
Using Transactions

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Transactions

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Introducing Transactions
Overview of Transactions in WebLogic Enterprise Applications..................... 1-2

ACID Properties of Transactions .. 1-2

Supported Programming Models ... 1-2

Supported API Models ... 1-3

Support for Business Transactions... 1-4

Distributed Transactions and the Two-Phase Commit Protocol 1-4

When to Use Transactions... 1-5

What Happens During a Transaction ... 1-6

Transactions in WebLogic Enterprise CORBA Applications.................... 1-6

Transactions in WebLogic Enterprise EJB Applications........................... 1-8

Transactions in WebLogic Enterprise RMI Applications 1-11

Transactions Sample Code .. 1-12

Transactions Sample CORBA Application ... 1-13

Transactions Sample EJB Code .. 1-25

Transactions Sample RMI Code .. 1-27

2. Transaction Service
About the Transaction Service .. 2-2
Using Transactions iii

Capabilities and Limitations .. 2-2

Lightweight Clients with Delegated Commit .. 2-3

Transaction Propagation (CORBA Only) .. 2-4

Transaction Integrity .. 2-4

Transaction Termination ... 2-4

Flat Transactions ... 2-5

Interoperability Between Remote Clients and the WebLogic Enterprise
Domain .. 2-5

Intradomain and Interdomain Interoperability .. 2-5

Network Interoperability ... 2-6

Relationship of the Transaction Service to Transaction Processing 2-6

Process Failure ... 2-7

Multithreaded Transaction Client Support .. 2-7

General Constraints .. 2-7

Transaction Service in CORBA Applications ... 2-8

Getting Initial References to the TransactionCurrent Object 2-9

CORBA Transaction Service API .. 2-9

CORBA Transaction Service API Extensions ... 2-19

Notes on Using Transactions in WebLogic Enterprise CORBA Applications
2-20

Transaction Service in EJB Applications .. 2-23

Transaction Service in RMI Applications ... 2-23

UserTransaction API ... 2-24

UserTransaction Methods... 2-24

Exceptions Thrown by UserTransaction Methods 2-26

3. Transactions in CORBA Server Applications
Integrating Transactions in a WebLogic Enterprise Client and Server Application

3-2

Transaction Support in CORBA Applications ... 3-2

Making an Object Automatically Transactional... 3-4

Enabling an Object to Participate in a Transaction 3-5

Preventing an Object from Being Invoked While a Transaction Is Scoped ..
3-6

Excluding an Object from an Ongoing Transaction................................... 3-7

Assigning Policies ... 3-7
iv Using Transactions

Using an XA Resource Manager.. 3-8

Opening an XA Resource Manager ... 3-8

Closing an XA Resource Manager .. 3-10

Transactions and Object State Management .. 3-10

Delegating Object State Management to an XA Resource Manager 3-10

Waiting Until Transaction Work Is Complete Before Writing to the Database
3-11

User-defined Exceptions .. 3-13

About User-defined Exceptions ... 3-13

Defining the Exception... 3-13

Throwing the Exception ... 3-14

How the Transactions University Sample Application Works (C++ Only).... 3-14

About the Transactions University Sample Application.......................... 3-15

Transactional Model Used by the Transactions University Sample
Application.. 3-16

Object State Considerations for the University Server Application 3-17

Configuration Requirements for the Transactions Sample Application . 3-19

4. Transactions in CORBA Client Applications
Overview of WebLogic Enterprise CORBA Transactions 4-2

Summary of the Development Process for Transactions 4-2

Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object..... 4-3

C++ Example ... 4-3

Java Example.. 4-3

Visual Basic Example .. 4-4

Step 2: Use the TransactionCurrent Methods.. 4-4

C++ Example ... 4-6

Java Example.. 4-6

Visual Basic Example .. 4-7

5. Transactions in EJB Applications
Before You Begin.. 5-2

General Guidelines .. 5-2

Transaction Attributes ... 5-3

About Transaction Attributes for EJBs .. 5-3

Transaction Attributes for Container-managed Transactions 5-4
Using Transactions v

Transaction Attributes for Bean-managed Transactions 5-5

Participating in a Transaction .. 5-5

Transaction Semantics ... 5-5

Transaction Semantics for Container-managed Transactions 5-6

Transaction Semantics for Bean-managed Transactions............................ 5-9

Session Synchronization .. 5-10

Setting Transaction Timeouts .. 5-11

Handling Exceptions in EJB Transactions .. 5-11

6. Transactions in RMI Applications
Before You Begin .. 6-2

General Guidelines .. 6-2

7. Transactions and the WebLogic Enterprise JDBC/XA Driver
Before You Begin .. 7-2

About Transactions and the WebLogic Enterprise JDBX/XA Driver............... 7-2

Support for Transactions Using the WebLogic Enterprise JDBC/XA Driver
7-2

Local Versus Distributed (Global) Transactions.. 7-4

Transaction Contexts in WebLogic Enterprise JDBC/XA Connections.... 7-7

JDBC Accessibility in Java Methods .. 7-8

JDBC/XA Accessibility in CORBA Methods.. 7-9

JDBC/XA Accessibility in EJB Methods... 7-9

Using the JDBC/XA Driver... 7-12

Implementing Distributed Transactions .. 7-14

Importing Packages .. 7-15

Initializing the TransactionCurrent Object Reference.............................. 7-16

Finding the Connection Pool via JNDI .. 7-16

Setting Up XA Distributed Transactions.. 7-17

Performing a Distributed Transaction .. 7-17

8. Administering Transactions
Modifying the UBBCONFIG File to Accommodate Transactions 8-2

Summary of Steps... 8-2

Step 1: Specify Application-wide Transactions in the RESOURCES Section
8-3
vi Using Transactions

Step 2: Create a Transaction Log (TLOG)... 8-3

Step 3: Define Each Resource Manager (RM) and the Transaction Manager
Server in the GROUPS Section ... 8-6

Step 4: Enable an Interface to Begin a Transaction 8-8

Modifying the Domain Configuration File to Support Transactions (WebLogic
Enterprise Servers) .. 8-11

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters 8-11

Characteristics of the AUTOTRAN and TRANTIME Parameters (WebLogic
Enterprise CORBA and Tuxedo Servers) ... 8-13

Sample Distributed Application Using Transactions 8-14

RESOURCES Section.. 8-14

MACHINES Section .. 8-15

GROUPS and NETWORK Sections.. 8-16

SERVERS, SERVICES, and ROUTING Sections 8-17
Using Transactions vii

viii Using Transactions

B,

s
About This Document

This document explains how to use transactions in CORBA, EJB, and RMI
applications that run in the BEA WebLogic Enterprise™ environment.

This document covers the following topics:

n Chapter 1, “Introducing Transactions,” introduces transactions in CORBA, EJ
and RMI applications running in the WebLogic Enterprise environment.

n Chapter 2, “Transaction Service,” describes the WebLogic Enterprise
Transaction Service.

n Chapter 3, “Transactions in CORBA Server Applications,” describes how to
implement transactions in CORBA C++ and Java server applications.

n Chapter 4, “Transactions in CORBA Client Applications,” describes how to
implement transactions in CORBA client applications.

n Chapter 5, “Transactions in EJB Applications,” describes how to implement
transactions in EJB applications.

n Chapter 6, “Transactions in RMI Applications,” describes how to implement
transactions in RMI applications.

n Chapter 7, “Transactions and the WebLogic Enterprise JDBC/XA Driver,”
describes how to use the WebLogic Enterprise JDBC/XA driver in conjunction
with distributed transactions in WebLogic Enterprise Java applications.

n Chapter 8, “Administering Transactions,” describes how to administer
transactions in the WebLogic Enterprise environment.
Using Transactions ix

e at

sing

tion
ent
rise

 you

ree
What You Need to Know

This document is intended primarily for application developers who are interested in
building transactional C++ and Java applications that run in the WebLogic Enterprise
environment. It assumes a familiarity with the WebLogic Enterprise platform, C++ or
Java programming, and transaction processing concepts.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for f
from the Adobe Web site at http://www.adobe.com/.
x Using Transactions

How to Print the Document

ng,

s.

date

r the

ou

mer

tion:
Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programmi
and Java programming, see the WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and up
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation fo
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if y
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informa

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Using Transactions xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
xii Using Transactions

Documentation Conventions
{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using Transactions xiii

xiv Using Transactions

CHAPTER
1 Introducing
Transactions

This topic includes the following sections:

n Overview of Transactions in WebLogic Enterprise Applications

n When to Use Transactions

n What Happens During a Transaction

n Transactions Sample Code
Using Transactions 1-1

1 Introducing Transactions
Overview of Transactions in WebLogic
Enterprise Applications

This topic includes the following sections:

n ACID Properties of Transactions

n Supported Programming Models

n Supported API Models

n Support for Business Transactions

n Distributed Transactions and the Two-Phase Commit Protocol

ACID Properties of Transactions

One of the most fundamental features of the WebLogic Enterprise system is
transaction management. Transactions are a means to guarantee that database
transactions are completed accurately and that they take on all the ACID properties
(atomicity, consistency, isolation, and durability) of a high-performance transaction.
WebLogic Enterprise protects the integrity of your transactions by providing a
complete infrastructure for ensuring that database updates are done accurately, even
across a variety of resource managers (RMs). If any one of the operations fails, the
entire set of operations is rolled back.

Supported Programming Models

WebLogic Enterprise supports transactions in two different programming models:

n The Object Management Group Common Object Request Broker (CORBA) in
C++ and Java applications, in compliance with the The Common Object Request
Broker: Architecture and Specification, Revision 2.2, February 1998.
1-2 Using Transactions

Overview of Transactions in WebLogic Enterprise Applications

JB

Inc.
n The Sun Microsystems, Inc., Java 2 Platform, Enterprise Edition (J2EE).
WebLogic Enterprise provides full support for transactions in Java applications
that use Enterprise JavaBeans, in compliance with the Enterprise JavaBeans
Specification 1.1, published by Sun Microsystems, Inc. WebLogic Enterprise
also supports the Java Transaction API (JTA) Specification version 1.0.1, also
published by Sun Microsystems, Inc.

Supported API Models

WebLogic Enterprise supports two transaction API models:

n CORBAservices Object Transaction Service (OTS) and the Java Transaction
Service (JTS).

WebLogic Enterprise provides a C++ interface to the OTS and a Java interface
to the OTS and the JTS. The JTS is the Sun Microsystems, Inc. Java interface
for transaction services, and is based on the OTS. The OTS and the JTS are
accessed through the org.omg.CosTransactions.Current environmental
object. For information about using the TransactionCurrent environmental
object, see the C++ Bootstrap Object Programming Reference or the Java
Bootstrap Object Programming Reference.

n The Sun Microsystems, Inc. Java Transaction API (JTA), which is used by:

l CORBA applications within BEA’s TP Framework.

l Enterprise JavaBean (EJB) applications within the WebLogic Enterprise E
container.

l Remote Method Invocation (RMI) applications within the WebLogic
Enterprise infrastructure.

Only the application-level demarcation interface
(javax.transaction.UserTransaction) is supported. For information about
JTA, see the following sources:

l The javax.transaction package description in the WebLogic Enterprise
Javadoc.

l The Java Transaction API specification, published by Sun Microsystems,
and available from the Sun Microsystems, Inc. Web site (www.sun.com).
Using Transactions 1-3

1 Introducing Transactions

it

er. The

 that
fully

Support for Business Transactions

OTS, JTS, and JTA each provide the following support for your business transactions:

n Creates a global transaction identifier when a client application initiates a
transaction.

n Works with the WebLogic Enterprise infrastructure to track objects that are
involved in a transaction and, therefore, need to be coordinated when the
transaction is ready to commit.

n Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

n Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group’s XA protocol. Almost all relational databases
support this standard.

n Executes the rollback procedure when the transaction must be stopped.

n Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

Distributed Transactions and the Two-Phase Commit
Protocol

WebLogic Enterprise supports distributed transactions and the two-phase comm
protocol for enterprise applications. A distributed transaction is a transaction that
updates multiple resource managers (such as databases) in a coordinated mann
two-phase commit protocol (2PC) is a method of coordinating a single transaction
across one or more resource managers. It guarantees data integrity by ensuring
transactional updates are committed in all of the participating databases, or are
rolled back out of all the databases, reverting to the state prior to the start of the
transaction.
1-4 Using Transactions

When to Use Transactions
When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WebLogic Enterprise system.

n The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made up to that point.

n The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

l Data is cached in memory or written to a database during or after each
successive invocation.

l Data is written to a database at the end of the conversation.

l The client application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

l At the end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

For example, consider an Internet-based online shopping cart application. Users
of the client application browse through an online catalog and make multiple
purchase selections. When the users are done choosing all the items they want to
buy, they proceed to check out and enter their credit card information to make
the purchase. If the credit card check fails, the shopping application needs a way
Using Transactions 1-5

1 Introducing Transactions
to cancel all the pending purchase selections in the shopping cart, or roll back
any purchase transactions made during the conversation.

n Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily CORBA, EJB, or RMI invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

l Invoking the debit method on one account.

l Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

What Happens During a Transaction

This topic includes the following sections:

n Transactions in WebLogic Enterprise CORBA Applications

n Transactions in WebLogic Enterprise EJB Applications

n Transactions in WebLogic Enterprise RMI Applications

Transactions in WebLogic Enterprise CORBA Applications

Figure 1-1 illustrates how transactions work in a WebLogic Enterprise CORBA
application.
1-6 Using Transactions

What Happens During a Transaction
Figure 1-1 How Transactions Work in a WebLogic Enterprise CORBA
Application

For CORBA applications, a basic transaction works in the following way:

1. The client application uses the Bootstrap object to return an object reference to
the TransactionCurrent object for the WebLogic Enterprise domain.

2. A client application begins a transaction using the
Tobj::TransactionCurrent::begin() operation, and issues a request to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of a transaction.

l If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back.

l If no exceptions occur, the client application commits the current transaction
using the Tobj::TransactionCurrent::commit() operation. This
operation ends the transaction and starts the processing of the operation.
The transaction is committed only if all of the participants in the transaction
agree to commit.

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

T

T
CORBA

Get Student Details

Get Course Details

Register for Courses

Browse Courses

 University Server
Application

T Part of a Transaction

University
Database
Using Transactions 1-7

1 Introducing Transactions
3. The Tobj::TransactionCurrent:commit() operation causes the TP
Framework to call the transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update the database.

Transactions in WebLogic Enterprise EJB Applications

Figure 1-2 illustrates how transactions work in a WebLogic Enterprise EJB
application.

Figure 1-2 How Transactions Work in a WebLogic Enterprise EJB Application

WebLogic Enterprise supports two types of transactions in WebLogic Enterprise EJB
applications:

n In container-managed transactions, the WebLogic Enterprise EJB container
manages the transaction demarcation. Transaction attributes in the EJB
deployment descriptor determine how the WebLogic Enterprise EJB container
handles transactions with each method invocation. For more information about
the deployment descriptor, see the WebLogic EJB XML Reference.

n In bean-managed transactions, the EJB manages the transaction demarcation.
The EJB makes explicit method invocations on the UserTransaction object to

T EJB

T Part of a Transaction

 Server Application

T

EJB Client
Application

BusinessMethod1

BusinessMethod2

Database
1-8 Using Transactions

What Happens During a Transaction

orks

ler

ler

1.1,

ion

ecks
o

the

begin, commit, and roll back transactions. For more information about the
UserTransaction object, see “UserTransaction API” on page 2-24.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Container-managed Transactions

For EJB applications with container-managed transactions, a basic transaction w
in the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assemb
specifies the transaction type (transaction-type element) for
container-managed demarcation (Container).

2. In the EJB’s deployment descriptor, the Bean Provider or Application Assemb
specifies the default transaction attribute (trans-attribute element) for the
EJB, which is one of the following settings: NotSupported, Required,
Supports, RequiresNew, Mandatory, or Never. For a detailed description of
these settings, see Section 11.6.2 in the Enterprise JavaBeans Specification
published by Sun Microsystems, Inc.

3. Optionally, in the EJB’s deployment descriptor, the Bean Provider or Applicat
Assembler specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container ch
the trans-attribute setting in the deployment descriptor for that method. If n
setting is specified for the method, the EJB uses the default trans-attribute
setting for that EJB.

5. The EJB container takes the appropriate action depending on the applicable
trans-attribute setting.

l For example, if the trans-attribute setting is Required, the EJB
container invokes the method within the existing transaction context or, if
client called without a transaction context, the EJB container begins a new
transaction before executing the method.

l In another example, if the trans-attribute setting is Mandatory, the EJB
container invokes the method within the existing transaction context. If the
client called without a transaction context, the EJB container throws the
javax.transaction.TransactionRequiredException exception.
Using Transactions 1-9

1 Introducing Transactions

ler

tions

as

on

.

6. During invocation of the business method, if it is determined that a rollback is
required, the business method calls the EJBContext.setRollbackOnly method,
which notifies the EJB container that the transaction is to be rolled back at the
end of the method invocation.

Note: Calling the EJBContext.SetRollbackOnly method is allowed only for
methods that have a meaningful transaction context.

7. At the end of the method execution and before the result is sent to the client, the
EJB container completes the transaction, either by committing the transaction or
rolling it back (if the EJBContext.SetRollbackOnly method was called).

You can control transaction timeouts by setting the trans-timeout-seconds
element in the weblogic-ejb-extensions.xml file. For more information about the
weblogic-ejb-extensions.xml file, see the WebLogic Enterprise EJB XML
Reference. You can also change this setting with the WebLogic Enterprise EJB
Deployer, as described in Using the WebLogic Enterprise EJB Deployer.

Bean-managed Transactions

For EJB applications with bean-managed transaction demarcations, a basic transaction
works in the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assemb
specifies the transaction type (transaction-type element) for
container-managed demarcation (Bean).

2. The client application uses JNDI to obtain an object reference to the
UserTransaction object for the WebLogic Enterprise domain.

3. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the EJB through the EJB container. All opera
on the EJB execute within the scope of a transaction.

l If a call to any of these operations raises an exception (either explicitly or
a result of a communication failure), the exception can be caught and the
transaction can be rolled back using the UserTransaction.rollback
method.

l If no exceptions occur, the client application commits the current transacti
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit
1-10 Using Transactions

What Happens During a Transaction
4. The UserTransaction.commit method causes the EJB container to call the
transaction manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

Transactions in WebLogic Enterprise RMI Applications

Figure 1-3 illustrates how transactions work in a WebLogic Enterprise RMI
application.

Figure 1-3 How Transactions Work in a WebLogic Enterprise RMI Application

For RMI client and server applications, a basic transaction works in the following way:

1. The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Enterprise domain.

Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during server
shutdown). For the duration of the transaction, the WebLogic Enterprise
infrastructure does not perform any deactivation or activation.

T RMI

T Part of a Transaction

 Server Application

T

RMI Client
Application

BusinessMethod1

BusinessMethod2

Database
Using Transactions 1-11

1 Introducing Transactions
2. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the server application. All operations on the
server application execute within the scope of a transaction.

l If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back using the UserTransaction.rollback
method.

l If no exceptions occur, the client application commits the current transaction
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Enterprise to call the
transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

For guidelines about using transactions in RMI applications, see Chapter 6,
“Transactions in RMI Applications.”

Transactions Sample Code

This topic includes the following sections:

n Transactions Sample CORBA Application

n Transactions Sample EJB Code

n Transactions Sample RMI Code
1-12 Using Transactions

Transactions Sample Code
Transactions Sample CORBA Application

In the Transactions sample CORBA application, the operation of registering for
courses is executed within the scope of a transaction. The transaction model used in
the Transactions sample application is a combination of the conversational model and
the model in which a single client invocation makes multiple individual operations on
a database.

Workflow for the Transactions Sample Application

The Transactions sample application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the server application checks whether:

l The course is in the database.

l The student is already registered for a course.

l The student exceeds the maximum number of credits the student can take.

3. One of the following occurs:

l If the course meets all the criteria, the server application registers the student
for the course.

l If the course is not in the database or if the student is already registered for
the course, the server application adds the course to a list of courses for
which the student could not be registered. After processing all the
registration requests, the server application returns the list of courses for
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

l If the student exceeds the maximum number of credits the student can take,
the server application returns a TooManyCredits user exception to the client
application. The client application provides a brief message explaining that
the request was rejected. The client application then rolls back the
transaction.

Figure 1-4 illustrates how the Transactions sample application works.
Using Transactions 1-13

1 Introducing Transactions
Figure 1-4 Transactions Sample Application

The Transactions sample application shows two ways in which a transaction can be
rolled back:

n Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

n Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client. The decision to roll back the
transaction also lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returns the TooManyCredits
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

T

T

CORBA
Server

 University Server
Application

T Part of a Transaction

browse_courses()

get_course_details()

register_for_courses()

get_student_details()

University
Database
1-14 Using Transactions

Transactions Sample Code
Note: For information about how transactions are implemented in CORBA/Java
WebLogic Enterprise applications, see the Transactions Sample in the
WebLogic Enterprise online documentation.

Development Steps

This topic describes the following development steps for writing a WebLogic
Enterprise application that contains transaction processing code:

n Step 1: Writing the OMG IDL

n Step 2: Defining Transaction Policies for the Interfaces

n Step 3: Writing the Server Application

n Step 4: Writing the Client Application

n Step 5: Creating a Configuration File

The Transactions sample application is used to demonstrate these development steps.
The source files for the Transactions sample application are located in the
\samples\corba\university directory of the WebLogic Enterprise software. For
information about building and running the Transactions sample application, see the
Transactions Sample in the WebLogic Enterprise online documentation.

The XA Bankapp sample application demonstrates how to use transactions in Java
WebLogic Enterprise applications. The source files for the XA Bankapp sample
application are located in the \samples\corba\bankapp_java\XA directory of the
WebLogic Enterprise software. For information about building and running the XA
Bankapp sample application, see the Bankapp Sample Using XA in the WebLogic
Enterprise online documentation.

Step 1: Writing the OMG IDL

You need to specify interfaces involved in transactions in Object Management Group
(OMG) Interface Definition Language (IDL) just as you would any other CORBA
interface. You must also specify any user exceptions that might occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the
Registrar interface and the register_for_courses() operation. The
register_for_courses() operation has a parameter, NotRegisteredList, which
Using Transactions 1-15

1 Introducing Transactions
returns to the client application the list of courses for which registration failed. If the
value of NotRegisteredList is empty, then the client application commits the
transaction. You also need to define the TooManyCredits user exception.

Listing 1-1 includes the OMG IDL for the Transactions sample application.

Listing 1-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys.com"
module UniversityT

{
typedef unsigned long CourseNumber;
typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis
{

CourseNumber course_number;
string title;

};
typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
//Returns a list of length 0 if there are no more entries
CourseSynopsisList get_next_n(

in unsigned long number_to_get, // 0 = return all
out unsigned long number_remaining

);

void destroy();
};
typedef unsigned short Days;
const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRIDAY = 16;

}
//Classes restricted to same time block on all scheduled days,
//starting on the hour

struct ClassSchedule
{

Days class_days; // bitmask of days
unsigned short start_hour; // whole hours in military time
1-16 Using Transactions

Transactions Sample Code
unsigned short duration; // minutes
};

struct CourseDetails
{

CourseNumber course_number;
double cost;
unsigned short number_of_credits;
ClassSchedule class_schedule;
unsigned short number_of_seats;
string title;
string professor;
string description;

};
typedef sequence<CourseDetails> CourseDetailsList;
typedef unsigned long StudentId;

struct StudentDetails
{

StudentId student_id;
string name;
CourseDetailsList registered_courses;

};

enum NotRegisteredReason
{

AlreadyRegistered,
NoSuchCourse

};

struct NotRegistered
{

CourseNumber course_number;
NotRegisteredReason not_registered_reason;

};
typedef sequence<NotRegistered> NotRegisteredList;

exception TooManyCredits
{

unsigned short maximum_credits;
};

//The Registrar interface is the main interface that allows
//students to access the database.
interface Registrar
{

CourseSynopsisList
get_courses_synopsis(

in string search_criteria,
 in unsigned long number_to_get,
Using Transactions 1-17

1 Introducing Transactions
 out unsigned long number_remaining,
out CourseSynopsisEnumerator rest

);

 CourseDetailsList get_courses_details(in CourseNumberList
 courses);
StudentDetails get_student_details(in StudentId student);
NotRegisteredList register_for_courses(

in StudentId student,
in CourseNumberList courses

) raises (
TooManyCredits

);

};

// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory
{

Registrar find_registrar(
);

};

Step 2: Defining Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within a WebLogic Enterprise application will handle transactions.
Table 1-1 describes the CORBA transaction policies.

Table 1-1 CORBA Transaction Policies

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional. However, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFIG file for this
interface, is ignored.
1-18 Using Transactions

Transactions Sample Code

n

e

” in

u

 the

XA
During development, you decide which interfaces will execute in a transaction by
assigning transaction policies in the following ways:

n For C++ server applications in CORBA, you specify transaction policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command. For more information about the ICFs, see “Implementatio
Configuration File (ICF)” in the CORBA C++ Programming Reference.

n For Java server applications in CORBA, you specify transaction policies in th
Server Description File, written in Extensible Markup Language (XML). For
more information about Server Description files, see “Server Description File
the CORBA Java Programming Reference.

In the Transactions sample application, the transaction policy of the Registrar

interface is set to always.

Step 3: Writing the Server Application

When using transactions in server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, yo
would write a method implementation for the register_for_courses() operation.

If your WebLogic Enterprise application uses a database, you need to include in
server application code that opens and closes an XA Resource Manager. These
operations are included in the Server::initialize() and Server::release()
operations of the Server object. Listing 1-2 shows the portion of the code for the
Server object in the Transactions sample application that opens and closes the
Resource Manager.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The WebLogic
Enterprise system generates an exception
(INVALID_TRANSACTION) if an interface with this policy is
involved in a transaction.

optional The interface may be transactional. Objects can be involved in a
transaction if the request is transactional. This transaction policy
is the default.

Table 1-1 CORBA Transaction Policies (Continued)

Transaction Policy Description
Using Transactions 1-19

1 Introducing Transactions
Note: For a complete example of a C++ server application that implements
transactions, see the Transactions Sample in the WebLogic Enterprise online
documentation. For an example of a Java server application that implements
transactions, see Bankapp Sample Using XA in the WebLogic Enterprise
online documentation.

Listing 1-2 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server::initialize(int argc, char* argv[])
{

TRACE_METHOD("Server::initialize");
try {

open_database();
begin_transactional();
register_fact();
return CORBA_TRUE;

}
catch (CORBA::Exception& e) {

LOG(“CORBA exception : “ <<e);
}
catch (SamplesDBException& e) {

LOG(“Can’t connect to database”);
}
catch (...) {

LOG(“Unexpected database error : “ <<e);
}
catch (...) {

LOG(“Unexpected exception”);
}
cleanup();
return CORBA_FALSE;

}

void Server::release()
{

TRACE_METHOD(“Server::release”);
cleanup();

}

static void cleanup()
{

unregister_factory();
end_transactional();
close_database();

}
//Utilities to manage transaction resource manager
1-20 Using Transactions

Transactions Sample Code
CORBA::Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional()
{

TP::open_xa_rm();
s_became_transactional = CORBA_TRUE;

}
static void end_transactional()
{

if(!s_became_transactional){
return//cleanup not necessary

}
try {

TP::close_xa_rm ();
}

catch (CORBA::Exception& e) {
 LOG(“CORBA Exception : “ << e);
}
catch (...) {
 LOG(“unexpected exception”);

 }

s_became_transactional = CORBA_FALSE;
}

Step 4: Writing the Client Application

The client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent object from the Bootstrap
object.

2. Begins a transaction by invoking the Tobj::TransactionCurrent::begin()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokes the register_for_courses() operation on the
Registrar object, passing a list of courses.

Listing 1-3 illustrates the portion of the CORBA C++ client applications in the
Transactions sample application that illustrates the development steps for transactions.

For an example of a CORBA Java client application that uses transactions, see
Bankapp Sample Using XA in the WebLogic Enterprise online documentation. For an
example of using transactions in an ActiveX client application, see Chapter 4,
“Transactions in CORBA Client Applications.”
Using Transactions 1-21

1 Introducing Transactions
Listing 1-3 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
 CosTransactions::Current::_narrow(var_transaction_current_oref.in());
//Begin the transaction
var_transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 var_transaction_current_ref->commit(report_heuristics);
 }
catch (...) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails,ignore the exception and throw the
//original exception again.
try {
 var_transaction_current_ref->rollback();
 }
catch (...) {
 TP::userlog("rollback failed");
 }
throw;
}

Step 5: Creating a Configuration File

You need to add the following information to the configuration file for a transactional
WebLogic Enterprise application:

n In the GROUPS section:

l In the OPENINFO parameter, include the information needed to open the
resource manager for the database. You obtain this information from the
product documentation for your database. Note that the default version of the
com.beasys.Tobj.Server.initialize method automatically opens the
resource manager.

l In the CLOSEINFO parameter, include the information needed to close the
resource manager for the database. By default, the CLOSEINFO parameter is
empty.
1-22 Using Transactions

Transactions Sample Code

on
l Specify the TMSNAME and TMSCOUNT parameters to associate the XA resource
manager with a specified server group.

n In the SERVERS section, define a server group that includes both the server
application that includes the interface and the server application that manages
the database. This server group needs to be specified as transactional.

n Include the pathname to the transaction log (TLOG) in the TLOGDEVICE
parameter. For more information about the transaction log, see Chapter 8,
“Administering Transactions.”

Listing 1-4 includes the portions of the configuration file that define this informati
for the Transactions sample application.

Listing 1-4 Configuration File for Transactions Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID university
MASTER SITE1
MODEL SHM
LDBAL N
SECURITY APP_PW

*MACHINES
BLOTTO
LMID = SITE1
APPDIR = C:\TRANSACTION_SAMPLE
TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig
TLOGDEVICE=C:\APP_DIR\TLOG
TLOGNAME=TLOG
TUXDIR="C:\WLEdir"
MAXWSCLIENTS=10

*GROUPS
SYS_GRP
 LMID = SITE1
 GRPNO = 1
ORA_GRP
 LMID = SITE1
 GRPNO = 2

OPENINFO = "ORACLE_XA:Oracle_XA+SqlNet=ORCL+Acc=P
/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
CLOSEINFO = ""
Using Transactions 1-23

1 Introducing Transactions
TMSNAME = "TMS_ORA"
TMSCOUNT = 2

*SERVERS
DEFAULT:
RESTART = Y
MAXGEN = 5

TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5

UNIVT_SERVER
 SRVGRP = ORA_GRP
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 6
 CLOPT = -A -- -n //MACHINENAME:2500

*SERVICES

For information about the transaction log and defining parameters in the Configuration
file, see Chapter 8, “Administering Transactions.”
1-24 Using Transactions

Transactions Sample Code
Transactions Sample EJB Code

This topic provides a walkthrough of sample code fragments from a class in an EJB
application. This topic includes the following sections:

n Importing Packages

n Initializing the UserTransaction Object

n Using JNDI to Return an Object Reference to the UserTransaction Object

n Starting a Transaction

n Completing a Transaction

The code fragments demonstrate using the UserTransaction object for
bean-managed transaction demarcation. The deployment descriptor for this bean
specifies the transaction type (transaction-type element) for transaction
demarcation (Bean).

Note: These code fragments do not derive from any of the sample applications that
ship with WebLogic Enterprise. They merely illustrate the use of the
UserTransaction object within an EJB application.

Importing Packages

Listing 1-5 shows importing the necessary packages for transactions, including:

n javax.transaction.UserTransaction. For a list of methods associated with
this object, see “UserTransaction Methods” on page 2-24.

n System exceptions. For a list of exceptions, see “Exceptions Thrown by
UserTransaction Methods” on page 2-26.

Listing 1-5 Importing Packages

import javax.naming.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
Using Transactions 1-25

1 Introducing Transactions
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException

Initializing the UserTransaction Object

Listing 1-6 shows initializing an instance of the UserTransaction object to null.

Listing 1-6 Initializing the UserTransaction Object

 UserTransaction tx = null;

Using JNDI to Return an Object Reference to the UserTransaction Object

Listing 1-7 shows searching the JNDI tree to return an object reference to the
UserTransaction object for the appropriate WebLogic Enterprise domain.

Listing 1-7 Performing a JDNI Lookup

try {
 Context ctx = getInitialContext();
 tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");

Starting a Transaction

Listing 1-8 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin method. Database operations that
occur after this method invocation and prior to completing the transaction exist within
the scope of this transaction.

Listing 1-8 Starting a Transaction

tx.begin();
1-26 Using Transactions

Transactions Sample Code
Completing a Transaction

Listing 1-9 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

n If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback method if an exception
was thrown during any of the database operations.

n If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit method to attempt to commit
the transaction after all database operations completed successfully. Calling this
method ends the transaction and starts the processing of the operation, causing
the WebLogic Enterprise EJB container to call the transaction manager to
complete the transaction. The transaction is committed only if all of the
participants in the transaction agree to commit.

Listing 1-9 Completing a Transaction

if(gotException){
 try{
 tx.rollback();
 }catch(Exception e){}
 }
 elseif{
 tx.commit();
 }

Transactions Sample RMI Code

This topic provides a walkthrough of sample code fragments from a class in an RMI
application. This topic includes the following sections:

n Importing Packages

n Initializing the UserTransaction Object

n Using JDNI to Return an Object Reference to the UserTransaction Object

n Starting a Transaction
Using Transactions 1-27

1 Introducing Transactions

 that

n Completing a Transaction

The code fragments demonstrate using the UserTransaction object for RMI
transactions. For guidelines about using transactions in RMI applications, see
Chapter 6, “Transactions in RMI Applications.”

Note: These code fragments do not derive from any of the sample applications
ship with WebLogic Enterprise. They merely illustrate the use of the
UserTransaction object within an RMI application.

Importing Packages

Listing 1-10 shows importing the necessary packages, including the following
packages used to handle transactions:

n javax.transaction.UserTransaction. For a list of methods associated with
this object, see “UserTransaction Methods” on page 2-24.

n System exceptions. For a list of exceptions, see “Exceptions Thrown by
UserTransaction Methods” on page 2-26.

Listing 1-10 Importing Packages

import javax.naming.*;
import java.rmi.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException

Initializing the UserTransaction Object

Listing 1-11 shows initializing an instance of the UserTransaction object to null.
1-28 Using Transactions

Transactions Sample Code
Listing 1-11 Initializing the UserTransaction Object

 UserTransaction tx = null;

Using JDNI to Return an Object Reference to the UserTransaction Object

Listing 1-12 shows searching the JNDI tree to return an object reference to the
UserTransaction object for the appropriate WebLogic Enterprise domain.

Note: Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during
server shutdown). For the duration of the transaction, the WebLogic
Enterprise infrastructure does not perform any deactivation or activation.

Listing 1-12 Performing a JDNI Lookup

try {
 Context ctx = getInitialContext();
 tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");

Starting a Transaction

Listing 1-13 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin method. Database operations that
occur after this method invocation and prior to completing the transaction exist within
the scope of this transaction.

Listing 1-13 Starting a Transaction

tx.begin();

Completing a Transaction

Listing 1-14 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:
Using Transactions 1-29

1 Introducing Transactions
n If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback method if an exception
was thrown during any of the database operations.

n If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit method to attempt to commit
the transaction after all database operations completed successfully. Calling this
method ends the transaction and starts the processing of the operation, causing
WebLogic Enterprise to call the transaction manager to complete the transaction.
The transaction is committed only if all of the participants in the transaction
agree to commit.

Listing 1-14 Completing a Transaction

if(gotException){
 try{
 tx.rollback();
 }catch(Exception e){}
 }
 elseif{
 tx.commit();
 }
1-30 Using Transactions

CHAPTER
2 Transaction Service

This topic includes the following sections:

n About the Transaction Service

n Capabilities and Limitations

n Transaction Service in CORBA Applications

n Transaction Service in EJB Applications

n Transaction Service in RMI Applications

n UserTransaction API

This topic provides the information that programmers need to write transactional
applications for the WebLogic Enterprise system. Before you begin, you should read
Chapter 1, “Introducing Transactions.”
Using Transactions 2-1

2 Transaction Service

I” on

in
About the Transaction Service

WebLogic Enterprise provides a Transaction Service that supports transactions in
CORBA, EJB, and RMI applications. The Transaction Service provides:

n An implementation of the CORBAservices Object Transaction Service (OTS)
that is described in Chapter 10 of the CORBAservices: Common Object Services
Specification. This specification defines the interfaces for an object service that
provides transactional functions.

n In the WebLogic Enterprise EJB container, an implementation of the transaction
services described in the Enterprise JavaBeans Specification 1.1, published by
Sun Microsystems, Inc.

For CORBA Java, EJB, and RMI applications, WebLogic Enterprise also provides the
javax.transaction package, from Sun Microsystems, Inc., which implements the
Java Transaction API (JTA) for Java applications. For more information about the
JTA, see the Java Transaction API (JTA) Specification (version 1.0.1), published by
Sun Microsystems, Inc. For more information about the UserTransaction object that
applications use to demarcate transaction boundaries, see “UserTransaction AP
page 2-24.

Capabilities and Limitations

This topic includes the following sections:

n Lightweight Clients with Delegated Commit

n Transaction Propagation (CORBA Only)

n Transaction Integrity

n Transaction Termination

n Flat Transactions

n Interoperability Between Remote Clients and the WebLogic Enterprise Doma
2-2 Using Transactions

Capabilities and Limitations
n Intradomain and Interdomain Interoperability

n Network Interoperability

n Relationship of the Transaction Service to Transaction Processing

n Process Failure

n Multithreaded Transaction Client Support

n General Constraints

These sections describe the capabilities and limitations of the Transaction Service that
supports CORBA and EJB applications:

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they are not in
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsible for ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources.
WebLogic Enterprise remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on a server machine. Client applications do not require a
local transaction server. The remote TransactionCurrent implementation that
CORBA clients use, or the remote implementation of UserTransaction that EJB or
RMI clients use, delegate the actual responsibility of transaction coordination to
transaction manager on the server.
Using Transactions 2-3

2 Transaction Service
Transaction Propagation (CORBA Only)

For CORBA applications, the CORBAservices Object Transaction Service
specification states that a client can choose to propagate a transaction context either
implicitly or explicitly. WebLogic Enterprise provides implicit propagation. Explicit
propagation is strongly discouraged.

Note: For EJB and RMI applications, only implicit propagation is supported for
clients.

Objects that are related to transaction contexts that are passed around using explicit
transaction propagation should not be mixed with implicit transaction propagation
APIs. It should be noted, however, that explicit propagation does not place any
constraints on when transactional methods can be processed. There is no guarantee that
all transactional methods will be completed before the transaction is committed.

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
commit will not succeed unless all transactional objects involved in the transaction
have completed the processing of their transactional requests. If implicit transaction
propagation is used, the Transaction Service provides checked transaction behavior
that is equivalent to that provided by the request/response interprocess communication
models defined by The Open Group. For CORBA applications, for example, the
Transaction Service performs reply checks, commit checks, and resume checks, as
described in the CORBAservices Object Transaction Service Specification.

Unchecked transaction behavior relies completely on the application to provide
transaction integrity. If explicit propagation is used, the Transaction Service does not
provide checked transaction behavior and transaction integrity is not guaranteed.

Transaction Termination

WebLogic Enterprise allows transactions to be terminated only by the client that
created the transaction.
2-4 Using Transactions

Capabilities and Limitations
Note: The client may be a server object that requests the services of another object.

Flat Transactions

WebLogic Enterprise implements the flat transaction model. Nested transactions are
not supported.

Interoperability Between Remote Clients and the
WebLogic Enterprise Domain

WebLogic Enterprise supports remote clients invoking methods on server objects in
different WebLogic Enterprise domains in the same transaction.

Remote clients with multiple connections to the same WebLogic Enterprise domain
may make invocations to server objects on these separate connections within the same
transaction.

Intradomain and Interdomain Interoperability

For C++ (but not Java) applications, WebLogic Enterprise supports native clients
invoking methods on server objects in the WebLogic Enterprise domain. In addition,
WebLogic Enterprise supports server objects invoking methods on other objects in the
same or in different processes within the same WebLogic Enterprise domain.

In WebLogic Enterprise applications, transactions can span multiple domains as long
as factory-based routing is properly configured across multiple domains. To support
transactions across multiple domains, you must configure the factory_finder.ini
file to identify factory objects that are used in the current (local) domain but that are
resident in a different (remote) domain. For more information, see “Configuring
Multiple Domains (WebLogic Enterprise System)” in the Administration Guide.
Using Transactions 2-5

2 Transaction Service
Network Interoperability

A client application can have only one active bootstrap object and
TransactionCurrent object within a single domain. WebLogic Enterprise does not
support exporting or importing transactions to or from remote WebLogic Enterprise
domains.

However, transactions can encompass multiple domains in a serial fashion. For
example, a server with a transaction active in Domain A can communicate with a
server in Domain B within the context of that same transaction.

Relationship of the Transaction Service to Transaction
Processing

The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standards in the following ways:

n Support for BEA Tuxedo ATMI servers. Servers using the WebLogic
Enterprise Transaction Service can make invocations on other BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) server processes in the
same domain. In addition, ATMI services can invoke CORBA objects in both
transactional and non-transactional contexts, both within the same domain and
across domains via a TDOMAINS gateway. However, WebLogic Enterprise
does not support remote clients or native clients invoking ATMI services in the
WebLogic Enterprise domain.

n Support for The Open Group XA interface. The Open Group Resource
Managers are resource managers that can be involved in a distributed transaction
by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface. WebLogic Enterprise supports interaction with The Open
Group Resource Managers.

n Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) is the transactional protocol defined by the International
Organization for Standardization (ISO). WebLogic Enterprise does not support
interactions with OSI TP transactions.
2-6 Using Transactions

Capabilities and Limitations
n Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2
is a transactional protocol defined by IBM. WebLogic Enterprise does not
support interactions with LU 6.2 transactions.

n Support for the ODMG standard. ODMG-93 is a standard defined by the
Object Database Management Group (ODMG) that describes a portable interface
to access Object Database Management Systems. WebLogic Enterprise does not
support interactions with ODMG transactions.

Process Failure

The Transaction Service monitors the participants in a transaction for failures and
inactivity. The BEA Tuxedo system provides management tools for keeping the
application running when failures occur. Because WebLogic Enterprise is built upon
the existing BEA Tuxedo transaction management system, it inherits the Tuxedo
capabilities for keeping applications running.

Multithreaded Transaction Client Support

WebLogic Enterprise supports multithreaded clients for non-transactional clients. For
transactional clients, WebLogic Enterprise supports only single-threaded client
implementation. Clients cannot make transaction requests concurrently in multiple
threads.

General Constraints

The following constraints apply to the Transaction Service:

n In WebLogic Enterprise, a client or a server object cannot invoke methods on an
object that is infected with (or participating in) another transaction. The method
invocation issued by the client or the server will return an exception.

n For CORBA applications, a server application object using transactions from the
WebLogic Enterprise Transaction Service library requires the TP Framework
functionality. For more information about the TP Framework, see “TP
Framework” in the CORBA C++ Programming Reference.
Using Transactions 2-7

2 Transaction Service

n For CORBA applications, a return from the rollback method on the Current
object is asynchronous. Similarly, for EJB and RMI applications, a return from
the rollback method on the UserTransaction object is asynchronous.

As a result, the objects that were infected by (or participating in) the rolled back
transaction get their states cleared by WebLogic Enterprise a little later.
Therefore, no other client can infect these objects with a different transaction
until WebLogic Enterprise clears the states of these objects. This condition exists
for a very short amount of time and is typically not noticeable in a production
application. A simple workaround for this race condition is to try the appropriate
operation after a short (typically a 1-second) delay.

n In WebLogic Enterprise, clients using third-party implementations of the
CORBAservices Object Transaction Service (for CORBA applications) or the
Java Transaction API (for Java applications) are not supported.

n In WebLogic Enterprise CORBA applications, clients may not make one-way
method invocations within the context of a transaction to server objects having
the NEVER, OPTIONAL, or ALWAYS transaction policies.

No error or exception will be returned to the client because it is a one-way
method invocation. However, the method on the server object will not be
executed, and an appropriate error message will be written to the log. Clients
may make one-way method invocations within the context of a transaction to
server objects with the IGNORE transaction policy. In this case, the method on the
server object will be executed, but not in the context of a transaction. For more
information about the transaction policies, see “Server Description File” in the
CORBA Java Programming Reference or “Implementation Configuration File
(ICF)” in the CORBA C++ Programming Reference.

Transaction Service in CORBA Applications

This topic includes the following sections:

n Getting Initial References to the TransactionCurrent Object

n CORBA Transaction Service API

n CORBA Transaction Service API Extensions
2-8 Using Transactions

Transaction Service in CORBA Applications

n

n Notes on Using Transactions in WebLogic Enterprise CORBA Applications

These sections describe how WebLogic Enterprise implements the OTS, with
particular emphasis on the portion of the CORBAservices Object Transaction Service
that is described as implementation-specific. They describe the OTS application
programming interface (API) that you use to begin or terminate transactions, suspend
or resume transactions, and get information about transactions.

Getting Initial References to the TransactionCurrent
Object

To access the Transaction Service API and the extension to the Transaction Service
API as described later in this chapter, an application needs to complete the following
operations:

1. Create a Bootstrap object. For more information about creating a Bootstrap
object, see “C++ Bootstrap Object Programming Reference” in the CORBA C++
Programming Reference.

2. Invoke the resolve_initial_reference("TransactionCurrent") method
on the Bootstrap object. The invocation returns a standard CORBA object
pointer. For a description of this Bootstrap object method, see the CORBA C++
Programming Reference.

3. If an application requires only the Transaction Service APIs, it should issue a
org.omg.CosTransactions.Current.narrow() (in Java) or
CosTransactions::Current::_narrow() (in C++) on the object pointer
returned from step 2 above.

If an application requires the Transaction Service APIs with the extensions, it
should issue a com.beasys.Tobj.TransactionCurrent.narrow() (in Java)
or Tobj::TransactionCurrent::_narrow() (in C++) on the object pointer
returned from step 2 above.

CORBA Transaction Service API

This topic includes the following sections:
Using Transactions 2-9

2 Transaction Service
n Data Types

n Exceptions

n Current Interface

n Control Interface

n TransactionalObject Interface

These sections describe the CORBA-based components of the CosTransactions
modules that WebLogic Enterprise implements to support the Transaction Service. For
more information about these components, see Chapter 10 of the CORBAservices:
Common Object Services Specification.

Data Types

Listing 2-1 shows the supported data types.

Listing 2-1 Data Types Supported by the Transaction Service

enum Status {

 StatusActive,
 StatusMarkedRollback,
 StatusPrepared,
 StatusCommitted,
 StatusRolledBack,
 StatusUnknown,
 StatusNoTransaction,
 StatusPreparing,
 StatusCommitting,
 StatusRollingBack
};

// This information comes from CORBAservices: Common Object
// Services Specification, p. 10-15. Revised Edition:
// March 31, 1995. Updated: March 1997. Used with permission by OMG.

Exceptions

Listing 2-2 shows the supported exceptions in IDL code.
2-10 Using Transactions

Transaction Service in CORBA Applications
Listing 2-2 Exceptions Supported by the Transaction Service

// Heuristic exceptions
exception HeuristicMixed {};
exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};

Table 2-1 describes the exceptions.

Note: This information comes from CORBAservices: Common Object Services
Specification, pages 10-16, 19, 20. Revised Edition: March 31, 1995. Updated:
March 1997. Used with permission by OMG.

Table 2-1 Exceptions Supported by the Transaction Service

Exception Description

HeuristicMixed A request raises this exception to report that a heuristic
decision was made and that some relevant updates have been
committed and others have been rolled back.

HeuristicHazard A request raises this exception to report that a heuristic
decision was made, that the disposition of all relevant
updates is not known, and that for those updates whose
disposition is known, either all have been committed or all
have been rolled back. Therefore, the HeuristicMixed
exception takes priority over the HeuristicHazard
exception.

SubtransactionsUnava
ilable

This exception is raised for the Current interface begin
method if the client already has an associated transaction.

NoTransaction This exception is raised for the Current interface
rollback and rollback_only methods if there is no
transaction associated with the client thread.
Using Transactions 2-11

2 Transaction Service
Current Interface

The Current interface defines methods that allow a client of the Transaction Service
to explicitly manage the association between threads and transactions. The Current
interface also defines methods that simplify the use of the Transaction Service for most
applications. These methods can be used to begin and end transactions, to suspend and
resume transactions, and to obtain information about the current transaction.

The CosTransactions module defines the Current interface (shown in Listing 2-3).

Listing 2-3 Current Interface idl

// Current transaction
interface Current : CORBA::Current {
 void begin()
 raises(SubtransactionsUnavailable);
 void commit(in boolean report_heuristics)
 raises(
 NoTransaction,
 HeuristicMixed,
 HeuristicHazard
);
 void rollback()
 raises(NoTransaction);
 void rollback_only()
 raises(NoTransaction);
 Status get_status();
 string get_transaction_name();
 void set_timeout(in unsigned long seconds);
 Control get_control();
 Control suspend();

InvalidControl This exception is raised for the Current interface resume
method if the parameter is not valid in the current execution
environment.

Unavailable This exception is raised for the Control interface
get_terminator and get_coordinator methods if
the Control interface cannot provide the requested object.

Table 2-1 Exceptions Supported by the Transaction Service (Continued)

Exception Description
2-12 Using Transactions

Transaction Service in CORBA Applications
 void resume(in Control which)
 raises(InvalidControl);

};

// This information comes from CORBAservices: Common Object
// Services Specification, p. 10-18. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
// OMG

Table 2-2 provides a description of the Current transaction methods.

Note: This information comes from CORBAservices: Common Object Services
Specification, pages 10-18, 19, 20. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Table 2-2 Transaction Methods in the Current Object

Method Description

begin Creates a new transaction. The transaction context of the
client thread is modified so that the thread is associated with
the new transaction. If the client thread is currently
associated with a transaction, the
SubtransactionsUnavailable exception is raised. If
the client thread cannot be placed in transaction mode due to
an error while starting the transaction, the standard system
exception INVALID_TRANSACTION is raised. If the call
was made in an improper context, the standard system
exception BAD_INV_ORDER is raised.
Using Transactions 2-13

2 Transaction Service

es

l

o

n

e

n

e

n.

e

d
commit If there is no transaction associated with the client thread, the
NoTransaction exception is raised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the system decides to roll back the transaction, the
standard exception TRANSACTION_ROLLEDBACK is raised
and the thread’s transaction context is set to null.

A HeuristicMixed exception is raised to report that a
heuristic decision was made and that some relevant updat
have been committed and others have been rolled back. A
HeuristicHazard exception is raised to report that a
heuristic decision was made, and that the disposition of al
relevant updates is not known; for those updates whose
disposition is known, either all have been committed or all
have been rolled back. The HeuristicMixed exception
takes priority over the HeuristicHazard exception. If a
heuristic exception is raised or the operation completes
normally, the thread’s transaction exception context is set t
null.

If the operation completes normally, the thread's transactio
context is set to null.

rollback If there is no transaction associated with the client thread, th
NoTransaction exception is raised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the operation completes normally, the thread's transactio
context is set to null.

rollback_only If there is no transaction associated with the client thread, th
NoTransaction exception is raised. Otherwise, the
transaction associated with the client thread is modified so
that the only possible outcome is to roll back the transactio

get_status If there is no transaction associated with the client thread, th
StatusNoTransaction value is returned. Otherwise,
this method returns the status of the transaction associate
with the client thread.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description
2-14 Using Transactions

Transaction Service in CORBA Applications

to
get_transaction_name If there is no transaction associated with the client thread, an
empty string is returned. Otherwise, this method returns a
printable string describing the transaction (specifically, the
XID as specified by The Open Group). The returned string is
intended to support debugging.

set_timeout This method modifies a state variable associated with the
target object that affects the time-out period associated with
transactions created by subsequent invocations of the begin
method.

The initial transaction timeout value is 300 seconds. Calling
set_timeout() with an argument value larger than zero
specifies a new timeout value. Calling set_timeout()
with a zero argument sets the timeout value back to the
default of 300 seconds.

After calling set_timeout(), transactions created by
subsequent invocations of begin are subject to being rolled
back if they do not complete before the specified number of
seconds after their creation.

Note: The initial transaction timeout value is 300
seconds. If a transaction is started via AUTOTRAN
instead of the begin method, then the timeout
value is determined by the TRANTIME value in the
WebLogic Enterprise configuration file. For more
information, see Chapter 8, “Administering
Transactions.”

get_control If the client is not associated with a transaction, a null
object reference is returned. Otherwise, a Control object is
returned that represents the transaction context currently
associated with the client thread. This object may be given
the resume method to reestablish this context.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description
Using Transactions 2-15

2 Transaction Service
suspend If the client thread is not associated with a transaction, a null
object reference is returned.

If the associated transaction is in a state such that the only
possible outcome of the transaction is to be rolled back, the
standard system exception TRANSACTION_ROLLEDBACK
is raised and the client thread becomes associated with no
transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised. The caller’s
state with respect to the transaction is not changed.

Otherwise, an object is returned that represents the
transaction context currently associated with the client
thread. The same client can subsequently give this object to
the resume method to reestablish this context. In addition,
the client thread becomes associated with no transaction.

Note: As defined in The Common Object Request
Broker: Architecture and Specification, Revision
2.2, February 1998, the standard system exception
TRANSACTION_ROLLEDBACK indicates that the
transaction associated with the request has already
been rolled back or has been marked to roll back.
Thus, the requested method either could not be
performed or was not performed because further
computation on behalf of the transaction would be
fruitless.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description
2-16 Using Transactions

Transaction Service in CORBA Applications
Control Interface

The Control interface allows a program to explicitly manage or propagate a
transaction context. An object that supports the Control interface is implicitly
associated with one specific transaction.

Listing 2-4 shows the Control interface, which is defined in the CosTransactions
module.

Listing 2-4 Control Interface

interface Control {
 Terminator get_terminator()
 raises(Unavailable);
 Coordinator get_coordinator()

resume If the client thread is already associated with a transaction
which is in a state such that the only possible outcome of the
transaction is to be rolled back, the standard system
exception TRANSACTION_ROLLEDBACK is raised and the
client thread becomes associated with no transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the system is unable to resume the global transaction
because the caller is currently participating in work outside
any global transaction with one or more resource managers,
the standard system exception INVALID_TRANSACTION is
raised.

If the parameter is a null object reference, the client thread
becomes associated with no transaction. If the parameter is
valid in the current execution environment, the client thread
becomes associated with that transaction (in place of any
previous transaction). Otherwise, the InvalidControl
exception is raised.

Note: See suspend for a definition of the standard
system exception TRANSACTION_ROLLEDBACK.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description
Using Transactions 2-17

2 Transaction Service
 raises(Unavailable);
};

// This information comes from CORBAservices: Common Object
// Services Specification, p. 10-21. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
// OMG.

The Control interface is used only in conjunction with the suspend and resume
methods.

TransactionalObject Interface

The org.omg.CosTransactions.TransactionalObject interface (in Java) or
CosTransactions::TransactionalObject (in C++) is used by an object to
indicate that it is transactional. By supporting this interface, an object indicates that it
wants the transaction context associated with the client thread to be propagated on
requests to the object. However, this interface is no longer needed. For details on
transaction policies that need to be set to infect objects with transactions, see “Server
Description File” in the CORBA Java Programming Reference or “Implementation
Configuration File (ICF)” in the CORBA C++ Programming Reference.

The CosTransactions module defines the TransactionalObject interface (shown
in Listing 2-5). The org.omg.CosTransactions.TransactionalObject interface
defines no methods. It is simply a marker.

Listing 2-5 TransactionalObject Interface

interface TransactionalObject {
};

// This information comes from CORBAservices: Common Object
// Services Specification, p. 10-30. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
// OMG.
2-18 Using Transactions

Transaction Service in CORBA Applications

ing
ject
lly,
Other CORBAservices Object Transaction Service Interfaces

All other CORBAservices Object Transaction Service interfaces are not supported.
Note that the Current interface described earlier is supported only if it has been
obtained from the Bootstrap object. The Control interface described earlier is
supported only if it has been obtained using the get_control and the suspend
methods on the Current object.

CORBA Transaction Service API Extensions

This topic describes specific extensions to the CORBAservices Transaction Service
API described earlier. The APIs in this topic enable an application to open or close an
Open Group Resource Manager.

The following APIs help facilitate participation of resource managers in a distributed
transaction by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface.

The following definitions and interfaces are defined in the com.beasys.Tobj module
(in Java) or Tobj module (in C++).

Exception

The following exception is supported:

exception RMfailed {};

A request raises this exception to report that an attempt to open or close a resource
manager failed.

TransactionCurrent Interface

This interface supports all the methods of the Current interface in the
CosTransactions module and is described in “Java Bootstrap Object Programm
Reference” in the CORBA Java Programming Reference or in “C++ Bootstrap Ob
Programming Reference” in the CORBA C++ Programming Reference. Additiona
this interface supports APIs to open and close the resource manager.

Listing 2-6 shows the TransactionCurrent interface, which is defined in the Tobj
module.
Using Transactions 2-19

2 Transaction Service
Listing 2-6 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
 void open_xa_rm()
 raises(RMfailed);
 void close_xa_rm()
 raises(Rmfailed);
}

Table 2-3 describes APIs that are specific to the resource manager. For more
information about these APIs, see the CORBA Java Programming Reference or the
CORBA C++ Programming Reference.

Notes on Using Transactions in WebLogic Enterprise
CORBA Applications

Consider the following guidelines when integrating transactions into your WebLogic
Enterprise CORBA client/server applications:

n Nested transactions are not permitted in the WebLogic Enterprise system.

Table 2-3 Resource Manager APIs for the Current Interface

Method Description

open_xa_rm This method opens The Open Group Resource Manager to which this
process is linked. A RMfailed exception is raised if there is a failure
while opening the resource manager.

Any attempts to invoke this method by remote clients or the native clients
raises the standard system exception NO_IMPLEMENT.

close_xa_rm This method closes The Open Group Resource Manager to which this
process is linked. An RMfailed exception is raised if there is a failure
while closing the resource manager. A BAD_INV_ORDER standard
system exception is raised if the function was called in an improper
context (for example, the caller is in transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises the standard system exception NO_IMPLEMENT.
2-20 Using Transactions

Transaction Service in CORBA Applications
You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one; however,
the object that suspends the transaction is the only object that can subsequently
resume the transaction.)

n The object that starts a transaction is the only entity that can end the transaction.
(In a strict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

n WebLogic Enterprise does not support concurrent transactions. Objects can be
involved with only one transaction at one time. An object is involved in a
transaction for the duration of the entire transaction, and is available to be
involved in a different transaction only after the current transaction is completed.

n WebLogic Enterprise does not queue requests to objects that are currently
involved in a transaction. If a non-transactional client application attempts to
invoke an operation on an object that is currently in a transaction, the client
application receives the following error message:

Java

org.omg.CORBA.OBJ_ADAPTER

C++

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receives the
following error message:

Java

org.omg.CORBA.INVALID_TRANSACTION

C++

CORBA::INVALID_TRANSACTION

n For transaction-bound objects, consider doing all state handling in the
com.beasys.Tobj_Servant.deactivate_object method (in Java) or
Tobj_ServantBase::deactivate_object() operation (in C++). This makes
Using Transactions 2-21

2 Transaction Service

t to
ch

note

e

s
it easier for the object to handle its state properly, because the outcome of the
transaction is known at the time that deactivate_object() is invoked.

n For method-bound objects that have several operations, but only a few that affect
the object’s durable state, consider doing the following:

l Assign the optional transaction policy.

l Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

n Transaction rollbacks are asynchronous. Therefore, it is possible for an objec
be invoked while its transactional context is still active. If you try to invoke su
an object, you receive an exception.

n If an object with the always transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application,
the following:

l If the server application marks the transaction for rollback only and the
server throws a CORBA exception, the client application receives the
CORBA exception.

l If the server application marks the transaction for rollback only and the
server does not throw a CORBA exception, the client application receives th
OBJ_ADAPTER exception. In this case, the WebLogic Enterprise system
automatically rolls back the transaction. However, the client application is
completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.

n If the client application initiates a transaction, and the server application mark
the transaction for a rollback, one of the following occurs:

l If the server throws a CORBA exception, the client application receives a
CORBA exception.

l If the server does not throw a CORBA exception, the client application
receives the TRANSACTION_ROLLEDBACK exception.
2-22 Using Transactions

Transaction Service in EJB Applications

tions
le

in

, see
Transaction Service in EJB Applications

The WebLogic Enterprise EJB container provides a Transaction Service that supports
the two types of transactions in WebLogic Enterprise EJB applications:

n Container-managed transactions. In container-managed transactions, the
WebLogic Enterprise EJB container manages the transaction demarcation.
Transaction attributes in the EJB deployment descriptor determine how the
WebLogic Enterprise EJB container handles transactions with each method
invocation.

n Bean-managed transactions. In bean-managed transactions, the EJB manages
the transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more
information about UserTransaction methods, see “UserTransaction API” on
page 2-24.

For an introduction to transaction management in EJB applications, see “Transac
in WebLogic Enterprise EJB Applications” on page 1-8, and “Transactions Samp
EJB Code” on page 1-25.

Transaction Service in RMI Applications

WebLogic Enterprise provides a Transaction Service that supports transactions
WebLogic Enterprise RMI applications. In RMI applications, the client or server
application makes explicit method invocations on the UserTransaction object to
begin, commit, and roll back transactions.

For more information about UserTransaction methods, see “UserTransaction API”
on page 2-24. For an introduction to transaction management in RMI applications
“Transactions in WebLogic Enterprise RMI Applications” on page 1-11, and
“Transactions Sample RMI Code” on page 1-27.
Using Transactions 2-23

2 Transaction Service
UserTransaction API

This topic includes the following sections:

n UserTransaction Methods

n Exceptions Thrown by UserTransaction Methods

WebLogic Enterprise provides thee javax.transaction package, from Sun
Microsystems, Inc., which implements the Java Transaction API (JTA) for Java
applications. The javax.UserTransaction interface supports transaction
management for CORBA Java applications as well as for bean-managed transactions
in EJB applications. For more information about the JTA, see the Java Transaction API
(JTA) Specification (version1.0.1) published by Sun Microsystems, Inc. For a detailed
description of the javax.transaction interface, see the package description in the
WebLogic Enterprise Javadoc.

UserTransaction Methods

Table 2-4 describes the methods in the UserTransaction object.

Table 2-4 Methods in the UserTransaction Object

Method Name Description

begin Starts a transaction on the current thread.

commit Commits the transaction associated with the current
thread.
2-24 Using Transactions

UserTransaction API
getStatus Returns the transaction status, or
STATUS_NO_TRANSACTION if no transaction is
associated with the current thread.

One of the following values:

n STATUS_ACTIVE

n STATUS_COMMITTED

n STATUS_COMMITTING

n STATUS_MARKED_ROLLBACK

n STATUS_NO_TRANSACTION

n STATUS_PREPARED

n STATUS_PREPARING

n STATUS_ROLLEDBACK

n STATUS_ROLLING_BACK

n STATUS_UNKNOWN

rollback Rolls back the transaction associated with the current
thread.

setRollbackOnly Marks the transaction associated with the current thread
so that the only possible outcome of the transaction is to
roll it back.

setTransactionTimeout Specifies the timeout value for the transactions started by
the current thread with the begin method. If an
application has not called the begin method, then the
Transaction Service uses a default value for the
transaction timeout.

Table 2-4 Methods in the UserTransaction Object (Continued)

Method Name Description
Using Transactions 2-25

2 Transaction Service
Exceptions Thrown by UserTransaction Methods

Table 2-5 describes exceptions thrown by methods of the UserTransaction object.

Table 2-5 Exceptions Thrown by UserTransaction Methods

Exception Description

HeuristicMixedException Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
committed while others have been rolled back.

HeuristicRollbackException Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
rolled back.

NotSupportedException Thrown when the requested operation is not
supported (such as a nested transaction).

RollbackException Thrown when the transaction has been marked for
rollback only or the transaction has been rolled
back instead of committed.

IllegalStateException Thrown if the current thread is not associated with
a transaction.

SecurityException Thrown to indicate that the thread is not allowed
to commit the transaction.

SystemException Thrown by the transaction manager to indicate
that it has encountered an unexpected error
condition that prevents future transaction services
from proceeding.
2-26 Using Transactions

CHAPTER
3 Transactions in CORBA
Server Applications

This topic includes the following sections:

n Integrating Transactions in a WebLogic Enterprise Client and Server Application

n Transactions and Object State Management

n User-defined Exceptions

These sections describe how to integrate transactions into a WebLogic Enterprise
server application. Before you begin, you should read Chapter 1, “Introducing
Transactions.”
Using Transactions 3-1

3 Transactions in CORBA Server Applications

d

t and
Integrating Transactions in a WebLogic
Enterprise Client and Server Application

This topic includes the following sections:

n Transaction Support in CORBA Applications

n Making an Object Automatically Transactional

n Enabling an Object to Participate in a Transaction

n Preventing an Object from Being Invoked While a Transaction Is Scoped

n Excluding an Object from an Ongoing Transaction

n Assigning Policies

n Using an XA Resource Manager

n Opening an XA Resource Manager

n Closing an XA Resource Manager

Transaction Support in CORBA Applications

WebLogic Enterprise supports transactions in the following ways:

n The client or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For details about the
TransactionCurrent object, see Chapter 4, “Transactions in CORBA Client
Applications.”

n You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, an
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA Resource
Manager and database when you want to delegate all the transaction commi
rollback responsibilities to that resource manager.
3-2 Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

p

ects.
 all

ipate

n Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke rollback_only() on the TransactionCurrent object to mark the
transaction for rollback only. This prevents the current transaction from being
committed. An object may need to mark a transaction for rollback if an entity,
typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

n Objects involved in a transaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the WebLogic Enterprise system immediately before the
resource managers prepare to commit the transaction. In this sense, polling
means invoking the object’s
com.beasys.Tobj_Servant.deactivate_object method (in Java) or
Tobj_ServantBase::deactivate_object() operation (in C++) and passing a
reason value.

When an object is polled, the object may veto the current transaction by
invoking rollback_only() on the TransactionCurrent object. In addition, if
the current transaction is to be rolled back, objects have an opportunity to ski
any writes to a database. If no object vetoes the current transaction, the
transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to determine the transactional behavior you want in your obj
Note that these policies apply to an interface and, therefore, to all operations on
objects implementing that interface.

Note: If a server application manages an object that you want to be able to partic
in a transaction, the Server object for that application must invoke the
com.beasys.Tobj.TP.open_xa_rm and
com.beasys.Tobj.TP.close_xa_rm methods (in Java), or the
TP::open_xa_rm() and TP::close_xa_rm() operations (in C++). For more
information about database connections, see “Opening an XA Resource
Manager” on page 3-8.
Using Transactions 3-3

3 Transactions in CORBA Server Applications

t a
ready

e

back
is

 a

ies

pses

to
 not
Making an Object Automatically Transactional

The WebLogic Enterprise system provides the always transactional policy, which you
can define on an object’s interface to have the WebLogic Enterprise system star
transaction automatically when that object is invoked and a transaction has not al
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither th
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.

Assign the always transactional policy to an object’s interface when:

n The object writes to a database and you want all the database commit or roll
responsibilities delegated to an XA Resource Manager whenever this object
invoked.

n You want to give the client application the opportunity to include the object in
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following polic
to that object’s interface in the XML-based Server Description File (in Java) or
Implementation Configuration File (in C++):

Note: Database cursors cannot span transactions. However, in C++, the
CourseSynopsisEnumerator object in the WebLogic Enterprise University
sample applications uses a database cursor to find matching course syno
from the University database. Because database cursors cannot span
transactions, the activate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses in
memory. Note that the cursor is managed by an iterator class and is thus
visible to the CourseSynopsisEnumerator object.

Activation Policies Transaction Policy

n process

n method

n transaction

always
3-4 Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

base

rver

ng

e able

 the

 a

ure
are

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of a transaction, you
can assign the optional transaction policies to that object’s interface. The optional
transaction policy may be appropriate for an object that does not perform any data
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when they are specified in the XML-based Se
Description File (in Java) or Implementation Configuration File (in C++) for that
object’s interface, to make an object optionally transactional:

When the transaction policy is optional, if the AUTOTRAN parameter is enabled in the
application’s UBBCONFIG file, the implementation is transactional. Servers containi
transactional objects must be configured within a group associated with an
XA-compliant Resource Manager.

If the object does perform database write operations, and you want the object to b
to participate in a transaction, assigning the always transactional policy is generally a
better choice. However, if you prefer, you can use the optional policy and
encapsulate any write operations within invocations on the TransactionCurrent
object. That is, within your operations that write data, scope a transaction around
write statements by invoking the TransactionCurrent object to, respectively, begin
and commit or roll back the transaction, if the object is not already scoped within
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and, therefore, more streamlined.

Note: When choosing the transaction policies to assign to your objects, make s
you are familiar with the requirements of the XA Resource Manager you
using. For example, some XA Resource Managers (such as the Oracle 7
Transaction Manager Server) require that any object participating in a

Activation Policies Transaction Policy

n process

n method

n transaction

optional
Using Transactions 3-5

3 Transactions in CORBA Server Applications

ally
 the

hat

er
ts

ack.

e
ile
transaction scope their database read operations, in addition to write
operations, within a transaction (you can still scope your own transactions,
however). Other resource managers, such as Oracle8i, do not require a
transaction context for read and write operations. If an application attempts a
write operation without a transaction context, Oracle8i will start a local
transaction implicitly, in which case the application needs to commit the local
transaction explicitly.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from a transaction. If such an
object is invoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The WebLogic Enterprise system provides the
never transaction policy, which you can assign to an object’s interface to specific
prevent that object from being invoked within the course of a transaction, even if
current transaction is suspended.

This transaction policy is appropriate for objects that write durable state to disk t
cannot be rolled back, such as for an object that writes data to a disk that is not
managed by an XA Resource Manager. Having this capability in your client/serv
application is crucial if the client application does not or cannot know if some of i
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled b

To prevent an object from being invoked while a transaction is scoped, assign th
following policies to that object’s interface in the XML-based Server Description F
(in Java) or Implementation Configuration File (in C++):

Activation Policies Transaction Policy

n process

n method

never
3-6 Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

g a

gic
Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction. If
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system provides the ignore
transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory that
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the Server Description File (in Java) or
Implementation Configuration File (in C++):

Assigning Policies

For information about how to create a Server Description File (in Java) or
Implementation Configuration File (in C++) and specify policies on objects, see
“Step 5: Define the object activation and transaction policies” in “Steps for Creatin
WebLogic Enterprise Server Application” in Creating Java Server Applications, or
“Step 4: Define the in-memory behavior of objects” in “Steps for Creating a WebLo
Enterprise Server Application” in Creating C++ Server Applications.

Activation Policies Transaction Policy

n process

n method

ignore
Using Transactions 3-7

3 Transactions in CORBA Server Applications
Using an XA Resource Manager

The Transaction Manager Server (TMS) handles object state data automatically. For
example, the XA Bankapp sample C++ application in the
drive:\M3dir\samples\corba\bankapp_java\XA directory uses the Oracle TMS
as an example of a relational database management service (RDBMS).

Using any XA Resource Manager imposes specific requirements on how different
objects managed by the server application may read and write data to that database,
including the following:

n Some XA Resource Managers, such as Oracle7, require that all database
operations be scoped within a transaction. This means that all method
invocations on the DBaccess object need to be scoped within a transaction
because this object reads from a database. The transaction can be started either
by the client or by the WebLogic Enterprise system.

Other XA Resource Managers, such as Oracle8i, do not require a transaction
context for read and write operations. If an application attempts a write operation
without a transaction context, Oracle8i will start a local transaction implicitly, in
which case the application needs to commit the local transaction explicitly.

n When a transaction is committed or rolled back, the XA Resource Manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA Resource Manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
Resource Manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA Resource Managers actually makes the design
problems associated with handling object state data in the event of a rollback
much simpler. Transactional objects can always delegate the commit and
rollback responsibilities to the XA Resource Manager, which greatly simplifies
the task of implementing a server application.

Opening an XA Resource Manager

This section describes how to open the XA Resource Manager in Java and C++.
3-8 Using Transactions

Integrating Transactions in a WebLogic Enterprise Client and Server Application

s

rm

ided
Opening an XA Resource Manager in Java

If an object’s interface has the always or optional transaction policy, you must
invoke the com.beasys.Tobj.TP.open_xa_rm method in the
com.beasys.Tobj.Server.initialize method in the Server object that support
this object. You must build a special version of the JavaServer by using the buildXAJS
command, if your object performs database operations.

In the SERVERS section of the application’s UBBCONFIG file, you must use the
JavaServerXA element in place of JavaServer to associate the XA Resource
Manager with a specified server group. (JavaServer uses the null RM.)

The resource manager is opened using the information provided in the OPENINFO
parameter, which is in the GROUPS section of the UBBCONFIG file. Note that the default
version of the com.beasys.Tobj.Server.initialize method automatically opens
the resource manager.

If you have an object that participates in a transaction but does not actually perfo
database operations (the object typically has the optional transaction policy), you
still need to include an invocation to the com.beasys.Tobj.TP.open_xa_rm
method.

Opening an XA Resource Manager in C++

If an object’s interface has the always or optional transaction policy, you must
invoke the TP::open_xa_rm() operation in the Server::initialize() operation
in the Server object. The resource manager is opened using the information prov
in the OPENINFO parameter, which is in the GROUPS section of the UBBCONFIG file.
Note that the default version of the Server::initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction—the object typically has the optional transaction policy—you still need
to include an invocation to the TP::open_xa_rm() operation. In that invocation,
specify the NULL resource manager.
Using Transactions 3-9

3 Transactions in CORBA Server Applications

n,
ays.
tion
ges
isk.

he
 C++
k
Closing an XA Resource Manager

If your Server object’s com.beasys.Tobj.Server.initialize method (in Java) or
Server::initialize() operation (in C++) opens an XA Resource Manager, you
must include the following invocation in the com.beasys.Tobj.Server.release

method (in Java) or Server::release() operation (in C++):

Java

com.beasys.Tobj.TP.close_xa_rm();

C++

TP::close_xa_rm();

Transactions and Object State Management

This topic includes the following sections:

n Delegating Object State Management to an XA Resource Manager

n Waiting Until Transaction Work Is Complete Before Writing to the Database

If you need transactions in your WebLogic Enterprise client and server applicatio
you can integrate transactions with object state management in a few different w
In general, the WebLogic Enterprise system can automatically scope the transac
for the duration of an operation invocation without requiring you to make any chan
to your application’s logic or the way in which the object writes durable state to d

Delegating Object State Management to an XA Resource
Manager

Using an XA Resource Manager, such as Oracle, generally simplifies the design
problems associated with handling object state data in the event of a rollback. (T
Oracle Resource Manager is used in the WebLogic Enterprise University sample
applications). Transactional objects can always delegate the commit and rollbac
3-10 Using Transactions

Transactions and Object State Management

e

ut
responsibilities to the XA Resource Manager, which greatly simplifies the task of
implementing a server application. This means that process- or method-bound objects
involved in a transaction can write to a database during transactions, and can depend
on the resource manager to undo any data written to the database in the event of a
transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transaction activation policy is a good choice for objects that maintain state in
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign the transaction activation policy to
an object, the object:

n Is brought into memory when it is first invoked within the scope of a transaction.

n Remains in memory until the transaction is either committed or rolled back.

When the transaction work is complete, the WebLogic Enterprise system invokes each
transaction-bound object’s com.beasys.Tobj_Servant.deactivate_object
method (in Java) or Tobj_ServantBase::deactivate_object() operation (in
C++), passing a reason code that can be either DR_TRANS_COMMITTING or
DR_TRANS_ABORTED. If the variable is DR_TRANS_COMMITTING, the object can invoke
its database write operations. If the variable is DR_TRANS_ABORTED, the object skips
its write operations.

When to Assign the Transaction Activation Policy

Assigning the transaction activation policy to an object may be appropriate in th
following situations:

n You want the object to write its persistent state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

n You want to provide the object with the ability to veto a transaction that is abo
to be committed.
Using Transactions 3-11

3 Transactions in CORBA Server Applications

sed

cts

ide

ject
 XA
you
e

g an
 3-8
If the WebLogic Enterprise system passes the reason DR_TRANS_COMMITTING,
the object can, if necessary, invoke rollback_only() on the
TransactionCurrent object. Note that if you do make an invocation to
rollback_only() from within the
com.beasys.Tobj_Servant.deactivate_object method (in Java) or
Tobj_ServantBase::deactivate_object() operation (in C++), then
deactivate_object() is not invoked again.

n You want to provide the object with the ability to perform batch updates.

n You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

Transaction Policies to Use with the Transaction Activation Policy

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the XML-ba
Server Description File (in Java) or Implementation Configuration File (in C++):

Note: Transaction-bound objects cannot start a transaction or invoke other obje
from inside the com.beasys.Tobj_Servant.deactivate_object method
(in Java) or Tobj_ServantBase::deactivate_object() operation (in
C++). The only valid invocations transaction-bound objects can make ins
deactivate_object() are write operations to the database.

Also, if you have an object that is involved in a transaction, the Server ob
that manages that object must include invocations to open and close the
Resource Manager, even if the object does not write any data to disk. (If
have a transactional object that does not write data to disk, you specify th
NULL resource manager.) For more information about opening and closin
XA Resource Manager, see “Opening an XA Resource Manager” on page
and “Closing an XA Resource Manager” on page 3-10.

Activation Policy Transaction Policy

transaction always or optional
3-12 Using Transactions

User-defined Exceptions
User-defined Exceptions

This topic includes the following sections:

n About User-defined Exceptions

n Defining the Exception

n Throwing the Exception

About User-defined Exceptions

Including a user-defined exception in a WebLogic Enterprise client/server application
involves the following steps:

1. In your OMG IDL file, define the exception and specify the operations that can use
it.

2. In the implementation file, include code that throws the exception.

3. In the client application source file, include code that catches and handles the
exception.

For example, the Transactions sample C++ application includes an instance of a
user-defined exception, TooManyCredits. This exception is thrown by the server
application when the client application tries to register a student for a course, and the
student has exceeded the maximum number of courses for which he or she can register.
When the client application catches this exception, the client application rolls back the
transaction that registers a student for a course. This section explains how you can
define and implement user-defined exceptions in your WebLogic Enterprise
client/server application, using the TooManyCredits exception as an example.

Defining the Exception

In the OMG IDL file for your client/server application:
Using Transactions 3-13

3 Transactions in CORBA Server Applications
1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooManyCredits exception contains the following OMG IDL
statements:

exception TooManyCredits
{
 unsigned short maximum_credits;
};

2. In the definition of the operations that throw the exception, include the exception.
The following example shows the OMG IDL statements for the
register_for_courses() operation on the Registrar interface:

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses
) raises (
 TooManyCredits
);

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following C++ example.

if (...) {
 UniversityZ::TooManyCredits e;
 e.maximum_credits = 18;
 throw e;

How the Transactions University Sample
Application Works (C++ Only)

This topic includes the following sections:

n About the Transactions University Sample Application
3-14 Using Transactions

How the Transactions University Sample Application Works (C++ Only)
n Transactional Model Used by the Transactions University Sample Application

n Object State Considerations for the University Server Application

n Configuration Requirements for the Transactions Sample Application

About the Transactions University Sample Application

To implement the student registration process, the Transactions sample application
does the following:

n The client application obtains a reference to the TransactionCurrent object
from the Bootstrap object.

n When the student submits the list of courses for which he or she wants to
register, the client application:

a. Begins a transaction by invoking the Current::begin() operation on the
TransactionCurrent object.

b. Invokes the register_for_courses() operation on the Registrar object,
passing a list of courses.

n The register_for_courses() operation on the Registrar object processes
the registration request by executing a loop that does the following iteratively for
each course in the list:

a. Checks to see how many credits the student is already registered for.

b. Adds the course to the list of courses for which the student is registered.

The Registrar object checks for the following potential problems, which
prevent the transaction from being committed:

l The student is already registered for the course.

l A course in the list does not exist.

l The student exceeds the maximum credits allowed.

n As defined in the application’s OMG IDL, the register_for_courses()
operation returns a parameter to the client application, NotRegisteredList,
which contains a list of the courses for which the registration failed.
Using Transactions 3-15

3 Transactions in CORBA Server Applications

s

d
sful.
e

lled
If the NotRegisteredList value is empty, the client application commits the
transaction.

If the NotRegisteredList value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

n If the registration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Registrar object returns a
TooManyCredits exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at a time. This design helps to minimize the
number of remote invocations on the Registrar object.

In implementing this design, the Transactions sample application shows one model of
the use of transactions, which were described in “Integrating Transactions in a
WebLogic Enterprise Client and Server Application” on page 3-2. The model is a
follows:

n The client begins a transaction by invoking the begin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, an
then returns a list of courses for which the registration process was unsucces
The client application can choose to commit the transaction or roll it back. Th
transaction encapsulates this conversation between the client and the server
application.

n The register_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be ro
back.
3-16 Using Transactions

How the Transactions University Sample Application Works (C++ Only)

bject
.

ver
 be in

use
. By
lied

le
Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needs to consider the implications on object
state, particularly in the event of a rollback. In cases where there is a rollback, the
server application must ensure that all affected objects have their durable state restored
to the proper state.

Because the Registrar object is being used for database transactions, a good design
choice for this object is to make it transactional (assign the always transaction policy
to this object’s interface). If a transaction has not already been scoped when this o
is invoked, the WebLogic Enterprise system will start a transaction automatically

By making the Registrar object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the ser
application uses an XA Resource Manager, and since the object is guaranteed to
a transaction when the object writes to a database, the object does not have any
rollback or commit responsibilities because the XA Resource Manager takes
responsibility for these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions beca
this object does not manage data that is used during the course of a transaction
excluding this object from transactions, you minimize the processing overhead imp
by transactions.

Object Policies Defined for the Registrar Object

To make the Registrar object transactional, the ICF file specifies the always
transaction policy for the Registrar interface. Therefore, in the Transaction samp
application, the ICF file specifies the following object policies for the Registrar
interface:

Activation Policy Transaction Policy

process always
Using Transactions 3-17

3 Transactions in CORBA Server Applications
Object Policies Defined for the RegistrarFactory Object

To exclude the RegistrarFactory object from transactions, the ICF file specifies the
ignore transaction policy for the Registrar interface. Therefore, in the Transaction
sample application, the ICF file specifies the following object policies for the
RegistrarFactory interface:

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA Resource
Manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

n Some XA Resource Managers, such as Oracle7, require that all database
operations be scoped within a transaction. This means that the
CourseSynopsisEnumerator object needs to be scoped within a transaction
because this object reads from a database.

n When a transaction is committed or rolled back, the XA Resource Manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA Resource Manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
Resource Manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA Resource Managers actually makes the design
problems associated with handling object state data in the event of a rollback
much simpler. Transactional objects can always delegate the commit and
rollback responsibilities to the XA Resource Manager, which greatly simplifies
the task of implementing a server application.

Activation Policy Transaction Policy

process ignore
3-18 Using Transactions

How the Transactions University Sample Application Works (C++ Only)
Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle Transaction Manager Server (TMS).
To use the Oracle database, you must include specific Oracle-provided files in the
server application build process. For more information about building, configuring,
and running the Transactions sample application, see the Bankapp Sample Using XA
in the WebLogic Enterprise online documentation. For more information about the
configurable settings in the UBBCONFIG file, see “Modifying the UBBCONFIG File to
Accommodate Transactions” on page 8-2.
Using Transactions 3-19

3 Transactions in CORBA Server Applications
3-20 Using Transactions

CHAPTER

ns,
.
4 Transactions in CORBA
Client Applications

This topic includes the following sections:

n Overview of WebLogic Enterprise CORBA Transactions

n Summary of the Development Process for Transactions

n Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object

n Step 2: Use the TransactionCurrent Methods

This topic describes how to use transactions in CORBA C++, CORBA Java, and
ActiveX client applications for the WebLogic Enterprise software. Before you begin,
you should read Chapter 1, “Introducing Transactions.”

For an example of how transactions are implemented in working client applicatio
see the Bankapp Sample Using XA in the WebLogic Enterprise online documentation
For an overview of the TransactionCurrent object, see “Client Application
Development Concepts” in Creating CORBA Client Applications.
Using Transactions 4-1

4 Transactions in CORBA Client Applications
Overview of WebLogic Enterprise CORBA
Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. The transactions in the WebLogic Enterprise software allow
client applications to begin and terminate transactions and to get the status of
transactions. The WebLogic Enterprise software uses transactions as defined in the
CORBAservices Object Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a WebLogic Enterprise client/server application will handle
transactions. Transaction policies are defined in the Implementation Configuration
File (ICF) for C++ server applications, or in the Server Description file (XML) for Java
server applications. Generally, the ICF file or the Server Description file for the
available interfaces is provided to the client programmer by the application designer.

If you prefer, you can use the Transaction application programming interface (API)
defined in the javax.transaction package that is shipped with the WebLogic
Enterprise (Java) software.

Summary of the Development Process for
Transactions

To add transactions to a client application, complete the following steps:

n Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object

n Step 2: Use the TransactionCurrent Methods

The rest of this topic describes these steps using portions of the client applications in
the Transactions University sample application. For information about the
Transactions University sample application, see the Bankapp Sample Using XA in the
WebLogic Enterprise online documentation.
4-2 Using Transactions

Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object
The Transactions University sample application is located in the following directory
on the WebLogic Enterprise software kit:

n For Microsoft Windows NT systems:
drive:\wledir\samples\corba\university\transactions

n For UNIX systems:
drive:/wledir/samples/corba/university/transactions

Step 1: Use the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Bootstrap object to obtain an object reference to the TransactionCurrent
object for the specified WebLogic Enterprise domain. For more information about the
TransactionCurrent object, see “Client Application Development Concepts” in
Creating CORBA Client Applications.

The following C++, Java, and Visual Basic examples illustrate how the Bootstrap
object is used to return the TransactionCurrent object.

C++ Example

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
 CosTransactions::Current::_narrow(
 var_transaction_current_oref.in());

Java Example

org.omg.CORBA.Object transCurObj =
 gBootstrapObjRef.resolve_initial_references(
 “TransactionCurrent”);
Using Transactions 4-3

4 Transactions in CORBA Client Applications
org.omg.CosTransactions.Current gTransCur=
 org.omg.CosTransactions.CurrentHelper.narrow(transCurObj);

Visual Basic Example

Set objTransactionCurrent =
 objBootstrap.CreateObject(“Tobj.TransactionCurrent”)

Step 2: Use the TransactionCurrent Methods

The TransactionCurrent object has methods that allow a client application to
manage transactions. These methods can be used to begin and end transactions and to
obtain information about the current transaction.

Note: Alternatively, a CORBA Java client could use the UserTransaction object
instead.

Table 4-1 describes the methods in the TransactionCurrent object.

Table 4-1 Methods in the TransactionCurrent Object

Method Description

begin Creates a new transaction. Future operations take place
within the scope of this transaction. When a client
application begins a transaction, the default transaction
timeout is 300 seconds. You can change this default, using
the set_timeout method.

commit Ends the transaction successfully. Indicates that all
operations on this client application have completed
successfully.

rollback Forces the transaction to roll back.

rollback_only Marks the transaction so that the only possible action is to
roll back. Generally, this method is used only in server
applications.
4-4 Using Transactions

Step 2: Use the TransactionCurrent Methods
A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj::TransactionCurrent::begin method. This method does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If a call to any of these operations raises an exception (either
explicitly or as a result of a communications failure), the exception can be caught
and the transaction can be rolled back.

3. Use the Tobj::TransactionCurrent::commit method to commit the current
transaction. This method ends the transaction and starts the processing of the
operation. The transaction is committed only if all of the participants in the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application calls the Tobj::TransactionCurrent:commit method or the

suspend Suspends participation in the current transaction. This
method returns an object that identifies the transaction and
allows the client application to resume the transaction
later.

resume Resumes participation in the specified transaction.

get_status Returns the status of a transaction with a client
application.

get_transaction_name Returns a printable string describing the transaction.

set_timeout Modifies the timeout period associated with transactions.
The default transaction timeout value is 300 seconds. If a
transaction is automatically started instead of explicitly
started with the begin method, the timeout value is
determined by the value of the TRANTIME parameter in
the UBBCONFIG file. For more information about setting
the TRANTIME parameter, see Chapter 8, “Administering
Transactions.”

get_control Returns a control object that represents the transaction.

Table 4-1 Methods in the TransactionCurrent Object (Continued)

Method Description
Using Transactions 4-5

4 Transactions in CORBA Client Applications
Tobj::TransactionCurrent:rollback method.The following C++, Java, and
Visual Basic examples illustrate using a transaction to encapsulate the operation
of a student registering for a class:

C++ Example

//Begin the transaction
transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 transaction_current_ref->commit(report_heuristics);
}
catch (CORBA::Exception &) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails,ignore the exception and throw the
//original exception again.
try {
 transaction_current_ref->rollback();
}
catch (CORBA::Exception &) {
 TP::userlog("rollback failed");

throw;
}

Java Example

try{
 gTransCur.begin();
 //Perform the operation inside the transaction
 not_registered =
 gRegistrarObjRef.register_for_courses(student_id,selected_course_numbers);

 if (not_registered != null)

 //If operation executes with no errors, commit the transaction
4-6 Using Transactions

Step 2: Use the TransactionCurrent Methods
 boolean report_heuristics = true;
 gTransCur.commit(report_heuristics);

 } else gTransCur.rollback();

} catch(org.omg.CosTransactions.NoTransaction nte) {
 System.err.println(“NoTransaction: “ + nte);
 System.exit(1);
} catch(org.omg.CosTransactions.SubtransactionsUnavailable e) {
 System.err.println(“Subtransactions Unavailable: “ + e);
 System.exit(1);
} catch(org.omg.CosTransactions.HeuristicHazard e) {
 System.err.println(“HeuristicHazard: “ + e);
 System.exit(1);
} catch(org.omg.CosTransactions.HeuristicMixed e) {
 System.err.println(“HeuristicMixed: “ + e);
 System.exit(1);
}

Visual Basic Example

' Begin the transaction
'
objTransactionCurrent.begin
'
' Try to register for courses
'
NotRegisteredList = objRegistrar.register_for_courses(mStudentID,
 CourseList, exception)
'
If exception.EX_majorCode = NO_EXCEPTION then
 ' Request succeeded, commit the transaction
 '
 Dim report_heuristics As Boolean
 report_heuristics = True
 objTransactionCurrent.commit report_heuristics
Else
 ' Request failed, Roll back the transaction
 '
 objTransactionCurrent.rollback
 MsgBox "Transaction Rolled Back"
End If
Using Transactions 4-7

4 Transactions in CORBA Client Applications
4-8 Using Transactions

CHAPTER
5 Transactions in EJB
Applications

This topic includes the following sections:

n Before You Begin

n General Guidelines

n Transaction Attributes

n Participating in a Transaction

n Transaction Semantics

n Session Synchronization

n Setting Transaction Timeouts

This topic describes how to integrate transactions in Enterprise JavaBeans (EJBs)
applications that run under BEA WebLogic Enterprise. Before you begin, you should
read Chapter 1, “Introducing Transactions.”
Using Transactions 5-1

5 Transactions in EJB Applications

eans

 for

” in

s

s,

e

 For
Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

n “Transactions in WebLogic Enterprise EJB Applications” on page 1-8

n “Transactions Sample EJB Code” on page 1-25

This document describes the BEA implementation of transactions in Enterprise
JavaBeans. The information in this document supplements the Enterprise JavaB
Specification 1.1, published by Sun Microsystems, Inc.

Note: Before proceeding with the rest of this chapter, you must be thoroughly
familiar with the entire contents of the EJB Specification 1.1 document,
particularly the concepts and material presented in Chapter 11, “Support
Transactions.”

For general information about implementing Enterprise JavaBeans in WebLogic
Enterprise applications, see “Developing WebLogic Enterprise EJB Applications
Getting Started.

General Guidelines

The following general guidelines apply when implementing transactions in EJB
applications for WebLogic Enterprise:

n WebLogic Enterprise fully supports the EJB Specification 1.1. EJB application
must comply fully with this specification, including all of the various rules,
requirements, and limitations that apply to entity beans, stateful session bean
and stateless session beans.

n The EJB specification allows for flat transactions only. Transactions cannot b
nested.

n The EJB specification allows for distributed transactions that span multiple
resources (such as databases) and supports the two-phase commit protocol.
5-2 Using Transactions

Transaction Attributes

or
ns

nal

ions.
rcated
y the

,” in
more information, see Chapter 7, “Transactions and the WebLogic Enterprise
JDBC/XA Driver.”

n For EJB applications running under WebLogic Enterprise, the AUTOTRAN setting
(if specified) in the INTERFACES section of the UBBCONFIG file is ignored.

n Use standard programming techniques to optimize transaction processing. F
example, properly demarcate transaction boundaries and complete transactio
quickly.

n Be sure to tune the EJB cache to ensure maximum performance in transactio
EJB applications. For more information, see “Scaling EJB Applications” in
Scaling, Distributing, and Tuning Applications.

For general guidelines about the WebLogic Enterprise Transaction Service, see
“Capabilities and Limitations” on page 2-2.

Transaction Attributes

This topic includes the following sections:

n About Transaction Attributes for EJBs

n Transaction Attributes for Container-managed Transactions

n Transaction Attributes for Bean-managed Transactions

About Transaction Attributes for EJBs

Transaction attributes determine how transactions are managed in EJB applicat
For each EJB, the transaction attribute specifies whether transactions are dema
by the WebLogic Enterprise EJB container (container-managed transactions) or b
EJB itself (bean-managed transactions). The setting of the transaction-type
element in the deployment descriptor determines whether an EJB is
container-managed or bean-managed. See Chapter 16, “Deployment Descriptor
the EJB Specification 1.1, for more information about the transaction-type
element.
Using Transactions 5-3

5 Transactions in EJB Applications

Bs

onds
1.

In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Enterprise fully supports method-level transaction attributes as defined in
Section 11.4.1 in the EJB Specification 1.1.

Transaction Attributes for Container-managed
Transactions

For container-managed transactions, the transaction attribute is specified in the
container-transaction element in the deployment descriptor. Container-managed
transactions include all Entity beans and any stateful or stateless session beans with a
transaction-type set to Container. For more information about these elements,
see Chapter 16, “Deployment Descriptor,” in the EJB Specification 1.1.

The Application Assembler can specify the following transaction attributes for EJ
and their business methods:

n NotSupported

n Supports

n Required

n RequiresNew

n Mandatory

n Never

For a detailed explanation about how the WebLogic Enterprise EJB container resp
to these trans-attribute settings, see section 11.6.2 in the EJB Specification 1.

For EJBs with container-managed transactions, the EJBs have no access to the
javax.transaction.UserTransaction interface, and the entering and exiting
transaction contexts must match. In addition, EJBs with container-managed
transactions have limited support for the setRollbackOnly and getRollbackOnly
methods of the javax.ejb.EJBContext interface, where invocations are restricted
by rules specified in the EJB Specification 1.1.
5-4 Using Transactions

Participating in a Transaction

A

n).

od

d
Transaction Attributes for Bean-managed Transactions

For bean-managed transactions, the bean specifies transaction demarcations using
methods in the javax.transaction.UserTransaction interface. Bean-managed
transactions include any stateful or stateless session beans with a transaction-type
set to Bean. Entity beans cannot use bean-managed transactions.

For stateless session beans, the entering and exiting transaction contexts must match.
For stateful session beans, the entering and exiting transaction contexts may or may not
match. If they do not match, the WebLogic Enterprise EJB container maintains
associations between the bean and the nonterminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly and
getRollbackOnly methods of the javax.ejb.EJBContext interface.

Participating in a Transaction

When the EJB Specification 1.1 uses the phrase “participating in a transaction,” BE
interprets this to mean that the bean meets either of the following conditions:

n The bean is invoked in a transactional context (container-managed transactio

n The bean begins a transaction using the UserTransaction API in a bean meth
invoked by the client (bean-managed transaction), and it does not suspend or
terminate that transaction upon completion of the corresponding bean metho
invoked by the client.

Transaction Semantics

This topic contains the following sections:

n Transaction Semantics for Container-managed Transactions

n Transaction Semantics for Bean-managed Transactions
Using Transactions 5-5

5 Transactions in EJB Applications
The EJB Specification 1.1 describes semantics that govern transaction processing
behavior based on the EJB type (entity bean, stateless session bean, or stateful session
bean) and the transaction type (container-managed or bean-managed). These
semantics describe the transaction context at the time a method is invoked and define
whether the EJB can access methods in the javax.transaction.UserTransaction
interface. EJB applications must be designed with these semantics in mind.

Transaction Semantics for Container-managed
Transactions

For container-managed transactions, transaction semantics vary for each bean type.

Transaction Semantics for Stateful Session Beans

Table 5-1 describes the transaction semantics for stateful session beans in
container-managed transactions.

Table 5-1 Transaction Semantics for Stateful Session Beans in
Container-managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Business method Yes or No based on transaction
attribute

No

afterBegin() Yes No
5-6 Using Transactions

Transaction Semantics
Transaction Semantics for Stateless Session Beans

Table 5-2 describes the transaction semantics for stateless session beans in
container-managed transactions.

beforeCompletion() Yes No

afterCompletion() No No

Table 5-1 Transaction Semantics for Stateful Session Beans in
Container-managed Transactions (Continued)

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Table 5-2 Transaction Semantics for Stateless Session Beans in
Container-managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction
attribute

No
Using Transactions 5-7

5 Transactions in EJB Applications
Transaction Semantics for Entity Beans

Table 5-3 describes the transaction semantics for entity beans in container-managed
transactions.

Table 5-3 Transaction Semantics for Entity Beans in Container-managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction
attribute of matching create

No

ejbPostCreate() Determined by transaction
attribute of matching create

No

ejbRemove() Determined by transaction
attribute of matching remove

No

ejbFind() Determined by transaction
attribute of matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

ejbLoad() Determined by transaction
attribute of business method that
invoked ejbLoad()

No

ejbStore() Determined by transaction
attribute of business method that
invoked ejbStore()

No

Business method Yes or No based on transaction
attribute

No
5-8 Using Transactions

Transaction Semantics
Transaction Semantics for Bean-managed Transactions

For bean-managed transactions, the transaction semantics differ between stateful and
stateless session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans

Table 5-4 describes the transaction semantics for stateful session beans in
bean-managed transactions.

Table 5-4 Transaction Semantics for Stateful Session Beans in Bean-managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Business method Typically, no unless a previous
method execution on the bean
had completed while in a
transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable
Using Transactions 5-9

5 Transactions in EJB Applications
Transaction Semantics for Stateless Session Beans

Table 5-5 describes the transaction semantics for stateless session beans in
bean-managed transactions.

Session Synchronization

A stateful session bean using container-managed transactions can implement the
javax.ejb.SessionSynchronization interface to provide transaction
synchronization notifications. In addition, all methods on the stateful session bean
must support one of the following transaction attributes: REQUIRES_NEW, MANDATORY
or REQUIRED. For more information about the
javax.ejb.SessionSynchronization interface, see Section 6.5.3 in the EJB
Specification 1.1.

If a bean implements SessionSynchronization, the WebLogic Enterprise EJB
container will typically make the following callbacks to the bean during transaction
commit time:

n afterBegin()

n beforeCompletion()

n afterCompletion()

Table 5-5 Transaction Semantics for Stateless Session Beans in Bean-managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes
5-10 Using Transactions

Setting Transaction Timeouts

EJB
aged
Setting Transaction Timeouts

Bean providers can specify the timeout period for transactions in EJB applications. If
the duration of a transaction exceeds the specified timeout setting, then the Transaction
Service rolls back the transaction automatically.

Timeouts are specified according to the transaction type:

n Container-managed transactions. The Bean Provider configures the
trans-timeout-seconds XML element in the
weblogic-ejb-extensions.xml file. For more information, see the EJB XML
Reference.

n Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

Handling Exceptions in EJB Transactions

WebLogic Enterprise EJB applications need to catch and handle specific exceptions
thrown during transactions. For detailed information about handling exceptions, see
Chapter 12, “Exception handling,” in the EJB Specification 1.1 published by Sun
Microsystems, Inc.

For more information about how exceptions are thrown by business methods in
transactions, see the following tables in Section 12.3: Table 8 (for container-man
transactions) and Table 9 (for bean-managed transactions).

For a client’s view of exceptions, see Section 12.4, particularly Section 12.4.1
(application exceptions), Section 12.4.2 (java.rmi.RemoteException), Section
12.4.2.1 (javax.transaction.TransactionRolledBackException), and Section
12.4.2.2 (javax.transaction.TransactionRequiredException).
Using Transactions 5-11

5 Transactions in EJB Applications
5-12 Using Transactions

CHAPTER
6 Transactions in RMI
Applications

This topic includes the following sections:

n Before You Begin

n General Guidelines

This topic describes how to integrate transactions in RMI applications that run under
BEA WebLogic Enterprise.
Using Transactions 6-1

6 Transactions in RMI Applications

or
ons

tion.

Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

n “Transactions in WebLogic Enterprise RMI Applications” on page 1-11

n “Transactions Sample RMI Code” on page 1-27

For more information about RMI applications, see Using RMI in a WebLogic
Enterprise Environment.

General Guidelines

The following general guidelines apply when implementing transactions in RMI
applications for WebLogic Enterprise:

n WebLogic Enterprise allows for flat transactions only. Transactions cannot be
nested.

n For RMI applications running under WebLogic Enterprise, the AUTOTRAN setting
(if specified) in the INTERFACES section of the UBBCONFIG file is ignored.

n Use standard programming techniques to optimize transaction processing. F
example, properly demarcate transaction boundaries and complete transacti
quickly.

n For RMI applications, callback objects are not recommended for use in
transactions because they are not subject to WebLogic Enterprise administra
For more information about callback objects, see “Using RMI with Client-side
Callbacks” in Using RMI in a WebLogic Enterprise Environment.

For general guidelines about the WebLogic Enterprise Transaction Service, see
“Capabilities and Limitations” on page 2-2.
6-2 Using Transactions

CHAPTER
7 Transactions and the
WebLogic Enterprise
JDBC/XA Driver

This topic includes the following sections:

n Before You Begin

n About Transactions and the WebLogic Enterprise JDBX/XA Driver

n JDBC Accessibility in Java Methods

n Using the JDBC/XA Driver

n Implementing Distributed Transactions

This topic describes how to integrate transactions with CORBA Java, EJB, and RMI
applications that use the WebLogic Enterprise JDBC/XA driver and run under BEA
WebLogic Enterprise. Before you begin, you should read Chapter 1, “Introducing
Transactions.”
Using Transactions 7-1

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

en
action

Before You Begin

This chapter describes handling transactions in CORBA Java, EJB, and RMI
applications that use the WebLogic Enterprise JDBC/XA driver to connect to
resources.

For EJB applications, the information in this document supplements the Enterprise
JavaBeans Specification 1.1 published by Sun Microsystems, Inc. For general
information about implementing Enterprise JavaBeans in WebLogic Enterprise
applications, see “Developing WebLogic Enterprise EJB Applications” in Getting
Started.

About Transactions and the WebLogic
Enterprise JDBX/XA Driver

This topic includes the following sections:

n Support for Transactions Using the WebLogic Enterprise JDBC/XA Driver

n Local Versus Distributed (Global) Transactions

n Transaction Contexts in WebLogic Enterprise JDBC/XA Connections

Support for Transactions Using the WebLogic Enterprise
JDBC/XA Driver

WebLogic Enterprise provides a multithreaded JDBC/XA driver for Oracle
Corporation’s Oracle8i database management system. The WebLogic Enterprise
JDBC/XA driver fully supports XA, the bidirectional system-level interface betwe
a transaction manager and a resource manager of the X/Open Distributed Trans
Processing (DTP) model. This driver is available to CORBA Java, EJB, and RMI
applications and runs in the WebLogic Enterprise environment only.
7-2 Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver

gic

f

ng
Pooled Connections

Java applications use the WebLogic Enterprise JDBC/XA driver to establish
concurrent connections to multiple Oracle8i databases via their associated resource
managers. For distributed transactions, applications must obtain database connections
from the JDBC connection pool. (However, this is not a requirement for other
jdbcKona drivers in local transaction mode or for third-party drivers.) Thereafter,
applications perform database operations using standard JDBC API calls.

A JDBC connection is governed by the pooled connection lifecycle in the JDBC
connection pool. As such, the application server might implicitly close JDBC/XA
connections to enforce certain personality-specific transactional resource restrictions,
as described in “JDBC Accessibility in Java Methods” on page 7-8. For more
information about using WebLogic Enterprise JDBC connection pools with WebLo
Enterprise JDBC/XA driver, see “Using JDBC Connection Pooling” in Using the
JDBC Drivers.

Characteristics of JavaServerXA

The JavaServerXA server hosts the WebLogic Enterprise JDBC/XA driver. The
JavaServerXA has the following characteristics:

n JavaServerXA is truly multithreaded.

n Multithreaded JavaServerXA cannot use JNI to make database access calls. I
an application intends to use JNI to make database access calls, JavaServerXA
must be configured to be single-threaded.

n JavaServerXA is still subject to other general multithreaded Java server
constraints, as described in “Configuring Multithreaded Java Servers” in Tuni
and Scaling Applications.

n Each JavaServerXA application can host the WebLogic Enterprise JDBC
connection pools that connect to one resource manager only (the resource
manager of the Tuxedo group).
Using Transactions 7-3

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

he

such

on
uted
n
ly.
Supported JDBC Standards

WebLogic Enterprise fully supports the JDBC 1.22 API (core functionality), the JDBC
2.0 Core API, and the distributed transactions (the javax.sql.DataSource API),
connection pooling, and JNDI capabilities in the JDBC 2.0 Optional Package API. See
Using the JDBC Drivers for a complete list of WebLogic Enterprise-supported
JDBC 2.0 features.

Local Versus Distributed (Global) Transactions

WebLogic Enterprise applications using the WebLogic Enterprise JDBC/XA driver
can perform local transactions as well as distributed (also called global) transactions.
A local transaction involves updates to a single resource manager (such as a database),
while a distributed transaction involves updates across multiple resource managers.

The WebLogic Enterprise JDBC/XA driver never starts a local transaction on behalf
of an application. However, if the application performs database operations without
first explicitly starting a distributed transaction, then these database operations occur
within an “unspecified transaction context” and WebLogic Enterprise delegates t
responsibility of handling this situation to the database.

In Oracle8i, for example, the database might start a local transaction to perform
database operations.

n If autocommit is disabled, then it is the application's responsibility to explicitly
complete the local transaction by calling the javax.sql.Connection.commit
or javax.sql.Connection.rollback methods.

n If autocommit is enabled, then operations are committed automatically.

Failure to commit a local transaction may result in XAER_OUTSIDE error (indicating
that the resource manager is performing work outside a distributed transaction)
subsequent distributed transaction operations, which includes beginning a distrib
transaction. It is the responsibility of the application to be aware of the transactio
context at any point and to complete distributed or local transactions appropriate
7-4 Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver
Differences Between Local and Distributed Transactions

Table 7-1 lists differences between local and distributed transactions.

Configuring the ENABLEXA Parameter in the UBBCONFIG

To use the WebLogic Enterprise JDBC/XA driver, you must specify the ENABLEXA
parameter (ENABLEXA=Y) in the JDBCCONNPOOLS section of the UBBCONFIG, as shown
in Listing 7-1. In this example, distributed transactions are enabled for the bank_pool
connection pool.

Note: This setting applies only to the WebLogic Enterprise JDBC/XA driver.

Listing 7-1 Specifying JDBCCONNPOOLS Information in UBBCONFIG

JDBCCONNPOOLS
 bank_pool
 SRVGRP = BANK_GROUP1
 SRVID = 2
 DRIVER = "weblogic.jdbc20.oci815.Driver"
 URL = "jdbc:weblogic:oracle:Beq-local"
 PROPS = "user=scott;password=tiger;server=Beq-Local"
 ENABLEXA = Y
 INITCAPACITY = 2
 MAXCAPACITY = 10

Table 7-1 Differences Between Local and Distributed Transactions

Category Local Transactions Distributed Transactions

Resource
Managers/Databases

Single database / resource
manager

Can span across multiple
resource managers

Transaction
Demarcation API

Can use the following API:

java.sql.Connection

Can use either of following APIs:

CORBA API
org.omg.CosTransaction
TransactionCurrent API

EJB API:

javax.transaction
UserTransaction API

Autocommit Can be enabled or disabled Must be disabled
Using Transactions 7-5

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

een
s the

y

s
 CAPACITYINCR = 1
 CREATEONSTARTUP = Y

For more information about configuring JDBC connection pools, see “Using JDBC
Connection Pooling” in Using the JDBC Drivers.

Demarcating Transaction Boundaries for Local and Distributed Transaction
Contexts

Applications must carefully and explicitly demarcate transaction boundaries betw
distributed and local transaction contexts. For example, when an application use
WebLogic Enterprise JDBC/XA driver to connect to a database:

n By default, the autocommit feature is automatically disabled because it is
assumed that transactions will be distributed.

n For that application to perform local transactions with autocommit (after
completing the distributed transaction), it must explicitly enable autocommit b
calling javax.sql.Connection.setAutoCommit(true).

After completing local transactions, the application must then disable
autocommit before beginning a new distributed transaction. Listing 7-2 provide
a simple example to illustrate switching between a distributed and local
transaction.

Listing 7-2 Switching Between Distributed and Local Transactions

// Assumes that javax.transaction.UserTransaction (tx) and
// java.sql.Connection (con) were initialized previously

// Begin a distributed transaction
System.out.println("Beginning distributed transaction...");
tx.begin();
// Database operations within scope of transaction tx
if(gotException){
 try{
 tx.rollback();
 System.out.println("rolled back transaction");
 }catch(Exception e){}
 }
 elseif{
7-6 Using Transactions

About Transactions and the WebLogic Enterprise JDBX/XA Driver
 tx.commit();
 System.out.println("committed transaction");
 }
// Local transactions
conn.setAutoCommit(true)
...[Database operations]...
conn.setAutoCommit(false)
// Begin another distributed transaction
System.out.println("Beginning distributed transaction...");
tx.begin();
...

Transaction Contexts in WebLogic Enterprise JDBC/XA
Connections

For WebLogic Enterprise JDBC/XA connections, database operations will always be
performed in the current transaction context. For example, an application might obtain
a JDBC/XA connection in a NULL transaction context, begin a distributed transaction,
and then perform database operations using that connection. These database operations
will be performed in the context of the current distributed transaction.

Applications use WebLogic Enterprise JDBC/XA connection API in the same way as
other jdbcKona connections except that, while within a distributed transaction context:

n Attempting to enable autocommit mode by calling the
javax.sql.Connection.setAutoCommit method on the WebLogic Enterprise
JDBC/XA connection will throw a SQLException.

n Attempting to complete the distributed transaction by calling the
javax.sql.Connection.commit or javax.sql.Connection.commit
methods on the WebLogic Enterprise JDBC/XA connection will throw a
SQLException.

Listing 7-3 shows, in a sample CORBA Java application, how to determine the current
transaction context and commit a local or global transaction accordingly.

Listing 7-3 Determining Whether the Application Is in a Distributed
Using Transactions 7-7

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
Transaction

// Assumes that org.omg.CosTransactions.Current (tc) and
// java.sql.Connection (con) were initialized before
// database operations were attempted
if (tc.get_status() !=
org.omg.CosTransactions.Status.StatusNoTransaction)
 {
 // Application is currently in a distributed transaction
 tc.commit(true);
 }
 else
 {
 // Application is currently in a local transaction
 con.commit();
 }

Similarly, for bean-managed transactions in an EJB application, the application can
determine whether the application is currently in a distributed transaction by calling
the UserTransaction.getStatus() method and testing for a returned
STATUS_NO_TRANSACTION.

JDBC Accessibility in Java Methods

This topic includes the following sections:

n JDBC/XA Accessibility in CORBA Methods

n JDBC/XA Accessibility in EJB Methods

Note: Attempting to use a WebLogic Enterprise JDBC/XA connection in a method
where it is not supported may have undefined behavior and possibly raise a
SQLException.
7-8 Using Transactions

JDBC Accessibility in Java Methods

ions.

 any

 EJB
 (for
rprise
JDBC/XA Accessibility in CORBA Methods

Table 7-2 lists which methods in CORBA methods can access JDBC/XA connections.

After completing the initialize method, WebLogic Enterprise automatically closes
any open connections and writes a warning message to the ULOG.

For transaction-bound and process-bound objects, the CORBA framework allows
open connections to be retained at method end, and the transaction context of the
retained connections will be as described in “Transaction Contexts in WebLogic
Enterprise JDBC/XA Connections” on page 7-7 upon subsequent method invocat
However, for method-bound objects, applications must explicitly close open
connections before method end. If not, WebLogic Enterprise automatically closes
open connections and writes a warning message to the ULOG.

JDBC/XA Accessibility in EJB Methods

For EJB methods, accessibility to JDBC/XA connections varies depending on the
type. For details about retaining JDBC/XA connections across method invocations
stateful session beans only), including examples, see Section 11.3.3 in the Ente
JavaBeans Specification 1.1, published by Sun Microsystems, Inc.

Table 7-2 JDBC/XA Connection Accessibility for CORBA Objects

Server Method Accessibility

Constructor Not supported

initialize Supported, after open_xa_rm

activate_obj Supported

deactivate_obj Supported

Business method Supported

release Supported, before close_xa_rm
Using Transactions 7-9

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
Note: For all bean types, after completing the ejbCreate method, WebLogic
Enterprise automatically closes any open connections and writes a warning
message to the ULOG.

Stateful Session Beans

Table 7-3 lists which stateful session bean methods can access JDBC/XA connections.

For stateful session beans, the Bean Provider must close all JDBC connections in
ejbPassivate and assign the instance’s fields storing the connections to null.
However, after completing the ejbPassivate method, WebLogic Enterprise
automatically closes any open connections and writes a warning message to the ULOG.

Table 7-3 JDBC/XA Connection Accessibility for Stateful Session Beans

Bean Method Container-managed
Transaction

Bean-managed
Transaction

Constructor Not supported Not supported

setSessionContext Not supported Not supported

ejbCreate

ejbRemove

ejbActivate

ejbPassivate

Supported, but in
unspecified transaction
context (as defined in the
Enterprise JavaBeans 1.1
specification)

Supported, but in
unspecified transaction
context (as defined in the
Enterprise JavaBeans 1.1
specification), unless the
bean explicitly begins a
transaction using
UserTransaction

Business method Supported Supported

afterBegin Supported N/A

beforeCompletion Supported N/A

afterCompletion Supported N/A
7-10 Using Transactions

JDBC Accessibility in Java Methods
Stateless Session Beans

Table 7-4 lists which stateless session bean methods can access JDBC/XA
connections.

Note: For stateless session beans, after completing a business method, WebLogic
Enterprise automatically closes any open connections and writes a warning
message to the ULOG.

Entity Beans

Table 7-5 lists which entity bean methods can access JDBC/XA connections.

Table 7-4 JDBC/XA Connection Accessibility for Stateless Session Beans

Bean Method Container-managed
Transaction

Bean-managed
Transaction

Constructor Not supported Not supported

setSessionContext Not supported Not supported

ejbCreate Not supported Not supported

ejbRemove Not supported Not supported

Business method Supported Supported

Table 7-5 JDBC/XA Connection Accessibility for Entity Beans

Bean Method Accessibility

Constructor Not supported

setEntityContext Not supported

unsetEntityContext Not supported

ejbCreate Supported

ejbPostCreate Supported

ejbRemove Supported
Using Transactions 7-11

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
Using the JDBC/XA Driver

Before applications can use the WebLogic Enterprise JDBC/XA driver, the JDBC/XA
driver must be integrated into your development environment by completing the
following steps:

1. Build the multithreaded JavaServerXA application, binding it with the Oracle8i
Resource Manager, as described in “Using the WebLogic Enterprise JDBC/XA
Driver” in Using the JDBC Drivers.

2. In the UBBCONFIG, configure the OPENINFO parameter in the GROUPS section
according to the definition of the XA parameter for the Oracle database.
Listing 7-4 shows an example of an OPENINFO setting in a sample UBBCONFIG.

Listing 7-4 OPENINFO Setting in Sample UBBCONFIG

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
 OPENINFO =

ejbFind Supported

ejbActivate Not supported

ejbPassivate Not supported

ejbLoad Supported

ejbStore Supported

business method Supported

Table 7-5 JDBC/XA Connection Accessibility for Entity Beans (Continued)

Bean Method Accessibility
7-12 Using Transactions

Using the JDBC/XA Driver
"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+DbgFl=0
x7+MaxCur=15+Threads=true"
 TMSNAME = TMS_ORA
 TMSCOUNT = 2

For more information about the XA parameter, see the “A Oracle XA” chapter
in the Fundamentals section of the Oracle Corporation Oracle8i Application
Developer’s Guide.

3. If you want the JavaServerXA to be multithreaded, you must specify the -M
option for the CLOPT parameter, which is defined in the JavaServerXA entry in
the SERVERS section of the UBBCONFIG file.

Note: For single-threaded JavaServerXA operation, skip this step.

Listing 7-5 shows an example of JavaServerXA configured for multithreading
in a sample UBBCONFIG.

Listing 7-5 Multithreaded Server Configuration in Sample UBBCONFIG

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 ...
 JavaServerXA
 SRVGRP = BANK_GROUP1
 SRVID = 2
 SRVTYPE = JAVA
 CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1 bank_pool"
 RESTART = N

To specify connection pooling, you need to specify SRVTYPE=JAVA in the
SERVERS section.
Using Transactions 7-13

7 Transactions and the WebLogic Enterprise JDBC/XA Driver

med
4. In the UBBCONFIG, configure the WebLogic Enterprise JDBC/XA driver in the
WebLogic Enterprise JDBC Connection Pool, as described in “Using the
WebLogic Enterprise JDBC/XA Driver” in Using the JDBC Drivers. Listing 7-6
shows an example of JDBC connection pool settings for a connection pool na
bank_pool in a sample UBBCONFIG.

Listing 7-6 JDBC Connection Pool Settings in Sample UBBCONFIG

*JDBCCONNPOOLS
 bank_pool
 SRVGRP = BANK_GROUP1
 SRVID = 2
 DRIVER = "weblogic.jdbc20.oci815.Driver"
 URL = "jdbc:weblogic:oracle:beq-local"
 PROPS = "user=scott;password=tiger;server=Beq-Local"
 ENABLEXA = Y
 INITCAPACITY = 2
 MAXCAPACITY = 10
 CAPACITYINCR = 1
 CREATEONSTARTUP = Y

5. Boot the JavaServerXA application, as described in “Using the WebLogic
Enterprise JDBC/XA Driver” in Using the JDBC Drivers.

Implementing Distributed Transactions

This topic includes the following sections:

n Importing Packages

n Initializing the TransactionCurrent Object Reference

n Finding the Connection Pool via JNDI

n Setting Up XA Distributed Transactions

n Performing a Distributed Transaction
7-14 Using Transactions

Implementing Distributed Transactions

rely
BA

at:

rtup.
In addition to the fully supported examples supplied on the CD-ROM with this release
of WebLogic Enterprise, the BEA WebLogic Enterprise team provides several
unsupported code examples on a password protected Web site for WebLogic
Enterprise customers. The code samples in this topic come from a version of the
WebLogic Enterprise XA Bankapp sample application that is available from the
unsupported samples WebLogic Enterprise Web site. The URL for the unsupported
samples WebLogic Enterprise Web site is specified in the product Release Notes under
“About This BEA WebLogic Enterprise Release” in the subsection “Unsupported
Samples and Tools Web Page.”

This application is different from the one described in the Bankapp Sample Using XA
in the WebLogic Enterprise online documentation.

Note: This topic does not attempt to fully describe this sample application. It me
uses code fragments to illustrate the use of the JDBC/XA driver in a COR
application.

Importing Packages

Listing 7-7 shows the packages that the application imports. In particular, note th

n The java.sql.* and javax.sql.* packages are required for database
operations.

n The javax.naming.* package is required for performing a JNDI lookup on the
pool name, which is passed in as a command-line parameter upon server sta
The pool name must be registered on that server group.

Listing 7-7 Importing Required Packages

import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import com.beasys.Tobj.*;
Using Transactions 7-15

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
Initializing the TransactionCurrent Object Reference

Listing 7-8 shows initializing the TransactionCurrent object reference, which will
be used by the Teller operations to start and stop transactions.

Listing 7-8 Initializing the TransactionCurrent Object Reference

static org.omg.CosTransactions.Current trans_cur_ref;

org.omg.CORBA.Object trans_cur_oref =
TP.bootstrap().resolve_initial_references("TransactionCurrent");

Finding the Connection Pool via JNDI

Listing 7-9 shows finding the connection pool via JNDI. The connection pool name is
registered on the server group and is passed in as a command-line parameter upon
server startup. Subsequent database connections are obtained from this pool.

Listing 7-9 Finding the Connection Pool via JNDI

static DataSource pool;

...

public void get_connpool(String pool_name)
 throws Exception
 {
 try {
 javax.naming.Context ctx = new InitialContext();
 pool = (DataSource)ctx.lookup("jdbc/" + pool_name);
 }
 catch (javax.naming.NamingException ex){
 TP.userlog("Couldn’t obtain JDBC connection pool: " +
pool_name);
 throw ex;
 }
 }
}

7-16 Using Transactions

Implementing Distributed Transactions
Setting Up XA Distributed Transactions

Listing 7-10 shows setting up XA distributed transactions by calling the open_xa_rm
method (in server.initialize) and obtaining a reference to the
TransactionCurrent object.

Note: This step is required for CORBA applications but not for EJB or RMI
applications.

Listing 7-10 Setting Up XA Distributed Transactions

TP.open_xa_rm();

org.omg.CORBA.Object trans_cur_oref =
TP.bootstrap().resolve_initial_references("TransactionCurrent");

trans_cur_ref =
org.omg.CosTransactions.CurrentHelper.narrow(trans_cur_oref);

Performing a Distributed Transaction

Listing 7-11 shows a complete distributed transaction that involves the transfer of
money from one bank account to another.

Sequence of Tasks

The application performs the distributed application in the following sequence:

1. The application calls the begin method to start the transaction.

2. The application performs the following database operations:

l Withdrawing the money from one account

l Depositing the money into another account.
Using Transactions 7-17

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
3. The application updates balances.

4. The application catches any exceptions thrown during the database operations.

5. The application closes the distributed transaction and updates teller statistics.

l If an exception was thrown during the database operations, the application
rolls back the transaction by calling the rollback method.

l If no exceptions were thrown, the application commits the transaction by
calling the commit method.

Listing 7-11 Performing a Distributed Transaction

public void transfer(int fromAccountID, int toAccountID, float
amount, BalanceAmountsHolder balances)
 throws AccountRecordNotFound, IOException, InsufficientFunds
 {
 boolean success = false;

 try {
 // Increment the number of requests the teller has received.
 tellerStats.totalTellerRequests += 1;

 // Begin the global transaction.
 BankAppServerImpl.trans_cur_ref.begin();

 // Flag this as a transfer.
 transferInProgress = true;

 // Perform the withdrawal first.
 float withdrawalBalance = withdraw(fromAccountID, amount);

 // Perform the deposit next.
 float depositBalance = deposit(toAccountID, amount);

 balances.value = new BalanceAmounts();
 balances.value.fromAccount = withdrawalBalance;
 balances.value.toAccount = depositBalance;

 success = true;

 // Catch any exceptions thrown during database operations
 }
 catch (AccountRecordNotFound e) {
 throw e;
 }
7-18 Using Transactions

Implementing Distributed Transactions
 catch (InsufficientFunds e) {
 throw e;
 }
 catch (IOException e) {
 throw e;
 }
 catch(Exception e) {
 TP.userlog("Exception caught in transfer(): "

 + e.getMessage());
 e.printStackTrace();
 throw new org.omg.CORBA.INTERNAL();
 }
 finally {
 try {

// Complete the distributed transaction and
 // update the Teller statistics.

if (success) {
 tellerStats.totalTellerSuccess += 1;
 BankAppServerImpl.trans_cur_ref.commit(true);

 } else {
 tellerStats.totalTellerFail += 1;
 BankAppServerImpl.trans_cur_ref.rollback();

 }
 }
 catch(Exception e) {

TP.userlog("Unexpected Exception thrown during commit or
rollback: " + e.getMessage());
 e.printStackTrace();
 throw new org.omg.CORBA.INTERNAL();
 }
 transferInProgress = false;
 }
 }

The withdraw Method

Listing 7-12 shows the withdraw method that is invoked in Listing 7-11.
The withdraw method shows accessing the database to withdraw money from the
specified account.
Using Transactions 7-19

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
Listing 7-12 withdraw method

 public float withdraw(int accountID, float amount)
 throws AccountRecordNotFound,

 IOException,
 InsufficientFunds,
 TellerInsufficientFunds

 {
 boolean success = false;

 try {
 if (!transferInProgress) {

// This is just a plain withdrawal; it is NOT a transfer.

// Increment the number of requests that this teller
// has received.
tellerStats.totalTellerRequests += 1;

// Decrement the balance left in the Teller’s ATM machine.
tellerStats.totalTellerBalance -= amount;

// Begin the global transaction.
BankAppServerImpl.trans_cur_ref.begin();

// Check to see if the minimum TELLER threshold balance
// has not been reached; if so, amount will be added back in
// in the finally clause.
if (tellerStats.totalTellerBalance < MinTellerBalance)
 throw new TellerInsufficientFunds();

 }

 AccountDataHolder accountDataHolder =

new AccountDataHolder(new AccountData());
 accountDataHolder.value.accountID = accountID;
 accountDataHolder.value.balance = -amount;

 // Withdraw the money from the account.
 theDBAccess_ref.update_account(accountDataHolder);
 success = true;
 return(accountDataHolder.value.balance);
 }
 catch (AccountRecordNotFound e) {
 throw e;
 }
 catch (InsufficientFunds e) {
 throw e;
 }
 catch (TellerInsufficientFunds e) {
7-20 Using Transactions

Implementing Distributed Transactions
 throw e;
 }
 catch (DataBaseException e) {
 throw new IOException();
 }
 catch(Exception e) {
 TP.userlog("Exception caught in withdraw(): "

 + e.getMessage());
 e.printStackTrace();
 throw new org.omg.CORBA.INTERNAL();
 }
 finally {
 // Terminate the transaction and update the Teller statistics.
 if (!transferInProgress) {

try {
 if (success) {
 tellerStats.totalTellerSuccess += 1;
 BankAppServerImpl.trans_cur_ref.commit(true);

 } else {
 tellerStats.totalTellerFail += 1;
 tellerStats.totalTellerBalance += amount;
 BankAppServerImpl.trans_cur_ref.rollback();

 }
 }

catch(Exception e) {
 TP.userlog("Unexpected Exception thrown during commit or

rollback: " + e.getMessage());
 e.printStackTrace();
 throw new org.omg.CORBA.INTERNAL();
 }
 }
 }
 }

The deposit Method

Listing 7-13 shows the deposit method that is invoked in Listing 7-11. The deposit
method shows accessing the database deposit money to the specified account.

Listing 7-13 deposit method

 public float deposit(int accountID, float amount)
 throws AccountRecordNotFound, IOException
 {
 boolean success = false;
Using Transactions 7-21

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
 try {
 // If this is a transfer request, then the global transaction
 // was started in the TellerImpl.transfer method; otherwise,
 // start the transaction here.
 if (!transferInProgress) {

// This is just a plain deposit; it is NOT a transfer.
// Increment the number of requests that this teller
// has received.
tellerStats.totalTellerRequests += 1;

// Begin the global transaction.
BankAppServerImpl.trans_cur_ref.begin();
 }

 AccountDataHolder accountDataHolder =
new AccountDataHolder(new AccountData());
 accountDataHolder.value.accountID = accountID;
 accountDataHolder.value.balance = amount;

 // Deposit the money in the account.
 theDBAccess_ref.update_account(accountDataHolder);

 success = true;
 return(accountDataHolder.value.balance);
 }
 catch (AccountRecordNotFound e) {
 throw e;
 }
 catch (DataBaseException e) {
 throw new IOException();
 }
 catch(Exception e) {
 TP.userlog("Exception caught in BankApp.deposit(): "
 + e.getMessage());
 e.printStackTrace();
 throw new org.omg.CORBA.INTERNAL();
 }
 finally {
 try {
// Terminate the transaction and update the Teller statistics.
if (!transferInProgress) {
 if (success) {
 tellerStats.totalTellerSuccess += 1;
 BankAppServerImpl.trans_cur_ref.commit(true);
 } else {
 tellerStats.totalTellerFail += 1;
 BankAppServerImpl.trans_cur_ref.rollback();
 }
 }
7-22 Using Transactions

Implementing Distributed Transactions
 }
 catch(Exception e) {
TP.userlog("Unexpected Exception thrown during commit or rollback:
"
 + e.getMessage());
e.printStackTrace();
throw new org.omg.CORBA.INTERNAL();
 }
 }
 }
Using Transactions 7-23

7 Transactions and the WebLogic Enterprise JDBC/XA Driver
7-24 Using Transactions

CHAPTER

ion,
igure
 page
8 Administering
Transactions

This topic includes the following sections:

n Modifying the UBBCONFIG File to Accommodate Transactions

n Modifying the Domain Configuration File to Support Transactions (WebLogic
Enterprise Servers)

n Sample Distributed Application Using Transactions

Before you begin, you should read Chapter 1, “Introducing Transactions.” In addit
for container-managed transaction demarcation in EJB applications, you can conf
the transaction timeout setting, as described in “Setting Transaction Timeouts” on
5-11.
Using Transactions 8-1

8 Administering Transactions

Modifying the UBBCONFIG File to
Accommodate Transactions

This topic includes the following sections:

n Summary of Steps

n Step 1: Specify Application-wide Transactions in the RESOURCES Section

n Step 2: Create a Transaction Log (TLOG)

n Step 3: Define Each Resource Manager (RM) and the Transaction Manager
Server in the GROUPS Section

n Step 4: Enable an Interface to Begin a Transaction

Summary of Steps

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS,
and the INTERFACES or SERVICES sections of the application’s UBBCONFIG file in the
following ways:

n In the RESOURCES section, specify the application-wide number of allowed
transactions and the value of the commit control flag.

n In the MACHINES section, create the TLOG information for each machine.

n In the GROUPS section, indicate information about each resource manager and
about the transaction manager server.

n In the INTERFACES section (WebLogic Enterprise System for CORBA
applications only) or the SERVICES section (BEA Tuxedo System), enable the
automatic transaction option. This option does not apply to EJB or RMI
applications.

For instructions about modifying these sections in the UBBCONFIG, see “Creating a
Configuration File” in the Administration Guide.
8-2 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions
Step 1: Specify Application-wide Transactions in the
RESOURCES Section

Table 8-1 provides a description of transaction-related parameters in the RESOURCES
section of the configuration file.

Step 2: Create a Transaction Log (TLOG)

This section discusses creating a transaction log (TLOG), which refers to a log in which
information on transactions is kept until the transaction is completed.

Table 8-1 Transaction-Related Parameters in the RESOURCES Section

Parameter Meaning

MAXGTT Limits the total number of global transaction identifiers (GTRIDs) allowed on
one machine at one time. The maximum value allowed is 2048, the minimum
is 0, and the default is 100. You can override this value on a per-machine
basis in the MACHINES section.

Entries remain in the table only while the global transaction is active, so this
parameter has the effect of setting a limit on the number of simultaneous
transactions.

CMTRET Specifies the initial setting of the TP_COMMIT_CONTROL characteristic. The
default is COMPLETE. Following are its two settings:

n LOGGED—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_LOGGED, which means that tpcommit() returns when all the
participants have successfully precommitted.

n COMPLETE—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() will not return
until all the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application uses the late
commit implementation of the XA standard, the setting should be
COMPLETE. If all the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (You can override this setting with tpscmt().)
Using Transactions 8-3

8 Administering Transactions
Creating the UDL

The Universal Device List (UDL) is like a map of the BEA Tuxedo file system. The
UDL gets loaded into shared memory when an application is booted. To create an entry
in the UDL for the TLOG device, create the UDL on each machine using global
transactions. If the TLOGDEVICE is mirrored between two machines, it is unnecessary
to do this on the paired machine. The Bulletin Board Liaison (BBL) then initializes and
opens the TLOG during the boot process.

To create the UDL, enter a command using the following format, before the
application has been booted:

tmadmin -c crdl -z config -b blocks

where:

Note: In general, the value that you supply for blocks should not be less than the
value for TLOGSIZE. For example, if TLOGSIZE is specified as 200 blocks,
specifying -b 500 would not cause a degradation.

For more information about storing the TLOG, see the Installation Guide.

Defining Transaction-related Parameters in the MACHINES Section

You can define a global transaction log (TLOG) using several parameters in the
MACHINES section of the UBBCONFIG file. You must manually create the device list
entry for the TLOGDEVICE on each machine where a TLOG is needed. You can do this
either before or after TUXCONFIG has been loaded, but it must be done before the
system is booted.

Note: If you are not using transactions, the TLOG parameters are not required.

Table 8-2 provides a description of transaction-related parameters in the MACHINES
section of the configuration file.

-z config Specifies the full path name for the device where you should create the
UDL.

-b blocks Specifies the number of blocks to be allocated on the device.

config Should match the value of the TLOGDEVICE parameter in the
MACHINES section of the UBBCONFIG file.
8-4 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions
Creating the Domains Transaction Log (BEA Tuxedo Servers)

This section applies to the BEA Tuxedo system only.

You can create the Domains transaction log before starting the Domains gateway
group by using the following command:

dmadmin(1) crdmlog (crdlog) -d local_domain_name

Create the Domains transaction log for the named local domain on the current machine
(the machine on which dmadmin is running). The command uses the parameters
specified in the DMCONFIG file. This command fails if the named local domain is active
on the current machine or if the log already exists. If the transaction log has not been
created, the Domains gateway group creates the log when it starts up.

Table 8-2 Transaction-related Parameters in the MACHINES Section

Parameter Meaning

TLOGNAME The name of the DTP transaction log for this machine.

TLOGDEVICE Specifies the WebLogic Enterprise or BEA Tuxedo file system that
contains the DTP transaction log (TLOG) for this machine. If this
parameter is not specified, the machine is assumed not to have a TLOG.
The maximum string value length is 64 characters.

TLOGSIZE The size of the TLOG file in physical pages. Its value must be between
1 and 2048, and its default is 100. The value should be large enough
to hold the number of outstanding transactions on the machine at a
given time. One transaction is logged per page. The default should
suffice for most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVICE to
the start of the VTOC that contains the transaction log for this
machine.The number must be greater than or equal to 0 and less than
the number of pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs share the
same device or if a VTOC is stored on a device (such as a file system)
that is shared with another application, you can use TLOGOFFSET to
indicate a starting address relative to the address of the device.
Using Transactions 8-5

8 Administering Transactions

ves

g
Step 3: Define Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section

Additions to the GROUPS section fall into two categories:

n Defining the transaction manager servers that perform most of the work that
controls global transactions:

l The TMSNAME parameter specifies the name of the server executable.

l The TMSCOUNT parameter specifies the number of such servers to boot
(the minimum is 2, the maximum is 10, and the default is 3).

A null transactional manager server does not communicate with any resource
manager. It is used to exercise an application’s use of the transactional primiti
before actually testing the application in a recoverable, real environment. This
server is named TMS and it simply begins, commits, or terminates without talkin
to any resource manager.

n Defining opening and closing information for each resource manager:

l OPENINFO is a string with information used to open a resource manager.

l CLOSEINFO is used to close a resource manager.

Sample GROUPS Section

The following sample GROUPS section derives from the bankapp banking application:

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=”TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite”

Table 8-3 describes the transaction values specified in this sample GROUPS section.

Table 8-3 Transaction Values in the GROUPS Section of a Sample
UBBCONFIG File

Transaction Value Meaning

BANKB1 GRPNO=1
TMSNAME=TMS_SQL\ TMSCOUNT=2

Contains the name of the transaction manager
server (TMS_SQL) and the number (2) of these
servers to be booted in the group BANKB1
8-6 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions
Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

Table 8-4 lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO parameters.

TUXEDO/SQL Published name of the resource manager

<APPDIR>/bankdl1 Includes a device name

bankdb Database name

readwrite Access mode

Table 8-3 Transaction Values in the GROUPS Section of a Sample
UBBCONFIG File (Continued)

Transaction Value Meaning

Table 8-4 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO Parameters

Parameter Characteristics

TMSNAME Name of the transaction manager server executable.

Required parameter for transactional configurations.

TMS is a null transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).

Default is 3.

OPENINFO

CLOSEINFO

Represents information to open or close a resource manager.

Content depends on the specific resource manager.

Starts with the name of the resource manager.

Omission means the resource manager needs no information to open.
Using Transactions 8-7

8 Administering Transactions

of

lue
Step 4: Enable an Interface to Begin a Transaction

To enable an interface to begin a transaction, you change different sections in the
UBBCONFIG file, depending on whether you are configuring a WebLogic Enterprise
CORBA server or BEA Tuxedo server:

n Changing the INTERFACES Section (WebLogic Enterprise CORBA Servers)

n Changing the SERVICES Section (BEA Tuxedo Servers)

Changing the INTERFACES Section (WebLogic Enterprise CORBA Servers)

The INTERFACES section in the UBBCONFIG file supports WebLogic Enterprise
CORBA interfaces:

n For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is already in transaction mode. The default is N. The effect
of specifying a value for AUTOTRAN depends on the transactional policy specified
by the developer in the Implementation Configuration File (ICF) in C++, or the
Server Description File (XML) in Java, for the interface. This transactional
policy will become the transactional policy attribute of the associated
T_IFQUEUE MIB object at run time. The only time this value affects the behavior
of the application is if the developer specified a transaction policy of optional.

Note: To work properly, this feature depends on collaboration between the
system designer and the administrator. If the administrator sets this value
to Y without prior knowledge of the transaction policy defined by the
developer in the interface’s ICF or XML file, the actual run time effect
the parameter might be unknown.

n If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which specifies
the transaction timeout, in seconds, for the transactions to be created. The va
must be greater than or equal to zero and must not exceed 2,147,483,647

(231 - 1, or about 70 years). A value of zero implies there is no timeout for the
transaction. (The default is 30 seconds.)

Note: For EJB and RMI applications, the AUTOTRAN and TRANTIME settings are
ignored.
8-8 Using Transactions

Modifying the UBBCONFIG File to Accommodate Transactions
Table 8-5 describes the characteristics of the AUTOTRAN, TRANTIME, and
FACTORYROUTING parameters.

Changing the SERVICES Section (BEA Tuxedo Servers)

The following are three transaction-related features in the SERVICES section:

n If you want a service (instead of a client) to begin a transaction, you must set the
AUTOTRAN flag to Y. This is useful if the service is not needed as part of any
larger transaction, and if the application wants to relieve the client of making
transaction decisions. If the service is called when there is already an existing
transaction, this call becomes part of it. (The default is N.)

Table 8-5 Characteristics of the AUTOTRAN, TRANTIME, and
FACTORYROUTING Parameters

Parameter Characteristics

AUTOTRAN n Makes an interface the initiator of a transaction.

n To work properly, it is dependent on collaboration between
the system designer and the system administrator. If the
administrator sets this value to Y without prior knowledge of
the ICF or XML transaction policy set by the developer, the
actual run-time effort of the parameter might be unknown.

n The only time this value affects the behavior of the application
is if the developer specified a transaction policy of
optional.

n If a transaction already exists, a new one is not started.

n Default is N.

TRANTIME n Represents the timeout for the AUTOTRAN transactions.

n Valid values are between 0 and 231 - 1, inclusive.

n Zero (0) represents no timeout.

n Default is 30 seconds.

FACTORYROUTING n Specifies the name of the routing criteria to be used for
factory-based routing for this CORBA interface.

n You must specify a FACTORYROUTING parameter for
interfaces requesting factory-based routing.
Using Transactions 8-9

8 Administering Transactions
Note: Generally, clients are the best initiators of transactions because a service
has the potential of participating in a larger transaction.

n If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the
transaction timeout, in seconds, for the transactions to be created. The value
must be greater than or equal to 0 and must not exceed 2,147,483,647 (231 - 1,
or about 70 years). A value of zero implies there is no timeout for the
transaction. (The default is 30 seconds.)

Note: For EJB and RMI applications, the AUTOTRAN and TRANTIME settings are
ignored.

n You must specify a ROUTING parameter for transactions that request
data-dependent routing.

Table 8-6 describes the characteristics of the AUTOTRAN, TRANTIME, and ROUTING
parameters:

Table 8-6 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
Parameters

Parameter Characteristics

AUTOTRAN Makes a service the initiator of a transaction.

Relieves the client of the transactional burden.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTING Points to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.
8-10 Using Transactions

Modifying the Domain Configuration File to Support Transactions (WebLogic Enter-
Modifying the Domain Configuration File to
Support Transactions (WebLogic Enterprise
Servers)

This topic includes the following sections:

n Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters

n Characteristics of the AUTOTRAN and TRANTIME Parameters (WebLogic
Enterprise CORBA and Tuxedo Servers)

To enable transactions across domains, you need to set parameters in both the
DM_LOCAL_DOMAINS and the DM_REMOTE_SERVICES sections of the Domains
configuration file (DMCONFIG). Entries in the DM_LOCAL_DOMAINS section define local
domain characteristics. Entries in the DM_REMOTE_SERVICES section define
information on services that are imported and that are available on remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The DM_LOCAL_DOMAINS section of the Domains configuration file identifies local
domains and their associated gateway groups. This section must have an entry for each
gateway group (Local Domain). Each entry specifies the parameters required for the
Domains gateway processes running in that group.

Table 8-7 provides a description of the five transaction-related parameters in this
section: DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN.
Using Transactions 8-11

8 Administering Transactions
Table 8-7 Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

Parameter Characteristics

DMTLOGDEV Specifies the BEA Tuxedo file system that contains the Domains
transaction log (DMTLOG) for this machine. The DMTLOG is stored as a
BEA Tuxedo VTOC table on the device. If this parameter is not specified,
the Domains gateway group is not allowed to process requests in
transaction mode. Local domains running on the same machine can share
the same DMTLOGDEV file system, but each local domain must have its
own log (a table in the DMTLOGDEV) named as specified by the
DMTLOGNAME keyword.

DMTLOGNAME Specifies the name of the Domains transaction log for this domain. This
name must be unique when the same DMTLOGDEV is used for several
local domains. If a value is not specified, the value defaults to the string
DMTLOG. The name must contain 30 characters or less.

DMTLOGSIZE Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and less than the amount
of available space on the BEA Tuxedo file system. If a value is not
specified, the value defaults to 100 pages.

Note: The number of domains in a transaction determine the number
of pages you must specify in the DMTLOGSIZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN Specifies the maximum number of domains that can be involved in a
transaction. It must be greater than zero and less than 32,768. If a value
is not specified, the value defaults to 16.

MAXTRAN Specifies the maximum number of simultaneous global transactions
allowed on this local domain. It must be greater than or equal to zero, and
less than or equal to the MAXGTT parameter specified in the TUXCONFIG
file. If not specified, the default is the value of MAXGTT.
8-12 Using Transactions

Modifying the Domain Configuration File to Support Transactions (WebLogic Enter-
Characteristics of the AUTOTRAN and TRANTIME
Parameters (WebLogic Enterprise CORBA and Tuxedo
Servers)

The DM_REMOTE_SERVICES section of the Domains configuration file identifies
information on services imported and available on remote domains. Remote services
are associated with a particular remote domain.

Table 8-8 describes the two transaction-related parameters in this section: AUTOTRAN
and TRANTIME.

Note: For EJB and RMI applications, these settings are ignored.

Table 8-8 Characteristics of the AUTOTRAN and TRANTIME Parameters

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability is required if you want to enforce
reliable network communication with remote services. You specify this
capability by setting the AUTOTRAN parameter to Y in the corresponding
remote service definition.

TRANTIME Specifies the default timeout value in seconds for a transaction
automatically started for the associated service. The value must be
greater than or equal to zero, and less than 2147483648. The default is
30 seconds. A value of zero implies the maximum timeout value for the
machine.
Using Transactions 8-13

8 Administering Transactions
Sample Distributed Application Using
Transactions

This topic includes the following sections:

n RESOURCES Section

n MACHINES Section

n GROUPS and NETWORK Sections

n SERVERS, SERVICES, and ROUTING Sections

This topic describes a sample configuration file for the Bankapp application, a sample
CORBA application that enables transactions and distributes the application over three
sites. The application includes the following features:

n Data-dependent routing on ACCOUNT_ID.

n Data distributed over three databases.

n BRIDGE processes communicating with the system via the ATMI interface.

n System administration from one site.

The configuration file includes seven sections: RESOURCES, MACHINES, GROUPS,
NETWORK, SERVERS, SERVICES, and ROUTING.

Note: Although this sample is a CORBA application, the principles apply to EJB
applications as well, except that the ROUTING section is not used in EJB
applications, nor are the TRANTIME and AUTOTRAN parameters in the
INTERFACES section.

RESOURCES Section

The RESOURCES section shown in Listing 8-1 specifies the following parameters:

n MAXSERVERS, MAXSERVICES, and MAXGTT are less than the defaults. This makes
the Bulletin Board smaller.
8-14 Using Transactions

Sample Distributed Application Using Transactions
n MASTER is SITE3 and the backup master is SITE1.

n MODEL is set to MP and OPTIONS is set to LAN, MIGRATE. This allows a networked
configuration with migration.

n BBLQUERY is set to 180 and SCANUNIT is set to 10. This means that DBBL checks
of the remote BBLs are done every 1800 seconds (one half hour).

Listing 8-1 Sample RESOURCES Section

*RESOURCES
#
IPCKEY 99999
UID 1
GID 0
PERM 0660
MAXACCESSERS 25
MAXSERVERS 25
MAXSERVICES 40
MAXGTT 20
MASTER SITE3, SITE1
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN, MIGRATE
MODEL MP
LDBAL Y

MACHINES Section

The MACHINES section shown in Listing 8-2 specifies the following parameters:

n TLOGDEVICE and TLOGNAME are specified, which indicate that transactions will
be done.

n The TYPE parameters are all different, which indicates that encode/decode will
be done on all messages sent between machines.
Using Transactions 8-15

8 Administering Transactions
Listing 8-2 Sample MACHINES Section

*MACHINES
Gisela LMID=SITE1
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”3B600”

romeo LMID=SITE2
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”SEQUENT”

juliet LMID=SITE3
 TUXDIR=”/usr/tuxedo”
 APPDIR=’/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”AMDAHL”

GROUPS and NETWORK Sections

The GROUPS and NETWORK sections shown in Listing 8-3 specify the following
parameters:

n The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction
manager servers will be booted per group.

n The OPENINFO string indicates that the application will perform database access.
8-16 Using Transactions

Sample Distributed Application Using Transactions
Listing 8-3 Sample GROUPS and NETWORK Sections

*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

*NETWORK
SITE1 NADDR=”0X0002ab117B2D4359”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4359”

SITE2 NADDR=”0X0002ab117B2D4360”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4361”

SERVERS, SERVICES, and ROUTING Sections

The SERVERS, SERVICES, and ROUTING sections shown in Listing 8-4 specify the
following parameters:

n The TLR servers have a -T number passed to their tpsrvrinit() functions.

n All requests for the services are routed on the ACCOUNT_ID field.

n None of the services will be performed in AUTOTRAN mode.

Note: The ROUTING section is not used in EJB or RMI applications.
Using Transactions 8-17

8 Administering Transactions
Listing 8-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”
TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y
XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y
XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES
DEFAULT: AUTOTRAN=N
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
TRANSFER ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID

*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MON - 9999:*,
 10000 - 39999:BANKB1
 40000 - 69999:BANKB2
 70000 - 100000:BANKB3
 “”
8-18 Using Transactions

Index

A
ACID properties 1-2, 2-3
activation policies

transaction 3-11
always transaction policy 3-4, 3-12
API models, supported 1-3
Application-to-Transaction Monitor

Interface (ATMI) 2-6
assigning transaction policies 3-7
atomicity (ACID properties) 1-2
autocommit 7-6
AUTOTRAN parameter 8-9, 8-10, 8-13

B
bean-managed transactions 1-10

transaction attributes 5-5
transaction semantics

stateful session beans 5-9
stateless session beans 5-10

business transactions, support 1-4

C
client applications

multithreading 2-7
using transactions 4-5

CLOPT parameter 7-13
close_xa_rm method 3-10
CLOSEINFO parameter 8-7
closing an XA resource manager 3-10

CMTRET parameter 8-3
code example

C++ CORBA server object that supports
transactions 1-20

EJB applications 1-25
OMG IDL for Transactions sample

CORBA application 1-16
RMI applications 1-27
TransactionCurrent object 4-3
transactions

C++ 4-6
Java 4-6
Visual Basic 4-7

transactions in C++ CORBA client
application 1-22

UBBCONFIG file for Transactions
sample CORBA application 1-
23

committing transactions
EJB applications 1-27
RMI applications 1-29

connection pool
finding via JNDI 7-16

consistency (ACID properties) 1-2
container-managed transactions 1-9

transaction attributes 5-4
transaction semantics 5-6

entity beans 5-8
stateful session beans 5-6
stateless session beans 5-7

Control interface 2-17
Using Transactions I-1

CORBA applications
transaction propogation 2-4
Transaction Service 2-8
Transaction Service API

Control interface 2-17
Current interface 2-12
data types 2-10
exceptions 2-10
TransactionalObject interface 2-18

transactions in client applications 1-7, 4-
2

transactions overview 1-6
Transactions sample CORBA

application 1-13
transactions support 3-2

CORBAservices Object Transaction Service
(OTS) 1-3, 2-2, 4-2

CosTransactions module 2-12, 2-18
Current interface

about the Current interface 2-12
begin method 2-13
commit method 2-14
get_control method 2-15
get_status method 2-14
get_transaction_name method 2-15
resume method 2-17
rollback method 2-14
rollback_only method 2-14
set_timeout method 2-15
suspend method 2-16

customer support contact information xi

D
data types

CORBA Transaction Service API 2-10
database cursors 3-4
deactivate_object method

and transactions 3-11
defining user-defined exceptions 3-13
delegated commit 2-3

development process
client applications

Transactions sample CORBA
application 1-21

transactions 4-2
distributed transactions 7-4

about distributed transactions 1-4
about implementing 7-14
finding the connection pool via JNDI 7-

16
importing packages 7-15
initializing TransactionCurrent 7-16
performing 7-17
setting up 7-17

DMTLOGDEV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
documentation, where to find it x
domain transaction log, creating 8-5
DR_TRANS_ABORT 3-11
DR_TRANS_COMMITTING 3-11
durability (ACID properties) 1-2

E
EJB applications

bean-managed transactions 1-10
committing transactions 1-27
container-managed transactions 1-9
exceptions 5-11
general guidelines 5-2
importing packages 1-25
JNDI lookup 1-26
participating in a transaction 5-5
rolling back transactions 1-27
sample code 1-25
session synchronization 5-10
starting transactions 1-26
timeouts 5-11
transaction attributes 5-3
transaction semantics 5-5
I-2 Using Transactions

transactions overview 1-8
ENABLEXA parameter 7-5
entity beans

container-managed transactions
transaction semantics

 5-8
JDBC/XA accessibility 7-11

exceptions
CORBA Transaction Service API 2-10
EJB applications 5-11
HeuristicHazard 2-11
HeuristicMixed 2-11
INVALID_TRANSACTION 2-20
InvalidControl 2-12
NoTransaction 2-11
OBJ_ADAPTER 2-20
SubtransactionsUnavailable 2-11
TRANSACTION_ROLLEDBACK 2-

16
Unavailable 2-12
user-defined exceptions 3-13

explicit propogation, in CORBA applications
2-4

F
FACTORYROUTING parameter 8-9
flat transactions 2-5

G
global transactions 7-4
GROUPS section 8-16

H
handling exceptions

EJB applications 5-11
HeuristicHazard exception 2-11
HeuristicMixed exception 2-11

I
ICF file

defining transaction policies 4-2
ignore transaction policy 3-7
Implementation Configuration File (ICF)

defining transaction policies 1-18
implicit propogation, in CORBA applications

2-4
importing packages

EJB applications 1-25
interdomain interoperability 2-5
interoperability

interdomain 2-5
intradomain 2-5
network 2-6
remote clients and WLE domain 2-5

intradomain interoperability 2-5
INVALID_TRANSACTION exception 2-20
InvalidControl exception 2-12
isolation (ACID properties) 1-2

J
Java Naming Directory Interface (JNDI)

EJB applications 1-26
RMI applications 1-29

Java Transaction API (JTA) 1-3, 2-2
Java Transaction Service (JTS) 1-3
JavaServerXA 7-12
JavaServerXA, described 7-3
JDBC standards, supported 7-4
JDBC/XA driver

enabling 7-5
pooled connections 7-3

JNDI
finding the connection pool 7-16

L
lightweight clients

about lightweight clients 2-3
Using Transactions I-3

Application-to-Transaction Monitor
Interface (ATMI)I 2-6

interoperability 2-5
listings

sample GROUPS section 8-17
sample MACHINES section 8-16
sample NETWORK section 8-17
sample RESOURCES section 8-15

local transactions 7-4

M
MACHINES section 8-4, 8-15
Mandatory transaction attribute 5-4
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
multithreading

clients 2-7

N
nested transactions 2-5, 2-20
network interoperability 2-6
NETWORK section 8-16
Never transaction attribute 5-4
never transaction policy 3-6
NoTransaction exception 2-11
NotSupported transaction attribute 5-4
NULL resource manager 3-11

O
OBJ_ADAPTER exception 2-20
object state management 3-10

delegating to an XA RM 3-10
Transactions University sample

application 3-17
ODMG standard 2-7
OMG IDL

Transactions sample CORBA

application 1-15
Open Group XA interface 2-6
open_xa_rm method 3-8
OPENINFO parameter 7-12, 8-7
opening an XA resource manager 3-8
optional transaction policy 3-5, 3-12
Oracle7 3-18
OSI TP protocol 2-6

P
participating in a transaction 5-5
pooled connections 7-3
printing product documentation x
process failure, handling 2-7
programming models, supported 1-2

R
recursive transactions 2-20
related information xi
remote clients and interoperability 2-5
Required transaction attribute 5-4
RequiresNew transaction attribute 5-4
resource manager

closing an XA 3-10
delegating object state management 3-10
NULL 3-11
opening XA 3-8

RESOURCES section 8-14
RMI applications

committing transactions 1-29
general guidelines 6-2
JNDI lookup 1-29
rolling back transactions 1-29
sample code 1-27
starting transactions 1-29
transactions overview 1-11

rolling back transactions
EJB applications 1-27
RMI applications 1-29
I-4 Using Transactions

ROUTING parameter 8-10
ROUTING section 8-17

S
sample applications

Transactions sample CORBA
application 1-13

Server Description File
about the Server Description File 1-19

Server object
supporting databases 1-19
Transactions sample CORBA

application 1-19
SERVERS section 8-17
SERVICES section 8-17
session synchronization 5-10
setTransactionTimeout method 5-11
SNA LU 6.2 protocol 2-7
SRVTYPE parameter 7-13
starting transactions

EJB applications 1-26
RMI applications 1-29

stateful session beans
bean-managed transactions

transaction semantics
 5-9

container-managed transactions
transaction semantics

 5-6
JDBC/XA accessibility 7-10

stateless session beans
bean-managed transactions

transaction semantics
 5-10

container-managed transactions
transaction semantics

 5-7
JDBC/XA accessibility 7-11

SubtransactionsUnavailable exception 2-11
support

technical xi
Supported transaction attribute 5-4

T
terminating transactions 2-4
throwing user-defined exceptions 3-14
TLOG 8-3
TLOGDEVICE parameter 1-23, 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
TMS 3-18

configuring 3-8
Oracle7 3-8
requirements for 3-8

TMSCOUNT parameter 8-7
TMSNAME parameter 8-7
transaction activation policy 3-11
transaction attributes

bean-managed transactions 5-5
container-managed transactions 5-4
described 5-3

transaction log, creating 8-3
Transaction Manager Server

See TMS
transaction policies

always 3-4, 3-12
assigning 3-7
defined 1-18
defining in ICF file 4-2
ignore 3-7
never 3-6
optional 3-5, 3-12
Transactions sample CORBA

application 1-18
transaction semantics 5-5
Transaction Service

about the Transaction Service 2-2
capabilities 2-2
CORBA applications 2-8
Using Transactions I-5

API extensions 2-19
clients supported 2-8

features 1-4
general constraints 2-7
limitations 2-2

transactional objects
defining 3-4

TransactionalObject interface 2-18
TransactionCurrent interface 7-16
TransactionCurrent object

begin method 4-4
code examples 4-3
commit method 4-4
get_status method 4-5
get_transaction_name method 4-5
getcontrol method 4-5
getting initial references to 2-9
methods 4-4
resume method 4-5
rollback method 4-4
rollback_only method 4-4
set_timeout method 4-5
suspend method 4-5

transaction-related parameters in
MACHINES section, defining 8-4

transactions
autocommit 7-6
client CORBA applications 4-2
configuring

AUTOTRAN parameter 8-9, 8-10,
8-13

CMTRET parameter 8-3
creating a transaction log

creating the domain transaction
log 8-5

creating the Universal Device
List (UDL) 8-4

defining transaction-related pa-
rameters in MA-
CHINES section 8-4

defining each resource manager and

the transaction manager
server in GROUPS section
8-6

DMTLOGDEV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
enabling a Tuxedo service to begin a

transaction in the
SERVICES section 8-9

FACTORYROUTING parameter 8-
9

INTERFACES section 8-8
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
modifying the domain configuration

file to support transactions
8-11

modifying the UBBCONFIG file 8-
2

ROUTING parameter 8-10
sample GROUPS section 8-6
specifying application-wide

transactions in
RESOURCES 8-3

TLOGDEVICE parameter 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
transaction log (TLOG) 8-3
transaction values description in

sample GROUPS section
8-6

TRANTIME parameter 8-9, 8-10,
8-13

CORBA applications 1-6
distributed

sample application 8-14
distributed transactions 7-4
EJB applications 1-8
flat transactions 2-5
I-6 Using Transactions

functional overview 1-6
implementing in a WLE server

application
in client applications 4-5
in CORBA client applications 1-7
integrity 2-4
local transactions 7-4
nested 2-20
nested transactions 2-5
object state management 3-10
participating in a transaction 5-5
propagating, in CORBA applications 2-4
recursive 2-20
RMI applications 1-11
termination 2-4
timeouts 5-11
transaction contexts, in JDBC/XA

connections 7-7
transaction processing 2-6
transaction semantics 5-5
when to use transactions 1-5

Transactions CORBA sample application
workflow 1-13

Transactions sample CORBA application
about the Transactions sample CORBA

application 1-13
client application 1-21
development steps 1-15
illustrated 1-13
location 1-15
OMG IDL 1-15
transaction policies 1-18
UBBCONFIG file 1-22
user exceptions 1-13
writing server applications 1-19

Transactions University sample application
about the application 3-15
configuration requirements 3-19
object state management 3-17
transaction model used 3-16

transactions, configuring

CLOSEINFO parameter 8-7
OPENINFO parameter 8-7
TMSCOUNT parameter 8-7
TMSNAME parameter 8-7

trans-timeout-seconds element 5-11
TRANTIME parameter 8-9, 8-10, 8-13
two-phase commit protocol (2PC) 1-4

U
UBBCONFIG file

adding transactions 1-22
JDBCCONNPOOLS section 7-5

UDL 8-4
Unavailable exception 2-12
Universal Device List (UDL) 8-4
unmanaged desktops 2-3
user exceptions

Transactions sample CORBA
application 1-13

user-defined exceptions
about user-defined exceptions 3-13
defining 3-13
throwing 3-14

UserTransaction
committing transactions

EJB applications 1-27
RMI applications 1-29

initializing
EJB applications 1-26

rolling back transactions
EJB applications 1-27
RMI applications 1-29

sample code 1-25, 1-27
starting transactions

EJB applications 1-26
RMI applications 1-29

V
vetoing a transaction 3-11
Using Transactions I-7

W
WLE JDBC/XA driver

about the driver 7-2
accessibility

CORBA methods 7-9
EJB methods 7-9

using 7-12
WLE server applications

and transactions

X
XA resource manager

closing 3-10
delegating object state management 3-10
opening 3-8
Transactions University sample

application 3-18
I-8 Using Transactions

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Introducing Transactions
	Overview of Transactions in WebLogic Enterprise Applications
	ACID Properties of Transactions
	Supported Programming Models
	Supported API Models
	Support for Business Transactions
	Distributed Transactions and the Two-Phase Commit Protocol

	When to Use Transactions
	What Happens During a Transaction
	Transactions in WebLogic Enterprise CORBA Applications
	Transactions in WebLogic Enterprise EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Transactions in WebLogic Enterprise RMI Applications

	Transactions Sample Code
	Transactions Sample CORBA Application
	Workflow for the Transactions Sample Application
	Development Steps

	Transactions Sample EJB Code
	Importing Packages
	Initializing the UserTransaction Object
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Initializing the UserTransaction Object
	Using JDNI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	2 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Transaction Propagation (CORBA Only)
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between Remote Clients and the WebLogic Enterprise Domain
	Intradomain and Interdomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	Multithreaded Transaction Client Support
	General Constraints

	Transaction Service in CORBA Applications
	Getting Initial References to the TransactionCurrent Object
	CORBA Transaction Service API
	Data Types
	Exceptions
	Current Interface
	Control Interface
	TransactionalObject Interface
	Other CORBAservices Object Transaction Service Interfaces

	CORBA Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	Notes on Using Transactions in WebLogic Enterprise CORBA Applications

	Transaction Service in EJB Applications
	Transaction Service in RMI Applications
	UserTransaction API
	UserTransaction Methods
	Exceptions Thrown by UserTransaction Methods

	3 Transactions in CORBA Server Applications
	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Transaction Support in CORBA Applications
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Opening an XA Resource Manager in Java
	Opening an XA Resource Manager in C++

	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database
	When to Assign the Transaction Activation Policy
	Transaction Policies to Use with the Transaction Activation Policy

	User-defined Exceptions
	About User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	How the Transactions University Sample Application Works (C++ Only)
	About the Transactions University Sample Application
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	4 Transactions in CORBA Client Applications
	Overview of WebLogic Enterprise CORBA Transactions
	Summary of the Development Process for Transactions
	Step 1: Use the Bootstrap Object to Obtain the TransactionCurrent Object
	C++ Example
	Java Example
	Visual Basic Example

	Step 2: Use the TransactionCurrent Methods
	C++ Example
	Java Example
	Visual Basic Example

	5 Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-managed Transactions
	Transaction Attributes for Bean-managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	6 Transactions in RMI Applications
	Before You Begin
	General Guidelines

	7 Transactions and the WebLogic Enterprise JDBC/XA Driver
	Before You Begin
	About Transactions and the WebLogic Enterprise JDBX/XA Driver
	Support for Transactions Using the WebLogic Enterprise JDBC/XA Driver
	Pooled Connections
	Characteristics of JavaServerXA
	Supported JDBC Standards

	Local Versus Distributed (Global) Transactions
	Differences Between Local and Distributed Transactions
	Configuring the ENABLEXA Parameter in the UBBCONFIG
	Demarcating Transaction Boundaries for Local and Distributed Transaction Contexts

	Transaction Contexts in WebLogic Enterprise JDBC/XA Connections

	JDBC Accessibility in Java Methods
	JDBC/XA Accessibility in CORBA Methods
	JDBC/XA Accessibility in EJB Methods
	Stateful Session Beans
	Stateless Session Beans
	Entity Beans

	Using the JDBC/XA Driver
	Implementing Distributed Transactions
	Importing Packages
	Initializing the TransactionCurrent Object Reference
	Finding the Connection Pool via JNDI
	Setting Up XA Distributed Transactions
	Performing a Distributed Transaction
	Sequence of Tasks
	The withdraw Method
	The deposit Method

	8 Administering Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Summary of Steps
	Step 1: Specify Application-wide Transactions in the RESOURCES Section
	Step 2: Create a Transaction Log (TLOG)
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log (BEA Tuxedo Servers)

	Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the GROUPS Section
	Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Step 4: Enable an Interface to Begin a Transaction
	Changing the INTERFACES Section (WebLogic Enterprise CORBA Servers)
	Changing the SERVICES Section (BEA Tuxedo Servers)

	Modifying the Domain Configuration File to Support Transactions (WebLogic Enterprise Servers)
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters (WebLogic Enterprise CORBA and Tuxedo Ser...

	Sample Distributed Application Using Transactions
	RESOURCES Section
	MACHINES Section
	GROUPS and NETWORK Sections
	SERVERS, SERVICES, and ROUTING Sections

	Index

