
CORBA Java Programming

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Reference

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

CORBA Java Programming Reference

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

CORBA Java Programming Reference iii

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ... xi

How to Print the Document... xi

Related Information... xi

Contact Us! ... xii

Documentation Conventions .. xii

1. OMG IDL Syntax
OMG IDL Extensions.. 1-2

2. Server Description File
Creating the Server Description File ... 2-2

About Object Activation and Deactivation .. 2-2

Server Description File Syntax .. 2-3

Prolog .. 2-4

Server Declaration... 2-4

Module and Implementation Declarations.. 2-5

Archive Declaration .. 2-9

Sample Server Description File... 2-11

3. Java TP Framework
A Simple Programming Model ... 3-3

Control Flow .. 3-4

Object State Management .. 3-5

Transaction Integration .. 3-5

Object Housekeeping ... 3-5

iv CORBA Java Programming Reference

High-level Services .. 3-6

Object State Management.. 3-6

Activation Policy .. 3-7

Application-controlled Activation and Deactivation.................................. 3-9

Explicit Activation .. 3-9

Self-deactivation.. 3-11

Saving and Restoring Object State ... 3-12

Transactions... 3-12

Transaction Policies.. 3-12

Transaction Initiation.. 3-14

Transaction Termination .. 3-14

Transaction Suspend and Resume .. 3-15

Restrictions on Transactions... 3-16

Voting on Transaction Outcome .. 3-17

Transaction Time-outs.. 3-18

Java TP Framework Interfaces .. 3-18

Tobj_Servant Interface ... 3-18

Server Object .. 3-19

TP Interface .. 3-19

Error Conditions and Exceptions... 3-20

Exceptions Raised by the Java TP Framework .. 3-20

Exceptions in the Server Application Code.. 3-21

Example... 3-21

Exceptions and Transactions .. 3-22

4. Java Bootstrap Object Programming Reference
Why Bootstrap Objects Are Needed.. 4-2

How Bootstrap Objects Work.. 4-2

Types of Remote Clients Supported .. 4-7

Capabilities and Limitations .. 4-8

Bootstrap Object API... 4-8

Tobj Module ... 4-9

Java Mapping.. 4-10

Programming Examples .. 4-11

Getting a SecurityCurrent Object ... 4-11

CORBA Java Programming Reference v

Getting a UserTransaction Object .. 4-12

5. FactoryFinder Interface
Capabilities, Limitations, and Requirements... 5-2

Functional Description .. 5-3

Locating a FactoryFinder ... 5-3

Registering a Factory ... 5-4

Locating a Factory.. 5-5

CORBAservices Naming Service Module OMG IDL........................ 5-7

CORBAservices Life Cycle Service Module OMG IDL.................... 5-7

Tobj Module OMG IDL.. 5-8

Locating Factories in Another Domain... 5-9

Why Use BEA WebLogic Enterprise Extensions? 5-10

Creating Application Factory Keys.. 5-11

Names Library Interface Pseudo OMG IDL..................................... 5-11

Java Mapping .. 5-17

Java Methods ... 5-18

Java Programming Examples .. 5-18

Server Registering a Factory .. 5-18

Client Obtaining a FactoryFinder Object Reference................................ 5-19

Client Finding One Factory Using the Tobj Approach 5-19

6. Security Service

7. Transactions Service

8. Notification Service

9. Request-Level Interceptors

10. Interface Repository Interfaces
Structure and Usage... 10-3

From the Programmer’s Point of View .. 10-4

Performance Implications .. 10-5

Building Client Applications... 10-5

Getting Initial References to the InterfaceRepository Object 10-6

vi CORBA Java Programming Reference

Interface Repository Interfaces.. 10-6

Supporting Type Definitions .. 10-6

IRObject Interface .. 10-7

Contained Interface .. 10-8

Container Interface ... 10-9

IDLType Interface .. 10-11

Repository Interface ... 10-11

ModuleDef Interface .. 10-12

ConstantDef Interface... 10-12

TypedefDef Interface.. 10-13

StructDef... 10-14

UnionDef .. 10-14

EnumDef... 10-15

AliasDef.. 10-15

PrimitiveDef ... 10-16

ExceptionDef.. 10-16

AttributeDef.. 10-17

OperationDef .. 10-18

InterfaceDef .. 10-20

11. Joint Client/Server Applications
Introduction ... 11-2

Main Program and Server Initialization ... 11-2

Servants .. 11-3

Servant Inheritance from Skeletons.. 11-4

Callback Object Models Supported.. 11-4

Preparing Callback Objects Using BEAWrapper Callbacks.................... 11-6

Threading Considerations in the Main Program 11-7

Multiple Threads ... 11-8

Java Client ORB Initialization.. 11-9

IIOP Support... 11-9

Java Applet Support .. 11-9

Port Numbers for Persistent Object References................................ 11-9

Callbacks Interface API... 11-10

CORBA Java Programming Reference vii

12. Java Development and Administration Commands

13. CORBA ORB
Initializing the ORB .. 13-1

Passing the Address of the IIOP Listener.. 13-3

14. Mapping IDL-to-Java
IDL-to-Java Overview... 14-1

Package Comments on Holder Classes ... 14-3

Exceptions ... 14-4

Differences Between CORBA and Java Exceptions................................ 14-5

System Exceptions ... 14-5

System Exception Structure .. 14-6

Minor Codes.. 14-6

Completion Status ... 14-6

User Exceptions.. 14-7

Minor Code Meanings.. 14-7

viii CORBA Java Programming Reference

CORBA Java Programming Reference ix

About This Document

This document describes the BEA WebLogic Enterprise™ CORBA Java application
programming interface (API).

This document covers the following topics:

n Chapter 1, “OMG IDL Syntax,” describes the Object Management Group
(OMG) Interface Definition Language (IDL) and OMG IDL extensions.

n Chapter 2, “Server Description File,” describes the Server Description File.

n Chapter 3, “Java TP Framework,” describes the WebLogic Enterprise TP
Framework application programming interface (API).

n Chapter 4, “Java Bootstrap Object Programming Reference,” describes the
Bootstrap object.

n Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

n Chapter 6, “Security Service,” directs you to information about the Security
Service.

n Chapter 7, “Transactions Service,” directs you to information about the
Transactions Service.

n Chapter 8, “Notification Service,” directs you to information about the
Notification Service.

n Chapter 9, “Request-Level Interceptors,” directs you to information about
Request-Level Interceptors.

n Chapter 10, “Interface Repository Interfaces,” describes the Interface Repository
interfaces.

x CORBA Java Programming Reference

n Chapter 11, “Joint Client/Server Applications,” describes how to program joint
client/server applications and the BEAWrapper Callbacks API.

n Chapter 12, “Java Development and Administration Commands,” directs you to
information about the build and administration commands for UNIX and
Windows NT platforms.

n Chapter 13, “CORBA ORB,” provides supplemental information about the
CORBA ORB.

n Chapter 14, “Mapping IDL-to-Java,” describes the IDL to Java mapping.

The information provided in this document is supplemented by the Java API
Reference, which contains descriptions of the application programming interface
(API) for the following components:

n TP Framework

n Bootstrap object

n FactoryFinder

n Security Service

n Java Transaction Service (JTS)

n Java Transaction API (JTA)

What You Need to Know

This document is intended for application developers interested in using the WebLogic
Enterprise software to write the following applications:

n Server applications implemented in the Java programming language

n All client applications supported by the WebLogic Enterprise product

This document assumes a familiarity with CORBA and Java programming. For
reference information about implementing WebLogic Enterprise server applications in
the C++ programming language, see the CORBA C++ Programming Reference in the
WebLogic Enterprise online documentation.

e-docs Web Site

CORBA Java Programming Reference xi

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
System, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see the BEA WebLogic Enterprise Bibliography in the
WebLogic Enterprise online documentation.

xii CORBA Java Programming Reference

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Documentation Conventions

CORBA Java Programming Reference xiii

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item

xiv CORBA Java Programming Reference

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

CORBA Java Programming Reference 1-1

CHAPTER

1 OMG IDL Syntax

The Object Management Group (OMG) Interface Definition Language (IDL) is used
to describe the interfaces that client objects call and that object implementations
provide. An OMG IDL interface definition fully specifies each operation’s parameters
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a client
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language that
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements also
provide full support for standard C++ preprocessing features and OMG IDL-specific
pragmas.

Note: When using a pragma version statement, be sure to locate it after the
corresponding interface definition. Here is an example of proper usage:

module A
{
 interface B
 {
#pragma version B "3.5"
 void op1();
 };
};

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

1 OMG IDL Syntax

1-2 CORBA Java Programming Reference

For a description of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

OMG IDL Extensions

The IDL compiler defines preprocessor macros specific to the platform. All the
macros predefined by the preprocessor that you are using can be used in the OMG IDL
file, in addition to the user-defined macros. You can also define your own macros
when you are compiling or loading OMG IDL files.

CORBA Java Programming Reference 2-1

CHAPTER

2 Server Description File

This topic includes the following sections:

n Creating the Server Description File. This section includes:

l About Object Activation and Deactivation

l Server Description File Syntax

n Sample Server Description File

When you create a Java server application meant to be run in the BEA WebLogic
Enterprise environment, the buildjavaserver command accepts the following
information:

n Default activation and transaction policies for all the objects implemented in the
server application

n The server declaration, which includes the name of the Server object and the
name of the server descriptor file

n The declarations of each of the modules and interfaces defined in the server
application’s OMG IDL file

n Nondefault activation and transaction policies for specific objects implemented
in the server application

n A description of the content of the server application’s jar archive, which
contains all the files needed by the server application

You specify all the preceding information in a Server Description File, which is used
by the buildjavaserver command to create the server descriptor file and, optionally,
build a server jar file.

2 Server Description File

2-2 CORBA Java Programming Reference

Creating the Server Description File

The means to provide the information required by the buildjavaserver command is
the Server Description File, which is expressed in the XML language. XML looks very
similar to HTML; its key difference is that no XML tag is predefined. Every XML file
uses a Document Type Definition (DTD) file that specifies:

n What the XML tags are

n What attributes can be attached to an element

n What elements can be used in other elements

The DTD required by the BEA WebLogic Enterprise system is packaged with the BEA
WebLogic Enterprise software. You create the Server Description File using a
common text editor. The section “About Object Activation and Deactivation” on
page 2-2 provides important background information about the policies you define in
the Server Description File, and the section “Server Description File Syntax” on
page 2-3 provides the details on how to specify the server description information in a
Server Description File.

About Object Activation and Deactivation

The BEA WebLogic Enterprise TP Framework application programming interface
(API) provides callback methods for object activation and deactivation. These
methods provide the ability for application code to implement flexible state
management schemes for CORBA objects.

State management is the way you control the saving and restoring of object state during
object deactivation and activation. State management also affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includes the
com.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object methods, which provide a
possible location for state management code. Additionally, the TP Framework API
includes the com.beasys.Tobj.TP.deactivateEnable method to enable the user

Creating the Server Description File

CORBA Java Programming Reference 2-3

to control the timing of object deactivation. The default duration of object activation is
controlled by policies assigned to implementations when the server application is built
by the buildjavaserver command.

While CORBA objects are active, their state is contained in a servant. This state must
be initialized when objects are first invoked (that is, the first time a method is invoked
on a CORBA object after its object reference is created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in
which the servant was active. When an object is activated, its state must be restored.
The object’s state can be saved in shared memory, in a file, in a database, and so forth.
It is up to the programmer to determine what constitutes an object’s state, and what
must be saved before an object is deactivated, and restored when an object is activated.

You can use the Server Description File to set activation policies to control the
duration of object activations in the server process. The activation policy determines
the in-memory activation duration for a CORBA object. A CORBA object is active in
a Portable Object Adapter (POA) if the POA’s active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the
association of an object ID with its active servant.

Server Description File Syntax

The Server Description File has the following four major parts:

n Prolog

n Server declaration

n Module and implementation declarations

n Archive declaration

The sections that follow explain the syntax and how to specify each of these parts of
the Server Description File.

2 Server Description File

2-4 CORBA Java Programming Reference

Prolog

Every Server Description File begins with the following required prolog:

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

If you want to override the default activation or transaction policy used by the
buildjavaserver command, you can override those defaults in the prolog using the
following syntax:

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd" [
 <!ENTITY TRANSACTION_POLICY "transaction_value">
 <!ENTITY ACTIVATION_POLICY "activation_value">
]>

In the preceding syntax, note the following:

n transaction_value represents one of the following: never, ignore,
optional, or always. (Note that the double quotes are a required part of the
syntax.)

n activation_policy represents one of the following: method, transaction,
or process.

n The square brackets ([and]) preceding and following the!ENTITY tags are
required; that is, the brackets in the preceding syntax do not imply that the
enclosed text is optional.

Note that you specify default activation and transaction policies in the prolog only if
you want to override the following BEA WebLogic Enterprise system defaults:

Server Declaration

Immediately following the prolog is the server declaration, which is an optional part
of the Server Description File. The server declaration contains the following:

n The fully qualified name of the Server object

Activation Policy method

Transaction Policy optional

Creating the Server Description File

CORBA Java Programming Reference 2-5

n The fully qualified name of the file containing the server descriptor

To specify the server declaration, use the following syntax:

<M3-SERVER SERVER-IMPLEMENTATION="server_name"
 SERVER-DESCRIPTOR-NAME="server_descriptor">
</M3-SERVER>

In the preceding syntax, note the following:

n server_name represents the fully qualified name of the class that contains the
Server object. Qualified names use dot separators, not slashes. If you do not
specify the Server object, the BEA WebLogic Enterprise system creates a default
Server object that opens and closes the XA resource manager associated with the
server application, if any, when the server application is started and stopped,
respectively. (Note that the double quotes are a required part of the syntax.)

n server_descriptor represents the name of the file where the server descriptor
will be stored. This file name typically has a .ser suffix. If you do not specify a
server descriptor, the buildjavaserver command uses Server.ser by default.

Module and Implementation Declarations

After the prolog and the server declaration (if present), the Server Description File
contains module and implementation declarations, which may be specified as nested
elements.

The module declarations specify Java packages for the server application. Interface
declarations specify:

n The interface repository ID for the interface being implemented

n Optionally, nondefault activation or transaction policies for objects that
implement the interface

Module Declaration Syntax

A module declaration uses the following syntax:

<MODULE name="name">
 .
 .
 .
</MODULE>

2 Server Description File

2-6 CORBA Java Programming Reference

In the preceding syntax, note the following:

n name represents the name of either a single Java package, or a set of nested
packages. This variable is needed if it exists in the OMG IDL file, and it is used
for scoping and grouping. Its use must be consistent with the way it is used
inside the OMG IDL file.

n A module declaration can contain an implementation declaration, nested module
declaration, or both.

n You can specify a nested package in a single module declaration using the dotted
notation, or you can factor out the package name using nested module
declarations. For example, either of the following module declarations for the
com.acme package is valid:

<MODULE name="com.acme">
 .
 .
 .
</MODULE>

or:

<MODULE name="com">
 <MODULE name="acme">
 .
 .
 .
 </MODULE>
</MODULE>

Implementation Declaration Syntax

An implementation declaration uses the following syntax:

<IMPLEMENTATION name="name"
 [implements="interface_id"]
 [transaction="transaction_policy"]
 [activation="activation_policy"] />

In the preceding syntax, note the following:

n name represents the name of the implementation class. If the implementation
declaration is not nested inside any module declaration, name must be the fully
qualified class name, using the dotted notation.

Creating the Server Description File

CORBA Java Programming Reference 2-7

If the implementation declaration is nested inside one or more module
declarations, the names of the modules will be prepended to the implementation
name to specify the whole name. The base class of the implementation name
must be a skeleton class generated by the m3idltojava command.

n interface_id represents the IDL interface repository ID for the interface being
implemented. This clause in the implementation declaration is optional. If you
do not specify an interface ID, the BEA WebLogic Enterprise system uses the
most derived interface ID found in the skeleton class by default. The interface
ID must match the most derived interface ID found in the skeleton class.

n transaction_policy represents the transaction policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

Policy Description

never The implementation is not transactional. Objects created for this interface
can never be invoked within the scope of a transaction. The system
generates an exception (INVALID_TRANSACTION) if an implementation
with this policy is involved in a transaction. An AUTOTRAN policy specified
in the UBBCONFIG file for the interface is ignored.

ignore The implementation is not transactional. The system allows requests on this
object to be made within the scope of a transaction, but the object is not part
of the transaction. An AUTOTRAN policy specified in the UBBCONFIG file
for the interface is ignored. (The BEA Tuxedo infrastructure always
enforces the use of the TPNOTRAN flag (see tpcall(3) in the BEA Tuxedo
Reference Manual) for requests associated with implementations that have
this policy.

optional The implementation may be transactional. Objects can be invoked either
inside or outside the scope of a transaction. If the AUTOTRAN parameter is
enabled in the UBBCONFIG file for the interface, the implementation is
transactional. Servers containing transactional objects must be configured
within a group associated with an XA-compliant RM.

always The implementation is transactional. Objects are always transactional. If a
request is made outside the scope of a transaction, the system automatically
starts a transaction before invoking the method, and the transaction is
committed when the method ends. (This is the AUTOTRAN feature.) Servers
containing transactional objects must be configured within a group
associated with an XA-compliant RM.

2 Server Description File

2-8 CORBA Java Programming Reference

The transaction clause is optional. If you do not specify a transaction policy, the
default is optional, unless the default value has been overridden in the prolog.

n activation_policy represents the activation policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object is active in a POA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant.

Policy Description

method The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the method. At the
completion of a method, the object is deactivated. When the next method
is invoked on the object reference, the CORBA object is activated (the
object ID is associated with a new servant). This behavior is similar to
that of a BEA Tuxedo stateless service.

transaction The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the transaction. During the
transaction, multiple object methods can be invoked. This is a model of
resource allocation that is similar to that of a BEA Tuxedo conversational
service.

This model is less expensive than the BEA Tuxedo conversational service
in that it uses fewer system resources. This is because of the BEA
WebLogic Enterprise ORB’s multicontexted dispatching model (that is,
the presence of many servants in memory at the same time for one
server), which makes it possible for a single server process to be shared
by many concurrently active servants, which service many clients. In the
BEA Tuxedo system, the process would be dedicated to a single client
and to only one service for the duration of a conversation.

process The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the process.

Note: The TP Framework API provides an interface method
(com.beasys.Tobj.TP.deactivateEnable()) that allows the
application to control the timing of object deactivation for objects that
have the activation policy set to process. For a description of
this method, see the API Javadoc.

Creating the Server Description File

CORBA Java Programming Reference 2-9

The activation clause is optional. If you do not specify an activation policy, the default
is method, unless the default value has been overridden in the prolog.

Archive Declaration

The archive declaration describes the content of the jar archive that contains all the
server application files. This section of the Server Description File is optional; if you
do not provide this section, you can build the jar archive by using the jar command
directly. However, declaring an archive in the Server Description File simplifies the
process of collecting and identifying the files.

The archive declaration is the last section of the Server Description File. If you do not
include an archive declaration, the buildjavaserver command produces only the
server descriptor and places it in the file specified by the server-descriptor-name
attribute in the server declaration.

You specify the content of the <ARCHIVE> element as either fully qualified Java classes
or file names. When specifying file names, note that path specifications are system
dependent, which has implications on archive portability.

The buildjavaserver command has the searchpath option, which you can use to
specify the search path for the files and classes included in the archive.

Note: After you use the buildjavaserver command to create the jar archive, you
might find it useful to verify the contents of the archive by using the jar tvf
command. This helps make sure that the archive contains all the intended
files.

Archive Declaration Syntax

The archive declaration has the following syntax:

<ARCHIVE name="archive-name">
 [<CLASS name="class-name" />] [...]
 [<PACKAGE name="package-name" />] [...]
 [<PACKAGE-RECURSIVE name="package-name"/>] [...]
 [<PACKAGE-ANONYMOUS />]
 [<FILE prefix="file-prefix" name="file-name" />] [...]
 [<DIRECTORY prefix="dir-prefix" name="dir-name" />] [...]
</ARCHIVE>

In the preceding syntax, note the following:

2 Server Description File

2-10 CORBA Java Programming Reference

n Each of the entities nested inside the <ARCHIVE> element is optional, and there
are no default values for any of these entities.

n The [...] construct next to an entity indicates that you can provide multiple
such entities.

n archive-name represents the name of the jar archive file to be created by the
buildjavaserver command. The archive created contains all the classes,
packages, and files specified within the <ARCHIVE> element.

n class-name represents the fully qualified name of the class to be included in
the archive. All inner classes of that class are included as well.

n package-name represents the fully qualified name of a package to be included
in the archive. All the classes belonging to that package are included as well.

If you want to include nested packages, use the <PACKAGE-RECURSIVE>
element.

n Use the <PACKAGE-ANONYMOUS> element to specify that all classes not in a
package are to be included in the archive. (This refers to the classes that do not
have a package statement in the Java source.)

n file-name represents the name of a file to be included in the archive. You can
use the file-prefix construct to specify a pathname. This path name is
prepended to the file name when the file is located to be included in the archive;
however, the file is stored in the archive only with the name specified by
file-name.

For example, if the file-name is acme/iconf.gif, and the file-prefix is
/dev, the buildjavaserver command looks for the file
/dev/acme/iconf.gif and stores it in the archive as acme/iconf.gif.

n dir-name represents the path name of the directory to be included in the
archive. All subdirectories are included as well. You can use the dir-prefix
construct to specify a directory path. The directory path is prepended to the
directory name when the directory is located to be included in the archive;
however, the file is stored in the archive only with the name specified by
dir-name.

Sample Server Description File

CORBA Java Programming Reference 2-11

Sample Server Description File

Listing 2-1 shows a sample Server Description File.

Listing 2-1 Sample Server Description File

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd"]>
<M3-SERVER
server-implementation="com.beasys.samples.BankAppServerImpl"
 server-descriptor-name="BankApp.ser">

 <MODULE name="com.beasys.samples">
 <IMPLEMENTATION
 name="TellerFactoryImpl" />
 activation="process"
 transaction="never"
 />

 <IMPLEMENTATION
 name="TellerImpl"/>
 activation="method"
 transaction="never"
 />

 <IMPLEMENTATION
 name="DBAccessImpl"
 activation="method"
 transaction="never"
 />

 </MODULE>

 <ARCHIVE name="BankApp.jar">
 <PACKAGE name="com.beasys.samples"/>
 </ARCHIVE>
</M3-SERVER>

For an example of another Server Description File, see Creating CORBA Java Server
Applications.

2 Server Description File

2-12 CORBA Java Programming Reference

CORBA Java Programming Reference 3-1

CHAPTER

3 Java TP Framework

This topic includes the following sections:

n A Simple Programming Model. This section describes:

l Control Flow

l Object State Management

l Transaction Integration

l Object Housekeeping

l High-level Services

n Object State Management. This section describes:

l Activation Policy

l Application-controlled Activation and Deactivation

l Saving and Restoring Object State

n Transactions. This section describes:

l Transaction Policies

l Transaction Initiation

l Transaction Termination

l Transaction Suspend and Resume

l Restrictions on Transactions

l Voting on Transaction Outcome

l Transaction Time-outs

n Java TP Framework Interfaces. This section describes:

3 Java TP Framework

3-2 CORBA Java Programming Reference

l Tobj_Servant Interface

l Server Object

l TP Interface

n Error Conditions and Exceptions. This section describes:

l Exceptions Raised by the Java TP Framework

l Exceptions in the Server Application Code

l Exceptions and Transactions

The BEA WebLogic Enterprise Java TP Framework provides a programming
framework that enables users to create servers for high-performance TP applications.
The Java TP Framework is required when developing BEA WebLogic Enterprise
servers. This chapter describes the architecture of and interfaces in the Java TP
Framework. Information about the Java TP Framework API is in the API Javadoc.
Information about how to use this API can be found in Creating Java Server
Applications.

BEA WebLogic Enterprise uses BEA Tuxedo as the underlying infrastructure for
providing load balancing, transactional capabilities, and administrative infrastructure.
The base API used by the TP Framework is the CORBA API with BEA extensions.

Before BEA WebLogic Enterprise, ORB products did not approach BEA Tuxedo’s
performance in large-scale environments. BEA Tuxedo systems support applications
that can process hundreds of transactions per second. These applications are built using
the BEA Tuxedo stateless-service programming model that minimizes the amount of
system resources used for each request, and thus maximizes throughput and price
performance.

Now, BEA WebLogic Enterprise and its Java TP Framework let you develop CORBA
applications with performance similar to BEA Tuxedo applications. BEA WebLogic
Enterprise servers that use the Java TP Framework provide throughput, response time,
and price performance approaching the BEA Tuxedo stateless-service programming
model, while using the CORBA programming model.

The Java TP Framework consists of:

n The com.beasys.Tobj_Servant class, which has virtual methods for object
state management

n The com.beasys.Tobj.Server class, which has virtual methods for
application-specific server initialization and termination logic

A Simple Programming Model

CORBA Java Programming Reference 3-3

n The com.beasys.Tobj.TP class, which provides methods to:

l Create object references for CORBA objects

l Create object references and preactivate objects

l Register (and unregister) factories with the FactoryFinder object

l Initiate user-controlled deactivation of the CORBA object currently being
invoked

l Obtain an object reference to the CORBA object currently being invoked

l Obtain object IDs in object references that were created in the Java TP
Framework

l Open and close XA resource managers

l Log messages to a user log (ULOG) file

l Obtain object references to the ORB and to Bootstrap objects

A Simple Programming Model

The Java TP Framework provides a simple, useful subset of the wide range of possible
CORBA object implementation choices. You use it for the development of server-side
object implementations only.

When using any client-side CORBA ORB, clients interact with CORBA objects whose
server-side implementations are managed by the Java TP Framework. Clients are
unaware of the existence of the TP Framework—a client written to access a CORBA
object executing in a non-BEA BEA WebLogic Enterprise server environment will be
able to access that same CORBA object executing in a BEA WebLogic Enterprise
server environment without any changes or restrictions to the client interface.

The Java TP Framework provides a server environment and an API that is easier to use
and understand than the CORBA Portable Object Adapter (POA) API, and is
specifically geared towards enterprise applications. It is a simple server programming
model and an orthodox implementation of the CORBA model, which will be familiar
to programmers using ORBs such as ORBIX or VisiBroker.

3 Java TP Framework

3-4 CORBA Java Programming Reference

The Java TP Framework simplifies the programming of BEA WebLogic Enterprise
servers by reducing the complexity of the server environment in the following ways:

n The Java TP Framework does all interactions with the POA and the naming
service. The application programmer requires no knowledge of the POA or
naming service interfaces.

n A CORBA object may be involved in only one transaction at a time (consistent
with the association of one object ID to one servant).

The Java TP Framework provides the following functionality:

n Control Flow

n Object State Management

n Transaction Integration

n Object Housekeeping

n High-level Services

The TP Framework API is available for use in either a single threaded or
multi-threaded Java server.

Control Flow

The Java TP Framework, in conjunction with the ORB and the POA, controls the flow
of the application program by doing the following:

n Controlling the server mainline and invoking callback methods on classes
defined by the TP Framework at appropriate times for server startup and
shutdown. This relieves the application programmer from complex interactions
related to ORB and POA initialization and coordination of transactions, resource
managers, and object state on shutdown.

n Scheduling objects for activation and deactivation when client requests arrive
and are completed. This removes the complexity of management of object
activation and deactivation from the realm of the application programmer and
enables the use of the TP monitor infrastructure’s powerful load-balancing
capabilities, crucial to performance of mission-critical tasks.

A Simple Programming Model

CORBA Java Programming Reference 3-5

Object State Management

The Java TP Framework API provides callback methods for application code to
implement flexible state management schemes for CORBA objects. State management
involves the saving and restoring of object state on object deactivation and activation.
State management also concerns the duration of activation of objects, which influences
the performance of servers and their resource usage. The default duration of object
activation is controlled by policies assigned to implementations at IDL compile time.
For more information about object state management, see the section “Object State
Management” on page 3-6.

Transaction Integration

Java TP Framework transaction integration provides the following features:

n CORBA objects can participate in global transactions.

n Objects participating in transactions can be implemented as stateful objects that
remain in memory for the duration of a transaction (by using the transaction
activation policy) to decrease client response time.

n CORBA objects that participate in transactions can affect transaction outcome
either during their transactional work or just prior to the system’s execution of
the two-phase commit algorithm after all transactional work has been completed.

n Transactions can be automatically initiated on the server, which is transparent to
the client.

Object Housekeeping

When a server is shut down, the Java TP Framework rolls back any transactions that
the server is involved in and deactivates any CORBA objects that are currently active.

3 Java TP Framework

3-6 CORBA Java Programming Reference

High-level Services

The TP interface in the Java TP Framework API provides methods for performing
object registrations and utility functions. The following services are provided:

n Object reference creation

n Factory-based routing support

n Accessors for system objects, such as the ORB

n Registration and unregistration of factories with the Factory Finder

n Application-controlled activation and deactivation

n User logging

The purpose of this interface is to provide high-level calls that application code can
call, instead of calls to underlying APIs provided by the Portable Object Adapter
(POA) and the BEA Tuxedo system. By encapsulating the underlying API calls with a
high-level set of methods, programmers can focus their efforts on providing business
logic, rather than on understanding and using the more complex underlying facilities.

Object State Management

Object state management involves the saving and restoring of object state on object
deactivation and activation. It also concerns the duration of activation of objects,
which influences the performance of servers and their resource usage. The external
API of the Java TP Framework provides activate_object and
deactivate_object methods, which are a possible location for state management
code.

Object State Management

CORBA Java Programming Reference 3-7

Activation Policy

State management is provided in the TP Framework by the activation policy. This
policy controls the activation and deactivation of servants for a particular IDL interface
(as opposed to the creation and destruction of the servants). This policy is applicable
only to CORBA objects using the Java TP Framework.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object is active in a POA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant. You can
choose from one of three activation policies: method (the default), transaction, or
process.

Note: The activation policies are set in an Server Description file that is configured
at OMG IDL compile time. For a description of the Server Description file,
refer to Chapter 2, “Server Description File.”

The activation policies are described below:

n method (This is the default activation policy.)

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the method. At the completion of a
method, the object is deactivated. When the next method is invoked on the
object reference, the CORBA object is activated (the object ID is associated with
a new servant). This behavior is similar to that of a BEA Tuxedo stateless
service.

n transaction

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the transaction. During the transaction,
multiple object methods can be invoked. The object is activated before the first
method invocation on the object and is deactivated in one of the following ways:

l If a user-initiated transaction is in effect when the object is activated, the
object is deactivated when the first of the following occurs: the transaction is
committed or rolled back, or the server is shut down in an orderly fashion.
The latter is done using either the tmshutdown(1) or tmadmin(1) command.
These commands are described in the BEA Tuxedo Reference Manual online
document.

3 Java TP Framework

3-8 CORBA Java Programming Reference

l If a user-initiated transaction is not in effect when the TP object is activated,
the TP object is deactivated when the method completes.

The transaction activation policy provides a means for an object to vote on
the outcome of the transaction prior to the execution of the two-phase commit
algorithm. An object votes to roll back the transaction by calling
Current.rollback_only() in the
com.beasys.Tobj_ServantBase.deactivate_object method. It votes to
commit the transaction by not calling Current.rollback_only() in the
method.

Note: This is a model of resource allocation that is similar to that of a BEA
Tuxedo conversational service. However, this model is less expensive than
the BEA Tuxedo conversational service in that it uses fewer system
resources. This is because of the BEA WebLogic Enterprise ORB’s
multicontexted dispatching model (that is, the presence of many servants
in memory at the same time for one server), which makes it possible for a
single server process to be shared by many concurrently active servants
that service many clients. In the BEA Tuxedo system, the process would
be dedicated to a single client and to only one service for the duration of a
conversation.

n process

The activation of the CORBA object begins when it is invoked while in an
inactive state and, by default, lasts until the end of the process.

Note: The Java TP Framework API provides an interface method
(com.beasys.TP.deactivateEnable) that allows the application to
control the timing of object deactivation for objects that have the
activation policy set to process.

The TP Framework API also provides an interface method
(com.beasys.TP.create_active_object_reference) that allows the
application to pre-activate the CORBA object at the time that its object
reference is created.

Object State Management

CORBA Java Programming Reference 3-9

Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the Java TP Framework,
as discussed earlier in this chapter. The techniques in this section show how to use
alternate mechanisms. The application can control the timing of activation and
deactivation explicitly for objects with particular policies.

Explicit Activation

Application code can bypass the on-demand activation feature of the Java TP
Framework for objects that use the process activation policy. The application can
“preactivate” an object (that is, activate it before any invocation) using the
com.beasys.TP.create_active_object_reference call.

Preactivation works as follows. Before the application creates an object reference, the
application instantiates a servant and initializes that servant’s state. The application
uses com.beasys.TP.create_active_object_reference to put the object into
the Active Object Map (that is, associate the servant with an ObjectId). Then, when
the first invocation is made, the Java TP Framework immediately directs the request to
the process that created the object reference and then to the existing servant, bypassing
the call to the servant’s activate_object method (just as if this were the second or
later invocation on the object). Note that the object reference for such an object will
not be directed to another server and the object will never go through on-demand
activation as long as the object remains activated.

Since the preactivated object has the process activation policy, it will remain active
until one of two events occurs: (1) the ending of the process or (2) a
com.beasys.TP.deactivateEnable call.

Usage Notes

Preactivation is especially useful if the application needs to establish the servant with
an initial state in the same process, perhaps using shared memory to initialize state.
Waiting to initialize state until a later time and in a potentially different process may
be very difficult if that state includes pointers, object references, or complex data
structures. com.beasys.TP.create_active_object_reference guarantees that
the preactivated object is in the same process as the code that is doing the preactivation.
While this is convenient, preactivation should be used sparingly, as should all process
objects, because it preallocates precious resources. However, when needed and used
properly, preallocation is more efficient than alternatives.

3 Java TP Framework

3-10 CORBA Java Programming Reference

Examples of such usage might be an object using the “iterator” pattern. For example,
there might a potentially long list of items that could be returned (in an unbound IDL
sequence) from a “database_query” method (for example, the contents of the
telephone book). Returning all such items in the sequence is impractical because the
message size and the memory requirements would be too large.

On an initial call to get the list, an object using the iterator pattern returns only a limited
number of items in the sequence and also returns a reference to an “iterator” object that
can be invoked to receive further elements. This iterator object is initialized by the
initial object; that is, the initial object creates a servant and sets its state to keep track
of where in the long list of items the iteration currently stands (the pointer to the
database, the query parameters, the cursor, and so forth).

The initial object uses com.beasys.TP.create_active_object_reference to
preactivate this iterator object and to create its reference which will be returned to the
client. It also creates an object reference to that object to return to the client. The client
then invokes repeatedly on the iterator object to receive, say, the next 100 items in the
list each time. The advantage of preactivation in this situation is that the state might be
complex. It is often easiest to set such state initially, from a method that has all the
information in its context (call frame), when the initial object still has control.

When the client is finished with the iterator object, it invokes a final method on the
initial object, which deacativates the iterator object. The initial object deactivates the
iterator object by invoking a method on the iterator object that calls the
com.beasys.TP.deactivateEnable method; that is, the iterator object calls
com.beasys.TP.deactivateEnable on itself.

Caution

For objects to be preactivated in this fashion, the state usually cannot be recovered if a
crash occurs. (This is because the state was considered too complex or inconvenient to
set upon initial, delayed activation.) This is a valid object technique, essentially stating
that the object is valid only for a single activation period.

However, a problem may arise because of the “one-time” usage. Since a client still
holds an object reference that leads to the process containing that state, and since the
state cannot be recreated after the crash, care must be taken that the client’s next
invocation does not automatically provoke a new activation of the object, because that
object would have inapplicable state.

Object State Management

CORBA Java Programming Reference 3-11

The solution is to refuse to allow the object to be activated automatically by the TP
Framework. If the activate_object method throws a
com.beasys.TobjS.ActivateObjectFailed exception, the TP Framework will
not complete the activation and will return the org.omg.CORBA.OBJECT_NOT_EXIST
exception to the client. The client has presumably been warned about this possibility,
since it knows about the iterator (or similar) pattern. The client must be prepared to
restart the iteration.

Self-deactivation

Just as it is possible to preactivate an object with the process activation policy, it is
possible to request the deactivation of an object with the process activation policy.
The ability to preactivate and the ability to request deactivation are independent;
regardless of how an object was activated, it can be deactivated explicitly.

A method in the application can request (via com.beasys.TP.deactivateEnable)
that the object be deactivated. When com.beasys.TP.deactivateEnable is called
and the object is subsequently deactivated, no guarantee is made that subsequent
invocations on the CORBA object will result in reactivation in the same process as a
previous activation. The association between the ObjectId and the servant exists from
the activation of the CORBA object until one of the following events occurs: (1) the
shutdown of the server process or (2) the application calls
com.beasys.TP.deactivateEnable. After the association is broken, when the
object is invoked again, it can be re-activated anywhere that is allowed by the BEA
WebLogic Enterprise configuration parameters.

When a com.beasys.TP.deactivateEnable call is invoked, the object currently
executing is deactivated after completion of the method in which the call is made. The
object itself makes the decision that it should be deactivated. This is often done during
a method call that acts as a "signoff" signal.

Note: The TP::deactivateEnable(interface, object id, servant)
method can be used to deactivate an object. However, if that object is currently
in a transaction, the object will be deactivated when the transaction commits
or rolls back. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object is not in a transaction
or ensure that no invokes occur on the object after the
TP::deactivateEnable() call until the transaction is complete.

3 Java TP Framework

3-12 CORBA Java Programming Reference

Saving and Restoring Object State

While CORBA objects are active, their state is contained in a servant. Unless an
application uses com.beasys.TP.create_active_object_reference, state must
be initialized when the object is first invoked (that is, the first time a method is invoked
on a CORBA object after its object reference is created), and on subsequent
invocations after they have been deactivated. While a CORBA object is deactivated,
its state must be saved outside the process in which the servant was active. The object’s
state can be saved in shared memory, in a file, or in a database. Before a CORBA object
is deactivated, its state must be saved; when it is activated, its state must be restored.

The programmer determines what constitutes an object’s state and what must be saved
before an object is deactivated, and restored when an object is activated.

Use of Constructors for Java Corba Objects

The state of Java CORBA objects must not be initialized in the constructors for the
servant classes. This is because the Java TP Framework may reuse an instance of a
servant. No guarantee is made as to the timing of the creation of servant instances.

Transactions

The following sections provide information about transaction policies and how to use
transactions.

Transaction Policies

Eligibility of CORBA objects to participate in global transactions is controlled by the
transaction policies assigned to implementations at compile time. The following
policies can be assigned.

Note: The activation policies are set in an Server Description file that is configured
at OMG IDL compile time. For a description of the Server Description file,
refer to Chapter 2, “Server Description File.”

Transactions

CORBA Java Programming Reference 3-13

n never

The implementation is not transactional. Objects created for this interface can
never be involved in a transaction. The system generates an exception
(INVALID_TRANSACTION) if an implementation with this policy is involved in a
transaction. An AUTOTRAN policy specified in the UBBCONFIG file for the
interface is ignored.

n ignore

The implementation is not transactional. This policy instructs the system to
allow requests within a transaction to be made of this implementation. An
AUTOTRAN policy specified in the UBBCONFIG file for the interface is ignored.

n optional (This is the default transaction_policy.)

The implementation may be transactional. Objects can be involved in a
transaction if the request is transactional. Servers containing transactional objects
must be configured within a group associated with an XA-compliant resource
manager. If the AUTOTRAN parameter is specified in the UBBCONFIG file for the
interface, AUTOTRAN is on.

n always

The implementation is transactional. Objects are required to always be involved
in a transaction. If a request is made outside a transaction, the system
automatically starts a transaction before invoking the method. The transaction is
committed when the method ends. (This is the same behavior that results from
specifying AUTOTRAN for an object with the option transaction policy, except that
no administrative configuration is necessary to achieve this behavior, and it
cannot be overridden by administrative configuration.) Servers containing
transactional objects must be configured within a group that is associated with
an XA-compliant resource manager.

Note: The optional policy is the only transaction policy that can be influenced by
administrative configuration. If the system administrator sets the AUTOTRAN
attribute for the interface by means of the UBBCONFIG file or by using
administrative tools, the system automatically starts a transaction upon
invocation of the object, if it is not already infected with a transaction (that is,
the behavior is as if the always policy were specified).

3 Java TP Framework

3-14 CORBA Java Programming Reference

Transaction Initiation

Transactions are initiated in one of two ways:

n By the application code via use of the
org.omg.CosTransactions.Current.begin method. This can be done in
either the client or the server. For a description of this operation, see Using
Transactions.

n By the system when an invocation is done on an object that has either:

l Transaction policy always

l Transaction policy optional and a setting of AUTOTRAN for the interface

For more information, refer to the Administration Guide.

Transaction Termination

In general, the handling of the outcome of a transaction is the responsibility of the
initiator. Therefore, the following is true:

n If the client or server application code initiates transactions, the Java TP
Framework never commits a transaction. The BEA WebLogic Enterprise system
may roll back the transaction if server processing tries to return to the client with
the transaction in an illegal state.

n If the system initiates a transaction, the commit or rollback will always be
handled by the BEA WebLogic Enterprise system.

The following behavior is enforced by the BEA WebLogic Enterprise system:

n If no transaction is active when a method on a CORBA object is invoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actions is taken, the transaction is rolled back by the Java TP Framework and the
org.omg.CORBA.OBJ_ADAPTER exception is raised to the client application.

This exception is raised because the transaction was initiated in the server
application; therefore, the client application would not expect a transactional
error condition such as TRANSACTION_ROLLEDBACK.

Transactions

CORBA Java Programming Reference 3-15

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming
a transaction within a method invocation. These rules and the error conditions that
result from their violation are described in this section.

When a CORBA object method begins execution, the object can be in one of the
following three states with respect to transactions:

n The client application began the transaction.

l Valid server application behavior: Suspend and resume the transaction
within the method execution.

l Invalid server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

l Error Processing: If invalid behavior occurs, the TP Framework raises the
org.omg.CORBA.TRANSACTION_ROLLEDBACK exception to the client
application and the transaction is rolled back by the BEA WebLogic
Enterprise system.

n The system began a transaction to provide AUTOTRAN or transaction policy
always behavior.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

l Valid server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before
another request causes the transaction to be resumed.

l Invalid server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

l Error Processing: If invalid behavior occurs, the Java TP Framework raises
the org.omg.CORBA.OBJ_ADAPTER exception to the client and the
transaction is rolled back by the system. The org.omg.CORBA.OBJ_ADAPTER

3 Java TP Framework

3-16 CORBA Java Programming Reference

exception is raised because the client application did not initiate the
transaction, and, therefore, does not expect transaction error conditions to be
raised.

n The CORBA object is not involved in a transaction when it starts executing.

l Valid server behavior:

t Begin and commit a transaction within the method execution.

t Begin and roll back a transaction within the method execution.

t Begin and suspend a transaction within the method execution.

l Invalid server behavior: Begin a transaction and return from the method with
the transaction active.

l Error Processing: If invalid behavior occurs, the Java TP Framework raises
the org.omg.CORBA.OBJ_ADAPTER exception to the client application and
the transaction is rolled back by the BEA WebLogic Enterprise system. The
org.omg.CORBA.OBJ_ADAPTER exception is raised because the client
application did not initiate the transaction, and, therefore, does not expect
transaction error conditions to be raised.

Restrictions on Transactions

The following restrictions apply to BEA WebLogic Enterprise transactions:

n A CORBA object in the BEA WebLogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

n A CORBA object can be infected by only one transaction at a time. If an
invocation tries to infect an already infected object, an
org.omg.CORBA.INVALID_TRANSACTION exception is returned.

n If a CORBA object is infected with a transaction and a nontransactional request
is made on it, an org.omg.CORBA.OBJ_ADAPTER exception is raised.

n If the application begins a transaction in the
com.beasys.Tobj.Server.initialize method, it must either commit or roll
back the transaction before returning from the method. If it does not, the Java TP

Transactions

CORBA Java Programming Reference 3-17

Framework shuts down the server. This is because the application has no
predictable way of regaining control after completing the initialize method.

n If a CORBA object is infected by a transaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COMMITTING or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the
com.beasys.Tobj_Servant.deactivate_object method. Such an
invocation results in an org.omg.CORBA.BAD_INV_ORDER exception.

n If an object generates a user exception within a system-generated transaction
(that is, the client did not begin a transaction explicitly), the client application
receives the org.omg.CORBA.OBJ_ADAPTER system exception and not the user
exception.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

n During transactional work

The org.omg.CORBA.Current.rollback_only method can be used to ensure
that the only possible outcome is to roll back the current transaction. The
rollback_only method can be invoked from any CORBA object method.

n After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit algorithm when the Java TP
Framework invokes its deactivate_object method.

Note that this behavior does not apply to objects with process or method
activation policies. If the CORBA object wants to roll back the transaction, it
can invoke the org.omg.CORBA.Current.rollback_only method. If it wants
to vote to commit the transaction, it does not make that call. Note, however, that
a vote to commit does not guarantee that the transaction is committed, since
other objects may subsequently vote to roll back the transaction.

3 Java TP Framework

3-18 CORBA Java Programming Reference

Note: Users of SQL cursors must be careful when using an object with the method
or process activation policy. A typical operation would be for a process to
open an SQL cursor within a client-initiated transaction. For typical SQL
database products, once the client commits the transaction, all cursors that
were opened within that transaction are automatically closed; however, the
object will not receive any notification that its cursor has been closed.

Transaction Time-outs

When a transaction time-out occurs, the transaction is marked so that the only possible
outcome is to roll back the transaction, and the
org.omg.CORBA.TRANSACTION_ROLLEDBACK standard exception is returned to the
client. Any attempts to send new requests will also fail with the
org.omg.CORBA.TRANSACTION_ROLLEDBACK exception until the transaction has
been aborted.

Java TP Framework Interfaces

The Java TP Framework supports the following interfaces:

n com.beasys.Tobj_Servant

n com.beasys.Tobj.Server

n com.beasys.Tobj.TP

Tobj_Servant Interface

The com.beasys.Tobj_Servant interface defines operations that allow a CORBA
object to assist in the management of its state. Every implementation skeleton
generated by the IDL compiler automatically inherits from the
com.beasys.Tobj_Servant class. The com.beasys.Tobj_Servant class contains
two virtual methods, activate_object and deactivate_object, that can be
redefined by the programmer.

Java TP Framework Interfaces

CORBA Java Programming Reference 3-19

Whenever a request comes in for an inactive CORBA object, the object is activated and
the activate_object method is invoked on the servant. When the CORBA object is
deactivated, the deactivate_object method is invoked on the servant. The timing
of deactivation is driven by the implementation’s activation policy. When
deactivate_object is invoked, the Java TP Framework passes in a reason code to
indicate why the call was made.

Note: The activate_object and deactivate_object methods are the only
methods that the Java TP Framework guarantees will be invoked for CORBA
object activation and deactivation. The servant class constructor may or may
not be invoked at activation time. Therefore, the server-application code must
not do any state handling for CORBA objects in the constructor of the servant
class.

Server Object

The com.beasys.Tobj.Server object provides default callback methods to initialize
and release the server application. A new class that derives from the
com.beasys.Tobj.Server class can be implemented that overrides the initialize
and release methods with application-specific server initialization and termination
logic.

TP Interface

The com.beasys.Tobj.TP interface supplies a set of service methods that can be
invoked by application code. This is the only interface in the Java TP Framework that
can safely be invoked by application code. All other interfaces have callback methods
that are intended to be invoked only by system code.

The purpose of this interface is to provide high-level calls that application code can
call, instead of calls to underlying APIs provided by the Portable Object Adapter
(POA) and the BEA Tuxedo system. By using these calls, programmers can learn a
simpler API and are spared the complexity of the underlying APIs.

The com.beasys.Tobj.TP interface implicitly uses two features of the BEA
WebLogic Enterprise software that extend the CORBA APIs:

n Factories and the FactoryFinder object

3 Java TP Framework

3-20 CORBA Java Programming Reference

n Factory-based routing

For information about the FactoryFinder object, see Chapter 5, “FactoryFinder
Interface.” For more information about Factory-based routing, see the Administration
Guide.

Usage Note

During server application initialization, the application constructs the object reference
for an application factory. It then invokes the register_factory method, passing in
the factory's object reference together with a factory id field. On server release
(shutdown), the application uses the unregister_factory method to unregister the
factory.

Error Conditions and Exceptions

The following paragraphs discuss error conditions and resulting exceptions.

Exceptions Raised by the Java TP Framework

The following exceptions are raised by the Java TP Framework and are returned to
clients when error conditions occur in, or are detected by, the Java TP Framework:

CORBA.INTERNAL
CORBA.OBJECT_NOT_EXIST
CORBA.OBJ_ADAPTER
CORBA.INVALID_TRANSACTION
CORBA.TRANSACTION_ROLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these
exceptions is raised, the Java TP Framework also writes to the user log file a
descriptive error message that explains the reason.

Error Conditions and Exceptions

CORBA Java Programming Reference 3-21

Exceptions in the Server Application Code

The following Java TP Framework callback methods are initiated by events other than
client requests on the object:

com.beasys.Tobj_ServantBase.activate_object()
com.beasys.Tobj_ServantBase.deactivate_object()
com.beasys.Server.create_servant()

If exception conditions are raised in these methods, those exact exceptions are not
reported back to the client. However, each of these methods is defined to raise an
exception that includes a reason string. The Java TP Framework catches the exception
raised by the callback and logs the reason string to the user log file. The Java TP
Framework may raise an exception back to the client. Refer to the descriptions of the
individual Java TP Framework callback methods for more information about these
exceptions.

Example

For com.beasys.Tobj_ServantBase.deactivate_object(), the following line
of code throws a DeactivateObjectFailed exception:

throw new com.beasys.TobjS.DeactivateObjectFailed(“deactivate
 failed to save state!”);

This message is appended to the user log file with a tag made up of the time (hhmmss),
system name, process name, and process-id of the calling process. The tag is
terminated with a colon. The preceding throw statement causes the following line to
appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!

Where 151104 is the time (3:11:04pm), T1 is the system name, simpapps is the
process name, 247 is the process-id, and APPEXC identifies the message as an
application exception message.

3 Java TP Framework

3-22 CORBA Java Programming Reference

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework
callback methods will not automatically cause a transaction to be rolled back unless
the TP Framework started the transaction. It is up to the application code to call
Current.rollback_only() if the condition that caused the exception to be raised
should also cause the transaction to be rolled back.

CORBA Java Programming Reference 4-1

CHAPTER

4 Java Bootstrap Object
Programming
Reference

This topic includes the following sections:

n How Bootstrap Objects Work

n Types of Remote Clients Supported

n Capabilities and Limitations

n Bootstrap Object API. This section describes:

l Tobj Module

l Java Mapping

n Programming Examples. The following examples are provided:

l Getting a SecurityCurrent Object

l Getting a UserTransaction Object

4 Java Bootstrap Object Programming Reference

4-2 CORBA Java Programming Reference

Why Bootstrap Objects Are Needed

The Problem: To communicate with BEA WebLogic Enterprise objects, a client
application must obtain object references. The client application uses the Bootstrap
object to obtain initial object references to six key objects in a BEA WebLogic
Enterprise domain:

n FactoryFinder—used to locate factory objects

n SecurityCurrent—used to log on to the system

n TransactionCurrent—used to manage transactions

n InterfaceRepository—used to obtain information about available interfaces

n NotificationService—used to locate Notification Service channel factory objects

n Tobj_SimpleEventsService—used to locate BEA Simple Events Service channel
factory objects

However, this poses a problem: How does the client application access the Bootstrap
object?

The solution: Bootstrap objects are local programming objects, not remote CORBA
objects, in both the client and the server. When Bootstrap objects are created, their
constructor requires the network address of a BEA WebLogic Enterprise IIOP Server
Listener/Handler. Given this information, the Bootstrap object can generate object
references for the above-mentioned remote objects in the BEA WebLogic Enterprise
domain. These object references can then be used to access services available in the
BEA WebLogic Enterprise domain.

How Bootstrap Objects Work

Bootstrap objects are created by a client or a server application that must access object
references to the following objects:

n SecurityCurrent

How Bootstrap Objects Work

CORBA Java Programming Reference 4-3

n TransactionCurrent

n FactoryFinder

n InterfaceRepository

n NotificationService

n Tobj_SimpleEventsService

Bootstrap objects may represent the first connection to a specific BEA WebLogic
Enterprise domain depending on the format of the IIOP Server Listener/Handler
address. If the Null scheme Universal Resource Locator (URL) format is used (the
only address format supported in releases of BEA WebLogic Enterprise prior to V5.1),
the Bootstrap objects represent the first connection. However, if the URL format is
used, the connection will not occur until after Bootstrap object creation. For more
information on address formats and connection times, refer to the description of
Tobj_Bootstrap in the Java API Reference, which is included in the Javadoc online
documentation.

For a BEA WebLogic Enterprise remote client, the Bootstrap object is created with the
host and the port for the BEA WebLogic Enterprise IIOP Server Listener/Handler.
However, for BEA WebLogic Enterprise native client and server applications, there is
no need to specify a host and port because they execute in a specific BEA WebLogic
Enterprise domain. The IIOP Server Listener/Handler host and the port ID are included
in the BEA WebLogic Enterprise domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for
objects in a particular BEA WebLogic Enterprise domain. Different Bootstrap objects
allow the application to use multiple domains.

Using the Bootstrap object, you can obtain six different references, as follows:

n SecurityCurrent

The SecurityCurrent object is used to establish a security context within a BEA
WebLogic Enterprise domain. The client can then obtain the
PrincipalAuthenticator from the principal_authenticator attribute of the
SecurityCurrent object.

n TransactionCurrent

The TransactionCurrent object is used to participate in a BEA WebLogic
Enterprise transaction. The basic operations are as follows:

4 Java Bootstrap Object Programming Reference

4-4 CORBA Java Programming Reference

l Begin

Begin a transaction. Future operations take place within the scope of this
transaction.

l Commit

End the transaction. All operations on this client application have completed
successfully.

l Roll back

Abort the transaction. Tell all other participants to roll back.

l Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction later.

l Resume

Resume participation in the specified transaction.

n FactoryFinder

The FactoryFinder object is used to obtain a factory. In the BEA WebLogic
Enterprise system, factories are used to create application objects. The
FactoryFinder provides the following different methods to find factories:

l Get a list of all available factories that match a factory object reference
(find_factories).

l Get the factory that matches a name component consisting of id and kind
(find_one_factory).

l Get the first available factory of a specific kind
(find_one_factory_by_id).

l Get a list of all available factories of a specific kind
(find_factories_by_id).

l Get a list of all registered factories (list_factories).

How Bootstrap Objects Work

CORBA Java Programming Reference 4-5

n InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the BEA WebLogic Enterprise domain.
Clients using the Dynamic Invocation Interface (DII) need a reference to the
Interface Repository to be able to build CORBA request structures. The ActiveX
Client is a special case of this. Internally, the implementation of the COM/IIOP
Bridge uses DII, so it must get the reference to the Interface Repository,
although this is transparent to the desktop client.

n NotificationService

The NotificationService object is used to obtain a reference to the event channel
factory (CosNotifyChannelAdmin::EventChannelFactory) in the CosNotification
Service. In the BEA WebLogic Enterprise system, the EventChannelFactory is
used to locate the Notification Service channel.

n Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event
channel factory (Tobj_SimpleEvents::ChannelFactory) in the BEA Simple
Events Service. In the BEA WebLogic Enterprise system, the ChannelFactory is
used to locate the BEA Simple Events Service channel.

The FactoryFinder and InterfaceRepository objects are not implemented in the
environmental objects library. However, they are specific to a BEA WebLogic
Enterprise domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objects in use.

You can also invoke the following method on the Bootstrap object to return
information needed by the client application:

n getUserTransaction

This method returns the current transactional context object to the client
application.

The Bootstrap object implies an association or "session" between the client application
and the BEA WebLogic Enterprise domain. Within the context of this association, the
Bootstrap object imposes a containment relationship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects are valid only for this domain and only while the Bootstrap object exists.

4 Java Bootstrap Object Programming Reference

4-6 CORBA Java Programming Reference

Note: Resolving the SecurityCurrent when using the new URL address format
(corbaloc://hostname:port_number) is a local operation; that is, no
connection is made by the client to the IIOP Server Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any
time. If a Current object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
a client application may have more than one reference to the single instance of the
Current object.

To create a new instance of a Current object, the application must first invoke the
destroy_current method on the Bootstrap object. This invalidates all of the Current
objects, but does not destroy the session with the BEA WebLogic Enterprise domain.
After invoking the destroy_current method, new instances of the Current objects
can be created within the BEA WebLogic Enterprise domain using the existing
Bootstrap object.

To obtain Current objects for another domain, a different Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at one time,
only one Bootstrap object may be "active;" that is, have Current objects associated
with it. Thus, an application must first invoke the destroy_current method on the
"active" Bootstrap object before obtaining new Current objects on another Bootstrap
object, which then becomes the active Bootstrap object.

Servers and native clients are inside of the BEA WebLogic Enterprise domain;
therefore, no "session" is established. However, the same containment relationships
are enforced. Servers and native clients access the domain they are currently in by
specifying an empty string, rather than //host:port.

Note: When you compile client and server applications, specify the -DTOBJADDR
option to specify a host and port to be used at run time, which allows for more
flexibility and portability in client and server application code. For more
information, see Creating CORBA Client Applications and Creating CORBA
Java Server Applications.

Note: Client and server applications must use the
com.beasys.Tobj_Bootstrap.resolve_initial_references method,
not the org.omg.CORBA.ORB.resolve_initial_references method.

Types of Remote Clients Supported

CORBA Java Programming Reference 4-7

Types of Remote Clients Supported

Table 4-1 shows the types of remote clients that can use the Bootstrap object to access
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository.

This container describes how to use the Bootstrap object with Java client applications.
For reference information about how to use the Bootstrap object in C++ and ActiveX
client applications, see the CORBA C++ Programming Reference.

Table 4-1 Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applications use the BEA WebLogic Enterprise C++
environmental objects to access the CORBA objects in a BEA WebLogic
Enterprise domain, and the BEA WebLogic Enterprise Object Request
Broker (ORB) to process from CORBA objects. Use the BEA WebLogic
Enterprise system development commands to build these client applications
(see Commands, System Processes, and MIB Reference).

CORBA Java CORBA Java client applications use the Java environmental objects to
access CORBA objects in a BEA WebLogic Enterprise domain. However,
these client applications use an ORB product other than the BEA WebLogic
Enterprise ORB to process requests from CORBA objects. These client
applications are built using the ORB product’s Java development tools.

The Java core system of the BEA WebLogic Enterprise software supports
interoperability with client platforms using of the following:

n The Java IDL ORB provided with the Java Development Kit 1.2 from
Sun Microsystems, Inc.

For complete details about Java application and applet support, see the
Release Notes.

ActiveX Use the BEA WebLogic Enterprise Automation environmental objects to
access CORBA objects in a BEA WebLogic Enterprise domain, and the
ActiveX Client to process requests from CORBA objects. Use the
Application Builder to create bindings for CORBA objects so that they can
be accessed from ActiveX client applications, which are built using a
development tool such as Microsoft Visual Basic, Delphi, or PowerBuilder.

4 Java Bootstrap Object Programming Reference

4-8 CORBA Java Programming Reference

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

n Multiple Bootstrap objects can coexist in a client application, although only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke the destroy_current method on the
Bootstrap object associated with one domain before obtaining the Current
objects on another domain. Although it is possible to have multiple Bootstrap
objects that establish connections to different BEA WebLogic Enterprise
domains, only one set of Current objects is valid. Attempts to obtain other
Current objects without destroying the existing Current objects fail.

n Method invocations to any BEA WebLogic Enterprise domain other than the
domain that provides the valid SecurityCurrent object fail and return an
org.omg.CORBA.NO_PERMISSION exception.

n Method invocations to any BEA WebLogic Enterprise domain other than the
domain that provides the valid TransactionCurrent object do not execute within
the scope of a transaction.

n The transaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other ("native") Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) is described in the Java
API Reference in the Javadoc online documentation. The sections that follow describe:

n The object references returned by the Bootstrap object

n The Java mapping for the Bootstrap object

Bootstrap Object API

CORBA Java Programming Reference 4-9

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-3 describes the Tobj module exceptions.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (com.beasys.Tobj.FactoryFinder)

InterfaceRepository InterfaceRepository object (org.omg.CORBA.Repository)

SecurityCurrent SecurityCurrent object (org.omg.SecurityLevel2.Current)

TransactionCurrent OTS Current object (com.beasys.Tobj.TransactionCurrent)

NotificationService EventChannelFactory object

(CosNotifyChannelAdmin.EventChannelFactory)

Tobj_SimpleEventsService BEA Simple Events ChannelFactory object
(Tobj_SimpleEvents.ChannelFactory)

Table 4-3 Tobj Module Exceptions

Exception Description

com.beasys.Tobj.
InvalidName

Raised if id is not one of the names specified in Table 4-2.
On the server, the resolve_initial_references
method also raises com.beasys.Tobj.InvalidName
when SecurityCurrent is passed.

com.beasys.Tobj.
InvalidDomain

On the server application, raised if the BEA WebLogic
Enterprise server environment is not booted.

org.omg.CORBA.
NO_PERMISSION

Raised if id is TransactionCurrent or
SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

org.omg.CORBA.
BAD_PARAM

Raised for the register_callback_port method if the
object is null or if the hostname contained in the object does
not match the connection.

4 Java Bootstrap Object Programming Reference

4-10 CORBA Java Programming Reference

Java Mapping

Listing 4-1 shows the Tobj_Bootstrap.java mapping.

Listing 4-1 Tobj_Bootstrap.java Mapping

package com.beasys;

public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb,
 String address_str)
 throws org.omg.CORBA.SystemException;
public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb,
 String address_str,
 java.applet.Applet applet)
 throws org.omg.CORBA.SystemException;

public void register_callback_port(orb.omg.CORBA.Object objref)
 throws org.omg.CORBA.SystemException;

public org.omg.CORBA.Object
 resolve_initial_references(String id)
 throws Tobj.InvalidName,
 org.omg.CORBA.SystemException;
public void destroy_current()
 throws org.omg.CORBA.SystemException;
}

org.omg.CORBA.
IMP_LIMIT

Raised if the register_callback_port method is
invoked more than once.

Table 4-3 Tobj Module Exceptions (Continued)

Exception Description

Programming Examples

CORBA Java Programming Reference 4-11

Programming Examples

This section provides the following Java client programming examples that use
Bootstrap objects.

l Getting a SecurityCurrent Object

l Getting a UserTransaction Object

Getting a SecurityCurrent Object

Listing 4-2 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-2 Programming a Java Client to Get a SecurityCurrent Object

import java.util.*;
import org.omg.CORBA.*;
import com.beasys.*;
class client {
 public static void main(String[] args)
 {
 Properties prop = null;
 Tobj.PrincipalAuthenticator auth = null;
 String host_port = "//COLORMAGIC:10000";
 // Set host and port.
 if (args.length == 1) host_port = args[0];
 try {
 // Initialize ORB
 ORB orb = ORB.init(args, prop);
 // Create Bootstrap object
 Tobj_Bootstrap bs=new Tobj_Bootstrap(orb,host_port);

 // Get security current
 org.omg.CORBA.Object ocur =
 bs.resolve_initial_references("SecurityCurrent");
 SecurityLevel2.Current cur =
 SecurityLevel2.CurrentHelper.narrow(ocur);
 }
 catch (Tobj.InvalidName e) {
 System.out.println("Invalid name: "+e);

4 Java Bootstrap Object Programming Reference

4-12 CORBA Java Programming Reference

 System.exit(1);
 }
 catch (Tobj.InvalidDomain e) {
 System.out.println("Invalid domain address: "+host_port +" "+e);
 System.exit(1);
 }
 catch (SystemException e) {
 System.out.println("Exception getting security current: "+e);
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Getting a UserTransaction Object

Listing 4-3 shows using the Bootstrap object to get the UserTransaction object, which
may then be used to begin and terminate transactions and get information about
transactions.

Listing 4-3 Programming a Java Client to Get a UserTransaction Object

Properties prop = null;
Tobj.PrincipalAuthenticator auth = null;
String host_port = "//COLORMAGIC:10000";
// Set host and port.
if (args.length == 1) host_port = args[0];
try {
// Initialize ORB
 orb = ORB.init(args, prop);

// Create Bootstrap Object
 bs = new Tobj_Bootstrap(orb, host_port);

javax.transaction.UserTransaction ucur = bs.getUserTransaction();

ucur.begin();
/* Make transactional calls from client to server */
 ucur.commit();

CORBA Java Programming Reference 5-1

CHAPTER

5 FactoryFinder Interface

This topic includes the following sections:

n Capabilities, Limitations, and Requirements

n Functional Description. This section describes:

l Locating a FactoryFinder

l Registering a Factory

l Locating a Factory

l Creating Application Factory Keys

n Java Methods

n Java Programming Examples

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA WebLogic Enterprise domain. The BEA
WebLogic Enterprise NameManager provides the mapping of factory names to object
references for the FactoryFinder. Multiple FactoryFinders and NameManagers
together provide increased availability and reliability. In this release, the level of
functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming
Service, but is merely a vehicle for storing registered factories.

In the BEA WebLogic Enterprise environment, application factory objects are used to
create objects that clients interact with to perform their business operations (for
example, TellerFactory and Teller). Application factories are generally created during
server initialization and are accessed by both remote clients and clients located within
the server application.

5 FactoryFinder Interface

5-2 CORBA Java Programming Reference

The FactoryFinder interface and the NameManager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domains in this release benefits customers that need to scale
to a large number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factories in a BEA
WebLogic Enterprise environment has been enhanced to allow factories in one domain
to be visible in another. The visibility of factories in other domains is under the control
of the system administrator.

Capabilities, Limitations, and Requirements

During server application initialization, application factories need to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve a factory object reference based on associated
names that were created when the factory was registered.

The following functional capabilities, limitations, and requirements apply to this
release:

n The FactoryFinder interface is in compliance with the
org.omg.CosLifeCycle.FactoryFinder interface.

n Server applications can register and unregister application factories with the
CORBAservices Naming Service.

n Clients can access objects using a single point of entry -- the FactoryFinder.

n Clients can construct names for objects using a simplified BEA scheme made
possible by BEA WebLogic Enterprise extensions to the CORBAservices
interface or the more general CORBA scheme.

n Multiple FactoryFinders and NameManagers can be used to increase availability
and reliability in the event that one FactoryFinder or NameManager should fail.

n Support for multiple domains. Factories in one domain can be configured to be
visible in another domain that is under administrative control.

Functional Description

CORBA Java Programming Reference 5-3

n Two NameManager services, at a minimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameManager, which
has been keeping a persistent journal of the registered factories, recovers the
previous state by processing the journal so as to re-establish its internal state.

n Only one NameManager must be designated as the master, and the master
NameManager must be started before the slave. If the master NameManager is
started after one or more slaves, the master assumes that it is in recovery mode
instead of in initializing mode.

Functional Description

The BEA WebLogic Enterprise environment promotes the use of the factory design
pattern as the primary means for a client to obtain a reference to an object. Through the
use of this design pattern, client applications require a mechanism to obtain a reference
to an object that acts as a factory for another object. Because the BEA WebLogic
Enterprise environment has chosen CORBA as its visible programming model, the
mechanism used to locate factories is modeled after the FactoryFinder as described in
the CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applications locate factories by querying a FactoryFinder. The client application
can control the references to the factory object returned by specifying criteria that is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain a reference to a FactoryFinder in the domain
to which a client application is associated, the client application must invoke the
Tobj_Bootstrap.resolve_initial_references operation with a value of

5 FactoryFinder Interface

5-4 CORBA Java Programming Reference

“FactoryFinder” . This operation returns a reference to a FactoryFinder that is in the
domain to which the client application is currently attached. For more information, see
the description of the com.beasys.Tobj_Bootstrap object in API Javadoc.

The references to the FactoryFinder that are returned to the client application can be
references to factory objects that are registered on the same machine as the
FactoryFinder, on a different machine than the FactoryFinder, or possibly in a different
domain than the FactoryFinder.

Registering a Factory

For a client application to be able to obtain a reference to a factory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (see Figure 5-1). Using the BEA WebLogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP.register_factory operation, once a reference to a
factory object has been created. The reference to the factory object, along with a value
that identifies the factory, is passed to this operation. The registration of references to
factory objects is typically done as part of initialization of the application; normally,
as part of the implementation of the Server.initialize operation.

Functional Description

CORBA Java Programming Reference 5-5

Figure 5-1 Registering a Factory Object

When the server application is shutting down, it must unregister any references to the
factory object that it has previously registered in the application server. This is done
by passing the same reference to the factory object, along with the corresponding value
used to identify the factory, to the TP.unregister_factory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Server.release operation. For more information about these
operations, see the section “Java TP Framework Interfaces” on page 3-18.

Locating a Factory

For a client application to request a factory to create a reference to an object, it must
first obtain a reference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria, as shown in
Figure 5-2. The criteria are determined by the format of the particular FactoryFinder
interface and method used.

Server
Name

Manager
TPFW

System
Event
Broker

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

5 FactoryFinder Interface

5-6 CORBA Java Programming Reference

Figure 5-2 Locating a Factory Object

The BEA WebLogic Enterprise software extends the
CosLifeCycle.FactoryFinder interface by introducing three methods in addition
to the find_factories method declared for the FactoryFinder. Therefore, using the
Tobj extensions, a client can use either the find_factories or
find_factories_by_id methods to obtain a list of application factories. A client can
also use the find_one_factory or find_one_factory_by_id method to obtain a
single application factory, and the list_factories method to obtain a list of all
registered factories.

The CosLifeCycle.FactoryFinder interface defines a factory_key, which is a
sequence of id and kind strings conforming to the CosNaming Name shown in
Listing 5-1. The kind field of the NameComponent for all BEA WebLogic Enterprise
application factories is set to the string FactoryInterface by the TP Framework
when an application factory is registered. Applications supply their own value for the
id field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
own file (ns.idl and lcs.idl, respectively), only the OMG IDL code for that subset
of both files that is relevant for using the BEA WebLogic Enterprise FactoryFinder is
shown in the following listings.

Client
Factory
Finder

Bootstrap Name
Manager

resolve_initial_references

CORBA.Object

factory._narrow()

find_*_factor*

CORBA.Object

Tobj_FF._narrow()

find factory object in
NameManager

IOR string

Functional Description

CORBA Java Programming Reference 5-7

CORBAservices Naming Service Module OMG IDL

Listing 5-1 shows the portions of the ns.idl file that are relevant to the FactoryFinder.

Listing 5-1 CORBAservices Naming OMG IDL

// ------ ns.idl ------

module CosNaming {
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence <NameComponent> Name;

};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 3-6. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-2 shows the portions of the lcs.idl file that are relevant to the
FactoryFinder.

Listing 5-2 Life Cycle Service OMG IDL

// ----- lcs.idl -----

#include “ns.idl”

module CosLifeCycle{
 typedef CosNaming::Name Key;
 typedef Object Factory;
 typedef sequence<Factory> Factories;

 exception NoFactory{ Key search_key; }

5 FactoryFinder Interface

5-8 CORBA Java Programming Reference

 interface FactoryFinder {
 Factories find_factories(in Key factory_key)
 raises(NoFactory);

 };

};

// This information is taken from CORBAservices: Common Object
// Services Specification, pages 6-10, 11. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Tobj Module OMG IDL

Listing 5-3 shows the Tobj Module OMG IDL.

Listing 5-3 Tobj Module OMG IDL

// ----- Tobj.idl -----

module Tobj {

 // Constants

 const string FACTORY_KIND = "FactoryInterface";

 // Exceptions

 exception CannotProceed { };
 exception InvalidDomain {};
 exception InvalidName { };
 exception RegistrarNotAvailable { };

 // Extension to LifeCycle Service

 struct FactoryComponent {
 CosLifeCycle::Key factory_key;
 CosLifeCycle::Factory factory_ior;
 };

 typedef sequence<FactoryComponent> FactoryListing;

 interface FactoryFinder : CosLifeCycle::FactoryFinder {
 CosLifeCycle::Factory find_one_factory(in CosLifeCycle::Key
 factory_key)

Functional Description

CORBA Java Programming Reference 5-9

 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factory find_one_factory_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factories find_factories_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 FactoryListing list_factories()
 raises (CannotProceed,
 RegistrarNotAvailable);
 };
};

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain as the FactoryFinder itself. However, it is possible to return references to
factory objects in domains other than the domain in which a FactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (see Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives a request to locate a factory object, it must first
determine if a reference to a factory object that meets the specified criteria exists. If
there is registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object is local to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

5 FactoryFinder Interface

5-10 CORBA Java Programming Reference

Figure 5-3 Inter-domain FactoryFinder Interaction

If, on the other hand, the information indicates that the factory object is from another
domain, the FactoryFinder delegates the request to an interdomain FactoryFinder in
the appropriate domain. As a result, only a FactoryFinder in the same domain as the
factory object will contain a reference to the factory object. The interdomain
FactoryFinder is responsible for returning the reference of the factory object to the
local FactoryFinder, which subsequently returns it to the client.

Why Use BEA WebLogic Enterprise Extensions?

The BEA WebLogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

n Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

n Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

Client
Factory
Finder

Bootstrap
Name

Manager

resolve_initial_references

CORBA.Object

factory._narrow()

find_*_factor*

CORBA.Object

Tobj_FF._narrow()
Find factory

object in
NameManager

IOR string

Factory
Finder

find_*_factor*

Intradomain
FactoryFinder
delegates request
to interdomain
FactoryFinder

CORBA.Object

Functional Description

CORBA Java Programming Reference 5-11

n Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register a factory object.

Therefore, BEA WebLogic Enterprise extends the interfaces defined in the
CORBAservices specification to make using a FactoryFinder easier. The extensions
are manifested as refined interfaces to the FactoryFinder that are derived from the
interfaces specified in the CORBAservices specification.

Creating Application Factory Keys

Two of the four methods provided in the Tobj.FactoryFinder interface accept
CosLifeCycle.Keys, which corresponds to CosNaming.Name. A client must be able
to construct these keys.

The CosNaming Specification describes two interfaces that constitute a Names Library
interface that can be used to create and manipulate CosLifeCycle.Keys. The pseudo
OMG IDL statements for these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL

Note: This information is taken from the CORBAservices: Common Object Services
Specification, pp. 3-14 to18. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipulate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
names are described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “The CosNaming Module,” the CORBAservices Naming Service supports the

5 FactoryFinder Interface

5-12 CORBA Java Programming Reference

NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service through the
NamingContext interface.

Note: It is not a requirement to use the names library in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the LName interface, as shown in Listing 5-4.

Listing 5-4 Names Library Interfaces in Pseudo-IDL

interface LNameComponent { // PIDL
 const short MAX_LNAME_STRLEN = 128;

 exception NotSet{ };
 exception OverFlow{ };

 string get_id
 raises (NotSet);
 void set_id(in string i)
 raises (OverFlow);
 string get_kind()
 raises(NotSet);
 void set_kind(in string k)
 raises (OverFlow);
 void destroy();
};

interface LName {// PIDL
 exception NoComponent{ };
 exception OverFlow{ };
 exception InvalidName{ };
 LName insert_component(in unsigned long i,
 in LNameComponent n)
 raises (NoComponent, OverFlow);
 LNameComponent get_component(in unsigned long i)
 raises (NoComponent);
 LNameComponent delete_component(in unsigned long i)
 raises (NoComponent);

 unsigned long num_components();
 boolean equal(in LName ln);
 boolean less_than(in LName ln);
 Name to_idl_form()
 raises (InvalidName);
 void from_idl_form(in Name n);

Functional Description

CORBA Java Programming Reference 5-13

 void destroy();
};

LName create_lname();
LNameComponent create_lname_component();

Creating a Library Name Component

To create a library name component pseudo-object, use the following method:

LNameComponent create_lname_component();

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-4.

Creating a Library Name

To create a library name pseudo-object, use the following method:

LName create_lname();

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-4.

The LNameComponent Interface

A name component consists of two attributes: identifier and kind. The
LNameComponent interface defines the operations associated with these attributes, as
follows:

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
raises(NotSet);
void set_kind(in string k);

get_id

The get_id operation returns the identifier attribute’s value. If the
attribute has not been set, the NotSet exception is raised.

set_id

The set_id operation sets the identifier attribute to the string argument.

5 FactoryFinder Interface

5-14 CORBA Java Programming Reference

get_kind

The get_kind operation returns the kind attribute’s value. If the attribute
has not been set, the NotSet exception is raised.

set_kind

The set_kind operation sets the kind attribute to the string argument.

The LName Interface

The following operations are described in this section:

n Destroying a library name component pseudo-object

n Inserting a name component

n Getting the ith name component

n Deleting a name component

n Number of name components

n Testing for equality

n Testing for order

n Producing an OMG IDL form

n Translating an OMG IDL form

n Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-object

The destroy operation destroys library name component pseudo-objects.

void destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
insert_component operation inserts a component after position i.

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

Functional Description

CORBA Java Programming Reference 5-15

If component i-1 is undefined and component i is greater than 1 (one), the
insert_component operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the OverFlow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1 (one).

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

Deleting a Name Component

The delete_component operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has
one fewer component and components previously identified as i+1...n are now
identified as i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library name.

unsigned long num_components();

Testing for Equality

The equal operation tests for equality with library name ln.

boolean equal(in LName ln);

5 FactoryFinder Interface

5-16 CORBA Java Programming Reference

Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.

boolean less_than(in LName ln);

This operation returns true if the library name is less than the library name ln passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Name. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Name to_idl_form()
 raises(InvalidName);

If the name is of length 0 (zero), the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of type Name. The following PIDL operation on library names
sets the components and kind attribute for a library name from a returned OMG IDL
defined structure, Name.

void from_idl_form(in Name n);

Destroying a Library Name Pseudo-object

The destroy operation destroys library name pseudo-objects.

void destroy();

Functional Description

CORBA Java Programming Reference 5-17

Java Mapping

The names library pseudo OMG IDL interface maps to the Java classes contained in
the com.beasys.Tobj package, shown in Listing 5-5. All exceptions are contained in
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the
CORBAservices: Common Object Services Specification.

Listing 5-5 Java Mapping for LNameComponent

package com.beasys.Tobj;

public class LNameComponent {
 public static LNameComponent create_lname_component();
 public static final short MAX_LNAME_STRING = 128;
 public void destroy();
 public String get_id() throws NotSet;
 public void set_id(String i) throws OverFlow;
 public String get_kind() throws NotSet;
 public void set_kind(String k) throws OverFlow;
};

package com.beasys.Tobj;

public class LName {

 public static LName create_lname();
 public void destroy();
 public LName insert_component(long i, LNameComponent n)
 throws NoComponent, OverFlow;
 public LNameComponent get_component(long i)
 throws NoComponent;
 public LNameComponent delete_component(long i)
 throws NoComponent;
 public long num_components();
 public boolean equal(LName ln);
 public boolean less_than(LName ln);// not implemented
 public org.omg.CosNaming.NameComponent[] to_idl_form()
 throws InvalidName;
 public void from_idl_form(org.omg.CosNaming.NameComponent[] nr);
};

5 FactoryFinder Interface

5-18 CORBA Java Programming Reference

Java Methods

The documentation for the Java methods on the FactoryFinder interface is in the Java
API Reference.

Java Programming Examples

The following listings show Java programming examples of how to program using the
FactoryFinder interface.

Note: Remember to check for exceptions in your code.

Server Registering a Factory

Listing 5-6 shows how to program a server to register a factory.

Listing 5-6 Server Application: Registering a Factory

// Register the factory reference with the factory finder.
//
// The second parameter to TP.register_factory() is a string
// identifier that is used to identify the object.
// This same string is used in the call to TP.unregister_factory().
// It is also used in the call to find_one_factory_by_id() that
// is called by clients of this interface.
//
TP.register_factory(
 fact_oref, // factory object reference
 tellerFName // factory name
);

Java Programming Examples

CORBA Java Programming Reference 5-19

Client Obtaining a FactoryFinder Object Reference

Listing 5-7 shows how to program a client to get a FactoryFinder object reference.

Listing 5-7 Client Application: Getting a FactoryFinder Object Reference

// Create the Bootstrap object,
// the TOBJADDR properly contains host and port to connect to.
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap (orb,"");

// Use the Bootstrap object to find the factory finder.
org.omg.CORBA.Object fact_finder_oref =
 bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

Client Finding One Factory Using the Tobj Approach

Listing 5-8 shows how to program a client to find one factory using the Tobj approach.

Listing 5-8 Client Application: Finding One Factory Using the Tobj Approach

// Use the factory finder to find the teller factory.
org.omg.CORBA.Object teller_fact_oref =
fact_finder_ref.find_one_factory_by_id("TellerFactory_1");

5 FactoryFinder Interface

5-20 CORBA Java Programming Reference

CORBA Java Programming Reference 6-1

CHAPTER

6 Security Service

For a detailed discussion of Securty, see Using Security. This document provides an
introduction to crytography and other concepts associated with the BEA WebLogic
Enterprise security features, a description of how to secure your applications using the
BEA WebLogic Enterprise security features, and a guide to the use of the application
programming interfaces (APIs) in the BEA WebLogic Enterprise Security Service.

A PDF file of Using Security is also provided in the online documentation.

6 Security Service

6-2 CORBA Java Programming Reference

CORBA Java Programming Reference 7-1

CHAPTER

7 Transactions Service

For a detailed discussion of Transactions, see Using Transactions. This document
provides an introduction to transactions, a description the application programming
interfaces (APIs), and a guide to the use of the application programming interfaces
(APIs) to develop applications.

A PDF file of Using Transactions is also provided in the online documentation.

7 Transactions Service

7-2 CORBA Java Programming Reference

CORBA Java Programming Reference 8-3

CHAPTER

8 Notification Service

For a detailed discussion of the Notification Service, see Using the Notification
Service. This document provides an introduction to the Notification Service, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to develop applications.

A PDF file of Using the Notification Service is also provided in the online
documentation.

8 Notification Service

8-4 CORBA Java Programming Reference

CORBA Java Programming Reference 9-1

CHAPTER

9 Request-Level
Interceptors

For a detailed discussion of request-level interceptors, see Using Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to implement request-level
interceptors.

A PDF file of Using Request-Level Interceptors is also provided in the online
documentation.

9 Request-Level Interceptors

9-2 CORBA Java Programming Reference

CORBA Java Programming Reference 10-1

CHAPTER

10 Interface Repository
Interfaces

This topic includes the following sections:

n Structure and Usage

n Building Client Applications

n Getting Initial References to the InterfaceRepository Object

n Interface Repository Interfaces. This section describes:

l Supporting Type Definitions

l IRObject Interface

l Contained Interface

l Container Interface

l IDLType Interface

l Repository Interface

l ModuleDef Interface

l ConstantDef Interface

l TypedefDef Interface

l StructDef

l UnionDef

l EnumDef

l AliasDef

10 Interface Repository Interfaces

10-2 CORBA Java Programming Reference

l PrimitiveDef

l ExceptionDef

l AttributeDef

l OperationDef

l InterfaceDef

Note: Most of the information in this chapter is taken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the BEA WebLogic Enterprise implementation of the Interface
Repository interfaces. Used with permission by OMG.

The BEA WebLogic Enterprise Interface Repository contains the interface
descriptions of the CORBA objects that are implemented within the BEA WebLogic
Enterprise domain.

The BEA WebLogic Enterprise Interface Repository is based on the CORBA
definition of an Interface Repository. It offers a proper subset of the interfaces defined
by CORBA; that is, the APIs that are exposed to programmers are implemented as
defined by the Common Object Request Broker: Architecture and Specification
Revision 2.2. However, not all interfaces are supported. In general, the interfaces
required to read from the Interface Repository are supported, but the interfaces
required to write to the Interface Repository are not. Additionally, not all TypeCode
interfaces are supported.

Administration of the Interface Repository is done using tools specific to the BEA
WebLogic Enterprise software. These tools allow the system administrator to create an
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Commands, System Processes, and MIB Reference.

Several abstract interfaces are used as base interfaces for other objects in the Interface
Repository. A common set of operations is used to locate objects within the Interface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objects that are containers inherit navigation operations from
the Container interface. Objects that are contained by other objects inherit navigation

Structure and Usage

CORBA Java Programming Reference 10-3

operations from the Contained interface. The IDLType interface is inherited by all
Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1
character set.

Note: The Write interface is not documented in this chapter because the BEA
WebLogic Enterprise software supports only read access to the Interface
Repository. Any attempt to use the Write interface to the Interface Repository
will raise the exception org.omg.CORBA.NO_IMPLEMENT.

Structure and Usage

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and populated using the idl2ir
administrative command. For a description of this command, see Commands, System
Processes, and MIB Reference. From the programmer’s point of view, there is no write
access to the Interface Repository. None of the write operations defined by CORBA
are supported, nor are set operations on non-read-only attributes.

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined by the CORBA Common
Object Request Broker: Architecture and Specification, Revision 2.2, are described in
this chapter.

10 Interface Repository Interfaces

10-4 CORBA Java Programming Reference

From the Programmer’s Point of View

The interface to a server is defined in the OMG IDL file. How the OMG IDL file is
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL file to generate stubs, and so forth. (For
more information, see Creating CORBA Client Applications.) No other access to the
Interface Repository is required.

Client applications that use the Dynamic Invocation Interface (DII) need to access the
Interface Repository programmatically. The interface to the Interface Repository is
defined in this chapter and is discussed in “Building Client Applications” on
page 10-5. The exact steps taken to access the Interface Repository depend on whether
the client is seeking information about a specific object, or browsing the Interface
Repository to find an interface. To obtain information about a specific object, clients
use the org.omg.CORBA.Object._get_interface method to obtain an
InterfaceDef object. (Refer the Java API Reference for a description of this method.)
Using the InterfaceDef object, the client can get complete information about the
interface.

Before a DII client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search. DII clients use the Bootstrap
object to obtain the object reference. (For a description of this method, see Chapter 4,
“Java Bootstrap Object Programming Reference.”) Once the client has the object
reference, it can navigate the Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DII client. ActiveX clients include the Bootstrap object in the Visual
Basic code. Like DII clients, ActiveX clients use the Bootstrap object to obtain the
Interface Repository object reference. Once the client has the object reference, it can
navigate the Interface Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interface
Repository.

Building Client Applications

CORBA Java Programming Reference 10-5

Performance Implications

All run-time access to the Interface Repository is via the Interface Repository server.
Because there is considerable overhead in making requests of a remote server
application, designers need to be aware of this. For example, consider the interaction
required to use an object reference to obtain the necessary information to make a DII
invocation on the object reference. The steps are as follows:

1. The client application invokes the _get_interface operation on the
org.omg.CORBA.Object to get the InterfaceDef object associated with the object
in question. This causes a message to be sent to the ORB that created the object
reference.

2. The ORB returns the InterfaceDef object to the client.

3. The client invokes one or more _is_a operations on the object to determine what
type of interface is supported by the object.

4. After the client has identified the interface, it invokes the describe_interface
operation on the Interface object to get a full description of the interface (for
example, version number, operations, attributes, and parameters). This causes a
message to be sent to the Interface Repository, and a reply is returned.

5. The client is now ready to construct a DII request.

Building Client Applications

Java clients that use the Interface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application is using the BEA
WebLogic Enterprise ORB, the BEA WebLogic Enterprise software provides the
stubs in the org.omg.CORBA package, which you should include as part of your server
application jar file. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs.

10 Interface Repository Interfaces

10-6 CORBA Java Programming Reference

If the client application is using a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide a local Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

You use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see Chapter 4, “Java
Bootstrap Object Programming Reference.”

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that is implemented in
the BEA WebLogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

Interface Repository Interfaces

CORBA Java Programming Reference 10-7

 enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 };
};

Identifiers are the simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An Identifier is not necessarily unique within an entire Interface
Repository; it is unique only within a particular Repository, ModuleDef, InterfaceDef,
or OperationDef.

A ScopedName is a name made up of one or more identifiers separated by two colons
(::). The identifiers correspond to OMG IDL scoped names. An absolute ScopedName
is one that begins with two colons and unambiguously identifies a definition in a
Repository. An absolute ScopedName in a Repository corresponds to a global name in
an OMG IDL file. A relative ScopedName does not begin with two colons and must be
resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because RepositoryIds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A DefinitionKind identifies the type of an Interface Repository object.

IRObject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
 interface IRObject {
 readonly attribute DefinitionKind def_kind;
 };
};

The def_kind attribute identifies the type of the definition.

10 Interface Repository Interfaces

10-8 CORBA Java Programming Reference

Contained Interface

The Contained interface (shown below) is inherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

module CORBA {
 typedef string VersionSpec;

 interface Contained : IRObject {
 readonly attribute RepositoryId id;
 readonly attribute Identifier name;
 readonly attribute VersionSpec version;
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };

 Description describe ();
 };
};

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing Container
object. It also has a version attribute that distinguishes it from other versioned objects
with the same name. The BEA WebLogic Enterprise Interface Repository does not
support simultaneous containment or multiple versions of the same named object.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined_in
attribute identifies the InterfaceDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained
object uniquely within its enclosing Repository. If this object’s defined_in attribute
references a Repository, the absolute_name is formed by concatenating the string

Interface Repository Interfaces

CORBA Java Programming Reference 10-9

“::” and this object’s name attribute. Otherwise, the absolute_name is formed by
concatenating the absolute_name attribute of the object referenced by this object’s
defined_in attribute, the string “::” , and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, if the describe operation is
invoked on an attribute object, the kind field contains dk_Attribute and the value
field contains an any, which contains the AttributeDescription structure.

Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

module CORBA {
 typedef sequence <Contained> ContainedSeq;

 interface Container : IRObject {
 Contained lookup (in ScopedName search_name);

 ContainedSeq contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;
 };

10 Interface Repository Interfaces

10-10 CORBA Java Programming Reference

 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq describe_contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);
 };
};

The lookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped name
(beginning with “::”) locates the definition relative to the enclosing Repository. If no
object is found, a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, all of the interfaces within a specific module, and so on.

limit_type

If limit_type is set to dk_all , objects of all types are returned. For
example, if this is an InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute .

exclude_inherited

If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
The lookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
describe_contents operation combines the contents operation and the
describe operation. For each object returned by the contents operation, the
description of the object is returned (that is, the object’s describe operation
is invoked and the results are returned).

search_name

Specifies which name is to be searched for.

levels_to_search

Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained

Interface Repository Interfaces

CORBA Java Programming Reference 10-11

by the object as well. Setting levels_to_search to -1 searches the current
object and all contained objects. Setting levels_to_search to 1 searches
only the current object.

max_returned_objs

Limits the number of objects that can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

IDLType Interface

The IDLType interface (shown below) is an abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides access to the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

module CORBA {
 interface IDLType : IRObject {
 readonly attribute TypeCode type;
 };
};

The type attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within a module or an interface) either
by name or by id.

module CORBA {
 interface Repository : Container {
 Contained lookup_id (in RepositoryId search_id);
 PrimitiveDef get_primitive (in PrimitiveKind kind);

 };
};

10 Interface Repository Interfaces

10-12 CORBA Java Programming Reference

The lookup_id operation is used to look up an object in a Repository, given its
RepositoryId. If the Repository does not contain a definition for search_id, a nil
object reference is returned.

The get_primitive operation returns a reference to a PrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

module CORBA {
 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 };
};

The inherited describe operation for a ModuleDef object returns a
ModuleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

module CORBA {
 interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 readonly attribute IDLType type_def;
 readonly attribute any value;
 };

 struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;

Interface Repository Interfaces

CORBA Java Programming Reference 10-13

 VersionSpec version;
 TypeCode type;
 any value;
 };
};

type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).

type_def
Identifies the definition of the type of the constant.

value
Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for all
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

module CORBA {
 interface TypedefDef : Contained, IDLType {
 };

 struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

10 Interface Repository Interfaces

10-14 CORBA Java Programming Reference

StructDef

A StructDef (shown below) represents an OMG IDL structure definition. It contains
the members of the struct.

module CORBA {
 struct StructMember {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <StructMember> StructMemberSeq;

 interface StructDef : TypedefDef, Container{
 readonly attribute StructMemberSeq members;
 };
};

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) represents an OMG IDL union definition. It contains the
members of the union.

module CORBA {
 struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <UnionMember> UnionMemberSeq;

 interface UnionDef : TypedefDef, Container {
 readonly attribute TypeCode discriminator_type;
 readonly attribute IDLType discriminator_type_def;
 readonly attribute UnionMemberSeq members;
 };
};

Interface Repository Interfaces

CORBA Java Programming Reference 10-15

discriminator_type and discriminator_type_def
Describe and identify the union’s discriminator type.

members

Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of the discriminator_type.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value 0 (zero)
indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.

EnumDef

An EnumDef (shown below) represents an OMG IDL enumeration definition.

module CORBA {
 typedef sequence <Identifier> EnumMemberSeq;

 interface EnumDef : TypedefDef {
 readonly attribute EnumMemberSeq members;
 };
};

members
Contains a distinct name for each possible value of the enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

AliasDef

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

module CORBA {
 interface AliasDef : TypedefDef {
 readonly attribute IDLType original_type_def;
 };
};

10 Interface Repository Interfaces

10-16 CORBA Java Programming Reference

original_type_def
Identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from TypedefDef
or Contained.

module CORBA {
 enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring
 };

 interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
 };
};

kind
Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref
represents the OMG IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

Interface Repository Interfaces

CORBA Java Programming Reference 10-17

module CORBA {
 interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 readonly attribute StructMemberSeq members;
 };

 struct ExceptionDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

type
tk_except TypeCode that describes the exception.

members
Describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

module CORBA {
 enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

 interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
 };

 struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;

10 Interface Repository Interfaces

10-18 CORBA Java Programming Reference

 };
};

type
Provides the TypeCode describing the type of this attribute.

type_def
Identifies the object that defines the type of this attribute.

mode
Specifies read only or read/write access for this attribute.

OperationDef

An OperationDef (shown below) represents the information needed to define an
operation of an interface.

module CORBA {
 enum OperationMode {OP_NORMAL, OP_ONEWAY};

 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentifier> ContextIdSeq;

 typedef sequence <ExceptionDef> ExceptionDefSeq;
 typedef sequence <ExceptionDescription> ExcDescriptionSeq;

 interface OperationDef : Contained {
 readonly attribute TypeCode result;
 readonly attribute IDLType result_def;
 readonly attribute ParDescriptionSeq params;
 readonly attribute OperationMode mode;
 readonly attribute ContextIdSeq contexts;
 readonly attribute ExceptionDefSeq exceptions;
 };

 struct OperationDescription {

Interface Repository Interfaces

CORBA Java Programming Reference 10-19

 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
 };
};

result
A TypeCode that describes the type of the value returned by the operation.

result_def
Identifies the definition of the returned type.

params
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptions in
the sequence is significant. The name member of each structure provides the
parameter name. The type member is a TypeCode describing the type of the
parameter. The type_def member identifies the definition of the type of the
parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter.

mode

The operation’s mode is either oneway (that is, no output is returned) or
normal.

contexts
Specifies the list of context identifiers that apply to the operation.

exceptions
Specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an
OperationDescription.

The inherited describe_contents operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

10 Interface Repository Interfaces

10-20 CORBA Java Programming Reference

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.

module CORBA {
 interface InterfaceDef;
 typedef sequence <InterfaceDef> InterfaceDefSeq;
 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence <OperationDescription> OpDescriptionSeq;
 typedef sequence <AttributeDescription> AttrDescriptionSeq;

 interface InterfaceDef : Container, Contained, IDLType {

 readonly attribute InterfaceDefSeq base_interfaces;

 boolean is_a (in RepositoryId interface_id);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

 FullInterfaceDescription describe_interface();

 };

 struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 };
};

base_interfaces
Lists all the interfaces from which this interface inherits. The is_a operation
returns TRUE if the interface on which it is invoked either is identical to or
inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise, it returns FALSE.

Interface Repository Interfaces

CORBA Java Programming Reference 10-21

The describe_interface operation returns a FullInterfaceDescription describing
the interface, including its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

10 Interface Repository Interfaces

10-22 CORBA Java Programming Reference

CORBA Java Programming Reference 11-1

CHAPTER

11 Joint Client/Server
Applications

This topic includes the following sections:

n Introduction. This section describes:

l Main Program and Server Initialization

l Servants

l Servant Inheritance from Skeletons

l Callback Object Models Supported

l Preparing Callback Objects Using BEAWrapper Callbacks

l Threading Considerations in the Main Program

l Java Client ORB Initialization

l IIOP Support

n Callbacks Interface API

This chapter describes programming requirements for joint client/server applications.
For a description of the BEAWrapper package and the Callbacks interface API, see
the API Javadoc.

11 Joint Client/Server Applications

11-2 CORBA Java Programming Reference

Introduction

For either a BEA WebLogic Enterprise client applications or a joint client/server
application (that is, a client that can receive and process object invocations), create a
Java client main() method. The main() method uses BEA WebLogic Enterprise
environmental objects to establish connections, set up security, and start transactions.

BEA WebLogic Enterprise clients invoke operations on objects. In the case of DII,
client code creates the DII Request object and then invokes one of two operations on
the DII Request. In the case of static invocation, client code performs the invocation
by performing what looks like an ordinary Java invocation (which ends up calling code
in the generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG and BEA WebLogic Enterprise environmental objects that are
supplied with the BEA WebLogic Enterprise software to perform functions unique to
BEA WebLogic Enterprise.

For BEA WebLogic Enterprise joint client/server applications, the client code must be
structured so that it can act as a server for callback BEA WebLogic Enterprise objects
only. Such clients do not use the TP Framework and are not subject to BEA WebLogic
Enterprise system administration. Besides the programming implications, this means
that joint client/server applications do not have the same scalability and reliability as
BEA WebLogic Enterprise servers, nor do they have the state management and
transaction behavior available in the TP Framework. If a user wants to have those
characteristics, the application must be structured in such a way that the object
implementations are in a BEA WebLogic Enterprise server, rather than in a client.

The following sections describe the mechanisms you use to add callback support to a
BEA WebLogic Enterprise client. In some cases, the mechanisms are contrasted with
the BEA WebLogic Enterprise server mechanisms that use the TP Framework.

Main Program and Server Initialization

In a BEA WebLogic Enterprise Java server, you use the buildjavaserver command
to create the main program for the server. The server main program takes care of all
BEA WebLogic Enterprise- and CORBA-related initialization of the server functions.
However, since you implement the Server object, you have an opportunity to

Introduction

CORBA Java Programming Reference 11-3

customize the way in which the server application is initialized and shut down. The
server main program automatically invokes methods on the Server object at the
appropriate times.

In contrast, for a BEA WebLogic Enterprise joint client/server application (as for a
BEA WebLogic Enterprise client), you create the main program and are responsible
for all initialization. You do not need to provide a Server object because you have
complete control over the main program and you can provide initialization and
shutdown code in any way that is convenient.

The specific initialization needed for a joint client/server application is discussed in the
section “Servants” on page 11-3.

Servants

Servants (method code) for BEA WebLogic Enterprise joint client/server applications
are very similar to servants for BEA WebLogic Enterprise servers. All business logic
is written the same way. The differences result from not using the TP Framework,
which includes the Server, TP, and Tobj_Servant classes. Therefore, the main
difference is that you use CORBA functions directly instead of indirectly through the
TP Framework.

In WebLogic Enterprise Java server applications, servants are created dynamically.
However, in BEA WebLogic Enterprise joint client/server applications, the user
application is responsible for creating a servant before any requests arrive; thus, the
Server class is not needed. Typically, the program creates a servant, initializes it, and
then activates the object. The process of activation, which associates the servant with
an object ID (either user supplied or system generated), results in the creation of an
object reference that the server application subsequently can provide to another
process. Such an object might be used to handle callbacks. Thus, the servant already
exists, and the object is already active, before a request for that object arrives.

Instead of invoking the TP interface to perform certain operations, client servants
directly invoke the ORB and the BOA (for clients that are based on the Java JDK
ORB). Alternately, since much of the interaction with the ORB and the BOA is the
same for all applications, the join client/server library (wleclient.jar) provides a
convenience wrapper object (Callbacks) that does the same things using a single
operation. In addition, the wrapper objects also provide extra POA-like life span
policies for ObjectIds, see “Callback Object Models Supported” on page 11-4 and
“Preparing Callback Objects Using BEAWrapper Callbacks” on page 11-6.

11 Joint Client/Server Applications

11-4 CORBA Java Programming Reference

Servant Inheritance from Skeletons

In a BEA WebLogic Enterprise client, as well as in a BEA WebLogic Enterprise
server, a user-written Java implementation class inherits from the same skeleton class
name generated by the idltojava compiler. For example, given the IDL:

interface Hospital{ … };

The skeleton generated by idltojava contains a skeleton class,
_HospitalImplBase , from which the user-written class inherits, as in:

class HospitalImpl extends _HospitalImplBase {…};

In a BEA WebLogic Enterprise server application, the skeleton class inherits from the
TP Framework class com.beasys.Tobj_Servant , which in turn inherits from the
CORBA-defined class org.omg.PortableServer.Servant .

The inheritance tree for a callback object implementation in a joint client/server
application is different from that of a client. The skeleton class does not inherit from
the TP Framework class, but instead inherits from the
org.omg.CORBA.DynamicImplementation class, which in turn inherits from the
org.omg.CORBA.portable.ObjectImpl class.

Not having the Tobj_Servant class in the inheritance tree for a servant means that the
servant does not have the activate_object and deactivate_object methods. In a
BEA WebLogic Enterprise server application, these methods are invoked by the TP
Framework to dynamically initialize and save a servant’s state before invoking a
method on the servant. For a joint client/server application, user code must explicitly
create a servant and initialize a servant’s state; therefore, the Tobj_Servant
operations are not needed.

Callback Object Models Supported

BEA WebLogic Enterprise software supports the three kinds of callback objects.
These object types are described here primarily in terms of their behavioral
characteristics rather than in the details about how the ORB and the wrapper classes
handle them.

Introduction

CORBA Java Programming Reference 11-5

The three kinds of callback objects are:

n Transient/SystemId

Object references are valid only for the life of the client process. The objectId
is not assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wants to receive
only until the client terminates. If used with a Notification or Event Service, for
example, these are callbacks that correspond to the concept of transient events
and transient channels. (The corresponding POA LifeSpanPolicy value is
TRANSIENT, and the IdAssignmentPolicy is SYSTEM_ID.)

n Persistent/SystemId

Object references are valid across multiple activations. The objectId is not
assigned by the client application, but is a unique value assigned by the system.
This type of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects
on that particular object reference. Typically, the client creates the object
reference once, saves it in its own permanent storage area, and reactivates the
servant for that object every time the client comes up. If used with a Notification
Service, for example, these are callbacks that correspond to the concept of a
persistent subscription; that is, the Notification Service remembers the callback
reference and delivers events any time the client is up and declares that it is
again ready to receive them. This allows notification to survive client failures or
offline-time. (The corresponding POA policy values are PERSISTENT and
SYSTEM_ID.)

n Persistent/UserId

This is the same as Persistent/SystemId, except that the objectId has to be
assigned by the client application. Such an objectId might be, for example, a
database key meaningful only to the client. (The corresponding POA policy
values are PERSISTENT and USER_ID.)

Note: The Transient/UserId policy combination is not considered particularly
important. In any event, this policy combination is not available in Java server
applications.

Note: For BEA WebLogic Enterprise native joint client/server applications, neither
of the Persistent policies is supported, only the Transient policy.

11 Joint Client/Server Applications

11-6 CORBA Java Programming Reference

In C++, these object models are established by using combinations of the following
POA policies, which control both the types of objects and the types of object references
that are possible:

n LifeSpanPolicy, which controls how long an object reference is valid

n IdAssignmentPolicy, which controls who assigns the objectId—the user or the
system

However, since the ORB used for Java server applications does not provide a POA, the
BEA WebLogic Enterprise system provides a Callbacks wrapper class that emulates
these POA policies.

Preparing Callback Objects Using BEAWrapper Callbacks

Because the code to prepare for callback objects is nearly identical for every joint
client/server application, and because the Java JDK ORB does not implement a POA,
BEA WebLogic Enterprise provides a wrapper class in the joint client/server library
that is virtually identical to the wrapper class provided in C++. This wrapper class
emulates the POA policies needed to support the three types of callback objects.

The following code shows the Callback wrapper interfaces.

package com.beasys.BEAWrapper;

 class Callbacks{
 public Callbacks ();

 public Callbacks (org.omg.CORBA.Object init_orb);

 public org.omg.CORBA.Object start_transient (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id)
 throws ServantAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER;

 public org.omg.CORBA.Object start_persistent_systemid (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 org.omg.CORBA.StringHolder stroid)
 throws ServantAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;

Introduction

CORBA Java Programming Reference 11-7

 public org.omg.CORBA.Object restart_persistent_systemid (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 java.lang.String stroid)
 throws ServantAlreadyActive,
 ObjectAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;

 public org.omg.CORBA.Object start_persistent_userid (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 java.lang.String stroid)
 throws ServantAlreadyActive,
 ObjectAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;
 public void stop_object(
 org.omg.PortableServer.ObjectImpl
 servant);

 public String get_string_oid ()
 throws NotInRequest;

 public void stop_all_objects();
};

Threading Considerations in the Main Program

When a program acts as both a client and a server in a Java client, those two parts can
execute concurrently in different threads. Since Java as an execution environment is
inherently multithreaded, there is no reason to invoke the
org.omg.CORBA.orb.work_pending and org.omg.CORBA.orb.perform_work
methods from a Java client. In fact, if the Java client tries to invoke these methods,
these methods throw an org.omg.CORBA.NO_IMPLEMENT exception. The client does
not need to invoke the org.omg.CORBA.orb.run method. As in any multithreaded
environment, any code that may execute concurrently (client and servant code for a
callback) in the client application must be coded to be thread safe. This is a departure
from C++ clients, which are currently single-threaded.

11 Joint Client/Server Applications

11-8 CORBA Java Programming Reference

Multiple Threads

In Java, the client starts up in the main thread. The client can then set up callback
objects via an invocation to any of the (re)start_xxxx methods provided by the
Callbacks wrapper class. The wrapper class handles registering the servant and its
associated OID in the ORB’s object manager. The application is then free to pass the
object reference returned by the (re)start_xxxx method to an application that needs
to call back to the servant.

Note: The ORB requires an explicit invocation to one of the (re)start_xxxx
methods to effectively initialize the servant and create a valid object reference
that can be marshaled properly to another application. This is a deviation
from the base JDK 1.2 ORB behavior that allows implicit object reference
creation via an internal invocation to the orb.connect method when
marshaling an object reference, if the application has not yet done so.

Invocations on the callback object are handled by the ORB. As each request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
object because the ORB creates a new thread for each request; that is why the Servant
code of the Callback must be written thread safe. As each request terminates, the
thread that runs the servant also terminates.

The main client thread can make as many client invocations as necessary. An
invocation to the stop_(all_)object methods merely takes the object out of the
object manager’s list, thereby preventing any further invocations on it. Any invocation
to a stopped object fails as if it never existed.

If the client application needs to retrieve the results of a callback from another thread,
the client application must use normal thread synchronization techniques to do so.

If any thread (client main or servant) in the BEA WebLogic Enterprise remote-like
client application exits, all the client process activity is stopped, and the Java
execution environment terminates. We recommend only to invoke the return method
to terminate a thread.

Introduction

CORBA Java Programming Reference 11-9

Java Client ORB Initialization

A client application must initialize the ORB with the BEA-supplied properties. This
is so that the ORB will utilize the BEA-supplied classes and methods that support the
Callbacks wrapper class and the Bootstrap object. You can find these classes in
wleclient.jar, which is installed in $TUXDIR/udataobj/java/jdk (on Solaris) or
%TUXDIR%\udataobj\java\jdk (on Windows NT). The application must set certain
system properties to do this, as shown in the following example:

Properties prop = new Properties(System.getProperties());
prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");
System.setProperties(prop);
// Initialize the ORB.
ORB orb = ORB.init(args, prop);

IIOP Support

IIOP is the protocol used for communication between ORBs. IIOP allows ORBs from
different vendors to interoperate. For Java server applications, a port number must be
supplied at the client for persistent or user ID object reference policies.

Java Applet Support

IIOP support for applets that want to receive callbacks or callouts is limited due to
applet security mechanisms. Any applet run-time environment that allows an applet
to create and listen on sockets (via their proprietary environment or protocol) will be
able to act as BEA WebLogic Enterprise joint client/server applications. If the applet
run-time environment restricts socket communication, then the applet cannot be a joint
client/server application to a BEA WebLogic Enterprise application.

Port Numbers for Persistent Object References

BEA WebLogic Enterprise Java server applications support only GIOP 1.0, as
described in Chapter 13 of the OMG CORBA 2.2 specification.

11 Joint Client/Server Applications

11-10 CORBA Java Programming Reference

For a BEA WebLogic Enterprise Java remote joint client/server application to support
IIOP, the object references created for the server component must contain a host and a
port. For transient object references, any port is sufficient and can be obtained by the
ORB dynamically; however, this is not sufficient for persistent object references.

Persistent references must be served on the same port after the ORB restarts. That is,
the ORB must be prepared to accept requests on the same port with which it created
the object reference. Therefore, there must be some way to configure the ORB to use
a particular port.

Java clients that expect to act as servers for callbacks of persistent references must now
be started with a specified port. This is done by setting the system property
org.omg.CORBA.ORBPort, as in the following commands:

For Windows NT:

java -DTOBJADDR=//host:port
 -Dorg.omg.CORBA.ORBPort=xxxx
 -classpath=%CLASSPATH% client

For Unix:

java -DTOBJADDR=//host:port
 -Dorg.omg.CORBA.ORBPort=xxxx
 -classpath=$CLASSPATH client

Typically, a system administrator assigns the port number for the client from the user
range of port numbers, rather from the dynamic range. This keeps the joint
client/server applications from using conflicting ports.

If a BEA WebLogic Enterprise remote joint client/server application tries to create a
persistent object reference without having set a port (as in the preceding command
line), the operation raises an exception, IMP_LIMIT, informing the user that a truly
persistent object reference cannot be created.

Callbacks Interface API

For a complete description of the BEAWrapper.Callbacks interface API, see the API
Javadoc.

CORBA Java Programming Reference 12-1

CHAPTER

12 Java Development and
Administration
Commands

For a detailed discussion of BEA WebLogic Enterprise development and
administrative commands, see Commands, System Processes, and MIB Reference.
This document describes all BEA WebLogic Enterprise commands and processes.

A PDF file of Commands, Processes, and MIB Reference is also provided in the online
documentation.

12 Java Development and Administration Commands

12-2 CORBA Java Programming Reference

CORBA Java Programming Reference 13-1

CHAPTER

13 CORBA ORB

This chapter supplements the information in package org.omg.CORBA by providing
information on the following topics:

n Initializing the ORB

n Passing the Address of the IIOP Listener

Note: For details about the API for package org.omg.CORBA, see the Java IDL
document published by the Sun Microsystems, Inc. and distributed with the
JDK 1.2.

Initializing the ORB

[This section is reprinted from the package information for org.omg.CORBA, as
published by Sun Microsystems, Inc. for the JDK 1.2.]

An application or applet gains access to the CORBA environment by initializing itself
into an ORB using one of three init methods. Two of the three methods use the
properties (associations of a name with a value) shown in the following table:

These properties allow a different vendor’s ORB implementation to be "plugged in."

Property Name Property Value

org.omg.CORBA.ORBClass Class name of an ORB implementation

org.omg.CORBA.ORBSingletonClass Class name of the ORB returned by init()

13 CORBA ORB

13-2 CORBA Java Programming Reference

When an ORB instance is being created, the class name of the ORB implementation is
located using the following standard search order:

1. Check in Applet parameter or application string array, if any.

2. Check in properties parameter, if any.

3. Check in the System properties (currently applications only).

4. Fall back on a hardcoded default behavior (use the Java IDL implementation).

Note that the BEA WebLogic Enterprise ORB provides a default implementation for
the fully functional ORB and for the Singleton ORB. When the init method is given
no parameters, the default Singleton ORB is returned. When the init method is given
parameters but no ORB class is specified, the Java IDL ORB implementation is
returned.

The following code fragment creates an ORB object initialized with the default ORB
Singleton. This ORB has a restricted implementation to prevent malicious applets from
doing anything beyond creating typecodes. It is called a Singleton because there is only
one instance for an entire virtual machine.

ORB orb = ORB.init();

The following code fragment creates an ORB object and a Singleton ORB object for
an application.

Properties p = new Properties();
p.put("org.omg.CORBA.ORBClass", "com.sun.CORBA.iiop.ORB");
p.put("org.omg.CORBA.ORBSingletonClass","com.sun.CORBA.idl.ORBSingleton");
System.setProperties(p);
ORB orb = ORB.init(args, p);

In the preceding code fragment, note the following:

n The ORB class is to be initialized as com.sun.CORBA.iiop.ORB.

n The SingletonORB class is to be initialized as
com.sun.CORBA.idl.ORBSingleton.

n The statement System.setProperties(p) sets the system properties based on
the value of p.

n The parameter args represents the arguments supplied to the application’s main
method. If p is null, and the arguments do not specify an ORB class, the new
ORB is initialized with the default Java IDL implementation.

Passing the Address of the IIOP Listener

CORBA Java Programming Reference 13-3

Note: Due to the security restrictions on applets, you will probably not be able to
invoke the System.setProperties method from within an applet. Instead,
you can set the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass parameters via HTML before
starting the applet.

The following code fragment creates an ORB object for the applet supplied as the first
parameter. If the given applet does not specify an ORB class, the new ORB will be
initialized with the default BEA WebLogic Enterprise ORB implementation.

ORB orb = ORB.init(myApplet, null);

An application or applet can be initialized in one or more ORBs. ORB initialization is
a bootstrap call into the CORBA world.

Passing the Address of the IIOP Listener

When you compile BEA WebLogic Enterprise client and server applications, use the
-DTOBJADDR option to specify the host and port of the IIOP Listener. This allows you,
in the application code, to specify null as a host and port string in invocations to:

n The ORB.init method

n The local Bootstrap object

By keeping host and port specifications out of your client and server application code,
you maximize the portability and reusability of your application code.

13 CORBA ORB

13-4 CORBA Java Programming Reference

CORBA Java Programming Reference 14-1

CHAPTER

14 Mapping IDL-to-Java

This topic includes the following sections:

n IDL-to-Java Overview

n Package Comments on Holder Classes

n Exceptions. This section describes:

l Differences Between CORBA and Java Exceptions

l System Exceptions

l User Exceptions

l Minor Code Meanings

Note: This chapter contains excerpts from the Java IDL document published by Sun
Microsystems, Inc. and distributed with the JDK 1.2.

IDL-to-Java Overview

The idltojava and m3idltojava tools read an OMG IDL interface and translate it,
or map it, to a Java interface. The m3idltojava tool also creates stub, skeleton, helper,
holder, and other files as necessary. While the idltojava tool creates stub, skeleton,
helper, holder, and other files, the skeleton files it produces cannot be used with the
BEA WebLogic Enterprise system. When compiling the OMG IDL files to build
server skeletons to be used with the BEA WebLogic Enterprise system, be sure to use
the m3idltojava tool.

14 Mapping IDL-to-Java

14-2 CORBA Java Programming Reference

These .java files are generated from the OMG IDL file according to the mapping
specified in the OMG document IDL/Java Language Mapping (available from the
OMG Web site at http://www.omg.org). We cross-reference the following four
chapters of that document here for your convenience:

n Chapter 5, “Mapping IDL to Java”

n Chapter 6, “Mapping Pseudo-Objects to Java”

n Chapter 7, “Server-Side Mapping”

n Chapter 8, “Java ORB Portability Interfaces”

A summary of the IDL to Java language mapping follows.

CORBA objects are defined in OMG IDL. Before they can be used by a Java
programmer, their interfaces must be mapped to Java classes and interfaces. Sun
Microsystems, Inc. provides the idltojava tool, and the BEA WebLogic Enterprise
system includes the m3idltojava tool, which performs this mapping automatically.

This overview shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its name implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods in
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the datatype of its return value, the datatypes of the parameters
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

The following table lists the main constructs of IDL and the corresponding constructs
in Java.

IDL Construct Java Construct

module package

interface interface, helper class, holder class

constant public static final

boolean boolean

char, wchar char

octet byte

Package Comments on Holder Classes

CORBA Java Programming Reference 14-3

Note: When a CORBA operation takes a type that corresponds to a Java object type
(a String, for example), it is illegal to pass a Java null as the parameter
value. Instead, pass an empty version of the designated object type (for
example, an empty String or an empty array). A Java null can be passed as
a parameter only when the type of the parameter is a CORBA object reference,
in which case the null is interpreted as a nil CORBA object reference.

Package Comments on Holder Classes

Operations in an IDL interface may take out or inout parameters, as well as in
parameters. The Java programming language only passes parameters by value and thus
does not have out or inout parameters; therefore, these are mapped to what are called
Holder classes. In place of the IDL out parameter, the Java programming language

string, wstring java.lang.String

short, unsigned short short

long, unsigned long int

long long, unsigned long
long

long

float float

double double

enum, struct, union class

sequence, array array

exception class

readonly attribute method for accessing value of attribute

readwrite attribute methods for accessing and setting value of attribute

operation method

IDL Construct Java Construct

14 Mapping IDL-to-Java

14-4 CORBA Java Programming Reference

method will take an instance of the Holder class of the appropriate type. The result that
was assigned to the out or inout parameter in the IDL interface is assigned to the
value field of the Holder class.

The package org.omg.CORBA contains a Holder class for each of the basic types
(BooleanHolder, LongHolder, StringHolder, and so on). It also has Holder classes
for each generated class (such as TypeCodeHolder), but these are used transparently
by the ORB, and the programmer usually does not see them.

The Holder classes defined in the package org.omg.CORBA are:

AnyHolder
BooleanHolder
ByteHolder
CharHolder
DoubleHolder
FloatHolder
IntHolder
LongHolder
ObjectHolder
PrincipalHolder
ShortHolder
StringHolder
TypeCodeHolder

Exceptions

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions are a little different from Java exception
objects, but those differences are largely handled in the mapping from IDL-to-Java.

Topics in this section include:

n Differences Between CORBA and Java Exceptions

n System Exceptions, which includes the following subtopics:

l System Exception Structure

l Minor Codes

l Completion Status

Exceptions

CORBA Java Programming Reference 14-5

n User Exceptions

n Minor Code Meanings

Differences Between CORBA and Java Exceptions

To specify an exception in IDL, the interface designer uses the raises keyword. This
is similar to the throws specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions cannot be
specified this way.

System Exceptions

CORBA defines a set of standard system exceptions, which are generally raised by the
ORB libraries to signal systemic error conditions like:

n Server-side system exceptions, such as resource exhaustion or activation failure

n Communication system exceptions, such as losing contact with the object, host
down, or cannot talk to ORB daemon (orbd)

n Client-side system exceptions, such as invalid operand type or anything that
occurs before a request is sent or after the result comes back

All IDL operations can throw system exceptions when invoked. The interface designer
need not specify anything to enable operations in the interface to throw system
exceptions -- the capability is automatic.

This makes sense because no matter how trivial an operation’s implementation is, the
potential of an operation invocation coming from a client that is in another process, and
perhaps (likely) on another machine, means that a whole range of errors is possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, developers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java.lang.RuntimeException.

14 Mapping IDL-to-Java

14-6 CORBA Java Programming Reference

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystemExceptionName> { // descriptive of error
 unsigned long minor; // more detail about error
 CompletionStatus completed; // yes, no, maybe
}

System exceptions are subtypes of java.lang.RuntimeException through
org.omg.CORBA.SystemException:

java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--org.omg.CORBA.SystemException
 |
 +--BAD_PARAM
 |
 +--//etc.

Minor Codes

All CORBA system exceptions have a minor code field, which contains a number that
provides additional information about the nature of the failure that caused the
exception. Minor code meanings are not specified by the OMG; each ORB vendor
specifies appropriate minor codes for that implementation. For the meaning of minor
codes thrown by the Java ORB, see the section ”Minor Code Meanings” on page 14-7.

Completion Status

All CORBA system exceptions have a completion status field, which indicates the
status of the operation that threw the exception. The completion codes are:

COMPLETED_YES The object implementation has completed processing prior
to the exception being raised.

COMPLETED_NO The object implementation was not invoked prior to the
exception being raised.

COMPLETED_MAYBE The status of the invocation is unknown.

Exceptions

CORBA Java Programming Reference 14-7

User Exceptions

CORBA user exceptions are subtypes of java.lang.Exception through
org.omg.CORBA.UserException:

java.lang.Exception
 |
 +--org.omg.CORBA.UserException
 |
 +-- Stocks.BadSymbol
 |
 +--//etc.

Each user-defined exception specified in IDL results in a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

System exceptions all have a field minor that allows CORBA vendors to provide
additional information about the cause of the exception. As stated in the CORBA 2.2
specification (13.4.2 Reply Message), the high order 20 bits of minor code value
contain a 20-bit "vendor minor codeset ID" (VMCID); the low order 12 bits contain a
minor code. BEA’s VMCID is 0x54555000. Further, Sun defines single or double
digit minor codes for its Java IDL ORB and BEA defines its minor code starting from
1,000. Thus, a condition common to either ORB uses the Java IDL minor code (and
VMCID 0), and the BEA ORB unique minor code is 1,000 or greater.

For Sun Microsystems, Inc. minor codes, see the Java IDL documentation. For BEA’s
minor codes, see the Release Notes.

Table 14-1 ORB Minor Codes and Their Meanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

14 Mapping IDL-to-Java

14-8 CORBA Java Programming Reference

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after location/object forward.

2 Error occurred while trying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connection is no longer alive.

6 Unable to successfully connect to the server after several attempts.

DATA_CONVERSION Exception Minor Codes

1 Encountered a bad hexadecimal character while doing ORB string_to_object
operation.

2 The length of the given IOR for string_to_object() is odd. It must be even.

3 The string given to string_to_object() does not start with IOR: and hence
is a bad stringified IOR.

4 Unable to perform ORB resolve_initial_references operation due to the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the IIOP Reply message by the server.

6 When unmarshaling, the repository id of the user exception was found to be of
incorrect length.

7 Unable to determine local hostname using the Java API’s
InetAddress.getLocalHost().getHostName().

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions prevent
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP v1.0 message type found.

14 Error encountered while unmarshaling the user exception.

Code Meaning

Exceptions

CORBA Java Programming Reference 14-9

18 Internal initialization error.

INV_OBJREF Exception Minor Codes

1 An IOR with no profile was encountered.

MARSHAL Exception Minor Codes

4 Error occured while unmarshaling an object reference.

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that
is not ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

NO_IMPLEMENT Exception Minor Codes

1 Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4 Error occured when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1 Locate request got a response indicating that the object is not known to the locator.

2 Server id of the server that received the request does not match the server id baked
into the object key of the object reference that was invoked upon.

4 No skeleton was found on the server side that matches the content of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1 Unknown user exception encountered while unmarshaling: the server returned a
user exception that does not match any expected by the client.

Code Meaning

14 Mapping IDL-to-Java

14-10 CORBA Java Programming Reference

Table 14-2 Name Server Minor Codes and Their Meanings

3 Unknown run-time exception thrown by the server implementation.

Code Meaning

INITIALIZE Exception Minor Codes

150 Transient name service caught a SystemException while initializing.

151 Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100 An AlreadyBound exception was thrown in a rebind operation.

101 An AlreadyBound exception was thrown in a rebind_context operation.

102 Binding type passed to the internal binding implementation was not
BindingType.nobject or BindingType.ncontext.

103 Object reference was bound as a context, but it could not be narrowed to
CosNaming.NamingContext.

200 Implementation of the bind operation encountered a previous binding.

201 Implementation of the list operation caught a Java exception while creating the
list iterator.

202 Implementation of the new_context operation caught a Java exception while
creating the new NamingContext servant.

203 Implementaton of the destroy operation caught a Java exception while
disconnecting from the ORB.

Code Meaning

	Restricted Rights Legend
	Trademarks or Service Marks
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 OMG IDL Syntax
	OMG IDL Extensions

	2 Server Description File
	Creating the Server Description File
	About Object Activation and Deactivation
	Server Description File Syntax
	Prolog
	Server Declaration
	Module and Implementation Declarations
	Module Declaration Syntax
	Implementation Declaration Syntax

	Archive Declaration
	Archive Declaration Syntax

	Sample Server Description File

	3 Java TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	Object State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution

	Self-deactivation

	Saving and Restoring Object State
	Use of Constructors for Java Corba Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	Voting on Transaction Outcome
	Transaction Time-outs

	Java TP Framework Interfaces
	Tobj_Servant Interface
	Server Object
	TP Interface
	Usage Note

	Error Conditions and Exceptions
	Exceptions Raised by the Java TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions

	4 Java Bootstrap Object Programming Reference
	Why Bootstrap Objects Are Needed
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Java Mapping

	Programming Examples
	Getting a SecurityCurrent Object
	Getting a UserTransaction Object

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Locating a Factory
	CORBAservices Naming Service Module OMG IDL
	CORBAservices Life Cycle Service Module OMG IDL
	Tobj Module OMG IDL
	Locating Factories in Another Domain
	Why Use BEA WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL form
	Translating an IDL Form
	Destroying a Library Name Pseudo-object

	Java Mapping

	Java Methods
	Java Programming Examples
	Server Registering a Factory
	Client Obtaining a FactoryFinder Object Reference
	Client Finding One Factory Using the Tobj Approach

	6 Security Service
	7 Transactions Service
	8 Notification Service
	9 Request-Level Interceptors
	10 Interface Repository Interfaces
	Structure and Usage
	From the Programmer’s Point of View
	Performance Implications

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	11 Joint Client/Server Applications
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects Using BEAWrapper Callbacks
	Threading Considerations in the Main Program
	Multiple Threads

	Java Client ORB Initialization
	IIOP Support
	Java Applet Support
	Port Numbers for Persistent Object References

	Callbacks Interface API

	12 Java Development and Administration Commands
	13 CORBA ORB
	Initializing the ORB
	Passing the Address of the IIOP Listener

	14 Mapping IDL-to-Java
	IDL-to-Java Overview
	Package Comments on Holder Classes
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

