BEA WebLogic Enterprise

Using CORBA Server-to-Server
Communication

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using CORBA Server-to-Server Communication

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document
What Y OU NEed t0 KINOWcceiuiiiiiieeeetie sttt sttt Vii
E-0OCSWED SItE....oceeieeeeeee et s st et e re e viii
How to Print the DOCUMENT..........cee e s st st viii
Related INfOrMation........cccooviiieeeice e st et st ere viii
(0701 = ot AL U LS TR iX
Documentation CONVENLIONScceeueeieeieie e er e s sree s iX
1. Understanding
CORBA Server-to-Server Communication
Overview of CORBA Server-to-Server Communication..........ccoeceveeeevveennens 1-11
Joint Client/Server APPliCatioNS........cccureieeirerenee e 1-12
Object Policies for Callback ODJECLS...........ooiieiiiriie e 1-15
2. Developing C++ Joint Client/Server Applications
DevelOPMENE PIrOCESSc.eiiii ettt eee e see e e e e eeeneenee s 2-2
Chat Room Sample APPlIiCaiON.........oooei i e 2-3
Step 1: Writing the OMG IDL ..o e 2-5
Step 2: Generating Skeletons and Client StUDS............ooooveiiirine e 2-7
Step 3: Writing the Methods That Implement Each Object’s Operations......... 2-9

Step 4: Writing the Client Portion of the Joint Client/Server Application...... 2-11
Step 5: Creating a Callback Object Using the Callbacks Wrapper Object...... 2-13
Step 6: Invoking Operations on an Object By Passing a Reference to the Callback

(@] o= X S SO RUURRPRRN 2-15
Step 7: Specifying Configuration Informationccccciiiiiiiiiiniines 2-15
Step 8: Compiling Joint Client/Server Applicationscccccevereniiiiieieeneenn. 2-17

Using the POA to Create a Callback Object

Using CORBA Server to Server Communications -iii

Creating a Callback Object with a Transient Object Policy..................... 2-18

Creating a Callback Object with a Persistent/User ID Object Policy 2-20
Creating a Callback Object with a Persistent/System ID Object Policy .. 2-22
Threading Considerations for C++ Joint Client/Server Applications............. 2-23
Building and Running the Chat Room Sample Application...........ccccccceeueenne. 2-24
Copying the Files for the Chat Room Sample Application into a Work
DITECLONY ...ttt e et e e en s saesreeeen 2-25
Changing the Protection Attribute on the Files for the Chat Room Sample
PN o] oL o= 1 o] o OSSR PPTRSR 2-26
Verifying the Setting of the TUXDIR Environment Variable................. 2-27
Executing the ChatSetup Command............ccooeeoerirenieeeseereeeie e 2-28
Starting the Server ApPliCatiONcccueiriieiirireee e 2-29
Starting the Client APPliCatioN..........ooeerirerieie e s 2-30
Stopping the Chat Room Sample Application........c.ccevercereieveenecienenne 2-30

3. Developing Java Joint Client/Server Applications

Devel OPMENT PIOCESScuceeieeieeeiie ettt ee e e see e enee s 32
SOftware REQUITEMENES........c.erueiirieeeeeeeee et es e e ete st see e seeseeeeneas 3-3
The Callback Sample ApPliCaIONcoeiireee e e 3-3
Step 1: Writing the OM G IDLc.eoieiiiieie e 3-4
Step 2: Generating Skeletons and Client StUDScc.oveiciriinie e 3-6
Step 3: Writing the Methods That Implement Each Interface’s Operations 3-¢
Step 4: Initializing the ORB ..o 3-11
Step 5: Writing the Client Portion of the Joint Client/Server Application...... 3-12
Step 6: Creating a Callback Object Using the Callbacks Wrapper Object...... 3-1
Step 7: Establishing a Connectionto an ISH............cccooiiiiiie e, 3-1
Step 8: Invoking Operations on the Callback Objectcccccceiiiiiiiniiiinnen. 3-1
Step 9: Specifying Configuration Information ..o, 3-17
Step 10: Compiling Java Joint Client/Server Applicationsccccccceeveienees 3-1¢
Threading Considerations for Java Joint Client/Server Applications 3-1¢
Building and Running the Callback Sample Application............ccccociiinene.n. 3-20
Copying the Files for the Callback Sample Application into a Work Directory
3-20
Changing the Protection Attribute on the Files for the Callback Sample
APPICALION ..ttt 3-22
Verifying the Settings of the Environment Variablesccccveennnnn. 3-23

-iv Using CORBA Server to Server Communications

Executing the runme Command...........cocereroreienenee e
Using the Callback Sample Application............ccccovereiriiinieee e

Index

Using CORBA Server to Server Communications

-V

-vi Using CORBA Server to Server Communications

About This Document

This document describes using the CORBA server-to-server functionality in the BEA
WebLogic Enterprise™ product. This document defines concepts associated with
using server-to-server communication and describes the development process for Java
and C++ joint client/server applications. In addition, instructions for building and
running the Chat Room and Callback sample applications are included in this
document.

This document covers the following topics:

m Chapter 1, “Understanding CORBA Server-to-Server Communication,” explains
the concepts you need to understand to use server-to-server communication and
build joint client/server applications.

m Chapter 2, “Developing C++ Joint Client/Server Applications,” describes
building C++ joint client/server applications and how to build and run the Chat
Room sample application.

m Chapter 3, “Developing Java Joint Client/Server Applications,”describes
building Java joint client/server applications and how to build and run the
Callback sample application.

What You Need to Know

This document is intended for programmers who are interested in implementing
CORBA server-to-server communication in their BEA WebLogic Enterprise
applications.

Using CORBA Server-to-Server Communication Vii

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA
System, Inc. corporate Web site. From the BEA Home page, click the Product

Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise

documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise

documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dittp://www.adobe.corh

Related Information

viii

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see th&febl ogic Enterprise Bibliography in the WebLogic Enterprise
online documentation.

Using CORBA Server-to-Server Communication

Documentation Conventions

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problemsinstalling and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using CORBA Server-to-Server Communication iX

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in asyntax line. The braces themsel ves should

never be typed.

Indicates optiona itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui | dobjclient [-v]
[-1 file-list]...

[-0 name | [-f file-list]...

Using CORBA Server-to-Server Communication

Documentation Conventions

Convention Iltem

| Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using CORBA Server-to-Server Communication Xi

Xii Using CORBA Server-to-Server Communication

CHAPTER

1 Understanding

CORBA
Server-to-Server
Communication

Thistopic includes the following sections:

m Overview of CORBA Server-to-Server Communication
m Joint Client/Server Applications

m Object Policies for Callback Objects

Overview of CORBA Server-to-Server
Communication

CORBA Server-to-server communication allows BEA WebL ogic Enterprise
applications to invoke CORBA objects and handle invocations from those CORBA
objects (referred to as callback objects). The CORBA objects can be either inside or
outside of aBEA WebL ogic Enterprise domain.

Using CORBA Server-to-Server Communication 1-1

1 Understanding CORBA Server-to-Server Communication

The BEA WebL ogic Enterprise product offers an implementation of the Internet
Inter-ORB Protocol (110P) version 1.2, which provides inbound and outbound
communication with the CORBA aobjects. Server-to-server communication provides
more efficient use of network resources and provides integration with third-party
Object Request Brokers (ORBS). In addition, server-to-server communication is
supported with CORBA objects that areimplemented using I lOP versions 1.0 and 1.1.

Joint Client/Server Applications

In previous versions of the BEA WebL ogic Enterprise product, client applications
invoked operations defined in Object Management Group (OM G) I nterface Definition
Language (IDL) on a CORBA object. The server applications implemented the
operations of the CORBA object. The CORBA objects in the server application used
BEA WebL ogic Enterprise TP Framework and environmental objects to implement
state management, security, and transactions. These CORBA objects asreferred to as
BEA WebL ogic Enterprise objects. Server applications could act as client applications
for other server applications; however, client applications could not act as server
applications for other client applications.

Server-to-server communication allows client applications to now act as server
applications for requests from other client applications. In addition, server-to-server
communication allows BEA WebL ogic Enterprise server applicationsto invoke
objects on other ORBs.

The server-to-server communication functionality is available through a callback
object. A callback object has two purposes:

m It invokes operations on either BEA WebL ogic Enterprise or CORBA objects.
m It implements the operations of a CORBA object.

Callback objects do not use the TP Framework and are not subject to BEA WebL ogic
Enterprise administration, they should be used when transactional behavior, security,
reliability, and scalability are not important.

Callback objects are implemented in joint client/server applications. A joint
client/server application consists of the following:

1-2 Using CORBA Server-to-Server Communication

Joint Client/Server Applications

m A portion that performs BEA WebL ogic Enterprise client application functions,
such asinitializing the ORB, using the BEA WebL ogic Enterprise environmental
objectsto establish connections, resolving initial references to the FactoryFinder
object, and using factories to create BEA WebL ogic Enterprise objects

m A portion that creates a servant for a callback object and activates the callback
object using an object ID

Figure 1-1 shows the structure of ajoint client/server application.

Figure1-1 Structureof a Joint Client/Server Application

Joint Client/Server Application WLE Server Application
Create Callback Object Factory
Cal | backs W apper cal |l backobj ;
operation; '\\

WLE Object

>i nvoke_W.Eobj ect (cal | backobj)

Client main() oper ati on;

\
Boot strap /

Fact or yFi nder
create_cal | backobj ;
i nvoke_W_Eobj ect (cal | backobj) ;

C++ and Javajoint client/server applications are supported.

Use of callback objectsin Java appletsislimited due to Java applet security
mechanisms. Any Javaapplet run-time environment that allows a Java applet to create
and listen on sockets (via the proprietary environment or protocol of the Java applet)
can act as ajoint client/server application. However, if the Java applet run-time
environment restricts socket communication, the Java applet cannot act asajoint
client/server application.

Using CORBA Server-to-Server Communication 1-3

1 Understanding CORBA Server-to-Server Communication

Note: TheActiveX client softwarethat isincluded in the BEA WebL ogic Enterprise
V4.2 kit does not support callback objects, and, therefore cannot be used to
develop joint client/server applications.

Joint client/server applications use 110OP to communicate with the BEA WebL ogic
Enterprise server applications. 11OP can work in thefollowing ways, depending on the
version of the IIOP protocol you are using:

m Bidirectiond

Joint client/server applications are always connected to the same | OP Server
Handler (ISH) in the BEA WebL ogic Enterprise domain. That I SH reuses the
same connection to send requests to and receive reguests from the joint
client/server application.

m Dual-paired connection

Joint client/server applications usether egi st er _cal | back_port method of
the Bootstrap object to register the listening port of the joint client/server
application in the ISH. Invocations from server applications on the callback
object in the joint client/server application are routed through the ISH connected
to the joint client/server application. This I SH uses a second outbound
connection to send requests to and receive replies from the connected joint
client/server application. The outbound connection is paired with the incoming
connection. This differs from bidirectional I10P, which uses only one
connection.

m Asymmetric

Joint client/server applications can invoke on any callback object, and are not
restricted to invoking callback objects implemented in joint client/server
applications connected to an ISH. Asymmetric |10P forces the ORB
infrastructure to search for an available ISH to handle the invocation.

Note: Depending on the type of remote object and the desired outbound 110P
configuration, you may have to perform additional programming tasks.
Table 1-1 lists the requirements for each type of object and outbound 110P
configuration.

1-4 Using CORBA Server-to-Server Communication

Object Policies for Callback Objects

Table 1-1 Programming Requirementsfor Using Outbound |1 OP

Types of Asymmetric Paired-connection Bidir ectional Requirements
Objects Requirements Requirements
Remote joint Setl SL CLOPT Usethe Usethe
client/servers - Ooption. Tobj Bootstrap::register CORBA :ORB::create_policy
_cal | back_port methodto method to set Bi Di r Pol i cy onthe
register the callback port. POA.
Foreign Setl SL CLOPT Not applicable. If theforeign ORB supports the POA
(non-WLE) - Ooption. and Bi Di r Pol i cy, usethe
ORBs CORBA: : ORB: : create_policy
method to set Bi Di r Pol i cy onthe
POA.

Remote clients Remote clients are not servers, so outbound 11OP is not possible.

Native joint Outbound I1OP is not used.
client/servers

Nativeclients Outbound I1OPis not used.

For a more detailed description of bidirectional, dual-paired connnection, and
asymmetric 110OP, see the C++ Programming Reference or the Java Programming
Reference.

Object Policies for Callback Objects

Callback objectsare assigned policiesthat control how long an object referenceisvalid
and how an object ID is assigned to the object. Object policies are defined when the
reference to the callback object is created. In addition, they can be defined in the
Callbacks Wrapper object, which simplifies the development of joint client/server
applications.

The following object policies are supported for callback objects:

Using CORBA Server-to-Server Communication 1-5

1 Understanding CORBA Server-to-Server Communication

m Transient/System ID—the object reference for this type of callback object is
valid only for the life of the joint client/server application. The object ID is
assigned by the BEA WebLogic Enterprise system. This type of object is used
for invocations that a joint client/server application wants to receive only until it
terminates.

m Persistent/System ID—the object reference for this type of callback object is
valid across multiple invocations in a joint client/server application. The object
ID is assigned by the BEA WebLogic Enterprise system. This type of object is
useful in joint client/server applications that stop and restart over a period of
time. When the Joint client/server application is up, it can receive requests on a
particular callback object with that object reference. Typically, the joint
client/server application creates the object reference once, saves it in its own
permanent storage area, and reactivates the servant for the object every time the
joint client/server application comes up.

m Persistent/User ID—this object policy is the same as Persistent/System ID,
except that the object ID is assigned by the joint client/server application.

When creating a callback object with an object policy of transient, the object referenc
is valid only until the joint client/server application is terminated or until the
stop_al | _obj ects method is called.

When creating a callback object with an object policy of persistent, the object
reference is valid even after the termination of the joint client/server application. If the
joint client/server application terminates, restarts, and activates a servant for the san
object ID, the servant accepts requests made on that object reference.

Note: If you are creating a native joint client/server application (that is, a joint
client/server application that is located in the same BEA WebLogic Enterprise
domain as the server applications that invoke it), you cannot use the
Persistent/System ID or Persistent/User ID object policies.

1-6 Using CORBA Server-to-Server Communication

CHAPTER

2

Developing C++ Joint
Client/Server
Applications

Thistopic includes the following sections:

Development Process

Chat Room Sample Application

Step 1: Writing the OMG IDL

Step 2: Generating Skeletons and Client Stubs

Step 3: Writing the Methods That Implement Each Object's Operations
Step 4: Writing the Client Portion of the Joint Client/Server Application
Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

Step 6: Invoking Operations on an Object By Passing a Reference to the
Callback Object

Step 7: Specifying Configuration Information

Step 8: Compiling Joint Client/Server Applications

Using the POA to Create a Callback Object

Threading Considerations for C++ Joint Client/Server Applications

Building and Running the Chat Room Sample Application

Using CORBA Server-to-Server Communication 2-1

2 Developing C++ Joint Client/Server Applications

Development Process

Table 2-1 outlines the development process for C++ joint client/server applications.

Table 2-1 Development Process for C++ Joint Client/Server Applications

Step Description

1 Write the OMG IDL for the callback interface and for the
CORBA interfaces you want to use in your BEA WebL ogic
Enterprise application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement each object’s operations.

4 Write the client portion of the joint client/server application.

5 Create a callback object using the Callbacks Wrapper object.

6 Invoke operations on a BEA WebLogic Enterprise object by
passing the object reference for the callback object.

7 Specifying configuration information.

8 Compile the joint client/server application.

These steps are explained in detail in subsequent topics.

Because the callback object in ajoint client/server application is not transactional and
has no object management capabilities, you do not need to create an Implementation
Configuration File (fi I enane. i cf) for it. However, you till need to create an ICF
file for the BEA WebL ogic Enterprise objectsin your BEA Webl ogic Enterprise
application. For information about writing an ICF file, see Creating CORBA C++
Server Applications.

2-2 Using CORBA Server-to-Server Communication

Chat Room Sample Application

Chat Room Sample Application

Throughout this topic, the Chat Room sample application is used to demonstrate the
development steps. A chat roomisan application that allows several peopleat different
locations to communicate with each other. The chat room can be thought of as a
moderator whose job it isto keep track of client applications that have logged in, and
to distribute messages to those client applications.

A client application logsin to the moderator, supplying a user name. When messages
are entered at the keyboard, the client application invokes the moderator, and passes
the messages to the moderator. The moderator then distributes the messagesto all the
other client applications by making an invocation on the callback object.

The Chat Room sample application consists of a C++ joint client/server application
and aBEA WebL ogic Enterprise server application. Thejoint client/server application
receives keyboard input and makes invocations on the moderator. The joint
client/server application al so sets up the callback object to listen for messagesfrom the
moderator (that is, to receive invocations from the moderator). The BEA Webl ogic
Enterprise server application in the Chat Room sample application implements the
moderator.

Figure 2-1 illustrates how the Chat Room sample application works.

Using CORBA Server-to-Server Communication 2-3

2 Developing C++ Joint Client/Server Applications

Figure2-1 How the Chat Room Sample Application Works

Joint Client/Server Application WLE Server Application
Create Listener Object Factory
Cal | backs W apper Listener_obj; :
Listener i: : post < Moderator Object
Moder at or Factory_i : : get _Moder at or
Client main() /’V Moder at or _j : : si gnon(const char* who,
Boot st rap L1 Li stener _ptr call back_ref)
Fact or yFi nder {
create_Li stener_obj; S
get _Mobderator(...); /1 Store call back object
i nvoke_Mbder at or _pt r - >si gnon(cal I backs[i]=_duplicate(call back_ref);
const char* who,
Li stener_ptr cal |l back_obj); }
Mbder at or _i : : send(const char* who,

const char* input_|ine)

{

// I nvoke cal | back
cal I backs[i]->post (who input_line);

Moder at or _i : : si gnoff();

The Chat Room sample application works as follows:

1. Thejoint client/server application implementsthelogic for the calIback object (the
Listener object), createsa servant for the Listener object, and activatesthe Listener
object.

2. Thejoint client/server application creates an object reference for the Listener
object and passes it to the M oderator object as part of the si gnon operation.

3. Theserver application in the Chat Room sample application checks the keyboard
for messages.

4. When messages are generated at the keyboard, the Chat Room sampl e application
sends the messages to the M oderator object viathe send operation.

2-4 Using CORBA Server-to-Server Communication

Step 1: Writing the OMG IDL

5. The Chat Room sample application temporarily passes control over to the ORB
to alow the Listener object in the joint client/server application to receive post
invocations from the Moderator object.

6. The Listener object in the joint client/server application saves the posted
messages until a client application requests them.

The source files for the Chat Room sample application are located in the

W Edi r1sanpl es\ cor ba\ chat r oom directory in the BEA WebL ogic Enterprise
software directory. See “Building and Running the Chat Room Sample Application”
on page 2-24 for more information.

Step 1: Writing the OMG IDL

You use Object Management Group (OMG) Interface Definition Language (IDL) to
describe available CORBA interfaces to client applications. An interface definition
written in OMG IDL completely defines the CORBA interface and fully specifies each
operation’s arguments. OMG IDL is a purely declarative language. This means that it
contains no implementation details. For more information about OMG IDL, see
Creating CORBA Client Applications.

The Chat Room sample application implements the CORBA interfaces listed in
Table 2-2.

Table 2-2 CORBA Interfacesfor the Chat Room Sample Application

Interface Description Operation
Li st ener The callback object post ()
Moder at or Receives input from client applications si gnon()

and uses the callback object to forward send()
messages back to the joint client/server gnof f ()
application

Moder at or Fact ory Creates object references to the get _noder at or ()
Moderator object

Using CORBA Server-to-Server Communication 2-5

2 Developing C++ Joint Client/Server Applications

Listing 2-1 showsthechat cli ent. i dl that definesthe Listener interface.

Listing2-1 OMG IDL for theListener Interface

nodul e Chatd i ent{
interface Listener {
oneway void post (in string from
in string output_line);

}s

Listing 2-2 showsthe chat room i dI that defines the Moderator and
ModeratorFactory interfaces for the Chat Room sample application. The #i ncl ude is
used to resolve references to interfaces in another OMG IDL file. In the Chat Room
sample application, the si gnon method requires a Listener object as a parameter and,
therefore, must use the #i ncl ude to reference the OMG IDL file that definesthe
Listener interface.

Listing2-2 OMG IDL for the Moderator and M oderator Factory I nterfaces

#include "Chatdient.idl"
nmodul e Chat Room {

interface Mdderator {
exception | dA readyUsed{};
excepti on NoRoomLeft{};
excepti on | dNot Known{};

void signon(in string who,
in Chatdient::Listener callback ref)
rai ses(| dAl readyUsed, NoRoonlieft);

void send (in string who,
in string input_line)
rai ses(| dNot Known);

void signoff(in string who)
rai ses(| dNot Known);

2-6 Using CORBA Server-to-Server Communication

Step 2: Generating Skeletons and Client Stubs

i nterface MdderatorFactory {
Moder at or get _noderator(in string chatroomnane);

}s

Step 2: Generating Skeletons and Client
Stubs

The interface specification defined in OMG IDL is used by the IDL compiler to
generate skeletons and client stubs. Note that a joint client/sever application uses the
client stub for the BEA WebL ogic Enterprise object and the skeleton and client stub
for the callback object.

For example, in the Chat Room sampl e application, the joint client/server application
uses the skeleton and client stub for the Listener object (that is, the callback object) to
implement the object. The joint client/server application also uses the client stubs for
for the M oderator and M oderatorFactory to invoke operations on the objects. The BEA
WebL ogic Enterprise server application uses the skeletons for the Moderator and

M oderatorFactory objects to implement the objects and the client stub for the Listener
object to invoke operations on the object.

During the development process, usethei di command with the-Pand-i options
to compile the OMG IDL file that defines the callback object (for example, the
chatclient.idl fileinthe Chat Room sample application). The options work as
follows:

m The - P option creates a skeleton class that inherits directly from the
Por t abl eSer ver : : Ser vant Base class. Inheriting from
Por t abl eSer ver : : Ser vant Base means the joint client/server application must
explicitly create a servant for the callback object and initialize the servant’s state.
The servant for the callback object cannot useathé vat e_obj ect and
deact i vat e_obj ect methods as they are members of the
Por t abl eServer : : Ser vant Base class.

Using CORBA Server-to-Server Communication 2-7

2 Developing C++ Joint Client/Server Applications

m The-i option resultsin an implementation template file being generated. This
fileisatemplate for the code that implements the interfaces defined in OMG

IDL for the Listener object.

Y ou then need to compile the OMG IDL file that defines theinterfaces in the BEA
WebL ogic Enterprise server application (for example, the chatr oom i dl fileinthe
Chat Room sample application). Usethei dI command with only the-i option to

compile that OMG IDL file.

Table 2-3 lists the filesthat are created by thei dI command.

Note: Inthe Chat Room sample application, the generated template files for the

Chatd ient.idl

and Chat Room i dl files have been renamed to reflect the

objects (Listener and M oderator) they implement. In addition, thetemplatefile
for the Moderator object includes the implementation for the
M oderatorFactory object.

Table 2-3 Files Produced by theidl Command

File Filein the Chat Room
Sample Application

Created by theidl
Command

Description

Client stub file Li stener _c.cpp
Li stener_c.h
Moder at or _c. cpp
Moderator_c. h

Contains client stubs for each interface specified in the
OMG IDL file. Theclient stubs are used to send arequest
to an object.

Implementation file Li stener _i.cpp
Moder at or _i . cpp

Contains signatures for the methods that implement the
operations of the Li st ener, Moder at or, and
Moder at or Fact or y interfaces specified in the OMG
IDL file. TheLi stener _i . h filecontains
implementation files that inherit from the

POA Chatdient::Listener class

Skeleton file Li stener _s. cpp
Li stener_s.h
Moder at or _s. cpp
Moder ator _s. h

Contains skeletons for each interface specified in the
OMG IDL file. During run time, the skel eton maps client
reguests to the appropriate operation in the server
application. The Li st ener _s. h file contains
POA_skel et on class definitions (for example,

POA Chatdient::Listener).

2-8 Using CORBA Server-to-Server Communication

Step 3: Writing the Methods That Implement Each Object’s Operations

Step 3: Writing the Methods That Implement
Each Object’s Operations

After you compile each of the OMG IDL files, you need to write methods that
implement the operationsfor each object. In ajoint client/server application, you write
the implementation file for the callback object (that is, the Listener object). Y ou write
the implementation for a callback object as you would write the implementation for
any other CORBA object, except that you use the POA instead of the TP Framework.
Y ou a so writeimplementation filesfor the BEA WebL ogic Enterprise objects(that is,
the Moderator and M oderatorFactory objects) in the BEA WebL ogic Enterprise server

application.

An implementation file contains the following:

Method declarations for each operation specified in the OMG IDL file
Your application’s business logic
Constructors for each interface implementation (implementing these is optional)

Optionally, for BEA WebLogic Enterprise objects, the
com beasys. Tobj _Servant . activate_obj ect and
com beasys. Tobj _Servant . deact i vat e_obj ect methods

Within theact i vat e_obj ect anddeacti vat e_obj ect methods, you write
code that performs any particular steps related to activating or deactivating an
object.

Listing 2-3 includes the implemention file for the Listener object, and Listing 2-4
includes the implementation file for the Moderator and ModeratorFactory objects.

Note: Additional methods and data were added to the implementation file for the

Moderator and ModeratorFactory objects. The template for the
implementation file was created by thell -i command.

Using CORBA Server-to-Server Communication 2-9

2 Developing C++ Joint Client/Server Applications

Listing 2-3 Implementation Filefor the Listener Object

/1 This nodul e contains the definition of the inplenentation class
/IListener_i

#i fndef _Listener_i _h
#define _Listener_i _h
#include "Chatdient_s.h

class Listener i : public POA ChatClient::Listener {
public:

Li stener i ();
virtual ~Listener _i();

voi d post (
const char * from
const char * output_Iline);

b
#endi f

Listing 2-4 Implementation File for Moderator and Moder ator Factory Objects

/1 This nodul e contains the definition of the inplenentation class
/I Moder at or and Moder at or Factory

#i fndef _Mdderator i _h
#define _Mderator_i_h

#i ncl ude "Chat Room s. h"

const int CHATTER LIMT = 5; // the npst chatters all owed
class Modderator_i : public PQA Chat Room : Moder at or {
public:

/1 Define the operations

void signon (const char* who,
Chatd ient::Listener_ptr cal | back_ref);

void send (const char * who,

2-10 Using CORBA Server-to-Server Communication

Step 4: Writing the Client Portion of the Joint Client/Server Application

const char * i nput _line);
voi d signoff (const char * who);
// Define the Framework functions

virtual void activate object (const char* stroid);
virtual void deactivate_object(const char* stroid,
Tobj S: : Deact i vat eReasonVal ue
reason);
private:

// Define function to find nanme on li st
int find(const char * handle);

/1 Define nane of the chat room overseen by the Moderat or
char* m chat r oom nane;

//Data for maintaining |ist

//Chatter[n] id
CORBA: : String chatters[CHATTER LI M T];

//Chatter[n] callback ref
ChatClient::Listener_var call backs[CHATTER LI M T];

b
cl ass MbderatorFactory_i : public POA Chat Room : Moder at or Factory {
publi c:
Chat Room : Mbderat or _ptr get_noderator (const char*
chat room nanme);
h
#endi f

Step 4: Writing the Client Portion of the
Joint Client/Server Application

During development of ajoint client/server application, you write the client portion of
the joint client/server application as you would write any BEA WebL ogic Enterprise
client application. Theclient application needs to include code that does the following:

Using CORBA Server-to-Server Communication 2-11

2 Developing C++ Joint Client/Server Applications

1. Initializesthe ORB. The BEA WebL ogic Enterprise system activates an ORB
using the correct protocal (in this case, [10P).

2. Usesthe Bootstrap object to establish communication with the BEA WebL ogic
Enterprise domain.

3. Resolvesinitial references to the FactoryFinder object.

4. Uses afactory to get an object reference for the desired BEA WebL ogic
Enterprise object (that is, the Moderator object).

The client development steps areillustrated in Listing 2-5, which includes code from
the Chat Room sample application. In the Chat Room sample application, the client
portion of the joint client/server application uses afactory to get an object referenceto
the Moderator object, and then invokesthe si gn_on(), send(), and si gn_of f ()
methods on the M oderator object.

Listing 2-5 Client Portion of the Chat Room Joint Client/Server Application

/llnitialize the ORB
orb_ptr = CORBA::ORB _init(argc, argv, “BEA_IIOP");

/ICreate a Bootstrap object to establish communication with the
/IBEA WebLogic Enterprise domain

bootstrap = new Tobj_Bootstrap(orb_ptr,"™);

/IGet a FactoryFinder object, use it to find a Moderator factory,
/land get a Moderator.

/IUse the Bootstrap object to find the FactoryFinder object

CORBA::Object_var var_factory_finder_oref =
bootstrap->resolve_initial_references("FactoryFinder");

/INarrow the FactoryFinder object

Tobj::FactoryFinder_var var_factory_finder =
Tobj::FactoryFinder::_narrow(var_factory finder_oref.in());

/IUse the FactoryFinder object to find a factory for the Moderator

CORBA::Object_var var_moderator_factory oref =

2-12 Using CORBA Server-to-Server Communication

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

var_factory finder->find_one factory by id(
" Moder at or Factory");

/I Narrow t he Moderator Factory

Chat Room : Moder at or Factory_var var_noderator _factory =
Chat Room : Moder at or Fact ory: : _narrow
var_noderator_factory oref.in());

// Get a Moderat or
/1 The chatroom name is passed as a command |ine paraneter

var _noderator_oref =
var _noderat or _fact ory->get noder at or
(var_chat _room nane.in());

Step 5: Creating a Callback Object Using the
Callbacks Wrapper Object

Since the basic steps for creating a callback object are always the same, the BEA
WebL ogic Enterprise product provides a Callbacks Wrapper object that simplifiesthe
development of callback objects.

The Callbacks Wrapper object does the following:

m Defines the object policy for the callback object. The following object policies
are supported:

e Transient/SystemID (_transi ent)
e Persistent/Systemld (_per si stent/ system d)
e Persistent/Userld (_persi stent/useri d)

For a complete description of the object policies for callback objects, see
“Object Policies for Callback Objects” on page 1-5.

m Creates a servant for the callback object.

Using CORBA Server-to-Server Communication 2-13

2 Developing C++ Joint Client/Server Applications

m Setsthe ORB and the POA to the state in which they will accept requests on the
callback object.

m Returns an object reference to the activated callback object. The object 1d can be
generated by the system or supplied by the user.

m Tellsthe ORB to stop accepting requests on either a single servant or al the
active servants.

For acomplete description of the Callbacks Wrapper object and its methods, see the
CORBA C++ Programming Reference.

Listing 2-6 shows how a Callbacks Wrapper object is used in the Chat Room sample
application.

Listing 2-6 Using the Callbacks Wrapper Object in the Chat Room Sample
Application

/1'Use the Call backs object to create a servant for the
/IListener object, activate the Listener object, and create an
/1 object reference for the Listener object.

BEAW apper: : Cal | backs* cal | backs =
new BEAW apper:: Cal |l backs(orb_ptr);

Listener_i * listener_call back_servant = new Listener _i();
CORBA: : Cbj ect _var v_listener_oref=call backs->start _transient(

|i stener _call back_servant,

Chatdient:: tc_Listener->id());
Chatdient::Listener_var v_listener_call back oref =

Chatd ient::Listener:: narrow

var _listener_oref.in());

2-14 Using CORBA Server-to-Server Communication

Step 6: Invoking Operations on an Object By Passing a Reference to the Callback Ob-

Step 6: Invoking Operations on an Object By
Passing a Reference to the Callback Object

Once you have an object reference to a callback object, you can pass the callback
object reference as a parameter to a method of a BEA WebL ogic Enterprise object. In
the Chat Room sample application, the Moderator object uses an object reference to
the Listener object as a parameter to the si gn_on method. Listing 2-7 illustrates this

step.

Listing 2-7 Invoking the signon Method

/1Sign on to the Chat roomusing a user-defined handle and a
/lreference to the Listener object (the callback object) to receive
/linput fromother client applications |ogged into the Chat room

var _noder at or _r ef erence- >si gnon(handl e,
var _|istener_call back oref.in());

Step 7: Specifying Configuration
Information

When running remote joint client/server applications that use |10P, the object
references for the callback object must contain a host and port number, as follows.

m For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

m For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

Using CORBA Server-to-Server Communication 2-15

2 Developing C++ Joint Client/Server Applications

2-16

The user specifies the port number from the user range of port numbers, rather than
from the dynamic range. Assigning port numbers from the user range prevents joint
client/server applications from using conflicting ports. To specify a particular port for
the joint client/server application to use, include the following on the command line
that starts the process for the joint client/server application:

- ORBport nnn

where nnn isthe number of the port to be used by the ORB when creating invocations
and listening for invocations on the callback object in the joint client/server
application.

Usethiscommand when you want the object referencefor the callback object in ajoint
client/server application to be persistent and when you want to stop and restart thejoint
client/server application. If this command is not used, the ORB uses arandom port. If
the joint client/server application is stopped and then started, invocations to callback
objects in the the joint client/server application will fail.

The port number is part of the input to the ar gv argument of the CORBA: : orb_i ni t
member function. When the ar gv argument i s passed, the ORB readsthat information,
establishing the port for any object references created in that process. Y ou can also use
the Bootstrap object'segi st er _cal | back_port operation for the same purpose.

For a joint client/server application to communicate with a BEA WebL ogic Enterprise
object in the same domain, a configuration file for the server application is needed. Th
configuration file should be written as part of the development of the server
application. The binary version of the configuration file, ThiCONFI G file, must

exist before the joint client/server application is started . TUX€ONFI Gfile is created
using thet mM oadcf command. For information about creating@CONFI G file, see
Getting Sarted and theAdministration Guide.

If you are using a joint client/server application that uses IIOP version 1.0 or 1.1, the
administrator needs to boot the IIOP Server Listener (ISL) with startup parameters the
enable outbound IIOP to invoke callback objects not connected to an IIOP Server
Handler (ISH). The Ooption of the ISL command enables outbound [IOP. Additional
parameters allow administrators to obtain the optimum configuration for their BEA
WebLogic Enterprise application. For more information about the ISL command, see
the Administration Guide.

Using CORBA Server-to-Server Communication

Step 8: Compiling Joint Client/Server Applications

Step 8: Compiling Joint Client/Server
Applications

The final step in the development of ajoint client/server application is to produce the
executable. To do this, you need to compile the code and link against the skeleton and
client stub.

Usethebui | dobj cl i ent command with the - P option to construct ajoint
client/server application executable. To form an executable, the command combines
the client stub for the BEA WebL ogic Enterprise object, the client stub for the callback
object, the skeleton for the callback object, and the implementation for the callback
object with the appropriate POA libraries.

Note: Tousethe - P option of the bui | dobj cl i ent command, you need to have
used the - P option of thei dI command when you created the skeleton and
client stub for the callback object.

Using the POA to Create a Callback Object

Y ou can use the POA directly to create a callback object. Y ou would use the POA
directly when you want to use POA features and object policies not available through
the Callbacks Wrapper object. For example, if you want to use the POA optimization
features, you need to use the POA directly. The following topics describe how to use
the POA to create callback objects with the supported object policies.

Note: Only asubset of the POA interfaces are supported in BEA WebL ogic
Enterprise version 5.1. For alist of supported interfaces, see the CORBA C++
Programming Reference.

Using CORBA Server-to-Server Communication — 2-17

2 Developing C++ Joint Client/Server Applications

Creating a Callback Object with a Transient Object Policy

To usethe POA to create a callback object with atransient object policy, you need to
write code that does the following:

1. Establishes a connection with a POA.

2. Creates achild POA.

Since the root POA does not allow use of bidirectiona 110P, you need to create
achild POA. The child POA can use the defaultsfor Li f espanPol i cy

(TRANSI ENT) and | DAssi gnnent Pol i cy (SYSTEM. You need to specify a

Bi Di r Pol i cy policy of BOTH.

[1OP version 1.2 supports reuse of the TCP/IP connection for both incoming and
outgoing requests. Allowing reuse of a TCP/IP connection is the choice of the
ORB. To allow reuse, you create an ORB policy object that allows reuse of a
TCP/IP connection, and you use that policy object in the list of policies when
initializing an ORB. The policy object is created using the

CORBA: : ORB: : cr eat e_pol i cy operation. For more information about the
CORBA: : ORB: : create_pol i cy operation, seethe CORBA C++ Programming
Reference.

3. Creates aservant for the callback object.

4. Informs the POA that the servant is ready to accept requests for the callback
object.

In this step, the joint client/server application activates the callback object in the
POA using an object ID.

5. Activates the POA.
6. Creates an object reference for the callback object.

7. Makes an invocation on a BEA WebL ogic Enterprise object using the object
reference for the callback object as a parameter to one of the methods of the BEA
WebL ogic Enterprise object.

Listing 2-8 shows the portion of the Chat Room sample application that uses the POA
to create the Listener object.

2-18 Using CORBA Server-to-Server Communication

Using the POA to Create a Callback Object

Listing 2-8 Using the POA to Createthe Listener Object

/] Establ i sh communi cation with the POA

orb ptr = CORBA:: ORB_init(argc, argv, "BEA II1OP");
CORBA: : Pol i cyLi stpolicy list(1);
CORBA: : Any val ;

CORBA: : Cbj ect _ptr o_init_poa;
O init_poa = orb_ptr->resolve_initial _references("Root POA");

/1 Narrow to get the Root PQA
root _poa_ptr = Portabl eServer::PQA:: narrowo_init_poa);

CORBA: : rel ease(o_init_poa);

/1 Specify an I1OP Policy of Bidirectional for the POA

val <<= Bi DirPolicy::BOTH;
CORBA: : Policy ptr bidir_pol _ptr = orb_ptr->create_policy(
Bi Di r Pol i cy: : Bl DI RECTI ONAL_POQOLI CY_TYPE, val);
policy_list.length (1);
policy_list[0] = bidir_pol_ptr;

//Create the BiDirectional POA
bi dir_poa_ptr = root_poa_ptr->create_POA("Bi D r POA",
root _poa_ptr->
t he_PQAManager (),
policy_list);
//Activate the POA
root _poa_ptr->t he_POAManager () ->activate();
/Il Create the Listener object
ChatClient::Listener_var v_listener_callback ref;
/Il Create a servant for Listener object and activate it
listener _cal | back_servant = new Listener_i();
CORBA: : (bj ect _var v_listener_oref;
Portabl eServer:: Qbjectld_var tenp_Od =

bi dir_poa_ptr ->activate_object(listener_callback_servant);

/] Create object reference for the Listener object with a

Using CORBA Server-to-Server Communication — 2-19

2 Developing C++ Joint Client/Server Applications

//system generated Object Id

v_listener_oref = bidir_poa ptr->create reference with_ id

(temp_dA d,
ChatClient:: tc Listener->id());

v_listener_callback ref = ChatClient::Listener:: _narrow

(v_listener_oref.in());

Creating a Callback Object with a Persistent/User ID
Object Policy

To usethe POA to create a callback object with a Persistent/User | D object policy, you
need to write code that does the following:

1
2.

5.

Uses a string to store the user ID and converts the string to the object ID.

Creates achild POA with aLi f espanPol i cy setto PERSI STENT and
| DAssi gnnent Pol i cy set to USERI D.

Creates aservant for the Listener object.

Creates an object reference for the Listener object using the stringified object ID
and the repository Id of the Listener object.

Activates the Listener object.

Note: The Persistent/User ID object policy isonly used with remote joint

client/server applications (that is, ajoint client/server application thatisnotin
aBEA WebL ogic Enterprise domain).

Listing 2-9 shows code that performs these steps.

Note: The code example does not use bidirectional 110P.

2-20 Using CORBA Server-to-Server Communication

Using the POA to Create a Callback Object

Listing 2-9 Example Code for Listener Object with Persistent/User I D Object

Policy

/I Declare a string and convert it to an object Id.
const char* oid_string = “783";

PortableServer::ObjectID_var oid=
PortableServer::string_to_Objectld(oid_string);

/IFind the root POA

CORBA::Object_var oref =
orb_ptr->resolve_initial_references(*RootPOA");
PortableServer::POA_var root_poa =
PortableServer::POA::_narrow(oref);

/ICreate and activate a Persistent/UserlD POA

CORBA::PolicyList policies(2);

policies.length(2);

policies[0] = root_poa->create_lifespan_policy(
PortableServer::PERSISTENT);

policies[1] = root_poa->create_id_assignment_policy(
PortableServer::USER_ID);

PortableServer::POA_var poa_ref =
root_poa->create_ POA(“poa_ref”,
root_poa->the_POAManager(),policies);

root_poa->the_ POAManager()->activate();

/ICreate object reference for the Listener object.

oref = poa_ref->create_reference_with_id(oid,
ChatClient::_tc_Listener->id());

ChatClient::Listener_ptr Listener_oref =
ChatClient::Listener::_narrow(oref);

/ICreate Listener_i servant and activate the Listener object
Listener_i* my_Listener_i = new Listener_i();
poa_ref->activate_object_with_id(oid, my_Listener_i);

/IMake call passing the reference to the Listener object
v_moderator_ref->signon(handle, Listener_oref);

Using CORBA Server-to-Server Communication

2-21

2 Developing C++ Joint Client/Server Applications

Creating a Callback Object with a Persistent/System ID
Object Policy

To usethe POA to create a callback object with a Persistent/System ID object policy,
you need to write code that does the following:

1. Createsachild POA withalLifespanPol i cy settoPERSI STENT and
| DAssi gnnment Pol i cy set to the default.

2. Creates aservant for the Listener object.

3. Creates an object reference for the Listener object using a system generated
object Id (the repository 1d of the Listener object).

4. Activatesthe Listener object.

Note: The Persistent/System ID object policy isonly used with remote joint
client/server applications (that is, ajoint client/server application thatisnotin
aBEA WebL ogic Enterprise domain).

Listing 2-10 shows code that performs these steps.

Listing 2-10 Example Codefor Listener Object with Persistent/System ID
Object Policy

/1 Find the root POA

CORBA: : Obj ect _var oref=
orb_ptr->resolve_initial_references(“RootPOA")

PortableServer::POA_var root_poa =

PortableServer::POA::_narrow(oref);

/ICreate and activate a Persistent/System ID POA

CORBA::PolicyList policies(1);

policies.length(1);

policies[0] = root_poa->create_lifespan_policy(

PortableServer::PERSISTENT);

/IIDAssignmentPolicy is the default so you do not need to specify it

PortableServer::POA_var poa_ref = root_poa->create_ POA(
“poa_ref”, root_poa->the_POAManager(), policies);

root_poa->the_POAManager()->activate();

/ICreate Listener_i servant and activate the Listener object

2-22 Using CORBA Server-to-Server Communication

Threading Considerations for C++ Joint Client/Server Applications

Li stener _i* ny_Listener_i = new Listener_i();
Portabl eServer::Objectld var tenp Od =
poa_ref->activate_object (ny_Listener_i);

/] Create object reference for Listener object with returned
/Il system object Id
oref =
poa_ref->create_reference_wth_id(
tenp_Ad, ChatClient:: tc_Listener->id());
ChatClient::Listener_var Listener_oref =
Chatdient::Listener:: _narroworef);

/1 Make the call passing the reference to the Listener object
v_noder ator _ref->si gnon(handl e, Listener_oref);

Threading Considerations for C++ Joint
Client/Server Applications

A joint client/server application may first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application turns complete control of the thread to the ORB by making the following
invocation:

orb -> run();

If amethod in the server portion of ajoint client/server application invokes

ORB: : shut down(), all server activity stops and control isreturned to the statement
after ORB: : run() isinvokedinthe server portion of thejoint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since a client application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of the joint client/server application. This sharing is accomplished by
occasionally checking with the ORB to seeif thejoint client/server application has
server application work to perform. Use the following codeto perform the check with
the ORB:

if (orb->work_pending()) orb->performwork();

Using CORBA Server-to-Server Communication 2-23

2 Developing C++ Joint Client/Server Applications

After the ORB compl etes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

Y ou should be aware that the ORB cannot service callbacks while the joint
client/server application is blocking on arequest. If ajoint client/server application
invokes an object in another BEA Webl ogic Enterprise server application, the ORB
blockswhileit waitsfor the response. Whilethe ORB isblocking, it cannot service any
callbacks, so the callbacks are queued until the request is completed.

Building and Running the Chat Room
Sample Application

Perform the following steps to build and run the Chat Room sample application:
1. Copy thefilesfor the Chat Room sample application into awork directory.

2. Change the protection attribute on the files for the Chat Room sample
application.

3. Verify the environment variables.
4. Executethe Chat Set up command.

The following sections describe these steps.

2-24 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

Copying the Files for the Chat Room Sample Application
into a Work Directory

Y ou need to copy thefilesfor the Chat Room sample application into awork directory
on your local machine. The files for the Chat Room sample application are located in

the following directories:

Windows NT

drive: | WEdi r\ sanpl es\ cor ba\ chat room

UNIX

/usr/local /WEdirl sanpl es/ cor ba/ chat r oom

Y ou will use the fileslisted in Table 2-4 to build and run the Chat Room sample

application.

Table 2-4 FilesIncluded in the Chat Room Sample Application

File

Description

Chat Room i dl

The OMG IDL code that declares the Mbder at or
and Mbder at or Fact or y interfaces.

Chatd ient.idl

The OMG IDL codethat declaresthe Li st ener
interface.

Listener_i.h
Li stener _i.cpp

The C++ source code for method implementations of
the Listener object in the joint client/server
application.

Moderator _i.h
Moderator _i.cpp

The C++ source code for method implementations of
the M oderator and M oderatorFactory objects in the
BEA WebL ogic Enterprise server application.

Chat d i ent Mai n. cpp

The C++ source code for the joint client/server
application.

Chat RoonfSer ver. cpp

The C++ source code for the BEA WebL ogic
Enterprise server application.

Using CORBA Server-to-Server Communication — 2-25

2 Developing C++ Joint Client/Server Applications

Table 2-4 FilesIncluded in the Chat Room Sample Application

File Description
Keyboar dManager . h The C++ source code that handlesinput from the
Keyboar dvanager . cpp keyboard inthe Chat Room sample application. This

codeisused by Chat d i ent Mai n. cpp.

Chat Room i cf The Implementation Configuration File (ICF) for the
Moderator and ModeratorFactory objectsinthe BEA
WebL ogic Enterprise server application in the Chat
Room sample application.

Chat Room ksh A UNIX script that sets the environment variables
and builds the Chat Room sample application.

Chat Room cnd An MS-DOS command procedure that sets the
environment variables and builds the Chat Room
sample application.

Chat Room k The UNIX operating system makef i | e for the Chat
Room sample application.

Chat Room nt The Windows NT operating system makefil e for
the Chat Room sample application.

Readne. t xt The file that provides the latest information about
building and running the Chat Room sample
application.

Changing the Protection Attribute on the Files for the
Chat Room Sample Application

During the installation of the BEA WebL ogic Enterprise software, the sample
applicationfilesare marked read-only. Beforeyou can edit or build thefilesin the Chat
Room sample application, you need to change the protection attribute of the filesyou
copied into your work directory, as follows:

Windows NT

pronpt>attrib -r drive:|\workdirectory*.*

2-26 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

UNIX
pr onpt >/ bi n/ ksh
ksh pronpt >chnod u+w / wor kdi rectoryl *.*

On the UNIX operating system platform, you a so need to change the permission of
Chat Room ksh to give execute permission to the file, as follows:

ksh pronpt >chnod +x Chat Room ksh

Verifying the Setting of the TUXDIR Environment
Variable

Before building and running the Chat Room sample application, you need to ensure
that the TUXDI R environment variable is set on your system. In most cases, this
environment variable is set as part of the installation procedure. The TUXDI R
environment variable defines the directory path where you installed the BEA

WebL ogic Enterprise software. For example:

Windows NT
TUXDI R=c: \WLEDi r

UNIX
TUXDI R=/ usr/ | ocal / W.EDi r

To verify that theinformation for the environment variabl es defined during install ation
is correct, perform the following steps:

Windows NT

1. Fromthe Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.

Using CORBA Server-to-Server Communication — 2-27

2 Developing C++ Joint Client/Server Applications

5.

The Environment page appears.

Check the setting for TUXDI R.

UNIX

ksh pronpt>printenv TUXDI R

To change the settings, perform the following steps:

Windows NT

1

2.
3.

On the Environment page in the System Properties window, click the TUXDI R
environment variable.

Enter the correct information for the environment variable in the Va ue field.

Click OK to save the changes.

UNIX

ksh pronpt>export TUXDI R=directorypath

Executing the ChatSetup Command

The Chat Set up command automates the following steps:

1
2.
3.
4.

Setting the system environment variables
Creating and loading the configuration file
Compiling the code for the client application

Compiling the code for the server application

Before running the Chat Set up command, you need to check the following:

Ensure that you have the appropriate administrative privileges to build and run
applications.

On Windows NT, make sure nmake isin the path of your machine.

On UNIX, make sure nake isin the path of your machine.

To build and run the sample application, enter the Chat Set up command, as follows:

2-28 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

Windows NT

pronpt >cd workdirectory

pr onpt >Chat Set up. cnd

UNIX

ksh pronpt >cd workdi rectory
ksh pronpt >. / Chat Set up. ksh

Starting the Server Application

Start the server application and the system server processesin the Chat Room sample
application by entering the following command:

pronpt >t nboot -y
This command starts the following server processes:
B TMSYSEVT

The system event broker. This server process is used only by the BEA WebL ogic
Enterprise system.

m TMFFENAME
The following three TMFFNAME server processes are started:

e The TMFFNAME server process started with the - N and - Moptions is the
Master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references. This server
process is used only by the BEA WebL ogic Enterprise system.

e The TMFFNAME server process started with only the - N option is the Slave
NameManager service.

e The TMFFNAME server process started with the - F option contains the
FactoryFinder object.

m Chat Room
The server application process for the Chat Room sample application.
m | SL

The I1OP Listener/Handler process.

Using CORBA Server-to-Server Communication 2-29

2 Developing C++ Joint Client/Server Applications

Starting the Client Application

Start the client application in the Chat Room sample application by entering the
following command:

pronpt >Chat d i ent chatroom name - ORBport nnn

where chat r oom nane isthe name of a chat room to which you want to connect. Y ou
can enter any value. Y ou will be prompted for a handle to identify yourself. Y ou can
enter any value. If the handle you choseis in use, you will be prompted for another
handle.

To optimize the usefulness of the Chat Room sample application, you should run a
second client application using the same chat room name.

To exit the client application, enter \ .

Stopping the Chat Room Sample Application

Before using another sample application, enter the following commands to stop the
Chat Room sample application and to remove unnecessary files from the work
directory:

Windows NT

pronpt >t nshut down -y

pronpt >Adm n\ set env

pronpt >nnake -f Chat Room nt supercl ean
prompt >nmake -f Chat Room nt admni ncl ean
UNIX

ksh pronpt >t nshut down -y

ksh pronpt>. ./Adm n/setenv. ksh

ksh pronpt>nake -f Chat Room nk supercl ean

ksh pronpt>nake -f Chat Room nt adm ncl ean

2-30 Using CORBA Server-to-Server Communication

CHAPTER

3

Developing Java Joint

Client/Server
Applications

Thistopic includes the following sections:

Development Process

Software Requirements

The Callback Sample Application

Step 1: Writing the OMG IDL

Step 2: Generating Skeletons and Client Stubs

Step 3: Writing the Methods That Implement Each Interface’s Operations
Step 4: Initializing the ORB

Step 5: Writing the Client Portion of the Joint Client/Server Application
Step 6: Creating a Callback Object Using the Callbacks Wrapper Object
Step 7: Establishing a Connection to an ISH

Step 8: Invoking Operations on the Callback Object

Step 9: Specifying Configuration Information

Step 10: Compiling Java Joint Client/Server Applications

Threading Considerations for Java Joint Client/Server Applications

Using CORBA Server-to-Server Communication 31

3 Developing Java Joint Client/Server Applications

m Building and Running the Callback Sample Application
m Using the Callback Sample Application

Development Process

Table 3-1 outlines the development process for Java joint client/server applications.

Table 3-1 Development Process for Java Joint Client/Server Applications

Step Description

1 Write the OMG IDL for the calback interface and the CORBA
interfaces you want to use in your BEA WebL ogic Enterprise
application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement each interface’s operations.

4 Initialize the ORB.

5 Write the client main portion of the joint client/server
application.

6 Create a callback object using the Callbacks Wrapper object.

7 Establish communication with an ISH.

8 Invoke operations on the BEA WebLogic Enterprise object by
passing an object reference for the callback object.

9 Specify configuration information.

10 Compile the joint client/server application.

These steps are explained in detail in subsequent topics.

3-2 Using CORBA Server-to-Server Communication

Software Requirements

Because the callback object in ajoint client/server application isnot transactional and
has no object management capabilities, you do not need to create a Server Description
File(fil ename. xm) for it. However, you still need to create a Server Description File
for the BEA WebL ogic Enterprise objects in your BEA WebL ogic Enterprise
application. For information about writing a Server Description File, see Creating
CORBA Java Server Applications.

Software Requirements

Y ou need the Java JDK version 1.2.1 to create Java joint client/server applications.

The Callback Sample Application

Throughout this topic, the Callback sample application is used to demonstrate the
development steps. The callback object in the joint client/server application has a
print_converted method, which accepts a string from the Si npl e object in the
BEA WebL ogic Enterprise server application and prints the string in uppercase and
lowercase |etters.

Figure 3-1 illustrates how the Callback sample application works.

Using CORBA Server-to-Server Communication 3-3

3 Developing Java Joint Client/Server Applications

Figure3-1 How the Callback Sample Application Works

Joint Client/Server Application

Create Callback Object

Cal | backs W apper Call back_obj ;
Cal | back_obj : : print_converted

WLE Server Application

Factory

Simple Object

(string message);

SimpleClient main()
Boot strap
Fact or yFi nder
create_Cal | back_obj;
find_Simple();
Si mpl e. cal | _cal | back

(m xed, Callback_obj ref);

AN

call _call back(String data,

Cal | back_obj ref);
{
cal | back_ref.print_converted
(dat a);
}

The source files for the Callback sample application are located in the
W Edi r | sanpl es\ cor ba\ cal | back_j ava directory of the BEA WebL ogic

Enterprise software. See “Building and Running the Callback Sample Application” on
page 3-20" for more information.

Step 1: Writing the OMG IDL

34

You use OMG IDL to describe available CORBA interfaces to client applications. An
interface definition written in OMG IDL completely defines the CORBA interface and
fully specifies each operation’s arguments. OMG IDL is a purely declarative language
This means that it contains no implementation details. For more information about

OMG IDL, seeCreating CORBA Client Applications.

The Callback sample application implements the CORBA interfaces listed in

Table 3-2.

Using CORBA Server-to-Server Communication

Step 1: Writing the OMG IDL

Table 3-2 CORBA Interfacesfor the Callback Sample Application

Interface Description Operation

Cal | back Accepts a string from the print_converted()
Si npl e objectinthe BEA
WebL ogic Enterprise server
application and prints the string
in uppercase and lowercase

letters
Simpl e Callsthe Callback objectinthe Callsthe Calback object in the
joint client/server application joint client/server application
Si npl eFactory Creates object referencestothe find_si npl e()
Si npl e object

Listing 3-1 showsthesi npl e. i dl filethat defines the Callback, Simple, and
SimpleFactory interfaces in the Callback sample application.

Listing3-1 OMG IDL for the Callback Sample Application

#pragma prefix "beasys.cont
interface Call back

/1 This method prints the passed data in uppercase and | owercase
/lletters.

{
I

interface Sinple

void print_converted(in string nessage);

/Il Call the call back object in the joint client/server application

{

void call_callback(in string val, in Callback
cal | back_ref);

}

Using CORBA Server-to-Server Communication 3-5

3 Developing Java Joint Client/Server Applications

interface SinpleFactory

Sinple find_sinple();
I

Step 2: Generating Skeletons and Client
Stubs

Theinterface specification defined in OMG IDL isused by the IDL compiler to
generate skeletons and client stubs. Note that ajoint client/server application uses the
client stub for the BEA WebL ogic Enterprise objects and the skeleton and client stub
for the callback object.

For example, in the Callback sample application, the joint client/server application
uses the skeleton and the client stub for the Callback object to implement the object.
Thejoint client/server application a so uses the client stubs for for the Simple and
SimpleFactory to invoke operations on the objects. The BEA WebL ogic Enterprise
server application uses the skeletons for the Simple and SimpleFactory objects to
implement the objects and the client stub for the Callback object to invoke operations
on the object.

During the devel opment process, you use the following compilersto build client stubs
and skeletons.

m Youusethei dl t oj ava command supplied with the JDK version 1.2.1 to
compile the OMG IDL file and generate client stubs and skeletons to be used by
the joint client/server application.

m You usethenBi dI t oj ava command to compilethe OMG IDL file and generate
client stubs and skeletons to be used by the BEA WebL ogic Enterprise server
application.

The names of the filesgenerated by thei dI t oj ava and n8i dl t oj ava commands are
the same; however, the content is different. When developing a BEA WebL ogic

Enterprise application that containsajoint client/server application, it isrecommended
that you create two separate directories for each set of client stubs and skeletons. For

3-6 Using CORBA Server-to-Server Communication

Step 2: Generating Skeletons and Client Stubs

the Callback sample application, the files generated by thei dl t oj ava command are
locatedinthecl i ent directory and the filesgenerated by the n8i dI t oj ava command

arelocated in the ser ver directory.

Table 3-3 liststhe files that are generated by the i di t oj ava and the n8i dl t oj ava

commands.

Table 3-3 Files Created by the idltojava and m3idltojava Commands

File

Description

Cal | back. j ava

The Javaversion of the Cal | back OMG IDL
interface. It extends
or g. ong. CORBA. Obj ect .

Cal | backHel per.java

The Java class that provides auxiliary
functionality, notably the nar r ow method.

Cal | backHol der. j ava

The Java class that provides operations for out
and i nout argumentsthat areincluded in
CORBA, but that do not map exactly to Java.

_Cal | backSt ub. j ava

The client stub that implements the
Cal | back. j ava interface.

_Cal | backl npl Base. j ava

The skeleton that implements the

Cal | back. j ava interface. The class
Cal | back! nmpl extends

_Cal | backl npl Base.

Sinple.java

The Javaversion of the Si npl e OMG IDL
interface. It extends or g. ong. CORBA. (bj ect .

Si npl eHel per.java

The Java class that provides auxiliary
functionality, notably the nar r ow method.

Si npl eHol der . j ava

The Java class that provides operations for out
and i nout argumentsthat CORBA has but that
do not match exactly to Java.

_Sinpl eSt ub. j ava

The client stub that implements the
Si npl e. j ava interface.

Using CORBA Server-to-Server Communication 3-7

3 Developing Java Joint Client/Server Applications

File Description

_Si npl el npl Base. j ava The skeleton that implementsthe Si npl e. j ava
interface. The class Si npl el npl extends
_Si npl el npl Base.

Si npl eFactory. j ava The Javaversion of the Si npl eFact ory OMG
IDL interface. It extends
org. ong. CORBA. Obj ect .

Si npl eFact or yHel per. j ava The Java class that provides auxiliary
functionality, notably the nar r ow method.

Si npl eFact or yHol der . j ava The Java class that provides operations for out
andi nout argumentsthat areincluded in
CORBA, but that do not map exactly to Java.

_Sinpl eFactoryl npl Base.java The skeleton that implements the
Si npl eFact ory. j ava interface. The class
Si npl eFact oryl npl extends
_Si npl eFact oryl npl Base.

_Si npl eFactorySt ub. j ava The client stub that implements the
Si npl eFact ory. j ava interface.

The skeleton class that is created by the i di t oj ava command does not inherit from

the TP Framework com beasys. Tobj _Servant class. Instead, the skeleton class

inherits directly from the or g. ong. CORBA. Dynami cl npl enent at i on class.

Inheriting fromcom beasys. Tobj _Ser vant meansthejoint client/server application

must explicitly create a servant for the callback object and initialize the servant’s state
The servant for the callback object cannot useathé vat e_obj ect and

deacti vat e_obj ect methods as they are members of the

com beasys. Tobj _Servant class.

3-8 Using CORBA Server-to-Server Communication

Step 3: Writing the Methods That Implement Each Interface’s Operations

Step 3: Writing the Methods That Implement
Each Interface’s Operations

After you compile the OMG IDL, you need to write methods that implement the
operations of each object. In ajoint client/server application, you write the
implementation file for the callback object. Y ou write the implementation file for a
callback object as you would write the implementation file for any other CORBA
object. Y ou also write the implementation file for the BEA WebL ogic Enterprise
object in your BEA WebL ogic Enterprise application.

An implementation file consists of the following:

m Method declarations for each operation specified in the OMG IDL file
m Your application’s business logic

m Constructors for each interface implementation (optional)

Listing 3-2 includes the implementation file for the Callback object.

Listing3-2 Implementation File for the Callback Object

/1 The inplenmentation file for the Call back object. The Call back
/1 object inplements the print_converted nethod.

cl ass Cal | backl npl ext ends _Cal |l backl npl Base {
/IPrints a string in upper and | ower case
public void print_converted(String data) {

if (data == null)
Systemout.printin("Null String");

el se
{
//Print input data in uppercase
System out . println(data.toUpperCase());
/IPrint input data in | onercase
Systemout . println(data.toLowerCase());
}

Using CORBA Server-to-Server Communication 39

3 Developing Java Joint Client/Server Applications

3-10

Listing 3-3 includes the implementation file for the Simple object.

Listing 3-3 Implementation File for the Simple Object

i nport com beasys. Tobj. TP

/1 The inplenmentation file for the Sinple interface. The Sinple
/linterface inplenents the call _call back method of the Call back
/1 obj ect .

public class Sinplelnpl extends _Sinpl el npl Base

{
public void call _callback(String data, Call back
cal | back_ref)

//Call the print_converted nmethod on the reference to the Call back
/ 1 obj ect

cal | back_ref.print_converted(data);
return;

}

Listing 3-4 includes the implementation file for the SimpleFactory object.

Listing 3-4 Implementation Filefor the SimpleFactory Object

i nport com beasys. Tobj. TP;
/1 The inmplenentation file for the SinpleFactory object. The

/1 Si npl eFactory object provides nmethods to create a Sinple object.

public class SinpleFactorylnpl extends _Sinpl eFactoryl npl Base
{

/1 Create an object reference to a Sinple object.

Using CORBA Server-to-Server Communication

Step 4: Initializing the ORB

public Sinple find_sinple()

try {
org. ong. CORBA. (bj ect sinple_oref =
TP. create_obj ect _reference(
SinpleHel per.id(), // Repository id
"sinple_callback", // object id
nul | /1 routing criteria

)
/1 Send back the narrowed reference.
return SinpleHel per. narrowsi npl e_oref);
} catch (Exception e){
TP. userl og("Cannot create Sinple: " +e.getMessage());

e.printStackTrace();
return null;
}

Step 4: Initializing the ORB

In previousversionsof theBEA WebL ogic Enterpriseproduct, Javaclient applications
used the IDK ORB without modifications. Versions 4.2 and later of the BEA

WebL ogic Enterprise product provide aval ue-added i mplementation of the JDK ORB.
The modificationsto the JIDK ORB include classes and methods that support callback
objects. The classes and methods for the callback objects areinthew ecl i ent. j ar
file located in the following directories:

Window NT
9% edi r % udat aobj \ j ava\ j dk
UNIX

$W edi r/ udat aobj / j ava/ j dk

Using CORBA Server-to-Server Communication 3-11

3 Developing Java Joint Client/Server Applications

To use thismodified JDK ORB, Javajoint client/server applications must set certain
properties. Listing 3-5 contains the command to initialize the JDK ORB with the
correct properties. For moreinformation about the properties used toinitialize the DK
ORB, see the CORBA Java Programming Reference.

Listing 3-5 Initializingthe ORB in the Callback Sample Application

properties prop = new Properties(System getProperties());
prop.put(“org.omg.CORBA.ORBclass”,

“com.beasys.CORBA.iiop.ORB");
prop.put(“org.omg.CORBA.ORBSingletonclass”,

“com.beasys.CORBA.idl. ORBSingleton”);
System.setProperties(prop);

/Nnitialize the ORB

ORB orb = ORB.init(args, prop);

Step 5: Writing the Client Portion of the
Joint Client/Server Application

During development of ajoint client/server application, you write the client portion of
the joint client/server application as you would write any BEA Webl ogic Enterprise
client application. The client application needstoinclude code that doesthe following:

1. Usesthe Bootstrap object to establish communication with the BEA WebL ogic
Enterprise domain.

2. Resolvesinitial referencesto the FactoryFinder object.

3. Usesafactory to get an object reference for the desired BEA WebL ogic
Enterprise object.

The client development steps areillustrated in Listing 3-6, which includes code from
the Callback sample application. In the Callback sample application, the client portion
of thejoint client/server application uses a factory to get an object reference to the
Simple object.

3-12 Using CORBA Server-to-Server Communication

Step 5: Writing the Client Portion of the Joint Client/Server Application

Listing 3-6 The Client Portion of the Callback Sample Application

/] Create a Bootstrap object
Tobj _Bootstrap bootstrap = new Tobj Bootstrap(orb,"");

/Il Create the Bootstrap object. The TOBJADDR system property
/Il defines the host and port.

Tobj _Bootstrap bootstrap = new Tobj Bootstrap(orb, "");
/1 Use the Bootstrap object to find the FactoryFi nder object.

org. ong. CORBA. Obj ect fact _finder_oref =
bootstrap.resolve_initial _references("FactoryFi nder");

/I Narrow t he FactoryFi nder object.

FactoryFi nder fact finder_oref =
Fact or yFi nder Hel per. narrow(fact _fi nder_oref);

/1 Use the FactoryFi nder object to locate a factory for the
/1 Si npl e obj ect.

org.ong. CORBA. Cbj ect sinple_fact_oref =
fact _finder_oref.find one factory by id
(Si npl eFactoryHel per.id());

/I Narrow the factory.

Si npl eFactory sinple_factory_oref =
Si npl eFact or yHel per . narrow si npl e_fact_oref);

//Find the Sinple object.

Sinple sinple = sinple_factory_oref.find_sinple();

Using CORBA Server-to-Server Communication

3-13

3 Developing Java Joint Client/Server Applications

Step 6: Creating a Callback Object Using the
Callbacks Wrapper Object

3-14

To alow the use of outbound 110P in Java joint client/server applications, the JDK
ORB has been extended to implement certain POA functionality. The POA
functionality isimplemented through the Callbacks Wrapper object.

The Callbacks Wrapper object does the following:

m Definesthe object policy for the callback object. The following object policies
are supported:

e Transient/SystemID (_tr ansi ent)
e Persistent/SystemID (_per si st ent/ syst eni d)
e Persistent/UserlD (_persi stent/userid)

For acomplete description of the object policies for callback objects, see
“Object Policies for Callback Objects” on page 1-5.

m Creates a servant for the callback object.
m Sets the ORB to the state in which it will accept requests on the callback object.

m Returns an object reference to the activated callback object. The object Id can b
generated by the system or supplied by the user.

m Tells the ORB to stop accepting requests on either a single servant or all the
active servants.

For a complete description of the Callbacks Wrapper object, s€ORBA Java
Programming Reference.

Listing 3-7 shows how the Callbacks object is used in the Callback sample applicatiot

Listing 3-7 Using the Callbacks Wrapper Object in the Callback Sample
Application

inport java.io.*;
inport java.util.Properties;

Using CORBA Server-to-Server Communication

Step 7: Establishing a Connection to an ISH

i mport org.ong. CORBA. *;

i mport org.ong. CORBA. portabl e. Cbj ect | npl;
i mport com beasys. *;

i mport com beasys. Tobj . *;

i mport com beasys. BEAW apper. Cal | backs;

}}deate the servant for the Call back object

Cal | backl npl cal | back_ref = new Call backl npl ();

/1 Use the Call backs Wapper object to create the callback object
Cal | backs cal | backs = new Cal | backs(orb);

/1 Activate the servant and allow the ORB to accept
/Il cal | back requests.

cal | backs. start _persistent_userid(cal | back_ref,
((Opjectlnpl)call back_ref)._ids() [0],
“mylD”);

Step 7: Establishing a Connection to an ISH

To support [1OP more efficiently in Javajoint client/server applications, the Bootstrap
object supports aregister_callback_port method. This method registers the
callback object in ajoint client/server application with the listening port of an ISH,
causing invocations to the callback object to be routed through the specified ISH.

In this situation, the joint client/server application is using dual-pair connection |1OP.
A joint client/server application that does not perform thisregistration will force server
applicationsthat invokethe callback object in thejoint client/server application to use
asymmetric 11OP, which uses the ORB infrastructure to locate an available | SH.

Note: The callback object must be activated before the register_callback_port
method is called.

Listing 3-8 showshow theregister_callback_port method isused in the Callback
sample application.

Using CORBA Server-to-Server Communication 3-15

3 Developing Java Joint Client/Server Applications

Listing 3-8 Theregister_callback_port Method in the Callback Sample
Application

/I Regi ster the cal |l back port are specified in org.ong. CORBA. ORBport

boot st rap. regi ster _cal |l back_port(cal | back_ref);

Step 8: Invoking Operations on the Callback
Object

Once you have an object reference to a callback object, you pass the callback object
reference as a parameter to a method of a BEA WebL ogic Enterprise object. In the
Callback sampleapplication, the Simple object (the BEA WebL ogic Enterprise object)
uses an object reference to the Callback object as a parameter tothecal | _cal | back
method. Listing 3-9 illustrates this step.

Listing 3-9 Invoking thecall_callback M ethod

/icall the call callback method which invokes the Callback obj ect

sinmple.call _call back(m xed, callback_ref);

3-16 Using CORBA Server-to-Server Communication

Step 9: Specifying Configuration Information

Step 9: Specifying Configuration
Information

When using joint client/server applications, the object references for the callback
object must contain a host and port number, as follows:

m For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

m For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

The ORB is configured by setting the or g. omg. CORBA. ORBPor t System property.
Every time you run the joint client/server application, you must enter the following
commands to set the or g. ong. CORBA. ORBPort System property:

Window NT

java - DTOBJADDR=// Host : Port
- Dor g. ong. CORBA. ORBpor t =por t nunber
- cl asspat h=%CLASSPATH% Joi nt O i ent Ser ver Appl i cat i on

UNIX

java - DTOBJADDR=// Host : Port
- Dor g. ong. CORBA. ORBpor t =por t nunber
-cl asspat h=8CLASSPATH Joi nt d i ent Ser ver Appl i cat i on

The administrator assigns the port number for the joint client/server application from
the user range of port numbers, rather than from the dynamic range. Assigning port
numbers from the user range prevents joint client/server applications from using
conflicting ports.

For Javajoint client/server applications, the administrator needs to boot the I1OP
Server Listener (ISL) with startup parameters that enable outbound 110P to invoke
callback objects not connected to an 110P Server Handler (I1SH). The - O option of the
ISL command enables outbound 11OP. The ISL parameter is defined in the
configuration file. Additional parameters allow administrators to obtain the optimum
configuration for their BEA WebL ogic Enterprise application. For more information
about the ISL command, see the Commands, System Processes, and MIB Reference.

Using CORBA Server-to-Server Communication — 3-17

3 Developing Java Joint Client/Server Applications

Note: The Callback sample application does not demonstrate using asymmetric
[1OP. Therefore, the - O option isnot used in the configuration file.

Step 10: Compiling Java Joint Client/Server
Applications

When creating joint client/server applications, usethej avac command provided with
the JDK 1.2.1 to construct an executable for the joint client/server application. The
command compiles the java source code of the joint client/server application.

When compiling joint client/server applications, you need to include the following
Java ARchive (JAR) filesin your CLASSPATH:

m ThenBenvobj . j ar file, which contains Java versions of the BEA WebL ogic
Enterprise environmental objects

Note: ThenBenvobj.jar fileisinthisdirectory: w edi r\ udat aobj \ j ava\j dk.

m Thew eclient.jar file, which contains the classes and methods for the
Callbacks Wrapper object

For the syntax of the j avac command, seethe CORBA Java Programming Reference.

Y ou use the bui | dj avaser ver command to build the BEA WebL ogic Enterprise
server application that invokes the callback object. For information about compiling
server applications, see Getting Sarted and Creating CORBA Java Server
Applications.

Threading Considerations for Java Joint
Client/Server Applications

Note: The Callback sample application does not use multiple threads.

3-18 Using CORBA Server-to-Server Communication

Threading Considerations for Java Joint Client/Server Applications

Since Java as an execution environment is multithreaded, there is no need to
implement the ORB or g. ong. CORBA. or b. wor k_pendi ng and

or g. ong. CORBA. or b. per f or m wor k methods. These methods throw a

NO_| MPLEMENT exception when a user tries to invoke them. In addition, the

or g. omg. CORBA. or b. r un method does not need to be called. Be awarethat any code
that executes concurrently must be written to be thread-safe.

When using multiple threads in Java, the client functionality of the joint client/server
application starts up in the main thread. The joint client/server application then

activates the callback object using one of the start methods of the Callbacks Wrapper
object. The Callbacks Wrapper object registers the servant for the callback object, and

its associated object ID, in the ORB’s object manager. The joint client/server
application is then free to pass the object reference for the callback object to any
application that may need to invoke the callback object.

Note: The BEA version of the JDK ORB requires an explicit call to one of the start
methods of the Callbacks Wrapper object to initialize the servant for the
callback object and create a valid object ID. This requirement differs from the
base JDK ORB, which allows implicit creation of object references through
theorb. connect method when marshaling an object reference when an
application has not already done so.

Invocations on the callback object are handled by the ORB. As each request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
callback object, since the ORB creates a new thread for each request.

As each request terminates, the thread that runs the servant for the callback object
terminates. The main thread that controls the client functionality of the joint
client/server application can make as many client invocations as it needs. There is no
restriction to prevent other servants defined in the joint client/server application to act
as client applications and invoke on BEA WebLogic Enterprise objects. A call to
stop_al | _obj ect s() merely takes the callback object out of the object manager’s
list, thus preventing any further invocations on the callback object. Any invocation to
a stopped callback object fails as if it never existed.

If the client functionality of a joint client/server application needs to retrieve the results
of a callback from another thread, the client functionality must use normal thread
synchronization techniques.

Using CORBA Server-to-Server Communication 3-19

3 Developing Java Joint Client/Server Applications

If any thread inthejoint client/server applicationinvokesan exi t method, all activity
is stopped and the Java execution environment terminates. It is recommended to only
cal return() toterminate athread.

Building and Running the Callback Sample
Application

To build and run the Callback sample application:

1. Copy thefilesfor the Callback sample application into awork directory.

2. Change the protection attribute on the files for the Callback sample application.
3. Verify the environment variables.

4. Executether unme command.

The following sections describe these steps.

Copying the Files for the Callback Sample Application
into a Work Directory

Y ou need to copy the files for the Callback sample application into awork directory
on your local machine. Thefilesfor the Callback sample application arelocated in the
following directories:

WindowsNT
drive: | WEdi r\ sanpl es\ cor ba\ cal | back_j ava
UNI X

/usr/local /WEdir/ sanpl es/ corbal/ cal | back_j ava

You will use thefiles listed in Table 3-4 to build and run the Callback sample
application.

3-20 Using CORBA Server-to-Server Communication

Building and Running the Callback Sample Application

Table 3-4 FilesIncluded in the Callback Sample Application

File

Description

Sinple.idl

The OMG IDL code that declares the Cal | back,
Si npl e, andSi npl eFact or y interfaces. Thisfile
is copied from the sampl e application directory by
the r unme command file.

Serverlnpl.java

The Java source code that implements the
Server.initialize andServer.rel ease
methods.

Si npl eJCS. j ava

The Java source code for the joint client/server
application in the Callback sample application.

Si npl eFactoryl npl . java

The Javasource code that implementsthe methods of
the Si npl eFact or y object .

Si npl el npl . j ava

The Javasource code that implementsthe methods of
the Si npl e object.

Cal | backl npl . j ava

The Javasource code that implementsthe methods of
the Cal | back object.

Si npl e. xn

The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces. For the Callback sample
application, the Si npl e and Si npl eFactory
interfaces have an activation policy of met hod and
atransaction policy of never .

Readne. t xt

Thefile that provides the latest information about
building and running the Callback sample

application.

runme. crd The Windows NT batch file that builds and runsthe
Callback sample application.

runme. ksh The UNIX Korn shell script that builds and executes

the Callback sample application.

Using CORBA Server-to-Server Communication 3-21

3 Developing Java Joint Client/Server Applications

Table 3-4 FilesIncluded in the Callback Sample Application

File Description

makefil e. mk The UNIX Korn nake file for the Callback sample
application. Thisfileis used to manually build the
Callback sample application. Refer to the
Readne. t xt filefor information about manually
building the Callback sampleapplication. The UNIX
nmake command needs to be in the path of your
machine.

makefil e. nt The WindowsNT nmake filefor the Callback sample
application. This make file can be used directly by
the Visual C++ nmake command. Thisfileisused
to manually build the Callback sample application.
Refer totheReadne. t xt filefor information about
manually building the Callback sample application.
The Windows NT nmake command needs to bein
the path of your machine.

smakefil e. nt The neke filethat is used with the Visual Cafe
smake command for the Callback sample
application.

Note: makefile.nt isincluded by
smakefile.nt.

Note: When running the Callback sample application onthe UNIX operating system,
you need to make sure the nakef i | e isin the path of your machine.

Changing the Protection Attribute on the Files for the
Callback Sample Application

During the installation of the BEA WebL ogic Enterprise software, the sample
application files are marked read-only. Before you can edit or build the filesin the

Callback sample application, you need to change the protection attribute of the files
you copied into your work directory, as follows:

3-22 Using CORBA Server-to-Server Communication

Building and Running the Callback Sample Application

Windows NT

pronpt>attrib -r drive:\workdirectory*.*
UNIX

pr onpt >/ bi n/ ksh

ksh pronpt >chnod u+w / wor kdi rectoryl *.*

On the UNIX operating system platform, you a so need to change the permission of
runne. ksh to give execute permission to the file, as follows:

ksh pronpt >chnod +x runmne. ksh

Verifying the Settings of the Environment Variables

Before building and running the Callback sample application, you need to ensure that
certain environment variables are set on your system. In most cases, these environment
variables are set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect correct information.

Table 3-5 lists the environment variables required to run the Callback sample
application.

Table 3-5 Required Environment Variablesfor the Callback Sample Application

Environment Description
Variable
TUXDI R The directory path where you installed the BEA WebL ogic Enterprise software. For

example:

Windows NT

TUXDI R=c: \ WLEDi r

UNIX

TUXDI R=/ usr/ | ocal / W.EDi r

Using CORBA Server-to-Server Communication 3-23

3 Developing Java Joint Client/Server Applications

Table 3-5 Required Environment Variables for the Callback Sample Application

Environment Description

Variable

JAVA HOVE The directory path where you ingtalled the JDK software. For example:
Windows NT
JAVA HOMVE=c:\ JDK1. 2
UNIX

JAVA HOVE=/usr /| ocal / JDK1. 2

Toverify that theinformation for the environment variables defined during installation
is correct, complete the following steps:

Windows NT
1. From the Start menu, select Settings.
2. From the Settings menu, select the Control Panel.
The Control Panel appears.
3. Click the System icon.
The System Properties window appears.
4. Click the Environment tab.
The Environment page appears.
5. Check the settings for TUXDI Rand JAVA_HOME.
UNIX

ksh pronpt>printenv TUXDI R
ksh pronpt >pri nt env JAVA HOVE

To change the settings, perform the following steps:
Windows NT

1. Onthe Environment pagein the System Properties window, click the environment
variable you want to change, or enter the name of the environment variablein the
Variablefield.

3-24 Using CORBA Server-to-Server Communication

Building and Running the Callback Sample Application

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.
UNIX

ksh pronpt >export TUXDI R=di rect orypat h
ksh pronpt >export JAVA HOVE=di rect or ypat h

Table 3-6 lists additional environment variables that may be set prior to running the
Callback sample application.

Table 3-6 Optional Environment Variablesfor the Callback Sample Application

Environment Description
Variable
HOST The host name portion of the TCP/IP network address used by

the ISL process to accept connections from the ORB. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming reguests; it must be a number between 0 and 65535.
The default is 2468.

| PCKEY The address of shared memory; it must be anumber greater than
32769 unique to this application on this system. The default
value is 55532.

CALLBACK_PORT The TCP port number at which the client application process

listens for incoming callback requests; it must be a number
between 0 and 65535. The default value is 2458.

Executing the runme Command

The r unme command automates the following steps:
1. Setting the system environment variables

2. Loading the UBBCONFI Gfile

Using CORBA Server-to-Server Communication 3-25

3 Developing Java Joint Client/Server Applications

Compiling the code for the client application
Compiling the code for the server application
Starting the server application using the t mboot command

Starting the client application

N oo o &~ W

Stopping the server application using the t nshut down command

Note: You can aso run the Callback sample application manually. The steps for
manually running the Callback sample application are described in the
Readne. t xt file.

To build and run the Callback sample application, enter the r unme command, as
follows:

Windows NT

pronpt >cd workdi rectory

pr onpt >r unme

UNIX

ksh pronpt>cd workdirectory

ksh pronpt>./runmne. ksh
The Callback sample application runs and prints the following messages:

Testing sinpapp
cl eaned up
pr epar ed
bui I t
| oaded ubb
boot ed
ran
shut down
saved results

PASSED

Note: After executing the r unnme command, you may get a message indicating that
the Host, Port, and | PCKEY parameters in the UBBCONFI Gfile conflict with
an existing UBBCONFI Gfile. If this occurs, you need to set these parameters to
different values to get the Callback sample application running on your
machine.

3-26 Using CORBA Server-to-Server Communication

Building and Running the Callback Sample Application

The r unme command starts the following application processes:
B TMSYSEVT

The BEA TUXEDO system event broker.
m TMFFENAME

The following three TMFFNAME server processes are started:

e The TMFFNAME server process started with the - N and - Moptions is the
Master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references.

e The TMFFNAME server process started with only the - N option is the Slave
NameManager service.

e The TMFFNAME server process started with the - F option contains the
FactoryFinder object.

B JavaServer

The server application server process that implements the Si npl eFact ory and
Si npl e interfaces. The JavaServer process has one option, si npl e. j ar, which
is the Java ARchive (JAR) file that was created for the application.

m | SL

The [1OP Listener server process.

Table 3-7 lists the files in the work directory generated by the r unme command.

Using CORBA Server-to-Server Communication — 3-27

3 Developing Java Joint Client/Server Applications

3-28

Table 3-7 Files Generated by the runme Command

File

Description

Si npl eFactory. j ava,

Si npl eFact or yHol der. j ava,

Si npl eFact or yHel per. j ava,
_Si npl eFactoryStub. j ava,

_Si npl eFact oryl npl Base. j ava,
Sinple.java

Si npl eHol der . j ava,

Si npl eHel per.j ava,

_Si npl eSt ub. j ava,

_Si npl el npl Base. j ava,

Cal | back. j ava,

Cal | backHol der. j ava

Cal | backHel per.java
_Cal | backSt ub. j ava
_Cal | backl npl Base. j ava

Client stubs, skeletons, and Java Helper and
Holder classes for the Si npl eFact ory,

Si npl e, and Cal | back interfaces. For a
description of the files, see Table 3-3.

Si npl e. ser

The Server Descriptor File.

Sinple.jar

The server JAR file.

Si npl eJCS. j ar

The JAR file for the joint client/server
application.

.adm . keybd A file that contains the security encryption key
database.
results A generated directory.

Table 3-8listsfilesinther esul t s directory generated by the r unme command.

Table 3-8 Filesin theresultsDirectory Generated by therunme Command

File Description

i nput Contains the input that the r unme command
provides to the Java client application.

out put Containsthe output produced whenthe r unme

Using CORBA Server-to-Server Communication

command executes the Java client application.

Building and Running the Callback Sample Application

Table 3-8 Filesin theresults Directory Generated by the runme Command

File

Description

expect ed_out put

Contains the output that is expected when the
Java client application is executed by the

r unme command. Thedatain the out put file
is compared to the datain the

expect ed_out put filetodetermine whether
or not the test passed or failed.

| og

Contains the output generated by ther unme
command. If ther unme command fails, check
thisfilefor errors.

setenv. cmd

Contains the commands to set the environment
variables needed to build and run the Callback
sampl e application on the Windows NT
operating system platform.

set env. ksh

Contains the commands to set the environment
variables needed to build and run the Callback
sampl e application on the UNIX operating
system platform.

stderr

Generated by thet mboot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

System err. println method sendsthe
output to thest der r fileinstead of to the
ULOGfile.

st dout

Generated by thet mboot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

Syst em out . pri ntl n method sendsthe
output to thest dout fileinstead of to the
ULOGfile.

t neysevt . dat

Containsfiltering and notification rules used by
the TMSY SEVT (system event reporting)
process. Thisfileis generated by thet nboot
command in ther unme command.

Using CORBA Server-to-Server Communication 3-29

3 Developing Java Joint Client/Server Applications

Table 3-8 Filesin theresultsDirectory Generated by therunme Command

File Description

tuxconfig A binary version of the UBBCONFI Gfile.

ubb The UBBCONFI Gfile for the Callback sample
application.

ULOG <dat e> A log file that contains messages generated by

thet nboot command.

Using the Callback Sample Application

This section describes how to use the Callback sample application after the r unme
command is executed.

Run the joint client/server application in the Callback sample application, as follows:

Windows NT

pronpt >t nhoot -y

pronpt >j ava -cl asspat h %CLI ENTCLASSPATH% - DTOBJADDR=%IOBJ ADDR
- Dor g. ong. CORBA. ORBPor t =%4CALLBACK PORT% Si npl eJCS

String?

Hel lo World

HELLO WORLD

hello world

UNIX

ksh pronpt >t nboot

ksh pronpt>java -cl asspat h $CLI ENTCLASSPATH - DTOBJADDR=$TOBJADDR
- Dor g. ong. CORBA. ORBPor t =$CALLBACK_PORT Si npl eJCS

String?

Hel lo World

HELLO WORLD

hello world

Before using another sample application, enter the following commands to stop the
Callback sample application and to remove unnecessary filesfrom the work directory:

3-30 Using CORBA Server-to-Server Communication

Using the Callback Sample Application

Windows NT

pronpt >t nshut down -y

pronpt >nmake -f makefile.nt clean
UNIX

ksh pronpt >t nshut down -y

ksh pronpt >make -f makefile.nk clean

Using CORBA Server-to-Server Communication 3-31

3 Developing Java Joint Client/Server Applications

3-32 Using CORBA Server-to-Server Communication

Index

A

apper 2-14
asymmetric |1OP
defined 1-14

bidirectional 110P
defined 1-14
Bootstrap object
C++ joint client/server applications 2-12
Callback sample application 3-12
Chat Room sample application 2-12
Javajoint client/server applications 3-12
building
C++ joint client/server applications 2-17
Javajoint client/server applications 3-18
buildjavaserver command 3-18
buildobjclient command 2-17

C

C++ joint client/server applications
compiling 2-17
configuration information 2-15
creating a callback object 2-13
development process 2-2
generating skeletons and client stubs 2-7
threading considerations 2-23
using the callback object 2-13, 2-15
using the Callbacks Wrapper object 2-13

Using CORBA Server to Server Communications

writing method implementations 2-9
writing OMG IDL 2-5
writing the client portion 2-11
callback object
defined 1-12
object policies 1-15
using Callbacks Wrapper object to create
2-13,3-14
using POA to create 2-17
Callback sample application
building 3-20
changing protection on files 3-22
client portion 3-13
compiling the Java client application 3-
25
compiling the Java server application 3-
25
description 3-3
illustrated 3-3
implementation files 3-9
loading the UBBCONFIG file 3-25
OMG IDL 3-4
required environment variables 3-23
runme command 3-25
setting up the work directory 3-20
source files 3-20
starting the Java client application 3-30
starting the Java server application 3-30
stopping 3-30
using 3-30
Callbacks Wrapper object

-1

C++ code example 2-14
creating C++ callback object 2-13
creating Java callback object 3-14
description 2-13
Java code example 3-14
cation 2-7
cess 2-7
Chat Room sample application
building 2-24
changing protection on files 2-26
client portion 2-12
description 2-3
illustrated 2-3
implementation filesfor 2-10
invoking the callback object 2-15
loading the UBBCONFIG file 2-28
OMG IDL 2-6
required environment variables 2-27
setting up the work directory 2-25
source files 2-25
starting the server application 2-29
stopping 2-30
using Callbacks Wrapper object 2-14
ChatRoom application process
Chat Room sample application 2-29
client stubs
for C++ joint client/server applications
2-7
for Javajoint client/server applications
3-6
compiling
C++ joint client/server applications 2-17
Callback sample application 3-26
Chat Room sample application 2-28
Javajoint client/server applications 3-18
ctory 2-8
customer support contact information ix

D
derator 2-6

Developing 2-1
Development 3-2
development process
C++ joint client/server applications 2-2
Javajoint client/server applications 3-2
directory location of source files
Callback sample application 3-20
Chat Room sample application 2-25
documentation, where to find it viii
dual-paired connection [1OP
defined 1-14

E

ent 2-20
environment variables
Callback sample application 3-23
CALLBACK_PORT 3-25
Chat Room sample application 2-27
HOST 3-25
IPCKEY 3-25
JAVA_HOME 2-27, 3-23
PORT 3-25
TUXDIR 2-27, 2-28, 3-23

F

figuration 2-15

file protections
Callback sample application 3-22
Chat Room sample application 2-26

G
gnon 2-15

H
he 2-27, 3-23, 3-24

[-2 Using CORBA Server to Server Communications

idl command
generated files 2-8
use with C++ joint client/server
applications 2-7
iditojava command
generated files 3-7
use with Javajoint client/server
applications 3-6
[1OP
asymmetric 1-14
bidirectional 1-14
dual-paired connection 1-14
supported versions 1-12
use in server-to-server communication
1-12
[1OP Server Handler
seeISH 1-14
implementation file
Callback object 3-9
Listener object 2-10
Moderator object 2-10
M oderatorFactory object 2-10
Simple object 3-10
SimpleFactory object 3-10
interfaces
Callback 3-5
Listener 2-5
Moderator 2-5
ModeratorFactory 2-5
Simple 3-5
SimpleFactory 3-5
writing methods to implement
operations 2-9, 3-9
Internet Inter-ORB Protocol
see |lOP 1-12
ISH
connecting to 3-15
useinllOP 1-14
ISL application process

Callback sample application 3-27
Chat Room sample application 2-29
istener 2-21

J

JAR files
m3envobj.jar 3-18
wleclient.jar 3-11, 3-18
Javajoint client/server applications
compiling 3-18
configuration information 3-17
connecting to the ISH 3-15
creating a callback object 3-14
devel opment process 3-2
generating skeletons and client stubs 3-6
initializing the ORB 3-11
register_callback_port method 3-15
software requirements 3-3
threading considerations 3-18
using the callback object 3-16
writing method implementations 3-9
writing OMG IDL 3-4
writing the client portion 3-12
Java ORB
configuring 3-17
initializing 3-12
setting properties 3-12
JAVA_HOME parameter
Callback sample application 3-23
Chat Room sample application 2-27
javac command 3-18
JavaServer application process
Callback sample application 3-27
joint client/server application
defined 1-12
illustrated 1-13
structure 1-12
supported languages 1-13

Using CORBA Server to Server Communications [-3

M

m3envobj.jar 3-18
ma3idltojava command
generated files 3-7
use with Javajoint client/server
applications 3-6
mentation 2-10
mpiling 2-28, 3-26

N

ner 2-22
ng 2-28, 2-29, 2-30, 3-25
nt 3-18

0
object policies
defined 1-15
Persisten/System ID 1-16
Persistent/User ID 1-16
Transient/System ID 1-16
OMG IDL
Callback interface 3-4
Listener interface 2-5
Moderator interface 2-5
ModeratorFactory interface 2-5
Simple interface 3-4
SimpleFactory interface 3-4
OP 3-27

P

POA
creating callback objects 2-17
Persistent/System ID 2-22
Persistent/User ID 2-21
Transient/System ID 2-18
Portable Object Adpater
see POA 2-17
printing product documentation viii

R

reate 2-19
register_callback_port method
use in dual-paired connection 110P 1-14
useinJavajoint client/server application
3-15
related information viii
rtion 2-12
runme command
description 3-25
files generated by 3-27

S
s2-25, 3-20
server applications
starting
Chat Room sample application 2-29
server-to-server communication
callback object 1-12
concepts 1-12
description 1-11
[1OP1-12
skeletons
for C++ joint client/server applications
2-7
for Javajoint client/server applications
3-6
stener 2-6
support
technical ix

T

tener 2-10

TMFFNAME application process
Callback sample application 3-27
Chat Room sample application 2-29

TMSY SEVT application process
Callback sample application 3-27
Chat Room sample application 2-29

-4 Using CORBA Server to Server Communications

TUXDIR parameter
Callback sample application 3-23
Chat Room sample application 2-27

U

UBBCONFIG file
Callback sample application 3-25
Chat Room sample application 2-28

VT 3-27

w

wleclient.jar 3-11
file location 3-11

Using CORBA Server to Server Communications

-5

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding CORBA Server-to-Server Communication
	Overview of CORBA Server-to-Server Communication
	Joint Client/Server Applications
	Object Policies for Callback Objects

	2 Developing C++ Joint Client/Server Applications
	Development Process
	Chat Room Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement Each Object’s Operations
	Step 4: Writing the Client Portion of the Joint Client/Server Application
	Step 5: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 6: Invoking Operations on an Object By Passing a Reference to the Callback Object
	Step 7: Specifying Configuration Information
	Step 8: Compiling Joint Client/Server Applications
	Using the POA to Create a Callback Object
	Creating a Callback Object with a Transient Object Policy
	Creating a Callback Object with a Persistent/User ID Object Policy
	Creating a Callback Object with a Persistent/System ID Object Policy

	Threading Considerations for C++ Joint Client/Server Applications
	Building and Running the Chat Room Sample Application
	Copying the Files for the Chat Room Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Chat Room Sample Application
	Verifying the Setting of the TUXDIR Environment Variable
	Executing the ChatSetup Command
	Starting the Server Application
	Starting the Client Application
	Stopping the Chat Room Sample Application

	3 Developing Java Joint Client/Server Applications
	Development Process
	Software Requirements
	The Callback Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement Each Interface’s Operations
	Step 4: Initializing the ORB
	Step 5: Writing the Client Portion of the Joint Client/Server Application
	Step 6: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 7: Establishing a Connection to an ISH
	Step 8: Invoking Operations on the Callback Object
	Step 9: Specifying Configuration Information
	Step 10: Compiling Java Joint Client/Server Applications
	Threading Considerations for Java Joint Client/Server Applications
	Building and Running the Callback Sample Application
	Copying the Files for the Callback Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Callback Sample Application
	Verifying the Settings of the Environment Variables
	Executing the runme Command

	Using the Callback Sample Application

	Index

