%, hea
BEA WebLogic Enterprise

Using RMl in a
WebLogic Enterprise Environment

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using RMI in a WebL ogic Enterprise Environment

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWcccoiuiiiiiiieesiiese ettt e viii
E-0OCSWED SItE....oceeieeeeeee et s st et e re e viii
How to Print the DOCUMENT..........cee e s st st viii
Related INfOrmMation...........ocviiiiiiieeece e e e iX
(0701 = ot AL U LS TR iX
Documentation CONVENLIONScooeciueiuecieie e e eeee e ere e s sreesresraesaeereeraeereans X

1. Overview of RMI in BEA WebLogic Enterprise

WHEL 1S RIMI? ...ttt et et b st st 1-1
What ISWebLogic RMI 0N HHOP?..........oiie e 1-2
What About RMI ClientS of EIBS?........cceveerieeneee ettt 1-3
Where Can | Learn More ABOUt RMI? ..o 1-3
What Software and Development Environment Do | Need for BEA Webl ogic
ENterprise RMI? ...ttt et e e 1-4
WHEE TS INEXE?.....cee e e e e ettt bbb 1-4
2. Getting Started with RMI — a Hello World Example
Where Can | Find the RMI Hello World EXample?.........ccccooiieiiieennneceeeen 2-1
What |sthe RMI Hello World Example and What Do | Need to Run It?......... 2-2
Required Software and ENVironmentcocoeeevenenie e seeeeie e 2-2
HEO WOTTA FITES ... 2-3
Building and Running the Hello World Example..........cccoooiiiiiiniiiinee 2-4
Cleaning Up the DITECLOIY........ccureiiiie et 2-8
Understanding the Hello World Example ... 2-8

Using RMI in a WebL ogic Enterprise Environment iii

3. Developing RMI Applications in BEA WebLogic Enterprise

Setting Up Y our BEA WebL ogic Enterprise Devel opment Environment......... 3-2
Verifying/Setting Environment Variables on Windows NT 3-3
Verifying/Setting Environment Variableson UNIX ..o 34

Developing New RMI Classes for a BEA WebL ogic Enterprise Application.. 3-5

Step 1: Decide on package names and create directories for the source code

that reflectsthe package Names...........ccoeoeernrecinn i 35
Step 2: Write the source code for aremoteinterface...........ccoceeeveveveeenne. 3-6
Step 3: Write the source code for aremote object that implements the remote
INEEITACE ...ttt e e e 37
Defining the REMOte Class.........cc.ccveeeieie e 3-9
Creating an Instance of the Remote Class..........cccoceeveieie e ce e, 39
Step 4: Write the source code for a client that invokes methods on the remote
(0] o] = ox ARSI 3-10
A Note About Type NarrOWING........cccueerierere e 3-12
Step 5: Compile the source code files to create the executable RMI classes..
3-12
Step 6: Run the WebL ogic RMI compiler on the implementation class to
generate stubs and Skeletons ... virece e, 3-13
More About Stubs and Skeletonsin WebLogic RMI 3-14
More About the WebL ogic RMI Compiler (weblogic.rmic)............ 3-15
Building Y our RMI Application in the BEA WebL ogic Enterprise Environment
3-16
Step 1: Create a mechanism for bootstrapping your application.............. 3-17
Writing the Code That Creates and Registers an RM| Object or Factory
3-18
Releasing the Server Applicationcoooeiinieiie v 3-19
Step 2: Package your application into a JAR file for deployment
(DUIHJAVASEIVED).....o et e 3-20
Step 3: Create aUBBCONFIG fileand run tmloadcf on it to get an executable
TUXCONFIG Il ettt 3-22
Step 4: Set application environment variables...........ccccoeeveeiieiveccceiceenen, 3-24
Running Y our BEA WebL ogic Enterprise RMI Applicationc..ccoc........ 3-25
Stopping the BEA WebLogiC ENterprise SEIVErcccovceeecceieceeeeeeeee 3-26
Using a Script as a Shortcut for Compile and Build Steps........cccoccevvveeeveeneen, 3-26
Deploying Your APPlICELIONc..ooueeieie e s ereennes 3-27

Using RMI in a WebL ogic Enterprise Environment

RM

Deploying the CHENt ...t e 3-27

DeplOyiNg the SEIVESc.oi et e e 3-29
Using RMI with Client-Side Callbacks
Understanding Server-to-Server CoOmmMUNIiCationcceeeveereerieseeneeeeeinenneas 4-1
Joint Client/Server APPliCationS.........ccuveiieieeriiee et 4-2
When Do | Need to Use Callbacks?..........ccocoeveiieiiicinccees e 4-5
Example of Callbacks in RMI ..o e 4-5
The RMI Client INErfatecoovii ittt 4-8
THE RMI ClIENT ..ottt e e s e 4-8
The RMI Remote INLErfaceccooeeiieeineciieciee e 4-12
The Remote Object (RMI SEIVEr)ooiieiiiiie e 4-12
Running the RMI Callback Example.........ccccooiiininieie e 4-14
Extra Files Needed to Run the Callback Example..........cccccoeveveunne 4-17
Using RMI with EJBs
EIBs and Clients Of EIBS......cc.oiiieieiieieeeire et e 5-3
Client Callbacks from EJIBS.........cociiiiiereeeie et s 5-3
Clients of EJBsand BEA WebL ogic Enterprise RMI Servers.........cccoeeevenneee 5-3
A Note ADout TYPE NaTOWINGccueeeieeeieiiereeie et e eeeeeea 5-4
Where Can | Find Examples of Clients of EIBS?.........ccccoeioevineennceeeeinee 5-4

Converting Sun JavaSoft RMI to BEA WebLogic Enterprise

I Classes

Step 1: Modify the Java source code fil€S.......ov it 6-2
Hellolmpl.java—A Remote Object Implementationcccccceeeeeiinnne 6-2
HelloClient.java—A Client That Invokes Methods on the Remote Object6-3

Step 2: Compile the Java Source fileS...... ... 6-4

Step 3: Run the WebLogic RMI compiler on the implementation class........... 6-4

Step 4: Build and package the application for BEA WebLogic Enterprise 6-5

The BEA WebLogic Enterprise RMI API

Overview of BEA WebLogic Enterprise RMI Packagescccccceveeeiiiiiienennn. 7-2

Other Java Packages Related to BEA WebLogic Enterprise RMI.................... 7-4

What Is Different in BEA WeblLogic Enterprise RMI API?.........ccccoooiiinnen. 7-5
AP DIffEr8NCES ..o ittt 7-7

Using RMI in a WebL ogic Enterprise Environment %

Connection Bootstrapping and Security Differences..........ccoccoevvveceenne. 7-9

JINDI Environment Properties.........ccoocoeeererieneseereeeee e 7-10
JNDI Property Keys for BEA Tuxedo Style Authentication............ 7-13
TOO! DiffEIEINCES. ...t eee i et 7-14
Configuration DIiffErenCeS.......ccvcveie e e e 7-15

A. Java Server Startup

Startup/ShULOWN ClLASSEScoueriirieie ettt se e e A-1
JAR TOO! / XML .ttt ettt e et et e A-2
UBBCONFIG ...ttt ettt et st s st s A-3

B. Using a Startup Properties File

XML FTB ettt ettt et s bbb s et B-2
Properties File—sStartup.propertiesue oo iiiieieeee e
SEIVEIMPI CIASS. ..ottt e e e e e e e ee e e e e annane

Index

Using RMI in a WebL ogic Enterprise Environment

About This Document

This document describes BEA WebLogic RMI on 110OP and explains how to develop
RMI applications in a BEA WebLogic Enterprise™ environment.

This document covers the following topics:

Chapter 1, “Overview of RMI in BEA WebLogic Enterprise,” gives a brief
introduction to remote method invocation (RMI) for distributed object systems,
details the advantages of BEA BEA WebLogic Enterprise RMI on IIOP over
other flavors, discusses RMI on 1IOP in terms of Enterprise JavaBeans (EJB)
design considerations and the Java 2 Enterprise Edition (J2EE) platform, and
gives a roadmap for working through the remainder of this guide.

Chapter 2, “Getting Started with RMI — a Hello World Example,” takes you
through a simple example of using RMI in BEA WebLogic Enterprise.

Chapter 3, “Developing RMI Applications in BEA WebLogic Enterprise,”
provides step-by-step instructions on how to develop new RMI classes for BEA
WebLogic Enterprise, and how to build and run your new BEA WebLogic
Enterprise application.

Chapter 4, “Using RMI with Client-Side Callbacks,” describes how to use
client-side callbacks in BEA WebLogic Enterprise, and in particular how this
comes in handy for EJB implementations.

Chapter 5, “Using RMI with EJBs,” explains how RMI relates to the EJB
paradigm.

Chapter 6, “Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI
Classes,” explains how to convert your existing Sun Microsystems JavaSoft RMI
classes to function as BEA WebLogic Enterprise RMI objects.

Chapter 7, “The BEA WebLogic Enterprise RMI API,” describes the application
programming interface (API) for RMI.

Using RMI in a WebL ogic Enterprise Environment Vii

m Appendix A, “Java Server Startup,” provides information about the use of JAR
files in JavaServer startup.

m Appendix B, “Using a Startup Properties File,”explains how to use an optional
startup properties file.

What You Need to Know

This document is intended mainly for developers who are interested in using BEA
WebLogic Enterprise to create distributed RMI on [IOP applications that work with
EJBs. It assumes a familiarity with the BEA WebLogic Enterprise platform and Java
programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen

Viii Using RMI in a WebL ogic Enterprise Environment

How to Print the Document

(or aportion of it) in book format. To access the PDFs, open the BEA WebL ogic
Enterprise documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see the BEA WebL ogic Enterprise Bibliography in the WebL ogic
Enterprise online documentation.

For more general information about RMI, refer to the Sun Microsystems, Inc. Javasite
at http://java.sun.com/.

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problemsinstalling and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

Using RMI in a WebL ogic Enterprise Environment iX

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.

M onospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

f |l oat

X Using RMI in a WebL ogic Enterprise Environment

Documentation Conventions

Convention Iltem

nonospace Identifies significant wordsin code.
bol df ace

Example:
t ext

void commt ()

nonospace Identifies variables in code.
italic

Example:
t ext

String expr

UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON

OR

{} Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[] Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using RMI in a WebL ogic Enterprise Environment Xi

Xii Using RMI in a WebL ogic Enterprise Environment

CHAPTER

1 oOverview of RMI in

BEA WebLogic
Enterprise

Thistopic includes the following sections:

What Is RMI?

What Is WebL ogic RMI on 110OP?
What About RMI Clients of EIJBS?
Where Can | Learn More About RMI1?

What Software and Development Environment Do | Need for BEA WebL ogic
Enterprise RMI1?

What Is Next?

What Is RMI?

Remote Method Invocation (RMI) is a Java-based programming paradigm and
application programming interface (API) for distributed object computing and Web
connectivity. RMI allows an application to obtain a reference to an object that exists
el sewhere on the network but then invoke methods on that object as though it existed

Using RMI in a WebL ogic Enterprise Environment 1-1

1 overview of RMI in BEA WebLogic Enterprise

locally on the client’s Java virtual machine. So, products, services, and resources can
exist anywhere on the network but appear to the programmer and the end user to be
part of the loca environment.

With RMI, aclient object can call aremote object in aserver, and that server can also
be a client of other remote objects. RMI uses some form of Java serialization to
marshal (encode) and unmarshal (decode) parameters sent across a network.
Serialization isaway of encoding parameters into a byte stream for delivery across a
network.

What Is WebLogic RMI on IIOP?

1-2

The BEA WebL ogic Enterprise development platform provides remote method
invocation (RM1) as one of the standard services of aJava 2 Enterprise Edition (J2EE)
implementation. For thisrelease, BEA WebL ogic Enterprise providesits own protocol
of WebLogic RMI on the Object Management Group’s industry-standard Internet
Inter-Orb Protocol (I1OP). 110Pis aprotocol that enables browsers and serversto
exchange integers, arrays, and more complex objects, unlike HTTP which supports
only transmission of text.

The primary advantage of the BEA WebL ogic Enterprise implementation of RMI on
[1OP isthat it allows application developers to write remote interfaces between BEA
WebL ogic Enterprise clients and EJB servers, using a natural Java API. By making a
few code enhancements, developers can aso convert their legacy Java client/RMI
server applications to work in BEA WebL ogic Enterprise. BEA WebL ogic Enterprise
RMI clients can talk to EJBs and traditional RMI server objects.

BEA WebL ogic Enterprise RMI has the following characteristics and capabilities:

m Flows over an IIOP transport—firewalls configured to support I1OP traffic will
accept WebLogic RMI on IIOP messages as standard IIOP messages.

m Uses the J2EE JNDI service for bootstrapping—in order for a client program to
make a call on a remote object, the client needs to obtain a reference to the
remote object. Traditional RMI uses the Java Naming Service to do this. In BEA
WebLogic Enterprise RMI, a client gets a reference to a remote object by
looking it up via the J2EE Java Naming and Directory Service (JNDI). A client
can also get a reference to a remote object by receiving the reference as an
argument or a return value.

Using RMI in a WebL ogic Enterprise Environment

What About RMI Clients of EJBs?

m Enablesclientsto tak to EJBs—all clients of EJBs use RMI on [IOP.

m Provides support for maintaining a transaction context between clients and
remote EJBs or RMI servers—the BEA WebLogic Enterprise system supports
the Java Transaction API (JTA).

For this release, WLE IIOP does not pass Objects by Value which is needed for full
CORBA interoperability support. Instead, BEA WebLogic Enterprise RMI on IIOP
passes serialized objects as in traditional RMI. Therefore, this release of BEA
WebLogic Enterprise does not support complete interoperability between Java clients,
EJBs, and CORBA objects.

What About RMI Clients of EJBs?

All clients of Enterprise Java Beans (EJB) use RMI on IIOP. Creating a client to an
EJB server is essentially the same as creating an RMI client to a traditional RMI server.
For more information on this, see the topic “Using RMI with EJBS” on page 5-1. For
examples of clients of EJBs using RMI on IIOP to talk to EJB servers, sB&te
WebLogic Enterpris®.1 Guide to EJB Sample Applications in the BEA WebLogic
Enterprise online documentation.

Where Can I Learn More About RMI?

For more information about remote method invocation, refer to the Sun Microsystems,
Inc. Java site dtttp://java.sun.com/.

Using RMI in a WebL ogic Enterprise Environment 1-3

1 overview of RMI in BEA WebLogic Enterprise

What Software and Development
Environment Do | Need for BEA WebLogic
Enterprise RMI?

Before you can start developing BEA WebL ogic Enterprise RMI applications, you
need the following:

m BEA WebL ogic Enterpriseinstalled on your system
m JavaDevelopment Kit (JDK) 1.2 installed on your system
m Environment variables set appropriately

m CLASSPATH and PATH set to include the appropriate BEA Webl ogic
Enterprise and JDK pathnames

For information on installing BEA WebL ogic Enterprise, see the product installation
guide.

For more information on setting up your development environment, see the topic
“Setting Up Your BEA WebLogic Enterprise Development Environment” on page
3-2.

For information on the JDK, refer to the Sun Microsystems, Inc. Java site at
http://java.sun.com/.

What Is Next?

The following topics are covered in this guide for BEA WebLogic Enterprise RMI on
[IOP:

m Getting Started with RMI — a Hello World Example—if this is your first time
using RMI, or if the BEA WebLogic Enterprise development environment is
new to you, we suggest that you start by working through the Hello World

1-4 Using RMI in a WebL ogic Enterprise Environment

What Is Next?

example. This coversthe basics of using remote objects in the BEA WebL ogic
Enterprise environment.

Developing RMI Applications in BEA WeblLogic Enterprise—this section
details the steps you need to follow to develop, build and run RMI applications
in BEA WebLogic Enterprise. The Hello World example is used as a touchstone.

Using RMI with Client-Side Callbacks

Using RMI with EJBs

Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes
The BEA WebLogic Enterprise RMI API

For more information about using transactions in your RMI application$)sag
Transactions in the BEA WebLogic Enterprise online documentation.

Using RMI in a WebL ogic Enterprise Environment 1-5

1 overview of RMI in BEA WebLogic Enterprise

1-6 Using RMI in a WebL ogic Enterprise Environment

CHAPTER

2 Getting Started with

RMI — a Hello World
Example

This example provides adistributed version of the classic Hello World program using
remote method invocation (RMI) in a BEA WebL ogic Enterprise environment.

Thistopic includes the following sections:

Where Can | Find the RMI Hello World Example?

What |sthe RMI Hello World Example and What Do | Need to Run [t?
Building and Running the Hello World Example

Cleaning Up the Directory

Understanding the Hello World Example

Where Can I Find the RMI Hello World
Example?

In addition to the fully supported examples supplied on the CD-ROM with thisrelease
of BEA WebL ogic Enterprise, several unsupported code examples are provided on a
password-protected Web site for BEA WebL ogic Enterprise customers. Y ou can get

Using RMI in a WebL ogic Enterprise Environment 2-1

2 Getting Started with RMI — a Hello World Example

all thefiles for the BEA WebL ogic Enterprise RMI Hello World example from this

Web site. The URL for the unsupported samples BEA Webl ogic Enterprise Web site

is specified in the product Release Notes under “About This BEA WLE Release” in

the subsection “Unsupported Samples and Tools Web Page.” On the samples Web
page, the RMI HelloWorld example is in a directory similar to the following:

/ unsupported/ sanpl es/ rm / hel | owor | d

What Is the RMI Hello World Example and
What Do I Need to Run It?

The BEA WebLogic Enterprise RMI Hello World example is a simple application for
demonstrating remote method invocations in a distributed BEA WeblLogic Enterprise
environment. The example shows a client making a remote method call to a server
object running on the host. When you run the client at the command line, “Hello
World!" is displayed in response.

Required Software and Environment

2-2

To run the BEA WebLogic Enterprise RMI Hello World example, you need BEA
WebLogic Enterprise installed on your system and the appropriate environment
variables set. The Hello World example does some automated environment setup fc
you, so for now the only variables you should need to check are these:

m Make sureTUXDI Ris set to the full pathname of the directory where you
installed the BEA WebLogic Enterprise software

m Make sureJAVAHOME is set to the full pathname of the directory where you
installed the JDK software

For complete information on how to verify these settings, see the topic “Setting Up
Your BEA WebLogic Enterprise Development Environment” on page 3-2.

Using RMI in a WebL ogic Enterprise Environment

What Is the RMI Hello World Example and What Do | Need to Run It?

Hello World Files

The files needed for this example are supplied on the BEA WebL ogic Enterprise
unsupported samples Web site. Y ou can get the URL for this Web site, and other
related information about it, from the product Release Notes.

Thefilesincluded are shown in Table 2-1.

Table 2-1 Hello World Files

File

Description

exanpl es/ hel l o/ Hel | 0. j ava

A remote interface.

exanpl es/ hel | o/ Hel | ol npl . j ava

A remote object implementation that implements
exanpl es. hel | 0. Hel | o.

exanpl es/ hello/Hel l oClient.java

A client that invokes the remote method, sayHel | o.

Serverlnpl.java

Registers the RMI implementation with the BEA WebL ogic
Enterprise server at startup.

server.xm

Server description file, which provides information about the
BEA WebL ogic Enterprise application required by the

bui | dj avaser ver command. When you run ther unme
script, one of the things it doesis package the generated class
filesinto aJJAR file by running the BEA WebL ogic Enterprise
command bui | dj avaserver ontheserver. xnl file.

runne. cnd
runne. ksh

Windows (DOS) and UNIX scripts, respectively, that you can
run to build and run the Hello World example. Ther unne
script callson dl other fileslisted here, and generates new files.

cl obber. cnd
cl obber. ksh

Windows (DOS) and UNIX scripts, respectively, that you can
run to remove files generated by the Hello World example.

Using RMI in a WebL ogic Enterprise Environment 2-3

2 Getting Started with RMI — a Hello World Example

Building and Running the Hello World
Example

2-4

We suggest that first you just find the Hello World RMI example (on the Web site
indicated in the product Release Notes), build it, and runit. Thisis an easy way to get
familiar with WebLogic RMI on 11OP.

To build and run the Hello World example do the following:

1. Makesure BEA WebL ogic Enterpriseisinstalled on your local system, and that the
following environment variables are set to indicate the appropriate paths:

e JAVA HOVE—set to the full pathname of your Java Development Kit (JDK)
e TUXDI R—set to the full pathname of your WLE installation directory

The Hello World example script automatically setsThECONFI G environment
variable for you, so you do not need to set this variable nowTTKeONFI G
variable indicates the location of tmeXCONFI G file for the WLE application
you want to run, in this case our Hello World example application. The script
also adds the HelloWorld application classes to Y@ASSPATH, and the
required paths foruxD R and the JDK bin to youprATH.

2. Copy the RMhel | owor | d directory and files from the WLE Unsupported
Samples Web page onto your local system.

The URL for the unsupported samples BEA WebLogic Enterprise Web site is
specified in the product Release Notes under “About This BEA WLE Release”
in the subsection “Unsupported BEA WebLogic Enterprise Samples and Tools
on BEA Web Site.” On the samples Web page, the RMI Helloworld example is
in a directory similar to the following:

/ unsupported/ sanpl es/ rm / hel | owor | d

3. Change directories () to your local BEA WebLogic Enterprise RMI Hello
World example and type the following at the command-line prompt:

runme

Running this script compiles, builds, and runs the RMI Hello World example.
You should see output similar to the following, as a result of runninguttnee
script.

Using RMI in a WebL ogic Enterprise Environment

Building and Running the Hello World Example

C. \ nyW.Eapps\rm \ hel | owor | d>r unme

Setting up for RM HelloWwrld sanple.

--- Verifying sone variables...

--- Creating setenv.cnd. ..

--- Creating ubbconfig...

--- Creating run_client.cnd...

--- Conpiling Java sources...

--- Cenerating Stub and Skel eton...

--- Building the Jar...

--- Creating tuxconfig...

--- Booting WE...

Booting all adm n and server processes in
C. \ nyW.Eapps\rmi\ hel | owor| d\tuxconfig

I NFO BEA Engine, Version 2.4

INFQ Serial #: 123456789, Expiration 2000-06-21, Maxusers 200
INFQ Licensed to: Samant ha Stevens

Booti ng adm n processes ...

exec BBL -A:
process id=271 ... Started.

Booti ng server processes ...

exec TMSYSEVT -A :

process id=239 ... Started.
exec TMFFNAME -A -- -N -M:

process id=240 ... Started.
exec TMFFNAME -A -- -N:

process id=243 ... Started.
exec TMFFNAME -A -- -F :

process id=284 ... Started.
exec JavaServer -A:

process id=225 ... Started.
exec ISL -A -- -n //SAMS: 2468 :

process id=274 ... Started.
7 processes started.
--- Running the RM dient... (Should say "Hello Wrld!")...
Hel lo Worl d!

--- Shutting down WE. ..
Shutting down all admi n and server processes in C\myWEapps\rm\helloworld

Shutting down server processes ...

Server Id =5 Goup I d = GROUPL Machi ne = si nple: shutdown succeeded

Server Id =6 Goup | d = GROUP2 Machi ne = si npl e: shutdown succeeded
Server Id =4 Goup |d = GROUPL Machi ne = si npl e: shutdown succeeded
Server Id =3 Goup | d = GROUPL Machi ne = si npl e: shutdown succeeded
Server Id =2 Goup | d = GROUPL Machi ne = si nple: shutdown succeeded

Server Id =1 Goup I d = GROUPL Machi ne
Shutting down adm n processes ...

si nmpl e: shut down succeeded

Using RMI in a WebL ogic Enterprise Environment 2-5

2 Getting Started with RMI — a Hello World Example

Server Id =0 Goup Id = sinple Machi ne = si npl e: shut down succeeded
7 processes stopped.

Fi ni shed.

C:\ rm Hel | oExanpl e\ hel | owor | d>

Some of the tasks performed by the script are:

Sets up your BEA WebL ogic Enterprise environment. This includes setting
WLE environment variables, and creating a UBBCONFI G file based on your
system name. The UBBCONFI Gfile is used to generate a TUXCONFI Gfile.

Generates a directory called cl asses (if it does not already exist) and adds
the cl asses directory in your local CLASSPATH (if it is not already
included).

Runsthej avac compiler on the exanpl es/ hel | o/ *. j ava filesto generate
executable Java class files, and puts the generated class files under a
directory called cl asses.

Runsthe command j ava webl ogi c. r mi ¢ on the implementation class
Hel | ol npl . cl ass fileto generate an RMI client stub and RMI server
skeleton.

Packages the class filesinto a JAR file by running the bui | dj avaser ver
command on ser ver . xn .

Boots the WLE server (t nboot -y).
Runsthe RMI client.
Stops the WLE server (t nshut down -y).

Noticealsothat asaresult of running ther unnme script, you get several new files. Some
of the more interesting ones are shown in Table 2-2.

Table 2-2 Files Produced by the Hello World Example Runme Script

Generated File(s)

Description

Javaclassfilesin

TheclassesHel | o. cl ass, Hel | od i ent . cl ass, and

cl asses/ exanpl es/ hel | owor | d/ Hel | ol npl . cl ass were created by running the j avac

command on Hel | o. j ava, Hel | oCli ent . j ava, and
Hel | ol npl . j ava, respectively.

2-6 Using RMI in a WebL ogic Enterprise Environment

Building and Running the Hello World Example

Table 2-2 FilesProduced by the Hello World Example Runme Script (Continued)

Generated Filg(s)

Description

RMI stub and skeleton classes in
cl asses/ exanpl es/ hel | owor | d/

Hel | o_WL.St ub. cl ass isaproxy for the client and

Hel | o_W.Skel . cl ass isaproxy classfor the server. These
classfiles were created by running the command j ava

webl ogi c. rm c on thefully qualified package name of the
implementation class, Hel | ol npl . cl ass (Java

webl ogi c. rmi ¢ exanpl es. hel | 0. Hel | ol npl).

cl asses/ Server | npl . cl ass

Registers the application at startup. This was created by
running thej avac command on Server | npl . j ava.

server.jar

The Hello World application packaged into a Java ARchive
(JAR) file for deployment. This was created by running the
bui | dj avaser ver command on thefileser ver. xni .

server. ser

Serialized version of the server-implementation as specified in
theserver - descri pt or - nane section of the

server. xnl file running thebui | dj avaserver
command on thefileserver. xm .

UBBCONFI G file

ASCII version of the BEA WebL ogic Enterprise application
configuration filecontaining parametersthat the WL E software
interprets to create an executabl e application.

TUXCONFI G file

Binary version of the BEA WebL ogic Enterprise application
configuration file. This was generated by running t ml oadcf
on the UBBCONFI Gfile.

setenv. cnmd
set env. ksh

Windows (DOS) and UNIX commands to set the BEA
WebL ogic Enterprise specific environment variables APPDI R
and TUXDI R based on your current environment.

run_client.cnd
run_client. ksh

Windows (DOS) and UNIX commands to run the client with
appropriate arguments.

For more information about these files, refer to Chapter 3, “Developing RMI
Applications in BEA WebLogic Enterprise.”

Using RMI in a WebL ogic Enterprise Environment 2-7

2 Getting Started with RMI — a Hello World Example

Cleaning Up the Directory

If you want to start over, you can quickly remove al generated files from the example
directory by running the following command in the hel | owor | d directory:

cl obber

Running the cl obber command removes all generated files for the Hello World
example, leaving only the original examplefiles: the Java source files, server . xni
file, and the r unme commands for Windows and UNIX.

Understanding the Hello World Example

2-8

After you successfully run the RMI Hello World example, you can walk through the
process used to create it by referring to Chapter 3, “Developing RMI Applications in
BEA WebLogic Enterprise.” This topic steps through the entire development and
run-time process using the Hello World files as an example.

Each of the key Java source code files is explained in detail in the following subtopic:
m Hell o.java is explained in Step 2: Write the source code for a remote interface

m Hel |l ol npl . j ava is explained in Step 3: Write the source code for a remote
object that implements the remote interface

m HelloClient.java is explained in Step 4: Write the source code for a client
that invokes methods on the remote object

This topic also explains how to compile the Java source files wifhathe: compiler,

how to generate stubs and skeletons with the WebLogic RMI compiler, package the
class files into a BEA WebLogic Enterprise application, and build and run the
application in the BEA WebLogic Enterprise environment.

Using RMI in a WebL ogic Enterprise Environment

CHAPTER

3

Developing RMI

Applications in BEA
WebLogic Enterprise

Y ou can write your own BEA WebL ogic Enterprise RMI classes and test them in a
running BEA WebL ogic Enterprise application by following the basic guidelines
described here. We cover al the steps you need to develop a BEA WebL ogic
Enterprise RMI application from scratch. Various aspects of the Hello World example
illustrate the major steps in the devel opment process.

Thistopic includes the following sections:

Setting Up Your BEA WebL ogic Enterprise Development Environment
Developing New RMI Classes for aBEA WebL ogic Enterprise Application
Building Your RMI Application in the BEA WebL ogic Enterprise Environment
Running Your BEA WebL ogic Enterprise RMI Application

Stopping the BEA WebL ogic Enterprise Server

Using a Script as a Shortcut for Compile and Build Steps

Deploying Your Application

Using RMI in a WebL ogic Enterprise Environment 31

3 Developing RMI Applications in BEA WebLogic Enterprise

Setting Up Your BEA WebLogic Enterprise
Development Environment

Once you haveinstalled the BEA Webl ogic Enterprise software and the JDK
software, you need to make sure that your development environment is properly
configured.

Before attempting to compile and build any BEA WebL ogic Enterprise application,
you need to ensure that certain environment variables are set on your system. In most
cases, the environment variables TUXDI R and JAVA_HOME are set as part of the BEA
WebL ogic Enterprise installation procedure, and if you are running BEA WebL ogic
Enterprise sample applications, the r unme scriptstypically set the others for you.
However, you need to check al of these environment variables to ensure they reflect
correct information and modify them whenever necessary.

Table 3-1 Setting Environment Variablesfor BEA WebL ogic Enterprise Applications

Environment Description
Variable
TUXD R The directory path where you installed the BEA WebL ogic Enterprise software. For example:
Windows NT
set TUXDI R=c:\ WLEdi r
UNIX
export TUXDI R=/usr/| ocal / W.Edi r
JAVA HOVE The directory path where you installed the JDK software. For example:

Windows NT

set JAVA HOVE=c:\ JDK1. 2

UNIX

export JAVA HOVE=/usr/ | ocal / JDK1. 2

3-2 Using RMI in a WebL ogic Enterprise Environment

Setting Up Your BEA WebLogic Enterprise Development Environment

Table 3-1 Setting Environment Variablesfor BEA WebL ogic Enterprise Applications

Environment Description
Variable
CLASSPATH The CLASSPATH must include the pathnames defined in TUXDI R and JAVA_HOME along
with pathnames to other BEA WebL ogic Enterprise classes. The CLASSPATH must also
include the pathname of the classes for the application you are devel oping.
For example:
Windows NT
set WLECP=%TUXDI R% udat aobj\java\j dk
set CLASSPATH=%CLASSPATHY 9%\LECP% n8B. j ar ; 9ANECP% webl ogi caux. j ar
UNIX
set WLECP=${ TUXDI R}/ udat aobj /j ava/j dk
set CLASSPATH=${ CLASSPATH}: ${ WLECP} / nB. j ar : ${ WLECP} / webl ogi caux. j ar
During development, or any time you are using BEA tools, you should also set up the locale
for error messages from the tools:
set CLASSPATH=%CLASSPATHY %aUXDI R%A | ocal e\ j ava\ M3 on Windows NT
export CLASSPATH=${ CLASSPATH}: ${ TUXDI R}/ | ocal e/ j ava/ M3 on UNIX
PATH The PATH must include the pathnames to the necessary bins and other directories containing

executable commands. For example:

Windows NT

set

PATH=9WAVA_ HOVE% bi n; %d AVA HOVE% j r e\ bi n; Y%AVA HOVE% j r e\ bi n\ cl a
ssi ¢; Y%PATH%

set PATH=%PATHY %' UXDI R% bi n

UNIX

export

PATH=${ JAVA_HOVE}/ bi n: ${ JAVA HOVE}/ j re/ bi n: ${ JAVA HOVE}/j r e/ bi n/
cl assi c: ${ PATH}

export PATH=${ PATH}: ${ TUXDI R}/ bi n

Verifying/Setting Environment Variables on Windows NT

To verify on a Windows system that the information for the environment variables
defined during installation is correct, complete the following steps:

1. Fromthe Start menu, select Settings.

Using RMI in a WebL ogic Enterprise Environment 3-3

3 Developing RMI Applications in BEA WebLogic Enterprise

5.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

Check the settings for TUXDI R and JAVA_HOME.

To change the settings, compl ete the following steps:

1

On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variablefield.

Enter the correct information for the environment variable in the Va ue field.

Click OK to save the changes.

Verifying/Setting Environment Variables on UNIX

Toverify onaUNIX system that the information for the environment variables defined
during installation is correct, type the following commands at the prompt:

printenv <ENI ROMVENT _VARI ABLE>

To change the settings, type the following commands at the prompt:

export <ENVI RONVENT _VARI ABLE>=<Di r ect or yPat h>

3-4 Using RMI in a WebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Developing New RMI Classes for a BEA
WebLogic Enterprise Application

This section describes the steps involved in writing the source code for RMI classes,

using the Java source files from the BEA WebL ogic Enterprise RMI Hello World as
code examples. We explain what characterizes an RMI application in BEA WeblL ogic
Enterprise, and what elements you need to include for it to work.

This section includes step-by-step instructions on how to write RMI classes, compile
the source files, generate the needed stubs and skel etons, and deploy the classfilesin
aBEA WebL ogic Enterprise run-time environment. The steps are:

m Step 1: Decide on package names and create directories for the source code that
reflects the package names

m Step 2: Write the source code for aremote interface (see Hel | o. j ava)

m Step 3: Write the source code for a remote object that implements the remote
interface (see Hel | ol npl . j ava)

m Step 4: Write the source code for a client that invokes methods on the remote
object (seeHel | od i ent . j ava)

m Step 5: Compile the source code files to create the executable RMI classes

m Step 6: Run the WebLogic RMI compiler on the implementation classto
generate stubs and skeletons

Step 1: Decide on package names and create directories
for the source code that reflects the package names

The Java programming language requires a mapping between the fully-qualified
package name of a class and the directory path to that class, so you should decide on
package and directory names before you begin writing any Java code.

Using RMI in a WebL ogic Enterprise Environment 3-5

3 Developing RMI Applications in BEA WebLogic Enterprise

This mapping alows the compiler to know the directory in which to find the classfiles
mentioned in a program. For the BEA WebL ogic Enterprise RM| Hello World
example, the package name isexanypl es. hel | o and the Java source directory is
exanpl es/ hel | o.

Step 2: Write the source code for a remote interface

3-6

A remote object is an instance of a class that implements a remote interface. In BEA
WebL ogic Enterprise, aremote interface must extend the interface

java.rm . Renot e. Ther ni . Renot e interfaceitself contains no method signatures—
it simply acts as a tag to identify remote classes.

The interface thagou write (extending omni . Renot e) should include method
signatures that will be implemented in every remote class that implements it.

Your Remote interface should have the following characteristics:

m It must be public. Otherwise a client will get an error when attempting to load a
remote object that implements it.

m It must extend eithgrava. r ni . Renot e or webl ogi c. r ni . Renpt e.

m Each method must declarava. r ni . Renot eExcept i on or
webl ogi c. rmi . Renot eExcept i on (Or a superclass Genot eExcept i on) in
its throws clause, in addition to any application-specific exceptions.

m The data type of any remote object that is passed as an argument or return value
(either directly or embedded within a local object) must be declared as the
remote interface type (for exampll | o) not the implementation class
(Hel 1 ol npl).

Note that these requirements are consistent with the Sun JavaSoft RMI model.

Listing 3-1 shows the Remote interfameanpl es. hel | 0. Hel | o from our Hello
World example. The interface has only one metkagHel | o, which returns a string
to the caller.

Using RMI in a WebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Listing 3-1 Hello.java—A Remotelnterface

/*
* Copyright (c) 2000 BEA Systens, |nc. Al Rights Reserved
*/

package exanpl es. hel | o;

i mport java.rm . Renote;
i mport java.rm .RenoteException;

/**
* This class illustrates an interface for RM comruni cation.
* @ut hor Copyright (c) 2000 by BEA Systens Inc. All R ghts Reserved.
*/
public interface Hell o extends Renpte {
String sayHel l o() throws RenoteException;
}

Step 3: Write the source code for a remote object that
implements the remote interface

A remote object is an instance of a class that implements aremote interface.

Now write the class that can be invoked remotely. The class should implement the
remote interface you wrote in step 2. The remote object is sometimes referred to asan
RMI “server.”

For example, in the source fidanpl es/ hel | o/ Hel | ol npl . j ava from the RMI
Hello World example we do the following:

1. Define a class! | ol npl) that can be invoked remotely using the methods
declared in our Remote interface.

2. Create an instance of that class (the remote objectjeinramethod. At this
point, we bind the instance to a name via the Java Naming and Directory
Interface (JNDI). As such, théel | ol npl class is the remote object that
implements the Remote interface we definedHel | o. j ava (see Listing 3-1.)

Listing 3-2 shows the remote objestanpl es. hel | 0. Hel | ol npl from our Hello
World example.

Using RMI in a WebL ogic Enterprise Environment 3-7

3 Developing RMI Applications in BEA WebLogic Enterprise

Listing 3-2 Hellolmpl.java—A Remote Object Implementation

/*
* Copyright (c) 2000 BEA Systens, |nc. Al Rights Reserved
*/

package exanpl es. hel | o;

i nport java.rm . Renot eException;

i nport java.util.Hashtabl e;

i nport javax. nam ng. Cont ext ;

i nport javax. nam ng. | nitial Context;

i nport javax. nam ng. Nam ngExcepti on;

*

/
This class is the sanple server for RM/Hell owrl d.

It illustrates establishing one’s self (to JNDI) as a renote object.
Also, it contains the trivial server method sayHello().

@ut hor Copyright (c) 2000 by BEA Systens Inc. Al Rights Reserved.
/
public class Hellolnmpl inplenents Hello {

L

/1 Overhead to register one's self:
private static Initial Context initialContext;

private static Context getLocal Initial Context() throws Nam ngException {
Hasht abl e env = new Hasht abl e();
/1 No Context.PROVIDER URL indicates native bootstrap
env. put (Cont ext .| NI TI AL_CONTEXT_FACTORY,
"com beasys.j ndi . W.EI ni ti al Cont ext Factory");
initial Context = new Initial Context(env);
return initial Context;

}

public static void release() {
try {
i nitial Context.unbind("HelloServer");
} catch (Exception e) {
System out. println("Couldn’t unregister the Hellolnpl object”
+ e. get Message());
e.printStackTrace();
}
}

public static void main(String args[]) {

3-8 Using RMI in a WebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

try {
Hel | ol npl obj = new Hel |l ol npl ();
/1 Bind this object instance to the nane "Hel | oServer"
get Local I nitial Context().bind("Hell oServer", obj);
Systemout. println("HelloServer bound in JND ");

} catch (Exception e) {
Systemout.printin("Hellolnpl err: " + e.getMessage());
e.printStackTrace();

}

}

/1 Method(s) that the Client mght call:

public String sayHel lo() {
return "Hello World!";
}

Defining the Remote Class

Asisrequired for RMI, our remote object implementation class,
exanpl es. hel | 0. Hel | ol npl , does the following:

m Declaresthat it implements at least one remote interface. For example, the class
declaration that implements the interface Hel | o:

public class Hellolnpl inplements Hello {

m Provides the implementation for the methods that can be invoked remotely. Here
is the implementation for the sayHel | o method, which returns the string
"Hell o World!" tothecaller:

public String sayHello() {
return "Hello World!";
}

Creating an Instance of the Remote Class

In our example, we create the instance of the remote class (the actual remote object) in
amain method as a part of our implementation class, exanpl es. hel | 0. Hel | ol npl .

Using RMI in a WebL ogic Enterprise Environment 39

3 Developing RMI Applications in BEA WebLogic Enterprise

This is fine—the class that contains the main method and instantiates the remote cla
can be the implementation class itself. Or, you can have the code that instantiates tt
remote class in another class entirely.

In the main method, we do the following:

m Create an instance of a remote objégtl ol npl :

Hel | ol npl obj = new Hel |l ol npl ();

m Bind this object instance to the name “HelloServer” using JNDhx. nam ng.
get Local I nitial Context().bind("Hell oServer", obj);

Note that objects within BEA WebLogic Enterprise should be well-behaved to
make administration easy. So, for everyd method there should be a
correspondinginbi nd method somewhere. Typically, these methods are called
when the server is startingn{ ti al i ze) and stoppingr(el ease) as shown in
Listing 3-4.

Not doing theunbi nd() will allow clients to find the object in INDI but get an
error when they cannot use it. When the object is unavailable, it should not be
listed in JNDI.

Step 4: Write the source code for a client that invokes
methods on the remote object

Finally, write a client that invokes methods on the remote object (RMI server).
Listing 3-3 shows the cliertxanpl es. hel | 0. Hel | oCl i ent from our Hello World
example.

Listing 3-3 HelloClient.java— A Client That Uses a Remote Service

/*
* Copyright (c) 2000 BEA Systens, Inc. Al'l Rights Reserved
*/

package exanpl es. hell o;

i nport java.rm . Renot eException;
i nport java.util.Hashtabl e;

3-10 Using RMI in aWebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

i mport javax.nam ng. Cont ext;

i mport javax.nam ng.Initial Context;

i mport javax.nam ng. Nam ngExcepti on;
import javax.rm . Portabl eRenot e(bj ect ;

/**
* This class is the sanple client for RM/Hell oWrld.
* |t illustrates JNDI |ookup to find and use a renpte object.

*

* @ut hor Copyright (c) 2000 by BEA Systens Inc. All R ghts Reserved.
*/
public class HelloCient {
private static void usage() {
System out. println("Usage: java exanples. hello.HelloCient corbaloc://<host>:<port>");
Systemexit(1);
}

private static Context getContext(String url) throws Nam ngException {
Hasht abl e env = new Hasht abl e();
env. put (Cont ext . PROVI DER _URL, wurl);
env. put (Context. | NI TI AL_CONTEXT_ FACTORY,
"com beasys. j ndi . WLEI ni ti al Cont ext Factory");
return new Initial Context(env);

}

public static void main(String[] argv) throws Exception {
if (argv.length < 1) usage();
String url = argv[O0];
Obj ect o = getContext(url).lookup("HelloServer");
Hel lo obj = (Hello) Portabl eRenot eObj ect.narrow(o, Hell o.class);
Systemout . println(obj.sayHello());

The following describes what Hel 1 oCl i ent isdoing:

m First, the client uses INDI to get areference to the remote object implementation
(advertised as HelloServer):

Obj ect o = getContext(url).|ookup("Hell oServer");

m Oncethe object reference is obtained, the client narrows it to the appropriate
type:
Hel l o obj = (Hell o) Portabl eRenpt eObj ect. narrowm o, Hello.cl ass);

Using RMI in a WebL ogic Enterprise Environment 31

3 Developing RMI Applications in BEA WebLogic Enterprise

m Finadly, the client invokes the sayHel | o method on the remote object, using it in
aSystem out. println method to display the message “Hello World” on the
screen:

Systemout. println(obj.sayHello());

A Note About Type Narrowing

Once an object reference is obtained, the client marsbw it to the appropriate type.
Notice the use dfor t abl eRenot ebj ect . nar r ow in the following line from
Listing 3-3:

Hel l o obj = (Hello) Portabl eRenpt eObj ect. narrow(o, Hell o.class);

You could use the cast operator here as well. However, we recommend the use of
Por t abl eRenot e(bj ect . nar r owto ensure interoperability with compliant EJB
container implementations.

A client program that is intended to be interoperable with all compliant EJB container
implementations must use the method

j avax. rmi . Port abl eRenot eQbj ect . nar r owto perform type-narrowing of the
client-side representations of the home and remote interface.

Programs using the cast operator for narrowing the remote and home interfaces are
likely to fail if the Container implementation uses RMI-IIOP as the underlying
communication transport.

Step 5: Compile the source code files to create the
executable RMI classes

3-12

We suggest that you create a separate “deployment” directory to contain the generat
class files. For example, you could create a directory called

<MyW.EApps>/rmi [hel | owor | d/ cl asses. You must create a deployment directory
before you run theavac compiler on your source files; thavac command will not
create this directory for you. (Note that in the Hello World example, thee script

does create the classes directory for you before it rurjsathee compiler.)

Using RMI in a WebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

Also, before you attempt to compile, set your local CLASSPATH so that it includes
the pathname of your deployment directory. For example, if your deployment
directory isC: \ MyW.EApps\ r i \ hel | owor | d\ cl asses, then make sure thisfull
pathnameisin your local CLASSPATH. (Note that in the Hello World example, the
runne script sets this for you.)

Note: Theloca CLASSPATH must also includethe current directory (.), along with
all necessary BEA Webl ogic Enterprise and JDK pathnames. For more on
setting up your devel opment environment, refer to thetopic “Setting Up Your
BEA WebLogic Enterprise Development Environment” on page 3-2.

To compile the source files, change directors (o the directory that contains the
package, and run thevac command on the Java source files. For the RMI Hello
World example, you mightd into <My W.EApps>/ r ni / hel | owor | d, then run the
following command which would compile the Java source files and put the resulting
class files under a directory calledasses:

javac -d classes exanples/hello/*.java

The preceding command creates the directeaypl es/ hel | o (if it does not already
exist) undec! asses and places the generated class files in the directory
cl asses/ exanpl es/ hel | o.

(In our Hello World example, this step is accomplished by runningithee script.
See “Building and Running the Hello World Example” on page 2-4.)

Step 6: Run the WebLogic RMI compiler on the
implementation class to generate stubs and skeletons

To create a proxgtub file for the client andkeleton file for the server, run the

webl ogi c. rm ¢ compiler on the fully-qualified package names of compiled class
files that contain remote object implementations, tikepackage. M/l npl _W.st ub.
Thewebl ogi c. r mi ¢ command takes one or more class names as an argument and
produces class files of the fomgl npl _W.St ub. cl ass andwyl npl _W.Skel . cl ass.

To generate the stub and skeleton class files for the RMI Hello World example, you
would change directoriesd) into thecl asses directory (in our example,
<MyW.EApps>/ sanpl es/ rmi/ hel | owor | d/ cl asses) and run thewebl ogi c. rmc
command on the generated classdilesses/ exanpl es/ hel | o/ Hel | ol npl . ¢l ass

as follows:

Using RMI in aWebL ogic Enterprise Environment ~ 3-13

3 Developing RMI Applications in BEA WebLogic Enterprise

java weblogic.rmc -d . exanpl es. hel | 0. Hel | ol npl

Thewebl ogi c. r mi ¢ command accepts any option supported by j avac—the options
are passed directly to the Java compiler. In the exampledthption indicates the
root directory in which to place the compiled stub and skeleton class files. jSwthe
command creates the following files in the directory

<M/W.EApps>/rm [hel | owor | d/ cl asses/ exanpl es/ hel | o:

Hel | o_W.St ub. cl ass
Hel | o_W.Skel . cl ass
The generated stub class implements exactly the same set of remote interfaces as t

remote object itself, and handles the necessary encadargh@lling) and decoding
(unmarshalling) of parameters sent across the network.

(In our Hello World example, this step is accomplished by runninguhee script.
See “Building and Running the Hello World Example” on page 2-4.)

More About Stubs and Skeletons in WebLogic RMI

3-14

A proxy is a class used by the clients of a remote object to handle the marshalling an
unmarshalling of parameters across a network. In RMI, the stub and skeleton class fil
that are generated by the RMI compiler jarexies for the RMI client and RMI server
objects, respectively.

In WebLogic RMI, the RMI client stub marshalls the invoked method name and its
arguments for the client, forwards these to the remote object, and unmarshalls the
returned results for the client. An RMI client stub is generated by running the
WebLogic RMI {ebl ogi c. rmi ¢c) compiler on the fully-qualified package names of
compiled class files that contain remote object implementations, like

my. package. Myl npl _W.st ub.

The skeleton class is also generated by the WebLogic RMI compiler, but the skeleto
is not used in WebLogic RMI. Generally, the RMI skeleton would unmarshall the
invoked method and arguments on the remote object, invoke the method on the
instance of the remote object, and then marshall the results for return to the client. BE
WebLogic Enterprise handles the unmarshalling, method invocation, and marshalling
on the RMI server side using reflection. If necessary, you can discard the generated
skeleton class files to save disk space.

Using RMI in a WebL ogic Enterprise Environment

Developing New RMI Classes for a BEA WebLogic Enterprise Application

More About the WebLogic RMI Compiler (weblogic.rmic)

The syntax for using the WebL ogic RMI compiler is as follows:

java weblogic.rmc [options] C assNane

The options to the webl ogi c. r ni ¢ command are shown in Table 3-3.

Table 3-2 Weblogic.rmic Command Options

Option Description

-hel p Prints the complete list of command-line options.
-ver si on Prints version information.

-d <dir> Indicates (top-level) directory for compilation.

-notransactions

Skip transaction context propagation

- ver bosenet hods

Instruments proxies to print debug information to std err.

-descriptor <exanpl e>

Associates or creates a descriptor for each remote class.

- vi sual Caf eDebuggi ng

Instruments proxies to support distributed debugging under
Visual Cafe.

-vl. 2

Generates Java 1.2 style stubs

- keepgener at ed

Keeps the generated . j ava files.

-coment ary

Emits commentary.

-conpi l er <JavaConpiler> Explicitly indicates which Java compiler to use. For example:
java webl ogic.rmi c -conpiler sj exanpl es. hello. Hel | ol npl

-9 Compiles debugging info into classfile.

-0 Compiles with optimization on.

- debug Compiles with debugging on.

- nowar n Compiles without warnings.

-ver bose Compiles with verbose output.

Using RMI in aWebL ogic Enterprise Environment ~ 3-15

3 Developing RMI Applications in BEA WebLogic Enterprise

Table 3-2 Weblogic.rmic Command Options (Continued)

Option

Description

-nowite

Does not generate| ass files.

-deprecation

Warns about deprecated calls.

-norm Passes through to the Symantégccompiler.
-J<opti on> Flags passed through to Java runtime.
-cl asspat h <pat h> CLASSPATH to use during compilation.

Thewebl ogi c. rmi ¢ command also accepts any option supported by j avac—the
options are passed directly to the Java compiler.

Building Your RMI Application in the BEA
WebLogic Enterprise Environment

This section describes how to build an RMI application in BEA WebLogic Enterprise.
To illustrate this, we explain the commands used in the Hello Warlde script to
compile the source files and run the WebLogic RMI code generator.

We explain in more detail how to get things set up and working in the BEA WebLogic
Enterprise environment—for Hello World, most of this is also taken care of in our

r unme script. (For example, theunme script generates BEA WebLogic Enterprise
configuration information and sets up some BEA WebLogic Enterprise environment
variables).

When you are developing your own RMI classes, you might choose to compile and
build manually from the command line, or you might want to use a script similar to the
one we provide with the example. Here, we clarify what the manual steps would be an
point out where our script accomplishes them.

The steps are:

m Step 1: Create a mechanism for bootstrapping your application

3-16 Using RMI in aWebL ogic Enterprise Environment

Building Your RMI Application in the BEA WebLogic Enterprise Environment

m Step 2: Package your application into a JAR file for deployment
(buildjavaserver)

m Step 3: Create a UBBCONFIG file and run tmloadcf on it to get an executable
TUXCONFIG file

m Step 4: Set application environment variables

Step 1: Create a mechanism for bootstrapping your
application

In Java, you use a Server object to initialize and release the server application. Y ou
implement this Server object by creating a new class that derives from the

com beasys. Tobj . Server classand overridestheini ti al i ze andr el ease
methods. In the server application code, you can al so write apublic default constructor.

For example:

i mport com beasys. Tobj . *;

/**

* Provides code to initialize and stop the server invocation.
* Serverlnpl is specified in the server.xm input file

* as the nane of the Server object.

*/

public class Serverl npl
ext ends com beasys. Tobj . Server {

public boolean initialize(string[] args)

throws com beasys. Tobj S. I nitializeFailed {
}

public bool ean rel ease()
throws com beasys. Tobj S. Rel easeFai | ed {
}

}

In the Server Description File (ser ver . xni), which you process with the
bui | dj avaser ver command, you identify the name of the Server object.

This collection of the object'simplementation and data constitutes the run time, active
instance of the Server object.

Using RMI in aWebL ogic Enterprise Environment ~ 3-17

3 Developing RMI Applications in BEA WebLogic Enterprise

When your Javaserver application starts, the server creates the Server object specified
inthe XML file. Then, the server invokesthei ni ti al i ze method. If the method
returns true, the server application starts. If the method throws the

com beasys. Tobj S. I nitializeFail ed exception, or returnsfase, the server
application does not start.

When the server application shuts down, the server invokes ther el ease method on
the Server object.

Any ARGS optionsfor your specific server application that are specified in the MODULES
section of the WebL ogic Enterprise domain's UBBCONFI Gfileare passedtothepubl i ¢
bool ean initialize(string[] args) operationasargs.

For more information about passing arguments to the server application, see the
Administration Guide in the BEA WebL ogic Enterprise online documentation. For
examples of passing arguments to the server application, see the Guide to the Java
Sample Applicationsin the BEA WebL ogic Enterprise online documentation.

Withinthei ni ti al i ze method, you can include code that does the following, if
applicable:

m Creates and registers RMI objects including RMI factories.

m Allocates any machine resources, for example JDBC connections.
m Initializes any global variables needed by the server application.
m Opens the databases used by the server application.

m Opensthe XA resource manager.

Writing the Code That Creates and Registers an RMI Object or Factory

For most RMI server applications, you want client applicationsto be ableto easily
locate the RM | aobject. Y ou need to write the code that registers the RMI objects with
JNDI, whichisinvoked typically asthefinal step of the server applicationinitialization
process.

In our Hello World example, we call Hel | ol Mpl . mai n() which handlesthe INDI
registration.

3-18 Using RMI in aWebL ogic Enterprise Environment

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Releasing the Server Application

When the WebL ogic Enterprise system administrator entersthe t mshut down
command, the server invokes the following operation on the Server object of each
running server application in the WebL ogic Enterprise domain:

public void rel ease()

Withinthe r el ease() operation, you may perform any application-specific cleanup
tasks that are specific to the server application, such as:

m Unregistering objects managed by the server application
m Deallocating resources

m Closing any databases

m Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server processif a second server process
contains an invocation in itsr el ease() operation to the first server process.

During server shutdown, you may want to include an invocation to unregister each of
the server application’s RMI objects. For example:

/1'Unregi ster the object
/lUse a try block since the cleanup code shouldn’t throw exceptions.

try {
Hellolmpl.getLocallnitialContext().unbind(“HelloServer”);

}
catch (Exception e){

System.out.printin(“*Couldn’t unregister the HelloServer object” + e.getMessage());
e.printStackTrace();

Theinvocation of the unbi nd method should be one of the first actions in the
rel ease() implementation. The unbi nd method unregisters the server application’s
objects.

Listing 3-4 showsthe Ser ver | npl . j ava file for the RMI Hello World example.

Using RMI in aWebL ogic Enterprise Environment ~ 3-19

3 Developing RMI Applications in BEA WebLogic Enterprise

Listing 3-4 Serverlmpl.java

/*
* Copyright (c) 2000 BEA Systens, |nc. Al Rights Reserved
*/

i nport com beasys. Tobj . Server;
i nport exanpl es. hel |l 0. Hel | ol npl ;

/**

* This class illustrates an interface for RM conmmunicati on.

*

* @ut hor Copyright (c) 2000 by BEA Systens Inc. Al Rights Reserved.
*/

public class Serverlnpl extends Server {

public boolean initialize(String[] argv) {
try {
Hel [ol npl . mai n(nul 1) ;
} catch (Exception e) {
return fal se;

}

return true;

}

public void release() {
Hel | ol npl . rel ease();
}
}

Step 2: Package your application into a JAR file for
deployment (buildjavaserver)

To deploy your BEA WebL ogic Enterprise RMI application, you need to package it
into aJavaarchive (JAR) file. ItisthisJAR filethat youwill call inthe BEA WebL ogic
Enterprise configuration file (UBBCONFI G'TUXCONFI G) during runtime.

3-20 Using RMI in aWebL ogic Enterprise Environment

Building Your RMI Application in the BEA WebLogic Enterprise Environment

This section describes how to create the JAR file using a Server descriptor file. Thisis
what we use in the Hello World example. Y ou could a so use the JAR command to
assemble your application’s classesinto a JAR file. But, the <ARCHIVE> element of
the server descriptor file provides help by simplifying the process of collecting the
files.

To create the JAR file, complete the following steps:

1. Write a server descriptor file in Extensible Markup Language (XML).

The JAR is created in the <ARCHIVE> element. The archive e ement must be
the last element inside the <M 3-SERV ER> element.

If the XML file contains instructions to create an archive, both the class
specified by server _nanme and the file specified by ser ver _descri pt or are
stored in the archive. The server _descri pt or fileisinserted in the archive
manifest with the M3- Server tag; thisinsertion makes the server descriptor the
entry point during server execution.

If you do not include the archive element, the bui | dj avaser ver command
generates only the server descriptor and writes it in the file specified in the
server-descri pt or - name attribute of the M3- SERVER element.

Listing 3-5 shows the server descriptor file for our Hello World example.

Listing 3-5 server.xml

<?xm version = "1.0" ?>

<I-- Copyright (c) 2000 BEA Systens, |nc.
Al R ghts Reserved
-->

<! DOCTYPE M3- SERVER SYSTEM "n8. dtd">

<MB3- SERVER ser ver -descri ptor-nanme
server-inpl ement ati on

= "server.ser"

= "Serverlnml" >

<ARCHI VE nanme = "server.jar">
<CLASS nane="exanpl es. hel |l o. Hel I ol npl "/ >
<CLASS nane="exanpl es. hel | 0. Hel o_W.St ub"/ >
<CLASS nane="exanpl es. hel |l 0. Hel | 0"/ >

</ ARCH VE>

</ MB- SERVER>

Using RMI in a WebL ogic Enterprise Environment

3-21

3 Developing RMI Applications in BEA WebLogic Enterprise

2. Now run the BEA WebL ogic Enterprise command bui | dj avaser ver onyour
server descriptor file to create the JAR file.

Note: The deployment directory that contains your RMI classes must bein your
local CLASSPATH or bui | dserver . jar command will fail.

For example:

bui | dj avaserver <M/Server>. xm

where <MySer ver >. xm isyour server descriptor file.
This createsthefileserver.j ar.

(In our Hello World example, the r unme script creates the JAR by running
bui | dj avaserver onthefileserver. xni . See “Building and Running the
Hello World Example” on page 2-4.)

For more information about using JAR files and Java server startup in BEA
WebLogic Enterprise, see tisteps for Creating a Java Server Application
chapter inCreating CORBA Java Server Applications in the BEA WebLogic
Enterprise online documentation.

Step 3: Create a UBBCONFIG file and run tmloadcf on it
to get an executable TUXCONFIG file

3-22

The configuration file is the primary means of defining the configuration of WLE
applications. It consists of parameters that the WLE software interprets to create an
executable application.

TheUBBCONFI Gfile is an ASCII version of the configuration file. THeXCONFI Gfile
is a binary version of the configuration file that you generate from the ASCII version
using thet m oadcf command.

In our Hello World example, theéBBCONFI Gfile is generated by theinne script. (See
“Building and Running the Hello World Example” on page 2-4.) However, you can
create this file manually with a text editor, too. Listing 3-6 shows the sample
UBBCONFI Gfile for the Hello World example.

Using RMI in a WebL ogic Enterprise Environment

Building Your RMI Application in the BEA WebLogic Enterprise Environment

Listing 3-6 UBBCONFIG Filefor Hello World Example

* RESOURCES

| PCKEY 55432
DOVAINID Hello

MASTER sinpl e

MODEL SHM
LDBAL N
*MACHI NES
DEFAULT:

APPDI R="C: \ myW.Eapps\rm \ hel | owor | d"

TUXCONFI G="C: \ nyWLEapps\ rm \ hel | owor | d\ t uxconfi g"
TUXDI R="d: \w edir"

MAXWSCLI ENTS=10

" SAVB" LM D=si npl e
* GROUPS
GROUP1

LM D=si npl e GRPNO=1 OPENI NFO=NONE
GROUP2

LM D=si npl e GRPNO=2 OPENI NFO=NONE
* SERVERS

DEFAULT: CLOPT="-A"
TMSYSEVT SRVGRP=GROUP1 SRVI D=1

TMFENAME SRVGRP=GROUP1 SRVID=2 CLOPT="-A -- -N-M

TMFENAME SRVGRP=GROUP1 SRVI D=3 CLOPT="-A -- -N'

TMFENAME SRVGRP=GROUP1 SRVI D=4 CLOPT="-A -- -F"

JavaSer ver SRVGRP=GROUP2 SRVI D=6 CLOPT="-A"

I SL SRVGRP=GROUP1 SRVID=5 CLOPT="-A -- -n //SAMVS: 2468"
*MODULES

Hel | oWor | dvbdul e

SRVGRP=GROUP2 SRVI D=6

FI LE=" C:\ nyW.Eapps\rni \ hel | owor | d\ server.jar"
* SERVI CES

After you create the UBBCONFI Gfile, you must runt m oadcf onit to create the
executable TUXCONFI Gfile as follows:

t m oadcf -y ubbconfig

(Inthe RMI Hello World example, thisis aso handled in the r unme script. See
“Building and Running the Hello World Example” on page 2-4.)

Using RMI in aWebL ogic Enterprise Environment ~ 3-23

3 Developing RMI Applications in BEA WebLogic Enterprise

The TUXCONFI Gfile containsinformation used by t nboot to start the servers and
initialize the Bulletin Board of a BEA Tuxedo system Bulletin Board instantiation in
an orderly sequence. Thet madni n command-line utility usesthe configurationfile (or
acopy of it) inits monitoring activity. The t mshut down command references the
configuration file for information needed to shut down the application.

Y ou can usethet ntonf i g command to edit many of the parametersin the executable
TUXCONFI Gfile while your application is running.

Step 4: Set application environment variables

Before you can run your application, you must set the following BEA WebL ogic
Enterprise environment variables specific to the application you want to run:

m APPDI R—specifies the full pathname to the directory that contains the BEA
WebLogic Enterprise application you want to run. In the case of Hello World,
our application might reside in tBer ver . j ar file in
C. /| My\WLEApps/ rm / hel | owor | d/ .

m TUXCONFI G—specifies the full pathname of thelXCONFI Gfile for the
application. For the Hello World example, you could set this to
C. / My\WLEApps/ rm / hel | owor | d/ t uxconfi g.

(In our Hello World example, ourunme script sets these variables. See “Building and
Running the Hello World Example” on page 2-4.)

Listing 3-7 shows an example of setting BEA WebLogic Enterprise environment
variables on a Windows NT system.

Listing 3-7 Setting BEA WebL ogic Enterprise Application Environment
Variableson Windows NT Systems

set APPDI R=C. \ nyW.Eapps\rm \ hel | owor | d
set TUXCONFI G=C. \ nyW.Eapps\rm \ hel | owor| d\t uxconfi g

3-24 Using RMI in aWebL ogic Enterprise Environment

Running Your BEA WebLogic Enterprise RMI Application

Listing 3-8 shows an example of setting BEA WebL ogic Enterprise environment
variables on aUNIX system.

Listing 3-8 Setting BEA WebL ogic Enterprise Application Environment
Variableson UNIX Systems

export APPDI R=$HOVE/ nyW.Eapps/rm / hel | owor | d
export TUXCONFI G=$HOVE/ myW.Eapps/rm / hel | oworl d/ tuxconfig

Running Your BEA WebLogic Enterprise RMI
Application

Once you have created the RMI classes and built the application, you can test it by
running it asa BEA WebL ogic Enterprise application. To run it, complete the
following stepts:

1. Make surethe application-specific variables APPDI R and TUXCONFI Gare set. (See
“Step 4: Set application environment variables” on page 3-24.)

2. Start the BEA WebLogic Enterprise server by typing the following at the
command line:

tnboot -y
3. Run your RMI client in a form similar to this:
java <PackageNameOr Cl i ent > <Argunment s>
For Our Hello World example, the command to run the client is:

java exanpl es. hello. Hell odient corbal oc://<M/Machi nel D>

(In our Hello World example, theunne script boots the BEA WebLogic Enterprise
server and runs the client for you.)

Using RMI in aWebL ogic Enterprise Environment ~ 3-25

3 Developing RMI Applications in BEA WebLogic Enterprise

Stopping the BEA WebLogic Enterprise
Server

Whenever you are ready to stop the BEA WebL ogic Enterprise server, type the
following at the command line:

t mshut down -y

(In our Hello World example, the r unme script shuts down the BEA WebL ogic
Enterprise server for you.)

Using a Script as a Shortcut for Compile and
Build Steps

In our Hello World RMI example, we use r unne scriptsthat contain DOS or UNIX
shell commandsto handle alot of the compile, environment setup, and build tasks
detailed in the previous sections. It is very likely you will want to do thisaswell.

For Hello World, our r unne script is used to accomplish the following tasks:

m Runsthejavac compiler onthe*. j ava sourcefilesto generatethe *. cl ass
files.

m Runsthewebl ogi c. r mi ¢ compiler on the remote class to generate a stub and
skeleton. For example, the command:

java weblogic.rmc -d <Yourd assesDi rect ory> exanpl es. hel | o. Hel | ol npl

runsthe webl ogi c. r m ¢ compiler on the fileexanpl es/ hel | o/
Hel | ol npl . cl ass and puts the resulting stub and skeleton in whatever location
you specify as <Your 0 assesDi rect or y>.

m Packagesthe classfilesinto aJJAR file (in our example, server . j ar) by
running the BEA WebL ogic Enterprise command bui | dj avaserver onthe
server. xn file

3-26 Using RMI in aWebL ogic Enterprise Environment

Deploying Your Application

m Creates a UBBCONFI Gfileand runst m oadcf on it to generate a TUXCONFI Gfile.
Sets BEA WebL ogic Enterprise application specific environment variables
(APPDI R and TUXCONFI G) before booting BEA WebL ogic Enterprise.

m Bootsthe BEA WebL ogic Enterprise server.
m Runsthe RMI client.
m Stopsthe BEA WebL ogic Enterprise server.

Ther unne scriptsarelocatedinthe Hello World examplehel | owor | d directory. Y ou
can use atext editor to view the scripts.

Deploying Your Application

To deploy a BEA WebL ogic Enterprise application on machines other than your
development system, you need to ensure that the appropriate environment variables are
set on the target systems.

Deploying the Client

For systems where you want to deploy a BEA WebL ogic Enterprise client only, make
sure the following environment variables are set.

Table 3-3 Environment Variables Needed to Run a Client Application

Environment Description

Variable

TUXDI R Thedirectory path whereyou installed the BEA WebL ogic Enterprise software. For example:
Windows NT
set TUXDI R=c: \ WLEdi r
UNIX

export TUXDI R=/usr/ | ocal / W.Edi r

Using RMI in aWebL ogic Enterprise Environment ~ 3-27

3 Developing RMI Applications in BEA WebLogic Enterprise

Table 3-3 Environment Variables Needed to Run a Client Application (Continued)

Environment
Variable

Description

JAVA HOME

The directory path where you installed the JDK software. For example:
Windows NT

set JAVA HOVE=c:\ JDK1. 2

UNIX

export JAVA HOVE=/usr/ | ocal / JDK1. 2

CLASSPATH

The CLASSPATH must include the pathnames defined in TUXDI R and JAVA_HOVE aong
with pathnames to other BEA WebL ogic Enterprise classes. (The CLASSPATH must aso
include the pathname of the classes for the application.)

For example:

Windows NT

set WLECP=% UXDI R% udat aobj \j ava\j dk

set

CLASSPATH=9\LECP% nBenvobj . j ar ; AN ECP% webl ogi caux. j ar ; WA\LECP% w
leclient.jar; \NECPW W ej 2eecl . | ar ; %CLASSPATHY

UNIX
set WLECP=${ TUXDI R}/ udat aobj /j ava/j dk
set

CLASSPATH=${ WLECP} / nBenvobj . j ar: ${ W.ECP} : / webl ogi caux. j ar : ${ W.ECP} / Wl
eclient.jar: ${W.ECP}/ W ej 2eecl . j ar: ${ CLASSPATH}

PATH

The PATH must include the pathnames to the necessary bins and other directories containing
executable commands. For example:

Windows NT

set

PATH=%) AVA_HOVE% bi n; % AVA_HOVE% j r e\ bi n; Y% AVA_HOVE% j r e\ bi n\ cl assi c;
YPATHY

UNIX

export
PATH=${ JAVA HOVE}/ bi n: ${ JAVA HOVE}/j rel/ bi n: ${JAVA HOMVE}/ j re/ bin/
cl assi c: ${ PATH}

3-28 Using RMI in aWebL ogic Enterprise Environment

Deploying Your Application

Note that the main differences between setting environment variables for aclient-only
deployment versus server development or deployment is that client-only run-time
systems require nBenvobj . jar, w eclient.jar,andw ej 2eecl . j ar and do not
requirethel ocal e/ M3 tools. Also, you canrun client-only run-time systemswith only
the JRE bin in the PATH instead of the full JDK bin.

Deploying the Server

For systems where you want to deploy a BEA WebL ogic Enterprise server, the
environment variables must be set exactly asrequired for development. Seethe section
“Setting Up Your BEA WebLogic Enterprise Development Environment” on page

3-2.

Using RMI in aWebL ogic Enterprise Environment ~ 3-29

3 Developing RMI Applications in BEA WebLogic Enterprise

3-30 Using RMI in aWebL ogic Enterprise Environment

CHAPTER

4 Using RMI with
Client-Side Callbacks

Thistopic includes the following sections:

m Understanding Server-to-Server Communication
m Joint Client/Server Applications

m When Do | Need to Use Callbacks?

m Example of Callbacksin RMI

Understanding Server-to-Server
Communication

Server-to-server communication allows WebL ogic Enterprise (WLE) applicationsto
invoke remote objects and handle invocations from those remote objects (referred to
as callback objects). The remote objects can be either inside or outside of a BEA
WebL ogic Enterprise domain.

BEA WebL ogic Enterprise RMI supports client-to-server, client-to-client, and
server-to-client invocations, with callbacks from server-side objectsto clients. Clients
can be applets or full Java client applications.

Using RMI in a WebL ogic Enterprise Environment 4-1

4 Using RMI with Client-Side Callbacks

Joint Client/Server Applications

In simple terms, client applications invoke methods on aremote object. The server
applications implement the methods of the remote object. The remote objectsin the
server application live within the WL E domain that supports security and transactions.
These remote objects in the server application are referred to as WLE objects.

Server applications can act as client applications of other server applications.
Server-to-server communication allows client applicationsto act asserver applications
for requests from other client applications or from WLE server applications.

The server-to-server communication functionality is available through a callback
object. A callback object has two purposes:

m It invokes operations on RMI objects.
m It implements the operations of an RMI object.

Callback objects are not subject to WLE administration, they should be used when
transactional behavior, security, reliability, and scalability are not important.

Callback objects are implemented in joint client/server applications. A joint
client/server application consists of the following:

m A portion that performs WLE client application functions, such as initializing the
JNDI context, using the context to establish connections, looking up initial
references to objects, and using factories to create objects.

m A portion that creates the remote object implementation (callback object) and
activates the callback object.

Figure 4-1 shows the structure of ajoint client/server application.

4-2 Using RMI in a WebL ogic Enterprise Environment

Joint Client/Server Applications

Figure4-1 Structureof a Joint Client/Server Application

Asymmetric
Connection

Servers and Native Clients can
be GIOP 1.00r 1.1

Joint client/server applications use RMI on [1OPto communicate with the WLE server
in an asymmetric fashion. Asindicated in the figure, the following operations are
executed:

1. A server gets an object reference from some source. It could be a naming service
or it could be passed in through a client, but not located in that client. Since the
object referenceis not located in aclient connected to an |SH, the outgoing call
cannot be made using the bidirectional method. The WLE server invokes on the
object reference.

2. Onthefirst invoke, the routing code invokes a service in the ISL and passesin
the host/port.

3. ThelSL selects an ISH to handle the outbound invoke and returns the |SH
information to the WLE server.

4. The WLE server invokes on the |SH.

Using RMI in aWebL ogic Enterprise Environment 4-3

4 Using RMI with Client-Side Callbacks

5. ThelSH determines which outgoing connection to use to send the request to the
client. If none is connected, the ISH creates a connection to the host/port.

6. Theclient executes the method and sends the reply back to the ISH.
7. ThelSH receivesthereply and sends it to the WLE server.

Use of callback objectsin Java appletsis limited due to Java applet security
mechanisms. Any Javaapplet run-time environment that allows a Java applet to create
and listen on sockets (viathe proprietary environment or protocol of the Java applet)
can act as ajoint client/server application. However, if the Java applet run-time
environment restricts socket communication, the Java applet cannot act as ajoint
client/server application.

Joint client/server applicationsuse RMI on [1OP to communicate with the WL E server
applications that work in an asymmetric fashion, as shown in Listing 4-1. Joint
client/server applications can invoke methods on any callback object, and are not
restricted to invoking callback objects implemented in joint client/server applications
connected to an | SH. Asymmetric |1 OP forces the WLE infrastructure to search for an
available ISH to handle the invocation. The ISL controlling the | SH must have been
configured with the - O option to support callbacks

For information on the I1OP Listener (ISL), see the Administration Guidein the BEA
WebL ogic Enterprise online documentation.

For amore detailed description of asymmetric I10P, see the CORBA Java
Programming Reference in the BEA WebL ogic Enterprise online documentation.

For more information about management and configuration on remote client
applications, see the Managing Remote Client Applications (BEA WebL ogic
Enterprise Systems) chapter in the Administration Guide in the BEA WebL ogic
Enterprise online documentation.

Note: A remote joint client/server isaclient that implements server objectsto be
used as callback objects. The server role of the remote joint client/server is
considerably lessrobust than that of a WL E server. Neither the client nor the
server hasany of the WLE administrative and infrastructure components, such
ast madmi n, INDI registration, and ISL/ISH (hence, none of scalability and
reliability attributes of BEA WebL ogic Enterprise).

4-4 Using RMI in a WebL ogic Enterprise Environment

When Do | Need to Use Callbacks?

When Do I Need to Use Callbacks?

In BEA WebL ogic Enterprise, a particularly useful feature of RMI isthat you can use
it to do client callbacks from Enterprise Java Bean (EJB) servers. Clients cannot
advertise EJB implementations, but they can advertise RMI implementations. So if a
client wantsto be called back from an EJB instance, it should createan RM|I object and
pass the reference to the EJB instance. The EJB instance can then invoke the client
back by using the RMI reference.

In practical use, being able to use a remote object as a parameter or areturn value for
aremotely invoked method is convenient for such things as updating the display of an
applet in response to server-side events. For example, you could simply export the
applet itself as aremote object that registers an interest in server-side events, and
whose display changes in response to those events.

Example of Callbacks in RMI

Writing source code for RMI applications that use client-side callbacks differs from
standard RM1 applicationsin that you have to include some additional codefor a client
interface. The remote client must implement the client interface. Also, the remote
(server) object will now include objects received from the client and method
invocations on those obj ects.

Figure 4-2 shows the structure of an RM|I application that uses client callbacks.

Using RMI in a WebL ogic Enterprise Environment 4-5

4 Using RMI with Client-Side Callbacks

4-6

Figure4-2 RMI with Client-Side Callbacks

<<Interface>>

CallbackClientIntf +callbackObj

IsGoodObject()

IsRightValue()
CallbackClient <<Interface>>
IsGoodObject() Callback
IsRightValue() $server .
usage() Client looks up register()
getContext() server object sendObject()
main() sendLong()

DataObject

DataObject()

Callbackimpl

toString()
equals()
new()

Server invokes
client object

register()

sendObject()
sendLong()
main()

new()

Serverimpl

initialize()
release()

Using RMI in a WebL ogic Enterprise Environment

Server invokes
client object

Example of Callbacks in RMI

Figure 4-3 shows pseudo-code to illustrate the client-server interaction in a callback
scenario.

Figure4-3 Anatomy of RMI Client-Side Callbacks

Cient Interface Renmote Interface (server)
Cal | back
| sGoodhj ect {
I sRi ght Val ue regi ster(client_interface)

sendobj ect ()

sendl on
dient 9C)

Renmpote Obj ect (inplements call back)

| sGoodbj ect {.
. sendobj (dat a_obj ect)

}
{ _ clientObj.isCGoodObject()
I sRi ght Val ue {. <do some conpare here>
: }
}
sendStr()
| ookup <or> narrow cli ent Obj . I sRi ght Val ue()
| ookup for server object <do some compare here>
}
server.register (client_interface)
server.sendobj ect (data_object)
}

The following sections provide a code example of asimple application that illustrates
RMI client callbacks.

m The RMI Client Interface

m TheRMI Client

m The RMI Remote Interface

m The Remote Object (RMI Server)

m Running the RMI Callback Example

Using RMI in a WebL ogic Enterprise Environment 4-7

4 Using RMI with Client-Side Callbacks

The RMI (Client Interface

Listing 4-1 showsthe client interface. The client interface declares two business
methods: | sGoodObj ect and | sRi ght Val ue.

Listing 4-1 CallbackClientIntf.java—A Client Interface

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */
inport java.rm.?*;

/**
* CallbackClientIntf interface contains follow ng nethods
* | sGoodObj ect (Cbj, Onj): conpare 2 objects,
* | sRightValue(long, long): conpare 2 |ongs,
*/
public interface Call backClientlntf extends Renote

{
public static final String NAME = "Cal | backientIntf";

publ i ¢ bool ean | sGood(hj ect (Obj ect Obj 1, Object Ohj2) throws RenoteException;
publ i ¢ bool ean | sRi ghtVal ue(l ong val 1, |ong val 2)
t hrows RenoteException, Exception;

} /1 end Call backClientlntf

The RMI Client

Listing 4-2 showsthe RMI client implementing the client interface.
As shown in the bold code, the client does the following:

1. Implements the methods defined in the client interface,
Cal | backdCl i ent I nf.java. (Seeal the bold code that appears between the star
comment lines/ / ***x*x)

public bool ean |1sGoodObj ect (Obj ect Coj1l, Object hj2)

public bool ean |IsRightVal ue(long vall, |ong val 2)

4-8 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

2. Looks up the server object:

Obj ect o = getContext(url).|ookup(Callback. NAMVE);
server = (Call back) Portabl eRenpt eObj ect. narrow(o, Call back. cl ass);

3. Sendsthe client object to the server:
int s = server.register(new Call backClient());

4. Invokes the business methods on the server object:
String errMsg = server.sendChj ect (new Dat aCbj ect ("dataobj"));

The sendObj ect method does a callback on the client object.

5. Invokes another business method on the server object:
String errMsg = server.sendlLong(12345);
The sendLong method does a callback on the client object.

Listing4-2 CallbackClient.java—A Client That Implements the Client Interface

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */

import java.util.Hashtabl e;

i mport java.rm .RenpteException;

i mport javax.nam ng. Cont ext ;

i mport javax.nam ng.Initial Context;

i mport javax.nam ng. Nam ngExcepti on;

i mport javax.rm . Portabl eRenot elbj ect ;

/**
* Call backClient will do follow ng steps:
* 1. server.register(dientOoj): send a client object to server
* 2. server.sendbj ect(DataObj): send a dataobject to server.
* server invokes Cient j.|sGoodhject(obj, obj)
* 3. server.sendLong(val ue): send a | ong nunber to server.
* server invokes Cientj.|sRightVvalue(val, val)
*/

public class Call backClient inplements Callbackdientlntf
{

static Call back server; [/ An instance of the Callbackd ientlntf

//***

Using RMI in a WebL ogic Enterprise Environment 4-9

4 Using RMI with Client-Side Callbacks

/1 1 nmpl erent met hods of Call backClientlntf
/1 Conpare 2 objects, this nmethod is for clientobject
public bool ean | sGoodOhj ect (Obj ect Cbj 1, Chject (bj2) throws RenoteException

{
}

/1 Conpare 2 longs, this nethod is for clientobject
public bool ean | sRi ghtValue(long vall, long val2) throws RenpteException

{
}

//***

return (Cbj 1. equal s(hj2));

return (vall == val 2);

private static void usage()

{
Systemout. println("Usage: java Call backClient corbal oc://<host>: <port>");
Systemexit(1);

}

private static Context getContext(String url) throws Nam ngException

Hasht abl e env = new Hasht abl e();
env. put (Cont ext . PROVI DER_URL, wurl);
env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"com beasys.j ndi . W.EI ni ti al Cont ext Factory");
return new I nitial Context(env);

}

public static void main(String argv[])
{

if (argv.length < 1) usage();

String url = argv[O0];

try

{
Obj ect o = getContext(url).lookup(Callback. NAVE);

server = (Call back) Port abl eRenot eObj ect. narrow o, Cal |l back. cl ass);
}cat ch(Exception e)
{

Systemout.println("exception in | ookup server obj" + e);

}

/11 register ClientCbject to server
try
{

int s = server.register(new Cal |l backCient());
if (s == Callback. FAI LURE)

{

Systemout.printIn("1. Couldn’'t send client object to server");

4-10 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

Systemexit(1);
}

el se
Systemout.println("1l. Success sending ClientChject to server");

catch(Exception e)
{
Systemout.println("exception in rm Register: "+e);

Systemexit(1l);

//2: invoke business nethod from server
/1 send a dataobject to server

try
{
String errMsg = server. sendObj ect (new Dat aCbj ect ("dataobj ")) ;
if (lerrMsg.equals("")) {
Systemout.printin("2. "+errMg);
} else {
Systemout. println("2. success on send data object to server");
System out . println(" and server callback client using CientCbject");
}
catch(Exception e)
{
Systemout. println("exception in sendQbj ect(obj): "+e);
}

//3: invoke business nethod from server
/1 send a string to server

try

String errMsg = server. sendLong(12345);
if (lerrMsg.equals("")) {
Systemout.printIn("3. "+errMg);

} else {

Systemout. printIn("3. success on send |long value to server");
System out. println(" and server callback client using ClientQObject");
}

catch(Exception e)

System out. println("Exception in sendLong(val ue): "+e);

}
}

} /1 end Call backd i ent

Using RMI in aWebL ogic Enterprise Environment ~ 4-11

4 Using RMI with Client-Side Callbacks

The RMI Remote Interface

Listing 4-3 showsthe RMI remote interface, in which we declare the business
methods:

public int register(Object callbackObj) throws RenpteException;

public String sendObj ect(Object Obj) throws RenpteException;
public String sendLong(long val) throws RenoteException, Exception;

Listing 4-3 Callback.java—A RMI Remote Server Interface

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */
inport java.rm.?*;

/**
* Callback interface contains foll ow ng nethods
* register(callBack): send clientcallback obj to server
* sendObj ect(Obj): send an object to server
* sendLong(Val): send a long value to server

*/

public interface Call back extends Renote

{
public static final String NAME = "Cal | back";
public static final int FAILURE = -1,
public static final int SUCCESS = O;

public int register(Cbject callbackObj) throws RenpteException;
public String sendObj ect (Obj ect Cbj)throws Renot eExcepti on;
public String sendLong(l ong val) throws RenpteException, Exception;

} /1 end Call back

The Remote Object (RMI Server)

Listing 4-4 shows the remote object implementation of the business methods in the
RMI remoteinterface.

4-12 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

Listing 4-4 Callbacklmpl.java—A Remote Object that Implements the RMI
Remote Interface

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */

import java.util.Hashtabl e;
inmport java.rm.*;

import java.rm .server.*;

i mport javax.nam ng.*;

/**

* | npl enents the nethods defined in the Callback renote interface.
*/

public class Call backl npl inplenents Call back

{

private Cbject callbackQbj; // Cbject on client to verify paraneters.

/1 remenber clientobject sent to server
public int register(Object callbackChj) // throws RenpteException

if (callbackObj == null) return Callback. FAl LURE;
this.call backObj = call backObj;
return Cal | back. SUCCESS;

}

/1 send regul ar dataobject to server
/1 This method returns enpty string on success or else error nessage.
public String sendObject(Chject Cobj) throws RenoteException
{

/1 client call _back

bj ect tnmpCbj = new Dat aObj ect (" dat aobj ") ;

if (!(callbackObj instanceof CallbackCientlntf))

return "AientObject is not instance of Call backClientIntf at server side";

/1 client call _back object
if (((CallbackCientlntf)call backObj).|sGoodChject(Cbj, tnmphj))
return "";
el se
return "fail on send dataobject to server";

}

/1 send native type long to server
/1 This method returns enpty string on success or else error nessage.
public String sendLong(long val) throws RenoteException, Exception

/1 client call _back

if (!(callback®bj instanceof Callbackdientlntf))
return "AientObject is not instance of Call backClientlIntf at server side";

Using RMI in aWebL ogic Enterprise Environment ~ 4-13

4 Using RMI with Client-Side Callbacks

/1 client call_back object
if (((Callbackdientlntf)callbackObj).|sRi ghtValue(val, 12345))

return "";
el se
return "fail on send | ong value to server";
/**

* The mai n() nethod creates an instance of Callbacklnpl class
* and invokes the rebind() nmethod of JNDI to register the
* new objects. It registers the objects with the name Cal | back
* and also informyou that it has successfully conpleted
* the registration process.
*/
public static void main(String args[])
{
try{
Hasht abl e env = new Hasht abl e();
env. put (Cont ext . PROVI DER_URL, "");
env. put (Context. | N TI AL_CONTEXT_FACTORY,
"com beasys. jndi. W.EI ni ti al Cont ext Factory");
Context ctx = new Initial Context(env);
ctx. rebi nd(Cal | back. NAME, new Cal | backl npl ());
Systemout. println("Callbacklnpl created and bound in JNDI to nane "
+ Cal | back. NAMVE) ;

catch (Exception e)

{

System out. println("caught exception:"+e);

}
}//end main()
} /1 end Call backl npl

Running the RMI Callback Example

To run the callback example, complete the following steps:

1. Make sure that your development environment is properly configured for
compiling and running the example, as explained in the topic “Setting Up Your
BEA WebLogic Enterprise Development Environment” on page 3-2.

4-14 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

2. Create adirectory where you want to build and run the example. (For example,
D\ wor k\ rmi _cal | back).

3. Cut and paste the code examples provided in the previous sections into four
appropriately named Java source files:

Cal | backQ ientIntf.java (shownin Listing 4-1)
Cal | backd i ent . j ava (shown in Listing 4-2)

Cal | back. j ava (shownin Listing 4-3)

Cal | backl npl . j ava (shown in Listing 4-4)

Include these Java sourcefilesin your r mi _cal | back directory.

4. Refer to the topic “Extra Files Needed to Run the Callback Example” on page
4-17. Cut and paste the code for these files into appropriately named files:

Cal | back. ubb (shown in Listing 4-5)

Dat aObj ect . j ava (shown in Listing 4-6)
Server | npl . j ava (shown in Listing 4-7)
startup. properties (shown in Listing 4-8)

Test Server. xnl (shown in Listing 4-9)

Include these files in youmi _cal | back directory as well. Optionally, you
might also want to copy the file eanup. cnmd shown in Listing 4-10. This
provides a convenient way to remove generated files after running the example.

5. Modify the fileCal | back. ubb (shown in Listing 4-5) so that it indicates the
correct values foTUXDI R, APPDI R, and so on. To determine all the changes you
need to make, look for treCHANGEME comments in the file and simply edit those
lines as needed. The code you need to modify on each line is shown in bold
before a#CHANGEME comment.

6. Compile the Java source files:

javac *.java

7. Run the WebLogic RMI compiler atal | backl npl . cl ass and
Cal | backd i ent . cl ass files as follows:

java webl ogic.rm c Call backlnpl Call backClient

8. Run thebui | dj avaser ver command on the XML file:

bui | dj avaserver testserver. xnl

Using RMI in aWebL ogic Enterprise Environment ~ 4-15

4 Using RMI with Client-Side Callbacks

9. Set the BEA WebL ogic Enterprise environment variables APPDI R and
TUXCONFI Gto indicate the location of your example application and t uxconfi g
file, respectively.

Environment Variable Example Setting

APPDI R For example, on Windows NT:
set APPDI R=D: \wor k\ rm _cal | back

TUXCONFI G For example, on Windows NT:
set TUXCONFI G=D: \wor k\rm _cal | back\t uxconfig

10. Generate at uxconf i g file based on Cal | back. ubb asfollows:
tm oadcf -y Call back. ubb

11. Start the BEA WebL ogic Enterprise server:
tmboot -y

12. Run the client:
java Cal | backd i ent corbal oc:// <Your Machi nel D>: 10000
For example:
java Cal | backCd i ent corbal oc:// SAMS: 10000

If the example runs successfully, the following messages are displayed on the
screen:

1. Success sending CientObject to server
2. Success on send data object to server

and server callback client using CientCbject
3. Success on send |long value to server

and server callback client using Cient(bject

13. Stop the BEA WebL ogic Enterprise server:

t mshut down -y

14. To remove the generated files, you can use the cl eanup. cmd provided in
Listing 4-10, or a similar script.

4-16 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

Extra Files Needed to Run the Callback Example

Thefollowing files are provided for your convenience. Y ou can cut and paste the code
for each file into an appropriately named ASCII file, and use the filesto build and run
the callback example in your BEA WebL ogic Enterprise environment. The files
provided here are:

m Cal | back. ubb (shownin Listing 4-5)

m Dat albj ect . j ava (shown in Listing 4-6)

m Serverlnpl.java (shownin Listing 4-7)

m startup. properties (shownin Listing 4-8)

m TestServer.xm (asshown in Listing 4-9)

m cl eanup. cnd for Windows NT systems (as shown in Listing 4-10)

Noticethat this example uses a startup propertiesfileto register RM| implementations
at startup. (The Hello World example shown in Chapter 2, “Getting Started with RMI
— a Hello World Example,” registers the RMI implementations by means of
Server | npl . j ava in a different way.) For more information on using a startup
properties file, see Appendix B, “Using a Startup Properties File.”

Using RMI in aWebL ogic Enterprise Environment ~ 4-17

4 Using RMI with Client-Side Callbacks

Listing 4-5 Callback.ubb

Copyright (c) 2000 BEA Systens, Inc. Al R ghts Reserved

* RESOURCES

| PCKEY 80952
MASTER SI TE1
MODEL SHM
LDBAL Y

* MACH NES

SAMS LM D=SI TE1
TUXDI R="d:\w edir"
APPDI R="d:\wor k\ rm _cal | back"
TUXCONFI G="d: \work\ rm _cal | back\t uxconfi g"
MAXWSCL| ENTS=5

* CROUPS

DEFAULT: LM D=SI TE1

STDGRP GRPNC=1 OPEN NFO=NONE

* SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TMBYSEVT SRVGRP=STDGRP SRVI D=1 RESTART=Y
TMFENAME SRVGRP=STDGRP SRVI D=2

CLOPT="-A -- -N -M
TMFENAME SRVGRP=STDGRP SRVI D=3
CLOPT="-A -- -N'
TMFENAME SRVGRP=STDGRP SRVI D=4
CLOPT="-A -- -F"
I SL SRVGRP=STDGRP SRVI D=5
CLOPT="-A -- -O -n // SAMS: 10000"
JavaServer SRVGRP=STDGRP SRVI D=6 CLCPT="-A -- -MO0O"

* MODULES
Cal | backMbdul e
SRVGRP=STDGRP SRVI D=6
FI LE="d: \work\rm _cal | back\t estserver.jar"

*SERVI CES

* | NTERFACES

4-18 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

Listing 4-6 DataObject.java

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */

/**
* DataCbject is to test WE RM client call back
*/
public class DataCbject inplenments java.io.Serializable
{
private String s;
Dat aObj ect (String s)
this.s = s;
}
public String toString()
{
return s;
}
public bool ean equal s(Obj ect Obj)
return (((DataQbject)Cbj).s.equals(s));
}
}

Using RMI in aWebL ogic Enterprise Environment ~ 4-19

4 Using RMI with Client-Side Callbacks

Listing 4-7 Serverlmpl.java

/* Copyright (c) 1999 BEA Systens, Inc. Al Rights Reserved */

i nport com beasys.rm . Startup;
inport java.io.*;
inport java.util.Properties;

/*

* The Serverlnpl class provides code to initialize and stop the server
* invocation. Serverlnpl is specified in the buildjavaserver XM i nput
* file as the name of the server object.

*

/
public class Serverlnpl extends com beasys. Tobj. Server {

public boolean initialize(String[] args) {
Properties p = new Properties();
try {
p. | oad(get d ass() . get Resour ceAsStrean("startup. properties”));
} catch (1 Oexception ioe) {
i oe.printStackTrace();
return fal se;
}
try {
St artup. mai n(p);
return true;
} catch (Exception e) {
return fal se;

}

public void release() {}

}

4-20 Using RMI in a WebL ogic Enterprise Environment

Example of Callbacks in RMI

Listing 4-8 startup.properties

HHH AR B R BERBERHH BB RHH

SYSTEM STARTUP FI LES - dient call back
=

#

Register a startup class by giving it a virtual nanme and

supplying its full pathnane.

webl ogi c. system startupd ass.[virtual name]=[full _pat hnane]

#

Add argunents for the startup cl ass

webl ogi c. system startupArgs. [virtual _nane] =[space separat ed ar gunents]

webl ogi c. system startupCl ass. Cal | back=Cal | backl npl

Listing4-9 TestServer.xml

<?xm version = "1.0" ?>

<I-- Copyright (c) 1999 BEA Systens, |Inc.
-->
<! DOCTYPE M3- SERVER SYSTEM "n8. dtd">

"t estserver. ser"”
"Serverlml" >

<M3- SERVER server-descri ptor-nane =
server-inplenmentation =

<ARCH VE nane = "testserver.jar">

<CLASS nane="Cal | back"/>

<CLASS nane="Cal | backClientlIntf"/>

<CLASS nane="Dat aChj ect"/>

<CLASS nane="Cal | back_W.St ub"/ >

<CLASS nane="Cal | back_W.Skel "/ >

<CLASS nane="Cal | backClientlntf W.Stub"/>

<CLASS nane="Cal | backClientlntf_ W.Skel "/>

<CLASS nane="Cal | backl npl "/ >

<FI LE nanme="startup. properties" prefix=""/>

</ ARCHI VE>

</ MB- SERVER>

Using RMI in aWebL ogic Enterprise Environment ~ 4-21

4 Using RMI with Client-Side Callbacks

Listing 4-10 Cleanup.cmd

rm*.class
rm*.jar
rm*.ser
rmtuxconfig
rmstderr
rm st dout
rmtnsysevt. dat
rm-rf .adm

4-22 Using RMI in a WebL ogic Enterprise Environment

CHAPTER

5

Using RMI with EJBs

All clients of EJBsuse RMI on I1OP. Thereisreally no difference in creating an RMI

client of a traditional RMI server or of an EJB server. (See Figure 5-1 and the topic “A
Note About Type Narrowing” on page 5-4.) The difference is in the way the servers
handle the calls. This topic explains the relationship between BEA WebLogic
Enterprise RMI on IIOP and EJBs.

This topic includes the following sections:

EJBs and Clients of EJBs

Client Callbacks from EJBs

Clients of EJBs and BEA WebLogic Enterprise RMI Servers
A Note About Type Narrowing

Where Can | Find Examples of Clients of EJBs?

Using RMI in a WebL ogic Enterprise Environment 5-1

S Using RMI with EJBs

Figure5-1 All Clientsof EJB Servers Use RM| on | |OP—RMI Clients and
Clients of EJBs Are Essentially the Same

JHDI,
Clients Marrowing RMI Server
or Casting
RMI Client
EJB Server
EJB Container
EJB Client
EJB Home
Interface
JNDI, .
Narrowing Enterprise
JavaBean
EJB Remote
Interface

5-2 Using RMI in a WebL ogic Enterprise Environment

EJBs and Clients of EJBs

EJBs and Clients of EJBs

Totalk to an EJB server, aclient of an EJB must first obtain an object referencefor the

EJB server. Thisisthe sametask as an RMI client obtaining a reference to aremote

object. The EJB server is always treated as a remote object. To obtain the object

reference, BEA WebL ogic Enterprise clients of EJBs use the Java Naming and

Directory Interface (JNDI). The INDI call returns a reference to an object that can

implement the EJB server's Home interface. The client can use the Home interface on
an EJB server to look up existing EJB instances or create new ones. The client uses the
Remote interface to interact with EJB objects on the server.

In short, a client of an EJB is an RMI client that is talking to an EJB.

Client Callbacks from EJBs

In BEA WebLogic Enterprise, a particularly useful feature of RMI is that you can use
it to do client callbacks from Enterprise Java Bean (EJB) servers. Clients cannot
advertise EJB implementations, but they can advertise RMI implementations. So if a
client wants to be called back from an EJB instance, it should create an RMI object and
pass the reference to the EJB instance. The EJB instance can then invoke the client
callback by using the RMI reference.

Clients of EJBs and BEA WebLogic Enterprise
RMI Servers

Notice that by definition all clients of EJBs use RMI on IIOP. Therefore, clients of
EJBs can also talk to BEA WebLogic Enterprise RMI servers.

Using RMI in a WebL ogic Enterprise Environment 5-3

S Using RMI with EJBs

A Note About Type Narrowing

A client program that is intended to be interoperable with all compliant EJB container
implementations must use the method

j avax. rmi . Port abl eRenot e(bj ect . nar r owto perform type-narrowing of the
client-side representations of the home and remote interface. Once an object reference
is obtained, the client must narrow it to the appropriate type. If you are creating a
generic RMI client, you could use the cast operator instead of

Por t abl eRenot ebj ect . nar r ow. However, we recommend the use of

Por t abl eRenot e(bj ect . nar r owto ensure interoperability with compliant EJB
container implementations.

Where Can | Find Examples of Clients of
EJBs?

All clients of EJBs use RMI on I1OP. For a description of the EJB examples, see the
Guideto EJB Sample Applications in the BEA Webl ogic Enterprise online
documentation.

5-4 Using RMI in a WebL ogic Enterprise Environment

CHAPTER

6

Converting Sun

JavaSoft RMI to BEA
WebLogic Enterprise
RMI Classes

It is easier to use BEA WebL ogic Enterprise RMI if you have already written classes
in the Sun Microsystems JavaSoft reference implementation of RMI. This section
explains how to convert Sun JavaSoft RMI classesto WebLogic RMI using the
WebLogic RMI Hello World application as an example.

Suppose you have an RMI Hello World example written similar to those found in the
Sun JavaSoft documentation distribution. To convert these files for use with BEA
WebL ogic Enterprise, you must do the following:

m Step 1: Modify the Java source code files
m Step 2: Compile the Java source files
m Step 3: Run the WebLogic RMI compiler on the implementation class

m Step 4: Build and package the application for BEA WebL ogic Enterprise

Using RMI in a WebL ogic Enterprise Environment 6-1

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

Step 1: Modify the Java source code files

To convert the RMI Hello World example from Sun JavaSoft RMI to BEA WebL ogic
Enterprise RMI, you must first modify the Java source code files to adjust for the
following major differences:

m For lookup and connection bootstrapping, BEA WebL ogic Enterprise RMI uses
the Java Naming and Directory Interface (JNDI) j avax. nam ng instead of
java.rm . nam ng

m BEA WebL ogic Enterprise RMI uses INDI j avax. nam ng instead of an RMI
registry

m BEA WebL ogic Enterprise RMI does not reguire or recommend use of an RMI
security manager

m BEA WebL ogic Enterprise RMI classes do not extend Uni cast Renot ebj ect
Y ou need to modify the following Java source code files:

m Hellolmpl.java—a Remote Object Implementation

m HelloClient.java—a Client That Invokes Methods on the Remote Object

Note that the filedel | 0. j ava, which contains the remote interface, is exactly the
same in both the Sun JavaSoft Hello World RMI example and in BEA WebLogic
Enterprise RMI. Therefore, you do not need to make any changes to this Java sourc
file—you can use it as is. You will need to recompile it, though, along with the other
Java files.

Hellolmpl.java—A Remote Object Implementation

To modify thisfile, compete the following steps:

1. Removethe package imports statements for the following packages, which are not
used in BEA WebL ogic Enterprise RMI:

e java.rm . Nam ng

e java.rm.RM SecurityManager

6-2 Using RMI in a WebL ogic Enterprise Environment

Step 1: Modify the Java source code files

e java.rm.server. Uni cast Renot eObj ect

2. Add package import statements for the following Java Naming and Directory
Interface (JNDI) packages, which are needed by BEA WebL ogic Enterprise RMI:
e java.util.Hashtable
e javax. nani ng. Cont ext
e javax.naning.|nitial Context
e javax. nam ng. Nam ngException

3. Edit the rest of the code in this file based on the BEA WebL ogic Enterprise RMI
Hello World example to use the appropriate packages and J2EE features.

For details, see “Step 3: Write the source code for a remote object that
implements the remote interface” on page 3-7 in Chapter 3, “Developing RMI
Applications in BEA WebLogic Enterprise.”

HelloClient.java—A Client That Invokes Methods on the
Remote Object

TheRMI client can be either an applet or aJavaclient similar to that shownin our BEA
WebL ogic Enterprise RM| Hello World example. To convert either type of client from
Sun JavaSoft RMI to BEA WebL ogic Enterprise RMI, you must modify the client file
similar to the following to account for some basic differences:

1. Remove the following package import statement, which is not used in BEA
WebL ogic Enterprise:
e java.rm . Nam ng

2. Add package import statements for the following Java Naming and Directory
Interface (JNDI) packages, which are needed by BEA WebL ogic Enterprise RMI:
e java.util.Hashtable
e javax. nam ng. Cont ext
e javax.nam ng. | nitial Context

e javax. nam ng. Nam ngException

Using RMI in a WebL ogic Enterprise Environment 6-3

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

3. Edit therest of the code in thisfile to use the appropriate packages and J2EE
features. In particular, this means using JINDI for the lookup and connection
bootstrapping. Once you get the object reference, be sure to use
j avax. rm . Port abl eRenot eObj ect . nar r owto narrow it to the appropriate
type.

For details, see the explanation of the code for the BEA WebL ogic Enterprise

Hello World RMI client in “Step 4: Write the source code for a client that
invokes methods on the remote object” on page 3-10 in Chapter 3, “Developing
RMI Applications in BEA WebLogic Enterprise.”

Step 2: Compile the Java source files

Compile the Java source files including the remote object implementation source file
(Hel 1 ol npl . j ava), the remote interface that it extendsl(l o. j ava), the RMI client

(Hel 1 od i ent.j ava or an applet file), along with any other associated Java files
needed for the application.

For example, the following command compiles the Java source files in
exanpl es/ hel I o and puts the resulting class files under a directory calledses.

javac -d cl asses exanpl es/hello/*.java

For more information on using thavac compiler to generate BEA WebLogic
Enterprise RMI classes, see “Step 5: Compile the source code files to create the
executable RMI classes” on page 3-12 in Chapter 3, “Developing RMI Applications in
BEA WebLogic Enterprise.”

Step 3: Run the WebLogic RMI compiler on
the implementation class

To create a proxgtub file for the client andkeleton file for the server, run the
webl ogi c. rmi ¢ compiler on the fully-qualified package names of compiled class
files that contain remote object implementations.

6-4 Using RMI in a WebL ogic Enterprise Environment

Step 4: Build and package the application for BEA WebLogic Enterprise

For the BEA WebL ogic Enterprise RMI Hello World Example, you would run the
webl ogi c. rm ¢ compiler on the class file Hel | ol npl asfollows:

java weblogic.rmc -d . exanples. hello. Hel |l ol npl

For more information about stubs and skeletons and about using the WebL ogic RMI
compiler to generate them, see “Step 6: Run the WebLogic RMI compiler on the
implementation class to generate stubs and skeletons” on page 3-13 in Chapter 3,
“Developing RMI Applications in BEA WebLogic Enterprise.”

Step 4: Build and package the application
for BEA WebLogic Enterprise

Once you have the BEA WebLogic Enterprise RMI class files, all that is left to do is
create a bootstrapping mechanism for your application and package the application
into a JAR file. For information on how to do this, see the section “Building Your RMI
Application in the BEA WebLogic Enterprise Environment” on page 3-16.

Using RMI in a WebL ogic Enterprise Environment 6-5

6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes

6-6 Using RMI in a WebL ogic Enterprise Environment

CHAPTER

.

The BEA WebLogic
Enterprise RMI API

There are several packages shipped as part of BEA WebL ogic Enterprise RMI on
[1OP. The public application programming interface (API) includes the BEA

WebL ogic Enterprise implementation of the Java RMI base classes and, for
compatibility, the equivalent WebL ogic Server (WL S) packages (webl ogi c. rmi).
The BEA WebL ogic Enterpriseimplementation a so includesthe WebL ogic RMI code
generator (webl ogi c. rm c).

Writing an application that uses remote method invocation (RM1) is essentially
characterized by using the RMI API.

Thistopic includes the following sections:

m Overview of BEA WebL ogic Enterprise RM| Packages

m Other Java Packages Related to BEA WebL ogic Enterprise RMI
m What Is Different in BEA WebL ogic Enterprise RMI API?

For detailed API reference information on the packages described in thistopic, seethe
the BEA WebL ogic Enterprise API Javadoc page in the BEA WebL ogic Enterprise
online documentation.

Using RMI in a WebL ogic Enterprise Environment 7-1

[TheBEA WebLogic Enterprise RMI APl

Overview of BEA WebLogic Enterprise RMI
Packages

Y ou can use either the Sun Microsystems, Inc. JavaSoft RMI related packages and
classes or the BEA WebL ogic RMI packages and classes to create BEA WebL ogic
Enterprise RMI applications. For compatibility with BEA WebL ogic Server (WLS),
thej ava. rm classes are also implemented aswebl ogi c. rmi classes.

Table 7-1 shows the Sun JavaSoft and BEA WebL ogic packages that make up the
BEA WebL ogic Enterprise RMI API. The packages shown are generally supported in
BEA WebL ogic Enterprise but with some differences which are summarized in the
table. Details on how BEA WebL ogic Enterprise RMI differs from Sun JavaSoft RMI
are provided in the section “What Is Different in BEA WebLogic Enterprise RMI
API?” on page 7-5. Please be sure to read this section.

7-2 Using RMI in a WebL ogic Enterprise Environment

Overview of BEA WebLogic Enterprise RMI Packages

Table 7-1 BEA WebL ogic Enterprise RMI Java Packages

Package Description Summary of
Differences
java.rm Thej ava. rmi package and thewebl ogi c. rmi . package Somer m classes

include theinterface j ava. r mi . Renot e which isthe basic are not effective for
building block for all remote objects. j ava. rm . Renot e use in BEA
contains no methods—it simply functions as a “tag” to identiffWWebLogic

remote classes. You must extend this tagging interface to crefatgerprise.

your own remote interface, with method stubs that create a Fqr details, see “API
structure for your remote object. Then you implement your oWhitferences” on
remote interface with a remote class. Your implementation ne e 7-7.

to be bound to a name in the Java Naming and Directory Interface

(IJNDI), from where a client or server may look up the object and

use it remotely. (For more about using the JNDI API, see

javax.naming.)

Thej ava. r mi package also includes several exception classes
that extend ava. r m . Renot eExcepti on. You should code

to catch these RMI exceptions in your BEA WebLogic Enterprise
applications. Methods on remote objects should throw

j ava.rm . Renot eExcepti on.

For details on how the BEA WebLogic Enterprise RMI API
differs from the Sun JavaSoft implementation, see the topic
“What Is Different in BEA WebLogic Enterprise RMI API?” on
page 7-5

Using RMI in a WebL ogic Enterprise Environment 7-3

[TheBEA WebLogic Enterprise RMI APl

Table 7-1 BEA WebL ogic Enterprise RM| Java Packages (Continued)

Package Description Summary of
Differences
javax.rm Thej avax. r mi package includes one class called None

j avax. rmi . Port abl eRenot eQbj ect . The method narrow
method on this class can be used in combination with the WLE
implementations of INDI and RMI. All other functionsin the
Por t abl eRenot ebj ect throw

Unsuppor t edOper at i onExcepti onin WLE.

Server implementation objects may either inherit from

j avax. rmi . Port abl eRenpt eObj ect or they may implement
aremote interface and then use the expor t Cbj ect method to
register themselves as a server object.

Optionally, you can use Por t abl eRenpot e(bj ect . narr owin
BEA WebL ogic Enterprise RMI applications to perform
type-narrowing, instead of a cast operator. Use of narr owis
strongly recommended.

A client program that isintended to be interoperable with all
compliant EJB container implementations must use the method
Por t abl eRenot eObj ect . nar r owto perform
type-narrowing of the client-side representations of the home and
remote interface.

com beasys.rm Starts up classes described by propertiesin away compatible Not applicable.
with BEA WebL ogic Server.

Other Java Packages Related to BEA
WebLogic Enterprise RMI

Table 7-2 shows other J2EE packages that provide additional functionality needed to
create BEA Webl ogic Enterprise RMI classes.

7-4 Using RMI in a WebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

Table 7-2 Other Java Packages Related to BEA WebL ogic Enterprise RMI

Package Description

Summary of Differences

Provides the classes and interfaces for
accessing naming services.

In BEA WebL ogic Enterprise, the
recommended connection bootstrap isto
createan | ni tial Cont ext . Itiscreated
with a hash table of parameters. Some of
these affect the RM | implementation.

j avax. nam ng

BEA WebL ogic Enterprise supports
keys from both

j avax. nami ng. Cont ext , and from
webl ogi c. j ndi . W.Cont ext .

For details, see the topic “Connection

Bootstrapping and Security
Differences” on page 7-9.

j avax. transaction

Contains three exceptions thrown by the None
ORB machinery during unmarshalling.

j ava. sql Provides the classes and interfaces for None
accessing databases via Standard Query
Language (SQL).

j avax. sql Thej avax. sql APl is used for bean None

managed persistence in EJB 1.1. Explicit
access to a database starts by looking up a

j avax. sql . Dat aSour ce.

What Is Different in BEA WebLogic

Enterprise RMI API?

The BEA WebL ogic Enterprise RMI API isasubset of the Java Development Kit 2
RMI API. As such, it supports most aspects of the Java Enterprise Edition (J2EE)
including use of JavaNaming and Directory Interface (JNDI) and transactions services
which are needed to interact with EJBs. In BEA WebL ogic Enterprise, RMI is hosted
on [1OP which means firewalls configured to support 11OP traffic will accept

WebL ogic RMI on [10OP messages as standard |1 OP messages.

Using RMI in a WebL ogic Enterprise Environment 7-5

[TheBEA WebLogic Enterprise RMI APl

BEA WebL ogic Enterprise RMI supports use of RMI classesin j ava. rmi , but you
need to be aware of the specific implementation of these packages in the BEA
WebL ogic Enterprise RMI development environment. BEA WebL ogic Enterprise
RMI differs from the Sun JavaSoft RMI implementation. Keep these differencesin
mind when you are:

m Creating new RMI applicationsin BEA WebL ogic Enterprise especialy if you
have previous experience with the BEA WebL ogic Server or the JavaSoft RMI
classes.

m Converting existing RMI classes from Sun JavaSoft RMI classes. (For
step-by-step instructions on how to convert existing RMI classes to BEA
WebL ogic Enterprise classes, refer to Chapter 6, “Converting Sun JavaSoft RMI
to BEA WebLogic Enterprise RMI Classes.”)

The differences are summarized in the following sections:
m API Differences

m Connection Bootstrapping and Security Differences

m Tool Differences

m Configuration Differences

7-6 Using RMI in a WebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

API Differences

Table 7-3 lists the differences when using WLE RM1 on |1OP.

Table 7-3 BEA WebL ogic Enterprise RM| API Differences

Sun JavaSoft RM| Classes

BEA WebLogic Enterprises RMI on I1OP

Naming, Connecting, and Bootstrapping

java.rm . Nam ng

Useofr m . Nam ngisnot effectivefor usein BEA WebL ogic
Enterprise.

For developing BEA WebL ogic Enterprise RMI applications,
use Java Naming and Directory Interface (JNDI)
j avax. nam ng instead of the RMI registry.

j ava.rm . Nam ng classes relate to the Sun JavaSoft
implementation of the RMI registry. BEA WebLogic
Enterprise provides no equivalent.

java.rm . Nam ng classeswill actually compile and may
runin BEA WebL ogic Enterprise, but will produce errors and
undesired results.

java.rm .registry. Locat eRegi stry

Use of RMI registry related classesis not effective in BEA
WebL ogic Enterprise.

For developing BEA WebL ogic Enterprise RMI applications,
use JNDI j avax. nam ng instead.

Registry classes relate to the Sun Microsystems JavaSoft
implementation of the RMI registry. BEA WebLogic
Enterprise provides no equivalent.

java.rm . regi stry classeswill actually compile and may
runin BEA WebL ogic Enterprise, but will produce errors and
undesired results.

Using RMI in a WebL ogic Enterprise Environment 7-7

v

The BEA WebLogic Enterprise RMI API

Table 7-3 BEA WebL ogic Enterprise RM| API Differences (Continued)

Sun JavaSoft RM| Classes

BEA WebL ogic Enterprises RM I on I10OP

Security

java.rm . RM SecurityManager

java.rm . server.RM Socket Fact ory

java.rm . server.RM Cl assLoader

java.rm .server. Uni cast Renpot ebj ect

Loader Handl er, Qperati on,
Renot eCal | , Renpt eRef,

Renot eSt ub, Skel et on from
java.rm . server (deprecatedin 1.2
without replacement)

Useof theRMI classRM Secur i t yManager isnot effective
in BEA WebL ogic Enterprise.

For developing BEA WebL ogic Enterprise RMI applications,
use JNDI to specify security instead.

RM Secur it yManager classeswill actually compile and
may runin BEA WebL ogic Enterprise, but will produce errors
and undesired results.

java.rmi.RemoteServer

Static method get Cl i ent Host in
java.rm . server. Renot eServer

Useof rm . server classesisnot effectivein BEA
WebL ogic Enterprise.

java.rm . server classeswill actually compile and may
runin BEA WebL ogic Enterprise, but will produce errors and
undesired results.

get Log andset Log in
java.rm . server. Renot eServer

Useof rm . server classesisnot effectivein BEA
WebL ogic Enterprise.

java.rm . server classeswill actually compile and may
runin BEA WebL ogic Enterprise, but will produce errors and
undesired results.

Stubs and Skeletons

java. rnm . Renot ebj ect
java.rm . server. Renpt eSt ub

7-8

Useof rm . Renpt ebj ect isnot effectivein BEA
WebL ogic Enterprise.
java. rm . Renpt eCbj ect classeswill actually compile

and may run in BEA WebL ogic Enterprise, but will produce
errors and undesired results.

Using RMI in a WebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

Table 7-3 BEA WebL ogic Enterprise RM| API Differences (Continued)

Sun JavaSoft RMI Classes BEA WebLogic EnterprisesRMI on I1OP
Skel et onM smat chExcepti on and These exception classesfrom j ava. rmi . ser ver will
Skel et onNot FoundExcepti onin compile and run in BEA WebL ogic Enterprise.

java.rm . server (deprecated in DK 1.2) These classesare not actualy used by BEA WebLogic
Enterprise. BEA WebL ogic Enterprise uses reflection instead
of skeletons.

Others

java.rni.dgc. Lease and VMID (notusable) Not supported in BEA WebL ogic Enterprise.

java.rni.server.LogStream(deprecated Not supported in BEA WebL ogic Enterprise.
in JDK 1.2 without replacement)

java.rni.server.Qbj | D(not usable) Useof rm . server classesis not effectivein BEA
WebL ogic Enterprise.

java.rm . server classesthat use Gbj | D might actually
compile and run in BEA WebL ogic Enterprise, but will
produce errors and undesired results.

Connection Bootstrapping and Security Differences

In BEA WebL ogic Enterprise RMI, connection bootstrapping is achieved by creating
anlnitial Cont ext viathe Java Naming and Directory Interface (JINDI) with
j avax. nam ng.

Optionally, the INDI W.ECont ext . SECURI TY_AUTHENTI CATI ON property can be

used for security. Also, the property keys shown in the section “JNDI Property Keys
for BEA Tuxedo Style Authentication” on page 7-13 can be used for BEA Tuxedo
style authentication.

For more information about JNDI, seaing the SPI Implementation for JNDI in the
BEA WebLogic Enterprise online documentation.

For more information about using JNDI for security, see the Writing a WLE Enterprise
JavaBean that Implements Security chapteésdimg Security in the BEA WebLogic
Enterprise online documentation.

Using RMI in a WebL ogic Enterprise Environment 7-9

[TheBEA WebLogic Enterprise RMI APl

JNDI Environment Properties

All J2EE Javaremote client applications must first create environment properties. The
initial context factory uses the various properties to customizethe | ni ti al Cont ext
for a specific environment. Y ou can set these properties by using a hash table. These
properties, which are name-to-value pairs, determine how the

WLEI ni ti al Cont ext Fact or y creates the W.ECont ext .

WLEContext.INITIAL_CONTEXT_FACTORY

Set this property to the WLE initial context factory
“com beasys. j ndi . W.EI ni ti al Cont ext Fact ory” to access the BEA WebLogic
Enterprise domain and remote haming services.

The classom beasys. j ndi . W.EI ni ti al Cont ext Fact ory provides the
implementation for delegating JNDI methods to the BEA WebLogic Enterprise JNDI
implementation. Theom beasys. j ndi . W.EI ni ti al Cont ext Fact or y provides an
entry point for a client into the WLE domain namespace. (See Listing 7-1 for an
example.)

Listing 7-1 WLEContext.INITIAL_CONTEXT_FACTORY Property Example

Hasht abl e env = new Hasht abl e();
/*
* Specify the initial context inplementation to use.
* The service provider supplies the factory cl ass.
*/
env. put (WLECont ext . | NI TI AL_CONTEXT_FACTCRY,

"com beasys.j ndi. W.EIni ti al Context Factory");

WLEContext.PROVIDER_URL

Set the URL of the service provider with the property name

j ava. nanmi ng. provi der . ur| . This property value should specify an IIOP
Listener/Handler for the desired BEA WebLogic Enterprise target domain. (See
Listing 7-2 for an example.)

7-10 Using RMI in aWebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

Listing 7-2 WLEContext.PROVIDER_URL Property Example

env. put (WLECont ext . PROVI DER_URL,
"corbal oc:// myhost:1000");

The host and port combination that is specified in the URL must match the ISL

parameter in the WLE domain®8BCONFI Gfile. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the communication with the WLE domain fails.

A WLE server that acts as a client must seM#Cont ext . PROVI DER_URL property
as an empty string or null. The server client connects to the current application in
which it is booted.

WLEContext SECURITY_AUTHENTICATION

The WLE system supports different levels of authentication. The
SECURITY_AUTHENTICATION value determines whether certificate-based SSL
authentication is attempted or BEA Tuxedo style authentication is used.

Valid values for this property key aredne”, “si npl e”, or “strong”, as
recommended by the Sun Microsystems Inc. JNDI specification. (See Listing 7-3 for
an example.)

Using RMI in a WebL ogic Enterprise Environment 7-11

[TheBEA WebLogic Enterprise RMI APl

Listing 7-3 WLEContext.SECURITY_AUTHENTICATION Example

env. put (WLECont ext . SECURI TY_AUTHENTI CATI ON,
"strong");

If “none” is specified, then no authentication is attempted.

If “strong” is specified, then certificate-based authentication is attempted using SSL
protocols.

If “si npl e” is specified or if SECURITY_AUTHENTICATIONS not specified, then
the BEA Tuxedo style authentication is used. See the next section for information
about the WLE specific keys used to support BEA Tuxedo style authentication.

7-12 Using RMI in aWebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

JNDI Property Keys for BEA Tuxedo Style Authentication

BEA WebL ogic Enterprise supports use of the several keysfrom
j avax. nami ng. Cont ext for security as shown in Table 7-4.

Table 7-4 WLE Property Keysfor Security

Key Description

WLECont ext . SECURI TY_PRI NCI PAL Specifies the identity of the principal used when
authenticating the caller to the WLE domain.

WLECont ext . SECURI TY_CREDENTI ALS Specifies the credentials of the principal when
authenticating the caller to the WLE domain.

m For certificate-based authentication enabled via
SECURITY_AUTHENTICATION="strong”, it
specifies the pass phrase used to access the private key
and certificate for the EJB.

m For password-based authentication enabled via
SECURITY_AUTHENTICATION="simple”, it
specifies a string that is the user’s password or an
arbitrary object user_data used by the authentication
server (AUTHSVR) to verify the credentials of the
EJB.

WLECont ext . CLI ENT_NAVME Specifies the name of the EJB defined by-tbeption of
thet pusr add command.

WLECont ext . SYSTEM_PASSWORD The system password. Required only when using
Username/Password authentication.

Using RMI in aWebL ogic Enterprise Environment ~ 7-13

v

The BEA WebLogic Enterprise RMI API

7-14

Listing 7-4 includes the WLE keys used to define Username/Password authentication.

Listing 7-4 WLE Keysfor Username/Password Authentication

/ | Passwor d- Based Aut henti cation

env. put (WLECont ext . SECURI TY_AUTHENTI CATI ON, "sinpl e");
env. put (WLECont ext . SYSTEM PASSWORD, "RM ");

env. put (WLECont ext . SECURI TY_PRI NCI PAL, "sans");

env. put (WLECont ext . CLI ENT_NAME, "writers");

env. put (WLECont ext . SECURI TY_CREDENTI ALS, "password");

Listing includes the WLE keys used to define certificate-based authentication.

Listing 7-5 WLE Keysfor Certificate-Based Authentication

/lCertificate-Based Authentication

env. put (WLECont ext . SECURI TY_AUTHENTI CATI ON, "strong");
env. put (WLECont ext . SYSTEM PASSWORD, "SSL");

env. put (WLECont ext . SECURI TY_PRI NCI PAL, "sans");

env. put (WLECont ext . SECURI TY_CREDENTI ALS, "credential s");

Tool Differences

Stubs and skeletonsfor BEA WebL ogic Enterprise RMI applications are generated by
running the WebL ogic RMI compiler (webl ogi c. r m ¢) against the remote class. A
stub isthe client-side proxy for aremote object that forwards each BEA WebL ogic
Enterprise RMI call to its matching server-side skeleton, which in turn forwards the
call to the actual remote object implementation.

BEA WebL ogic Enterprise does not support j ava. r m . Nani ng and, therefore, it has
no r mi r egi st ry tool. (Use of INDI is supported instead.)

Using RMI in a WebL ogic Enterprise Environment

What Is Different in BEA WebLogic Enterprise RMI API?

Configuration Differences

The only RMI configuration property used for BEA WebL ogic Enterprise RMI is
webl ogi c. system startupd ass. <vi rt ual Name>which isused to register the
RMI implementation at startup time. An example of using a startup propertiesfileis
provided in Appendix B, “Using a Startup Properties File.”

The JavaSoft RMI specification defines several properties. None of these have any
effect on the BEA WebLogic Enterprise RMI implementations.

Using RMI in aWebL ogic Enterprise Environment ~ 7-15

[TheBEA WebLogic Enterprise RMI APl

7-16 Using RMI in aWebL ogic Enterprise Environment

APPENDIX

A Java Server Startup

A JavaServer is represented by one or multiple JAR archives containing al the
application classfiles needed for the server to execute. Multiple JARs can be specified
at boot time in UBBCONFI G or added at run time. The JAR file can be built either from
bui | dj avaser ver tool or ej bc tool.

The BEA WebL ogic Enterprise Server implementation classhasiniti al i ze and

r el ease methods for handling the startup and shutdown classes. Astheinitial i ze
method of the Server implementation classisinvoked with the application arguments
passed in immediately after the JAR fileisloaded at JavaServer startup, so any server
initialization and startup functions can be performed there. The rel ease method will be
called when JavaServer is shut down. The name of the startup/shutdown classes, and
the startup arguments can be specified as the application arguments (ARGS) after the

j arfil e nameinthe MODULES section of the UBBCONFI Gfile; or in the

startup. properties file (same as WLS) that is packaged into the JAR file.

For more information on the ARGS options in the MODULES section of the UBBCONFI G
file, see the Administration Guide in the BEA WebL ogic Enterprise online
documentation. For an example of how RMI startup and shutdown classes (specified
inapropertiesfile) areprocessed ini ni ti al i ze andr el ease methods of the Server
implementation class, see Appendix B, “Using a Startup Properties File.”

Startup/Shutdown Classes

For each JAR file, there is only one Server implementation class thatihdsl i ze
andr el ease methods. When the JavaServer boots, it will load all the JAR files
specified iNUBBCONFI G, and invokes theni ti al i ze method of the Server
implementation class with the application arguments for each JAR. At JavaServer
shutdown it will invoke the el ease method.

Using RMI in a WebL ogic Enterprise Environment A-1

A Java Server s tartup

The startup/shutdown information can be specified in the M3 server descriptor XML
file that will be serialized by the bui | dj avaser ver command. Also, the
startup/shutdown information can be specified as EJB XML deployment descriptor
extensions and will be packaged into the deployable JAR by the ej bc tool.

If there is only one startup class, the class can be implemented as the Server
implementation class, and itsi ni ti al i ze method will be called when the JAR is
deployed.

If there are multiple startup classes, these can still utilize the Server implementation
class with the startup class names and arguments passed as the arguments to
i nitialize method.

Alternatively, the startup/shutdown classes names and arguments can be specifiedina
separate filestart up. properti es (sameformat as WLS), and be processed in the
i ni tialize method of the Server implementation class. An example of thisis
provided in Appendix B, “Using a Startup Properties File.”

JAR Tool / XML

A-2

You can use the BEA WebLogic Enterprigé | dj avaser ver command to generate
the JAR file from an XML file. For a description of the Server class and XML file
syntax, se&teps for Creating a Java Server Applicatibapterin Creating Java
Server Applications in the BEA WebLogic Enterprise online documentation.

Alternatively, you can use theg bc tool to package the EJB deployment descriptor
extensions XML file into the deployable JAR. For more information about using the
ejbc tool, see thej bc command in th€ommands, System Processes, and MIB
Reference in the BEA WebLogic Enterprise online documentation.

Using RMI in a WebL ogic Enterprise Environment

UBBCONFIG

UBBCONFIG

In the MODULES section of the UBBCONFI G file, set FI LE="j ar fi | enane” to specify
the JAR file that was generated from bui | dj avaser ver and ARGS="args" for
optional application-specific arguments. Y ou can include multiple instances of FI LE
for multiple JARs. Thej ar f i | ename can be afully qualified path to the location of
the JARfile; or it can berelative to the directory specified by the environment variable
APPDI R. For more information on the UBBCONFI G file MODULES section, refer to the

Administration Guide.

Using RMI in a WebL ogic Enterprise Environment A-3

A Java Server s tartup

A-4 Using RMI in a WebL ogic Enterprise Environment

APPENDIX

B

Using a Startup
Properties File

This appendix provides an example of how to use a startup properties file to register
RMI implementations at startup. (The RMI Hello World example registers the RMI
implementations by means of Ser ver I npl . j ava in adifferent way.)

In this section, we show how to specify the startup filein the ser ver . xm file by
means of the FILE element so that bui | dj avaser ver can package the propertiesfile
in the JAR. Note that the ARCHIVE element in the XML fileisoptiona, as the JAR
file can a so be generated by the JAR tool as a separate step outside of

bui | dj avaser ver . We aso provide some sample code to demonstrate how the
startup classes mechanism is implemented in thei ni ti al i ze method of the Server
implementation class for RMI.

Thistopic includes the following sections:
m XML File
m Properties File—startup.properties

m Serverlmpl Class

Using RMI in a WebL ogic Enterprise Environment B-1

B Using a Startup Properties File

XML File

<?xm version = "1.0" ?>

<! DOCTYPE M3- SERVER SYSTEM " n8. dt d" >

<MB- SERVER server-descriptor-nane = "rm.ser"
server-inplenmentation = "Serverlnpl" >
<ARCH VE nane = "rm.jar">

<CLASS nane="Si np"/ >
<CLASS nane="Si np_W.St ub"/ >
<CLASS nane="Si npl npl "/ >
<CLASS nane="Si npFact ory"/ >
<CLASS nane="Si npFact ory_ W.St ub" />
<FILE nane="startup. properties" prefix=""/>
</ ARCHI VE>
</ M3- SERVER>

Properties File—startup.properties

HAERBHRB R B BHHAHAH A A A A AR AR HRRR
SYSTEM STARTUP FI LES - Exanpl es

Regi ster a startup class by giving it a virtual nane and
supplying its full pathnane.
webl ogi c. system startupC ass. [virtual _nane] =[ful | _pat hnane]

Add argunments for the startup class
webl ogi c. system startupArgs. [virtual nane] =[space separ ated
ar gunent s]

HoHHHH R HHHR

webl ogi c. system st artupd ass. si np=Si npFact oryl npl
#webl ogi c. syst em st art upArgs. si np=-i nproc -second

B-2 Using RMI in a WebL ogic Enterprise Environment

Serverimpl Class

Serverimpl Class

import java.lang.reflect.*;

inmport java.util.?*;

import weblogic.utils.StringUils;
i mport com beasys.rm . Start up;

public class Serverlnpl extends com beasys. Tobj. Server {
public boolean initialize(String[] argv) {

try {
St artup. mai n(get G ass() . get ResourceAsStrean("startup. properties"));
} catch (Exception e) {
return false;
}

return true;

}

public void rel ease() {}

}

Using RMI in a WebL ogic Enterprise Environment B-3

B Using a Startup Properties File

B-4 Using RMI in a WebL ogic Enterprise Environment

Index

A

API, BEA WebL ogic Enterprise RMI 7-1
connection bootstrapping differences
7-9
summary of differences 7-7
Application Programming Interface
See AP

BEA WebL ogic Enterprise RMI API
differencesfrom Sun JavaSoft RMI API
7-5
Seealso API, BEA WebL ogic Enterprise
RMI
BEA WebL ogic Enterprise server, stopping
3-26
bootstrapping an application 3-17

C

callbacks
example 4-5
joint client/server applications 4-2
RMI client interface 4-8
RMI server 4-12
to client from server 4-1
understanding server-to-server
communication 4-1
compiling Java source 6-4
CORBA, interoperability with WebL ogic

RMI 1-3
customer support contact information ix

D
deploying a BEA WebL ogic Enterprise
application 3-27
deployment
client 3-27
server 3-29
documentation, where to find it viii

E

EJB 1-3
clients and servers 5-3
RMI clients of 1-3
using RMI for callbacksfrom servers 4-5
using RMI with 5-1
EJB client-server communication
examples of 5-4
EJB servers
client callbacksfrom 5-3
Enterprise Java Bean
See EJB
environment variables
application environment variables for
BEA WebL ogic Enterprise
3-24
required for deployment 3-27
required for development 3-2
required to deploy client 3-27

Using RMI in a WebL ogic Enterprise Environment -1

required to deploy server 3-29
example

building and running Hello World 2-4

using callbacksin RMI 4-5
example, Hello World 2-1

building and running 2-4

explanation of 2-8

removing generated files 2-8

interface

RMI remote interface 4-12
interface, remote server 4-12
Internet Inter-ORB Protocol (110P) 1-2

J

JNDI

connection and bootstrapping 7-9

environment properties 7-10

featureslist 1-2

use of, by RMI client to get an object
reference 3-11

use of, for security 7-9

use of, in remote object implementation
3-7

0
objects by value, passing 1-3

P

package names 3-5

packages, BEA WebL ogic Enterprise RMI
7-2

packaging an application 3-20

printing product documentation viii

R

remote class
creating instances of 3-9
defining 3-9
remote interface
characteristics of 3-6
Remote Method Invocation
See RMI
remote object
client invoking methods on 6-3
remote object implementation 6-2
remote object, invoking methods on 3-10
RMI
and Java 2 Enterprise Edition (J2EE) 1-2
API for BEA WebL ogic Enterprise 7-1
capabilities of BEA WebL ogic
Enterprise version 1-2
compiler 3-13
developing applications that useit 3-1
in BEA WebL ogic Enterprise
environment 3-16
on IIOP, what it is 1-2
running application 3-25
software needed for 1-4
source of information about 1-3
stubs and skeletons 3-14
what itis1-1
RMI, configuration property for BEA
WebL ogic Enterprise 7-15
RMI, Sun JavaSoft
convertingto BEA WebL ogic Enterprise
RMI 6-1

S
script, runme for building and compiling 3-26
Security differences

BEA WebL ogic Enterprise RMI 7-9
serialization 1-2
server-to-server communication 4-1
Sun JavaSoft RMI

[-2 Using RMI in a WebL ogic Enterprise Environment

convertingto BEA WebL ogic Enterprise
RMI 6-1
support
technical ix

T

transactions

featureslist 1-3

whereto get information on 1-5
TUXCONFIG, creating 3-22
type narrowing 3-12, 5-4

u
UBBCONFIG, creating 3-22

w

weblogic.rmic compiler 3-13

Using RMI in a WebL ogic Enterprise Environment

-3

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of RMI in BEA WebLogic Enterprise
	What Is RMI?
	What Is WebLogic RMI on IIOP?
	What About RMI Clients of EJBs?
	Where Can I Learn More About RMI?
	What Software and Development Environment Do I Need for BEA WebLogic Enterprise RMI?
	What Is Next?

	2 Getting Started with RMI — a Hello World Example
	Where Can I Find the RMI Hello World Example?
	What Is the RMI Hello World Example and What Do I Need to Run It?
	Required Software and Environment
	Hello World Files

	Building and Running the Hello World Example
	Cleaning Up the Directory
	Understanding the Hello World Example

	3 Developing RMI Applications in BEA WebLogic Enterprise
	Setting Up Your BEA WebLogic Enterprise Development Environment
	Verifying/Setting Environment Variables on Windows NT
	Verifying/Setting Environment Variables on UNIX

	Developing New RMI Classes for a BEA WebLogic Enterprise Application
	Step 1: Decide on package names and create directories for the source code that reflects the pack...
	Step 2: Write the source code for a remote interface
	Step 3: Write the source code for a remote object that implements the remote interface
	Defining the Remote Class
	Creating an Instance of the Remote Class

	Step 4: Write the source code for a client that invokes methods on the remote object
	A Note About Type Narrowing

	Step 5: Compile the source code files to create the executable RMI classes
	Step 6: Run the WebLogic RMI compiler on the implementation class to generate stubs and skeletons
	More About Stubs and Skeletons in WebLogic RMI
	More About the WebLogic RMI Compiler (weblogic.rmic)

	Building Your RMI Application in the BEA WebLogic Enterprise Environment
	Step 1: Create a mechanism for bootstrapping your application
	Writing the Code That Creates and Registers an RMI Object or Factory
	Releasing the Server Application

	Step 2: Package your application into a JAR file for deployment (buildjavaserver)
	Step 3: Create a UBBCONFIG file and run tmloadcf on it to get an executable TUXCONFIG file
	Step 4: Set application environment variables

	Running Your BEA WebLogic Enterprise RMI Application
	Stopping the BEA WebLogic Enterprise Server
	Using a Script as a Shortcut for Compile and Build Steps
	Deploying Your Application
	Deploying the Client
	Deploying the Server

	4 Using RMI with Client-Side Callbacks
	Understanding Server-to-Server Communication
	Joint Client/Server Applications
	When Do I Need to Use Callbacks?
	Example of Callbacks in RMI
	The RMI Client Interface
	The RMI Client
	The RMI Remote Interface
	The Remote Object (RMI Server)
	Running the RMI Callback Example
	Extra Files Needed to Run the Callback Example

	5 Using RMI with EJBs
	EJBs and Clients of EJBs
	Client Callbacks from EJBs
	Clients of EJBs and BEA WebLogic Enterprise RMI Servers
	A Note About Type Narrowing
	Where Can I Find Examples of Clients of EJBs?

	6 Converting Sun JavaSoft RMI to BEA WebLogic Enterprise RMI Classes
	Step 1: Modify the Java source code files
	HelloImpl.java—A Remote Object Implementation
	HelloClient.java—A Client That Invokes Methods on the Remote Object

	Step 2: Compile the Java source files
	Step 3: Run the WebLogic RMI compiler on the implementation class
	Step 4: Build and package the application for BEA WebLogic Enterprise

	7 The BEA WebLogic Enterprise RMI API
	Overview of BEA WebLogic Enterprise RMI Packages
	Other Java Packages Related to BEA WebLogic Enterprise RMI
	What Is Different in BEA WebLogic Enterprise RMI API?
	API Differences
	Connection Bootstrapping and Security Differences
	JNDI Environment Properties
	JNDI Property Keys for BEA Tuxedo Style Authentication

	Tool Differences
	Configuration Differences

	A Java Server Startup
	Startup/Shutdown Classes
	JAR Tool / XML
	UBBCONFIG

	B Using a Startup Properties File
	XML File
	Properties File—startup.properties
	ServerImpl Class

	Index

