BEA WebLogic Enterprise

Using the CORBA
Name Service

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000



Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the CORBA Name Service

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1




Contents

About This Document

What Y 0OU NEed t0 KNOW .....cceceeiiiciie sttt vii
E-0OCSWED SHE....cceiictececeeee e et s s viii
How to Print the DOCUMENE .........ccceveeeiererece e e e snens viii
Related INfOrmation..........couiiiiei et viii
Lo g1 = ox A1 1S RS S iX
Documentation CONVENLIONS..........ccverirereseseese e seeeeeeeeseseesesse e ssessessenees iX

1. Overview of the CORBA Name Service

The CORBA NaIME SENVICE.......cccieeieecieeieste et ste e e ee e ssee e ste s e e seesrens 1-1
Understanding the CORBA NamMe SENVICE ......ccvvrvveriereriesieeseeseesieeeseneenens 1-3

2. CORBA Name Service Reference

CORBA Name Service COMMENGS........c.coreeererierenesieseseesiesesseeseesessessessesees 2-1
LIS ettt etttk b e ettt bt e he e Rt et eh e e Ee b e e e e eheeabeeReeaneereerenaeenas 2-3
CNSDING .. s 2-6
(0801 TSRS 2-9
CNSUNDING ... e e 2-11
Capabilities and Limitations of the CORBA Name Service........ccocvvevverernnn 2-12
Getting the Initial Reference to the NameService Environmental Object ...... 2-13
The CosNaming Data Structures Used by the CORBA Name Service........... 2-13
The NamingContext OBJECL.........ccvvvrerererece e e 2-14
CosNaming::NamingContext::bind() .........ccooererrreeinininieeeienee 2-15
CosNaming::NamingContext::bind_context() ..........cccceereerierienccnnens 2-16
CosNaming::NamingContext::bind_new_context() .......c.ccccevevreernnne 2-17
CosNaming::NamingContext::deStroy () .......ccooereeeeererierrerienieseriereens 2-18
CosNaming::NamingContexXt::liSt() .......cooveerrereriereriere e 2-19

Using the CORBA Name Service i



CosNaming::NamingContext::new_context().........coeerrvrererreerenrennes 2-20

CosNaming::NamingContext::rebind() ........ccccoveererenenenrieeenene 2-21
CosNaming::NamingContext::rebind_context() ........ccccveervvreererrene 2-22
CosNaming::NamingContext::reSolVE.........cccvvrerievereereeeeeseerenns 2-23
CosNaming::NamingContext::unbind..........c.ccocevererenenenenennene 2-24
The NamingContextEXt ODJECt ........cccvveereereeeee e 2-24
CosNaming::NamingContextExt::resolve Str() .......coeoeeeerererereene 2-26
CosNaming::NamingContextExt::to_name() .......ccccovevereeerienccnnenne. 2-27
CosNaming::NamingContextExt::to_string() .....cccevereereererrerererenns 2-28
CosNaming::NamingContextExt::t0_ URL() ...cccvoeeveeierienercrcseniene 2-29
The Bindinglterator ODJECL..........ccoiiieieriereieee et 2-29
CosNaming::Bindinglterator::destroy() ......ccoevvvrerererereeseeieeeeennns 2-31
CosNaming::Bindinglterator::neXt_N() .......ccoeevererereeneeneeieeieeeneenns 2-32
CosNaming::Bindinglterator::next_one() .........ccocererereeneeseeieneniennes 2-33
Exceptions Raised by the CORBA Name SErVICe .....ccovvvrvveveneseseseeeeens 2-33
AlreadyBouNd ........c.oooiiiiiiee e 2-34
CanNNOPIOCERT .......coeiieieereee e 2-35
INVAITHAAOIESS ......evveercere e 2-36
INVAITANEBIME. ..o e 2-37
NOEEMPLY ..o s 2-38
NOLFOUNG.......cvrierircecr e 2-39

3. Managing a WebLogic Enterprise Namespace

Installing the CORBA NaME SENVICE.......ccoririereiisere e 31
Starting the Server Process for the CORBA Name SErVice......covvvvvvvvninnnns 32
Making the Namespace Persistent .........cccvveereeeeienieeie e 3-3
Compressing the Persistent Storage File ..o 34
Removing Orphan NamingContext ObJECtS.........cccvivievinere e 35
Federating the NamESPACE.........eieveeerireererce s e e st see e 36
INDOUN FEABIALTON. .....ccuiiiieiierie et 3-6
OUutboUNd FEAEratioN .......cc.ooviiiiirieeieee s 3-7
Federation Across WebL ogic Enterprise DOmains..........ccccevveverereeeeenenen. 3-8
Managing Binding [LErators. ........ccoeiiiieieriiieeeee e 39
Using the CORBA Name Servicein Secure WebL ogic Enterprise
F N o] o= 1o TP 39

iv Using the CORBA Name Service



4. Developing an Application that Uses the CORBA Name
Service

DeVEIOPMENT SEEPS....ccveiireirieriereere et ere et s ere e sre et se st esee e e eeseeesseeneas 4-2
Step 1: Obtain the OMG IDL for the CosNaming Interfaces........c..cccevvveeeene. 4-3
Step 2: Include the Client Stub for the CosNaming Interfaces..........cccceeeenee. 4-6
Step 3: Connect to the WebL ogic Enterprise Namespace..........ccevevvevereeeine 4-7
Step 4: Bind an Object to the WebL ogic Enterprise Namespace.............cc...... 4-9
Step 5: Use aName to Locate an Object in the WebL ogic Enterprise

NAIMESPACE ...ttt ettt st re e et sbe b be e e saeene e anen 4-11

Using the Name Service Sample Application

How the Name Service Sample Application WOorks.........cccveeveveveernceeinieennns 51
Building and Running the Name Service Sample Application ..........ccccceveenee 5-3
Step 1: Copy the Files for the Name Service Sample Application into
AWOTK DITECLOMY ...evvecveieieiesieseesieeeseee et s esee e st e e e nenneenens 5-4
Step 2: Change the Protection Attribute on the Files for the Name
Service Sample ApPliCation........ccocveveveve s 5-7
Step 3: Verify the Settings of the Environment Variables...........cccccc...... 5-8
Step 4: Execute the runme Command.........ccccevvvereievenieneeneeseeresseereenens 5-10
Using the Name Service Sample Application........cccoceeveeververeciesienienenns 5-16

Using the CORBA Name Service %



Vi

Using the CORBA Name Service



About This Document

This document provides information on using the BEA WebL ogic Enterprise™
CORBA Name Service.

This document covers the following topics:

Chapter 1, “Overview of the CORBA Name Service,” introduces the features
and concepts of the WebLogic Enterprise CORBA Name Service.

Chapter 2, “CORBA Name Service Reference,” describes the commands and
application programming interfaces (APIs) of the WebLogic Enterprise CORBA
Name Service.

Chapter 3, “Managing a WebLogic Enterprise Namespace,” describes the
administration tasks associated with the WebLogic Enterprise CORBA Name
Service.

Chapter 4, “Developing an Application that Uses the CORBA Name Service,”
explains developing a WebLogic Enterprise application that uses a Namespace to
store references to objects.

Chapter 5, “Using the Name Service Sample Application,” describes how to
build and run the Name Service sample application.

What You Need to Know

This document is intended for programmers who are developing applications with the
WebLogic Enterprise product and want to use the name service feature.

Using the CORBA Name Service Vii



e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

System, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterpris
documentation Home page, click the PDF Files button, and select the document yol
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site &ttp://www.adobe.cot

Related Information

viii

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see theblLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Using the CORBA Name Service



Documentation Conventions

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
®m  Your name, e-mail address, phone humber, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m  The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext  Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using the CORBA Name Service iX



Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main ( ) the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext ) )
void commt ()
nonospace Identifies variables in code.
italic Example:
text )
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:
bui | dobj client [-v]
[-1 file-list]...

[-0 name ] [-f file-list]...

Using the CORBA Name Service



Documentation Conventions

Convention

Item

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m  That an argument can be repeated several timesin acommand line

m  That the statement omits additional optiona arguments

m  That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:
buil dobjclient [-v] [-0 name ] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Using the CORBA Name Service

Xi



Xii Using the CORBA Name Service



CHAPTER

1 oOverview of the
CORBA Name Service

This topic includes the following sections:
m The CORBA Name Service
m  Understanding the CORBA Name Service

The CORBA Name Service

The WebL ogic Enterprise Name Service (referred to throughout this document asthe
CORBA Name Service) alows WebL ogic Enterprise CORBA server applications to
advertise object references using logical names. WebL ogic Enterprise CORBA client
applications can then locate an object by asking the CORBA Name Serviceto look up
the name.

The CORBA Name Service provides:

m  Animplementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

m  Application programming interfaces (APIs) for mapping object referencesinto
an hierarchical naming structure (referred to as a namespace).

m  Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

Using the CORBA Name Service 1-1



1 overiew of the CORBA Name Service

The CORBA Name Serviceis alayered product. The CORBA Name Serviceis
installed as part of the WebL ogic Enterprise product. For acomplete description of the
supported platforms and the installation procedure, see the BEA WebLogic Enterprise
Installation Guide.

When using the CORBA Name Service:

1. WebLogic Enterprise CORBA server applications bind a name to one of its
application objects or a naming context object within a namespace.

2. WebL ogic Enterprise CORBA client applications can then use the namespace to
resolve a name and obtain an object reference to the application object or the
naming context object.

Figure 1-1 presents an overview of the CORBA Name Service.

Figure1-1 CORBA Name Service

WLE CORBA 4. Invoke methods on
Server Application objects

Namespace

<nane_1, objref_1>
<nane_2, objref_2>
<nane_3, objref_3>

1. bind(name, objref)

<nane_x, objref_x>
3. Resolve returns an

object reference

WLE CORBA

Client Application
2. resolve(name)

1-2 Using the CORBA Name Service



Understanding the CORBA Name Service

Understanding the CORBA Name Service

Figure 1-2 shows how a namespace might be used to store objects that make up an
order entry application.

Figure1-2 A WebL ogic Namespace

Manufacturing

Sales

e

Customers
Billing \

New Jersey —>
New Hampshire ——
California
> Inventory —
Orders
Order
Object
PK Boutique —>
Rose House —

Theillustrated application organizes its namespace by geographic region, then by
department. To implement the namespace using the objects in the CORBA Name
Service, each shadowed box would be implemented by a Nani ngCont ext object. A
Nami ngCont ext object containsalist of CosNani ng: : Nane datastructuresthat have
been bound to application objects or to other Nami ngCont ext objects.

Nami ngCont ext objects are traversed to locate a particular name. For example, the
logical name Cal i f or ni a. Manuf act uri ng. Or der can be used to locate the O der

object.

Using the CORBA Name Service 1-3



1 overiew of the CORBA Name Service

14

A CosNani ng: : Name datastructureisnot simply astring of alphanumeric characters;
it is a sequence of one or more CosNani ng: : NameConponent data structures. Each
CosNami ng: : NameConponent data structure contains two strings, i d and ki nd. The
CORBA Name Service does not interpret or manage these strings, except to ensurethat
each ID is unique within agiven Nani ngCont ext object.

WebL ogic Enterprise CORBA server applications use the bi nd() method of the
Nami ngCont ext object to bind a name to an application object contained in the server
application. WebL ogic Enterprise CORBA client applications use ther esol ve()
method of a Nani ngCont ext object to locate an object using a binding.

The CORBA Name Service also provides aBi ndi ngl t er at or object and a

Nami ngCont ext Ext object. TheBi ndi ngl t er at or object allowsaclient application
to obtain a specified number of bindingsin each call. The Nani ngCont ext Ext object
provides methods to use Uniform Resource Locators (URL) and stringified names.

For a complete description of the objects in the CORBA Name Service and their
interfaces, see Chapter 2, “CORBA Name Service Reference.”

Using the CORBA Name Service



CHAPTER

2 CORBA Name Service
Reference

This topic includes the following sections:

CORBA Name Service Commands

Capabilities and Limitations of the CORBA Name Service

Getting the Initial Reference to the NameService Environmental Object
The CosNaming Data Structures Used by the CORBA Name Service
The NamingContext Object

The NamingContextExt Object

The Bindinglterator Object

Exceptions Raised by the CORBA Name Service

CORBA Name Service Commands

The CORBA Name Service provides the following commands to manage the server

process for the CORBA Name Service, bind and unbind objects to namesin the

namespace, and display the contents of the namespace:

cns

cnsbi nd

Using the CORBA Name Service

2-1



2  CORBA Name Service Reference

m cnsls

® cnsunbind

The following sections describe these commands.

2-2 Using the CORBA Name Service



CORBA Name Service Commands

as

Synopsis

Description

Controls the server process for the CORBA Name Service.

cns CLOPT="[-A] [servopts options]--

bucket count]

fil enane]
maxi terators]
persi ststoragefil enane]]

The server process for the CORBA Name Service provides a CORBA CosNaming
compliant name service. Y ou need to define the server process for the CORBA Name
Service and its options in the UBBCONFIJile for your WebL ogic Enterprise
application as you do any other server process used by your WebL ogic Enterprise
application. Enter the cns command-line options after the double dash (-- ) in the
CLOPTparameter of the UBBCONFIdile. The command-line options are as follows:

-b  bucket count

Specifies the hash table bucket count used internally by the server processto
locate naming contexts in-memory. Each naming context has its own hash
table. If your WebL ogic Enterprise application uses a small number of
bindings in each naming context, use a small bucket count (for example, 4 or
5). If your WebL ogic Enterprise application uses alarge number of bindings
(for example, 1,000) in each naming context, use alarger number such as 50
for the bucket count.

Compresses the persistent storage file when the server process for the
CORBA Name Service starts. Over time the persistent storage file can grow
in size as naming context and application objects are added and removed from
the namespace. Compression reduces the size of the persistent storage file to
aminimum. Dangling bindings are removed during compression. Dangling
bindings are left in the namespace after the object the binding is associated
with is deleted from the namespace. The-p  command-line option must be
specified when specifying the-c  command-line option.

Directs the server process for the CORBA Name Service to delete orphan

contexts when the server process starts. An orphan context is acontext that is
not bound to any other context. It may never have been bound or it may have
been bound to a context and the binding was destroyed either explicitly or as

Using the CORBA Name Service 2-3



2  CORBA Name Service Reference

2-4

aside-effect of arebind. The - p command-line option must be specified
when specifying the - d command-line option.

-f filenane

Specifies afile into which the server process for the CORBA Name Service
writesthe Interoperable Object Reference (IOR) of theroot of the namespace.

-M naxi terators

Defines the maximum number of binding iterators that can be outstanding at
any onetime.

Binding iterators are created when a client application uses the

CosNami ng: : Nam ngCont ext : : 1i st () method. The client application
should use the CosNami ng: : Bi ndi nglterator::destroy() methodto
delete abinding iterator when the client application is done using the binding
iterator.

If aclient application does not specifically delete binding iterators, the server
process for the CORBA Name Service deletes the binding iterators when the
number reaches the val ue specified in the - Mcommand-line option. Once the
maximum number of binding iteratorsisreached, any attempt to create anew
binding iterator causes the server process for the CORBA Name Service to
destroy a binding iterator currently in use by the client application.

Binding iterators are deleted using a least-recently-used algorithm. The
default valueis 20. A value of 0 indicates that there is no maximum number
of binding iterators (meaning binding interators are never destroyed by the
server process for the CORBA Name Service and the associated memory is
not released). If avalue of O isspecified, the client application must explicitly
use the CosNani ng: : Bi ndi nglterator: : destroy() method to delete
outstanding binding iterators.

-p [ persistentstoragefil enane]

Directsthe server processfor the CORBA Name Serviceto save acopy of the
current namespace to persistent storage using the specified file. If afilename
is not specified, the value of the CNS_PERSI ST_FI LE environmental variable
isused. If the CNS_PERSI ST_FI LE environment variableis not set, the
following files are used:

WindowsNT
%APPDI R% cnsper si st . dat

Using the CORBA Name Service



CORBA Name Service Commands

UNIX
$APPDI R/ cnsper si st . dat

The persistent storage file is read when the server process for the CORBA
Name Service starts. The persistent storage file is added to as changes are
made to the namespace. If you want to create a new namespace, the existing
persistent storage file must be deleted or a new one must be created on the
server process for the CORBA Name Service.

Using the CORBA Name Service 2-5



2  CORBA Name Service Reference

cnsbind

Synopsis

Description

Binds application objects and naming context objects into the namespace.

Note: Thecnsbi nd command interacts with the CosNaming interfaces. The server
process for the CORBA Name Service must be running to use this command.

cnsbi nd
[-C
[-f root_context fil enane]
[-h]
[-N
[-o0 ior_filenane]
[-r]
[-T TOhj Addr]
bi nd_nane

The cnsbi nd command binds new application and naming context objects into the
namespace using the CORBA CosNaming interfaces. This command facilitates the
creation of afederated namespace. If an exception is returned when the cnsbi nd
command is invoked, the command exits and an appropriate message is displayed.

The command-line options for the cnsbi nd command are as follows:

-C
Specifiesthat the cnsbi nd command creates a context using the bi nd_nane
for the name and the i or _fi I ename specified for the - o command-line
option. The - ¢ command-line option is used to federate a naming context
object from one namespace into the specified namespace.

-f root_context_fil enane
Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj _Bootstrap::resolve_initial _references() method
with the NameService environmental object to locate the server process for
the CORBA Name Service in the specified WebL ogic Enterprise domain.
The host and port in the IOR must match the value of TOBJADDR. This
command-line option overrides the setting for the TOBJADDR environment
variable. If the command-line option is not specified, the TOBJADDR
environment variable is used.

Prints the command syntax.

2-6 Using the CORBA Name Service



CORBA Name Service Commands

Createsanew context and bindsthe new context into the namespace using the
specified name. The- o command-line option is not needed with the - N
command-line option because the cnsbi nd command is creating a new
context. If the- o command-line option is used with the - N command-line
option, the information from the - o command-line option isignored.

-0 jor_filenane
Specifies afile that contains the IOR of the object to be bound into the
namespace specified viathe - f command-line option. If the- C
command-line option is specified, an object of typencont ext is created
otherwise a object of type nobj ect is created.

Createsabinding for an application or naming context object evenif thename
already has abinding. The default behavior of the cnsbi nd command
without the- r command-line optionistoraisethe Al r eadyBound exception
in the case where a binding for the specified object already exists. If an

Al r eadyBound or any other exception is returned when the cnsbi nd
command isinvoked, the command exits and an “Error, already bound”

message is displayed.

-T TObjAddr
Specifies the host and port for a WebL ogic Enterprise domain. Before
connecting to a server process for the CORBA Name Service, the cnsbind
command must log into the WebL ogic Enterprise domain in which the server
processis running. This command-line option overrides the setting for the
TOBJADDFRenvironment variable. If the command-line optionisnot specified,
the TOBJADDRenvironment variable is used. The valid format for TOBADDR
iS/l host name: port_number .

bi nd_nane
Specifies the name to be bound to the application object or name context
object added to the namespace relative to either the root naming context
retrieved viathe Tobj_Bootstrap::resolve_initial_references()
method, or the naming context identified by the stringified | OR obtained from
the-f command-line option. The bi nd_nane string should conform to the
name string form specified in the Object Management Group (OMG)
Interoperable Name Service (INS) specification.

Examples  The following example illustrates binding an application object:
cnsbind -o ./app_obj_ior.txt MyContext/AppObjectl

Using the CORBA Name Service 2-7



2  CORBA Name Service Reference

The following example illustrates binding a naming context object:
cnsbind -N MyCont ext/ Ct xObj ect 1

The following example illustrates binding a federation point to another namespace:
cnshind -C -0 ./renpte_ior.txt MyContext/ Renpot eNSCt x1

2-8 Using the CORBA Name Service



CORBA Name Service Commands

cnsls

Synopsis

Description

Displays the contents of the namespace.

Note: Thecnsl s command interacts with the CosNaming interfaces. The server
process for the CORBA Name Service must be running to use this command.

cnsls
[-f root_context_fil enane]
[-h]
[-s]
[-R
[-T Tobj Addr]
[ resol ve_nane]

The cnsl s command displays the contents of the namespace using the CORBA
CosNaminginterfaces. If non-printing charactersare used aspart of aNameConponent
data structure, the behavior of the cnsl s command is undefined. If an exceptionis
returned when the cnsl s command isinvoked, the command exits and an appropriate

message is displayed.
The command-line options for the cnsl s command are as follows:

-f root_context_fil enane
Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj _Bootstrap::resolve_initial _references() method
with the NameService environmental object to locate the server process for
the CORBA Name Service in the specified WebL ogic Enterprise domain.
The host and port in the IOR must match the value of TOBJADDR. This
command-line option overrides the setting for the TOBJADDR environment
variable. If the command-line option is not specified, the TOBJADDR
environment variableis used.

-h
Prints the command syntax.

-S
Displays the stringified |OR for the namespace name specified in
resol ve_nanme command-line option.

-R

Recursively displays namespace bindings beginning at r esol ve_nane. This
command line option may cause the cnsl s command to cross federation

Using the CORBA Name Service 2-9



2  CORBA Name Service Reference

boundaries with no indication when such aboundary is cross. Also, if cycles
exist in the namespace information, this command line option can cause the
cnsl s command to enter aloop.

-T TObj Addr
Specifies the host and port for a WebL ogic Enterprise domain. Before
connecting to a server process for the CORBA Name Service, thecnsl s
command must log into the WebL ogic Enterprise domain in which the server
process is running. This command-line option overrides the setting for the
TOBJADDR environment variable. If the command-line option isnot specified,
the TOBJADDR environment variable is used.

resol ve_nane
Specifies the name to resolve in the name service relative to either the root
naming context retrieved viathe
Tobj _Bootstrap::resolve_initial _references() method or the
naming context identified by the stringified IOR obtained from the - f
command-lineoption. Ther esol ve_nane string should conformto the name
string form specified in the OMG INS specification. The backslash (\)
character is used to delimit name components and the period (. ) character
separatesthe i d and ki nd fields.

If this command-line option is not specified, the root context is resolved.

Example cnsls -R MyCont ext . ki nd/ Anot her Cont ext
[context] MContext. ki nd/ Anot her Cont ext
[object] Obj1l
[object] nj2
[context] Ctx1
[ obj ect] Anot her hj ect

2-10  Using the CORBA Name Service



CORBA Name Service Commands

cnsunbind

Synopsis

Description

Removes bindings from the namespace.

cnsunbi nd
[-Dl
[-f root_context_ fil enane]
[-h]
[-T TObj Addr]
bi nd_nane

The cnsubi nd command removes bindings from the namespace. If an exception is
returned when the cnsunbi nd command is invoked, the command exits and an

appropriate message is displayed.
The cnsunbi nd command-line options are as follows:

-D
Destroys the naming context bound to the bi nd_nane after removing the
binding. Specifying the - D command-line option when deleting a context
prevents the context from being orphaned if it is not part of another binding.
This command-line option should be used with care because it can cause
dangling bindings (for example, if the binding was bound to multiple naming
context objects at the same time).

-f root_context _fil enanme
Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj _Bootstrap::resolve_initial _references() method
with the NameService environmental object to locate the server process for
the specified WebL ogic Enterprise domain.

Prints the command syntax.

-T TObj Addr
Specifies the host and port for a WebL ogic Enterprise domain. Before
connecting to a server process for the CORBA Name Service, thecnsbi nd
command must log into the WebL ogic Enterprise domain in which the server
process is running. This command-line option overrides the setting for the
TOBJADDR environment variable. If the command-line optionisnot specified,
the TOBJADDR environment variable is used.

Using the CORBA Name Service  2-11



2  CORBA Name Service Reference

Examples

bi nd_name

Specifiesthe name of the binding to be removed from the namespace relative
to either the root naming context retrieved viathe

Tobj Bootstrap::resolve_initial _references() method or the
naming context identified by the stringified IOR obtained from the - f
command-line option. The bi nd_nane string should conform to the name
string form specified in the OMG INS specification.

The following example illustrates removing a binding from the namespace:
cnsunbi nd MyCont ext/ Ct xObj ect 1

The following example illustrates removing a binding from the namespace and
destroying the object to which it was bound:

cnsunbind -D MyContext/Ct xObj ectl

Capabilities and Limitations of the CORBA
Name Service

2-12

The CORBA Name Service has the following capabilities and limitations:

m A null character must only be used to terminate the i d and ki nd strings (empty

strings are considered valid).
Wide characters are not supported.

The CORBA Name Service imposes no limit on the length of the stringsin a
name component.

The CORBA Name Service imposes no maximum on the number of components
inaname. Zero length names areillegal.

The CORBA Name Service imposes no limit on the number of bindingsin a
context.

The CORBA Name Service imposes no limit on the number of bindings
(implementation-wide).

The CORBA Name Service imposes no limit on the number of contexts.

Using the CORBA Name Service



Getting the Initial Reference to the NameService Environmental Object

m The CORBA Name Service deletes orphaned naming contexts and dangling
bindings when starting the server process for the CORBA Name Service.

m The CORBA Name Service deletes orphaned naming contexts when starting the
server process for the CORBA Name Service.

m The CORBA Name Service offers the option of cleaning up binding iterator
objects based on a least-recently-used algorithm. For more information, see
“Managing Binding Iterators” on page 3-9.

m The CORBA Name Service does not throw @henot Pr oceed exception.

Getting the Initial Reference to the
NameService Environmental Object

A NameSer vi ce environmental object has been added for the purpose of connecting
to the root the namespace. When using\tmeSer vi ce environmental object, the
Object Request Broker (ORB) locates the root of the namespace. Use the Bootstrap
object to get an initial reference to the NameService environmental object. For more
information, see “Step 3: Connect to the WebLogic Enterprise Namespace.”

The CosNaming Data Structures Used by the
CORBA Name Service

The CORBA Name Service uses the following CosNaming data structures:
®  CosNami ng: : Bi ndi ngLi st

B CosNami ng: : Bi ndi ngType

B CosNami ng::lstring

m  CosNami ng: : Nanme

B CosNam ng: : NaneConponent

Using the CORBA Name Service  2-13



2  CORBA Name Service Reference

The NamingContext Object

The Nani ngCont ext object isused to contain and manipulate alist of namesthat are
bound to Object Request Broker (ORB) objects or to other Nani ngCont ext objects.

WebL ogic Enterprise CORBA client applications usethisinterfaceto resolveor list all
the names within that context. WebL ogic Enterprise CORBA server applications use
this object to bind names to application objects or naming context objects. Listing 2-1

shows the OMG IDL for the Nam ngCont ext object.

Listing2-1 OMG IDL for the NamingContext Object

nmodul e CosNam ng
i nterface Nam ngCont ext {
void bind(in Nane, in Object obj)

rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

voi d rebind(in Nane, in Object obj)

rai ses(Not Found, Cannot Proceed, [nvalidNane);
voi d bind_context(in Nanme n, in Nam ngContext nc)

rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);
voi d rebind_context(in Name n, in Nam ngContext nc)

rai ses(Not Found, Cannot Proceed, |nval i dNane)

; Ooj ect resol ve(in Name n)

rai ses(Not Found, Cannot Proceed, I|nvalidNane);

voi d unbi nd(in Name n)

rai ses( Not Found, Cannot Proceed, | nvalidNane);

Nam ngCont ext new_cont ext
Nam ngCont ext bi nd_new context (in Narme n)

rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

voi d destroy()
rai ses( Not Enpty);
void list(in unsigned | ong how nmany,
out Bi ndi ngLi st bl,
out Bindinglterator bi);

b

2-14  Using the CORBA Name Service



The NamingContext Object

CosNaming::NamingContext::bind()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

Attempts to bind the specified object to the specified name by resolving the context
associated with thefirst NameConponent data structure and then binding the object to
the new context.

void bind(in Name n, in Qoject obj);
voi d bind (NaneConponent [] n, Cbject obj)

n
A Nane data structure, initialized with the desired name of the object.

obj
The object to bind to the supplied name.

Al r eadyBound
The Nanme on abi nd() or abi nd_context () method has already been
bound to another object within the naming context.

I nval i dNane
The specified Name has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Nane or one of its components, could not be found.

Naming contexts bound with bi nd do not participate in name resolution when com-
pound names are passed to be resolved.

None.

Using the CORBA Name Service  2-15



2  CORBA Name Service Reference

CosNaming::NamingContext::bind_context()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

This method isidentical to thebi nd() method, except that the supplied Narre is asso-
ciated with aNani ngCont ext object.

voi d bind_context(in Name n, in Nam ngContext nc);
voi d bind_context (NameConponent [] n, Nam ngContext nc)

n
A Narre data structure initialized with the desired name for the naming
context. The first NameConponent data structure in the sequence must
resolve to a naming context.

nc
The Nani ngCont ext object to be bound to the supplied name.

Al r eadyBound
The Nane on abi nd() or abi nd_cont ext () method has aready been
bound to another object within the naming context.

I nval i dNane
The specified Nane has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Nane or one of its components, could not be found.

BAD_PARAM
Indicates the call attempted to bind anil context.

Naming contexts bound with bi nd_cont ext () participate in name resolution when
compound names are passed to be resolved.

None.

2-16  Using the CORBA Name Service



The NamingContext Object

CosNaming::NamingContext::bind_new_context()

Synopsis
C++ Mapping
Java Mapping

Parameter

Exceptions

Description

Return Values

Creates anew context and binds it to the specified Name within this context.
Nam ngCont ext bi nd_new context(in Name n);
bi nd_new cont ext (NanmeConponent [] n)

n
A Nane datastructure, initialized with the desired name for the newly created
Nami ngCont ext object.

Al r eadyBound
The Nanme on abi nd() or abi nd_context () method has already been
bound to another object within the naming context.

I nval i dNane
The specified Name has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Nane or one of its components, could not be found.

This method combines the CosNami ng: : Nami ngCont ext : : new _cont ext () and
CosNami ng: : Nami ngCont ext : : bi nd_cont ext () methods into a single method.

Returns areference to anew Nam ngCont ext object.

Using the CORBA Name Service  2-17



2  CORBA Name Service Reference

CosNaming::NamingContext::destroy()

Synopsis

C++ Mapping
Java Mapping
Parameter

Exceptions

Description

Return Values

Deletes aNani ngCont ext object. Any subsequent attempt to invoke methods on the
Nami ngCont ext object raises a CORBA: : NO_| MPLEMENT exception.

voi d destroy();
voi d destroy()
None.

Not Enpt y
If the Nanmi ngCont ext object contains bindings, the method raises Not Enpt y

Before using this method, all name objects that have been bound to the Nami ngCon-
t ext object should be unbound using the CosNani ng: : Nani ngCon-
text : : unbi nd() method.

None.

2-18  Using the CORBA Name Service



The NamingContext Object

CosNaming::NamingContext::list()

Synopsis

C++ Mapping

Java Mapping

Parameters

Exceptions

Description

Return Values

Returns all of the bindings contained by this naming context.

void list(in unsigned_|ong how many,
out Bi ndi ngLi st b/,
out Bindinglterator bi);

void list(int how many,
Bi ndi ngLi st Hol der b/,
Bi ndi ngl t er at or Hol der bi)

how_many
The maximum number of bindings to be returned in the list.

bl
A list of returned bindings where each element isaBi ndi ng containing a
Narre of length 1 representing a single NameConponent object. The number
of bindingsin thelist will not exceed how_many.

bi

A referenceto aBi ndi ngl t er at or object for useintraversing therest of the
bindings.

I nval i dNane
The specified Name has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Nare or one of its components, could not be found.

This method returns a sequence of name bindings. If more name bindings exist than
canfitinthe b/ list, aBi ndi ngl t er at or object isreturned. The Bi ndi ngl t er at or
object can be used to get the next set of bindings. The Bi ndi ngl t er at or object may
return less than the requested number of bindingsif it is at the end of thelist. If bi
returns a nil reference, then b/ contains all of the remaining bindings.

None.

Using the CORBA Name Service  2-19



2  CORBA Name Service Reference

CosNaming::NamingContext::new_context()

Synopsis  Creates anew naming context. The newly created context isinitially not bound to any
Nane.

C++ Mapping  Nami ngCont ext new_cont ext ();
Java Mapping  Nani ngCont ext new_cont ext ()
Parameter  None.
Exceptions  None.

Description  Usethe CosNani ng: : Nani ngCont ext : : bi nd_cont ext () method to bind the new
naming context to a Nane.

Return Values  Returns areference to a new naming context.

2-20  Using the CORBA Name Service



The NamingContext Object

CosNaming::NamingContext::rebind()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

This method is exactly the same as the bi nd() method, except that the Al r eady-
Bound except is never raised. If the specified Nanme has already been bound to another
object, that binding is replaced by the new binding.

void rebind(in Name n, in Cbject obj);
voi d rebi nd(NameConponent [] n, Object obj)

n
A Nane data structure, initialized with the desired name for the object.

obj
The object to be named.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The Narme or one of its components, could not be found. If thisexceptionis
raised because the binding already exists or the binding is of the wrong type,
ther est _of _name member of the exception has alength of 1.

Naming contexts bound with the r ebi nd() method do not participate in name resol u-
tion when compound names are passed to be resolved.

None.

Using the CORBA Name Service  2-21



2  CORBA Name Service Reference

CosNaming::NamingContext::rebind_context()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

This method is exactly the same asthe bi nd_cont ext () method, except that the
Al r eadyBound except is never raised. If the specified Name has already been bound
to another object, that binding is replaced by the new binding.

voi d rebind_context(in Name n, in Nam ngContext nc);
voi d rebi nd_cont ext (NaneConponent [] n, Nam ngContext nc)

n
A Name data structure, initialized with the desired name for the object.

nc
The Nami ngCont ext object to be rebound.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of a name does not identify a binding or the type of binding
isincorrect for the operation being performed. If this exception israised
because abinding already existsor it isof thewrong type, ther est _of _nane
member of the exception has alength of 1.

Naming contexts bound with the r ebi nd_cont ext () method do not participate in
name resol ution when compound names are passed to be resolved.

None.

2-22  Using the CORBA Name Service



The NamingContext Object

CosNaming::NamingContext::resolve

Synopsis
C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

Attempts to resolve the specified Nane.
bj ect resolve(in Name n);
oj ect resol ve (NaneConponent n)

n
A Nane data structure, initialized with the desired name for the object.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of a name does not identify a binding or the type of binding
isincorrect for the operation being performed.

The specified Name must exactly match the name used to bind the object. The
CORBA Name Service does not return the type of the object. Client applications are
responsible for narrowing the object to the appropriate type.

Returns the object reference for the specified Nane.

Using the CORBA Name Service  2-23



2  CORBA Name Service Reference

CosNaming::NamingContext::unbind

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Values

Performs the inverse operation of the bi nd() method, removing the binding associ-
ated with the specified Nane.

voi d unbind(in Name n);
voi d unbi nd (NanmeConponent [] n)

n
A Name data structure, initialized with the desired name for the object.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of a name does not identify a binding or the type of binding
isincorrect for the operation being performed.

This method removes the binding between aname and an object. It does not delete the
object. Usethe CosNami ng: : Nami ngCont ext : : unbi nd() method and then the
CosNami ng: : Nam ngCont ext : : destroy() method to delete the object.

None.

The NamingContextExt Object

The Nani ngCont ext Ext object provides methodsto use URL s and stringified names
in the CORBA Name Service. The Nani ngCont ext Ext object is derived from the
Nami ngCont ext object. Note that the root of the CORBA Name Serviceisa

Nami ngCont ext Ext object (which meanstheroot is also aNami ngCont ext object).
No specia operation is needed to obtain areference to a Nani ngCont ext Ext object.
Listing 2-2 shows the OMG IDL for the Nanmi ngCont ext Ext object.

2-24  Using the CORBA Name Service



The NamingContextExt Object

Listing2-2 OMG IDL for the NamingContextExt Object

nmodul e CosNam ng (
i nterface Nam ngCont ext Ext : Nam ngCont ext {

typedef string StringNane;
typedef string Address;
typedef string URLString;

StringNane to_string(in Nane n)
rai ses(lnval i dNane) ;

Nanme to_nane(in StringNane sn)
rai ses( I nval i dNane) ;

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
rai ses(lnval i dAddress, InvalidNane);
oj ect resolve_str(in StringNanme n)
rai ses( Not Found,
Cannot Proceed,
I nval i dNane,
Al r eadyBound) ;

Using the CORBA Name Service  2-25



2  CORBA Name Service Reference

CosNaming::NamingContextExt::resolve_str()

Synopsis
Syntax

Parameter

Exceptions

Description

Return Values

Takes astringified name, convertsit to aNane, and resolvesit.
obj ect resolve_str(in StringNane n);

n
The stringified name to be resolved.

I nval i dNane
The nameisinvalid. A name of length zeroisinvalid.

Not Found
The component of the name does not identify a binding or the type of the
binding isincorrect for the operation being performed.

Thisis a convenience method that performs aresolve in the same manner as the Cos-
Nami ng: Nanmi ngCont ext : : resol ve() method. The method accepts a stringified
name as an argument instead of aName object. The method returns errorsif the string-
ified nameisinvalid or if the method cannot bind it.

A reference to the bound name.

2-26  Using the CORBA Name Service



The NamingContextExt Object

CosNaming::NamingContextExt::to_name()

Synopsis
Syntax

Parameter

Exceptions

Description

Return Values

Takes astringified name and returns a Name object.
Nane to_nane(in StringNane sn);

sn
The stringified name to be resolved to aNanme object.

I nval i dNane
The nameisinvalid. A name of length zero isinvalid.

This method accepts a stringified name and returns aNanme object. The method returns
errorsif the nameisinvaid.

Returns a Nanme object.

Using the CORBA Name Service  2-27



2  CORBA Name Service Reference

CosNaming::NamingContextExt::to_string()

Synopsis  Acceptsa Name object and returns a stringified name.
Syntax  StringNane to_string(in Name n);

Parameter  n
The Nane object to be converted to stringified name

Exceptions | nval i dName
The nameisinvalid. A name of length zeroisinvalid.

Description  This method accepts a Name object and returns a stringified name. It returns errors if
the nameisinvalid.

Return Values  Returns a stringified name.

2-28  Using the CORBA Name Service



The Bindinglterator Object

CosNaming::NamingContextExt::to_URL()

Synopsis  Combines a URL and a stringified name and returns a URL string.
Syntax  URLString to_URL(in Address addr, in StringName sn);

Parameter  adar
A URL. If this parameter is not defined, the local host name is used with the
I1OP protocol.

sn
The stringified name to be combined with the URL.

Exceptions I nval i dAddr ess
The URL isinvalid.

I nval i dName
Thenameisinvalid. A name of length zero isinvalid.

Return Values  Returns a URL string that combines the URL and the stringified name.

The Bindinglterator Object

TheBi ndi ngl t er at or object allows a client application to walk through the
unbounded collection of bindings returned by thel i st () method of a Nani ngCon-

t ext object. Using the Bi ndi ngl t er at or object, aclient application can control the
number of bindings obtained with each call. If a naming context is modified between
calls to the methods of aBi ndi ngl t er at or object, the behavior of further callsto
thenext _one() method or the next _n() method isimplementation specific.

If aclient application creates Bi ndi ngl t er at or objects but never callsthe
destroy() method, the client application can run out of resources. The CORBA
Name Service is free to destroy binding iterators at any time and without warning to
the client application. Client applications should be written to expect the
OBJECT_NOT_EXI ST exception from callsto aBi ndi ngl t er at or object and to han-
dle this exception gracefully.

Listing 2-3 showsthe OMG IDL for the Bi ndi ngl t er at or object.

Using the CORBA Name Service  2-29



2  CORBA Name Service Reference

Listing2-3 OMG IDL for Bindinglterator Object

nodul e CosNami ng {
interface Bindinglterator {
bool ean next _one(out Binding b);
bool ean next _n(in unsigned | ong how many,
out Bi ndingLi st b);
voi d destroy();

2-30  Using the CORBA Name Service



The Bindinglterator Object

CosNaming::Bindinglterator::destroy()

Synopsis

C++ Mapping
Java Mapping
Parameter
Exceptions

Description

Return Values

Destroys the Bi ndi ngl t er at or object and releases the memory associated with the
object. Failure to call this method results in increased memory usage.

voi d destroy();
void destroy();
None.

None.

If aclient application invokes any operation on aBi ndi ngl t er at or object after
calling the dest r oy() method, the operation raises an OBJECT_NOT_EXI ST
exception.

None.

Using the CORBA Name Service  2-31



2  CORBA Name Service Reference

CosNaming::Bindinglterator::next_n()

Synopsis  ReturnsaBi ndi ngLi st data structure containing the number of requested bindings
from the list. The number of bindings returned may be less than the requested amount
if thelist is exhausted.

C++ Mapping  bool ean next_n(in unsigned_|l ong how many, out BindingList bl);
Java Mapping  bool ean next_n(int how nmany, BindingListHol der bl);

Parameter  how_many
The maximum number of bindings to return.

bl
A Bi ndi ngLi st data structure containing no more than the requested
number of bindings.

Exceptions  BAD_PARAM
Raised if the how many parameter has a value of zero.

Return Values  CORBA: : FALSE is returned when the list has been exhausted. Otherwise,
CORBA: : TRUE isreturned.

2-32  Using the CORBA Name Service



Exceptions Raised by the CORBA Name Service

CosNaming::Bindinglterator::next_one()

Synopsis
C++ Mapping
Java Mapping

Parameter

Exceptions

Return Values

Returns the next Bi ndi ng object in thelist.
bool ean next_one(out Binding b);
bool ean next_one(Bi ndi ngHol der b);

b
The next Bi ndi ng object from the list.

None.

CORBA: : FALSE is returned when the list has been exhausted. Otherwise,
CORBA: : TRUE s returned.

Exceptions Raised by the CORBA Name

Service

This section describes the exceptions raised by the CORBA Name Service.

Using the CORBA Name Service  2-33



2  CORBA Name Service Reference

AlreadyBound
Syntax  exception Al readyBound{};
Parameter  None.

Description  This exception is raised when an object is already bound to the supplied name. Only
one object can be bound to a name in a context.

2-34  Using the CORBA Name Service



Exceptions Raised by the CORBA Name Service

CannotProceed

Syntax  exception Cannot Proceed{};

Parameters  Nami ngCont ext cxt
The context that the operation may be able to retry from.

Nanme rest_of_nane
The remainder of the non working name.

Description  Thisexception is rai sed when an unexpected exception is encountered and the method
cannot proceed in a meaningful way.

Using the CORBA Name Service  2-35



2  CORBA Name Service Reference

InvalidAddress

Syntax  exception Inval i dAddress{};
Parameter  None.

Description  This exceptionisraised if aURL isinvalid.

2-36  Using the CORBA Name Service



Exceptions Raised by the CORBA Name Service

InvalidName

Syntax  exception InvalidName{};
Parameter  None.

Description  This exception israised if aNane isinvalid. A name length of zero isinvalid.

Using the CORBA Name Service  2-37



2  CORBA Name Service Reference

NotEmpty
Syntax  exception Not Enpty{};
Parameter  None.

Description  This exception is raised when the dest r oy () method is used on aNani ngCont ext
object that contains bindings. A Nani ngCont ext object must be empty beforeit is
destroyed.

2-38  Using the CORBA Name Service



Exceptions Raised by the CORBA Name Service

NotFound

Syntax

Parameters

Description

exception Not Found{Not FoundReason why; Name rest_of_nane;};

why

The context that the operation may be able to retry from.
rest_of _nane

The remainder of the nonworking name.

This exception is raised when acomponent of the name does not identify abinding, or
if thetype of binding isincorrect for the operation being performed. The uhy parameter
explainsthereasonfor theerror. Ther est _of _nane parameter identifies the cause of
the error. The following causes can appear:

® ni ssi ng_node—the first name component in the r est _of _nane parameter isa
binding that is not bound under that name within its parent context.

®m not _cont ext —the first name component in the r est _of _nane parameter isa
binding with atype of nobj ect when the type of ncont ext was required.

® not _obj ect —the first name component in the r est _of _nane parameter isa
binding with atype of ncont ext when the type of nobj ect was required.

Using the CORBA Name Service  2-39



2  CORBA Name Service Reference

2-40  Using the CORBA Name Service



CHAPTER

3 Managing a WebLogic
Enterprise Namespace

This topic includes the following sections:

Installing the CORBA Name Service

Starting the Server Process for the CORBA Name Service
Making the Namespace Persistent

Compressing the Persistent Storage File

Removing Orphan NamingContext Objects

Federating the Namespace

Managing Binding lterators

Installing the CORBA Name Service

You install the CORBA Name Service when you install the WebL ogic Enterprise
product. For complete information about installing the WebL ogic Enterprise product,
see the BEA Weblogic Enterprise Installation Guide.

Using the CORBA Name Service

31



3 Managing a WebLogic Enterprise Namespace

Starting the Server Process for the CORBA
Name Service

32

To start the server processfor the CORBA Name Service, you need to definethe server
process in the UBBCONFI Gfile for your WebL ogic Enterprise application. Usethecns
command to start the server process for the CORBA Name Service. List thecns
command-line options after the CLOPT parameter in the UBBCONFI Gfile. Notethere can
be only one CORBA Name Service server process running per WebL ogic Enterprise
domain. Listing 3-1 shows an example of the UBBCONFI Gentry for the server process
for the CORBA Name Service.

Listing3-1 UBBCONFIG FileEntry for CORBA Name Service

#
#Server process for WLE CORBA Nane Service
#
“dri ve\ns\server\cns.exe
SRVGRP = SYS_GRP
SRVID =6
RESTART =N
CLOPT =“-A-- -f dri ve:\cnsroot.dat -M 0”

For a complete description of the cns command and its options, see Chapter 2,
“CORBA Name Service Reference.” For information about creating a configuration
file, see theAdministration Guide.

Once the server process for the CORBA Name Service is started, you can use the
commands listed in Table 3-1 to display the contents of the namespace and manage
objects in the namespace. For a complete description of the commands and their
options, see Chapter 2, “CORBA Name Service Reference.”

Using the CORBA Name Service



Making the Namespace Persistent

Table 3-1 Commandsfor Managing a WebL ogic Enter prise Namespace

Command Description

cns Startsthe server processfor the WebL ogic Enterprise
namespace.

cnsbi nd Bindsapplication objects and naming context objects
to the WebL ogic Enterprise namespace.

cnsls Displays the contents of a WebL ogic Enterprise
namespace.

cnsunbi nd Removes bindings from a WebL ogic Enterprise
namespace.

Making the Namespace Persistent

The CORBA Name Service keeps two copies of theinformation in a namespace. One
copy iskept in-memory. Accessto this copy isfast and optimized for name resol ution.
The other copy isoptionally saved to persistent storage allowing the state and structure
of the namespace to be saved and restored.

The primary goal of making a namespace persistent isto keep acurrent representation
of thein-memory naming information maintained by the currently running instance of
the namespace. By maintaining apersistent copy of the namespace, the CORBA Name
Service can recreate current naming information in case the server process of the
CORBA Name Service isterminated. A new instance of the server process for the
CORBA Name Service can be configured to read the persistent storage file to recreate
the last recorded naming information.

To create a persistence copy of the namespace and store the copy to afile, specify the
- p option of thecns command when starting the server process for the CORBA Name
Service. The CORBA Name Service creates a persistent storage file with the specified
location and name.

Using the CORBA Name Service 3-3



3 Managing a WebLogic Enterprise Namespace

If the persistent storagefile specified by the- p option already exists, thefileis opened
and processed. A backup of the persistent storage file is always made prior to the
startup of the server process for the CORBA Name Service. The name of the backup
copy of the persistent storage fileisfi | ename. BAK. If you want to reuse the name of
the persistent storagefile, you must del ete or move the existing file and then restart the
server process for the CORBA Name Service.

If the persistent storage fileis successfully created, an entry for thefileiswritten to the
uLoGfile. The entry indicates the directory location and name of the file, whether or
not the file was newly created, and the mechanism used to determine the name of the
file (for example, specified, environmental, or default). If an error occurs when
creating the persistent storage file, an entry iswritten to the ULOGfile indicating the
type of error that occurred.

Since the server process for the CORBA Name Service recreates the structure of the
namespace from the persistent storage file at startup, the startup time is directly
proportional to the size of the persistent storage file.Very large persistent storage files
(on the order of hundreds of megabytes) can result in the server process for the
CORBA Name Service taking several seconds or even minutes to recreate the
namespace at startup.

Compressing the Persistent Storage File

34

The persistent storage file contains information about all operations affecting the
in-memory copy of the namespace. Over time, the persistent storage file can contain
more information than is necessary to recreate the structure and state of the current
namespace. In fact, the persistent storage file can grow quite large even though the
structure of the namespace stays the same size.

The CORBA Name Service allows you to compress the persistent storage file to
remove unneeded information. The - ¢ option of the cns command controls
compression of the persistent storage file. The compression option processes the
current information to produce a new compressed persistent storage file.

When the server process for the CORBA Name Service is started, the compression
operation performs the following:

1. Processesthe in-memory structure of the namespace.

Using the CORBA Name Service



Removing Orphan NamingContext Objects

2. Overwrites the existing persistent storagefile.

3. Deéletesall bind and rebind entries which were removed from the namespace by
unbind, rebind, or destroy operations.

4. Removes all dangling bindings. Dangling bindings are bindings left in the
namespace after the object the binding is associated with is deleted from the
namespace. Dangling bindings occur when a
CosNami ng: : Nami ngCont ext : : dest roy() method is performed on a naming
context without the naming context being unbound from its parent context.

The-c option can only be used if the - p option of the cns command is specified.
For a complete description of the - ¢ option of the cns command, see Chapter 2,
“CORBA Name Service Reference.”

Removing Orphan NamingContext Objects

An orphan context is a context that is not bound to any other context. The context may
have never been bound or it may have been bound and the binding was destroyed either
explicitly or as the result of a rebind. In the CORBA Name Service, orphan

Nami ngCont ext objects are created in one of the following ways:

m Using theCosNani ng: : Nam ngCont ext : : new_cont ext () method to create a
newNani ngCont ext object but never binding the nexani ngCont ext object
to the namespace.

m  Using theCosNani ng: : Nam ngCont ext : : r ebi nd() or
CosNani ng: : Nanmi ngCont ext : : unbi nd() methods to unbind the
Nami ngCont ext object from their last parentni ngCont ext object but never
destroying thexani ngCont ext object.

Client applications and other namespaces federated tathaegCont ext object can
perform operations on orphalani ngCont ext objects as long as they maintain the
object reference to the orphiim ngCont ext object.

The current implementation of the namespace maintains the avpliamngCont ext
objects in a specialost andFoundCont ext object.

Using the CORBA Name Service 35



3 Managing a WebLogic Enterprise Namespace

Usethe-d option of thecns command to delete orphan Nanmi ngCont ext objects
from the namespace. The- d option unbinds and destroysall Nani ngCont ext objects
identified as orphaned.

The-d option can only be used if the - p option of thecns command is specified.
For a complete description of the - d option of the cns command, see Chapter 2,
“CORBA Name Service Reference.”

Federating the Namespace

The CORBA Name Service supports the concept of a federated namespace which
means elements of a logical namespace may reside on multiple, disparate, and rem
machines. In a federated nhamespad@&naingCont ext object can be bound to one
namespace using an object referenceNanfingCont ext object maintained by

another namespace. The CORBA Name Service supports federation with
implementations of the CORBA Name Service running on other machines as well a:
third-party name services. In order for the CORBA Name Service to federate with a
third-party name service, the third-party name service must support the naming
formats specified in the Object Management Group (OMG) Interoperable Name
Service (INS) specification.

The following topics explain how to support inbound and outbound federation as well
as federation with third-party name services.

Inbound Federation

3-6

Inbound federation is the ability to bindvan ngCont ext object which exists in a

local Weblogic Enterprise namespace into a hamespace on a remote name service.
Once the namespaces are federated, the remote name service can perform operatic
onNani ngCont ext objects in a the WebLogic Enterprise namespace. Inbound
federation with a third-party name service is done using the Internet Inter-Orb Protocc
(IIOP). Therefore, the 1IOP Listener/Handler for the CORBA Name Service must be
configured to support unoffical IOP connections.

Using the CORBA Name Service



Federating the Namespace

To enable the unofficial connections on the 11OP Listener/Handler, use the - C
parameter of the ISL command. The - C parameter determines how the 110OP
Listener/Handler will behave when unofficial connections are madetoit. To use
inbound federation, specify thewar n or none valuesfor the - C parameter. A value of
war n causesthellOP Listener/Handler to log amessageto the user |og exception when
an unofficial connection is detected; no exception will be raised. A value of none
causes the I10OP Listener/Handler to ignore unofficial connections. For more
information about the ISL command, see the WebLogic Enter prise Commands and
MIB Reference.

Listing 3-2 shows an example of the UBBCONFI G entry for the IIOP Listener/Handler
that supports inbound federation.

Listing 3-2 UBBCONFIG File Entry for an I10OP Listener/Handler That
Supports I nbound Federation

#
# Entry to start |1OP Listener/Handl er
# that supports inbound federation

| SL
SRVGRP = SYS _GRP
SRVID =5
M N =1
MAX =1
CLOPT ="-A -- -n //blotto:2470—-C none"

Outbound Federation

Outbound federation is the ability to bind aNamingContext —object which existsin a
remote name service into the namespace of a CORBA Name Service. Operations can
then be performed on this NamingContext  object using the CORBA Name Service.
Outbound federation with athird-party name serviceisdoneusing I1OP. Therefore, the
I1OP Listener/Handler for the CORBA Name Service must be configured to support
outbound federation.

Using the CORBA Name Service 3-7



3 Managing a WebLogic Enterprise Namespace

To enable outbound federation on the IOP Listener/Handler, use the - O parameter of
theISL command. The - Oparameter causesthe I1OP Listener to allow outbound [1OP
invocations to objects located in server applications not connected to allOP Handler.
For more information about the ISL command, see the WebLogic Enterprise
Commands and MIB Reference.

Listing 3-3 shows an example of the UBBCONFI G entry for the I1OP Listener/Handler
that supports outbound federation.

Listing 3-3 UBBCONFIG FileEntry for an I1OP Listener/Handler That
Supports Outbound Federation

#
# Entry for |11OP Listener/Handl er
# that supports outbound federation

#
I SL
SRVGRP = SYS _GRP
SRVID =5
M N =1
MAX =1
CLOPT ="-A -- -n //blotto:2470 -O

Federation Across WebLogic Enterprise Domains

3-8

Federation across multiple CORBA Name Service server processes running in
different WebL ogic Enterprise domains requires the use of Domain Gatewaysto allow
for inter-domain communication. For more information about configuring a domain
gateway, see the “Configuring Multiple Domains (WLE System)” section in the
Administration topic.

Using the CORBA Name Service



Managing Binding Iterators

Managing Binding Iterators

The OMG INS specification allows the collection of outstanding binding iterators.
Since binding iterators require explicit destruction by client applications, there isthe
chance that binding iterators will not be deleted properly.

To minimize the possibility that the CORBA Name Service will run out of resources
due to alarge number of unused binding iterators, use the - Moption of the cns
command to set the maximum number of binding iterators in the name service. Once
the limit has been reached, requests for new binding iterators may result in the
destruction of outstanding binding iterators. The CORBA Name Service uses a
least-recently-used algorithm to select which binding iterators are del eted.

If the server process for the CORBA Name Service is started with the - Moption, the

CORBA Name Service may destroy a binding iterator that is currently being used by
aWebL ogic Enterprise application so all WebL ogic Enterprise applications need to be
able to handle the CORBA: : OBJECT_NOT_EXI ST system exception when invoking on

binding iterators.

Using the CORBA Name Service in Secure
WebLogic Enterprise Applications

When using thecnsl s, cnsbi nd, and cnsunbi nd commandsin a secure WebL ogic
Enterprise application, you need to obtain the Principal Authenticator object for the
WebL ogic Enterprise domain and logon to the domain with the appropriate security
information.

In order for a secure logon to occur, the WebL ogic Enterprise domain must be
configured with a security level of TOBJ_SYSAUTH or TOBJ_APPAUTH. The username
for thecnsl s, cnsbi nd, and cnsunbi nd commandsiscnsuti | s. You need to use
the t pusr add command to createauser namedcnsut i | s. Depending onthe Security
level specified for the WebL ogic Enterprise domain, the user password and/or the
domain password may be defined in the UBBCONFI Gfilein the USER_AUTH and
APP_PWenvironment variables. If these environment variables are not set and the

Using the CORBA Name Service 39



3 Managing a WebLogic Enterprise Namespace

WebL ogic Enterprise domain has a security level of TOBJ_SYSAUTH or

TOBJ_APPAUTH, thecnsl s, cnsbi nd, and cnsunbi nd commands will prompt for a
password.

For more information about security levels and defining usersin the WebL ogic
Enterprise security environment, see Using Security.

3-10  Using the CORBA Name Service



CHAPTER

A

Developing an
Application that Uses

the CORBA Name
Service

This topic includes the following sections:

Development Steps

Step 1: Obtain the OMG IDL for the CosNaming Interfaces
Step 2: Include the Client Stub for the CosNaming Interfaces
Step 3: Connect to the WebL ogic Enterprise Namespace

Step 4: Bind an Object to the WebL ogic Enterprise Namespace

Step 5: Use aName to L ocate an Object in the WebL ogic Enterprise Namespace

Using the CORBA Name Service

4-1



4 Developing an Application that Uses the CORBA Name Service

Development Steps

4-2

Table 4-1 outlines the process for developing WebL ogic Enterprise applications that
use the CORBA Name Service.

Table 4-1 Development Process

Step

Description

1

Obtain the OMG IDL for the CosNaming interfaces.

2

Include the client stubs for the CosNaming interfaces.

Connect to the WebL ogic Enterprise namespace.

Bind an object to the WebL ogic Enterprise namespace.

Use aname to locate an object in the WebL ogic Enterprise
namespace.

Before performing the steps in this topic, you need to start the server process for the
CORBA Name Service. For more information, see “Starting the Server Process for th
CORBA Name Service” on page 3-2.

After performing the development steps in this topic, useédhedj avaser ver or

bui | dser ver command and theui | dobj cl i ent command as you would normally

to compile server and client applications that use the CORBA Name Service. For mor
information about theui | dj avaser ver, bui | dobj cl i ent, andbui | dser ver
commands, seé/eblLogic Enterprise Commands and MIB Reference.

Using the CORBA Name Service



Step 1: Obtain the OMG IDL for the CosNaming Interfaces

Step 1: Obtain the OMG IDL for the
CosNaming Interfaces

A WebL ogic Enterprise application accesses the CORBA Name Service using the
interfaces defined in CosNani ng. i dl . This Object Management Group (OMG)
Interface Definition Language (IDL) file defines the interfaces, COSnaming data
structures, and exceptions used by the CORBA Name Service. CosNani ng. i dl is
located in the following directory locations:

Windows NT

drive:\ $TUXDI R i ncl ude\ CosNami ng. i dl

UNIX

lusrl | ocal | $TUXDI Rdi r/i ncl ude/ CosNami ng. i dl

Listing 4-1 showsthe OMG IDL for CosNani ng. i dl . Thesame OMG IDL fileisused
by both CORBA C++ and Java applications.

Listing4-1 CosNaming.idl

#i fndef _COSNAM NG | DL_
#define _COSNAM NG | DL_

nodul e CosNam ng {

#pragma prefix "ong. or g/ CosNam ng"
typedef string Istring;
struct NaneConponent {

Istring id;

I'string Kind;
|

t ypedef sequence<NaneConponent > Nane;

enum Bi ndi ngType { nobject, ncontext };

struct Binding {
Nanme bi ndi ng_nane;

Using the CORBA Name Service 4-3



4 Developing an Application that Uses the CORBA Name Service

Bi ndi ngType bi ndi ng_type;
b

typedef sequence <Bi ndi ng> Bi ndi ngLi st;
interface Bindinglterator;

i nterface Nam ngContext {
enum Not FoundReason { mi ssing_node,
not _cont ext,
not _obj ect };

excepti on Not Found {
Not FoundReason why;
Nare rest _of nane;

I

excepti on Cannot Proceed {
Nam ngCont ext cxt;
Nare rest _of nane;

b

exception Inval i dNanme{};
exception Al readyBound {};
exception Not Enpty{};

voi d bind(in Nanme n, in Object obj)
r ai ses( Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound) ;

voi d rebind(in Name n, in Cbject obj)
rai ses( Not Found,
Cannot Pr oceed,
I nval i dNane) ;

void bind_context (in Narme n, i n Nam ngCont ext nc)
rai ses( Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound) ;

void rebind_context(in Nanme n, i n Nam ngContext nc)
rai ses( Not Found,
Cannot Pr oceed,
I nval i dNane) ;

4-4 Using the CORBA Name Service



Step 1: Obtain the OMG IDL for the CosNaming Interfaces

bject resolve (in Name n)
r ai ses( Not Found,
Cannot Proceed,
I nval i dNarme) ;

voi d unbi nd(in Name n)
rai ses( Not Found,
Cannot Proceed,
I nval i dNarme) ;

Nam ngCont ext new_cont ext () ;
Nam ngCont ext bi nd_new context (i n Nanme n)
r ai ses( Not Found,
Al r eadyBound,
Cannot Pr oceed,

I nval i dNane) ;
voi d destroy() raises(NotEnpty);
void list(in unsigned Iong how_nmany,
out Bi ndi ngLi st bl ,

out Bindinglterator bi);
|

interface Bindinglterator {
bool ean next _one(out Binding b);
bool ean next _n(in unsigned | ong how nmany,
out Bi ndingList bl);
void destroy();
b

i nterface Nam ngCont ext Ext: Nami ngContext {
typedef string StringNaneg;
typedef string Address;
typedef string URLString;

StringNane to_string(in Name n) raises(lnvalidNane);
Nanme to_nanme(in StringNane sn)

rai ses(Inval i dNane) ;
exception InvalidAddress {};

URLStri ng to_url(in Address addr, in StringNanme sn)
rai ses( |l nval i dAddress, |nvalidName);

oj ect resol ve_str(in StringNane n)
rai ses( Not Found,
Cannot Proceed,
I nval i dName,
Al r eadyBound

Using the CORBA Name Service 4-5



Developing an Application that Uses the CORBA Name Service

I

}

#pragma | D CosNanmi ng "1 DL: ong. or g/ CosNani ng: 1. 0"
#endi f // _COSNAM NG_| DL_

Step 2: Include the Client Stub for the
CosNaming Interfaces

4-6

The client stubs for the CosNaming interfaces are compiled and included as part of the
software kit for the CORBA Name Service.

If you are creating a WebL ogic Enterprise CORBA C++ application, the client
stubs arelocated in $TUXDI R | i b/ | i bong. You need to include the generated
client stub in your WebL ogic Enterprise application as follows:

#include “CosNaming_c.h

If you are creating a WebL ogic Enterprise CORBA Java application, the client
stubs are located in $ TUXDI Rludataobj/javal/jdk/m3envobj.jar . You need
to include the generated client stub in your WebL ogic Enterprise application as
follows:

import org.omg.CosNaming.*;

The interfaces for the CORBA Name service are in the org.omg.CosNaming
package.

If you are using athird-party object request broker (ORB), you need to compile the
CosNaming interfaces using your IDL compiler and include or import them into your
WebL ogic Enterprise application.

Using the CORBA Name Service



Step 3: Connect to the WebLogic Enterprise Namespace

Step 3: Connect to the WebLogic Enterprise
Namespace

The Bootstrap object has been modified to support a NameSer vi ce environmental
object for the purpose of connecting to the root the namespace. When using the
NameService environmental object, the Object Request Broker (ORB) locates the root
of the namespace. The object reference can then be narrowed to

CosNani ng: : Nani ngCont ext or CosNani ngCont ext Ext . Y ou need to connect to
the WebL ogic Enterprise namespace before binding objects into the namespace and
resolving names in the namespace.

Listing 4-2 and Listing 4-3 include C++ and Java code that establishes communication
with a WebL ogic Enterprise namespace.

Listing 4-2 C++ Example of Connecting to a Namespace

Tobj_Bootstrap * bootstrap = new Tobj_Bootstrap (v_orb.in(), “);
CORBA::Object_var var_nameservice_oref=

bootstrap.resolve_initial_references(“NameService);
root = CosNaming::NamingContext::_narrow (obj);

Listing 4-3 Java Example of Connecting to a Namespace

Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “);

org.omg.CORBA.Object NameServiceobj =
gBootstrapObjRef.resolve_initial_references(“NameService”);

CosNaming.NamingCOntextExt ns_root =
CosNaming.NamingContextExtHelper.narrow (ns_obj);

A stringified object reference for the root of the namespace can al so be used to connect
to a namespace in a WebL ogic Enterprise domain. In order to use a stringified object
reference, the -f  command-line option must be specified when starting the server

Using the CORBA Name Service 4-7



4 Developing an Application that Uses the CORBA Name Service

4-8

process for the CORBA Name Service. The-f command-line option writes the
stringified object reference to the CNS_ROOT_FI LE environment variable or to one of
the following locations:

Windows NT
%APPDI R% cnsr oot . dat

UNI X
$APPDI R/ cnsr oot . dat

The stringified object reference for the root of the namespace does not change when
the server process for the CORBA Name Serviceis started and stopped because
stringified object reference is associated with a particular host machine rather than a
particular server process. A stringified object reference that has been retrieved to
communicate with one WebL ogic Enterprise namespace cannot be used to
communicate with another WebL ogic Enterprise namespace.

Listing 4-4 and Listing 4-5 include C++ and Java code that establishes communication
with a WebL ogic Enterprise namespace using a stringified object reference.

Listing 4-4 C++ Example of Using a Stringified Object Reference

Tobj Bootstrap * bootstrap;

bootstrap = new Tobj_Bootstrap (v_orb.in(), “);
CORBA::Object_var obj = GetRefFromFile (“cnsroot.dat”, v_orb);
root = CosNaming::NamingContext::_narrow (obj);

Listing 4-5 Java Example of Using a Stringified Object Reference

Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “);
BufferedReader inFile =

newBufferedReader(new FileReader (“cnsroot.dat’));
String root_ior_string = inFile.readLine ();
org.omg.CORBA.Object ns_obj =

orb.string_to_objecet (root_ior_string);
CosNaming.NamingContextExt ns_root =

CosNaming.NamingContextExtHelper.narrow (ns_obj);

Using the CORBA Name Service



Step 4: Bind an Object to the WebLogic Enterprise Namespace

If you chooseto useastringified object referencein aWebL ogic Enterprise application
that also uses security and transactions, please note the following restrictions:

1. The WebL ogic Enterprise application must create a Bootstrap object and connect
to the 11OP Listener/Handler before using the stringified object reference to
connect to a WebL ogic Enterprise Namespace. By calling the Bootstrap object
first, the WebL ogic Enterprise application establishes an official connection to the
I1OP Listener/Handler.

If a WebL ogic Enterprise application does not first create a Bootstrap object,
transactions and security cannot be used with any object retrieved from the
namespace. Transactions and security require the use of an official connection.

2. If more than one I1OP Listener/Handler is defined in the UBBCONFI Gfile, the
WebL ogic Enterprise application must use the first 11OP Listener/Handler defined
in the UBBCONFI Gfile by the TOBJADDR environment variable.

The CORBA Name Service creates the stringified object reference for the root

of the namespace, using the default IIOP Listener/Handler’s host and port. The
first IOP Listener/Handler defined inlBBCONFI G file is considered the default
IIOPListener/Handler. Using the default IIOP Listener/Handler causes all object
references retrieved by the CORBA Name Service to be official connections.
Transactions and security require the use of official connections.

Step 4: Bind an Object to the WebLogic
Enterprise Namespace

There are two ways to bind an object to the WebLogic Enterprise namespace:
m The cnsbi nd command
m The bi nd() method of th&osNani ng: : Nanmi ngCont ext object

Thecnsbi nd command can be used to bind application objects or naming context
objects to the WebLogic Enterprise namespace. The server process for the CORBA
Name Service must be started before usingtiséi nd command. For a complete
description of thensbi nd command, see Chapter 2, “CORBA Name Service
Reference.”

Using the CORBA Name Service 4-9



4 Developing an Application that Uses the CORBA Name Service

4-10

Listing 4-6 and Listing 4-7 shows the C++ and Java code uses the bi nd() method of
the CosNani ng: : Nanmi ngCont ext object. The code examples accept two parameters,
representing thei d and ki nd fieldsfor aName. These parametersinitialize aNane for
the Si npl eFact or y object and bind the Si npl eFact or y object to the namespace.

Listing4-6 C++ Example of Binding a Nameto the WebL ogic Enterprise
Namespace

})Establ ish the Nane used to identify the SinpleFactory object
/1in the namespace.

CosNam ng: : Nanme_var factory _nanme = new CosNami ng: : Nane(1);
factory_nane->l ength(1);
factory_nanme[ (CORBA: : ULong) 0].id =
(const char * “simple_factory”;
factory_name[(CORBA::ULong) 0].kind =
(const char *) *;
/ICreate an object reference for the SimpleFactory object

s_v_factory_refer = TP::create_object_reference(
_tc_SimpleFactory->id(),
“simple_factory”,
CORBA::NVList::_nil()

);

/IGet the NameService object reference. See Listing 4-2.

/IPlace the object reference for SimpleFactory in the namespace

root->bind(factory_name, s_v_fact_ref);

Listing4-7 Java Example of Binding a Name to the WebL ogic Enterprise
Namespace

/ICreate an object reference for the SimpleFactory object
org.omg.CORBA.object fact_ref =
TP.create_object_reference(
SimpleFactoryHelper.id()
“simple_factory”,
null

Using the CORBA Name Service



Step 5: Use a Name to Locate an Object in the WebLogic Enterprise Namespace

/1 Get the NameService object reference. See Listing 4-3.
//Place the object reference for SinpleFactory in the nanespace
CosNanmi ng. NameConponent[] fact Nane =
ns_root.to_name(“simple_factory”);
ns_root.bind(factName, fact_ref);

Step 5: Use a Name to Locate an Object in the
WebLogic Enterprise Namespace

Usetheresolve()  method of the CosNaming::NamingContext  object to locate an
object in a namespace in a WebL ogic Enterprise domain. Listing 4-8 and Listing 4-9
shows the C++ and Java code that accepts two parameters, representing theid and
kind fieldsfor aName The code example then bindsto anaming context, resolvesthe
name, and obtains an object reference for the specified object.

Listing4-8 C++ Example of Locating a Namein the WebL ogic Enterprise
Namespace

//[Establish the Name used to identify the SimpleFactory object
/lin the namespace.
CosNaming::Name_var factory_name = new CosNaming::Name(1);
factory_name->length(1);
factory_name[(CORBA::ULong) 0].id =
(const char * “simple_factory”;
factory_name[(CORBA::ULong) 0].kind =
(const char *) “;

//Locate the SimpleFactory object in the namespace
CORBA::Object_var v_simple_factory_oref =
root->resolve( *factory_name);
SimpleFactory_var v_simple_factory_ref =
SimpleFactory::_narrow(v_simple_factory_oref.in());

/lUsethe reference obtained from the WLE CORBA Name Service to find
the Simple object

Using the CORBA Name Service  4-11



4 Developing an Application that Uses the CORBA Name Service

4-12

Sinple_var v_sinple = v_sinple _factory ref->find_sinple();

Listing4-9 Java Example of Locating a Namein the WebL ogic Enterprise
Namespace

/1 Find the SinpleFactory object in the namespace via a string name
org. ong. CORBA. Obj ect sinple fact_oref =
ns_root.resolve_str(“simple_factory”);
SimpleFactory simple_factory_ref =
SimpleFactoryHelper.narrow(simple_fact_oref);

/[Find the Simple object
Simple simple = simple_factory_ref.find_simple();

Using the CORBA Name Service



CHAPTER

5 Using the Name

Service Sample
Application

This topic includes the following sections:
m  How the Name Service Sample Application Works

m Building and Running the Name Service Sample Application

How the Name Service Sample Application
Works

The Name Service sample application is amodification of the Simpapp sample
application. The Name Service sample application uses a namespace to store the
SimpleFactory object. The server application creates the SimpleFactory object and
binds the object to the namespace. The client application connects to the namespace,
resolves the name of the SimpleFactory object, and then invokes methods on the
SimpleFactory. There are C++ and Java versions of the Name Service sample
application. Figure 5-1 illustrates how the Name Service sample application works.

Using the CORBA Name Service 51



5 Using the Name Service Sample Application

Figure5-1 The Name Service Sample Application

Name Service Sample Application

Server Application

creat e_obj ect _reference(Si npl eFact ory)
boot strap resol ve_initial _reference(NaneService)
bi nd (Si npl eFactory)

Namespace

Si npl eFact ory Client Application

boot strap resol ve_initial _reference(NaneService)
resol ve (SinpleFactory)

find_Sinple

Si npl e- >t o_upper

Si npl e- >t o_| ower

The Name Service sampl e application implements the CORBA interfaceslisted in
Table 5-1:

Table5-1 CORBA Interfacesfor the Name Service Sample Application

Interface Description Operation

Si npl eFact ory Creates object referencestothe i nd_si npl e()
Si npl e object

Si npl e Converts the case of astring to_upper ()

to_l ower ()

Listing 5-1 showsthesi npl e. i dI filethat defines the CORBA interfacesin the
Name Service sample application.

5-2 Using the CORBA Name Service



Building and Running the Name Service Sample Application

Listing5-1 OMG IDL Codefor the Name Service Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
//Convert a string to |lower case (return a new string)
string to_lower(in string val);
/Il Convert a string to upper case (in place)
void to_upper(inout string val);
h

interface SinpleFactory

Sinple find_sinple();

Building and Running the Name Service
Sample Application

To build and run the Name Service sample application, complete the following steps:
1. Copy thefilesfor the Name Service sample application into awork directory.

2. Change the protection attribute on the files for the Name Service sample
application.

3. Verify the environment variables.

4. Executether unme command.

Using the CORBA Name Service 5-3



5 Using the Name Service Sample Application

Step 1: Copy the Files for the Name Service Sample
Application into a Work Directory

Y ou need to copy the files for the Name Service sample application into awork
directory on your local machine. The following sections detail the directory location
and sources files for the C++ and Java versions of the Name Service sample
application.

C++ Version of the Name Service Sample Application

Thefilesfor the C++ version of the Name Service sample application are located in
the following directories:

Windows NT
drive: | WEdi r\ sanpl es\ cor ba\ cnssi npapp

UNIX
/usr/local / Wedi r| sanpl es/ cor bal/ cnssi npapp

Youwill usethefileslisted in Table 5-2 to build and run the C++ version of the Name
Service sample application.

Table5-2 FilesIncluded in the C++ Version of the Name Service Sample

Application

File Description

Sinpl e.idl The OMG IDL code that declaresthe Si npl e and
Si mpl eFact ory interface.

Si npl es. cpp The C++ source codefor the server applicationinthe
Name Service sample application.

Si npl ec. cpp The C++ source codefor the client applicationin the
Name Service sampl e application.

Sinple_i.cpp The C++ source code that implementsthe Si npl e
and Si npl eFact or y methods.

Simple_i.h The C++ header file that defines the implementation

of the Si npl e and Si npl eFact or y methods.

5-4 Using the CORBA Name Service



Building and Running the Name Service Sample Application

Table 5-2 FilesIncluded in the C++ Version of the Name Service Sample
Application (Continued)

File Description

Readne. t xt Thisfile provides the latest information about
building and running the C++ version of the Name
Service sample application.

runme. cnd The Windows NT batch file that builds and runsthe
C++ version of the Name Service sample
application.

runne. ksh The UNIX Korn shell script that builds and executes
the C++ version of the Name Service sample
application.

makefile. nk The makefile for the C++ version of the Name
Service sample application on the UNIX operating
system. Thisfileisused to manually build the C++
version of the Name Service sample application.
Refer tothe Readne. t xt filefor information about
manually building the C++ version of the Name
Service sample application. The UNIX make
command needs to be in the path of your machine.

makefile.nt The makefile for the C++ version of the Name
Service sample application on the Windows NT
operating system. This makefile can be used directly
by the Visual C++ nnmake command. Thisfileis
used to manually build the C++ version of the Name
Service sample application. Refer to the
Readne. t xt filefor information about manually
building the C++ version of the Name Service
sample application. The Windows NT nmake
command needs to be in the path of your machine.

Java Version of the Name Service Sample Application

Thefilesfor the Java version of the Name Service sample application are located in
the following directories:

Windows NT

drive:| WEdi r\ sanpl es\ cor ba\ cnssi npapp_j ava

Using the CORBA Name Service 55



5 Using the Name Service Sample Application

UNIX
/usr/local /Wedi rl sanpl es/ cor ba/ cnssi npapp_j ava

Youwill usethefileslisted in Table 5-3 to build and run the JavaName Service sample
application.

Table 5-3 FilesIncluded in the Java Version of the Name Service Sample

Application

File Description

Si mpl e. idl The OMG IDL code that declaresthe Si npl e and
Si mpl eFact ory interfaces.

Serverlnpl.java The Java source code that overrides the
Server.initialize andServer.rel ease
methods.

SimpleClient.java The Java source codefor the client application in the

Name Service sampl e application.

Si mpl eFactoryl npl . j ava The Java source code that implements the
Si mpl eFact or y methods.

Si mpl el npl . j ava The Java source code that implements the Si npl e
methods.
Si nmpl e. xm The Server Description File used to associate

activation and transaction policy values with
CORBA interfaces. For the Javaversion of the Name
Service sample application, the Si npl e and

Si mpl eFact ory interfaces have an activation
policy of net hod and atransaction policy of

opti onal .

Readne. t xt Thefile that provides the latest information about
building and running the Java version of the Name
Service sample application.

runne. cnd The Windows NT batch file that builds and runs the
Javaversion of the Name Service sample
application.

5-6 Using the CORBA Name Service



Building and Running the Name Service Sample Application

Table 5-3 FilesIncluded in the Java Version of the Name Service Sample
Application (Continued)

File Description

runne. ksh The UNIX Korn shell script that builds and executes
the Java version of the Name Service sample
application.

makefil e. mk The makefile for the Java version of the Name

Service sample application on the UNIX operating
system. Thisfileisused to manually build the Name
Service sample application. Refer to the

Readne. t xt filefor information about manually
building the Name Service sample application. The
UNIX make command needs to bein the path of
your machine.

makefil es. nt The makefile for the Name Service sample

application on the Windows NT operating system.
Thisfileisused to manually build the Javaversion of
the Name Service sample application. Refer to the
Readne. t xt filefor information about manually
building the Name Service sample application. The
Windows NT nmake command needsto bein the
path of your machine.

Step 2: Change the Protection Attribute on the Files for
the Name Service Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the files in the Name Service sample
application, you need to change the protection attribute of the files you copied into
your work directory, as follows:

Windows NT

pronpt>attrib -r drive:lworkdirectory\*.*
UNIX

pronpt >/ bi n/ ksh

Using the CORBA Name Service 5-7



5 Using the Name Service Sample Application

ksh pronpt >chnod u+w / wor kdi rectoryl *.*

On the UNIX operating system platform, you also need to change the permission of
runne. ksh to give execute permission to the file, asfollows:

ksh pronpt >chnod +x runne. ksh

Step 3: Verify the Settings of the Environment Variables

Before building and running the Name Service sample application, you need to ensure
that certain environment variables are set on your system. In most cases, these
environment variables are set as part of theinstallation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Table 5-4 lists the environment variables required to run the Name Service sample
application.

Table 5-4 Required Environment Variables for the Name Service Sample Application

Environment Description
Variable
APPDI R The directory path where you copied the sample application files. For example:
Windows NT
APPDI R=c: \ wor k\ cnssi nmpapp
UNIX
APPDI R=/ usr/ wor kl cnssi npapp
TUXCONFI G The directory path and name of the configuration file. For example:

Windows NT

TUXCONFI G=c: \ wor k\ cnssi npapp\ t uxconfi g
UNIX

TUXCONFI G=/ usr / wor k/ cnssi npapp/ t uxconfi g

5-8 Using the CORBA Name Service



Building and Running the Name Service Sample Application

Table 5-4 Required Environment Variables for the Name Service Sample Application

Environment
Variable

Description

JDKDI R

The directory path where you installed the JDK software. For example:
Windows NT

JDKDI R=c: \j dkl. 2.2

UNIX

JDKDI R=/ usr /|l ocal /jdkl.2.1

Y ou need to specify this parameter only if you plan to use the Java version of the
Name Service sample application.

JAVA_HOVE

The directory path where you installed the JDK software. For example:
Windows NT

JAVA HOVE=c:\ JDK1. 2

UNIX

JAVA HOVE=/ usr/ 1 ocal / JDK1. 2

Y ou need to define this environment variable only when you use the Java version of
the Name Service sample application.

RESULTSDI R or
JRESULTSDI R

A subdirectory of APPDI Rwhere files that are created as a result of executing the
runme command are stored. For example:

Windows NT

RESULTSDI R=c: \ wor kdi r ect or y\

UNIX

RESULTSDI R=/ usr /| ocal / wor kdi rect ory/

When using the Java version of the Name Service sample application, specify the
JRESULTSDI R environment variable.

To verify that theinformation for the environment variables defined during installation
is correct, complete the following steps:

Windows NT
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

Using the CORBA Name Service 5-9



5 Using the Name Service Sample Application

3. Click the System icon.
The System Properties window appears.
4. Click the Environment tab.
The Environment page appears.
5. Check the settings of the environment variables.
UNIX
ksh pronpt >pri ntenv TUXDI R
ksh pronpt >printenv JAVA HOVE

To change the settings, complete the following steps:
Windows NT

1. Onthe Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Vari abl e field.

2. Enter the correct information for the environment variable in the val ue field.
3. Click OK to save the changes.
UNIX

ksh pronpt >export TUXDI R=di r ect or ypat h
ksh pronpt >export JAVA HOVE=di r ect or ypat h

Step 4: Execute the runme Command

5-10

The r unme command automates the following steps:
1. Setting the system environment variables.

2. Loading the UBBCONFI Gfile.

3. Compiling the code for the client application.

4

. Compiling the code for the server application.

Using the CORBA Name Service



Building and Running the Name Service Sample Application

5. Starting the server application using thet mboot command.
6. Starting the client application.

7. Stopping the server application using the t nshut down command.

Note: Y ou canalso runthe Name Service sample application manually. The stepsfor
manually running the Name Service sample application are described in the
Readrme. t xt file.

To build and run the Name Service sample application, enter ther unnme command, as
follows:

Windows NT
pronpt >cd workdirectory

pr onpt >r unme
UNIX

ksh pronpt >cd workdirectory

ksh prompt>./runne. ksh
The Name Service sample application runs and prints the following messages:

Testing si nmpapp
cl eaned up
pr epar ed
bui It
| oaded ubb
boot ed
ran
shut down
saved results

PASSED

Table 5-5 lists the C++ files in the work directory generated by the r unme command.

Table5-5 C++ Files Generated by the runme Command

File Description

Sinmpl e_c. cpp Generated by thei dl command, thisfile contains
the client stubs for the Si npl eFact ory and
Si mpl e interfaces.

Using the CORBA Name Service  5-11



5 Using the Name Service Sample Application

Table5-5 C++ Files Generated by the runme Command

File Description

Simple_c.h Generated by thei dI command, thisfile contains
theclient definitionsof the Si npl eFact or y and
Si npl e interfaces.

Si mpl e_s. cpp Generated by thei dI command, thisfile contains
the server skeletonsfor the Si npl eFact ory and
Si npl e interfaces.

Sinmple_s.h Generated by thei dI command, thisfile contains
the server definition for the Si npl eFact ory
and Si npl e interfaces.

.adm . keybd A file that contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inther unme command.

results A directory generated by the r unne command.

Table 5-6 lists the Javafilesin the work directory generated by the r unme command.

Table 5-6 Java Files Generated by therunme Command

File Description

Si npl eFactory. j ava Generated by the n8i dl t oj ava command for
the Si npl eFactory interface. The
Si npl eFact or y interface contains the Java
version of the OMG IDL interface. It extends
org. ong. CORBA. Obj ect .

Si mpl eFact or yHol der . j ava Generated by then8i dI t oj ava command for
theSi npl eFact ory interface. Thisclassholdsa
public instance member of type
Si npl eFact or y. The class provides operations
forout andi nout argumentsthat areincludedin
CORBA, but that do not map exactly to Java.

5-12  Using the CORBA Name Service



Building and Running the Name Service Sample Application

Table 5-6 Java Files Generated by therunme Command (Continued)

File

Description

Si npl eFact or yHel per.j ava

Generated by the nBi dl t oj ava command for
the Si mpl eFact ory interface. Thisclass
provides auxiliary functionality, notably the
nar r ow method.

_Si npl eFactorySt ub. j ava

Generated by the nBi dl t oj ava command for
the Si mpl eFact ory interface. Thisclassisthe
client stub that implements the

Si mpl eFact ory. j ava interface.

_Si nmpl eFact oryl npl Base. j ava

Generated by the nBi dl t oj ava command for
the Si mpl eFact ory interface. This abstract
classisthe server skeleton. It implements the

Si mpl eFact ory. j ava interface. The
user-written server class Si npl eFact or yl npl
extends_Si npl eFact or yl npl Base.

Sinple.java

Generated by the nBi dl t oj ava command for
the Si npl e interface. The Si npl e interface
contains the Java version of the OMG IDL
interface. It extends or g. ong. CORBA. Obj ect .

Si npl eHol der . j ava

Generated by the nBi dl t oj ava command for
the Si npl e interface.This class holds a public
instance member of type Si npl e. Theclass
provides operations for out and i nout
arguments that CORBA has but that do not match
exactly to Java

Si npl eHel per.java

Generated by the nBi dl t oj ava command for
the Si npl e interface. This class provides
auxiliary functionality, notably the nar r ow
method.

_Sinmpl eStub. j ava

Generated by the nBi dl t oj ava command for
the Si npl e interface. Thisclassistheclient stub
that implementsthe Si npl e. j ava interface.

Using the CORBA Name Service  5-13



5 Using the Name Service Sample Application

Table 5-6 Java Files Generated by the runme Command (Continued)

File

Description

_Si npl el npl Base. j ava

Generated by then8i dl t oj ava command for
the Si npl e interface. This abstract classisthe
server skeleton. Itimplementsthe Si npl e. j ava
interface. The user-written server class

Si npl el npl extends_Si npl el npl Base.

Si npl e. ser

The Server Descriptor File generated by the
bui | dj obj ser ver command inthe runne
command.

Sinmple.jar

The server Java Archive file generated by the
bui | dj avaser ver command inthe runne
command.

.adm . keybd

A file that contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inther unme command.

results

A directory generated by the r unne command.

Table 5-7 listsfilesin the RESULTS or JRESULTS directory generated by the r unne

command.

Table 5-7 Filesin theresults Directory Generated by the runme Command

File Description

i nput Contains the input that the r unme command
provides to the Java client application.

out put Containsthe output produced when the r unnme

command executes the Java client application.

expect ed_out put

5-14  Using the CORBA Name Service

Contains the output that is expected when the
Java client application is executed by the

r unme command. Thedatain theout put file
is compared to the datain the

expect ed_out put filetodeterminewhether
or not the test passed or failed.



Building and Running the Name Service Sample Application

Table5-7 Filesin theresults Directory Generated by the runme Command

File

Description

| og

Contains the output generated by the r unne
command. If ther unme command fails, check
thisfilefor errors.

setenv. cnd

Contains the commands to set the environment
variables needed to build and run the JavaName
Service sample application on the WindowsNT
operating system platform.

set env. ksh

Contains the commands to set the environment
variables needed to build and run the JavaName
Service sample application on the UNIX
operating system platform.

stderr

Generated by thet nhoot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

System err. println method sendsthe
output to the st der r fileinstead of to the
ULOGfile.

st dout

Generated by thet nhoot command, which is
executed by ther unme command. If the

- nor edi r ect JavaServer option is specified
in the UBBCONFI Gfile, the

Syst em out. printl n method sendsthe
output to the st dout fileinstead of to the
ULOGfile.

tnsysevt . dat

Containsfiltering and notification rules used by
the TMSY SEVT (system event reporting)
process. Thisfile is generated by the t mboot
command in the r unme command.

tuxconfig A binary version of the UBBCONFI Gfile.

ubb The UBBCONFI Gfilefor the JavaName Service
sample application.

ULOG. <dat e> A log file that contains messages generated by

thet nboot command.

Using the CORBA Name Service  5-15



5 Using the Name Service Sample Application

Using the Name Service Sample Application

Run the server application in the Name Service sample application, as follows:
WindowsNT

pr onpt >t nboot

UNIX

ksh pronpt >t nboot

Run the client application in the Name Service sample application, as follows:
WindowsNT

pronpt >j ava -cl asspat h %CLI ENTCLASSPATHY
- DTOBJ ADDR=%a OBJADDR% Si npl eCl i ent
String?

Hello World

HELLO WORLD

hello world

UNIX

ksh pronpt >j ava -cl asspath $CLI ENTCLASSPATH

/ nBenvobj .jar - DTOBJADDR=$TOBJADDR Si npl eCl i ent
String?

Hello World

HELLO WORLD

hello world

Before using another sample application, enter the following commands to stop the
Name Service sample application and to remove unnecessary files from the work
directory:

WindowsNT

pronpt >t nshut down -y

pronmpt >nmake -f nakefile.nt clean

UNIX
ksh pronpt >t nshut down -y

ksh pronpt >nmake -f makefile.nk clean

5-16  Using the CORBA Name Service



Building and Running the Name Service Sample Application

Using the CORBA Name Service  5-17



O Using the Name Service Sample Application

5-18  Using the CORBA Name Service



Index

A

administration tasks
compressing the persistent
storagefile 3-4
federating the namespace 3-6
making the namespace persistent 3-3
removing orphan naming context
objects 3-5
starting the server process 3-2
AlreadyBound exception
described 2-34

B
binding iterators
defining maximum 2-4
Bindinglterator object
described 1-4
methods
destroy 2-31
next_n() 2-32
next_one 2-33
OMG IDL 2-29
overview 2-29
Bootstrap object
connecting to the namespace 4-7
getting initial references 2-13
using the NameService
environmental object 4-7

Using the WebL ogic Enterprise CORBA Name Service

C

C++ code examples
binding a name to the namespace 4-10
connecting to the namespace 4-7
locating aname 4-11
using a stringified object reference 4-8
cns command
command-line options 2-3
compressing the persistent
storagefile 3-4
deleting orphan naming context
objects 3-6
described 2-3
making the namespace persistent 3-3
syntax 2-3
cnsbind command
binding objects to the namespace 2-6
command-line options 2-6
described 2-6
examples 2-7
syntax 2-6
cnsls command
command-line options 2-9
described 2-9
displaying the contents of the
namespace 2-9
example 2-10
syntax 2-9



cnsunbind command
command-line options 2-11
deleting bindings from the
namespace 2-11
described 2-11
examples 2-12
syntax 2-11
commands
cns 2-3
cnshind 2-6
cnsls 2-9
cnsunbind 2-11
CosNaming data structures
BindingList 2-13
BindingType 2-13
Istring 2-13
listed 2-13
Name 2-14
NameComponent 2-14
CosNaming interfaces
compiling the OMG IDL 4-6
directory location of OMG IDL 4-3
obtaining the OMG IDL 4-3
customer support contact information ix

D
dangling bindings
defined 2-3
deleting 2-3, 3-5
directory location of source files
Name Service sample application 5-4
OMG IDL for CosNaming interfaces 4-3
documentation, where to find it viii

E

environment variables
APPDIR 5-9
JAVA_HOME 5-8
JDKDIR 5-9

Name Service sample application 5-8
TOBJADDR 5-9
TUXCONFIG 5-9
TUXDIR 5-8
exceptions
AlreadyBound 2-34
InvalidAddtress 2-35
InvalidName 2-36
NotEmpty 2-37
NotFound 2-38

F

federation
inbound 3-6
outbound 3-7
the ISL command 3-7
file protections
Name Service sample application 5-7

IIOP Listener/Handler
enabling
inbound federation 3-6
outbound federation 3-7
installation
requirements 1-2
InvalidAddress exception
defined 2-35
InvalidName exception
defined 2-36
ISL command
inbound federations 3-7
outbound federation 3-7

J

Java code examples
binding a name to the namespace 4-10
connecting to the namespace 4-7

[-2 Using the WebL ogic Enterprise CORBA Name Service



locating a name 4-12

using a stringified object reference 4-8
JAVA_HOME parameter

Name Service sample application 5-8
JDKDIR parameter

setenv file 5-9

M

makefile
Name Service sample application 5-7

N

name
described 1-3
locating in the namespace 4-11
Name Service sample application
building 5-3
changing protection on files 5-7
compiling
the C++ client application 5-11
the C++ server application 5-11
the Java client application 5-10
the Java server application 5-10
loading the UBBCONFIG file 5-11
locations of files 5-4
required environment variables 5-8
runme command 5-10
setting up the work directory 5-4
source files 5-4
starting the Java client application 5-16
starting the Java server application 5-16
using the client applications 5-16
NameService environmental object
connecting to the namespace 4-7
described 2-13
using the Bootstrap object 2-13
namespace
binding an object to 4-9
cnsls command 2-9

cnsunbind command 2-11
connecting
using a stringified object
reference 4-7
with the Bootstrap object 4-7
deleting bindings from 2-11
displaying the contents 2-9
federating 3-6
making persistent 3-3
NamingContext object
described 1-3
methods
bind 2-15
bind_context 2-16
bind_new_context 2-17
destroy 2-18
list 2-19
new_context 2-20
rebind 2-21
rebind_context 2-22
resolve 2-23
unbind 2-24
OMG IDL 2-14
overview 2-14
NamingContextExt object
described 1-4
methods
resolve str 2-26
to_name 2-27
to_string 2-28
to_URL 2-29
OMG IDL 2-24
overview 2-24
NotEmpty exception
defined 2-37
NotFound exception
defined 2-38

Using the WebL ogic Enterprise CORBA Name Service

-3



0

OMG IDL
Bindinglterator object 2-29
compiling 4-6
file name 4-3
for NamingContext object 2-14
location on the kit 4-3
NamingContextExt object 2-24
Simple interface 5-2
SimpleFactory interface 5-2
orphan naming context objects
creating 3-5
defined 2-3
deleting 3-5

P

persistent storage file
compressing 3-4
creating 3-4
printing product documentation viii
programming tasks
binding obj ects to the namespace 4-9
compiling the OMG IDL 4-6
connecting to the namespace 4-7
obtaining the OMG IDL 4-3
overview 4-2
using a name to locate an object 4-11

R

related information viii
resolve method
overview 1-4
runme command
description 5-10
files generated by 5-11, 5-12

S

source files
Name Service sample application 5-6
stringified object references
connecting to the namespace 4-7
restrictions for 4-9
support
technical ix

T

tmboot command

Name Service sample application 5-16
tmloadcf command

Name Service sample application 5-10
TOBJADDR environment variable

cnshind command 2-6

use with cnsls command 2-9

use with cnsunbind command 2-11
TUXCONFIG parameter

setenv file 5-9
TUXDIR parameter

Name Service sample application 5-8

U

UBBCONFIG file
example
for inbound federation 3-7
for Name Server server process 3-2
Name Service sample application 5-11
ULOG file
persistent storage file 3-4

W

WLE CORBA Name Service
capabilities 2-12
commands 2-1
CosNaming data structures 2-13
exceptions 2-33

-4 Using the WebL ogic Enterprise CORBA Name Service



features 1-1
illustrated 1-2
installing 3-1
limitations 2-12
overview 1-1
requirements 1-2

Using the WebL ogic Enterprise CORBA Name Service

[-5



	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the CORBA Name Service
	The CORBA Name Service
	Understanding the CORBA Name Service

	2 CORBA Name Service Reference
	CORBA Name Service Commands
	cns
	cnsbind
	cnsls
	cnsunbind

	Capabilities and Limitations of the CORBA Name Service
	Getting the Initial Reference to the NameService Environmental Object
	The CosNaming Data Structures Used by the CORBA Name Service
	The NamingContext Object
	CosNaming::NamingContext::bind()
	CosNaming::NamingContext::bind_context()
	CosNaming::NamingContext::bind_new_context()
	CosNaming::NamingContext::destroy()
	CosNaming::NamingContext::list()
	CosNaming::NamingContext::new_context()
	CosNaming::NamingContext::rebind()
	CosNaming::NamingContext::rebind_context()
	CosNaming::NamingContext::resolve
	CosNaming::NamingContext::unbind

	The NamingContextExt Object
	CosNaming::NamingContextExt::resolve_str()
	CosNaming::NamingContextExt::to_name()
	CosNaming::NamingContextExt::to_string()
	CosNaming::NamingContextExt::to_URL()

	The BindingIterator Object
	CosNaming::BindingIterator::destroy()
	CosNaming::BindingIterator::next_n()
	CosNaming::BindingIterator::next_one()

	Exceptions Raised by the CORBA Name Service
	AlreadyBound
	CannotProceed
	InvalidAddress
	InvalidName
	NotEmpty
	NotFound


	3 Managing a WebLogic Enterprise Namespace
	Installing the CORBA Name Service
	Starting the Server Process for the CORBA Name Service
	Making the Namespace Persistent
	Compressing the Persistent Storage File
	Removing Orphan NamingContext Objects
	Federating the Namespace
	Inbound Federation
	Outbound Federation
	Federation Across WebLogic Enterprise Domains

	Managing Binding Iterators
	Using the CORBA Name Service in Secure WebLogic Enterprise Applications

	4 Developing an Application that Uses the CORBA Name Service
	Development Steps
	Step 1: Obtain the OMG IDL for the CosNaming Interfaces
	Step 2: Include the Client Stub for the CosNaming Interfaces
	Step 3: Connect to the WebLogic Enterprise Namespace
	Step 4: Bind an Object to the WebLogic Enterprise Namespace
	Step 5: Use a Name to Locate an Object in the WebLogic Enterprise Namespace

	5 Using the Name Service Sample Application
	How the Name Service Sample Application Works
	Building and Running the Name Service Sample Application
	Step 1: Copy the Files for the Name Service Sample Application into a Work Directory
	C++ Version of the Name Service Sample Application
	Java Version of the Name Service Sample Application

	Step 2: Change the Protection Attribute on the Files for the Name Service Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Name Service Sample Application


	Index

