
Using RMI in a

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

WebLogic Enterprise Environment

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using RMI in a WebLogic Enterprise Environment

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Using RMI in a WebLogic Enterprise Environment iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of RMI in BEA WebLogic Enterprise
What Is RMI? .. 1-1

What Is WebLogic RMI on IIOP?... 1-2

What About RMI Clients of EJBs? ... 1-3

Where Can I Learn More About RMI? ... 1-3

What Software and Development Environment Do I Need for BEA WebLogic
Enterprise RMI? ... 1-4

What Is Next? .. 1-4

2. Getting Started with RMI — a Hello World Example
Where Can I Find the RMI Hello World Example?.. 2-1

What Is the RMI Hello World Example and What Do I Need to Run It?......... 2-2

Required Software and Environment ... 2-2

Hello World Files ... 2-3

Building and Running the Hello World Example ... 2-4

Cleaning Up the Directory... 2-8

Understanding the Hello World Example ... 2-8

iv Using RMI in a WebLogic Enterprise Environment

3. Developing RMI Applications in BEA WebLogic Enterprise
Setting Up Your BEA WebLogic Enterprise Development Environment 3-2

Verifying/Setting Environment Variables on Windows NT 3-3

Verifying/Setting Environment Variables on UNIX........................... 3-4

Developing New RMI Classes for a BEA WebLogic Enterprise Application.. 3-5

Step 1: Decide on package names and create directories for the source code
that reflects the package names... 3-5

Step 2: Write the source code for a remote interface 3-6

Step 3: Write the source code for a remote object that implements the remote
interface ... 3-7

Defining the Remote Class.. 3-9

Creating an Instance of the Remote Class... 3-9

Step 4: Write the source code for a client that invokes methods on the remote
object ... 3-10

A Note About Type Narrowing... 3-12

Step 5: Compile the source code files to create the executable RMI classes ..
3-12

Step 6: Run the WebLogic RMI compiler on the implementation class to
generate stubs and skeletons ... 3-13

More About Stubs and Skeletons in WebLogic RMI 3-14

More About the WebLogic RMI Compiler (weblogic.rmic) 3-15

Building Your RMI Application in the BEA WebLogic Enterprise Environment
3-16

Step 1: Create a mechanism for bootstrapping your application.............. 3-17

Writing the Code That Creates and Registers an RMI Object or Factory
3-18

Releasing the Server Application .. 3-19

Step 2: Package your application into a JAR file for deployment
(buildjavaserver).. 3-20

Step 3: Create a UBBCONFIG file and run tmloadcf on it to get an executable
TUXCONFIG file ... 3-22

Step 4: Set application environment variables ... 3-24

Running Your BEA WebLogic Enterprise RMI Application 3-25

Stopping the BEA WebLogic Enterprise Server ... 3-26

Using a Script as a Shortcut for Compile and Build Steps 3-26

Deploying Your Application ... 3-27

Using RMI in a WebLogic Enterprise Environment v

Deploying the Client .. 3-27

Deploying the Server.. 3-29

4. Using RMI with Client-Side Callbacks
Understanding Server-to-Server Communication ... 4-1

Joint Client/Server Applications.. 4-2

When Do I Need to Use Callbacks? .. 4-5

Example of Callbacks in RMI ... 4-5

The RMI Client Interface ... 4-8

The RMI Client .. 4-8

The RMI Remote Interface .. 4-12

The Remote Object (RMI Server) .. 4-12

Running the RMI Callback Example ... 4-14

Extra Files Needed to Run the Callback Example 4-17

5. Using RMI with EJBs
EJBs and Clients of EJBs .. 5-3

Client Callbacks from EJBs... 5-3

Clients of EJBs and BEA WebLogic Enterprise RMI Servers.......................... 5-3

A Note About Type Narrowing ... 5-4

Where Can I Find Examples of Clients of EJBs?.. 5-4

6. Converting Sun JavaSoft RMI to BEA WebLogic Enterprise
RMI Classes

Step 1: Modify the Java source code files ... 6-2

HelloImpl.java—A Remote Object Implementation 6-2

HelloClient.java—A Client That Invokes Methods on the Remote Object6-3

Step 2: Compile the Java source files.. 6-4

Step 3: Run the WebLogic RMI compiler on the implementation class........... 6-4

Step 4: Build and package the application for BEA WebLogic Enterprise 6-5

7. The BEA WebLogic Enterprise RMI API
Overview of BEA WebLogic Enterprise RMI Packages 7-2

Other Java Packages Related to BEA WebLogic Enterprise RMI.................... 7-4

What Is Different in BEA WebLogic Enterprise RMI API?............................. 7-5

API Differences.. 7-7

vi Using RMI in a WebLogic Enterprise Environment

Connection Bootstrapping and Security Differences 7-9

JNDI Environment Properties ... 7-10

JNDI Property Keys for BEA Tuxedo Style Authentication 7-13

Tool Differences... 7-14

Configuration Differences .. 7-15

A. Java Server Startup
Startup/Shutdown Classes .. A-1

JAR Tool / XML... A-2

UBBCONFIG ... A-3

B. Using a Startup Properties File
XML File .. B-2

Properties File—startup.properties ... B-2

ServerImpl Class... B-3

Index

Using RMI in a WebLogic Enterprise Environment vii

About This Document

This document describes BEA WebLogic RMI on IIOP and explains how to develop
RMI applications in a BEA WebLogic Enterprise™ environment.

This document covers the following topics:

n Chapter 1, “Overview of RMI in BEA WebLogic Enterprise,” gives a brief
introduction to remote method invocation (RMI) for distributed object systems,
details the advantages of BEA BEA WebLogic Enterprise RMI on IIOP over
other flavors, discusses RMI on IIOP in terms of Enterprise JavaBeans (EJB)
design considerations and the Java 2 Enterprise Edition (J2EE) platform, and
gives a roadmap for working through the remainder of this guide.

n Chapter 2, “Getting Started with RMI — a Hello World Example,” takes you
through a simple example of using RMI in BEA WebLogic Enterprise.

n Chapter 3, “Developing RMI Applications in BEA WebLogic Enterprise,”
provides step-by-step instructions on how to develop new RMI classes for BEA
WebLogic Enterprise, and how to build and run your new BEA WebLogic
Enterprise application.

n Chapter 4, “Using RMI with Client-Side Callbacks,” describes how to use
client-side callbacks in BEA WebLogic Enterprise, and in particular how this
comes in handy for EJB implementations.

n Chapter 5, “Using RMI with EJBs,” explains how RMI relates to the EJB
paradigm.

n Chapter 6, “Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI
Classes,” explains how to convert your existing Sun Microsystems JavaSoft RMI
classes to function as BEA WebLogic Enterprise RMI objects.

n Chapter 7, “The BEA WebLogic Enterprise RMI API,” describes the application
programming interface (API) for RMI.

viii Using RMI in a WebLogic Enterprise Environment

n Appendix A, “Java Server Startup,” provides information about the use of JAR
files in JavaServer startup.

n Appendix B, “Using a Startup Properties File,”explains how to use an optional
startup properties file.

What You Need to Know

This document is intended mainly for developers who are interested in using BEA
WebLogic Enterprise to create distributed RMI on IIOP applications that work with
EJBs. It assumes a familiarity with the BEA WebLogic Enterprise platform and Java
programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document

How to Print the Document

Using RMI in a WebLogic Enterprise Environment ix

(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Enterprise documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see the BEA WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

For more general information about RMI, refer to the Sun Microsystems, Inc. Java site
at http://java.sun.com/.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

x Using RMI in a WebLogic Enterprise Environment

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

Documentation Conventions

Using RMI in a WebLogic Enterprise Environment xi

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 1-1

CHAPTER

1 Overview of RMI in
BEA WebLogic
Enterprise

This topic includes the following sections:

n What Is RMI?

n What Is WebLogic RMI on IIOP?

n What About RMI Clients of EJBs?

n Where Can I Learn More About RMI?

n What Software and Development Environment Do I Need for BEA WebLogic
Enterprise RMI?

n What Is Next?

What Is RMI?

Remote Method Invocation (RMI) is a Java-based programming paradigm and
application programming interface (API) for distributed object computing and Web
connectivity. RMI allows an application to obtain a reference to an object that exists
elsewhere on the network but then invoke methods on that object as though it existed

1 Overview of RMI in BEA WebLogic Enterprise

1-2 Using RMI in a WebLogic Enterprise Environment

locally on the client’s Java virtual machine. So, products, services, and resources can
exist anywhere on the network but appear to the programmer and the end user to be
part of the local environment.

With RMI, a client object can call a remote object in a server, and that server can also
be a client of other remote objects. RMI uses some form of Java serialization to
marshal (encode) and unmarshal (decode) parameters sent across a network.
Serialization is a way of encoding parameters into a byte stream for delivery across a
network.

What Is WebLogic RMI on IIOP?

The BEA WebLogic Enterprise development platform provides remote method
invocation (RMI) as one of the standard services of a Java 2 Enterprise Edition (J2EE)
implementation. For this release, BEA WebLogic Enterprise provides its own protocol
of WebLogic RMI on the Object Management Group’s industry-standard Internet
Inter-Orb Protocol (IIOP). IIOP is a protocol that enables browsers and servers to
exchange integers, arrays, and more complex objects, unlike HTTP which supports
only transmission of text.

The primary advantage of the BEA WebLogic Enterprise implementation of RMI on
IIOP is that it allows application developers to write remote interfaces between BEA
WebLogic Enterprise clients and EJB servers, using a natural Java API. By making a
few code enhancements, developers can also convert their legacy Java client/RMI
server applications to work in BEA WebLogic Enterprise. BEA WebLogic Enterprise
RMI clients can talk to EJBs and traditional RMI server objects.

BEA WebLogic Enterprise RMI has the following characteristics and capabilities:

n Flows over an IIOP transport—firewalls configured to support IIOP traffic will
accept WebLogic RMI on IIOP messages as standard IIOP messages.

n Uses the J2EE JNDI service for bootstrapping—in order for a client program to
make a call on a remote object, the client needs to obtain a reference to the
remote object. Traditional RMI uses the Java Naming Service to do this. In BEA
WebLogic Enterprise RMI, a client gets a reference to a remote object by
looking it up via the J2EE Java Naming and Directory Service (JNDI). A client
can also get a reference to a remote object by receiving the reference as an
argument or a return value.

What About RMI Clients of EJBs?

Using RMI in a WebLogic Enterprise Environment 1-3

n Enables clients to talk to EJBs—all clients of EJBs use RMI on IIOP.

n Provides support for maintaining a transaction context between clients and
remote EJBs or RMI servers—the BEA WebLogic Enterprise system supports
the Java Transaction API (JTA).

For this release, WLE IIOP does not pass Objects by Value which is needed for full
CORBA interoperability support. Instead, BEA WebLogic Enterprise RMI on IIOP
passes serialized objects as in traditional RMI. Therefore, this release of BEA
WebLogic Enterprise does not support complete interoperability between Java clients,
EJBs, and CORBA objects.

What About RMI Clients of EJBs?

All clients of Enterprise Java Beans (EJB) use RMI on IIOP. Creating a client to an
EJB server is essentially the same as creating an RMI client to a traditional RMI server.
For more information on this, see the topic “Using RMI with EJBs” on page 5-1. For
examples of clients of EJBs using RMI on IIOP to talk to EJB servers, see the BEA
WebLogic Enterprise 5.1 Guide to EJB Sample Applications in the BEA WebLogic
Enterprise online documentation.

Where Can I Learn More About RMI?

For more information about remote method invocation, refer to the Sun Microsystems,
Inc. Java site at http://java.sun.com/.

1 Overview of RMI in BEA WebLogic Enterprise

1-4 Using RMI in a WebLogic Enterprise Environment

What Software and Development
Environment Do I Need for BEA WebLogic
Enterprise RMI?

Before you can start developing BEA WebLogic Enterprise RMI applications, you
need the following:

n BEA WebLogic Enterprise installed on your system

n Java Development Kit (JDK) 1.2 installed on your system

n Environment variables set appropriately

n CLASSPATH and PATH set to include the appropriate BEA WebLogic
Enterprise and JDK pathnames

For information on installing BEA WebLogic Enterprise, see the product installation
guide.

For more information on setting up your development environment, see the topic
“Setting Up Your BEA WebLogic Enterprise Development Environment” on page
3-2.

For information on the JDK, refer to the Sun Microsystems, Inc. Java site at
http://java.sun.com/.

What Is Next?

The following topics are covered in this guide for BEA WebLogic Enterprise RMI on
IIOP:

n Getting Started with RMI — a Hello World Example—if this is your first time
using RMI, or if the BEA WebLogic Enterprise development environment is
new to you, we suggest that you start by working through the Hello World

What Is Next?

Using RMI in a WebLogic Enterprise Environment 1-5

example. This covers the basics of using remote objects in the BEA WebLogic
Enterprise environment.

n Developing RMI Applications in BEA WebLogic Enterprise—this section
details the steps you need to follow to develop, build and run RMI applications
in BEA WebLogic Enterprise. The Hello World example is used as a touchstone.

n Using RMI with Client-Side Callbacks

n Using RMI with EJBs

n Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

n The BEA WebLogic Enterprise RMI API

For more information about using transactions in your RMI applications, see Using
Transactions in the BEA WebLogic Enterprise online documentation.

1 Overview of RMI in BEA WebLogic Enterprise

1-6 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 2-1

CHAPTER

2 Getting Started with
RMI — a Hello World
Example

This example provides a distributed version of the classic Hello World program using
remote method invocation (RMI) in a BEA WebLogic Enterprise environment.

This topic includes the following sections:

n Where Can I Find the RMI Hello World Example?

n What Is the RMI Hello World Example and What Do I Need to Run It?

n Building and Running the Hello World Example

n Cleaning Up the Directory

n Understanding the Hello World Example

Where Can I Find the RMI Hello World
Example?

In addition to the fully supported examples supplied on the CD-ROM with this release
of BEA WebLogic Enterprise, several unsupported code examples are provided on a
password-protected Web site for BEA WebLogic Enterprise customers. You can get

2 Getting Started with RMI — a Hello World Example

2-2 Using RMI in a WebLogic Enterprise Environment

all the files for the BEA WebLogic Enterprise RMI Hello World example from this
Web site. The URL for the unsupported samples BEA WebLogic Enterprise Web site
is specified in the product Release Notes under “About This BEA WLE Release” in
the subsection “Unsupported Samples and Tools Web Page.” On the samples Web
page, the RMI HelloWorld example is in a directory similar to the following:

/unsupported/samples/rmi/helloworld

What Is the RMI Hello World Example and
What Do I Need to Run It?

The BEA WebLogic Enterprise RMI Hello World example is a simple application for
demonstrating remote method invocations in a distributed BEA WebLogic Enterprise
environment. The example shows a client making a remote method call to a server
object running on the host. When you run the client at the command line, “Hello
World!” is displayed in response.

Required Software and Environment

To run the BEA WebLogic Enterprise RMI Hello World example, you need BEA
WebLogic Enterprise installed on your system and the appropriate environment
variables set. The Hello World example does some automated environment setup for
you, so for now the only variables you should need to check are these:

n Make sure TUXDIR is set to the full pathname of the directory where you
installed the BEA WebLogic Enterprise software

n Make sure JAVAHOME is set to the full pathname of the directory where you
installed the JDK software

For complete information on how to verify these settings, see the topic “Setting Up
Your BEA WebLogic Enterprise Development Environment” on page 3-2.

What Is the RMI Hello World Example and What Do I Need to Run It?

Using RMI in a WebLogic Enterprise Environment 2-3

Hello World Files

The files needed for this example are supplied on the BEA WebLogic Enterprise
unsupported samples Web site. You can get the URL for this Web site, and other
related information about it, from the product Release Notes.

The files included are shown in Table 2-1.

Table 2-1 Hello World Files

File Description

examples/hello/Hello.java A remote interface.

examples/hello/HelloImpl.java A remote object implementation that implements
examples.hello.Hello.

examples/hello/HelloClient.java A client that invokes the remote method, sayHello.

ServerImpl.java Registers the RMI implementation with the BEA WebLogic
Enterprise server at startup.

server.xml Server description file, which provides information about the
BEA WebLogic Enterprise application required by the
buildjavaserver command. When you run the runme
script, one of the things it does is package the generated class
files into a JAR file by running the BEA WebLogic Enterprise
command buildjavaserver on the server.xml file.

runme.cmd
runme.ksh

Windows (DOS) and UNIX scripts, respectively, that you can
run to build and run the Hello World example. The runme
script calls on all other files listed here, and generates new files.

clobber.cmd
clobber.ksh

Windows (DOS) and UNIX scripts, respectively, that you can
run to remove files generated by the Hello World example.

2 Getting Started with RMI — a Hello World Example

2-4 Using RMI in a WebLogic Enterprise Environment

Building and Running the Hello World
Example

We suggest that first you just find the Hello World RMI example (on the Web site
indicated in the product Release Notes), build it, and run it. This is an easy way to get
familiar with WebLogic RMI on IIOP.

To build and run the Hello World example do the following:

1. Make sure BEA WebLogic Enterprise is installed on your local system, and that the
following environment variables are set to indicate the appropriate paths:

l JAVA_HOME—set to the full pathname of your Java Development Kit (JDK)

l TUXDIR—set to the full pathname of your WLE installation directory

The Hello World example script automatically sets the TUXCONFIG environment
variable for you, so you do not need to set this variable now. The TUXCONFIG
variable indicates the location of the TUXCONFIG file for the WLE application
you want to run, in this case our Hello World example application. The script
also adds the HelloWorld application classes to your CLASSPATH, and the
required paths for TUXDIR and the JDK bin to your PATH.

2. Copy the RMI helloworld directory and files from the WLE Unsupported
Samples Web page onto your local system.

The URL for the unsupported samples BEA WebLogic Enterprise Web site is
specified in the product Release Notes under “About This BEA WLE Release”
in the subsection “Unsupported BEA WebLogic Enterprise Samples and Tools
on BEA Web Site.” On the samples Web page, the RMI HelloWorld example is
in a directory similar to the following:

/unsupported/samples/rmi/helloworld

3. Change directories (cd) to your local BEA WebLogic Enterprise RMI Hello
World example and type the following at the command-line prompt:

runme

Running this script compiles, builds, and runs the RMI Hello World example.
You should see output similar to the following, as a result of running the runme
script.

Building and Running the Hello World Example

Using RMI in a WebLogic Enterprise Environment 2-5

C:\myWLEapps\rmi\helloworld>runme
Setting up for RMI HelloWorld sample.
--- Verifying some variables...
--- Creating setenv.cmd...
--- Creating ubbconfig...
--- Creating run_client.cmd...
--- Compiling Java sources...
--- Generating Stub and Skeleton...
--- Building the Jar...
--- Creating tuxconfig...
--- Booting WLE...
Booting all admin and server processes in
C:\myWLEapps\rmi\helloworld\tuxconfig
INFO: BEA Engine, Version 2.4
INFO: Serial #: 123456789, Expiration 2000-06-21, Maxusers 200
INFO: Licensed to: Samantha Stevens

Booting admin processes ...

exec BBL -A :
 process id=271 ... Started.

Booting server processes ...

exec TMSYSEVT -A :
 process id=239 ... Started.
exec TMFFNAME -A -- -N -M :
 process id=240 ... Started.
exec TMFFNAME -A -- -N :

 process id=243 ... Started.
exec TMFFNAME -A -- -F :
 process id=284 ... Started.
exec JavaServer -A :
 process id=225 ... Started.
exec ISL -A -- -n //SAMS:2468 :
 process id=274 ... Started.
7 processes started.
--- Running the RMI Client... (Should say "Hello World!")...
Hello World!
--- Shutting down WLE...
Shutting down all admin and server processes in C:\myWLEapps\rmi\helloworld

Shutting down server processes ...
Server Id = 5 Group Id = GROUP1 Machine = simple: shutdown succeeded
Server Id = 6 Group Id = GROUP2 Machine = simple: shutdown succeeded
Server Id = 4 Group Id = GROUP1 Machine = simple: shutdown succeeded
Server Id = 3 Group Id = GROUP1 Machine = simple: shutdown succeeded
Server Id = 2 Group Id = GROUP1 Machine = simple: shutdown succeeded
Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded
Shutting down admin processes ...

2 Getting Started with RMI — a Hello World Example

2-6 Using RMI in a WebLogic Enterprise Environment

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded
7 processes stopped.
--- Finished.
C:\rmiHelloExample\helloworld>

 Some of the tasks performed by the script are:

l Sets up your BEA WebLogic Enterprise environment. This includes setting
WLE environment variables, and creating a UBBCONFIG file based on your
system name. The UBBCONFIG file is used to generate a TUXCONFIG file.

l Generates a directory called classes (if it does not already exist) and adds
the classes directory in your local CLASSPATH (if it is not already
included).

l Runs the javac compiler on the examples/hello/*.java files to generate
executable Java class files, and puts the generated class files under a
directory called classes.

l Runs the command java weblogic.rmic on the implementation class
HelloImpl.class file to generate an RMI client stub and RMI server
skeleton.

l Packages the class files into a JAR file by running the buildjavaserver
command on server.xml.

l Boots the WLE server (tmboot -y).

l Runs the RMI client.

l Stops the WLE server (tmshutdown -y).

Notice also that as a result of running the runme script, you get several new files. Some
of the more interesting ones are shown in Table 2-2.

Table 2-2 Files Produced by the Hello World Example Runme Script

Generated File(s) Description

Java class files in
classes/examples/helloworld/

The classes Hello.class, HelloClient.class, and
HelloImpl.class were created by running the javac
command on Hello.java, HelloClient.java, and
HelloImpl.java, respectively.

Building and Running the Hello World Example

Using RMI in a WebLogic Enterprise Environment 2-7

For more information about these files, refer to Chapter 3, “Developing RMI
Applications in BEA WebLogic Enterprise.”

RMI stub and skeleton classes in
classes/examples/helloworld/

Hello_WLStub.class is a proxy for the client and
Hello_WLSkel.class is a proxy class for the server. These
class files were created by running the command java
weblogic.rmic on the fully qualified package name of the
implementation class, HelloImpl.class (Java
weblogic.rmic examples.hello.HelloImpl).

classes/ServerImpl.class Registers the application at startup. This was created by
running the javac command on ServerImpl.java.

server.jar The Hello World application packaged into a Java ARchive
(JAR) file for deployment. This was created by running the
buildjavaserver command on the file server.xml.

server.ser Serialized version of the server-implementation as specified in
the server-descriptor-name section of the
server.xml file. running the buildjavaserver
command on the file server.xml.

UBBCONFIG file ASCII version of the BEA WebLogic Enterprise application
configuration file containing parameters that the WLE software
interprets to create an executable application.

TUXCONFIG file Binary version of the BEA WebLogic Enterprise application
configuration file. This was generated by running tmloadcf
on the UBBCONFIG file.

setenv.cmd
setenv.ksh

Windows (DOS) and UNIX commands to set the BEA
WebLogic Enterprise specific environment variables APPDIR
and TUXDIR based on your current environment.

run_client.cmd
run_client.ksh

Windows (DOS) and UNIX commands to run the client with
appropriate arguments.

Table 2-2 Files Produced by the Hello World Example Runme Script (Continued)

Generated File(s) Description

2 Getting Started with RMI — a Hello World Example

2-8 Using RMI in a WebLogic Enterprise Environment

Cleaning Up the Directory

If you want to start over, you can quickly remove all generated files from the example
directory by running the following command in the helloworld directory:

clobber

Running the clobber command removes all generated files for the Hello World
example, leaving only the original example files: the Java source files, server.xml
file, and the runme commands for Windows and UNIX.

Understanding the Hello World Example

After you successfully run the RMI Hello World example, you can walk through the
process used to create it by referring to Chapter 3, “Developing RMI Applications in
BEA WebLogic Enterprise.” This topic steps through the entire development and
run-time process using the Hello World files as an example.

Each of the key Java source code files is explained in detail in the following subtopics:

n Hello.java is explained in Step 2: Write the source code for a remote interface

n HelloImpl.java is explained in Step 3: Write the source code for a remote
object that implements the remote interface

n HelloClient.java is explained in Step 4: Write the source code for a client
that invokes methods on the remote object

This topic also explains how to compile the Java source files with the javac compiler,
how to generate stubs and skeletons with the WebLogic RMI compiler, package the
class files into a BEA WebLogic Enterprise application, and build and run the
application in the BEA WebLogic Enterprise environment.

Using RMI in a WebLogic Enterprise Environment 3-1

CHAPTER

3 Developing RMI
Applications in BEA
WebLogic Enterprise

You can write your own BEA WebLogic Enterprise RMI classes and test them in a
running BEA WebLogic Enterprise application by following the basic guidelines
described here. We cover all the steps you need to develop a BEA WebLogic
Enterprise RMI application from scratch. Various aspects of the Hello World example
illustrate the major steps in the development process.

This topic includes the following sections:

n Setting Up Your BEA WebLogic Enterprise Development Environment

n Developing New RMI Classes for a BEA WebLogic Enterprise Application

n Building Your RMI Application in the BEA WebLogic Enterprise Environment

n Running Your BEA WebLogic Enterprise RMI Application

n Stopping the BEA WebLogic Enterprise Server

n Using a Script as a Shortcut for Compile and Build Steps

n Deploying Your Application

3 Developing RMI Applications in BEA WebLogic Enterprise

3-2 Using RMI in a WebLogic Enterprise Environment

Setting Up Your BEA WebLogic Enterprise
Development Environment

Once you have installed the BEA WebLogic Enterprise software and the JDK
software, you need to make sure that your development environment is properly
configured.

Before attempting to compile and build any BEA WebLogic Enterprise application,
you need to ensure that certain environment variables are set on your system. In most
cases, the environment variables TUXDIR and JAVA_HOME are set as part of the BEA
WebLogic Enterprise installation procedure, and if you are running BEA WebLogic
Enterprise sample applications, the runme scripts typically set the others for you.
However, you need to check all of these environment variables to ensure they reflect
correct information and modify them whenever necessary.

Table 3-1 Setting Environment Variables for BEA WebLogic Enterprise Applications

Environment
Variable

Description

TUXDIR The directory path where you installed the BEA WebLogic Enterprise software. For example:

Windows NT
set TUXDIR=c:\WLEdir

UNIX

export TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT

set JAVA_HOME=c:\JDK1.2

UNIX

export JAVA_HOME=/usr/local/JDK1.2

Setting Up Your BEA WebLogic Enterprise Development Environment

Using RMI in a WebLogic Enterprise Environment 3-3

Verifying/Setting Environment Variables on Windows NT

To verify on a Windows system that the information for the environment variables
defined during installation is correct, complete the following steps:

1. From the Start menu, select Settings.

CLASSPATH The CLASSPATH must include the pathnames defined in TUXDIR and JAVA_HOME along
with pathnames to other BEA WebLogic Enterprise classes. The CLASSPATH must also
include the pathname of the classes for the application you are developing.

For example:

Windows NT
set WLECP=%TUXDIR%\udataobj\java\jdk
set CLASSPATH=%CLASSPATH%;%WLECP%\m3.jar;%WLECP%\weblogicaux.jar

UNIX
set WLECP=${TUXDIR}/udataobj/java/jdk
set CLASSPATH=${CLASSPATH}:${WLECP}/m3.jar:${WLECP}/weblogicaux.jar

During development, or any time you are using BEA tools, you should also set up the locale
for error messages from the tools:

set CLASSPATH=%CLASSPATH%;%TUXDIR%\locale\java\M3 on Windows NT

export CLASSPATH=${CLASSPATH}:${TUXDIR}/locale/java/M3 on UNIX

PATH The PATH must include the pathnames to the necessary bins and other directories containing
executable commands. For example:

Windows NT

set
PATH=%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;%JAVA_HOME%\jre\bin\cla
ssic;%PATH%

set PATH=%PATH%;%TUXDIR%\bin

UNIX

export
PATH=${JAVA_HOME}/bin:${JAVA_HOME}/jre/bin:${JAVA_HOME}/jre/bin/
classic:${PATH}

export PATH=${PATH}:${TUXDIR}/bin

Table 3-1 Setting Environment Variables for BEA WebLogic Enterprise Applications

Environment
Variable

Description

3 Developing RMI Applications in BEA WebLogic Enterprise

3-4 Using RMI in a WebLogic Enterprise Environment

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings for TUXDIR and JAVA_HOME.

To change the settings, complete the following steps:

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

Verifying/Setting Environment Variables on UNIX

To verify on a UNIX system that the information for the environment variables defined
during installation is correct, type the following commands at the prompt:

printenv <ENVIRONMENT_VARIABLE>

To change the settings, type the following commands at the prompt:

export <ENVIRONMENT_VARIABLE>=<DirectoryPath>

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-5

Developing New RMI Classes for a BEA
WebLogic Enterprise Application

This section describes the steps involved in writing the source code for RMI classes,
using the Java source files from the BEA WebLogic Enterprise RMI Hello World as
code examples. We explain what characterizes an RMI application in BEA WebLogic
Enterprise, and what elements you need to include for it to work.

This section includes step-by-step instructions on how to write RMI classes, compile
the source files, generate the needed stubs and skeletons, and deploy the class files in
a BEA WebLogic Enterprise run-time environment. The steps are:

n Step 1: Decide on package names and create directories for the source code that
reflects the package names

n Step 2: Write the source code for a remote interface (see Hello.java)

n Step 3: Write the source code for a remote object that implements the remote
interface (see HelloImpl.java)

n Step 4: Write the source code for a client that invokes methods on the remote
object (see HelloClient.java)

n Step 5: Compile the source code files to create the executable RMI classes

n Step 6: Run the WebLogic RMI compiler on the implementation class to
generate stubs and skeletons

Step 1: Decide on package names and create directories
for the source code that reflects the package names

The Java programming language requires a mapping between the fully-qualified
package name of a class and the directory path to that class, so you should decide on
package and directory names before you begin writing any Java code.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-6 Using RMI in a WebLogic Enterprise Environment

This mapping allows the compiler to know the directory in which to find the class files
mentioned in a program. For the BEA WebLogic Enterprise RMI Hello World
example, the package name is examples.hello and the Java source directory is
examples/hello.

Step 2: Write the source code for a remote interface

A remote object is an instance of a class that implements a remote interface. In BEA
WebLogic Enterprise, a remote interface must extend the interface
java.rmi.Remote. The rmi.Remote interface itself contains no method signatures—
it simply acts as a tag to identify remote classes.

The interface that you write (extending on rmi.Remote) should include method
signatures that will be implemented in every remote class that implements it.

Your Remote interface should have the following characteristics:

n It must be public. Otherwise a client will get an error when attempting to load a
remote object that implements it.

n It must extend either java.rmi.Remote or weblogic.rmi.Remote.

n Each method must declare java.rmi.RemoteException or
weblogic.rmi.RemoteException (or a superclass of RemoteException) in
its throws clause, in addition to any application-specific exceptions.

n The data type of any remote object that is passed as an argument or return value
(either directly or embedded within a local object) must be declared as the
remote interface type (for example, Hello) not the implementation class
(HelloImpl).

Note that these requirements are consistent with the Sun JavaSoft RMI model.

Listing 3-1 shows the Remote interface examples.hello.Hello from our Hello
World example. The interface has only one method, sayHello, which returns a string
to the caller.

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-7

Listing 3-1 Hello.java—A RemoteInterface

/*
 * Copyright (c) 2000 BEA Systems, Inc. All Rights Reserved
 */

package examples.hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

/**
 * This class illustrates an interface for RMI communication.
 * @author Copyright (c) 2000 by BEA Systems Inc. All Rights Reserved.
 */
public interface Hello extends Remote {
 String sayHello() throws RemoteException;
}

Step 3: Write the source code for a remote object that
implements the remote interface

A remote object is an instance of a class that implements a remote interface.

Now write the class that can be invoked remotely. The class should implement the
remote interface you wrote in step 2. The remote object is sometimes referred to as an
RMI “server.”

For example, in the source file examples/hello/HelloImpl.java from the RMI
Hello World example we do the following:

1. Define a class (HelloImpl) that can be invoked remotely using the methods
declared in our Remote interface.

2. Create an instance of that class (the remote object) in a main method. At this
point, we bind the instance to a name via the Java Naming and Directory
Interface (JNDI). As such, the HelloImpl class is the remote object that
implements the Remote interface we defined in Hello.java (see Listing 3-1.)

Listing 3-2 shows the remote object examples.hello.HelloImpl from our Hello
World example.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-8 Using RMI in a WebLogic Enterprise Environment

Listing 3-2 HelloImpl.java—A Remote Object Implementation

/*
 * Copyright (c) 2000 BEA Systems, Inc. All Rights Reserved
 */
package examples.hello;

import java.rmi.RemoteException;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * This class is the sample server for RMI/HelloWorld.
 * It illustrates establishing one’s self (to JNDI) as a remote object.
 * Also, it contains the trivial server method sayHello().
 *
 * @author Copyright (c) 2000 by BEA Systems Inc. All Rights Reserved.
 */
public class HelloImpl implements Hello {

 // Overhead to register one’s self:

 private static InitialContext initialContext;

 private static Context getLocalInitialContext() throws NamingException {
 Hashtable env = new Hashtable();
 // No Context.PROVIDER_URL indicates native bootstrap
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 initialContext = new InitialContext(env);
 return initialContext;
 }

 public static void release() {
 try {
 initialContext.unbind("HelloServer");
 } catch (Exception e) {
 System.out.println("Couldn’t unregister the HelloImpl object"
 + e.getMessage());
 e.printStackTrace();
 }
 }

 public static void main(String args[]) {

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-9

 try {
 HelloImpl obj = new HelloImpl();
 // Bind this object instance to the name "HelloServer"
 getLocalInitialContext().bind("HelloServer", obj);
 System.out.println("HelloServer bound in JNDI");
 } catch (Exception e) {
 System.out.println("HelloImpl err: " + e.getMessage());
 e.printStackTrace();
 }
 }

 // Method(s) that the Client might call:

 public String sayHello() {
 return "Hello World!";
 }

}
vt

Defining the Remote Class

As is required for RMI, our remote object implementation class,
examples.hello.HelloImpl, does the following:

n Declares that it implements at least one remote interface. For example, the class
declaration that implements the interface Hello:

public class HelloImpl implements Hello {

n Provides the implementation for the methods that can be invoked remotely. Here
is the implementation for the sayHello method, which returns the string
"Hello World!" to the caller:

public String sayHello() {
 return "Hello World!";
}

Creating an Instance of the Remote Class

In our example, we create the instance of the remote class (the actual remote object) in
a main method as a part of our implementation class, examples.hello.HelloImpl.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-10 Using RMI in a WebLogic Enterprise Environment

This is fine—the class that contains the main method and instantiates the remote class
can be the implementation class itself. Or, you can have the code that instantiates the
remote class in another class entirely.

In the main method, we do the following:

n Create an instance of a remote object HelloImpl:

HelloImpl obj = new HelloImpl();

n Bind this object instance to the name “HelloServer” using JNDI javax.naming.

getLocalInitialContext().bind("HelloServer", obj);

Note that objects within BEA WebLogic Enterprise should be well-behaved to
make administration easy. So, for every bind method there should be a
corresponding unbind method somewhere. Typically, these methods are called
when the server is starting (initialize) and stopping (release) as shown in
Listing 3-4.

Not doing the unbind() will allow clients to find the object in JNDI but get an
error when they cannot use it. When the object is unavailable, it should not be
listed in JNDI.

Step 4: Write the source code for a client that invokes
methods on the remote object

Finally, write a client that invokes methods on the remote object (RMI server).
Listing 3-3 shows the client examples.hello.HelloClient from our Hello World
example.

Listing 3-3 HelloClient.java — A Client That Uses a Remote Service

/*
 * Copyright (c) 2000 BEA Systems, Inc. All Rights Reserved
 */

package examples.hello;

import java.rmi.RemoteException;
import java.util.Hashtable;

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-11

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

/**
 * This class is the sample client for RMI/HelloWorld.
 * It illustrates JNDI lookup to find and use a remote object.
 *
 * @author Copyright (c) 2000 by BEA Systems Inc. All Rights Reserved.
 */
public class HelloClient {
 private static void usage() {
 System.out.println("Usage: java examples.hello.HelloClient corbaloc://<host>:<port>");
 System.exit(1);
 }

 private static Context getContext(String url) throws NamingException {
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, url);
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 return new InitialContext(env);
 }

 public static void main(String[] argv) throws Exception {
 if (argv.length < 1) usage();
 String url = argv[0];
 Object o = getContext(url).lookup("HelloServer");
 Hello obj = (Hello) PortableRemoteObject.narrow(o, Hello.class);
 System.out.println(obj.sayHello());
 }
}

The following describes what HelloClient is doing:

n First, the client uses JNDI to get a reference to the remote object implementation
(advertised as HelloServer):

Object o = getContext(url).lookup("HelloServer");

n Once the object reference is obtained, the client narrows it to the appropriate
type:

Hello obj = (Hello) PortableRemoteObject.narrow(o, Hello.class);

3 Developing RMI Applications in BEA WebLogic Enterprise

3-12 Using RMI in a WebLogic Enterprise Environment

n Finally, the client invokes the sayHello method on the remote object, using it in
a System.out.println method to display the message “Hello World” on the
screen:

System.out.println(obj.sayHello());

A Note About Type Narrowing

Once an object reference is obtained, the client must narrow it to the appropriate type.
Notice the use of PortableRemoteObject.narrow in the following line from
Listing 3-3:

Hello obj = (Hello) PortableRemoteObject.narrow(o, Hello.class);

You could use the cast operator here as well. However, we recommend the use of
PortableRemoteObject.narrow to ensure interoperability with compliant EJB
container implementations.

A client program that is intended to be interoperable with all compliant EJB container
implementations must use the method
javax.rmi.PortableRemoteObject.narrow to perform type-narrowing of the
client-side representations of the home and remote interface.

Programs using the cast operator for narrowing the remote and home interfaces are
likely to fail if the Container implementation uses RMI-IIOP as the underlying
communication transport.

Step 5: Compile the source code files to create the
executable RMI classes

We suggest that you create a separate “deployment” directory to contain the generated
class files. For example, you could create a directory called
<MyWLEApps>/rmi/helloworld/classes. You must create a deployment directory
before you run the javac compiler on your source files; the javac command will not
create this directory for you. (Note that in the Hello World example, the runme script
does create the classes directory for you before it runs the javac compiler.)

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-13

Also, before you attempt to compile, set your local CLASSPATH so that it includes
the pathname of your deployment directory. For example, if your deployment
directory is C:\MyWLEApps\rmi\helloworld\classes, then make sure this full
pathname is in your local CLASSPATH. (Note that in the Hello World example, the
runme script sets this for you.)

Note: The local CLASSPATH must also include the current directory (.), along with
all necessary BEA WebLogic Enterprise and JDK pathnames. For more on
setting up your development environment, refer to the topic “Setting Up Your
BEA WebLogic Enterprise Development Environment” on page 3-2.

To compile the source files, change directories (cd) to the directory that contains the
package, and run the javac command on the Java source files. For the RMI Hello
World example, you might cd into <MyWLEApps>/rmi/helloworld, then run the
following command which would compile the Java source files and put the resulting
class files under a directory called classes:

javac -d classes examples/hello/*.java

The preceding command creates the directory examples/hello (if it does not already
exist) under classes and places the generated class files in the directory
classes/examples/hello.

(In our Hello World example, this step is accomplished by running the runme script.
See “Building and Running the Hello World Example” on page 2-4.)

Step 6: Run the WebLogic RMI compiler on the
implementation class to generate stubs and skeletons

To create a proxy stub file for the client and skeleton file for the server, run the
weblogic.rmic compiler on the fully-qualified package names of compiled class
files that contain remote object implementations, like my.package.MyImpl_WLstub.
The weblogic.rmic command takes one or more class names as an argument and
produces class files of the form MyImpl_WLStub.class and MyImpl_WLSkel.class.

To generate the stub and skeleton class files for the RMI Hello World example, you
would change directories (cd) into the classes directory (in our example,
<MyWLEApps>/samples/rmi/helloworld/classes) and run the weblogic.rmic
command on the generated class file classes/examples/hello/HelloImpl.class
as follows:

3 Developing RMI Applications in BEA WebLogic Enterprise

3-14 Using RMI in a WebLogic Enterprise Environment

java weblogic.rmic -d . examples.hello.HelloImpl

The weblogic.rmic command accepts any option supported by javac—the options
are passed directly to the Java compiler. In the example, the -d option indicates the
root directory in which to place the compiled stub and skeleton class files. So the java
command creates the following files in the directory
<MyWLEApps>/rmi/helloworld/classes/examples/hello:

Hello_WLStub.class

Hello_WLSkel.class

The generated stub class implements exactly the same set of remote interfaces as the
remote object itself, and handles the necessary encoding (marshalling) and decoding
(unmarshalling) of parameters sent across the network.

(In our Hello World example, this step is accomplished by running the runme script.
See “Building and Running the Hello World Example” on page 2-4.)

More About Stubs and Skeletons in WebLogic RMI

A proxy is a class used by the clients of a remote object to handle the marshalling and
unmarshalling of parameters across a network. In RMI, the stub and skeleton class files
that are generated by the RMI compiler are proxies for the RMI client and RMI server
objects, respectively.

In WebLogic RMI, the RMI client stub marshalls the invoked method name and its
arguments for the client, forwards these to the remote object, and unmarshalls the
returned results for the client. An RMI client stub is generated by running the
WebLogic RMI (weblogic.rmic) compiler on the fully-qualified package names of
compiled class files that contain remote object implementations, like
my.package.MyImpl_WLstub.

The skeleton class is also generated by the WebLogic RMI compiler, but the skeleton
is not used in WebLogic RMI. Generally, the RMI skeleton would unmarshall the
invoked method and arguments on the remote object, invoke the method on the
instance of the remote object, and then marshall the results for return to the client. BEA
WebLogic Enterprise handles the unmarshalling, method invocation, and marshalling
on the RMI server side using reflection. If necessary, you can discard the generated
skeleton class files to save disk space.

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Using RMI in a WebLogic Enterprise Environment 3-15

More About the WebLogic RMI Compiler (weblogic.rmic)

The syntax for using the WebLogic RMI compiler is as follows:

java weblogic.rmic [options] ClassName

The options to the weblogic.rmic command are shown in Table 3-3.

Table 3-2 Weblogic.rmic Command Options

Option Description

-help Prints the complete list of command-line options.

-version Prints version information.

-d <dir> Indicates (top-level) directory for compilation.

-notransactions Skip transaction context propagation

-verbosemethods Instruments proxies to print debug information to std err.

-descriptor <example> Associates or creates a descriptor for each remote class.

-visualCafeDebugging Instruments proxies to support distributed debugging under
VisualCafe.

-v1.2 Generates Java 1.2 style stubs

-keepgenerated Keeps the generated .java files.

-commentary Emits commentary.

-compiler <JavaCompiler> Explicitly indicates which Java compiler to use. For example:
java weblogic.rmic -compiler sj examples.hello.HelloImpl

-g Compiles debugging info into class file.

-O Compiles with optimization on.

-debug Compiles with debugging on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-16 Using RMI in a WebLogic Enterprise Environment

The weblogic.rmic command also accepts any option supported by javac—the
options are passed directly to the Java compiler.

Building Your RMI Application in the BEA
WebLogic Enterprise Environment

This section describes how to build an RMI application in BEA WebLogic Enterprise.
To illustrate this, we explain the commands used in the Hello World runme script to
compile the source files and run the WebLogic RMI code generator.

We explain in more detail how to get things set up and working in the BEA WebLogic
Enterprise environment—for Hello World, most of this is also taken care of in our
runme script. (For example, the runme script generates BEA WebLogic Enterprise
configuration information and sets up some BEA WebLogic Enterprise environment
variables).

When you are developing your own RMI classes, you might choose to compile and
build manually from the command line, or you might want to use a script similar to the
one we provide with the example. Here, we clarify what the manual steps would be and
point out where our script accomplishes them.

The steps are:

n Step 1: Create a mechanism for bootstrapping your application

-nowrite Does not generate .class files.

-deprecation Warns about deprecated calls.

-normi Passes through to the Symantec sj compiler.

-J<option> Flags passed through to Java runtime.

-classpath <path> CLASSPATH to use during compilation.

Table 3-2 Weblogic.rmic Command Options (Continued)

Option Description

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 3-17

n Step 2: Package your application into a JAR file for deployment
(buildjavaserver)

n Step 3: Create a UBBCONFIG file and run tmloadcf on it to get an executable
TUXCONFIG file

n Step 4: Set application environment variables

Step 1: Create a mechanism for bootstrapping your
application

In Java, you use a Server object to initialize and release the server application. You
implement this Server object by creating a new class that derives from the
com.beasys.Tobj.Server class and overrides the initialize and release
methods. In the server application code, you can also write a public default constructor.

For example:

import com.beasys.Tobj.*;

/**
* Provides code to initialize and stop the server invocation.
* ServerImpl is specified in the server.xml input file
* as the name of the Server object.
*/

public class ServerImpl
 extends com.beasys.Tobj.Server {

 public boolean initialize(string[] args)
 throws com.beasys.TobjS.InitializeFailed {
 }

 public boolean release()
 throws com.beasys.TobjS.ReleaseFailed {
 }
}

In the Server Description File (server.xml), which you process with the
buildjavaserver command, you identify the name of the Server object.

This collection of the object’s implementation and data constitutes the run time, active
instance of the Server object.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-18 Using RMI in a WebLogic Enterprise Environment

When your Java server application starts, the server creates the Server object specified
in the XML file. Then, the server invokes the initialize method. If the method
returns true, the server application starts. If the method throws the
com.beasys.TobjS.InitializeFailed exception, or returns false, the server
application does not start.

When the server application shuts down, the server invokes the release method on
the Server object.

Any ARGS options for your specific server application that are specified in the MODULES
section of the WebLogic Enterprise domain’s UBBCONFIG file are passed to the public
boolean initialize(string[] args) operation as args.

For more information about passing arguments to the server application, see the
Administration Guide in the BEA WebLogic Enterprise online documentation. For
examples of passing arguments to the server application, see the Guide to the Java
Sample Applications in the BEA WebLogic Enterprise online documentation.

Within the initialize method, you can include code that does the following, if
applicable:

n Creates and registers RMI objects including RMI factories.

n Allocates any machine resources, for example JDBC connections.

n Initializes any global variables needed by the server application.

n Opens the databases used by the server application.

n Opens the XA resource manager.

Writing the Code That Creates and Registers an RMI Object or Factory

For most RMI server applications, you want client applications to be able to easily
locate the RMI object. You need to write the code that registers the RMI objects with
JNDI, which is invoked typically as the final step of the server application initialization
process.

In our Hello World example, we call HelloIMpl.main() which handles the JNDI
registration.

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 3-19

Releasing the Server Application

When the WebLogic Enterprise system administrator enters the tmshutdown
command, the server invokes the following operation on the Server object of each
running server application in the WebLogic Enterprise domain:

public void release()

Within the release() operation, you may perform any application-specific cleanup
tasks that are specific to the server application, such as:

n Unregistering objects managed by the server application

n Deallocating resources

n Closing any databases

n Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process
contains an invocation in its release() operation to the first server process.

During server shutdown, you may want to include an invocation to unregister each of
the server application’s RMI objects. For example:

//Unregister the object
//Use a try block since the cleanup code shouldn’t throw exceptions.

try {
 HelloImpl.getLocalInitialContext().unbind(“HelloServer”);
 }

catch (Exception e){
 System.out.println(“Couldn’t unregister the HelloServer object” + e.getMessage());
 e.printStackTrace();
}

The invocation of the unbind method should be one of the first actions in the
release() implementation. The unbind method unregisters the server application’s
objects.

Listing 3-4 shows the ServerImpl.java file for the RMI Hello World example.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-20 Using RMI in a WebLogic Enterprise Environment

Listing 3-4 ServerImpl.java

/*
 * Copyright (c) 2000 BEA Systems, Inc. All Rights Reserved
 */

import com.beasys.Tobj.Server;
import examples.hello.HelloImpl;

/**
 * This class illustrates an interface for RMI communication.
 *
 * @author Copyright (c) 2000 by BEA Systems Inc. All Rights Reserved.
 */
public class ServerImpl extends Server {

 public boolean initialize(String[] argv) {
 try {
 HelloImpl.main(null);
 } catch (Exception e) {
 return false;
 }
 return true;
 }

 public void release() {
 HelloImpl.release();
 }
}

Step 2: Package your application into a JAR file for
deployment (buildjavaserver)

To deploy your BEA WebLogic Enterprise RMI application, you need to package it
into a Java archive (JAR) file. It is this JAR file that you will call in the BEA WebLogic
Enterprise configuration file (UBBCONFIG/TUXCONFIG) during runtime.

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 3-21

This section describes how to create the JAR file using a Server descriptor file. This is
what we use in the Hello World example. You could also use the JAR command to
assemble your application’s classes into a JAR file. But, the <ARCHIVE> element of
the server descriptor file provides help by simplifying the process of collecting the
files.

To create the JAR file, complete the following steps:

1. Write a server descriptor file in Extensible Markup Language (XML).

The JAR is created in the <ARCHIVE> element. The archive element must be
the last element inside the <M3-SERVER> element.

If the XML file contains instructions to create an archive, both the class
specified by server_name and the file specified by server_descriptor are
stored in the archive. The server_descriptor file is inserted in the archive
manifest with the M3-Server tag; this insertion makes the server descriptor the
entry point during server execution.

If you do not include the archive element, the buildjavaserver command
generates only the server descriptor and writes it in the file specified in the
server-descriptor-name attribute of the M3-SERVER element.

Listing 3-5 shows the server descriptor file for our Hello World example.

Listing 3-5 server.xml

<?xml version = "1.0" ?>
<!-- Copyright (c) 2000 BEA Systems, Inc.
 All Rights Reserved
-->

<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

<M3-SERVER server-descriptor-name = "server.ser"
 server-implementation = "ServerImpl" >

 <ARCHIVE name = "server.jar">
 <CLASS name="examples.hello.HelloImpl"/>
 <CLASS name="examples.hello.Hello_WLStub"/>
 <CLASS name="examples.hello.Hello"/>
 </ARCHIVE>

</M3-SERVER>

3 Developing RMI Applications in BEA WebLogic Enterprise

3-22 Using RMI in a WebLogic Enterprise Environment

2. Now run the BEA WebLogic Enterprise command buildjavaserver on your
server descriptor file to create the JAR file.

Note: The deployment directory that contains your RMI classes must be in your
local CLASSPATH or buildserver.jar command will fail.

For example:

buildjavaserver <MyServer>.xml

where <MyServer>.xml is your server descriptor file.

This creates the file server.jar.

(In our Hello World example, the runme script creates the JAR by running
buildjavaserver on the file server.xml. See “Building and Running the
Hello World Example” on page 2-4.)

For more information about using JAR files and Java server startup in BEA
WebLogic Enterprise, see the Steps for Creating a Java Server Application
chapter in Creating CORBA Java Server Applications in the BEA WebLogic
Enterprise online documentation.

Step 3: Create a UBBCONFIG file and run tmloadcf on it
to get an executable TUXCONFIG file

The configuration file is the primary means of defining the configuration of WLE
applications. It consists of parameters that the WLE software interprets to create an
executable application.

The UBBCONFIG file is an ASCII version of the configuration file. The TUXCONFIG file
is a binary version of the configuration file that you generate from the ASCII version
using the tmloadcf command.

In our Hello World example, the UBBCONFIG file is generated by the runme script. (See
“Building and Running the Hello World Example” on page 2-4.) However, you can
create this file manually with a text editor, too. Listing 3-6 shows the sample
UBBCONFIG file for the Hello World example.

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 3-23

Listing 3-6 UBBCONFIG File for Hello World Example

*RESOURCES
IPCKEY 55432
DOMAINID Hello
MASTER simple
MODEL SHM
LDBAL N
*MACHINES
DEFAULT:
 APPDIR="C:\myWLEapps\rmi\helloworld"
 TUXCONFIG="C:\myWLEapps\rmi\helloworld\tuxconfig"
 TUXDIR="d:\wledir"
 MAXWSCLIENTS=10
"SAMS" LMID=simple
*GROUPS
GROUP1
 LMID=simple GRPNO=1 OPENINFO=NONE
GROUP2
 LMID=simple GRPNO=2 OPENINFO=NONE
*SERVERS
DEFAULT: CLOPT="-A"
TMSYSEVT SRVGRP=GROUP1 SRVID=1
TMFFNAME SRVGRP=GROUP1 SRVID=2 CLOPT="-A -- -N -M"
TMFFNAME SRVGRP=GROUP1 SRVID=3 CLOPT="-A -- -N"
TMFFNAME SRVGRP=GROUP1 SRVID=4 CLOPT="-A -- -F"
JavaServer SRVGRP=GROUP2 SRVID=6 CLOPT="-A"
ISL SRVGRP=GROUP1 SRVID=5 CLOPT="-A -- -n //SAMS:2468"
*MODULES
 HelloWorldModule
 SRVGRP=GROUP2 SRVID=6
 FILE="C:\myWLEapps\rmi\helloworld\server.jar"
*SERVICES

After you create the UBBCONFIG file, you must run tmloadcf on it to create the
executable TUXCONFIG file as follows:

tmloadcf -y ubbconfig

(In the RMI Hello World example, this is also handled in the runme script. See
“Building and Running the Hello World Example” on page 2-4.)

3 Developing RMI Applications in BEA WebLogic Enterprise

3-24 Using RMI in a WebLogic Enterprise Environment

The TUXCONFIG file contains information used by tmboot to start the servers and
initialize the Bulletin Board of a BEA Tuxedo system Bulletin Board instantiation in
an orderly sequence. The tmadmin command-line utility uses the configuration file (or
a copy of it) in its monitoring activity. The tmshutdown command references the
configuration file for information needed to shut down the application.

You can use the tmconfig command to edit many of the parameters in the executable
TUXCONFIG file while your application is running.

Step 4: Set application environment variables

Before you can run your application, you must set the following BEA WebLogic
Enterprise environment variables specific to the application you want to run:

n APPDIR—specifies the full pathname to the directory that contains the BEA
WebLogic Enterprise application you want to run. In the case of Hello World,
our application might reside in the server.jar file in
C:/MyWLEApps/rmi/helloworld/.

n TUXCONFIG—specifies the full pathname of the TUXCONFIG file for the
application. For the Hello World example, you could set this to
C:/MyWLEApps/rmi/helloworld/tuxconfig.

(In our Hello World example, our runme script sets these variables. See “Building and
Running the Hello World Example” on page 2-4.)

Listing 3-7 shows an example of setting BEA WebLogic Enterprise environment
variables on a Windows NT system.

Listing 3-7 Setting BEA WebLogic Enterprise Application Environment
Variables on Windows NT Systems

set APPDIR=C:\myWLEapps\rmi\helloworld
set TUXCONFIG=C:\myWLEapps\rmi\helloworld\tuxconfig

Running Your BEA WebLogic Enterprise RMI Application

Using RMI in a WebLogic Enterprise Environment 3-25

Listing 3-8 shows an example of setting BEA WebLogic Enterprise environment
variables on a UNIX system.

Listing 3-8 Setting BEA WebLogic Enterprise Application Environment
Variables on UNIX Systems

export APPDIR=$HOME/myWLEapps/rmi/helloworld
export TUXCONFIG=$HOME/myWLEapps/rmi/helloworld/tuxconfig

Running Your BEA WebLogic Enterprise RMI
Application

Once you have created the RMI classes and built the application, you can test it by
running it as a BEA WebLogic Enterprise application. To run it, complete the
following stepts:

1. Make sure the application-specific variables APPDIR and TUXCONFIG are set. (See
“Step 4: Set application environment variables” on page 3-24.)

2. Start the BEA WebLogic Enterprise server by typing the following at the
command line:

tmboot -y

3. Run your RMI client in a form similar to this:

java <PackageNameOfClient> <Arguments>

For Our Hello World example, the command to run the client is:

java examples.hello.HelloClient corbaloc://<MyMachineID>

(In our Hello World example, the runme script boots the BEA WebLogic Enterprise
server and runs the client for you.)

3 Developing RMI Applications in BEA WebLogic Enterprise

3-26 Using RMI in a WebLogic Enterprise Environment

Stopping the BEA WebLogic Enterprise
Server

Whenever you are ready to stop the BEA WebLogic Enterprise server, type the
following at the command line:

tmshutdown -y

(In our Hello World example, the runme script shuts down the BEA WebLogic
Enterprise server for you.)

Using a Script as a Shortcut for Compile and
Build Steps

In our Hello World RMI example, we use runme scripts that contain DOS or UNIX
shell commands to handle a lot of the compile, environment setup, and build tasks
detailed in the previous sections. It is very likely you will want to do this as well.

For Hello World, our runme script is used to accomplish the following tasks:

n Runs the javac compiler on the *.java source files to generate the *.class
files.

n Runs the weblogic.rmic compiler on the remote class to generate a stub and
skeleton. For example, the command:

java weblogic.rmic -d <YourClassesDirectory> examples.hello.HelloImpl

runs the weblogic.rmic compiler on the file examples/hello/
HelloImpl.class and puts the resulting stub and skeleton in whatever location
you specify as <YourClassesDirectory>.

n Packages the class files into a JAR file (in our example, server.jar) by
running the BEA WebLogic Enterprise command buildjavaserver on the
server.xml file.

Deploying Your Application

Using RMI in a WebLogic Enterprise Environment 3-27

n Creates a UBBCONFIG file and runs tmloadcf on it to generate a TUXCONFIG file.
Sets BEA WebLogic Enterprise application specific environment variables
(APPDIR and TUXCONFIG) before booting BEA WebLogic Enterprise.

n Boots the BEA WebLogic Enterprise server.

n Runs the RMI client.

n Stops the BEA WebLogic Enterprise server.

The runme scripts are located in the Hello World example helloworld directory. You
can use a text editor to view the scripts.

Deploying Your Application

To deploy a BEA WebLogic Enterprise application on machines other than your
development system, you need to ensure that the appropriate environment variables are
set on the target systems.

Deploying the Client

For systems where you want to deploy a BEA WebLogic Enterprise client only, make
sure the following environment variables are set.

Table 3-3 Environment Variables Needed to Run a Client Application

Environment
Variable

Description

TUXDIR The directory path where you installed the BEA WebLogic Enterprise software. For example:

Windows NT
set TUXDIR=c:\WLEdir

UNIX

export TUXDIR=/usr/local/WLEdir

3 Developing RMI Applications in BEA WebLogic Enterprise

3-28 Using RMI in a WebLogic Enterprise Environment

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT

set JAVA_HOME=c:\JDK1.2

UNIX

export JAVA_HOME=/usr/local/JDK1.2

CLASSPATH The CLASSPATH must include the pathnames defined in TUXDIR and JAVA_HOME along
with pathnames to other BEA WebLogic Enterprise classes. (The CLASSPATH must also
include the pathname of the classes for the application.)

For example:

Windows NT

set WLECP=%TUXDIR%\udataobj\java\jdk
set
CLASSPATH=%WLECP%\m3envobj.jar;%WLECP%\weblogicaux.jar;%WLECP%\w
leclient.jar;%WLECP%\wlej2eecl.jar;%CLASSPATH%

UNIX
set WLECP=${TUXDIR}/udataobj/java/jdk

set
CLASSPATH=${WLECP}/m3envobj.jar:${WLECP}:/weblogicaux.jar:${WLECP}/wl
eclient.jar:${WLECP}/wlej2eecl.jar:${CLASSPATH}

PATH The PATH must include the pathnames to the necessary bins and other directories containing
executable commands. For example:

Windows NT
set
PATH=%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;%JAVA_HOME%\jre\bin\classic;
%PATH%

UNIX
export
PATH=${JAVA_HOME}/bin:${JAVA_HOME}/jre/bin:${JAVA_HOME}/jre/bin/
classic:${PATH}

Table 3-3 Environment Variables Needed to Run a Client Application (Continued)

Environment
Variable

Description

Deploying Your Application

Using RMI in a WebLogic Enterprise Environment 3-29

Note that the main differences between setting environment variables for a client-only
deployment versus server development or deployment is that client-only run-time
systems require m3envobj.jar, wleclient.jar, and wlej2eecl.jar and do not
require the locale/M3 tools. Also, you can run client-only run-time systems with only
the JRE bin in the PATH instead of the full JDK bin.

Deploying the Server

For systems where you want to deploy a BEA WebLogic Enterprise server, the
environment variables must be set exactly as required for development. See the section
“Setting Up Your BEA WebLogic Enterprise Development Environment” on page
3-2.

3 Developing RMI Applications in BEA WebLogic Enterprise

3-30 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 4-1

CHAPTER

4 Using RMI with
Client-Side Callbacks

This topic includes the following sections:

n Understanding Server-to-Server Communication

n Joint Client/Server Applications

n When Do I Need to Use Callbacks?

n Example of Callbacks in RMI

Understanding Server-to-Server
Communication

Server-to-server communication allows WebLogic Enterprise (WLE) applications to
invoke remote objects and handle invocations from those remote objects (referred to
as callback objects). The remote objects can be either inside or outside of a BEA
WebLogic Enterprise domain.

BEA WebLogic Enterprise RMI supports client-to-server, client-to-client, and
server-to-client invocations, with callbacks from server-side objects to clients. Clients
can be applets or full Java client applications.

4 Using RMI with Client-Side Callbacks

4-2 Using RMI in a WebLogic Enterprise Environment

Joint Client/Server Applications

In simple terms, client applications invoke methods on a remote object. The server
applications implement the methods of the remote object. The remote objects in the
server application live within the WLE domain that supports security and transactions.
These remote objects in the server application are referred to as WLE objects.

Server applications can act as client applications of other server applications.
Server-to-server communication allows client applications to act as server applications
for requests from other client applications or from WLE server applications.

The server-to-server communication functionality is available through a callback
object. A callback object has two purposes:

n It invokes operations on RMI objects.

n It implements the operations of an RMI object.

Callback objects are not subject to WLE administration, they should be used when
transactional behavior, security, reliability, and scalability are not important.

Callback objects are implemented in joint client/server applications. A joint
client/server application consists of the following:

n A portion that performs WLE client application functions, such as initializing the
JNDI context, using the context to establish connections, looking up initial
references to objects, and using factories to create objects.

n A portion that creates the remote object implementation (callback object) and
activates the callback object.

Figure 4-1 shows the structure of a joint client/server application.

Joint Client/Server Applications

Using RMI in a WebLogic Enterprise Environment 4-3

Figure 4-1 Structure of a Joint Client/Server Application

Joint client/server applications use RMI on IIOP to communicate with the WLE server
in an asymmetric fashion. As indicated in the figure, the following operations are
executed:

1. A server gets an object reference from some source. It could be a naming service
or it could be passed in through a client, but not located in that client. Since the
object reference is not located in a client connected to an ISH, the outgoing call
cannot be made using the bidirectional method. The WLE server invokes on the
object reference.

2. On the first invoke, the routing code invokes a service in the ISL and passes in
the host/port.

3. The ISL selects an ISH to handle the outbound invoke and returns the ISH
information to the WLE server.

4. The WLE server invokes on the ISH.

Joint
Client/Server ISH

ISH

ISL WLE Server

WLE Server

Asymmetric
Connection

Servers and Native Clients can
be GIOP 1.0 or 1.1

5

6

2 3

1

4
7

4 Using RMI with Client-Side Callbacks

4-4 Using RMI in a WebLogic Enterprise Environment

5. The ISH determines which outgoing connection to use to send the request to the
client. If none is connected, the ISH creates a connection to the host/port.

6. The client executes the method and sends the reply back to the ISH.

7. The ISH receives the reply and sends it to the WLE server.

Use of callback objects in Java applets is limited due to Java applet security
mechanisms. Any Java applet run-time environment that allows a Java applet to create
and listen on sockets (via the proprietary environment or protocol of the Java applet)
can act as a joint client/server application. However, if the Java applet run-time
environment restricts socket communication, the Java applet cannot act as a joint
client/server application.

Joint client/server applications use RMI on IIOP to communicate with the WLE server
applications that work in an asymmetric fashion, as shown in Listing 4-1. Joint
client/server applications can invoke methods on any callback object, and are not
restricted to invoking callback objects implemented in joint client/server applications
connected to an ISH. Asymmetric IIOP forces the WLE infrastructure to search for an
available ISH to handle the invocation. The ISL controlling the ISH must have been
configured with the -O option to support callbacks

For information on the IIOP Listener (ISL), see the Administration Guide in the BEA
WebLogic Enterprise online documentation.

For a more detailed description of asymmetric IIOP, see the CORBA Java
Programming Reference in the BEA WebLogic Enterprise online documentation.

For more information about management and configuration on remote client
applications, see the Managing Remote Client Applications (BEA WebLogic
Enterprise Systems) chapter in the Administration Guide in the BEA WebLogic
Enterprise online documentation.

Note: A remote joint client/server is a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a WLE server. Neither the client nor the
server has any of the WLE administrative and infrastructure components, such
as tmadmin, JNDI registration, and ISL/ISH (hence, none of scalability and
reliability attributes of BEA WebLogic Enterprise).

When Do I Need to Use Callbacks?

Using RMI in a WebLogic Enterprise Environment 4-5

When Do I Need to Use Callbacks?

In BEA WebLogic Enterprise, a particularly useful feature of RMI is that you can use
it to do client callbacks from Enterprise Java Bean (EJB) servers. Clients cannot
advertise EJB implementations, but they can advertise RMI implementations. So if a
client wants to be called back from an EJB instance, it should create an RMI object and
pass the reference to the EJB instance. The EJB instance can then invoke the client
back by using the RMI reference.

In practical use, being able to use a remote object as a parameter or a return value for
a remotely invoked method is convenient for such things as updating the display of an
applet in response to server-side events. For example, you could simply export the
applet itself as a remote object that registers an interest in server-side events, and
whose display changes in response to those events.

Example of Callbacks in RMI

Writing source code for RMI applications that use client-side callbacks differs from
standard RMI applications in that you have to include some additional code for a client
interface. The remote client must implement the client interface. Also, the remote
(server) object will now include objects received from the client and method
invocations on those objects.

Figure 4-2 shows the structure of an RMI application that uses client callbacks.

4 Using RMI with Client-Side Callbacks

4-6 Using RMI in a WebLogic Enterprise Environment

Figure 4-2 RMI with Client-Side Callbacks

<<Interface>>
CallbackClientIntf

<<Interface>>
Callback

CallbackClient

DataObject
CallbackImpl

ServerImpl

+callbackObj

$server

Client looks up
server object

Server invokes
client objectServer invokes

client object

DataObject()
toString()

IsGoodObject()
IsRightValue()

equals()
new()

IsGoodObject()
IsRightValue()
usage()
getContext()
main()

register()
sendObject()
sendLong()

register()
sendObject()
sendLong()

main()
new()

initialize()
release()

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-7

Figure 4-3 shows pseudo-code to illustrate the client-server interaction in a callback
scenario.

Figure 4-3 Anatomy of RMI Client-Side Callbacks

The following sections provide a code example of a simple application that illustrates
RMI client callbacks.

n The RMI Client Interface

n The RMI Client

n The RMI Remote Interface

n The Remote Object (RMI Server)

n Running the RMI Callback Example

Client Interface

 IsGoodObject
 IsRightValue

Client
 {
 IsGoodObject {.
 .
 }
 {
 IsRightValue {.
 .
 }

 lookup <or> narrow
 lookup for server object

 server.register (client_interface)
 server.sendobject (data_object)

 }

Remote Interface (server)
Callback
 {
 register(client_interface)
 sendobject()
 sendlong()

Remote Object (implements callback)
sendobj(data_object)
{
 clientObj.isGoodObject()
 <do some compare here>
 }

sendStr()
{
 clientObj.IsRightValue()
 <do some compare here>
}

4 Using RMI with Client-Side Callbacks

4-8 Using RMI in a WebLogic Enterprise Environment

The RMI Client Interface

Listing 4-1 shows the client interface. The client interface declares two business
methods: IsGoodObject and IsRightValue.

Listing 4-1 CallbackClientIntf.java—A Client Interface

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

import java.rmi.*;

/**
 * CallbackClientIntf interface contains following methods
 * IsGoodObject(Obj, Obj): compare 2 objects,
 * IsRightValue(long, long): compare 2 longs,
 */
public interface CallbackClientIntf extends Remote
{
 public static final String NAME = "CallbackClientIntf";

 public boolean IsGoodObject(Object Obj1, Object Obj2) throws RemoteException;
 public boolean IsRightValue(long val1, long val2)
 throws RemoteException, Exception;

} // end CallbackClientIntf

The RMI Client

Listing 4-2 shows the RMI client implementing the client interface.

As shown in the bold code, the client does the following:

1. Implements the methods defined in the client interface,
CallbackClientInf.java. (See all the bold code that appears between the star
comment lines //******)

 public boolean IsGoodObject(Object Obj1, Object Obj2) . .
 .
 .
 public boolean IsRightValue(long val1, long val2) . .

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-9

 .
 .

2. Looks up the server object:

Object o = getContext(url).lookup(Callback.NAME);
server = (Callback)PortableRemoteObject.narrow(o, Callback.class);

3. Sends the client object to the server:

int s = server.register(new CallbackClient());

4. Invokes the business methods on the server object:

String errMsg = server.sendObject(new DataObject("dataobj"));

The sendObject method does a callback on the client object.

5. Invokes another business method on the server object:

String errMsg = server.sendLong(12345);

The sendLong method does a callback on the client object.

Listing 4-2 CallbackClient.java—A Client That Implements the Client Interface

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

import java.util.Hashtable;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

/**
 * CallbackClient will do following steps:
 * 1. server.register(ClientObj): send a client object to server
 * 2. server.sendObject(DataObj): send a dataobject to server.
 * server invokes ClientObj.IsGoodObject(obj, obj)
 * 3. server.sendLong(value): send a long number to server.
 * server invokes ClientObj.IsRightValue(val, val)
 */
public class CallbackClient implements CallbackClientIntf
{
 static Callback server; // An instance of the CallbackClientIntf

//***

4 Using RMI with Client-Side Callbacks

4-10 Using RMI in a WebLogic Enterprise Environment

 // Implement methods of CallbackClientIntf
 // Compare 2 objects, this method is for clientobject
 public boolean IsGoodObject(Object Obj1, Object Obj2) throws RemoteException
 {
 return (Obj1.equals(Obj2));
 }

 // Compare 2 longs, this method is for clientobject
 public boolean IsRightValue(long val1, long val2) throws RemoteException
 {
 return (val1 == val2);
 }
//***

 private static void usage()
 {
 System.out.println("Usage: java CallbackClient corbaloc://<host>:<port>");
 System.exit(1);
 }

 private static Context getContext(String url) throws NamingException
 {
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, url);
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 return new InitialContext(env);
 }

 public static void main(String argv[])
 {
 if (argv.length < 1) usage();
 String url = argv[0];
 try
 {
 Object o = getContext(url).lookup(Callback.NAME);
 server = (Callback)PortableRemoteObject.narrow(o, Callback.class);
 }catch(Exception e)
 {
 System.out.println("exception in lookup server obj" + e);
 }

 //1: register ClientObject to server
 try
 {
 int s = server.register(new CallbackClient());
 if (s == Callback.FAILURE)
 {
 System.out.println("1. Couldn’t send client object to server");

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-11

 System.exit(1);
 }
 else
 System.out.println("1. Success sending ClientObject to server");
 }
 catch(Exception e)
 {
 System.out.println("exception in rmiRegister: "+e);
 System.exit(1);
 }

 //2: invoke business method from server
 // send a dataobject to server
 try
 {
 String errMsg = server.sendObject(new DataObject("dataobj"));
 if (!errMsg.equals("")) {
 System.out.println("2. "+errMsg);
 } else {
 System.out.println("2. success on send data object to server");
 System.out.println(" and server callback client using ClientObject");
 }
 }
 catch(Exception e)
 {
 System.out.println("exception in sendObject(obj): "+e);
 }

 //3: invoke business method from server
 // send a string to server
 try
 {
 String errMsg = server.sendLong(12345);
 if (!errMsg.equals("")) {
 System.out.println("3. "+errMsg);
 } else {
 System.out.println("3. success on send long value to server");
 System.out.println(" and server callback client using ClientObject");
 }
 }
 catch(Exception e)
 {
 System.out.println("Exception in sendLong(value): "+e);
 }
 }

} // end CallbackClient

4 Using RMI with Client-Side Callbacks

4-12 Using RMI in a WebLogic Enterprise Environment

The RMI Remote Interface

Listing 4-3 shows the RMI remote interface, in which we declare the business
methods:

public int register(Object callbackObj) throws RemoteException;
public String sendObject(Object Obj) throws RemoteException;
public String sendLong(long val) throws RemoteException, Exception;

Listing 4-3 Callback.java—A RMI Remote Server Interface

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

import java.rmi.*;

/**
 * Callback interface contains following methods
 * register(callBack): send clientcallback obj to server
 * sendObject(Obj): send an object to server
 * sendLong(Val): send a long value to server
 */
public interface Callback extends Remote
{
 public static final String NAME = "Callback";
 public static final int FAILURE = -1;
 public static final int SUCCESS = 0;

 public int register(Object callbackObj) throws RemoteException;
 public String sendObject(Object Obj)throws RemoteException;
 public String sendLong(long val) throws RemoteException, Exception;

} // end Callback

The Remote Object (RMI Server)

Listing 4-4 shows the remote object implementation of the business methods in the
RMI remote interface.

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-13

Listing 4-4 CallbackImpl.java—A Remote Object that Implements the RMI
Remote Interface

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

import java.util.Hashtable;
import java.rmi.*;
import java.rmi.server.*;
import javax.naming.*;

/**
 * Implements the methods defined in the Callback remote interface.
 */
public class CallbackImpl implements Callback
{
 private Object callbackObj; // Object on client to verify parameters.

 // remember clientobject sent to server
 public int register(Object callbackObj) // throws RemoteException
 {
 if (callbackObj == null) return Callback.FAILURE;
 this.callbackObj = callbackObj;
 return Callback.SUCCESS;
 }

 // send regular dataobject to server
 // This method returns empty string on success or else error message.
 public String sendObject(Object Obj) throws RemoteException
 {
 // client call_back
 Object tmpObj = new DataObject("dataobj");
 if (!(callbackObj instanceof CallbackClientIntf))
 return "ClientObject is not instance of CallbackClientIntf at server side";

 // client call_back object
 if (((CallbackClientIntf)callbackObj).IsGoodObject(Obj, tmpObj))
 return "";
 else
 return "fail on send dataobject to server";
 }

 // send native type long to server
 // This method returns empty string on success or else error message.
 public String sendLong(long val) throws RemoteException, Exception
 {
 // client call_back
 if (!(callbackObj instanceof CallbackClientIntf))
 return "ClientObject is not instance of CallbackClientIntf at server side";

4 Using RMI with Client-Side Callbacks

4-14 Using RMI in a WebLogic Enterprise Environment

 // client call_back object
 if (((CallbackClientIntf)callbackObj).IsRightValue(val, 12345))
 return "";
 else
 return "fail on send long value to server";
 }

 /**
 * The main() method creates an instance of CallbackImpl class
 * and invokes the rebind() method of JNDI to register the
 * new objects. It registers the objects with the name Callback
 * and also inform you that it has successfully completed
 * the registration process.
 */
 public static void main(String args[])
 {
 try{
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL,"");
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 Context ctx = new InitialContext(env);
 ctx.rebind(Callback.NAME, new CallbackImpl());

 System.out.println("CallbackImpl created and bound in JNDI to name "
 + Callback.NAME);
 }
 catch (Exception e)
 {
 System.out.println("caught exception:"+e);
 }
 }//end main()
} // end CallbackImpl

Running the RMI Callback Example

To run the callback example, complete the following steps:

1. Make sure that your development environment is properly configured for
compiling and running the example, as explained in the topic “Setting Up Your
BEA WebLogic Enterprise Development Environment” on page 3-2.

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-15

2. Create a directory where you want to build and run the example. (For example,
D:\work\rmi_callback).

3. Cut and paste the code examples provided in the previous sections into four
appropriately named Java source files:

l CallbackClientIntf.java (shown in Listing 4-1)

l CallbackClient.java (shown in Listing 4-2)

l Callback.java (shown in Listing 4-3)

l CallbackImpl.java (shown in Listing 4-4)

Include these Java source files in your rmi_callback directory.

4. Refer to the topic “Extra Files Needed to Run the Callback Example” on page
4-17. Cut and paste the code for these files into appropriately named files:

l Callback.ubb (shown in Listing 4-5)

l DataObject.java (shown in Listing 4-6)

l ServerImpl.java (shown in Listing 4-7)

l startup.properties (shown in Listing 4-8)

l TestServer.xml (shown in Listing 4-9)

Include these files in your rmi_callback directory as well. Optionally, you
might also want to copy the file cleanup.cmd shown in Listing 4-10. This
provides a convenient way to remove generated files after running the example.

5. Modify the file Callback.ubb (shown in Listing 4-5) so that it indicates the
correct values for TUXDIR, APPDIR, and so on. To determine all the changes you
need to make, look for the #CHANGEME comments in the file and simply edit those
lines as needed. The code you need to modify on each line is shown in bold
before a #CHANGEME comment.

6. Compile the Java source files:

javac *.java

7. Run the WebLogic RMI compiler on CallbackImpl.class and
CallbackClient.class files as follows:

java weblogic.rmic CallbackImpl CallbackClient

8. Run the buildjavaserver command on the XML file:

buildjavaserver testserver.xml

4 Using RMI with Client-Side Callbacks

4-16 Using RMI in a WebLogic Enterprise Environment

9. Set the BEA WebLogic Enterprise environment variables APPDIR and
TUXCONFIG to indicate the location of your example application and tuxconfig
file, respectively.

10. Generate a tuxconfig file based on Callback.ubb as follows:

tmloadcf -y Callback.ubb

11. Start the BEA WebLogic Enterprise server:

tmboot -y

12. Run the client:

java CallbackClient corbaloc://<YourMachineID>:10000

For example:

java CallbackClient corbaloc://SAMS:10000

If the example runs successfully, the following messages are displayed on the
screen:

1. Success sending ClientObject to server
2. Success on send data object to server
 and server callback client using ClientObject
3. Success on send long value to server
 and server callback client using ClientObject

13. Stop the BEA WebLogic Enterprise server:

 tmshutdown -y

14. To remove the generated files, you can use the cleanup.cmd provided in
Listing 4-10, or a similar script.

Environment Variable Example Setting

APPDIR For example, on Windows NT:

set APPDIR=D:\work\rmi_callback

TUXCONFIG For example, on Windows NT:
set TUXCONFIG=D:\work\rmi_callback\tuxconfig

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-17

Extra Files Needed to Run the Callback Example

The following files are provided for your convenience. You can cut and paste the code
for each file into an appropriately named ASCII file, and use the files to build and run
the callback example in your BEA WebLogic Enterprise environment. The files
provided here are:

n Callback.ubb (shown in Listing 4-5)

n DataObject.java (shown in Listing 4-6)

n ServerImpl.java (shown in Listing 4-7)

n startup.properties (shown in Listing 4-8)

n TestServer.xml (as shown in Listing 4-9)

n cleanup.cmd for Windows NT systems (as shown in Listing 4-10)

Notice that this example uses a startup properties file to register RMI implementations
at startup. (The Hello World example shown in Chapter 2, “Getting Started with RMI
— a Hello World Example,” registers the RMI implementations by means of
ServerImpl.java in a different way.) For more information on using a startup
properties file, see Appendix B, “Using a Startup Properties File.”

4 Using RMI with Client-Side Callbacks

4-18 Using RMI in a WebLogic Enterprise Environment

Listing 4-5 Callback.ubb

Copyright (c) 2000 BEA Systems, Inc. All Rights Reserved

*RESOURCES
IPCKEY 80952
MASTER SITE1
MODEL SHM
LDBAL Y

*MACHINES
SAMS LMID=SITE1
 TUXDIR="d:\wledir"
 APPDIR="d:\work\rmi_callback"
 TUXCONFIG="d:\work\rmi_callback\tuxconfig"
 MAXWSCLIENTS=5

*GROUPS
DEFAULT:LMID=SITE1
STDGRP GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"
TMSYSEVT SRVGRP=STDGRP SRVID=1 RESTART=Y
TMFFNAME SRVGRP=STDGRP SRVID=2
 CLOPT="-A -- -N -M"
TMFFNAME SRVGRP=STDGRP SRVID=3
 CLOPT="-A -- -N"
TMFFNAME SRVGRP=STDGRP SRVID=4
 CLOPT="-A -- -F"
ISL SRVGRP=STDGRP SRVID=5
 CLOPT="-A -- -O -n //SAMS:10000"
JavaServer SRVGRP=STDGRP SRVID=6 CLOPT="-A -- -M 0"

*MODULES
 CallbackModule
 SRVGRP=STDGRP SRVID=6
 FILE="d:\work\rmi_callback\testserver.jar"

*SERVICES

*INTERFACES

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-19

Listing 4-6 DataObject.java

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

/**
 * DataObject is to test WLE RMI client callback
 */
public class DataObject implements java.io.Serializable
{
 private String s;

 DataObject(String s)
 {
 this.s = s;
 }
 public String toString()
 {
 return s;
 }
 public boolean equals(Object Obj)
 {
 return (((DataObject)Obj).s.equals(s));
 }
}

4 Using RMI with Client-Side Callbacks

4-20 Using RMI in a WebLogic Enterprise Environment

Listing 4-7 ServerImpl.java

/* Copyright (c) 1999 BEA Systems, Inc. All Rights Reserved */

import com.beasys.rmi.Startup;
import java.io.*;
import java.util.Properties;

/*
 * The ServerImpl class provides code to initialize and stop the server
 * invocation. ServerImpl is specified in the buildjavaserver XML input
 * file as the name of the server object.
 */
public class ServerImpl extends com.beasys.Tobj.Server {

 public boolean initialize(String[] args) {
 Properties p = new Properties();
 try {
 p.load(getClass().getResourceAsStream("startup.properties"));
 } catch (IOException ioe) {
 ioe.printStackTrace();
 return false;
 }
 try {
 Startup.main(p);
 return true;
 } catch (Exception e) {
 return false;
 }
 }

 public void release() {}
}

Example of Callbacks in RMI

Using RMI in a WebLogic Enterprise Environment 4-21

Listing 4-8 startup.properties

SYSTEM STARTUP FILES - Client callback
--
#
Register a startup class by giving it a virtual name and
supplying its full pathname.
weblogic.system.startupClass.[virtual_name]=[full_pathname]
#
Add arguments for the startup class
weblogic.system.startupArgs.[virtual_name]=[space separated arguments]

weblogic.system.startupClass.Callback=CallbackImpl

Listing 4-9 TestServer.xml

<?xml version = "1.0" ?>

<!-- Copyright (c) 1999 BEA Systems, Inc.
-->
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

<M3-SERVER server-descriptor-name = "testserver.ser"
 server-implementation = "ServerImpl" >

 <ARCHIVE name = "testserver.jar">
 <CLASS name="Callback"/>
 <CLASS name="CallbackClientIntf"/>
 <CLASS name="DataObject"/>
 <CLASS name="Callback_WLStub"/>
 <CLASS name="Callback_WLSkel"/>
 <CLASS name="CallbackClientIntf_WLStub"/>
 <CLASS name="CallbackClientIntf_WLSkel"/>
 <CLASS name="CallbackImpl"/>
 <FILE name="startup.properties" prefix=""/>
 </ARCHIVE>

</M3-SERVER>

4 Using RMI with Client-Side Callbacks

4-22 Using RMI in a WebLogic Enterprise Environment

Listing 4-10 Cleanup.cmd

rm *.class
rm *.jar
rm *.ser
rm tuxconfig
rm stderr
rm stdout
rm tmsysevt.dat
rm -rf .adm

Using RMI in a WebLogic Enterprise Environment 5-1

CHAPTER

5 Using RMI with EJBs

All clients of EJBs use RMI on IIOP. There is really no difference in creating an RMI
client of a traditional RMI server or of an EJB server. (See Figure 5-1 and the topic “A
Note About Type Narrowing” on page 5-4.) The difference is in the way the servers
handle the calls. This topic explains the relationship between BEA WebLogic
Enterprise RMI on IIOP and EJBs.

This topic includes the following sections:

n EJBs and Clients of EJBs

n Client Callbacks from EJBs

n Clients of EJBs and BEA WebLogic Enterprise RMI Servers

n A Note About Type Narrowing

n Where Can I Find Examples of Clients of EJBs?

5 Using RMI with EJBs

5-2 Using RMI in a WebLogic Enterprise Environment

Figure 5-1 All Clients of EJB Servers Use RMI on IIOP—RMI Clients and
Clients of EJBs Are Essentially the Same

EJBs and Clients of EJBs

Using RMI in a WebLogic Enterprise Environment 5-3

EJBs and Clients of EJBs

To talk to an EJB server, a client of an EJB must first obtain an object reference for the
EJB server. This is the same task as an RMI client obtaining a reference to a remote
object. The EJB server is always treated as a remote object. To obtain the object
reference, BEA WebLogic Enterprise clients of EJBs use the Java Naming and
Directory Interface (JNDI). The JNDI call returns a reference to an object that can
implement the EJB server’s Home interface. The client can use the Home interface on
an EJB server to look up existing EJB instances or create new ones. The client uses the
Remote interface to interact with EJB objects on the server.

In short, a client of an EJB is an RMI client that is talking to an EJB.

Client Callbacks from EJBs

In BEA WebLogic Enterprise, a particularly useful feature of RMI is that you can use
it to do client callbacks from Enterprise Java Bean (EJB) servers. Clients cannot
advertise EJB implementations, but they can advertise RMI implementations. So if a
client wants to be called back from an EJB instance, it should create an RMI object and
pass the reference to the EJB instance. The EJB instance can then invoke the client
callback by using the RMI reference.

Clients of EJBs and BEA WebLogic Enterprise
RMI Servers

Notice that by definition all clients of EJBs use RMI on IIOP. Therefore, clients of
EJBs can also talk to BEA WebLogic Enterprise RMI servers.

5 Using RMI with EJBs

5-4 Using RMI in a WebLogic Enterprise Environment

A Note About Type Narrowing

A client program that is intended to be interoperable with all compliant EJB container
implementations must use the method
javax.rmi.PortableRemoteObject.narrow to perform type-narrowing of the
client-side representations of the home and remote interface. Once an object reference
is obtained, the client must narrow it to the appropriate type. If you are creating a
generic RMI client, you could use the cast operator instead of
PortableRemoteObject.narrow. However, we recommend the use of
PortableRemoteObject.narrow to ensure interoperability with compliant EJB
container implementations.

Where Can I Find Examples of Clients of
EJBs?

All clients of EJBs use RMI on IIOP. For a description of the EJB examples, see the
Guide to EJB Sample Applications in the BEA WebLogic Enterprise online
documentation.

Using RMI in a WebLogic Enterprise Environment 6-1

CHAPTER

6 Converting Sun
JavaSoft RMI to BEA
WebLogic Enterprise
RMI Classes

It is easier to use BEA WebLogic Enterprise RMI if you have already written classes
in the Sun Microsystems JavaSoft reference implementation of RMI. This section
explains how to convert Sun JavaSoft RMI classes to WebLogic RMI using the
WebLogic RMI Hello World application as an example.

Suppose you have an RMI Hello World example written similar to those found in the
Sun JavaSoft documentation distribution. To convert these files for use with BEA
WebLogic Enterprise, you must do the following:

n Step 1: Modify the Java source code files

n Step 2: Compile the Java source files

n Step 3: Run the WebLogic RMI compiler on the implementation class

n Step 4: Build and package the application for BEA WebLogic Enterprise

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

6-2 Using RMI in a WebLogic Enterprise Environment

Step 1: Modify the Java source code files

To convert the RMI Hello World example from Sun JavaSoft RMI to BEA WebLogic
Enterprise RMI, you must first modify the Java source code files to adjust for the
following major differences:

n For lookup and connection bootstrapping, BEA WebLogic Enterprise RMI uses
the Java Naming and Directory Interface (JNDI) javax.naming instead of
java.rmi.naming

n BEA WebLogic Enterprise RMI uses JNDI javax.naming instead of an RMI
registry

n BEA WebLogic Enterprise RMI does not require or recommend use of an RMI
security manager

n BEA WebLogic Enterprise RMI classes do not extend UnicastRemoteObject

You need to modify the following Java source code files:

n HelloImpl.java—a Remote Object Implementation

n HelloClient.java—a Client That Invokes Methods on the Remote Object

Note that the file Hello.java, which contains the remote interface, is exactly the
same in both the Sun JavaSoft Hello World RMI example and in BEA WebLogic
Enterprise RMI. Therefore, you do not need to make any changes to this Java source
file—you can use it as is. You will need to recompile it, though, along with the other
Java files.

HelloImpl.java—A Remote Object Implementation

To modify this file, compete the following steps:

1. Remove the package imports statements for the following packages, which are not
used in BEA WebLogic Enterprise RMI:

l java.rmi.Naming

l java.rmi.RMISecurityManager

Step 1: Modify the Java source code files

Using RMI in a WebLogic Enterprise Environment 6-3

l java.rmi.server.UnicastRemoteObject

2. Add package import statements for the following Java Naming and Directory
Interface (JNDI) packages, which are needed by BEA WebLogic Enterprise RMI:

l java.util.Hashtable

l javax.naming.Context

l javax.naming.InitialContext

l javax.naming.NamingException

3. Edit the rest of the code in this file based on the BEA WebLogic Enterprise RMI
Hello World example to use the appropriate packages and J2EE features.

For details, see “Step 3: Write the source code for a remote object that
implements the remote interface” on page 3-7 in Chapter 3, “Developing RMI
Applications in BEA WebLogic Enterprise.”

HelloClient.java—A Client That Invokes Methods on the
Remote Object

The RMI client can be either an applet or a Java client similar to that shown in our BEA
WebLogic Enterprise RMI Hello World example. To convert either type of client from
Sun JavaSoft RMI to BEA WebLogic Enterprise RMI, you must modify the client file
similar to the following to account for some basic differences:

1. Remove the following package import statement, which is not used in BEA
WebLogic Enterprise:

l java.rmi.Naming

2. Add package import statements for the following Java Naming and Directory
Interface (JNDI) packages, which are needed by BEA WebLogic Enterprise RMI:

l java.util.Hashtable

l javax.naming.Context

l javax.naming.InitialContext

l javax.naming.NamingException

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

6-4 Using RMI in a WebLogic Enterprise Environment

3. Edit the rest of the code in this file to use the appropriate packages and J2EE
features. In particular, this means using JNDI for the lookup and connection
bootstrapping. Once you get the object reference, be sure to use
javax.rmi.PortableRemoteObject.narrow to narrow it to the appropriate
type.

For details, see the explanation of the code for the BEA WebLogic Enterprise
Hello World RMI client in “Step 4: Write the source code for a client that
invokes methods on the remote object” on page 3-10 in Chapter 3, “Developing
RMI Applications in BEA WebLogic Enterprise.”

Step 2: Compile the Java source files

Compile the Java source files including the remote object implementation source file
(HelloImpl.java), the remote interface that it extends (Hello.java), the RMI client
(HelloClient.java or an applet file), along with any other associated Java files
needed for the application.

For example, the following command compiles the Java source files in
examples/hello and puts the resulting class files under a directory called classes.

javac -d classes examples/hello/*.java

For more information on using the javac compiler to generate BEA WebLogic
Enterprise RMI classes, see “Step 5: Compile the source code files to create the
executable RMI classes” on page 3-12 in Chapter 3, “Developing RMI Applications in
BEA WebLogic Enterprise.”

Step 3: Run the WebLogic RMI compiler on
the implementation class

To create a proxy stub file for the client and skeleton file for the server, run the
weblogic.rmic compiler on the fully-qualified package names of compiled class
files that contain remote object implementations.

Step 4: Build and package the application for BEA WebLogic Enterprise

Using RMI in a WebLogic Enterprise Environment 6-5

For the BEA WebLogic Enterprise RMI Hello World Example, you would run the
weblogic.rmic compiler on the class file HelloImpl as follows:

java weblogic.rmic -d . examples.hello.HelloImpl

For more information about stubs and skeletons and about using the WebLogic RMI
compiler to generate them, see “Step 6: Run the WebLogic RMI compiler on the
implementation class to generate stubs and skeletons” on page 3-13 in Chapter 3,
“Developing RMI Applications in BEA WebLogic Enterprise.”

Step 4: Build and package the application
for BEA WebLogic Enterprise

Once you have the BEA WebLogic Enterprise RMI class files, all that is left to do is
create a bootstrapping mechanism for your application and package the application
into a JAR file. For information on how to do this, see the section “Building Your RMI
Application in the BEA WebLogic Enterprise Environment” on page 3-16.

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

6-6 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment 7-1

CHAPTER

7 The BEA WebLogic
Enterprise RMI API

There are several packages shipped as part of BEA WebLogic Enterprise RMI on
IIOP. The public application programming interface (API) includes the BEA
WebLogic Enterprise implementation of the Java RMI base classes and, for
compatibility, the equivalent WebLogic Server (WLS) packages (weblogic.rmi).
The BEA WebLogic Enterprise implementation also includes the WebLogic RMI code
generator (weblogic.rmic).

Writing an application that uses remote method invocation (RMI) is essentially
characterized by using the RMI API.

This topic includes the following sections:

n Overview of BEA WebLogic Enterprise RMI Packages

n Other Java Packages Related to BEA WebLogic Enterprise RMI

n What Is Different in BEA WebLogic Enterprise RMI API?

For detailed API reference information on the packages described in this topic, see the
the BEA WebLogic Enterprise API Javadoc page in the BEA WebLogic Enterprise
online documentation.

7 The BEA WebLogic Enterprise RMI API

7-2 Using RMI in a WebLogic Enterprise Environment

Overview of BEA WebLogic Enterprise RMI
Packages

You can use either the Sun Microsystems, Inc. JavaSoft RMI related packages and
classes or the BEA WebLogic RMI packages and classes to create BEA WebLogic
Enterprise RMI applications. For compatibility with BEA WebLogic Server (WLS),
the java.rmi classes are also implemented as weblogic.rmi classes.

Table 7-1 shows the Sun JavaSoft and BEA WebLogic packages that make up the
BEA WebLogic Enterprise RMI API. The packages shown are generally supported in
BEA WebLogic Enterprise but with some differences which are summarized in the
table. Details on how BEA WebLogic Enterprise RMI differs from Sun JavaSoft RMI
are provided in the section “What Is Different in BEA WebLogic Enterprise RMI
API?” on page 7-5. Please be sure to read this section.

Overview of BEA WebLogic Enterprise RMI Packages

Using RMI in a WebLogic Enterprise Environment 7-3

Table 7-1 BEA WebLogic Enterprise RMI Java Packages

Package Description Summary of
Differences

java.rmi The java.rmi package and the weblogic.rmi.package
include the interface java.rmi.Remote which is the basic
building block for all remote objects. java.rmi.Remote
contains no methods—it simply functions as a “tag” to identify
remote classes. You must extend this tagging interface to create
your own remote interface, with method stubs that create a
structure for your remote object. Then you implement your own
remote interface with a remote class. Your implementation needs
to be bound to a name in the Java Naming and Directory Interface
(JNDI), from where a client or server may look up the object and
use it remotely. (For more about using the JNDI API, see
javax.naming.)

The java.rmi package also includes several exception classes
that extend java.rmi.RemoteException. You should code
to catch these RMI exceptions in your BEA WebLogic Enterprise
applications. Methods on remote objects should throw
java.rmi.RemoteException.

For details on how the BEA WebLogic Enterprise RMI API
differs from the Sun JavaSoft implementation, see the topic
“What Is Different in BEA WebLogic Enterprise RMI API?” on
page 7-5

Some rmi classes
are not effective for
use in BEA
WebLogic
Enterprise.

For details, see “API
Differences” on
page 7-7.

7 The BEA WebLogic Enterprise RMI API

7-4 Using RMI in a WebLogic Enterprise Environment

Other Java Packages Related to BEA
WebLogic Enterprise RMI

Table 7-2 shows other J2EE packages that provide additional functionality needed to
create BEA WebLogic Enterprise RMI classes.

javax.rmi The javax.rmi package includes one class called
javax.rmi.PortableRemoteObject. The method narrow
method on this class can be used in combination with the WLE
implementations of JNDI and RMI. All other functions in the
PortableRemoteObject throw
UnsupportedOperationException in WLE.

Server implementation objects may either inherit from
javax.rmi.PortableRemoteObject or they may implement
a remote interface and then use the exportObject method to
register themselves as a server object.

Optionally, you can use PortableRemoteObject.narrow in
BEA WebLogic Enterprise RMI applications to perform
type-narrowing, instead of a cast operator. Use of narrow is
strongly recommended.

A client program that is intended to be interoperable with all
compliant EJB container implementations must use the method
PortableRemoteObject.narrow to perform
type-narrowing of the client-side representations of the home and
remote interface.

None

com.beasys.rmi Starts up classes described by properties in a way compatible
with BEA WebLogic Server.

Not applicable.

Table 7-1 BEA WebLogic Enterprise RMI Java Packages (Continued)

Package Description Summary of
Differences

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-5

What Is Different in BEA WebLogic
Enterprise RMI API?

The BEA WebLogic Enterprise RMI API is a subset of the Java Development Kit 2
RMI API. As such, it supports most aspects of the Java Enterprise Edition (J2EE)
including use of Java Naming and Directory Interface (JNDI) and transactions services
which are needed to interact with EJBs. In BEA WebLogic Enterprise, RMI is hosted
on IIOP which means firewalls configured to support IIOP traffic will accept
WebLogic RMI on IIOP messages as standard IIOP messages.

Table 7-2 Other Java Packages Related to BEA WebLogic Enterprise RMI

Package Description Summary of Differences

javax.naming Provides the classes and interfaces for
accessing naming services.

In BEA WebLogic Enterprise, the
recommended connection bootstrap is to
create an InitialContext. It is created
with a hash table of parameters. Some of
these affect the RMI implementation.

BEA WebLogic Enterprise supports
keys from both
javax.naming.Context, and from
weblogic.jndi.WLContext.

For details, see the topic “Connection
Bootstrapping and Security
Differences” on page 7-9.

javax.transaction Contains three exceptions thrown by the
ORB machinery during unmarshalling.

None

java.sql Provides the classes and interfaces for
accessing databases via Standard Query
Language (SQL).

None

javax.sql The javax.sql API is used for bean
managed persistence in EJB 1.1. Explicit
access to a database starts by looking up a
javax.sql.DataSource.

None

7 The BEA WebLogic Enterprise RMI API

7-6 Using RMI in a WebLogic Enterprise Environment

BEA WebLogic Enterprise RMI supports use of RMI classes in java.rmi, but you
need to be aware of the specific implementation of these packages in the BEA
WebLogic Enterprise RMI development environment. BEA WebLogic Enterprise
RMI differs from the Sun JavaSoft RMI implementation. Keep these differences in
mind when you are:

n Creating new RMI applications in BEA WebLogic Enterprise especially if you
have previous experience with the BEA WebLogic Server or the JavaSoft RMI
classes.

n Converting existing RMI classes from Sun JavaSoft RMI classes. (For
step-by-step instructions on how to convert existing RMI classes to BEA
WebLogic Enterprise classes, refer to Chapter 6, “Converting Sun JavaSoft RMI
to BEA WebLogic Enterprise RMI Classes.”)

The differences are summarized in the following sections:

n API Differences

n Connection Bootstrapping and Security Differences

n Tool Differences

n Configuration Differences

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-7

API Differences

Table 7-3 lists the differences when using WLE RMI on IIOP.

Table 7-3 BEA WebLogic Enterprise RMI API Differences

Sun JavaSoft RMI Classes BEA WebLogic Enterprise RMI on IIOP

Naming, Connecting, and Bootstrapping

java.rmi.Naming Use of rmi.Naming is not effective for use in BEA WebLogic
Enterprise.

For developing BEA WebLogic Enterprise RMI applications,
use Java Naming and Directory Interface (JNDI)
javax.naming instead of the RMI registry.

java.rmi.Naming classes relate to the Sun JavaSoft
implementation of the RMI registry. BEA WebLogic
Enterprise provides no equivalent.

java.rmi.Naming classes will actually compile and may
run in BEA WebLogic Enterprise, but will produce errors and
undesired results.

java.rmi.registry.LocateRegistry Use of RMI registry related classes is not effective in BEA
WebLogic Enterprise.

For developing BEA WebLogic Enterprise RMI applications,
use JNDI javax.naming instead.

Registry classes relate to the Sun Microsystems JavaSoft
implementation of the RMI registry. BEA WebLogic
Enterprise provides no equivalent.

java.rmi.registry classes will actually compile and may
run in BEA WebLogic Enterprise, but will produce errors and
undesired results.

7 The BEA WebLogic Enterprise RMI API

7-8 Using RMI in a WebLogic Enterprise Environment

Security

java.rmi.RMISecurityManager
java.rmi.server.RMISocketFactory
java.rmi.server.RMIClassLoader
java.rmi.server.UnicastRemoteObject

LoaderHandler, Operation,
RemoteCall, RemoteRef,
RemoteStub, Skeleton from
java.rmi.server (deprecated in 1.2
without replacement)

Use of the RMI class RMISecurityManager is not effective
in BEA WebLogic Enterprise.

For developing BEA WebLogic Enterprise RMI applications,
use JNDI to specify security instead.

RMISecurityManager classes will actually compile and
may run in BEA WebLogic Enterprise, but will produce errors
and undesired results.

java.rmi.RemoteServer

Static method getClientHost in
java.rmi.server.RemoteServer

Use of rmi.server classes is not effective in BEA
WebLogic Enterprise.

java.rmi.server classes will actually compile and may
run in BEA WebLogic Enterprise, but will produce errors and
undesired results.

getLog and setLog in
java.rmi.server.RemoteServer

Use of rmi.server classes is not effective in BEA
WebLogic Enterprise.

java.rmi.server classes will actually compile and may
run in BEA WebLogic Enterprise, but will produce errors and
undesired results.

Stubs and Skeletons

java.rmi.RemoteObject
java.rmi.server.RemoteStub

Use of rmi.RemoteObject is not effective in BEA
WebLogic Enterprise.

java.rmi.RemoteObject classes will actually compile
and may run in BEA WebLogic Enterprise, but will produce
errors and undesired results.

Table 7-3 BEA WebLogic Enterprise RMI API Differences (Continued)

Sun JavaSoft RMI Classes BEA WebLogic Enterprise RMI on IIOP

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-9

Connection Bootstrapping and Security Differences

In BEA WebLogic Enterprise RMI, connection bootstrapping is achieved by creating
an InitialContext via the Java Naming and Directory Interface (JNDI) with
javax.naming.

Optionally, the JNDI WLEContext.SECURITY_AUTHENTICATION property can be
used for security. Also, the property keys shown in the section “JNDI Property Keys
for BEA Tuxedo Style Authentication” on page 7-13 can be used for BEA Tuxedo
style authentication.

For more information about JNDI, see Using the SPI Implementation for JNDI in the
BEA WebLogic Enterprise online documentation.

For more information about using JNDI for security, see the Writing a WLE Enterprise
JavaBean that Implements Security chapter in Using Security in the BEA WebLogic
Enterprise online documentation.

SkeletonMismatchException and
SkeletonNotFoundException in
java.rmi.server (deprecated in JDK 1.2)

These exception classes from java.rmi.server will
compile and run in BEA WebLogic Enterprise.

These classes are not actually used by BEA WebLogic
Enterprise. BEA WebLogic Enterprise uses reflection instead
of skeletons.

Others

java.rmi.dgc.Lease and VMID (not usable) Not supported in BEA WebLogic Enterprise.

java.rmi.server.LogStream (deprecated
in JDK 1.2 without replacement)

Not supported in BEA WebLogic Enterprise.

java.rmi.server.ObjID (not usable) Use of rmi.server classes is not effective in BEA
WebLogic Enterprise.

java.rmi.server classes that use ObjID might actually
compile and run in BEA WebLogic Enterprise, but will
produce errors and undesired results.

Table 7-3 BEA WebLogic Enterprise RMI API Differences (Continued)

Sun JavaSoft RMI Classes BEA WebLogic Enterprise RMI on IIOP

7 The BEA WebLogic Enterprise RMI API

7-10 Using RMI in a WebLogic Enterprise Environment

JNDI Environment Properties

All J2EE Java remote client applications must first create environment properties. The
initial context factory uses the various properties to customize the InitialContext
for a specific environment. You can set these properties by using a hash table. These
properties, which are name-to-value pairs, determine how the
WLEInitialContextFactory creates the WLEContext.

WLEContext.INITIAL_CONTEXT_FACTORY

Set this property to the WLE initial context factory
“com.beasys.jndi.WLEInitialContextFactory” to access the BEA WebLogic
Enterprise domain and remote naming services.

The class com.beasys.jndi.WLEInitialContextFactory provides the
implementation for delegating JNDI methods to the BEA WebLogic Enterprise JNDI
implementation. The com.beasys.jndi.WLEInitialContextFactory provides an
entry point for a client into the WLE domain namespace. (See Listing 7-1 for an
example.)

Listing 7-1 WLEContext.INITIAL_CONTEXT_FACTORY Property Example

Hashtable env = new Hashtable();
/*
* Specify the initial context implementation to use.
* The service provider supplies the factory class.
*/
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 .
 .
 .

WLEContext.PROVIDER_URL

Set the URL of the service provider with the property name
java.naming.provider.url. This property value should specify an IIOP
Listener/Handler for the desired BEA WebLogic Enterprise target domain. (See
Listing 7-2 for an example.)

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-11

Listing 7-2 WLEContext.PROVIDER_URL Property Example

 .
 .
 .
env.put(WLEContext.PROVIDER_URL,
 "corbaloc://myhost:1000");
 .
 .
 .

The host and port combination that is specified in the URL must match the ISL
parameter in the WLE domain’s UBBCONFIG file. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the communication with the WLE domain fails.

A WLE server that acts as a client must set the WLEContext.PROVIDER_URL property
as an empty string or null. The server client connects to the current application in
which it is booted.

WLEContext.SECURITY_AUTHENTICATION

The WLE system supports different levels of authentication. The
SECURITY_AUTHENTICATION value determines whether certificate-based SSL
authentication is attempted or BEA Tuxedo style authentication is used.

Valid values for this property key are “none”, “ simple”, or “strong”, as
recommended by the Sun Microsystems Inc. JNDI specification. (See Listing 7-3 for
an example.)

7 The BEA WebLogic Enterprise RMI API

7-12 Using RMI in a WebLogic Enterprise Environment

Listing 7-3 WLEContext.SECURITY_AUTHENTICATION Example

 .
 .
 .
env.put(WLEContext.SECURITY_AUTHENTICATION,
 "strong");
.
.
.

If “ none” is specified, then no authentication is attempted.

If “ strong” is specified, then certificate-based authentication is attempted using SSL
protocols.

If “ simple” is specified or if SECURITY_AUTHENTICATION is not specified, then
the BEA Tuxedo style authentication is used. See the next section for information
about the WLE specific keys used to support BEA Tuxedo style authentication.

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-13

JNDI Property Keys for BEA Tuxedo Style Authentication

BEA WebLogic Enterprise supports use of the several keys from
javax.naming.Context for security as shown in Table 7-4.

Table 7-4 WLE Property Keys for Security

Key Description

WLEContext.SECURITY_PRINCIPAL Specifies the identity of the principal used when
authenticating the caller to the WLE domain.

WLEContext.SECURITY_CREDENTIALS Specifies the credentials of the principal when
authenticating the caller to the WLE domain.

n For certificate-based authentication enabled via
SECURITY_AUTHENTICATION=”strong”, it
specifies the pass phrase used to access the private key
and certificate for the EJB.

n For password-based authentication enabled via
SECURITY_AUTHENTICATION=”simple”, it
specifies a string that is the user’s password or an
arbitrary object user_data used by the authentication
server (AUTHSVR) to verify the credentials of the
EJB.

WLEContext.CLIENT_NAME Specifies the name of the EJB defined by the -c option of
the tpusradd command.

WLEContext.SYSTEM_PASSWORD The system password. Required only when using
Username/Password authentication.

7 The BEA WebLogic Enterprise RMI API

7-14 Using RMI in a WebLogic Enterprise Environment

Listing 7-4 includes the WLE keys used to define Username/Password authentication.

Listing 7-4 WLE Keys for Username/Password Authentication

...
//Password-Based Authentication
env.put(WLEContext.SECURITY_AUTHENTICATION, "simple");
env.put(WLEContext.SYSTEM_PASSWORD, "RMI");
env.put(WLEContext.SECURITY_PRINCIPAL, "sams");
env.put(WLEContext.CLIENT_NAME, "writers");
env.put(WLEContext.SECURITY_CREDENTIALS, "password");

Listing includes the WLE keys used to define certificate-based authentication.

Listing 7-5 WLE Keys for Certificate-Based Authentication

...
//Certificate-Based Authentication
env.put(WLEContext.SECURITY_AUTHENTICATION, "strong");
env.put(WLEContext.SYSTEM_PASSWORD, "SSL");
env.put(WLEContext.SECURITY_PRINCIPAL, "sams");
env.put(WLEContext.SECURITY_CREDENTIALS, "credentials");
...

Tool Differences

Stubs and skeletons for BEA WebLogic Enterprise RMI applications are generated by
running the WebLogic RMI compiler (weblogic.rmic) against the remote class. A
stub is the client-side proxy for a remote object that forwards each BEA WebLogic
Enterprise RMI call to its matching server-side skeleton, which in turn forwards the
call to the actual remote object implementation.

BEA WebLogic Enterprise does not support java.rmi.Naming and, therefore, it has
no rmiregistry tool. (Use of JNDI is supported instead.)

What Is Different in BEA WebLogic Enterprise RMI API?

Using RMI in a WebLogic Enterprise Environment 7-15

Configuration Differences

The only RMI configuration property used for BEA WebLogic Enterprise RMI is
weblogic.system.startupClass.<virtualName> which is used to register the
RMI implementation at startup time. An example of using a startup properties file is
provided in Appendix B, “Using a Startup Properties File.”

The JavaSoft RMI specification defines several properties. None of these have any
effect on the BEA WebLogic Enterprise RMI implementations.

7 The BEA WebLogic Enterprise RMI API

7-16 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment A-1

APPENDIX

A Java Server Startup

A JavaServer is represented by one or multiple JAR archives containing all the
application class files needed for the server to execute. Multiple JARs can be specified
at boot time in UBBCONFIG or added at run time. The JAR file can be built either from
buildjavaserver tool or ejbc tool.

The BEA WebLogic Enterprise Server implementation class has initialize and
release methods for handling the startup and shutdown classes. As the initialize
method of the Server implementation class is invoked with the application arguments
passed in immediately after the JAR file is loaded at JavaServer startup, so any server
initialization and startup functions can be performed there. The release method will be
called when JavaServer is shut down. The name of the startup/shutdown classes, and
the startup arguments can be specified as the application arguments (ARGS) after the
jarfile name in the MODULES section of the UBBCONFIG file; or in the
startup.properties file (same as WLS) that is packaged into the JAR file.

For more information on the ARGS options in the MODULES section of the UBBCONFIG
file, see the Administration Guide in the BEA WebLogic Enterprise online
documentation. For an example of how RMI startup and shutdown classes (specified
in a properties file) are processed in initialize and release methods of the Server
implementation class, see Appendix B, “Using a Startup Properties File.”

Startup/Shutdown Classes

For each JAR file, there is only one Server implementation class that has initialize
and release methods. When the JavaServer boots, it will load all the JAR files
specified in UBBCONFIG, and invokes the initialize method of the Server
implementation class with the application arguments for each JAR. At JavaServer
shutdown it will invoke the release method.

A Java Server Startup

A-2 Using RMI in a WebLogic Enterprise Environment

The startup/shutdown information can be specified in the M3 server descriptor XML
file that will be serialized by the buildjavaserver command. Also, the
startup/shutdown information can be specified as EJB XML deployment descriptor
extensions and will be packaged into the deployable JAR by the ejbc tool.

If there is only one startup class, the class can be implemented as the Server
implementation class, and its initialize method will be called when the JAR is
deployed.

If there are multiple startup classes, these can still utilize the Server implementation
class with the startup class names and arguments passed as the arguments to
initialize method.

Alternatively, the startup/shutdown classes names and arguments can be specified in a
separate file startup.properties (same format as WLS), and be processed in the
initialize method of the Server implementation class. An example of this is
provided in Appendix B, “Using a Startup Properties File.”

JAR Tool / XML

You can use the BEA WebLogic Enterprise buildjavaserver command to generate
the JAR file from an XML file. For a description of the Server class and XML file
syntax, see Steps for Creating a Java Server Application chapter in Creating Java
Server Applications in the BEA WebLogic Enterprise online documentation.

Alternatively, you can use the ejbc tool to package the EJB deployment descriptor
extensions XML file into the deployable JAR. For more information about using the
ejbc tool, see the ejbc command in the Commands, System Processes, and MIB
Reference in the BEA WebLogic Enterprise online documentation.

UBBCONFIG

Using RMI in a WebLogic Enterprise Environment A-3

UBBCONFIG

In the MODULES section of the UBBCONFIG file, set FILE=” jarfilename” to specify
the JAR file that was generated from buildjavaserver and ARGS="args" for
optional application-specific arguments. You can include multiple instances of FILE
for multiple JARs. The jarfilename can be a fully qualified path to the location of
the JAR file; or it can be relative to the directory specified by the environment variable
APPDIR. For more information on the UBBCONFIG file MODULES section, refer to the
Administration Guide.

A Java Server Startup

A-4 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment B-1

APPENDIX

B Using a Startup
Properties File

This appendix provides an example of how to use a startup properties file to register
RMI implementations at startup. (The RMI Hello World example registers the RMI
implementations by means of ServerImpl.java in a different way.)

In this section, we show how to specify the startup file in the server.xml file by
means of the FILE element so that buildjavaserver can package the properties file
in the JAR. Note that the ARCHIVE element in the XML file is optional, as the JAR
file can also be generated by the JAR tool as a separate step outside of
buildjavaserver. We also provide some sample code to demonstrate how the
startup classes mechanism is implemented in the initialize method of the Server
implementation class for RMI.

This topic includes the following sections:

n XML File

n Properties File—startup.properties

n ServerImpl Class

B Using a Startup Properties File

B-2 Using RMI in a WebLogic Enterprise Environment

XML File

<?xml version = "1.0" ?>

<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

<M3-SERVER server-descriptor-name = "rmi.ser"
 server-implementation = "ServerImpl" >

 <ARCHIVE name = "rmi.jar">
 <CLASS name="Simp"/>
 <CLASS name="Simp_WLStub"/>
 <CLASS name="SimpImpl"/>
 <CLASS name="SimpFactory"/>
 <CLASS name="SimpFactory_WLStub"/>
 <FILE name="startup.properties" prefix=""/>
 </ARCHIVE>
</M3-SERVER>

Properties File—startup.properties

SYSTEM STARTUP FILES - Examples
--
Register a startup class by giving it a virtual name and
supplying its full pathname.
weblogic.system.startupClass.[virtual_name]=[full_pathname]
#
Add arguments for the startup class
weblogic.system.startupArgs.[virtual_name]=[space separated
arguments]

weblogic.system.startupClass.simp=SimpFactoryImpl
#weblogic.system.startupArgs.simp=-inproc -second

ServerImpl Class

Using RMI in a WebLogic Enterprise Environment B-3

ServerImpl Class

import java.lang.reflect.*;
import java.util.*;
import weblogic.utils.StringUtils;
import com.beasys.rmi.Startup;

public class ServerImpl extends com.beasys.Tobj.Server {
 public boolean initialize(String[] argv) {
 try {
Startup.main(getClass().getResourceAsStream("startup.properties"));
 } catch (Exception e) {
 return false;
 }
 return true;
 }

 public void release() {}
}

B Using a Startup Properties File

B-4 Using RMI in a WebLogic Enterprise Environment

Using RMI in a WebLogic Enterprise Environment I-1

Index

A
API, BEA WebLogic Enterprise RMI 7-1

connection bootstrapping differences
7-9

summary of differences 7-7
Application Programming Interface

See API

B
BEA WebLogic Enterprise RMI API

differences from Sun JavaSoft RMI API
7-5

See also API, BEA WebLogic Enterprise
RMI

BEA WebLogic Enterprise server, stopping
3-26

bootstrapping an application 3-17

C
callbacks

example 4-5
joint client/server applications 4-2
RMI client interface 4-8
RMI server 4-12
to client from server 4-1
understanding server-to-server

communication 4-1
compiling Java source 6-4
CORBA, interoperability with WebLogic

RMI 1-3
customer support contact information ix

D
deploying a BEA WebLogic Enterprise

application 3-27
deployment

client 3-27
server 3-29

documentation, where to find it viii

E
EJB 1-3

clients and servers 5-3
RMI clients of 1-3
using RMI for callbacks from servers 4-5
using RMI with 5-1

EJB client-server communication
examples of 5-4

EJB servers
client callbacks from 5-3

Enterprise Java Bean
See EJB

environment variables
application environment variables for

BEA WebLogic Enterprise
3-24

required for deployment 3-27
required for development 3-2
required to deploy client 3-27

I-2 Using RMI in a WebLogic Enterprise Environment

required to deploy server 3-29
example

building and running Hello World 2-4
using callbacks in RMI 4-5

example, Hello World 2-1
building and running 2-4
explanation of 2-8
removing generated files 2-8

I
interface

RMI remote interface 4-12
interface, remote server 4-12
Internet Inter-ORB Protocol (IIOP) 1-2

J
JNDI

connection and bootstrapping 7-9
environment properties 7-10
features list 1-2
use of, by RMI client to get an object

reference 3-11
use of, for security 7-9
use of, in remote object implementation

3-7

O
objects by value, passing 1-3

P
package names 3-5
packages, BEA WebLogic Enterprise RMI

7-2
packaging an application 3-20
printing product documentation viii

R
remote class

creating instances of 3-9
defining 3-9

remote interface
characteristics of 3-6

Remote Method Invocation
See RMI

remote object
client invoking methods on 6-3

remote object implementation 6-2
remote object, invoking methods on 3-10
RMI

and Java 2 Enterprise Edition (J2EE) 1-2
API for BEA WebLogic Enterprise 7-1
capabilities of BEA WebLogic

Enterprise version 1-2
compiler 3-13
developing applications that use it 3-1
in BEA WebLogic Enterprise

environment 3-16
on IIOP, what it is 1-2
running application 3-25
software needed for 1-4
source of information about 1-3
stubs and skeletons 3-14
what it is 1-1

RMI, configuration property for BEA
WebLogic Enterprise 7-15

RMI, Sun JavaSoft
converting to BEA WebLogic Enterprise

RMI 6-1

S
script, runme for building and compiling 3-26
Security differences

BEA WebLogic Enterprise RMI 7-9
serialization 1-2
server-to-server communication 4-1
Sun JavaSoft RMI

Using RMI in a WebLogic Enterprise Environment I-3

converting to BEA WebLogic Enterprise
RMI 6-1

support
technical ix

T
transactions

features list 1-3
where to get information on 1-5

TUXCONFIG, creating 3-22
type narrowing 3-12, 5-4

U
UBBCONFIG, creating 3-22

W
weblogic.rmic compiler 3-13

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of RMI in BEA WebLogic Enterprise
	What Is RMI?
	What Is WebLogic RMI on IIOP?
	What About RMI Clients of EJBs?
	Where Can I Learn More About RMI?
	What Software and Development Environment Do I Need for BEA WebLogic Enterprise RMI?
	What Is Next?

	2 Getting Started with RMI — a Hello World Example
	Where Can I Find the RMI Hello World Example?
	What Is the RMI Hello World Example and What Do I Need to Run It?
	Required Software and Environment
	Hello World Files

	Building and Running the Hello World Example
	Cleaning Up the Directory
	Understanding the Hello World Example

	3 Developing RMI Applications in BEA WebLogic Enterprise
	Setting Up Your BEA WebLogic Enterprise Development Environment
	Verifying/Setting Environment Variables on Windows NT
	Verifying/Setting Environment Variables on UNIX

	Developing New RMI Classes for a BEA WebLogic Enterprise Application
	Step 1: Decide on package names and create directories for the source code that reflects the pack...
	Step 2: Write the source code for a remote interface
	Step 3: Write the source code for a remote object that implements the remote interface
	Defining the Remote Class
	Creating an Instance of the Remote Class

	Step 4: Write the source code for a client that invokes methods on the remote object
	A Note About Type Narrowing

	Step 5: Compile the source code files to create the executable RMI classes
	Step 6: Run the WebLogic RMI compiler on the implementation class to generate stubs and skeletons
	More About Stubs and Skeletons in WebLogic RMI
	More About the WebLogic RMI Compiler (weblogic.rmic)

	Building Your RMI Application in the BEA WebLogic Enterprise Environment
	Step 1: Create a mechanism for bootstrapping your application
	Writing the Code That Creates and Registers an RMI Object or Factory
	Releasing the Server Application

	Step 2: Package your application into a JAR file for deployment (buildjavaserver)
	Step 3: Create a UBBCONFIG file and run tmloadcf on it to get an executable TUXCONFIG file
	Step 4: Set application environment variables

	Running Your BEA WebLogic Enterprise RMI Application
	Stopping the BEA WebLogic Enterprise Server
	Using a Script as a Shortcut for Compile and Build Steps
	Deploying Your Application
	Deploying the Client
	Deploying the Server

	4 Using RMI with Client-Side Callbacks
	Understanding Server-to-Server Communication
	Joint Client/Server Applications
	When Do I Need to Use Callbacks?
	Example of Callbacks in RMI
	The RMI Client Interface
	The RMI Client
	The RMI Remote Interface
	The Remote Object (RMI Server)
	Running the RMI Callback Example
	Extra Files Needed to Run the Callback Example

	5 Using RMI with EJBs
	EJBs and Clients of EJBs
	Client Callbacks from EJBs
	Clients of EJBs and BEA WebLogic Enterprise RMI Servers
	A Note About Type Narrowing
	Where Can I Find Examples of Clients of EJBs?

	6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes
	Step 1: Modify the Java source code files
	HelloImpl.java—A Remote Object Implementation
	HelloClient.java—A Client That Invokes Methods on the Remote Object

	Step 2: Compile the Java source files
	Step 3: Run the WebLogic RMI compiler on the implementation class
	Step 4: Build and package the application for BEA WebLogic Enterprise

	7 The BEA WebLogic Enterprise RMI API
	Overview of BEA WebLogic Enterprise RMI Packages
	Other Java Packages Related to BEA WebLogic Enterprise RMI
	What Is Different in BEA WebLogic Enterprise RMI API?
	API Differences
	Connection Bootstrapping and Security Differences
	JNDI Environment Properties
	JNDI Property Keys for BEA Tuxedo Style Authentication

	Tool Differences
	Configuration Differences

	A Java Server Startup
	Startup/Shutdown Classes
	JAR Tool / XML
	UBBCONFIG

	B Using a Startup Properties File
	XML File
	Properties File—startup.properties
	ServerImpl Class

	Index

