
Creating CORBA Java

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Server Applications

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating CORBA Java Server Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Creating CORBA Java Server Applications iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Java Server Application Concepts
Overview ... 1-1

The Entities You Create to Build a WebLogic Enterprise Java Server
Application ... 1-3

The Implementation of the CORBA Objects for Your Java Server
Application.. 1-4

The Server Object... 1-8

Understanding Object References and Object State.. 1-10

Generating Object References.. 1-10

Managing Object State ... 1-11

Choosing Between Stateless and Stateful Objects .. 1-16

When You Want Stateless Objects... 1-17

When You Want Stateful Objects .. 1-18

Reading and Writing an Object’s Data .. 1-19

Using Design Patterns .. 1-25

2. Steps for Creating a Java Server Application
Summary of the Java Server Application Development Process 2-2

Step 1: Compile the OMG IDL File for the Server Application 2-3

iv Creating CORBA Java Server Applications

Using the m3idltojava Compiler .. 2-4

Step 2: Write the Methods That Implement Each Interface’s Operations......... 2-5

Creating an Object Implementation File .. 2-6

Implementing a Factory Object .. 2-6

Using Threads with WebLogic Enterprise ... 2-8

Step 3: Create the Server Object.. 2-8

Writing the Code That Creates and Registers a Factory2-10

Releasing the Server Application ... 2-11

Step 4: Compile the Java Source Files ..2-12

Step 5: Define the Object Activation and Transaction Policies 2-13

Specifying Policies in XML ... 2-13

Step 6: Verify the Environment Variables .. 2-15

Step 7: Finish the Server Description File...2-17

Step 8: Deploy the Server Application ..2-19

Development and Debugging Tips .. 2-21

Use of CORBA and WebLogic Enterprise Exceptions and the User Log2-21

Detecting Error Conditions in the Callback Methods 2-27

Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-28

3. Integrating Transactions into a Java Server Application
Overview of Transactions in the WebLogic Enterprise System........................ 3-2

Integrating Transactions in a WebLogic Enterprise Client
and Server Application ... 3-4

Making an Object Automatically Transactional... 3-5

Enabling an Object to Participate in a Transaction 3-6

Preventing an Object from Being Invoked While a Transaction
Is Scoped ... 3-7

Excluding an Object from an Ongoing Transaction................................... 3-8

Assigning Policies .. 3-9

Using an XA Resource Manager.. 3-9

Opening an XA Resource Manager.. 3-10

Closing an XA Resource Manager ... 3-10

Transactions and Object State Management.. 3-11

Delegating Object State Management to an XA Resource Manager 3-11

Waiting Until Transaction Work Is Complete Before Writing
to the Database ..3-11

Creating CORBA Java Server Applications v

Notes on Using Transactions in the WebLogic Enterprise System................. 3-13

4. Scaling a Java Server Application
Overview of the Scalability Features Available in the WebLogic Enterprise

System .. 4-2

Scaling a WebLogic Enterprise Server Application.. 4-3

Replicating Server Processes and Server Groups 4-4

Scaling the Application Via Object State Management........................... 4-11

Factory-based Routing ... 4-13

Enabling Multithreaded JavaServers.. 4-18

Additional Design Considerations for the Teller Object.......................... 4-20

How the Bankapp Server Application Can Be Scaled Further........................ 4-22

Index

vi Creating CORBA Java Server Applications

Creating CORBA Java Server Applications vii

About This Document

This document describes how programmers can implement key features in the BEA
WebLogic Enterprise™ (WLE) product to design and implement scalable,
high-performance, Java server applications that run in a WebLogic Enterprise domain.
The Java examples shown in this book are based on the sample applications described
in theGuide to the Java Sample Applications.

This document covers the following topics:

� Chapter 1, “Java Server Application Concepts,” presents a number of basic
concepts about creating WebLogic Enterprise server applications and describes
the programming entities you create for a WebLogic Enterprise server
application.

� Chapter 2, “Steps for Creating a Java Server Application,” lists and describes the
basic steps you follow to create a WebLogic Enterprise server application.

� Chapter 3, “Integrating Transactions into a Java Server Application,” describes
how the WebLogic Enterprise system supports transactions in a WebLogic
Enterprise domain and how you can implement transactions into your server
applications.

� Chapter 4, “Scaling a Java Server Application,” describes the key scalability
features that you can build into your WebLogic Enterprise applications to make
them highly scalable, including replicated server processes and groups,
factory-based routing, and object state management.

viii Creating CORBA Java Server Applications

What You Need to Know

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes you are knowledgeable with
the BEA Tuxedo® system, CORBA, and Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site athttp://www.adobe.com/.

How to Print the Document

Creating CORBA Java Server Applications ix

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see theBibliographyin the WebLogic Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atdocsupport@bea.comif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT atwww.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

x Creating CORBA Java Server Applications

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Documentation Conventions

Creating CORBA Java Server Applications xi

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Creating CORBA Java Server Applications

Creating CORBA Java Server Applications 1-1

CHAPTER

1 Java Server
Application Concepts

This topic includes the following WebLogic Enterprise sections:

� Overview

� The Entities You Create to Build a WebLogic Enterprise Java Server Application

� Understanding Object References and Object State

� Choosing Between Stateless and Stateful Objects

For background information about WebLogic Enterprise server applications and how
they work, seeGetting Started.

Overview

This section provides an overview of the Java server application creation process. The
file names shown are based on the Bankapp sample application that is included with
the WebLogic Enterprise software. Many steps have been omitted from this simple
overview. The purpose here is to give you an idea of the overall process, before you
read about CORBA object state management and other key concepts in the remainder
of this chapter, and before you read about detailed build steps in subsequent chapters.

1 Java Server Application Concepts

1-2 Creating CORBA Java Server Applications

To create a Java server application:

1. Create a text file that describes the interfaces for your CORBA objects.

The descriptions are written in the Object Management Group Interface
Definition Language (OMG IDL). For example, theBankApp.idl file describes
theTeller andTellerFactory interfaces.

2. Compile the IDL files by using them3idltojava compiler to generate, for each
interface, Java object implementation files, client stubs, server skeletons, Helper
classes, and Holder classes. Do not edit these files.

3. Copy each object implementation file to a new file.

For example, compiling theBankApp.idl file with the m3idltojava compiler
generates aTeller.java file and aTellerFactory.java file. To create Java
files that you can use as a starting point for adding your business logic and
object implementations, you can:

a. CopyTeller.java to TellerImpl.java

b. CopyTellerFactory.java to TellerFactoryImpl.java

4. Edit your object implementation files, adding the business logic to each object’s
methods.

5. Create the Server object, which is code that performs the initialize and release
functions for the server application.

6. Use thejavac compiler to compile all the*.java files into Java bytecodes
(*.class files).

7. Create a text file called a Server Description File, which is expressed in the XML
language.

To see a sample file, open theBankApp.xml file that is included with the
WebLogic Enterprise software in the following directory:

Windows NT

drive:\M3dir\samples\corba\bankapp_java\jdbc\

UNIX

/usr/local/M3dir/samples/corba/bankapp_java/jdbc/

In your Server Description File, you assign the activation and transaction
policies for the interfaces implemented in your server application. This XML file

The Entities You Create to Build a WebLogic Enterprise Java Server Application

Creating CORBA Java Server Applications 1-3

also contains a server declaration, which includes the name of the Server object
and the name of the server descriptor file (SER). You can also identify the Java
class files that comprise the server application’s Java Archive (JAR) file.

8. Compile the XML-based Server Description File with thebuildjavaserver

command and generate the SER file and JAR file.

9. Deploy your Java server application.

The Entities You Create to Build a WebLogic
Enterprise Java Server Application

To build a WebLogic Enterprise Java server application, you create the following
entities:

� The Java implementation of the CORBA objects that execute your server
application’s business logic. This topic is explained in the next section.

� The Java Server object, which performs the initialize and release functions for
the server application, and may perform other functions. This topic is explained
in the section “The Server Object” on page 1-8.

� A Java ARchive (JAR) file that contains the Java bytecodes (class files) that
comprise your server application. In the WebLogic Enterprise Java environment,
you can optionally use an<ARCHIVE>section of the Server Description File to
identify and collect the class files and packages. The Server Description File is
written in XML.

The JAR file also contains a server descriptor, which is a Java object that
contains information about all the servant classes implemented by the server
application, along with the policies attached to the interfaces. Also stored in the
JAR file is the name of the Server object that is used to initialize and stop the
server.

There are also a number of files that you work with that are generated by the
m3idltojava compiler and that you build into an WebLogic Enterprise server
application. These files are listed and described in Chapter 2, “Steps for Creating a
Java Server Application.”

1 Java Server Application Concepts

1-4 Creating CORBA Java Server Applications

The Implementation of the CORBA Objects for Your Java
Server Application

Having a clear understanding of what CORBA objects are, and how they are defined,
implemented, instantiated, and managed is critical for the person who is designing or
creating an WebLogic Enterprise Java server application.

The CORBA objects for which you have defined interfaces in the Object Management
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your WebLogic Enterprise Java server applications. All client application requests
involve invoking operations on a CORBA object. The code you write that implements
the operations defined for an interface is called an object implementation. For
example, in Java, the object implementation is a Java class.

This section discusses the following topics:

� How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

� How you implement the operations on a CORBA object

� How client applications access and manipulate your application’s CORBA
objects

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’s interface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA objects is that an object’s interface definition
is separate from its implementation. The definition for the interface establishes how the
operations on the interface must be implemented, including what the valid parameters
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for a given interface, the server application is
bound to do the following:

� Implement the operations defined for that interface

� Always use the parameters defined with each operation

The Entities You Create to Build a WebLogic Enterprise Java Server Application

Creating CORBA Java Server Applications 1-5

How the server application implements the operations may change over time. This is
acceptable behavior as long as the server application continues to meet the requirement
of implementing the defined interface and using the defined parameters. In this way,
the client stub is always a reliable proxy for the object implementation on the server
machine. This underscores one of the key architectural strengths of CORBA -- that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the object implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that a client request for an operation on an
object can be routed to the code in the server application that can satisfy the request.

Once the system designer has specified the interfaces of the business objects in the
application, the programmer’s job is to implement those interfaces. This book explains
how.

For more information about OMG IDL, seeCreating CORBA Client Applications.

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For Java, this code consists of a
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file.

In the WebLogic Enterprise Java environment, you define an object implementation
file by copying the interface .java file generated by them3idltojava compiler
and editing the copy. For example, using the file names in the Bankapp sample
application, copy theTeller.java file to TellerImpl.java . Then, you edit
TellerImpl.java , adding your business logic to create the Teller object’s
implementation file. The suggested modification steps are described in the section
“Creating an Object Implementation File” on page 2-6.

You also define the object’s default in-memory behavior in a separate file, the
XML-based Server Description File. In this XML file, you define the default activation
and transaction policies for each interface that is implemented in the server application.
You then provide this file as input to thebuildjavaserver command.

1 Java Server Application Concepts

1-6 Creating CORBA Java Server Applications

How Client Applications Access and Manipulate Your Application’s CORBA
Objects

Client applications access and manipulate the CORBA objects managed by the server
application viaobject referencesto those objects. Client applications invoke operations
(that is, requests) on an object reference. These requests are sent as messages to the
server application, which invokes the appropriate operations on CORBA objects. The
fact that these requests are sent to the server application and invoked in the server
application is completely transparent to the client; client applications appear simply to
be making invocations on the client stub.

Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in a way that is appropriate for
your application.

Typically, object references to CORBA objects are created in the WebLogic Enterprise
system byfactories. A factory is any CORBA object that returns, as one of its
operations, a reference to another CORBA object. You implement your application’s
factories the same way that you implement other CORBA objects defined for your
application.

You can make your factories widely known to the WebLogic Enterprise domain, and
to clients connected to the WebLogic Enterprise domain, by registering them with the
FactoryFinder. Registering a factory is an operation typically performed by the Server
object, which is described in the section “The Server Object” on page 1-8. For more
information about designing factories, see the section “Generating Object References”
on page 1-10.

The Content of an Object Reference

From the client application’s perspective, an object reference is opaque; it is like a
black box that client applications use without having to know what is inside. However,
object references contain all the information needed for the WebLogic Enterprise
system to locate a specific object instance and to locate any state data that is associated
with that object.

An object reference contains the following information:

� The interface name

This is the Interface Repository ID of the objects’ OMG IDL interface.

The Entities You Create to Build a WebLogic Enterprise Java Server Application

Creating CORBA Java Server Applications 1-7

� The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
a key that the server machine can use to locate the object’s data.

� Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes a request using that object reference. Generating
a nondefault group ID is part of a key WebLogic Enterprise feature called
factory-based routing, which is described in the section “Factory-based Routing”
on page 4-13.

Note: The combination of the three items in the preceding list uniquely identifies the
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously active in two different groups, if those two groups both
contain the same object implementation.

If you need to guarantee that only one object instance of a given interface name
and OID is available at any one time in your domain, either: use factory-based
routing to ensure that objects with a particular OID are always routed to the
same group, or configure your domain so that a given object implementation
is in only one group. This assures that if multiple clients have an object
reference containing a given interface name and OID, the reference is always
routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 4-13.

The Lifetime of an Object Reference

Object references created by server applications running in a WebLogic Enterprise
domain have a usable lifespan that extends beyond the life of the server process that
creates them. WebLogic Enterprise object references can be used by client applications
regardless of whether the server processes that originally created them are still running.
In this way, object references are not tied to a specific server process.

1 Java Server Application Concepts

1-8 Creating CORBA Java Server Applications

Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragment
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection.setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

org.omg.CORBA.Object myRef = TP.get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper.narrow(myRef);
connection.setFactoryRef(factoryRef);

The Server Object

The Java Server object is the other programming code entity that you create for an
WebLogic Enterprise server application. The Java Server object implements
operations that execute the following tasks:

� Performing basic server application initialization operations, which may include
registering factories managed by the server application and allocating resources
needed by the server application. If the server application is transactional, the
Server object also implements the code that opens an XA resource manager.

� Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
is transactional, the Server object also implements the code that closes the XA
resource manager.

You implement this Server object by creating a new class that derives from
com.beasys.Tobj.Server and overrides theinitialize andrelease methods. In
the server application code, you can also write a public default constructor. You create
the Server object class from scratch using a text editor.

For example:

import com.beasys.Tobj.*;

/**
* Provides code to initialize and stop the server invocation.
* BankAppServerImpl is specified in the BankApp.XML input file

The Entities You Create to Build a WebLogic Enterprise Java Server Application

Creating CORBA Java Server Applications 1-9

* as the name of the Server object.
*/

public class BankAppServerImpl
extends com.beasys.Tobj.Server {

public boolean initialize(string[] args)
throws com.beasys.TobjS.InitializeFailed;

public boolean release()
throws com.beasys.TobjS.ReleaseFailed;

}

In the XML-coded Server Description File, which you process with the
buildjavaserver command, you identify the name of the Server object.

Thecreate_servant method, used in the C++ environment of WebLogic Enterprise,
is not used in the Java environment. In Java, objects are created dynamically, without
prior knowledge of the classes being used.

In the Java environment of WebLogic Enterprise, a servant factory is used to retrieve
an implementation class, given the interface repository ID. This information is stored
in a server descriptor file created by thebuildjavaserver command for each
implementation class.

When a method request is received, and no servant is available for the interface, the
servant factory looks up the interface and creates an object of the appropriate
implementation class.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

For more information about creating the Server object, see Chapter 2, “Steps for
Creating a Java Server Application.”

1 Java Server Application Concepts

1-10 Creating CORBA Java Server Applications

Understanding Object References and
Object State

This section presents important background information about the following topics,
which have a major influence on how you design and implement WebLogic Enterprise
server applications:

� Generating object references

� Managing object state

� Reading and writing an object’s data stored on disk

� Using design patterns

It is not essential that you read these topics before proceeding to the next chapter;
however, this information is located here because it applies broadly to fundamental
design and implementation issues for all WebLogic Enterprise server applications.

Generating Object References

One of the most basic functions of a WebLogic Enterprise server application is
providing client applications with object references to the objects they need to execute
their business logic. WebLogic Enterprise client applications typically get object
references to the initial CORBA objects they use from the following two sources:

� The Bootstrap object

� Factories managed in the WebLogic Enterprise domain

Client applications use the Bootstrap object to resolve initial references to a specific
set of objects in the WebLogic Enterprise domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object is described inGetting Startedand in
Creating CORBA Client Applications.

Factories, however, are designed, implemented, and registered by you, and they
provide the means by which client applications get references to objects in the
WebLogic Enterprise server application, particularly the initial server application

Understanding Object References and Object State

Creating CORBA Java Server Applications 1-11

object. At its simplest, a factory is a CORBA object that returns an object reference to
another CORBA object. The client application typically invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. Planning
and implementing your factories carefully is an important task when developing
WebLogic Enterprise server applications.

Client applications are able to locate via the FactoryFinder the factories managed by
your server application. When you develop the Server object, you typically include
code that registers with the FactoryFinder any factories managed by the server
application.

It is via this registration operation that the FactoryFinder keeps track of your server
application’s factories and can provide object references to them to the client
applications that request them. We recommend that you use factories and register them
with the FactoryFinder; this model makes it simple for client applications to find the
objects in your WebLogic Enterprise server application.

Note: In WebLogic Enterprise 4.2, references to objects implemented in Java can be
created only by factories that are also implemented in Java. You cannot mix
and match factories and objects with regards to implementation language.

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput and
response time. The majority of high-throughput applications, such as applications you
run in a WebLogic Enterprise domain, tend to be stateless, meaning that the system
flushes state information from memory after a service or an operation has been
fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, it is difficult to manage state in these server applications in a way that scales
and performs well. The WebLogic Enterprise software provides an easy way to
manage state and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a WebLogic Enterprise server
application help the server application function well in an environment that includes
hundreds or thousands of client applications, multiple machines, replicated server
processes, and a proportionately greater number of objects and client invocations on
those objects.

1 Java Server Application Concepts

1-12 Creating CORBA Java Server Applications

About Object State

In a WebLogic Enterprise domain,object staterefers specifically to the process, or
in-memory, state of an object across client invocations on it. The WebLogic Enterprise
software uses the following definitions of stateless and stateful objects:

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent data in memory that is required to maintain context (state) between
operation invocations on those objects. Thus, subsequent invocations on such a stateful
object always go to the same servant. Conversely, invocations on a stateless object can
be directed by the WebLogic Enterprise system to any available server process that can
activate the object.

State management also involves how long an object remains active, which has
important implications on server performance and the use of machine resources. The
section “How to Manage Object State” on page 1-13 explains the various mechanisms
the WebLogic Enterprise system provides to control object state.

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocation
is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.

Stateful The object remains activated between invocations on it, and its
state is maintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

� The server process in which the object exists is stopped or is
shut down.

� The transaction in which the object is participating is either
committed or rolled back.

� The object invokes the
com.beasys.Tobj.TP.deactivateEnable method
on itself and the method completes.

Each of these events is discussed in more detail in this section.

Understanding Object References and Object State

Creating CORBA Java Server Applications 1-13

Object state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available for
additional requests, and the object appears to be maintained continuously in memory
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durable
storage, if applicable, before they are deactivated. Objects must also restore their state
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-19.

How to Manage Object State

WebLogic Enterprise provides two basic means to control object state:

� By definingobject activation policieson an object’s interface in the Server
Description File. Object activation policies are described in the section “Object
Activation Policies” on page 1-13.

� By using a TP Framework feature calledapplication-controlled deactivation,
described in the section “Application-controlled Deactivation” on page 1-15.

Object Activation Policies

The WebLogic Enterprise system provides three object activation policies that you can
assign to an object’s interface to determine how long an object remains in memory
after it has been invoked by a client request. These policies determine whether the
object to which they apply is generally stateless or stateful.

The three policies are listed and described in the following table.

1 Java Server Application Concepts

1-14 Creating CORBA Java Server Applications

Policy Description

Method Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called amethod-bound object.

Themethod activation policy is associated with stateless
objects. This activation policy is the default.

Transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called atransaction-bound object.

For more information about object behavior within the scope of
a transaction, and general guidelines about using this policy,
see Chapter 3, “Integrating Transactions into a Java Server
Application.”

The transaction activation policy is associated with
stateful objects for a limited time and under specific
circumstances.

Process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only under the following
circumstances:

� The server process that manages this object is shut down.

� An operation on this object invokes the
com.beasys.Tobj.TP.deactivateEnable
method, which causes this object to be deactivated when
the method completes. (This is part of a key WebLogic
Enterprise feature called application-controlled
deactivation, which is described in the section
“Application-controlled Deactivation” on page 1-15.

An object with this activation policy is called aprocess-bound
object.Theprocess activation policy is associated with
stateful objects.

Understanding Object References and Object State

Creating CORBA Java Server Applications 1-15

You determine what events cause an object to be deactivated by assigning object
activation policies. For more information about how you assign object activation
policies to an object’s interface, see the section “Step 5: Define the Object Activation
and Transaction Policies” on page 2-13.

Application-controlled Deactivation

Application-controlled deactivation provides a means for an application to deactivate
an object during run time. The TP Framework provides the
com.beasys.Tobj.TP.deactivateEnable method, which a process-bound object
can invoke on itself. When invoked, thedeactivateEnable method causes the object
in which it exists to be deactivated upon completion of the current client invocation on
that object. An object can invoke this method only on itself; you cannot invoke this
method on any object but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want an
object to remain in memory for the duration of a limited number of client invocations
on it, and you want the client application to be able to tell the object that the client is
finished with the object. At this point, the object takes itself out of memory.

Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated as a
result of a client invocation on it, and it remains in memory after the initial client
invocation on it is completed. You can then deactivate the object without having to
shut down the server process in which the object exists.

An alternative to application-controlled deactivation is to scope a transaction to
maintain a conversation between a client application and an object; however,
transactions are inherently more costly, and transactions are generally inappropriate in
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involves writing data to disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
com.beasys.Tobj.TP.deactivateEnable method. Otherwise, the object

1 Java Server Application Concepts

1-16 Creating CORBA Java Server Applications

remains idle in memory indefinitely. (Note that this can be a risk if the client
application crashes before thedeactivateEnable method is invoked.
Transactions, on the other hand, implement a time-out mechanism to prevent
the situation in which the object remains idle for an indefinite period. This may
be another consideration when choosing between the two conversational
models.)

You implement application-controlled deactivation in an object using the following
procedure:

1. In the implementation file, insert an invocation to thedeactivateEnable method
at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. In the Server Description File (XML), assign theprocess activation policy to
the interface that contains the operation that invokes thedeactivateEnable

method.

3. Build and deploy your application as described in the sections “Step 7: Finish the
Server Description File” on page 2-17 and “Step 8: Deploy the Server
Application” on page 2-19.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing stateless objects against the
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive
(because, for example, the object’s data takes up a great deal of space, or the durable
state is located on a disk very remote to the servant that activates it), it may make sense
to keep the object stateful, even if the object is idle during a conversation. In the case
where the cost to keep an object active is expensive in terms of machine resource
usage, it may make sense to make such an object stateless.

Choosing Between Stateless and Stateful Objects

Creating CORBA Java Server Applications 1-17

By managing object state in a way that is efficient and appropriate for your application,
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. You generally do this by
assigning themethod activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to other
object instances. However, your specific application characteristics and needs may
vary.

When You Want Stateless Objects

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

� The client application typically waits for user input between invocations on the
object.

� The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

� The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a stateless object
model:

� Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

� An incoming client request is sent to the first available server process. After the
request has been satisfied, the application state vanishes and the server
application is available for another client application request.

� Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

1 Java Server Application Concepts

1-18 Creating CORBA Java Server Applications

� The WebLogic Enterprise domain may direct successive requests on an object
from a given client application to a different server process.

� The overall system performance of a machine that is running stateless objects is
usually enhanced.

When You Want Stateful Objects

A stateful object, once activated, remains in memory until a specific event occurs, such
as the process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

� When an object is used very frequently by a large number of client applications.
This is the case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active objects
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in a transaction.
Any object that is involved in a transaction cannot be invoked by another client
application or object. Process objects meant to be used by a large number of
client applications can create problems if they are involved in transactions
frequently or for long durations.

� When a client application must invoke successive operations on an object to
complete a transaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

� State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

Choosing Between Stateless and Stateful Objects

Creating CORBA Java Server Applications 1-19

� Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

� In cases where one or more stateful objects are using a lot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a stateless server model.

For example, if an object has a lock on a database and is caching a lot of data in
memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction.

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have data that is
in external storage. This externally stored data may be regarded as thepersistentor
durablestate of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server
application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s data is stored or initialized while the object is
active.

The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice about how to read and write object
state under specific circumstances. The specific topics presented include:

� The available mechanisms for reading and writing an object’s durable state

� Reading state at object activation

� Reading state within individual operations on an object

� Stateless objects and durable state

� Stateful objects and durable state

� Your responsibilities for object deactivation

1 Java Server Application Concepts

1-20 Creating CORBA Java Server Applications

� Avoiding unnecessary I/O

How you choose to read and write durable state invariably depends on the specific
requirements of your client/server application, especially with regard to how the data
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager is
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the available mechanisms for reading and writing an
object’s durable state.

Table 1-1 Available Mechanisms for Reading an Object’s Durable State

Mechanism Description

com.beasys.
Tobj_Servant.
activate_object
method

After the TP Framework creates the servant for an object, the
TP Framework invokes theactivate_object method on
that servant. This method is defined on theTobj_Servant
class, from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the
activate_object method on your object, in which case
nothing happens regarding specific object state handling when
the TP Framework activates your object. However, if you
define and implement this method, you can choose to include
code in this method that reads some or all of an object’s durable
state into memory. Therefore, theactivate_object
method provides your server application with its first
opportunity to read an object’s durable state into memory.

Note that if an object’s OID contains a database key, the
activate_object method provides the only means the
object has to extract that key from the OID.

For more information about implementing the
activate_object method, see “Step 2: Write the Methods
That Implement Each Interface’s Operations” on page 2-5.

Operations on the object You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.

Choosing Between Stateless and Stateful Objects

Creating CORBA Java Server Applications 1-21

Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Note: If you use thedeactivate_object method to write any durable state to disk,
any errors that occur while writing to disk are not reported to the client
application. Therefore, the only circumstances under which you should write
data to disk in this operation is when the object is transaction-bound (that is, it
has thetransaction activation policy assigned to it), or you scope the disk
write operations within a transaction by invoking theTransactionCurrent

object.

Mechanism Description

com.beasys.
Tobj_Servant.
deactivate_object
method

When an object is being deactivated by the TP Framework, the
TP Framework invokes this operation on the object as the final
step of object deactivation. As with theactivate_object
method, thedeactivate_object method is defined on the
Tobj_Servant class. You implement the
deactivate_object method on your object optionally if
you have specific object state that you want flushed from
memory or written to a database.

Thedeactivate_object method provides the final
opportunity your server application has to write durable state to
disk before the object is deactivated.

If your object keeps any data in memory, or allocates memory
for any purpose, you implement thedeactivate_object
method so your object has a final opportunity to flush that data
from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object As you may have individual operations on the objects that read
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in thedeactivate_object method.

For transaction-bound objects, however, writing durable state
in thedeactivate_object method provides a number of
object management efficiencies that may make sense for your
transactional server applications.

1 Java Server Application Concepts

1-22 Creating CORBA Java Server Applications

Any errors encountered while writing to disk during a transaction can be
reported back to the client application. For more information about using the
deactivate_object method to write object state to disk, see the section
“Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object”
on page 2-28.

Reading State at Object Activation

Using thecom.beasys.Tobj_Servant.activate_object method on an object to
read durable state may be appropriate when either of the following conditions exist:

� Object data is always used or updated in all the object’s operations.

� All the object’s data is capable of being read in one operation.

The advantages of using theactivate_object method to read durable state include:

� You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

� None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in a way that is independent
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outside
thecom.beasys.Tobj_Servant.activate_object method. Cases where this
approach may be appropriate include the following:

� Object state is made up of discrete data elements that require multiple operations
to read or write.

� Objects do not always use or update state data at object activation.

For example, consider an object that represents a customer’s investment portfolio. The
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-purposeactivate_object

method that automatically reads in the entire investment portfolio each time the object
is invoked.

Choosing Between Stateless and Stateful Objects

Creating CORBA Java Server Applications 1-23

Stateless Objects and Durable State

In the case of stateless objects -- that is, objects defined with themethod activation
policy -- you must ensure the following:

� That any durable state needed by the request is brought into memory by the time
the operation’s business logic starts executing.

� That any changes to the durable state are written out by the end of the
invocation.

The TP Framework invokes thecom.beasys.Tobj_Servant.activate_object

method on an object at activation. If an object has an OID that contains a key to the
object’s durable state on disk, theactivate_object method provides the only
opportunity the object has to retrieve that key from the OID.

If you have a stateless object that you want to be able to participate in a transaction, we
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a stateless object that
is always transactional -- that is, a transaction is always scoped when this object is
invoked -- you have the option to handle the database write operations in the
deactivate_object method, because you have a reliable mechanism in the XA
resource manager to commit or roll back database write operations accurately.

Note: Even if your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
same time. In this case, you may want to consider a concurrency management
technique, the easiest of which is transactions. For more information about
transactions and transactional objects, see Chapter 3, “Integrating
Transactions into a Java Server Application.”

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point where it
is needed. This may introduce the following optimizations:

� In the case of process-bound objects, you avoid the situation in which an object
allocates a large amount of memory over a long period.

� In the case of transaction-bound objects, you can postpone writing durable state
until thecom.beasys.Tobj_Servant.deactivate_object method is
invoked, when the transaction outcome is known.

1 Java Server Application Concepts

1-24 Creating CORBA Java Server Applications

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: Data written to external storage that is not managed by an XA resource
manager will not be coordinated within the scope of a transaction; if the
transaction is rolled back, the data is not rolled back.

For more information about objects and transactions, see Chapter 3, “Integrating
Transactions into a Java Server Application.”

Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the
com.beasys.Tobj_Servant.deactivate_object method to write an object’s
durable state to disk. You should also implement this operation on an object to flush
any remaining object data from memory so that the object’s servant can be used to
activate another instance of that object. You should not assume that an invocation to
an object’sdeactivate_object method also results in an invocation of that object’s
destructor.

Avoiding Unnecessary I/O

Be careful not to introduce inefficiencies into the application by doing unnecessary I/O
in objects. Situations to be aware of include the following:

� If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Design
these objects so that they handle state only in the operations that need it; in such
cases, you may not want to have all of the object’s durable state read in at object
activation.

� If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

� Read only the state that is common to all the operations in the
com.beasys.Tobj_Servant.activate_object method. Defer the reading
of additional state to only the operations that require it.

� Write out only the state that has changed. You can do this by managing flags
that indicate the data that was changed during an activation, or by comparing
before and after data images.

Choosing Between Stateless and Stateful Objects

Creating CORBA Java Server Applications 1-25

A general optimization is to initialize adirtyState flag on activation and to
write data in thecom.beasys.Tobj_Servant.deactivate_object

method only if the flag has been changed while the object was active.

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activated,
seeGetting Started.

Using Design Patterns

It is important to structure the business logic of your application around a well-formed
design. The WebLogic Enterprise software provides a set of design patterns to address
this need. A design pattern is simply a structured solution to a specific design problem.
The value of a design pattern lies in its ability to be expressed in a form you can reuse
and apply to other design problems.

The WebLogic Enterprise design patterns are structured solutions to enterprise-class
application design problems. You can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practices in
WebLogic Enterprise client and server applications. They are an important and integral
part of designing WebLogic Enterprise client and server applications, and the chapters
in this book show examples of using these design patterns to implement the Bankapp
sample applications.

The Process-Entity design pattern applies to a large segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight pattern in
Object-Oriented Design Patterns, Gamma et al., and as the Model-View-Controller in
other publications.

In this pattern, the client application creates a long-lived process object that the client
application interacts with to make requests. For example, in the WebLogic Enterprise
University sample applications, this object might be the registrar that handles course
browsing operations on behalf of the client application. The courses themselves are
database entities and are not made visible to the client application.

1 Java Server Application Concepts

1-26 Creating CORBA Java Server Applications

The advantages of the Process-Entity design pattern include:

� You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBAstruct datatypes
to simulate objects.

� Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of objects
that would need to be handled could overwhelm the machine’s resources quickly
in a large-scale deployment.

� Because they are not exposed to the client application, database entities need not
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individual
who serves as the registrar at a university can handle a large course database for
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

For complete details on the Process-Entity design pattern, seeTechnical Articleson the
Online Documentation CD.

Creating CORBA Java Server Applications 2-1

CHAPTER

2 Steps for Creating a
Java Server
Application

This chapter describes the basic steps involved in creating a WebLogic Enterprise Java
server application. The steps shown in this chapter are not definitive; there may be
other steps you may need to take for your particular server application, and you may
want to change the order in which you follow some of these steps. However, the
development process for every WebLogic Enterprise server application has each of
these steps in common.

This topic includes the following sections:

� Summary of the Java Server Application Development Process

� Development and Debugging Tips

This chapter begins with a summary of the steps, and also lists the development tools
and commands used throughout this book. Your particular deployment environment
might use additional software development tools, so the tools and commands listed and
described in this chapter are also not definitive.

The chapter uses examples from the Bankapp sample application, which is provided
with the WebLogic Enterprise software. For complete details about the sample
application, see theGuide to the Java Sample Applications. For complete information
about the tools and commands used throughout this book, see theCommands, System
Processes, and MIB Reference.

2 Steps for Creating a Java Server Application

2-2 Creating CORBA Java Server Applications

Summary of the Java Server Application
Development Process

The basic steps involved in the creation of a server application are summarized in the
following table:

Step 1: Compile the OMG IDL File for the Server Application
Step 2: Write the Methods That Implement Each Interface’s Operations
Step 3: Create the Server Object
Step 4: Compile the Java Source Files
Step 5: Define the Object Activation and Transaction Policies
Step 6: Verify the Environment Variables
Step 7: Finish the Server Description File
Step 8: Deploy the Server Application

The WebLogic Enterprise software also provides the following development tools and
commands:

Tool Description

m3idltojava Compiles your application’s OMG IDL file.

buildjavaserver Creates a JAR file containing your Java server class files; also
creates a server descriptor file (SER).

buildXAJS For applications that use an XA-compliant resource manager,
creates an XA-specific version of the JavaServer.

tmloadcf Creates theTUXCONFIGfile, a binary file for the WebLogic
Enterprise domain that specifies the configuration of your
server application.

tmadmin Among other things, creates a log of transactional activities,
which is used in some of the sample applications.

Step 1: Compile the OMG IDL File for the Server Application

Creating CORBA Java Server Applications 2-3

Step 1: Compile the OMG IDL File for the
Server Application

The basic structure of the client and server portions of the application that runs in the
WebLogic Enterprise domain are determined by statements in the application’s OMG
IDL file. When you compile your application’s OMG IDL file, them3idltojava

compiler generates many files, some of which are shown in the following diagram:

// BankApp.IDL

module BankApp {
.
.
.

interface Telle r { . . . }

interface TellerFactor y { . . . }
}

Teller.java

_TellerStub.java
Client Stub

_TellerImplBase.java
Server Skeleton

TellerHolder.java
Holder Class

TellerHelper.java
Helper Class

TellerFactory.java

_TellerFactoryStub.java
Client Stub

_TellerFactoryImplBase.java
Server Skeleton

TellerFactoryHolder.java
Holder Class

TellerFactoryHelper.java
Helper Class

m3idltojava
Compiler

2 Steps for Creating a Java Server Application

2-4 Creating CORBA Java Server Applications

The preceding diagram shows some of the files generated when the sample
BankApp.IDL file is compiled by them3idltojava command.

These files are described in Table 2-1.

Note: Do not modify these files.

Table 2-1 Sample Files Produced by the m3idltojava Compiler

Using the m3idltojava Compiler

To generate the files listed in Table 2-1, enter the following command:

m3idltojava [options] idl-filename

File Default Name Description

Base interface class
file

interface .java Contains an implementation of the interface, written
in Java.

Copy this file to create a new file and add your
business logic to the new file. By convention in our
samples and in this document, we name this file
interfaceImpl.java , substituting the actual
name of the interface in the file name. We call this
new file an object implementation file.

Client stub file _interface Stub.java Contains generated code for sending a request.

Server skeleton file _interface ImplBase.java Contains Java skeletons for each interface specified
in the OMG IDL file. The skeleton maps client
requests to the appropriate operation in the Java
server application during run time.

Holder class file interface Holder.java Contains the implementation of the Holder class. The
Holder class provides operations forout andinout
arguments, which CORBA has, but which do not
map exactly to Java.

Helper class file interface Helper.java Contains the implementation of the Helper class. The
Helper class provides auxiliary functionality, notably
thenarrow method.

Step 2: Write the Methods That Implement Each Interface’s Operations

Creating CORBA Java Server Applications 2-5

In them3idltojava command syntax:

� options represents one or more command-line options to the IDL compiler. The
command-line options are described in theCommands, System Processes, and
MIB Reference.

� idl-filename represents the name of your application’s OMG IDL file.

For more information about them3idltojava compiler, including details on the
m3idltojava command, see theCommands, System Processes, and MIB Reference.

Note: Them3idltojava compiler supports all the functionality provided by the
idltojava compiler from Sun Microsystems, Inc. For more information
about theidltojava compiler, refer to the following Web site:

http://java.sun.com/products/jdk/idl/

Step 2: Write the Methods That Implement
Each Interface’s Operations

As the server application programmer, your task is to write the methods that implement
the operations for each interface you have defined in your application’s OMG IDL file.

The Java object implementation file contains:

� Method declarations for each operation specified in the OMG IDL file

� Your application’s business logic

� Constructors for each interface implementation (implementing these is optional)

� Optionally, thecom.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object methods

Within theactivate_object anddeactivate_object methods, you write
code that performs any particular steps related to activating or deactivating an
object. This includes reading and writing the object’s durable state from and to
disk, respectively. For background information on this topic, see the section
“Reading and Writing an Object’s Data” on page 1-19.

2 Steps for Creating a Java Server Application

2-6 Creating CORBA Java Server Applications

Creating an Object Implementation File

Although you can create your server application’s object implementation file
manually, you can save time and effort by using them3idltojava compiler to
generate a file for each interface. Theinterface .java file contains Java signatures
for the methods that implement each of the operations defined for your application’s
interfaces.

To take advantage of this shortcut, use the following steps:

1. Create a copy of theinterface .java file, which was created when you compiled
your OMG IDL file with them3idltojava command, and name it
interface Impl.java . For example, using the Bankapp sample file names, you
would copyTeller.java to a new file namedTellerImpl.java .

2. Open the newinterface Impl.java file. For example, in the previously
uneditedTellerImpl.java file, we changed:

public interface Teller extends org.omg.CORBA.Object {

to:

public class TellerImpl extends Bankapp._TellerImplBase {

Bankapp._TellerImplBase is the class defined in the server skeleton file that
was generated by them3idltojava compiler for theTeller object.

3. For each method inTellerImpl.java , we added thepublic keyword. For
example, we changed:

float deposit(int accountID, float amount)

to:

public float deposit(int accountID, float amount)

Repeat this procedure to createinterface Impl.java object implementation files for
your interfaces, and add the business logic for your Java server application.

Implementing a Factory Object

As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-6, you need to create factories so that client
applications can easily locate the objects managed by your server application. A

Step 2: Write the Methods That Implement Each Interface’s Operations

Creating CORBA Java Server Applications 2-7

factory is like any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering a factory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-10.

The primary function of a factory is to create object references, which it does by
invoking thecom.beasys.Tobj.TP.create_object_reference method. The
create_object_reference method requires the following input parameters:

� The Interface Repository ID of the object’s OMG IDL interface

� The object ID (OID) in string format

� Optionally, routing criteria

For example, in the Bankapp sample application, theTellerFactory interface
specifies the following operations in theTellerFactoryImpl.java file.

Note: In this code fragment, the Import statement appeared earlier in the source file
and is not shown here.

org.omg.CORBA.Object teller_oref =
TP.create_object_reference(
BankApp.TellerHelper.id(), // Repository ID
tellerName, // Object ID
null // Routing Criteria
);

In the previous code example, notice the following:

� The following parameter specifies theTeller object’s Interface Repository ID
by extracting it from its typecode:

BankApp.TellerHelper.id()

� Thenull parameter specifies that no routing criteria are used, with the result
that an object reference created for theTeller object is routed to the same
group as theTellerFactory object that created the object reference.

For information about specifying routing criteria that affect the group to which
object references are routed, see Chapter 4, “Scaling a Java Server Application.”

Note: In WebLogic Enterprise 4.2, references to objects implemented in Java can be
created only by factories that are also implemented in Java. You cannot mix
and match factories and objects with regards to implementation language.

2 Steps for Creating a Java Server Application

2-8 Creating CORBA Java Server Applications

Using Threads with WebLogic Enterprise

WebLogic Enterprise supports the ability to configure multithreaded JavaServers. For
each JavaServer, you can establish the maximum number of threads in the
application’sUBBCONFIGfile.

For information about the tradeoffs of using single-threaded JavaServers or
multithreaded JavaServers, see the section “Enabling Multithreaded JavaServers” on
page 4-18. For information about defining theUBBCONFIGparameters, see Chapter 3
of theAdministration Guide.

Step 3: Create the Server Object

In Java, you use a Server object to initialize and release the server application. You
implement this Server object by creating a new class that derives from the
com.beasys.Tobj.Server class and overrides theinitialize andrelease

methods. In the server application code, you can also write a public default constructor.

For example:

import com.beasys.Tobj.*;

/**
* Provides code to initialize and stop the server invocation.
* BankAppServerImpl is specified in the BankApp.xml input file
* as the name of the Server object.
*/

public class BankAppServerImpl
extends com.beasys.Tobj.Server {

public boolean initialize(string[] args)
throws com.beasys.TobjS.InitializeFailed;

public boolean release()
throws com.beasys.TobjS.ReleaseFailed;

}

In the XML-coded Server Description File, which you process with the
buildjavaserver command, you identify the name of the Server object.

Step 3: Create the Server Object

Creating CORBA Java Server Applications 2-9

Thecreate_servant method, used in the C++ environment of WebLogic Enterprise,
is not used in the Java environment. In Java, objects are created dynamically, without
prior knowledge of the classes being used. In the Java environment of WebLogic
Enterprise, a servant factory is used to retrieve an implementation class, given the
interface repository ID. This information is stored in a server descriptor file created by
thebuildjavaserver command for each implementation class. When a method
request is received, and no servant is available for the interface, the servant factory
looks up the interface and creates an object of the appropriate implementation class.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

When your Java server application starts, the TP Framework creates the Server object
specified in the XML file. Then, the TP Framework invokes theinitialize method.
If the method returns true, the server application starts. If the method throws the
com.beasys.TobjS.InitializeFailed exception, or returnsfalse , the server
application does not start.

When the server application shuts down, the TP Framework invokes therelease

method on the Server object.

Any command-line options specified in theCLOPTparameter for your specific server
application in theSERVERSsection of the WebLogic Enterprise domain’sUBBCONFIG

file are passed to thepublic boolean initialize(string[] args) operation as
args . For more information about passing arguments to the server application, see the
Administration Guide. For examples of passing arguments to the server application,
see theGuide to the Java Sample Applications.

Within the initialize method, you can include code that does the following, if
applicable:

� Creates and registers factories

� Allocates any machine resources

� Initializes any global variables needed by the server application

� Opens the databases used by the server application

� Opens the XA resource manager

2 Steps for Creating a Java Server Application

2-10 Creating CORBA Java Server Applications

Writing the Code That Creates and Registers a Factory

If your server application manages a factory that you want client applications to be able
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which is invoked typically as the final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, do the
following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory Object” on page 2-6. In this step, you include an
invocation to thecom.beasys.Tobj.TP.create_object_reference method,
specifying the Interface Repository ID of the factory’s OMG IDL interface.The
following Bankapp example, from theBankAppServerImpl.java file, creates
an object reference, represented by the variablefact_oref , to the
TellerFactory factory:

// Save the Teller factory name.
tellerFName = new String(args[0]);

// Create the Teller factory object reference.

fact_oref = TP.create_object_reference(
BankApp.TellerFactoryHelper.id(), // factory Repository id
tellerFName, // object id
null // no routing criteria
);

2. Register the factory with the WebLogic Enterprise domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

// Register the factory reference with the factory finder.

TP.register_factory(
fact_oref, // factory object reference
tellerFName // factory name
);

Thecom.beasys.Tobj.TP.register_factory method registers the server
application’s factories with the FactoryFinder object. This operation requires the
following input parameters:

Step 3: Create the Server Object

Creating CORBA Java Server Applications 2-11

� The object reference for the factory, created in step 1 above.

� A string identifier, which in the Bankapp example is based on the Teller
factory name that is specified as a command-line option in the CLOPT
parameter for the Bankapp server application. This string is used in the call
to thecom.beasys.Tobj.TP.unregister_factory method. It is also
used in the invocation of thefind_one_factory_by_id method that is
called by clients of this interface.

Releasing the Server Application

When the WebLogic Enterprise system administrator enters thetmshutdown

command, the TP Framework invokes the following operation in the Server object of
each running server application in the WebLogic Enterprise domain:

public void release()

Within the release() operation, you may perform any application-specific cleanup
tasks that are specific to the server application, such as:

� Unregistering object factories managed by the server application

� Deallocating resources

� Closing any databases

� Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process
contains an invocation in itsrelease() operation to the first server process.

During server shutdown, you may want to include an invocation to unregister each of
the server application’s factories. For example, the following example is from the
BankAppServerImpl.java file:

// Unregister the factory.
// Use a try block since cleanup code shouldn't throw exceptions.

try {
TP.unregister_factory(

2 Steps for Creating a Java Server Application

2-12 Creating CORBA Java Server Applications

fact_oref, // factory object reference
TellerFName // factory interface id

);

} catch (Exception e){
TP.userlog("Couldn't unregister the TellerFactory: " +
e.getMessage());
e.printStackTrace();

}

The invocation of thecom.beasys.Tobj.TP.unregister_factory method should
be one of the first actions in therelease() implementation. The
unregister_factory method unregisters the server application’s factories. This
operation requires the following input arguments:

� The object reference for the factory

� A string identifier, which in the Bankapp sample is based on the Teller factory
name that is specified as a command-line option in the CLOPT parameter for the
Bankapp server application

Step 4: Compile the Java Source Files

After you have implemented your application’s objects and the Server object, use the
javac compiler to create the bytecodes for all the class files that comprise your
application. This set of files includes the*.java source files generated by the
m3idltojava compiler, plus the object implementation files and server class file that
you created.

Step 5: Define the Object Activation and Transaction Policies

Creating CORBA Java Server Applications 2-13

Step 5: Define the Object Activation and
Transaction Policies

As stated in the section “Managing Object State” on page 1-11, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify default object activation and transaction policies in the Server Description
File, which is expressed in XML, and you implement application-controlled
deactivation via thecom.beasys.Tobj.TP.deactivateEnable method in your Java
code. This section explains how you implement one of the mechanisms, using the
Bankapp WebLogic Enterprise sample application as an example.

Specifying Policies in XML

The WebLogic Enterprise software supports the following activation policies,
described in “Object Activation Policies” on page 1-13:

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:

� The process in which the server application exists is shut
down.

� The object has invoked the
com.beasys.Tobj.TP.deactivateEnable method
on itself.

2 Steps for Creating a Java Server Application

2-14 Creating CORBA Java Server Applications

The WebLogic Enterprise software also supports the following transaction policies,
described in Chapter 3, “Integrating Transactions into a Java Server Application”:

To assign these policies to the objects in your application, create the Server
Description File, which is written in the Extensible Markup Language (XML). Specify
the activation policies for each of your application’s interfaces.

Note: For information about the XML tags used with the WebLogic Enterprise
Server Description File, see theCORBA Java Programming Reference.

Transaction Policy Description

always When an operation on this object is invoked, this policy causes the
TP Framework to begin a transaction for this object, if there is not
already an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

If always is specified, theAUTOTRANparameter in the
application’sUBBCONFIGfile is ignored.

optional The implementation may be transactional. Objects can be invoked
either inside or outside the scope of a transaction. If the
AUTOTRANparameter is enabled in the application’s
UBBCONFIGfile, the implementation is transactional. Servers
containing transactional objects must be configured within a
group associated with an XA-compliant resource manager.

Optional is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.

If never is specified, theAUTOTRANparameter in the
application’sUBBCONFIGfile is ignored.

ignore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

If ignore is specified, theAUTOTRANparameter in the
application’sUBBCONFIGfile is ignored.

Step 6: Verify the Environment Variables

Creating CORBA Java Server Applications 2-15

The following example shows a portion of theBankApp.xml file that was created for
the WebLogic Enterprise Bankapp sample application. Notice that there are no default
policy settings in the XML file; the policies are explicitly assigned.

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

<M3-SERVER
server-implementation="com.beasys.samples.BankAppServerImpl"

server-descriptor-name="BankApp.ser">

<MODULE name="com.beasys.samples">
<IMPLEMENTATION

name="TellerFactoryImpl"
activation="process"
transaction="never"

/>

<IMPLEMENTATION
name="TellerImpl"
activation="method"
transaction="never"

/>

<IMPLEMENTATION
name="DBAccessImpl"
activation="method"
transaction="never"

/>
</MODULE>

.

.

.
</M3-SERVER>

Step 6: Verify the Environment Variables

Several environment variables are defined by the WebLogic Enterprise software when
the product is installed, but it is always a good idea to verify the following key
environment variables prior to thebuildjavaserver compilation step. The
environment variables are:

2 Steps for Creating a Java Server Application

2-16 Creating CORBA Java Server Applications

� JAVA_HOME, the directory where the JDK is installed

� CLASSPATH, which must point to:

� The location of the WebLogic Enterprise JAR archive, which contains all the
class files

� The location of the WebLogic Enterprise message catalogs

� TUXDIR, the directory where the WebLogic Enterprise software is installed

To verify whether an environment variable has been set, you can use theecho

command, as shown in the following examples:

Windows NT

echo %JAVA_HOME%

Solaris

echo $JAVA_HOME

If you discover that required WebLogic Enterprise system variables are not set on your
system, you can set them as shown in the following examples.

Windows NT

set JAVA_HOME=c:\jdk1.2

set CLASSPATH=.;%TUXDIR%\udataobj\java\jdk\m3.jar;%TUXDIR%\locale\java\M3

set PATH=%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;%JAVA_HOME%\jre\bin\classic;
%TUXDIR%\lib;%TUXDIR%\bin;%PATH%

Solaris

JAVA_HOME=/usr/kits/jdk1.2

CLASSPATH=.:$TUXDIR/udataobj/java/jdk/M3.jar:$TUXDIR/locale/java/M3

PATH=$JAVA_HOME/bin:$TUXDIR/bin:$PATH

LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/sparc/native_threads:
$JAVA_HOME/jre/lib/sparc/classic:$JAVA_HOME/jre/lib/sparc:$TUXDIR/lib

THREADS_FLAG=native

export JAVA_HOME CLASSPATH PATH LD_LIBRARY_PATH THREADS_FLAG

Step 7: Finish the Server Description File

Creating CORBA Java Server Applications 2-17

Note that during the deployment step, you must also define the environment variables
APPDIR andTUXCONFIG. These variables are described in subsequent sections of this
chapter.

Step 7: Finish the Server Description File

After you have compiled the Java source code and defined the environment variables,
enter additional information in the XML-based Server Description File, and then
supply the Server Description File as input to thebuildjavaserver command.

Edit your Server Description File to identify the Server object and the name of the file
that will contain your Java application’s server descriptor. This portion of the XML file
is called the server declaration; its location in the file is immediately after the prolog.
The required prolog contains the following two lines:

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

Note: TheDTDfile type stands for Document Type Definition. In XML, a DTD file
is used to specify software descriptions or to format documents. Them3.dtd

file is supplied by the WebLogic Enterprise system and specifies the set of
elements (or tags, such as<IMPLEMENTATION>) that are parsed by the
buildjavaserver compiler. The compiler understands the attributes
attached to each element, and which elements can be used with another
element.

The server declaration used in the sampleBankApp.xml file is as follows:

<M3-SERVER
server-implementation="com.beasys.samples.BankAppServerImpl"
server-descriptor-name="BankApp.ser">

In the XML file for your Java server application, you can also include elements that
will causebuildjavaserver to create a Java Archive (JAR) file. This section of the
XML file is optional, because you could use the JAR command to assemble your
application’s classes into a JAR file. However, the<ARCHIVE>element provides help
by simplifying the process of collecting the files.

For example, theBankApp.XML file contains the following elements:

2 Steps for Creating a Java Server Application

2-18 Creating CORBA Java Server Applications

<ARCHIVE name="BankApp.jar">
<PACKAGE-RECURSIVE name="com.beasys.samples"/>

</ARCHIVE>

The archive element must be the last element inside the<M3-SERVER>element. It must
be located after all the modules and implementations.

If the XML file contains instructions to create an archive, both the class specified by
server_name and the file specified byserver_descriptor are stored in the archive.
Theserver_descriptor file is inserted in the archive manifest with theM3-Server

tag; this insertion makes the server descriptor the entry point during server execution.

If you do not include the archive element, thebuildjavaserver command generates
only the server descriptor and writes it in the file specified in the
server-descriptor-name attribute of theM3-SERVERelement.

For more information about the elements and options in the XML-based Server
Description File, see theCORBA Java Programming Reference.

When you have completed your edit to the Server Description File, you are ready to
use thebuildjavaserver command. (This step assumes that you have already
defined the environment variables that are identified in the section “Step 6: Verify the
Environment Variables” on page 2-15.)

Thebuildjavaserver command has the following format:

buildjavaserver [-s searchpath] input_file .xml

In thebuildjavaserver command syntax:

� -s searchpath is used to locate the classes and packages when building the
archive. If this optional value is not specified, it defaults to the value of the
CLASSPATHenvironment variable.

� input_file is the name of the XML Server Description File.

Step 8: Deploy the Server Application

Creating CORBA Java Server Applications 2-19

Step 8: Deploy the Server Application

You or the system administrator deploy the WebLogic Enterprise server application by
using the procedure summarized in this section. For complete details on building and
deploying the WebLogic Enterprise Bankapp sample application, see theGuide to the
Java Sample Applications.

To deploy the server application:

1. Place the server application JAR file in the directory listed inAPPDIR. On NT
systems, this directory must be on a local drive (not a networked drive). On Solaris,
the directory can be local or remote.

2. If your Java server application uses an XA-compliant resource manager such as
Oracle, you must build an XA-specific version of the JavaServer by using the
buildXAJS command at a system prompt. Provide as input to the command the
resource manager that is associated with the server. In your application’s
UBBCONFIGfile, you also must use theJavaServerXA element in place of
JavaServer to associate the XA resource manager with a specified server group.
See theCommands, System Process, and MIB Referencefor details about the
buildXAJS command.

3. Create the application’s configuration file, also known as theUBBCONFIGfile, in a
text editor. Include the parameters to startJavaServer or JavaServerXA . For
example:

*SERVERS
.
.
.

JavaServer
SRVGRP = BANK_GROUP2
SRVID = 8
CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
SYSTEM_ACCESS=FASTPATH
RESTART = N

Note: There is a strict order to starting servers in WebLogic Enterprise Java.
Also, you can specify a fully qualified path to the location of the JAR file;
or, JavaServer looks for the application’s JAR file in the value for the

2 Steps for Creating a Java Server Application

2-20 Creating CORBA Java Server Applications

APPDIR environment variable. See Chapter 3 of theAdministration Guide
for UBBCONFIGfile details.

4. Set the following additional environment variables on the machine from which
you are booting the WebLogic Enterprise server application:

� TUXCONFIG, which must match theTUXCONFIGentry in theUBBCONFIGfile.
This variable represents the location or path of the binary version of the
application’sUBBCONFIGfile.

� APPDIR, which represents the directory in which the application’s executable
file exists.

5. If you have not already done so, set theTUXDIR environment variable on all
machines that are running in the WebLogic Enterprise domain or that are
connected to the WebLogic Enterprise domain. This environment variable points
to the location where the WebLogic Enterprise software is installed.

6. Enter the following command to create theTUXCONFIGfile:

prompt> tmloadcf -y application- ubbconfig -file

The command-line argumentapplication- ubbconfig -file represents the
name of your application’sUBBCONFIGfile. Note that you may need to remove
any oldTUXCONFIGfiles to execute this command.

7. Enter the following command to start the WebLogic Enterprise server
application:

prompt> tmboot -y

You can reboot a server application without reloading theUBBCONFIGfile.

For complete details about configuring the JDBC Bankapp and XA Bankapp sample
applications, see theGuide to the Java Sample Applications. For complete details on
creating theUBBCONFIGfile for WebLogic Enterprise applications, see the
Administration Guide.

Development and Debugging Tips

Creating CORBA Java Server Applications 2-21

Development and Debugging Tips

The following topics are discussed in this section:

� Use of CORBA and WebLogic Enterprise exceptions and the user log

� Detecting error conditions in the callback methods

� Common pitfalls of OMG IDL interface versioning and modification

� Caveat for state handling in the
com.beasys.Tobj_Servant.deactivate_object method

Use of CORBA and WebLogic Enterprise Exceptions and
the User Log

This topic includes the following sections:

� The client application view of exceptions

� The server application view of exceptions

Client Application View of Exceptions

When a client application invokes an operation on a CORBA object, an exception may
be returned as a result of the invocation. The only valid exceptions that can be returned
to a client application are the following:

� Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

� Exceptions that are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

The WebLogic Enterprise system works to ensure that these CORBA-defined
restrictions are not violated, which is described in the section “Server Application
View of Exceptions” on page 2-22.

2 Steps for Creating a Java Server Application

2-22 Creating CORBA Java Server Applications

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the WebLogic Enterprise system supplements such exceptions
with descriptive messages in the user log, which serves as an aid in detecting and
debugging error conditions. These cases are described in the following section.

Server Application View of Exceptions

This topic includes the following sections:

� Exceptions raised by the WebLogic Enterprise system that can be caught by
application code

� The WebLogic Enterprise system’s handling of exceptions raised by application
code during the invocation of operations on CORBA objects

Exceptions Raised by the WebLogic Enterprise System That Can Be Caught by Application Code

The WebLogic Enterprise system may return the following types of exceptions to an
application when operations on the TP object are invoked:

� CORBA-defined system exceptions

� CORBA UserExceptions defined in the fileTobjS.idl

The OMG IDL code for the exceptions is as follows.

Note: This code fragment is from an IDL file that is not distributed with WebLogic
Enterprise systems. A separate file that shares the nameTobjS.idl is
distributed with WebLogic Enterprise systems. The two files are slightly
different.

#ifndef _OBJTM_TOBJS_IDL
#define _OBJTM_TOBJS_IDL

#pragma prefix "beasys.com"
#pragma javaPackage "com.beasys"

module TobjS {

// Enumerations

enum DeactivateReasonValue {
DR_METHOD_END,
DR_SERVER_SHUTDOWN,

Development and Debugging Tips

Creating CORBA Java Server Applications 2-23

DR_TRANS_COMMITTING,
DR_TRANS_ABORTED

};

// Exceptions

exception ActivateObjectFailed { string reason; };
exception ApplicationProblem { };
exception CannotProceed { };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception IllegalInterface { };
exception IllegalOperation { };
exception InitializeFailed { string reason; };
exception InvalidDomain { };
exception InvalidInterface { };
exception InvalidName { };
exception InvalidObject { };
exception InvalidObjectId { };
exception InvalidServant { };
exception NilObject { string reason; };
exception NoSuchElement { };
exception NotFound { };
exception OrbProblem { };
exception OutOfMemory { };
exception OverFlow { };
exception RegistrarNotAvailable { };
exception ReleaseFailed { string reason; };
exception UnknownInterface { };

};

#endif /* _OBJTM_TOBJS_IDL */

The WebLogic Enterprise System’s Handling of Exceptions Raised by Application Code During the
Invocation of Operations on CORBA Objects

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

� In thecom.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object callback methods

� In the implementation code for the invoked operation

It is possible for the server application to raise any of the following types of exceptions:

� A CORBA-defined system exception

2 Steps for Creating a Java Server Application

2-24 Creating CORBA Java Server Applications

� A CORBA user-defined exception defined in OMG IDL

� A CORBA user-defined exception defined for WebLogic Enterprise

The following exceptions are intended to be used in server applications to help
the WebLogic Enterprise system send messages to the user log, which can help
with troubleshooting:

interface TobjS {
exception ActivateObjectFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception InitializeFailed { string reason; };
exception ReleaseFailed { string reason; };

}

� Any other Java exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the WebLogic Enterprise system. When these exceptions are
caught, one of the following occurs:

� The exception is returned to the client application without alteration.

� The exception is converted to a standard CORBA exception, which is then
returned to the client application.

� The exception is converted to a standard CORBA exception, and the following
actions occur:

� The exception is returned to the client application.

� One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the WebLogic Enterprise system.

The following sections show how the WebLogic Enterprise system handles exceptions
raised by the server application during the course of a client invocation on a CORBA
object.

Exceptions Raised in thecom.beasys.Tobj_Servant.activate_object Method

If any exception is raised in theactivate_object method:

� Theorg.omg.CORBA.OBJECT_NOT_EXIST exception is returned to the client
application.

Development and Debugging Tips

Creating CORBA Java Server Applications 2-25

� If the exception raised iscom.beasys.TobjS.ActivateObjectFailed , a
message is sent to the user log. If a reason string is supplied in the constructor
for the exception, the reason string is also written as part of the message.

� Neither the operation requested by the client nor the
com.beasys.Tobj_Servant.deactivate_object method is invoked.

Exceptions Raised in Operation Implementations

The WebLogic Enterprise system requires operation implementations to throw either
CORBA system exceptions, or user-defined exceptions defined in OMG IDL that are
known to the client application. If these types of exceptions are thrown by operation
implementations, then the WebLogic Enterprise system returns them to the client
application, unless one of the following conditions exists:

� The object has thealways transaction policy, and the WebLogic Enterprise
system automatically started a transaction when the object was invoked. In this
case, the transaction is automatically rolled back by the WebLogic Enterprise
system. Because the client application is unaware of the transaction, the
WebLogic Enterprise system then raises theorg.omg.CORBA.OBJ_ADAPTER

CORBA system exception, and not the
org.omg.CORBA.TRANSACTION_ROLLEDBACKexception, which would have
been the case had the client initiated the transaction.

� The exception is defined in the fileTobjS.idl. In this case, the exception is
converted to theorg.omg.CORBA.BAD_OPERATION exception and
BAD_OPERATIONis returned to the client application. In addition, the following
message is sent to the user log:

"WARN: Application didn't catch TobjS exception. TP Framework
throwing org.omg.CORBA.BAD_OPERATION."

If the exception iscom.beasys.TobjS.IllegalOperation , the following
supplementary message is written to warn the programmer of a possible coding
error in the application:

"WARN: Application called com.beasys.Tobj.TP.deactivateEnable()
illegally and didn't catch TobjS exception."

This can occur if thecom.beasys.Tobj.TP.deactivateEnable method is
invoked inside an object that has thetransaction activation policy.
(Application-controlled deactivation is not supported for transaction-bound
objects.)

2 Steps for Creating a Java Server Application

2-26 Creating CORBA Java Server Applications

� The WebLogic Enterprise system raised an internal system exception following
the client invocation. In this case, theorg.omg.CORBA.INTERNAL exception is
returned to the client.

As defined by the CORBA standard, a reply sent back to the client can either contain
result values from the operation implementation, or an exception thrown in the
operation implementation, but not both. In the first case -- that is, if the reply status
value isNO_EXCEPTION-- the reply contains the operation's return value and any
inout or out argument values. Otherwise -- that is, if the reply status value is
USER_EXCEPTIONor SYSTEM_EXCEPTION-- all the reply contains is the encoding of
the exception.

Exceptions Raised in thecom.beasys.Tobj_Servant.deactivate_object

Method

If any exception is raised in thedeactivate_object method, the following occurs:

� The exception is not returned to the client application.

� If the exception raised iscom.beasys.TobjS.DectivateObjectFailed , a
message is sent to the user log. If a reason string is supplied in the constructor
for the exception, the reason string is also written as part of the message.

� A message is sent to the user log for exceptions other than the
TobjS.DeactivateObjectFailed exception, indicating the type of exception
caught by the WebLogic Enterprise system.

CORBA Marshal Exception Raised When Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragment
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection.setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

org.omg.CORBA.Object myRef = TP.get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper.narrow(myRef);
connection.setFactoryRef(factoryRef);

Development and Debugging Tips

Creating CORBA Java Server Applications 2-27

Detecting Error Conditions in the Callback Methods

The WebLogic Enterprise system provides a set of predefined exceptions that allow
you to specify message strings that the TP Framework writes to the user log if
application code gets an error in any of the following callback methods:

� com.beasys.Tobj_Servant.activate_object

� com.beasys.Tobj_Servant.deactivate_object

� com.beasys.Tobj.Server.initialize

� com.beasys.Tobj.Server.release

You can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

You specify these messages with the following exceptions, which have an optional
reason string:

To send a message string to the user log, specify the string in the exception, as in the
following example:

throw new InitializeFailed("Unable to Initialize Bankapp server");

Exception Callback Methods That Can Raise This
Exception

ActivateObjectFailed com.beasys.Tobj_Servant.
activate_object

DeactivateObjectFailed com.beasys.Tobj_Servant.
deactivate_object

InitializeFailed com.beasys.Tobj.Server.initialize

ReleaseFailed com.beasys.Tobj.Server.release

2 Steps for Creating a Java Server Application

2-28 Creating CORBA Java Server Applications

Note the following:

� When you throw these exceptions, the reason string parameter is optional. If you
do not need to specify a message string, omit the string parameter, as in the
following example:

throw new com.beasys.TobjS.ActivateObjectFailed();

� If you choose to use theInitializedFailed exception in your code, be sure to
either fully qualify that object or include the following import declaration prior
to theInitializeFailed exception:

import com.beasys.TobjS.*;

Common Pitfalls of OMG IDL Interface Versioning and
Modification

An object is instantiated based on its Interface Repository ID. It is crucial that this
interface ID is the same as the one supplied in the factory when the factory invokes the
com.beasys.Tobj.TP.create_object_reference method.

It is possible for this condition to arise if, during the course of development, different
versions of the interface are being developed or many modifications are being made to
the IDL file. Even if you typically use theinterface Helper.id method to specify
the interface repository ID, it is possible for a mismatch to occur.

If the interface IDs do not match, the following message is placed in the user log
(ULOG) and thecreate_object_reference method returns a null object reference:

IJTPFW_CAT:38: ERROR: TP.create.object.reference() could not create

object reference for: Interface = Interface-ID OID= oid-number

 Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object

Thedeactivate_object method is invoked when the activation boundary for an
object is reached. You may, optionally, write durable state to disk in the
implementation of this operation. It is important to understand that exceptions raised
in this operation are not returned to the client application. The client application will
be unaware of any error conditions raised in this operation unless the object is

Development and Debugging Tips

Creating CORBA Java Server Applications 2-29

participating in a transaction. Therefore, in cases where it is important that the client
application know whether the writing of state via this operation is successful, we
recommend that transactions be used.

If you decide to use thedeactivate_object method for writing state, and the client
application needs to know the outcome of the write operations, we recommend that
you do the following:

� Ensure that each operation that affects object state is invoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either themethod or transaction activation policies, and
is possible with theprocess activation policy if the
com.beasys.Tobj.TP.deactivateEnable method is invoked within the
transaction boundary.

� If an error occurs during the writing of object state, invoke the
org.omg.CosTransactions.Current.rollback_only method to ensure that
the transaction is rolled back. One of the following actions is taken:

� If there is no transaction associated with the client thread, theOBJ_ADAPTER

exception is raised.

� Otherwise, the transaction associated with the client thread is modified so
that the only possible outcome is to roll back the transaction.

If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than via thedeactivate_object

method. This way, if an error occurs, the operation can raise an exception that is
returned to the client application.

2 Steps for Creating a Java Server Application

2-30 Creating CORBA Java Server Applications

Creating CORBA Java Server Applications 3-1

CHAPTER

3 Integrating
Transactions into a
Java Server
Application

This chapter describes how to integrate transactions into a WebLogic Enterprise server
application.

This topic includes the following sections:

� Overview of Transactions in the WebLogic Enterprise System

� Integrating Transactions in a WebLogic Enterprise Client and Server Application

� Transactions and Object State Management

� Notes on Using Transactions in the WebLogic Enterprise System

3 Integrating Transactions into a Java Server Application

3-2 Creating CORBA Java Server Applications

Overview of Transactions in the WebLogic
Enterprise System

The WebLogic Enterprise system provides transactions as a means to guarantee that
database transactions are completed accurately and that they take on all theACID
properties (atomicity, consistency, isolation, and durability) of a high-performance
transaction. That is, you have a requirement to perform multiple write operations on
durable storage, and you must be guaranteed that the operations succeed; if any one of
the operations fails, the entire set of operations is rolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsulates a transactional model supported by the WebLogic
Enterprise system.

� The client application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made so far. For example, if the client application
cannot book a flight from Los Angeles to Honolulu on a given date, the client
application needs to cancel the flight reservations made up to that point.

� The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

� Data is cached in memory or written to a database during or after each
successive invocation.

� Data is written to a database at the end of the conversation.

Overview of Transactions in the WebLogic Enterprise System

Creating CORBA Java Server Applications 3-3

� The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

� At the end of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an internet-based online shopping application. The user of
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing all the items he or she
wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information) the shopping application
needs a way to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

� Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

� Invoking the debit method on one account

� Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

3 Integrating Transactions into a Java Server Application

3-4 Creating CORBA Java Server Applications

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

The WebLogic Enterprise system supports two transaction API models:

� The Java Transaction Service defined by Sun Microsystems, Inc.—this service is
the Java mapping of the Object Transaction Service (OTS) that is specified as
part of CORBA: org.omg.CosTransactions.Current.

� The Java Transaction API defined by Sun Microsystems—only the
application-level transaction demarcation interface is supported:
javax.transaction.UserTransaction.

In this document, we refer generically to these mappings as the TransactionCurrent
object. For specifics aboutorg.omg.CosTransactions.Current and
javax.transaction.UserTransaction , see theAPI Javadocand theCORBA Java
Programming Reference.

The WebLogic Enterprise system supports transactions in the following ways:

� The client or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For details about the
TransactionCurrent object, seeCreating CORBA Client Applications.

� You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA resource
manager and database when you want to delegate all the transaction commit and
rollback responsibilities to that resource manager.

� Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke therollback_only method on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark a transaction for rollback if an
entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Creating CORBA Java Server Applications 3-5

� Objects involved in a transaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the WebLogic Enterprise system immediately before the
resource managers prepare to commit the transaction. (In this sense, polling
means invoking the object’s
com.beasys.Tobj_Servant.deactivate_object method and passing a
reason value.)

When an object is polled, the object may veto the current transaction by
invoking therollback_only method on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all objects
implementing that interface.

Note: If a server application manages an object that you want to be able to participate
in a transaction, the Server object for that application must invoke the
com.beasys.Tobj.TP.open_xa_rm and
com.beasys.Tobj.TP.close_xa_rm methods. For more information about
database connections, see the section “Opening an XA Resource Manager” on
page 3-10.

Making an Object Automatically Transactional

The WebLogic Enterprise system provides thealways transactional policy, which you
can define on an object’s interface to have the WebLogic Enterprise system start a
transaction automatically when that object is invoked and a transaction has not already
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither the
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.

3 Integrating Transactions into a Java Server Application

3-6 Creating CORBA Java Server Applications

Assigning thealways transactional policy to an object’s interface is appropriate when:

� The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

� You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the XML-based Server Description File:

Note: Database cursors cannot span transactions. For an example, seeCreating C++
Server Applications.

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of a transaction, you
can assign theoptional transaction policies to that object’s interface. Theoptional

transaction policy may be appropriate for an object that does not perform any database
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when they are specified in the XML-based Server
Description File for that object’s interface, to make an object optionally transactional:

Activation Policy Transaction Policy

process , method , or
transaction

always

Activation Policy Transaction Policy

process , method , or
transaction

optional

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Creating CORBA Java Server Applications 3-7

When the transaction policy isoptional , if the AUTOTRANparameter is enabled in the
application’sUBBCONFIGfile, the implementation is transactional. Servers containing
transactional objects must be configured within a group associated with an
XA-compliant resource manager.

If the object does perform database write operations, and you want the object to be able
to participate in a transaction, assigning thealways transactional policy is generally a
better choice. However, if you prefer, you can use theoptional policy and
encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and, therefore, more streamlined.

Note: Some XA resource managers used in the WebLogic Enterprise system require
that any object participating in a transaction scope their database read
operations, in addition to write operations, within a transaction. (However,
you can still scope your own transactions.) For example, using the Oracle7
TMS with the WebLogic Enterprise system has this requirement. When
choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from a transaction. If such an
object is invoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The WebLogic Enterprise system provides the
never transaction policy, which you can assign to an object’s interface to specifically
prevent that object from being invoked within the course of a transaction.

This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back; for example, for an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server

3 Integrating Transactions into a Java Server Application

3-8 Creating CORBA Java Server Applications

application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the XML-based Server Description File:

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction. If
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system provides theignore

transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory that
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the Server Description File:

Activation Policy Transaction Policy

process or method never

Activation Policy Transaction Policy

process or method ignore

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Creating CORBA Java Server Applications 3-9

Assigning Policies

For information about how to create a Server Description File and specify policies on
objects, see the section “Step 5: Define the Object Activation and Transaction
Policies” on page 2-13.

Using an XA Resource Manager

The XA Bankapp sample application in the
drive:\M3dir\samples\corba\bankapp_java\XA directory uses the Oracle7
Transaction Manager Server (TMS) as an example of a relational database
management service (RDBMS). TMS handles object state data automatically. Using
any XA resource manager imposes specific requirements on how different objects
managed by the server application may read and write data to that database, including
the following:

� Some XA resource managers (for example, Oracle7) require that all database
operations be scoped within a transaction. This means that all method
invocations on theDBaccess object need to be scoped within a transaction
because this object reads from a database. The transaction can be started either
by the client or by the WebLogic Enterprise system.

� When a transaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

3 Integrating Transactions into a Java Server Application

3-10 Creating CORBA Java Server Applications

Opening an XA Resource Manager

If an object’s interface has thealways or optional transaction policy, you must
invoke thecom.beasys.Tobj.TP.open_xa_rm method in the
com.beasys.Tobj.Server.initialize method in the Server object that supports
this object. You must build a special version of the JavaServer by using thebuildXAJS

command, if your object performs database operations.

In theSERVERSsection of the application’sUBBCONFIGfile, you must use the
JavaServerXA element in place ofJavaServer to associate the XA resource
manager with a specified server group. (JavaServer uses the null RM.)

The resource manager is opened using the information provided in theOPENINFO

parameter, which is in theGROUPSsection of theUBBCONFIGfile. Note that the default
version of thecom.beasys.Tobj.Server.initialize method automatically opens
the resource manager.

If you have an object that participates in a transaction but does not actually perform
database operations (the object typically has theoptional transaction policy), you
still need to include an invocation to thecom.beasys.Tobj.TP.open_xa_rm

method.

Closing an XA Resource Manager

If your Server object’scom.beasys.Tobj.Server.initialize method opens an
XA resource manager, you must include the following invocation in the
com.beasys.Tobj.Server.release method:

com.beasys.Tobj.TP.close_xa_rm();

Transactions and Object State Management

Creating CORBA Java Server Applications 3-11

Transactions and Object State Management

If you need transactions in your WebLogic Enterprise client and server application,
you can integrate transactions with object state management in a few different ways.
In general, the WebLogic Enterprise system can automatically scope the transaction
for the duration of an operation invocation without requiring you to make any changes
to your application’s logic or the way in which the object writes durable state to disk.

The following sections address some key points regarding transactions and object state
management.

Delegating Object State Management to an XA Resource
Manager

Using an XA resource manager, such as Oracle7, generally simplifies the design
problems associated with handling object state data in the event of a rollback.
Transactional objects can always delegate the commit and rollback responsibilities to
the XA resource manager, which greatly eases the task of implementing a server
application. This means that process- or method-bound objects involved in a
transaction can write to a database during transactions, and can depend on the resource
manager to undo any data written to the database in the event of a transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transaction activation policy is a good choice for objects that maintain state in
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thetransaction activation policy to
an object, the object:

� Is brought into memory when it is first invoked within the scope of a transaction

� Remains in memory until the transaction is either committed or rolled back

3 Integrating Transactions into a Java Server Application

3-12 Creating CORBA Java Server Applications

When the transaction work is complete, the WebLogic Enterprise system invokes each
transaction-bound object’scom.beasys.Tobj_Servant.deactivate_object

method, passing areason code that can be eitherDR_TRANS_COMMITTINGor
DR_TRANS_ABORTED. If the variable isDR_TRANS_COMMITTING, the object can invoke
its database write operations. If the variable isDR_TRANS_ABORTED, the object skips
its write operations.

Assigning thetransaction activation policy to an object may be appropriate in the
following situations:

� You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

� You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the WebLogic Enterprise system passes the reasonDR_TRANS_COMMITTING,
the object can, if necessary, invoke therollback_only method on the
TransactionCurrent object. Note that if you do make an invocation to the
rollback_only method from within the
com.beasys.Tobj_Servant.deactivate_object method, the
deactivate_object method is not invoked again.

� You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the XML-based
Server Description File:

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside thecom.beasys.Tobj_Servant.deactivate_object method.
The only valid invocations transaction-bound objects can make inside the
deactivate_object method are write operations to the database.

Activation Policy Transaction Policy

transaction always or optional

Notes on Using Transactions in the WebLogic Enterprise System

Creating CORBA Java Server Applications 3-13

Also, if you have an object that is involved in a transaction, the Server object
that manages that object must include invocations to open and close the XA
resource manager, even if the object does not write any data to disk. For more
information about opening and closing an XA resource manager, see the
sections “Opening an XA Resource Manager” on page 3-10 and “Closing an
XA Resource Manager” on page 3-10.

Notes on Using Transactions in the WebLogic
Enterprise System

Note the following about integrating transactions into your WebLogic Enterprise
client/server applications:

� The following transactions are not permitted in the WebLogic Enterprise system:

� Nested transactions

You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.)

� Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

� The object that starts a transaction is the only entity that can end the transaction.
(In a strict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

� Objects can be involved with only one transaction at one time. The WebLogic
Enterprise system does not support concurrent transactions.

3 Integrating Transactions into a Java Server Application

3-14 Creating CORBA Java Server Applications

� The WebLogic Enterprise system does not queue requests to objects that are
currently involved in a transaction. If a nontransactional client application
attempts to invoke an operation on an object that is currently in a transaction, the
client application receives the following error message:

org.omg.CORBA.OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receives the
following error message:

org.omg.CORBA.INVALID_TRANSACTION

� For transaction-bound objects, you might consider doing all state handling in the
com.beasys.Tobj_Servant.deactivate_object method. This makes it
easier for the object to handle its state properly, since the outcome of the
transaction is known at the time that the
com.beasys.Tobj_Servant.deactivate_object method is invoked.

� For method-bound objects that have several operations, but only a few that affect
the object’s durable state, you may want to consider the following:

� Assign theoptional transaction policy.

� Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

� Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

� If an object with thealways transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application, note
the following:

If an exception is raised inside an operation on that object, the client application
receives anOBJ_ADAPTERexception. In this situation, the WebLogic Enterprise
system automatically rolls back the transaction. However, the client application
is completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.

Notes on Using Transactions in the WebLogic Enterprise System

Creating CORBA Java Server Applications 3-15

� If the client application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only a transaction rollback exception but not the CORBA
exception.

3 Integrating Transactions into a Java Server Application

3-16 Creating CORBA Java Server Applications

Creating CORBA Java Server Applications 4-1

CHAPTER

4 Scaling a Java Server
Application

This chapter shows how you can take advantage of several key scalability features of
the WebLogic Enterprise system. The descriptions demonstrate scalability features
that achieve the following goals:

� Adding parallel processing capability, enabling the WebLogic Enterprise domain
to process multiple client requests simultaneously

� Spreading the processing load on the server applications in the Bankapp sample
application across multiple machines

Some of the Bankapp examples in this chapter include sample code that is not
implemented in the product sample’s Bankapp files.

This topic includes the following sections:

� Overview of the Scalability Features Available in the WebLogic Enterprise
System

� Scaling a WebLogic Enterprise Server Application. This section includes the
following topics:

� Replicating Server Processes and Server Groups

� Scaling the Application Via Object State Management

� Factory-based Routing

� Enabling Multithreaded JavaServers

� How the Bankapp Server Application Can Be Scaled Further

4 Scaling a Java Server Application

4-2 Creating CORBA Java Server Applications

Overview of the Scalability Features
Available in the WebLogic Enterprise System

Supporting highly scalable applications is one of the strengths of the WebLogic
Enterprise system. Many applications may perform well in an environment
characterized by 1 to 10 server processes, and 10 to 100 client applications. However,
in an enterprise environment, applications need to support:

� Hundreds of execution contexts, where the context can be a thread or a process

� Tens of thousands of client applications

� Millions of objects

Deploying a Java application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The WebLogic
Enterprise system supports such large-scale deployments in several ways, including:

� Replicated server processes and server groups

� Object state management

� Factory-based routing

� Multithreaded JavaServers (appropriate for certain types of applications and
processing environments, as outlined in the section “Enabling Multithreaded
JavaServers” on page 4-18)

Other features provided in the WebLogic Enterprise system to make an application
highly scalable include the IIOP Listener/Handler, which is summarized inGetting
Startedand described fully in theAdministration Guide. See alsoScaling, Tuning, and
Distributing Applications.

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-3

Scaling a WebLogic Enterprise Server
Application

Using the JDBC Bankapp sample application as an example, this section explains how
to scale an application to meet a significantly greater processing capability. The basic
design goal for the JDBC Bankapp sample application is to greatly scale up the number
of client applications it can accommodate by doing the following:

� Processing in parallel (and on one machine) the client requests on multiple
objects that implement the same interface.

� Directing requests on behalf of some bank automated teller machines (ATMs) to
one machine, and other ATMs to other machines.

� Adding more machines across which to spread the processing load.

To accommodate these design goals, the JDBC Bankapp sample application has been
extended as follows:

� Replicates the Teller and TellerFactory server processes within the groups in
which they are configured.

� Replicates the groups described above on an additional machine.

� Implements a stateless object model to scale up the number of client requests the
server process can manage simultaneously.

� Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability.

� TellerFactory

� Teller

� Implements factory-based routing to direct client requests on behalf of some
ATMs to one machine, and other ATMs to another machine.

� Setting up threads for the Teller objects, as discussed in theGuide to the Java
Sample Applications. For related information, also see the section “Enabling
Multithreaded JavaServers” on page 4-18.

4 Scaling a Java Server Application

4-4 Creating CORBA Java Server Applications

The sections that follow describe how the JDBC Bankapp sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets its scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Bankapp sample
application.

Replicating Server Processes and Server Groups

The WebLogic Enterprise system offers a wide variety of choices for how you may
configure your server applications, such as:

� One machine with one server process that implements one interface.

� One machine with multiple server processes implementing one interface.

� One machine with multiple server processes implementing multiple interfaces,
with or without factory-based routing.

� One machine with a multithreaded JavaServer offering one or multiple
interfaces. For information about the tradeoffs of single-threaded JavaServers
versus multithreaded JavaServers, see the section “Enabling Multithreaded
JavaServers” on page 4-18.

� Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing.

In summary:

� To add more parallel processing capability to your client/server application,
replicate your server processes.

� To add more machines to your deployment environment, add more groups and
implement factory-based routing.

� To add more capacity (for certain types of applications only), add more threads.
For information about the tradeoffs of single-threaded JavaServers versus
multithreaded JavaServers, see the section “Enabling Multithreaded
JavaServers” on page 4-18.

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the WebLogic Enterprise system.

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-5

Replicated Server Processes

When you replicate the server processes in your application:

� You obtain a means to balance the load of incoming requests on that server
application. As requests arrive in the WebLogic Enterprise domain for the server
group, the WebLogic Enterprise system routes the request to the least busy
server process within that group.

� You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

� You obtain a useful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects
instantiated by your server application generally have unique IDs. This way, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

As you design your application, keep in mind that there is a tradeoff between
providing:

� Better application recovery, via multiple processes

� More efficient performance, via threads (for some types of application patterns
and processing environments)

Better failover occurs only by adding processes, and not by adding threads. This
section discusses the technique of adding processes. For information about the
tradeoffs of single-threaded JavaServers versus multithreaded JavaServers, see the
section “Enabling Multithreaded JavaServers” on page 4-18.

Figure 4-1 shows the Bankapp server application replicated in theBANK_GROUP1

group. The replicated servers are running on a single machine.

4 Scaling a Java Server Application

4-6 Creating CORBA Java Server Applications

Figure 4-1 Bankapp Server Application Group

When a request arrives for this group, the WebLogic Enterprise domain has several
server processes available that can process the request, and the WebLogic Enterprise
domain can choose the server process that is least busy.

In Figure 4-1, note the following:

� At any time, there may be no more than one instance of theTellerFactory

object within a given server process.

� There may be any number ofTeller objects in any Bankapp server process.

TellerFactory

Bankapp Server

Production Machine

BANK_GROUP1

RDBMS
Transaction

Manager
ServerDatabase

Teller

TellerFactory

Bankapp Server2

Teller

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-7

Replicated Server Groups

The notion of server groups is specific to the WebLogic Enterprise system and adds
value to a CORBA implementation; server groups are an important part of the
scalability features of the WebLogic Enterprise system. Basically, to add more
machines to a deployment, you need to add more groups.

Figure 4-2 shows the Bankapp sample application groups replicated on another
machine, as specified in the application’sUBBCONFIGfile.

Figure 4-2 Mutliple Application Groups

Note: In the simple example shown in Figure 4-2, the content of the databases on
Production Machines 1 and 2 is identical. Each database would contain all of
the account records for all of the account IDs. Only the processing would be
distributed, based on the ATM (atmID field). A more realistic example, one
not readily adapted to the Bankapp sample application, would distribute the
data and processing based on ranges of bank account IDs.

Production Machine 1

TellerFactory

Bankapp Server

BANK_GROUP2

RDBMS
Transaction

Manager
ServerDatabase

Teller

TellerFactory

Bankapp Server

BANK_GROUP1

RDBMS
Transaction

Manager
ServerDatabase

Teller

Production Machine 2

4 Scaling a Java Server Application

4-8 Creating CORBA Java Server Applications

The way in which server groups are configured, where they run, and the ways in which
they are replicated is specified in theUBBCONFIGfile. When you replicate a server
group, you can do the following:

� Have a means to spread processing load for a given application or set of
applications across additional machines.

� Use factory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

� When a client request arrives in the WebLogic Enterprise domain, the WebLogic
Enterprise system checks the group ID specified in the object reference.

� The WebLogic Enterprise domain sends the request to the least busy server
process within the group to which the request is routed that can process the
request.

The section “Factory-based Routing” on page 4-13 shows how the Bankapp sample
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

To configure replicated server processes and groups in your WebLogic Enterprise
domain:

1. Bring your application’sUBBCONFIGfile into a text editor, such as WordPad.

2. In theGROUPSsection, specify the names of the groups you want to configure.

3. In theSERVERSsection, enter the following information for the server process
you want to replicate:

� A server application name. For java, this is the name of the Java server, plus
the name of the JAR file.

� TheGROUPparameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multiple
groups, specify the server process once for each group.

� TheSRVID parameter, which specifies a numeric identifier, giving the server
process a unique identity.

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-9

� TheMIN parameter, which specifies the number of instances of the server
process to start when the application is booted.

� TheMAXparameter, which specifies the maximum number of server
processes that can be running at any one time.

Thus theMIN andMAXparameters determine the degree to which a given server
application can process requests on a given interface in parallel. During run
time, the system administrator can examine resource bottlenecks and start
additional server processes, if necessary. In this sense, the application is
designed so that the system administrator can scale it.

Note: The following example shows lines from theGROUPSandSERVERSsections of
theUBBCONFIGfile for a Bankapp sample application. These configuration
settings are not used with the Bankapp sample provided with the WebLogic
Enterprise software.

*RESOURCES
IPCKEY 55432
DOMAINID simple
MASTER SITE1
MODEL SHM
LDBAL Y

*MACHINES
"TRIXIE"

LMID = SITE1
APPDIR = "c:\bankapp\jdbc\."
TUXCONFIG = "c:\bankapp\jdbc\.\tuxconfig"
TUXDIR = "c:\m3dir"
MAXCLIENTS = 10

*GROUPS
SYS_GRP

LMID = SITE1
GRPNO = 1

BANK_GROUP1
LMID = SITE1
GRPNO = 2

BANK_GROUP2
LMID = SITE1
GRPNO = 3

*SERVERS
By default, restart a server if it crashes, up to 5 times
in 24 hours.
#
DEFAULT:

4 Scaling a Java Server Application

4-10 Creating CORBA Java Server Applications

RESTART = Y
MAXGEN = 5

Start the Tuxedo System Event Broker. This event broker
must be started before any servers providing the
NameManager Service.
#

TMSYSEVT
SRVGRP = SYS_GRP
SRVID = 1

TMFFNAME is a M3 provided server that runs the
object-transactional management services. This includes the
NameManager and FactoryFinder services.

The NameManager service is a M3-specific service
that maintains a mapping of application-supplied names to
object references.

Start the NameManager Service (-N option). This name
manager is being started as a Master (-M option).
#

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N -M"

Start a slave NameManager Service
#

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -N"

Start the FactoryFinder (-F) service
#

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -N -F"

Start the JavaServer in Bank_Group1
#

JavaServer
SRVGRP = BANK_GROUP1
SRVID = 5

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-11

CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
SYSTEM_ACCESS=FASTPATH
RESTART = N

Start the JavaServer in Bank_Group2
#

JavaServer
SRVGRP = BANK_GROUP2
SRVID = 6
CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
SYSTEM_ACCESS=FASTPATH
RESTART = N

Start the listener for IIOP clients
#
Specify the host name of your server machine as
well as the port. A typical port number is 2500
#

ISL
SRVGRP = SYS_GRP
SRVID = 7
CLOPT = "-A -- -n //TRIXIE:2468"

*SERVICES

*INTERFACES
"IDL:beasys.com/BankApp/Teller:1.0"

FACTORYROUTING=atmID

*ROUTING
atmID

TYPE = FACTORY
FIELD = "atmID"
FIELDTYPE = LONG
RANGES = "1-5:BANK_GROUP1,

6-10: BANK_GROUP2,
*:BANK_GROUP1

Scaling the Application Via Object State Management

As stated in Chapter 1, “Java Server Application Concepts,” object state management
is a fundamentally important concern of large-scale client/server systems because it is
critically important that such systems achieve optimized throughput and response

4 Scaling a Java Server Application

4-12 Creating CORBA Java Server Applications

time. This section explains how you can use object state management to increase the
scalability of the objects managed by a WebLogic Enterprise server application, using
theTeller objects in the Bankapp sample applications as an example.

The following table summarizes how you can use the object state management models
supported in the WebLogic Enterprise system to achieve major gains in scalability in
your WebLogic Enterprise applications.

As an example of achieving scalability, the Bankapp sampleTeller object could use
themethod activation policy. Themethod activation policy assigned to this object
means that the object is activated whenever a client request arrives for it. TheTeller

object stays in memory only for the duration of one client invocation, which is

State Model How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-13

appropriate in cases where the Process-Entity design pattern is recommended. As the
number of clients issuing requests on theTeller object increases, the WebLogic
Enterprise domain is able to:

� Instantiate theTeller object for each client request that arrives. Client requests
are not queued for an existingTeller object, which would likely be the case if
theTeller object were process-bound.

� Perform load balancing by instantiating theTeller object in the least busy
server process or group.

Factory-based Routing

Factory-based routing is a powerful feature that provides a means to send a client
request to a specific server group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

You can use factory-based routing to expand upon the variety of load-balancing and
scalability capabilities in the WebLogic Enterprise system. In the case of the Bankapp
sample application, you can use factory-based routing to send requests to a subset of
ATMs to one machine, and requests for another subset of ATMs to another machine.
As you add machines to ramp up your application’s processing capability, the
WebLogic Enterprise system makes it easy to modify the factory-based routing in your
application to add more machines.

The chief benefit of factory-based routing is that it provides a simple means to scale
up an application, and invocations on a given interface in particular, across a growing
deployment environment. Spreading the deployment of an application across
additional machines is strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the extended
JDBC Bankapp sample application, which uses factory-based routing in the following
way. Client application requests to theTeller object are routed based on a teller
number. Requests for one subset of teller numbers go to one group; and requests on
behalf of another subset of teller numbers go to another group.

4 Scaling a Java Server Application

4-14 Creating CORBA Java Server Applications

How Factory-based Routing Works

Your factories implement factory-based routing by changing the way they create
object references. All object references contain a group ID, and by default the group
ID is the same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteria that determines the group ID. Then when client applications send an invocation
using such an object reference, the WebLogic Enterprise system routes the request to
the group ID specified in the object reference. This section focuses on how the group
ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:

� Data in theINTERFACESandROUTINGsections of theUBBCONFIGfile.

� Groups, machines, and databases configured in theUBBCONFIGfile.

� How the factory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss
configuring for factory-based routing in theUBBCONFIGfile, and implementing
factory-based routing in the factory.

Configuring for Factory-based Routing in the UBBCONFIG File

For each interface for which requests are routed, you need to establish the following
information in theUBBCONFIGfile:

� Details about the data in the routing criteria

� For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, theUBBCONFIGfile needs to specify the
following data in theINTERFACESandROUTINGsections, and also in how groups and
machines are identified:

1. TheINTERFACESsection lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteria the interface routes on. This section specifies the routing criteria via an
identifier, FACTORYROUTING, as in the following example:

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-15

*INTERFACES
"IDL:beasys.com/BankApp/Teller:1.0"

FACTORYROUTING = atmID

The preceding example shows the fully qualified Interface Repository ID for an
interface in the extended Bankapp sample in which factory-based routing is
used. TheFACTORYROUTINGidentifier specifies the name of the routing value,
atmID .

2. TheROUTINGsection specifies the following data for each routing value:

� TheTYPEparameter, which specifies the type of routing. In the Bankapp
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined toFACTORY.

� TheFIELD parameter, which specifies the name that the factory inserts in the
routing value. In the extended Bankapp sample, the field parameter isatmID .

� TheFIELDTYPE parameter, which specifies the data type of the routing
value. In the Bankapp sample, the field type foratmID is LONG.

� TheRANGESparameter, which specifies the values that are routed to each
group.

The following example shows theROUTINGsection of theUBBCONFIGfile used
in the Bankapp sample application:

*ROUTING
atmID

TYPE = FACTORY
FIELD = "atmID"
FIELDTYPE = LONG
RANGES = "1-5:BANK_GROUP1,

6-10: BANK_GROUP2,
*:BANK_GROUP1

The preceding example shows thatTeller object references for ATMs in one
range are routed to one server group, andTeller object references for ATMs in
other ranges are routed to other groups. As illustrated in Figure 4-2,
BANK_GROUP1andBANK_GROUP2reside on different production machines.

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing by the way the invocation to the
com.beasys.Tobj.TP.create_object_reference method is implemented.

4 Scaling a Java Server Application

4-16 Creating CORBA Java Server Applications

This operation has the following Java binding:

public static org.omg.CORBA.Object
create_object_reference(java.lang.String interfaceName,

java.lang.String stroid,
org.omg.CORBA.NVList criteria)

throws InvalidInterface,
InvalidObjectId

Thecriteria specifies a list of named values that can be used to provide
factory-based routing for the object reference. The use of factory-based routing is
optional and is dependent on the use of this argument. If you do not want to use
factory-based routing, you can pass a value of 0 (zero) for this argument. The work of
implementing factory-based routing in a factory is in building theNVlist .

As stated previously, theTellerFactory object in the Bankapp sample application
specifies the valueatmID . This value must match exactly the following in the
UBBCONFIGfile:

� The routing name, type, and allowable values specified by theFACTORYROUTING

identifier in theINTERFACESsection

� The routing criteria name, field, and field type specified in theROUTINGsection

Note: The following example is not part of the Bankapp sample code, but is shown
here to illustrate the factory-based routing feature. TheTellerFactory

object inserts the bank account number into theNVlist using the following
code:

// Put the atmID (which is the routing criteria)
// into a CORBA NVList. The atmID comes from the
// tellerName that is passed in as an input parameter;
// tellerName should have the form: Teller<atmID>

int atmID = Integer.parseInt (tellerName.substring(6));
any.insert_long(atmID);

// Create the NVlist and add the atmID to the list.

org.omg.CORBA.NVList criteria = TP.orb().create_list(1);
criteria.add_value("atmID", any, 0);

// Create the object reference.

org.omg.CORBA.Object teller_oref =
TP.create_object_reference(
BankApp.TellerHelper.id(), // Repository ID

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-17

tellerName, // Object ID
criteria // Routing Criteria
);

Note: It is possible for an object with a given interface and OID to be simultaneously
active in two different groups, if those two groups both contain the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of a given interface name and OID is available at any one time in your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion
in thecom.beasys.Tobj.TP.create_object_reference method, and set
up theUBBCONFIGfile appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the WebLogic Enterprise
system generates an object reference. The following example shows how the client
application gets an object reference to aTeller object when factory-based routing is
implemented:

1. The client application invokes theTellerFactory object, requesting a reference
to aTeller object. Included in the request is a teller name that includes anatmID .

2. TheTellerFactory inserts theatmID into anNVlist , which is used as the
routing criteria.

3. TheTellerFactory invokes the
com.beasys.Tobj.TP::create_object_reference method, passing the
Teller Interface Repository ID, a unique OID, and theNVlist .

4. The WebLogic Enterprise system compares the content of the routing tables with
the value in theNVlist to determine a group ID.

5. The WebLogic Enterprise system inserts the group ID into the object reference.

4 Scaling a Java Server Application

4-18 Creating CORBA Java Server Applications

When the client application subsequently does an invocation on an object using the
object reference, the WebLogic Enterprise system routes the request to the group
specified in the object reference.

Note: Be careful how you implement factory-based routing if you use the
process-entity design pattern. The object can service only those entities that
are contained in the group’s database.

Enabling Multithreaded JavaServers

WLE supports the ability to configure multithreaded JavaServers. For each
JavaServer, you can establish the maximum number of worker threads in the
application’sUBBCONFIGfile.

A worker thread is a thread that is started and managed by the WebLogic Enterprise
Java software, as opposed to threads started and managed by an application program.
Internally, WebLogic Enterprise Java manages a pool of available worker threads.
When a client request is received, an available worker thread from the thread pool is
scheduled to execute the request. When the request is done, the worker thread is
returned to the pool of available threads.

In the current WebLogic Enterprise Java release, BEA recommends that you not
establish threads programmatically. Only worker threads that are created by the
run-time WebLogic Enterprise JavaServer may access the WebLogic Enterprise Java
infrastructure. This restriction means that your Java application should not create a
Java thread from a worker thread and then try to begin a new transaction in the thread.
You can, however, start threads in your application to perform other, non-WebLogic
Enterprise work.

Deploying multithreaded JavaServers may not be appropriate for all applications. The
potential for a performance gain from a multithreaded JavaServer depends on:

� The application pattern

� Whether the application is running on a single-processor machine or a
multiprocessor machine

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-19

If the application is running on a single-processor machine and the application is
CPU-intensive only, without any I/O or delays, in most cases the multithreaded
JavaServer will not perform better. In fact, due to the overhead of switching between
threads, the multithreaded JavaServer in this configuration may perform worse than a
single-threaded JavaServer.

A performance gain is more likely with a multithreaded JavaServer when the
application has some delays or is running on a multiprocessor machine.

Multithreaded WLE server applications appear the same as single-threaded
applications, codewise. However, if you are planning to configure your Java server
applications to be multithreaded, or if you want to have the flexibility to do so at some
point in the future, keep the following recommendations in mind when writing your
object implementations in Java:

� Do not start your own threads in your Java code. Threading should remain
transparent in your source files.

� Write thread-safe code. Because static variables are shared across all instances of
a class that could be executed in different server threads, make sure that access
to those variables is synchronized properly when objects that use them are
executed in a multithreaded configuration. You should use standard Java
synchronization techniques to make sure that the use of static variables is
properly synchronized.

For more information about Java synchronization techniques, see theJava
Language Specification, available at the Sun Microsystems, Inc. Web site at the
following URL:

http://java.sun.com

� If your application uses JNI code to access ATMI,JavaServer must be
configured as single-threaded.

� If your application is sending messages to the User Log (ULOG), note that it is
not helpful to use the process ID to distinguish among the different threads.
Instead, you can include in each message one of the following:

� The object ID

� The thread name

� The transaction ID (if your object is transactional)

For information about defining theUBBCONFIGparameters to implement a
multithreaded JavaServer, see Chapter 3 of theAdministration Guide.

4 Scaling a Java Server Application

4-20 Creating CORBA Java Server Applications

Additional Design Considerations for the Teller Object

The principal considerations that influence the design of theTeller object include:

� How to ensure that theTeller object works properly for the Bankapp
deployment environment; namely, across multiple replicated server processes
and multiple groups.

� How to ensure that client requests for account inquiries, withdrawls, and
transfers in a given account go to the correct server group, given that the four
server groups in the extended Bankapp WebLogic Enterprise domain each deal
with different databases.

The primary implications of these considerations are that these objects must:

� Have unique object IDs (OIDs)

� Be method-bound (that is, have themethod activation policy assigned to them)

The remainder of this section discusses these considerations and implications in detail.

Instantiating the Teller Object

Because the extended Bankapp server is now replicated, the WebLogic Enterprise
domain must have a means to differentiate between multiple instances of theTeller

object. That is, if there are two Bankapp server processes running in a group, the
WebLogic Enterprise domain must have a means to distinguish between, say, the
Teller object running in the first Bankapp server process and theTeller object
running in the second Bankapp server process.

The way to provide the WebLogic Enterprise domain with the ability to distinguish
among multiple instances of these objects is to make each object instance unique.

To make eachTeller object unique, the factories for those objects must change the
way in which they make object references to them. For example, when the
TellerFactory object in the original Bankapp sample application created an object
reference to theTeller object, the
com.beasys.Tobj.TP::create_object_reference method specified an OID
that consisted only of the stringtellerName . However, in the extended Bankapp
sample application discussed in this chapter, the samecreate_object_reference

method uses a generated unique OID instead.

Scaling a WebLogic Enterprise Server Application

Creating CORBA Java Server Applications 4-21

A consequence of giving eachTeller object a unique OID is that there may be
multiple instances of these objects running simultaneously in the WebLogic Enterprise
domain. This characteristic is typical of the stateless object model, and is an example
of how the WebLogic Enterprise domain can be highly scalable and at the same time
offer high performance.

And last, because uniqueTeller objects need to be brought into memory for each
client request on them, it is critical that these objects be deactivated when the
invocations on them are completed so that any object state associated with them does
not remain idle in memory. The Bankapp server application addresses this issue by
assigning themethod activation policy to the Teller object in the XML-based Server
Description File.

Ensuring That Account Updates Occur in the Correct Server Group

The chief scalability advantage of having replicated server groups is to be able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the JDBC Bankapp sample application, it is
critical that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The JDBC Bankapp sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing is implemented in theTellerFactory object by the way in
which references toTeller objects are created.

4 Scaling a Java Server Application

4-22 Creating CORBA Java Server Applications

How the Bankapp Server Application Can Be
Scaled Further

In the future, the system administrator of the Bankapp sample application may want to
add capacity to the WebLogic Enterprise domain. For example, the bank may
eventually have a large increase in automated teller machines (ATMs). This can be
done without modifying or rebuilding the application.

The system administrator has the following tools available to continually add capacity:

� Replicating the Bankapp sample application server groups across additional
machines

Doing this requires modifying theUBBCONFIGfile to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

� Changing the factory-based routing tables

For example, instead of routing to the four groups shown earlier in this chapter,
the system administrator can modify the routing rules in theUBBCONFIGfile to
partition the application further among the new groups added to the WebLogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in theUBBCONFIGfile.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Bankapp sample application
is spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tables in theUBBCONFIGfile.

Creating CORBA Java Server Applications I-1

Index

A
ACID properties 3-2
activate_object method 1-20
activation policies

method 4-11
transaction 3-11

always transaction policy 3-5
application-controlled deactivation

overview 1-15
assigning transaction policies 3-9
AUTOTRAN 3-5

B
BAD_OPERATION 2-23
Bankapp sample

UBBCONFIG file 4-8
buildjavaserver command

environment variables 2-15
format 2-18

C
callback methods

detecting error conditions in 2-27
CLASSPATH variable 2-15
client applications

how they access objects 1-6
client stub 1-4
client/server contract 1-4
close_xa_rm method 3-10

closing an XA resource manager 3-10
compiling java source files 2-12
compiling OMG IDL 2-3
conversations

implementing transactionally 3-2
CORBA objects

See objects
create_object_reference method

example 2-6
specifying routing criteria 4-15

creating factories 2-10
creating object references 2-10
creating server applications

overview 1-1
summary 2-2

cursors
database 3-5

customer support contact information ix

D
data

reading and writing for an object 1-19
database cursors 3-5
data-dependent routing

See factory-based routing
deactivate_object method 1-20

and transactions 3-11
handling state in 2-28
restrictions on using 2-28

deactivateEnable method

I-2 Creating CORBA Java Server Applications

overview 1-15
debugging tips 2-21
defining in-memory behavior of objects 2-13
deploying server applications 2-19
design patterns

List-Enumerator 1-25
Process-Entity 1-25

development process
summary 2-2

documentation, where to find it viii
DR_TRANS_ABORT 3-11
DR_TRANS_COMMITTING 3-11
durable objects 1-19

E
environment variables

setting 2-15
exceptions

ActivateObjectFailed 2-22
AlreadyRegistered 2-22
and client applications 2-21
and server applications 2-21
BAD_OPERATION 2-23
CannotProceed 2-22
CORBA 2-21
DeactivateObjectFailed 2-22
IllegalInterface 2-22
InitializeFailed 2-22
INVALID_TRANSACTION 3-13
InvalidDomain 2-22
InvalidInterface 2-22
InvalidName 2-22
InvalidObject 2-22
InvalidObjectID 2-22
InvalidServant 2-22
NilObject 2-22
NoSuchElement 2-22
OBJ_ADAPTER 3-13
OBJECT_NOT_EXIST 2-23
OrbProblem 2-22

OutOfMemory 2-22
OverFlow 2-22
RegistrarNotAvailable 2-22
ReleaseFailed 2-22
TpfProblem 2-22
UnknownInterface 2-22
UserExceptions 2-22

Extensible Markup Language (XML) 2-13

F
factories

and factory-based routing 4-15
and object references 1-6
creating and registering 2-10
overview 1-10
registering 2-10

factory objects
implementing 2-6

factory-based routing
and UBBCONFIG file 4-14
how it works 4-14
implementing in a factory 4-15
summary 4-13

G
generating object references 1-10
groups

configuring server 4-7
creating 4-7
routing requests to specific 4-14

I
IDL

See OMG IDL
IDL compiler 2-4
ignore transaction policy 3-8
IIOP Listener/Handler 4-2
implementation

Creating CORBA Java Server Applications I-3

object, See object implementations
initialize method 2-8
in-memory behavior of objects

defining 2-13
Interface Repository 1-4
Interface Repository identifier 1-6
interfaces

defining 1-4
limiting compilation of 2-6
validating 2-28
writing methods to implement

operations 2-5
INVALID_TRANSACTION exception 3-13

J
java files

compiling 2-12
JAVA_HOME variable 2-15
javac command 2-12
JavaServer

multithreaded 4-18
UBBCONFIG definition 2-19

L
Listener/Handler

IIOP 4-2

M
m3idltojava compiler 1-5, 2-3

format 2-4
method templates 1-5
method-bound objects 1-13
multithreaded JavaServers 4-18

N
nested transactions 3-13
never transaction policy 3-7
NULL resource manager 3-11

O
OBJ_ADAPTER exception 3-13
object factories

See factories
object implementation file

creating 2-6
object implementations

overview 1-4
object references

about 1-6
contents of 1-6
creating 2-10
generating 1-10
lifespan of 1-7

object state
and the WLE system 1-11

object state management
and scalability 4-11
delegating to an XA RM 3-11

OBJECT_NOT_EXIST 2-23
and OMG IDL mismatches 2-28

objects
activating 1-22
bypassing in a transaction 3-8
choosing stateful 1-18
choosing stateless 1-17
constructors 1-5
deactivating 1-22
deactivating process 1-15
destructors 1-5
excluding from a transaction 3-7
implementing an interface for 1-5
including optionally in a transaction 3-6
in-memory behavior 2-13
making always transactional 3-5
managing 1-11
method-bound 1-13
polling in a transaction 3-11
process-bound 1-13
reading and writing state data 1-19

I-4 Creating CORBA Java Server Applications

setting activation policies for 1-12
transaction-bound 1-13

OMG IDL
defining an object with 1-4
defining operations with 1-4
versioning mismatch 2-28

open_xa_rm method 3-10
opening an XA resource manager 3-10
optional transaction policy 3-6
overview

server application creation process 1-1

P
PATH variable 2-15
persistent objects 1-19
printing product documentation viii
process-bound objects

transaction-bound objects 1-13

R
recursive transactions 3-13
registering factories 2-10
related information ix
release method 2-8
releasing server applications 2-11
replicating server processes 4-4
resource manager

closing an XA 3-10
delegating object state management 3-11
NULL 3-11
opening XA 3-10

routing
factory-based, See factory-based routing

routing criteria
specifying in a factory 4-15

S
scaling an application 4-4

summary features for 4-2
server application creation process

overview 1-1
server applications

configuring in groups 4-7
developing 1-10
replicating in a group 4-4
scaling 4-4

Server Description File 2-13
server groups

configuring 4-7
Server object

creating 2-8
server processes

replicating 4-4
single-threaded JavaServer 4-18
skeletons

limiting compilation of 2-6
overview 1-4

state data
reading and writing 1-19

stateful objects
criteria for choosing 1-18
definition 1-11
See also process-bound and transaction-

bound objects
stateless objects

criteria for choosing 1-17
definition 1-11
See also method-bound objects

support
technical ix

T
threads

single versus multiple 4-18
TMS

configuring 3-9
Oracle7 3-9
requirements for 3-9

Creating CORBA Java Server Applications I-5

TobjS.idl 2-22
transaction activation policy 3-11
Transaction Manager Server

See TMS
transaction policies

always 3-5
assigning 3-9
ignore 3-8
never 3-7
optional 3-6

transactional objects
defining 3-5

transactions
and conversations 3-2
and object state management 3-11
implementing in a WebLogic Enterprise

server application 3-9
nested 3-13
overview of 3-2
recursive 3-13

TUXDIR variable 2-15

U
UBBCONFIG file

and factory-based routing 4-14
in Bankapp sample 4-8
overview 2-19

V
variables

environment 2-15
vetoing a transaction 3-11

W
WebLogic Enterprise server applications

and transactions 3-9
worker threads

used by JavaServer 4-18

X
XA resource manager 3-9

closing 3-10
delegating object state management 3-11
opening 3-10

XML
in Server Description File 2-13

I-6 Creating CORBA Java Server Applications

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Java Server Application Concepts
	Overview
	The Entities You Create to Build a WebLogic Enterprise Java Server Application
	The Implementation of the CORBA Objects for Your Java Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects

	The Server Object

	Understanding Object References and Object State
	Generating Object References
	Managing Object State
	About Object State
	How to Manage Object State

	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects
	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Stateful Objects and Durable State
	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns

	2 Steps for Creating a Java Server Application
	Summary of the Java Server Application Development Process
	Step 1: Compile the OMG IDL File for the Server Application
	Using the m3idltojava Compiler

	Step 2: Write the Methods That Implement Each Interface’s Operations
	Creating an Object Implementation File
	Implementing a Factory Object
	Using Threads with WebLogic Enterprise

	Step 3: Create the Server Object
	Writing the Code That Creates and Registers a Factory
	Releasing the Server Application

	Step 4: Compile the Java Source Files
	Step 5: Define the Object Activation and Transaction Policies
	Specifying Policies in XML

	Step 6: Verify the Environment Variables
	Step 7: Finish the Server Description File
	Step 8: Deploy the Server Application
	Development and Debugging Tips
	Use of CORBA and WebLogic Enterprise Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object

	3 Integrating Transactions into a Java Server Application
	Overview of Transactions in the WebLogic Enterprise System
	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the WebLogic Enterprise System

	4 Scaling a Java Server Application
	Overview of the Scalability Features Available in the WebLogic Enterprise System
	Scaling a WebLogic Enterprise Server Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Enabling Multithreaded JavaServers
	Additional Design Considerations for the Teller Object
	Instantiating the Teller Object
	Ensuring That Account Updates Occur in the Correct Server Group

	How the Bankapp Server Application Can Be Scaled Further

	Index

