aNULL transaction context, begin a distributed transaction,
and then perform database operationsusing that connection. These database operations
will be performed in the context of the current distributed transaction.

Applications use WebL ogic Enterprise JDBC/XA connection API in the same way as
other jdbcK ona connections except that, while within adistributed transaction context:

m Attempting to enable autocommit mode by calling the
j avax. sql . Connecti on. set Aut oConmi t method on the WebL ogic Enterprise
JDBC/XA connection will throw a SQLExcept i on.

m Attempting to complete the distributed transaction by calling the
javax. sgl . Connection.conmt Orjavax. sql . Connecti on. conmmi t
methods on the WebL ogic Enterprise JDBC/XA connection will throw a
SQLExcepti on.

Listing 7-3 shows, in asample CORBA Javaapplication, how to determinethe current
transaction context and commit alocal or global transaction accordingly.

Listing 7-3 Determining Whether the Application Isin a Distributed

Using Transactions 7-7

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

Transaction

/1 Assunes that org.ong. CosTransactions. Current (tc) and

/1 java.sqgl.Connection (con) were initialized before

/| dat abase operations were attenpted

if (tc.get_status() !=

org. ong. CosTransactions. St at us. St at usNoTr ansacti on)
{
/1 Application is currently in a distributed transaction
tc.commt(true);

}

el se

/1 Application is currently in a local transaction
con.commt();

Similarly, for bean-managed transactions in an EJB application, the application can
determine whether the application is currently in a distributed transaction by calling
the User Transact i on. get St at us() method and testing for a returned
STATUS_NO_TRANSACTI ON.

JDBC Accessibility in Java Methods

This topic includes the following sections:
m JDBC/XA Accessibility in CORBA Methods

m JDBC/XA Accessibility in EJB Methods
Note: Attempting to use a WebL ogic Enterprise JDBC/XA connection in a method

whereit is not supported may have undefined behavior and possibly raise a
SQLException.

7-8 Using Transactions

JDBC Accessibility in Java Methods

JDBC/XA Accessibility in CORBA Methods

Table 7-2 listswhich methodsin CORBA methods can access JDBC/XA connections.
Table 7-2 JDBC/XA Connection Accessibility for CORBA Objects

Server Method Accessibility

Constructor Not supported

initialize Supported, after open_xa_rm
acti vat e_obj Supported

deacti vat e_obj Supported

Business method Supported

rel ease Supported, beforecl ose_xa_r m

After completing thei ni ti al i ze method, WebL ogic Enterpriseautomatically closes
any open connections and writes a warning message to the ULOG.

For transaction-bound and process-bound objects, the CORBA framework allows

open connections to be retained at method end, and the transaction context of the

retained connections will be as described in “Transaction Contexts in WebLogic
Enterprise JDBC/XA Connections” on page 7-7 upon subsequent method invocations.
However, for method-bound objects, applicationst explicitly close open

connections before method end. If not, WebLogic Enterprise automatically closes any
open connections and writes a warning message td_the

JDBC/XA Accessibility in EJB Methods

For EJB methods, accessibility to JDBC/XA connections varies depending on the EJB
type. For details about retaining JDBC/XA connections across method invocations (for
stateful session beans only), including examples, see Section 11.3.3 in the Enterprise
JavaBeans Specification 1.1, published by Sun Microsystems, Inc.

Using Transactions 7-9

v

Transactions and the WebLogic Enterprise JDBC/XA Driver

Note:

message to the ULOG.

Stateful Session Beans

7-10

Table 7-3 listswhich stateful session bean methods can access JDBC/XA connections.

For dl bean types, after completing the ej bCr eat e method, WebL ogic
Enterprise automatically closes any open connections and writes a warning

Table 7-3 JDBC/XA Connection Accessibility for Stateful Session Beans

Bean M ethod Container-managed Bean-managed
Transaction Transaction

Constructor Not supported Not supported

set Sessi onCont ext Not supported Not supported

ej bCreate Supported, but in Supported, but in

ej bRenove unspecified transaction unspecified transaction

ej bActivate

context (as defined in the

context (as defined in the

. . Enterprise JavaBeans 1.1 Enterprise JavaBeans 1.1
ej bPassi vate e e
specification) specification), unless the
bean explicitly beginsa
transaction using
User Transacti on
Business method Supported Supported
af t er Begi n Supported N/A
bef or eConpl eti on Supported N/A
af t er Conpl et i on Supported N/A

For stateful session beans, the Bean Provider must close all JIDBC connectionsin
ej bPassi vat e and assign the instance’s fields storing the connections to null.
However, after completing the ej bPassi vat e method, WebL ogic Enterprise

automatically closes any open connections and writes awarning message to the ULCG.

Using Transactions

JDBC Accessibility in Java Methods

Stateless Session Beans

Table 7-4 lists which statel ess session bean methods can access JIDBC/XA
connections.

Table 7-4 JDBC/XA Connection Accessibility for Stateless Session Beans

Bean Method Container-managed Bean-managed
Transaction Transaction

Constructor Not supported Not supported

set Sessi onCont ext Not supported Not supported

ej bCreate Not supported Not supported

ej bRenmove Not supported Not supported

Business method Supported Supported

Note: For stateless session beans, after completing a business method, WebL ogic
Enterprise automatically closes any open connections and writes awarning
message to the ULOG.

Entity Beans

Table 7-5 listswhich entity bean methods can access JDBC/XA connections.

Table 7-5 JDBC/XA Connection Accessibility for Entity Beans

Bean Method Accessibility
Constructor Not supported
set Enti t yCont ext Not supported
unset Ent i t yCont ext Not supported
ejbCreate Supported
ej bPost Create Supported
ej bRenmove Supported

Using Transactions 7-11

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

Table 7-5 JDBC/XA Connection Accessibility for Entity Beans (Continued)

Bean M ethod Accessibility
ej bFi nd Supported
ej bActivate Not supported
ej bPassi vat e Not supported
ej bLoad Supported
ej bStore Supported
business method Supported

Using the JDBC/XA Driver

Before applications can usethe WebL ogic Enterprise JDBC/XA driver, the JDBC/XA
driver must be integrated into your development environment by completing the
following steps:

1. Build the multithreaded JavaSer ver XA application, binding it with the Oracle8i
Resource Manager, as described in “Using the WebLogic Enterprise JDBC/XA
Driver” in Using the JDBC Drivers.

2. In theUBBCONFI G configure thedPENI NFO parameter in théROUPS section
according to the definition of théa parameter for the Oracle database.
Listing 7-4 shows an example of @RENI NFO setting in a sampleBBCONFI G

Listing 7-4 OPENINFO Setting in Sample UBBCONFIG

* GROUPS
SYS GRP
LM D
GRPNO
BANK_GROUP1
LM D
GRPNO
OPENI NFO =

SI TE1
1

SI TE1
2

7-12 Using Transactions

Using the JDBC/XA Driver

"ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTnmr100+LogD r=. +DbgFl =0
X7+NMaxCur =15+Thr eads=t rue"

TMSNAMVE TVS_ORA

TMSCOUNT = 2

For more information about the XA parameter, see the “A Oracle XA” chapter
in the Fundamentals section of the Oracle Corporadiat!e8i Application
Developer’s Guide

3. If youwant the JavaSer ver XA to be multithreaded, you must specify the - M
option for the CLOPT parameter, which is defined in the JavaSer ver XA entry in
the SERVERS section of the UBBCONFI Gfile.

Note: For single-threaded JavaSer ver XA operation, skip this step.

Listing 7-5 shows an example of JavaSer ver XA configured for multithreading
in asample UBBCONFI G

Listing 7-5 Multithreaded Server Configuration in Sample UBBCONFIG

* SERVERS
DEFAULT:
RESTART
MAXCGEN

JavaServer
SRVGRP
SRVI D
SRVTYPE
CLOPT
RESTART

BANK_GROUP1
2
JAVA
"-A-- -M10 BankApp.jar Tel lerFactory_1 bank_pool"
N

TR TRNTINT] §§

To specify connection pooling, you need to specify SRVTYPE=JAVA in the
SERVERS section.

Using Transactions ~ 7-13

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

4. Inthe UBBCONFI G configure the WebL ogic Enterprise JDBC/XA driver in the
WebL ogic Enterprise JDBC Connection Pool, as described in “Using the
WebLogic Enterprise JDBC/XA Driver” in Using the JDBC Drivers. Listing 7-6
shows an example of JDBC connection pool settings for a connection pool name
bank_pool in a sampleJBBCONFI G

Listing 7-6 JDBC Connection Pool Settingsin Sample UBBCONFIG

* JDBCCONNPOCL S
bank_pool
SRVGRP = BANK_GROUP1
SRVI D =2
DRI VER = "webl ogi c. j dbc20. oci 815. Dri ver"
URL = "jdbc: webl ogi c: oracl e: beg- 1 ocal "
PROPS = "user=scott; password=ti ger; server =Beg- Local "
ENABLEXA =Y
INI TCAPACI TY = 2
MAXCAPACITY = 10
CAPACI TYINCR =1
CREATEONSTARTUP = Y

5. Boot theJavaSer ver XA application, as described in “Using the WebLogic
Enterprise JDBC/XA Driver” indsing the JDBC Drivers.

Implementing Distributed Transactions

This topic includes the following sections:

m Importing Packages

m Initializing the TransactionCurrent Object Reference
m Finding the Connection Pool via JNDI

m Setting Up XA Distributed Transactions

m Performing a Distributed Transaction

7-14 Using Transactions

Implementing Distributed Transactions

In addition to the fully supported examples supplied on the CD-ROM with thisrelease

of WebL ogic Enterprise, the BEA WebL ogic Enterprise team provides several
unsupported code examples on a password protected Web site for WebL ogic

Enterprise customers. The code samples in this topic come from a version of the

WebL ogic Enterprise XA Bankapp sample application that is available from the
unsupported samples WebL ogic Enterprise Web site. The URL for the unsupported
samplesWebL ogic Enterprise Web siteis specified in the product Rel ease Notes under
“About This BEA WebLogic Enterprise Release” in the subsection “Unsupported
Samples and Tools Web Page.”

This application is different from the one described inBhekapp Sample Using XA
in the WebLogic Enterprise online documentation.

Note: This topic does not attempt to fully describe this sample application. It merely
uses code fragments to illustrate the use of the JIDBC/XA driver in a CORBA
application.

Importing Packages

Listing 7-7 shows the packages that the application imports. In particular, note that:

m Thejava. sqgl . * andj avax. sql . * packages are required for database
operations.

m Thej avax. nani ng. * package is required for performing a JNDI lookup on the
pool name, which is passed in as a command-line parameter upon server startup.
The pool name must be registered on that server group.

Listing 7-7 Importing Required Packages

inport java.sql.?*;

i mport javax.sql.?*;

i mport javax.nam ng.*;

i mport com beasys. Tobj . *;

Using Transactions ~ 7-15

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

Initializing the TransactionCurrent Object Reference

Listing 7-8 shows initiaizing the Tr ansact i onCur r ent object reference, which will
be used by the Tel | er operations to start and stop transactions.

Listing 7-8 Initializing the TransactionCurrent Object Reference

static org.ong. CosTransactions. Current trans_cur_ref;

org. ong. CORBA. Obj ect trans_cur_oref =
TP. bootstrap().resolve_initial _references("Transacti onCurrent");

Finding the Connection Pool via JNDI

Listing 7-9 shows finding the connection pool via INDI. The connection pool nameis
registered on the server group and is passed in as a command-line parameter upon
server startup. Subsequent database connections are obtained from this pool.

Listing 7-9 Finding the Connection Pool via INDI

static DataSource pool;

public void get_connpool (String pool nane)
t hrows Exception

{
try {
j avax. nam ng. Context ctx = new Initial Context();
pool = (DataSource)ctx. | ookup("jdbc/" + pool nane);

catch (javax.nam ng. Nam ngException ex) {
TP. user | og(" Coul dn’t obtain JDBC connection pool: " +
pool _nane);
throw ex;
}

}
}

7-16 Using Transactions

Implementing Distributed Transactions

Setting Up XA Distributed Transactions

Listing 7-10 shows setting up XA distributed transactions by calling the open_xa_r m
method (inserver.initialize) and obtaining areference to the
Tr ansact i onCur r ent object.

Note: Thisstepisrequired for CORBA applications but not for EJB or RMI
applications.

Listing 7-10 Setting Up XA Distributed Transactions

TP. open_xa_rmn();

org. ong. CORBA. Obj ect trans_cur _oref =
TP. bootstrap().resolve_initial _references("Transacti onCurrent");

trans_cur_ref =
org. ong. CosTransacti ons. Current Hel per. narrow(trans_cur_oref);

Performing a Distributed Transaction

Listing 7-11 shows a complete distributed transaction that involves the transfer of
money from one bank account to another.

Sequence of Tasks
The application performs the distributed application in the following sequence:
1. The application callsthe begi n method to start the transaction.

2. The application performs the following database operations:
e Withdrawing the money from one account

¢ Depositing the money into another account.

Using Transactions 7-17

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

3. Theapplication updates balances.
4. The application catches any exceptions thrown during the database operations.

5. Theapplication closes the distributed transaction and updates teller statistics.

¢ |f an exception was thrown during the database operations, the application
rolls back the transaction by calling the r ol | back method.

e |f no exceptions were thrown, the application commits the transaction by
caling the commi t method.

Listing 7-11 Performing a Distributed Transaction

public void transfer(int fromAccountID, int toAccountlD, float
anount, Bal anceAnount sHol der bal ances)
t hrows Account Recor dNot Found, | OException, |nsufficientFunds
{

bool ean success = fal se;

try {
/1 Increment the nunber of requests the teller has received.
tellerStats.total Tel |l erRequests += 1;

/1 Begin the gl obal transaction.
BankAppSer ver | npl . trans_cur _ref. begin();

/1 Flag this as a transfer.
transferlnProgress = true;

// Performthe withdrawal first.
float wi thdrawal Bal ance = wi t hdraw(fromAccount | D, anopunt);

/1 Performthe deposit next.
fl oat depositBal ance = deposit(toAccount!|D, anopunt);

bal ances. val ue = new Bal anceAnount s() ;
bal ances. val ue. fromAccount = wi t hdr awal Bal ance;
bal ances. val ue. t oAccount = deposi t Bal ance;

success = true;

/1 Catch any exceptions thrown during database operations

}
catch (Account Recor dNot Found e) {

throw e;

}

7-18 Using Transactions

Implementing Distributed Transactions

catch (I nsufficientFunds e) {
t hrow e;

}

catch (I Cexception e) {
t hrow e;

cat ch(Exception e) {
TP. userl og("Exception caught in transfer(): "
+ e. get Message());
e.printStackTrace();
t hrow new org. ong. CORBA. | NTERNAL() ;

}
finally {
try {
/] Conplete the distributed transaction and
/] update the Teller statistics.
if (success) {
tellerStats.total Tel |l er Success += 1;
BankAppServer | nmpl . trans_cur_ref.commt(true);
} else {
tellerStats.total TellerFail += 1;
BankAppSer ver | mpl . trans_cur_ref.rol | back();

catch(Exception e) {
TP. user| og(" Unexpect ed Exception thrown during commit or
rol I back: " + e.getMessage());

e.printStackTrace();
throw new or g. ong. CORBA. | NTERNAL() ;

}

transferl nProgress = fal se;

}
}

The withdraw Method

Listing 7-12 showsthe wi t hdr aw method that isinvoked in Listing 7-11.
The wi t hdr aw method shows accessing the database to withdraw money from the
specified account.

Using Transactions ~ 7-19

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

Listing 7-12 withdraw method

public float withdraw(i nt accountl D, float anount)
t hrows Account Recor dNot Found,
| CException,
I nsuf fi ci ent Funds,
Tel | er I nsuf fi ci ent Funds

{

bool ean success = fal se;

try {
if ('transferlnProgress) {

/1 This is just a plain withdrawal; it is NOT a transfer.

/1 Increment the nunmber of requests that this teller
/1 has received.
tellerStats.total Tel | er Requests += 1;

// Decrenent the balance left in the Teller’s ATM nachi ne.
tellerStats.total Tell er Bal ance -= anount;

/1 Begin the global transaction.
BankAppServer | npl . trans_cur_ref. begin();

/1 Check to see if the m ninmum TELLER threshol d bal ance
// has not been reached; if so, anount will be added back in
/1 in the finally clause.
if (tellerStats.total Tell erBal ance < M nTel | er Bal ance)
throw new Tel |l erl nsufficientFunds();
}

Account Dat aHol der account Dat aHol der =

new Account Dat aHol der (new Account Data());
account Dat aHol der . val ue. account| D = account | D
account Dat aHol der . val ue. bal ance = - anpunt;

/1 Wthdraw t he noney fromthe account.
theDBAccess_r ef . updat e_account (account Dat aHol der) ;
success = true;

ret ur n(account Dat aHol der . val ue. bal ance) ;

catch (Account Recor dNot Found e) {
throw e;

catch (InsufficientFunds e) {
throw e;

catch (TellerlnsufficientFunds e) {

7-20 Using Transactions

Implementing Distributed Transactions

t hrow e;

}
catch (Dat aBaseException e) {
t hrow new | CException();

cat ch(Exception e) {
TP. userl og("Exception caught in withdrawm): "
+ e. get Message());
e.printStackTrace();
t hrow new org. ong. CORBA. | NTERNAL() ;

}
finally {
// Terminate the transaction and update the Teller statistics.
if (!transferlnProgress) {
try {
if (success) {
tellerStats.total Tel |l er Success += 1;
BankAppSer ver | nmpl.trans_cur_ref.commt(true);
} else {

tellerStats.total TellerFail += 1;
tellerStats.total Tel |l er Bal ance += anount;
BankAppServer | npl.trans_cur_ref.rol | back();

cat ch(Exception e) {
TP. user| og(" Unexpect ed Exception thrown during conmt or

rol | back: " + e.get Message());
e.printStackTrace();
t hrow new or g. ong. CORBA. | NTERNAL() ;
}
}
}
}

The deposit Method

Listing 7-13 showsthedeposi t method that isinvokedin Listing 7-11. The deposi t
method shows accessing the database deposit money to the specified account.

Listing 7-13 deposit method

public float deposit(int accountlD, float anount)
t hrows Account Recor dNot Found, | OException

bool ean success = fal se;

Using Transactions ~ 7-21

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

try {

/1 1f this is a transfer request, then the global transaction
/1 was started in the Tellerlnpl.transfer method; otherw se,

/] start the transaction here.
if ('transferlnProgress) {

/1 This is just a plain deposit; it is NOT a transfer.
/1 Increment the nunber of requests that this teller
/'l has received.

tellerStats.total Tell er Requests += 1;

/1 Begin the global transaction.
BankAppServer | npl.trans_cur_ref.begin();
}

Account Dat aHol der account Dat aHol der =

new Account Dat aHol der (new Account Data());
account Dat aHol der . val ue. account| D = account | D
account Dat aHol der . val ue. bal ance = anount ;

/1 Deposit the nmoney in the account.
t heDBAccess_ref. update_account (account Dat aHol der) ;

success = true;
ret urn(account Dat aHol der . val ue. bal ance) ;

catch (Account Recor dNot Found e) {
throw e;

catch (DataBaseException e) {
t hrow new | OException();

}
catch(Exception e) {
TP. user | og(" Excepti on caught in BankApp.deposit(): "
+ e.get Message());
e.printStackTrace();
throw new or g. ong. CORBA. | NTERNAL() ;

}
finally {
try {
/1 Terminate the transaction and update the Teller statistics.
if (!transferlnProgress) {
if (success) {
tellerStats.total Tell erSuccess += 1;
BankAppServerl npl .trans_cur_ref.comit(true);
} else {
tellerStats.total TellerFail += 1;
BankAppServer| npl .trans_cur_ref.roll back();

}

7-22 Using Transactions

Implementing Distributed Transactions

}
catch(Exception e) {
TP. user | og(" Unexpect ed Exception thrown during comrit or roll back:

+ e. get Message());
e.printStackTrace();
t hrow new or g. ong. CORBA. | NTERNAL() ;
}

}
}

Using Transactions 7-23

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

7-24 Using Transactions

CHAPTER

8

Administering
Transactions

Thistopic includes the following sections:
m Modifying the UBBCONFIG File to Accommodate Transactions

m Modifying the Domain Configuration File to Support Transactions (WebL ogic
Enterprise Servers)

m Sample Distributed Application Using Transactions

Before you begin, you should read Chapter 1, “Introducing Transactions.” In addition,
for container-managed transaction demarcation in EJB applications, you can configure
the transaction timeout setting, as described in “Setting Transaction Timeouts” on page
5-11.

Using Transactions 8-1

8 Administering Transactions

Modifying the UBBCONFIG File to
Accommodate Transactions

This topic includes the following sections:

m Summary of Steps

m Step 1: Specify Application-wide Transactions in the RESOURCES Section
m Step 2: Create a Transaction Log (TLOG)

m Step 3: Define Each Resource Manager (RM) and the Transaction Manager
Server in the GROUPS Section

m Step 4: Enable an Interface to Begin a Transaction

Summary of Steps

To accommodate transactions, you must modify the RESOURCES, MACHI NES, GROUPS,
and the | NTERFACES or SERVI CES sections of the applicationt48BCONFI Gfile in the
following ways:

m In theRESOURCES section, specify the application-wide number of allowed
transactions and the value of the commit control flag.

m |n theMACHI NES section, create tHeLOG information for each machine.

m In the GROUPS section, indicate information about each resource manager and
about the transaction manager server.

m In thel NTERFACES section (WebLogic Enterprise System for CORBA
applications only) or theERVI CES section (BEA Tuxedo System), enable the
automatic transaction option. This option daesapply to EJB or RMI
applications.

For instructions about modifying these sections inUBBCONFI G, see “Creating a
Configuration File” in theAdministration Guide.

8-2 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Step 1: Specify Application-wide Transactions in the
RESOURCES Section

Table 8-1 provides a description of transaction-related parameters in the RESOURCES
section of the configuration file.

Table 8-1 Transaction-Related Parametersin the RESOURCES Section

Parameter Meaning

MAXGTT Limitsthetotal number of global transactionidentifiers(GTRI Ds) allowed on
one machineat onetime. The maximum valueallowedis 2048, theminimum
is 0, and the default is 100. Y ou can override this value on a per-machine
basisin the MACHI NES section.

Entries remain in the table only while the global transaction is active, so this
parameter has the effect of setting alimit on the number of simultaneous
transactions.

CMIRET Specifiestheinitia setting of the TP_COVM T_CONTROL characteristic. The
default is COMPLETE. Following are its two settings:

m LOGGED—the TP_COVWM T_CONTROL characteristic is set to
TP_CMI_LOGGED, which meansthatt pconmi t () returnswhenall the
participants have successfully precommitted.

m COVPLETE—the TP_COVWM T_CONTROL characteristic is set to
TP_CMI_COWPLETE, which meansthat t pcommi t () will not return
until al the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application uses the late
commit implementation of the XA standard, the setting should be
COVPLETE. If al the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (Y ou can override this setting with t pscnt () .)

Step 2: Create a Transaction Log (TLOG)

This section discusses creating atransaction log (TLOG), which refersto alog in which
information on transactions is kept until the transaction is completed.

Using Transactions 8-3

8 Administering Transactions

Creating the UDL

The Universal Device List (UDL) islike amap of the BEA Tuxedo file system. The
UDL getsloaded into shared memory when an application isbooted. To create an entry
inthe UDL for the TLOG device, create the UDL on each machine using global
transactions. If the TLOGDEVI CE is mirrored between two machines, it is unnecessary
todo thison the paired machine. TheBulletin Board Liaison (BBL) theninitializesand
opens the TLOG during the boot process.

To create the UDL, enter acommand using the following format, before the
application has been booted:

tmadmn -c crdl -z config -b bl ocks

where:
-z config Specifiesthe full path name for the device where you should create the
UDL.
-b bl ocks Specifies the number of blocks to be allocated on the device.
config Should match the value of the TLOGDEVI CE parameter in the

MACHI NES section of the UBBCONFI Gfile.

Note: Ingeneral, the value that you supply for bl ocks should not be less than the
value for TLOGSI ZE. For example, if TLOGSI ZE is specified as 200 blocks,
specifying - b 500 would not cause a degradation.

For more information about storing the TLOG, see the Installation Guide.

Defining Transaction-related Parameters in the MACHINES Section

8-4

Y ou can define a global transaction log (TLOG) using several parameters in the
MACHI NES section of the UBBCONFI Gfile. Y ou must manually create the device list
entry for the TLOGDEVI CE on each machine where aTLOG is heeded. Y ou can do this
either before or after TUXCONFI G has been loaded, but it must be done before the
systemis booted.

Note: If you are not using transactions, the TLOG parameters are not required.

Table 8-2 provides a description of transaction-related parameters in the MACHI NES
section of the configuration file.

Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 8-2 Transaction-related Parametersin the MACHINES Section

Parameter M eaning
TLOGNAME The name of the DTP transaction log for this machine.
TLOGDEVI CE Specifies the WebL ogic Enterprise or BEA Tuxedo file system that

contains the DTP transaction log (TLOG) for this machine. If this
parameter isnot specified, the machineisassumed not to havea TLOG
The maximum string value length is 64 characters.

TLOGSI ZE Thesize of the TLOGfile in physical pages. Itsvalue must be between
1 and2048, anditsdefaultis100. The value should be large enough
to hold the number of outstanding transactions on the machine a a
given time. One transaction is logged per page. The default should
suffice for most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVI CE to
the start of the VTOC that contains the transaction log for this
machine. The number must be greater than or equal to 0 and less than
the number of pages on the device. The default is 0.

TLOGOFFSET israrely necessary. However, if two VTCCs share the
samedevice or if aVTCC is stored on a device (such as afile system)
that is shared with another application, you can use TLOGOFFSET to
indicate a starting address relative to the address of the device.

Creating the Domains Transaction Log (BEA Tuxedo Servers)

This section applies to the BEA Tuxedo system only.

Y ou can create the Domains transaction log before starting the Domains gateway
group by using the following command:

dmadm n(1) crdm og (crdlog) -d /ocal _domai n_nane

Create the Domains transaction log for the named local domain on the current machine
(the machine on which dmadni n isrunning). The command uses the parameters
specified in the DMCONFI Gfile. Thiscommand failsif the named local domainisactive
on the current machine or if the log aready exists. If the transaction log has not been
created, the Domains gateway group creates the log when it starts up.

Using Transactions 8-5

8 Administering Transactions

Step 3: Define Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section

Additions to the GROUPS section fall into two categories:

m Defining the transaction manager serversthat perform most of the work that
controls global transactions:

e The TMSNAME parameter specifies the name of the server executable.

e The TMSCOUNT parameter specifies the number of such serversto boot
(the minimum is 2, the maximum is 10, and the default is 3).

A null transactional manager server does not communicate with any resource

manager. It is used to exercise an application’s use of the transactional primitives
before actually testing the application in a recoverakh# environment. This

server is named\s and it simply begins, commits, or terminates without talking
to any resource manager.

m Defining opening and closing information for each resource manager:
e OPENI NFOis a string with information used to open a resource manager.

e CLOSEI NFOis used to close a resource managetr.

Sample GROUPS Section

The following sample&R0OUPS section derives from theankapp banking application:

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl|1:bankdb:readwrite”

Table 8-3 describes the transaction values specified in this sample GROUPSection.

Table 8-3 Transaction Valuesin the GROUPS Section of a Sample
UBBCONFIG File

Transaction Value Meaning

BANKB1 GRPNO=1 Contains the name of the transaction manager
TMSNAME=TMS_SQL\ TMSCOUNT=2 server (TMS_SQ) and the number (2) of these
servers to be booted in the group BANKB1

8-6 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 8-3 Transaction Valuesin the GROUPS Section of a Sample
UBBCONFI G File (Continued)

Transaction Value M eaning

TUXEDQ SQL Published name of the resource manager
<APPDI R>/ bankdl 1 Includes a device name

bankdb Database name

readwite Access mode

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO

Parameters

Table 8-4 lists the characteristics of the TMSNAME, TMSCOUNT, OPENI NFO, and
CLOSEI NFO parameters.

Table 8-4 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO Parameters

Parameter Characteristics
TVSNAVE Name of the transaction manager server executable.
Required parameter for transactional configurations.
TMS isanull transactional manager server.
TMSCOUNT Number of transaction manager servers (must be between 2 and 10).
Default is 3.
OPENI NFO Represents information to open or close a resource manager.
CLGOSEI NFO

Content depends on the specific resource manager.
Starts with the name of the resource manager.
Omission means the resource manager needs no information to open.

Using Transactions 8-7

8 Administering Transactions

Step 4: Enable an Interface to Begin a Transaction

To enable an interface to begin a transaction, you change different sectionsin the
UBBCONFI Gfile, depending on whether you are configuring a WebL ogic Enterprise
CORBA server or BEA Tuxedo server:

m Changing the INTERFACES Section (WebL ogic Enterprise CORBA Servers)
m Changing the SERVICES Section (BEA Tuxedo Servers)

Changing the INTERFACES Section (WebLogic Enterprise CORBA Servers)

The I NTERFACES section in the UBBCONFI G file supports WebL ogic Enterprise
CORBA interfaces:

m For each CORBA interface, set AUTOTRAN O Y if you want atransaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is aready in transaction mode. The default is N. The effect
of specifying avalue for AUTOTRAN depends on the transactional policy specified
by the devel oper in the Implementation Configuration File (ICF) in C++, or the
Server Description File (XML) in Java, for the interface. This transactional
policy will become the transactiona policy attribute of the associated
T_I FQUEUE M B object at run time. The only time this value affects the behavior
of the application isif the devel oper specified a transaction policy of opti onal .

Note: To work properly, thisfeature depends on collaboration between the
system designer and the administrator. If the administrator setsthis value
to Y without prior knowledge of the transaction policy defined by the
developer in the interface’s ICF or XML file, the actual run time effect of
the parameter might be unknown.

m If AUTOTRANIS set toy, you must set thERANTI ME parameter, which specifies
the transaction timeout, in seconds, for the transactions to be created. The value
must be greater than or equal to zero and must not exceed, 483, 647
(2%1- 1, or about 70 years). A value of zero implies there is no timeout for the
transaction. (The default 3 seconds.)

Note: For EJB and RMI applications, tR&TOTRAN andTRANTI ME settings are
ignored.

8-8 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 8-5 describes the characteristics of the AUTOTRAN, TRANTI ME, and
FACTORYRQUTI NG parameters.

Table 8-5 Characteristics of the AUTOTRAN, TRANTIME, and
FACTORYROUTING Parameters

Parameter Characteristics

AUTOTRAN [

Makes an interface the initiator of atransaction.

To work properly, it is dependent on collaboration between
the system designer and the system administrator. If the
administrator sets this value to Y without prior knowledge of
the ICF or XML transaction policy set by the devel oper, the
actual run-time effort of the parameter might be unknown.

Theonly timethisval ue affectsthe behavior of theapplication
isif the developer specified a transaction policy of
optional .

If atransaction already exists, a new oneis not started.

Default is N.

TRANTI ME [

Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 23! - 1, inclusive.
Zero (0) represents no timeout.
Default is 30 seconds.

FACTORYROUTI NG [

Specifies the name of the routing criteriato be used for
factory-based routing for this CORBA interface.

Y ou must specify a FACTORYROUTI NG parameter for
interfaces requesting factory-based routing.

Changing the SERVICES Section (BEA Tuxedo Servers)

The following are three transaction-related features in the SERVI CES section:

m If you want aservice (instead of a client) to begin atransaction, you must set the
AUTOTRAN flag to Y. Thisis useful if the service is not needed as part of any
larger transaction, and if the application wants to relieve the client of making
transaction decisions. If the service is called when there is already an existing
transaction, this call becomes part of it. (The default isN.)

Using Transactions 8-9

8 Administering Transactions

Note: Generally, clients are the best initiators of transactions because a service
has the potential of participating in alarger transaction.

m |f AUTOTRANIS set to Y, you must set the TRANTI ME parameter, which is the
transaction timeout, in seconds, for the transactions to be created. The value
must be greater than or equal to 0 and must not exceed 2, 147, 483, 647 (23-1,
or about 70 years). A value of zero implies there is no timeout for the
transaction. (The default is30 seconds.)

Note: For EJB and RMI applications, the AUTOTRAN and TRANTI ME settings are
ignored.

m You must specify a ROUTI NG parameter for transactions that request
data-dependent routing.

Table 8-6 describes the characteristics of the AUTOTRAN, TRANTI ME, and ROUTI NG
parameters:

Table 8-6 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING

Parameters

Par ameter Characteristics

AUTOTRAN Makes a service the initiator of atransaction.
Relieves the client of the transactional burden.
If atransaction aready exists, anew oneis not started.
Default is N.

TRANTI ME Represents the timeout for the AUTOTRAN transactions.
Vaid values are between 0 and 231 - 1, inclusive.
0 represents no timeout.
Default is 30 seconds.

ROUTI NG Pointsto an entry in the ROUTI NG section where data-dependent routing

is specified for transactions that request this service.

8-10 Using Transactions

Modifying the Domain Configuration File to Support Transactions (WebLogic Enter-

Modifying the Domain Configuration File to
Support Transactions (WebLogic Enterprise
Servers)

Thistopic includes the following sections:

m Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters

m Characteristics of the AUTOTRAN and TRANTIME Parameters (WebL ogic
Enterprise CORBA and Tuxedo Servers)

To enable transactions across domains, you need to set parameters in both the

DM _LOCAL_DOVAI NS and the DM_REMOTE_SERVI CES sections of the Domains
configuration file (DMCONFI G). Entriesinthe DM_LOCAL_DOMAI NS section define local
domain characteristics. Entries in the DM REMOTE_SERVI CES section define
information on servicesthat are imported and that are avail able on remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The DM _LOCAL_DOMAI NS section of the Domains configuration file identifies local
domainsand their associated gateway groups. This section must have an entry for each
gateway group (Local Domain). Each entry specifies the parameters required for the
Domains gateway processes running in that group.

Table 8-7 provides a description of the five transaction-related parametersin this
section: DMTLOGDEV, DMTLOGNANME, DMTLOGSI ZE, MAXRDTRAN, and MAXTRAN.

Using Transactions 8-11

8 Administering Transactions

Table 8-7 Characteristics of the DMTLOGDEYV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

Parameter

Characteristics

DMTLOGDEV

Specifies the BEA Tuxedo file system that contains the Domains
transaction log (DMrLOG) for this machine. The DMILOG s stored as a
BEA Tuxedo VTOCtable onthe device. If thisparameter isnot specified,
the Domains gateway group is not allowed to process requestsin
transaction mode. Local domainsrunning on the same machine can share
the same DMTLOGDEV file system, but each local domain must have its
own log (atable in the DMILOGDEV) named as specified by the

DMTL OGNAME keyword.

DMTLOGNAME

Specifies the name of the Domains transaction log for thisdomain. This
name must be unique when the same DMI'LOGDEYV is used for several
local domains. If avalueis not specified, the value defaultsto the string
DMTLOG. The name must contain 30 characters or less.

DMTLOGSI ZE

Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and |l ess than the amount
of available space on the BEA Tuxedo file system. If avalue is not
specified, the value defaults to 100 pages.

Note: The number of domainsin a transaction determine the number
of pagesyou must specify inthe DMTLOGSI ZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN

Specifies the maximum number of domains that can be involved in a
transaction. It must be greater than zero and less than 32,768. If avalue
is not specified, the value defaultsto 16.

MAXTRAN

Specifies the maximum number of simultaneous globa transactions
alowed onthislocal domain. It must be greater than or equd to zero, and
lessthan or equal to the MAXGTT parameter specified in the TUXCONFI G
file. If not specified, the default isthe value of MAXGTT.

8-12 Using Transactions

Modifying the Domain Configuration File to Support Transactions (WebLogic Enter-

Characteristics of the AUTOTRAN and TRANTIME
Parameters (WebLogic Enterprise CORBA and Tuxedo

Servers)

The DM _REMOTE_SERVI CES section of the Domains configuration file identifies
information on services imported and available on remote domains. Remote services
are associated with a particular remote domain.

Table 8-8 describes the two transaction-related parameters in this section: AUTOTRAN
and TRANTI ME.

Note: For EJB and RMI applications, these settings are ignored.

Table 8-8 Characteristics of the AUTOTRAN and TRANTIME Parameters

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability is required if you want to enforce
reliable network communication with remote services. Y ou specify this
capability by setting the AUTOTRAN parameter to Y in the corresponding
remote service definition.

TRANTI ME Specifies the default timeout value in seconds for atransaction
automatically started for the associated service. The value must be
greater than or equal to zero, and lessthan 2147483648. The default is
30 seconds. A value of zero implies the maximum timeout val ue for the
machine.

Using Transactions 8-13

8 Administering Transactions

Sample Distributed Application Using
Transactions

This topic includes the following sections:

m RESOURCES Section

m MACHINES Section

m GROUPS and NETWORK Sections

m SERVERS, SERVICES, and ROUTING Sections

Thistopic describes asampl e configuration file for the Bankapp application, asample
CORBA applicationthat enablestransactions and distributes the application over three
sites. The application includes the following features:

m Data-dependent routing on ACCOUNT_I D.

m Datadistributed over three databases.

m BRI DGE processes communicating with the system viathe ATM interface.
m System administration from one site.

The configuration file includes seven sections: RESOURCES, MACHI NES, GROUPS,
NETWORK, SERVERS, SERVI CES, and ROUTI NG.

Note: Although this sampleisa CORBA application, the principles apply to EJB
applications as well, except that the ROUTI NG section is not used in EJB
applications, nor are the TRANTI ME and AUTOTRAN parametersin the
| NTERFACES section.

RESOURCES Section

The RESOURCES section shown in Listing 8-1 specifies the following parameters:

m MAXSERVERS, MAXSERVI CES, and MAXGTT are |ess than the defaults. This makes
the Bulletin Board smaller.

8-14 Using Transactions

Sample Distributed Application Using Transactions

m MASTERIisSI TE3 and the backup master is SI TEL.

m MODEL isset to MP and OPTI ONS is set to LAN, M GRATE. This allows a networked
configuration with migration.

m BBLQUERY isset to 180 and SCANUNI T is set to 10. This means that DBBL checks
of the remote BBLs are done every 1800 seconds (one half hour).

Listing8-1 Sample RESOURCES Section

* RESOURCES

#

| PCKEY 99999
ub 1

G D 0
PERM 0660

MAXACCESSERS 25
MAXSERVERS 25
MAXSERVI CES 40

MAXGIT 20

MASTER SI TE3, SITE1l
SCANUNI T 10

SANI TYSCAN 12

BBLQUERY 180

BLOCKTI ME 30

DBBLWAI T 6

OPTI ONS LAN, M GRATE
MODEL wMP

LDBAL Y

MACHINES Section

The MACHI NES section shown in Listing 8-2 specifies the following parameters:

m TLOGDEVI CE and TLOGNAME are specified, which indicate that transactions will
be done.

m The TYPE parameters are all different, which indicates that encode/decode will
be done on all messages sent between machines.

Using Transactions 8-15

8 Administering Transactions

Listing 82 Sample MACHINES Section

* MACHI NES

G sela LM D=SI TE1
TUXDIR="/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE="/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="3B600"

romeo LMID=SITEZ2
TUXDIR="/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE"
TLOGDEVICE="/ust/home/TLOG"
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="SEQUENT"

juliet LMID=SITE3
TUXDIR="/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr’/home/ENVFILE"
TLOGDEVICE="/usr/home/TLOG"
TLOGNAME=TLOG
TUXCONFIG="/usr/home/tuxconfig”
TYPE="AMDAHL"

GROUPS and NETWORK Sections

8-16

The GROUP&Nd NETWORKEections shown in Listing 8-3 specify the following
parameters:

m The TMSCOUNIB set to 2, which means that only two TMS_SQLtransaction
manager serverswill be booted per group.

m The OPENINFGstring indicates that the application will perform database access.

Using Transactions

Sample Distributed Application Using Transactions

Listing 8-3 Sample GROUPSand NETWORK Sections

* GROUPS

DEFAULT: TVSNAMVE=TMS_SQL TMBCOUNT=2
BANKB1 LM D=SI TE1 GRPNO=1
OPENINFO="TUXEDO/SQL:/usr/home/bankdI1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL:/usr/home/bankdI2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
OPENINFO="TUXEDO/SQL:/usr/home/bankdI3:bankdb:readwrite”
*NETWORK

SITE1 NADDR="0X0002ab117B2D4359"

BRIDGE="/dev/tcp”
NLSADDR="0X0002ab127B2D4359"

SITE2 NADDR="0X0002ab117B2D4360"
BRIDGE="/dev/tcp”
NLSADDR="0X0002ab127B2D4360"

SITE3 NADDR="0X0002ab117B2D4361"
BRIDGE="/dev/tcp”
NLSADDR="0X0002ab127B2D4361"

SERVERS, SERVICES, and ROUTING Sections

The SERVERSSERVICES and ROUTING sections shown in Listing 8-4 specify the
following parameters:

m TheTLR servershavea-T number passedtotheir t psrvrinit () functions.
m All requests for the services are routed on the ACCOUNT_IDfield.

m None of the serviceswill be performed in AUTOTRANNOdE.

Note: The ROUTINGsection is not used in EJB or RMI applications.

Using Transactions ~ 8-17

8 Administering Transactions

Listing 84 Sample SERVERS, SERVICES, and ROUTING Sections

* SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT="-A"
TLR SRVGRP=BANKB1 SRVID=1 CLOPT="-A---T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT="-A---T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT="-A---T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES

DEFAULT: AUTOTRAN=N

WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
TRANSFER ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID

*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE="FML"
RANGES="MON - 9999:*,
10000 - 39999:BANKB1
40000 - 69999:BANKB2
70000 - 100000:BANKB3

wn

8-18 Using Transactions

Index

A
ACID properties 1-2, 2-3
activation policies

transaction 3-11
always transaction policy 3-4, 3-12
APl models, supported 1-3
Application-to-Transaction Monitor

Interface (ATMI) 2-6

assigning transaction policies 3-7
atomicity (ACID properties) 1-2
autocommit 7-6
AUTOTRAN parameter 8-9, 8-10, 8-13

B

bean-managed transactions 1-10
transaction attributes 5-5
transaction semantics

stateful session beans 5-9
statel ess session beans 5-10
business transactions, support 1-4

C

client applications
multithreading 2-7
using transactions 4-5
CLOPT parameter 7-13
close xa rm method 3-10
CLOSEINFO parameter 8-7
closing an XA resource manager 3-10

CMTRET parameter 8-3
code example

C++ CORBA server object that supports

transactions 1-20
EJB applications 1-25

OMG IDL for Transactions sample
CORBA application 1-16

RMI applications 1-27
TransactionCurrent object 4-3
transactions

C++4-6

Java 4-6

Visual Basic 4-7

transactionsin C++ CORBA client

application 1-22

UBBCONFIG file for Transactions

sample CORBA application 1-

23
committing transactions
EJB applications 1-27
RMI applications 1-29
connection pool
finding viaJNDI 7-16
consistency (ACID properties) 1-2
contai ner-managed transactions 1-9
transaction attributes 5-4
transaction semantics 5-6
entity beans 5-8
stateful session beans 5-6
statel ess session beans 5-7
Control interface 2-17

Using Transactions

CORBA applications
transaction propogation 2-4
Transaction Service 2-8
Transaction Service AP
Control interface 2-17
Current interface 2-12
data types 2-10
exceptions 2-10
Transactiona Object interface 2-18
transactionsin client applications 1-7, 4-
2
transactions overview 1-6
Transactions sample CORBA
application 1-13
transactions support 3-2
CORBAservices Object Transaction Service
(OT9) 1-3, 2-2,4-2
CosTransactions module 2-12, 2-18
Current interface
about the Current interface 2-12
begin method 2-13
commit method 2-14
get _control method 2-15
get status method 2-14
get transaction_name method 2-15
resume method 2-17
rollback method 2-14
rollback_only method 2-14
set_timeout method 2-15
suspend method 2-16
customer support contact information xi

D

data types

CORBA Transaction Service APl 2-10
database cursors 3-4
deactivate_object method

and transactions 3-11
defining user-defined exceptions 3-13
delegated commit 2-3

[-2 Using Transactions

development process

client applications

Transactions sample CORBA
application 1-21

transactions 4-2
distributed transactions 7-4

about distributed transactions 1-4

about implementing 7-14

finding the connection pool via INDI 7-

16

importing packages 7-15

initializing TransactionCurrent 7-16

performing 7-17

setting up 7-17
DMTLOGDEV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
documentation, where to find it x
domain transaction log, creating 8-5
DR_TRANS_ABORT 3-11
DR_TRANS_COMMITTING 3-11
durability (ACID properties) 1-2

E

EJB applications
bean-managed transactions 1-10
committing transactions 1-27
container-managed transactions 1-9
exceptions 5-11
genera guidelines 5-2
importing packages 1-25
JNDI lookup 1-26
participating in a transaction 5-5
rolling back transactions 1-27
sample code 1-25
session synchronization 5-10
starting transactions 1-26
timeouts 5-11
transaction attributes 5-3
transaction semantics 5-5

transactions overview 1-8
ENABLEXA parameter 7-5
entity beans
contai ner-managed transactions
transaction semantics
5-8
JDBC/XA accessibility 7-11
exceptions
CORBA Transaction Service APl 2-10
EJB applications 5-11
HeuristicHazard 2-11
HeuristicMixed 2-11
INVALID_TRANSACTION 2-20
InvalidControl 2-12
NoTransaction 2-11
OBJ ADAPTER 2-20
SubtransactionsUnavailable 2-11
TRANSACTION_ROLLEDBACK 2-
16
Unavailable 2-12
user-defined exceptions 3-13
explicit propogation, in CORBA applications
2-4

F

FACTORYROUTING parameter 8-9
flat transactions 2-5

G

global transactions 7-4
GROUPS section 8-16

H

handling exceptions

EJB applications 5-11
HeuristicHazard exception 2-11
HeuristicMixed exception 2-11

ICFfile

defining transaction policies 4-2
ignore transaction policy 3-7
Implementation Configuration File (ICF)

defining transaction policies 1-18
implicit propogation, in CORBA applications

2-4

importing packages

EJB applications 1-25
interdomain interoperability 2-5
interoperability

interdomain 2-5

intradomain 2-5

network 2-6

remote clients and WLE domain 2-5
intradomain interoperability 2-5
INVALID_TRANSACTION exception 2-20
InvalidControl exception 2-12
isolation (ACID properties) 1-2

J

Java Naming Directory Interface (JNDI)
EJB applications 1-26
RMI applications 1-29
Java Transaction APl (JTA) 1-3, 2-2
Java Transaction Service (JTS) 1-3
JavaServerXA 7-12
JavaServerXA, described 7-3
JDBC standards, supported 7-4
JDBC/XA driver
enabling 7-5
pooled connections 7-3
JNDI
finding the connection pool 7-16

L

lightweight clients
about lightweight clients 2-3

Using Transactions [-3

Application-to-Transaction Monitor
Interface (ATMI)I 2-6
interoperability 2-5
listings
sample GROUPS section 8-17
sample MACHINES section 8-16
sample NETWORK section 8-17
sample RESOURCES section 8-15
local transactions 7-4

M

MACHINES section 8-4, 8-15
Mandatory transaction attribute 5-4
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
multithreading

clients 2-7

N

nested transactions 2-5, 2-20

network interoperability 2-6
NETWORK section 8-16

Never transaction attribute 5-4

never transaction policy 3-6
NoTransaction exception 2-11
NotSupported transaction attribute 5-4
NULL resource manager 3-11

0]

OBJ ADAPTER exception 2-20
object state management 3-10
delegating to an XA RM 3-10
Transactions University sample
application 3-17
ODMG standard 2-7
OMG IDL
Transactions sample CORBA

-4 Using Transactions

application 1-15
Open Group XA interface 2-6
open_xa_rm method 3-8
OPENINFO parameter 7-12, 8-7
opening an XA resource manager 3-8
optional transaction policy 3-5, 3-12
Oracle7 3-18
OSI TP protocol 2-6

P

participating in atransaction 5-5
pooled connections 7-3

printing product documentation x
process failure, handling 2-7
programming models, supported 1-2

R

recursive transactions 2-20
related information xi
remote clients and interoperability 2-5
Required transaction attribute 5-4
RequiresNew transaction attribute 5-4
resource manager
closing an XA 3-10
delegating object state management 3-10
NULL 3-11
opening XA 3-8
RESOURCES section 8-14
RMI applications
committing transactions 1-29
genera guidelines 6-2
JNDI lookup 1-29
rolling back transactions 1-29
sample code 1-27
starting transactions 1-29
transactions overview 1-11
rolling back transactions
EJB applications 1-27
RMI applications 1-29

ROUTING parameter 8-10
ROUTING section 8-17

S
sample applications
Transactions sample CORBA
application 1-13
Server Description File
about the Server Description File 1-19
Server object
supporting databases 1-19
Transactions sample CORBA
application 1-19
SERVERS section 8-17
SERVICES section 8-17
session synchronization 5-10
setTransactionTimeout method 5-11
SNA LU 6.2 protocol 2-7
SRVTY PE parameter 7-13
starting transactions
EJB applications 1-26
RMI applications 1-29
stateful session beans
bean-managed transactions
transaction semantics
5-9
contai ner-managed transactions
transaction semantics
5-6
JDBC/XA accessihility 7-10
stateless session beans
bean-managed transactions
transaction semantics
5-10
contai ner-managed transactions
transaction semantics
5-7
JDBC/XA accessibility 7-11

SubtransactionsUnavail able exception 2-11

support

technical xi
Supported transaction attribute 5-4

T

terminating transactions 2-4

throwing user-defined exceptions 3-14

TLOG 8-3
TLOGDEVICE parameter 1-23, 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
TMS3-18

configuring 3-8

Oracle7 3-8

requirements for 3-8
TMSCOUNT parameter 8-7
TMSNAME parameter 8-7
transaction activation policy 3-11
transaction attributes

bean-managed transactions 5-5

container-managed transactions 5-4

described 5-3
transaction log, creating 8-3
Transaction Manager Server
See TMS
transaction policies
aways 3-4, 3-12
assigning 3-7
defined 1-18
defining in ICF file 4-2
ignore 3-7
never 3-6
optiona 3-5, 3-12
Transactions sample CORBA
application 1-18
transaction semantics 5-5
Transaction Service

about the Transaction Service 2-2

capabilities 2-2
CORBA applications 2-8

Using Transactions

APl extensions 2-19
clients supported 2-8
features 1-4
genera constraints 2-7
limitations 2-2
transactiona objects
defining 3-4
Transactiona Object interface 2-18
TransactionCurrent interface 7-16
TransactionCurrent object
begin method 4-4
code examples 4-3
commit method 4-4
get status method 4-5
get transaction_name method 4-5
getcontrol method 4-5
getting initial referencesto 2-9
methods 4-4
resume method 4-5
rollback method 4-4
rollback_only method 4-4
set_timeout method 4-5
suspend method 4-5
transaction-related parametersin
MACHINES section, defining 8-4
transactions
autocommit 7-6
client CORBA applications 4-2
configuring
AUTOTRAN parameter 8-9, 8-10,
8-13
CMTRET parameter 8-3
creating a transaction log
creating the domain transaction
log 8-5
creating the Universal Device
List (UDL) 8-4
defining transaction-related pa-
rameters in MA-
CHINES section 8-4
defining each resource manager and

-6 Using Transactions

the transaction manager
server in GROUPS section
8-6
DMTLOGDEYV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
enabling aTuxedo serviceto begina
transaction in the
SERVICES section 8-9
FACTORYROUTING parameter 8-
9
INTERFACES section 8-8
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
modifying thedomain configuration
file to support transactions
8-11
modifying the UBBCONFIG file 8-
2
ROUTING parameter 8-10
sample GROUPS section 8-6
specifying application-wide
transactionsin
RESOURCES 8-3
TLOGDEVICE parameter 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
transaction log (TLOG) 8-3
transaction values description in
sample GROUPS section
8-6
TRANTIME parameter 8-9, 8-10,
8-13
CORBA applications 1-6
distributed
sample application 8-14
distributed transactions 7-4
EJB applications 1-8
flat transactions 2-5

functional overview 1-6
implementing in a WLE server
application
in client applications 4-5
in CORBA client applications 1-7
integrity 2-4
local transactions 7-4
nested 2-20
nested transactions 2-5
object state management 3-10
participating in a transaction 5-5
propagating, in CORBA applications 2-4
recursive 2-20
RMI applications 1-11
termination 2-4
timeouts 5-11
transaction contexts, in JDBC/XA
connections 7-7
transaction processing 2-6
transaction semantics 5-5
when to use transactions 1-5
Transactions CORBA sample application
workflow 1-13
Transactions sample CORBA application
about the Transactions sample CORBA
application 1-13
client application 1-21
development steps 1-15
illustrated 1-13
location 1-15
OMG IDL 1-15
transaction policies 1-18
UBBCONFIG file 1-22
user exceptions 1-13
writing server applications 1-19
Transactions University sample application
about the application 3-15
configuration requirements 3-19
object state management 3-17
transaction model used 3-16
transactions, configuring

CLOSEINFO parameter 8-7
OPENINFO parameter 8-7
TMSCOUNT parameter 8-7
TMSNAME parameter 8-7
trans-timeout-seconds element 5-11
TRANTIME parameter 8-9, 8-10, 8-13
two-phase commit protocol (2PC) 1-4

U

UBBCONFIG file
adding transactions 1-22
JDBCCONNPOOL S section 7-5
UDL 8-4
Unavailable exception 2-12
Universal Device List (UDL) 8-4
unmanaged desktops 2-3
user exceptions
Transactions sample CORBA
application 1-13
user-defined exceptions
about user-defined exceptions 3-13
defining 3-13
throwing 3-14
UserTransaction
committing transactions
EJB applications 1-27
RMI applications 1-29
initializing
EJB applications 1-26
rolling back transactions
EJB applications 1-27
RMI applications 1-29
sample code 1-25, 1-27
starting transactions
EJB applications 1-26
RMI applications 1-29

Vv
vetoing atransaction 3-11

Using Transactions [-7

W

WLE JDBC/XA driver
about the driver 7-2
accessibility
CORBA methods 7-9
EJB methods 7-9
using 7-12
WLE server applications
and transactions

X

XA resource manager
closing 3-10
delegating object state management 3-10
opening 3-8
Transactions University sample
application 3-18

-8 Using Transactions

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Introducing Transactions
	Overview of Transactions in WebLogic Enterprise Applications
	ACID Properties of Transactions
	Supported Programming Models
	Supported API Models
	Support for Business Transactions
	Distributed Transactions and the Two-Phase Commit Protocol

	When to Use Transactions
	What Happens During a Transaction
	Transactions in WebLogic Enterprise CORBA Applications
	Transactions in WebLogic Enterprise EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Transactions in WebLogic Enterprise RMI Applications

	Transactions Sample Code
	Transactions Sample CORBA Application
	Workflow for the Transactions Sample Application
	Development Steps

	Transactions Sample EJB Code
	Importing Packages
	Initializing the UserTransaction Object
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Initializing the UserTransaction Object
	Using JDNI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	2 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Transaction Propagation (CORBA Only)
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between Remote Clients and the WebLogic Enterprise Domain
	Intradomain and Interdomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	Multithreaded Transaction Client Support
	General Constraints

	Transaction Service in CORBA Applications
	Getting Initial References to the TransactionCurrent Object
	CORBA Transaction Service API
	Data Types
	Exceptions
	Current Interface
	Control Interface
	TransactionalObject Interface
	Other CORBAservices Object Transaction Service Interfaces

	CORBA Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	Notes on Using Transactions in WebLogic Enterprise CORBA Applications

	Transaction Service in EJB Applications
	Transaction Service in RMI Applications
	UserTransaction API
	UserTransaction Methods
	Exceptions Thrown by UserTransaction Methods

	3 Transactions in CORBA Server Applications
	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Transaction Support in CORBA Applications
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Opening an XA Resource Manager in Java
	Opening an XA Resource Manager in C++

	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database
	When to Assign the Transaction Activation Policy
	Transaction Policies to Use with the Transaction Activation Policy

	User-defined Exceptions
	About User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	How the Transactions University Sample Application Works (C++ Only)
	About the Transactions University Sample Application
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	4 Transactions in CORBA Client Applications
	Overview of WebLogic Enterprise CORBA Transactions
	Summary of the Development Process for Transactions
	Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object
	C++ Example
	Java Example
	Visual Basic Example

	Step 2: Use the TransactionCurrent Methods
	C++ Example
	Java Example
	Visual Basic Example

	5 Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-managed Transactions
	Transaction Attributes for Bean-managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	6 Transactions in RMI Applications
	Before You Begin
	General Guidelines

	7 Transactions and the WebLogic Enterprise JDBC/XA Driver
	Before You Begin
	About Transactions and the WebLogic Enterprise JDBX/XA Driver
	Support for Transactions Using the WebLogic Enterprise JDBC/XA Driver
	Pooled Connections
	Characteristics of JavaServerXA
	Supported JDBC Standards

	Local Versus Distributed (Global) Transactions
	Differences Between Local and Distributed Transactions
	Configuring the ENABLEXA Parameter in the UBBCONFIG
	Demarcating Transaction Boundaries for Local and Distributed Transaction Contexts

	Transaction Contexts in WebLogic Enterprise JDBC/XA Connections

	JDBC Accessibility in Java Methods
	JDBC/XA Accessibility in CORBA Methods
	JDBC/XA Accessibility in EJB Methods
	Stateful Session Beans
	Stateless Session Beans
	Entity Beans

	Using the JDBC/XA Driver
	Implementing Distributed Transactions
	Importing Packages
	Initializing the TransactionCurrent Object Reference
	Finding the Connection Pool via JNDI
	Setting Up XA Distributed Transactions
	Performing a Distributed Transaction
	Sequence of Tasks
	The withdraw Method
	The deposit Method

	8 Administering Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Summary of Steps
	Step 1: Specify Application-wide Transactions in the RESOURCES Section
	Step 2: Create a Transaction Log (TLOG)
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log (BEA Tuxedo Servers)

	Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the GROUPS Section
	Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Step 4: Enable an Interface to Begin a Transaction
	Changing the INTERFACES Section (WebLogic Enterprise CORBA Servers)
	Changing the SERVICES Section (BEA Tuxedo Servers)

	Modifying the Domain Configuration File to Support Transactions (WebLogic Enterprise Servers)
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters (WebLogic Enterprise CORBA and Tuxedo Ser...

	Sample Distributed Application Using Transactions
	RESOURCES Section
	MACHINES Section
	GROUPS and NETWORK Sections
	SERVERS, SERVICES, and ROUTING Sections

	Index

