%, hea
BEA WebLogic Enterprise

Using the Notification Service

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the Notification Service

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-0OCSWED SIte....cueiiiceeiee e sr e b eraenaes X
HoW t0 Print the DOCUMENT..........cee ettt sttt e ere e X
Related INfOrmMation...........ocviiiiiiieeece e e e Xi
(0701 = ot AL U LS TR Xi
Documentation CONVENLIONSc.ccecueiieeieie e e e e eereesre e s sraesaeere e ens Xii

1. Overview

1811010 18 [ex oo [T 1-1
FUNCLIONG OVEIVIEW ...ttt sttt ee s sae e saae s an e s 1-2
Product COMPONENLScoeiuiieieereeietie ettt se e se e e e ese e e e eeeseeseenee 1-4

2. Notification Service API Reference

F g oo (171 o o OSSR 2-1
QUALILY OF SEIVICE. ...ttt e 2-2
Obtaining the Channel Factorycocooiieiirenie e 2-3
USING TranSACHIONS.coeciieciectieie et e et se et s st taesraes e ereen e neanes 2-4
Structured Event Fields, Types, and Filters........ccooooo i 2-5
DESIGNING EVENES.....ociiiieicee ettt sttt sr e re e 2-6
Creating FML Field Table Filesfor Events.........cccoccoveevieiecicie e 2-7
Interoperability with BEA Tuxedo Applications..........cccoceeeeerercenenenenn 2-9
Parameters Used When Creating SubSCriptions...........ccccerieeeciincnennns 2-12

BEA SImple EVENtS AP ... e e 2-16
TOBJ_SimpleEvents::Channel Interfaceococeveniveneie e 2-17

Channel ::SUDSCITDE. ..o s 2-19
Channel ::UNSUDSCIDE........c.couiiie e s 2-21

Using the Notification Service iii

iv

Channel::push_structured _eVentccceerrneeireniese e 2-22

Channel: i eXiStS ..ottt e e s 2-23
TOBJ_SimpleEvents::Channel Factory Interfaceccocoeoeveniiiieienens 2-24
Channel_Factory::find_channel ... 2-25
CoSNOtification SErVICE AP ... e e 2-26
Overview of Supported CosNotification Service Classes..........ccccveeeeen. 2-26
Detailed Descriptions of CosNotification Service Classesccoeueees 2-30
CosNotifyFilter::Filter::add_constraints...........cccceeeeeeeernenenenenennn. 2-31
CosNotifyFilter::Filter::destroyccccvevieiecie e 2-33
CosNatifyFilter::FilterFactory::create filter.........ocovveveiecieceennne. 2-34
CosNotifyChannel Admin::StructuredProxyPushSupplier::
connect_structured _push_CONSUMEYc.coerereereeereereeesieneens 2-36
CosNotifyChannel Admin::StructuredProxyPushSupplier::set_qos..2-38
CosNotifyChannel Admin::StructuredProxyPushSupplier::add_filter
2-40

CosNotifyChannel Admin::StructuredProxyPushSupplier::get_filter2-41

CosNotifyChannel Admin::StructuredProxyPushSupplier::
disconnect_structured_push_SUPPLIErcccevvveeererienenienenens 2-42

CosNotifyChannel Admin::StructuredProxyPushSupplier::MyType 2-43
CosNotifyChannel Admin::StructuredProxyPushConsumer::

connect_structured_push_SUPPLIEr.......cceveieiereneceieeeeeine 2-44
CosNotifyChannel Admin::StructuredProxyPushConsumer::
PUSh_StIUCLUrEd_EVENL ... e 2-45
CosNotifyChannel Admin::StructuredProxyPushConsumer::
disconnect_structured_push_CONSUMDBETcccceeererenerenenns 2-47
CosNotifyChannel Admin:: StructuredProxyPushconsumer::MyType.....
2-48
CosNotifyChannel Admin::ConsumerAdmin::
obtain_notification_push_supplier.........ccoeoo i 2-49

CosNotifyChannel Admin::ConsumerAdmin::get_proxy_supplier...2-51
CosNotifyChannel Admin::SupplierAdmin::

obtain_notification_push_CONSUMETcccccevvrveseernesiennenrens 2-53
CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_consumer_admincccccevvevvenenns 2-56
CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_supplier_admin...........cccoceeeiieinennes 2-57

Using the Notification Service

CosNotifyChannel Admin::EventChannel::default_filter_factory 2-58
CosNotifyChannel Admin::EventChannel Factory::get_event _channel ...

2-60
CosNotifyComm:: StructuredPushConsumer::push_structured_event......

2-62

CosNotifyComm:: StructuredPushConsumer::
disconnect_structured _push_CONSUMETccceeereenueeereeneeennes 2-63
CosNotifyComm:: StructuredPushConsumer::Offer_change............ 2-64
EXCEPtion MiNOr COUES.......ccoiuirieieie et e s e eees 2-64
3. Using the BEA Simple Events API

DeVelOPMENT PrOCESS ...t e e s 3-1
DESIGNING EVENES....c.eiiiieieeeeeeeteete ettt sr e sre e sreetaesteenne s 3-2
Step 1: Writing an Application to Post EVents..........ccoooeii e veseeeineee 32
Getting the Event Channeloooi et 33
Creating and POStiNg EVENLSccoiiiiviieeeceecee ettt 34
Step 2: Writing an Application to Subscribe to Events............cccooeeeievencniee. 3-6
Implementing the CosNotifyComm:: StructuredPushConsumer Interface. 3-6
Getting the Event Chann€lcc.ooveiieie e 3-10
Creating a Callback ODJECtcoceeiiiree e 3-10
Creating @ SUDSCIIPLIONccueivieie e et e e 3-13
Step 3: Compiling and Running Notification Service Applications............... 3-17
Generating the Client Stub and Skeleton Files.........ccccoevveveivecieceeeee. 3-17
Building and Running AppliCations...........ccoeverereiereneeie e 3-18

4. Using the CosNotification Service API

DevelOPMENE PIOCESSc.ciiii ettt eee e e see e e e e e eeeneene e 4-1
DESIGNING EVENES.....c.oiieieieeeeteeeteete et ettt sr e e st saesreetaesteenne s 4-2
Step 1: Writing an Application to Post EVents.........cccoooeii e veneceeinee 4-2
Getting the Event Channelooe oot 4-3
Creating and POStiNg EVENLSccooooiieeieieceeeee e 4-4
Step 2: Writing an Application to Subscribe to Events............cccooeeeiivencniee. 4-7

Implementing the CosNotifyComm::StructuredPushConsumer Interface. 4-8
Getting the Event Channel, ConsumerAdmin Object, and Filter Factory

Using the Notification Service %

Creating @ SUDSCHIPLIONcvviie et e 4-16

Step 3: Compiling and Running Notification Service Applications................ 4-19
Generating the Client Stub and Skeleton Files.........cccveiiieievieicienne 4-20
Compiling and Linking the Application Code..........cccoeieeenrneeineeene. 4-21

5. Building the Introductory Sample Application

OVEIVIBIW .ottt e st e st b e st b st b st bt b e en e 5-1
Building and Running the Introductory Sample Application............ccccceveenee. 5-4
Verifying the Settings of the Environment Variables...........cccccoc e 5-5
Copying the Files for the Introductory Sample Application into a Work
(D1 (= (0] YRR 5-6
Changing the Protection Attribute on the Files for the Introductory Sample
PN o] o L= 1 o] o OSSR 5-10
Setting Up the ENVIFONMENT ..ot 5-11
Building the Introductory Sample Applicationccooveeeieiniecienennens 5-11
Starting the Introductory Sample Application........c.ccccvvoirieienciennee 5-12
Using the Introductory Sample Application..........ccccoveeeeircnienenenenienn. 5-13
Shutting Down the System and Cleaning Up the Directory 5-15

6. Building the Advanced Sample Application

OVEIVIBIW ..ottt ettt e e e e b st b e st be st e b et eb e en e 6-1
Building and Running the Advanced Sample Application.............cccccceeenenene 6-6
Verifying the Settings of the Environment Variables...........ccccoveveeennee 6-7
Copying the Files for the Advanced Sample Application into a Work
(D1 £= (0] YRS 6-9
Changing the Protection Attribute on the Files for the Advanced Sample
PN o] o L= 1 o] o OSSR RPRRSR 6-14
Setting Up the ENVIFONMENTooviiiiiiiece e 6-15
Building the Advanced Sample Applicationccccoeveveeeeinienienie e 6-15
Starting the Advanced Sample Applicationcceoennneiieieneiene 6-16
Using the Advanced Sample AppliCation...........ccceeereeeeeereniene e 6-18
Shutting Down the System and Cleaning Up the Directory 6-21

7. Notification Service Administration Guide

INEFOTUCTION ...ttt e e e e e e 7-2
Configuring the Notification SErvice ... 7-2

Using the Notification Service

Configuring Data Filters.........oocoueieiee e s e 7-3

Setting the HOSt @nd POrt..........cc.oiiiii e e 7-5
Creating a TranSaCtionN LOQoeverueieierneeeieees ettt e e sresee e 7-7
Creating EVENt QUELES..........ccuicieie ettt sttt ste st s te st e beere st saeasae e enesnas 7-7
Determining Space Parameters for Transient and Persistent Subscriptions....

7-8
Creating a Device on Disk for the Queue Space..........ccoeveeeveveeneeuinnen. 7-11
Configuring @ QUEUE SPACE........c.uerereeuirierierie e eeesesie e e e e seeeseeeeene 7-11
Creating the QUEUES.........coue ittt ens 7-12
Setting | PC Parameters on Microsoft Windows NT ..o 7-14
Creating the UBBCONFIG File and the TUXCONFIG File.........ccccvueenene. 7-17
Managing the NotifiCation SErVICe........ccvieveveeie e 7-23
Synchronizing Databasescccccuveiecuieie e s 7-24
Purging the System of Dead SUDSCIPtioNS.........cccueerieriere e 7-24
Monitoring Queue UtiliZationccocevevievivie e 7-25
Purging the Queues of Unwanted EVents..........ccccccoeeeccenecceeie e e, 7-26
Managing the Error QUEUE..........ceevveeeeeeeeree ettt 7-26
Notification Service Administration Utility and Commands............ccccueu...... 7-27
NESAAMIN ULHTILY oo e e e 7-27
(01570 |0 T o USSR 7-28
NtSAAMIN COMMEANGS........coeiiieireieie et e e eees 7-29
Using the ntsadmin ULIILYcccoovveiiiien e 7-32
NOUIFICAION SEIVEIS....ei ittt e s 7-34
TIMINTS ettt et st e 7-35
TIMNTSFWD _T ittt et et s s e 7-36
TMNTSFWD _ Pttt e s e e 7-37

Index

Using the Notification Service Vii

Viii Using the Notification Service

About This Document

This document describes using the Notification Service in the BEA WebL ogic
Enterprise™ product. This document defines concepts associated with using the
Notification Service and describes the development process for Java and C++
applications. In addition, instructions for building and running the Notification sample
applications and descriptions of the Notification Service application programming
interface (API) and administrative tasks and tools are included in this document.

This document covers the following topics:

+

Chapter 1, “Overview,” provides a basic description of the Notification Service
and its components.

Chapter 2, “Notification Service API Reference,” describes the application
programming interfaces supported by the Notification Service software.

Chapter 3, “Using the BEA Simple Events API,” describes how to develop
Notification Service applications using the BEA Simple Events APl in C++ and
Java.

Chapter 4, “Using the CosNotification Service API,” describes how to develop
Notification Service applications using the CosNotification APl in C++ and
Java.

Chapter 5, “Building the Introductory Sample Application,” provides an
overview of the Introductory sample applications and describes how to build and
run them.

Chapter 6, “Building the Advanced Sample Application,” provides an overview
of the Advanced sample applications and describes how to build and run them.

Chapter 7, “Notification Service Administration Guide,” describes the
administrative tasks and tools provided with the Notification Service software.

Using the Notification Service iX

What You Need to Know

This document is intended for system administrators and programmers who design,
develop, configure, and manage Notification Service applications.

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site attp://www.adobe.corh

X Using the Notification Service

How to Print the Document

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA

Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see tebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WeBSUPPORWeatw.bea.comYou can also

contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company nhame and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using the Notification Service Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.

M onospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMVAP

f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text

void commit ()

nonospace Identifies variables in code.

italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Xii Using the Notification Service

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using the Notification Service Xiii

Xiv Using the Notification Service

CHAPTER

1 overview

Thistopic includes the following sections:
m Introduction
m Functiona Overview

m Product Components

Introduction

The Notification Service provides an event service for WebL ogic Enterprise. It is not
meant to be a standalone product, but rather a layered product on WebL ogic
Enterprise.

The Notification Service offers similar capabilities to those of the BEA Tuxedo Event
Broker, but with a programming model and interfacethat is natural for CORBA users.
A side effect of this approach is that the majority of the CORBA-based Notification
Serviceis not supported since it is either incompatible with, or provides capabilities
well beyond that of the BEA Tuxedo Event Broker.

The Notification Service isaWebL ogic Enterprise subsystem that receives event
posting messages, filters them, and distributes them to subscribers. A poster isa
WebL ogic Enterprise application that detects when an event of interest has occurred
and reports (posts) it to the Notification Service. A subscriber isaWebL ogic
Enterprise application that requests that some notification action be taken when an
event of interest is posted.

Using the Notification Service 1-1

1 overview

The concept of an “anonymous” service—the Notification Service—that receives anc
distributes messages provides another client-server communication paradigm to
WebLogic Enterprise. Instead of a one-to-one relationship between a requester and
provider, an arbitrary number of posters can post a message for an arbitrary number
subscribers. The posters simply post events, without knowing who receives the
information or what is done about it. The subscribers can receive whatever informatio
they are interested in from the Notification Service, without knowing who posted it,
and subscribers can be notified and take action in a variety of ways.

Typically, Notification Service applications are designed to handle exception events.
The application designer has to decide what events in the application need to be
monitored. In a banking application, for example, an event might be posted for an
unusually large withdrawal transaction; but it would not be particularly useful to post
an event for every withdrawal transaction. And not all users would need to subscribe
to that event; perhaps just the branch manager, would need to be notified.

The programming model for the WebLogic Enterprise Notification Service is based or
the CORBA programming model. There are two sets of interfaces: one is a minimal
subset of the CORBA-based Notification Service interface (referred to in this
document as the CosNotification Service interface), and the other is the BEA Simple
Events interface (a BEA proprietary interface) designed to be easy to use. Both
interfaces pass standard, structured events, as defined by the CORBA-based
Notification Service specification.

The two interfaces are compatible with each other; that is, events posted using the
CosNotification Service interface can be subscribed to by the BEA Simple Events
interface and vice versa.

Functional Overview

The WebLogic Enterprise Notification Service system comprises three basic
components (see Figure 1-1):

m The event poster, or supplier

The supplier is the producer of events. It creates events and posts them to the
Notification Service.

m The Notification Service, also known as the event channel.

1-2 Using the Notification Service

Functional Overview

The Notification Service processes events.

m The event subscriber, or consumer

The consumer is the recipient of the events. It connects to the Notification
Service and subscribes to some set of events.

When the Notification Service receives an event that matches a consumer’s
subscription, it attempts to deliver the event to that consumer. There can be many
suppliers and consumers. Logically, there is only one Notification Service, even
though the Notification Service can be replicated.

Figure1-1 Notification Service M odel

Notification
Service

Subscriber

According to the CORBA-based Notification Service specification, event posters
always use the push model. Thus, event posters push events to the Notification Service
by invoking an operation. The Notification Service takes responsibility for filtering

and delivering the event. There is no direct association between event posters and
event subscribers. At any point in time there may be zero, one, or many event posters
or event subscribers.

Also, according to the CORBA-based Notification Service specification, subscribers
can select one of two event delivery models, push or pull. Only the push model is
supported in this release of WebLogic Enterprise. Thus, the Notification Service
pushes events to the consumer by invoking an operation on the consumer. Depending
on the quality of service (QoS) of the matching subscription, the event might be stored
durably, pending delivery to the consumer.

Using the Notification Service 1-3

1 overview

Product Components

1-4

The WebL ogic Enterprise Notification Service supports the following:
m A BEA Simple Events application programming interface (API) for ease of use.
m A minima set of operations defined by the CosNotification Service API.

m Two qualities of service (QoS) for subscriptions: transient and persistent.

For transient subscriptions, the Notification Service makes only one attempt to
deliver the event to a subscriber. If that attempt fails, the event is discarded and
if the Notification Service determines that the subscriber is shutdown or
otherwise not available, the subscription is cancelled.

For persistent subscriptions, if the first delivery attempt fails, the Notification
Service holds the event and keeps attempting to deliver the subscription until the
configurable retry limit is reached. After the retry limit is reached, the
Notification Service movesthe event to an error queue, whereit is held for
disposition by the system administrator. The system administrator either removes
the event from the error queue, which in effect discards it, or moves it back to
the pending queue so that further attempts to deliver it can be made.

m Using the UBBCONFI Gfile for initial configuration of the system, event queues,
and server processes.

m Using the BEA Tuxedo style FML field tables. Through the use of FML field
tables, the Notification Service can support:

e FEvent datafiltering between event posters and event subscribers.

e Interoperability with BEA Tuxedo Event Broker such that events posted by
the Notification Service can be consumed by the Tuxedo Event Broker and
viceversa

m Using the following WebL ogic Enterprise servers to process events:
e TMNTS
e TMNTSFWD_P
e TMNTSFWD_T

m Using the following BEA Tuxedo system serversto process events:

Using the Notification Service

Product Components

e TMSYSEVT
e TMUSREVT
e TMQUEUE
e TMQFORWARD

Using the WebL ogic Enterprise nt sadnmi n administrative utility to manage event
queues.

Using the BEA Tuxedo gmadni n administrative utility to configure and manage
event queues.

Using the BEA Tuxedo t madni n administrative utility to configure and manage
transaction logs.

Using the Notification Service 1-5

1 overview

1-6 Using the Notification Service

CHAPTER

2 Notification Service
API Reference

Thistopic includes the following sections:
m Introduction

m BEA Simple Events AP

m CosNotification Service API

Introduction

The BEA Notification Service supports two application programming interfaces. One
is based on the CORBA -based Notification Service as defined by the CORBAser vices.
Common Object Services Specification. Thisinterfaceis referred to in this document
as the CosNotification Service interface. The other interface, called the BEA Simple
Eventsinterface, isaBEA proprietary interface designed as an easier to use alternative.

Both interfaces pass structured events as defined by the CORBA-based Notification
Service specification and are compatible with each other; that is, events posted using
the CosNotification Serviceinterface can be subscribed to by the BEA Simple Events
interface and vice versa

Before using the Notification Service APIs, consider the following topics:
m Quality of Service

m Obtaining the Channel Factory

Using the Notification Service 2-1

2 Notification Service API Reference

m Using Transactions
m Structured Event Fields, Types, and Filters
m Creating FML Field Table Files for Events

m Interoperability with BEA Tuxedo Applications

Quality of Service

To determine the persistence of the subscription and whether or not events delivery is
retried following a failed delivery, subscribers specify a Quality of Service (QoS).
There are two Quality of Service settings: persistent and transient Quality of Service
(QOS). The QoS is a property of the subscription.

Persistent Subscriptions

Persistent subscriptions provide strong guarantees about event delivery and the
permanence of the subscription. Persistent subscriptionsdo comewith acost, however,
asthey consume more system resources (for example, disk space, CPU cycles, and so
on), and require more administration (such as managing queues and detecting dead
subscribers).

Persi stent subscriptions exhibit the following properties:

m Thesubscription isin effect until an unsubscribe operation is performed. This
means that a subscriber application can be shut down and its subscription can
still be active. In this case, events are stored for the subscriber and, when the
subscriber restarts, are delivered to the subscriber without it having to recreate
the subscription.

m If an event cannot be delivered, event delivery isretried until the administrative
retry limit is exceeded.When the event retry limit has been exceeded, the event
ismoved from the pending queue to an error queue. An administrator can move
events from the error queue back to the pending queue, where delivery attempts
will restart.

m If an event is successfully delivered to a subscriber, but the Notification Service
for some reason does not receive the “successful delivery” return message, the
Notification Service may deliver the same event more than once.

2-2 Using the Notification Service

Introduction

Transient Subscriptions

Transient subscriptions provide the best performance with the least overhead and
exhibit the following properties:

m One attempt is made to deliver the event to each matching subscription. If that
attempt fails, the event is lost.

The subscriptionisin effect until afailed event delivery isdetected. On detection of a
failed delivery, the subscription is terminated. Normally, the Notification Service, for
performance reasons, does not check whether it successfully delivered an event to a
transient subscriber. However, occasionally, when the Notification Service deliversan
event to atransient subscriber, it checks whether or not the event was successfully
delivered. If it was not successfully delivered and the CORBA: : TRANSI ENT exception
is not returned, the Notification Service assumes that the subscription has gone away
and cancels the subscription. If the Notification Service receivesthe

CORBA: : TRANSI ENT exception when an attempt to deliver fails, it assumes that the
subscriber is busy and discards the event, but it does not cancel the subscription.

The automatic cancellation of dead transient subscriptions provides a cleanup
mechanism for transient subscribersthat forget to unsubscribe. Note, however, that the
Notification Service checks for successful delivery thefirst timeit sendsan eventto a
subscriber, but does not perform it again until five minutes have elapsed and it delivers
another event. Therefore, the interval between checksis at |east five minutes, but will
belonger if thereisno event to deliver when five minutes have elapsed. The minimum
interval of five minutesisfixed and cannot be changed. Therefore, event delivery
failureisnot necessarily detected on thefirst failed delivery attempt. Itisonly detected
when the Notification Service checks.

Obtaining the Channel Factory

The Channel Factory is used by event poster applications and subscriber applications
to find the event channel. The event channel isthen used to post events and to
subscribe, or create subscriptions, and unsubscribe, or cancel subscriptions.

Notification Service applications use the Bootstrap object to obtain an object reference
to the event channel factory. Thisis done by using the

Tobj _Bootstrap: :resol ve_ini tial _references operation. The Bootstrap
object supports two service IDsfor Notification Service applications,

Not i ficati onServi ce and Tobj _Si npl eEvent sSer vi ce. The

Using the Notification Service 2-3

2 Notification Service API Reference

Not i fi cationServi ce objectisused in applications that use the CosNotification
Service API. TheTobj _Si npl eEvent sSer vi ce object isusedin applicationsthat use
the BEA SimpleEvents API.

ServicelD Object Type

NotificationService CosNot i f yChannel Adm n: : Event Channel Factory

Tobj _Si npl eEventsServi ce Tobj _Sinpl eEvent s: : Channel Fact ory

Using Transactions

The behavior regarding transactions is the same for the BEA SimpleEvents APl and
the CosNotification Service API. The only operation that supports transactional
behavior is push_st ruct ured_event , which is supported by the

CosNot i f yChannel Adni n: : St ruct ur edPr oxyPushConsuner and

Tobj _Si npl eEvent s: : Channel interfaces. All other operations can be used in the
context of atransaction, but work the same regardless of whether they are executed in
atransaction or not.

The behavior when posting an event is tied to the QoS of the subscription. If an event
is posted in the context of atransaction, and the event delivery QoS of the subscription
is persistent, the delivery will be affected by the outcome of the transaction; that is, if
the transaction is committed, the Notification Service attempts to deliver the event to
subscribers asit normally would. If the transaction isrolled back, then the Notification
Service does not attempt to deliver the event.

If an event is posted in the context of a transaction, and the event delivery QoS of the
subscriber’s subscription is transient, one attempt will be made to deliver the event,
regardless of the transaction outcome. That is, the transaction has no effect on whett
the event is delivered or not, and one attempt will be made to deliver the event.

Note: There is no transaction context associated with event delivery. However, in the
case of persistent subscriptions, once the poster’s transaction commits, the
Notification Service guarantees that the event will be delivered to the
subscriber or put on the error queue to await administrative action.

2-4 Using the Notification Service

Introduction

Structured Event Fields, Types, and Filters

All events that are either pushed by posters to the Notification Service, or delivered to
subscribers, are COS Structured Events; that is, they conform to the definition of

Structured Events as specified by the CORBA-based Notification Service—a service
which extends the CORBAservices Event Service (see Figure 2-1). If the events are to
be filtered based on content (versus filtering on domain and type), or if the events are
going to be subscribed to by BEA Tuxedo applications, then additional restrictions
apply. The restrictions apply to data types and filtering based on event content. These
restrictions are explained below.

Figure2-1 Structured Event

domain_name

type_name — Fixed Header

Event Header — event_name

priority 1-100 Variable Header
name value
name value .
—— Filterable Body
Event Body —] Fields
name value
remainder_of_body Remaining Body

m The Fixed Header section consists of three fields that can be used when you
create structured events: fixed_header.event_type.domain_name and
fixed_header.event_type.type name, and fixed_header.event_type.event_name.
When an event is posted all three of the these fields are passed in the
Notification Service. However, when subscriptions are created, only the first two
fields, domain_name and type_name, are used to filter events. These fields are
defined in the subscription as regular expressions. The event_name field cannot
be used in subscriptions.

m The Variable Header consists of a single name/value (NV) pair, namely Priority.
Priority can take a value in the range 1-100 (versus a range of —32767 to 32767
as specified in CORBA Notification Service specification). Priority is used
internally to the system to prioritize the processing of events. The highest
priority is 100. There is no guarantee that higher priority events will, in fact, be

Using the Notification Service 2-5

2 Notification Service API Reference

given priority over lower priority events. The support provided for the Variable
Header differs from that specified in the CORBA Notification Service
specification in two ways: first, thereis asingle field supported (Priority) versus
the five fields listed in the specification; and second, user-defined fields are
supported, but no action istaken in response to their content. The user-defined
fields are merely passed through.

m TheFilterable Body consists of zero or more NV pairs. The values in these pairs
are limited to the following types: any, | ong, unsi gned | ong, short,
unsi gned short, octet, char, fl oat, doubl e, st ri ng, bool ean, voi d, and
nul | . These fields can be used in filter expressions.

m TheRemaining Body consists of asingle ANY. The value is limited to the
following types: any, | ong, unsi gned | ong, short, unsi gned short, octet,
char, fl oat, doubl e, string, bool ean, voi d, and nul | . Thisfield cannot be
used in afilter expression.

Designing Events

2-6

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensurethat your Notification Servicewill be ableto handle
your needs now and allow for future growth.

The Notification Service supports five levels of event design: (1) domain name, (2)

type name, (3) priority, (4) filterable data, and 5) remainder of body. When designing

an event, you must specify adomain name and atype name; priority and filterable data

are optional. The domain name you choose can relate to your business. Hospitals, for
example, arein the health care business, so for aNotification Service application for a
hospital you might choose “HEALTHCARE" as a domain nhame. You might want to
categorize the events by the type of insurance provider, so you may choose “HMO” 0
“UNINSURED?” as the type name. You may want to further define the events by the
entity responsible for payment, so you might choose to use the filterable data to
identify the entity as “billing” for a specific “HMO_Account” or a specific or
“Patient_Account.” Listing 2-1 shows an example of this type of event design.

Using the Notification Service

Introduction

Listing 2-1 Event Design

domain_name = “HEALTHCARE"
type_name = “HMO”

#Filterable data name/value pairs.
filterable_data.name = “billing”
filterable_data.value = 4498
filterable_data.name = “patient_account”
filterable_data.value = 37621

Obviously, the more specific and precise you arein designing the events that you want
your Notification Service application to post and receive, the fewer will be the events
the Notification Service will have to process. This has a direct impact on system
resources and configuration requirements. Therefore, alot of thought should be given
to event design.

Creating FML Field Table Files for Events

Y ou must create Field Manipulation Language (FML) field tablefiles for events only
if one of the following capabilitiesis required; otherwise FML tables are not required.

m Event datafiltering (in addition to domain and type fields) between WebL ogic
Enterprise event posters and subscribers

m Interoperability between the WebL ogic Enterprise Notification Service and the
BEA Tuxedo Event Broker

A structured event'si | t er abl e_dat a field contains a list of name/value (NV) pairs.

An event's data is typically stored in this list. The field names in the FML field table
files must match the name in the structured event. The field type can be any allowable
FML type (ong, short, doubl e, f | oat, char, string) exceptcarray. The value

in the structured event must be the same type as defined in the field table. Table 2-1
shows the CORBA Any Types supported by WebLogic Enterprise, and which ones can
be used for data filtering and BEA Tuxedo interoperability.

Using the Notification Service 2-7

2 Notification Service API Reference

Table 2-1 Supported CORBA Any Types

CORBA Any Supported for Data Filtering and Tuxedo Interoper ability

Types

short Yes
| ong Yes
unsi gned No
short

unsi gned No
| ong

f1 oat Yes
doubl e Yes
char Yes
bool ean No
oct et No
string Yes
voi d No
nul | No
any No

Listing 2-2 shows an example of an FML field table file. The *base 2000 isthe base
number for thefields. Thefirst entry hasafield name of bi I I i ng, afield number of 1
relative to the base, and afield type of | ong.

2-8 Using the Notification Service

Introduction

Listing 2-2 Data Filtering FML Field TableFile

*base 2000

#Fi el d Nane Field # Field Type Fl ags Conmrent s
He e e e e e e oo o e eieaif e mmmmeee emmmee mmeeee e
billing 1 | ong - -

st ock_nanme 2 string - -
price_per_share 3 doubl e - -
nunber _of shares 5 | ong - -

The following guidelines and restrictions apply to WebL ogic Enterprise FML field
tablefiles:

m The FML filename cannot exceed 15 charactersin length.

m Because WebL ogic Enterprise uses FML 32, the base number plus the field
number is restricted to be between 101 and 33,554,431, inclusive.

m When FML is used with other software that also usesfields, additional
restrictions may be imposed on field numbers.

For information on how to create and configure FML field table files, see
fi el d_t abl es(5) in the BEA Tuxedo Reference and the BEA Tuxedo FML
Programmer’s Guide

Interoperability with BEA Tuxedo Applications

Applications that use the WebL ogic Enterprise Notification Service are interoperable
with BEA Tuxedo applicationsthat usethe BEA Tuxedo Event Broker. An application
using the WebL ogic Enterprise Notification Service can post eventsthat are delivered
to BEA Tuxedo Event Broker subscribers, and can receive events that have been
posted by BEA Tuxedo Event Broker.

To achieve this interoperability, it is necessary to understand the mapping between
CosNatification Structured Events and the BEA Tuxedo FML buffer so that the
contents of the FML field tables can be coordinated between BEA Tuxedo and
WebL ogic Enterprise. There are two cases to consider: posting events that are to be

Using the Notification Service 2-9

2 Notification Service API Reference

received by BEA Tuxedo applications via BEA Tuxedo Event Broker; and receiving
events that have been posted to the Notification Service Event Channel by BEA
Tuxedo applications.

Posting Events

For aBEA Tuxedo application to subscribe to events posted by aWebL ogic Enterprise
application, you must understand how a WebL ogic Enterprise structured event is
mapped to FML32 and the event name at posting time. The mapping is as follows:

m Thedomain_name and type_name are assembled into a string in the form
domai n_nane. t ype_nane to form the event name. This is the event name
(eventname parameter) used on the t ppost operation.

m Each name/value (NV) pair in the Filterable Body and the variable header
portion of the structured event is mapped to an FML 32 field of the same name if
thefield is also defined in FML. If you set the domain to “TMEVT”, then the
event name eguals the type name.

Receiving Events

BEA Tuxedo system events and user events can be received by WebL ogic Enterprise
applications. System events are generated by the BEA Tuxedo system—not by
applications. User events are generated by BEA Tuxedo applications. For a listing o
System events s&ENTS(5) in theBEA TUXEDO Reference. System events and user
events are mapped in CosNotification Structured Events as follows:

Structured Event Fields Value

domai n_name Always set to “TMEVT”
type_name Empty string
event_name Empty string

Variable Header (Priority) Empty sequence

Filterable Body Fields Same as FML field name

Note: Filterable body fields consist of name/value pair,
where the name portion is the same as the FML
field name.

2-10 Using the Notification Service

Introduction

Structured Event Fields Value

Remainder of Body Always set to void

The BEA Tuxedo system detects and posts certain predefined events related to system
warnings and failures. For example, system-generated events report on configuration
changes, state changes, connection failures, and machine partitioning.

In order for a WebL ogic Enterprise application to receive events posted by a BEA
Tuxedo application, it isnecessary to understand how aFML buffer containing aBEA
Tuxedo event isused to fabricate a WebL ogic Enterprise structured event. It isalso
necessary to know how the donmai n_nane and t ype_nane are related to the BEA
Tuxedo event name. There are two cases to consider: system events and user events.

Note that BEA Tuxedo uses aleading dot (".") in the event name to distinguish
system-generated events from application-defined events. An example of a system
event is. SysNet wor kDr opped. An example of auser event isevent sdr opped. To
subscribe to these events, the Notification Service subscriber application must define
the subscription as follows:

m System event

domain_name =“TMEVT”
type_name=".SysNetworkDropped”

m User event

domain_name =“TMEVT”
type_name="eventsdropped”

When the events are received, the Notification Service subscriber application
parses each event as follows:

domain_name="TMEVT"

type_name=""

event_name=""

variable_header=empty

Filterable data=(content of the FML buffer)

Using the Notification Service 2-11

2 Notification Service API Reference

Parameters Used When Creating Subscriptions

When you create subscriptions, you can specify the following parameters. These
parameters support the BEA Simple Events API and the CosNotification Service API.

subscri ption_nane
Specifies a name that identifies the subscription to the Notification Service
and the subscriber. Applications should use names that are meaningful to a
system administrator since thisis the primary way that an administrator
associ ates an application with a subscription and the eventsthat are delivered
to the subscriber via the subscription. This parameter is optiona (that is, an
empty string can be passed in). More than one subscription can use the same
name.

Thesubscri pti on_nanme must not exceed 128 characters in length.

domai n_t ype
Same parameter asthe domai n_t ype field in the Fixed Header portion of a
structured event, as defined by the CORBA -based Notification Service
specification. Thisfield isastring that is used to identify aparticular vertical
industry domain in which the event type is defined, for example,
“Telecommunications”, “Finance”, and “Health Care”. Because this
parameter is a regular expression, you can also use it to set domain pattern
on which to filter. For example, to subscribe to all domains that begin with
the letter F, set the domain‘@*’ . For information on how to construct
regular expressions, see the recomp (3) command in the BEA Tuxedo
Reference.

type_nane
Same parameter asthe type_name field in the Fixed Header portion of a
structure event, as defined in the CORBA-based Notification Service
specification. It isastring that categorizesthe type of event, uniquely within
the domain, for example, Comm_alarm, StockQuote, and VitalSigns.
Becausethis parameter isaregular expression, you can also useit to set event
type patterns on which to filter. For example, to subscribe to all event types
that begin with theletter F, you would set thetypeto“F.** . For information
on how to construct regular expressions, see the recomp (3) command in the
BEA Tuxedo Reference.

2-12 Using the Notification Service

Introduction

data filter
Specifies the values of the fields of filterable data and variable headers on
which you want to filter. For example, a subscription to news stories may
have a domain of “News”, a type of “Sports”, and a data_filter of “Scores >
20".

This parameter defines the data that the subscription must match in Boolean
expressions. The following data types are supposteatt , | ong, char,

fl oat, doubl e, andst ri ng. Table 2-2 lists the Boolean expression

operators that are supported.

Table 2-2 Boolean Expression Operators

Expression Operators

unary +, -, !, ~
multiplicative * |, %

additive +, -

relational <,> <=,>=,==,1=
equality and matching ==, 1=, %%, !%
exclusive OR A

logical AND &&

logical OR Il

To use data filtering, you must set up an FML table, include filters in the subscription,
filter the data, and post the event. Listing 2-3 shows an example of these tasks.

Using the Notification Service ~ 2-13

2 Notification Service API Reference

2-14

Listing 2-3 Data Filtering Requirements

//Setting up the FM. Tabl e

Field table file.

*base 2000

*Fi el d Nane Field # Field Type FI ags Conmrent s

St ockNare 1 string - -
Pri cePer Share 2 doubl e - -
Custoner | d 3 | ong - -
Cust oner Nane 4 string - -

/1 Subscription data filtering.

"Nunber Of Shares > 100 && Number Of Shares < 1000"
"Qustonerld == 3241234"
"PricePerShare > 125. 00"

" St ockNane == ' BEAS "
"Cust oner Nane %%’ .*Jones.*’" // CustonerNane contains "Jones"
"St ockNane == ' BEAS' && PricePer Share > 150. 00"

/1 Posting the event.

I

CH+

CosNot i fication::StructuredEvent ev;

ev.
ev.
ev.
ev.
ev.
ev.
ev.
ev.

I

filterabl e_datal0].nane = CORBA: : string_dup("StockNanme");
filterable_data[Q].val ue <<= "BEAS';

filterabl e_datal1].nane = CORBA: : string_dup("PricePer Share");
filterable_data[1].val ue <<= CORBA: : Doubl e(175. 00) ;

filterabl e_datal?2].nane = CORBA: :string_dup("Customerld");
filterable_data[?2].val ue <<= CORBA: :Long(1234567);

filterabl e_datal 3].nane = CORBA: : string_dup("CustomerNanme");
filterable_data[3].val ue <<= "Jane Jones";

Java

Struct ur edEvent ev;

ev.
ev.
ev.
ev.
ev.
ev.
ev.
ev.

filterable_ data
filterable_ data

0] . nane = " St ockName";
0] . val ue.insert_string("BEAS");

[

[
filterable_data[1].name = "PricePer Share";
filterable_data[1].val ue.insert_doubl e(175. 00);
filterable_data[?2].name = "Customnerld";
filterable_data[?2].val ue.insert_| ong(1234567);
filterable_data[3].name = "Customnmer Name";

[

filterable_data[3].value.insert_string("Jane Jones");

Using the Notification Service

Introduction

For more information about filter grammar, see “Creating FML Field Table
Files for Events” on page 2-7 and the section “Boolean Expression of fielded
Buffers” in theBEA Tuxedo FML Programmer’s Guide

push_consuner
Identifies the callback object that will be used by the Notification Service to
deliver a structured event. Subscriber applications must implement the
CosNotifyComm:: StructuredPushConsumer interface so that the Notification
Service can cdll it to deliver events.

Note: You can useeither transient or persistent object referencesfor the callback
objects. Both QoS and application run times should be taken into
consideration when deciding which type of object reference to use. For
information to assist you in deciding which type of object referenceto use,
refer to Table 2-3.

Table 2-3 When to Use Transient Ver sus Persistent Object Referencesfor Joint Client/Servers

If the subscription ... Then ...

Will have atransient QoS Y ou should use atransient object reference. It this case, BEA Systems, Inc.

and will start and shut recommends the subscriber application unsubscribe on shutdown so asto release
down once. system resources, however, thisis not arequirement.

Will have a persistent QoS Y ou should use atransient object reference.
and will start and shut
down once.

Will have apersistent Qos Y ou must use a persistent object reference and store the host and port so the same
and will start and shut host and port is used each time the subscriber shuts down and restarts. In this case,
down multiple times. use of the bidirectional 110P feature is not recommended.

Note: If ajoint client/server isused, it must be remote (outside the WebL ogic
Enterprise domain) because persi stent object references are not supported
inside the domain.

Will have atransient QoS Y ou can use a persistent object reference; however, BEA Systems, Inc. does not
and will start and shut recommend this configuration unless you can guarantee that no events for this
down multiple times. subscriber will be posted while the subscriber is shut down.

qos (quality of service)
Specifies the desired quality of service of the subscription. It can take one of
two values: transient or persistent.

Using the Notification Service ~ 2-15

2 Notification Service API Reference

For transient subscriptions, the Notification Service makes only one attempt
to deliver the event to asubscriber. If that attempt fails, the event isdiscarded
and, if the Notification Service does not receive the CORBA: : TRANSI ENT
exception, it concludes that the subscriber is shutdown or otherwise not
available and cancel sthe subscription. If the Notification Service receivesthe
CORBA: : TRANSI ENT exception when an attempt to deliver fails, it assumes
that the subscriber is busy and discards the event, but it does not cancel the
subscription.

For persistent subscriptions, if thefirst delivery attempt fails, the Notification
Service holds the event in the pending queue and keeps attempting to deliver
the subscription until the configurable retry limit is reached. When the retry
limit is reached, the Notification Service moves the event on an error queue
whereit isheld for disposition by the system administrator. The system
administrator either removes the event from the error queue, which in effect
discardsit, or movesit back to the pending queue so that further attemptsto
deliver it can be made.

Note: For persistent subscriptions, the Notification Service always does a

two-way invoke on callback objects to deliver events. If ajoint
client/server does not activate a callback object (the event receiver) before
it callsor b- >r un and then the Notification Serviceinvokes on the callback
object, as far as the POA is concerned, the callback object does not exist.
In this case CORBA: : OBJECT_NOT_EXI ST exception is returned. If the
Notification Servicereceivesa CORBA: : OBJECT_NOT_EXI ST exception, it
dropsthe subscription and the event; otherwise, the subscription isretained
and the event is retried.

BEA Simple Events API

2-16

Simplicity and ease-of-use are the defining characteristics of the BEA Simple Events
application programming interface (API). Its capabilities are similar to those of the
BEA Tuxedo Event Broker.

The BEA Simple Events API consists of the following interfaces (see Figure 2-2):
® Tobj _Sinpl eEvents: : Channel
m Tobj _Sinpl eEvents:: Channel Factory

Using the Notification Service

BEA Simple Events API

m CosNoti fyConm : StructuredPushConsuner

Figure2-2 BEA Simple EventsInterfaces

Channel
Factory
Interface

Channel
Interface

! Implemented in the i
| Subscriber’s Callback !
! |
]

Push
Consumer
Class

The Tobj _Si npl eEvent s: : Channel and the
Tobj _Si npl eEvent s: : Channel Fact or y interfaces are implemented by the
Notification Service and are described below.

The CosNot i f yComm : St ruct ur edPushConsumner interface isimplemented by the
subscribers. For adescription of thisinterface, see
“CosNotifyComm::StructuredPushConsumer::push_structured_event” on page 2-62.

Note: The CosNotification Service classes referred to in this section are fully
described in the CosNotification Service IDL files, which are located in the
w edi r/ i ncl ude directory.

Note: If you use class operations that are not supporteaREA: : NO_| MPLEMVENT

exception is raised.

TOBJ_SimpleEvents::Channel Interface

The Channel interface is used:

m By subscribers to subscribe and unsubscribe to events and to determine if a

subscription exists

m By posters to post events to the Notification Service

Using the Notification Service 2-17

2 Notification Service API Reference

2-18

This interface provides these operations:

subscri be()

e unsubscri be()

e exists()

e push_structured_event ()

The CORBA IDL for thisinterface:

nodul e Tobj _Si npl eEvent s

{

t ypedef
typedef string Regul ar Expressi on;
typedef string FilterExpression,;

| ong Subscri ptionl D,

const Subscripti onType TRANSI ENT_SUBSCRI PTI ON = O;
const Subscripti onType PERSI STENT_ SUBSCRI PTI ON = 1;

interface Channel

voi d push_structured_event (

in CosNotification::StructuredEvent event);

Subscriptionl D subscribe (

n

5 3 3355

string subscri pti on_nane,
Regul ar Expr essi on domai n,

Regul ar Expr essi on type,

Fil ter Expression data filter,

CosNotification:: QSProperties gos,
CosNot i fyConm : Struct ur edPushConsuner push_consuner);

bool ean exists(in SubscriptionlDid);

};
b

voi d unsubscribe(in SubscriptionlD id);

These operations are described in the following section.

Using the Notification Service

BEA Simple Events API

Channel::subscribe

CORBAIDL Subscriptionl D subscribe (

in string subscri pti on_nane,
in Regul ar Expr essi on domai n,

in Regul ar Expr essi on type,

in Fi | ter Expression data filter,

/1 The filter expression nust length 1 and the nane nust
/1 be TRANSI ENT_SUBSCRI PTI ON or PERSI STENT_SUBSCRI PTI ON.
in CosNotification:: QSProperties qos,

in CosNot i f yComm : St ruct uredPushConsuner push_consuner

)

Exceptions CORBA: : BAD_PARAM
Indicates one of the following problems:
Tobj Events::SUB_I NVALI D_FI LTER EXPRESSI ON
Tobj Events: : SUB_UNSUPPORTED QOS VAL UE

CORBA: : | MP_LIM T
Indicates one of the following problems:
Tobj _Events:: SUB_DOVAI N BEG NS_W TH_SYSEV
Tobj _Events:: SUB EMPTY_DOWVAI N
Tobj _Events::SUB EMPTY_TYPE
Tobj _Event s: : SUB_DOVAI N_AND _TYPE_TOO LONG
Tobj _Events::SUB FI LTER TOO LONG
Tobj _Events:: SUB NAME TO LONG
Tobj _Event s: : TRANSI ENT_ONLY_CONFI GURATI ON

CORBA: : | NV_OBJREF
Indicates the following problem:
Tobj _Events::SUB N L_CALLBACK REF

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Description Use this operation to subscribe to events. This operation is called by a subscriber
application on the Notification Service to create a subscription to a particular event.
The subscription name, domain name, type name, data filter, quality of service, and the
object reference of the subscriber’s callback object are passed in. The callback object
implements the CosNotifyComm::StructuredPushConsumer IDL interface.

Note: For subscribers that shut down and restart, you must write the
subscri pti on_i d to persistent storage.

Using the Notification Service ~ 2-19

2 Notification Service API Reference

Parameters

Return Value

Examples

To use datafiltering or subscribe to BEA Tuxedo system events or events posted by a
BEA Tuxedo application, see the sections “Creating FML Field Table Files for
Events” on page 2-7 and “Interoperability with BEA Tuxedo Applications” on
page 2-9.

For a description of the parameters supported by this operation, see “Parameters Us
When Creating Subscriptions” on page 2-12.

Returns a unique subscription identifier. The effect of this operation is not
instantaneous. There can be a delay between returning from this operation and the
actual start of event delivery. The length of the delay period may be significant
depending on your configuration. For more information on factors impacting this delay
period, see “Synchronizing Databases” on page 7-24.

Note: Notification Service applications that start and shut down only once can use
thesubscription_i d to determine if their subscription has been cancelled
automatically or by the system administrator.

Note: Code examples shown here are abbreviated. For complete code examples, s
“Creating a Subscription” on page 3-13.

C++ code example:

subscription_id = channel - >subscri be(
subscri pti on_nane,
"News", // domain

“Sports”, /] type

" /I No data filter.

qos,

news_consumer.in()

)i
Java code example:

int subscription_id = channel.subscribe(
subscription_name,

"News", // domain

“Sports”, /] type

" /I no data filter

qos,

news_consumer_impl

)i

2-20 Using the Notification Service

BEA Simple Events API

Channel::unsubscribe

CORBA IDL

Parameter

Exceptions

Description

Examples

voi d unsubscribe(in SubscriptioniDid);

subscription_id
The subscription identifier.

CORBA: : BAD_PARAM

Indicates the following problem:
Tobj Events:: | NVALI D_SUBSCRI PTI ON | D

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used to unsubscribe. Subscriber applications use this operation to terminate

subscriptions. On return from this operation, no further events can be delivered. There

is one input paramete®ubscri pti onl D, which you got when you subscribed.

Note: This operation is not instantaneous. After returning from this operation, a

subscriber may continue to receive events for a period of time. The period of

time may be significant depending on your configuration. For more
information on factors impacting this period of time, see “Synchronizing
Databases” on page 7-24.

C++ code example:

channel - >unsubscri be(subscription_id);

Java code example:

channel . unsubscri be(subscription_id);

Using the Notification Service ~ 2-21

2 Notification Service API Reference

Channel::push_structured_event

CORBAIDL void push_structured_event (
in CosNotification:: StructuredEvent notification

)

Exceptions CORBA IMP_LIM T
Indicates one of the following problems with the subscription:
Tobj _Events:: POST_UNSUPPORTED VALUE | N_ANY
Tobj _Events:: POST_UNSUPPORTED PRI ORI TY_VALUE
Tobj _Events:: POST_DOVAI N_CONTAI NS_SEPARATCOR
Tobj _Events:: POST_TYPE_CONTAI NS_SEPARATOR
Tobj _Events:: POST_SYSTEM EVENTS_UNSUPPORTED
Tobj Events:: POST_EMPTY_DOVAI N
Tobj Events:: POST_EMPTY_TYPE
Tobj _Events:: POST_DOVAI N_AND TYPE_TOO LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Parameter noti fi cation
This parameter contains the structured event as defined by the
CosNotification Service specification.

Description Used by the poster application to post an event to the Notification Service.

Note: This operation has transactional behavior when used in the context of a
transaction. For more information, see the section “Using Transactions” on
page 2-4.

Examples Note: Code examples shown here are abbreviated. For complete code examples, s
“Creating and Posting Events” on page 3-4.

C++ code example:

channel - >push_structured_event (notification);

Java code example:

channel . push_structured_event(notification);

2-22 Using the Notification Service

BEA Simple Events API

Channel::exists

CORBAIDL bool ean exists(in SubscriptionlD subscription_id);

Parameter subscription_id
The subscription identifier.

Exceptions CORBA: : BAD_PARAM
Indicates the following problem:
Tobj _Events: : | NVALI D_SUBSCRI PTI ON_I D

If thesubscri ption_id isfor asubscription created using the
CosNatification Service API, this exception is always returned.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Description Used by subscriber applications to determine if a subscription exists. Since the system
administrator can delete subscriptions manually and the Notification Service can
delete transient subscriptions automatically, a subscriber application might want to use
this operation so that it can recreate the subscription, if necessary. The
subscri pti on_i d used in this operation is the same one that you got when you
subscribed.

Return Value Returns Boolean True of the subscription exists and False if it does not.
Examples C++ code example:

i f channel ->exi sts (subscription_id) {

/1 The subscription is still valid.
} else {
/1 The subscription no |longer exists.

}

Java code example:

if channel .exists (subscription_id) {

/1 The subscriptionis still valid.
} else {
/1 The subscription no |onger exists.

Using the Notification Service ~ 2-23

2 Notification Service API Reference

TOBJ_SimpleEvents::ChannelFactory Interface

The Channel Fact ory interfaceis used to find event channels. Thisinterface provides
asingle operation: f i nd_channel .

The CORBA I DL for this interface:

nodul e Tobj _Si npl eEvent s

{
typedef | ong Channel | D

i nterface Channel Factory

Channel find_channel (
in Channel | D channel _id // Mist be DEFAULT_CHANNEL
)
b
b

2-24 Using the Notification Service

BEA Simple Events API

Channel_Factory::find_channel

CORBA IDL

Parameter

Exceptions

Description

Return Value

Examples

Channel find_channel (
in ChannelID channel _id);

In thisrelease of WebL ogic Enterprise, there can only be one event channel; therefore,
the Channel I D that is passed in must be set to

Tobj _Si npl eEvent s: : DEFAULT_CHANNEL (for C++) or

Tobj _Si npl eEvent s. DEFAULT_CHANNEL. Val ue (for Java).

CORBA: : BAD_PARAM

Indicates the following problem:
Tobj _Events:: | NVALI D CHANNEL | D

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used by poster applications and subscriber applications. This operation is used to find
the event channel so that it can be used by the poster to post events and by the
subscriber to subscribe and unsubscribe to events.

Returns the default event channel's object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel” on page 3-3.

C++ code example:

channel _factory->find_channel (
Tobj _Si npl eEvent s: : DEFAULT_CHANNEL) ;

Java code example:

channel _factory.find_channel (DEFAULT_CHANNEL. val ue) ;

Using the Notification Service ~ 2-25

2 Notification Service API Reference

CosNotification Service API

This section contains a discussion of the operations defined by the CosNotification
Service that are implemented by WebL ogic Enterprise Notification Services. These
operations are only a subset of the complete set of operations. This subset isa
functionally complete API that can be used as an alternativeto the BEA Simple Events
API.

ThisAPI isnecessarily more complex thenthe BEA Simple Events API. Therearetwo
reasons for this. First, the CosNotification Service APl is more complex. Second, the
WebL ogic Enterprise implementation of the CosNotification Service API places
additional restrictions on the operations that are supported. Because this complexity
offers no advantages in terms of performance or flexibility, BEA Systems, Inc.
recommends that you use the BEA Simple Events APl whenever possible.

The CosNotification API isprovided for those who requirethat astandard API be used
whenever possible for purposes of portability. In regard to functionality, this API
provides no benefits beyond those offered by the Simple Events API. Applicationsthat
are devel oped using this API will be mostly, but not completely, portable. The reason
for thisisthat not enough of the CosNotification Service API is supported to facilitate
portability. For example, the filtering grammar required by the CORBA -based
Notification Serviceisbased on the COS Trader grammar. Since WebL ogic Enterprise
does not support this grammar, but supports an alternative grammar based on the BEA
Tuxedo Event Broker grammar, any application that requires filtering will not be
portable. The sameis true for QoS, that is, the CosNotification Service APl does not
support the CORBA -based Notification Service standard qualities of service, but it
does support alternative qualities of service.

Overview of Supported CosNotification Service Classes

2-26

Figure 2-3 shows the CosNotification Service classes implemented, in full or in part,
in this release of WebL ogic Enterprise and their relationships.

Using the Notification Service

CosNotification Service API

Figure 2-3 Implemented CosNotification Service Classes

Event
Channel
Factory Class

! Implemented in the i
Event i Subscriber’s Callback !
Channel ' '
L

Class /' 7 TTTTTTTTRe—L

Push
Consumer
Class

Filter
Factory
Class

Supplier
Admin Class

Consumer
Admin Class

Proxy Push Proxy Push
Consumer Supplier
Class Class

The operations supported by each class are summarized below. For more detailed
descriptions, see “Detailed Descriptions of CosNotification Service Classes” on
page 2-30.

m CosNotifyChannelAdmin::EventChannelFactory Class

This class is used by the event poster and subscriber applications. It supports the
get _channel _f act ory operation which is used to get the channel factory when

posting, subscribing, and unsubscribing to events.

m CosNotifyChannelAdmin::EventChannel Class

This class is used by event poster and subscriber applications. It supports three

operations:

e defaul t _consumer_adni n—used by event subscriber applications to get
the consumer admin object.

e defaul t _supplier_adni n—used by event poster applications to get the
supplier admin object.

Using the Notification Service ~ 2-27

2 Notification Service API Reference

2-28

e default_filter_factory—used by event subscriber applications to get
the filter factory object.

CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. It supports the

obt ai n_noti fication_push_consumer operation. Poster applications use this
operation to create proxy push consumer objects which in turn are used to post
events to the Notification Service.

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

This class is used by event poster applications. It supports the following
operations:

e connect _structured_push_suppl i er—used by event poster applications
to connect the proxy push supplier to the Notification Service event channel.

e push_structured_event —used by event poster applications to post the
event to the Notification Service event channel.

e disconnect_structured_push_consumer —used by event poster
applications to disconnect the proxy push supplier from the Notification
Service event channel.

CosNotifyFilter::FilterFactory Class

This class is used by event subscriber applications to create a filter object. It
supports thereate_fil t er operation. The filter object provides all data
filtering including domain, type, and filterable data.

CosNotifyFilter::Filter Class

This class is used by event subscriber applications. It supports the following
operations:

e add_contrai nt s operation—used to set the filter's domain, type, and data
filter.

e destroy operation—used to destroy the filter object.

CosNotifyChannelAdmin::ConsumerAdmin Class

This class is used by event subscriber applications. It supports the following
operations:

Using the Notification Service

CosNotification Service API

e obtain_notification_push_supplier—used by event subscriber
applications to create proxy push supplier objects which in turn are used to
deliver events to the subscriber’s callback object.

e get_proxy_suppl i er—used by event subscriber applications to retrieve the
object reference for the proxy push supplier object. This operation is only
used when the subscriber application shuts down then restarts and cancels the
subscription. This is because subscribers need to discard the object reference
from the first run and get it back again for the next run. Subscribers cannot
reuse object references from one run to the next.

m CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

This class is used by event subscriber applications. It supports the following
operations:

e connect _structured_push_consumer —used by event subscriber
applications to connect the subscriber to the proxy push supplier.

e set_gos—used by event subscriber applications to set the quality of service
for subscriptions.

e add_filter—used by event subscriber applications to add the filter object
to the subscription.

e get_filter—used by event subscriber applications when performing
unsubscribe operations to get the filter associated with the subscription. This
operation is only used when the subscriber application shuts down then
restarts.

e di sconnect _structured_push_suppl i er—used by event subscriber
applications to unsubscribe.

m CosNotifyComm::StructuredPushConsumer

This interface is implemented by event subscriber applications. It supports the
push_structured_event operation. The Notification Service invokes this
operation to deliver events to the subscriber.

Using the Notification Service ~ 2-29

2 Notification Service API Reference

Detailed Descriptions of CosNotification Service Classes

This section describes the CosNoatification Service classes that this rel ease of
WebL ogic Enterprise implements. These classes are fully described in the
CosNatification Service IDL files, which are located in thew edi r/ i ncl ude
directory.

Note: If you use classoperationsthat are not supported, the CORBA: : NO_| MPLEMENT
exception is raised.

CosNotifyFilter::Filter Class

2-30

This class is used by event subscriber applications. The OMG IDL for thisclassis as
follows:

Modul e CosNotifyFilter
{
interface Filter {
Constrai ntl nfoSeq add_constrai nts (
i n Constraint ExpSeq constraint)
rai ses (InvalidConstraint);

voi d destroy();
b
}; //CosNotifyFilter

Using the Notification Service

CosNotification Service API

CosNotifyFilter::Filter::add_constraints

Synopsis
OMG IDL

Exceptions

Description

Return Value

Examples

Sets the domain, type, and data filter parameters on the filter object.

ConstraintlnfoSeq add_constraints (

i n Constrai nt ExpSeq constrai nt)
rai ses (lInvalidConstraint);

CosNotifyFilter::InvalidConstraint

Never raised.

CORBA: : BAD_PARAM

Indicates the following problem:
Tobj Events::SUB_ | NVALI D_FI LTER EXPRESSI ON.

CORBA | MP_LIM T

Note:

Indicates one of the following problems:

Tobj Notification:: SUB_ADD CONS ON TI MED OUT_FI LTER
Tobj Notification:: SUB_MILTI PLE CALLS TO ADD CONS
Tobj Notification:: SUB_MULTI PLE_CONSTRAI NTS I N_LI ST
Tobj Notification:: SUB_MILTI PLE_ TYPES | N CONSTRAI NT
Tobj Notification:: SUB_SYSTEM EVENTS UNSUPPORTED
Tobj Events::SUB_DOMAI N BEG NS W TH_SYSEV

Tobj _Events:: SUB EMPTY_DOWVAI N

Tobj _Events::SUB EMPTY_TYPE

Tobj _Events::SUB FI LTER TOO LONG

For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used when subscribing. This operation is used in subscriber applications to define the
kind of event to which you want to subscribe. You set the domain, type, and data filter
parameters on the filter object. For a description of these parameters, see “Parameters
Used When Creating Subscriptions” on page 2-12.

Note:

The WebLogic Enterprise implementation of til_constrai nts

operation 1) can only be called once, 2) must be called before the filter is added
to the proxy object, and 3) must consist of only a single constraint which has
a single event type.

Returnsan enpty Iist, which we recommend that the caller ignores.

Note:

Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

Using the Notification Service 2-31

2 Notification Service API Reference

C++ code example:

/1l set the filtering paraneters
/1 (domain = "News", type, and no data filter)
CosNotifyFilter::Constrai nt ExpSeq constraints;
constraints.length(1);
constrai nts[0].event _types.|length(1);
constrai nts[0].event _types[0].domai n_nane =
CORBA: : string_dup("News");
constrai nts[0].event _types[0].type_name =
CORBA::string_dup (“Sports”);
/I no data filter
constraints[0].constraint_expr = CORBA::string_dup(™);
CosNotifyFilter::ConstraintinfoSeq_var
add_constraints_results = // ignore this returned value
filter->add_constraints(constraints);

Java code example:

/I set the filtering parameters
/I (domain = "News", type, and no data filter).
ConstraintExp constraints[] = new ConstraintExp[1];
constraints[0] = new ConstraintExp();
constraints[0].event_types = new EventType[1];
constraints[0].event_types[0] = new EventType();
constraints[0].event_types[0].domain_name = "News";
constraints[0].event_types[0].type_name = “Sports”;
constraints[0].constraint_expr = "; // No data filter.
Constraintinfo add_constraints_results[] =
filter.add_constraints(constraints); //lgnore this return value.

2-32 Using the Notification Service

CosNotification Service API

CosNotifyFilter::Filter::destroy

Synopsis
OMG IDL

Exceptions

Description

Destroys the filter object.
voi d destroy();

CORBA: : BAD_PARAM
I ndicates the following problem:
Tobj Events::SUB_ | NVALI D_FI LTER EXPRESSI ON.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used when unsubscribing. This operation is used in subscriber applications to destroy
the target filter object.

Note: Do not destroy the filter object until you are ready to cancel the corresponding
subscription.

CosNotifyFilter::FilterFactory Class

This class is used by event subscriber applications. The OMG IDL for this class is as
follows:

Mbdul e CosNotifyFilter
{
interface FilterFactory {
Filter create filter (
in string constraint_grammar)
raises (InvalidG ammar);
destroy();

I
}; /1 CosNotifyFilter

Using the Notification Service 2-33

2 Notification Service API Reference

CosNotifyFilter::FilterFactory::create_filter

Synopsis Determines which events are delivered to a subscription.

OMGIDL Filter create filter (
in string constraint_grammar)
rai ses (InvalidG ammar);

Exceptions CosNotifyFilter::1nvalidG anmar
Indicates the const r ai nt _gr ammar is not supported.

Description Used in the subscriber application to create a new filter object. Thisfilter is used to
determine which events are delivered to a subscription. The subscriber must set up the
filter and add it to the proxy within five minutes; otherwise, thefilter will be destroyed.
Thefilter grammar must be set to Tobj _Not i fi cati on: : Constrai nt_grammar;
otherwise, the I nval i dGr ammar exception is raised.

Return Value Returns the new filter’s object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, s
“Creating a Subscription” on page 4-16.

C++ code example:
filter _factory->create filter(
Tobj _Notification:: CONSTRAI NT_GRAMVAR
)
Java code example:

filter _factory.create filter(CONSTRAI NT_GRAMVAR val ue);

2-34 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

Thisclassis used by event subscriber applications. The OMG IDL for this classis as
follows:

Mbdul e CosNot i f yChannel Adm n
{
interface StructuredProxyPushSuppli er
Pr oxySuppl i er,
CosNot i f yComm : St ruct ur edPushSupplier {

voi d connect_structured_push_consuner (
in CosNotifyComm : StructuredPushConsuner push_consuner)
r ai ses(CosEvent Channel Admi n: : Al r eadyConnect ed,
CosEvent Channel Adm n:: TypeError);

/1 The followi ng operations are inherited.
void set_qos(in QoSProperties qos)

rai ses (UnsupportedQoS);
FilterID add filter (in Filter newfilter);
Filter get filter(in FilterIDfilter)

rai ses (FilterNotFound);
voi d di sconnect _structured_push_supplier();
readonly attribute ProxyType M/ Type;

}s
}; 1/ CosNoti fyChannel Admi n

Using the Notification Service 2-35

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
connect_structured_push_consumer

Synopsis
OMG IDL

Exceptions

Description

Completes a subscription.

voi d connect _structured_push_consuner (
in CosNotifyConm : StructuredPushConsuner push_consuner)
r ai ses(CosEvent Channel Admi n: : Al readyConnect ed,
CosEvent Channel Adm n: : TypeError);

CosEvent Channel Adm n: : TypeError
Never raised.

CORBA: : | NV_OREF
Tobj Events:: SUB NI L_CALLBACK REF

CORBA: : | MP_LIMT
Indicates one of the following problems:
Tobj Events:: SUB_DOVAI N_AND TYPE TOO LONG
Tobj _Events:: SUB_NAME TO LONG
Tobj _Events:: TRANSI ENT_ONLY_CONFI GURATI ON
Tobj Notification:: SUBSCRI PTI ON_DOESNT_EXI ST.

CORBA: : OBJECT_NOT_EXI ST
The proxy does not exist.

CosEvent Channel Adm n: : Al r eadyConnect ed
Indicates that the connect _struct ur ed_push_consuner operation has
already been invoked.

Note: For exception definitions and corresponding minor codes, see “Exception
Minor Codes” on page 2-64.

Use this operation when subscribing. This operation is used in subscriber applicatior
to subscribe to events. Thaesh_consumer parameter identifies the subscriber’s
callback object.

Once theconnect _structured_push_consumrer has been called, the Notification
Service will proceed to send events to the subscriber by invoking the callback object’:
push_struct ured_event operation. If theonnect _struct ur ed_push_consuner

has already been called, ther eady Connect ed exception is raised.

Note: You must calket _qos andadd_fi | ter before calling
connect _structured_push_consuner.

2-36 Using the Notification Service

CosNotification Service API

Examples Note: Code examplesshown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

subscri pti on->connect _structured_push_consuner (
news_consumner.in()

)i
Java code example:

subscri ption. connect _struct ured_push_consuner (
news_consurmer _i npl

)

Using the Notification Service ~ 2-37

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos

Synopsis
OMG IDL

Exceptions

Description

2-38

Examples

Sets the QoS for the subscription.

void set_qos(in QoSProperties qos)
rai ses (UnsupportedQS);

Unsupport edQpS
Never raised.

ORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj Notification::SUB MILTI PLE CALLS TO SET_QOS
Tobj Notification::SUB CANT SET_QOS_AFTER CONNECT
Tobj Notification:: SUBSCRI PTI ON_DOESNT_EXI ST
Tobj Notification::SUB_UNSUPPORTED QOS VALUE

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used when subscribing. This operation is used in subscriber applications to set the Qc
for the subscription. It takes as an input parameter a sequence of name-value pairs
which encapsulates quality-of-service property settings that the subscriber is
requesting.

There are two components of the QoS: the subscription type and the subscription
name. The subscription type is set by constructing a name-value pair where the nan
is Tobj _Notification:: SUBSCRI PTI ON_TYPE and the value is either

Tobj _Noti fi cation:: PERSI STENT_SUBSCRI PTI ON, or

Tobj Notification:: TRANSI ENT_SUBSCRI PTI ON. For more information and
additional usage details, see “Quality of Service” on page 2-2.

The subscription name is set by constructing a name-value pair, where the name is
Tobj _Noti fi cation:: SUBSCRI PTI ON_NAME, and the value is a user-defined string.

For more information on this parameter, see “Parameters Used When Creating
Subscriptions” on page 2-12.

Note: Code examples shown here are abbreviated. For complete code examples, s
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotification::QSProperties qos;
qgos. l ength(2);

Using the Notification Service

CosNotification Service API

qos[0] . nane =
CORBA: : string_dup(Tobj Notification::SUBSCRI PTI ON_NAME) ;
gos[0].value <<= “MySubsription”;
gos[1].name =
CORBA::string_dup(Tobj_Notification::SUBSCRIPTION_TYPE);
gos[1].value <<=
Tobj_Notification: TRANSIENT_SUBSCRIPTION;

subscription->set_gos(qos);
Java code example:

Property qos[] = new Property[2];

qos[0] = new Property();

gos[0].name = SUBSCRIPTION_NAME.value;

qos[0].value = orb.create_any();
qos[0].value.insert_string(“MySubsription”);

qos[1] = new Property();

gos[1].name = SUBSCRIPTION_TYPE.value;

qos[1].value = orb.create_any();
gos[1].value.insert_short(TRANSIENT_SUBSCRIPTION.value);

subscription.set_qos(qos);

Using the Notification Service 2-39

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

Synopsis
OMG IDL

Exceptions

Description

Return Value

2-40

Examples

Sets the filter object on the subscriber’s callback object.

add_filter(
in Filter newfilter

)

CORBA: : | MP_LIMT
Indicates one of the following problems:
Tobj Notification::SUB MILTI PLE CALLS TO SET_FILTER
Tobj Notification::SUB ADD FI LTER AFTER CONNECT
Tobj Notification::SUB NI L_FILTER REF
Tobj Notification::SUB NO CUSTOM FI LTERS
CORBA: : OBJECT_NOT_EXI ST
Indicates that the subscription does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used when subscribing. This operation is used in subscriber applications to set the
filter object to the subscriber’s callback object. If the application using this operation
will be shut down and restarted, thie t er _i d should be written to persistent storage.

Note: This operation: 1) cannot be called after the subscriber callback object is
connected (sesonnect _st ruct ured_push_consunmer above), 2) cannot be
called more than once, and 3) when it is called, the filter constraint expressior
must already be present in the filter (S8eNotifyFilter::Filter
add_constraints).

Note: Only filters created by the event channel’s default filter factory can be added

Returns a filter_id.

Note: Code examples shown here are abbreviated. For complete code examples, s
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotifyFilter::FilterID filter_id =
subscription->add filter(filter.in());

Java code example:

int filter_id = subscription.add filter(filter);

Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter

Synopsis

OMG IDL

Exceptions

Description

Restrictions

Return Value

Examples

Gets an object reference to the filter currently associated with the subscriber’s callback
object.

Filter get filter(in FilterIDfilter)
raises (FilterNotFound);

CosNot i f yChannel Adm n: : Fi | t er Not Found
The filter could not be found.

Used when a restartable subscriber wants to unsubscribe. This operation is used in
subscriber applications to get an object reference to the filter currently associated with
the subscriber’s callback object. Thkid t er | Dthat is passed in must be valid for the
subscriber’s StructuredProxyPushSupplier object. Ifthe er | Dis not valid for any

proxy object associated with the event channel, then ger Not Found exception is
thrown. The operation is only used by subscribers that shut down and restart.

The following usage restrictions and guidelines apply to this operation:

a. Filter object references that are returned from this operation cannot be used in
comparison operations.

b. Filter object references returned by this operation can be used by the
CosNotifyFilter::Filter::destroy operations but are of little use since
they cannot be modified or added to proxy objects.

Returns a filter object reference to the filter currently associated with the subscriber’'s
callback object.

C++ code example:

CosNotify::Filter_var filter =
subscription->get filter(filter_id());

Java code example:

Filter filter = subscription.get filter(filter_id());

Using the Notification Service ~ 2-41

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
disconnect_structured_push_supplier

Synopsis
OMG IDL

Exceptions

Description

Examples

Used to unsubscribe.
voi d di sconnect_structured_push_supplier()

CORBA: : OBJECT_NOT_EXI ST
Indicates that the subscription to be disconnected does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used by subscriber applications when unsubscribing. This operation is used in
subscriber applications to terminate a connection between the Notification Service an
the subscriber’s callback object.

Note: This operation does not stop event delivery instantaneously. After returning
from this operation, a subscriber may continue to receive events for a period
of time.

C++ code example:
subscri ption->di sconnect _structured_push_supplier();
Java code example:

subscri ption. di sconnect _structured_push_supplier();

2-42 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType

Synopsis Always returns CosNot i f yChannel Adni n: : PUSH_STRUCTURED proxy.
OMGIDL readonly attribute ProxyType MyType

Description Always returns CosNot i f yChannel Adni n: : PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

Thisclass is used by event posting applications. The OMG IDL for thisclassis as
follows:

Mbdul e CosNot i f yChannel Adm n
{
interface StructuredProxyPushConsuner
Pr oxyConsuner,
CosNot i f yComm : St ruct ur edPushConsuner {

voi d connect_structured_push_supplier (
in CosNotifyComm : StructuredPushSupplier push_supplier)
r ai ses(CosEvent Channel Adm n: : Al r eadyConnect ed) ;
/1 The followi ng operations are inherited.
readonly attribute MyType;
voi d push_structured_event (
in CosNotification:: StructuredEvent notification)
rai ses(CosEvent Comm : Di sconnected);
voi d di sconnect _structured_push_consuner () ;
b
}; \\'StructuredProxyPushConsuner

Using the Notification Service ~ 2-43

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
connect_structured_push_supplier

Synopsis
OMG IDL

Exception

Description

Examples

Prepares the Notification Service to receive an event.
voi d connect_structured_push_supplier (
in CosNotifyComm : StructuredPushSupplier push_supplier)
r ai ses(CosEvent Channel Adm n: : Al readyConnect ed) ;

CosEvent Channel Adm n: : Al r eadyConnect ed
Never raised.

Used by poster applications when posting events. Y ou must call this operation to
prepare the Notification Service to receive an event and you must passin aNIL when
you use this operation. The sequence of usage is as follows:

1. Make aproxy.

2. Usethis operation to connect to the Notification Service and passin aNIL.
3. Post events.

4. Before exiting the poster program, disconnect.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

proxy_push_consuner - >connect _struct ured_push_suppl i er (
CosNot i fyComm : St ruct uredPushSupplier:: nil()
)

Java code example:

proxy_push_consuner. connect _structured_push_supplier(null);

2-44 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
push_structured_event

Synopsis
OMG IDL

Exceptions

Descriptions

Posts events to the event channel.

voi d push_structured_event (

in CosNotification::StructuredEvent notification)

rai ses(CosEvent Conm : D sconnected);

CosEvent Comm : Di sconnect ed

Never raised.

CORBA: : | MP_LIMT

Note:

Indicates one of the following problems:

Tobj _Event s: : POST_UNSUPPORTED VALUE | N _ANY
Tobj _Event s: : POST_UNSUPPORTED PRI ORI TY_VALUE
Tobj _Event s: : POST_DOVAI N_CONTAI NS_SEPARATOR
Tobj _Event s: : POST_TYPE_CONTAI NS_SEPARATOR
Tobj _Event s: : POST_SYSTEM EVENTS_ UNSUPPORTED
Tobj _Events:: POST_EMPTY_DOVAI N

Tobj _Events:: POST_EMPTY_TYPE

Tobj _Event s: : POST_DOVAI N_AND TYPE_TOO LONG

For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-64.

Used when posting events. This operation is used in poster applications to post events
to the event channel.

Note:

Note:

This operation differs from the standard CORBA definition in the following
ways:

1) The Priority in the variable header section of the event, if specified, must be
short value in the range of 1 to 100.

2) If event filterable data filtering (versus filtering on domain and type only)

is required, or if events are to be received by a BEA Tuxedo subscriber, then
additional restrictions apply. See “Structured Event Fields, Types, and Filters”
on page 2-5 and “Interoperability with BEA Tuxedo Applications” on

page 2-9.

This operation has transactional behavior when used in the context of a
transaction. For more information, see “Using Transactions.”

Using the Notification Service ~ 2-45

2 Notification Service API Reference

Examples Note: Codeexamplesshown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:
proxy_push_consumer - >push_structured_event(notification)
Java code example:

proxy_push_consuner. push_structured_event (noti fication);

2-46 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
disconnect_structured_push_consumber

Synopsis
OMG IDL

Descriptions

Examples

Stops posting events.
voi d di sconnect _structured_push_consuner();

Used when posting events. This operation isused by poster applicationsto stop posting
events. It takes no input parameters and returns no values. The recommended usage
sequence is as follows:

1. Makeaproxy.
2. Connect and disconnect on every run of the poster application.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:
pr oxy_push_consuner - >di sconnect _structured_push_consuner () ;
Java code example:

proxy_push_consuner . di sconnect _structured_push_consuner();

Using the Notification Service ~ 2-47

2 Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushconsumer:MyType

Synopsis Always returns CosNot i f yChannel Amdni n: : PUSH_STRUCTURED proxy.
OMGIDL readonly attribute ProxyType MyType

Description ~ Always returns CosNot i f yChannel Amdni n: : PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::ConsumerAdmin Class

This class is used by event subscriber applications. The OMG IDL for thisclassis as
follows:

Modul e CosNot i fyChannel Adni n
{

interface Consuner Admn :

CosNot i fi cation:: QoSAdmi n,

CosNot i fyConm : Noti fySubscri be,
CosNotifyFilter::FilterAdm n,
CosEvent Channel Adm n: : Consuner Admi n {

Pr oxySuppl i er obtain_notification_push_supplier (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded)

Pr oxySuppl i er get _proxy_supplier (

in ProxylD proxy_id)
rai ses (ProxyNot Found);

I
}; //CosNotifyChannel Adm n

2-48 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::ConsumerAdmin::
obtain_notification_push_supplier

Synopsis Creates proxy push supplier objects.

OMGIDL ProxySupplier obtain_notification_push_supplier (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded)

Exceptions CosNoti f yChannel Admi n: : Adni nLi mi t Exceeded
Never raised.

CORBA: : | MP_LIMT
Indicates the following problem:
Tobj Notification:: SUB_UNSUPPORTED CLI ENT_TYPE

Description Used when subscribing. This operation is used in subscriber applicationsto create
proxy push supplier objects. Only structured events are supported (that is,
ANY_EVENT and SEQUENCE_EVENT Cl i ent Types are not supported).
Therefore, the Cl | ent Type input parameter must be set to
CosNot i f yComm : STRUCTURED EVENT. If you shut down and restart the
subscriber and subscription survives more than one run of your program, the
Pr oxy| D returned by this operation should be durably stored. The subscriber must
narrow the proxy supplier to
CosNot i f yChannel Admi n:: St ruct ur edPr oxyPushSuppl i er. All
required operations must be completed in five minutes.

Note: Notification Service applications that start and shut down only once can use
theproxy_i d todetermineif their subscription has been cancelled
automatically or by the system administrator.

Return Value This operation returns the new proxy’s object reference. Thepnewy i d is also
returned through thpr oxy_i d out parameter.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNot i f yChannel Adm n: : ProxySuppl i er _var generic_proxy =
consuner _adnmi n->obtain_notification_push_suppli er(
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
proxy_id

’

Using the Notification Service ~ 2-49

2 Notification Service API Reference

CosNot i f yChannel Adm n:: Struct ur edPr oxyPushSupplier_var proxy =
CosNot i f yChannel Adm n: : St ruct uredPr oxyPushSupplier:: _narrow
generic_proxy.in ()

)
Java code example:

ProxySuppli er generic_proxy =
consuner _adm n. obtain_notification_push_supplier(
C i ent Type. STRUCTURED EVENT
proxy_id
)

St ruct ur edPr oxyPushSuppl i er proxy =
Struct ur edPr oxyPushSuppl i er Hel per . nar r ow(
generi c_proxy

)

2-50 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier

Synopsis Returns the proxy push supplier object created using the consumer admin object
obt ai n_notification_push_supplier operation.

OMG IDL ProxySuppl i er get _proxy_supplier (
in ProxylD proxy_id)
rai ses (ProxyNot Found);

Exceptions CosNoti f yChannel Adni n: : Pr oxyNot Found
Indicates that the Proxyl D could not be found.

Descriptions ~ Used when unsubscribing. This operation is used in subscriber applications to return
the proxy push supplier object created using the consumer admin object
obtai n_notification_push_supplier operation. TheProxyl D input
parameter uniquely identifies the proxy object. Callers should be aware that the proxy
object can be destroyed either due to an error in delivering a transient subscription or
through an nt sadmi n administrative command. When a proxy object is destroyed,
the Pr oxy| D associated with it isinvalidated. If the Pr oxyl Disinvalid, a
Pr oxyNot Found exception israised. The subscriber must narrow the proxy supplier
to CosNot i f yChannel Admi n: : Struct ur edPr oxyPushSuppl i er.

Return Value Returns the object reference for the existing proxy.
Examples C++ code example:

CosNot i f yChannel Adm n: : ProxySuppl i er_var generic_proxy =
m_consuner _adm n- >get _proxy_supplier(
m subscri ption_info. news_proxy_id()

);

CosNot i f yChannel Adm n: : Struct uredProxyPushSuppl i er _var proxy =
CosNot i f yChannel Adm n:: Struct ur edPr oxyPushSupplier:: _narrow
generic_proxy.in()
)

Java code exanpl e:

Pr oxySuppl i er generic_subscription =
m _consumer _adm n. get _proxy_suppli er(
m subscri ption_info. news_proxy_id()

);

St ruct ur edPr oxyPushSuppl i er subscription =
Struct ur edPr oxyPushSuppl i er Hel per. nar r ow(
generi c_proxy);

Using the Notification Service 2-51

2 Notification Service API Reference

CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. The OMG IDL for this classis as
follows:

Modul e CosNot i f yChannel Admi n
{
interface SupplierAdmn :
CosNotification:: QSAdm n,
CosNot i f yConm : Not i f yPubl i sh,
CosNotifyFilter::FilterAdm n,
CosEvent Channel Admi n: : Suppl i er Admi n {

ProxyConsuner obtain_notification_push_consumer (
in CientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLim t Exceeded);

b
}; 1/ SupplierAdm n

2-52 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::SupplierAdmin::
obtain_notification_push_consumer

Synopsis Creates proxy push consumer objects.

OMGIDL ProxyConsuner obtain_notification_push_consumer (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded);

Exceptions CosNoti f yChannel Admi n: : Adni nLi mi t Exceeded
Never raised.

CORBA: : IMP_LIMT
Indicates the following problem:
Tobj Notification:: SUB_UNSUPPORTED CLI ENT_TYPE

Description Used when posting events. Thisoperationisusedin poster applicationsto create proxy
push consumer objects. Cl i ent Type must be set to
“CosNotifyChannelAdmin::STRUCTURED_EVENT” . The ProxyID
returned should be ignored. The Proxy Consumer must be narrowed the proxy supplier
to CosNotifyChannelAdmin::StructuredProxyPushConsumer

Note: Notification Service applicationsthat start and shut down only once can use
theproxy_i d todetermineif their subscription has been cancelled
automatically or by the system administrator.

Return Value This operation returns the new proxy’s object reference. Thepnewy i d is also
returned through thpr oxy_i d out parameter.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

CosNot i f yChannel Adm n: : ProxyConsumer _var generi c_proxy_consuner =
suppli er _adm n->obtai n_notification_push_consuner (
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
proxy_id
)

CosNot i f yChannel Adm n: : St ruct ur edPr oxyPushConsuner _var
proxy_push_consuner =
CosNot i f yChannel Adm n:: Struct ur edPr oxyPushConsuner:: _narr ow
generi c_proxy_consuner

);

Using the Notification Service ~ 2-53

2 Notification Service API Reference

Java code example:

supplier_adm n.obtain_notification_push_consuner (
Cli ent Type. STRUCTURED EVENT, proxy_id);

2-54 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel Class

Thisclass is used by event poster applications. The OMG IDL for thisclassisas
follows:

Modul e CosNoti f yChannel Adm n
{
interface Event Channel
CosNoti fication:: QSAdm n,
CosNoti fication:: Adm nProperti esAdnin,
CosEvent Channel Adm n:: Event Channel {

readonly attri bute Consuner Adm n defaul t _consuner_adm n;
readonly attribute SupplierAdm n default_supplier_adm n;
readonly attribute CosNotifyFilter::FilterFactory

default filter _factory;

I
}; /1 CosNoti fyChannel Adnmi n

Using the Notification Service 2-55

2 Notification Service API Reference

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_consumer_admin

Synopsis Gets the ConsumerAdmin object.
OMGIDL readonly attribute Consumer Admi n default_consuner_admi n;

Description Used when subscribing and unsubscribing. This operation is used in subscriber
applications to get the ConsumerAdmin object.

Return Value Returnsthe object reference to the ConsumerAdmin object.

Examples Note: Codeexamplesshown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:
channel - >defaul t _consuner _adm n();
Java code example:

channel . def aul t _consuner _adm n();

2-56 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_supplier_admin

Synopsis
OMG IDL

Description

Return Value

Examples

Gets the Supplier Admin object.
readonly attribute SupplierAdm n default_supplier_adm n;

Used when posting events. This operation is used in event poster applications to get
the SupplierAdmin object.

SupplierAdmin object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:
channel - >def aul t _suppl i er _adm n();
Java code example:

channel . defaul t _supplier_adm n();

Using the Notification Service ~ 2-57

2 Notification Service API Reference

CosNotifyChannelAdmin::EventChannel::default_filter_factory

Synopsis Gets the default FilterFactory object.

OMGIDL readonly attribute CosNotifyFilter::FilterFactory
default _filter factory;

Description Used when subscribing. This operation is used in subscriber applications to get the
default FilterFactory object.

Return Value Default FilterFactory object reference.

Examples Note: Codeexamplesshown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:
channel - >default _filter _factory();
Java code example:

channel . default _filter_factory();

2-58 Using the Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannelFactory Class

Thisclass is used by event poster applications. The OMG IDL for thisclassisas
follows:

Mbdul e CosNot i f yChannel Adm n

{
interface Event Channel Factory {
Event Channel get _event _channel (in ChannellDid)
rai ses (Channel Not Found) ;

b
}; /1 CosNoti fyChannel Adnmi n

Using the Notification Service ~ 2-59

2 Notification Service API Reference

CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

Synopsis Gets the Event Channel object.

OMGIDL Event Channel get _event channel (in ChannelID id)
rai ses (Channel Not Found) ;

Exceptions CosNot i f yChannel Adni n: : Channel Not Found
Indicates the channel cannot be found.

Description Used when subscribing, unsubscribing, and posting events. This operation isused in
applications to get the Event Channel object. When subscribing, the EventChannel
object is used to get the filter factory object and the ConsumerAdmin object. When
unsubscribing, the EventChannel object is used to get the ConsumerAdmin
object.When posting an event, the EventChannel object isused to get the
SupplierAdmin object. The Channel | D parameter that is passed in must be set to
Tobj _Notification:: DEFAULT_CHANNEL; otherwise, the Channel Not Found
exception is raised.

Return Value Returns the default event channel’s object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, s
“Getting the Event Channel” on page 4-3 and “Getting the Event Channel,
ConsumerAdmin Object, and Filter Factory Object” on page 4-12.

C++ code example:

channel _factory->get _event channel (
Tobj _Notification:: DEFAULT_CHANNEL) ;

Java code example:

channel _factory. get _event channel (DEFAULT_CHANNEL. val ue);

2-60 Using the Notification Service

CosNotification Service API

CosNotifyComm::StructuredPushConsumer Interface

Thisinterface is used by event subscriber applications for event delivery. Y ou must
implement this interface so that the Notification Service can invoke on it to deliver
events to subscribers. It has three methods which you have to implement.

The OMG IDL for this classis as fol lows:

Modul e CosNoti f yComm

{
interface StructuredPushConsuner : NotifyPublish {

voi d push_structured_event (
in CosNotification:: StructuredEvent event)
rai ses(CosEvent Comm : D sconnect ed);
voi d di sconnect _structured_push_consuner:
/1 The follow ng operations are inherited.
voi d of fer _change(
in CosNotification:: Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
raises (InvalidEvent Type);
b
}; 1/ CosNoti fyComm

Using the Notification Service ~ 2-61

2 Notification Service API Reference

CosNotifyComm::StructuredPushConsumer::push_structured_event

Synopsis
OMG IDL

Exceptions

Description

Examples

Delivers a structured event.

voi d push_structured_event (
in CosNotification::StructuredEvent event)
rai ses(CosEvent Comm : Di sconnect ed) ;

CosEvent Conm : Disconnected
The subscriber should never raise this exception.

Used when subscribing. This operation is implemented by the subscriber’s callback
object and is invoked by the Notification Service each time a structured event is
delivered. This operation contains a single input parameter, which is a structured evel

Note: This operation will not be called in a transaction. Also, when this operation is
called, it must return quickly because the Notification Service might not start
delivering events to other subscribers until this operation returns.

Note: Code examples shown here are abbreviated. For complete code examples, s
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on
page 4-8.

C++ code example:

virtual void push_structured_event(
const CosNotification::StructuredEvent& notification);

/'l Process the event.

}
Java code example:

public void push_structured_event (StructuredEvent notification)

/'l Process the event.

}

2-62 Using the Notification Service

CosNotification Service API

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer

Synopsis
OMG IDL

Description

Examples

Never invoked.

voi d di sconnect _structured_push_consuner;

This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

C++ code example:

virtual void push_structured_event(
const CosNotification::StructuredEvent& notification);
{

t hrow new CORBA: : NO_| MPLEMENT() ;
}

Java code example:

public void di sconnect _structured_push_consuner ()

{
t hrow new CORBA: : NO_| MPLEMENT() ;
}

Using the Notification Service ~ 2-63

2 Notification Service API Reference

CosNotifyComm::StructuredPushConsumer::Offer_change

Synopsis
OMG IDL

Exceptions

Description

Examples

Never invoked.

voi d of fer _change(
in CosNotification:: Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEventType);

CosNot i f yConm : | nval i dEvent Type
The subscriber should never raise this exception.

This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

C++ code example:

virtual void offer_change(
const CosNotification::Event TypeSeq& added,
const CosNotification::Event TypeSeq& renoved)

{
t hr ow CORBA: : NO | MPLEMENT() ;

}

Java code example:

public void of fer_change(Event Type[] added, EventType[] renoved)

{
t hrow new NO_| MPLEMENT() ;

}

Exception Minor Codes

This section provides information about the Notification Service exception symbols
and minor codes. The minor codes areinthe Tobj _Events.idl and

Tobj _Notification.idl files. Thesefilesarelocated inthew edi r\incl ude
directory (for Microsoft Windows NT systems) and wl edi r /i ncl ude directory (for
UNIX systems).

Table 2-4 and Table 2-5 list the exception symbols and corresponding minor codesfor
the Tobj_Events and Tobj_Notification exceptions respectively. CORBA system
events have aminor code field and those minor codes are also defined in these tables.

2-64 Using the Notification Service

CosNotification Service API

Note: The exception symbols are organized within the tables by the higher-level
exceptions (CORBA: : | MP_LI M T, CORBA: : CORBA: : BAD_PARAM
CORBA: : BAD | NV_ORDER, CORBA: : | NV_OBHJREF, and
CORBA: : OBJECT_NOT_EXI ST) and listed in a phabetical order.

Table 2-4 Tobj_Events Exception Minor Codes

Exception Symbols

Definitions Minor Codes
(Hexadecimal)

CORBA: : | MP_LIMT Exceptions

Tobj _Events::
POST_DOMAI N_AND_TYPE _TOO LONG

This exception israised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Admi n: :

Struct ur edPr oxyPushConsuner : :

push_structured_event

When posting an event, the user 5455580D
specified a domain name and type

name whose combined length was

greater than 31 characters.

Tobj Events::
POST_DOVAI N_CONTAI NS_SEPARATOR

This exception is raised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Adm n: :

Struct ur edPr oxyPushConsuner : :

push_structured_event

When posting an event, the user 54555802
specified a domain name that
contained the" . " character.

Tobj Events:: POST_EMPTY_DOMAI N
This exception israised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Adm n: :

Struct ur edPr oxyPushConsuner : :

push_structured_event

When posting an event, the user 5455580B
specified an empty domain name.

Using the Notification Service 2-65

2 Notification Service API Reference

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj _Events:: POST_EMPTY_TYPE When posting an event, the user 5455580C
This exception is raised by: specified an empty type name.
m Tobj _Si npl eEvents:: Channel : :
push_structured_event
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, theuser tried 54555804
POST_SYSTEM EVENTS_ UNSUPPORTED to post a Tuxedo system event; that
This e(cqjtion israised by |S, the domain nameis" T'\./EVT"
m Tobj _Si npl eEvents: : Channel : : f\nt'ilthetype name starts with the
push_structured_event - character.
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, the user 54555803
POST_TYPE_CONTAI NS_SEPARATOR specified atype namethat contained
This exception is raised by: the”. " character.
m Tobj _Sinpl eEvents: : Channel ::
push_structured_event
m CosNoti fyChannel Admi n::
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, the user 54555801

POST_UNSUPPORTED PRI ORI TY_VALUE
Thisis exception israised by:
m Tobj Sinpl eEvents::

Channel : : push_structured_event

m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event

2-66 Using the Notification Service

addeda" Priority" fieldinthe
variable header. However, the user
did not set thefield'svalueto a
"short" inthe range of 1-100.

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj _Events::
POST_UNSUPPORTED VALUE | N_ANY

This exception israised by:
m Tobj SinpleEvents::

Channel : : push_structured_event

m CosNoti f yChannel Admi n: :

Struct ur edPr oxyPushConsuner : :

push_structured_event

When posting an event, the user put
an unsupported type (for example, a
structure, union, sequence, €tc.) into
one of the"anys" in the structured
event field. The unsupported typeis
in the variable header’s value field,
thefilterabledata’svaluefield, or the
remainder_of_body field.

54555800

Tobj _Events::

SUB_DOMAI N_AND_TYPE_TOO LONG

This exception israised by:

m Tobj SinpleEvents:: Channel ::
subscri be

m CosNoti f yChannel Admi n: :

Struct ur edProxyPushSuppl i er::
connect _structured_push_consuner

When subscribing, theuser specified
adomain name and type name
whose combined length is greater
than 255 characters.

54555809

Tobj _Events::

SUB_DOMAI N BEG NS W TH_SYSEV

Thisexcept i on israised by:

m Tobj SinpleEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

When subscribing, the user specified
adomain name that begins with the
". " character.

54555805

Tobj Events:: SUB_EMPTY_DOVAI N

This exception israised by:

m Tobj SinpleEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

The user specified an empty domain
name when subscribing.

54555807

Using the Notification Service ~ 2-67

2 Notification Service API Reference

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Event s: : SUB_EMPTY_TYPE The user specified an empty type 54555808
This exception is raised by: name when subscribing.
m Tobj Si npl eEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

Tobj _Events:: SUB_FI LTER TOO LONG The user specified adatafilter 5455580A
This exception is raised by: expression longer than 255
m Tobj Si npl eEvents:: Channel :: characters.
subscri be
m CosNotifyFilter::Filter::
add_constraints
Tobj _Event s:: SUB_NAME_TO LONG When subscribing, the user specified 5455580E
This exception is raised by: asubscription namelonger than 127
m Tobj _Si npl eEvents:: Channel : : characters.
push_structured_event
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: The user tried to create apersistent 54555806
TRANSI ENT_ONLY_CONFI GURATI ON subscription, but the system was
This exception is raised by: configured to support transient
m Tobj _Sinpl eEvents:: Channel : : subscriptions only.

subscri be

m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushSuppl i er::
connect _structured_push_consuner

CORBA: : BAD_PARAM Excepti ons

2-68 Using the Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj _Events:: | NVALI D CHANNEL_I D When looking up the channel using 54555813
This exception is raised by: the Simple Events API, the user
m Tobj _Si npl eEvent s: : Channel Fact ory _specmedanlnvdld c_hannel ID, that
- find channel is, achannel ID that is not
- Tobj _Si npl eEvents: :
DEFAULT_ CHANNEL..
Tobj _Events:: When unsubscribing using the 54555812
I NVALI D_SUBSCRI PTI ON | D Simple Events API, the user
This exception is raised by: specified an invalid subscription ID,
m Tobj SinpleEvents:: Channel :: that is, f_;lnon.-e)(lient o_rg
unsubscri be CosNotification subscription I1D.
m CosNotifyChannel Adnin: : When looking up a subscription
Consuner Adni n: : get _pr oxy_ using the CosNotification Service
suppl i er API, the user specified an invalid
m Tobj _Sinpl eEvents:: subscn_pﬂon ID’th.a“S a
Channel : : exi st s non-existent or aSimple Events API
subscription 1D.
When callingtheexi st s operation
using the BEA Simple Events API,
the user passed in a CosNotification
subscription_id.
Tobj _Events:: When subscribing, theuser specified 54555810

SUB_I NVALI D_FI LTER_EXPRESSI ON

This exception israised by:

m Tobj SinpleEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

an invalid datafilter expression.
This either means that thereisa
syntax error in the expression or that
one of the field namesin the
expression isnot defined asan FML
field.

Check that you have correctly
created FML field tablesthat contain
al fields that you want to datafilter
on, and check that the UBBCONFI G
fileisproperly configured so that the
field table files can be found.

Using the Notification Service ~ 2-69

2 Notification Service API Reference

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Events:: 54555811
SUB_UNSUPPCRTED_QOS_VALUE When subscribing, the user specified an invalid subscription
This exception is raised by: quality of service.
= Tobj _Si npl eEvents: : Channel : : For the Simple Events API, this means that the quality of
subscri be service specified did not meet one of the following
m CosNoti f yChannel Admi n: : reguirements:
St ruct ur edPr oxyPushSuppl i er::

¢ m The sequence must be of length one.
set _qos
- m Thenamemust be Tobj _Si npl eEvent s: :

SUBSCRI PTI ON_TYPE.

m Thevauemust be either Tobj _Si npl eEvent s: :
TRANSI ENT_SUBSCRI PTI ON or
Tobj _Si npl eEvent s: :
PERSI STENT_SUBSCRI PTI ON.

For the CosNotification Service API, this means that the
quality of service specified did not meet one of thefollowing
requirements:

m Thequality of service must contain a name/value pair
wherethe nameisTobj Noti fi cation::
SUBSCRI PTI ON_TYPE and the valueis
Tobj Notification::

TRANSI ENT_SUBSCRI PTI ON or
Tobj Notification::
PERSI STENT_SUBSCR!I PTI ON.

m Thequality of service may contain a name/value pair
where the nameis
Tobj Noti fication:: SUBSCR PTI ON_NAME
and the value is a string containing the subscription’s
administrative name.

2-70 Using the Notification Service

CosNotification Service API

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)

CORBA: : | NV_OBHIREF

Tobj _Events:: When subscribing, theuser specified 54555830
SUB_ NI L_CALLBACK REF aNIL object reference for the
This exception is raised by: callback object which receives

events.

m Tobj SinpleEvents:: Channel ::
subscri be

m CosNoti fyChannel Adm n:
Struct uredPr oxyPushSuppI ier::
connect _structured_push_consuner

Table 2-5 Tobj_Notification Exception Minor Codes

Exception Symbols Definitions Minor Codes
(Hexadecimal)

CORBA: : | MP_LIMT Exceptions

Tobj _Notification:: A CosNotification subscriber waited 54555858
SUB_ADD _CONS ON TI MED OUT_FI LTER more than five minutes after creating
This exception is raised by: afilter to call add_constraints

on thefilter. Thismeansthat thefilter
has been destroyed (timed out) and
the subscriber must create a new

m CosNotifyFilter::Filter::
add_constraints

filter.
Tobj _Notification:: A CosNotification subscriber caled 5455585E
SUB_ADD CONS_TO ADDED FILTER add_constrai nt s onafilter that
This exception is raised by: had already been added to a proxy.

m CosNotifyFilter::Filter::
add_constraints

Using the Notification Service 2-71

2 Notification Service API Reference

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)

Tobj _Notification:: After creating afilter and calling 5455585D

SUB_ADDED_TI MED_OUT_FI LTER "add_constraints" onit, a

This exception is raised by: CosNatification subscriber waited

. . more than five minutes to call
" gftﬁ: 'u'; g(?;f‘ggslpﬁghmszppl o add_filter toadd the filter to the
add filter proxy. This means that the filter has
- been destroyed (timed out) and that
the subscriber must create a new

filter.

Tobj _Notification:: A CosNotification subscriber called 54555852
SUB_ADD FI LTER AFTER _CONNECT add_fi | t er after connectingtothe
This exception israised by: proxy.
m CosNoti f yChannel Admi n: :

St ruct ur edPr oxyPushSuppl i er::

add_filter
Tobj _Noti fication:: A CosNotification subscriber called 54555856
SUB_CANT_SET_QOS_AFTER _CONNECT set _qos dfter connecting to the
This exception israised by: proxy.
m CosNoti fyChannel Adm n: : Structured

Pr oxyPushSupplier::set_gos
Tobj _Noti fication:: A CosNotification subscriber called 54555859
SUB_MULTI PLE_CALLS TO ADD CONS add_const rai nt s morethanonce
This exception is raised by: on afilter.
m CosNotifyFilter::Filter::

add_constraints
Tobj _Noti fication:: A CosNotification subscriber called 54555851
SUB_MULTI PLE_CALLS TO SET_FILTER add_fil t er morethanonceona
This exception is raised by: proxy.

m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushSuppl i er::
add_filter

2-72 Using the Notification Service

CosNotification Service API

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj _Notification:: A CosNotification subscriber called 54555855
SUB_MULTI PLE_CALLS TO SET_QOS set _gos morethan once onaproxy.
This exception israised by:
m CosNoti f yChannel Admi n: :
Struct ur edProxyPushSuppl i er::
set _qos
Tobj _Notification:: When a CosNotification subscriber 5455585A
SUB_MULTI PLE_CONSTRAI NTS I N_LI ST called add_constrai nts ona
This exception is raised by: filter, the subscriber passed in alist of
m CosNotifyFilter::Filter:: f:onstralntgthat had mqrethan one_:
. item; that is, the subscriber wastrying
add_constraints . . . -
- tosendin alist of datafiltersinstead
of one datafilter.
Tobj _Notification:: When a CosNotification subscriber 54555858
SUB_MULTI PLE_TYPES_| N_CONSTRAI NT called add_constrai nts ona
This exception is raised by: filter, the subscriber passed on a
m CosNotifyFilter::Filter:: gonstfal/nt tha;eTj’:\?hzqrett:an one
add_constraints omain, type set netls e .
- subscriber wastrying to send in alist
of desired event types instead of one
event type.
Tobj _Notification:: A CosNotification subscriber passed 54555853

SUB_NI L_FI LTER _REF
This exception israised by:
m CosNoti f yChannel Admi n: :

Struct ur edProxyPushSuppl i er::
add_filter

anil filter object referenceinto
add_filter.

Using the Notification Service

2-73

2 Notification Service API Reference

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes
(Hexadecimal)

Tobj _Noti fication:: A CosNotification subscriber passed 54555854
SUB_NO CUSTOM FI LTERS afilter object that was not created by
m CosNoti f yChannel Admi n: : gddﬁftl_fl_t;.r : Forbexa_tgple, a
St ruct ur edPr oxyPushSuppl i er:: ~~oshotitication Subscriber
add filter implemented the
- CosNotifyFilter::Filter
interfaceto do somekind of "custom"
filtering and passed one of thosefilter
objectsintoadd_filter.
Tobj _Noti fication:: A CosNotification subscriber did not 54555850
SUB_SET_FI LTER_NOT_CALLED call add_fil ter tothe proxy
This exception is raised by: before connecting to the proxy.
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushSuppl i er::
connect _structured_push_
consuner
Tobj _Noti fication:: A CosNotification subscriber did not 54555857
SUB_SET_QOS _NOT_CALLED call add_fil t er to the proxy
This exception is raised by: before connecting to the proxy.
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushSuppl i er::
connect _structured_push_
consuner
Tobj _Noti fication:: A CosNotification subscriber passed ~ 5455585C

SUB_SYSTEM EVENTS_UNSUPPORTED
This exception is raised by:
m CosNoti f yChannel Admi n: :

St ruct ur edPr oxyPushSuppl i er::

set _qgos

2-74 Using the Notification Service

inadomain name of " TMEVT" and a
type name that beginswith " . " ; that
i's, the CosNotification subscriber was
trying to subscribe to Tuxedo system
events. Thisis not supported. It is
only supported by the Simple Events
API.

CosNotification Service API

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols

Definitions Minor Codes

(Hexadecimal)

Tobj Notification::
SUB_UNSUPPORTED _CLI ENT_TYPE

Thisis exception raised by:

m Consuner Adnin: :
obtain_notification_push_
supplier

m SupplierAdnin::
obtain_notification_push_
consuner

When creating a proxy, a 5455585F
CosNotification subscriber or poster

passed in a client type other than

CosNot i f yChannel Admi n: : ST

RUCTURED_EVENT.

CORBA: : OBJECT_NOT_EXI ST Excepti on

Tobj _Notification::

SUBSCRI PTI ON_DCESNT_EXI ST

This exception israised by:

m StructuredProxyPushSupplier::
add_filter

m StructuredProxyPushSupplier::
set _gos

m StructuredProxyPushSupplier::
connect _structured_push_
consuner

m StructuredProxyPushSupplier::
di sconnect _structured_push_
supplier

Note: connect _structured_push_
consumer canraisethisexception since
auser can create the proxy, then use the
nt sadmni n utility to delete the
subscription, and then call

connect _structured_push_

consuner on the proxy.

A CosNotification subscriber calleda 54555880
method on a proxy that had already

been destroyed. The proxy has been

destroyed by one of the following

actions:

m The CosNoatification subscriber
disconnected the proxy.

m The CosNoatification subscriber
waited more than five minutes
from creating the proxy to
connecting it; that is, it took
longer than five minutes to
complete the subscription.

m Theadministrator used the
nt sadm n utility to destroy the
subscription.

Using the Notification Service ~ 2-75

2 Notification Service API Reference

2-76 Using the Notification Service

CHAPTER

3 Using the BEA Simple
Events APl

This chapter describes the development steps required to create Notification Service
application using the BEA Simple Events API and the C++ and Java programming

languages.

Thistopic includes the following sections:

m Development Process

m Step 1: Writing an Application to Post Events

m Step 2: Writing an Application to Subscribe to Events

m Step 3: Compiling and Running Notification Service Applications

Development Process

Table 3-1 outlines the development process for creating Notification Service
applications.

Table 3-1 Development Process

Step Description
1 Designing events
2 Writing an application that posts events

Using the Notification Service

3-1

3 Using the BEA Simple Events API

Table 3-1 Development Process (Continued)

Step Description

3 Writing an application that subscribes to events

4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensurethat your Notification Servicewill be ableto handle
your needs now and allow for future growth. For a discussion of event design, see
“Designing Events” on page 2-6.

Step 1: Writing an Application to Post Events

The following types of applications can post events:

m WLE clients, joint client/servers and servers.

m Foreign ORB clients.

To post events, an application must, at a minimum, implement the following functions

m Get the event channel factory object reference and use it to get the event
channel.

m Create and post events.

The following sections describe each of these functions.

3-2 Using the Notification Service

Step 1: Writing an Application to Post Events

Getting the Event Channel

Before the client application can post an event, it must first get the event channel.

This development step isillustrated in Listing 3-1. Listing 3-1 is based on the
Notification Service sample applications that use the BEA Simple Events API.

To get the event channel factory object reference, the
resol ve_i ni tial _references methodisinvoked ontheBootstrap object using the
"Tobj _Si npl eEvent sServi ce" environmental object. The object referenceis used
to get the channel factory, whichisin turn is used to get the event channel. Listing 3-1
and Listing 3-2 show code examples in C++ and Java.

Listing 3-1 Getting the Event Channel (C++)

/1l Get the Sinple Events channel factory object reference.
CORBA: : (bj ect _var channel factory oref =
bootstrap.resolve_initial _references(
"Tobj _Si npl eEventsServi ce");

Tobj _Si npl eEvent s: : Channel Fact ory_var channel factory =
Tobj _Si npl eEvent s: : Channel Fact ory: : _narrow
channel _factory oref.in());

/1 Use the channel factory to get the default channel.
Tobj _Si npl eEvent s: : Channel _var channel =
channel _factory->find_channel (
Tobj _Si npl eEvent s: : DEFAULT_CHANNEL) ;

Listing 3-2 Getting the Event Channel (Java)

/1 Get the Sinple Event channel factory object reference.
or g. ong. CORBA. Obj ect channel factory oref =
boot strap.resolve_initial _references(
"Tobj _Si npl eEvent sServi ce");

/1 Use the channel factory to get the default channel.
Channel Factory channel factory =
Channel Fact or yHel per . narr ow(channel factory_oref);

Using the Notification Service 3-3

3 Using the BEA Simple Events API

Channel channel =
channel _factory.find_channel (DEFAULT_CHANNEL. val ue) ;

Creating and Posting Events

34

Before an event can be posted, it must be created. The following listings are based on
the Notification Service sample applications.

Listing 3-3 and Listing 3-4 show how thisisimplemented in C++ and Java
respectively. To report news to the events channel, this application executes the
following steps:

1. Createsan event and setsthe domain name and type name. In the code samples, the
domain name is set to “News” and the event type is set to “Sports”.

2. Adds a field to the event’s filterable data to contain the story, sets the name of th
added field to “Story”, and the value of the field to a string containing the story.

3. Uses theush_structured_event operation to post the event to the
Notification Service.

Listing 3-3 Creating and Posting the Event (C++)

/'l Create an event.
CosNotification::StructuredEvent notification;

/1 Set the domain to "News".
notification. header.fixed _header. event _type.domai n_nane =
CORBA: : string_dup("News");

/1 Set the type to the news category.
notification. header.fixed _header.event _type.type_nanme =
CORBA::string_dup(“Sports”);

/I Add one field, which will contain the story, to the

/I event's filterable data. Set the field's name to

/I "Story" and value to a string containing the story.

notification.filterable_data.length(1);

notification.filterable_data[0].name =
CORBA::string_dup("Story");

notification.filterable_data[0].value <<= “John Smith wins again”;

Using the Notification Service

Step 1: Writing an Application to Post Events

/1 Post the event.

/1 Subscribers who subscribed to events whose domain is
/1 "News" and whose type natches the news category will
/1 receive this event

channel - >push_structured_event (notification);

Listing 3-4 Creating and Posting the Event (Java)

// Create an event.

StructuredEvent notification = new StructuredEvent();

/] Create the sub structures for the header.

notification.header = new Event Header () ;

notification. header.fixed header = new Fi xedEvent Header () ;
notification. header. fixed _header. event _type = new Event Type();

/1 Set the domain to "News".
notification.header.fixed header.event type.donmai n_nane = "News";

/] Set the type to the news category.
notification.header.fixed_header.event_type.type_name = “Sports”;

/I Set the event name to an empty string since this sample

/I doesn't use it.
notification.header.fixed_header.event_name ="";

/I Empty the variable header since this sample doesn't use it.
notification.header.variable _header = new Property[0];

/I Add one field, which will contain the story, to the

/I event's filterable data. Set the field's name to

// "Story" and value to a string containing the story.
notification filterable_data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].name = "Story";
notification.filterable_data[0].value = orb.create_any();
notification.filterable_data[0].value.insert_string(John Smith
wins again”);

/I Set the remainder of body to a new (empty) any since this
/I sample doesn't use the remainder of body.
notification.remainder_of_body = orb.create_any();

/IPost the event.
channel.push_structured_event(notification);

Using the Notification Service 3-5

3 Using the BEA Simple Events API

Step 2: Writing an Application to Subscribe
to Events

Thefollowing types of applications can subscribe to events:
m WLE joint client/servers and servers.
m Foreign ORB clients.

To subscribe to events, an application must, at a minimum, implement the following
functions:

m Implement a CosNotifyComm OMG IDL interface that supportsthe
push_struct ured_event operation.

m Get the event channel factory object reference and use it to get the event
channel.

m Define and create a subscription that includes the callback object reference.

m Create acallback object that implementsthe
CosNotifyComm::StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the

push_struct ured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the callback object to
push the event to the subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface also defines the operations
of f er _change and di sconnect _st ruct ured_push_consumer. The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA: : NO_| MPLEMENT.

3-6 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 3-5 and Listing 3-6 show how this interface isimplemented in C++.

Listing 3-5 Sample CosNotifyComm:: StructuredPushConsumer Interface
Implementation (NewsConsumer _i.h)

#i f ndef _news_consuner i _h
#defi ne _news_consuner i _h
#i ncl ude "CosNoti fyComm s. h"

/!l For the servant class to receive news events,
/1 it must inplenent the CosNotifyComm : Struct uredPushConsuner
/1 idl interface.

cl ass NewsConsuner i : public
POA CosNot i f yConm : St ruct ur edPushConsuner
{
public:
/1 This method will be called when a news event occurs.

virtual void push_structured_event(
const CosNotification::StructuredEvent& notification

)

/1 OM5 s CosNotifyComm : Struct uredPushConsuner idl

/1l interface defines the nethods "offer_change" and

/1 "disconnect _structured_push_consumer"”. Since the WE
/1 Notification Service never invokes these nethods, just
/1 have themthrow a CORBA:: NO | MPLEMENT excepti on

virtual void offer_change(
const CosNotification::Event TypeSeq& added,
const CosNotification::Event TypeSeq& renoved)

{
}

virtual void di sconnect_structured_push_consuner ()

t hrow CORBA: : NO_| MPLEMENT() ;

t hrow CORBA: : NO_| MPLEMENT() ;

}
}s
#endi f

Using the Notification Service 3-7

3 Using the BEA Simple Events API

Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.cpp)

#i ncl ude "NewsConsuner _i.h"
#i ncl ude <i ostream h>

/1 Subscriber.cpp creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i

/1 object. Wien a news event occurs (this happens when a user

/1 runs the Reporter application and reports a news story), this
/1 method will be invoked:

voi d NewsConsumer _i:: push_structured_event (
const CosNotification::StructuredEvent& notification)

/1l Extract the story fromthe first field in the event’'s
/1 filterable data.

char* story;

notification.filterable_data[0].val ue >>= story;

/1 For coding sinplicity, assunme "story" is not "null".

// Print out the event.
cout

<< endl
<< "Category : "
<< notification. header.fixed_header.
event _type. type_nane.in()
<< endl
<< "Story "
<< story
<< endl ;

Listing 3-7 shows how this interface isimplemented in Java.

Listing 3-7 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

i mport org.ong. CosNotification.*;
i nport org.ong. CosNotifyConm *;

3-8 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

i mport org.ong. CORBA. *;
e

/1 The servant class to receive news events.
/1 1t must inplenent the CosNotifyComm : Struct uredPushConsurer idl
/'l interface.

public class NewsConsuner i extends
_Struct uredPushConsuner | npl Base
{

/1 Subscriber.java creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i object.
/1 When a news event occurs (this happens when a user runs the

/1 Reporter application and reports a news story), this nethod wll
/1 be invoked:

public void push_structured_event(StructuredEvent notification)

{
/1 For coding sinplicity, assume that:
/1 notification.header.fixed_header.event_type. donmai n_nane is
/1 "News"
/1 notification.header.fixed_header.event_type.type_nane is the
/1 news category
/1l notification.filterable data.length is 1
/1 notification.filterable_data[0].nane is "Story"
/1 notification.filterabl e_data[0].value contains the story (as
/1l a string).

/1l Extract the story fromthe first field in the event’s
/1 filterabl e data.
/1 For coding simplicity, do not handl e errors indicating that the
/1 field does not contain a string.
String story =
notification.filterable_data[O0].val ue.extract_string();

/1 Print out the event.
Systemout.println("--------ommmm oo ");
Systemout.println("Category : " +

noti fication. header.fixed_header. event _type.type_nane);

System out . printl n(
"Story " + story);

/1 At this point, the main has called the "wait_for_shutdown"
/1 nethod on the shutdown object. That method bl ocks until

/1 the "shutdown" nethod on the shutdown nanager is called.
/1 Call "shutdown" on the shutdown nmanager. This wll cause
/1 "wait_for_shutdown" to return. Afterwards, the main wll
/1 shutdown the application.

m shut down_manager . shut down() ;

}

Using the Notification Service 39

3 Using the BEA Simple Events API

/1 OM5 s CosNotifyComm : Struct uredPushConsuner idl

/1 interface defines the nethods "offer_change" and

/1 "disconnect_structured_push_consuner”. Since the WE
/1 notification service never invokes these nethods, just
/1 have themthrow a CORBA:: NO | MPLEMENT excepti on

public void disconnect_structured_push_consuner ()

{
t hrow new NO | MPLEMENT() ;

}

public void of fer_change(Event Type[] added, EventType[] renoved)
{

}
}

t hrow new NO | MPLEMENT() ;

Getting the Event Channel

This step isthe same for event posters and event subscribers. For a discussion of this
step, see “Implementing the CosNotifyComm::StructuredPushConsumer Interface” ol
page 3-6.

Creating a Callback Object

To receive events, the application must also be a server; that is, the application mus
implement a callback object that can be invoked (called back) when an event occur:
that matches the subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to a joint client/server. WebLogic Enterprise servers
can also subscribe to events.

1. Create a callback object. Callback objects can be implemented using either the
BEAWrapper Callback API or the CORBA Portable Object Adaptor (POA).

2. Create the servant.

3. Create an object reference to the callback servant.

3-10 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

For a complete description of the BEAWrapper Callbacks object and its methods, see
the Joint Client/Servers chapter in CORBA C++ Programming Reference or CORBA
Java Programming Reference.

Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For adiscussion of how to implement acallback object using
the POA, see CORBA Server-to-Server Communication.

Listing 3-8 and Listing 3-9 show how to use the BEAWTrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
NewsConsumber i servant iscreatedandthestart _transi ent methodisusedto
create atransient object reference.

Using the Notification Service 3-11

3 Using the BEA Simple Events API

3-12

Listing 3-8 Sample Codefor Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.cpp)

/1l Create a call back wapper object since this client needs to
/1l support callbacks.

BEAW apper: : Cal | backs wrapper(orb.in());
NewsConsuner _i * news_consuner _i npl = new NewsConsuner i ;

CORBA: : Cbj ect _var news_consuner_oref =
wr apper . start_transient(
news_consuner _i npl ,
CosNot i fyComm : _tc_StructuredPushConsuner->i d()
)

CosNot i f yConm : Struct ur edPushConsuner _var
news_consuner =
CosNot i f yComm : St ruct uredPushConsuner:: _narr ow
news_consuner _oref.in()

);

Listing3-9 Sample Codefor Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.java)

/1l Create a call back w apper object since this client needs to
/'l support callbacks.

Cal | backs cal | backs = new Cal | backs(orb);

/'l Instantiate the servant that receives the events.
NewsConsuner i news_consuner _i npl =
new NewsConsumer i ;

/1l Create a transient object reference to the call back servant.
cal | backs.start_transient(
news_consuner _i npl,
news_consumner _i npl. _ids()[0]

)

Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification
Service. Y ou can create either atransient subscription or a persistent subscription.

Listing 3-10 and Listing 3-11, which isfrom the Subscr i ber . cpp filein the
Introductory sample application, show how to create a transient subscription in C++
and Java respectively.

The following steps must be performed:

1. Set the subscription’s quality of service (QoS) to either transient or persistent.

2. Determine theubscri pti on_name (optional),domai n_nane, t ype_nane, and
data_filter (optional).

3. Create the subscription. The subscription setddhei n_nane, t ype_name, and
data_filter (optional), the quality of service (QoS), and supplies the object
reference to the subscriber’s callback object to the Notification Service.

Listing 3-10 Creating a Transient Subscription (C++)

/1 Set the quality of service to TRANSI ENT.
CosNotification:: QSProperties qos;
gos. length(l);
qos[0] . nane =

CORBA: : string_dup(Tobj _Sinpl eEvents: : SUBSCRI PTI ON_TYPE) ;
qos[0] . val ue <<=

Tobj _Si npl eEvent s: : TRANSI ENT_SUBSCRI PTI ON,;

/] Set the type to the news category.
const char* type = “Sports”;
/I Create the subscription. Set the domain to "News" and
/l the data filter to age greater than 30.
Tobj_SimpleEvents::SubscriptionID subscription_id =
channel->subscribe(
subscription_name,
"News", // domain
“Sports”, // type
"Age > 30", // Data filter.
gos,
news_consumer.in()

)i

Using the Notification Service 3-13

3 Using the BEA Simple Events API

Listing 3-11 Creating a Transient Subscription (Java)

/1 Set the quality of service to TRANSI ENT.

Property qos[] = new Property[1];

qos[0] = new Property();

qos[0] . nane = SUBSCRI PTI ON_TYPE. val ue;

qos[0] .value = orb.create_any();

qos[0] . val ue. i nsert _short (TRANSI ENT_SUBSCRI PTI ON. val ue) ;

/1 Set the type to the news category.
String type = "Sports”;

/I Create the subscription. Set the domain to "News" and
/I the data filter to age greater than 30.
int subscription_id = channel.subscribe(
subscription_name,
"News", // domain
“Sports”, /I type
"Age > 30", // data filter.
qgos,
news_consumer_impl

Note: When you use datafiltering, you must also perform some configuration tasks.
For a discussion of data filtering configuration requirements, see “Configuring
Data Filters” on page 7-3.

Listing 3-12 and Listing 3-13, which shows code in the Advanced sample application
in C++ and Java, illustrate the coding steps required to create a persistent subscripti
to the Notification Service. The steps required to create a persistent subscription are
the same as those required to create a transient subscription, as described previous

Note: While the code examples shown here assume thaettae consuner
callback object has a persistent object reference, you can also create persiste
subscriptions with transient callback object references. For a discussion of
transient versus persistent callback object references, see Table 2-3.

3-14 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)

CosNotification:: QSProperties qos;
gos. length(l);
qos[0] . nane =
CORBA: : string_dup(Tobj Si npl eEvents:: SUBSCRI PTI ON_TYPE) ;
qos[0] . val ue <<= Tobj _Si npl eEvents:: PERSI STENT _SUBSCRI PTI ON,;

CosNot i f yComm : St ruct uredPushConsuner _var
news_consuner =
CosNot i f yConm : Struct ur edPushConsuner: : _narrow(
news_consuner_oref.in()

)

Tobj _Si npl eEvents:: Subscriptionl D sub_id =
channel - >subscri be(
subscription_info.subscription_name(),
"News", // domain
“Sports”, // type
“* /I No data filter.
qgos,
news_consumer.in()
)
)i

Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)

Property qos[] = new Property[1];

qos[0] = new Property();

gos[0].name = SUBSCRIPTION_TYPE.value;

qos[0].value = orb.create_any();
gos[0].value.insert_short(PERSISTENT_SUBSCRIPTION.value);

intsub_id =

channel.subscribe(
subscription_info.subscription_name(),
"News", // domain
“Sports”, // type
“* |/ No data filter.
qos,
m_news_consumer_impl

Using the Notification Service 3-15

3 Using the BEA Simple Events API

Threading Considerations for C++ Joint Client/Server Applications

3-16

A joint client/server application may first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application turns complete control of the thread to the Object Request Broker (ORB)
by making the following invocation:

orb -> run();

If amethod in the server portion of ajoint client/server application invokes

ORB: : shut down(), all server activity stops and control is returned to the statement
after ORB: : r un() isinvoked in the server portion of thejoint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since aclient application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of the joint client/server application. This sharing is accomplished by
occasionally checking with the ORB to seeif the joint client/server application has
server application work to perform. Usethe following code to perform the check with
the ORB:

if (orb->work_pending()) orb->performwork();

After the ORB compl etes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

Y ou should be aware that the ORB cannot service callbacks while the joint
client/server application is blocking on arequest. If ajoint client/server application
invokes an object in another WebL ogic Enterprise server application, the ORB blocks
whileit waits for the response. While the ORB is blocking, it cannot service any
callbacks, so the callbacks are queued until the request is completed.

Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

Step 3: Compiling and Running Notification
Service Applications

Thefinal step in the development of a Notification Service application isto compile,
build, and run the application. To do this, you need to perform the following steps.

1. Generatetherequired client stub and skeleton filesto defineinterfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.

4. Run the application.

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the i di command for
each of the Notification IDL filesthat your application uses. Table 3-2 showsthe i di
commands used for each type of subscriber.

Table 3-2 idl Command Requirements

Language Joint Client/Server WebL ogic Enterprise
Server

C++ idl -P i dl

Java idltojava nBi dl t o] ava

The following isan example of an i dl command:

>idl -1C\wedir\include C\w edir\incl ude\ CosEvent Corm i dl

Using the Notification Service ~ 3-17

Using the BEA Simple Events API

Table 3-3liststhe IDL files required by each type of Notification Service application
that usesthe BEA Simple Events Interface.

Table 3-3 IDL Files Required by Notification Service Applications

Application Type

Required OMG IDL Files

Event poster (can beaclient, ajoint client/server, or
aserver). (Stubs are required for al files.)

CosEvent Comm i dl
CosNotification.idl

CosNot i f yComm i dl
Tobj _Events.idl
Tobj _Si npl eEvents. i di

Subscriber (can be a server or ajoint client/server).
(Stubs are required for all files. Skeleton is required
for the CosNot i f yConm i dI file)

CosEvent Comm i dl
CosNotification.idl
CosNot i f yComm i dl

Tobj _Events.idl
Tobj _Si npl eEvents. i di

Building and Running Applications

Table 3-4 Application Build Requirements

The build procedure differs depending on the type of Notification Service application
you are building. Table 3-4 provides an overview of the commands and types of files

used to build each type of Notification Service application.

Application Type

Client

Joint Client/Server

Server

C++ Events Poster

Usethe
bui | dobj cl i ent

command to compilethe
application files and the

Usethebui | dobj cl i ent
command with the - P option
to compile the application
filesand the IDL stubs.

Use the

bui | dobj server
command to compile the
application filesand the

IDL stubs. IDL client stubs.

C++ Events Not applicable. Usethebui | dobj cl i ent Use the

Subscriber command with the - Poption bui | dobj server
to compile the application command to compile the
files, the IDL stubs, the IDL application files, the IDL
skeletons, and link with the stubs, and the IDL
BEAWTrapper library. skeletons.

3-18 Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

Table 3-4 Application Build Requirements (Continued)

Application Type

Client

Joint Client/Ser ver

Server

Java Events Poster Usethej avac Usethej avac commandto Usethej avac command
command to compilethe compile the application files to compile the application
application filesand the and the IDL stubs. filesand the IDL client
IDL stubs. stubs.

Java Events Not applicable. Usethej avac commandto Usethej avac command

Subscriber compile the application files, to compile the application

the IDL stubs, and the IDL
skeletons.

files, the IDL stubs, and the
IDL skeletons.

Listing 3-14 shows the commands used for a C++ poster application (Repor t er . cpp)
on aMicrosoft Windows NT system. To form a C++ executable, thei dI command is
run on the required IDL file and the bui | dobj cl i ent command compiles the C++
client application file and the IDL stubs.

Listing 3-14 C++ Reporter Application Build and Run Commands (Micr osoft
Windows NT)

Run the idl command.

idl -IC\wedir\include C\w edir\include\ CosEvent Comm i dl \
C.\w edir\include\ CosNotification.idl \

C.\w edir\incl ude\ CosNoti fyCommidl \

C.\w edir\incl ude\ Tobj Events.idl \

C.\w edi r\incl ude\ Tobj _Si npl eEvents. i dl

Run the buil dobjclient command.
bui | dobjclient -v -0 subscriber.exe -f
- DW N32
Reporter.cpp
CosEvent Comm c. cpp
CosNotification_c.cpp
CosNot i f yComm c. cpp
Tobj _Events_c. cpp
Tobj _Si npl eEvent s_c. cpp \

— - - — — —

Run the application.
is_reporter

Using the Notification Service 3-19

3 Using the BEA Simple Events API

3-20

Listing 3-15 and Listing 3-16 show the commands used for a C++ subscriber
application (Subscri ber . cpp) on Microsoft Windows NT and UNIX respectively.
To form a C++ executable, the bui | dobj cl i ent command, with the - P option,
compiles the joint client/server application files (Subscri ber . cpp and

News Consuner _i . cpp), the IDL stubs, and the IDL skeleton

(CosNot i f yConm s. cpp).

Listing 3-15 C++ Subscriber Application Build and Run Commands (M icr osoft
WindowsNT)

Run the idl comand.

idl -P-1C\wedir\include C:\w edir\incl ude\ CosEvent Cormidl \
C:\w edir\incl ude\ CosNotification.idl \

C:\w edir\incl ude\ CosNoti fyComm i dl \

C.\w edir\incl ude\ Tobj Events.idl \

C:\w edi r\incl ude\ Tobj _Si npl eEvents. i dl

Run the buil dobjclient comand.
bui | dobjclient -v -P -0 subscriber.exe -f
- DW N32
Subscri ber. cpp
News Consuner _i . cpp
CosEvent Comm c. cpp
CosNot i fication_c.cpp
CosNot i fyComm c. cpp
CosNot i fyComm s. cpp
Tobj _Events_c. cpp
Tobj _Si npl eEvents_c. cpp \
c:\wledir\lib\libbeaw apper.lib \

— - — —

Run the application.
i s_subscri ber

Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl comand.

idl -P -1/usr/local/wedir/include
/usr/local/w edir/include/ CosEvent Comm i dl \
/usr/local/w edir/include/ CosNotification.idl \
/usr/local/w edir/include/ CosNotifyComm idl \

Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

/usr/local /W edir/include/ Tobj Events.idl \
/usr/local /W edir/include/ Tobj Sinpl eEvents.idl

Run the buil dobjclient command.
bui l dobjclient -v -P -0 subscriber -f "
Subscri ber. cpp
NewsConsuner _i . cpp
CosEvent Comm c. cpp
CosNotification_c.cpp
CosNot i f yComm c. cpp
CosNot i f yComm s. cpp
Tobj _Events_c.cpp
Tobj _Si npl eEvents_c. cpp
- | beawr apper

— o — — —

Run the application.
i s_subscri ber

Listing 3-17 shows an example of the commands used to link, build, and run remote
Java poster and subscriber applications.

Listing 3-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava comand.

idltojava -1C\w edir\include C\w edir\include\ CosEvent Cormidl \
C:\w edir\include\ CosNotification.idl C\w edir\include\CosNotifyCommidl \
C.\w edir\include\ Tobj Events.idl C:\w edir\include\Tobj_ Si npl eEvents.idl

Conpile the java files.
javac -classpath C \w edi r\udataobj\java\jdk\nBenvobj.jar Reporter.java

Conbine the java .class files into the java archive (JAR) file.
jar cf reporter.jar Reporter.class org\ong\CosEvent Conm \

org\ ong\ CosNoti fication org\ong\ CosNoti f yConm \

com beasys\ Tobj Events com beasys\ Tobj _Si npl eEvent s

Run the reporter application.
java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
reporter.jar; C\w edi r\udat aobj\java\jdk\nBenvobj.jar Reporter

Using the Notification Service 3-21

3 Using the BEA Simple Events API

Listing 3-18 shows an example of the commands used to link, build, and run remote
Java subscriber applications.

Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava command.

idltojava -1C\w edir\include C\w edir\include\ CosEvent Cormidl \
C:\w edir\include\CosNotification.idl C\w edir\include\CosNotifyCommidl \
C.\w edir\include\Tobj _Events.idl C\w edir\include\Tobj SinpleEvents.idl

Conpile the java files.
javac -cl asspath C:\w edi r\udat aobj\java\jdk\ nmBenvobj.jar;\
C.\wW edi r\udat aobj\java\jdk\w eclient.jar Subscriber.java

Conbine the java .class files into the java archive (JAR) file.

jar cf subscriber.jar Subscriber.class NewsConsuner _i.class \
or g\ ong\ CosEvent Comm or g\ ong\ CosNoti fi cati on org\ong\ CosNoti f yConm \
com beasys\ Tobj Events com beasys\ Tobj _Si npl eEvent s

Run the subscriber application.

j ava - DTOBJADDR=// BEANI E: 2359 -cl asspath \
subscri ber.jar; C:\w edi r\udat aobj \ j ava\ j dk\ nBenvobj . j ar;\
C.\wW edi r\udat aobj\java\jdk\w eclient.jar Subscriber

Note: Thej ava command linein Listing 3-18 is for an application that either sets
the port in the application code or promptsthe user to set the port. Y ou can a so
set the port in thej ava command line. Thefollowing isan example of aj ava
command line that sets the port number:

j ava - DTOBJADDR=// BEAN E: 2359 \
- Dor g. ong. cor ba. ORBPor t =port nunber -cl asspath. ..

3-22 Using the Notification Service

CHAPTER

4 Using the

CosNotification Service
API

This chapter describes the devel opment steps required to create a Notification Service
applications using the CosNotification Service APl and the C++ and Java
programming languages.

Thistopic includes the following sections:

Development Process
Step 1: Writing an Application to Post Events
Step 2: Writing an Application to Subscribe to Events

Step 3: Compiling and Running Notification Service Applications

Development Process

Table 4-1 outlines the development process for creating Notification Service
applications.

Using the Notification Service

4 Using the CosNotification Service API

Table 4-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensurethat your Notification Servicewill be ableto handle
your needs now and allow for future growth. For a discussion of event design, see
“Designing Events” on page 2-6.

Step 1: Writing an Application to Post Events

The following types of applications can post events:

m WLE clients, joint client/servers and servers.

m Foreign ORB clients.

To post events, an application must, at a minimum, implement the following functions
m Get the event channel factory object reference and use it to get the event

channel.

4-2 Using the Notification Service

Step 1: Writing an Application to Post Events

m Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must get the event channel.

This development step isillustrated in Listing 4-1. Listing 4-1 is code from the
Repor ter . cpp filein the Introductory sample application that uses the
CosNotification Service API.

To get the event channel factory object reference, the

resol ve_i ni tial _references methodisinvoked ontheBootstrap object using the
"NotificationService" environmental object. The object referenceis used to get

the channel factory, which is, in turn, is used to get the event channel. Listing 4-1 and
Listing 4-2 show code examplesin C++ and Java.

Listing4-1 Gettingthe Event Channel (Reporter.cpp)

/1 Get the CosNotification channel factory object reference.
CORBA: : (bj ect _var channel factory oref =
boot strap.resolve_initial _references(
"NotificationService");

CosNot i f yChannel Admi n: : Event Channel Fact ory_var
channel _factory =
CosNot i f yChannel Adm n: : Event Channel Fact ory:: narrow
channel _factory oref.in());

/1 use the channel factory to get the default channel
CosNot i f yChannel Admi n: : Event Channel _var channel =
channel _factory->get_event _channel (
Tobj _Notification:: DEFAULT_CHANNEL);

Using the Notification Service 4-3

4 Using the CosNotification Service API

Listing 4-2 Getting the Event Channel (Reporter.java)

i nport org.ongy. CosNotification.*;//Sone of the CosNotification API.
i nport org.ong. CosNotifyChannel Adm n.*;inport // The rest of the
/1 CosNotification API.

com beasys. Tobj _Notification.*; // Proprietary constants needed

/1 when using the CosNotification API.
i nport com beasys. Tobj . *;
i nport com beasys. *;
i nport org. ong. CORBA. *;

inport java.io.*;

/1 get the CosNotification channel factory object reference

org. ong. CORBA. Obj ect channel factory oref =
bootstrap.resolve_initial _references("NotificationService");

Event Channel Factory channel factory =
Event Channel Fact or yHel per. narrow(channel _factory oref);

/1l use the channel factory to get the default channel
Event Channel channel =
channel _factory.get_event channel (DEFAULT_CHANNEL. val ue);

Creating and Posting Events

To post events, you must get the SupplierAdmin object, useit to create a proxy, create
the event, and then post the event to the proxy.

Listing 4-3 and Listing 4-4 show how thisisimplemented in C++ and Java
respectively.

Listing 4-3 Creating and Posting the Event (Reporter.cpp)

/1 Since we are a supplier (that is, we post events),

/1 get the SupplierAdm n object

CosNot i f yChannel Adm n:: Suppl i er Adm n_var supplier_adnmn =
channel - >def aul t _suppl i er _adm n();

/1 Use the supplier admin to create a proxy. Events are posted
/1 to the proxy (unlike the sinple events interface where events
/1 are posted to the channel).

CosNot i f yChannel Adm n:: Proxyl D proxy_i d;

4-4 Using the Notification Service

Step 1: Writing an Application to Post Events

CosNot i f yChannel Adm n: : ProxyConsumer _var generi c_proxy_consuner =
suppl i er _admi n->obt ai n_noti fi cation_push_consumer (
CosNot i f yChannel Adm n: : STRUCTURED EVENT, proxy_id);

CosNot i f yChannel Adm n: : Struct ur edPr oxyPushConsuner _var
proxy_push_consuner =
CosNot i fyChannel Adm n: : St ruct ur edPr oxyPushConsuner: : _narrow
generi c_proxy_consumner);

/1 Connect to the proxy so that we can post events.
proxy_push_consuner - >connect _structured_push_suppli er(
CosNot i f yConm : Struct uredPushSupplier:: _nil ());

/1l create an event
CosNotification::StructuredEvent notification;

/] set the domain to "News"
notification.header.fixed header.event _type. donmai n_name =
CORBA: : string_dup("News");

/] set the type to the news category
notification.header.fixed header.event _type.type nanme =
CORBA::string_dup(“Sports”);

/I add one field, which will contain the story, to the

/I event's filterable data. set the field's name to

// "Story" and value to a string containing the story

notification filterable_data.length(2);

notification filterable_data[0].name =
CORBA::string_dup("Story");

notification.filterable_data[0].value <<= “John Smith wins again”;

/I post the event

/I Subscribers who subscribed to events whose domain is
/I "News" and whose type matches the news category will
/I receive this event

proxy_push_consumer->push_structured_event(notification);

/I Disconnect.
proxy_push_consumer->disconnect_structured_push_consumer();

Using the Notification Service 4-5

4 Using the CosNotification Service API

Listing 4-4 Creating and Posting the Event (Reporter.java)

/1 since we're a supplier (that is, we post events)
/1 get the supplier adm n object
Suppl i er Admi n supplier_admn =

channel . defaul t _supplier_adm n();

/1 use the supplier admn to create a proxy. Events are posted
/1 to the proxy (unlike the sinple events interface where events
/1 are posted to the channel).
I nt Hol der proxy_id = new | nt Hol der () ;
ProxyConsuner generi c_proxy_consuner =
suppl i er _adm n. obtai n_notificati on_push_consuner (
Cli ent Type. STRUCTURED EVENT, proxy_id);

m pr oxy_push_consuner =
Struct ur edPr oxyPushConsuner Hel per. narr ow(
generi c_proxy_consumner);

/1 Connect to the proxy so that we can post events.
m proxy_push_consuner. connect _structured_push_supplier(null);

/] create an event
StructuredEvent notification = new StructuredEvent();
notification. header = new Event Header();

/1 create the sub structures for the header
notification. header.fixed_header = new Fi xedEvent Header () ;
notification. header.fixed_header. event _type = new Event Type();

/1 set the domain to "News"
notification. header.fixed_header. event _type.domai n_nanme = "News";

/1l set the type to the news category
notification.header.fixed_header.event_type.type_name = “Sports”;

/I set the event name to an empty string since this sample
/I doesn't use it
notification.header.fixed_header.event_name =",

/I empty the variable header since this sample doesn't use it
notification.header.variable_header = new Property[0];

/I add one field, which will contain the story, to the
/I event's filterable data. set the field's name to

/I "Story" and value to a string containing the story
notification.filterable_data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].name = "Story";

4-6 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

notification.filterable data[0].value = orb.create_any();
notification filterable_data[0].value.insert_string(“John Smith
wins again”);

/I set the remainder of body to a new (empty) any since this
/I sample doesn't use the remainder of body
notification.remainder_of_body = orb.create_any();

m_proxy_push_consumer.push_structured_event(notification);

/I disconnect
proxy_push_consumer.disconnect_structured_push_consumer();

Step 2: Writing an Application to Subscribe
to Events

The following types of applications can subscribe to events:
m WLEjoint client/servers and servers.
m Foreign ORB clients that support callbacks.

To subscribe to events, an application must, at a minimum, support the following
functions:

m Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

m Get the event channel factory object reference and useit to get the event
channel.

m Defineand create a subscription that includes the callback object reference.

m Create acallback object that implements the
CosNotifyComm::StructuredPushConsumer interface.

Using the Notification Service 4-7

4 Using the CosNotification Service API

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback servant object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_struct ured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the servant callback
object in the subscriber application to deliver the event to the subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface also defines the operations
of f er _change and di sconnect _st ruct ured_push_consumer. The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA: : NO_| MPLEMENT.

Listing 4-5 and Listing 4-6 show how thisinterface isimplemented in C++.

Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.h)

#i f ndef _news_consuner i _h
#define _news_consuner i _h

#i nclude "CosNotifyComms. h"

/] For the servant class to receive news events,
/1 it nust inplenment the CosNotifyComm : StructuredPushConsumer
// idl interface

class NewsConsuner i : public
PQA CosNot i f yConm : St ruct uredPushConsuner
{
public:
/1 this method will be called when a news event occurs

virtual void push_structured_event(
const CosNotification::StructuredEvent& notification

)

/1 OMG s CosNotifyConm : StructuredPushConsuner idl
/1 interface defines the nmethods "of fer_change" and
/1 "disconnect _structured_push_consumer"”. Since the WLE

4-8 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

/1 Notification Service never invokes these nethods, just
/1 have themthrow a CORBA:: NO | MPLEMENT excepti on

virtual void offer_change(
const CosNotification::Event TypeSeq& added,
const CosNotification::Event TypeSeq& renoved)
{

}

virtual void di sconnect _structured_push_consuner ()

{

}
b
#endi f

t hrow CORBA: : NO_| MPLEMENT() ;

t hrow CORBA: : NO | MPLEMENT() ;

Using the Notification Service 4-9

4 Using the CosNotification Service API

4-10

Listing 4-6 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.cpp)

#i ncl ude "NewsConsuner _i.h"
#i ncl ude <i ostream h>

/1 Subscriber.cpp creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i

/1 object. Wien a news event occurs (this happens when a user

/1 runs the Reporter application and reports a news story), this
/1 method will be invoked

voi d NewsConsumer _i:: push_structured_event (
const CosNotification::StructuredEvent& notification)
{
/1l extract the story fromthe first field in the event’'s
/1 filterable data
char* story;
notification.filterable _data[0].val ue >>= story

/1 for coding sinplicity, assunme "story" is not "null"

/1 print out the event
cout

<< end
<< "Category : "
<< notification. header.fixed_header
event _type. type_nane.in()
<< end
<< "Story "
<< story
<< endl ;

Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 4-7 shows how thisinterfaceis implemented in Java.

Listing 4-7 Sample CosNotifyComm:: StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

i mport org.ong. CosNotification.*;
i mport org.ony. CosNoti fyComm *;
i mport org.ong. CORBA. *;

/1 The servant class to receive news events.
/1 1t must inplenent the CosNotifyComm : Struct uredPushConsurer idl
/1 interface.

public class NewsConsuner i extends
_Struct uredPushConsuner | npl Base

/1 Subscriber.java creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i object.
/1 When a news event occurs (this happens when a user runs the

/1 Reporter application and reports a news story), this nethod wll
/1 be invoked:

public void push_structured_event(StructuredEvent notification)

{
/1 For coding sinplicity, assune that:
/1 noti fication. header. fixed_header. event _type. domai n_nane is
/1 "News"
/1 notification. header. fixed_header.event _type.type_nane is
/1 the news category
/1 notification.filterable data.length is 1
/1 notification.filterable_data[0].nane is "Story"
/1 notification.filterable_data[O0].value contains the story
/1 (as a string).

/1l Extract the story fromthe first field in
/1 the event's filterable data for coding sinplicity, do not
/1 handle errors indicating that the field
/1 does not contain a string.
String story =
notification.filterabl e_data[O0].val ue.extract_string();

/1 Print out the event.
Systemout.printin("----------mmmmmm ");
Systemout.printin("Category : " +

noti fication. header.fixed_header. event _type.type_nane

);

Using the Notification Service 4-11

4 Using the CosNotification Service API

Systemout.println("Story
)

/1 At this point, the nain has called the "wait_for_shutdown
/1 method on the shutdown object. That method bl ocks until
/1 the "shutdown" nethod on the shutdown nanager is call ed.
/1 Call "shutdown" on the shutdown nmanager. This w Il cause
/1 "wait_for_shutdown" to return. Afterwards, the main wll
/1 shutdown the application.

m shut down_manager . shut down() ;

+ story

"

/1 OM5 s CosNotifyComm : Struct uredPushConsuner idl

/1 interface defines the nethods "offer_change" and

/1 "disconnect_structured_push_consuner”. Since the WE
/1 notification service never invokes these nethods, just
/1 have themthrow a CORBA:: NO | MPLEMENT excepti on

public void disconnect_structured_push_consuner ()

{

}

public void of fer_change(Event Type[] added, EventType[] renoved)

{
t hrow new NO | MPLEMENT() ;

}

t hrow new NO | MPLEMENT() ;

Getting the Event Channel, ConsumerAdmin Object, and
Filter Factory Object

4-12

Before an application can create a subscription, it must get the event channel and the
ConsumerAdmin and Filter Factory objects. Listing 4-8 and Listing 4-9 show how this
isimplemented in C++ and Java respectively.

To get the event channel factory object reference, the

resol ve_i ni tial _ref er ences method isinvoked on the Bootstrap object using the
“NotificationService” environmental object. The object referenceis used to get

the channel factory, which is, in turn, used to get the event channel. Finally, the event
channel is used to get the ConsumerAdmin object and the FilterFactory object.

Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing4-8 Gettingthe Event Channel and Consumer Admin and Filter Factory
Objects (Subscriber.cpp)

/1 Get the CosNotification channel factory object reference.
CORBA: : (bj ect _var
channel _factory oref =
bootstrap.resolve_initial _references(
"NotificationService");

CosNot i f yChannel Admi n: : Event Channel Fact ory_var
channel _factory =
CosNot i f yChannel Adm n: : Event Channel Factory: : _narrow
channel _factory oref.in());

/1 Use the channel factory to get the default channel.
CosNot i f yChannel Admi n: : Event Channel _var channel =
channel _factory->get_event _channel (
Tobj _Noti fication:: DEFAULT_CHANNEL);

/1 Use the channel to get the consuner adnmin and the filter factory.
CosNot i f yChannel Admi n: : Consumer Adm n_var consuner_admn =
channel - >defaul t _consuner _adm n() ;

CosNotifyFilter::FilterFactory var filter _factory =
channel - >default _filter _factory();

Using the Notification Service 4-13

4 Using the CosNotification Service API

Listing 4-9 Getting the Event Channel (Subscriber.java)

/1 get the CosNotification channel factory object reference
org. ong. CORBA. Obj ect channel factory oref =
boot strap.resolve_initial _references("NotificationService");

Event Channel Fact ory channel factory =
Event Channel Fact or yHel per. narrow(channel factory oref);

/1 use the channel factory to get the default channel
Event Channel channel =
channel _factory.get_event channel (DEFAULT _CHANNEL. val ue);

/1 use the channel to get the consunmer admin and the filter factory
Consuner Adm n consuner _admin =
channel . defaul t _consumer _adm n();

FilterFactory filter_factory =
channel .default filter_factory();

Creating a Callback Object

To receive events, the application must also be a server; that is, the application must
implement a callback object that can be invoked (called back) when an event occurs
that matches the subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to a joint client/server. WebLogic Enterprise servers
can also subscribe to events.

1. Creating a callback wrapper object. This can be implemented using either the
BEAWrapper Callbacks object or the CORBA Portable Object Adaptor (POA).

2. Creating the servant.
3. Creating an object reference to the callback servant.

For a complete description of the BEAWrapper Callbacks object and its methods, se
the Joint Client/Servers chapter@®RBA C++ Programming Reference or CORBA
Java Programming Reference.

4-14 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For adiscussion of how to implement acallback object using
the POA, see CORBA Server-to-Server Communication.

Listing 4-10 and Listing 4-11 show how to use the BEAWrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
NewsConsumber i servant iscreatedandthestart _transi ent methodisusedto
create atransient object reference.

Listing4-10 SampleCodefor Creatinga Callback Object With Transient Object
Reference (Introductory Application Subscriber.cpp)

/1l Create a call back wapper object since this client needs to
/1 support call backs
BEAW apper : : Cal | backs wrapper(orb.in());

NewsConsuner _i * news_consuner _i npl = new NewsConsuner i ;

/] Create a transient object reference to this servant.
CORBA: : Cbj ect _var news_consuner_oref =
wr apper . start _transient (
news_consuner _i npl ,
CosNot i fyComm : _tc_StructuredPushConsuner->id()
)

CosNot i f yComm : St ruct uredPushConsuner _var
news_consuner =
CosNot i f yComm : St ruct ur edPushConsuner:: _narrow(
news_consuner _oref.in());

Using the Notification Service ~ 4-15

4 Using the CosNotification Service API

Listing4-11 SampleCodefor CreatingaCallback Object With Transient Object
Reference (Introductory Application Subscriber.java)

/1l Create a call back wapper object since this client needs to
/1l support callbacks.

Cal | backs cal | backs = new Cal | backs(orb);

/1 Instantiate the servant that receives the events.
NewsConsuner i news_consuner _i npl =
new NewsConsumer _i (shut down_nanager) ;

/1l Create a transient object reference to the call back servant.
cal | backs.start_transient(
news_consuner _i npl,
news_consuner _inpl. _ids()[0]

);

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification
Service. You can create atransient subscription or a persistent subscription.

To create a subscription, the following steps must be performed:

1. Create anotification proxy push supplier and useit to create a
StructuredProxySupplier object.

2. Set the subscription’s quality of service (Q0S). You can set the QoS to transient
or persistent.

3. Create a filter object and assign tteerai n_nane, t ype_nane, and
data_filter (optional) to it.

4. Add the filter to the proxy.
5. Connect to the proxy passing in the subscription’s callback object reference.

Listing 4-12 and Listing 4-13, which is code from thebscri ber . cpp file in the
Introductory sample application, show how to create a transient subscription in C++
and Java respectively.

4-16 Using the Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing4-12 Creating a Transient Subscription

/] Oreate a new subscription (at this point, it is not conplete).
CosNot i f yChannel Adm n: : Proxyl D subscription_id;
CosNot i f yChannel Adm n: : ProxySuppl i er _var generic_subscription =
consuner _adm n->obtai n_notification_push_supplier/(
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
subscription_id);

CosNot i f yChannel Adm n: : Struct uredProxyPushSuppl i er _var
subscription =
CosNot i f yChannel Adm n:: Struct ur edPr oxyPushSupplier:: _narrow
generic_subscription);
s_subscription = subscription.in();

/1 Set the quality of service. This sets the subscription nane
/1 and subscription type (=TRANSIENT).
CosNotification:: QSProperties qos;
qgos. | ength(2);
gos[0] . nane =
CORBA: : string_dup(Tobj _Notification:: SUBSCRI PTI ON_NAME) ;

gos[0] . val ue <<= subscri pti on_nane;
gos[1] . nane =

CORBA: : string_dup(Tobj _Notification:: SUBSCR PTI ON_TYPE);
gos[1] . val ue <<=

Tobj _Noti fication:: TRANSI ENT_SUBSCRI PTI ON,;

subscri ption->set _qos(qos);

/| Create afilter (used to specify donain, type and data filter).
CosNotifyFilter::Filter_var filter =
filter_factory->create filter(
Tobj _Notification:: CONSTRAI NT_GRAMVAR) ;
s filter = filter.in();

/1l Set the filtering paraneters.

I/l (domain = "News", type = “Sports”, and no data filter)
CosNotifyFilter::ConstraintExpSeq constraints;
constraints.length(2);
constraints[0].event_types.length(1);
constraints[0].event_types[0].domain_name =

CORBA::string_dup("News");
constraints[0].event_types[0].type_name =

CORBA::string_dup(“Sports”);
constraints[0].constraint_expr =

CORBA::string_dup(™); // No data filter.

Using the Notification Service ~ 4-17

4 Using the CosNotification Service API

CosNoti fyFilter:: Constraintl|nfoSeq_var
add_constraints results = // ignore this returned val ue
filter->add _constraints(constraints);

/1 Add the filter to the subscription.
CosNotifyFilter::FilterIDfilter_id =
subscription->add filter(filter.in());

/1 Now that we have set the subscription nane, type and filtering

/| paraneters, conplete the subscription by passing in the

/'l reference of the callback object to deliver the events to.

subscri pti on->connect _structured_push_consuner (
news_consumner.in());

Listing 4-13 Creating a Transient Subscription (Introductory Subscriber.java)

/1 Create a new subscription (at this point, it is not conplete).
I nt Hol der subscription_id = new I ntHol der();
ProxySuppli er generic_subscription =
consuner _adm n.obtain_notification_push_supplier(
Cl i ent Type. STRUCTURED EVENT,
subscription_id);

Struct ur edProxyPushSuppl i er subscription =
St ruct ur edPr oxyPushSuppl i er Hel per. nar r ow(
generi c_subscription);

/1 Set the quality of service. This sets the subscription nane
/1 and subscription type (=TRANSI ENT)

Property qos[] = new Property[2];

qos[0] = new Property();

qos[0] . nanme = SUBSCRI PTI ON_NAME. val ue;

gos[0] . value = orb.create_any();

qos[0] . val ue.insert_string(subscription_nane);

gos[1] = new Property();

gos[1] . name = SUBSCRI PTI ON_TYPE. val ue;

gos[1] . value = orb.create_any();

gos[1] . val ue. i nsert _short (TRANSI ENT_SUBSCRI PTI ON. val ue) ;

subscri ption. set_qos(qos);

// Create a filter (used to specify donmein, type and data filter).
Filter filter =
filter _factory.create filter(CONSTRAI NT_GRAMWAR. val ue);

// set the filtering paraneters
/1 (domain = "News", type = “Sports”, and no data filter)

4-18 Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

Constrai nt Exp constraints[] = new Constrai nt Exp[1];

constrai nts[0] = new ConstraintExp();

constrai nts[0].event_types = new Event Type[1];

constrai nts[0].event _types[0] = new Event Type();

constrai nts[0].event _types[0].domai n_nane = "News";

constrai nts[0].event _types[0].type_nanme = “Sports”;
constraints[0].constraint_expr = "";

ConstraintInfo add_constraints_results[] =
filter.add_constraints(constraints);

// add the filter to the subscription
int filter_id = subscription.add_filter(filter);

/I Now that we have set the subscription name, type and

/I filtering parameters, complete the subscription by passing

/l'in the reference of the callback object to deliver the

Il events to.

subscription.connect_structured_push_consumer(
news_consumer_impl);

Step 3: Compiling and Running Notification
Service Applications

Thefinal step in the development of a Notification Service application isto compile,
build, and run the application. To do this, you need to perform the following steps.

1

Generatetherequired client stub and skeleton filesto defineinterfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

Compile the application code and link against the skeleton and client stub files.
Build the application.
Run the application.

Using the Notification Service 4-19

4 Using the CosNotification Service API

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute thei di command for
each of the Notification IDL files that your application uses. Table 4-2 showsthe i dI
commands used for each type of subscriber.

Table 4-2 idl Command Requirements

Language Joint Client/Server WebL ogic Enterprise
Server

C++ idl -P idl

Java idltojava nBi dl t oj ava

Thefollowing is an example of ani dI command:
>idl -1C\wedir\include C\w edir\include\ CosEvent Conm i dl

Table 4-3 liststhe IDL filesrequired by each type of Notification Service application.

Table 4-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can beaclient, ajoint client/server,or CosEvent Channel Admi n. i dl
aserver) CosEvent Comm i dl
CosNoti fication.idl
CosNot i f yChannel Adni n
CosNot i f yComm i dl
CosNotifyFilter
Tobj _Events.idl
Tobj _Notification.idl

Subscriber (can be joint client/server or a server) CosEvent Channel Admi n. i dl
CosEvent Conm i dI
CosNoti fication.idl
CosNot i f yChannel Adni n
CosNot i f yComm i dl
CosNotifyFilter
Tobj _Events.idl
Tobj _Notification.idl

4-20 Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

Compiling and Linking the Application Code

The compiling and linking procedure differs depending on the type of Notification
Serviceapplication you arebuilding. Table 4-4 provides an overview of the commands
and files used to compile each type of application.

Table 4-4 Application Build Requirements

Application Type

Client

Joint Client/Ser ver

Server

C++ Events Poster

Usethe

bui | dobj cl i ent
command to compilethe
application files and the

Usethebui | dobj cli ent
command with the - P option
to compile the application
filesand the IDL stubs.

Usethe

bui | dobj server
command to compile the
application files and the

IDL stubs. IDL client stubs.
C++ Events Not applicable. Usethebui | dobj cl i ent Usethe
Subscriber command with the- Poption bui | dobj ser ver
to compile the application command to compile the
files, the IDL stubs, and the application files, the IDL
IDL skeletons. stubs, and the IDL
skeletons.

Java Events Poster Usethej avac Usethej avac commandto Usethej avac command
command to compilethe compile the application files to compile the application
application filesand the and the IDL stubs. filesand the IDL client
IDL stubs. stubs.

Java Events Not applicable. Usethej avac commandto Usethej avac command

Subscriber compile the application files, to compile the application

the IDL stubs, the IDL
skeletons, and the
BEAWTrapper object.

files, the IDL stubs, and the
IDL skeletons.

Listing 4-14 shows the commands used for a C++ Reporter application
(Reporter. cpp) onaMicrosoft Windows NT system. To form aC++ executabl e, the
i dl command isrun on the required IDL file and the bui I dobj cl i ent command

compiles the C++ client application file and the IDL stubs.

Using the Notification Service

4-21

4 Using the CosNotification Service API

4-22

Listing 4-14 C++ Reporter Application Build and Run Commands

Run the idl comuand.

idl -IC\wedir\include C:\w edir\incl ude\ CosEvent Commidl \
C:\w edi r\i ncl ude\ CosEvent Channel Adm n \

C:\w edir\incl ude\ CosNotification.idl \

C.:\w edir\incl ude\ CosNoti fyCommidl \

C:\w edir\include\ CosNoti fyFilter.idl \

C:\w edir\incl ude\ Tobj Notification.idl

Run the buil dobjclient comand.

bui I dobjclient -v -0 is_reporter.exe-f"\
-DWIN32 \
Reporter.cpp \
CosEventComm_c.cpp \
CosEventChannelAdmin_c.cpp \
CosNotification_c.cpp \
CosNotifyComm_c.cpp \
CosNotifyFilter_c.cpp \
CosNotifyChannelAdmin_c.cpp \
Tobj_Events_c.cpp \
Tobj_Notification_c.cpp ”

Run the application.
is_reporter

Listing 4-15 and Listing 4-16 show the commands used for a C++ Subscriber
application (Subscriber.cpp) on Microsoft Windows NT and UNIX, respectively.
To form a C++ executable, the buildobjclient command, with the -P option,
compiles the joint client/server application files (Subscriber.cpp ~ and
NewsConsumer_i.cpp), the IDL stubs, the IDL skeleton (for
CosNotifyComm_s.cpp).

Listing 4-15 C++ Subscriber Application Build and Run Commands (Micr osoft
WindowsNT)

Run the idl command.

idl -P -IC:\wledininclude C:\wledininclude\CosEventComm.idl \
C:\wledin\include\CosEventChannelAdmin \
C:\wledir\include\CosNoatification.idl \
C:\wledininclude\CosNotifyComm.idl \
C:\wledininclude\CosNotifyFilter.idl \

Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

C.\w edi r\incl ude\ CosNot i fyChannel Admi n \
\C:\w edir\include\ Tobj Events.idl \
\C:\w edir\include\ Tobj _Notification

Run the buil dobjclient command.
bui l dobjclient -v -P -0 is_subscri ber.exe -f "

- DW N32

Subscri ber. cpp
News Consuner _i . cpp

CosEvent Comm c. cpp

CosEvent Channel Adm n_c. cpp
CosNotification_c.cpp

CosNot i f yConm c. cpp

CosNot i f yConm s. cpp
CosNotifyFilter_c.cpp

CosNot i f yChannel Adm n_c. cpp

Tobj _Events_c. cpp

Tobj _Notification_c.cpp
C\wledir\lib\libbeaw apper.lib

Run the application.

i s_subscri ber

\
\

— o e — — — — —

Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -1/usr/local/wedir/include
/usr/1ocal w edir/include/ CosEvent Channel Adm n \

/usr/local /W edi
/usr/local /W edi
/usr/1ocal /W edi
/usr/1ocal /W edi
/usr/1local /W edi
/usr/1ocal /W edi
/usr/1ocal /W edi

r/i
r/i
r/i
r/i
r/i
r/i
r/i

ncl ude/ CosEvent Comm i dl \

ncl ude/ CosNotification.idl \
ncl ude/ CosNot i f yComnm i dl \
ncl ude/ CosNotifyFilter.idl \

ncl ude/ CosNot i f yChannel Adm n \

ncl ude/ Tobj Events.idl \
ncl ude/ Tobj _Si npl eEvent s. i dl

Run the buil dobjclient command.

bui l dobjclient -v -P -0 subscriber -f

Subscri ber. cpp

NewsConsurmer _i . cpp
CosEvent Comm c. cpp
CosEvent Channel Admi n_c. cpp
CosNotification_c.cpp
CosNot i f yConm c. cpp

CosNot i f yConm s. cpp

— - - - — —

Using the Notification Service

4-23

4 Using the CosNotification Service API

CosNotifyFilter_c.cpp
CosNot i f yChannel Adm n_c. cpp
Tobj _Events_c. cpp

Tobj _Si npl eEvents_c. cpp

- | beawr apper

—— - — —

n

Run the application.
i s_subscri ber

Listing 4-17 and Listing 4-18 show an example of the commands used to link, build,
and run remote Java Reporter and Subscriber applications.

Listing 4-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava command.
idltojava -1C\w edir\include C\w edir\include\ CosEvent Cormidl \
C:\w edi r\incl ude\ CosEvent Channel Admi n.idl \
C:\w edir\include\CosNotification.idl C\w edir\include\CosNotifyCommidl \
C:\w edir\include\CosNotifyFilter.idl \
C.\w edir\incl ude\ CosNot i f yChannel Adm n.idl \
C.\w edir\include\Tobj Events.idl \
C:\wW edir\include\Tobj Notification.idl

Conpile the java files.
javac -cl asspath C:\w edi r\udat aobj\java\jdk\ nBenvobj.jar Reporter.java

Conbine the java .class files into the java archive (JAR) file.

jar cf reporter.jar Reporter.class org\ong\ CosEvent Conm \
or g\ ong\ CosEvent Channel Adm n or g\ ong\ CosNot i fi cati on org\ong\ CosNoti fyConm \
org\ ong\ CosNot i fyFilter org\ong\ CosNotifyChannel Adm n com beasys\ Tobj Events \
com beasys\ Tobj Notification

Run the reporter application.
java - DTOBJADDR=// BEAN E: 2359 -cl asspath \
reporter.jar; C:\w edi r\udataobj\java\j dk\ nBenvobj.jar Reporter

4-24 Using the Notification Service

Step 3: Compiling and Running Notification Service Applications

Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava comand.
idltojava -1C\w edir\include C\w edir\include\ CosEvent Cormidl \
C:\w edi r\incl ude\ CosEvent Channel Adm n.idl \
C:\w edir\include\ CosNotification.idl C:\w edir\include\CosNotifyCommidl \
C.\w edir\include\ CosNotifyFilter.idl \
C:\w edi r\incl ude\ CosNoti fyChannel Adm n.idl \
C.\w edir\include\ Tobj Events.idl C:\w edir\include\Tobj Notification.idl

Conpile the java files.
javac -classpath C \w edi r\udataobj\java\jdk\nBenvobj.jar;\
C.:\w edi r\udat aobj \j ava\j dk\w eclient.jar Subscriber.java

Conbine the java .class files into the java archive (JAR) file.

jar cf subscriber.jar Subscriber.class NewsConsuner _i.class \
or g\ ong\ CosEvent Comm or g\ ong\ CosEvent Channel Adm n or g\ ong\ CosNot i fi cati on \
or g\ ong\ CosNot i f yComm or g\ ong\ CosNoti fyFilter org\ong\ CosNoti fyChannel Adm n \
com beasys\ Tobj Events com beasys\ Tobj Notification

Run the subscri ber application.

java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
subscri ber.jar; C\w edi r\udataobj\java\jdk\ nBenvobj.jar;\
C:\w edi r\udat aobj \j ava\j dk\w eclient.jar Subscri ber

Note: Thejava command linein Listing 4-18 isfor an application that either sets
the port inthe application code or promptsthe user to set the port. Y ou can also
set the port in thej ava command line. The following is an example of aj ava
command line that sets the port number:

java - DTOBJADDR=// BEANI E: 2359 \
- Dor g. ong. cor ba. ORBPor t =por t nunber -cl asspath. ..

Using the Notification Service ~ 4-25

4 Using the CosNotification Service API

4-26 Using the Notification Service

CHAPTER

5 Building the

Introductory Sample
Application

Thistopic includes the following sections:
m Overview

m Building and Running the Introductory Sample Application

Overview

The Introductory sample applications simulate a newsroom environment in which a
news reporter posts a story and a news subscriber consumes the story.

Two implementations of the Introductory sample application are provided: onein the
C++ programming language that uses the BEA Simple Events application
programming interface (API), and another in Java that uses the CosNotification
Service API.

The Introductory sample application consists of the Reporter and Subscriber
applications and the Notification Service. The Reporter application implements a
client application that promptsthe user to enter news articles, and then posts the news
articles as events to the WLE Notification Service. The Subscriber application
implements ajoint client/server application that acts as client when it subscribes and

Using the Notification Service 5-1

5

Building the Introductory Sample Application

5-2

unsubscribesfor events, and actsasaserver whenit receivesevents. Toreceive events,
the subscriber implements a callback object which isinvoked by the Notification
Service when an event needs to be delivered.

The Introductory sample application shows the simplest usage of the Notification
Service. It demonstrates how to use the BEA Simple Events API, the CosNatification
API, transient subscriptions, and transient object references. It does not demonstrate

the use of persistent subscriptions or data filtering. For a sample application that uses
persistent subscriptions and data filtering, see Chapter 6, “Building the Advanced
Sample Application.”

This Introductory sample application provides two executables (See Figure 5-1):

m A Reporter application that posts events to the Notification Service. It is a client
without callback capability.

m A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber is a joint client/server that acts as a client when it
subscribes to events and acts as a server when it receives events.

Figure5-1 Introductory Sample Application Components

Reporter

A Push Event
(Client)

Subscrib

Subscriber i Notification

(Joint Client/ Service
Server)

The event poster, the Reporter application, uses the structurediexent_nane,
type_nane, andfi |l t er abl e_dat a fields to construct the event. The domain name
defines the industry. In this application, domain_name is set to “News”. The
type_name defines the kind of eventin the industry and it is set to the category of new
story (for example, “Sports”). The application user specifies this value. In the
filterable_data fields, a field named “Story” is added, which contains the text of the
news story being posted. This text is also specified by the application user.

Using the Notification Service

Overview

The Subscriber application uses the structured event domai n_nane and t ype_nane

fieldsto create a subscription to the Notification Service. The subscription defines the

domai n_name as a fixed string with the content of “News”. At run time, the Subscriber
application queries the user for the “News Category” and uses the input to define the
type_name field in the subscription. Obviously, the users of both applications, the
reporter and the subscriber, must collaborate on the “News Category” string for the
subscription to match an event, otherwise, no events will be delivered to the subscriber.
The subscription does not do any checking of the filterable_data field, but rather
assumes that the body of the story will be a string, and that the story will be in the first
Named/Value pair in the filterable_data field of a structured event.

To post events, the Reporter application usegdhé_st r uct ur ed_event method

to push news events to the Notification Service. For each event, the Reporter
application queries the user for a “News category” (for example, “Sports”) and a story
(a multiple-line text string).

To subscribe to news events, the Subscriber application invokes the Notification
Service to subscribe to news events. For each subscription, the Subscriber application
queries the user for a “News category” (for example, “Sports”). The Subscriber
application also implements a callback object (via the NewsConsumer_i servant class)
which is used to receive and process news events. When the Subscriber subscribes, it
gives the Notification Service a reference to this callback object. When a matching
event occurs; that is, when the Reporter posts an event with a “News category” that
matches the news category of the subscription, the Notification Service invokes the
push_structured_event method on the callback object to deliver the event to the
callback object in the subscriber. This method prints out the event, invokes the
unsubscr i be method on the Notification Service to cancel the subscription, and shuts
down the Subscriber. For simplicity, thesh_st ruct ur ed_event method assumes

that thedomai n_nane, t ype_nane, | engt h, andnane field match and the story is in
theval ue field.

Note: The “News category” is just a string that the Reporter user and the Subscriber
user agree on. There are no fixed categories in this sample. Therefore, both the
Reporter user and the Subscriber user must type the same string when
prompted for a category (including case and white space).

To run this sample, you must start at least one Reporter application and at least one
Subscriber application; however, you may run multiple Reporters and Subscribers.
Events posted by any Reporter will be delivered to all matching Subscribers (based on
“News category”).

Using the Notification Service 5-3

5 Building the Introductory Sample Application

Also, be sureto start any subscribers before posting events; otherwise, the events will
be lost.

Building and Running the Introductory
Sample Application

To build and run the Introductory sample application, you must perform these steps:

1. Verify that the” TUXDI R* and “JAVA_HOME” environment variables are set to the
correct directory path.

Note: The*JAVA_HOME”environment variableis required for Java applications
only.

2. Copy thefilesfor the Introductory sample application into awork directory.

3. Change the protection attributes on the files to grant write and execute access.

>

For UNIX, ensure the make fileisin your path. For Microsoft Windows NT,
ensure the nmake fileisin your path

Set the application environment variables.
Build the sample.
Boot the system.

Run the Subscriber and Reporter applications.

© © N o o

Shut down the system.
10. Restore the directory to its original state.

These steps are described in detail in the following sections.

5-4 Using the Notification Service

Building and Running the Introductory Sample Application

Verifying the Settings of the Environment Variables

Beforeyou build and run the Introductory sample application, you need to ensure that
the TUXDI R environment variable is set on your system. In most cases, this
environment variableis set as part of the installation procedure. However, you need to
check the environment variables to ensure they reflect correct information.

Table 5-1 lists the environment variables required to run the Introductory sample
application.

Table5-1 Required Environment Variablesfor the Introductory Sample Application

Environment Description
Variable
TUXDI R The directory path where you installed the WebL ogic Enterprise software. For

example:

Windows NT

TUXDI R=c:\wl edir

UNIX

TUXDI R=/ usr/ |l ocal /W edir

JAVA_HOVE (For Java

applications only)

The directory path where you installed the JDK software. For example:
Windows NT

JAVA HOME=c: \ JDK1. 2. 2

UNIX

JAVA HOVE=/usr/local /JDK1.2.1

To verify that theinformation for the environment variabl es defined during install ation
is correct, perform the following steps:

Windows NT

1
2.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

Using the Notification Service 5-5

5 Building the Introductory Sample Application

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.
5. Check the setting for TUXDI R and JAVA_ HOME.

UNI X
ksh pronpt>printenv TUXDI R
ksh pronpt >pri nt env JAVA HOVE

To change the settings, perform the following steps:
Windows NT

1. Onthe Environment pagein the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.
UNI X

ksh pronpt>export TUXDI R=directorypath
ksh pronpt >export JAVA HOVE=di rector ypat h
Or

csh> setenv TUXDI R=di rect orypat h
csh> setenv JAVA HOME=di r ect or ypat h

Copying the Files for the Introductory Sample
Application into a Work Directory

Y ou need to copy the files for the Introductory sample application and filesin the
common directory into awork directory on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

5-6 Using the Notification Service

Building and Running the Introductory Sample Application

Thefiles are located in the following directories:
Windows NT

For the C++ Introductory sample:
drive:|w edir\sanpl es\corba\notification\introductory_sinple_cxx
drive:|w edir\sanpl es\ corba\notification\comobn

For the Java Introductory sample:
drive:|wW edir\sanpl es\corba\notification\introductory cos_java
drive:|w edir\sanpl es\ corba\notification\comobn

UNIX

For the C++ Introductory sample:

/usr/local /W edirlsanpl es/corbal/ notification/

i ntroductory_sinpl e_cxx

/usr/local /W edirlsanpl es/ corba/ noti ficati on/ conmon

For the Java Introductory sample:

/usr/local /W edirlsanpl es/corbal/ notification/

i ntroductory_sinpl e_cxx

/usr/local /W edirlsanpl es/ corbal/ noti ficati on/ conmon

You use thefileslisted in Table 5-2 and Table 5-4 to build and run the C++
Introductory sample application, which isimplemented using the BEA Simple Events
API. You use thefileslisted in Table 5-3 and Table 5-4 to build and run the Java
Introductory sample application, which isimplemented using the CosNotification API.

Table5-2 FilesLocated in theintroductory_sample_c++ Directory

File Description

Readne. t xt Describes the Introductory sample application and
provides instructions for setting up the environment and
building and running the application.

set env. crd Sets the environment for Microsoft Windows NT
systems.

setenv. ksh Sets the environment for UNIX systems.

makefile. nt Makefile for Microsoft Windows NT systems.

makefil e. mk Makefile for UNIX systems.

Using the Notification Service 5-7

5 Building the Introductory Sample Application

Table 5-2 FilesLocated in theintroductory_sample_c++ Directory (Continued)

File Description

makefile.inc Common makefile used by the makefi | e. nt and the
makefi |l e. nk files.

Reporter.cpp Code for the reporter.

Subscri ber. cpp Code for the subscriber.

NewsConsumer _i . h and The callback servant class that subscribers useto receive
NewsConsuner . cpp news events. (For the Subscriber application.)

Table 5-3 FilesLocated in the introductory_cos java Directory

File Description

Readne. t xt Describes the Introductory sample application and
providesinstructions for setting up the environment and
building and running the application.

setenv. crd Sets the environment for Microsoft Windows NT
systems.

set env. ksh Sets the environment for UNIX systems.

makefil e. nt Makefile for Microsoft Windows NT systems.

makefil e. mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makefi | e. nt and the

makefil e. nk files.

Reporter.java Code for the reporter.
Suscri ber.java Code for the subscriber.
NewsConsumer _i . j ava The callback servant class that subscribers useto receive

news events. (For the Subscriber application.)

Table 5-4 lists other files that the Introductory sample application uses.

5-8 Using the Notification Service

Building and Running the Introductory Sample Application

Table5-4 Other Filesthe Introductory Sample Application Uses

File

Description

Thefollowing files are located in the common directory.

common. nt M akefile symbols for Microsoft Windows NT
systems.
conmon. nk M akefile symbols for UNIX systems.

introductory.inc

M akefile for administrative targets.

ex. h

Utilities to print exceptions. (For C++ only.)

client_ex.h

Client utilitiesto handle exceptions. (For C++ only.)

Shut downManager . j ava

Class to help the main and the servant in the
Notification Service Java samples coordinate
shutting down the server.

Note: Thisfileis needed for the Java application
only.

Thefollowing files are located in the \tuxdir\include directory.

CosEvent Comm i dI

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNatification module.

CosNot i f yComm i dl

The OMG IDL code that declares the
CosNotifyComm module.

Tobj _Events.idl

The OMG IDL code that declares the Tobj_Events
module.

Tobj _Si npl eEvents. i dl

The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: Thisfileis needed only for the application
that was devel oped using BEA Simple
Events API.

Using the Notification Service 5-9

5 Building the Introductory Sample Application

Table 5-4 Other FilestheIntroductory Sample Application Uses (Continued)

File Description

Thefollowing files are needed only for the application that was developed using
CosNotification Service API.

CosEvent Channel Admi n. i dl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNot i f yChannel Admi n. i dl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj _Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Introductory Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Beforeyou can edit or build thefilesin the Introductory sample application,
you need to change the protection attribute of the files you copied into your work
directory, as follows:

Windows NT

1. InaDOS window, change (cd) to your work directory.
2. prompt>attrib -r drive:\workdirectory*.*
UNIX

1. Change (cd) to your work directory.
2. pronpt >/ bin/ksh

3. ksh pronpt>chnod u+w / wor kdi rectoryl *.*

On UNIX systems, you also need to change the permission of set env. ksh to give
execute permission to the file, as follows:

5-10 Using the Notification Service

Building and Running the Introductory Sample Application

ksh pronpt >chnod +x setenv. ksh

Setting Up the Environment

To set up the environment, enter the following command:
Windows NT

pronpt>.\set env. com

UNIX

ksh pronpt>. ./setenv. ksh

Building the Introductory Sample Application

Y ou use the make command to run makefiles, which are provided for Microsoft
Windows NT and UNIX, to build the sample application. For UNIX, use nake. For
Microsoft Windows NT, use nneke.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (set env. cnd) has been run. If the
environment variables have not been set, the makefile prints an error message to
the screen and exits.

2. Includesthe common. nt (for Microsoft Windows NT) or common. nk (for UNIX)
command file. Thisfile defines the makefile symbols used by the samples. These
symbols allow the UNIX and Microsoft Windows NT makefiles to delegate the
build rules to platform-independent makefiles.

3. Includesthe makefi | e. i nc command file. Thisfile buildstheis_reporter
andi s_subscri ber executables, and cleans up the directory of unneeded files
and directories.

Using the Notification Service 5-11

5 Building the Introductory Sample Application

4. Includesthei ntroductory. i nc command file. Thisfile creates the UBBCONFI G
file and executesthet ml oadcf -y ubb command to create the TUXCONFI Gfile.
Thisis a platform-independent makefile fragment that defines the administrative
build rules common to the Introductory sample application.

Executing the Makefile

Before executing the makef i | e, you need to check the following:

m Ensure that you have the appropriate administrative privileges to build and run
applications.

m On Microsoft Windows NT, verify that nmake isin the path of your machine.
m On UNIX, verify that nake isin the path of your machine.

To build the Introductory sample application, enter the make command as follows:
Windows NT

nmake -f nakefil e. nt

UNIX

make -f makefile. nk

Starting the Introductory Sample Application

To start the Introductory sample application, enter the following commands:

1. To boot the WLE system:
pronpt >t nboot -y
This command starts the following server processes:
e TMSUSREVT

A BEA Tuxedo system-provided, event broker server that is used by the
Notification Service.

e TMTS

A WLE Notification Service server that processes requests for subscriptions
and event postings.

5-12 Using the Notification Service

Building and Running the Introductory Sample Application

e TMNTSFWD_T

A WLE Notification Service server that forwards events to subscribers that
have transient subscriptions.

e |SL

The I1OP Listener/Handler process.

2. To start the Subscriber application:

For C++: pronpt >i s_subscri ber
For Java on Microsoft Windows NT: pr onpt >j ava % C_SUBSCRI BER%
For Javaon UNIX: pr onpt >j ava $I C_SUBSCRI BER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: pronpt >i s_reporter
For Java on Microsoft Windows NT: pr onpt >j ava % C_REPORTERY%
For Javaon UNIX: pr onpt >j ava $I C REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

Using the Introductory Sample Application

To usethe Introductory sample application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post an event. Be sure to
subscribe before you post each event; otherwise, events will be lost.

Note: The Subscriber application shuts down after it receives one event.

Using the Subscriber Application to Subscribe to Events

Perform these steps:

1. When you start the Subscriber application (pr onpt >i s_subscri ber), the
following prompts are displayed:

Using the Notification Service 5-13

5

Building the Introductory Sample Application

Name? (Enter a name (without spaces).)
Category (or all)? (Enterthe category of newsyou want or "all".)

You may typein any string for the news category; that is, thereis no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure to specify the same string for the news category.

The Subscriber application creates a subscription then prints “Ready” when it is
ready to receive events. After the Subscriber receives one event, it shuts down.

Note: You should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will be lost.

Using the Reporter Application to Post Events

5-14

Perform these steps:

1.

When you start the Reporter applicatipngnpt > i s_reporter), the following
prompts are displayed:

(r) Report news
(e) Exit

Opti on?
Enterr to report news. The following prompt is displayed:
Cat egory?

Enter the news category. It must match exactly the category you typed on the
Subscriber application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (termnate with '.")

Enter your story. It can span multiple lines. Finish the story by typing a period
only (*.") on a line, followed by a carriage return.

Subscribers whose category matches the category of this story will receive, and
print out the story. When a subscriber receives a story, the subscriber
automatically shuts down.

To send and receive more news stories, start another subscriber, then report
another story. When you are done reporting hews, choose thgelExaption.

Using the Notification Service

Building and Running the Introductory Sample Application

Note: The Subscriber application shuts down after it receives one event.
Therefore, always use the Subscriber application to subscribe to events
before you use the Reporter application to post an event; otherwise, events
will be lost.

Shutting Down the System and Cleaning Up the
Directory

Perform the following steps:
Note: Make sure the Reporter and Subscriber processes have stopped.
1. To shut down the system, in any window, type:
pr onpt >t nshut down -y
2. To restore the directory to its original state, in any window, type:
Windows NT
pronpt >nnake -f makefile.nt clean
UNI X

pronpt >make -f makefile.nk cl ean

Using the Notification Service 5-15

5 Building the Introductory Sample Application

5-16 Using the Notification Service

CHAPTER

6 Building the Advanced
Sample Application

Thistopic includes the following sections:
m Overview

m Building and Running the Advanced Sample Application

Overview

The Advance sample application simulates a newsroom environment in which anews
reporter posts a story, a wire service posts the story as an event to the Notification
Service, and a hews subscriber consumes the story.

Two implementations of the Advanced sample application are provided: one in the
Java programming language that uses the BEA Simple Events application
programming interface (API), and another in C++ that uses the CosNatification
Service API.

The Advanced sampl e application consists of thereporter, subscriber, and wire service
applications that use the WLE Notification Service. The reporter application
implements a client application. This application prompts the user to enter news
articles and calls the WireService server using application specific IDL. The
WireService server, in turn, posts the events. The subscriber implements a joint
client/server application. This application acts as client when it subscribes and

Using the Notification Service 6-1

6 Building the Advanced Sample Application

unsubscribesfor events, and actsasaserver whenit receivesevents. Toreceive events,
the Subscriber implements callback objects which are invoked by the Notification
Service when an event needs to be delivered.

Note: OnUNIX systems, you cannot immediately restart the subscriber because the
port takes some time (the actual time depends on the platform) to become
available again. If you restart too soon, you will get a CORBA: : OBJ_ADAPTER
exception. If this occurs, just wait and try again. On Solaris systems, the port
can take up to 10 minutesto become available. To seeif the port is still in use,
use this command: “Restart -a | grep < the port number>".

This Advanced sample application demonstrates how to use the BEA Simple Events
API, the CosNotification Service API, transient and persistent subscriptions, and data
filtering.

This Advanced sample provides three executables (See Figure 6-1):

m A WireService application that posts events. It isa Notification Service client
and a WebL ogic Enterprise server. It implements an OMG IDL interface, which
the Reporter application uses.

m A Reporter application that reports news stories by invoking methods on the
WireService. The WireService, in turn, converts the stories into events and posts
them using the Notification Service. The reporter is a pure client.

m A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber isajoint client/server that acts as aclient when it
subscribes for events, and acts as a server when it receives events.

6-2 Using the Notification Service

Overview

Figure6-1 Advanced Sample Application Components

Report_news
Reporter \ Shutdown /[WireSevice

(Client) LCanceI h/ '& Server

Push Event
WLE Domain

Notification Service

Subsgribe
Subscriber Unsubcribe
(Joint Client/
Server) Push Ev

The event poster, the WireService application, uses the structured event
domain_name, type_name, and filterable datafieldsto construct three events: a news
event, a subscriber shutdown event, and a subscriber cancel event.

¢ Newsevent

For this event, the domain name is a string and is preset by the application as
“News”. The type name is a string and defined by the Reporter application
user at run time. It is set to the category of news (for example, “Sports”).
Filterable data contains a name/value pair whose name is “Story” and whose
value is a string that contains the body of the news story being posted.

e Subscriber Shutdown event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as
“Shutdown”. The filterable data is not used.

e Subscriber Cancel event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as
“Cancel”. The filterable data is not used.

Using the Notification Service 6-3

6 Building the Advanced Sample Application

6-4

The Subscriber application uses the structured event domain_name, type_name, and
filterable datafieldsto construct two subscriptions: anews subscription that processes
news stories; and a shutdown subscription that processes Cancel and Shutdown events.
At run time, the Subscriber application establishes these two subscriptions with the
Notification Service.

e News subscription

The Subscriber application uses the structured event domain_name,

type_name, and filterable data fields to create a subscription to the

Notification Service. The subscription defines the domain name as a fixed

string with the content of “News”. At run time, the Subscriber application
queries the user for the “News Category” and “Keyword” and uses the inputs
to define the type_name and data_filter fields in the subscription. Obviously,
the users of both applications, the reporter and the subscriber, must
collaborate on the “News Category” and “keyword” strings for the
subscription to match an event, otherwise, no News events will be delivered
to the subscriber. The subscription does not do any checking of the
filterable_data field, but rather assumes that the body of the story will be a
string, and that the story will be in the first Named/Value pair in the
filterable_data field of a structured event.

e Shutdown subscription

The Subscriber application uses the structured event domain_name and
type_name, fields to create a subscription to the Notification Service. The
subscription defines the domain_name as a fixed string with the content of
“NewsAdmin”, the type_name as a string of either “Shutdown” or “Cancel”.
The filterable_data field is an empty string.

The Reporter application is responsible for implementing the user interface for
reporting news as well as for producing Shutdown and Cancel events. Rather than u
the Notification Service directly to post events, it calls methods on the WireService
server.

The WireService server uses the Notification Service to post three kinds of events:
m “News” events (used to deliver news to subscribers)

m “Shutdown” events (used to shut down subscribers temporarily)

m “Cancel” events (used to shut down subscribers permanently)

The Notification Service, in turn, delivers the events to the subscribers.

Using the Notification Service

Overview

The subscriber uses the Notification Serviceto create a persistent subscription to news
events. The subscriber implements a persistent callback object (viathe
NewsConsuner _i servant class), which isused to receive and process news events.
When the subscriber subscribes, it gives the Notification Service areferenceto this
callback object. When a matching event occurs, the Notification Service invokes a
push_st ruct ured_event method on this callback object to push the event to the
subscriber. This method prints out the event.

The subscriber aso uses the Notification Service to create a transient subscription to

Shutdown and Cancel events. The subscriber implements another callback object (via
the Shut downConsumer _i servant class), which is used to receive and process these
events.

Whenever the subscriber runs, it prompts the user for aname. The first time this user
runs the subscriber program, the subscriber creates a persistent subscription to News
events. To do this, the subscriber prompts the user for which kind of news storiesto
subscribe to and which port number the subscriber should run on. The subscriber runs
on this port, subscribes, then writes the subscription ID, the filter ID (if using the
CosNatification API), and the port number to afile (the name of thefileis
<user_nane>. pst or e). Thenext timethe subscriber runs, the subscriber promptsthe
user for aname, opens up the file <user_nane>. pst or e then reads the subscription
ID, filter ID (if using the CosNotification API) and port number for this user from the
file. This satisfies the requirement that the subscriber runs on the same port number
each time because its news callback object’s object referenceis persistent.

The Subscriber creates a transient subscription to receive the Shutdown and Cancel
events, therefore, the transient subscription is created and destroyed every time the
subscriber is run and shut down. This subscription ID is not written out to the file
<user_nane>. pstore.

When the subscriber receives a Shutdown event, it destroys the shutdown/cal Iback
subscription but leaves the News subscription intact. If News events are posted after
the subscriber is shut down and before it is restarted, then the notification service will
either deliver the events when the subscriber is restarted, or will put the events on the
error queue. (You can use the nt sadni n utility to either delete these events from the
error queue or retry delivering them.)

Whether the event is redelivered or is put on the error queue depends on whether the
subscriber restarts quickly enough. This depends on the retry parameters of the queue.
See advanced. i nc (in the notification samples’ common directory) for the values of
the queue retry parameters.

Using the Notification Service 6-5

6 Building the Advanced Sample Application

News events have two parts: a category (for example, headline) and a story (a
multiple-line text string). The Subscriber application prompts the user to input anews
category. Next the subscriber subscribes to news events whose category matches this
string. The Reporter application promptsthe user for anews category and astory. Next
the reporter (by invoking a method on the wire service) posts a corresponding news
event. The event will only be delivered to subscribers who subscribed to that category
of news.

Note: The category isastring. The same string must be used by the Reporter user
and the Subscriber user. There are no fixed categoriesin this sample.
Therefore both users, the Reporter user and the Subscriber user, must typethe
same string when prompted for a category (including case and white space).

Thissample also uses datafiltering. When auser first runsthe Subscriber, the user will

be prompted for a “keyword.” Events whose category matahgsvhose story

contains the keyword will be delivered to the subscriber. For example, if the user enter
a keyword of “none,” data filtering will not be used (thus the user will receive all
events for the chosen news category). If the user enters a keyword “smith”, it translate
to “Story %% *.*smith.*” . Thiskeyword specifies that the subscription only

accepts events that have a “Story” field that contains a string, and that the field start
with any number of characters, has a literal string “smith”, and then ends with any
number of characters.

To run this sample, you need to run at least one Reporter and at least one Subscrib
however, you may run multiple Reporters and multiple Subscribers. Events posted b
any Reporter will be delivered to all matching Subscribers (based on the category).

Also, be sure to start any subscribers before posting events. Events posted before t
subscribers are started will not be delivered.

Building and Running the Advanced Sample
Application

6-6

To build and run the Introductory sample application, you must perform these steps:

1. Verify that the' TUXDI R* and“JAVA_HOME” environment variables are set to the
correct directory path.

Using the Notification Service

Building and Running the Advanced Sample Application

Note: The“JAVA_HOME” environment variable isrequired for Java applications
only.

2. Copy thefilesfor the Introductory sample application into awork directory.

3. Change the protection attributes on the files to grant write and execute access.

>

For UNIX, ensure the make fileisin your path. For Microsoft Windows NT,
ensure the nmake fileisin your path

Set the application environment variables.
Build the sample.
Boot the system.

Run the Subscriber and Reporter applications.

© © N o o

Shut down the system.
10. Restore the directory to its original state.

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Beforeyou build and run the Introductory sample application, you need to ensure that
the TUXDIR environment variable is set on your system. In most cases, this
environment variableis set as part of theinstallation procedure. However, you need to
check the environment variables to ensure they reflect the correct information.

Table 6-1 lists the environment variables required to run the Callback sample
application.

Using the Notification Service 6-7

6 Building the Advanced Sample Application

Table 6-1 Required Environment Variablesfor the Callback Sample Application

Environment Description
Variable
TUXD R The directory path where you installed the WebL ogic Enterprise software. For

example:

Windows NT

TUXDI R=c: \wW edir

UNIX

TUXDI R=/ usr /1 ocal / W edi r

JAVA HOMVE (ForJava The directory path where you ingtalled the JDK software. For example:
applications only)

Windows NT

JAVA_HOVE=c:\ JDK1. 2

UNIX

JAVA HOVE=/usr /| ocal / JDK1. 2

6-8

Toverify that theinformation for the environment variables defined during installation
is correct, perform the following steps:

Windows NT

1
2.

5.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

Check the setting for TUXDI R and JAVA_HOME.

UNIX

ksh pronpt>printenv TUXDI R

Using the Notification Service

Building and Running the Advanced Sample Application

ksh pronpt >pri ntenv JAVA HOVE
To change the settings, perform the following steps:
Windows NT

1. Onthe Environment page in the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.

UNIX

ksh pronpt >export TUXDI R=di rectorypat h
ksh pronpt >export JAVA HOVE=di rect or ypat h

Copying the Files for the Advanced Sample Application
into a Work Directory

Y ou need to copy the files for the Advanced sample application into awork directory
on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

Thefilesfor the Advanced sample application are located in the following directories:
Windows NT

For the C++ Advanced sample:
drive:|w edir\sanpl es\ corba\notification\advanced_cos_cxx
drive:|w edir\sanpl es\ corba\notification\comobn

For the Java Advanced sample:
drive:|w edir\sanpl es\ corba\notification\advanced_sinple_java
drive:|w edir\sanpl es\ corba\notification\comobn

UNIX

Using the Notification Service 6-9

6 Building the Advanced Sample Application

For the C++ Advanced sample:
/usr/local/w edir/sanpl es/ corbal/notification/advanced cos_cxx
/usr/local/w edir/ sanpl es/ corbal/notification/ conmon

For the Java Advanced sample:
/usr/local/w edir/ sanpl es/ corbal/notification/advanced_sinple_java
/usr/local/w edir/ sanpl es/ corbal/notification/ conmon

Y ou usethefileslisted in Table 6-2 and Table 6-4 to build and run the Java Advanced
sample application, which isimplemented using the BEA Simple Events API. Y ou use
thefileslisted in Table 6-3 and Table 6-4 to build and run the C++ Advanced sample
application, which is implemented using the CosNotification API.

Table 6-2 FilesLocated in the advanced_simple java Notification Directory

File Description

Readne. t xt Describes the Advanced sampl e application and providesinstructions for
setting up the environment and building and running the application.

set env. cnd Sets the environment for Microsoft Windows NT systems.

set env. ksh Sets the environment for UNIX systems.

makefil e. nt Makefile for Microsoft Windows NT systems.

makefil e. mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makef i | e. nt and the makefi | e. mk
files.

Reporter.java Code for the reporter.

Subscri ber.j ava Code for the subscriber.

NewsConsunmer _i . j ava Callback servant class that subscribers use to receive news events. (For

the Subscriber application.)

Shut downConsuner _i . j ava Callback servant classes that subscribers use to receive Shutdown and
Cancel events. (For the Subscriber application.)

W r eServi ce. xm Server Description file for the WireService server.
WreService_i.java Implements the WireService interfaces.
WreServi ceFactory_i.java Implementsthe WireService factory interface.

6-10 Using the Notification Service

Building and Running the Advanced Sample Application

Table 6-2 FilesL ocated in the advanced_simple_java Notification Directory

File Description

W reServi ceServer. java Code for the WireService server.

Y ou use thefileslisted in Table 6-3 and Table 6-4 to build and run the Advanced

sample application.

Table 6-3 FilesL ocated in the advanced_cos_c++ Notification Directory

File

Description

Readne. t xt

Describesthe Advanced sample application and provides
instructions for setting up the environment and building
and running the application.

setenv. cmd

Sets the environment for Microsoft Windows NT
systems.

set env. ksh

Sets the environment for UNIX systems.

makefile.nt

Makefile for Microsoft Windows NT systems.

makefil e. nk

Makefile for UNIX systems.

makefile.inc

Common makefile used by the makef i | e. nt and the
makefil e. mk files.

Reporter. cpp

Code for the reporter.

Subscri ber. cpp

Code for the subscriber.

News Consuner _i . h and
News Consuner . cpp

Callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

Shut downConsuner _i . h
and
Shut downConsuner . cpp

Callback servant classes that subscribers use to receive
Shutdown and Cancel events. (For the Subscriber
application.)

W reServi ceServer. cpp

Code for the WireService server.

News. i cf

ICF file for the WireService interfaces.

WreService_i.h and
W reService. cpp

Implements the WireService interfaces.

Using the Notification Service 6-11

6 Building the Advanced Sample Application

Table 6-4 lists other files that the Advanced sample application uses. With the
exception of the IDL files, the files are located in the Notification common directory.

6-12 Using the Notification Service

Building and Running the Advanced Sample Application

Table 6-4 Other Filesthat the Advanced Sample Uses

File

Description

Thefollowing files are located in the common directory.

News. i dl IDL definitions for the WireService server.

news_flds FML field definitions used to perform data filtering
and news events.

common. nt M akefile symbols for Microsoft Windows NT
systems.

conmon. nk M akefile symbols for UNIX systems.

advanced. i nc

M akefile for administrative targets.

ex. h

Utilities to print exceptions (C++ only).

client_ex.h

Client utilities to handl e exceptions (C++ only).

server_ex. h

Server utilitiesto handle exceptions.

Thefollowing files are located in the \tuxdir\include directory.

CosEvent Comm i dI

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNatification module.

CosNot i f yComm i dl

The OMG IDL code that declares the
CosNotifyComm module.

Tobj _Events.idl

The OMG IDL code that declares the Tobj_Events
module.

Tobj _Si npl eEvents. i dl

The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: Thisfileis needed only for the application
that was devel oped using BEA Simple
Events API.

Using the Notification Service 6-13

6 Building the Advanced Sample Application

Table 6-4 Other Filesthat the Advanced Sample Uses (Continued)

File Description

Thefollowing files are needed only for the application that was developed using
CosNotification Service API.

CosEvent Channel Admi n. i dl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNot i f yChannel Admi n. i dl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj _Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Advanced Sample Application

6-14

During theinstallation of the WL E software, the Advanced sample applicationfilesare
marked read-only. Before you can edit or build the filesin the Advanced sample
application, you need to change the protection attribute of the files you copied into
your work directory, asfollows:

Windows NT

1. Change (cd) to your work directory

2. pronmpt>attrib -r drive:\workdirectory*.*
UNI X

1. Change (cd) to your work directory
2. pronpt >/ bin/ksh

3. ksh pronpt>chnod u+w / wor kdi rectoryl *.*

On the UNIX operating system platform, you also need to change the permission of
set env. ksh to give execute permission to thefile, as follows:

Using the Notification Service

Building and Running the Advanced Sample Application

ksh pronpt >chnod +x setenv. ksh

Setting Up the Environment

To set up the environment, enter the following command:
Windows NT

pronpt>.\set env. com

UNIX

pronpt>. ./setenv.ksh

Building the Advanced Sample Application

Y ou use the make command to run makef i | es, which are provided for Microsoft
WindowsNT and UNIX, to build the sample application. For Microsoft WindowsNT,
use nmake. For UNIX, use nake.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (set env. cnd) has been run. If the
environment variables have not been set, the makefile prints an error message to
the screen and exits.

2. Includesthe common. nt (for Microsoft Windows NT) or common. nk (for UNIX)
command file. Thisfile defines the makefile symbols used by the samples. These
symbols allow the UNIX and Microsoft Windows NT makefiles to delegate the
build rules to platform-independent makefiles.

3. Includesthe makefi | e. i nc command file. Thisfile buildsthei s_reporter,
i s_subscri ber and AS_W RESERVI CE executables, and cleans up the directory
of unnecessary files and directories.

Using the Notification Service 6-15

6 Building the Advanced Sample Application

4. Includestheadvanced. i nc command file. This file executest madni n and
gadmi n commands to create the transaction log and the queues required by the
persistent subscriptions. It also creates the UBBCONFI Gfile and executes the
tm oadcf -y ubb command to create the TUXCONFI Gfile.

Executing the Makefile

Before executing the makef i | e, you need to check the following:

m Ensure that you have the appropriate administrative privileges to build and run
applications.

m On Microsoft Windows NT, make sure nnake is in the path of your machine.
m On UNIX, make sure make isin the path of your machine.

To build the Advanced sample application, enter the make command as follows:
Windows NT

nmake -f nakefil e. nt

UNIX

make -f makefile. nk

Starting the Advanced Sample Application

To start the Advanced sample application, enter the following commands:

1. To boot the WLE system:
pronpt >t nboot -y
This command starts the following server processes:
e TMSUSREVT

A BEA Tuxedo system-provided, event broker server that is used by the
Notification Service.

e TMTS

A WLE Notification Service server that processes requests for subscriptions
and event postings.

6-16 Using the Notification Service

Building and Running the Advanced Sample Application

e TMNTSFWD_T

A WLE Notification Service server that forwards events to subscribers that
have transient subscriptions. This server is required for transient
subscriptions.

e TMNTSFWD_P

A WLE Notification Service server that forwards persistent events to
subscribers that have persistent subscriptions. This server is required for
persistent subscriptions.

e TMQUEUE

The message queue manager isa BEA Tuxedo system provided server that
enqueues and dequeues messages on behalf of programs calling

t penqueue(3) and t pdequeue(3), respectively. This server isrequired for
persistent subscriptions.

o TMOFORWARD

The message forwarding server isa BEA Tuxedo system provided server that
forwards messages that have been stored using t penqueue(3c) for later
processing. This server isrequired for persistent subscriptions.

e WRE SERVI CE_SERVER

A server, specifically built for the Advanced sample application, that receives
events from the Reporter application and posts them to the Notification
Service. Thisreceive and server posts three types of events: News,

Shutdown, and Cancel.

e |SL

The I1OP Listener/Handler process.
2. To start the Subscriber application:

For C++: pronpt >i s_subscri ber
For Java on Microsoft Windows NT: pr onpt >j ava % C_SUBSCRI BER%
For Javaon UNIX: pr onpt >j ava $I C_SUBSCRI BER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

Using the Notification Service 6-17

6 Building the Advanced Sample Application

For C++: pronpt >i s_reporter
For Java on Microsoft Windows NT: pr onpt >j ava % C_REPORTER%
For Javaon UNIX: pronpt > ava $I C_ REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

Using the Advanced Sample Application

To use the Advanced sample application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post to an event. Be sure to
subscribe before you post each event; otherwise, events will be lost.

Using the Subscriber Application to Subscribe to Events

6-18

Perform the following steps:

1. When you start the Subscriber application (pr onpt >i s_subscri ber) for thefirst

time, the following prompts are displayed:

Name? (Enter a name (without spaces).)

Port (e.g. 2463) (Enterthe port number that this subscriber should run on.)

Cat egory (or all) (Enter the category of newsyou want or "all.")

Keyword (or none) (Enter akeyword that youwant al delivered storiesto
contain.)

Note: |If the Subscriber application is shut down by a Shutdown event from the

Reporter application (Shutdown eventsdo not cancel persistent subscriptions),
on subsequent startups of the Subscriber application, you will only be
prompted for your name. The Subscriber application retrieves the remaining
information from the <user _name>. pst or e file. This guarantees that the
same port number is used, which isrequired for persistent subscriptions.

If the Subscriber application is shut down by a Cancel event from the Reporter
application (Cancel events cancel all subscriptions including persistent
subscriptions), on subsequent startups of the Subscriber application, you will
be prompted for your name, port number, category, and keyword.

Using the Notification Service

Building and Running the Advanced Sample Application

2. You may typein any string for the news category, that is, there is no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure you specify the same string for the news category.

Similarly, you may typein astring for akeyword. Thereisno fixed list of
keywords either so when you run the reporter and enter the story, make sure that
the story contains the same string; otherwise, the story will not be delivered to
your subscription.

The first time the subscribe application is run for your username, category (or
all), and keyword (optional), it creates a news subscription. On subseguent runs,
the subscriber reuses this subscription. In all cases, the Subscriber application
prints “Ready” when it is ready to receive events.

The Subscriber application creates a subscription then prints “Ready” when it
is ready to receive events.

Note: You should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will be lost. This is because even though the Subscriber application creates
a persistent subscription to News events, that subscription is not created
until the Subscriber application is started.

Note: You can start multiple subscribers by opening another window and
repeating this procedure.

Using the Reporter Application to Post Events

Perform the following steps:

1. When you start the Reporter applicatipnanpt > i s_r eport er), the following
prompt is displayed:

(r) Report news

(s) Shutdown subscribers
(c) Cancel Subscribers
(e) Exit

Opti on?
2. Enterr to report news. The following prompt is displayed:
Cat egory?
3. Enter the news category. It must match exactly the category you typed on the

Subscriber application (including white space and case).

Using the Notification Service 6-19

6 Building the Advanced Sample Application

6-20

After you enter the news category, the following prompt is displayed:

Enter story (termnate with '.")

. Enter your story. It can span multiple lines. Finish the story by typing a period

only (".") on aline, followed by a carriage return. If you typed in akeyword
when subscribing, make sure the story contains this string (including white space
and case).

Subscribers whose category and keyword (if specified) matches the category and
akeyword in this story will receive and print out the story.

. If you choose thes” option, a Shutdown event will be posted and received by all

the subscribers and the subscribers will shut down. While the subscribers are shi
down, you may post another news story (by using th@ption again). The
Notification Service will place the news story on the pending queue but the News
event subscription is persistent and, therefore, is still in effect. After you restart
the subscribers, they will receive this second news story (unless a restart delay
caused the event to be moved to the error queue). This is because the subscribe
created a persistent subscription for news stories.

Note: You can use that sadmi nretryerrevents command to move events
from the error queue back to the pending queue.

If you choose thec™ option, a Cancel event will be posted and received by all
the subscribers. The subscribers will cancel their news subscriptions and shut
down. If you try to restart the subscribers, then you will be prompted again for
port, category, and keyword because you are creating a new subscription.

. When you are finished reporting news, choose the(Exibption.

Note: You can start multiple reporters by opening another window and repeating
this procedure. Any news story reported by any reporter will be delivered
to all matching subscribers. Make sure you have exited all reporters before
shutting down the system.

Using the Notification Service

Building and Running the Advanced Sample Application

Shutting Down the System and Cleaning Up the
Directory

Make sure the Reporter and Subscriber processes have stopped and perform the
following steps:

1. To shut down the system, in any window, type:
pr onpt >t nshut down -y
2. To restore the directory to its original state, in any window, type:
Windows NT
pronpt >nnake -f makefile.nt clean
UNIX

pronpt >make -f makefile.nk cl ean

Using the Notification Service 6-21

6 Building the Advanced Sample Application

6-22 Using the Notification Service

CHAPTER

.

Notification Service

Administration Guide

Thistopic includes the following sections:

m [ntroduction

m Configuring the Notification Service. This section includes the following topics:

Configuring Data Filters

Setting the Host and Port

Creating a Transaction Log

Creating Event Queues

Creating the UBBCONFIG File and the TUXCONFIG File

m Managing the Notification Service

m Notification Service Administration Utility and Commands

m Notification Servers

Using the Notification Service

7-1

7 Notification Service Administration Guide

Introduction

The WLE Notification Serviceislayered on the BEA Tuxedo Event Broker and
Queuing systems. This means that administering the WLE Notification Service
requires that you also administer these BEA Tuxedo systems. Y ou use the existing
BEA Tuxedo utilitiest madni n and qmadni n and the WLE utility nt sadni n to
administer the BEA Tuxedo and WLE components.

Notification Service administration is comprised of two related tasks: configuration
and management. Although these areas are discussed separately, they arein fact,
interrelated. Thus, to fully understand configuration, you must also understand
management and vice versa.

Configuring the Notification Service

Before you can run event Notification Service applications, the following
configuration requirements must be satisfied:

m |f datafiltering or Tuxedo interoperability isto be used, create Tuxedo FML
field definition files that describe the fields on which to filter or to interoperate.

m |f persistent subscriptions are to be used:

e |f usingaajoint client/server, set the host and port number for the callback
object references.

e Create atransaction log.

e Create queuesto hold events.

m Create a system configuration file (UBBCONFI G) and a TUXCONFI Gfile.

7-2 Using the Notification Service

Configuring Data Filters

Configuring Data Filters

If datafiltering or Tuxedo interoperability isused in subscriber applications, you must
perform the following steps to use data filtering in subscriptions:

1. Createthe BEA Tuxedo FML field table definition fil e that describes the fields on
which to filter (see Listing 7-2).

2. Inthe UBBCONFI Gfile, specify where the FML field table definition fileis located
so that when the application is started, the location of field definition filesis
passed to the Notification Service servers (see Listing 7-3).

In Listing 7-1, the code that is shown in bold text shows how the datafiltering is
implemented in an event poster application. Only subscriptions that contain the
name/value pair bi I 1 i ng and pati ent _account will receive the event.

Listing 7-1 Sample Data Filtering Using the BEA Simple Events API (C++)

CosNoti fication::StructuredEvent notif;

notif.header.fixed_header.event type. domai n_nane =
CORBA: : string_dup("HEALTHCARE") ;

notif.header.fixed _header.event type.type_nane =
CORBA: : string_dup("HMD'");

/1 Specify an additional filter, based upon nane and val ue
// for this event.

notif.filterable data.length(2);
notif.filterable data[0].name = CORBA::string_dup("billing");
notif.filterabl e data[0].value <<= CORBA::Long(1999);
notif.filterable data[l].name =

CORBA: : string_dup("patient_account");
notif.filterabl e data[1].value <<= CORBA::Long(2345);

/1 Push the structured event onto the channel.
t est Channel - >push_structured_event (notif);

Listing 7-2 shows the FML field table definitions file needed to use data filtering.

Using the Notification Service 7-3

7 Notification Service Administration Guide

7-4

Listing 7-2 DataFiltering FML Field Table File

*pbase 2000

#Fi el d Nane Field # Field Type Fl ags Conmrent s
B oo e e m oo e ei o dmmmmmmeeededmeeeeeeaoo-
billing 1 | ong - -

pati ent _account 2 | ong - -

Listing 7-3 showsthe content of environment variable file (envfile) . Theenvfile
contains the location of the FML field definitionsfile.

Note: Y ou can namethe environment variablefile whatever you want, but the name
used must match the name specified for the ENVFILE configuration optionn,
the SERVERS section of the UBBCONFI Gfile.

Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows
NT)

FLDTBLDI R32=D: \ W edi r\ EVENTS_Sanpl es\ ADVANCED Si npl e_cxx\ conmon
FI ELDTBLS32=news_f | ds

Listing 7-4 shows, in bold text, how thelocation of the FML field tablefileis specified
in the UBBCONFI Gfile for the Advanced samples.

Listing 7-4 Specifyingthe FML Field DefinitionsFilein the UBBCONFIG File

* SERVERS
TMBYSEVT
SRVGRP
SRVI D
TMJSREVT
SRVGRP
SRVI D
ENVFI LE
TMNTS
SRVGRP = NTS_CRP

NTS GRP
1

NTS GRP>>$@
2
"D:\'wl edi r\ EVENTS_Sanpl es\ ADVANCED_Si npl e_CXX\ envfile"

Using the Notification Service

Setting the Host and Port

SRVID = 3
ENVFI LE = "D: \w edi r\ EVENTS_Sanpl es\ ADVANCED Si npl e_ CXX\ envfil e"
CLOPT = "-A -- -s TMNTSQS"
TMNTSFWD_T
SRVGRP = NTS_GRP
SRVID = 4
ENVFI LE = "D:\w edi r\ EVENTS_Sanpl es\ ADVANCED_Si npl e_CXX\ envfi | e"
TMNTSFWD_P
SRVGRP = NTS_GRP
SRVID = 5
ENVFI LE = "D:\w edi r\ EVENTS_Sanpl es\ ADVANCED_Si npl e_CXX\ envfil e"

Setting the Host and Port

The object references host and port number requirements for the callback object are as
follows:

m For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

m For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

Y ou specify the port number from the user range of port numbers, rather than from the
dynamic range. Assigning port numbers from the user range preventsjoint
client/server applications from using conflicting ports.

The method you useto set the host and port depends on the programming language you
are using.

m Setting Host and Port on C++ Subscriber Applications

For C++ subscriber applications, to specify a particular port for the joint
client/server application to use, include the following on the command line that
starts the process for the joint client/server application:

-ORBport nnnn -I1RBid BEA || OP

Using the Notification Service 7-5

7 Notification Service Administration Guide

7-6

where nnnn isthe number of the port to be used by the ORB when creating
invocations and listening for invocations on the callback object in the joint
client/server application.

Use this command when you want the object reference for the callback object in
ajoint client/server application to be persistent and when you want to stop and
restart the joint client/server application. If this command is not used, the ORB
uses a random port. If arandom port is used when the joint client/server
application is stopped and then restarted, invocations to persistent callback
objectsin the joint client/server application will fail.

The port number is part of the input to the ar gv argument of the

CORBA: : or b_i ni t member function. When the ar gv argument is passed, the
ORB reads that information, establishing the port for any object references
created in that process.

Setting Host and Port on Java Subscriber Applications

For Java subscriber applications, you can pass in properties that set the host and
port. Listing 7-5 illustrates how to do this.

Listing 7-5 Setting Host and Port in Java Subscriber Applications

Properties prop = new Properties();
prop. put("org.ong. CORBA. ORBO ass", "com beasys. CORBA.iiop. ORB");
prop. put ("org. ong. CORBA. ORBSi ngl et ond ass",

" Com beasys. CORBA. i dI . ORBSi ngl eton") ;

prop. put("org.ong. CORBA. ORBPort", nnnn);
ORB orb = ORB.init(args, prop);

Note: You canalso set the portinthej ava command line. Here is an example of
aj ava command line that sets the port number:

j ava - DTOBJADDR=// BEAN E: 2359 \
- Dor g. ong. cor ba. ORBPort =port nunber -cl asspath. ..

Using the Notification Service

Creating a Transaction Log

Creating a Transaction Log

When you use persistent subscriptions, you must configure and boot the Tuxedo
gueuing system. The queuing system requiresatransactionlog. Listing 7-6 showshow
to usethet madni n utility to create a transaction log.

Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows NT)

>t madm n

>crdl -b 100 -z D:\w edi r\ EVENTS_Sanpl es\ ADVANCED Si npl e_ CXX\ TLOG
>crlog -m SI TEL

>qui t

>

Creating Event Queues

When you use persistent events, you must configure and boot the Tuxedo queuing
system. Two event queues must be created:

m TWNTSFWD_P

Thisisthe event forwarding queue for persistent subscriptions. Events go to this
gueue first and then are forwarded to matching persistent subscriptions. If an
event cannot be delivered on the first attempt, it is held in this queue and
repeated attempts are made to deliver it. If the settable retry limit is reached
before the event can be successfully delivered, the event is moved to the error
queue.

This queue requires the following configuration parameters:
e Queuing order (for example, first in, first out).
¢ How to handle out-of-order enqueuing.

e Retry limit (how many retries before moving the event to the error queue).

Using the Notification Service 7-7

7 Notification Service Administration Guide

e Retry timeinterval.
e How full the queue can get before administrative intervention is required.

e How low the queue can get after getting full before administrative
intervention isrequired.

e Definition of the administrative intervention command.

B TMNTSFWD_E

Thisisthe error queue. This queue receives events from the TMNTSFWD_P queue
that cannot be delivered to subscriptions. This queue requires the same
configuration parameters as the TWNTSFWD_P forwarding queue, however, the
retry limit and retry timeinterval parameters areirrelevant because thisisthe
error queue and errors are only removed by administrative intervention.

To configure these queues, perform the following steps:
1. Create adevice on disk for the queue space.

2. Configure a queue space.

3. Createthe queues.

These steps are described in the following sections.

Determining Space Parameters for Transient and
Persistent Subscriptions

To tune your system for maximum performance, you should determine the optimal
values for the following parameters:

m Thenumber of transient forwarding servers (TMNTSFWD_T) and persistent
forwarding servers (TMNTSFWD_P).

m |PC queue space (thisis used for transient subscriptions).

m Sizeof /Q queues (thisis used for persistent subscriptions).

7-8 Using the Notification Service

Creating Event Queues

IPC Queue Space for Transient Subscriptions

Proceed as follows to determine space parameters for transient subscriptions:

1

Determine how many events may bein the pipeline for transient subscriptions; that
is, how many events may be in the process of being delivered at any given time.
Thisequal sthe number of events multiplied by the number of subscribersreceiving
them.

Determine the size of your events. For purposes of this discussion, we will
assume that they are relatively small—about 300 bytes or less.

Determine how many transient forwarding servers you would like to start, most
likely one or two—one per processor on your machine is a good number to start
with.

Determine how much IPC queue space you will need to hold your transient
events. The amount of space you need is 1000 bytes multiplied by the number of
events you allow in the pipeline. Divide this number by the number IPC queues
your transient forwarders have. If you use MSSQ sets, then your transient
forwarders share one IPC queue; if you do not, then each forwarder has its own
IPC queue.

For example, if you estimate that there will be 10 events delivered to 50
subscribers in the pipeline, and you start 2 transient forwarders and they do not
share an IPC queue (that is, you do not use MSSQ sets), the amount of IPC
gueue space you need is:

10 events * 50 subscribers * 1000 bytes / 2 forwarders = 250,000 bytes

Configure the IPC queue size to that number by changing the entries in the
system registry. How you do this is platform-specific.

e For Microsoft Windows NT systems, see “Setting IPC Parameters on
Microsoft Windows NT” on page 7-14.

e For UNIX systems, refer to the system reference manual supplied with the
system.

/Q Queue Size Parameter Persistent Subscriptions

Proceed as follows to determine space parameters for persistent subscriptions:

Using the Notification Service 7-9

7 Notification Service Administration Guide

7-10

1. Determine how many events may bein the pipeline for persistent subscriptions;
that is, how many eventsmay beinthe processof being delivered at any giventime.
Thisequalsthe number of events multiplied by the number of subscribersreceiving
them.

2. Determinethe size of your events. For purposes of this discussion, we will
assume that they are relatively small—about 300 bytes or less.

3. Determine the size your /Q queues need to be to hold your persistent events (bo
for your pending queue and error queue). Proceed as follows to do this:

a.

Determine the size of a disk page. This is platform-specific. For example, on
Microsoft Windows NT, a disk page is 500 bytes. On UNIX machines, a disk
page could range from 500 to 4000 bytes in size.

Determine how many disk pages you will need to store one event rounding up
For example, if you need 1000 bytes per event and disk pages are 500 bytes.
you will need 2 disk pages per event.

Determine how many disk pages you will need for your events. For example, if
you want to allow 500 pending events and 200 error events, and an event take
up 2 disk pages, you will need 1400 disk pages.

Determine how many disk pages you will need for your gspace. This is the
number of disk pages you need for your events plus some pages for gspace
overhead. For example, if you need 1400 disk pages for events, then your
gspace needs approximately 1450 disk pages (50 pages of gspace overhead

Determine how many pages you will need for your gspace device. This is the
number of pages you need for the gspace plus some pages for device overhe:
For example, if you need 1450 disk pages for your gspace, then your device
needs approximately 1500 pages (50 pages of device overhead).

4. When you usqnadni n to create the gspace for your persistent events, the first
phase is to create a device. Use the size computed above in step 3.e above
(approximately 1500 pages). Next, specify the size of the gqspace. Use the size
computed in step 3d above (approximately 1450 pages). Next, specify how man
events can be in the pending queue and how many events can be in the error
gueue. The following sections explain how to create and configure gspaces.

Using the Notification Service

Creating Event Queues

Creating a Device on Disk for the Queue Space

Y ou use the gmadmin command utility to create a device on disk for the queue space.

Before you create a queue space, you must create an entry for it in the universal device
list (UDL). Listing 7-7 shows an example of the commands:

Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

pronpt >gnmadm n d: \smt h\reg\ QUE

gmadm n - Copyright (c) 1996-1999 BEA Systens, |nc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
Al Rights Reserved.

Di stributed under |icense by BEA Systens, |nc.

Tuxedo is a registered tradenark.

QVCONFI G=d: \ sm t h\r eg\ QUE

> crdl d:\smth\reg\QUE 0 1100
Created device d:\smth\reg\QUE, offset 0, size 1100
on d:\smth\reg\ QUE

For moreinformation about creating adevice on disk, seeto the BEA Tuxedo /Q Guide.

Configuring a Queue Space

Y ou use the gndani n gspacecr eat e command to configure queue spaces. A queue
space makes use of 1PC resources; therefore, when you define a queue space you are
allocating a shared memory segment and a semaphore. The easiest way to use the
gspacecr eat e command isto let it prompt you. Listing 7-8 shows an example queue
space that is configured for the Advanced sample application.

Listing 7-8 Creating Queue Space

> (spacecreate
Queue space nane: TMNTSQS
| PC Key for queue space: 52359

Using the Notification Service 7-11

7 Notification Service Administration Guide

Si ze of queue space in disk pages: 1050

Nurmber of queues in queue space: 2

Nurmber of concurrent transactions in queue space: 10
Nurmber of concurrent processes in queue space: 10
Nurmber of messages in queue space: 500

Error queue nane: TMNTSFWD E

Initialize extents (y, n [default=n]): vy

Bl ocki ng factor [defaul t=16]:

In the queue space created in Listing 7-8, take note of the following size settings:

Nurmber of messages in queue space: 500
Setting this parameter to 500 allows room for atotal of 500 eventsin the
pending and error queues.

Si ze of queue space in disk pages: 1050
On Microsoft WindowsNT, each disk page is 500 bytesand each event needs
1000 bytes. In addition, you must allow 2 disk pages per event. Since you
estimate that there will be 500 events in the pending and error queues, then
you must allow 1000 disk pages to store them (500 * 2). Also, you must allow
50 disk pages for gspace overhead, so the qspace sizeis set to 1050 disk
pages. Finaly, the device needs 50 disk pages of overhead too, so the device
sizeis 1100 disk pages, which you set using the cr dl command (see
Listing 7-7).

For more information about creating queue space, see the BEA Tuxedo /Q Guide.

Creating the Queues

7-12

Y ou must use the gmadni n gcr eat e command to create each queue that you intend
to use. Before you can create a queue, you first have to open the queue space with the
gmadni n gopen command. If you do not provide a queue space name, gopen will
prompt for it.

Listing 7-9 shows an example of creating the TMWNTSFWD_P and TMNTSFWD_E queues
that are created for Advanced sample application.

Using the Notification Service

Creating Event Queues

Listing 7-9 Creating Queues

> gopen
Queue space nane: TMNTSQS

> (create

Queue name: TMNTSFWD P

Queue order (priority, time, fifo, lifo): fifo

Qut - of -ordering enqueuing (top, msgid, [defaul t=none]): none
Retries [default=0]: 5

Retry delay in seconds [default=0]: 3

Hgh limt for queue capacity warning (b for bytes used, B for
bl ocks used, % for percent used, mfor nessages [defaul t=100%):
80%

Reset (low) limt for queue capacity warning [defaul t=0%: 0%
Queue capacity command:

No default queue capacity comrand

Queue ' TWNTSFWD P’ created

> qcreate

Queue name: TMNTSFWD _E

Queue order (priority, time, fifo, lifo): fifo

Qut - of -ordering enqueuing (top, msgid, [default=none]): none
Retries [defaul t=0]: 2

Retry delay in seconds [defaul t=0]: 30

Hgh linmt for queue capacity warning (b for bytes used, B for
bl ocks used, %for percent used, mfor nmessages [defaul t=100%):
80%

Reset (low) limt for queue capacity warning [defaul t=0%: 0%
Queue capacity conmand:

No default queue capacity comrand

Q CAT: 1438: INFQO Create queue - error queue TWNTSFWD E created
Queue ' TWTSFWD E' created

> q

For more information about creating queues, see the BEA Tuxedo /Q Guide.

Using the Notification Service ~ 7-13

7 Notification Service Administration Guide

Setting IPC Parameters on Microsoft Windows NT

The WLE software for Microsoft Windows NT systems provides you with BEA
Tuxedo IPC Helper (TUXIPC), an interprocess communication subsystem, that is
installed with the product. On most machines, |PC Helper runs as installed; however,
you can use the IPC Resources page of the control panel applet to tune the TUXIPC
subsystem and maximize performance.

To display the IPC Resources page of the |PC Control Panel, perform these steps:

1. Click Start—>Settings—>Control Pandlhe Micosoft Windows NT Control
Panel is displayed (Figure 7-1).

Figure7-1 Microsoft WindowsNT Control Panel

E3 Control Panel M=l E3
File Edit Wiew Help

B - o M E; :

Sen H &
EB:EEE&E;EH;E;E Add/Remave BEA Consale Date/Time Devices
i Optionz Programs Administration

HIT
S‘{
=

B

Q = D

Dizplay Find Fast Fontz Internet K.evboard tlail and Fax
5
o - ol
MGA Digplay kodems kouze tultimedia Metwork, QDEC
Properties
> 2 P & &
PC Card Parts Frinters Reqgional SCSI Adapters Server
[PCMLCIA) Settings
- AT
% L & S
Semvices Sounds System Tape Devices Telephony IPS
|30 object(s) W

7-14 Using the Notification Service

Creating Event Queues

Click the BEA Administration icon. The BEA Administration Control Panel is

displayed (Figure 7-2).

Click on the IPC Resources tab. The |PC Resources Control Panel portion of the

BEA Administration Control Panel is displayed (Figure 7-2)

Figure7-2 WLE Software for Microsoft Windows NT |PC Resour ces Control
Panel

BEA Administration - \WAPCWIZ1

Machines | Ernvionment | Logging | Listener |PEHESDUTCES]

Current Resource: Default taximum sllowed Mezzage Size:

Fasimum Humber OF kMezsage Headers:

[¥ illze Default |IPC Settings

M asirmurn Mumber OF Semaphore Undo Stuctures:

b axtirnuim Murmber Of Processes Per Shared Segment:

Murmber OF Shared Memony Segrments:

b aximumn Meszage Queue Size:

td &xirnunn Mumber of Message Qusues:
Size of Meszage Segment:

Mumber Of Meszage Segments:

kaximum Humber of Processes Using IPC:
td aximum Mumber OF Semaphores:

tamtirum Mumber OF Semaphore Sets:

o536
128

0536

27ET

024

024

024

AT B

OF. | Cancel ‘

To define IPC settings for your WLE machine, proceed as follows:

1

2.
3.

In the Current Resource Default box, click the Use Default | PC Settings check box

to clear it.
Click the insert box.

Enter the name of your machine and press Enter.

Using the Notification Service

7-15

7 Notification Service Administration Guide

4. Click thefields next to the IPC resources you want to set, enter the desired
values, and click Apply. Clicking Apply saves the changes in the Registry Table.
You must then stop and then restart the t uxi pc. exe service for the changes to
take effect.

5. Click OK to close the Control Panel.

Y ou can view the performance of arunning WLE server application onthe NT
Performance Monitor.

To start the Performance Monitor, click
Start—>Programs—>Administration Tools—>Performance Monitor on the NT
taskbar. The Performance Monitor screen is displayed (Figure 7-3).

Figure 7-3 WLE Softwarefor Microsoft Windows NT Performance M onitor

iz Performance Monitor M=l E3

File Edit Yiew QOption: Help

100
a0
80
7l
E0
50l
40
a0
20
10

]

Last| 0.000 Average | 0000 Min| 0.000 Max| 0,000 Graph Time 100.000

Color Scale Counter Instance Parent DObject Computer

| D ata: Current Activity

7-16 Using the Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

Creating the UBBCONFIG File and the
TUXCONFIG File

For event poster and subscriber applications to communicate with a WebL ogic
Enterprise object in the WebL ogic Enterprise domain, in this case the Notification
Service, aUBBCONFI Gfileisrequired for the Notification Service. The UBBCONFI Gfile
must be written as part of the development of the Notification Service application;
otherwise, you will not be able to build and run the application.

After you write the UBBCONFI Gfile, you usethet ml oadcf command to produce the
TUXCONFI Gfile, which isused at runtime. Therefore, the TUXCONFI Gfile must exist
before the Notification Service application is started. The TUXCONFI Gfileissimply a
binary version of the UBBCONFI Gfile. The following is an example of how to use the
tmloadcf command:

tm oadcf -y ubb

Before writing the UBBCONFI G you should list the configuration requirements of your
Notification Service application. To list requirements, determine the required servers
and processes to support the subscription. Table 7-1 shows the configuration
requirements for the different types of subscriptions.

Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions

Tosupport these types of subscriptions Your UBBCONFI Gfilemust include the following
servers, and processes

Transient subscription TMUSREVT, TMNTS, and TWNTSFWD _T.
Persistent subscription TMUSREVT, TWNTS, TMWNTSFWD_P, TMQUEUE,
TMFORWARD.

If you are using event subscriber applications that use 110OP, you need to configure the
[1OP Listener (1SL) command in the UBBCONFI Gfile with parameters that enable
outbound 110OP to invoke callback objects that are not connected to an [1OP Handler
(ISH). The - Ooption (uppercase letter O) of thel SL command enabl es outbound |1 OP.

Using the Notification Service ~ 7-17

7 Notification Service Administration Guide

7-18

Additional parameters allow system administrators to obtain the optimum
configuration for their Notification Service application. For more information about
the ISL command, see the Administration Guide.

When developing a Notification Service application, the SERVERS section of the
UBBCONFI Gfile may include the following types of servers:

TMJUSREVT

A BEA Tuxedo system provided server that processes event report message
buffers from t ppost (3), and acts as an Event Broker to filter and distribute
them. (Required)

TWNTS

A WLE Notification Service server that processes requests for subscriptions and
event postings. (Required)

TWNTSFWD_T

A WLE Notification Service server that forwards transient events to subscribers
of transient subscriptions. (Required for transient subscriptions)

TMNTSFWD_P

A WLE Notification Service server that forwards persistent events to subscribers
that have persistent subscriptions. Events that cannot be delivered to subscribers
are sent to the error queue. (Required for persistent subscriptions)

TMQUEUE

A Tuxedo server that manages event queues. (Required for persistent
subscriptions)

TMFORWARD

A Tuxedo server that forwards events to the Notification Service TWTSFWD_P
server so that they can be forwarded to persistent subscribers. (Required for
persistent subscriptions)

I SL

The WLE |10OP Server Listener/Handler process. (Required if the event poster or
subscriber is remote, that is outside the local domain)

Using the Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

The UBBCONFI Gfile shown in Listing 7-10 is from the Notification Service
Introductory sample gpplication. The Introductory sample application supports
transient subscriptions only; it does not support persistent subscriptions or data
filtering.

Listing 7-10 TheIntroductory Sample UBBCONFIG File

This UBBCONFI Gfile supports transi ent subscriptions only; it does
not persistent subscriptions or data filtering.
* RESOURCES

| PCKEY 52359

DOVAI NI D events_intro_sinple_cxx

MASTER S| TE1

MODEL SHM

*MACHI NES
"BEAN E'
LMD = SITE1
APPDI R = "D:\w edi r\ EVENTS~1\ | NTRCD~2"
TUXCONFI G = "D\ wl edi r\ EVENTS~1\ | NTROD~2\t uxconfi g"
TUXDIR = "d:\w edir"
MAXWSCLI ENTS = 10
ULOGPFX = "D \w edi r\ EVENTS~1\ | NTROD~2\ ULCG

Since we are using transient events, the group need not be
transactional .
* GROUPS

SYS_GRP

LMD = SITE1

GRPNO = 1

* SERVERS

DEFAULT:

CLOPT = "-A"

TMBYSEVT

SRVGRP = SYS _GRP

SRVID = 1
TMUSREVT

SRVGRP = SYS GRP

SRVID = 2
TMFENAME

SRVGRP = SYS GRP

SRVID = 3

CLOPT = "-A-- -N-M
TMFENAME

SRVGRP = SYS GRP

Using the Notification Service ~ 7-19

7 Notification Service Administration Guide

SRVID = 4

CLOPT = "-A -- -N'
TMFENAME

SRVGRP = SYS GRP

SRVID = 5

CLOPT = "-A -- -F"
Start the notification service server.
#
TWNTS

SRVGRP = SYS GRP

SRVID = 6
Start the Notification Service transient event forwarder.
#
TWMNTSFWD T

SRVGRP = SYS GRP

SRVID = 7
Start the ISL with -O since we are using callbacks to clients.
I SL

SRVGRP = SYS GRP

SRVID = 8

CLOPT = "-A -- -O-n //BEAN E: 2359"
o
* SERVI CES

The code example shown in Listing 7-11 is from the Notification Service Advanced
sampleapplication. The Advanced sampl e application supportstransient and persi stent
subscriptions and data filtering.

Listing 7-11 The Advanced Sample UBBCONFIG File

This UBBCONFIG file supports transient and persistent
subscriptions and data filtering.
* RESOQURCES

| PCKEY 52363

DOVAI NI D event s_advanced_si npl e_cxx

MASTER S| TE1

MODEL SHM

* MACH NES
"BEANI E"
LMD = SITEL
APPDI R = "D \w edi r\ EVENTS~1\ ADVANC~1"
TUXCONFI G = "D: \wW edi r\ EVENTS~1\ ADVANC~1\ t uxconfi g"
TUXDIR = "d:\wW edir"

7-20 Using the Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

MAXWSCLI ENTS = 10

ULOGPFX = "D:\w edi r\ EVENTS~1\ ADVANC~1\ ULCG'
#
Since we are using persistent events, we need a transaction | og.
#

TLOGDEVI CE = "D: \w edi r\ EVENTS~1\ ADVANC~1\ TLOG'

TLOGSI ZE = 10

Bhe o o e aeeaea-
* GROUPS

SYS _GRP

LMD = SI TEL

GRPNO = 1

Ceate a null transactional group for the notification service
servers.

#
NTS_GRP
LMD = SI TEL
GRPNO = 2
TVBNAME = TMB
TMBCOUNT = 2

Since we are using persistent events, we need a persistent queue
create a queue transactional group for the queue servers.
#

QUE_GRP
LMD = SITE1
GRPNO = 3
TMSNAME = TMVB_QM
TMSCQUNT = 2
#
Make the queue group manage the QUE space we create.
The name of the queue space specified here as TMNTSQS nust match
the name of the queue space you created.
#
OPENI NFO = " TUXEDQ Q\t D: \ W edi r\ EVENTS~1\ ADVANC~1\ QUE; TMNTSQS"
He o o m o e e e e e e o e e e e o e o e e e e e o e e e e e e e e e e e e oo e e mmoao -
* SERVERS
DEFAULT:
CLOPT = "- A"
#
Start the queue server.
The name of the queue space specified in the -s option of
CLOPT nmust match the nane of the queue space you created.
#
TMQUEUE
SRVGRP = QUE_GRP
SRVID = 1
CLOPT = "-s TMNTSQS: TMQUEUE -- "
#

Start the queue forwarder, have it forward events to the

Using the Notification Service ~ 7-21

7 Notification Service Administration Guide

7-22

notification service persistent forwarder.

#
TMIFORWARD
SRVGRP = QUE_GRP
SRVID = 2
CLOPT = "-- -i 2 -q TMNTSFWD_P"
TMSYSEVT
SRVGRP = NTS_GRP
SRVID = 1
#
Start the user event broker. Pass in the environment file
so that the user event broker can find the "Story" fm field
definition. This allows the user event broker to perform
data filtering.
#
TMUSREVT
SRVGRP = NTS_GRP
SRVID = 2
ENVFI LE = "D:\w edi r\ EVENTS~1\ ADVANC~1\ envfi | e"
TMFFENAMVE
SRVGRP = SYS_GRP
SRVID = 1
CLOPT = "-A-- -N-M
TMFFENAME
SRVGRP = SYS_GRP
SRVID =
CLOPT = "-A -- -N'
TMFFENAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -F"
#
Start the notification service server. Pass in the environnent
file so that the notification server can performdata filtering.
The -s option nmust be specified since we are using
persistent events. Note that the -s option specifies the name
of the queue space as TMNTSQS. This name nust match the nane
of the queue space you created.
#
TIMWNTS
SRVGRP = NTS_GRP
SRVID = 3
ENVFI LE = "D:\w edi r\ EVENTS~1\ ADVANC~1\ envfi | e"
CLOPT = "-A -- -s TMNTSQS"
#
Start the notification service transient event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#

Using the Notification Service

Managing the Notification Service

TMNTSFWD_T
SRVGRP = NTS GRP
SRVID = 4
ENVFILE = "D \w edi r\ EVENTS~1\ ADVANC~1\ envfil e"
#
Start the notification service persistent event forwarder.
Pass in the environnent file so that the server can perform
data filtering.
#
TMNTSFWD_P
SRVGRP = NTS _GRP
SRVID = 5
ENVFILE = "D \w edi r\ EVENTS~1\ ADVANC~1\ envfil e"
#
Start the ISL with -O since we're using callbacks to clients.
#
I SL
SRVGRP = SYS GRP
SRVID = 4
CLOPT = "-A -- -O-n //BEAN E: 2363"
He o o e e e e e e o e e e e m e o e oo e e mmoaoo -
* SERVI CES

Managing the Notification Service

After you have deployed the Notification Service application, you may need to
perform the following administrative tasks on an on-going basis:

1. Synchronizing databases.

2. Purgethe system of dead subscriptions.
3. Monitor queue utilization.

4. Purge the queues of unwanted events.
5

Move or remove events from the error queue.

Using the Notification Service ~ 7-23

7 Notification Service Administration Guide

Synchronizing Databases

If you configure more than one Event Broker, then your Notification Service

subscription databases will have to be synchronized. Because the synchronization

process requires time—time that can impact event delivery—and increases network
traffic, you should not configure more than one Event Broker unless the event traffic
warrants it.

When you configure more than one Event Broker, you can configure time required tc
synchronize the databases using-tR@ption on the TMUSREVT server. For more
information on how to set this option, sB&USREVT(5) in BEA TUXEDO Reference.

Note: The time required to synchronize the databases affects the elapsed time fror
when a subscriber subscribes and when it receives events. It also affects the
elapsed time from when a subscriber unsubscribes and when it stops receivin
events.

Purging the System of Dead Subscriptions

7-24

A subscription dies in one of two ways: 1) the subscriber creates a persistent
subscription, shuts down without unsubscribing, and then does not restart and
reconnect to the Notification Service, or, 2) the subscriber creates a subscription the
never matches any event. While it is allowable for a subscriber to create a persisten
subscription and then shut down without unsubscribing, it is an error if the subscribe
does not periodically reconnect for the purpose of picking up accumulated events.
Because the Notification Service periodically attempts to deliver events that match
persistent subscriptions, such events accumulate while the subscriber is disconnecte
consume queue space, and waste system resources.

Subscriptions that will never match any events should not be created because they
serve no useful purpose. Also, subscriptions consume system resources because e
posted event must be compared against each subscription.

Using thent sadmi n commands listed in Table 7-2, you can view all subscriptions and
see how many events are currently in the pending queue and in the error queue for ez
subscription. You can also remove subscriptions usingadm n command or move
events from the error queue to the pending queue. For a descriptiomo§ taei n

utility, see “ntsadmin” on page 7-28.

Using the Notification Service

Managing the Notification Service

Table 7-2 ntsadmin Commands Summary

Command Usage

subscriptions Lists subscriptions in the subscription database.
rimsubscriptions Removes subscriptions for the subscription database.
pendevent s Listsinformation about events in the pending events

queue. (For persistent subscriptions only.)

rnpendevent s Removes eventsin the pending events queue. (For
persistent subscriptions only.)

errevents Lists eventsin the event error queue. (For persistent
subscriptions only.)

rmerrevents Removes eventsin the events error queue. (For
persistent subscriptions only.)

Although thereisno way of automatically detecting adead subscription, thent sadmi n
utility is helpful in determining when and if a subscription is dead.

Monitoring Queue Utilization

Queues are created with a fixed amount of space allocated to them. This spaceis
consumed as events accumul ate in the queues. If the queues become full, subsequent
attempts to enqueue events will fail.

Y ou use gnadni n or nt sadmi n to monitor queue utilization (see BEA TUXEDO
Reference Section 1 — Commandspadni n).

When the queue space was created to hold the pending events, the maximum number
of events that could be held by the queue space was specified. For example, in the
Advanced sample application, the maximum number of events fOMNTSQS queue

space was set to 200 (see “Creating Event Queues” on page 7-7). With knowledge of
gueue space capacity, you can usentleadni n pendevent s command to determine

the number of events pending in the event queue. If the event queue is full or nearly
full, you may want to increase the setting for maximum number of events or increase
the number of event queues.

Using the Notification Service ~ 7-25

Notification Service Administration Guide

Note: Usethe threshold command option (cmd) on the gnadni n gcr eat e command
to generate awarning when a queue is nearing capacity. For information on
this command, see BEA TUXEDO Reference, Section 1 — Commands,
qgqnadm n.

Purging the Queues of Unwanted Events

You can purge events from either the pending queue or the error queue by using the
nt sadni n commands rer r event s andr npendevent s.

Warning: After an event has been removed from the queue there is no way to
recover it. The event is gone and the subscribing application will never
receive the event.

Managing the Error Queue

7-26

After a preset number of attempts to deliver an event, the event is moved to the errc
gueue. Once on the error queue, the administrator must take some action to either
purge the event from the system, or move the event from the error queue back to th
pending queue. Purging of events is discussed in the previous section.

When you move an event from the error queue back to the pending queue, you are
requesting that the system resume delivery attempts of the event. Because failed
attempts to deliver events consume system resources, you should not do this unless y
have some reason to believe that the condition that prevented delivery before has be
corrected. Thetsadni nretryerrevents command is provided specifically to

move events back to the pending queue.

Using the Notification Service

Notification Service Administration Utility and Commands

Notification Service Administration Utility
and Commands

Thistopic includes the following sections:
m ntsadmin Utility
m ntsadmin Commands

m Using the ntsadmin Utility

ntsadmin Utility

This section describes the nt sadni n utility.

Using the Notification Service ~ 7-27

7 Notification Service Administration Guide

ntsadmin

Synopsis
Syntax

Description

7-28

Security

See Also

WebL ogic Enterprise Notification Service administration command interpreter.
nt sadnmi n

The Notification Service includes an administration command interpreter, nt sadni n,
that provides commandsto perform the following tasks for WLE Notification Service
applications:

m List subscriptions
m Delete subscriptions

m Display summary information about structured events on the pending and error
queues

m Delete structured events on the pending and error queues

m Move structured events from the error queue to the pending queue

Note: When you enter nt sadni n to start the program, if your application only has
transient subscriptions, the commands for persistent subscriptions are
disabled.

Note: The Notification Service must be running before you can use nt sadmi n.

Y ou can exit thent sadni n program by enteringaq (for quit) at the command prompt.
Y ou can terminate the output from acommand by pressing the Break key; the program
then prompts for a new command.

Output from nt sadmi n ispaginated according to the pagination command in use (see
the pagi nat e command).

Note: Thesubscri pti on command hasdifferent output depending on the setting of
the ver bose command.

This utility can only be used by the system administrator.

TMNTS, TMNTSFWD T, TMNTSFWD P, gmadni n

Using the Notification Service

Notification Service Administration Utility and Commands

ntsadmin Commands

Commands may be entered either by their full name or by an abbreviation (if available,
the abbreviation is listed below in parentheses following the full name), followed by
appropriate arguments. Arguments that appear in square brackets [] are optional;
argumentsin curly braces{} indicate a selection from mutually exclusive options.
Each command offers the following options:

Option

Definition

[-i1 identifier]

If specified, identifies the subscription that matches
i dentifier.

[-n name]

If specified, identifies the subscription(s) with a
subscription name that matches nane only. To specify
names which match the empty string (that is,
subscriptions with no name), enclose an empty string
between quotes (**).

Note: Thisoption does not support thewildcard character (*)
so nane must match the subscription name exactly.

[-t]

If specified, designates subscriptions with a QoS of
transient only.

[-p]

If specified, designates subscriptions with a QoS of
persistent only.

The nt sadm n commands are as follows:

subscriptions (sub) [{-i identifier |-n name |-t | -p}]
Lists subscriptionsin the subscription database.

Note: Thesubscri pti on command has different output depending on whether the
verbose modeis on or off (the ver bose command is described below).
Listing 7-12 shows examples of subscri pt i on output with verbose on and

off.

Using the Notification Service ~ 7-29

7 Notification Service Administration Guide

Listing 7-12 Subscription Command Output with Verbose M ode On and Off

> verbose on

Ver bose nbde i s now on

> sub
I D: 1000000006
Name: marcello
QS: Transient
pace: <N A>
Expression: stock trade\.quote
Filter: stock_nane %% ' BEAS && price_per_share > 150
I D 1000000005
Name: marcell o
QS: Persi stent
space: TMNTSQS
Expression: stock trade\.sell
Filter:
I D 1000000004
Name: marcell o
QS: Persi stent
space: TMNTSQS
Expression: stock trade\. buy
Filter:

> verbose off

Ver bose node i s now off

> sub

I D Narme Expressi on
1000000006 narcello [T] stock trade\.quote
1000000005 nmarcello [P] stock trade\.sell
1000000004 narcello [P] stock trade\. buy

rnsubscriptions (rmsub) [{-i

identifier |-n nanme |-t |

-pl -yl

Removes subscriptions from the subscription database. This command
prompts for confirmation unless-y is used.

This command displays the number of subscriptions removed.

pendevents (pewvt) [{-i identifier|-n nange}]
Lists information about events in the pending events queue.

7-30 Using the Notification Service

Notification Service Administration Utility and Commands

rmpendevents (rnpevt) [{-i identifier |-n name |-o0}][-vy]
Removes eventsin the pending events queue. If —o isspecified, al eventsthat
do not currently have a corresponding subscription in the subscription
database will be removed.

This command prompts for confirmation unless -y is used and displays the
number of events removed.

errevents (eevt) [{-i identifier|-n nane}]
Lists events in the events error queue.

rmerrevents (rmeevt) [{-i identifier|-n nane|-o}][-y]
Removes eventsin the eventserror queue. If —o isspecified, all eventsthat do
not currently have a corresponding subscription in the subscription database
will be removed.

This command prompts for confirmation unless -y is used and displays the
number of events removed.

retryerrevents (reteevt) [{-i identifier|-n nane}]-y]
Retries the events in the events error queue. Thiswill move the events from
the error queue to the pending queue.

This command prompts for confirmation unless -y is used and displays the
number of events moved from the error queue to the pending queue.

quit (g)
Terminates the session.

echo (e) [{off [on}]
Echoes input command lines when set to on. If no input is given, then the
current setting is toggled and the new setting is printed. Theinitial setting is
off .

help (h) [{ command |all}]
Prints help messages. If conmand is specified, the abbreviation, arguments
and description for that command are printed. all causes adescription of the
commands to be displayed. Omitting all arguments causes the syntax of all
commands to be displayed.

paginate (page) [{off |on}]
Paginates output. If no input is given, the current setting istoggled and the
new setting is printed. Theinitial settingison, unless either standard input or
standard output is a non-terminal device. Pagination may only be turned on
when both standard input and standard output are terminal devices. The shell

Using the Notification Service ~ 7-31

7 Notification Service Administration Guide

environment variable PAGER may be used to override the default command
used for paging output. The default paging command is the pager indigenous
to the native operating system environment; for example, the command pg is
the default on UNIX operating systems.

verbose (v) [{on | off }]
Producesoutput in verbose mode. If no optionisgiven then the current setting
will be toggled, and the setting is printed. Theinitial setting is of f .

I shel | conmand
Use this command to escape to shell and execute shel | conmand.

Use this command to repeat the previous shell command.

#[text]
Use this command to designate the line as a comment.

<CR>
Use this command to repeat the previous command.

Using the ntsadmin Utility

7-32

This section provides examples of using the nt sadni n utility.

Listing 7-13 shows an example of using nt sadni n to move events from the error
gueue back to the pending queue. The following steps are performed:

1. Look up al subscriptions for mar cel | o.

2. Usetheuniquesubscri ption id to display information about events on the
error queue.

3. Movethe events from the error queue to the pending queue.

Listing 7-13 Moving Events From the Error Queueto the Pending Queue

D:\smth\reg>ntsadnin

ntsadmn - Copyright (c) 1996-1999 BEA Systens, |nc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All R ghts Reserved.

Distributed under |icense by BEA Systens, |nc.

Tuxedo is a registered trademark.

Using the Notification Service

Notification Service Administration Utility and Commands

INFO /Q Qspace - TMNTSQS
INFO /Q Device - D:\smth\reg\QUE (SITE1)

> subscriptions -n marcello

1D Nare Expressi on
1000000002 narcello [T] stock trade\. quote
1000000001 narcello [P] stock trade\. sel
1000000000 narcello [P] stock trade\. buy

> ver bose of f
Ver bose node i s now of f

> eevt -i 1000000003
1D Name Count
1000000003 narcello 1

> reteevt -i 1000000003 -y
1 event(s) retried

Listing 7-14 shows an example of using nt sadmi n to remove subscriptions and purge
events.

Listing 7-14 Removing a Subscription

romsub -n Jimlones -y
subscription(s) renoved
rnmeevt -n marcello -y
event (s) renoved

rnpevt -n Ji mlones -y
No events renoved

vV, VNV

Listing 7-15 shows how to check events pending for a specific subscription.

Listing 7-15 Checking for Pending Events

> pevt -n marcello
I D Nanme Count

1000000003 narcello 1

Using the Notification Service ~ 7-33

7 Notification Service Administration Guide

Notification Servers

This section provides descriptions of the following servers:
B TMINS

m TWNTSFWD T

m TWNTSFWD P

The Notification Service also uses the following BEA Tuxedo system servers. For
descriptions of these servers, refer to Section 5 of the BEA Tuxedo Reference.

m TMVBYSEVT(5)
m TMISREVT(5)
® TMFORWARD(5)
m TMQUEUE(5)

7-34 Using the Notification Service

Notification Servers

TMNTS
Synopsis
Syntax

Description

Parameter

Interoperability

Notes

Example

See Also

Processes requests for subscriptions and event postings.

TMNTS SRVGRP="identifier” SRVID="number”
[CLOPT="[-A] [servopts options]
[--[-S queuespace]’]

TMNTSsaWLE-provided server that processesall requests for subscriptionsand event
postings.

-S queuespace
The name of the queue space to use. This queue space must contain two
gueues: TMNTSFWD_and TMNTSFWD_H his option isrequired for persistent
subscriptions only.

Note: If you plan to use subscriptionswith a QoS of Persistent , you must create a
gueue space, agueue for holding events, and an error queue before the system
is operational. The queue space name must match the queuespace name
specified using the CLOPT -S queuespace parameter for the TMNTSserver.
The event queue must be named TMNTSFWD_.A he error queue must be named
TMNTSFWD_E

Itispossibleto boot morethen one TMNTSserver to increase reliability and availability.

The TMNTSserver must be part of atransactional group if eventswill be posted in the
context of a transaction.

TMNTSmMust be run on WLE version 5.0 or | ater.

The TMNTSserver relieson services provided by the TMUSREVand TMSYSEVBervers.
Therefore, these servers must be booted before the system is operational. If transient
subscriptions are used, the TMNTSFWD_Zerver must also be booted before the system
is operational. If persistent subscriptions are used, the TMNTSFWD_AFMQUEUEaNnd
TMQFORWARBrvers must also be booted before the system is operational .

*SERVERS

TMNTS SRVGRP = NTS_GRP SRVID =3
CLOPT ="-A -- -s TMNTSQS"

TMSYSEV{5), TMUSREV(5), TMQUEUES), TMQFORWAKE), TMNTSFWD_P
TMNTSFWD (5), UBBCONFIGE5)

Using the Notification Service ~ 7-35

7 Notification Service Administration Guide

TMNTSFWD_T
Synopsis Forwards events to transient subscribers.
Syntax ~TMNTSFWD_T SRVGRP="identifier’ SRVID="number”
[CLOPT="[-A][--"]
Description TMNTSFWD_is a WLE-provided server that forwards events to subscribers who

Interoperability

Notes

Example

See Also

specified a QoS of Transient . Thereisno transaction context associated with event
delivery.

Note: It ispossible to boot morethen one TMNTSFWD_3erver to increase reliability
and availabhility.

TMNTSmust run on WLE version 5.0 or later software.

The TMNTSFWD_Zerver relies on services provided by the TMNTS TMUSREVTand
TMSYSEVBervers. Therefore, these servers must be booted before the system is
operational.

*SERVERS
TMNTSFWD_T SRVGRP =SYS_GRP SRVID =7

TMSYSEV{5), TMUSREV(6), TMNT$5), TMNTSFWD_RIBBCONFIE5). Also, see “IPC
Queue Space for Transient Subscriptions” on page 7-9.

7-36 Using the Notification Service

Notification Servers

TMNTSFWD_P
Synopsis Forwards events to persistent subscribers.
Synopsis TMNTSFWD_P SRVGRP="identifier” SRVID="number”
CLOPT="[-A] [--"]
Description TMNTSFWD_Ps an WL E-provided server that forwards events to subscribers who

Interoperability

Notes

Example

See Also

specified a QoS of persistent. There is no transaction context associated with event
delivery.

It is possible to boot more then one TMNTSFWD_Berver to increase reliability and
availability.

TMNTSmMust run on WLE version 5.0 or later.

The TMNTSFWD_Berver relies on services provided by the TMNTS TMUSREVT
TMSYSEVTTMQUEUENd TMQFORWAR®Brvers. Consequently, these servers must be
booted before the system is operational.

This server must be booted in atransactional group.

The number of TMNTSFWD_Bervers booted should be the same as the number of
TMQFORWARBrvers booted.

*SERVERS
TMNTSFWD_P SRVGRP = NTS_GRP SRVID =5

TMSYSEV{5), TMUSREV(5), TMNTS TMNTSFWD_,Bervopts (5), UBBCONFIE5)

Using the Notification Service ~ 7-37

7 Notification Service Administration Guide

7-38 Using the Notification Service

Index

A

Advanced application process
Advanced Sample application 6-16
Advanced Sample application
building 6-6
changing protection on files 6-14
setting up the work directory 6-9
source files 6-9, 6-10, 6-11
starting the server application 6-16

BEA Administration Control Panel
IPC Resources page 7-14
BEA Tuxedo system servers 1-4
BEAWrapper callback
object 3-11
Boolean expression operators 2-13
Bootstrap Object
service IDs 2-3
building
C++ joint client/server applications 3-
17, 4-19
buildobjclient command 3-19, 4-21

C

C++ joint client/server applications
compiling 3-17, 4-19
threading considerations 3-16

callback object

creating 3-10, 4-14
persistent 7-5
transient 7-5
Callback Sample application
environment variables 6-8
JAVA_HOME directory path 6-8
reguired environment variables 5-5, 6-7
Channel Factory 2-3
client stub files 3-17, 4-20
compiling
C++ joint client/server applications 3-
17,4-19
ConsumerAdmin object 4-12
copy sample files5-6
copying sample files 6-9
COS Structured Events 2-5
filterable body 2-6
fixed header 2-5
remaining body 2-6
variable header 2-5
CosNotification Service API
overview 2-26
Push Consumer class 2-62
service classes
descriptions 2-30
model 2-27
customer support contact information xi

D
datafiltering 2-13, 6-6

Using the Notification Service -1

configuring 7-3

directory location of source files
Advanced Sample application 6-9
Introductory sample application 5-7

directory path 5-5, 6-8

documentation, where to find it x

E

environment variables 5-5
Callback Sample application 5-5, 6-7
JAVA_HOME 5-5, 6-7
TUXDIR 5-5, 5-6, 6-7, 6-9

error queue 7-26

event channel
finding 2-3
getting 3-3, 4-3

event design 2-6, 3-2, 4-2

event queues
creating 7-7

events
creating and posting 3-4, 4-4
news 6-6
posting 2-10, 3-2
receiving 2-10
subscribing 3-6
system 2-10

example 2-11
user 2-10
example 2-11
exception
CORBA::TRANSIENT 2-3

F
Field Manipulation Language (FML)
buffer 2-9
creating field table files 2-7
field table definition
files7-3
field table files 2-9

[-2 Using the Notification Service

filenames 2-9
FML322-9
file protections
Advanced Sample application 6-14
Introductory Sample application 5-10
FilterFactory object 4-12
FML field tablefiles 2-9
FML field tables 1-4
FML filename 2-9

H

host and port
number requirements 7-5

idl command 3-17
IDL files 3-18
Introductory application process
Introductory sample application 5-12
Introductory sample application
building 5-4
changing protection on files 5-10
description 5-1
setting up the work directory 5-6
sourcefiles5-7
starting the server application 5-12
IPC Helper (TUXIPC) 7-14
ISL 7-18

J

JAVA_HOME parameter
Callback Sample application 5-5, 6-7

M

makefile
executing 5-12, 6-16
summary 5-11, 6-15

N

news events 6-6
Notification servers 7-34
TMNTSFWD_P 7-34
TMNTSFWD_T 7-34
TMQFORWARD 7-34
TMQUEUE 7-34
TMSYSEVT 7-34
TMTNS 7-34
TMUSREVT 7-34
Notification Service
application build
requirements 4-21
Bootstrap object 2-3
build requirements 3-18
compiling and running 4-19
configuring 7-2
defined 1-1
event design 2-6
exception symbols 2-64
managing 7-23
minor codes 2-64
product features 1-4
programming model 1-2
TUXCONFIG file 7-17
UBBCONFIG file 7-17
Notification Service system
components 1-2
ntsadmin
commands 7-29
utility
description 7-28
using 7-32

P

Performance Monitor screen 7-16
printing product documentation x

Q

gmadmin command 7-11
Quality of Service (QoS) 2-15
persistent 1-4, 2-2
persistent subscription 1-4, 2-2
setting 2-2
subscription
persistent
properties 2-2
transactions 2-4
transient 1-4, 2-2
transient subscription 1-4
properties 2-3
transient versus persistent 2-15
queue
creating a7-12
managing error queue 7-26
monitoring space 7-25
purging unwanted events 7-26
gueue space
configuring 7-11
creating adevice 7-11

R

related information xi

Reporter application 5-2, 6-4
post an event 6-19

retry limit 1-4

S

server applications
starting
Advanced Sample application 6-16
Introductory sample application 5-
12
servers 7-34
Setting |PC Parameters 7-14
Simple Events APl 2-16
Channel Factory interface 2-24

Using the Notification Service -3

Channdl interface 2-17 TMNTS 1-4, 7-18, 7-35, 7-36

skeleton files 3-17, 4-20 TMNTSFWD_P 1-4, 7-18, 7-37
Subscriber application 5-2 TMNTSFWD_T 1-4, 7-18, 7-36
news subscription 6-4 TMQFORWARD 1-4, 7-18
shutdown subscription 6-4 TMQUEUE 1-4, 7-18
subscribe to event 6-18 TMSUSREVT 1-4, 7-35, 7-36
subscription TMSYSEVT 1-4, 7-35, 7-36
cancellation 2-3 TMSY SEVT application process
checking successful delivery 2-3 Advanced Sample application 6-16
cleanup mechanism 2-3 Introductory sample application 5-12
creating 4-16 TMUSREVT 7-18
parameters 2-12 transaction log
data filter 2-13 creating 7-7
domain_type 2-12 transactions
push_consumer 2-15 QoS 2-4
QoS 2-15 TUXCONFIG file
subscription_name 2-12 creating 7-17
type_name 2-12 TUXDIR parameter
persistent Callback Sample application 5-5, 6-7, 6-
/Q queue size parameter 7-9 8
creating 3-13 TUXIPC 7-14
creating atransaction log 7-7
creating an event queue 7-7 U
IPC gueue space 7-8)
properties 2-2 UBBCONFIG file1-4
purging dead subscriptions 7-24 _ creating 7-17
retry limit 1-4 Using 4-1
synchronizing databases 7-24
transient w

creating 3-13, 4-17
IPC gueue space 7-8
properties 2-3
viewing with ntsadmin 7-24
support
technica xi

WLE servers1-4

T

TMFFNAME application process
Advanced Sample application 6-16
Introductory sample application 5-12

-4 Using the Notification Service

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Overview
	2. Notification Service API Reference
	3. Using the BEA Simple Events API
	4. Using the CosNotification Service API
	5. Building the Introductory Sample Application
	6. Building the Advanced Sample Application
	7. Notification Service Administration Guide
	 Index

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview
	Introduction
	Functional Overview
	Figure 1�1 Notification Service Model

	Product Components

	2 Notification Service API Reference
	Introduction
	Quality of Service
	Persistent Subscriptions
	Transient Subscriptions

	Obtaining the Channel Factory
	Using Transactions
	Structured Event Fields, Types, and Filters
	Figure 2�1 Structured Event

	Designing Events
	Listing 2-1 Event Design

	Creating FML Field Table Files for Events
	Table 2�1 Supported CORBA Any Types�
	Listing 2-2 Data Filtering FML Field Table File

	Interoperability with BEA Tuxedo Applications
	Posting Events
	Receiving Events

	Parameters Used When Creating Subscriptions
	subscription_name
	domain_type
	type_name
	data_filter
	Table 2�2 Boolean Expression Operators

	Listing 2-3 Data Filtering Requirements
	push_consumer
	Table 2�3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

	qos (quality of service)

	BEA Simple Events API
	Figure 2�2 BEA Simple Events Interfaces
	TOBJ_SimpleEvents::Channel Interface

	Channel::subscribe
	CORBA IDL
	Exceptions
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT
	CORBA::INV_OBJREF

	Description
	Parameters
	Return Value
	Examples

	Channel::unsubscribe
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Examples

	Channel::push_structured_event
	CORBA IDL
	Exceptions
	CORBA_IMP_LIMIT

	Parameter
	notification

	Description
	Examples

	Channel::exists
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	TOBJ_SimpleEvents::ChannelFactory Interface

	Channel_Factory::find_channel
	CORBA IDL
	Parameter
	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	CosNotification Service API
	Overview of Supported CosNotification Service Classes
	Figure 2�3 Implemented CosNotification Service Classes

	Detailed Descriptions of CosNotification Service Classes
	CosNotifyFilter::Filter Class

	CosNotifyFilter::Filter::add_constraints
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidConstraint
	CORBA::BAD_PARAM
	CORBA_IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyFilter::Filter::destroy
	Synopsis
	OMG IDL
	Exceptions
	CORBA::BAD_PARAM

	Description
	CosNotifyFilter::FilterFactory Class

	CosNotifyFilter::FilterFactory::create_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidGrammar

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: connect_structured_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosEventChannelAdmin::TypeError
	CORBA::INV_OREF
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos
	Synopsis
	OMG IDL
	Exceptions
	UnsupportedQoS
	ORBA::IMP_LIMIT

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter
	Synopsis
	OMG IDL
	Exceptions
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::FilterNotFound

	Description
	Restrictions
	a. Filter object references that are returned from this operation cannot be used in comparison op...
	b. Filter object references returned by this operation can be used by the CosNotifyFilter::Filter...

	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: disconnect_structured_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CORBA::OBJECT_NOT_EXIST

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: connect_structured_push_supplier
	Synopsis
	OMG IDL
	Exception
	CosEventChannelAdmin::AlreadyConnected

	Description
	1. Make a proxy.
	2. Use this operation to connect to the Notification Service and pass in a NIL.
	3. Post events.
	4. Before exiting the poster program, disconnect.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected
	CORBA::IMP_LIMIT

	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: disconnect_structured_push_consumber
	Synopsis
	OMG IDL
	Descriptions
	1. Make a proxy.
	2. Connect and disconnect on every run of the poster application.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushconsumer::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::ConsumerAdmin Class

	CosNotifyChannelAdmin::ConsumerAdmin:: obtain_notification_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ProxyNotFound

	Descriptions
	Return Value
	Examples
	CosNotifyChannelAdmin::SupplierAdmin Class

	CosNotifyChannelAdmin::SupplierAdmin:: obtain_notification_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannel Class

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_consumer_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_supplier_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel::default_filter_factory
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannelFactory Class

	CosNotifyChannelAdmin::EventChannelFactory::get_event_channel
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ChannelNotFound

	Description
	Return Value
	Examples
	CosNotifyComm::StructuredPushConsumer Interface

	CosNotifyComm::StructuredPushConsumer::push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected

	Description
	Examples

	CosNotifyComm::StructuredPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Description
	Examples

	CosNotifyComm::StructuredPushConsumer::Offer_change
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyComm::InvalidEventType

	Description
	Examples
	Exception Minor Codes
	Table 2�4 Tobj_Events Exception Minor Codes�
	Table 2�5 Tobj_Notification Exception Minor Codes�

	3 Using the BEA Simple Events API
	Development Process
	Table 3�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 3-1 Getting the Event Channel (C++)
	Listing 3-2 Getting the Event Channel (Java)

	Creating and Posting Events
	1. Creates an event and sets the domain name and type name. In the code samples, the domain name ...
	2. Adds a field to the event’s filterable data to contain the story, sets the name of the added f...
	3. Uses the push_structured_event operation to post the event to the Notification Service.
	Listing 3-3 Creating and Posting the Event (C++)
	Listing 3-4 Creating and Posting the Event (Java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 3-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 3-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel
	Creating a Callback Object
	1. Create a callback object. Callback objects can be implemented using either the BEAWrapper Call...
	2. Create the servant.
	3. Create an object reference to the callback servant.
	Listing 3-8 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...
	Listing 3-9 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...

	Creating a Subscription
	1. Set the subscription’s quality of service (QoS) to either transient or persistent.
	2. Determine the subscription_name (optional), domain_name, type_name, and data_filter (optional).
	3. Create the subscription. The subscription sets the domain_name, type_name, and data_filter (op...
	Listing 3-10 Creating a Transient Subscription (C++)
	Listing 3-11 Creating a Transient Subscription (Java)
	Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)
	Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)
	Threading Considerations for C++ Joint Client/Server Applications

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 3�2 idl Command Requirements
	Table 3�3 IDL Files Required by Notification Service Applications

	Building and Running Applications
	Table 3�4 Application Build Requirements�
	Listing 3-14 C++ Reporter Application Build and Run Commands (Microsoft Windows NT)
	Listing 3-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows NT)
	Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 3-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\wledir\include C:\wledir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\wledir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\wledir...
	Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\wledir\include C:\wledir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\wledir\udataobj\java\jdk\m3envobj.jar;\ C:\wledir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\wl...

	4 Using the CosNotification Service API
	Development Process
	Table 4�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 4-1 Getting the Event Channel (Reporter.cpp)
	Listing 4-2 Getting the Event Channel (Reporter.java)

	Creating and Posting Events
	Listing 4-3 Creating and Posting the Event (Reporter.cpp)
	Listing 4-4 Creating and Posting the Event (Reporter.java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 4-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 4-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object
	Listing 4-8 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)
	Listing 4-9 Getting the Event Channel (Subscriber.java)

	Creating a Callback Object
	1. Creating a callback wrapper object. This can be implemented using either the BEAWrapper Callba...
	2. Creating the servant.
	3. Creating an object reference to the callback servant.
	Listing 4-10 Sample Code for Creating a Callback Object With Transient Object Reference (Introduc...
	Listing 4-11 Sample Code for Creating a Callback Object With Transient Object Reference (Introduc...

	Creating a Subscription
	1. Create a notification proxy push supplier and use it to create a StructuredProxySupplier object.
	2. Set the subscription’s quality of service (QoS). You can set the QoS to transient or persistent.
	3. Create a filter object and assign the domain_name, type_name, and data_filter (optional) to it.
	4. Add the filter to the proxy.
	5. Connect to the proxy passing in the subscription’s callback object reference.
	Listing 4-12 Creating a Transient Subscription
	Listing 4-13 Creating a Transient Subscription (Introductory Subscriber.java)

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 4�2 idl Command Requirements
	Table 4�3 IDL Files Required by Notification Service Applications

	Compiling and Linking the Application Code
	Table 4�4 Application Build Requirements�
	Listing 4-14 C++ Reporter Application Build and Run Commands
	Listing 4-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows NT)
	Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 4-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\wledir\include C:\wledir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\wledir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\wledir...
	Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\wledir\include C:\wledir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\wledir\udataobj\java\jdk\m3envobj.jar;\ C:\wledir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\wl...

	5 Building the Introductory Sample Application
	Overview
	Figure 5�1 Introductory Sample Application Components

	Building and Running the Introductory Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows NT, ensure the nmake fil...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 5�1 Required Environment Variables for the Introductory Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Introductory Sample Application into a Work Directory
	Table 5�2 Files Located in the introductory_sample_c++ Directory�
	Table 5�3 Files Located in the introductory_cos_java Directory
	Table 5�4 Other Files the Introductory Sample Application Uses�

	Changing the Protection Attribute on the Files for the Introductory Sample Application
	1. In a DOS window, change (cd) to your work directory.
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory.
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Introductory Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows NT) or common.mk (for UNIX) command file. This f...
	3. Includes the makefile.inc command file. This file builds the is_reporter and is_subscriber exe...
	4. Includes the introductory.inc command file. This file creates the UBBCONFIG file and executes ...

	Executing the Makefile

	Starting the Introductory Sample Application
	1. To boot the WLE system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Introductory Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber), the following prompts are di...
	2. The Subscriber application creates a subscription then prints “Ready” when it is ready to rece...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompts are displ...
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. To send and receive more news stories, start another subscriber, then report another story. Wh...

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	6 Building the Advanced Sample Application
	Overview
	Figure 6�1 Advanced Sample Application Components

	Building and Running the Advanced Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows NT, ensure the nmake fil...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 6�1 Required Environment Variables for the Callback Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Advanced Sample Application into a Work Directory
	Table 6�2 Files Located in the advanced_simple_java Notification Directory
	Table 6�3 Files Located in the advanced_cos_c++ Notification Directory
	Table 6�4 Other Files that the Advanced Sample Uses�

	Changing the Protection Attribute on the Files for the Advanced Sample Application
	1. Change (cd) to your work directory
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Advanced Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows NT) or common.mk (for UNIX) command file. This f...
	3. Includes the makefile.inc command file. This file builds the is_reporter, is_subscriber and AS...
	4. Includes the advanced.inc command file. This file executes tmadmin and qadmin commands to crea...

	Executing the Makefile

	Starting the Advanced Sample Application
	1. To boot the WLE system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Advanced Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the follo...
	2. You may type in any string for the news category, that is, there is no fixed list of news cate...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompt is displayed:
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. If you choose the “s” option, a Shutdown event will be posted and received by all the subscrib...
	6. If you choose the "c" option, a Cancel event will be posted and received by all the subscriber...
	7. When you are finished reporting news, choose the Exit (e) option.

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	7 Notification Service Administration Guide
	Introduction
	Configuring the Notification Service
	Configuring Data Filters
	1. Create the BEA Tuxedo FML field table definition file that describes the fields on which to fi...
	2. In the UBBCONFIG file, specify where the FML field table definition file is located so that wh...
	Listing 7-1 Sample Data Filtering Using the BEA Simple Events API (C++)
	Listing 7-2 Data Filtering FML Field Table File
	Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows NT)
	Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

	Setting the Host and Port
	Listing 7-5 Setting Host and Port in Java Subscriber Applications

	Creating a Transaction Log
	Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows NT)

	Creating Event Queues
	1. Create a device on disk for the queue space.
	2. Configure a queue space.
	3. Create the queues.
	Determining Space Parameters for Transient and Persistent Subscriptions
	IPC Queue Space for Transient Subscriptions
	1. Determine how many events may be in the pipeline for transient subscriptions; that is, how man...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine how many transient forwarding servers you would like to start, most likely one or tw...
	4. Determine how much IPC queue space you will need to hold your transient events. The amount of ...
	5. Configure the IPC queue size to that number by changing the entries in the system registry. Ho...

	/Q Queue Size Parameter Persistent Subscriptions
	1. Determine how many events may be in the pipeline for persistent subscriptions; that is, how ma...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine the size your /Q queues need to be to hold your persistent events (both for your pen...
	a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft Window...
	b. Determine how many disk pages you will need to store one event rounding up. For example, if yo...
	c. Determine how many disk pages you will need for your events. For example, if you want to allow...
	d. Determine how many disk pages you will need for your qspace. This is the number of disk pages ...
	e. Determine how many pages you will need for your qspace device. This is the number of pages you...
	4. When you use qmadmin to create the qspace for your persistent events, the first phase is to cr...

	Creating a Device on Disk for the Queue Space
	Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

	Configuring a Queue Space
	Listing 7-8 Creating Queue Space
	Number of messages in queue space:500
	Size of queue space in disk pages:1050

	Creating the Queues
	Listing 7-9 Creating Queues

	Setting IPC Parameters on Microsoft Windows NT
	1. Click Start—>Settings—>Control Panel. The Micosoft Windows NT Control Panel is displayed (Figu...
	Figure 7�1 Microsoft Windows NT Control Panel
	2. Click the BEA Administration icon. The BEA Administration Control Panel is displayed (Figure�7...
	3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the BEA Administrat...

	Figure 7�2 WLE Software for Microsoft Windows NT IPC Resources Control Panel
	1. In the Current Resource Default box, click the Use Default IPC Settings check box to clear it.
	2. Click the insert box.
	3. Enter the name of your machine and press Enter.
	4. Click the fields next to the IPC resources you want to set, enter the desired values, and clic...
	5. Click OK to close the Control Panel.

	Figure 7�3 WLE Software for Microsoft Windows NT Performance Monitor

	Creating the UBBCONFIG File and the TUXCONFIG File
	Table 7�1 Configuration Requirements for Transient and Persistent Subscriptions
	Listing 7-10 The Introductory Sample UBBCONFIG File
	Listing 7-11 The Advanced Sample UBBCONFIG File

	Managing the Notification Service
	1. Synchronizing databases.
	2. Purge the system of dead subscriptions.
	3. Monitor queue utilization.
	4. Purge the queues of unwanted events.
	5. Move or remove events from the error queue.
	Synchronizing Databases
	Purging the System of Dead Subscriptions
	Table 7�2 ntsadmin Commands Summary�

	Monitoring Queue Utilization
	Purging the Queues of Unwanted Events
	Managing the Error Queue

	Notification Service Administration Utility and Commands
	ntsadmin Utility

	ntsadmin
	Synopsis
	Syntax
	Description
	Security
	See Also
	ntsadmin Commands
	subscriptions (sub) [{-i identifier |-n name |-t | -p}]
	Listing 7-12 Subscription Command Output with Verbose Mode On and Off
	rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
	pendevents (pevt) [{-i identifier |-n name}]
	rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
	errevents (eevt) [{-i identifier |-n name}]
	rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
	retryerrevents (reteevt) [{-i identifier |-n name}][-y]
	quit (q)
	echo (e) [{off |on}]
	help (h) [{command |all}]
	paginate (page) [{off |on}]
	verbose (v) [{on | off }]
	! shellcommand
	!!
	#[text]
	<CR>

	Using the ntsadmin Utility
	1. Look up all subscriptions for marcello.
	2. Use the unique subscription id to display information about events on the error queue.
	3. Move the events from the error queue to the pending queue.
	Listing 7-13 Moving Events From the Error Queue to the Pending Queue
	Listing 7-14 Removing a Subscription
	Listing 7-15 Checking for Pending Events

	Notification Servers

	TMNTS
	Synopsis
	Syntax
	Description
	Parameter
	-S queuespace

	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_T
	Synopsis
	Syntax
	Description
	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_P
	Synopsis
	Synopsis
	Description
	Interoperability
	Notes
	Example
	See Also
	 Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	M
	N
	P
	Q
	R
	S
	T
	U
	W

