o??%,

Z,hea
BEA WebLogic Enterprise

Using Request-Level Interceptors

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using Request-Level Interceptors

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What YOU NEEd 10 KNOWeiiiiiiiiiiiiiie ettt e X
€-0OCS WED St ...ttt et ee e X
HOW t0 Print the DOCUMENT ..ottt ettt X
Related INFOrMEAtIONoouiiii e Xi
CONEACT US! ...t Xi
Documentation CONVENTIONScccuueiie ittt en e eees Xii
Introduction
INterCeptor ArCRITECIUIE.o e e 1-2
Capabilities and LImMItationS.........c..euiiiiiiiiieeie e 1-4
EXECULION FIOW.....eeiiiiiiiiiie et et 1-5
Client-Side EXECULIONcciiiiiiiiiiiiie ettt 1-6
Client-side Exception HaNdliNgGc..cuveeiiiiiiiiniiiiiiee e 1-8
Target-side EXECULIONc.iiiiiiiiiiiie e et 1-10
Target-side Exception Handlingc.cceeiiiiiiiiiiiiinec e, 1-12
The exception_occurred Method...........cccceeiiiiiiiiiiii e 1-14
About Short-Circuit BENAVIOTc.evviiiiiiiie e 1-14
Using Multiple Request-level INterceptors.c.uuveeeriiieieiiiienie e 1-15
Multiple Client-side INtErCePLOrSccvvviieiiiiiie e 1-17
Multiple Target-side INtErCEPLOrScciiiiiiieii e 1-17
Interceptors and Implementation Languages..........cocvvveeriiiiieeniiieeen e 1-18
Interceptors and Meta-OperationScovueeieeriiiieiiiiiee e 1-19

Developing C++ Interceptors
Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications...... 2-2
Step 2: Write the Interceptor Implementation Code..........cccccveveeeiiiiiiiiiieieeeenn. 2-3

Using Request-Level Interceptors iii

iv

Starting the Implementation File ... 2-

Initializing the Interceptor at RUN TiME ..o 2-4
Obtaining the Interface Name from a Request.........cccovvvveeiiiiieie e 2-
Identifying Operations in the ReqUEST ..o 2-!
Implementing the Interceptor’'s Response Operation............cccccoveveeeeenneen 2-
Reading Parameters Out of a Data Input Stream............cccoccveeiiiinine e 2-
EXCEPLIONS ..ottt ettt ettt bbb 2-
Step3: Create the Interceptor Header File ... 2
Step 4: Build the INtErCeplor.........eviii i 2-1
Step 5: TeSt the INtErCEPLON. ...c.ueiiii it 2-]

Developing Java Interceptors

Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications 3-2
Step 2: Write the Interceptor Implementation Code...........ooooviiiviieeeiiieiiienee. 3-
Starting the Implementation File ... 3-S
Implementing the Interceptor's CONSIIUCLONueeeeiiiiieieniie e 3-C
Obtaining the Interface Name from a Request..........ccccovvveeiiiiiiieiiiieeene 3-
Identifying Operations in the ReqUEST ... !
Implementing the Interceptor’'s Response Operation.........cccccceeeeveveininnee. 3-
Reading Data Out of a Data Input Stream...........cccceeeeiiiiee e 3-
Step 3: BUild the INtErCePLOr........viiiii it 3-
Step 4: TeSt the INtErCePLOr......uviie e 3
Notes About Implementing Java INterceptorscoccvveeriiieeeieinieee e 3-

Deploying the Interceptor

Registering an INTErCEPIONueiii it 4.
Unregistering an INterCePLONccii i ittt 4-
Changing the Order in Which Interceptors are Calledccccooeiiiieeeeinnnnns 4-

PersonQuery Sample Application

How the PersonQuery Sample Application WOrkScccccveviiieieniiiiee i, 5-:
PersonQuery Database.ooocuiiiiiiiiiie e 5
Client Application Command-line Interfaceccccocevviiiiiie e 5-3

The OMG IDL for the PersonQuery Sample Application............cccceevvvneiennn. 5-5

Building and Running the PersonQuery Sample Applicationccccoecveeee 5-¢
Copying the Files for the PersonQuery Sample Application 5-9

Using Request-Level Interceptors

Changing the Protection on PersonQuery Application Files 5-12
Setting the Environment Variables ... 5-13
Building the Client and Server Applications.............ccoeeeiviiiiieniice e 5-13

Start the PersonQuery Client and Server Applications............c.cccceeveneee 5-13
Running the PersonQuery Sample Applicationccccocvvvviiinnieennn 5-14
Stopping the PersonQuery Sample Application..........ccccoceeviiiniiniiienene 5-14

Building and Running the Java RLI Sample Applications..............ccceveeernunnee. 5

Copying the Files for the Java PersonQuery Samplesccccuveeeeennn. 5-15
Changing the Protection on PersonQuery Application Files 5-17
Setting the Environment Variables ... 5-17
Building the Server AppliCatioN...........coveiiiiiiiie e 5-18
Start the PersonQuery Client and Server Applications............c.cccceeveneee 5-18
Running the PersonQuery Sample Applicationccccocvvviiinninieennnn 5-19
Stopping the PersonQuery Sample Application..........ccccoceeviiiiniiiiiienene 5-19
6. InterceptorSimp Sample Interceptors
How the PersonQuery Sample Interceptors Workoococeeieeieeiiieiicienene 6-1
Registering and Running the PersonQuery Interceptorsccccveveeeeeerenincenns 6-2
Registering and Running the C++ INterceptors.........cccvverviiieeenneiecennenn, 6-3
Registering and Running the Java INterceptors..........cccovveeviiiiiieienieneneennn 6-4
Examining the Output of the INterceptorsccccceveviiiiiiiiiiee e 6-5
Unregistering the INErCePLOrSuviiiiieiei et 6-6
Unregistering the C++ INtErCeptors........cocvuveieieeieee e 6-6
Unregistering the Java INterCeptors....... .o 6-7
7. InterceptorSec Sample Interceptors
How the PersonQuery Sample Interceptors Workccccceeeveiveeiniiiee e, 7-1
How the InterceptorSec Target-side Interceptor Workscccccceeeeeeenne 7-2
Using the SecurityCurrent ODJECEceviiiiiiiieiii e 7-3
Obtaining the SecurityCurrent ObJECE.cueeiiiiiiiiie e 7-3
Creating the List of User Attributes ... 7-5
Registering and Running the PersonQuery Interceptorsccccvveveeeerenennnes 7-9
Registering and Running the C++ INterceptors.........coocuvveriiiieeinniiecennen, 7-9

Registering and Running the Java Interceptors.........ccccccceeeeeiiiiieienennn. 7
Examining the Interceptor Output

Using Request-Level Interceptors v

Vi

Unregistering the INtErCEPLOrSovii ittt 7-1
Unregistering the C++ INterCeptors.......c.uvvvieiiiiie e 7-1:
Unregistering the Java INterceptorsoovvevieiiiiiee e 7-1

8. InterceptorData Sample Interceptors

InterceptorDataClient INtErCEPLON.ouiiiiiiie et 8-
InterceptorDataTarget INtErCePIOruuvueiiie e, 8-
Implementing the InterceptorData INterceptors........ccccceiveeiee i 8-
Registering and Running the InterceptorData Interceptorscccccceeeeevinenneee. 8-
Registering and Running the C++ INterceptors..........c.cvveveeveenniiieeen s, 8-!
Registering and Running the Java INterceptors........c.occoveeviiieeieiineee e 8-
Examining the Interceptor OULPULeviiiiiiiiieiiie e 8-
Unregistering the INtErCePLOrSuviiiiiiiie et 8-
Unregistering the C++ INterCeptors.......c.uvvvieiiiiiie e 8-1(
Unregistering the Java INterceptorsoovuevieiiiiiee e 8-1

9. Request-Level Interceptor API

INtErCePtor HIEIArCNYooiiiiiiii e 9-
Note 0N UnUuSed INLEITACEScoieiiiiiiiii e 0-
Interceptors::Interceptor INtErface ... 9-
C++ Language MapPiNg......ccueeeeeriieeieeriieieees e ee st e s 9-
Java Language Mapping........ccooeeeeeiireee et ee e estieee e e ee e 9.
RequestLevellnterceptor::
Requestinterceptor INtErface ... 9-1
C++ Language Mapping......cc.ueeeeiiiee ettt 9-1
Java Language Mapping.........ccooeeeeeriiiieeen e ee e 9-1
RequestLevellnterceptor::
ClientRequestinterceptor INnterface........ccoeviiiiiiiiiiiien e 9-2
C++ Language Mapping......cc.ueeeeeiiee et 9-2
Java Language Mapping........cccooeeeeoriiieee it 9-2
RequestLevellnterceptor::
TargetRequestinterceptor Interface.........cooooevieiiiiiie e 9-2
C++ Language Mapping......cc.ueeeeiiiee ettt 9-2!
Java Language Mapping........cccooeeeeoriiiiie it 9-3
CORBA::DatalnputStream INterface..........oocuvuvieiiiie e 9-3
C++ Language Mapping......cc.ueeeeiiiee ettt 9-3

Using Request-Level Interceptors

Java Language Mapping........c.ueeeeieieee ittt 9-40

A. Starter C++ Interceptor Files
Starter Implementation COde...........oooiiiiiiiii i A-1
Starter Header File COUEeviiiiiiiie e A-10

B. Starter Java Implementation File

Index

Using Request-Level Interceptors

Vii

viii Using Request-Level Interceptors

About This Document

This document describes how programmers can implement request-level interceptors
in the BEA WebLogic Enterprise™ (WLE) system. Using request-level interceptors is
an advanced programming feature of the WebL ogic Enterprise system.

This document covers the following topics:

Chapter 1, “Introduction,” provides an overview of request-level interceptors and
how they work in the WebLogic Enterprise environment.

Chapter 2, “Developing C++ Interceptors,” describes the process for
implementing C++ request-level interceptors.

Chapter 3, “Developing Java Interceptors,” describes the process for
implementing Java request-level interceptors.

Chapter 4, “Deploying the Interceptor,” describes the administration commands
you use for registering and unregistering interceptors.

Chapter 5, “PersonQuery Sample Application,” describes the PersonQuery
sample application, which serves as the base application with which the sample
interceptors, also provided with the WebLogic Enterprise software, are used.

Chapter 6, “InterceptorSimp Sample Interceptors,” describes the InterceptorSimp
sample interceptor, which collects simple data about requests that go between
the PersonQuery client and server applications.

Chapter 7, “InterceptorSec Sample Interceptors,” describes the InterceptorSec
sample interceptor, which is a basic security interceptor.

Chapter 8, “InterceptorData Sample Interceptors,” describes the two sample
interceptors that are specific to the PersonQuery sample application.

Chapter 9 documents the request-level interceptor API for both C++ and Java.

Using Request-Level Interceptors ix

m Appendix A, “Starter C++ Interceptor Files,” contains code that you can use as a
starting place for implementing a C++ request-level interceptor.

m Appendix B, “Starter Java Implementation File,” contains code that you can use
as a starting place for implementing a Java request-level interceptor

What You Need to Know

This document is intended for programmers who want to create secure, scalable,
transaction-based server applications. It assumes you are familiar with CORBA and
the C++ and Java programming languages.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product

Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

X Using Request-Level Interceptors

How to Print the Document

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dtttp://www.adobe.corm

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see tBidliographyin the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.conif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORTvatw.bea.comYou can also

contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Using Request-Level Interceptors Xi

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples

#include <iostream.h> void main () the pointer psz
chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example
void commit ()

monospace
italic
text

Identifies variables in code.
Example
String expr

Xii Using Request-Level Interceptors

Documentation Conventions

Convention Item
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Using Request-Level Interceptors xiii

Xiv Using Request-Level Interceptors

CHAPTER

1

Introduction

A request-level interceptoris a user-written CORBA object that provides a means to
insert functionality, such as security or monitoring components, into the invocation
path between the client and server components of a WebLogic Enterprise (WLE)
application. When you have an interceptor installed and registered with an ORB on a
particular machine, the interceptor is involved with all the WebLogic Enterprise
applications on that machine. You can use interceptors to insert any additional
functionality into the invocation path of an object invocation, at either the client, or the
server, or both ends of the invocation.

Request-level interceptors are not usually part of a typical WebLogic Enterprise
environment. Implementing them is considered an advanced programming task.

The WebLogic Enterprise system supports two categories of interceptors:

m Client-side interceptors, which are called by the ORB at the client side of an
invocation and are run in the process of an entity making a request. Client-side
interceptors inherit from thelientRequestinterceptor class.

m Target-side interceptors, which are called by the ORB at the target side of an
invocation and are run with the target application process. The target of an
invocation may be a WebLogic Enterprise server application or joint
client/server application. Target-side interceptors inherit from the
TargetRequestinterceptor class.

The WebLogic Enterprise system is very flexible about where you can install and use
interceptors, with respect to the relative location of the client and target objects. It is
transparent to a client application whether the target of its request is in the same or a
different process.

Using Request-Level Interceptors 1-1

1

Introduction

Although client- and target-side interceptors inherit from separate interfaces, in C++ it
is often convenient to implement the interceptors in a single source file. In the Java
programming language, the client- and target-side interceptors must be implemente
separately; however, the implementations for both interceptors can be packaged
together.

Interceptor Architecture

1-2

The following figure shows the relationship between request-level interceptors and the
WebLogic Enterprise system.

Entity Making a Request Target Object

Request-Level |f | Request-Level
—>| Interceptor ||] 'w < Interceptor >
L|: :IJ
ORB ‘ ORB
‘ Request
N
<} Response]

Note the following about WebLogic Enterprise interceptors:

m Interceptors are registered administratively and are called by the ORB at the
appropriate time during the execution of the application.

m When a client-side interceptor is installed and registered with an ORB, that
interceptor is called with every request coming from any WebLogic Enterprise
client application on that machine.

During the course of a single, successful request-response cycle of an
invocation, a client-side interceptor is called twice by the ORB:

Using Request-Level Interceptors

Interceptor Architecture

a. When the request is first issued from the client application and arrives at the
ORB (theclient_invoke operation)

b. When the target response arrives back at the client application process (the
client_response operation)

m When a target-side interceptor is installed and registered with an ORB, that
interceptor is called with every request that arrives for any target object on that
machine.

During the course of a single request-response cycle of an invocation, a
target-side interceptor is called twice by the ORB:

a. When the client request first arrives at the ORB (tinget_invoke
operation)

b. When the target object response arrives at the ORBtthet_response
operation)

m You can install and register multiple client- or target-side interceptors with an
ORB.

m Interceptors are independent of each other, and they do not require knowledge
about the potential presence of other interceptors.

m Interceptors cashort-circuitan invocation by returning a response directly to
the client without involving the target object at all.

m Interceptors impact overall application performance because they add an
additional step in the execution of every request.

The ORB maintains a list of registered interceptors. Registering an interceptor is
something you do as an administrative task. During application run time, the ORB uses
this list to determine when to call the interceptors and in what order, because multiple
interceptors can be installed and created. When you have multiple interceptors
registered, the ORB executes each interceptor consecutively. Establishing the order in
which multiple interceptors are called is also an administrative task.

Using Request-Level Interceptors 1-3

1 introduction

Capabilities and Limitations

Request-level interceptors are especially useful for implementing several different
types of service applications, such as:

m Instrumentation points for collecting statistics
m Probe points that include monitoring or tracing facilities

m Security checks to determine whether a particular type of invocation should be
permitted, or whether a specific bit of information can be returned to a client
application. For more information about interceptors and security, see Chapter 7,
“InterceptorSec Sample Interceptors.”

The following are current limitations on WebLogic Enterprise interceptors:

m Interceptors are called only by an ORB. Neither WebLogic Enterprise client nor
server applications can call an interceptor directly.

m Interceptors for remote Java clients are not supported.

m Interceptors implemented in a specific programming language (namely, C++ or
Java) can intercept invocations only from entities that are also implemented in
that same language.

m Interceptors cannot write to thmatalnputStream object.

m Interceptors cannot pass or manipulate the service context object.

m Interceptors cannot pass or manipulate the transaction current object.
m Interceptors cannot invoke methods on tlej_Bootstrap ~ object.

m TheREPLY_NO_EXCEPTIOKeturn status value is not supported in WebLogic
Enterprise 5.1, although it appears in the method signatures operations on
interceptor classes.

m An interceptor can make invocations on other objects; however, those
invocations are subject to interception as well. When an interceptor invokes an
object, make sure the interceptor doesn'’t intercept its own invocation in an
infinite loop -- which will happen if the object being invoked is in the same
server process as the interceptor. In such a situation, the system can hang.

1-4 Using Request-Level Interceptors

Execution Flow

The method signatures for operations on classes derived from the
RequestLevelinterceptor interface include parameters for the following
interfaces:

e RequestLevellnterceptor::DataOutputStream

e RequestLevellnterceptor::ServiceContextList

These interfaces are not used in the WebLogic Enterprise 5.1 product. These
interfaces are defined in the WebLogic Enterprise software so that you do not
need to recompile your WebLogic Enterprise application if an implementation of
these interfaces is ever provided in a future release of WebLogic Enterprise. The
ORB will always pass a nil object for the actual argument. You should not
attempt to use these arguments; doing so will likely end the process with a
serious error.

Execution Flow

The following sections explain what happens during the execution of an application in
a WebLogic Enterprise environment that uses interceptors. In general, request-level
interceptors are instantiated and initialized only when the ORB is initialized. At no
other time can request-level interceptors be instantiated.

The return status of an interceptor controls the execution flow of the ORB run-time and
any other request-level interceptors that may be installed.

Depending on the return status of an interceptor after it has been called, one of the
following events may occur:

The invocation resumes its normal path to the target object, back to the client
application, or to another interceptor.

The interceptor on either the client or the server side services the client request
and sends an exception back to the client. (In this case, the request may never be
sent to the target object, or the target object may provide a response that the
interceptor replaces with an exception. This would happen transparently to the
client application.)

Multiple request-level interceptors can be involved in a single invocation, and no
interceptor needs to know about any other interceptor.

Using Request-Level Interceptors 1-5

1

Introduction

The events that take place during a request-response cycle of an invocation are
presented in two categories:

m Client-side execution

m Target-side execution

Client-side Execution

1-6

Each interceptor is called twice during the request-response cycle of an invocation:
once when a request is going from the client towards the target, and again when a
response returns back to the client. The client interceptor class,
ClientRequestinterceptor , has two corresponding operations, among others, for
these two calls:

m client_invoke() -- called when the request made on an object reference
arrives at the client-side ORB.

m client_response() -- called when the response is returned back towards the
entity making the request.

The flow of execution of a WebLogic Enterprise application that uses a client-side
interceptor is shown in Figure 1-1. This figure shows a basic and successful
request-response invocation cycle (that is, no exceptions are raised).

Using Request-Level Interceptors

Execution Flow

Figure 1-1 Client-side Interceptor

Entity Issuing a Request

Target Object

AN
o ORB o M
Client-side
Interceptor

g client_invoke()
Response
Request

client_response() j a

In Figure 1-1, note the following events that are called out:
1. Therequest leaves the client and arrives at the ORB.

2. The ORB calls thelient_invoke operation on the client-side interceptor. (The
section “Using Multiple Request-level Interceptors,” explains what happens
when you have multiple client-side interceptors installed.)

3. The client-side interceptor processes the request and returns a status code to the
ORB.

4. If no exception is returned as a result of tient_invoke operation, the
request resumes its path toward the target object.

5. The target object processes the request and issues a response.

Using Request-Level Interceptors 1-7

1 introduction

6. The response arrives back at the ORB, and the ORB callgi¢he response
operation on the interceptor.

7. The interceptor processes the response and returns a status code to the ORB.

8. Theresponse is sent to the client application.

Client-side Exception Handling

Theclient_invoke andclient_response operations each return a status value that
indicates whether the client interceptor processing should continue. The interceptors
may return exception status values, which cause exception handling to take place.
Table 1-1 shows what happens depending on what status value is returned from thes
operations, and shows how the interceptors, together with the ORB, handle exception

1-8 Using Request-Level Interceptors

Execution Flow

Table 1-1 Client Interceptor Return Status Values

Operation

Return Status Value

What Happens

client_invoke()

INV

DKE_NO_EXCEPTION

The ORB continues normal processing of the
request toward the target, calling other
interceptors, if any.

REPLY_NO_EXCEPTION

(InWebLogic Enterprise 5.1, the
ORB cannot process this return
value, so do not implement this
as a return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
request will be considered serviced as if the target
processed it. Thus, the ORort circuitsthe
invocation and starts calling interceptors back
towards the client. Thelient_response

operation is not called on the same interceptor, but
this operation on any previously invoked
interceptor is called.

REPLY_EXCEPTION

The interceptor returns an exception to the ORB.
The ORB then calls each previous client-side
interceptorsexception_occurred operation.
Theexception_occurred method gives these
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client application. Thus, the ORdort

circuits the invocation, and the invocation is now
complete. For more information about the
exception_occurred method, see the section
“The exception_occurred Method” on page 1-14.

client_response()

RES

PONSE_NO_EXCEPTION

The ORB continues normal processing of the
request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTION

The interceptor passes an exception back to the
ORB, overriding any previous result of the
request. The ORB invokes the
exception_occurred method on each
previous interceptor back towards the client, then
returns an exception to the client application.

Using Request-Level Interceptors 1-9

1

Introduction

Target-side Execution

1-10

As on the client side, a target-side interceptor is called twice during a request-respons
cycle. Target-side interceptors inherit from thergetRequestinterceptor class,
which includes the following operations:

m target_invoke() -- called when the request arrives at the ORB that is part of
the target object process

m target_response() -- called when the response is sent back to the client

The flow of execution of a WebLogic Enterprise application that uses a target-side
interceptor is shown in Figure 1-2. This figure shows a basic and successful
request-response invocation cycle (that is, no exceptions are raised).

Using Request-Level Interceptors

Execution Flow

Figure 1-2 Target-side Interceptor

Target Object
Entity Making -
a Request
AN (4] ORB
Target-side e
Interceptor

target_invoke()

Request

Response

target_response()

In Figure 1-2, note the following events that are called out:
1. The client request arrives at the ORB.

2. The ORB calls thearget_invoke operation on the target-side interceptor. (The
section “Using Multiple Request-level Interceptors,” explains what happens
when you have multiple target-side interceptors installed.)

3. The target-side interceptor processes the request and returns a status code to the
ORB.

4. If no exception is raised during the execution of thrget_invoke ~ operation,
the request resumes its path toward the target object.

5. The target object processes the request and issues a response.

Using Request-Level Interceptors 1-11

1 introduction

6. The target-side ORB calls tharget_response operation on the interceptor.
7. The interceptor processes the response and returns a status code to the ORB.

8. Theresponse is sent to the client application.

Target-side Exception Handling
Table 1-2 shows what happens to an invocation on the target side depending on whz

status values are returned by thget_invoke ~ andtarget_response operations,
explaining what happens when exceptions are thrown.

1-12 Using Request-Level Interceptors

Execution Flow

Table 1-2 Target Interceptor Return Status Values

Operation

Return Status Value

What Happens

target_invoke()

INV|

IOKE_NO_EXCEPTION

The ORB continues normal processing of the
request toward the target (the object
implementation), calling other interceptors, if any.

REPLY_NO_EXCEPTION

(InWebLogic Enterprise 5.1, the
ORB cannot process this return
value, so do not implement this
as a return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
request will be considered serviced as if the target
processed it. Thus, the ORort circuitsthe
invocation and starts calling interceptors back
towards the client. Thearget_response

operation is not called on the same interceptor, but
this operation on any previously invoked
interceptor is called.

REPLY_EXCEPTION

The interceptor returns an exception to the ORB.
The ORB then calls each previous target-side
interceptorsexception_occurred operation.
Theexception_occurred method gives these
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client ORB. Thus, the target ORBort

circuits the invocation, and the invocation is now
complete. For more information about the
exception_occurred method, see the section
“The exception_occurred Method” on page 1-14.

target_response()

RES

SPONSE_NO_EXCEPTION

The ORB continues normal processing of the
request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTION

The interceptor passes a new exception back ORB,
overriding any previous result of the request.
Instead of calling theéarget_response

operation for interceptors on the way back to the
client, the ORB calls the

exception_occurred operation on those
interceptors instead.

Using Request-Level Interceptors 1-13

1

Introduction

The exception_occurred Method

Every interceptor has thexception_occurred method, which the ORB may call
under the following circumstances:

m The ORB has found an internal problem; for example, an operating system
resource error or a communication problem.

m A different interceptor has set an exception (rather than an exception being
generated by the ORB or the method). For example, the ORB is calling
interceptors A and B, respectively. Interceptor A has set an exception, so the
ORB then calls thexception_occurred method on Interceptor B instead of
theclient_response Or target_response methods. Your interceptor can
take advantage of this behavior to examine both the context in which the
response containing the exception is being processed and the actual value of the
exception without reading the exception from thetalnputStream structure.

m The client application is using a deferred synchronous DIl invocation on a
Request object and then releases tRequest object. In this case no response is
delivered to the client.

When one of the preceding situations has occurred, callingxdeption_occurred

method is an alternative to calling thient_response Or target_response

methods; however, the effect is essentially the same in that the client invocation is
complete.

For more information about keeping track of requests, see the sections “Implementin
the Interceptor’'s Response Operation” on page 2-6 (C++) or “Implementing the
Interceptor’'s Response Operation” on page 3-5 (Java).

About Short-circuit Behavior

1-14

As mentioned earlier, an interceptor can short-circuit a client request by servicing the
request itself or by returning an exception. In either case, the client request is never
actually serviced by the target object.

This short-circuit behavior works only in thient_invoke or target_invoke
methods. It doesn’t apply to thoient_response or target_response methods.

Using Request-Level Interceptors

Using Multiple Request-level Interceptors

Using Multiple Request-level Interceptors

Multiple request-level interceptors are installed in a queue such that the ORB can
execute one after the other in a sequential order. The ORB gives each request-level
interceptor the request in succession until there are no more request-level interceptors
leftin the queue to execute. If all interceptors indicate success, the request is processed.
The ORB delivers the resulting response to the transport in the client case, or to the
object implementation in the target case. The ORB executes the interceptors servicing
a response in the reverse order than that of servicing a request.

When an interceptor does not indicate success, a short circuit response results. This
short circuit can be performed by thignt_invoke ortarget_invoke operations.

The status returned from the interceptor tells the ORB that the interceptor itself has
decided to respond to the request with an exception, rather than to allow the target
object to handle the request. (An interceptatisnt_response or

target_response operation cannot perform any short-circuit behavior, but it can
replace the target response.)

Each interceptor is normally unaware of the other interceptors, unless they explicitly
share information. This independent programming model is preserved by the
execution semantics with regards to short circuits: When an interceptor indicates that
a response should be short-circuited and not reach its intended destination (which is
the transport on the client side, and the object implementation on the target side), the
response circulates back through the interceptors through which it has successfully
passed. For example, if interceptor A returns the status Wiel@KE_NO_EXCEPTION

after processing dient_invoke operation, expecting the request to be delivered,
and the next interceptor, B, denies the request with an exception, that exception gets
put into the response and is delivered to interceptorektgption_occurred

operation. The analogous execution model on the target side is in effect also.

Figure 1-3 shows the sequence of execution when multiple client-side interceptors are
installed on an ORB. (A similar series of operations occur with multiple target-side
interceptors.)

Using Request-Level Interceptors 1-15

1 introduction

Figure 1-3 Multiple Interceptors on an ORB

Entity Making a Request

é Target Object

Request ORB -

o Interceptor A

Interceptor B
Response

Interceptor C

Interceptor D

In Figure 1-3, note the following events that are called out:

1. Theclientrequest arrives in the ORB, and the ORB calls interceptors A through D
in sequence.

2. The request goes to the target object.
3. The target object processes the request and returns a response.

4. The response arrives back at the ORB with the client-side interceptors. The ORB
then calls each of the registered interceptors in a sequence that's the reverse of
the order in which they were called when the request went out.

5. The response arrives back at the client application.

1-16 Using Request-Level Interceptors

Using Multiple Request-level Interceptors

Multiple Client-side Interceptors

When the ORB receives a request, the ORB calls each client-side interceptor’s
client_invoke operation in turn. If the return valuslVOKE_NO_EXCEPTIONS
returned from eacHient_invoke operation (the normal case), the resulting request
is marshaled into a message by the ORB and sent to the target object.

Under the following circumstances, instead of calling ¢hent_response

operation on remaining interceptors back towards the client, the ORB calls the
exception_occurred on those interceptors, and then returns an exception back to the
client application:

m The return value from anglient_invoke operation iISREPLY_EXCEPTION

In this instance, the ORB ceases to propagate the request to remaining
interceptors or to the transport. The ORB thus short-circuits the request.

m The return value from angient_response operation is
RESPONSE_EXCEPTION

In this instance, the interceptor passes an exception back to the ORB, overriding
any previous result of the request.

Multiple Target-side Interceptors

As with the client-side interceptor processing, the ORB calls each target-side
interceptor’starget_invoke operation in succession. If the return value
INVOKE_NO_EXCEPTIONs returned from eactarget_invoke ~ operation, the request
is passed onto the target object.

Under the following circumstances, instead of calling thget_response

operation on remaining interceptors back towards the client, the ORB calls the
exception_occurred on those interceptors, and then returns an exception back
towards the client application:

m The return value from antarget_invoke ~ operation iSREPLY_EXCEPTION

In this instance, the ORB ceases to propagate the request to any remaining
interceptors and the target object. At this point the ORB returns a response to the
client ORB, and the target ORB short-circuits the request.

Using Request-Level Interceptors 1-17

Introduction

The return value from angarget_response operation is
RESPONSE_EXCEPTION

In this instance, the interceptor passes an exception back to the ORB, overriding
any previous result of the request.

Interceptors and Implementation
Languages

1-18

Interceptors implemented in C++ can be invoked only by client applications or other
entities that are also implemented in C++, and likewise for Java. If your WebLogic
Enterprise application contains both C++ and Java entities that need to be intercepte
you need to implement the interceptors in both languages and register them
individually.

Note the following behavior about interceptors implemented in Java:

Interceptors on remote Java clients are not supported.

Write each interceptor to be thread-safe if they are to be loaded by multithreaded
JavaServers, because the interceptors may be called simultaneously by multiple
application threads. You need to manage interceptor member and class variables
because there can be no more than one instance each interceptor among all the
registered interceptors.

It is recommended to avoid synchronizing interceptor implementations because
this affects the execution of the JavaServer.

In WebLogic Enterprise 5.1, the JavaServer ORB does not support the
LOCATION_FORWARDOCATION_FORWARD_PERM NEEDS_ADDRESSING_MODE
responses.

For behavior concerning use of the SecurityCurrent object, see Chapter 7,
“InterceptorSec Sample Interceptors.”

Using Request-Level Interceptors

Interceptors and Meta-operations

Interceptors and Meta-operations

Meta-operations are operations that supportd@&BA Object interface, such as

is_a ,get_interfface , andnon_existent . Some meta-operations can be performed
by the ORB without issuing an invocation, but other operations sometimes need to
invoke the object; namely, the_a , get_interface , andnon_existent ~ methods.
These operations can thus trigger interceptors.

The CORBA-specified language binding of these operations converts the operation
names from the names defined in IDL to the following:

m is a
m _interface

m _non_existent (Or_not_existent)

If you are implementing a security-based interceptor, be aware of this behavior
because the ORB may invoke these operations as part of a client request. You typically
should avoid the situation where an interceptor permits only a specific set of client
requests to be sent to a target object, but fails to take these meta-operations into
account.

Using Request-Level Interceptors 1-19

1 introduction

1-20 Using Request-Level Interceptors

CHAPTER

2 Developing C++
Interceptors

Developing a C++ request-level interceptor typically involves the following steps:

m Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications

Also identify the machines on which you plan to deploy the interceptors.
m Step 2: Write the Interceptor Implementation Code
m Step3: Create the Interceptor Header File
m Step 4: Build the Interceptor
m Step 5: Test the Interceptor

The preceding steps are usually iterative. For example, the first time you build and test
your interceptor, you might have only the most basic code in the interceptor that
merely verifies that the interceptor is running. With subsequent builds and tests, you
gradually implement the full functionality of the interceptor.

The sections that follow explain each of these steps in detail, using the sample
interceptors packaged with the WebLogic Enterprise software for examples.

Using Request-Level Interceptors 2-1

2 Developing C++ Interceptors

Step 1: Identify the Interfaces of Your
WebLogic Enterprise Applications

2-2

Deploying an interceptor on a given machine constitutes a significant overhead
because that interceptor will be invoked every time any application on that machine
issues (in the case of a client-side interceptor) or receives (target-side interceptor) a
request. Therefore, any interceptor you create must be well-matched to those
applications.

For example, a security interceptor typically needs to know about what kinds of
requests are of concern, and what kinds of data are being handled in the request.

Any interceptor that deals with specific requests needs to be able to extract the
interface repository ID from the request. With that interface knowledge, the interceptor
then has a way of knowing what kind of data is in the request, and can then handle the
data in a request-specific fashion.

In addition, if a request is sent thatristof interest, the interceptor needs to be able to
pass the request through quickly and efficiently.

The PersonQuery example described in Chapter 5, “PersonQuery Sample
Application,” uses an interceptor that determines whether the user of the PersonQuer
client application can receive addresses. If the identity of the user matches specific
criteria, the interceptor allows the full address number to be returned to the client. If
no match exists, the interceptor returns only the string cfiaracters to the log file in
place of the address.

Using Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

Step 2: Write the Interceptor
Implementation Code

To implement an interceptor:

m For your first pass on implementing an interceptor, keep it simple. For example,
you might decide for each function member to implement a statement that prints
a message to a log file. This would simply verify that the interceptor is properly
built, registered, and running. Once you know your interceptor is working
properly, you can iteratively add code until you have all the functionality you
need.

m If you are planning to deploy client- and target-side interceptors to implement a
specific piece of functionality, you can implement both interceptors in a single
source file. Then when you build and deploy the interceptors, you can configure
them separately on the client- and target-side machines if you desire. The sample
interceptors provided with the WebLogic Enterprise software are done this way.

The topics that follow discuss implementation considerations that may be typical of
many interceptors. Examples from the InterceptorData interceptors, which are
described in Chapter 8, “InterceptorData Sample Interceptors,” are provided.

Starting the Implementation File

You can use the code fragments included in Appendix A as a place to start
implementing your interceptor. You may use the code included in Appendix A, or you
may copy the following starter files available at the WebLogic Enterprise Developer
Center on the BEA Web site:

File Name Description

intercep.h Interceptor header starter file. The contents of this file, and
instructions for using it, are in the section “Step3: Create the
Interceptor Header File” on page 2-8.

intercep.cpp Interceptor implementation starter file.

Using Request-Level Interceptors 2-3

2 Developing C++ Interceptors

For information about getting these starter files from the WebLogic Enterprise
Developer Center, see tiRelease Notes

You can start your interceptor implementation using the sample interceptor code
provided in Appendix A, wher&ourinterceptor represents the name of the
interceptor you are implementing. Note that in WebLogic Enterprise version 5.1, the
ORB will always pass nil references for tBerviceContextList and
CORBA::DataOutputStream parameters. You should not use or reference those
parameters. You should not test those parametersifobecause this restriction may
change in a future version.

Initializing the Interceptor at Run Time

All interceptors are instantiated when the ORB is initialized. At no other time are
request-level interceptors instantiated. As part of initializing, the interceptor’s
initialization routine must instantiate an instance of an implementation for a client
interceptor, or a target interceptor, or both, depending upon what the interceptor
intends to support. As mentioned earlier, a single shareable image can support both tt
client-side and target-side interceptors. The instances of any interceptor instantiated
are then returned from the initialization routine and registered with the ORB runtime.

The following code fragment is from the InterceptorData interceptor, and shows the
declaration of the initialization operation invoked by the client-side ORB when that
ORB is initialized:

void InterceptorDataClientinit(
CORBA::ORB_ptr TheORB,
RequestLevellnterceptor::ClientRequestinterceptor ** ClientPtr,
RequestLevellnterceptor::TargetRequestinterceptor ** TargetPtr,
CORBA::Boolean * RetStatus)

The following code fragment shows the statements to instantiate the InterceptorData
client interceptor class. Note that this fragment uses a class namiest , which is

used for keeping track of each incoming client request so that it can be matched witt
the response returned by the target object. The tracker class is described in the sectic
“Identifying Operations in the Request” on page 2-5.

ClientinterceptorData * client = new ClientinterceptorData(TheORB, tracker);
if (Iclient)
{
tmpfile << “InterceptorDataClientlnit: Client alloc failed"
<< endl << endl;

2-4 Using Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

*RetStatus = CORBA_FALSE;
delete tracker;

return;

}
The following code fragment shows the statements to return the interceptor class to the
ORB:
*ClientPtr = client;
*TargetPtr = 0;
*RetStatus = CORBA_TRUE;
return;

Obtaining the Interface Name from a Request

If you have an interceptor that works with specific interfaces or requests, the
interceptor needs a way to extract the interface ID associated with a request so that the
interceptor can identify it and thus know how to handle the data in the request. For
example, the InterceptorData interceptor manipulates the request parameters sent in
requests from the PersonQuery application. To manipulate the request parameters, the
interceptor needs to know which request is being sent.

The following code fragment from the InterceptorData sample shows the interface ID
extracted from the RequestContext structure:

if (strcmp(request_context.interface_id.in(),
PersonQuery::_get_interface_name()) != 0)
return ret_status;

Identifying Operations in the Request

Using the extracted interface ID, the InterceptorData sample uses a sinigle
statement to identify the operation in the client request. That way, the interceptor will
know what do with the request parameters contained in the request.

The following code fragment shows the switch statement that checks for either the
Exit operation or the operation to query the database for a person by name. Note the
use of theparser object, which extracts operations from the request retrieved from the
tracker object.

Using Request-Level Interceptors 2-5

2 Developing C++ Interceptors

m_outfile << “ Operation: “ << request_context.operation << endl;
PQ parser;
PQ:op_key key = parser.MapOperation(request_context.operation.in());
switch (key)

default:
m_outfile << * ERROR: operation is not member of “
<< request_context.interface_id.in() << endl;
excep_val = new CORBA::BAD_OPERATION();
return Interceptors::REPLY_EXCEPTION;

case PQ::Exit:
m_ouftfile << endl;
return ret_status;

case PQ:ByPerson:

{
PersonQuery::Person per;
parser.GetByPerson(request_arg_stream, &per);
m_outfile << *“ Parameters:” << endl;
m_outfile << per << endl;

}

break;

Implementing the Interceptor’'s Response Operation

Extracting an interface ID out of a client request is fairly straightforward. However,
it's not quite as simple to do that with a target response. If an interceptor needs to know
what interface and operation is associated with the response it receives from the ORE
it needs to have special logic for tracking requests. Itis the interceptor’s responsibility
to track requests coming from the client.

The InterceptorData samples implement a language object, qaflde@r |, that keeps
a record of the target-bound requests, and then matches the target responses to the
when those responses arrive back at the interceptor.

Theclient_response andtarget_response operations on the InterceptorData
samples extract interface and operation information fronTtheker object when
responses are returned from the target.

2-6 Using Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

The following InterceptorData code fragment extracts the request associated with a

response:
Requestinfo * req_info = m_tracker->CompleteRequest(reply_context);
if (freq_info)
{
m_outfile << “ unable to find request for this reply (must not be one

we care about)” << endl << endl;
return Interceptors::RESPONSE_NO_EXCEPTION;
}

1
/I This is the interface we are expecting. Now identify the operation

/I being invoked, so we can parse the request parameters.
1

m_outfile << * ReplyStatus: ;
OutputReplyStatus(m_oultfile, reply_context.reply_status);
m_outfile << endl;

m_outfile << *“ Interface: “ << req_info->intf() << endl;
m_outfile << “ Operation: “ << req_info->op() << endl;
PQ parser;

PQ::op_key key = parser.MapOperation(req_info->op());

Now that the interceptor has obtained the request associated with the response, the
interceptor can handle the data in the response appropriately.

Reading Parameters Out of a Data Input Stream

The following code fragment shows an example of how the InterceptorData sample
places the request parameters from a data stream into a structure. The pagimeter

the following code fragment represents a pointerba@inputStream structure that

can be used by the interceptor implementation to retrieve the value of the reply
parameters of the PersonQuery operation. The code encapsulated by the braces in this
code fragment extracts the parameters of the response frobatiieputStream

structure. For more information about thatalnputStream structure, see Chapter 9,
“Request-Level Interceptor API.”

void PQ::get_addr(CORBA::DatalnputStream_ptr S,
PersonQuery::Address *addr)
{

addr->number = S->read_short();

addr->street = S->read_string();
addr->town = S->read_string();

Using Request-Level Interceptors 2-7

2 Developing C++ Interceptors

addr->state = S->read_string();
addr->country = S->read_string();

Exceptions

Exceptions from interceptors returned via theep_val parameter can only be a
derived type from th&€ORBA::SystemException base class. (Any other exception
type that the interceptor implementations return to the ORB is converted by the ORB
to aCORBA::UNKNOWABIxception, which is passed via teeep_val parameter.) You
need to map exceptions tC®RBA::SystemException class or one of its derivatives.

Step3: Create the Interceptor Header File

After you have created any implementation code in the interceptor implementation
file, you need to provide any data or operations as needed to the interceptor header fil

The following code example shows basic information that is required in the header file
for an interceptor implementation file that implements both client- and target-side
interceptors.

This example also shows:
m The include file needed for security
m Target data members for security

In this code exampleyourinterceptor represents the name of the interceptor you
are creating.

#include <CORBA.h>
#include <RequestLevellnterceptor.h>
#include <security_c.h> /lfor security

class Yourinterceptor Client : public virtual
RequestLevellnterceptor::ClientRequestinterceptor

{

private:
Yourinterceptor Client() {

2-8 Using Request-Level Interceptors

Step3: Create the Interceptor Header File

CORBA::ORB_ptr m_orb;
public:

Yourlnterceptor Client(CORBA::ORB_ptr TheOrb);

~Yourlinterceptor Client() {}

Interceptors::ShutdownReturnStatus shutdown(
Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);

CORBA::String id();

void exception_occurred (
const RequestLevellnterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);

Interceptors::InvokeReturnStatus client_invoke (
const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);

Interceptors::ResponseReturnStatus client_response (
const RequestLevellnterceptor::ReplyContext & reply_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

b

class Yourinterceptor Target : public virtual
RequestLevellnterceptor:: TargetRequestinterceptor

{
private:
Yourlnterceptor Target() {}
CORBA::ORB_ptr m_orb;
SecurityLevell::Current_ptr m_security_current; /ffor security
Security::AttributeTypeList * m_attributes_to_get; /lfor security
public:

Yourlnterceptor Target(CORBA::ORB_ptr TheOrb);

~Yourlinterceptor Target();

Interceptors::ShutdownReturnStatus shutdown(
Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);

CORBA::String id();

void exception_occurred (
const RequestLevellnterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);

Interceptors::InvokeReturnStatus target_invoke (
const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);

Using Request-Level Interceptors 2-9

2

Developing C++ Interceptors

Interceptors::ResponseReturnStatus target_response (
const RequestLevelinterceptor::ReplyContext & reply_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

Step 4: Build the Interceptor

Interceptors are built into shareable libraries. Therefore, the steps for building an
interceptor are platform-specific. For details about the specific commands and option:
used to build interceptors on any particular platform, execute the makefile that builds
the interceptor sample applications provided with the WebLogic Enterprise software,
and view the results of the build in the log file that results from the build.

The command to build the sample interceptors is as follows:
Windows NT

> nmake -f makefile.nt

UNIX

> make -f makefile.mk

For more information about building and running the sample interceptors provided
with the WebLogic Enterprise software, see Chapter 5, “PersonQuery Sample
Application.”

Step 5: Test the Interceptor

2-10

Testing an interceptor requires you to perform the following tasks:
m Register the interceptor

m Boot the WebLogic Enterprise server application usingttfi®ot command

Using Request-Level Interceptors

Step 5: Test the Interceptor

m Run the WebLogic Enterprise client application
m Check the interceptor’s log file to verify the interceptor’s behavior

For information about registering interceptors, see the topic Chapter 4, “Deploying the
Interceptor.”

Using Request-Level Interceptors 2-11

2 Developing C++ Interceptors

2-12 Using Request-Level Interceptors

CHAPTER

3

Developing Java
Interceptors

Developing a Java request-level interceptor typically involves the following steps:

m Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications

Also identify the machines on which you plan to deploy the interceptors.
m Step 2: Write the Interceptor Implementation Code
m Step 3: Build the Interceptor
m Step 4: Test the Interceptor

The preceding steps are usually iterative. For example, the first time you build and test
your interceptor, you might have only the most basic code in the interceptor that
merely verifies that the interceptor is running. With subsequent builds and tests, you
gradually implement the full functionality of the interceptor.

The sections that follow explain each of these steps in detail, using the sample
interceptors packaged with the WebLogic Enterprise software for examples, and also
provides notes about implementing Java interceptors.

Using Request-Level Interceptors 3-1

3 Developing Java Interceptors

Step 1: Identify the Interfaces of Your
WebLogic Enterprise Applications

3-2

Deploying an interceptor on a given machine constitutes a significant overhead
because that interceptor will be invoked every time any application on that machine
issues (in the case of a client-side interceptor) or receives (target-side interceptor) a
request. Therefore, any interceptor you create must be well-matched to those
applications.

For example, a security interceptor typically needs to know about what kinds of
requests are of concern, and what kinds of data are being handled in the request.

Any interceptor that deals with specific requests needs to be able to extract the
interface repository ID from the request. With that interface knowledge, the interceptor
then has a way of knowing what kind of data is in the request, and can then handle the
data in a request-specific fashion.

In addition, if a request is sent thatristof interest, the interceptor needs to be able to
pass the request through quickly and efficiently.

The PersonQuery example described in Chapter 5, “PersonQuery Sample
Application,” uses an interceptor that determines whether the user of the PersonQuer
client application can receive addresses. If the identity of the user matches specific
criteria, the interceptor allows the full address to be returned to the client. If no match
exists, the interceptor returns only the stringcatharacters to the log file in place of

the address.

Using Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

Step 2: Write the Interceptor
Implementation Code

For your first pass on implementing an interceptor, keep it simple. For example, you
might decide to implement a statement in each of the interceptor’s methods that prints
a message to a log file. This would simply verify that the interceptor is properly built,
registered, and running. Once you know your interceptor is working properly, you can
iteratively add code until you have all the functionality you need.

The topics that follow discuss implementation considerations that may be typical of
many interceptors. Examples from the InterceptorData interceptors, which are
described in Chapter 8, “InterceptorData Sample Interceptors,” are provided.

Starting the Implementation File

You can use the code fragments included in Appendix B as a place to start
implementing your interceptor. You may use the code included in Appendix B, or you
may copy thentercep.java starter file available at the WebLogic Enterprise
Developer Center on the BEA Web site. For information about getting this starter file
from the WebLogic Enterprise Developer Center, seeRbkease Notes

Note thatin WebLogic Enterprise version 5.1, the ORB will always pass nil references
for the ServiceContextList andCORBA.DataOutputStream parameters. You

should not use or reference those parameters. You should not test those parameters for
nil because this restriction may change in a future version.

Implementing the Interceptor’s Constructor

All interceptors are instantiated when the ORB is initialized. At no other time are
request-level interceptors instantiated. The instances of any interceptor instantiated are
then returned from the initialization routine and registered with the ORB run time.

Using Request-Level Interceptors 3-3

3 Developing Java Interceptors

The set of interceptors registered with an ORB is processed during ORB initialization,
and an instance of each interceptor is created via Java Reflection APIs. There is no
need to implement an initialization routine for Java interceptors as in the C++ ORB
implementation.

When a Java interceptor is instantiated, the interceptor expects to find the
org.omg.CORBA.ORB parameter, which is the reference to the ORB, in the
interceptor’s constructor. This constructor can store this ORB reference only at
instantiation; and although the ORB has just been initialized, the TP Framework has
yet to be initialized. Therefore, any attempt to do ORB-related work, such as an
invocation on the ORB, results in undefined behavior.

If the ORB cannot find the expected constructor, the ORB attempts to load the defaul
construction, which contains no arguments.

The following code fragment shows the constructor for the InterceptorData sample
interceptor:

public InterceptorData(org.omg.CORBA.ORB orb)

theOrb = orb;

Obtaining the Interface Name from a Request

If you have an interceptor that works with specific interfaces or requests, the
interceptor needs a way to extract the interface ID associated with a request so that tt
interceptor can identify it and thus know how to handle the data in the request. For
example, the InterceptorData interceptor manipulates the data sentin requests from tt
PersonQuery application. To manipulate that data, the interceptor needs to know
which request is being sent.

The following code fragment from the InterceptorData sample shows the interface ID
extracted from the RequestContext structure. In this fragment, the interceptor is
checking to see if the request is an invocation on the PersonQuery interface.

TP.userlog("Interface Id: " + request_context.interface_id);
if(request_context.interface_id.equals("IDL:beasys.com/PersonQuery:1.0"))

TP.userlog("Operation: " + request_context.operation);

3-4 Using Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

Identifying Operations in the Request

Using the extracted interface ID, the InterceptorData sample uses a sefielsof
statements to identify the operation in the client request. That way, the interceptor will
know what to do with the data contained in the request.

The following code fragment checks for the operation to query the database for a
person by name. Note the use of liesePerson method, which extracts the value
of a parameter from thBatalnputStream object.

if(request_context.operation.equals(“findPerson™))
TP.userlog("Person = " + parsePerson(request_arg_stream));
else if(request_context.operation.equals("findPersonByName"))

TP.userlog("Name = " + parseName(request_arg_stream));

Implementing the Interceptor’s Response Operation

Extracting an interface ID out of a client request is fairly straightforward. However,

it's not quite as simple to do that with a target response. If an interceptor needs to know
what invocation is associated with the response it receives from the target, it needs to
have special logic for doing that.

The InterceptorData interceptor uses a hashtable to track target-bound requests, so that
the interceptor can then matches the target responses to them when those responses
arrive back at the interceptor.

The following code fragment shows the InterceptorData interceptor putting the request
key into the hashtabléystanceOP

instanceOP.put(id(), request_context.operation);

Thetarget_response operation on the InterceptorData interceptor extracts interface
and operation information from the hashtable when responses are returned from the
target.

The following InterceptorData code fragment extracts the request associated with a
response:

Using Request-Level Interceptors 3-5

3 Developing Java Interceptors

String operation = (String) instanceOP.get(id());

Now that the interceptor has obtained the request associated with the response, the
interceptor can handle the data in the response appropriately.

Reading Data Out of a Data Input Stream

The following code fragment shows an example of how the InterceptorData sample
places the data from a data stream into a structure:

private addr_ parseAddress(org.omg.CORBA.DatalnputStream stream)

{
short number = stream.read_short();
String street = stream.read_string();
String town = stream.read_string();
String state = stream.read_string();
String country = stream.read_string();
addr_ addr = new addr_(number, street, town, state, country);
return addr;
}

Step 3: Build the Interceptor

Interceptors implemented in Java are packaged as JAR files. Therefore, the steps ft
building interceptors are platform-specific. For details about the specific commands
and options used to build interceptors on any particular platform, execute the makefile
that builds the interceptor sample applications provided with the WebLogic Enterprise
software, and view the results of the build in the log file that results from the build.

The command to build the sample interceptors is as follows:
Windows NT

> nmake -f makefile.nt

UNIX

> make -f makefile.mk

3-6 Using Request-Level Interceptors

Step 4: Test the Interceptor

For more information about building and running the sample interceptors provided
with the WebL ogic Enterprise software, see Chapter 5, “PersonQuery Sample
Application.”

Step 4: Test the Interceptor

Testing an interceptor requires you to perform the following tasks:
m Register the interceptor
m Boot the WebLogic Enterprise server application, usingttfi®ot command

m Run the WebLogic Enterprise client application. (Note that the WebLogic
Enterprise software provides Java interceptor examples on the server side only.
To test the Java examples provided with the WebLogic Enterprise software, you
run them with the C++ client examples.)

For information about registering interceptors, see the topic Chapter 4, “Deploying the
Interceptor.”

Notes About Implementing Java
Interceptors

Note the following about implementing interceptors in the Java programming
languages:

m Remote clients
Interceptors for remote Java clients are not supported.
m Exceptions

Exceptions from interceptors returned via theep_val parameter can only be
a derived type from theystemException ~ base class. Any other exception type
that the interceptor implementations throw must be caught by the

Using Request-Level Interceptors 3-7

3 Developing Java Interceptors

3-8

implementation and may not be propagated back viathep_val parameter.
You need to map exceptions tgstemException class or one of its
derivatives.

Threading

If interceptors are loaded by a multithreaded JavaServer, make sure that you
write the interceptor to be thread-safe, because the interceptors might be invokec
simultaneously by multiple application threads. It is your responsibility to

manage interceptor member and class variables, because there will only be at
most one instance each of these member and class variables for all registered
interceptors.

It is recommended that you avoid synchronizing interceptor implementations,
because this impacts the execution of the JavaServer.

Using Request-Level Interceptors

CHAPTER

4 Deploying the
Interceptor

There are three administrative tasks associated with managing the registration of
interceptors:

m Registering an Interceptor
m Unregistering an Interceptor
m Changing the Order in Which Interceptors are Called

This section explains these three tasks.

Registering an Interceptor

You use theepifregplugin command to register your interceptors with an ORB.
When you register an interceptor, the interceptor is added to the end of the list of
interceptors already registered with the ORB. This is important when you have
multiple interceptors registered with an ORB.

The syntax of thepifregplugin command for registering interceptors is the
following:

epifregplugin -t bea/wle -i AppRequestinterceptor \

—p <InterceptorName > —f < FileName> —e <EntryPoint> \
-u "DisplayName=< Administrative Name >" -v 1.0

Using Request-Level Interceptors 4-1

4 Deploying the Interceptor

In the preceding command line:

InterceptorName represents the name of the interceptor registered with the
ORB, and the name you choose needs to be unique among those previously
registered. You use this name for specifying the order of multiple interceptors
and for unregistering an interceptor. TR&eName , EntryPoint , and
DisplayName arguments that follow are associated with this name.

FileName represents the location of the file containing the implementation of

the interceptor. This name is operating system and language dependent. For C+
interceptors, this file is a sharable image file. For Java, the file is a java archive
file (JAR), and its name ends witfar

EntryPoint represents a string value that is the name of the entry point for the
interceptor. This name is programming language specific. In Java, this value is
the name of the class in which the interceptor is implemented. In C++, this

value is the name of the initialization function in the shareable image that creates
an instance of the interceptor.

DisplayName specifies a string value used for administrative functions and
other reporting purposes. This name is strictly an administrative name.

Note: When you register an interceptor on a machine on which WebLogic Enterprise

server processes are already running, those processes will not be subject to
interception. Only those processes that are statied an interceptor is
registered are subject to interception. If you want to make sure that all
WebLogic Enterprise server processes are subject to interception, make sure
that you register you interceptors before you boot any WebLogic Enterprise
server processes.

Unregistering an Interceptor

4-2

Use theepifunregplugin command to unregister an interceptor from an ORB. This
command has the following syntax:

epifunregplugin -t bea/wle -p <InterceptorName>

Using Request-Level Interceptors

Changing the Order in Which Interceptors are Called

The argumentinterceptorName> is the same case-insensitive name specified in the
epifregplugin command. Unregistering an interceptor takes it out of the interceptor
order.

Changing the Order in Which Interceptors
are Called

You can see the order in which interceptors are registered, and thus called, by using
the following command:

epifregedit -t bea/wle -g —k SYSTEM/interfaces/AppRequestinterceptor

The epifregedit displays the order in which interceptors are executed when the
ORB receives a request.

You can change the order in which the interceptors are executed using the following
command:

epifregedit -t bea/wle -s -k SYSTEM/interfaces/AppRequestinterceptor \
-a Selector=Order -a Order=<InterceptorNamel> <InterceptorName2>,...

Each<interceptorName> is the case-insensitive name of the interceptor that must
have been previously registered. This command replaces the order currently in the
registry. Theepifregedit command must specify every interceptor that you want to
have loaded and executed by the ORB. If an interceptor is still registered and if you do
not specify its name usingpifregedit command, the interceptor is not loaded.

Using Request-Level Interceptors 4-3

4 Deploying the Interceptor

4-4 Using Request-Level Interceptors

CHAPTER

5

PersonQuery Sample
Application

To understand and use the interceptor examples packaged with the WLE software, you
need to build and run the PersonQuery sample application. The PersonQuery sample
application itself does not contain any interceptors; however, this application is used
as the basis for the sample interceptor applications that are described in the three
chapters that follow.

This topic includes the following sections:

How the PersonQuery Sample Application Works
The OMG IDL for the PersonQuery Sample Application
Building and Running the PersonQuery Sample Application

Building and Running the Java RLI Sample Applications

Note: The WebLogic Enterprise software provides C++ versions of both the client

and server components of the PersonQuery sample application. However,
only the server component of the PersonQuery sample application is provided
in Java; there is no Java version of the PersonQuery client component. To
build and run the Java version of the PersonQuery server application, you also
need to build and run the C++ version of the PersonQuery client application.

Using Request-Level Interceptors 5-1

) PersonQuery Sample Application

How the PersonQuery Sample Application
Works

The PersonQuery sample application implements a simple database query interface
Using the PersonQuery application, a user can get information about people in the
database that match specific search criteria, such as:

m Physical characteristics, such as age, weight, hair color, eye color, or skin color
m Name, address, or other details
The PersonQuery application contains the following components:

m A client application, which issues requests that contain a variety of data types as
parameters. The client application accepts command line input from the user in a
specific form, packages the input according to the sample interface, and sends
the appropriate request.

When the client application receives the result of the query from the server, it
will report the number of items that were found. The user can then enter the
command that displays the result of the latest query, or specify a new query.

m A server application, which contains a simple, built-in database. The server
application accesses the database to service the client request.

PersonQuery Database

The PersonQuery database in the server application contains the following informatior
about each person in the database:

m Name

m Address

m U.S. Social Security number
m Sex

m Age

5-2 Using Request-Level Interceptors

How the PersonQuery Sample Application Works

m Marital status
m Hobby

m Date of birth
m Height

= Weight

m Hair color

m Skin color

m Eye color

m Other physical characteristics

Client Application Command-line Interface

The PersonQuery sample application implements a simple command-line interface in
the client component with which the user can enter database query commands and the
command to exit from the application.

The database query commands have the following syntax:
Option? command [keyword | [command [keyword 1]]...

In this command syntax:

m Option? is the PersonQuery command prompt.

m commandis one of the PersonQuery commands from Table 5-1.

m keyword is one of the keywords from Table 5-1. Note the following rules on
specifying keywords:

e Compound keywords, as typically supplied for the name and address
commands, must be separated by spaces and enclosed in double-quote
characters ("), as in the following command:

Option? name "Thomas Mann"

Using Request-Level Interceptors 5-3

) PersonQuery Sample Application

e When specifying an address, always separate street name, city name, state o
province, country name, and other parts of the address with commas, as in
the following command:

Option? address "116 Einbahnstrasse, Frankfurt am Main, BRD"

m You may specify multiple commands in a single line, as in the following
example:

Option? hair brown eyes blue

Table 5-1 PersonQuery Application Commands and Keywords

Command Keyword Description

name "firstname lastname" Queries by name. Strings with spaces
must be quoted.

address "number street, Queries by address. Strings with spaces
city..." must be quoted. Address parts are street
number, street, town, state, and country.
Entries for street, town, state, and
country must be separated by commas.

ss XXX-XX-XXXX Queries by U.S. Social Security number.
The keyword must in the form
XXX-XX-XXXX

sex sex Queries by sex. Choices amale ,

female , andcant_tell

age age Queries by age.

marriage status Queries by marital status. Choices are
married , single ,divorced ,and
not_known .

hobby hobby Queries by hobby. Choices are

who_cares , rocks , swim,tv ,
stamps , photo , andweaving .

dob mm/dd/lyyyy Queries by date. The keyword must be
in the formmm/dd/yyyy
height inches Queries by height, in inches.

5-4 Using Request-Level Interceptors

The OMG IDL for the PersonQuery Sample Application

Command Keyword

Description

weight pounds

Queries by weight, in pounds.

hair color

Queries by hair color. Choices are
white, black, red, brown, green, yellow,
blue, gray, and unknown.

skin color

Queries by skin color. Choices are
white, black, brown, yellow, green, and
red

eyes color

Queries by eye color. Choices are blue,
brown, gray, green, violet, black, and
hazel.

other feature

Queries by other physical features.
Choices are tattoo, limb (that is, a limb
is missing), scar, and none.

result

Displays the result of last query on
output

exit

Displays bill for services rendered and
closes application.

The OMG IDL for the PersonQuery Sample

Application

Listing 5-1 provides the OMG IDL code for the implemented in the PersonQuery

sample application:

Listing 5-1 OMG IDL code for the PersonQuery Application Interfaces

#pragma prefix “beasys.com”

interface PersonQuery

Using Request-Level Interceptors 5-5

) PersonQuery Sample Application

enum MONTHS {Empty,Jan, Feb, Mar, Apr, May, Jun, Jul,
Sep, Oct, Nov, Dec};
struct date_ {
MONTHS Month;
short Day;
short Year;
¥
typedef date_ Date;
struct addr_ {
short number;
string street;
string town;
string state;
string country;
h
typedef addr_ Address;

enum MARRIAGE {not_known, single, married, divorced};

enum HOBBIES {who_cares, rocks, swim, tv, stamps, photo,
weaving};

enum SEX {cant_tell, male, female};

enum COLOR {white, black, brown, yellow, red, green, blue,

gray, violet, hazel, unknown, dontcare};

enum MARKINGS {dont_care, tattoo, scar, missing_limb,
none};

struct person_ {
string name;
Address addr;
string SS;
SEX sex;
short age;
MARRIAGE mar;
HOBBIES rec;
Date dob;
short ht;
long wt;
COLOR hair;
COLOR eye;
COLOR skin;
MARKINGS other;

5

typedef person_ Person;
typedef sequence <Person> Possibles;
union reason_ switch (short)

{

case O: string name;
case 1: Address addr;
case 2: string SS;
case 3. SEX Sex;

5-6 Using Request-Level Interceptors

Aug,

The OMG IDL for the PersonQuery Sample Application

kh

case 4: short age;
case 5: MARRIAGE mar;
case 6: HOBBIES rec;
case 7: Date dob;
case 8: short ht;
case 9: long Wt;
case 10: COLOR hair;
case 11: COLOR eyes;
case 12: COLOR skin;
case 13: MARKINGS other;

typedef reason_ Reason;

exception DataOutOfRange

{

h

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

Reason why;

findPerson (

in Person who, out Possibles hits)
raises (DataOutOfRange);
findPersonByName (

in string name, out Possibles hits)
raises (DataOutOfRange);
findPersonByAddress (

in Address addr, out Possibles hits)
raises (DataOutOfRange);
findPersonBySS (

in string ss, out Possibles hits)
raises (DataOutOfRange);
findPersonByAge (

in short age, out Possibles hits)
raises (DataOutOfRange);
findPersonByMarriage (

in MARRIAGE mar, out Possibles hits)
raises (DataOutOfRange);
findPersonByHobbies (

in HOBBIES rec, out Possibles hits)
raises (DataOutOfRange);
findPersonBydob (

in Date dob, out Possibles hits)
raises (DataOutOfRange);
findPersonByHeight (

in short ht, out Possibles hits)
raises (DataOutOfRange);
findPersonByWeight (

in long wt, out Possibles hits)
raises (DataOutOfRange);
findPersonByHairColor (

in COLOR col, out Possibles hits)

Using Request-Level Interceptors 5-7

) PersonQuery Sample Application

raises (DataOutOfRange);

boolean findPersonBySkinColor (
in COLOR col, out Possibles hits)
raises (DataOutOfRange);

boolean findPersonByEyeColor (
in COLOR col, out Possibles hits)
raises (DataOutOfRange);

boolean findPersonByOther (
in MARKINGS other, out Possibles hits)
raises (DataOutOfRange);

void exit();

h

interface QueryFactory

PersonQuery createQuery (in string name);

Building and Running the PersonQuery
Sample Application

Regardless of whether you plan to experiment with the C++ or Java samples, you nee
to perform the steps described in this section. If you are planning to run the Java
samples, complete the steps described in this section, then also complete the steps
described in the section “Building and Running the Java RLI Sample Applications” on
page 5-14.

To build and run the PersonQuery sample application:

1. Copy the files for the PersonQuery sample application into a work directory.
2. Change the protection of the files for the PersonQuery sample application.
3. Set the environment variables.

4. Build the client and server sample applications.

5

Start the PersonQuery client and server applications.

5-8 Using Request-Level Interceptors

Building and Running the PersonQuery Sample Application

6. Using the client application, enter a number of commands to search the database
on the server.

7. Stop the PersonQuery sample application.

Copying the Files for the PersonQuery Sample
Application

The request-level interceptor sample application files are located in the following
directory:

$TUXDIR\samples\corba\interceptors_cxx

To create a copy of these files so that you can build them and run them, do the
following:

1. Create a working directory into which to copy the sample files.

2. Copy theinterceptors_cxx samples to the working directory created in the
previous step:

Windows NT

> xcopy /sli %TUXDIR%\samples\corbalinterceptors_cxx < workdirectory ~ >\cxx
UNIX

> cp -R $TUXDIR/samples/corba/interceptors_cxx < workdirectory >/cxx

3. Change to the working directory containing the sample files:
Windows NT

> cd <workdirectory >\Cxx

UNIX

> cd <workdirectory >/cxx

You will use the files listed and described in Table 5-2 in the PersonQuery sample
application.

Using Request-Level Interceptors 5-9

) PersonQuery Sample Application

Table 5-2 Files Included in the C++ Interceptors Sample Applications

Directory

File

Description

app_cxx
(subdirectory under
interceptors_cxx

)

Readme.txt

The file that provides the latest information about
building and running the set of interceptor sample
applications

makefile.mk

The makefile for building the entire set of interceptor
sample applications (the PersonQuery application
and all the sample interceptors) on UNIX systems

makefile.nt

The makefile for building the entire set of
interceptors sample applications (the PersonQuery
application and all the sample interceptors) on
Windows NT systems

makefile.inc

The generic makefile that uses the macros defined in
the appropriat@latform .inc file.

personquery_i.h and
personquery_i.cpp

The implementation of the PersonQuery interfaces

personqueryc.cpp

The PersonQuery client application source.file

personquerys.cpp

The PersonQuery database server source file

setenv.ksh The shell file that sets all the required environment
variables for building the entire set of interceptor
sample applications on UNIX systems

setenv.cmd The command file that sets all the required

environment variables for building the entire set of
interceptor sample applications on Windows NT
systems

5-10

Using Request-Level Interceptors

Building and Running the PersonQuery Sample Application

Directory

File

Description

data_cxx
(subdirectory under

InterceptorData.cpp

The InterceptorData C++ source file

interceptors_cxx) InterceptorData.h The InterceptorData class definition file.
makefile.inc The generic makefile that uses the macros defined in
the appropriat@latform .inc file to build the
InterceptorData interceptors.
makefile.mk The makefile that builds the InterceptorData
interceptors on UNIX systems.
makefile.nt The makefile that builds the InterceptorData
interceptors on Windows NT systems.
simple_cxx InterceptorSimp.cpp The InterceptorSimp C++ source file.
(subdirectory under - —
interceptors_cxx) InterceptorSimp.h The InterceptorSimp class definition file.
makefile.inc The generic makefile that uses the macros defined in
the appropriat@latform .inc file to build the
InterceptorSimp interceptors.
makefile.mk The makefile that builds the InterceptorSimp
interceptors on UNIX systems.
makefile.nt The makefile that builds the InterceptorSimp
interceptors on Windows NT systems.
security_cxx InterceptorSec.cpp The InterceptorSec C++ source file.
(subdirectory under —
interceptors_cxx) InterceptorSec.h The InterceptorSec class definition file.

makefile.inc The generic makefile that uses the macros defined in
the appropriatglatform .inc file to build the
InterceptorSec interceptors.

makefile.mk The makefile that builds the InterceptorSec
interceptors on UNIX systems.

makefile.nt The makefile that builds the InterceptorSec

interceptors on Windows NT systems.

Using Request-Level Interceptors 5-11

) PersonQuery Sample Application

Directory File Description
common(subdirectory app.inc The file that contains the makefile definitions for the
under application configuration.
interceptors_cxx)
platform .inc The file that contains platform-specific make

definitions for building the set of interceptor sample
applications, wher@latform represents the
system platform for the machine you are using.

common.mk The file that contains makefile definitions for UNIX
systems.
makefile.inc The generic makefile that uses the macros defined in

the appropriat@latform .inc file.

makefile.mk The makefile that builds the entire C++ set of sample
application files on UNIX systems.

makefile.nt The makefile that builds the entire C++ set of sample
application files on NT systems.

personquery.idl The OMG IDL file that defines the interfaces for the
PersonQuery sample application.

Changing the Protection on PersonQuery Application
Files

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the PersonQuery
sample application, you need to change the protection attribute of the files you copiec
into your work directory, as follows. First make sure you are in the working directory
into which you copied the sample application files.

Windows NT
prompt>attrib -r /s *.*
UNIX

prompt>/bin/ksh
ksh prompt>chmod -R u+w *.*

5-12 Using Request-Level Interceptors

Building and Running the PersonQuery Sample Application

Setting the Environment Variables

Before building and running the PersonQuery sample application, you need to set the
environment in which the application runs. To set the environment variables and other
property settings needed to build and run the PersonQuery sample application, enter
the following command:

Windows NT
> setenv.cmd
UNIX:

> $. ./setenv.ksh

Building the Client and Server Applications

The following command builds the PersonQuery application, creates a
machine-specifitBBCONFIdile, and loads th&/BBCONFIdile:

Windows NT
> nmake -f makefile.nt
UNIX

$ make -f makefile.mk

Note: For convenience, the makefile executed in this step builds the entire C++ set
of interceptor samples. This includes the InterceptorSimp, InterceptorSec, and
InterceptorData interceptors as well. Details on implementing and building
those interceptors, as well as running them with the PersonQuery sample
application, are provided in the chapters that follow.

Start the PersonQuery Client and Server Applications

Start the PersonQuery sample application by entering the following command:

prompt> tmboot -y

Using Request-Level Interceptors 5-13

) PersonQuery Sample Application

Running the PersonQuery Sample Application

A typical usage scenario of the PersonQuery sample application involves the following
steps:

1. Enter a query command for one feature, and check for number of returned items,
for example:

Option? hair brown eyes blue

Enter additional query data about the feature queried in the preceding step.
Continue queries until all the query data is narrowed down to a desirable level.
Enter theesult command to see the final query result.

Start a new query cycle.

°o g p w N

Enter theexit command to quit from the application.

Stopping the PersonQuery Sample Application

To stop the PersonQuery sample application, enter the following command:

prompt>tmshutdown -y

Building and Running the Java RLI Sample
Applications

If you want to run the Java RLI sample applications provided with the WebLogic
Enterprise software, make sure you have completed all the steps described in the
section “Building and Running the PersonQuery Sample Application” on page 5-8
before you complete any of the steps described in the procedure that follows. The Jav
RLI sample application is a server-side-only implementation, and it uses the C++
PersonQuery client application, which needs to be built so that the Java RLI sample
applications can work.

5-14 Using Request-Level Interceptors

Building and Running the Java RLI Sample Applications

To build and run the PersonQuery sample application:
. Copy the files for the Java PersonQuery samples into a work directory.
Change the protection on the files for the Java PersonQuery samples.
Set the environment variables.

1

2

3

4. Build the server sample applications.

5. Start the PersonQuery client and server applications.
6

Stop the PersonQuery sample application.

Copying the Files for the Java PersonQuery Samples

The Java request-level interceptor sample application files are located in the following
directory:

$TUXDIR\samples\corbalinterceptors_java

To create a copy of these files so that you can build them and run them, do the
following:

1. Create a working directory into which to copy the sample files.

2. Copy thenterceptors_java samples to the working directory created in the
previous step:
Windows NT
> xcopy /sli %TUXDIRY%\samples\corba\interceptors_java < workingdirectory >\java
UNIX
> cp -R $TUXDIR/samples/corba/interceptors_java < workingdirectory >/java

3. Change to the directory containing the sample files:
Windows NT

> cd <workingdirectory >\java

UNIX

> cd <workingdirectory >/java

Using Request-Level Interceptors 5-15

) PersonQuery Sample Application

You will use the files listed and described in Table 5-2.

Table 5-3 Files Included in the Java Interceptors Sample Directory

Directory File

Description

interceptors_java Readme.txt

The file that provides the latest information about
building and running the set of Java interceptor
sample applications.

makefile.mk

The makefile for building the Java interceptor
sample applications (the Java PersonQuery server
application and the sample interceptor) on UNIX
systems.

makefile.nt

The makefile for building the Java interceptor
sample applications (the Java PersonQuery server
application and the sample interceptor) on NT
systems.

setenv.ksh

The shellfile that sets all the required environment
variables for building the Java interceptor samples
on UNIX systems.

setenv.cmd

The command file that sets all the required
environment variables for building the Java
samples on Windows NT systems.

Query.idl

Contains the Object Management Group (OMG)
Interface Definition Language (IDL) file for the
PersonQuery application.

Query.xml

Contains the Server Description File for the
PersonQuery server application.

Serverlmpl.java

Contains the implementation of the Server object
for the PersonQuery server application.

QueryFactorylmpl.java

Contains the implementation of the PersonQuery
factory object.

PersonQuerylmpl.java

Contains the implementation of the PersonQuery
application interfaces.

5-16 Using Request-Level Interceptors

Building and Running the Java RLI Sample Applications

Directory File Description

DataPackage InterceptorData.java Contains the implementation of the Java
(subdirectory under InterceptorData sample interceptor.
interceptors_java)

SimplePackage InterceptorSimple. Contains the implementation of the Java
(subdirectory under java InterceptorSimple sample interceptor.
interceptors_java)

SecurityPackage InterceptorSecurity. Contains the implementation of the Java
(subdirectory under java InterceptorSecurity sample interceptor.
interceptors_java)

Changing the Protection on PersonQuery Application
Files

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the Java
PersonQuery sample application, you need to change the protection attribute of the
files you copied into your work directory, as follows. First make sure you are in the
working directory containing the sample files you copied.

Windows NT
prompt>attrib -r /s *.*
UNIX

prompt>/bin/ksh
ksh prompt>chmod -R u+w **

Setting the Environment Variables

Before building and running the Java PersonQuery server application, you need to set
the environment in which the application runs. To set the environment variables and
other property settings needed to build and run the PersonQuery server application,
enter the following command:

Using Request-Level Interceptors 5-17

) PersonQuery Sample Application

Windows NT
> setenv.cmd
UNIX

> $. ./setenv.ksh

Building the Server Application

The following command builds the Java PersonQuery server application, creates a
machine-specifitBBCONFIdile, and loads th&)JBBCONFIdile:

Windows NT
> nmake -f makefile.nt
UNIX

$ make -f makefile.mk

Note: For convenience, the makefile executed in this step builds the set of Java RLI
samples. This includes the Java InterceptorSimp, InterceptorSec, and
InterceptorData interceptors as well as the Java PersonQuery server
application. Details on implementing and building those interceptors, as well
as running them with the PersonQuery client application, are provided in the
chapters that follow.

Start the PersonQuery Client and Server Applications

Start the PersonQuery sample application by entering the following command:

prompt> tmboot -y

Note: The Java PersonQuery server application uses the C++ PersonQuery client
application.

5-18 Using Request-Level Interceptors

Building and Running the Java RLI Sample Applications

Running the PersonQuery Sample Application

Atypical usage scenario of the PersonQuery sample application involves the following
steps:

1. Using the C++ PersonQuery client application, enter a query command for one
feature, and check for number of returned items, for example:

Option? hair brown eyes blue

Enter additional query data about the feature queried in the preceding step.
Continue queries until all the query data is narrowed down to a desirable level.
Enter theesult command to see the final query result.

Start a new query cycle.

°o g o w N

Enter theexit command to quit from the application.

Stopping the PersonQuery Sample Application

To stop the PersonQuery sample application, enter the following command:

prompt>tmshutdown -y

Using Request-Level Interceptors 5-19

) PersonQuery Sample Application

5-20 Using Request-Level Interceptors

CHAPTER

O InterceptorSimp
Sample Interceptors

This topic includes the following sections:

m How the PersonQuery Sample Interceptors Work

m Registering and Running the PersonQuery Interceptors
m Examining the Output of the Interceptors

m Unregistering the Interceptors

Before trying out the steps described in this chapter, make sure you have completed all
the steps described in Chapter 5, “PersonQuery Sample Application.”

Note: The WebLogic Enterprise software provides C++ versions of both the client
and target InterceptorSimp sample interceptors. However, only the target-side
InterceptorSimp sample interceptor is provided in Java; there is no Java
version of the client-side InterceptorSimp sample interceptor.

How the PersonQuery Sample Interceptors
Work

The InterceptorSimp sample interceptor shows how the operation in a request
passed to an interceptor can be accessed ReyaestContext object. When
InterceptorSimp intercepts a request, the interceptor does the following:

Using Request-Level Interceptors 6-1

6

InterceptorSimp Sample Interceptors

m Writes the operation name out to a data file, but does not interpret or modify the
parameters in the request

m Returns appropriate status from the interceptor methods

Assuming a successful call to the interceptor, the client invocation is passed onto the
target object and serviced in the usual way. ThudrteeceptorSimp interceptor
samples show the following:

m An implementation of a basic monitoring service, which simply tracks each
operation on the target object that has been invoked.

m How an interceptor can identify the operation contained in the request by
accessing the parameters passed by the ORB to the interceptor methods

ThelnterceptorSimp ~ sample interceptor also shows two different interceptors being
defined and registered, but implemented in a single source file. In this example, the
client and target interceptors are registered separately, with the client interceptor
initialized first.

Registering and Running the PersonQuery
Interceptors

6-2

When you run the makefile that builds the PersonQuery sample application in
Chapter 5, “PersonQuery Sample Application,” the entire set of sample interceptors
are builtas well, including the InterceptorSimp interceptor. This section describes how
to register the C++ and Java versions of the InterceptorSimp interceptor so that it
works with PersonQuery application at run time.

This section is presented in two parts: one for C++, and one for Java.

Using Request-Level Interceptors

Registering and Running the PersonQuery Interceptors

Registering and Running the C++ Interceptors

To register and run the C++ InterceptorSimp client and server interceptors:

1. Change directory to the InterceptorSimp sample directory, whentlirectory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\simple_cxx

UNIX

$ cd <workdirectory >lcxx/simple_cxx
2. Register the interceptor:

Windows NT

> nmake -f makefile.nt config

UNIX

$ make -f makefile.mk config
3. Boot the server and run the client:

Windows NT

> cd <workdirectory >\cxx\app_Ccxx
> tmboot -y
> PersonQueryClient

UNIX

> cd <workdirectory — >/cxx/app_cxx
> tmboot -y

> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tmshutdown -y

Using Request-Level Interceptors 6-3

6 InterceptorSimp Sample Interceptors

Registering and Running the Java Interceptors

To register the Java InterceptorSimp server interceptor:

1. Change directory to the one into which you copied the Java interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\java

UNIX

$ cd <workdirectory >ljava
2. Register the interceptor:

Windows NT

> \registerAll.cmd

UNIX

$ chmod u+x registerAll.ksh
$.IregisterAll.ksh

3. Boot the server and run the C++ client:
Windows NT

> tmboot -y
> cd <workdirectory >\cxx\app_cxx
> PersonQueryClient

UNIX

> tmboot -y

> cd <workdirectory — >/cxx/app_cxx
> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tmshutdown -y

6-4 Using Request-Level Interceptors

Examining the Output of the Interceptors

Examining the Output of the Interceptors

Because of the way in which the sample interceptors were implemented, the location
and format of the interceptor output is different between the C++ and Java interceptors.

For C++

The output from the C++ simple client interceptor is in files named with the following
syntax:

InterceptorSimpClient XXxx .out

In the preceding syntax linexxx represents the process ID of the executable within
which the interceptor ran. For example, there are three
InterceptorSimpClient xxx .out files; one each for the following:

m The FactoryFinder, TMFFNAME
m The PersonQueryServer
m The PersonQueryClient

The content of each file varies according to how the ORB interacted with the
executable. For example, target interceptors run on servers and client interceptors run
on clients, so the InterceptorSimpClient log files typically have very little output from
the Simple target interceptor, but it has more output from the client interceptor.

For Java

The Java InterceptorSimp sample interceptor, which is implemented on the target side
only, sends its output to theLOdile, as in the following example:

134040.ICEAXE!JavaServer.221: main: InterceptorSimple0,
InterceptorSimple.target_invoke

134040.ICEAXE!JavaServer.221: main: Request Id = 6
134040.ICEAXE!JavaServer.221: main: Response flags = RESPONSE EXPECTED
134040.ICEAXE!JavaServer.221: main: Interface Id =

IDL:beasys.com/PersonQuery:1.0

134040.ICEAXE!JavaServer.221: main: Operation = findPersonBySS
134040.ICEAXE!JavaServer.221: main: KeyAddr address disposition, size = 84
134040.ICEAXE!JavaServer.221: main: KeyAddr address disposition object key =
01424541080101010c000000706572736f6e517565727900020000001f00000049444c3a6265
617379732e636f6d2f506572736f6e51756572793a312e3000000c000000506572736f6e5175

Using Request-Level Interceptors 6-5

6 InterceptorSimp Sample Interceptors

6572790000000000

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorSimp
sample interceptors, you can unregister those interceptors using the following steps:

1. Shutdown all running WebLogic Enterprise applications by entering the following
command:

> tmshutdown -y

2. Unregister the interceptors as described in the language-specific sections that
follow.

Unregistering the C++ Interceptors

To unregister the C++ InterceptorSimp client and server interceptors:

1. Change directory to the InterceptorSimp sample directory, whertelirectory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\simple_cxx

UNIX

$ cd < workdirectory >/cxx/simple_cxx
2. Unregister the interceptors:

Windows NT

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.mk unconfig

6-6 Using Request-Level Interceptors

Unregistering the Interceptors

Unregistering the Java Interceptors

To unregister the Java InterceptorSimp server interceptor:

1. Change directory to the one into which you copied the Java interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\java

UNIX

$ cd <workdirectory >ljava
2. Unregister the interceptor:

Windows NT

> \unregisterAll.cmd

UNIX

$ chmod u+x unregisterAll.ksh
$.JunregisterAll.ksh

Using Request-Level Interceptors 6-7

6 InterceptorSimp Sample Interceptors

6-8 Using Request-Level Interceptors

CHAPTER

[InterceptorSec Sample
Interceptors

This topic includes the following sections:

m How the PersonQuery Sample Interceptors Work

m Registering and Running the PersonQuery Interceptors
m Examining the Interceptor Output

m Unregistering the Interceptors

Before trying out the steps described in this chapter, make sure you have completed all
the steps described in Chapter 5, “PersonQuery Sample Application.”

Note: The WebLogic Enterprise software provides C++ versions of both the client
and target InterceptorSec sample interceptors. However, only the target-side
InterceptorSec sample interceptor is provided in Java; there is no Java version
of the client-side InterceptorSec sample interceptor.

How the PersonQuery Sample Interceptors
Work

The InterceptorSec sample interceptors show a simple client/server interceptor pair
that implement a basic security model. Tihe@rceptorSec client-side interceptor
simply logs each client request that is handled by the ORB.IitheeptorSec

Using Request-Level Interceptors 7-1

v

InterceptorSec Sample Interceptors

target-side interceptor implements a simple security mechanism that checks to see
whether the user of the client application is authorized to perform the operation in the
request.

The C++ InterceptorSec sample interceptors show the client and target interceptor pa
initialized through a single initialization function and implemented in a single library.
Since a single initialization function is called, the interceptor registration command
registers one initialization function and one implementation library.

(The Java InterceptorSec sample interceptor is implemented on the target-side only.

How the InterceptorSec Target-side Interceptor Works

7-2

When the target-side ORB receives a request, the ORB calls the InterceptorSec
target-side interceptor and passesRlequestContext andDatalnputStream
objects from the client request.

The target-side interceptor then does the following to authorize the user of the client
application for the operation contained in the request:

1. Checks to see if the request is an invocation on the PersonQuery interface. If it is
not, the interceptor returnsidVOKE_NO_EXCEPTION

2. Ifthe operation contained in the request is an invocation on the PersonQuery
interface, the interceptor:

a. Obtains a reference to the SecurityCurrent object, which the interceptor then
narrows.

b. Invokes the SecurityContext object, requesting the attribute list for the user of
the client application.

c. Walks through the attribute list to obtain two attributes:

PrimaryGroupld Identifies the client name of the user of the client application. In this
interceptor, the client name must contain either the charaateia
NULL string.

Accessld Identifies the user of the client application. In this interceptor, the
user name must have the charac®rB, or N (either upper- or
lowercase).

Using Request-Level Interceptors

How the PersonQuery Sample Interceptors Work

d. Matches the user against theémaryGroupld ~ and theAccessid . If the user
successfully matches the criteria for these two attributes, the interceptor returns
INVOKE_NO_EXCEPTION

e. If no match is found, the interceptor retuRBPLY_EXCEPTIONwhich
prevents the request from being sent to the target object. Instead, the ORB
returns an exception to the client application.

The sections that immediately follow discuss interceptor security topics and show code
fragments of interest from both the C++ and Java versions of the InterceptorSec
target-side interceptor.

Using the SecurityCurrent Object

Interceptors obtain the SecurityCurrent object from the ORB, not from the Bootstrap
object. The SecurityCurrent object available from the ORB has the API that
interceptors need for obtaining information about the client.

To obtain the SecurityCurrent object, your interceptors can invoke the

resolve_initial_references(“SecurityCurrent”) operation onthe ORB. The
interceptor can then narrow the SecurityCurrent reference to a
SecurityCurrentLevell current.

Obtaining the SecurityCurrent Object

The current JavaServer ORB provides equivalent functionality to the C++ ORB with
regards to a proprietary SecurityCurrent object in the server process. The
SecurityCurrent object is available only through the ORB, and this object’s primary
functionality is to provide server applications access to attributes related to the client
invocation.

The ORB’sresolve_initial_references(*SecurityCurrent”) method

provides the interceptor a reference to a SecurityCurrent object from which the
interceptor is provided with Level 1 Security functionality. The interceptor can obtain
the attributes of the client invocation via thet_attributes method on the
SecurityCurrent object, which returns an attribute list to the interceptor. The attribute

Using Request-Level Interceptors 7-3

7 In terceptorSec Sample Interceptors

list contains the attributes that pertain to the user of the client application that
performed the invocation being intercepted. The behavior of any and all methods from
the CORBA security service is still the same, with the exceptions noted above.

The following code fragments show obtaining the SecurityCurrent object.

C++
try
{
sec_current = m_orb->resolve_initial_references("SecurityCurrent");
catch (...)
{
*m_outfile <<
"ERROR: ORB::resolve_initial_references threw exception"
<< endl << endl << flush;
excep_val = new CORBA:UNKNOWNY();
return Interceptors::REPLY_EXCEPTION;
}
if (CORBA::is_nil(sec_current.in()))
{
*m_outfile << "ERROR: No SecurityCurrent present”
<< endl << endl << flush;
excep_val = new CORBA:NO_PERMISSION();
return Interceptors::REPLY_EXCEPTION;
}
m_security_current = SecurityLevell::Current::_narrow(sec_current.in());
if (!m_security_current)
{
*m_outfile << "ERROR: Couldn't narrow security
current to SecurityLevell::Current"
<< endl << endl << flush;
excep_val = new CORBA:NO_PERMISSION();
return Interceptors::REPLY_EXCEPTION;
}
Java
try
{

org.omg.CORBA.Object secCurObjRef =
theOrb.resolve_initial_references("SecurityCurrent");
if(secCurObjRef == null)

TP.userlog("ERROR: No SecurityCurrent present");

excep_val.value = new NO_PERMISSION();
return InvokeReturnStatus.REPLY_EXCEPTION;

7-4 Using Request-Level Interceptors

How the PersonQuery Sample Interceptors Work

}

securityCurrent =
org.omg.SecurityLevell.CurrentHelper.narrow(secCurObjRef);

catch(Exception ex)

TP.userlog("ERROR: ORB.resolve_initial_references
threw exception");

excep_val.value = new UNKNOWN();

return InvokeReturnStatus.REPLY_EXCEPTION;

Creating the List of User Attributes

The code fragments in this section show how the InterceptorSec target-side interceptor
creates a list of user attributes and then walks through this list to determine if the user
matches the authorization criteria.

C++

In the C++ version of the InterceptorSec sample, creating the list of attributes, then
walking through them are done in separate steps. Note that if you specify a client
attribute list length of zero (0) to be returned, the SecurityCurrent object returns all the
attributes for the client.

/Il Get the attributes that correspond to the information that we need to
/I do an authorization check:

1 PrimaryGroupld (clientname of the logged in client)
1 Accessld (username of the logged in client)
Security::AttributeList_var client_attr = 0;

try

{

client_attr = m_security_current->get_attributes(*m_attributes_to_get);
The following fragment shows creating the list.

Security::Attribute TypeList_var attr = new Security::AttributeTypeList(2);
if (lattr.ptr())
{
cout <<
"ERROR: can't allocation security list: Out of memory"
<< endl << endl << flush;
return;

attr.inout().length(2);

Using Request-Level Interceptors 7-5

v

InterceptorSec Sample Interceptors

if

attr[(CORBA::ULong)0].attribute_family.family_definer = 0;
attr[(CORBA::ULong)0].attribute_family.family = 1;
attr[(CORBA::ULong)0].attribute_type = Security::PrimaryGroupld;
attr[(CORBA::ULong)1].attribute_family.family_definer = 0;
attr[(CORBA::ULong)1].attribute_family.family = 1;
attr[(CORBA::ULong)1].attribute_type = Security::Accessld;
m_attributes_to_get = attr._retn();

return;

The following fragment shows walking through the attribute list to check whether the
user matches the authorization criteria:

(client_attr[i].attribute_type.attribute_type == Security::PrimaryGroupld)

1
/I This attribute is the client name.
/I Compare to some client name value.
/I For this example, we're going to accept anything with
/I an 't in it, or a NULL string. You will want to compare
/I the client name to some set of values you have authorized.
1
if ((strlen(value_buffer) == 0) ||
(strchr(value_buffer, 'r') = 0))

{

*m_outfile << " INFO: Valid client name found: "

<< value_buffer << endl;

clienthame_ok = 1;
}
else

*m_outfile << " ERROR: Invalid client name found: "

<< value buffer << endl;

}

else if (client_attr[i].attribute_type.attribute_type == Security::Accessld)

7-6

/I This attribute is the user name. We're arbitrarily

/I choosing to authorize anyone who has an 'r', 'n', or 'p'

/I in their user id. You will likely want to choose

/I some other criteria for authorization.

1

if ((strchr(value_buffer, 'r') 1= 0) ||
(strchr(value_buffer, 'R") = 0) ||
(strchr(value_buffer, 'P") = 0) ||
(strchr(value_buffer, 'p) = 0) ||
(strchr(value_buffer, 'N') = 0) ||
(strchr(value_buffer, 'n") 1= 0))

"

*m_outfile << INFO: Valid username found: "

Using Request-Level Interceptors

How the PersonQuery Sample Interceptors Work

<< value_buffer << endl;
username_ok = 1;

}

Java

In Java version of this sample, creating the attribute list and then verifying its contents
is done in a single step, as in the following code fragment. Note that if you specify a
null argument in the invocation to thyet_attributes method, the SecurityCurrent
returns all the attributes for the client.

org.omg.Security.SecAttribute clientAttributes[];

try
{

}

clientAttributes = securityCurrent.get_attributes(null);

if((élientAttributes == null) || (clientAttributes.length == 0))

{

}

/I This condition short-circuits the invocation, because it
/I returns an exception on the reply.
TP.userlog("ERROR: Security attributes not retrieved");
excep_val.value = new NO_PERMISSION();

return InvokeReturnStatus.REPLY_EXCEPTION;

boolean groupFlag = false;

for(int i

0; i < clientAttributes.length; i++)

/**

* The verification depends upon what type of attribute this

* element contains.

*/

if(clientAttributes]i].attribute_type.attribute_type ==
org.omg.Security.PrimaryGroupld.value)

{

* This attribute is the client name.

* Compare to some client name value.

* For this example, we're going to accept anything with

*an 't in it, or a NULL string. You will want to compare

* the client name to some set of values you have authorized.
*

for(int j = 0; j < clientAttributes[i].value.length; j++)

Using Request-Level Interceptors 7-7

7 In terceptorSec Sample Interceptors

char ch = (char) clientAttributes[i].valuelj];
TP.userlog("Client name value[" + j + "] = " + ch);
if((ch ==) || (ch == "R’ ||

(ch =="p) || (ch == "PY)

groupFlag = true;
TP.userlog("INFO: Valid Client Name Found");
}

}
if(\groupFlag)
TP.userlog("INFO: No Valid Client Name Found");

else if(clientAttributes]i].attribute_type.attribute_type ==
org.omg.Security.Accessld.value)
{
/**
* This attribute is the user name. We're arbitrarily
* choosing to authorize anyone who has an 'r', 'n', or 'p'
* in their user id. You will likely want to choose
* some other criteria for authorization.
*/
for(int j = 0; j < clientAttributes[i].value.length; j++)

char ch = (char) clientAttributesfi].value[j];
TP.userlog("Access Id value[* + j + "] = " + ch);
if((ch ==) || (ch == "R) ||

(ch =="p) || (ch == "P) ||

(ch == m) || (ch == N))

userFlag = true;
TP.userlog("INFO: Valid User Id Found");
}

}
if(luserFlag)
TP.userlog("INFO: No Valid User Id Found");

7-8 Using Request-Level Interceptors

Registering and Running the PersonQuery Interceptors

Registering and Running the PersonQuery
Interceptors

When you run the makefile that builds the PersonQuery sample application in
Chapter 5, “PersonQuery Sample Application,” the entire set of sample interceptors
are built as well, including the InterceptorSec interceptor. This section describes how
to register the InterceptorSec interceptor so that it works with PersonQuery application
at run time.

This section is presented in two parts: one for C++, and one for Java.

Registering and Running the C++ Interceptors

To register and run the C++ InterceptorSec client and server interceptors:

1. Change directory to the InterceptorSec sample directory, whetelirectory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\security_cxx

UNIX

$ cd <workdirectory >lcxx/security_cxx
2. Register the interceptor:

Windows NT

> nmake -f makefile.nt config
UNIX

$ make -f makefile.mk config

Using Request-Level Interceptors 7-9

7 In terceptorSec Sample Interceptors

3. Boot the server and run the client:
Windows NT

> cd <workdirectory >\cxx\app_cxx
> tmboot -y
> PersonQueryClient

UNIX

> cd <workdirectory — >/cxx/app_cxx
> tmboot -y

> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tmshutdown -y

Registering and Running the Java Interceptors

To register the Java InterceptorSec server interceptor:

1. Change directory to the one into which you copied the Java interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\java

UNIX

$ cd <workdirectory >ljava
2. Register the interceptor:

Windows NT

> \registerAll.cmd

UNIX

$ chmod u+x registerAll.ksh
$.IregisterAll.ksh

7-10 Using Request-Level Interceptors

Examining the Interceptor Output

3. Boot the server and run the C++ client:

Windows NT

> tmboot -y
> cd <workdirectory >\cxx\app_Ccxx
> PersonQueryClient

UNIX

> tmboot -y
> cd <workdirectory >/cxx/app_cxx
> PersonQueryClient

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tmshutdown -y

Examining the Interceptor Output

Because of the way in which the sample interceptors were implemented, the location
and format of the interceptor output is different between the C++ and Java interceptors.

For C++

The C++ InterceptorSec client and target interceptors log their output to the files
named, respectivelypterceptorSecClient xxx .out and

InterceptorSecTarget xxx .out . These files contain debugging output from the
interceptors that is automatically loaded and executed by the ORB for the PersonQuery
application.

Using Request-Level Interceptors 7-11

7 In terceptorSec Sample Interceptors

For Java

The Java InterceptorSec target-side interceptor sends its outputodi@file, as in
the following example:

134040.ICEAXE!JavaServer.221: main: InterceptorSecurityO,
InterceptorSecurity.target_invoke

134040.ICEAXE! JavaServer.221: main: Group Id value[0]
134040.ICEAXE!JavaServer.221: main: Group Id value[1]
134040.ICEAXE!JavaServer.221: main: Group Id value[2]
134040.ICEAXE! JavaServer.221: main: Group Id value[3]
134040.ICEAXE JavaServer.221: main: INFO: Valid Group Id Found
134040.ICEAXE!JavaServer.221: main: Group Id value[4]
134040.ICEAXE! JavaServer.221: main: Group Id value[5]
134040.ICEAXE! JavaServer.221: main: Group Id value[6]
134040.ICEAXE!JavaServer.221: main: Group Id value[7]
134040.ICEAXE JavaServer.221: main: Group Id value[8]
134040.ICEAXE! JavaServer.221: main: Group Id value[9]
134040.ICEAXE JavaServer.221: main: Group Id value[10]
134040.ICEAXE JavaServer.221: main: Access Id value[0O]
134040.ICEAXE JavaServer.221: main: Access Id value[1]
134040.ICEAXE JavaServer.221: main: Access Id value[2]
134040.ICEAXE JavaServer.221: main: Access Id value[3]
134040.ICEAXE!JavaServer.221: main: INFO: Valid User Id Found
134040.ICEAXE JavaServer.221: main: Access Id value[4]
134040.ICEAXE JavaServer.221: main: Access Id value[5]
134040.ICEAXE JavaServer.221: main: Access Id value[6]
134040.ICEAXE JavaServer.221: main: Access Id value[7]
134040.ICEAXE JavaServer.221: main: Access Id value[8]
134040.ICEAXE JavaServer.221: main: Access Id value[9]
134040.ICEAXE! JavaServer.221: main: INFO: Valid User Id
134040.ICEAXE JavaServer.221: main: Access |d value[10]

|
|
@)
p

>0 T T 0

Jduvo——~

c
I
i
e
n

Fou d

7-12 Using Request-Level Interceptors

Unregistering the Interceptors

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorSec
sample interceptors, you can unregister those interceptors using the following steps:

1. Shutdown all running WebLogic Enterprise applications by entering the following
command:

> tmshutdown -y

2. Unregister the interceptors as described in the language-specific sections that
follow.

Unregistering the C++ Interceptors

To unregister the C++ InterceptorSec client and server interceptors:

1. Change directory to the InterceptorSec sample directory, whekeirectory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\security_cxx

UNIX

$ cd < workdirectory >lcxx/security_cxx
2. Unregister the interceptors:

Windows NT

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.mk unconfig

Using Request-Level Interceptors 7-13

7 In terceptorSec Sample Interceptors

Unregistering the Java Interceptors

To unregister the Java InterceptorSec server interceptor:

1. Change directory to the one into which you copied the Java interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\java

UNIX

$ cd <workdirectory >ljava
2. Unregister the interceptor:

Windows NT

> \unregisterAll.cmd

UNIX

$ chmod u+x unregisterAll.ksh
$.JunregisterAll.ksh

7-14 Using Request-Level Interceptors

CHAPTER

InterceptorData
Sample Interceptors

This chapter describes the following two sample interceptors that are designed to be
used with the PersonQuery sample application:

m InterceptorDataClient Interceptor, which is installed on the machine hosting the
PersonQuery client component.

m InterceptorDataTarget Interceptor, which is installed on the machine hosting the
PersonQuery server component.

This chapter explains how each interceptor works, then shows how to build and run
them with the PersonQuery sample application.

Note: The WebLogic Enterprise software provides C++ versions of both the client
and target InterceptorData sample interceptors. However, only the target-side
InterceptorData sample interceptor is provided in Java; there is no Java version
of the client-side InterceptorData sample interceptor.

InterceptorDataClient Interceptor

The InterceptorDataClient interceptor intercepts and logs each client application
request and reply parameters. This interceptor also allows certain operations on the
PersonQuery server application to be invoked by users of the client application who
meet specific criteria. The InterceptorDataClient interceptor implements the
InterceptorDataClient interface, which inherits from the

ClientRequestinterceptor class.

Using Request-Level Interceptors 8-1

8 InterceptorData Sample Interceptors

The InterceptorDataClient class implements the methods as follows:
m id()
This method returns the stringterceptorDataClient
m shutdown()
This method removes the request from tlagker object.
m exception_occurred()

When invoked by the ORB, this method removes the request frométier
object.

m client_invoke()

This method determines if the interface and operation are “of interest.” If the
client request is “of interest,” this method parses the request parameters and
outputs the parameters to the log file. If the client request is not “of interest,”
this method simply returns.

m client_response()

This method determines if the interface and operation in the request are “of
interest.” If the interface and operation are “of interest,” this method walks
through the CORBMatalnputStream parameter to obtain the reply
parameters and write them to the log file. If the interface and operation in the
request are not “of interest,” this method simply returns.

In addition, the data interceptor provides th&erceptorDataClientinit method
to initialize the client interceptor class.

InterceptorDataTarget Interceptor

The InterceptorDataTarget interceptor intercepts and logs request and reply data
parameters. This interceptor also removes sensitive data from specific reply
parameters by masking the data witlcharacters. The InterceptorDataTarget
interceptor implements theterceptorDataTarget interface, which inherits from
the TargetRequestinterceptor class.

8-2 Using Request-Level Interceptors

Implementing the InterceptorData Interceptors

TheInterceptorDataTarget class implements the methods as follows:
m id()
This method returns the stringterceptorDataTarget
m shutdown()
This method simply returns.
m exception_occurred()
This method removes the request from tiaeker object.
m target_invoke()

This method determines if the interface and operation are “of interest.” If so, this
method parses the request parameters and outputs that data to the log file. If the
interface and operation in the request are not “of interest,” this method simply
returns. If the operation in the requestigt , this method returns the status
valueINVOKE_NO_EXCEPTION

m target _response()

This method determines if the interface and operation are “of interest.” If so, this
method walks through theatalnputStream parameter to obtain the response
parameters and output to the log file. Sensitive data items are substituted in the
log. For example, a person’s social security number will not be output to the log.
If the interface and operation in the request are not “of interest,” this method
simply returns.

In addition, the data interceptor provides therceptorDataTargetlnit method
to initialize the target interceptor class.

Implementing the InterceptorData
Interceptors

Information about the code used to implement the InterceptorData interceptors is
provided in Chapter 2, “Developing C++ Interceptors,” and Chapter 3, “Developing
Java Interceptors.” Refer to those chapters for information about how to do the
following:

Using Request-Level Interceptors 8-3

InterceptorData Sample Interceptors

If you are implementing in C++... If you are implementing in Java...

“Starting the Implementation File” on “Starting the Implementation File” on page 3-3
page 2-3

“Initializing the Interceptor at Run “Implementing the Interceptor’s Constructor” on
Time” on page 2-4 page 3-3

“Obtaining the Interface Name from a “Obtaining the Interface Name from a Request” on
Request” on page 2-5 page 3-4

“Identifying Operations in the Request” “Identifying Operations in the Request” on

on page 2-5 page 3-5

“Implementing the Interceptor’s “Implementing the Interceptor’s Response

Response Operation” on page 2-6 Operation” on page 3-5

“Reading Parameters Out of a Data “Reading Data Out of a Data Input Stream” on
Input Stream” on page 2-7 page 3-6

Registering and Running the
InterceptorData Interceptors

8-4

When you run the makefile that builds the PersonQuery sample application in
Chapter 5, “PersonQuery Sample Application,” the entire set of sample interceptors
are built as well, including the InterceptorData interceptors. This section describes
how to register the InterceptorData interceptor so that it works with PersonQuery
application at run time.

This section is presented in two parts: one for C++, and one for Java.

Using Request-Level Interceptors

Registering and Running the InterceptorData Interceptors

Registering and Running the C++ Interceptors

To register and run the C++ InterceptorData client and server interceptors:

1.

Change directory to the InterceptorData sample directory, whate@lirectory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\data_cxx
UNIX

$ cd < workdirectory >/cxx/data_cxx
Register the interceptor:

Windows NT

> nmake -f makefile.nt config

UNIX

$ make -f makefile.mk config

Boot the server and run the client:
Windows NT

> cd <workdirectory >\cxx\app_cxx
> tmboot -y
> PersonQueryClient

UNIX

> cd <workdirectory — >/cxx/app_cxx
> tmboot -y

> PersonQueryClient

Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample
Application.”

Stop the PersonQuery application:

> tmshutdown -y

Using Request-Level Interceptors 8-5

8

InterceptorData Sample Interceptors

Registering and Running the Java Interceptors

8-6

To register and run the Java InterceptorData server interceptor:

1.

Change directory to the one into which you copied the Java interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\java
UNIX

$ cd <workdirectory >ljava
Register the interceptor:
Windows NT

> \registerAll.cmd

UNIX

$ chmod u+x registerAll.ksh
$.IregisterAll.ksh

Boot the server and run the C++ client:
Windows NT

> tmboot -y
> cd <workdirectory >\cxx\app_cxx
> PersonQueryClient

UNIX

> tmboot -y
> cd <workdirectory >/cxx/app_cxx
> PersonQueryClient

Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 5, “PersonQuery Sample

Application.”
Stop the PersonQuery application:

> tmshutdown -y

Using Request-Level Interceptors

Examining the Interceptor Output

Examining the Interceptor Output

Because of the way in which the sample interceptors were implemented, the location
and format of the interceptor output is different between the C++ and Java interceptors.

For C++

The C++ InterceptorData client and target interceptors log each invocation. For each
PersonQuery application session, the client interceptor creates a log file named
InterceptorDataClient xxx .out , and the target interceptor creates a log file
namednterceptorDataTarget xxx .out . This section shows sample log file data

for each interceptor.

Sample Client Interceptor Log Output

InterceptorDataClientlnit called
ClientinterceptorData::id called

ClientinterceptorData::client_invoke called
ClientinterceptorData::client_response called

Request Id:

1

unable to find request for this reply (must not be one we care about)

ClientinterceptorData::client_invoke called

Request Id:
Interface:
Operation:
Parameters:

2
IDL:beasys.com/PersonQuery:1.0
findPerson
name: ALISTER LANCASHIRE
address: 3 PENNY LANE
LONDON GB UK
ss: 999-99-9999
sex: can't tell
age(yrs.): 85
marital status: single
hobby: stamp collecting

date-of-birth: 11/25/1913
height(in.): 32
weight(Ibs.): 57

hair color: unknown
eye color: blue
skin color: white

other markings: missing limb

Using Request-Level Interceptors 8-7

8 InterceptorData Sample Interceptors

Sample Target Interceptor Log Output

InterceptorDataTargetlnit called
TargetinterceptorData::id called

TargetinterceptorData::target_response called

Request Id: 2
ReplyStatus: GIOP::NO_EXCEPTION
Interface: IDL:beasys.com/PersonQuery:1.0
Operation: findPerson
Method Result: TRUE
Parameters:
Maximum: 8
Length: 8
Item O
name: ALISTER LANCASHIRE
address: 3 PENNY LANE
LONDON GB UK
Ss: NO PRIVILEDGE
sex: NO PRIVILEDGE
age (years): NO PRIVILEDGE
marital status: NO PRIVILEDGE
hobby: stamp collecting
date-of-birth: NO PRIVILEDGE
height (in.): 32
weight (Ibs.): 57
hair color: unknown
eye color: blue
skin color: NO PRIVILEDGE
other markings: missing limb
For Java

The Java InterceptorData target interceptor logs each invocation. For each

PersonQuery application session, the interceptor sends its outputibdiehle, as in

the following example:
Sample Target Interceptor Log Output

134040.ICEAXE! JavaServer.221: main: Process operation findPersonBySS
134040.ICEAXE!JavaServer.221: main: Operation succeeded
134040.ICEAXE!JavaServer.221: main: arg_stream, Possibles count = 2
134040.ICEAXE!JavaServer.221: main: Person [0] =

Name: FRED MURTZ

Address: 436 AMHERST ST. NASHUA, NH USA

SS#: 999-99-9999

Sex: male

8-8 Using Request-Level Interceptors

Unregistering the Interceptors

Age: 75

Status: married

Hobby: tv

Date of birth: Jan-1-1924

Height: 62

Weight: 115

Hair Color: black

Eye Color: hazel

Skin Color: black

Other Markings: scar
134040.ICEAXE!JavaServer.221: main: Person [1] =
Name: ALISTER LANCASHIRE

Address: 3 PENNY LANE LONDON, GB UK
SS#: 999-99-9999

Sex: cant_tell

Age: 85

Status: single

Hobby: stamps

Date of birth: Nov-25-1913

Height: 32

Weight: 57

Hair Color: unknown

Eye Color: blue

Skin Color: white

Other Markings: missing_limb
134040.ICEAXE!JavaServer.221: main: Processing operation findPersonBySS complete

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorData
sample interceptors, you can unregister those interceptors using the following steps:

1. Shutdown all running WebLogic Enterprise applications by entering the following
command:

> tmshutdown -y

2. Unregister the interceptors as described in the language-specific sections that
follow.

Using Request-Level Interceptors 8-9

8

InterceptorData Sample Interceptors

Unregistering the C++ Interceptors

To unregister the C++ InterceptorData client and server interceptors:

1. Change directory to the InterceptorData sample directory, whatelirectory

represents the name of the directory into which you copied the interceptor sample
applications in Chapter 5, “PersonQuery Sample Application:”

Windows NT

> cd <workdirectory >\cxx\data_cxx
UNIX

$ cd < workdirectory >/cxx/data_cxx
Unregister the interceptors:
Windows NT

> nmake -f makefile.nt unconfig
UNIX

$ make -f makefile.mk unconfig

Unregistering the Java Interceptors

8-10

To unregister the Java InterceptorData server interceptor:

1. Change directory to the one into which you copied the Java interceptor sample

applications in Chapter 5, “PersonQuery Sample Application:”
Windows NT

> cd <workdirectory >\java

UNIX

$ cd <workdirectory >ljava

Using Request-Level Interceptors

Unregistering the Interceptors

2. Unregister the interceptor:
Windows NT
> \unregisterAll.cmd
UNIX

$ chmod u+x unregisterAll.ksh
$.JunregisterAll.ksh

Using Request-Level Interceptors 8-11

8 InterceptorData Sample Interceptors

8-12 Using Request-Level Interceptors

CHAPTER

Request-Level
Interceptor API

This chapter documents the following interfaces that you use to implement
request-level interceptors, along with their C++ and Java language mappings:

m Interceptors::Interceptor

® RequestLevellnterceptor::Requestinterceptor

m RequestLevellnterceptor::ClientRequestinterceptor
® RequestLevellnterceptor::TargetRequestinterceptor

m CORBA::DatalnputStream

Each of these interfaces ida@cality-constrained object Any attempt to pass a
reference outside its locality (that is, its process), or any attempt to externalize an
object supporting this interface using the CORBA OB&fct_to_string

operation, results in the CORBMARSHAIsystem exceptiondORBA::MARSHALN
C++, org.omg.CORBA.MARSHAL in Java) being raised.

Using Request-Level Interceptors 9-1

9 Request-Level Interceptor API

Interceptor Hierarchy

Request-level interceptors are divided into two interfaces, providing separate client-
and target-side functionality. The following figure illustrates the inheritance hierarchy
of the request-level interceptors supported in WebLogic Enterprise 5.1.

<<Interfacer>
Interceptor
(fram Interceptors)

&id : string

Fchutdown)

i

<<Interfacer>
Reguestinterceptor
ffrom Requestlewellnterczptorn

¥oyception_occurred))

N

zzlntefaces> “zlntefaces>
ClientReqguestinterceptor TargetRequestInterceptor
(from Requestlevellnterceptan) (from Requestlevellnterceptar)
Sclient_irvake() Starget invoke)
client_responsel) Starget responsel)

Note on Unused Interfaces

The method signatures for operations on classes derived from the
RequestLevellnterceptor interface include parameters for the following
interfaces:

9-2 Using Request-Level Interceptors

Interceptor Hierarchy

m C++: RequestLevellnterceptor::DataOutputStream
Java: com.beasys.RequestLevellnterceptors.ServiceContextList

m C++: RequestLevellnterceptor::ServiceContextList
Java: com.beasys.RequestLevellnterceptors.ServiceContextList

These interfaces are not used in the WebLogic Enterprise 5.1 product. However, they
are defined in the WebLogic Enterprise 5.1 product so that you do not need to
recompile your WebLogic Enterprise application if an implementation of these
interfaces is ever provided in a future release of WebLogic Enterprise. The ORB
always passes a nil for the actual argument. You should not attempt to use this
argument; doing so will likely end the process with a serious error.

The method signatures for the Java mappings to these interfaces include the following
classes, which you also do not use but that are reserved for future compatibility:

® com.beasys.RequestLevellnterceptors.ServiceContextListPackage.
NotFound

m org.omg.CORBA.ValueBase

m org.omg.CORBA.IOP.TaggedProfile

m org.omg.CORBA.IOP.TaggedComponent

m org.omg.CORBA.IOP.IOR

® org.omg.CORBA.GIOP.TargetAddress

m org.omg.CORBA.GIOP.KeyAddr

m org.omg.CORBA.GIOP.ProfileAddr

m org.omg.CORBA.GIOP.ReferenceAddr

m org.omg.CORBA.GIOP.IORAddressingInfo

® org.omg.CORBA.GIOP.ReplyStatusType_1_2

Using Request-Level Interceptors 9-3

9 Request-Level Interceptor API

Interceptors::Interceptor Interface

The Interceptors::Interceptor interface is defined as the base interface of all
types of interceptors, including request-level interceptors. This interface contains the
set of operations and attributes that are supported by all types of interceptors. The
Interceptors::Interceptor interface is defined as an abstract interface; thus an
instance of the interface can not be instantiated.

Listing 9-1 OMG IDL for the Interceptors::Interceptor Interface

/IFile: Interceptors.idl
#ifndef _INTERCEPTORS_IDL
#define _INTERCEPTORS_IDL

#pragma prefix "beasys.com”

module Interceptors

{

native ExceptionValue;

local Interceptor

{

readonly attribute string id; // identifier of interceptor

/I called by ORB when interceptor is being shutdown
ShutdownReturnStatus shutdown(
in ShutdownReason reason,
out ExceptionValue excep_val
);

}; /I locality constrained

kh
#endif /* INTERCEPTORS_IDL *

C++ Language Mapping

In C++, the implementation of the operationsuplicate , _narrow , and_nil are
inherited from the implementation of tlHORBA::LocalBase interface provided by
the WebLogic Enterprise ORB.

9-4 Using Request-Level Interceptors

Interceptors::Interceptor Interface

Listing 9-2 C++ Declaration of the Interceptors::Interceptor Interface

#ifndef _INTERCEPTORS_H
#define _INTERCEPTORS_H

#include <string.h>
#include <CORBA.h>

class OBBEXPDLL Interceptors

{

public:

class Interceptor;

typedef Interceptor * Interceptor_ptr;

enum InvokeReturnStatus

{

INVOKE_NO_EXCEPTION,// proceed normally
REPLY_NO_EXCEPTION, // stop proceeding; start reply processing
REPLY_EXCEPTION /I stop proceeding; reply with exception

h
enum ResponseReturnStatus

RESPONSE_NO_EXCEPTION, // proceed normally
RESPONSE_EXCEPTION

b
enum ShutdownReturnStatus

{
SHUTDOWN_NO_EXCEPTION,
SHUTDOWN_EXCEPTION

b
enum ShutdownReason

{

ORB_SHUTDOWN,
CONNECTION_ABORTED,
RESOURCES_EXCEEDED

b
struct Version

CORBA::Octet major_version;
CORBA::Octet minor_version;
h

typedef Version * Version_ptr;

I+

Using Request-Level Interceptors 9-5

9 Request-Level Interceptor API

/I Abstract base interface for all Interceptors
/-
class OBBEXPDLL Interceptor : public virtual CORBA::LocalBase

public:
static Interceptor_ptr _duplicate(Interceptor_ptr obj);
static Interceptor_ptr _narrow(Interceptor_ptr obj);
static Interceptor_ptr _nil();
virtual ShutdownReturnStatus
shutdown(ShutdownReason reason,
CORBA::Exception_ptr & excep_val) = 0;
virtual CORBA::String id() = 0;

protected:
Interceptor();
virtual ~Interceptor();

b
Y#endif + INTERCEPTORS_H */

Java Language Mapping

This section shows the Java declaration ofltherceptors::Interceptor
interface, and also shows the Java declarations for the following classes that are use
as parameters in the methods on several request-level interceptor classes:

® com.beasys.Interceptors.Version
® com.beasys.Interceptors.InvokeReturnStatus
® com.beasys.Interceptors.ResponseReturnStatus

® com.beasys.Interceptors.ShutdownReason

Listing 9-3 Java Declaration of the Interceptors::Interceptor Interface

package com.beasys.Interceptors;
public interface Interceptor {
String id();
ShutdownReturnStatus shutdown(ShutdownReason reason,
org.omg.CORBA.SystemExceptionHolder excep_val);

9-6 Using Request-Level Interceptors

Interceptors::Interceptor Interface

Listing 9-4 Java Declaration of the com.beasys.Interceptors.Version Class

package com.beasys.Interceptors;
public final class Version {
/I instance variables
public byte major_version;
public byte minor_version;
/I constructors
public Version();
public Version(byte __major_version, byte __ minor_version);

Listing 9-5 Java Declaration of the
com.beasys.Interceptors.InvokeReturnStatus Class

package com.beasys.Interceptors;
public final class InvokeReturnStatus {

public

public
public
public
public

public
throws

static final int _INVOKE_NO_EXCEPTION = 0,
_REPLY_NO_EXCEPTION = 1,
_REPLY_EXCEPTION = 2;
static final InvokeReturnStatus INVOKE_NO_EXCEPTION =
new InvokeReturnStatus(_INVOKE_NO_EXCEPTION);
static final InvokeReturnStatus REPLY_NO_EXCEPTION =
new InvokeReturnStatus(_ REPLY_NO_EXCEPTION);
static final InvokeReturnStatus REPLY_EXCEPTION =
new InvokeReturnStatus(_REPLY_EXCEPTION);
int value();
static final InvokeReturnStatus from_int(int i)
org.omg.CORBA.BAD_PARAM,;

Using Request-Level Interceptors 9-7

9 Request-Level Interceptor API

Listing 9-6 Java Declaration of the
com.beasys.Interceptors.ResponseReturnStatus Class

package com.beasys.Interceptors;
public final class ResponseReturnStatus {
public static final int _RESPONSE_NO_EXCEPTION = 0,
_RESPONSE_EXCEPTION = 1;
public static final ResponseReturnStatus RESPONSE_NO_EXCEPTION =
new ResponseReturnStatus(_ RESPONSE_NO_EXCEPTION);
public static final ResponseReturnStatus RESPONSE_EXCEPTION =
new ResponseReturnStatus(_ RESPONSE_EXCEPTION);
public int value();
public static final ResponseReturnStatus from_int(int i)
throws org.omg.CORBA.BAD_PARAM,;

Listing 9-7 Java Declaration of the com.beasys.Interceptors.ShutdownReason
Class

package com.beasys.Interceptors;
public final class ShutdownReason {
public static final int _ORB_SHUTDOWN = 0,
_CONNECTION_ABORTED = 1,
_RESOURCES_EXCEEDED = 2;
public static final ShutdownReason ORB_SHUTDOWN =
new ShutdownReason(_ORB_SHUTDOWN);
public static final ShutdownReason CONNECTION_ABORTED =
new ShutdownReason(_CONNECTION_ABORTED);
public static final ShutdownReason RESOURCES_EXCEEDED =
new ShutdownReason(_RESOURCES_EXCEEDED);
public int value();
public static final ShutdownReason from_int(int i)
throws org.omg.CORBA.BAD_PARAM,;

9-8 Using Request-Level Interceptors

Interceptors::Interceptor Interface

Interceptor::id

Synopsis

C++ Mapping
Java Binding
Parameters
Exceptions

Description

Return Values

Obtains the vendor assigned identity of the interceptor as a string value.
virtual CORBA::String id() = O;

String id();

None.

None.

Theid accessor operation is used by the ORB to obtain the vendor assigned identity
of the interceptor as a string value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

In C++, this operation returns a pointer to a null-terminated string containing the
identity of the interceptor as assigned by the provider of the interceptor
implementation. In Java, this operation returns a null-terminated string that represents
the name of the interceptor. The ORB is responsible for freeing the memory associated
with the return value.

Using Request-Level Interceptors 9-9

9 Request-Level Interceptor API

Interceptor::shutdown

Synopsis Notifies an implementation of an interceptor that the interceptor is being shut down.

C++Binding virtual ShutdownReturnStatus
shutdown(ShutdownReason reason,
CORBA::Exception_ptr & excep_val) = 0;

JavaBinding ShutdownReturnStatus shutdown(ShutdownReason reason,
SystemExceptionHolder excep_val);

Parameters reason
A ShutdownReason Vvalue that indicates the reason why the interceptor is
being shut down. The followinghutdownReason values can be passed to
the operation:

ORB_SHUTDOWN Indicates that the ORB is being shut down.

RESOURCES_EXCEEDED Indicates that resources of the process have been
exhausted.

CONNECTION_ABORTED This exception is not reported in WebLogic
Enterprise 5.1.

excep_val
A reference to afExceptionvalue in which the operation is to store any
exception raised. This parameter is valid only if a value of
SHUTDOWN_EXCEPTIG&Ireturned from the operation.
In C++, ExceptionvValue is mapped to the clas®ORBA::Exception . In
JavaExceptionvalue is mapped to the class org.ora@RBA.Exception

Exceptions None.

Description The shutdown operation is used by the ORB to notify an implementation of an

interceptor that the interceptor is being shut down. The ORB destroys the instance o

the interceptor once control is returned from the operation back to the ORB.

Return Values SHUTDOWN_NO_EXCEPTION
Indicates that the operation has not raised an exception.

SHUTDOWN_EXCEPTION
Indicates that the operation has raised an exception. The value of the
exception is stored in thexcep_val parameter.

9-10 Using Request-Level Interceptors

RequestLevelinterceptor:: Requestinterceptor Interface

RequestLevellnterceptor::
Requestinterceptor Interface

The RequestLevelinterceptor::Requestinterceptor interface is the base
interface of all request-level interceptors. It inherits directly from the
Interceptors::Interceptor interface. The
RequestLevellnterceptor::Requestinterceptor interface:

m Contains the set of operations and attributes that are supported by all
request-level interceptors.

m Is defined as an abstract interface; therefore, an instance of the interface cannot
be instantiated.

Thelocal keyword in OMG IDL indicates that thRequestinterceptor interface
is not a normal CORBA object, so it cannot be used as such.

Listing 9-8 OMG IDL for the RequestLevellnterceptor::Requestinterceptor
Interface

#ifndef REQUEST LEVEL_INTERCEPTOR_IDL
#define REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>
#include <Giop.idl>
#include <Interceptors.idl>

#pragma prefix “beasys.com”
module RequestLevellnterceptor

local Requestinterceptor : Interceptors::Interceptor

{
void exception_occurred(
in ReplyContext reply_context,
in ExceptionValue excep_val
);
h

h
#endif /* REQUEST LEVEL INTERCEPTOR_IDL */

Using Request-Level Interceptors 9-11

9 Request-Level Interceptor API

C++ Language Mapping

In C++, the implementation of thRequestinterceptor interface inherits from
CORBA::LocalBase rather than fronCORBA::Object .In C++,CORBA::LocalBase
provides an implementation of the operationsplicate , _narrow , and_nil ,

similar to those of£ORBA::Object

Listing 9-9 C++ Declaration for the Requestinterceptor Interface

#ifndef _RequestLevellnterceptor_h
#define _RequestLevellnterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevellnterceptor

{

public:

class Requestinterceptor;

typedef Requestinterceptor * Requestinterceptor_ptr;

struct RequestContext
{
Interceptors::Version struct_version;
CORBA::ULong request_id;
CORBA::Octet response_flags;
GIOP::TargetAddress target;
CORBA::String_var interface_id;
CORBA::String_var operation;
RequestContext &operator=(const RequestContext &_obj);

b

typedef RequestContext * RequestContext_ptr;
typedef GIOP::ReplyStatusType_1_ 2 ReplyStatus;

struct ReplyContext

{

Interceptors::Version struct_version;
CORBA::ULong request_id;
ReplyStatus reply_status;

9-12 Using Request-Level Interceptors

RequestLevelinterceptor:: Requestinterceptor Interface

typedef ReplyContext * ReplyContext_ptr;

class OBBEXPDLL Requestinterceptor :
public virtual Interceptors::Interceptor

{
public:
static Requestinterceptor_ptr
_duplicate(Requestinterceptor_ptr obj);
static Requestinterceptor_ptr
_narrow(Requestinterceptor_ptr obj);
inline static Requestinterceptor_ptr _nil() { return O; }

virtual void
exception_occurred(const ReplyContext & reply_context,
CORBA::Exception_ptr excep_val) = 0;

protected:
Requestinterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~Requestinterceptor(){ }

private:
Requestinterceptor(const Requestinterceptor&) { }
void operator=(const Requestinterceptor&) { }
}; /I class Requestinterceptor
#endif /* _RequestLevelinterceptor_h */

Java Language Mapping

Listing 9-10 Java Declaration for the Requestinterceptor Interface

package com.beasys.RequestLevellnterceptor;
public interface Requestinterceptor
extends com.beasys.Interceptors.Interceptor {
void exception_occurred(
com.beasys.RequestLevel.Interceptor.ReplyContext
reply_context,
org.omg.CORBA.SystemException excep_val);
}

Using Request-Level Interceptors 9-13

9 Request-Level Interceptor API

RequestContext Structure

Synopsis Contains the information that represents the context in which a request is to be

processed.

C++ Binding struct RequestContext

{

Interceptors::Version struct_version;
CORBA::ULong request_id;
CORBA::Octet response_flags;
GIOP::TargetAddress target;
CORBA::String_var interface_id;
CORBA::String_var operation;

b

Java Binding public final

9-14

public
public
public
public
public
public
public
public

}

RequestContext &operator=(const RequestContext &_obj);

class RequestContext {

com.beasys.Interceptors.Version struct_version;

int request_id;

byte response_flags;

org.omg.CORBA.GIOP.TargetAddress target;

String interface_id,;

String operation;

RequestContext();

RequestContext(
com.beasys.Interceptors.Version __struct_version,
int __ request_id,
byte _ response_flags,
org.omg.CORBA.GIOP.TargetAddress __target,
String __interface_id,
String __operation);

Members struct_version
Anindication of the version of the RequestContext that provides an indication
of the format and members. The version information is separated into the
following two pieces:

Version Member Description

major_version Indicates the major version value. The value of this

member is incremented anytime a change is made to the
contents or layout of RequestContext that is not
backward compatible with previous versions.

Using Request-Level Interceptors

RequestLevelinterceptor:: Requestinterceptor Interface

Version Member Description

minor_version Indicates the minor version value. The value of this
member is incremented anytime a change is made to the
contents or layout of equestContext that is
backward compatible with previous versions.

request_id
An unsigned long value that specifies the identifier assigned to a request by
the initiating ORB.

response_flags
The lowest order bit ofesponse_flag s is set to 1 if a reply message is
expected for this request. If the operation is not define@®@svay , and the
request is not invoked via the DIl with the\vV_NO_RESPONSEflag set,
response_flags will be set to \x03 .
If the operation is defined as oneway, or the request is invoked via the Dl
with theINV_NO_RESPONSHag setresponse_flags ~ may be set ttx00
or\xo1 .
When this flag is setttx01 for aoneway operation, receipt of a reply does
not imply that the operation has necessarily completed.

target
A discriminated union that identifies the object that is the target of the
invocation. The discriminator indicates the format in which the target
addressing is presented. The possible discriminator values are:

Discriminator Description

KeyAddr Theobject_key field from the transport-specific GIOP
profile (for example, from the encapsulated I11OP profile of
the IOR for the target object). This value is meaningful only
to the server and is not interpreted or modified by the client.

ProfileAddr The transport-specific GIOP profile selected for the target’s
IOR by the client ORB.

Note: Inthe WebLogic Enterprise 5.1 product, this
discriminator value is not supported, but is
provided for future support of GIOP 1.2.

Using Request-Level Interceptors 9-15

9 Request-Level Interceptor API

Description

Discriminator Description

ReferenceAddr The full IOR of the target object. The

selected_profile_index indicates the
transport-specific GIOP profile that was selected by the
client ORB.

Note: Inthe WebLogic Enterprise 5.1 product, this
discriminator value is not supported, but is
provided for future support of GIOP 1.2.

interface_id
A NULL-terminated string that specifies the repository identifier assigned to
the interface of the object.

operation
A NULL-terminated string that specifies the name of the operation being
requested on the target object indicated by the target member and that
supports the interface specified by the value ofitheface_id member.

TheRequestContext data object contains the information that represents the context
in which a request is to be processed. The context information contained in the
RequestContext provides information necessary to coordinate between the
processing of a given request and its corresponding reply.

The context information in thRequestContext ~ structure can not be modified by the
interceptor implementation. The ORB maintains ownership oRidxgiestContext

and is responsible for freeing any resources associated witRethestContext

when it has completed using it.

9-16 Using Request-Level Interceptors

RequestLevelinterceptor:: Requestinterceptor Interface

ReplyContext Structure

Synopsis Contains the information that represents the contextin which areply is to be processed.

C++Binding struct ReplyContext
{
Interceptors::Version struct_version;
CORBA::.ULong request_id,;
ReplyStatus reply_status;

Java Binding public final class ReplyContext {

public Interceptors.Version struct_version;

public int request_id;

public org.omg.CORBA.GIOP.ReplyStatusType_1_2 reply_status;

public ReplyContext();

public ReplyContext(
com.beasys.Interceptors.Version __struct_version,
int __request_id,
org.omg.CORBA.GIOP.ReplyStatusType_1_2 _ reply_status);

}

Members struct_version
Anindication of the version of thReplyContext that provides an indication
of the format and members. The version information is separated into the
following two pieces:

Version Member Description

major_version Indicates the major version value. The value of this
member is incremented anytime a change is made to the
contents or layout of &eplyContext that is not
backward compatible with previous versions.

minor_version Indicates the minor version value. The value of this
member is incremented anytime a change is made to the
contents or layout of ReplyContext that is backward
compatible with previous versions.

request_id
An unsigned long value that specifies the identifier assigned to a request by
the initiating ORB.

Using Request-Level Interceptors 9-17

9 Request-Level Interceptor API

reply_status
Indicates the completion status of the associated request, and also determine
part of the reply body contents.

Status Value Description

NO_EXCEPTION Indicates that the requested operation
completed successfully and that the value of the
arg_stream parameter contains the return
values of the operation.

USER_EXCEPTION Indicates that the requested operation failed
because of an exception reported by the target
object.

SYSTEM_EXCEPTION Indicates that the request operation failed

because of an exception reported either by the
target object or by the infrastructure.

LOCATION_FORWARD Indicates that the body contains an object
reference (IOR). The client ORB is responsible
for resending the original request to that
(different) object. This resending is transparent
to the client program making the request, but the
resending is not transparent to the interceptor.

LOCATION_FORWARD_PERM Indicates that the body contains an object
reference. The usage is similar to
LOCATION_FORWARDut when used by a
server, this value also provides an indication to
the clientthat the client may replace the old IOR
with the new IOR. Both the old IOR and the
new IOR are valid, butthe new IOR is preferred
for future use. This resending is transparent to
the client program making the request, but the
resending is not transparent to the interceptor.

NEEDS_ADDRESSING_MODE Indicates that the body contains a
GIOP::AddressingDisposition . The
client ORB is responsible for resending the
original request using the requested addressing
mode. This resending is transparent to the client
program making the request, but the resending
is not transparent to the interceptor.

9-18 Using Request-Level Interceptors

RequestLevelinterceptor:: Requestinterceptor Interface

Description

TheReplyContext data object contains the information that represents the context in
which a reply is to be processed. The context information contained in the
ReplyContext provides information necessary to coordinate between the processing
of a given request and its corresponding reply.

The context information in thReplyContext can not be modified by the interceptor
implementation. The ORB maintains ownership of HeplyContext and is
responsible for freeing any resources associated witRébyContext when it has
completed using it.

Using Request-Level Interceptors 9-19

9 Request-Level Interceptor API

Requestinterceptor::exception_occurred

Synopsis

C++ Binding

Java Binding

Parameters

Exceptions

Description

Return Values

Is called by the ORB to allow the interceptor to clean up any state that the interceptor
might have been managing that is specific to a request

virtual void
exception_occurred(const ReplyContext & reply_context,
CORBA::Exception_ptr excep_val) = 0;

void exception_occurred(
ReplyContext reply_context,
CORBA.SystemException excep_val);

reply_context
A reference to ®eplyContext that contains information about the context
in which the reply is being performed.

excep_val
A pointer to the exception reported by the ORB or by another interceptor.

None.

The exception_occurred operation is called on a request-level interceptor
implementation in one of three cases:

1. Anotherinterceptor sets an exception (rather than an exception being generated t
the ORB or the method).

2. The ORB detects an operating system or communication-related problem.

3. Aclient deletes &equest object that was used to initiate a deferred synchronous
DIl. The exception_occurred method is called instead of the
client_response Or target_response method of that interceptor. The ORB
calls theexception_occurred method to allow the interceptor implementation
to clean up any state that it might have been managing that is specific to a
request.

None.

9-20 Using Request-Level Interceptors

RequestLevelinterceptor:: ClientRequestinterceptor Interface

RequestLevellnterceptor::
ClientRequestinterceptor Interface

This is the base interface of all request-level interceptors. It inherits directly from the
RequestLevellinterceptor::Requestinterceptor interface. The interface
contains the set of operations and attributes that are supported by all client-side
request-level interceptors.

Listing 9-11 OMG IDL Definition

/IFile: RequestLevelinterceptor.idl

#ifndef REQUEST LEVEL_INTERCEPTOR_IDL
#define REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>

#include <Giop.idl>

#include <Interceptors.idl>
#pragma prefix “beasys.com”

module RequestLevellnterceptor

local ClientRequestinterceptor : Requestinterceptor

{

InvokeReturnStatus
client_invoke(
in RequestContext request_context,
in ServiceContextList service_context,
in CORBA::DatalnputStream request_arg_stream,
in CORBA::DataOutputStream reply_arg_stream,
out ExceptionValue excep_val
)i
ResponseReturnStatus
client_response(
in ReplyContext reply_context,
in ServiceContextList service_context,
in CORBA::DatalnputStream arg_stream,
out ExceptionValue excep_val

Using Request-Level Interceptors 9-21

9 Request-Level Interceptor API

} b
#endif ¥ REQUEST LEVEL_INTERCEPTOR_IDL *

C++ Language Mapping

In C++, the implementation of the operationsuplicate , _narrow , and_nil are
inherited indirectly from the implementation of tlt®RBA::LocalBase interface
provided by the WebLogic Enterprise ORB.

Listing 9-12 C++ Declaration

#ifndef _RequestLevelinterceptor_h
#define _RequestLevellnterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevelinterceptor
{
public:
class ClientRequestinterceptor;
typedef ClientRequestinterceptor *
ClientRequestinterceptor_ptr;

class OBBEXPDLL ClientRequestinterceptor :
public virtual Requestinterceptor

{
public:
static ClientRequestinterceptor_ptr
_duplicate(ClientRequestinterceptor_ptr obj);
static ClientRequestinterceptor_ptr
_narrow(ClientRequestinterceptor_ptr obj);
inline static ClientRequestinterceptor_ptr
_nil() { retun 0; }

virtual Interceptors::InvokeReturnStatus
client_invoke(
const RequestContext & request_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,

9-22 Using Request-Level Interceptors

RequestLevelinterceptor:: ClientRequestinterceptor Interface

CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = O;

virtual Interceptors::ResponseReturnStatus
client_response(
const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

protected:
ClientRequestinterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~ClientRequestinterceptor(){ }

private:
ClientRequestinterceptor(const ClientRequestinterceptor&)

{}

void operator=(const ClientRequestinterceptor&) { }
}; /I class ClientRequestinterceptor

h
#endif /* _RequestLevelinterceptor_h */

Java Language Mapping

Listing 9-13 Java Declaration

package com.beasys.RequestLevellnterceptor;
public interface ClientRequestinterceptor
extends com.beasys.RequestLevellnterceptor.Requestinterceptor {
com.beasys.Interceptors.InvokeReturnStatus client_invoke(
com.beasys.RequestLevel.Interceptor.RequestContext
request_context,
com.beasys.RequestLevel.Interceptor.ServiceContextList
service_context,
org.omg.CORBA.DatalnputStream request_arg_stream,
org.omg.CORBA.DataOutputStream reply_arg_stream,
org.omg.CORBA.SystemExceptionHolder excep_val);
com.beasys.Interceptors.ResponseReturnStatus client_response(
com.beasys.RequestLevel.Interceptor.ReplyContext reply_context,
com.beasys.RequestLevel.Interceptor.ServiceContextList
service_context,
org.omg.CORBA.DatalnputStream arg_stream,
org.omg.CORBA.SystemExceptionHolder excep_val);

Using Request-Level Interceptors 9-23

9 Request-Level Interceptor API

ClientRequestinterceptor::client_invoke

Synopsis

C++ Binding

Java Binding

9-24

Parameters

Is called by the client-side ORB anytime the client application sends an invocation to
a target object.

virtual Interceptors::InvokeReturnStatus
client_invoke(
const RequestContext & request_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

Interceptors.InvokeReturnStatus
client_invoke(
RequestContext request_context,
ServiceContextList service_context,
DatalnputStream request_arg_stream,
DataOutputStream reply_arg_stream,
SystemExceptionHolder excep_val);

request_context
A reference to a RequestContext that contains information about the context
in which the request is being performed.

service_context
A pointer to aServiceContextList containing service context information
to be sent as part of the request to the target object.

Note: In WebLogic Enterprise 5.1, the value of this parameter is always a nil
object.

request_arg_stream
A pointer to aDatalnputStream that can be used by the interceptor
implementation to retrieve the value of the parameter of the operation.
TheDatalnputStream contains alin andinout parameters, in the order in
which they are specified in the operation’s IDL definition, from left to right.
A nil DatalnputStream indicates that no arguments exist.

reply_arg_stream
A pointer to aCORBA::DataOutputStream that can be used to populate the
parameters to be returned to the initiator of the invocation as a reply. The use
of this parameter is only valid if a status REPLY_NO_EXCEPTIO
returned.

Using Request-Level Interceptors

RequestLevelinterceptor:: ClientRequestinterceptor Interface

Exceptions

Description

Return Values

Note: In WebLogic Enterprise 5.1, the value of this parameter is always a nil
object.

excep_val
A reference to a location in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTIONS returned. Note that the ORB is responsible for the
memory management for theecep_val parameter.

None.

Theclient_invoke operation is called on an interceptor implementation that
supports th&equestLevelinterceptor::ClientRequestinterceptor

interceptor interface. The operation is called by the ORB anytime that an invocation is
being sent to a target object, regardless of whether the target object is in a different
address space or the same address space as the target object.

INVOKE_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing required
and that the ORB should continue processing the invocation in order to
deliver it to the target object.

REPLY_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing required
to totally satisfy the request. The ORB should consider the request completed
and begins processing any information in thgly_arg_stream , if any, as
the return parameter values for the request.

Note: In WebLogic Enterprise 5.1, an interceptor a@ot return this status
value.

REPLY_EXCEPTION
Indicates that the interceptor encountered an error that should result in the
discontinued processing of the request toward the target. The parameter
excep_val is used to report the exception to the ORB. The ORB calls
interceptors on the way back to the client application with the
exception_occurred operation rather than with thedient_response
operation. Note that the ORB is responsible for the memory management for
theexcep_val parameter.

Using Request-Level Interceptors 9-25

9 Request-Level Interceptor API

ClientRequestinterceptor::client_response

Synopsis

C++ Binding

Java Binding

Parameters

Is called on an interceptor implementation that supports the
RequestLevelinterceptor::ClientRequestinterceptor interface.

virtual Interceptors::ResponseReturnStatus
client_response(
const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

ResponseReturnStatus
client_response(
ReplyContext reply_context,
ServiceContextList service_context,
DatalnputStream arg_stream,
SystemExceptionHolder excep_val);

reply_context
A reference to ®eplyContext that contains information about the context
in which the reply is being performed.

service_context
A pointer to aServiceContextList containing service context information
received as a result of processing the request by the target object.
Note: In WebLogic Enterprise 5.1, the value of this parameter is always a nil
object.

arg_stream
A pointer to aDatalnputStream that can be used by the interceptor
implementation to retrieve the value of the reply parameters of the operation.

The following table identifies what theient_response method returns in
theDatalnputStream object based on the status contained in the
ReplyContext object:

LOCATION_FORWARD A nil DatalnputStream is supplied
LOCATION_FORWARD_PERM

or

NEEDS_ADDRESSING_MODE

9-26 Using Request-Level Interceptors

RequestLevelinterceptor:: ClientRequestinterceptor Interface

NO_EXCEPTION TheDatalnputStream contains first any operation
return value, then anynout andout parameters in the
order in which they appear in the operation's IDL
definition, from left to right. A nilDatalnputStream
indicates that no arguments exist.

USER_EXCEPTIONT TheDatalnputStream contains the exception thatwas
SYSTEM_EXCEPTION raised by the operation.

Note: Exceptions contain a string followed by any exception members. The
string contains the repository ID for the exception. The exception members
are passed in the same manner as a struct. A system exception contains two
unsigned long members, a minor code, and a completion status.

excep_val
A reference to a location in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTIONS returned. Note that the ORB is responsible for the
memory management for theecep_val parameter.

Exceptions None.

Description Theclient_response operation is called on an interceptor implementation that
supports th&equestLevelinterceptor::ClientRequestinterceptor
interface. The operation is called by the ORB anytime that a reply to an invocation is
being received by the initiator of the request, regardless of whether the initiator is in a
different address space or the same address space as the target object.

Return Values RESPONSE_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing required
and that the ORB should continue processing the reply to the request to
deliver it to the initiator of the request.

RESPONSE_EXCEPTION
Indicates that the interceptor encountered an error. The paragseter val
is used to report the exception to the ORB. Any interceptors not yet called on
the way back to the client have theiception_occurred operation called
by the ORB to notify them that processing the request has failed.

Using Request-Level Interceptors 9-27

9 Request-Level Interceptor API

RequestLevellnterceptor::
TargetRequestinterceptor Interface

This is the base interface of all request-level interceptors. It inherits directly from the
RequestLevelinterceptor::Requestinterceptor interface. The interface
contains the set of operations and attributes that are supported by all target-side
request-level interceptors.

Listing 9-14 OMG IDL Definition

/IFile: RequestLevelinterceptor.idl

#ifndef REQUEST_LEVEL_INTERCEPTOR_IDL
#define REQUEST_LEVEL_INTERCEPTOR_IDL

#include <orb.idl>
#include <Giop.idl>
#include <Interceptors.idl>

#pragma prefix “beasys.com”

module RequestLevellnterceptor

{

local TargetRequestinterceptor : Requestinterceptor

{

InvokeReturnStatus
target_invoke(
in RequestContext request_context,
in ServiceContextList service_context,
in CORBA::DatalnputStream request_arg_stream,
in CORBA::DataOutputStream reply_arg_stream,
out ExceptionValue excep_val
);
ResponseReturnStatus
target_response(
in ReplyContext reply_context,
in ServiceContextList service_context,
in CORBA::DatalnputStream arg_stream,
out ExceptionValue excep_val

9-28 Using Request-Level Interceptors

RequestLevelinterceptor:: TargetRequestinterceptor Interface

} h
#endif * REQUEST LEVEL_INTERCEPTOR IDL */

C++ Language Mapping

In C++, the implementation of the operationtuplicate , _narrow , and_nil are
inherited indirectly from the implementation of tlk®RBA::LocalBase interface
provided by the WebLogic Enterprise ORB.

Listing 9-15 C++ Declaration

#ifndef _RequestLevellnterceptor_h
#define _RequestLevellnterceptor_h

#include <CORBA.h>
#include <IOP.h>
#include <GIOP.h>
#include <Interceptors.h>

class OBBEXPDLL RequestLevellnterceptor

{

public:

class TargetRequestinterceptor;

typedef TargetRequestinterceptor *
TargetRequestinterceptor_ptr;

class OBBEXPDLL TargetRequestinterceptor :
public virtual Requestinterceptor

public:
static TargetRequestinterceptor_ptr
_duplicate(TargetRequestinterceptor_ptr obj);
static TargetRequestinterceptor_ptr
_narrow(TargetRequestinterceptor_ptr obj);
inline static TargetRequestinterceptor_ptr
_nil() { return O; }

virtual Interceptors::InvokeReturnStatus target_invoke(
const RequestContext & request_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,

Using Request-Level Interceptors 9-29

9 Request-Level Interceptor API

CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = O;

virtual Interceptors::ResponseReturnStatus
target_response(
const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

protected:
TargetRequestinterceptor(CORBA::LocalBase_ptr obj = 0) { }
virtual ~TargetRequestinterceptor(){ }

private:
TargetRequestinterceptor(const TargetRequestinterceptor&)

{}

void operator=(const TargetRequestinterceptor&) { }
Y, /I class TargetRequestinterceptor

h
#endif /* _RequestLevelinterceptor_h */

Java Language Mapping

Listing 9-16 Java Declaration

package com.beasys.RequestLevellnterceptor;
public interface TargetRequestinterceptor
extends com.beasys.RequestLevellnterceptor.Requestinterceptor {
com.beasys.Interceptors.InvokeReturnStatus target_invoke(
com.beasys.RequestLevel.Interceptor.RequestContext
request_context,
com.beasys.RequestLevel.Interceptor.ServiceContextList
service_context,
org.omg.CORBA.DatalnputStream request_arg_stream,
org.omg.CORBA.DataOutputStream reply_arg_stream,
org.omg.CORBA.SystemExceptionHolder excep_val);
com.beasys.Interceptors.ResponseReturnStatus target_response(
com.beasys.RequestLevel.Interceptor.ReplyContext reply_context,
com.beasys.RequestLevel.Interceptor.ServiceContextList
service_context,
org.omg.CORBA.DatalnputStream arg_stream,
org.omg.CORBA.SystemExceptionHolder excep_val);

9-30 Using Request-Level Interceptors

RequestLevelinterceptor:: TargetRequestinterceptor Interface

TargetRequestinterceptor::target_invoke

Synopsis

C++ Binding

Java Binding

Parameters

Is called by the target-side ORB anytime an invocation is being received by a target
object.

virtual Interceptors::InvokeReturnStatus
target_invoke(
const RequestContext & request_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

Interceptors.InvokeReturnStatus
target_invoke(
RequestContext request_context,
ServiceContextList service_context,
DatalnputStream request_arg_stream,
DataOutputStream reply_arg_stream,
SystemExceptionHolder excep_val);

request_context

A reference to &equestContext that contains information about the
context in which the request is being performed.

service_context
A pointer to aServiceContextList containing service context information
received as part of the request to the target object.
In WebLogic Enterprise 5.1, the value of this parameter is always a nil object.

request_arg_stream
A pointer to aDatalnputStream that can be used by the interceptor
implementation to retrieve the value of the parameter of the operation.
TheDatalnputStream contains alin andinout parameters, in the orderin
which they are specified in the operation’s IDL definition, from left to right.
A nil DatalnputStream indicates that no arguments exist.

reply_arg_stream
A pointer to aDataOutputStream that can be used to populate the

parameters to be returned to the initiator of the invocation as areply. The use

of this parameter is only valid if a status REPLY_NO_EXCEPTIOh
returned.

In WebLogic Enterprise 5.1, the value of this parameter is always a nil object.

Using Request-Level Interceptors 9-31

9 Request-Level Interceptor API

Exceptions

Description

Return Values

excep_val
A reference to a location in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTIONS returned. Note that the ORB is responsible for the
memory management for thecep_val parameter.

None.

Thetarget_invoke operation is called on an interceptor implementation that
supports th&kequestLevelinterceptor:: TargetRequestinterceptor

interface. The operation is called by the ORB anytime that an invocation is being
received by a target object, regardless of whether the target object is in a different
address space or the same address space as the target object.

INVOKE_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing requirec
and that the ORB should continue processing the invocation in order to
deliver it to the target object.

REPLY_NO_EXCEPTION
Indicates that the interceptor successfully performed any processing requirec
to totally satisfy the request. The ORB should consider the request completec
and begins processing any information in tegly_arg_stream , if any, as
the return parameter values for the request.

Note: In WebLogic Enterprise 5.1, an interceptor cannot return this status
value.

REPLY_EXCEPTION
Indicates that the interceptor encountered an error that should result in the
discontinued processing of the request in order to deliver it to the target
object. The parametekcep_val is used to report the exception to the ORB.
The ORB calls interceptors on the way back to the client with the
exception_occurred operation, rather than with therget_response
operation. Note that the ORB is responsible for the memory management for
theexcep_val parameter.

9-32 Using Request-Level Interceptors

RequestLevelinterceptor:: TargetRequestinterceptor Interface

TargetRequestinterceptor::target_response

Synopsis

C++ Binding

Java Binding

Parameters

Is called by the target-side ORB anytime that a reply to an invocation is being sent to
the initiator of the request

virtual Interceptors::ResponseReturnStatus
target_response(
const ReplyContext & reply_context,
ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val) = 0;

Interceptors.ResponseReturnStatus
target_response(
ReplyContext reply_context,
ServiceContextList service_context,
DatalnputStream arg_stream,
SystemExceptionHolder excep_val);

reply_context
A reference to &eplyContext that contains information about the context
in which the reply is being performed.

service_context
A pointer to aServiceContextList containing service context information
to be sent as a result of processing the request by the target object.
Note: In WebLogic Enterprise 5.1, the value of this parameter is always a nil
object.

arg_stream
A pointer to aDatalnputStream that can be used by the interceptor
implementation to retrieve the value of the reply parameters of the operation.

The following table identifies what thtarget_response method returns in
the DatalnputStream object based on the status contained in the
ReplyContext object:

LOCATION_FORWARD A nil DatalnputStream is supplied
LOCATION_FORWARD_PERM

or

NEEDS_ ADDRESSING_MODE

Using Request-Level Interceptors 9-33

9 Request-Level Interceptor API

Exceptions

Description

Return Values

NO_EXCEPTION TheDatalnputStream contains first any operation
return value, then anipout andout parameters in the
order in which they appear in the operation's IDL
definition, from left to right. A nilDatalnputStream
indicates that no arguments exist.

USER_EXCEPTIONT TheDatalnputStream contains the exception that was
SYSTEM_EXCEPTION raised by the operation.

Note: Exceptions contain a string followed by any exception members. The
string contains the repository ID for the exception. The exception members
are passed in the same manner stegt . A system exception contains two
unsigned long members, a minor code, and a completion status.

excep_val
A reference to a location in which the interceptor can return an exception in
order to report an error. The use of this parameter is valid only if a status of
REPLY_EXCEPTIONS returned. Note that the ORB is responsible for the
memory management for thecep_val parameter.

None.

Thetarget_response operation is called on an interceptor implementation that
supports th&kequestLevelinterceptor:: TargetRequestinterceptor

interface. The operation is called by the target-side ORB anytime that a reply to an
invocation is being sent to the initiator of the request, regardless of whether the initiatol
is in a different address space or the same address space as the target object.

RESPONSE_NO_EXCEPTION

Indicates that the interceptor successfully performed any processing requirec
and that the ORB should continue processing the reply to the request to
deliver it to the initiator of the request.

RESPONSE_EXCEPTION
Indicates that the interceptor encountered an error. The paragredpr val
is used to report the exception to the ORB. Any interceptors not yet called on
the way back to the client have thekception_occurred operation called
by the ORB in order to notify them that processing the request has failed.
Note that the ORB is responsible for the memory management for the
excep_val parameter.

9-34 Using Request-Level Interceptors

RequestLevelinterceptor:: TargetRequestinterceptor Interface

AppRequestinterceptorinit

Synopsis

C++ Binding

Parameters

Exceptions

Description

Return Values

Instantiates and initializes client-side and target-side interceptors. This method is
C++-only.

typedef void (*AppRequestinterceptorinit)(
CORBA::ORB_ptr TheORB,
RequestLevellnterceptor::ClientRequestinterceptor ** ClientPtr,
RequestLevellnterceptor::TargetRequestinterceptor ** TargetPtr,
CORBA::Boolean * RetStatus);

TheORB
A pointer to the ORB object with which the implementation of the
interceptors are associated.

ClientPtr
A pointer in which to return a pointer to the instance of the
RequestLevellnterceptor::ClientRequestinterceptor that was
instantiated for use by the ORB.

TargetPtr
A pointer in which to return a pointer to the instance of the
RequestLevellnterceptor:: TargetRequestinterceptor that was
instantiated for use by the ORB.

RetStatus
A pointer to a location into which the interceptor implementation indicates
whether the instantiation and initialization of the interceptor was successful.
A value of CORBA::TRUEIs used to indicate that instantiation and
initialization of the interceptors was successful. A valu€oRBA::FALSE is
used to indicate that the instantiation and initialization of the interceptors was
unsuccessful for some reason.

None.

The AppRequestinterceptorinit function is a user-provided function that is used
by the ORB to instantiate and initialize client-side and target-side interceptors.

None.

Using Request-Level Interceptors 9-35

9 Request-Level Interceptor API

CORBA::DatalnputStream Interface

Theabstract valuetype

keywords in IDL applied t®atalnputStream
that it is not the same as an interface.

Listing 9-17 OMG IDL Definition

indicates

module CORBA {
/l... all the rest

/I Definitions used by DatalnputStream

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

sequence<any>
sequence<boolean>
sequence<char>
sequence<octet>
sequence<short>

AnySeq;
BooleanSeq;
CharSeq;

OctetSeq;
ShortSeq;

sequence<unsigned short> UShortSeq;

sequence<long>
sequence<unsigned long>
sequence<float>
sequence<double>

LongSeq;
ULongSeq;
FloatSeq;

DoubleSeq;

/| DatalnputStream - for reading data from the stream
abstract valuetype DatalnputStream

9-36

any
boolean

char

octet

short

unsigned short
long

unsigned long
float

double

string

Object
TypeCode

void

void

read_any();
read_boolean();
read_char();
read_octet();
read_short();
read_ushort();
read_long();
read_ulong();
read_float();
read_double();
read_string ();
read_Object();
read_TypeCode();

read_any_array(inout AnySeq seq,

in unsigned long offset,
in unsigned long length);

/I WLE 5.1 - raises NO_IMPLEMENT

/I WLE 5.1 - raises NO_IMPLEMENT
read_boolean_array(inout BooleanSeq seq,

Using Request-Level Interceptors

CORBA::DatalnputStream Interface

in unsigned long offset,
in unsigned long length);

void read_char_array(inout CharSeq seq,

in unsigned long offset,

in unsigned long length);
void read_octet_array(inout OctetSeq seq,

in unsigned long offset,

in unsigned long length);
void read_short_array(inout ShortSeq seq,

in unsigned long offset,

in unsigned long length);
void read_ushort_array(inout UShortSeq seq,

in unsigned long offset,

in unsigned long length);
void read_long_array(inout LongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_ulong_array(inout ULongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_float_array(inout FloatSeq seq,

in unsigned long offset,

in unsigned long length);
void read_double_array(inout DoubleSeq seq,

in unsigned long offset,

in unsigned long length);

C++ Language Mapping

In C++, the implementation cORBA::DatalnputStream inherits from
CORBA::ValueBase rather than fronCORBA::Object . You cannot use, for example,
_duplicate , _narrow , and_nil operations since they apply only to
CORBA::Object . At this time, there is nothing of interest for users in the
CORBA::ValueBase interface.

Using Request-Level Interceptors 9-37

9 Request-Level Interceptor API

Listing 9-18 C++ Declaration

class CORBA
public:

class AnySeq {/* Normal sequence definition */};
typedef AnySeq * AnySeq_ptr;

class BooleanSeq {/* Normal sequence definition */};
typedef BooleanSeq * BooleanSeq_ptr;
static const CORBA::TypeCode_ptr _tc_BooleanSeq;

class CharSeq {/* Normal sequence definition */};
typedef CharSeq * CharSeq_ptr;
static const CORBA::TypeCode_ptr _tc_CharSeq;

class OctetSeq {/* Normal sequence definition */};
typedef OctetSeq * OctetSeq_ptr;
static const CORBA::TypeCode_ptr _tc_OctetSeq;

class ShortSeq {/* Normal sequence definition */};
typedef ShortSeq * ShortSeq_ptr;
static const CORBA::TypeCode_ptr _tc_ShortSeq;

class UshortSeq {/* Normal sequence definition */};
typedef UShortSeq * UShortSeq_ptr;
static const CORBA::TypeCode_ptr _tc_UShortSeq;

class LongSeq {/* Normal sequence definition */};

typedef LongSeq * LongSeq_ptr;
static const CORBA::TypeCode_ptr _tc_LongSeq;

class UlongSeq {/* Normal sequence definition */};
typedef ULongSeq * ULongSeq_ptr;
static const CORBA::TypeCode_ptr _tc_ULongSeq;

class FloatSeq {/* Normal sequence definition */};
typedef FloatSeq * FloatSeq_ptr;
static const CORBA::TypeCode_ptr _tc_FloatSeq;

class DoubleSeq {/* Normal sequence definition */};

typedef DoubleSeq * DoubleSeq_ptr;
static const CORBA::TypeCode_ptr _tc_DoubleSeq;

9-38 Using Request-Level Interceptors

CORBA::DatalnputStream Interface

class OBBEXPDLL DatalnputStream : public virtual ValueBase

h

public:

static DatalnputStream_ptr _downcast(ValueBase_ptr obj);
virtual Any * read_any (); /I WLE 5.0 raises NO_IMPLEMENT
virtual Boolean read_boolean ();

virtual Char read_char ();

virtual Octet read_octet ();

virtual Short read_short ();

virtual UShort read_ushort ();

virtual Long read_long ();

virtual ULong read_ulong ();

virtual Float read_float ();

virtual Double read_double ();

virtual Char * read_string ();

virtual Object_ptr read_Object ();
virtual TypeCode_ptr read_TypeCode ();

virtual void read_any_array (AnySeq & seq,
ULong offset, ULong length);
/I WLE 5.1 - raises NO_IMPLEMENT
virtual void read_boolean_array(BooleanSeq & seq,
ULong offset, ULong length);
virtual void read_char_array (CharSeq & seq,
ULong offset, ULong length);
virtual void read_octet_array (OctetSeq & seq,
ULong offset, ULong length);
virtual void read_short_array (ShortSeq & seq,
ULong offset, ULong length);
virtual void read_ushort_array (UShortSeq & seq,
ULong offset, ULong length);
virtual void read_long_array (LongSeq & seq,
ULong offset, ULong length);
virtual void read_ulong_array (ULongSeq & seq,
ULong offset, ULong length);
virtual void read_float_array (FloatSeq & seq,
ULong offset, ULong length);
virtual void read_double_array (DoubleSeq & seq,
ULong offset, ULong length);

protected:
DatalnputStream(}{ };
virtual ~DatalnputStream(){ }

private:
void operator=(const DatalnputStream&) { }

Using Request-Level Interceptors

9-39

9 Request-Level Interceptor API

typedef

h

DatalnputStream * DatalnputStream_ptr;

Java Language Mapping

Listing 9-19 Java Declaration

package org.omg.CORBA;

public interface DatalnputStream

extends org.omg.CORBA.portable.ValueBase {

org.omg.CORBA.Any read_any(); /' WLE 5.1 - raises NO_IMPLEMENT

9-40

bool

ean read_boolean();

char read_char();

byte read_octet();

short read_short();

short read_ushort();

int read_long();

int read_ulong();

float read_float();

double read_double();

String read_string();
org.omg.CORBA.Object read_Object();
org.omg.CORBA.TypeCode read_TypeCode();

void

void

void

void

void

void

void

void

void

void

read_any_array(org.omg.CORBA.AnySeqHolder seq,
/I WLE 5.1 - raises NO_IMPLEMENT

int offset, int length);
read_boolean_array(org.omg.CORBA.BooleanSeqHolder seq,

int offset, int length);
read_char_array(org.omg.CORBA.CharSeqHolder seq,

int offset, int length);
read_octet_array(org.omg.CORBA.OctetSeqgHolder seq,

int offset, int length);
read_short_array(org.omg.CORBA.ShortSeqHolder seq,

int offset, int length);
read_ushort_array(org.omg.CORBA.UShortSegHolder seq,

int offset, int length);
read_long_array(org.omg.CORBA.LongSeqHolder seq,

int offset, int length);
read_ulong_array(org.omg.CORBA.ULongSeqHolder seq,

int offset, int length);
read_float_array(org.omg.CORBA.FloatSeqHolder seq,

int offset, int length);
read_double_array(org.omg.CORBA.DoubleSeqHolder seq,

int offset, int length);

Using Request-Level Interceptors

CORBA::DatalnputStream Interface

DatalnputStream::read_<primitive>

Synopsis
C++ Binding
Java Binding

Parameters
Exceptions

Description

Return Values

Returns a value from the stream.

<primitive> read_< primitive
<primitive> read_< primitive
None.
None.

The operations to read a primitive elemenmitive ~ >) from aDatalnputStream
all have the same format. Each operation returns a value from the stream.

Note: In C++,String_var , TypeCode_var , or Object_ var can be used for
memory management. Otherwise, strings must be released using the
string_free() operation on the CORBA object, afigpeCode or Object
pointers must be released using thiease() operation on the CORBA

object.

In C++, the primitives are the following:

AnySeq (Notimplemented in WLE 5.1)

BooleanSeq
CharSeq
OctetSeq
ShortSeq
UshortSeq
LongSeq
UlongSeq
FloatSeq
DoubleSeq

In Java, the primitives are the following:

org.omg.CORBA.AnySeqHolder

org.omg.CORBA.BooleanSeqHolder

org.omg.CORBA.CharSegHolder
org.omg.CORBA.OctetSeqHolder
org.omg.CORBA.ShortSeqHolder
org.omg.CORBA.UShortSeqHolder
org.omg.CORBA.LongSeqHolder
org.omg.CORBA.ULongSeqgHolder
org.omg.CORBA.FloatSeqHolder
org.omg.CORBA.DoubleSeqHolder

None.

(Not implemented in WLE 5.1)

Using Request-Level Interceptors 9-41

9 Request-Level Interceptor API

DatalnputStream::read_array_<primitive>

Synopsis
C++ Binding

Java Binding

Parameters

Exceptions

Description

Returns an array of primitive values from the stream in@O®BAsequence.

void read_array_< primitive >(<primitive> Seq & seq,
ULong offset,
ULong length);

void read_array_< primitive >(<primitive> SeqHolder seq,
int offset,
int length);

<primitive >Seq
A sequence of the appropriate type that will receive the array elements read

C++
If the sequence was not long enough to contain the additional
elements, the length will be set to the sum offset+length. (The length
will not be adjusted down.)
Java
The SeqHolder must be large enough; it will not be extended.
Offset
The offset into the array to read the elements. That is, the array will have new
elements starting at array index offset up to array index offset+length-1.
Length
The number of elements of the array to be returned inta¢heparameter.
None.

The operations to read an array of primitive elementsifitive >) from a
DatalnputStream all have the same format. Each operation returns an array of
primitive values from the stream intoGDRBAsequence of that same primitive type.

In C++, the primitives are the following:

AnySeq (Notimplemented in WLE 5.1)
BooleanSeq

CharSeq

OctetSeq

ShortSeq

UshortSeq

LongSeq

UlongSeq

FloatSeq

DoubleSeq

9-42 Using Request-Level Interceptors

CORBA::DatalnputStream Interface

In Java, the primitives are the following:

org.omg.CORBA.AnySeqHolder (Not implemented in WLE 5.1)
org.omg.CORBA.BooleanSeqHolder
org.omg.CORBA.CharSegHolder
org.omg.CORBA.OctetSeqHolder
org.omg.CORBA.ShortSeqHolder
org.omg.CORBA.UShortSeqHolder
org.omg.CORBA.LongSeqHolder
org.omg.CORBA.ULongSeqgHolder
org.omg.CORBA.FloatSeqHolder
org.omg.CORBA.DoubleSeqHolder

Return Values None.

Using Request-Level Interceptors 9-43

9 Request-Level Interceptor API

9-44 Using Request-Level Interceptors

APPENDIX

A Starter C++ Interceptor
Files

This appendix contains the following code that you can use as a place to start
implementing your C++ interceptors:

m Starter Implementation Code
m Starter Header File Code

If you use this code, replace the strittgurinterceptor with the name of the
interceptor you are implementing.

Starter Implementation Code

#if defined(WIN32)
#include <windows.h>
#endif

#include <ctype.h>

#include " Yourlnterceptor .h"

/I Cleanup class -- suggested
class Cleanup

public:

Cleanup() {}
~Cleanup()

Using Request-Level Interceptors A-1

A Starter C++ Interceptor Files

/I <<<Fill in your code here>>>

}
h

static Cleanup CleanupOnimageExit;
#define SECURITY_BUFFSIZE 100

#if defined(WIN32)
/I suggestion for standard DLL processing

BOOL WINAPI DIIMain(HANDLE hDLL,
DWORD dwReason,
LPVOID IpReserved)

switch(dwReason)

{

case DLL_PROCESS_ATTACH:
break;

case DLL_PROCESS DETACH:
break;

case DLL_THREAD_ATTACH:
break;

case DLL THREAD_DETACH:
break;

}

/Il Return that the operation was successful
return(TRUE);

}
#endif /* WIN32 */

[FHEFk kK dkkkkk

FUNCTION NAME: Yourinterceptor Init
FUNCTIONAL DESCRIPTION:

Initialization routine called by the ORB during initialization.
This routine will create and return instances of the
RequestLevellnterceptor classes that it supports.

NOTE: An interceptor library can support more than one set of
interceptors by supplying multiple initialization entry points

(each initialization entry must be separately registered with the
ORB) Also, it is legal for only one kind of interceptor to be
supplied (i.e. only a client or only a target.)

A-2 Using Request-Level Interceptors

Starter Implementation Code

*okkkkkkkkkkkkk * * * *%: *%: *k:

#ifdef WIN32
extern
#else
extern
#endif
Yourinterceptor Init(
CORBA::ORB_ptr

"C" void

*%: *%: *%: /

"C" __declspec(dllexport) void __cdecl

TheORB,

RequestLevellnterceptor::ClientRequestinterceptor ** ClientPtr,
RequestLevellnterceptor::TargetRequestinterceptor ** TargetPtr,

CORBA::Boolean *

RetStatus)

Client constructor

Client(CORBA::ORB_ptr TheOrb)

{ /I <<<Fill in your code here>>>
}
e
FUNCTION NAME: Yourlnterceptor
FUNCTIONAL DESCRIPTION:
Yourinterceptor Client:: Yourinterceptor
{ /I This next line is useful, but not absolutely necessary.
m_orb = TheOrb;
} /I <<<Fill in your code here>>>

FUNCTION NAME:

FUNCTIONAL DESCRIPTION:

Yourlnterceptor

*%: *%: *%:

Client;:shutdown

The shutdown operation is used by the ORB to notify an
implementation of an interceptor that the interceptor

is being shutdown. The ORB will destroy the instance

of the interceptor once control is returned from the

operation back to the ORB.

*okkkkkkkkkkkkk * * * *%: *%: *%:

Interceptors::ShutdownReturnStatus
Interceptors::ShutdownReason
CORBA::Exception_ptr &

*%: *%: *%: /

Yourinterceptor Client::shutdown(
reason,

excep_val)

Using Request-Level Interceptors A-3

A Starter C++ Interceptor Files

/I The following lines are a suggestion only. Replace them if you wish.

Interceptors::ShutdownReturnStatus ret_status =
Interceptors::SHUTDOWN_NO_EXCEPTION;
switch (reason)
{
case Interceptors::ORB_SHUTDOWN:
/I <<<Fill in your code here>>>
break;
case Interceptors::CONNECTION_ABORTED:
/I <<<Fill in your code here>>>

break;
case Interceptors::RESOURCES_EXCEEDED:
/I <<<Fill in your code here>>>

break;

}

return ret_status;

FUNCTION NAME: Yourinterceptor Client::id

FUNCTIONAL DESCRIPTION:
The id accessor operation is used by the ORB to obtain
the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

Kok kkok ok kkok ko ko /

CORBA::String YourlInterceptor Client::id()

{
/I <<<Fill in your code here>>>
/I The next line is a possible implementation that is useful
return CORBA::string_dup(" Yourlnterceptor Client");
}
[kt k
FUNCTION NAME: Yourinterceptor Client::exception_occurred

FUNCTIONAL DESCRIPTION:

The exception_occurred operation is called on a request-level
interceptor implementation when an exception occurs.

A-4 Using Request-Level Interceptors

Starter Implementation Code

It is called instead of the <xxx>_response

method of that interceptor. The ORB calls this operation to
allow the interceptor implementation to clean-up any state

that it might have been managing that is specific to a request.

*okkkkkkkkkkkkk * * * *%: *%: *%: *%: *%: *%: /

void YourInterceptor Client::exception_occurred (
const RequestLevellnterceptor::ReplyContext & reply_context,

CORBA::Exception_ptr excep_val)
{
/I <<<Fill in your code here>>>
}
A AR KA RIS R KA KA KRS RA KA KA AR AR
FUNCTION NAME: Yourlnterceptor Client::client_invoke
FUNCTIONAL DESCRIPTION:
This operation is called by the ORB anytime that an
invocation is being sent to a target object, regardless
of whether the target object is in a different address
space or the same address space as the target object.
*hkkkkhhkhhkkk * * * ** ** *k * % ** *k /
Interceptors::InvokeReturnStatus Yourinterceptor Client::client_invoke (

const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,

CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val)

/I The next line is a suggestion that works in conjunction with the last line
below

Interceptors::InvokeReturnStatus ret_status =
Interceptors::INVOKE_NO_EXCEPTION;

/I <<<Fill in your code here>>>

return ret_status;

FUNCTION NAME: Yourlnterceptor Client::client_response

Using Request-Level Interceptors A-5

A Starter C++ Interceptor Files

FUNCTIONAL DESCRIPTION:

The operation is called by the ORB anytime that a reply
to an invocation is being received by the initiator of

the request, regardless of whether the initiator is in

a different address space or the same address space as
the target object.

Kok kok ok ok kok ko ko /

Interceptors::ResponseReturnStatus Yourlnterceptor Client::client_response (
const RequestLevellnterceptor::ReplyContext & reply_context,
RequestLevelinterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val)

/I The next line is a suggestion that works in conjunction with the last line
below

/I See the examples for other suggestions of general use

Interceptors::ResponseReturnStatus ret_status =
Interceptors::RESPONSE_NO_EXCEPTION;

/I <<<Fill in your code here>>>

return ret_status;

FUNCTION NAME: Yourinterceptor Target constructor
FUNCTIONAL DESCRIPTION:
This function constructs the target interceptor instance.

This example provides data members that could be used to
implement a security interceptor.

Kok kkok ok kkok ko ok ok /

Yourinterceptor Target:: Yourinterceptor Target(CORBA::ORB_ptr TheOrb) :
m_orb(TheOrb), /I suggestion
m_security_current(0), // suggestion for security interceptors
m_attributes_to_get(0) // suggestion for security interceptors

A-6 Using Request-Level Interceptors

Starter Implementation Code

/I <<<Fill in your code here>>>

FUNCTION NAME:

*%: *%: *%: *%:

Yourlnterceptor

FUNCTIONAL DESCRIPTION:

Target::shutdown

The shutdown operation is used by the ORB to notify an
implementation of an interceptor that the interceptor

is being shutdown. The ORB will destroy the instance

of the interceptor once control is returned from the
operation back to the ORB.

*okkkkkkkkkkkkk * *

Interceptors::ShutdownReturnStatus
Interceptors::ShutdownReason

* *%:

*%: *%: *%: *k:

CORBA::Exception_ptr &

/I <<<Fill in your code here>>>

*%:

/

Yourinterceptor
reason,
excep_val)

Target::shutdown(

/I The following lines are a suggestion only. Replace them if you wish.

Interceptors::ShutdownReturnStatus ret_status

Interceptors:SHUTDOWN_NO_EXCEPTION;

switch (reason)

case Interceptors::ORB_SHUTDOWN:
your code here>>>

case Interceptors::CONNECTION_ABORTED:
your code here>>>

/I <<<Fill in
break;
/I <<<Fill in
break;

case Interceptors
/I <<<Fill in
break;

}

return ret_status;

"RESOURCES_EXCEEDED:
your code here>>>

I* Fkkokkkokkkkk *

FUNCTION NAME:

*%: *%: *%: *%:

Yourlnterceptor

Target::

d

Using Request-Level Interceptors A-7

A Starter C++ Interceptor Files

FUNCTIONAL DESCRIPTION:

The id accessor operation is used by the ORB to obtain
the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

Kok kkok ok kkok ko ko /

CORBA::String Yourinterceptor Target::id()

{ /I <<<Fill in your code here>>>
/I The next line is a possible implementation that is useful
return CORBA::string_dup(" Yourlnterceptor Target");
}
[kt k
FUNCTION NAME: Yourlinterceptor Target::exception_occurred

FUNCTIONAL DESCRIPTION:

The exception_occurred operation is called on a request-level
interceptor implementation when an exception occurs.

It is called instead of the <xxx>_response

method of that interceptor. The ORB calls this operation to
allow the interceptor implementation to clean-up any state

that it might have been managing that is specific to a request.

Kok kkok ok kkok ko ko /

void Yourinterceptor Target::exception_occurred (
const RequestLevellnterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val)

/I <<<Fill in your code here>>>

FUNCTION NAME: Yourinterceptor Target::target_invoke
FUNCTIONAL DESCRIPTION:
The operation is called by the ORB anytime that an
invocation is being received by a target object,

regardless of whether the target object is in a
different address space or the same address space

A-8 Using Request-Level Interceptors

Starter Implementation Code

as the target object.

kokkkkkkkkkkkkk * * * *%: *%: *%: *%: *%: *%: /

Interceptors::InvokeReturnStatus Yourinterceptor Target::target_invoke (
const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val)

/I The next line is a suggestion that works in conjunction with the last line
below

Interceptors::InvokeReturnStatus ret_status =
Interceptors::INVOKE_NO_EXCEPTION;

/I <<<Fill in your code here>>>

return ret_status;

}
kit kkok kAR KRR KRk Kk ok ok
FUNCTION NAME: Yourlnterceptor Target::target_response
FUNCTIONAL DESCRIPTION:
The operation is called by the ORB anytime that a reply
to an invocation is being sent to the initiator of the
request, regardless of whether the initiator is in a
different address space or the same address space as
the target object.
*kkkkhkkkkkkkhkk * * * * %k * %k *k *k * %k * %k /
Interceptors::ResponseReturnStatus Yourinterceptor Target::target_response (
const RequestLevellnterceptor::ReplyContext & reply_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val)

/I The next line is a suggestion that works in conjunction with the last line
below

Interceptors::ResponseReturnStatus ret_status =

Using Request-Level Interceptors A-9

A Starter C++ Interceptor Files

Interceptors::RESPONSE_NO_EXCEPTION;

/I <<<Fill in your code here>>>

return ret_status;

}
[kt kokik -
FUNCTION NAME: Yourinterceptor Target destructor
FUNCTIONAL DESCRIPTION:
ekckkokkiokokckok o /
Yourinterceptor Target::~ Yourinterceptor Target()
/I <<<Fill in your code here>>>
}

Starter Header File Code

#include <CORBA.h>
#include <RequestLevelinterceptor.h>
#include <security_c.h> /lused with security

class Yourinterceptor Client : public virtual
RequestLevellnterceptor::ClientRequestinterceptor
{
private:
Yourinterceptor Client() {
CORBA::ORB_ptr m_orb;
public:
Yourinterceptor Client(CORBA::ORB_ptr TheOrb);
~Yourinterceptor Client() {}
Interceptors::ShutdownReturnStatus shutdown(
Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);
CORBA::String id();

A-10 Using Request-Level Interceptors

Starter Header File Code

void exception_occurred (
const RequestLevellnterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);
Interceptors::InvokeReturnStatus client_invoke (
const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);
Interceptors::ResponseReturnStatus client_response (
const RequestLevellnterceptor::ReplyContext & reply_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

b

class Yourinterceptor Target : public virtual
RequestLevellnterceptor:: TargetRequestinterceptor

{

private:

Yourlnterceptor Target() {}

CORBA::ORB_ptr m_orb;

SecurityLevell::Current_ptr m_security_current; /lused with security

Security::AttributeTypeList * m_attributes_to_get; /lused with security

public:

Yourlnterceptor Target(CORBA::ORB_ptr TheOrb);

~Yourlinterceptor Target();

Interceptors::ShutdownReturnStatus shutdown(
Interceptors::ShutdownReason reason,
CORBA::Exception_ptr & excep_val);

CORBA::String id();

void exception_occurred (
const RequestlLevellnterceptor::ReplyContext & reply_context,
CORBA::Exception_ptr excep_val);

Interceptors::InvokeReturnStatus target_invoke (
const RequestLevellnterceptor::RequestContext & request_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr request_arg_stream,
CORBA::DataOutputStream_ptr reply_arg_stream,
CORBA::Exception_ptr & excep_val);

Interceptors::ResponseReturnStatus target _response (
const RequestLevellnterceptor::ReplyContext & reply_context,
RequestLevellnterceptor::ServiceContextList_ptr service_context,
CORBA::DatalnputStream_ptr arg_stream,
CORBA::Exception_ptr & excep_val);

Using Request-Level Interceptors A-11

A Starter C++ Interceptor Files

A-12 Using Request-Level Interceptors

APPENDIX

Starter Java
Implementation File

This appendix contains a starter interceptor implementation file in Java that you can
use as a place to begin implementing your Java interceptors. If you use this code
example, replace the stringurinterceptor with the name of the interceptor you

are implementing.

import org.omg.CORBA.*;

import com.beasys.Interceptors.*;

import com.beasys.RequestLevellnterceptor.*;
import com.beasys.Tobj.TP;

import com.beasys.CORBA.util.*;

import java.io.*;

/**

* Sample showing ORB simple interceptor functionality

*/

public class InterceptorTemplate implements TargetRequestinterceptor

{

private static String identity = new String("InterceptorTemplate");
private String instancelD;

private ORB theOrb = null;

private static int count = O;

/**

* Default Constructor

*

public InterceptorTemplate()

{
}

/**

* Constructor

instancelD = new String(identity);

Using Request-Level Interceptors B-1

B

Starter Java Implementation File

B-2

*/
public InterceptorTemplate(ORB orb)
{
instancelD = new String(identity);
theOrb = orb;

* The id accessor operation is used by the ORB to obtain
* the vendor assigned identity of the interceptor as a string
* value. This attribute is used primarily for debugging and
* tracing of operations on the interceptors called by the ORB.
*/
public String id()
{

return instancelD;

The exception_occurred operation is called on a request-level
interceptor implementation when an exception occurred.

It is called instead of the <xxx>_response

method of that interceptor. The ORB calls this operation to
allow the interceptor implementation to clean-up any state

that it might have been managing that is specific to a request.

L R

*/

public void exception_occurred(
com.beasys.RequestLevellnterceptor.ReplyContext replyContext,
org.omg.CORBA.SystemException exceptionValue)

TP.userlog(id() + ", InterceptorTemplate.exception_occurred");

}

/**

* The shutdown operation is used by the ORB to notify an

* implementation of an interceptor that the interceptor

* is being shutdown. The ORB will destroy the instance

* of the interceptor once control is returned from the

* operation back to the ORB.

*/

public com.beasys.Interceptors.ShutdownReturnStatus shutdown(
com.beasys.Interceptors.ShutdownReason reason,
org.omg.CORBA.SystemExceptionHolder excep_val)

if (reason.value() == ShutdownReason._ ORB_SHUTDOWN)

TP.userlog(id() + ", ORB Shutdown");
excep_val.value = null;

Using Request-Level Interceptors

return ShutdownReturnStatus. SHUTDOWN_NO_EXCEPTION;

}
/**
The operation is called by the ORB anytime that

invocation is being received by a target object,
regardless of whether the target object is in a

L A

as the target object.
*

an

different address space or the same address space

public com.beasys.Interceptors.InvokeReturnStatus target_invoke(
com.beasys.RequestLevellnterceptor.RequestContext request_context,
com.beasys.RequestLevellnterceptor.ServiceContextList service_context,
org.omg.CORBA.DatalnputStream request_arg_stream,
org.omg.CORBA.DataOutputStream reply_arg_stream,
org.omg.CORBA.SystemExceptionHolder excep_val)

excep_val.value = null;

return InvokeReturnStatus.INVOKE_NO_EXCEPTION;

/**

The operation is called by the ORB anytime that

request, regardless of whether the initiator is in a

L

the target object.
*

a reply

to an invocation is being sent to the initiator of the

different address space or the same address space as

public com.beasys.Interceptors.ResponseReturnStatus target_response(
com.beasys.RequestLevellnterceptor.ReplyContext reply_context,
com.beasys.RequestLevellnterceptor.ServiceContextList service_context,

org.omg.CORBA.DatalnputStream arg_stream,

org.omg.CORBA.SystemExceptionHolder excep_val)

excep_val.value = null;

return ResponseReturnStatus. RESPONSE_NO_EXCEPTION;

Using Request-Level Interceptors

B-3

B Starter Java implementation File

B-4 Using Request-Level Interceptors

Index

A

AppReguestinterceptorlnit operation 9-35

Bootstrap object
invoking in an interceptor 1-4

C

client interceptors

return status values 1-8
client_invoke operation 9-24
client_response operation 9-26
ClientRequestinterceptor interface 9-21
client-side interceptors 1-6
CONNECTION_ABORTED 9-10
customer support contact information xi

D

DatalnputStream interface 9-36
DataOutputStream interface 9-2
deploying interceptors 2-10, 3-7
documentation, where to find it x

E

exception_occurred operation 9-20

|
id operation 9-9
Interceptor interface 9-4
interceptor sample
building and running 6-2
InterceptorData sample interceptor 8-1
interceptors
architecture summary 1-2
class hierarchy 9-2
deploying 2-10, 3-7
developing 2-1, 3-1, 4-1
execution on client side 1-6
execution walkthrough 1-5
instantiating 1-5
InterceptorData sample 8-1
overview 1-1
purpose of 1-4
return status values on client 1-8
return status values on target 1-12
shutting down 9-10
using multiple 1-15
InterceptorSec sample interceptor
interceptors
InterceptorSec sample 7-1
InterceptorSimp sample interceptor
interceptors
InterceptorSimp sample 6-1

interfaces 2-2, 3-2

ClientRequestinterceptor 9-21
DatalnputStream 9-36
Interceptor 9-4

Using Request-Level Interceptors I-1

Requestinterceptor 9-11
TargetRequestinterceptor 9-28

K

KeyAddr discriminator value 9-14

L

LOCATION_FORWARD 9-17
LOCATION_FORWARD_PERM 9-17

M

multiple interceptors 1-15

N

NEEDS_ADDRESSING_MODE 9-17
NO_EXCEPTION 9-17

0
object_to_string operation 9-1
ORB_SHUTDOWN 9-10

P

PersonQuery sample application 5-2
building and running 5-8
command-line interface to 5-3

read_array primitive 9-42

ReferenceAddr discriminator value 9-14

related information xi
ReplyContext structure 9-17
RequestContext structure 9-14
Requestinterceptor interface 9-11
request-level interceptors

overview 1-1

See also interceptors 1-1

See interceptors
RESOURCES_ EXCEEDED 9-10
return status values

on client side 1-8

target 1-12

S

security current object
obtaining 1-4

SecurityCurrent object

obtaining in an interceptor 1-4
shutdown operation 9-10
skeleton header file

creating 2-8, 3-6
support

technical xi
SYSTEM_EXCEPTION 9-17

T

database for 5-2
environment variables for 5-13, 5-17
OMG IDL for 5-5
running 5-14, 5-19
source files for 5-9, 5-15
printing product documentation x
ProfileAddr discriminator value 9-14

target interceptor return status values 1-12
target_invoke operation 9-31
target_response operation 9-33
TargetRequestinterceptor interface 9-28
target-side interceptors 1-10

transactions context object 1-4

U

R USER_EXCEPTION 9-17
read primitive 9-41

-2 Using Request-Level Interceptors

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Interceptor Architecture
	Capabilities and Limitations
	Execution Flow
	Client-side Execution
	Client-side Exception Handling

	Target-side Execution
	Target-side Exception Handling

	The exception_occurred Method
	About Short-circuit Behavior

	Using Multiple Request-level Interceptors
	Multiple Client-side Interceptors
	Multiple Target-side Interceptors

	Interceptors and Implementation Languages
	Interceptors and Meta-operations

	2 Developing C++ Interceptors
	Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications
	Step 2: Write the Interceptor Implementation Code
	Starting the Implementation File
	Initializing the Interceptor at Run Time
	Obtaining the Interface Name from a Request
	Identifying Operations in the Request
	Implementing the Interceptor’s Response Operation
	Reading Parameters Out of a Data Input Stream
	Exceptions

	Step3: Create the Interceptor Header File
	Step 4: Build the Interceptor
	Step 5: Test the Interceptor

	3 Developing Java Interceptors
	Step 1: Identify the Interfaces of Your WebLogic Enterprise Applications
	Step 2: Write the Interceptor Implementation Code
	Starting the Implementation File
	Implementing the Interceptor’s Constructor
	Obtaining the Interface Name from a Request
	Identifying Operations in the Request
	Implementing the Interceptor’s Response Operation
	Reading Data Out of a Data Input Stream

	Step 3: Build the Interceptor
	Step 4: Test the Interceptor
	Notes About Implementing Java Interceptors

	4 Deploying the Interceptor
	Registering an Interceptor
	Unregistering an Interceptor
	Changing the Order in Which Interceptors are Called

	5 PersonQuery Sample Application
	How the PersonQuery Sample Application Works
	PersonQuery Database
	Client Application Command-line Interface

	The OMG IDL for the PersonQuery Sample Application
	Building and Running the PersonQuery Sample Application
	Copying the Files for the PersonQuery Sample Application
	Changing the Protection on PersonQuery Application Files
	Setting the Environment Variables
	Building the Client and Server Applications
	Start the PersonQuery Client and Server Applications
	Running the PersonQuery Sample Application
	Stopping the PersonQuery Sample Application

	Building and Running the Java RLI Sample Applications
	Copying the Files for the Java PersonQuery Samples
	Changing the Protection on PersonQuery Application Files
	Setting the Environment Variables
	Building the Server Application
	Start the PersonQuery Client and Server Applications
	Running the PersonQuery Sample Application
	Stopping the PersonQuery Sample Application

	6 InterceptorSimp Sample Interceptors
	How the PersonQuery Sample Interceptors Work
	Registering and Running the PersonQuery Interceptors
	Registering and Running the C++ Interceptors
	Registering and Running the Java Interceptors

	Examining the Output of the Interceptors
	Unregistering the Interceptors
	Unregistering the C++ Interceptors
	Unregistering the Java Interceptors

	7 InterceptorSec Sample Interceptors
	How the PersonQuery Sample Interceptors Work
	How the InterceptorSec Target-side Interceptor Works
	Using the SecurityCurrent Object
	Obtaining the SecurityCurrent Object
	Creating the List of User Attributes

	Registering and Running the PersonQuery Interceptors
	Registering and Running the C++ Interceptors
	Registering and Running the Java Interceptors

	Examining the Interceptor Output
	Unregistering the Interceptors
	Unregistering the C++ Interceptors
	Unregistering the Java Interceptors

	8 InterceptorData Sample Interceptors
	InterceptorDataClient Interceptor
	InterceptorDataTarget Interceptor
	Implementing the InterceptorData Interceptors
	Registering and Running the InterceptorData Interceptors
	Registering and Running the C++ Interceptors
	Registering and Running the Java Interceptors

	Examining the Interceptor Output
	Unregistering the Interceptors
	Unregistering the C++ Interceptors
	Unregistering the Java Interceptors

	9 Request-Level Interceptor API
	Note on Unused Interfaces
	Interceptors::Interceptor Interface
	C++ Language Mapping
	Java Language Mapping
	C++ Language Mapping
	Java Language Mapping
	C++ Language Mapping
	Java Language Mapping
	C++ Language Mapping
	Java Language Mapping
	C++ Language Mapping
	Java Language Mapping

	Starter Implementation Code
	Starter Header File Code

	Index

