%, hea
BEA WebLogic Enterprise

CORBA Java Programming
Reference

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

CORBA Java Programming Reference

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-00CSWED SItB....oeiieeeee ettt sr et saeeraen e ernens Xi
How to Print the DOCUMENL..........ceeie e e Xi
Related INfOrmMation...........ocviiiiiiieeece e e e Xi
CONLBCE US! ...t et st e e e e er e e e sreenaeereas Xii
Documentation CONVENLIONSc.ccecueiieeieie e e e e eereesre e s sraesaeere e ens Xii
1. OMG IDL Syntax
OMG DL EXEENSIONS......eiuiiireeiieeieeieeee e e et ee s s e e e seeseenesseeseeneenssnesnea 1-2

2. Server Description File

Creating the Server Description File.........oooeieiiiieeee e 2-2
About Object Activation and Deactivationc.ccceerrieeininiese e 2-2
Server DesCription File SYNaXccocoueeeieieeieeieee e e 2-3

PrOIOg ..ot e e erae 2-4
SErVEr DECIArELON......eeieee e 2-4
Module and Implementation Declarations............ccccoceveeeeieneneeeenen. 2-5
ATChIVE DECIAIaLiON ...t 2-9
Sample Server DesCription File.........couiiiiiiiiiee e 2-11

3. Java TP Framework

A Simple Programming MOdE] ..o e 33
CONEFOl FIOW ...ttt e e e eene e 34
Object State Managementccceevveeieivieieeeeree e e 35
Transaction INEEGIratioNcc.ooeoeeeeeriere e et 35
Object HOUSEKEEPING ... cveeeeeeiieie e e e e eene e 35

CORBA Java Programming Reference iii

iv

High-1EVEl SENVICES ..ot e 3-6

Object State ManagemMeNtcoeieeeiereree et e e e 3-6
ACLVELION POICY ...ttt 3-7
Application-controlled Activation and Deactivation..............ccccevereeineenne. 39

EXPlICIt ACHVALTON ..o 39
Self-deactiVation...........coeoiieiee e 311
Saving and Restoring Object State...........ooeoeeereriene e 3-12

TEANSACHIONS.ceeeeetee ettt ettt e e et ae e e et see e eneenees e e e anesreanea 312
TranSaCtion POlICIES.cuiiiieieeree ettt e 312
Transaction INItiatioN.ooueiiieeiee e e e 3-14
Transaction TEMMINGLTONcc.oviieiieie e e 3-14
Transaction Suspend and RESUME..........ccoeieieie e 3-15
REStriCtionNs ON TraNSaCtiONS........cueveieeeeiiriere et 3-16
Voting on Transaction QULCOMEcccveveeeiieeiieie e 3-17
TranSaCtion TIME-OULS..........cuiiireiieeiriee ettt s e 3-18

Java TP Framework INterfaces ... 3-18
Tobj_Servant INterfaCe.......coecieiieieicceeece e 3-18
SEIVEr ODJECL ...t st et ere e 3-19
TP INEEITACE ..t e e 3-19

Error Conditions and EXCEPLIONS........c.cceivereinerie it 3-20
Exceptions Raised by the Java TP Frameworkcoeeeeiniciennnnens 3-20
Exceptionsin the Server Application Code...........cooerveeeveeneeieieneeieeineens 321

EXAMPIE. ..ot e e 321
Exceptions and TranSaCtioNS..........ooeeeeeirineee s 3-22

Java Bootstrap Object Programming Reference

Why Bootstrap Objects Are Needed..........cccooeeriieie e 4-2
How Bootstrap ODJECtS WOIK...........oiiieieeeireee e e 4-2
Types of Remote Clients SUPPOIEdo iereereie e 4-7
Capabilities and Limitations............cceoererireie e e e 4-8
BOOtStrap OBJECE APot e e e 4-8
TOD] MOAUIE ... e e e 4-9
= Y= B = o] o1 o USSR 4-10
Programming EXAMPIEScccceriiiaiiirieniee et et e 4-11
Getting a SecurityCurrent ODJECEccuevireeirirrere e 4-11

CORBA Java Programming Reference

Getting aUserTransaction ODJECtceiriiiiriree e e 4-12

5. FactoryFinder Interface

Capabilities, Limitations, and Requirements............cooceveeveereeieinneeieeenenenie e 5-2
FUNCLION@l DESCIIPLION ...ttt e e s e nee e 5-3
Locating a FaCtoryFINGErccoeiiiiieieiere e e s 5-3
REGISLENING @ FACLOIYcveieiee et e e 5-4
(oo (] g o JF= 1 =T () V2SSOSR 55
CORBAservices Naming Service Module OMG IDL...........cccuue.e.e. 5-7
CORBAservices Life Cycle Service Module OMG IDL.................... 5-7
Tobj MOAUIE OMG IDL ..ucoeiieeceeece ettt 5-8
Locating Factoriesin Another DOmain...........ccccoceeeieneeneeneneeeeeene 5-9
Why Use BEA WebL ogic Enterprise EXtENSions?.........cccceveeeeeenee 5-10
Creating Application Factory KeYS........cccovroeeirinieee e 5-11
Names Library Interface Pseudo OMG IDLccccovevecinviveecenen, 5-11
JAVAMBPPING -ttt ettt e e e e n e ene e 5-17
JAVAMELNOAS. ... e 5-18
Java Programming EXAMPIES........cccoeiioiiiririe et et 5-18
Server RegiStering aFaCtorycccvvevveveere e 5-18
Client Obtaining a FactoryFinder Object Reference...........cccoecevvvevveeneee. 5-19
Client Finding One Factory Using the Tobj Approach............ccoceceeuinene. 5-19
6. Security Service
7. Transactions Service
8. Notification Service
9. Request-Level Interceptors
10. Interface Repository Interfaces
SErUCIUrE @NA USAJE...c.cceeeeeiee ettt e e e e 10-3
From the Programmer’s Point of VIeW ...,
Performance Implications ...
Building Client APPlCAtiONSueiiiiiiiiiie et
Getting Initial References to the InterfaceRepository Objectcccoeeeee

CORBA Java Programming Reference %

Interface RepoSItory INtErfaces.o 10-6

Supporting Type DefiNitioNS.........cooiiiirieeereriee e 10-6
IRODJECE INEITACEeceeiie e e 10-7
ContaiNed INtEIfaCceooeieee e e 10-8
ContaiNer INLErfaCeooi e e 10-9
IDLTYPE INEEITACE ...ttt e 10-11
REPOSILOrY INEITACE ... e 10-11
ModuleDEf INEEIfACEcoe i 10-12
ConstantDef INtErfaCe..........oveii i e 10-12
TypedefDef INterface. ..o e 10-13
SEUCEDES ...t e e et 10-14
UNIONDES ...t e st e et 10-14
ENUMDES ...ttt e 10-15
ALTBSDES ...ttt et bt e e 10-15
PrHMITIVEDES ... e 10-16
EXCEPLIONDES ... e e 10-16
ALHDULEDES ... e 10-17
OPEratiONDES ...t e e 10-18
INEEfACEDES ... e 10-20

11. Joint Client/Server Applications

INEFOTUCTION <.ttt et en e 11-2
Main Program and Server Initiaizationcccooveiiiieiencieienceens 11-2
SEIVANES ...ttt e sttt ettt ee e se e sb e e seesbeebae b eenbenbean 11-3
Servant Inheritance from SKeletons............ccco v viicn e, 11-4
Callback Object Models SUPPOIEd.........c.coireeieir et 11-4
Preparing Callback Objects Using BEAWrapper Callbacks.................... 11-6
Threading Considerationsin the Main Programccccoecveveececceeenenne. 11-7

MUIPIE THIrEadS ..o e 11-8

Java Client ORB INitialiZation............ccooeverieie et 11-9
[TOP SUPPOIT...c. ittt et sttt et e 11-9
JaVa APPIEL SUPPOITeeeee ettt et 11-9

Port Numbers for Persistent Object References.........ccccccceeveceeeeneen. 11-9
Callbacks Interface APo e s 11-10

Vi CORBA Java Programming Reference

12. Java Development and Administration Commands

13. CORBA ORB
INItiAliZING thE ORB ... st e e 13-1
Passing the Address of the [IOP LiStenerccoeoeennneeieeeerene e 13-3

14. Mapping IDL-to-Java

[DL-10-JAVA OVEIVIBW ..ottt ettt e e e en s e sne e 14-1
Package Comments on Holder Classes.......ccccovevveeveveeeieeseecrie et 14-3
(o= o] (o] SRS 14-4
Differences Between CORBA and Java Exceptions..........cccceeeievenennnns 14-5
SYSEEM EXCEPLIONS ...ttt e es e e snesae e sn 14-5
System EXCEption SEFUCLUIE.........ccooeeirieriee e 14-6

MINOE COUES.cv ettt et e e e e eees 14-6
COMPIELION SEALUS.eiveeeieeie ettt se s 14-6

USEl EXCEPLIONS.vieiienie ettt ettt e e e e see e 14-7
Minor Code MEANINGS........c.cciviiieiereeee ettt sttt n e 14-7

CORBA Java Programming Reference Vii

viii CORBA Java Programming Reference

About This Document

This document describes the BEA WeblLogic Enterprise™ CORBA Java application
programming interface (API).

This document covers the following topics:

Chapter 1, “OMG IDL Syntax,” describes the Object Management Group
(OMG) Interface Definition Language (IDL) and OMG IDL extensions.

Chapter 2, “Server Description File,” describes the Server Description File.

Chapter 3, “Java TP Framework,” describes the WebLogic Enterprise TP
Framework application programming interface (API).

Chapter 4, “Java Bootstrap Object Programming Reference,” describes the
Bootstrap object.

Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

Chapter 6, “Security Service,” directs you to information about the Security
Service.

Chapter 7, “Transactions Service,” directs you to information about the
Transactions Service.

Chapter 8, “Notification Service,” directs you to information about the
Notification Service.

Chapter 9, “Request-Level Interceptors,” directs you to information about
Request-Level Interceptors.

Chapter 10, “Interface Repository Interfaces,” describes the Interface Repository
interfaces.

CORBA Java Programming Reference iX

m Chapter 11, “Joint Client/Server Applications,” describes how to program joint
client/server applications and the BEAWrapper Callbacks API.

m Chapter 12, “Java Development and Administration Commands,” directs you to
information about the build and administration commands for UNIX and
Windows NT platforms.

m Chapter 13, “CORBA ORB,” provides supplemental information about the
CORBA ORB.

m Chapter 14, “Mapping IDL-to-Java,” describes the IDL to Java mapping.

The information provided in this document is supplemented byaveAPI
Reference, which contains descriptions of the application programming interface
(API) for the following components:

m TP Framework

m Bootstrap object

m FactoryFinder

m Security Service

m Java Transaction Service (JTS)

m Java Transaction API (JTA)

What You Need to Know

X

This document is intended for application developers interested in using the WebLogi
Enterprise software to write the following applications:

m Server applications implemented in the Java programming language
m All client applications supported by the WebLogic Enterprise product

This document assumes a familiarity with CORBA and Java programming. For
reference information about implementing WebLogic Enterprise server applications ir
the C++ programming language, see the CORBA Programming Referencein the
WebLogic Enterprise online documentation.

CORBA Java Programming Reference

e-docs Web Site

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

System, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site &tttp://www.adobe.com

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see BieA WebL ogic Enterprise Bibliography in the

WebLogic Enterprise online documentation.

CORBA Java Programming Reference Xi

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

CORBA Java Programming Reference

Documentation Conventions

Convention Item
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

bui I dobjclient [-vV]
[-1 file-list]...

[-0 nane | [-f file-list]...

CORBA Java Programming Reference Xiii

Xiv

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

CORBA Java Programming Reference

CHAPTER

1

OMG IDL Syntax

The Object Management Group (OMG) Interface Definition Language (IDL) is used

to describe the interfaces that client objects call and that object implementations

provide. An OMG IDL interface definition fully specifies each operation’s parameters
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a client
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language that
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements also
provide full support for standard C++ preprocessing features and OMG IDL-specific
pragmas.

Note: When using a pragma version statement, be sure to locate it after the
corresponding interface definition. Here is an example of proper usage:

nodul e A

{

interface B

{
#pragma version B "3.5"
void opl();
I
}

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

CORBA Java Programming Reference 1-1

1 omG iDL Syntax

For adescription of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

OMG IDL Extensions

The IDL compiler defines preprocessor macros specific to the platform. All the
macros predefined by the preprocessor that you are using can be used in the OMG IL
file, in addition to the user-defined macros. You can also define your own macros
when you are compiling or loading OMG IDL files.

1-2 CORBA Java Programming Reference

CHAPTER

2 Server Description File

This topic includes the following sections:

m Creating the Server Description File. This section includes:
e About Object Activation and Deactivation
e Server Description File Syntax

m Sample Server Description File

When you create a Java server application meant to be run in the BEA WebL ogic
Enterprise environment, the bui | dj avaser ver command accepts the following
information:

m Default activation and transaction policies for all the objectsimplemented in the
server application

m The server declaration, which includes the name of the Server object and the
name of the server descriptor file

m Thedeclarations of each of the modules and interfaces defined in the server
application’s OMG IDL file

m Nondefault activation and transaction policies for specific objects implemented
in the server application

m A description of the content of the server applicatipa’s archive, which
contains all the files needed by the server application

You specify all the preceding information in a Server Description File, which is used
by thebui | dj avaser ver command to create the server descriptor file and, optionally,
build a servef ar file.

CORBA Java Programming Reference 2-1

2 Server Description File

Creating the Server Description File

Themeansto provide theinformation required by the bui | dj avaser ver commandis
the Server Description File, which isexpressed inthe XML language. XML looksvery
similar to HTML ; itskey difference isthat no XML tag is predefined. Every XML file
uses a Document Type Definition (DTD) file that specifies:

m What the XML tags are
m What attributes can be attached to an element
m What elements can be used in other e ements

TheDTD required by the BEA WebL ogic Enterprise system is packaged with the BEA

WebL ogic Enterprise software. Y ou create the Server Description File using a

common text editor. The section “About Object Activation and Deactivation” on
page 2-2 provides important background information about the policies you define in
the Server Description File, and the section “Server Description File Syntax” on
page 2-3 provides the details on how to specify the server description information in ¢
Server Description File.

About Object Activation and Deactivation

2-2

The BEA WebLogic Enterprise TP Framework application programming interface
(API) provides callback methods for object activation and deactivation. These
methods provide the ability for application code to implement flexible state
management schemes for CORBA objects.

State management is the way you control the saving and restoring of object state durir
object deactivation and activation. State management also affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includes the

com beasys. Tobj _Servant . acti vat e_obj ect and

com beasys. Tobj _Servant . deacti vat e_obj ect methods, which provide a

possible location for state management code. Additionally, the TP Framework API
includes the&eom beasys. Tobj . TP. deact i vat eEnabl e method to enable the user

CORBA Java Programming Reference

Creating the Server Description File

to control the timing of object deactivation. The default duration of object activationis
controlled by policies assigned to implementationswhen the server application isbuilt
by the bui | dj avaser ver command.

While CORBA objects are active, their stateis contained in a servant. This state must
beinitialized when objects arefirst invoked (that is, thefirst time amethod isinvoked
on aCORBA object after itsobject referenceis created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in

which the servant was active. When an object is activated, its state must be restored.

The object’s state can be saved in shared memory, in a file, in a database, and so forth.
It is up to the programmer to determine what constitutes an object’s state, and what
must be saved before an object is deactivated, and restored when an object is activated.

You can use the Server Description File to set activation policies to control the
duration of object activations in the server process. The activation policy determines
the in-memory activation duration for a CORBA object. A CORBA object is active in

a Portable Object Adapter (POA) if the POA's active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the
association of an object ID with its active servant.

Server Description File Syntax

The Server Description File has the following four major parts:
m Prolog

m Server declaration

m Module and implementation declarations

m Archive declaration

The sections that follow explain the syntax and how to specify each of these parts of
the Server Description File.

CORBA Java Programming Reference 2-3

2 Server Description File

Prolog

Every Server Description File begins with the following required prolog:

<?xm version="1.0"?>
<! DOCTYPE MB- SERVER SYSTEM "n8. dt d">

If you want to override the default activation or transaction policy used by the
bui | dj avaser ver command, you can override those defaultsin the prolog using the
following syntax:

<?xm version="1.0"?>
<! DOCTYPE M3- SERVER SYSTEM "n8. dtd" [
<! ENTI TY TRANSACTI ON_POLI CY "transacti on_val ue">
<! ENTI TY ACTI VATI ON_PQOLI CY "activation_val ue">
1>

In the preceding syntax, note the following:

m transaction_val ue represents one of the following: never, i gnore,
opti onal , or al ways. (Note that the double quotes are arequired part of the

syntax.)

m activation_policy represents one of the following: net hod, t ransacti on,
or process.

m The square brackets ([and]) preceding and following the! ENTI TY tags are
required; that is, the brackets in the preceding syntax do not imply that the
enclosed text is optional.

Note that you specify default activation and transaction policiesin the prolog only if
you want to override the following BEA WebL ogic Enterprise system defaults:

Activation Policy met hod

Transaction Policy opt i onal

Server Declaration

2-4

Immediately following the prolog is the server declaration, which is an optional part
of the Server Description File. The server declaration contains the following:

m Thefully qualified name of the Server object

CORBA Java Programming Reference

Creating the Server Description File

m Thefully qualified name of the file containing the server descriptor
To specify the server declaration, use the following syntax:
<MB3- SERVER SERVER- | MPLEMENTATI ON="ser ver_nane"

SERVER- DESCRI PTOR- NAME=" server_descri ptor" >
</ M3- SERVER>
In the preceding syntax, note the following:

m server_nane representsthefully qualified name of the class that contains the
Server object. Qualified names use dot separators, not slashes. If you do not
specify the Server object, the BEA WebL ogic Enterprise system creates a default
Server object that opens and closes the X A resource manager associated with the
server application, if any, when the server application is started and stopped,
respectively. (Note that the double quotes are arequired part of the syntax.)

m server_descript or representsthe name of the file where the server descriptor
will be stored. Thisfile nametypically hasa . ser suffix. If you do not specify a
server descriptor, the bui | dj avaser ver command uses Ser ver . ser by default.

Module and Implementation Declarations

After the prolog and the server declaration (if present), the Server Description File
contains module and implementation declarations, which may be specified as nested
elements.

The module declarations specify Java packages for the server application. Interface
declarations specify:

m Theinterface repository ID for the interface being implemented

m Optionally, nondefault activation or transaction policies for objects that
implement the interface

Module Declaration Syntax

A modul e declaration uses the following syntax:

<MODULE nane=" nane">

</ MODULE>

CORBA Java Programming Reference 2-5

2 Server Description File

In the preceding syntax, note the following:

m nane represents the name of either a single Java package, or a set of nested
packages. Thisvariableis needed if it existsinthe OMG IDL file, and it is used
for scoping and grouping. Its use must be consistent with the way it is used
insidethe OMG IDL file.

m A module declaration can contain an implementation declaration, nested module
declaration, or both.

m You can specify a nested package in asingle modul e declaration using the dotted
notation, or you can factor out the package name using nested module
declarations. For example, either of the following module declarations for the
com acne packageisvalid:

<MODULE nane="com acne" >

</ MODULE>
or:

<MODULE nane="coni >
<MODULE nane="acne" >

</ MODULE>
</ MODULE>

Implementation Declaration Syntax

2-6

An implementation declaration uses the following syntax:

<I MPLEMENTATI ON nane=" nane"
[inpl enments="interface id"]
[transaction="transaction_policy"]
[activation="activation_policy"] >

In the preceding syntax, note the following:

m nane represents the name of the implementation class. If the implementation
declaration is not nested inside any module declaration, name must be the fully
qualified class name, using the dotted notation.

CORBA Java Programming Reference

Creating the Server Description File

If the implementation declaration is nested inside one or more module
declarations, the names of the modules will be prepended to the implementation
name to specify the whole name. The base class of the implementation name
must be a skeleton class generated by the n8i dl t oj ava command.

interface_idrepresentsthe IDL interface repository ID for the interface being
implemented. This clause in the implementation declaration is optional. If you
do not specify an interface ID, the BEA WebL ogic Enterprise system usesthe
most derived interface ID found in the skeleton class by default. The interface
ID must match the most derived interface ID found in the skeleton class.

transaction_pol i cy represents the transaction policy used by the
implementation in the server, and must be one of the keywords listed and

described in the following table:

Policy Description

never The implementation is not transactional. Objects created for thisinterface
can never be invoked within the scope of atransaction. The system
generates an exception (I NVALI D_TRANSACTI ON) if an implementation
with thispalicy isinvolved in atransaction. An AUTOTRAN policy specified
in the UBBCONFI Gfile for the interface isignored.

i gnore Theimplementation is not transactional. The system all ows requests on this
object to be made within the scope of atransaction, but the object isnot part
of thetransaction. An AUTOTRAN policy specified in the UBBCONFI Gfile
for theinterface isignored. (The BEA Tuxedo infrastructure always
enforcestheuseof the TPNOTRANTlag (seet pcal | (3) inthe BEA Tuxedo
Reference Manual) for requests associated with implementations that have
this policy.

opti onal The implementation may be transactional . Objects can be invoked either
inside or outside the scope of atransaction. If the AUTOTRAN parameter is
enabled in the UBBCONFI Gfile for the interface, the implementation is
transactional. Servers containing transactional objects must be configured
within a group associated with an XA-compliant RM.

al ways The implementation is transactional . Objects are alwaystransactional. If a
request is made outside the scope of atransaction, the system automatically
starts a transaction before invoking the method, and the transaction is
committed when the method ends. (Thisisthe AUTOTRANfeature.) Servers
containing transactional objects must be configured within a group
associated with an XA-compliant RM.

CORBA Java Programming Reference 2-7

2 Server Description File

2-8

Thetransaction clause isoptional. If you do not specify a transaction policy, the
default isopt i onal , unless the default value has been overridden in the prolog.

m activation_policy represents the activation policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

Policy Description

nmet hod The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the method. At the
completion of amethod, the object is deactivated. When the next method
isinvoked on the object reference, the CORBA object is activated (the
object ID is associated with a new servant). This behavior is similar to
that of a BEA Tuxedo stateless service.

transaction Theactivation of the CORBA object (that is, the association between the
object ID and the servant) lastsuntil the end of thetransaction. During the
transaction, multiple object methods can be invoked. Thisisamodd of
resource dlocation that issimilar to that of aBEA Tuxedo conversational
service.

Thismodel islessexpensivethanthe BEA Tuxedo conversationa service

in that it uses fewer system resources. Thisis because of the BEA

WebL ogic Enterprise ORB’s multicontexted dispatching model (that is,
the presence of many servants in memory at the same time for one
server), which makes it possible for a single server process to be shared
by many concurrently active servants, which service many clients. In the
BEA Tuxedo system, the process would be dedicated to a single client
and to only one service for the duration of a conversation.

process The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the process.

Note: The TP Framework API provides an interface method

(com beasys. Tobj . TP. deact i vat eEnabl e()) that allows the
application to control the timing of object deactivation for objects that
have theact i vati on poli cy settopr ocess. For a description of
this method, see th&P| Javadoc

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object isactivein aPOA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant.

CORBA Java Programming Reference

Creating the Server Description File

The activation clauseis optiona. If you do not specify an activation policy, the default
is met hod, unless the default value has been overridden in the prolog.

Archive Declaration

The archive declaration describes the content of thej ar archive that contains all the
server application files. This section of the Server Description Fileis optional; if you
do not provide this section, you can build the j ar archive by using thej ar command
directly. However, declaring an archive in the Server Description File simplifies the
process of collecting and identifying the files.

The archive declaration isthelast section of the Server Description File. If you do not
include an archive declaration, the bui | dj avaser ver command produces only the
server descriptor and placesit in thefile specified by the ser ver - descri pt or - name
attribute in the server declaration.

Y ou specify the content of the <ARCHI VE> element aseither fully qualified Javaclasses
or file names. When specifying file names, note that path specifications are system
dependent, which has implications on archive portability.

Thebui | dj avaser ver command has the sear chpat h option, which you can use to
specify the search path for the files and classes included in the archive.

Note: After youusethebui | dj avaser ver command to createthej ar archive, you
might find it useful to verify the contents of the archive by usingthej ar t vf
command. This helps make surethat the archive contains al the intended
files.

Archive Declaration Syntax
The archive declaration has the following syntax:

<ARCHI VE nane=" ar chi ve- nane" >

[<CLASS nane="cl ass-nane" [>] [...]

[<PACKAGE nane=" package-nane" [>] [...]

[<PACKACGE- RECURSI VE nane=" package-nanme"/>] [...]

[<PACKAGE- ANONYMOUS / >]

[<FILE prefix="file-prefix" name="file-nane" [>] [...]

[<Dl RECTORY prefix="dir-prefix" name="dir-nane" [>] [...]
</ ARCH VE>

In the preceding syntax, note the following:

CORBA Java Programming Reference 2-9

2 Server Description File

2-10

Each of the entities nested inside the <ARCHI VE> element is optional, and there
are no default values for any of these entities.

The[...] construct next to an entity indicates that you can provide multiple
such entities.

ar chi ve- nanme representsthe name of thej ar archivefile to be created by the
bui | dj avaserver command. The archive created contains all the classes,
packages, and files specified within the <ARCH VE> element.

cl ass- nane represents the fully qualified name of the class to be included in
the archive. All inner classes of that class are included as well.

package- nanme represents the fully qualified name of apackage to be included
in the archive. All the classes belonging to that package are included aswell.

If you want to include nested packages, use the <PACKAGE- RECURSI VE>
element.

Use the <PACKAGE- ANONYMOUS> element to specify that all classesnot in a
package are to be included in the archive. (This refers to the classes that do not
have apackage statement in the Java source.)

fil e- nane represents the name of afileto be included in the archive. You can
usethefil e-prefi x construct to specify apathname. This path nameis
prepended to the file name when the file is located to be included in the archive;
however, the file is stored in the archive only with the name specified by

fil e-nane.

For example, if thefil e- name isacne/i conf. gi f,andthefile-prefixis
/ dev, the bui | dj avaser ver command looks for the file
/ dev/ acme/i conf. gi f and storesitinthearchiveasacne/iconf.gif.

di r - nane represents the path name of the directory to be included in the
archive. All subdirectories are included as well. You can usethe di r- prefi x
construct to specify a directory path. The directory path is prepended to the
directory name when the directory is located to be included in the archive;
however, the file is stored in the archive only with the name specified by

di r - nane.

CORBA Java Programming Reference

Sample Server Description File

Sample Server Description File

Listing 2-1 shows a sample Server Description File.

Listing 2-1 Sample Server Description File

<?xm version="1.0"?>

<! DOCTYPE M3- SERVER SYSTEM "n8. dtd"]>

<MB- SERVER

server-inpl ement ati on="com beasys. sanpl es. BankAppSer ver | npl "
server -descri pt or- nane="BankApp. ser" >

<MODULE nare="com beasys. sanpl es" >
<| MPLEMENTATI ON
name="Tel | er Factorylnmpl " />
activation="process"
transacti on="never"
/>

<| MPLEMENTATI ON
nane="Tel l erl npl "/ >
acti vation="rnet hod"
transacti on="never"
/>

<| MPLEMENTATI ON
nanme="DBAccessl| npl "
acti vation="rnet hod"
transacti on="never"
/>

</ MODULE>

<ARCHI VE name="BankApp.jar">
<PACKAGE name="com beasys. sanpl es"/>
</ ARCH VE>
</ M3- SERVER>

For an example of another Server Description File, see Creating CORBA Java Server
Applications.

CORBA Java Programming Reference 2-11

2 Server Description File

2-12 CORBA Java Programming Reference

CHAPTER

3

Java TP Framework

This topic includes the following sections:
m A Simple Programming Model. This section describes:
e Control Flow
e Object State Management
e Transaction Integration
e Object Housekeeping
e High-level Services
m Object State Management. This section describes:
e Activation Policy
e Application-controlled Activation and Deactivation

e Saving and Restoring Object State

m Transactions. This section describes:
e Transaction Policies
e Transaction Initiation
e Transaction Termination
e Transaction Suspend and Resume
e Restrictions on Transactions
e \oting on Transaction Outcome

e Transaction Time-outs

m Java TP Framework Interfaces. This section describes:

CORBA Java Programming Reference

3-1

3 Java TP Framework

e Tobj_Servant Interface
e Server Object

e TPInterface

m Error Conditions and Exceptions. This section describes:
e Exceptions Raised by the Java TP Framework
e Exceptionsin the Server Application Code

e Exceptions and Transactions

The BEA WebL ogic Enterprise Java TP Framework provides a programming
framework that enables users to create servers for high-performance TP applications.
The Java TP Framework is required when developing BEA WebL ogic Enterprise
servers. This chapter describes the architecture of and interfaces in the Java TP
Framework. Information about the Java TP Framework APl isin the API Javadoc.
Information about how to use this API can be found in Creating Java Server
Applications.

BEA WebL ogic Enterprise uses BEA Tuxedo as the underlying infrastructure for
providing load balancing, transactional capabilities, and administrative infrastructure.
The base API used by the TP Framework is the CORBA APl with BEA extensions.

Before BEA WebLogic Enterprise, ORB products did not approach BEA Tuxedo’s
performance in large-scale environments. BEA Tuxedo systems support application
that can process hundreds of transactions per second. These applications are built us
the BEA Tuxedo stateless-service programming model that minimizes the amount o
system resources used for each request, and thus maximizes throughput and price
performance.

Now, BEA WebLogic Enterprise and its Java TP Framework let you develop CORBA
applications with performance similar to BEA Tuxedo applications. BEA WebLogic
Enterprise servers that use the Java TP Framework provide throughput, response tin
and price performance approaching the BEA Tuxedo stateless-service programming
model, while using the CORBA programming model.

The Java TP Framework consists of:

m Thecom beasys. Tobj _Ser vant class, which has virtual methods for object
state management

m Thecom beasys. Tobj . Server class, which has virtual methods for
application-specific server initialization and termination logic

3-2 CORBA Java Programming Reference

A Simple Programming Model

m Thecom beasys. Tobj . TP class, which provides methods to:
e Create object references for CORBA objects
e Create object references and preactivate objects
e Register (and unregister) factories with the FactoryFinder object

e [nitiate user-controlled deactivation of the CORBA object currently being
invoked

e Obtain an object reference to the CORBA object currently being invoked

e Obtain object IDsin object references that were created in the Java TP
Framework

e Open and close XA resource managers
e L og messagesto auser log (ULOG) file
e Obtain object references to the ORB and to Bootstrap objects

A Simple Programming Model

The Java TP Framework provides asimple, useful subset of the wide range of possible
CORBA object implementation choices. Y ou useit for the development of server-side
object implementations only.

When using any client-side CORBA ORB, clientsinteract with CORBA objectswhose
server-side implementations are managed by the Java TP Framework. Clients are

unaware of the existence of the TP Framework—a client written to access a CORBA
object executing in a non-BEA BEA WebLogic Enterprise server environment will be
able to access that same CORBA object executing in a BEA WebLogic Enterprise
server environment without any changes or restrictions to the client interface.

The Java TP Framework provides a server environment and an API that is easier to use
and understand than the CORBA Portable Object Adapter (POA) API, and is
specifically geared towards enterprise applications. It is a simple server programming
model and an orthodox implementation of the CORBA model, which will be familiar

to programmers using ORBs such as ORBIX or VisiBroker.

CORBA Java Programming Reference 3-3

3

Java TP Framework

The Java TP Framework simplifies the programming of BEA WebL ogic Enterprise
servers by reducing the complexity of the server environment in the following ways:

The Java TP Framework does all interactions with the POA and the naming
service. The application programmer requires no knowledge of the POA or
naming service interfaces.

A CORBA object may be involved in only one transaction at a time (consistent
with the association of one object ID to one servant).

The Java TP Framework provides the following functionality:

Control Flow

Object State Management
Transaction Integration
Object Housekeeping
High-level Services

The TP Framework API isavailable for usein either a single threaded or
multi-threaded Java server.

Control Flow

34

The Java TP Framework, in conjunction with the ORB and the POA, controls the flow
of the application program by doing the following:

Controlling the server mainline and invoking callback methods on classes
defined by the TP Framework at appropriate times for server startup and
shutdown. This relieves the application programmer from complex interactions
related to ORB and POA initialization and coordination of transactions, resource
managers, and object state on shutdown.

Scheduling objects for activation and deactivation when client requests arrive
and are completed. This removes the complexity of management of object
activation and deactivation from the realm of the application programmer and
enables the use of the TP monitor infrastructure’s powerful load-balancing
capabilities, crucial to performance of mission-critical tasks.

CORBA Java Programming Reference

A Simple Programming Model

Object State Management

The Java TP Framework API provides callback methods for application code to

implement flexible state management schemes for CORBA objects. State management
involvesthe saving and restoring of object state on object deactivation and activation.

State management al so concernsthe duration of activation of objects, whichinfluences

the performance of servers and their resource usage. The default duration of object
activation is controlled by policies assigned to implementations at IDL compiletime.

For more information about object state management, see the section “Object State
Management” on page 3-6.

Transaction Integration

Java TP Framework transaction integration provides the following features:
m CORBA objects can participate in global transactions.

m Objects participating in transactions can be implemented as stateful objects that
remain in memory for the duration of a transaction (by using the transaction
activation policy) to decrease client response time.

m CORBA objects that participate in transactions can affect transaction outcome
either during their transactional work or just prior to the system’s execution of
the two-phase commit algorithm after all transactional work has been completed.

m Transactions can be automatically initiated on the server, which is transparent to
the client.

Object Housekeeping

When a server is shut down, the Java TP Framework rolls back any transactions that
the server is involved in and deactivates any CORBA objects that are currently active.

CORBA Java Programming Reference 3-5

3

Java TP Framework

High-level Services

The TPinterface in the Java TP Framework API provides methods for performing
object registrations and utility functions. The following services are provided:

m Object reference creation

m Factory-based routing support

m Accessors for system objects, such asthe ORB

m Registration and unregistration of factories with the Factory Finder
m Application-controlled activation and deactivation

m User logging

The purpose of thisinterfaceisto provide high-level calsthat application code can
cal, instead of callsto underlying APIs provided by the Portable Object Adapter
(POA) and the BEA Tuxedo system. By encapsul ating the underlying API calswitha
high-level set of methods, programmers can focus their efforts on providing business
logic, rather than on understanding and using the more complex underlying facilities.

Object State Management

3-6

Object state management involves the saving and restoring of object state on object
deactivation and activation. It also concerns the duration of activation of objects,
which influences the performance of servers and their resource usage. The external
API of the Java TP Framework providesact i vat e_obj ect and

deacti vat e_obj ect methods, which are a possible location for state management
code.

CORBA Java Programming Reference

Object State Management

Activation Policy

State management is provided in the TP Framework by the activation policy. This
policy controlsthe activation and deactivation of servantsfor aparticular IDL interface
(as opposed to the creation and destruction of the servants). This policy is applicable
only to CORBA objects using the Java TP Framework.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object is activein a POA if the POA'’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant. Y ou can
choose from one of three activation policies. met hod (the default), t r ansacti on, or
process.

Note: The activation policies are set in an Server Description file that is configured
at OMG IDL compile time. For a description of the Server Description file,
refer to Chapter 2, “Server Description File.”

The activation policies are described below:

m net hod (This is the default activation policy.)

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the method. At the completion of a
method, the object is deactivated. When the next method is invoked on the
object reference, the CORBA object is activated (the object ID is associated with
a new servant). This behavior is similar to that of a BEA Tuxedo stateless
service.

B transaction

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the transaction. During the transaction,
multiple object methods can be invoked. The object is activated before the first

method invocation on the object and is deactivated in one of the following ways:

e If a user-initiated transaction is in effect when the object is activated, the
object is deactivated when the first of the following occurs: the transaction is
committed or rolled back, or the server is shut down in an orderly fashion.
The latter is done using either theshut down(1) ort madni n(1) command.
These commands are described inBEA Tuxedo Reference Manual online
document.

CORBA Java Programming Reference 3-7

3

Java TP Framework

3-8

e |f auser-initiated transaction is not in effect when the TP object is activated,
the TP object is deactivated when the method completes.

Thet ransacti on activation policy provides a meansfor an object to vote on
the outcome of the transaction prior to the execution of the two-phase commit
algorithm. An object votes to roll back the transaction by calling
Current.rol |l back_only() inthe

com.beasys.Tobj _Ser vant Base. deact i vat e_obj ect method. It votesto
commit the transaction by not calling Current . rol | back_onl y() inthe
method.

Note: Thisisamodel of resource allocation that is similar to that of aBEA
Tuxedo conversational service. However, thismodel isless expensivethan
the BEA Tuxedo conversational servicein that it uses fewer system
resources. This is because of the BEA WebLogic Enterprise ORB'’s
multicontexted dispatching model (that is, the presence of many servants
in memory at the same time for one server), which makes it possible for a
single server process to be shared by many concurrently active servants
that service many clients. In the BEA Tuxedo system, the process would
be dedicated to a single client and to only one service for the duration of a
conversation.

process

The activation of the CORBA object begins when it is invoked while in an
inactive state and, by default, lasts until the end of the process.

Note: The Java TP Framework API provides an interface method
(com.beasy3P. deacti vat eEnabl e) that allows the application to
control the timing of object deactivation for objects that have the
activation policy settoprocess.

The TP Framework API also provides an interface method

(com beasys. TP. create_acti ve_obj ect _ref er ence) that allows the
application to pre-activate the CORBA object at the time that its object
reference is created.

CORBA Java Programming Reference

Object State Management

Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the Java TP Framework,
as discussed earlier in this chapter. The techniquesin this section show how to use
alternate mechanisms. The application can control the timing of activation and
deactivation explicitly for objects with particular policies.

Explicit Activation

Usage Notes

Application code can bypass the on-demand activation feature of the Java TP
Framework for objects that use the pr ocess activation policy. The application can
“preactivate” an object (that is, activate it before any invocation) using the
com beasys. TP. creat e_acti ve_obj ect _reference call.

Preactivation works as follows. Before the application creates an object reference, the
application instantiates a servant and initializes that servant’s state. The application
usescom beasys. TP. creat e_acti ve_obj ect _ref er ence to put the object into

the Active Object Map (that is, associate the servant withbpect | d). Then, when

the first invocation is made, the Java TP Framework immediately directs the request to
the process that created the object reference and then to the existing servant, bypassing
the call to the servantsct i vat e_obj ect method (just as if this were the second or

later invocation on the object). Note that the object reference for such an object will
not be directed to another server and the object will never go through on-demand
activation as long as the object remains activated.

Since the preactivated object has phecess activation policy, it will remain active
until one of two events occurs: (1) the ending of the process or (2) a
com beasys. TP. deact i vat eEnabl e call.

Preactivation is especially useful if the application needs to establish the servant with
an initial state in the same process, perhaps using shared memory to initialize state.
Waiting to initialize state until a later time and in a potentially different process may

be very difficult if that state includes pointers, object references, or complex data
structurescom beasys. TP. cr eat e_act i ve_obj ect _r ef er ence guarantees that

the preactivated object is in the same process as the code that is doing the preactivation.
While this is convenient, preactivation should be used sparingly, as should all process
objects, because it preallocates precious resources. However, when needed and used
properly, preallocation is more efficient than alternatives.

CORBA Java Programming Reference 39

3 Java TP Framework

Caution

3-10

Examples of such usage might be an object using the “iterator” pattern. For example
there might a potentially long list of items that could be returned (in an unbound IDL
sequence) from ‘alatabase_query” method (for example, the contents of the

telephone book). Returning all such items in the sequence isimpractical because the
message size and the memory requirements would be too large.

Onaninitial call to get thelist, an object using theiterator pattern returnsonly alimited
number of items in the sequence and also returns a reference to an “iterator” object th
can be invoked to receive further elements. This iterator object is initialized by the
initial object; that is, the initial object creates a servant and sets its state to keep trac
of where in the long list of items the iteration currently stands (the pointer to the
database, the query parameters, the cursor, and so forth).

The initial object usesom beasys. TP. creat e_act i ve_obj ect _ref erence to
preactivate this iterator object and to create its reference which will be returned to th
client. It also creates an object reference to that object to return to the client. The clier
then invokes repeatedly on the iterator object to receive, say, the next 100 items in tf
list each time. The advantage of preactivation in this situation is that the state might b
complex. It is often easiest to set such state initially, from a method that has all the
information in its context (call frame), when the initial object still has control.

When the client is finished with the iterator object, it invokes a final method on the
initial object, which deacativates the iterator object. The initial object deactivates the
iterator object by invoking a method on the iterator object that calls the

com beasys. TP. deact i vat eEnabl e method; that is, the iterator object calls

com beasys. TP. deact i vat eEnabl e on itself.

For objects to be preactivated in this fashion, the state usually cannot be recovered if
crash occurs. (This is because the state was considered too complex or inconvenient
set upon initial, delayed activation.) This is a valid object technique, essentially stating
that the object is valid only for a single activation period.

However, a problem may arise because of the “one-time” usage. Since a client still
holds an object reference that leads to the process containing that state, and since t
state cannot be recreated after the crash, care must be taken that the client’s next
invocation does not automatically provoke a new activation of the object, because th:
object would have inapplicable state.

CORBA Java Programming Reference

Object State Management

The solution is to refuse to alow the object to be activated automatically by the TP
Framework. If the activate_object method throws a

com beasys. Tobj S. Act i vat eQbj ect Fai | ed exception, the TP Framework will
not complete the activation and will return the org.omg.CORBA. OBJECT_NOT_EXI ST
exception to the client. The client has presumably been warned about this possibility,
since it knows about the iterator (or similar) pattern. The client must be prepared to
restart the iteration.

Self-deactivation

Just asit is possible to preactivate an object with the pr ocess activation policy, itis
possible to request the deactivation of an object with the process activation policy.
The ability to preactivate and the ability to request deactivation are independent;
regardless of how an object was activated, it can be deactivated explicitly.

A method in the application can request (viacom beasys. TP. deact i vat eEnabl €)
that the object be deactivated. When com beasys. TP. deact i vat eEnabl e iscalled
and the object is subsequently deactivated, no guarantee is made that subsequent
invocations on the CORBA object will result in reactivation in the same process as a
previousactivation. The association between the Qbj ect | d and the servant existsfrom
the activation of the CORBA object until one of the following events occurs: (1) the
shutdown of the server process or (2) the application calls

com beasys. TP. deact i vat eEnabl e. After the association is broken, when the
object isinvoked again, it can be re-activated anywhere that is allowed by the BEA
WebL ogic Enterprise configuration parameters.

When acom beasys. TP. deact i vat eEnabl e call isinvoked, the object currently
executing is deactivated after completion of the method in which the call ismade. The
object itself makes the decision that it should be deactivated. Thisis often done during
amethod call that acts as a"signoff" signal.

Note: TheTP: : deacti vat eEnabl e(i nterface, object id, servant)
met hod can be used to deactivate an object. However, if that object iscurrently
in atransaction, the object will be deactivated when the transaction commits
or rollsback. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object isnot in atransaction
or ensure that no invokes occur on the object after the
TP: : deact i vat eEnabl e() call until the transaction is complete.

CORBA Java Programming Reference 3-11

3 Java TP Framework

Saving and Restoring Object State

While CORBA objects are active, their state is contained in a servant. Unless an

application usescom beasys. TP. cr eat e_acti ve_obj ect _r ef er ence, state must
beinitialized when the object isfirst invoked (that is, thefirst timeamethod isinvoked

on a CORBA aobject after its object reference is created), and on subsequent

invocations after they have been deactivated. While a CORBA object is deactivated,

its state must be saved outside the process in which the servant was active. The objec
state can be saved in shared memory, in afile, or in a database. Before a CORBA obje
is deactivated, its state must be saved; when it is activated, its state must be restore

The programmer determines what constitutes an object’s state and what must be sav
before an object is deactivated, and restored when an object is activated.

Use of Constructors for Java Corba Objects

The state of Java CORBA objects must not be initialized in the constructors for the
servant classes. This is because the Java TP Framework may reuse an instance of
servant. No guarantee is made as to the timing of the creation of servant instances.

Transactions

The following sections provide information about transaction policies and how to use
transactions.

Transaction Policies

Eligibility of CORBA objects to participate in global transactions is controlled by the
transaction policies assigned to implementations at compile time. The following
policies can be assigned.

Note: The activation policies are set in an Server Description file that is configured
at OMG IDL compile time. For a description of the Server Description file,
refer to Chapter 2, “Server Description File.”

3-12 CORBA Java Programming Reference

Transactions

B never

The implementation is not transactional. Objects created for this interface can
never be involved in atransaction. The system generates an exception

(I'NVALI D_TRANSACTI ON) if an implementation with this policy isinvolved in a
transaction. An AUTOTRAN policy specified in the UBBCONFI Gfile for the
interface isignored.

m ignore

The implementation is not transactional. This policy instructs the system to
allow requests within a transaction to be made of thisimplementation. An
AUTOTRAN policy specified in the UBBCONFI Gfile for the interface is ignored.

m optional (Thisisthedefaulttransaction_policy.)

The implementation may be transactional. Objects can beinvolved in a
transaction if the request is transactional. Servers containing transactional objects
must be configured within a group associated with an XA-compliant resource
manager. |f the AUTOTRAN parameter is specified in the UBBCONFI Gfile for the
interface, AUTOTRAN is ON.

m al ways

The implementation is transactional . Objects are required to aways be involved
in atransaction. If areguest is made outside a transaction, the system
automatically starts atransaction before invoking the method. The transaction is
committed when the method ends. (This is the same behavior that results from
specifying AUTOTRAN for an object with the option transaction policy, except that
no administrative configuration is necessary to achieve this behavior, and it
cannot be overridden by administrative configuration.) Servers containing
transactional objects must be configured within a group that is associated with
an X A-compliant resource manager.

Note: Theopti onal policy isthe only transaction policy that can be influenced by
administrative configuration. If the system administrator sets the AUTOTRAN
attribute for the interface by means of the UBBCONFI Gfile or by using
administrative tools, the system automatically starts a transaction upon
invocation of the object, if it isnot already infected with atransaction (that is,
the behavior isasif the al ways policy were specified).

CORBA Java Programming Reference 3-13

3

Java TP Framework

Transaction Initiation

Transactions are initiated in one of two ways:

By the application code via use of the

org. ong. CosTransact i ons. Current . begi n method. This can bedonein
either the client or the server. For a description of this operation, see Using
Transactions.

By the system when an invocation is done on an object that has either:
e Transaction policy al ways
e Transaction policy opti onal and a setting of AUTOTRAN for the interface

For more information, refer to the Administration Guide.

Transaction Termination

3-14

In general, the handling of the outcome of atransaction is the responsibility of the
initiator. Therefore, the following is true:

If the client or server application code initiates transactions, the Java TP
Framework never commits atransaction. The BEA WebL ogic Enterprise system
may roll back the transaction if server processing tries to return to the client with
the transaction in an illegal state.

If the system initiates a transaction, the commit or rollback will aways be
handled by the BEA WebL ogic Enterprise system.

Thefollowing behavior is enforced by the BEA WebL ogic Enterprise system:

If no transaction is active when a method on a CORBA object isinvoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actionsis taken, the transaction is rolled back by the Java TP Framework and the
org. omg. CORBA. OBJ_ADAPTER exception is raised to the client application.

This exception is raised because the transaction was initiated in the server
application; therefore, the client application would not expect a transactional
error condition such as TRANSACTI ON_ROLLEDBACK.

CORBA Java Programming Reference

Transactions

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming
atransaction within a method invocation. These rules and the error conditions that
result from their violation are described in this section.

When a CORBA object method begins execution, the object can be in one of the
following three states with respect to transactions:

m The client application began the transaction.

Valid server application behavior: Suspend and resume the transaction
within the method execution.

Invalid server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

Error Processing: If invalid behavior occurs, the TP Framework raises the
or g. omg. CORBA. TRANSACTI ON_ROLLEDBACK exception to the client
application and the transaction isrolled back by the BEA WebL ogic
Enterprise system.

m The system began atransaction to provide AUTOTRAN or transaction policy
al ways behavior.

Note:

For each CORBA interface, set AUTOTRANtO Yes if you want atransaction to
start automatically when an operation invocation is received. Setting
AUTOTRANto Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

Valid server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before

another request causes the transaction to be resumed.

Invalid server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

Error Processing: If invalid behavior occurs, the Java TP Framework raises
the or g. ong. CORBA. OBJ_ADAPTER exception to the client and the
transaction isrolled back by the system. The or g. ong. CORBA. OBJ_ADAPTER

CORBA Java Programming Reference 3-15

3 Java TP Framework

exception is raised because the client application did not initiate the
transaction, and, therefore, does not expect transaction error conditions to be
raised.

m The CORBA object isnot involved in atransaction when it starts executing.
e Valid server behavior:
4 Begin and commit a transaction within the method execution.
4 Begin and roll back a transaction within the method execution.
4+ Begin and suspend a transaction within the method execution.

e Invalid server behavior: Begin atransaction and return from the method with
the transaction active.

e Error Processing: If invalid behavior occurs, the Java TP Framework raises
the or g. onmg. CORBA. OBJ_ADAPTER exception to the client application and
the transaction is rolled back by the BEA WebL ogic Enterprise system. The
org. omg. CORBA. OBJ_ADAPTER exception is raised because the client
application did not initiate the transaction, and, therefore, does not expect
transaction error conditions to be raised.

Restrictions on Transactions

Thefollowing restrictions apply to BEA WebL ogic Enterprise transactions:

m A CORBA abject in the BEA WebL ogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

m A CORBA aobject can beinfected by only one transaction at atime. If an
invocation tries to infect an already infected object, an
org. omg. CORBA. | NVALI D_TRANSACTI ON exception is returned.

m |f aCORBA object isinfected with atransaction and a nontransactional request
ismade onit, an or g. ong. CORBA. OBJ_ADAPTER exception is raised.

m |f the application begins atransaction in the
com beasys. Tobj . Server.initialize method, it must either commit or roll
back the transaction before returning from the method. If it does not, the Java TP

3-16 CORBA Java Programming Reference

Transactions

Framework shuts down the server. Thisis because the application has no
predictable way of regaining control after completing thei ni ti al i ze method.

m If aCORBA object isinfected by a transaction and with an activation policy of
transacti on, and if the reason code passed to the method is either
DR_TRANS_COVM TTI NG or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the
com beasys. Tobj _Servant . deacti vate_obj ect method. Such an
invocation resultsin an or g. omg. CORBA. BAD | NV_ORDER exception.

m If an object generates a user exception within a system-generated transaction
(that is, the client did not begin atransaction explicitly), the client application
receivesthe or g. ong. CORBA. OBJ_ADAPTER system exception and not the user
exception.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

m During transactional work

Theorg. ong. CORBA. Current . rol | back_onl y method can be used to ensure
that the only possible outcome isto roll back the current transaction. The
rol | back_onl y method can beinvoked from any CORBA object method.

m After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit algorithm when the Java TP
Framework invokesits deact i vat e_obj ect method.

Note that this behavior does not apply to objects with process or method
activation policies. If the CORBA object wants to roll back the transaction, it
can invokethe or g. omg. CORBA. Current. rol | back_onl y method. If it wants
to vote to commit the transaction, it does not make that call. Note, however, that
avote to commit does not guarantee that the transaction is committed, since
other objects may subsequently vote to roll back the transaction.

CORBA Java Programming Reference 3-17

3 Java TP Framework

Note: Users of SQL cursors must be careful when using an object with the met hod
or process activation policy. A typical operation would be for a process to
open an SQL cursor within a client-initiated transaction. For typical SQL
database products, once the client commits the transaction, all cursors that
were opened within that transaction are automatically closed; however, the
object will not receive any notification that its cursor has been closed.

Transaction Time-outs

When atransaction time-out occurs, the transaction ismarked so that the only possible
outcome isto roll back the transaction, and the

org. omg. CORBA. TRANSACTI ON_ROLLEDBACK standard exception is returned to the
client. Any attempts to send new requests will also fail with the

org. omg. CORBA. TRANSACTI ON_ROLLEDBACK exception until the transaction has
been aborted.

Java TP Framework Interfaces

The Java TP Framework supports the following interfaces:
m com beasys. Tobj _Servant
m com beasys. Tobj . Server

® com beasys. Tobj. TP

Tobj_Servant Interface

The com beasys. Tobj _Ser vant interface defines operations that allow a CORBA
object to assist in the management of its state. Every implementation skeleton
generated by the IDL compiler automatically inherits from the

com beasys. Tobj _Servant class. Thecom beasys. Tobj _Servant classcontains
two virtual methods, act i vat e_obj ect and deact i vat e_obj ect , that can be
redefined by the programmer.

3-18 CORBA Java Programming Reference

Java TP Framework Interfaces

Whenever arequest comesin for aninactive CORBA object, theobject isactivated and
theacti vat e_obj ect method isinvoked on the servant. When the CORBA object is
deactivated, the deact i vat e_obj ect method is invoked on the servant. The timing

of deactivation is driven by the implementation’s activation policy. When

deact i vat e_obj ect is invoked, the Java TP Framework passes in a reason code to
indicate why the call was made.

Note: Theactivate_obj ect anddeact i vate_obj ect methods are the only
methods that the Java TP Framework guarantees will be invoked for CORBA
object activation and deactivation. The servant class constructor may or may
not be invoked at activation time. Therefore, the server-application code must
not do any state handling for CORBA objects in the constructor of the servant
class.

Server Object

Thecom beasys. Tobj . Ser ver object provides default callback methods to initialize
and release the server application. A new class that derives from the

com beasys. Tobj . Ser ver class can be implemented that overrides thiei al i ze
andr el ease methods with application-specific server initialization and termination
logic.

TP Interface

Thecom beasys. Tobj . TP interface supplies a set of service methods that can be
invoked by application code. This is tbely interface in the Java TP Framework that
can safely be invoked by application code. All other interfaces have callback methods
that are intended to be invoked only by system code.

The purpose of this interface is to provide high-level calls that application code can
call, instead of calls to underlying APIs provided by the Portable Object Adapter
(POA) and the BEA Tuxedo system. By using these calls, programmers can learn a
simpler API and are spared the complexity of the underlying APIs.

Thecom beasys. Tobj . TP interface implicitly uses two features of the BEA
WebLogic Enterprise software that extend the CORBA APIs:

m Factories and the FactoryFinder object

CORBA Java Programming Reference 3-19

3 Java TP Framework

Usage Note

m Factory-based routing

For information about the FactoryFinder object, see Chapter 5, “FactoryFinder
Interface.” For more information about Factory-based routing, sefdthimistration
Guide.

During server application initialization, the application constructs the object reference
for an application factory. It then invokes thegi st er _f act or y method, passing in

the factory's object reference together with a factadrjield. On server release
(shutdown), the application uses the egi st er _f act ory method to unregister the
factory.

Error Conditions and Exceptions

The following paragraphs discuss error conditions and resulting exceptions.

Exceptions Raised by the Java TP Framework

The following exceptions are raised by the Java TP Framework and are returned to
clients when error conditions occur in, or are detected by, the Java TP Framework:

CCORBA. | NTERNAL

CORBA. GBJECT_NOT_EXI ST

CCORBA. GBJ_ADAPTER

CORBA. | NVALI D_TRANSACTI ON
CCORBA. TRANSACTI ON_RCOLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these
exceptions is raised, the Java TP Framework also writes to the user log file a
descriptive error message that explains the reason.

3-20 CORBA Java Programming Reference

Error Conditions and Exceptions

Exceptions in the Server Application Code

Example

Thefollowing Java TP Framework callback methods areinitiated by events other than
client requests on the object:

com beasys. Tobj _Servant Base. acti vate_obj ect ()
com beasys. Tobj _Servant Base. deacti vat e_obj ect ()
com beasys. Server. create_servant ()

If exception conditions are raised in these methods, those exact exceptions are not
reported back to the client. However, each of these methodsis defined to raise an
exception that includes areason string. The Java TP Framework catches the exception
raised by the callback and logs the reason string to the user log file. The Java TP
Framework may raise an exception back to the client. Refer to the descriptions of the
individua Java TP Framework callback methods for more information about these
exceptions.

For com beasys. Tobj _Servant Base. deact i vat e_obj ect () , the following line
of code throws aDeact i vat e(bj ect Fai | ed exception:

throw new com.beasys.TobjS.DeactivateObjectFailed(“deactivate
failed to save state!”);

Thismessageis appended to the user |og filewith atag made up of the time (hhmmss),
system name, process name, and process-id of the calling process. Thetag is
terminated with a colon. The preceding throw statement causes the following line to
appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!

Where 151104 isthetime (3:11:04pm), T1 isthe system name, simpapps isthe
process name, 247 isthe process-id, and APPEXddentifies the message as an
application exception message.

CORBA Java Programming Reference 3-21

3 Java TP Framework

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework
callback methods will not automatically cause a transaction to be rolled back unless

the TP Framework started the transaction. It is up to the application code to call
Current.rol | back_onl y() if the condition that caused the exception to be raised

should al so cause the transaction to be rolled back.

3-22 CORBA Java Programming Reference

CHAPTER

A4

Java Bootstrap Object

Programming
Reference

Thistopic includes the following sections:

How Bootstrap Objects Work

Types of Remote Clients Supported

Capabilities and Limitations

Bootstrap Object API. This section describes:

e Tobj Module

e JavaMapping

Programming Examples. The following examples are provided:
e Getting a SecurityCurrent Object

e Getting a UserTransaction Object

CORBA Java Programming Reference

4 Java Bootstrap Object Programming Reference

Why Bootstrap Objects Are Needed

The Problem: To communicate with BEA WebL ogic Enterprise objects, a client
application must obtain object references. The client application uses the Bootstrap
object to obtain initial object references to six key objectsin a BEA WebL ogic
Enterprise domain:

m FactoryFinder—used to locate factory objects

m SecurityCurrent—used to log on to the system

m TransactionCurrent—used to manage transactions

m InterfaceRepository—used to obtain information about available interfaces

m NotificationService—used to locate Notification Service channel factory objects

m Tobj_SimpleEventsService—used to locate BEA Simple Events Service channel
factory objects

However, this poses a problektow does the client application access the Bootstrap
object?

The solution: Bootstrap objects are local programming objects, not remote CORBA
objects, in both the client and the server. When Bootstrap objects are created, their
constructor requires the network address of a BEA WebLogic Enterprise IIOP Serve
Listener/Handler. Given this information, the Bootstrap object can generate object
references for the above-mentioned remote objects in the BEA WebLogic Enterprise
domain. These object references can then be used to access services available in tl
BEA WebLogic Enterprise domain.

How Bootstrap Objects Work

Bootstrap objects are created by a client or a server application that must access obj
references to the following objects:

m SecurityCurrent

4-2 CORBA Java Programming Reference

How Bootstrap Objects Work

m TransactionCurrent

m FactoryFinder

m InterfaceRepository

m NotificationService

m Tobj_SimpleEventsService

Bootstrap objects may represent the first connection to a specific BEA WebL ogic
Enterprise domain depending on the format of the 11OP Server Listener/Handler
address. If the Null scheme Universal Resource Locator (URL) format is used (the
only addressformat supported in rel eases of BEA WebL ogic Enterprise prior to VV5.1),
the Bootstrap objects represent the first connection. However, if the URL format is
used, the connection will not occur until after Bootstrap object creation. For more
information on address formats and connection times, refer to the description of

Tobj _Boot st r ap in the Java APl Reference, which isincluded in the Javadoc online
documentation.

For aBEA WebL ogic Enterprise remote client, the Bootstrap object is created with the
host and the port for the BEA WebL ogic Enterprise | |OP Server Listener/Handler.
However, for BEA WebL ogic Enterprise native client and server applications, thereis
no need to specify a host and port because they execute in a specific BEA WebL ogic
Enterprise domain. ThellOP Server Listener/Handler host and the port ID areincluded
in the BEA WebL ogic Enterprise domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for
objectsin aparticular BEA WebL ogic Enterprise domain. Different Bootstrap objects
allow the application to use multiple domains.

Using the Bootstrap object, you can obtain six different references, asfollows:

m SecurityCurrent

The SecurityCurrent object is used to establish a security context within a BEA
WebL ogic Enterprise domain. The client can then obtain the

Principal Authenticator from the pri nci pal _aut henti cat or attribute of the
SecurityCurrent object.

m TransactionCurrent

The TransactionCurrent object isused to participate in a BEA WebL ogic
Enterprise transaction. The basic operations are as follows:

CORBA Java Programming Reference 4-3

4

Java Bootstrap Object Programming Reference

4-4

Begin
Begin atransaction. Future operations take place within the scope of this
transaction.

Commit

End the transaction. All operations on this client application have completed
successfully.

Roll back
Abort the transaction. Tell all other participants to roll back.
Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction | ater.

Resume

Resume participation in the specified transaction.

m FactoryFinder

The FactoryFinder object is used to obtain a factory. In the BEA WebL ogic
Enterprise system, factories are used to create application objects. The
FactoryFinder provides the following different methods to find factories:

Get alist of al available factories that match a factory object reference
(find_factories).

Get the factory that matches a name component consisting of i d and ki nd
(find_one_factory).

Get the first available factory of a specific kind
(find_one_factory_by_id).

Get alist of al available factories of a specific kind
(find_factories_by_id).

Get alist of al registered factories (1i st _f actori es).

CORBA Java Programming Reference

How Bootstrap Objects Work

m InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objectsthat are implemented within the BEA WebL ogic Enterprise domain.
Clients using the Dynamic Invocation Interface (DI1) need areference to the
Interface Repository to be able to build CORBA request structures. The ActiveX
Client isa special case of this. Internally, the implementation of the COM/I1OP
Bridge uses DI, so it must get the reference to the Interface Repository,
although this is transparent to the desktop client.

m NotificationService

The NotificationService object is used to obtain a reference to the event channel
factory (CosNotifyChannel Admin::EventChannel Factory) in the CosNotification
Service. In the BEA WebL ogic Enterprise system, the EventChannel Factory is
used to locate the Notification Service channel.

m Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain areference to the event
channel factory (Tobj_SimpleEvents::Channel Factory) in the BEA Simple
Events Service. In the BEA WebL ogic Enterprise system, the ChannelFactory is
used to locate the BEA Simple Events Service channel.

The FactoryFinder and InterfaceRepository objects are not implemented in the
environmental objects library. However, they are specific to a BEA WeblL ogic
Enterprise domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objectsin use.

Y ou can also invoke the following method on the Bootstrap object to return
information needed by the client application:

B get User Transaction

This method returns the current transactional context object to the client
application.

The Bootstrap object implies an association or "session” between the client application
and the BEA WebL ogic Enterprise domain. Within the context of thisassociation, the
Bootstrap object imposes a containment rel ationship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects arevalid only for this domain and only while the Bootstrap object exists.

CORBA Java Programming Reference 4-5

4

Java Bootstrap Object Programming Reference

4-6

Note: Resolving the SecurityCurrent when using the new URL address format
(cor bal oc: // host nane: port _nunber) isalocal operation; that is, no
connection is made by the client to the I|OP Server Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any
time. If aCurrent object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
aclient application may have more than one reference to the single instance of the
Current object.

To create a new instance of a Current object, the application must first invoke the
dest roy_cur rent method onthe Bootstrap object. Thisinvalidatesall of the Current
objects, but does not destroy the session with the BEA WebL ogic Enterprise domain.
After invoking the dest r oy_cur rent method, new instances of the Current objects
can be created within the BEA WebL ogic Enterprise domain using the existing
Bootstrap object.

To obtain Current objects for another domain, adifferent Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at onetime,
only one Bootstrap object may be "active;" that is, have Current objects associated
with it. Thus, an application must first invoke the dest r oy_cur r ent method on the
"active" Bootstrap object before obtaining new Current objects on another Bootstrap
object, which then becomes the active Bootstrap object.

Servers and native clients are inside of the BEA WebL ogic Enterprise domain,
therefore, no "session" is established. However, the same contai nment relationships
are enforced. Servers and native clients access the domain they are currently in by
specifying an empty string, rather than// host : port .

Note: When you compile client and server applications, specify the - DTOBJADDR
option to specify a host and port to be used at run time, which allowsfor more
flexibility and portability in client and server application code. For more
information, see Creating CORBA Client Applications and Creating CORBA
Java Server Applications.

Note: Client and server applications must use the
com beasys. Tobj _Bootstrap.resolve_initial_references method,
not the or g. ong. CORBA. CRB. resol ve_initial _references method.

CORBA Java Programming Reference

Types of Remote Clients Supported

Types of Remote Clients Supported

Table 4-1 showsthe types of remote clientsthat can use the Bootstrap object to access
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository.

Table 4-1 Remote Clients Supported

Client

Description

CORBA C++

CORBA C++ client applications use the BEA WebL ogic Enterprise C++
environmental objects to accessthe CORBA objectsin aBEA WebL ogic
Enterprise domain, and the BEA WebL ogic Enterprise Object Request
Broker (ORB) to process from CORBA objects. Use the BEA WebL ogic
Enterprise system development commands to build these client applications
(see Commands, System Processes, and MIB Reference).

CORBA Java

CORBA Java client applications use the Java environmental objectsto

access CORBA objectsin a BEA WebL ogic Enterprise domain. However,
these client applicationsuse an ORB product other than the BEA WebL ogic
Enterprise ORB to process requests from CORBA objects. These client
applications are built using the ORB product’s Java development tools.

The Java core system of the BEA WebLogic Enterméfavare supports
interoperability with client platforms using of the following:

m The Java IDL ORB provided with the Java Development Kit 1.2 from
Sun Microsystems, Inc.

For complete details about Java application and applet support, see the
Rel ease Notes.

ActiveX

Use the BEA WebLogic Enterprigeutomation environmental objects to
access CORBA objects in a BEA WebLogic Enterpdsmain, and the
ActiveX Client to process requests from CORBA objects. Use the
Application Builder to create bindings for CORBA objects so that they can
be accessed from ActiveX client applications, which are built using a
development tool such as Microsoft Visual Basic, Delphi, or PowerBuilder.

This container describes how to use the Bootstrap object with Javaclient applications.
For reference information about how to use the Bootstrap object in C++ and ActiveX
client applications, see the CORBA C++ Programming Reference.

CORBA Java Programming Reference 4-7

4 Java Bootstrap Object Programming Reference

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

m Multiple Bootstrap objects can coexist in a client application, although only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke the dest r oy_current method on the
Bootstrap object associated with one domain before obtaining the Current
objects on another domain. Although it is possible to have multiple Bootstrap
objects that establish connections to different BEA WebL ogic Enterprise
domains, only one set of Current objectsisvalid. Attemptsto obtain other
Current objects without destroying the existing Current objects fail.

m Method invocations to any BEA WebL ogic Enterprise domain other than the
domain that provides the valid SecurityCurrent object fail and return an
org. omg. CORBA. NO_PERM SSI ON exception.

m Method invocations to any BEA WebL ogic Enterprise domain other than the
domain that provides the valid TransactionCurrent object do not execute within
the scope of atransaction.

m Thetransaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other ("native") Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) isdescribed in the Java
API Referencein the Javadoc online documentation. The sections that follow describe:

m The object references returned by the Bootstrap object

m The Javamapping for the Bootstrap object

4-8 CORBA Java Programming Reference

Bootstrap Object API

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (com beasys. Tobj . Fact or yFi nder)
InterfaceRepository InterfaceRepository object (or g. ong. CORBA. Reposi tory)
SecurityCurrent SecurityCurrent object (or g. omg. Securi tyLevel 2. Current)

TransactionCurrent

OTS Current object (com beasys. Tobj . Transacti onCurrent)

NotificationService

EventChannel Factory object
(CosNot i f yChannel Adni n. Event Channel Fact ory)

Tobj_SimpleEventsService

BEA Simple Events Channel Factory object

(Tobj _Si nmpl eEvent s. Channel Fact ory)

Table 4-3 describes the Tobj module exceptions.

Table 4-3 Tobj Module Exceptions

Exception

Description

com beasys. Tobj .
I nval i dName

Raised if i d is not one of the names specified in Table 4-2.
Ontheserver,theresol ve_initial _references
method also raises com beasys. Tobj . | nval i dNane
when Securi tyCur rent ispassed.

com beasys. Tobj .
I nval i dDomai n

On the server application, raised if the BEA WebLogic
Enterprise server environment is not booted.

or g. ong. CORBA.
NO_PERM SSI ON

Raisedif i disTransacti onCurrent or
SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

or g. ong. CORBA.
BAD PARAM

Raisedforther egi st er _cal | back_port methodif the
object isnull or if the hostname contained in the object does
not match the connection.

CORBA Java Programming Reference 4-9

4

Java Bootstrap Object Programming Reference

Table 4-3 Tobj M odule Exceptions (Continued)

Exception Description
org. ony. CORBA. Raised if t he regi ster _cal | back_port methodis
IMP_LIMT invoked more than once.

Java Mapping

4-10

Listing 4-1 showsthe Tobj _Boot st r ap. j ava mapping.

Listing4-1 Tobj_Bootstrap.java Mapping

package com beasys;

public class Tobj Bootstrap {
public Tobj Bootstrap(org. ong. CORBA. ORB orb,
String address_str)
throws org. ong. CORBA. Syst enExcepti on;
public class Tobj Bootstrap {
public Tobj Bootstrap(org.ong. CORBA. ORB or b,
String address_str,
j ava. appl et. Appl et appl et)
throws org. ong. CORBA. Syst enExcepti on;

public void register_call back_port (orb. ong. CORBA. Obj ect objref)
throws org. ong. CORBA. Syst enExcept i on;

publ i c org. ong. CORBA. (bj ect
resolve initial _references(String id)
throws Tobj . I nval i dNane,
org. ong. CORBA. Syst enExcepti on;
public void destroy_current()
throws org. ong. CORBA. SystenExcepti on;
}

CORBA Java Programming Reference

Programming Examples

Programming Examples

This section provides the following Java client programming examples that use
Bootstrap objects.

e Getting a SecurityCurrent Object
e Getting a UserTransaction Object

Getting a SecurityCurrent Object

Listing 4-2 shows how to program a Javaclient to get a SecurityCurrent object.

Listing 4-2 Programming a Java Client to Get a SecurityCurrent Object

import java.util.*;
i mport org.ong. CORBA. *;
import com beasys. *;
class client {
public static void nain(String[] args)
{
Properties prop = null;
Tobj . Princi pal Aut henticator auth = null;
String host_port = "//COLORMAG C: 10000";
/1 Set host and port.
if (args.length == 1) host_port = args[0];
try {
[/l Initialize ORB
ORB orb = ORB.init(args, prop);
// Create Bootstrap object
Tobj _Bootstrap bs=new Tobj _Bootstrap(orb, host_port);

/1 Get security current
or g. ong. CORBA. (bj ect ocur =

bs.resolve_initial _references("SecurityCurrent");
SecuritylLevel 2. Current cur =

SecurityLevel 2. Current Hel per. narrow ocur);

}
catch (Tobj .l nvalidNane e) {
Systemout.println("lInvalid name: "+e);

CORBA Java Programming Reference 4-11

Java Bootstrap Object Programming Reference

Getting a

Systemexit(1);

}

catch (Tobj.InvalidDomain e) {
Systemout.println("Invalid domai n address: "+host _port +" "+e);
Systemexit(1);

}

catch (SystenkException e) {
Systemout. println("Exception getting security current: "+e);
e.printStackTrace();
Systemexit(1);

UserTransaction Object

Listing 4-3 shows using the Bootstrap object to get the UserTransaction object, which
may then be used to begin and terminate transactions and get information about
transactions.

Listing 4-3 Programming a Java Client to Get a User Transaction Object

Properties prop = null;
Tobj . Princi pal Authenticator auth = null;
String host_port = "//COLORMAG C. 10000";
/1 Set host and port.
if (args.length == 1) host_port = args[0];
try {
/1 Initialize ORB

orb = ORB.init(args, prop);

/1l Create Bootstrap Object
bs = new Tobj Bootstrap(orb, host _port);

j avax. transaction. User Transacti on ucur = bs.getUserTransaction();

ucur . begin();
/* Make transactional calls fromclient to server */
ucur.commt();

4-12 CORBA Java Programming Reference

CHAPTER

5

FactoryFinder Interface

This topic includes the following sections:
m Capabilities, Limitations, and Requirements
m Functional Description. This section describes:
e Locating a FactoryFinder
e Registering a Factory
e Locating a Factory
e Creating Application Factory Keys
m JavaMethods
m Java Programming Examples

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA WebL ogic Enterprise domain. The BEA
WebL ogic Enterprise NameM anager provides the mapping of factory namesto object
references for the FactoryFinder. Multiple FactoryFinders and NameM anagers
together provide increased availability and reliability. In this release, the level of
functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBA services Naming
Service, but is merely avehicle for storing registered factories.

Inthe BEA WebL ogic Enterprise environment, application factory objects are used to
create objects that clients interact with to perform their business operations (for
example, TellerFactory and Teller). Application factories are generally created during
server initialization and are accessed by both remote clients and clients located within
the server application.

CORBA Java Programming Reference 5-1

5 FactoryFinder Interface

The FactoryFinder interface and the NameM anager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIS) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domainsin this rel ease benefits customers that need to scale
to alarge number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factoriesin aBEA

WebL ogic Enterprise environment has been enhanced to allow factoriesin one domain
to bevisiblein another. Thevisibility of factoriesin other domainsis under the control
of the system administrator.

Capabilities, Limitations, and Requirements

5-2

During server applicationinitialization, application factories need to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve afactory object reference based on associated
names that were created when the factory was registered.

Thefollowing functional capabilities, limitations, and requirements apply to this
release:

m TheFactoryFinder interface isin compliance with the
org. ong. CosLi f eCycl e. Fact or yFi nder interface.

m Server applications can register and unregister application factories with the
CORBAservices Naming Service.

m Clients can access objects using a single point of entry -- the FactoryFinder.

m Clients can construct names for objects using a simplified BEA scheme made
possible by BEA WebL ogic Enterprise extensions to the CORBA services
interface or the more general CORBA scheme.

m Multiple FactoryFinders and NameM anagers can be used to increase availability
and reliability in the event that one FactoryFinder or NameManager should fail.

m Support for multiple domains. Factories in one domain can be configured to be
visible in another domain that is under administrative control.

CORBA Java Programming Reference

Functional Description

m Two NameManager services, at a minimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameManager, which
has been keeping a persistent journa of the registered factories, recovers the
previous state by processing the journal so asto re-establish itsinternal state.

m Only one NameManager must be designated as the master, and the master
NameManager must be started before the slave. If the master NameManager is
started after one or more slaves, the master assumesthat it isin recovery mode
instead of in initializing mode.

Functional Description

The BEA WebL ogic Enterprise environment promotes the use of the factory design

pattern asthe primary means for aclient to obtain areference to an object. Through the

use of thisdesign pattern, client applications require amechanism to obtain areference

to an object that acts as a factory for another object. Because the BEA WebL ogic
Enterprise environment has chosen CORBA as its visible programming model, the
mechanism used to locate factoriesis modeled after the FactoryFinder as described in

the CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applications locate factories by querying a FactoryFinder. The client application
can control the references to the factory object returned by specifying criteria that is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain a reference to a FactoryFinder in the domain
to which a client application is associated, the client application must invoke the

Tobj _Boot strap. resol ve_i ni tial _references operation with a value of

CORBA Java Programming Reference 5-3

5 FactoryFinder Interface

“FactoryFinder” . This operation returns areference to a FactoryFinder that isin the
domain to which the client applicationiscurrently attached. For moreinformation, see
the description of the com.beasys.Tobj_Bootstrap object in APl Javadoc.

The references to the FactoryFinder that are returned to the client application can be
references to factory objects that are registered on the same machine as the
FactoryFinder, on adifferent machinethan the FactoryFinder, or possibly inadifferent
domain than the FactoryFinder.

Registering a Factory

5-4

For aclient application to be able to obtain areference to afactory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (see Figure 5-1). Using the BEA WebL ogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP.register_factory operation, once areferenceto a
factory object has been created. The reference to the factory object, along with avalue
that identifies the factory, is passed to this operation. The registration of referencesto
factory objectsistypically done as part of initialization of the application; normally,
as part of the implementation of the Server.initialize operation.

CORBA Java Programming Reference

Functional Description

Figure5-1 Registering a Factory Object

Name

Server TPFW
Manager

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

»

When the server application is shutting down, it must unregister any referencesto the
factory object that it has previously registered in the application server. Thisisdone
by passing the same referenceto the factory object, along with the corresponding value
used to identify the factory, to the TP. unr egi st er _f act ory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Ser ver . r el ease operation. For more information about these
operations, see the section “Java TP Framework Interfaces” on page 3-18.

Locating a Factory

For a client application to request a factory to create a reference to an object, it must
first obtain a reference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria, as shown in
Figure 5-2. The criteria are determined by the format of the particular FactoryFinder
interface and method used.

CORBA Java Programming Reference 5-5

5 FactoryFinder Interface

5-6

Figure5-2 Locating a Factory Object

Factory Name

Client Bootstrap Finder Manager

resolve_initial_references

»

CORBA.Object
Tobj_FF._narrow()

find_*_factor* | find factory object in
NameManager
) IOR string
CORBA.Object <

<

| factory._narrow()

The BEA WebL ogic Enterprise software extends the

CosLi f eCycl e. Fact or yFi nder interface by introducing three methods in addition
tothe find_fact ori es method declared for the FactoryFinder. Therefore, using the
Tobj extensions, aclient can use either thefi nd_f act ori es or
find_factories_by_i dmethodsto obtainalist of application factories. A client can
also usethefind_one_factory or find_one_factory_ by i d methodto obtaina
single application factory, and thel i st _f act ori es method to obtain alist of all
registered factories.

The CosLi f eCycl e. Fact or yFi nder interface definesaf actory_key, whichisa
sequence of i d and ki nd strings conforming to the CosNaming Name shown in
Listing 5-1. Theki nd field of the NameComponent for all BEA WebL ogic Enterprise
application factories is set to the string Fact or yI nt er f ace by the TP Framework
when an application factory isregistered. Applications supply their own value for the
i dfield.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
ownfile(ns.idl andlcs.idl, respectively), only the OMG IDL codefor that subset
of both files that isrelevant for using the BEA WeblL ogic Enterprise FactoryFinder is
shown in the following listings.

CORBA Java Programming Reference

Functional Description

CORBAservices Naming Service Module OMG IDL

Listing 5-1 showsthe portionsof thens. i dl filethat arerelevant to the FactoryFinder.

Listing5-1 CORBAservicesNaming OMG IDL

Io------ ns.idl ------

nmodul e CosNam ng {
typedef string Istring;
struct NanmeConponent {
Istring id;
I string kind;
}

t ypedef sequence <NanmeConponent> Nane;
b

/1 This information is taken from CORBAservi ces: Conmon (bj ect

// Services Specification, page 3-6. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-2 shows the portions of the | cs. i dI filethat are relevant to the
FactoryFinder.

Listing5-2 Life Cycle Service OMG IDL

[l ----- les.idl -----
#include “ns.idl"

module CosLifeCycle{
typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence<Factory> Factories;

exception NoFactory{ Key search_key; }

CORBA Java Programming Reference 5-7

5 FactoryFinder Interface

interface FactoryFi nder {
Factories find factories(in Key factory_key)
rai ses(NoFactory);

}s

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, pages 6-10, 11. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

Tobj Module OMG IDL

Listing 5-3 showsthe Tobj Module OMG IDL.

Listing5-3 Tobj Module OMG IDL

Io----- Tobj .idl -----

nodul e Tobj {
/1 Constants
const string FACTORY_KIND = "Factoryl nterface";
/1 Exceptions

exception Cannot Proceed { };
exception InvalidDomain {};
exception InvalidName { };

exception RegistrarNot Available { };

/1 Extension to LifeCycle Service

struct FactoryConponent {
CoslLi feCycl e:: Key factory_ key;
CoslLi feCycle:: Factory factory_ior;

I
t ypedef sequence<Fact or yConponent > FactorylLi sti ng;

interface FactoryFinder : CosLifeCycle::FactoryFi nder {
CoslLifeCycle::Factory find_one_factory(in CosLifeCycle:: Key
factory_key)

5-8 CORBA Java Programming Reference

Functional Description

rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi st rar Not Avai | abl e) ;
CoslLifeCycle::Factory find_one_factory by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
CoslLifeCycle::Factories find factories by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
FactoryListing list _factories()
rai ses (Cannot Proceed,
Regi st rar Not Avai | abl e) ;

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain asthe FactoryFinder itself. However, it is possible to return references to
factory objectsin domains other than the domain in which aFactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (see Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives arequest to locate a factory object, it must first
determine if areferenceto afactory object that meets the specified criteria exists. If
thereis registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object islocal to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

CORBA Java Programming Reference 5-9

5 FactoryFinder Interface

Figure5-3 Inter-domain FactoryFinder Interaction

Name
Manager

Factory
Finder

Factory
Finder

Client Bootstrap

resolve_initial_references

» Intradomain
CORBA.Object FactoryFinder
< delegates request
i to interdomain
Tobj_FF._narrow() e

Find factory
find_*_factor* . object in
find_*_factor* NameManager

IOR string

CORBA.Object CORBA.Object

A

<

| factory._narrow()

If, on the other hand, the information indicates that the factory object is from another
domain, the FactoryFinder delegates the request to an interdomain FactoryFinder in
the appropriate domain. As aresult, only a FactoryFinder in the sasme domain as the
factory object will contain areference to the factory object. Theinterdomain
FactoryFinder is responsible for returning the reference of the factory object to the
local FactoryFinder, which subsequently returnsit to the client.

Why Use BEA WebLogic Enterprise Extensions?

The BEA WebL ogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

m Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

m Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

5-10 CORBA Java Programming Reference

Functional Description

m Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register afactory object.

Therefore, BEA WebL ogic Enterprise extends the interfaces defined in the

CORBA services specification to make using a FactoryFinder easier. The extensions
are manifested as refined interfaces to the FactoryFinder that are derived from the
interfaces specified in the CORBA services specification.

Creating Application Factory Keys

Two of the four methods provided in the Tobj . Fact or yFi nder interface accept
CosLi f eCycl e. Keys, which correspondsto CosNani ng. Nane. A client must be able
to construct these keys.

The CosNaming Specification describestwo interfacesthat constituteaNamesLibrary
interface that can be used to create and manipulate CosLi f eCycl e. Keys. The pseudo
OMG IDL statementsfor these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL

Note: Thisinformation istaken from the CORBAservices: Common Object Services
Specification, pp. 3-14 t018. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipul ate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
namesare described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “The CosNaming Module,” the CORBAservices Naming Service supports the

CORBA Java Programming Reference 5-11

5 FactoryFinder Interface

5-12

NamingContext OMG IDL interface. The names library supports an operation to
convert alibrary name into avalue that can be passed to the name service through the
NamingContext interface.

Note: Itisnot arequirement to use the nameslibrary in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the L Name interface, as shown in Listing 5-4.

Listing 54 NamesLibrary Interfacesin Pseudo-1DL

interface LNameConponent { // PIDL
const short MAX LNAME STRLEN = 128;

exception NotSet{ };
exception OverFlowW };

string get _id
rai ses (NotSet);
void set_id(in string i)
rai ses (OverFl ow);
string get_kind()
rai ses(Not Set) ;
void set_kind(in string k)
rai ses (OverFl ow);
voi d destroy();
I

interface LNanme {// PIDL
exception NoComponent{ };
exception Over Fl ow{ };
exception | nvalidNane{ };
LNare i nsert_conponent (in unsigned long i,
i n LNaneConponent n)
rai ses (NoConponent, OverFl ow);
LNarmeConponent get _conponent (i n unsigned long i)
rai ses (NoConmponent);
LNarmeConmponent del ete_conponent (i n unsigned long i)
rai ses (NoConmponent);
unsi gned | ong num conponents();
bool ean equal (in LName | n);
bool ean | ess_than(in LName | n);
Nane to_idl _forn()
rai ses (Invali dNane);
void fromidl _formin Nane n);

CORBA Java Programming Reference

Functional Description

voi d destroy();
b

LNane create_| nane();
LNaneConponent create_ | nane_conponent () ;

Creating a Library Name Component

To create alibrary name component pseudo-object, use the following method:

LNaneConponent create_| name_conponent () ;

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-4.

(Creating a Library Name

To create alibrary name pseudo-object, use the following method:

LNane create_| name();

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-4.

The LNameComponent Interface

A name component consists of two attributes: i dent i fi er and ki nd. The
L NameComponent interface definesthe operations associated with these attributes, as
follows:

string get_id()

rai ses(Not Set) ;

void set_id(in string k);
string get_kind()

rai ses(Not Set) ;

void set_kind(in string k);

get _id
The get _i d operation returnsthei denti fi er attribute’s value. If the
attribute has not been set, tha Set exception is raised.

set_id
Theset _i d operation sets thalent i fi er attribute to the string argument.

CORBA Java Programming Reference 5-13

5 FactoryFinder Interface

get ki nd
The get _ki nd operation returnsthe ki nd attribute’s value. If the attribute
has not been set, thet Set exception is raised.

set ki nd
Theset _ki nd operation sets thié nd attribute to the string argument.

The LName Interface
The following operations are described in this section:

m Destroying a library name component pseudo-object

Inserting a name component
m Getting the ! name component
m Deleting a name component
m Number of name components
m Testing for equality

m Testing for order

m Producing an OMG IDL form
m Translating an OMG IDL form

m Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-object

The destroy operation destroys library name component pseudo-objects.

voi d destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
i nsert_conponent operation inserts a component after position

LNane insert_conponent(in unsigned |Iong i, in LNameConponent | nc)
rai ses(NoConponent, OverFl ow);

5-14 CORBA Java Programming Reference

Functional Description

If component i -1 isundefined and component i is greater than 1 (one), the
i nsert_conponent operation raises the NoConponent exception.

If the library cannot all ocate resources for the inserted component, the Over Fl ow
exception israised.

Getting the i~ Name Component

Theget _conponent operation returns thei " component. The first component is
numbered 1 (one).

LNaneConponent get_ conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception israised.

Deleting a Name Component

Thedel et e_conponent operation removes and returns the i " component.

LNaneConponent del et e_conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception israised.
After adel et e_conponent operation has been performed, the compound name has

one fewer component and components previously identified asi +1. . . n are now
identified asi .. . n- 1.

Number of Name Components

The num conponent s operation returns the number of componentsin alibrary name.

unsi gned | ong num conponent s();

Testing for Equality

The equal operation tests for equality with library name| n.

bool ean equal (i n LNanme | n);

CORBA Java Programming Reference 5-15

5 FactoryFin

der Interface

Testing for Order

Thel ess_t han operation tests for the order of alibrary name in relation to library
namel n.

bool ean | ess_than(in LNane I n);

This operation returnstrue if the library name is less than the library name | n passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Nane. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Narme to_idl _form))
rai ses(| nval i dNane) ;

If the nameis of length O (zero), the | nval i dName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of typeName. Thefollowing PIDL operation on library names
sets the components and ki nd attribute for alibrary name from areturned OMG IDL
defined structure, Nane.

void fromidl formin Nanme n);

Destroying a Library Name Pseudo-object

The dest r oy operation destroys library name pseudo-objects.

voi d destroy();

5-16 CORBA Java Programming Reference

Functional Description

Java Mapping

The names library pseudo OMG IDL interface maps to the Java classes contained in
thecom beasys. Tobj package, showninListing 5-5. All exceptionsare contained in
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the

CORBAservices: Common Object Services Specification.

Listing 5-5 Java Mapping for LNameComponent

package com beasys. Tobj ;

public cl

I

package com beasys. Tobj ;

publ i
publ i
publ i
publ i
publ i
publ i
publ i

ass LNameComponent {
static LNaneConponent create_| name_conponent () ;

Cc
Cc
Cc
Cc
Cc
Cc
Cc

static final

short MAX LNAME_STRING = 128;

voi d destroy();

String get_id() throws Not Set;

voi d set _id(String i) throws OverFl ow,
String get_kind() throws Not Set;

voi d set_kind(String k) throws OverFl ow,

public class LNanme {

I

public static LNanme create_| name();

public void destroy();

public LName i nsert_conponent (long i, LNameConponent n)

t hrows NoConponent,
publ i ¢ LNanmeConponent
t hrows NoConponent;
publ i ¢ LNanmeConponent
t hrows NoConponent;

Over Fl ow,
get _conponent (long i)

del et e_conponent (I ong i)

public I ong num conponents();

publ i c bool ean equal (LNane In);

public bool ean | ess_than(LNane In);// not inplenented
publ i c org. ong. CosNam ng. NaneConponent[] to_idl _form))

throws | nval i dNane;

public void from.idl _forn{org.ong. CosNam ng. NaneConponent[] nr);

CORBA Java Programming Reference

5-17

5 FactoryFinder Interface

Java Methods

The documentation for the Java methods on the FactoryFinder interface isin the Java
API Reference.

Java Programming Examples

Thefollowing listings show Java programming exampl es of how to program using the
FactoryFinder interface.

Note: Remember to check for exceptionsin your code.

Server Registering a Factory

Listing 5-6 shows how to program a server to register afactory.

Listing 5-6 Server Application: Registering a Factory

/'l Register the factory reference with the factory finder.

/1 The second paraneter to TP.register factory() is a string

/] identifier that is used to identify the object.

/1 This sane string is used in the call to TP.unregister_factory().
/1 1t is also used in the call to find one factory by id() that

/1 is called by clients of this interface.

I

TP.regi ster_factory(
fact _oref, /1 factory object reference
tell er FNane /1l factory nane

)

5-18 CORBA Java Programming Reference

Java Programming Examples

Client Obtaining a FactoryFinder Object Reference
Listing 5-7 shows how to program a client to get a FactoryFinder object reference.

Listing 5-7 Client Application: Getting a FactoryFinder Object Reference

/1 Create the Bootstrap object,
/1 the TOBJADDR properly contains host and port to connect to.
Tobj _Bootstrap bootstrap = new Tobj Bootstrap (orb,"");

/1 Use the Bootstrap object to find the factory finder.
org. ong. CORBA. Obj ect fact _finder_oref =
boot strap.resolve_initial _references("FactoryFi nder");

/1 Narrow the factory finder.
FactoryFinder fact_finder _ref =
Fact or yFi nder Hel per. narrow(fact _finder_oref);

Client Finding One Factory Using the Tobj Approach
Listing 5-8 shows how to program aclient to find one factory using the Tobj approach.

Listing 5-8 Client Application: Finding One Factory Using the Tobj Approach

/1l Use the factory finder to find the teller factory.
org.ong. CORBA. Obj ect teller fact _oref =
fact _finder_ref.find one_factory by id("TellerFactory 1");

CORBA Java Programming Reference 5-19

5 FactoryFinder Interface

5-20 CORBA Java Programming Reference

CHAPTER

O Security Service

For a detailed discussion of Securty, see Using Security. This document provides an
introduction to crytography and other concepts associated with the BEA WebL ogic
Enterprise security features, adescription of how to secure your applicationsusing the
BEA WebL ogic Enterprise security features, and a guide to the use of the application
programming interfaces (APIs) in the BEA WebL ogic Enterprise Security Service.

A PDF file of Using Security is also provided in the online documentation.

CORBA JavaProgramming Reference 6-1

6 Security Service

6-2 CORBA JavaProgramming Reference

CHAPTER

[Transactions Service

For adetailed discussion of Transactions, see Using Transactions. This document
provides an introduction to transactions, a description the application programming
interfaces (APIs), and a guide to the use of the application programming interfaces
(APIs) to develop applications.

A PDF file of Using Transactions is also provided in the online documentation.

CORBA JavaProgramming Reference 7-1

7 Transactions Service

7-2 CORBA JavaProgramming Reference

CHAPTER

8 Notification Service

For a detailed discussion of the Natification Service, see Using the Natification
Service. This document provides an introduction to the Notification Service, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to develop applications.

A PDF file of Using the Notification Serviceis aso provided in the online
documentation.

CORBA Java Programming Reference 8-3

8 Notification Service

8-4 CORBA Java Programming Reference

CHAPTER

O Request-Level
Interceptors

For a detailed discussion of request-level interceptors, see Using Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to implement request-level
interceptors.

A PDF file of Using Request-Level Interceptorsisalso provided in the online
documentation.

CORBA JavaProgramming Reference 9-1

9 Request-Level Interceptors

9-2 CORBA JavaProgramming Reference

CHAPTER

10 Interface Repository

Interfaces

Thistopic includes the following sections:

m Structure and Usage

m Building Client Applications

m Getting Initial Referencesto the InterfaceRepository Object

m Interface Repository Interfaces. This section describes:

Supporting Type Definitions

IRObject Interface
Contained Interface
Container Interface
IDLType Interface
Repository Interface
ModuleDef Interface
ConstantDef Interface
TypedefDef Interface
StructDef

UnionDef

EnumDef

AliasDef

CORBA Java Programming Reference

10-1

10 mn terface Repository Interfaces

e PrimitiveDef
e ExceptionDef
e AttributeDef
e OperationDef
e InterfaceDef

Note: Most of theinformation in this chapter istaken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the BEA WebL ogic Enterprise implementation of the Interface
Repository interfaces. Used with permission by OMG.

The BEA WebL ogic Enterprise Interface Repository contains the interface
descriptions of the CORBA objects that are implemented within the BEA WebL ogic
Enterprise domain.

The BEA WebL ogic Enterprise Interface Repository is based on the CORBA
definition of an Interface Repository. It offers a proper subset of the interfaces defined
by CORBA,; that is, the APIsthat are exposed to programmers are implemented as
defined by the Common Object Request Broker: Architecture and Specification
Revision 2.2. However, not al interfaces are supported. In general, the interfaces
required to read from the Interface Repository are supported, but the interfaces
required to write to the Interface Repository are not. Additionally, not all TypeCode
interfaces are supported.

Administration of the Interface Repository is done using tools specific to the BEA
WebL ogic Enterprise software. Thesetoolsallow the system administrator to createan
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Commands, System Processes, and MIB Reference.

Several abstract interfaces are used as base interfaces for other objectsin the Interface
Repository. A common set of operations is used to locate objects within the Interface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objectsthat are containersinherit navigation operationsfrom
the Container interface. Objects that are contained by other objects inherit navigation

10-2 CORBA Java Programming Reference

Structure and Usage

operations from the Contained interface. The IDL Type interface isinherited by al
Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface isinherited by all named
noninterface types.

The IRObject, Contained, Container, IDL Type, and TypedefDef interfaces are not
instantiable.

All string datain the Interface Repository are encoded as defined by the 1SO 8859-1
character set.

Note: The Write interface is not documented in this chapter because the BEA
WebL ogic Enterprise software supports only read access to the Interface
Repository. Any attempt to use the Write interface to the Interface Repository
will raise the exception or g. ong. CORBA. NO_| MPLEMENT.

Structure and Usage

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and popul ated using thei dl 2i r
administrative command. For a description of this command, see Commands, System
Processes, and MIB Reference. From the programmer’s point of view, there is no write
access to the Interface Repository. None of the write operations defined by CORBA
are supported, nor are set operations on non-read-only attributes.

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined GOREA Common

Object Request Broker: Architecture and Secification, Revision 2.2, are described in
this chapter.

CORBA Java Programming Reference 10-3

10 mn terface Repository Interfaces

From the Programmer’s Point of View

10-4

The interface to a server is defined in the OMG IDL file. How the OMG IDL fileis
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL file to generate stubs, and so forth. (For
more information, see Creating CORBA Client Applications.) No other access to the
Interface Repository is required.

Client applications that use the Dynamic Invocation Interface (DI1) need to accessthe
Interface Repository programmatically. The interface to the Interface Repository is

defined in this chapter and is discussed in “Building Client Applications” on

page 10-5. The exact steps taken to access the Interface Repository depend on whet
the client is seeking information about a specific object, or browsing the Interface
Repository to find an interface. To obtain information about a specific object, clients
use theor g. ong. CORBA. Obj ect. _get _i nt er f ace method to obtain an

InterfaceDef object. (Refer thiava API Reference for a description of this method.)
Using the InterfaceDef object, the client can get complete information about the
interface.

Before a DIl client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search. DIl clients use the Bootstra
object to obtain the object reference. (For a description of this method, see Chapter -
“Java Bootstrap Object Programming Reference.”) Once the client has the object
reference, it can navigate the Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DIl client. ActiveX clients include the Bootstrap object in the Visual
Basic code. Like DIl clients, ActiveX clients use the Bootstrap object to obtain the
Interface Repository object reference. Once the client has the object reference, it ca
navigate the Interface Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interface
Repository.

CORBA Java Programming Reference

Building Client Applications

Performance Implications

All run-time access to the Interface Repository is via the | nterface Repository server.
Because there is considerabl e overhead in making reguests of aremote server
application, designers need to be aware of this. For example, consider the interaction
required to use an object reference to obtain the necessary information to make a DI|
invocation on the object reference. The steps are as follows:

1. Theclient application invokesthe _get _i nt er f ace operation on the
or g. onmg. CORBA. Obj ect to get the InterfaceDef object associated with the object
in question. This causes a message to be sent to the ORB that created the object
reference.

2. The ORB returns the InterfaceDef object to the client.

3. Theclientinvokes one or more _i s_a operations on the object to determine what
type of interface is supported by the object.

4. After the client hasidentified the interface, it invokesthe descri be_i nterface
operation on the Interface object to get afull description of the interface (for
example, version number, operations, attributes, and parameters). This causes a
message to be sent to the Interface Repository, and areply isreturned.

5. Theclient is now ready to construct a DIl request.

Building Client Applications

Javaclientsthat usethe I nterface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application is using the BEA
WebL ogic Enterprise ORB, the BEA Webl ogic Enterprise software provides the
stubsin theor g. ong. CORBA package, which you should include as part of your server
applicationj ar file. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs.

CORBA Java Programming Reference 10-5

10 mn terface Repository Interfaces

If the client application isusing a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide alocal Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

Y ou use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see Chapter 4, “Java
Bootstrap Object Programming Reference.”

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that is implemented i
the BEA WebLogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

nmodul e CORBA {

typedef string Identifier;
typedef string ScopedNane;
typedef string Reposi toryl d;

10-6 CORBA Java Programming Reference

Interface Repository Interfaces

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Mbodul e, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository,

}s
}

Identifiers arethe simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An1dentifier isnot necessarily unique within an entire Interface
Repository; it isunique only within a particular Repository, ModuleDef, | nterfaceDef,
or OperationDef.

A ScopedNane isaname made up of one or more identifiers separated by two colons
(:). Theidentifiers correspondto OMG IDL scoped names. An absolute ScopedName
is one that begins with two colons and unambiguously identifies a definition in a
Repository. An absolute ScopedNane in a Repository correspondsto agloba namein
anOMG DL file. A relative ScopedName does not begin with two colonsand must be
resolved relative to some context.

A Reposi toryl d isan identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because Repositorylds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A Def i ni ti onKi nd identifies the type of an Interface Repository object.

IRODbject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

nmodul e CORBA {
interface | RObject {
readonly attribute DefinitionKind def ki nd;
b
b

Thedef _ki nd attribute identifies the type of the definition.

CORBA Java Programming Reference 10-7

10 mn terface Repository Interfaces

Contained Interface

The Contained interface (shown below) isinherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

nmodul e CORBA {
typedef string VersionSpec;

interface Contained : | RObject {
readonly attribute Repositoryld id;
readonly attribute ldentifier name;
readonly attribute VersionSpec ver si on;
readonly attribute Container defined_in;
readonly attribute ScopedNane absol ut e_nane;
readonly attribute Repository cont ai ni ng_reposi tory;
struct Description {
Def i ni ti onKi nd ki nd;
any val ue;
b
Description describe ();
b

b

An object that is contained by another object hasan i d attribute that identifiesit
globally, and anane attribute that identifiesit uniquely within the enclosing Container
object. It also hasaver si on attributethat distinguishesit from other versioned objects
with the same name. The BEA WebL ogic Enterprise Interface Repository does not
support simultaneous containment or multiple versions of the same named object.

Contained objects also have adef i ned_i n attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
modul€) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, thedef i ned_i n
attribute identifies the InterfaceDef from which the object isinherited.

Theabsol ut e_name attribute is an absolute ScopedNane that identifies a Contained
object uniquely within its enclosing Repository. If this objed#si ned_i n attribute
references a Repository, thiesol ut e_name is formed by concatenating the string

10-8 CORBA Java Programming Reference

Interface Repository Interfaces

“:» and this object'sane attribute. Otherwise, thebsol ut e_nane is formed by
concatenating thaebsol ut e_name attribute of the object referenced by this object’s
def i ned_i n attribute, the string:” , and this object'sanme attribute.

The cont ai ni ng_r eposi t ory attribute identifies the Repository that is eventually
reached by recursively following the objeaf'sf i ned_i n attribute.

Thedescr i be operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, ifdicr i be operation is

invoked on an attribute object, tkend field containgdk_At t ri but e and the value

field contains arany, which contains thét t ri but eDescr i pti on structure.

Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any humber of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

nodul e CORBA {
typedef sequence <Contai ned> Cont ai nedSeq;

interface Container : |RObject {
Cont ai ned | ookup (in ScopedNanme search_nane);

Cont ai nedSeq contents (

in DefinitionKind limt_type,

i n bool ean exclude_inherited
)

Cont ai nedSeq | ookup_nanme (

in ldentifier sear ch_nane,

in long | evel s_to_search,

in DefinitionKind limt_type,

i n bool ean excl ude_i nherited
)

struct Description {

Cont ai ned cont ai ned_obj ect;

Defi ni ti onKi nd ki nd;

any val ue;

b

CORBA Java Programming Reference 10-9

10 mn terface Repository Interfaces

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limt_type,
in bool ean excl ude_i nherited,
in long max_returned_objs

)
IS
b
Thel ookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped hame
(beginningwith ") locates the definition rel ative to the enclosing Repository. If no
object isfound, anil object referenceis returned.

The contents operation returnsthe list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client usesthis operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, al of the interfaces within a specific module, and so on.

limit_type
If limit_type issettodk_all , objectsof all types are returned. For
example, if thisis an InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute

exclude_inherited
If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
Thelookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
describe_contents operation combines the contents ~ operation and the
describe operation. For each object returned by the contents operation, the
description of the object is returned (that is, the objeetsr i be operation
is invoked and the results are returned).

sear ch_nane
Specifies which name is to be searched for.

| evel s_to_search
Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained

10-10 CORBA Java Programming Reference

Interface Repository Interfaces

by the object aswell. Setting | evel s_t o_sear ch to -1 searches the current
object and all contained objects. Setting | evel s_t o_sear ch to 1 searches
only the current object.

max_returned_objs
Limits the number of objectsthat can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

IDLType Interface

The DL Typeinterface (shown below) isan abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides accessto the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

nodul e CORBA {
interface | DLType : | RObject {
readonly attri bute TypeCode type;

}s
}

Thet ype attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within amodule or an interface) either
by name or by i d.

nodul e CORBA {
interface Repository : Container {
Contai ned | ookup_id (in Repositoryld search_id);
PrimtiveDef get _primtive (in PrimtiveKi nd kind);

CORBA Java Programming Reference 10-11

10 mn terface Repository Interfaces

Thel ookup_i d operation is used to look up an object in a Repository, given its
Reposi t oryl d. If the Repository does not contain a definition for sear ch_i d, anil
object reference is returned.

Theget _pri ni ti ve operationreturnsareferenceto aPrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

nmodul e CORBA {
interface Modul eDef : Container, Contained {

}
struct Modul eDescription {
I dentifier nanme;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec Ver si on;

b
}s

Theinherited descr i be operation for a ModuleDef object returns a
M oduleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

nmodul e CORBA {
interface Constant Def : Contained {
readonly attribute TypeCode type;
readonly attribute |IDLType type_def;
readonly attribute any val ue;

b

struct ConstantDescription {
I dentifier nanme;
Reposi toryld id;
Reposi toryld defined_in;

10-12 CORBA Java Programming Reference

Interface Repository Interfaces

Ver si onSpec Ver si on;
TypeCode type;
any val ue;
b
IS
type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).
type_def
Identifies the definition of the type of the constant.
val ue

Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2").

The descri be operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for all
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

nmodul e CORBA {
interface TypedefDef : Contained, |DLType {
}

struct TypeDescription {

I dentifier nane;

Repositoryld id;

Repositoryld defined_in;

Ver si onSpec ver si on;

TypeCode type;

b

b
The inheriteddescri be operation for interfaces derived from TypedefDef returns a
TypeDescription.

CORBA Java Programming Reference 10-13

10 mn terface Repository Interfaces

StructDef

A StructDef (shown below) representsan OMG IDL structure definition. It contains
the members of the struct.

nmodul e CORBA {
struct Struct Menber {

ldentifier name;
TypeCode type;
| DLType type_def;

b
typedef sequence <Struct Menber> Struct Menber Seq;

interface StructDef : TypedefDef, Container{
readonly attribute Struct Menber Seq menbers;

}s
}s

The menber s attribute contains a description of each structure member.

Theinherited t ype attributeisat k_st ruct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) representsan OMG IDL union definition. It contains the
members of the union.

nmodul e CORBA {
struct Uni onMenber {

I dentifier nane;

any | abel ;
TypeCode type;

| DLType type_def;

H
typedef sequence <Uni onMenber > Uni onMenber Seq;

interface Uni onDef : TypedefDef, Container {
readonl y attri bute TypeCode di scrim nator_type;
readonl y attribute IDLType di scrim nator_type_def;
readonl y attribute Uni onMenber Seq nenbers;

¥

10-14 CORBA Java Programming Reference

Interface Repository Interfaces

EnumDef

AliasDef

di scrimnator_type anddi scrimnator_type_ def
Describe and identify the union’s discriminator type.

menber s
Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of thescri mi nat or _t ype.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value O (zero)
indicates the default union member.

The inherited ype attribute is a k_uni on TypeCode describing the union.

An EnumDef (shown below) represents an OMG IDL enumeration definition.

nodul e CORBA {
typedef sequence <ldentifier> Enumvenber Seq;

interface EnunDef : Typedef Def {
readonly attribute EnumMenber Seq menbers;

}s
}

menber s
Contains a distinct name for each possible value of the enumeration.

The inherited ype attribute is a k_enumTypeCode describing the enumeration.

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

nodul e CORBA {
interface AliasDef : Typedef Def {
readonly attribute | DLType original _type_def;

}s

CORBA Java Programming Reference 10-15

10 mn terface Repository Interfaces

ori ginal type_def
| dentifies the type being aliased.

Theinherited t ype attributeisat k_al i as TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from Typedef Def
or Cont ai ned.

nmodul e CORBA {
enum PrimtiveKi nd {
pk_null, pk_void, pk_short, pk_Iong, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk _char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_I ongl ong, pk_ul ongl ong, pk_| ongdoubl e, pk_wchar, pk _wstring

b
interface PrimtiveDef: |DLType {
readonly attribute PrimtivekKind ki nd;
}s
}s
ki nd

Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefswith kind pk_nul | . A PrimitiveDef with kind pk_stri ng
represents an unbounded string. A PrimitiveDef with kind pk_obj r ef
represents the OMG IDL type Object.

Theinherited t ype attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primtive.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

10-16 CORBA Java Programming Reference

Interface Repository Interfaces

nodul e CORBA {
interface Excepti onDef : Contai ned, Container {

readonl y attribute TypeCode type;
readonl y attribute Struct Menber Seq menber s;
b
struct ExceptionDescription {
ldentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec version;
TypeCode type;
b
b
type
t k_except TypeCode that describes the exception.
menber s

Describes any exception members.

Thedescri be operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

nodul e CORBA {
enum AttributeMode {ATTR NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonl y attri bute TypeCode type;
attribute | DLType type_def;
attri bute AttributeMde node;
b
struct AttributeDescription {
I dentifier name;
Reposi toryl d id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;
Attri but eMode node;

CORBA Java Programming Reference 10-17

10 mn terface Repository Interfaces

b
b
type
Provides the TypeCode describing the type of this attribute.
type_def
Identifies the object that defines the type of this attribute.
node

Specifiesread only or read/write access for this attribute.

OperationDef

An OperationDef (shown bel ow) represents the information needed to define an
operation of an interface.

nmodul e CORBA {
enum Qper ati onvbde { OP_NORVAL, OP_ONEWAY};

enum Par anet er Mode { PARAM I N, PARAM OUT, PARAM | NOUT};
struct ParaneterDescription {

I dentifier nane;
TypeCode type;
| DLType type_def;
Par anet er Mode node;

}

typedef sequence <ParaneterDescription> ParDescri ptionSeq;

typedef ldentifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <Excepti onDef> Excepti onDef Seq;
typedef sequence <ExceptionDescription> ExcDescri ptionSeq;

interface Qperati onDef : Contained {

readonl y attri bute TypeCode resul t;
readonl y attribute IDLType resul t _def;
readonl y attri bute ParDescriptionSeq par ans;
readonl y attri bute Qperati onMbde node;
readonl y attri bute ContextldSeq contexts;
readonl y attri bute ExceptionDef Seq excepti ons;

}s

struct OperationDescription {

10-18 CORBA Java Programming Reference

Interface Repository Interfaces

ldentifier name;
Repositoryld id;
Repositoryld defined_in
Ver si onSpec Ver si on;
TypeCode result;
Qper at i onMode node
Cont ext | dSeq cont exts;
Par Descri pti onSeq par aneters
ExcDescri pti onSeq exceptions
};
b
resul t

A TypeCode that describes the type of the value returned by the operation.

resul t _def
Identifies the definition of the returned type.

par ans
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptionsin
the sequenceis significant. The nane member of each structure provides the
parameter name. Thet ype member isa TypeCode describing the type of the
parameter. Thet ype_def member identifies the definition of the type of the
parameter. The node member indicateswhether the parameter isanin, out, or
inout parameter.

nmode
The operation’srode is either oneway (that is, no output is returned) or
normal.

contexts

Specifies the list of context identifiers that apply to the operation.

excepti ons
Specifies the list of exception types that can be raised by the operation.

The inheriteddescri be operation for an OperationDef object returns an
OperationDescription.

The inheritediescri be_cont ent s operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

CORBA Java Programming Reference 10-19

10 mn terface Repository Interfaces

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.
nmodul e CORBA {
interface | nterfaceDef;

typedef sequence <InterfaceDef> InterfaceDef Seq;

typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <QOperationDescription> QoDescriptionSeq;

typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, |DLType {

readonly attribute |nterfaceDef Seq base_interfaces;
boolean is_a (in Repositoryld interface_id);

struct FulllnterfaceDescription {

ldentifier name;
Repositoryld id;
Reposi toryl d defined_in;
Ver si onSpec ver si on;
OpDescri pti onSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi t oryl dSeq base_interfaces;
TypeCode type;
s
Ful I I nterfaceDescription describe_interface();
b
struct InterfaceDescription {
I dentifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec Ver si on;
Reposi toryl dSeq base_i nterfaces;
s

b

base_interfaces
Listsall the interfaces from which thisinterface inherits. Thei s_a operation
returns TRUE if the interface on which it is invoked either isidentical to or
inherits, directly or indirectly, from the interface identified by its
interface_i d parameter. Otherwise, it returns FALSE.

10-20 CORBA Java Programming Reference

Interface Repository Interfaces

Thedescribe_i nt er f ace operation returns a FulllnterfaceDescription describing
the interface, including its operations and attributes.

Theinherited descri be operation for an InterfaceDef returnsan InterfaceDescription.

Theinherited cont ent s operation returnsthe list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If theexcl ude_i nheri t ed parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
theexcl ude_i nheri t ed parameter isset to FALSE, all attributes and operations are
returned.

CORBA Java Programming Reference 10-21

10 mn terface Repository Interfaces

10-22 CORBA Java Programming Reference

CHAPTER

11 Joint Client/Server
Applications

Thistopic includes the following sections:

m Introduction. This section describes:
e Main Program and Server Initialization
e Servants
e Servant Inheritance from Skeletons
e Cadlback Object Models Supported
e Preparing Callback Objects Using BEAWrapper Callbacks
e Threading Considerations in the Main Program
e JavaClient ORB Initialization
e |IOP Support

m Callbacks Interface API

This chapter describes programming requirements for joint client/server applications.
For a description of the BEAWTrapper package and the Cal | backs interface API, see
the API Javadoc.

CORBA Java Programming Reference 11-1

11 Joint Client/Server Applications

Introduction

For either a BEA WebL ogic Enterprise client applications or ajoint client/server
application (that is, aclient that can receive and process object invocations), create a
Javaclient mai n() method. Themai n() method uses BEA WebL ogic Enterprise
environmental objects to establish connections, set up security, and start transactions.

BEA WebL ogic Enterprise clients invoke operations on objects. In the case of DI,
client code creates the DIl Reguest object and then invokes one of two operations on
the DIl Request. In the case of static invocation, client code performs the invocation
by performing what lookslike an ordinary Javainvocation (which ends up calling code
inthe generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG and BEA WebL ogic Enterprise environmental objects that are
supplied with the BEA WebL ogic Enterprise software to perform functions unique to
BEA WebL ogic Enterprise.

For BEA WebL ogic Enterprisejoint client/server applications, the client code must be
structured so that it can act asa server for callback BEA WebL ogic Enterprise objects
only. Such clients do not use the TP Framework and are not subject to BEA WebL ogic
Enterprise system administration. Besides the programming implications, this means
that joint client/server applications do not have the same scalability and reliability as
BEA WebL ogic Enterprise servers, nor do they have the state management and
transaction behavior available in the TP Framework. If a user wants to have those
characteristics, the application must be structured in such away that the object
implementations are in a BEA WebL ogic Enterprise server, rather than in aclient.

The following sections describe the mechanisms you use to add callback support to a
BEA WebL ogic Enterprise client. In some cases, the mechanisms are contrasted with
the BEA WebL ogic Enterprise server mechanisms that use the TP Framework.

Main Program and Server Initialization

11-2

InaBEA WebL ogic Enterprise Java server, you usethe bui | dj avaser ver command
to create the main program for the server. The server main program takes care of all
BEA WebL ogic Enterprise- and CORBA-related initialization of the server functions.
However, since you implement the Server object, you have an opportunity to

CORBA Java Programming Reference

Introduction

customize the way in which the server application isinitialized and shut down. The
server main program automatically invokes methods on the Server object at the
appropriate times.

In contrast, for aBEA WebL ogic Enterprise joint client/server application (asfor a
BEA WebL ogic Enterprise client), you create the main program and are responsible
for al initialization. Y ou do not need to provide a Server object because you have
complete control over the main program and you can provideinitialization and
shutdown code in any way that is convenient.

The specificinitialization needed for ajoint client/server application isdiscussed inthe
section “Servants” on page 11-3.

Servants

Servants (method code) for BEA WebLogic Enterprise joint client/server applications
are very similar to servants for BEA WebLogic Enterprise servers. All business logic
is written the same way. The differences result from not using the TP Framework,
which includes th&er ver, TP, andTobj _Servant classes. Therefore, the main
difference is that you use CORBA functions directly instead of indirectly through the
TP Framework.

In WebLogic Enterprise Java server applications, servants are created dynamically.
However, in BEA WebLogic Enterprise joint client/server applications, the user
application is responsible for creating a servant before any requests arrive; thus, the
Server class is not needed. Typically, the program creates a servant, initializes it, and
then activates the object. The process of activation, which associates the servant with
an object ID (either user supplied or system generated), results in the creation of an
object reference that the server application subsequently can provide to another
process. Such an object might be used to handle callbacks. Thus, the servant already
exists, and the object is already active, before a request for that object arrives.

Instead of invoking th&P interface to perform certain operations, client servants
directly invoke the ORB and the BOA (for clients that are based on the Java JDK
ORB). Alternately, since much of the interaction with the ORB and the BOA is the
same for all applications, the join client/server libratlyecl i ent . j ar) provides a
convenience wrapper objeca{ | backs) that does the same things using a single
operation. In addition, the wrapper objects also provide extra POA-like life span
policies forCbj ect | ds, see “Callback Object Models Supported” on page 11-4 and
“Preparing Callback Objects Using BEAWrapper Callbacks” on page 11-6.

CORBA Java Programming Reference 11-3

11 Joint Client/Server Applications

Servant Inheritance from Skeletons

In aBEA WebLogic Enterprise client, aswell asin a BEA WebL ogic Enterprise
server, a user-written Javaimplementation class inherits from the same skeleton class
name generated by thei dl t oj ava compiler. For example, given the IDL:

interface Hospital{ ... };

The skeleton generated by iditojava contains a skeleton class,
_HospitallmplBase , from which the user-written class inherits, asin:

class Hospitallmpl extends _HospitallmplBase {...};

InaBEA WebL ogic Enterprise server application, the skel eton class inheritsfrom the
TP Framework class com.beasys.Tobj_Servant , which in turn inherits from the
CORBA-defined class org.omg.PortableServer.Servant

Theinheritance tree for a callback object implementation in ajoint client/server
application is different from that of a client. The skeleton class does not inherit from
the TP Framework class, but instead inherits from the
org.omg.CORBA.Dynamiclmplementation class, which in turn inherits from the
org.omg.CORBA.portable.Objectimpl class.

Not having the Tobj_Servant classin theinheritance treefor aservant meansthat the
servant does not havethe activate_object and deactivate_object methods. Ina

BEA WebL ogic Enterprise server application, these methods are invoked by the TP
Framework to dynamically initialize and save a servant's state before invoking a
method on the servant. For a joint client/server application, user code must explicitly
create a servant and initialize a servant’s state; thereforggiheSer vant

operations are not needed.

Callback Object Models Supported

11-4

BEA WebLogic Enterprise software supports the three kinds of callback objects.
These object types are described here primarily in terms of their behavioral
characteristics rather than in the details about how the ORB and the wrapper classe
handle them.

CORBA Java Programming Reference

Introduction

The three kinds of callback objects are:

m Transient/Systemld

Object references are valid only for the life of the client process. The obj ect 1 d
is not assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wantsto receive
only until the client terminates. If used with a Notification or Event Service, for
example, these are callbacks that correspond to the concept of transient events
and transient channels. (The corresponding POA LifeSpanPolicy valueis
TRANSI ENT, and the IdAssignmentPolicy is SYSTEM | D.)

m Persistent/Systemld

Object references are valid across multiple activations. The obj ect | d is not
assigned by the client application, but is a unique value assigned by the system.
Thistype of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects
on that particular object reference. Typically, the client creates the object
reference once, savesit in its own permanent storage area, and reactivates the
servant for that object every time the client comes up. If used with a Notification
Service, for example, these are callbacks that correspond to the concept of a
persistent subscription; that is, the Notification Service remembers the callback
reference and delivers events any time the client is up and declares that it is
again ready to receive them. This allows notification to survive client failures or
offline-time. (The corresponding POA policy values are PERSI STENT and
SYSTEM | D.)

m Persistent/Userld

Thisisthe same as Persistent/Systeml d, except that the obj ect | d hasto be
assigned by the client application. Such an obj ect I d might be, for example, a
database key meaningful only to the client. (The corresponding POA policy
values are PERSI STENT and USER | D.)

Note: The Transient/Userld policy combination is not considered particularly
important. In any event, this policy combination is not availablein Java server
applications.

Note: For BEA WebLogic Enterprise native joint client/server applications, neither
of the Persistent policiesis supported, only the Transient policy.

CORBA Java Programming Reference 11-5

11 Joint Client/Server Applications

In C++, these object models are established by using combinations of the following
POA policies, which control both thetypesof objectsand thetypes of object references
that are possible:

m LifeSpanPolicy, which controls how long an object referenceisvalid

m |dAssignmentPolicy, which controls who assignsthe obj ect | d—the user or the
system

However, since the ORB used for Java server applications does not provide a POA, t
BEA WebLogic Enterprise system provideSad | backs wrapper class that emulates
these POA policies.

Preparing Callback Objects Using BEAWrapper Callbacks

Because the code to prepare for callback objects is nearly identical for every joint
client/server application, and because the Java JDK ORB does not implement a PO/
BEA WebLogic Enterprise provides a wrapper class in the joint client/server library
that is virtually identical to the wrapper class provided in C++. This wrapper class
emulates the POA policies needed to support the three types of callback objects.

The following code shows theal | back wrapper interfaces.

package com beasys. BEAW apper;

11-6

class Cal | backs{

public Callbacks ();
public Call backs (org.ong. CORBA (oject init_orb);

public org.ong. CORBA. Obj ect start_transient (
org.ong. Port abl eServer. Cbj ect | npl servant,
java.lang. String rep_id)
t hrows Servant Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,

public org.ong. CORBA. Cbj ect start_persistent_systemd (
org.ony. Port abl eServer. Qbj ect | npl servant,
java.lang. String rep_id,
org. ong. CORBA. StringHol der stroid)
t hrows Servant Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

CORBA Java Programming Reference

Introduction

}s

public

public

public

public

public

org. ong. CORBA. (bj ect restart_persistent_systemd (

org. ong. Portabl eServer. Obj ectl npl servant,

java.lang.String rep_id,

java.lang. String stroid)

throws Servant Al readyActi ve,
Cbj ect Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

org. ong. CORBA. (bj ect start_persistent _userid (
org. ong. Portabl eServer. Qbj ectl mpl servant,
java.lang. String rep_id,
java.lang. String stroid)
throws Servant Al readyActi ve,
Cbj ect Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | \P_LIMT;
voi d stop_object (
org. ong. Portabl eServer. Qbj ect | npl
servant);

String get_string oid ()
throws Notl nRequest;

void stop_all _objects();

Threading Considerations in the Main Program

When a program acts as both a client and a server in a Java client, those two parts can
execute concurrently in different threads. Since Java as an execution environment is
inherently multithreaded, there is no reason to invoke the

or g. ong. CORBA. or b. wor k_pendi ng and or g. ong. CORBA. or b. per f or m wor k
methods from a Java client. In fact, if the Java client tries to invoke these methods,
these methods throw an or g. ong. CORBA. NO_I MPLEMENT exception. The client does
not need to invoke the or g. ong. CORBA. or b. r un method. As in any multithreaded
environment, any code that may execute concurrently (client and servant code for a
callback) in the client application must be coded to be thread safe. Thisis adeparture
from C++ clients, which are currently single-threaded.

CORBA Java Programming Reference 11-7

11 Joint Client/Server Applications

Multiple Threads

11-8

In Java, the client starts up in the main thread. The client can then set up callback
objects via an invocation to any of the (re) st art _xxxx methods provided by the
Callbacks wrapper class. The wrapper class handles registering the servant and its
associated OID in the ORB's object manager. The application isthen free to pass the
object referencereturned by the (re) st ar t _xxxx method to an application that needs
to call back to the servant.

Note: The ORB requires an explicit invocation to one of the (re) st art _xxxx
methods to effectively initialize the servant and create avalid object reference
that can be marshaled properly to another application. Thisisadeviation
from the base JDK 1.2 ORB behavior that allows implicit object reference
creation via an internal invocation to the or b. connect method when
marshaling an object reference, if the application has not yet done so.

Invocations on the callback object are handled by the ORB. Aseach request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
object because the ORB creates a new thread for each request; that iswhy the Servant
code of the Callback must be written thread safe. As each request terminates, the
thread that runs the servant also terminates.

Themain client thread can make as many client invocations as necessary. An
invocation to the st op_(al / _) obj ect methods merely takes the object out of the
object manager'slist, thereby preventing any further invocationsonit. Any invocation
to a stopped object fails asif it never existed.

If the client application needs to retrieve the results of a callback from another thread,
the client application must use normal thread synchronization techniques to do so.

If any thread (client main or servant) in the BEA WebL ogic Enterprise remote-like
client application exits, al the client process activity is stopped, and the Java
execution environment terminates. Werecommend only toinvokether et ur n method
to terminate a thread.

CORBA Java Programming Reference

Introduction

Java Client ORB Initialization

A client application must initialize the ORB with the BEA-supplied properties. This
is so that the ORB will utilize the BEA-supplied classes and methods that support the
Cal | backs wrapper class and the Bootstrap object. Y ou can find these classesin

w eclient.jar,whichisinstalledin $TUXDI R/ udat aobj / j ava/ j dk (on Solaris) or
9@ UXDI R% udat aobj \ j ava\ j dk (on WindowsNT). Theapplication must set certain
system properties to do this, as shown in the following example:

Properties prop = new Properties(System getProperties());
prop. put (" org. ong. CORBA. ORBO ass", "com beasys. CORBA. i i op. ORB") ;
prop. put (" org. ong. CORBA. ORBSi ngl et onCl ass",
"com beasys. CORBA. i dl . ORBSi ngl et on");
System set Properties(prop);
// Initialize the ORB.
ORB orb = ORB.init(args, prop);

IIOP Support

[1OPisthe protocol used for communication between ORBs. [10OP alows ORBsfrom
different vendorsto interoperate. For Javaserver applications, a port number must be
supplied at the client for persistent or user ID object reference policies.

Java Applet Support

[1OP support for applets that want to receive callbacks or callouts islimited due to
applet security mechanisms. Any applet run-time environment that allows an applet
to create and listen on sockets (viatheir proprietary environment or protocol) will be
ableto act as BEA WebL ogic Enterprisejoint client/server applications. |If the applet
run-time environment restri cts socket communi cation, then the applet cannot be ajoint
client/server application to a BEA WebL ogic Enterprise application.

Port Numbers for Persistent Object References

BEA WebL ogic Enterprise Java server applications support only GIOP 1.0, as
described in Chapter 13 of the OMG CORBA 2.2 specification.

CORBA Java Programming Reference 11-9

11 Joint Client/Server Applications

For aBEA WebL ogic Enterprise Javaremote joint client/server application to support
[1OP, the object references created for the server component must contain a host and a
port. For transient object references, any port is sufficient and can be obtained by the
ORB dynamically; however, thisis not sufficient for persistent object references.

Persistent references must be served on the same port after the ORB restarts. That is,
the ORB must be prepared to accept requests on the same port with which it created
the object reference. Therefore, there must be some way to configure the ORB to use
aparticular port.

Javaclientsthat expect to act as serversfor callbacks of persistent references must now
be started with a specified port. Thisis done by setting the system property
org. omg. CORBA. ORBPort, asin the following commands:

For Windows NT:

j ava - DTOBJADDR=// host : port
- Dor g. ong. CORBA. ORBPor t =xxxx
- cl asspat h=%CLASSPATH% cl i ent

For Unix:

j ava - DTOBJADDR=// host : port
- Dor g. ong. CORBA. ORBPor t =xxxx
- cl asspat h=$CLASSPATH cl i ent

Typically, a system administrator assigns the port number for the client from the user
range of port numbers, rather from the dynamic range. This keeps the joint
client/server applications from using conflicting ports.

If aBEA WebL ogic Enterprise remote joint client/server application tries to create a
persistent object reference without having set a port (asin the preceding command
line), the operation raises an exception, | MP_LI M T, informing the user that atruly
persistent object reference cannot be created.

Callbacks Interface API

For acomplete description of the BEAW apper . Cal | backs interface API, seethe AP
Javadoc.

11-10 CORBA Java Programming Reference

CHAPTER

12 Java Development and

Administration
Commands

For a detailed discussion of BEA Webl ogic Enterprise development and
administrative commands, see Commands, System Processes, and MIB Reference.
This document describes all BEA WebL ogic Enterprise commands and processes.

A PDF file of Commands, Processes, and MIB Referenceisalso providedin the online
documentation.

CORBA Java Programming Reference 12-1

12 Java Development and Administration Commands

12-2 CORBA Java Programming Reference

CHAPTER

13 CORBA ORB

This chapter supplements the information in package or g. ong. CORBA by providing
information on the following topics:

m [nitializing the ORB

m Passing the Address of the IOP Listener

Note: For details about the API for package or g. ong. CORBA, see the Java DL
document published by the Sun Microsystems, Inc. and distributed with the
JDK 1.2.

Initializing the ORB

[This section is reprinted from the package information for or g. ong. CORBA, as
published by Sun Microsystems, Inc. for the IDK 1.2.]

An application or applet gains accessto the CORBA environment by initializing itself
into an ORB using one of threei ni t methods. Two of the three methods use the
properties (associations of a name with avalue) shown in the following table:

Property Name Property Value

org. ong. CORBA. ORBCI ass Class name of an ORB implementation

or g. ong. CORBA. CRBSi ngl et ond ass Class name of the ORB returned by i ni t ()

These properties allow adifferent vendor's ORB implementation to be "plugged in."

CORBA Java Programming Reference 13-1

13 corBA ORB

When an ORB instance isbeing created, the class name of the ORB implementation is
located using the following standard search order:

1. Check in Applet parameter or application string array, if any.

2. Check in properties parameter, if any.

3. Check in the System properties (currently applications only).

4. Fall back on ahardcoded default behavior (use the Java IDL implementation).

Note that the BEA WebL ogic Enterprise ORB provides a default implementation for
the fully functional ORB and for the Singleton ORB. When thei ni t method is given
no parameters, the default Singleton ORB isreturned. Whenthei ni t methodisgiven
parameters but no ORB classis specified, the Java IDL ORB implementation is
returned.

The following code fragment creates an ORB object initialized with the default ORB
Singleton. This ORB hasarestricted implementation to prevent malicious appletsfrom
doing anything beyond creating typecodes. It iscalled a Singleton becausethereisonly
oneinstance for an entire virtual machine.

ORB orb = ORB.init();

Thefollowing code fragment creates an ORB object and a Singleton ORB object for
an application.

Properties p = new Properties();

p. put ("org. ong. CORBA. ORBCl ass", "com sun. CORBA.iiop. ORB");

p. put ("org. ong. CORBA. ORBSIi ngl et ond ass", "com sun. CORBA. i dl . ORBSi ngl eton");
System set Properti es(p);

ORB orb = ORB.init(args, p);

In the preceding code fragment, note the following:
m TheORB classistobeinitialized as com sun. CORBA. i i op. ORB.

m The SingletonORB classisto be initialized as
com sun. CORBA. i dl . ORBSI ngl et on.

m Thestatement Syst em set Properties(p) Setsthe system properties based on
the value of p.

m The parameter ar gs represents the arguments supplied to the application’s main
method. If p isnul I, and the arguments do not specify an ORB class, the new
ORB isinitialized with the default Java IDL implementation.

13-2 CORBA Java Programming Reference

Passing the Address of the IIOP Listener

Note: Due to the security restrictions on applets, you will probably not be able to
invoke the Syst em set Propert i es method from within an applet. Instead,
you can set the or g. ong. CORBA. ORBCl ass and
or g. onmg. CORBA. ORBSI ngl et onCl ass parametersviaHTML before
starting the applet.

Thefollowing code fragment creates an ORB object for the applet supplied asthefirst
parameter. If the given applet does not specify an ORB class, the new ORB will be
initialized with the default BEA WebL ogic Enterprise ORB implementation.

ORB orb = ORB.init(myApplet, null);

An application or applet can beinitialized in one or more ORBs. ORB initialization is
abootstrap call into the CORBA world.

Passing the Address of the IIOP Listener

When you compile BEA WebL ogic Enterprise client and server applications, use the
- DTOBJADDR option to specify the host and port of the [|OP Listener. Thisalowsyou,
in the application code, to specify nul | asahost and port string in invocations to:

m TheORB.init method
m Thelocal Bootstrap object

By keeping host and port specifications out of your client and server application code,
you maximize the portability and reusability of your application code.

CORBA Java Programming Reference 13-3

13 corBA ORB

13-4 CORBA Java Programming Reference

CHAPTER

14 Mapping IDL-to-Java

Thistopic includes the following sections:
m |DL-to-JavaOverview
m Package Comments on Holder Classes

m Exceptions. This section describes:
e Differences Between CORBA and Java Exceptions
e System Exceptions
e User Exceptions

e Minor Code Meanings

Note: Thischapter contains excerptsfrom the Java DL document published by Sun
Microsystems, Inc. and distributed with the JDK 1.2.

IDL-to-Java Overview

Thei dl t oj ava and n8i dl t oj ava toolsread an OMG IDL interface and trand ateiit,
or mapit, to aJavainterface. Thensi dl t oj ava tool also creates stub, skeleton, hel per,
holder, and other filesasnecessary. Whilethei dI t oj ava tool creates stub, skeleton,
helper, holder, and other files, the skeleton files it produces cannot be used with the
BEA WebL ogic Enterprise system. When compiling the OMG IDL filesto build
server skeletonsto be used with the BEA WebL ogic Enterprise system, be sureto use
the n8i dl t oj ava tool.

CORBA Java Programming Reference 14-1

14 Mapping IDL-to-Java

These. j ava files are generated from the OMG IDL file according to the mapping
specified in the OMG document |DL/Java Language Mapping (available from the
OMG Web siteat ht t p: // www. ong. or g). We cross-reference the following four
chapters of that document here for your convenience:

m Chapter 5, “Mapping IDL to Java”

m Chapter 6, “Mapping Pseudo-Objects to Java’

m Chapter 7, “Server-Side Mapping”

m Chapter 8, “Java ORB Portability Interfaces”

A summary of the IDL to Java language mapping follows.

CORBA objects are defined in OMG IDL. Before they can be used by a Java
programmer, their interfaces must be mapped to Java classes and interfaces. Sun
Microsystems, Inc. provides thell t oj ava tool, and the BEA WebLogic Enterprise
system includes thesi di t oj ava tool, which performs this mapping automatically.

This overview shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its hame implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods ir
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the datatype of its return value, the datatypes of the paramete
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

The following table lists the main constructs of IDL and the corresponding constructs

in Java.
IDL Construct Java Construct
nodul e package
interface interface, hel per class, hol der class
const ant public static final
bool ean bool ean
char, wchar char
oct et byt e

14-2 CORBA Java Programming Reference

Package Comments on Holder Classes

IDL Construct

Java Construct

string, wstring java.lang. String
short, unsigned short short

I ong, unsigned | ong i nt

I ong | ong, unsigned long |ong

| ong

f |l oat fl oat

doubl e doubl e

enum struct, union cl ass

sequence, array array

exception cl ass

readonly attribute

method for accessing value of attribute

readwite attribute

methods for accessing and setting value of attribute

operation

method

Note: When a CORBA operation takes atype that corresponds to a Java object type
(astring, for example), itisillegal to passaJavanul | asthe parameter
value. Instead, pass an empty version of the designated object type (for
example, an empty St ri ng or an empty array). A Javanul | can be passed as
aparameter only when thetype of the parameter isaCORBA object reference,
in which casethenul | isinterpreted asani | CORBA object reference.

Package Comments on Holder Classes

Operationsin an IDL interface may take out or i nout parameters, aswell asi n
parameters. The Java programming language only passes parameters by value and thus
doesnot haveout ori nout parameters; therefore, these are mapped to what are called
Holder classes. In place of the IDL out parameter, the Java programming language

CORBA Java Programming Reference 14-3

14 Mapping IDL-to-Java

method will take an instance of the Holder class of the appropriate type. The result that
was assigned to the out or i nout parameter inthe IDL interfaceisassigned to the
value field of the Holder class.

The package or g. ong. CORBA contains a Holder class for each of the basic types
(Bool eanHol der , LongHol der, St ri ngHol der ,and soon). It also hasHolder classes
for each generated class (such as TypeCodeHol der), but these are used transparently
by the ORB, and the programmer usually does not see them.

The Holder classes defined in the package or g. ong. CORBA are:

AnyHol der

Bool eanHol der
Byt eHol der
Char Hol der
Doubl eHol der

Fl oat Hol der

| nt Hol der
LongHol der

oj ect Hol der
Pri nci pal Hol der
Shor t Hol der
Stri ngHol der
TypeCodeHol der

Exceptions

14-4

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions are alittle different from Java exception
objects, but those differences are largely handled in the mapping from IDL-to-Java.

Topicsin this section include:
m Differences Between CORBA and Java Exceptions

m System Exceptions, which includes the following subtopics:
e System Exception Structure
e Minor Codes
e Completion Status

CORBA Java Programming Reference

Exceptions

m User Exceptions

m Minor Code Meanings

Differences Between CORBA and Java Exceptions

To specify an exceptionin IDL, theinterface designer usesther ai ses keyword. This
issimilar to thet hr ows specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions cannot be
specified this way.

System Exceptions

CORBA definesaset of standard system exceptions, which are generally raised by the
ORSB libraries to signa systemic error conditions like:

m Server-side system exceptions, such as resource exhaustion or activation failure

m Communication system exceptions, such aslosing contact with the object, host
down, or cannot talk to ORB daemon (or bd)

m Client-side system exceptions, such asinvalid operand type or anything that
occurs before arequest is sent or after the result comes back

All IDL operations can throw system exceptionswhen invoked. Theinterface designer
need not specify anything to enable operationsin the interface to throw system
exceptions -- the capability is automatic.

This makes sense because no matter how trivial an operation’simplementation is, the
potential of an operation invocation coming from aclient that isin another process, and
perhaps (likely) on another machine, means that a whole range of errorsis possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, devel opers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java. |l ang. Runti meExcepti on.

CORBA Java Programming Reference 14-5

14 Mapping IDL-to-Java

System Exception Structure

Minor Codes

All CORBA system exceptions have the same structure:

exception <SystenExceptionNane> { // descriptive of error
unsi gned | ong m nor; /1 nore detail about error
Conpl eti onSt at us conpl et ed; /1l yes, no, maybe

}

System exceptions are subtypes of j ava. | ang. Runt i meExcept i on through
or g. ong. CORBA. Syst enException:

j ava. | ang. Exception

+--java. | ang. Runti meExcepti on

I
+--o0rg. ong. CORBA. Syst enExcepti on

+- - BAD_PARAM
I

+--//etc.

All CORBA system exceptions have a minor code field, which contains anumber that
provides additional information about the nature of the failure that caused the

exception. Minor code meanings are not specified by the OMG; each ORB vendor

specifies appropriate minor codes for that implementation. For the meaning of minor

codes thrown by the Java ORB, see the section "Minor Code Meanings” on page 14-

Completion Status

All CORBA system exceptions have a completion status field, which indicates the
status of the operation that threw the exception. The completion codes are:

COVPLETED_YES The object implementation has completed processing prior
to the exception being raised.

COVPLETED_NO The object implementation was not invoked prior to the
exception being raised.

COVPLETED_MAYBE The status of the invocation is unknown.

14-6 CORBA Java Programming Reference

Exceptions

User Exceptions

CORBA user exceptions are subtypes of j ava. | ang. Except i on through
or g. ong. CORBA. User Except i on:

java. | ang. Excepti on

I
+--o0rg. ong. CORBA. User Excepti on

I
+- - St ocks. BadSynbol

+--//etc.

Each user-defined exception specified in IDL resultsin a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

System exceptions all have afield minor that allows CORBA vendorsto provide
additional information about the cause of the exception. As stated inthe CORBA 2.2
specification (13.4.2 Reply Message), the high order 20 bits of minor code value
contain a 20-bit "vendor minor codeset ID" (VMCID); the low order 12 bits contain a
minor code. BEA’s VMCID is0x54555000. Further, Sun defines single or double
digit minor codesfor its JavalDL ORB and BEA definesits minor code starting from
1,000. Thus, acondition common to either ORB uses the Java IDL minor code (and
VMCID 0), and the BEA ORB unique minor code is 1,000 or greater.

For Sun Microsystems, Inc. minor codes, see the Java IDL documentation. For BEA's
minor codes, see threlease Notes.

Table 14-1 ORB Minor Codes and Their M eanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

CORBA Java Programming Reference 14-7

14 Mapping IDL-to-Java

14-8

Code Meaning

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after locati on/object forward.

2 Error occurred whiletrying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connectionisno longer alive.

6 Unable to successfully connect to the server after several attempts.

DATA_CONVERSION Exception Minor Codes

1 Encountered abad hexadecimal character whiledoingORB st ri ng_t o_obj ect
operation.

2 The length of the given IOR for st ri ng_t o_obj ect () isodd. It must be even.

3 The string giventostring_t o_obj ect () doesnot start with | OR: and hence

isabad stringified IOR.

4 Unableto perform ORB r esol ve_i ni ti al _r ef er ences operation dueto the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the 11OP Reply message by the server.

6 When unmarshaling, the repository id of the user exception was found to be of
incorrect length.

7 Unable to determine loca hostname using the Java API’'s
I net Addr ess. get Local Host (). get Host Name() .

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions preven
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP v1.0 message type found.

14 Error encountered while unmarshaling the user exception.

CORBA Java Programming Reference

Exceptions

Code

M eaning

18

Internd initialization error.

INV_OBJREF Exception Minor Codes

1

An IOR with no profile was encountered.

MARSHAL Exception Minor Codes

4 Error occured while unmarshaling an object reference.

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that

isnot ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

NO_IMPLEMENT Exception Minor Codes

1

Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4 Error occured when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1

Locate request got aresponse indicating that the object is not known to the locator.

2

Server id of the server that received the request does not match the server id baked
into the object key of the object reference that was invoked upon.

No skeleton was found on the server side that matches the content of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1

Unknown user exception encountered while unmarshaling: the server returned a
user exception that does not match any expected by the client.

CORBA Java Programming Reference 14-9

14 Mapping IDL-to-Java

Code

M eaning

3

Unknown run-time exception thrown by the server implementation.

Table 14-2 Name Server Minor Codes and Their M eanings

Code

M eaning

INITIALIZE Exception Minor Codes

150

Transient name service caught a Sy st enExcept i on whileinitiaizing.

151

Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100

An Al r eadyBound exception was thrown in ar ebi nd operation.

101

An Al r eadyBound exception was thrown in ar ebi nd_cont ext operation.

102

Binding type passed to the internal binding implementation was not
Bi ndi ngType. nobj ect or Bi ndi ngType. ncont ext .

103

Object reference was bound as a context, but it could not be narrowed to
CosNam ng. Nam ngCont ext .

200

Implementation of the bi nd operation encountered a previous binding.

201

Implementation of thel i st operation caught a Java exception while creating the
list iterator.

202

Implementation of the new_cont ext operation caught a Java exception while
creating the new Nam ngCont ext servant.

203

Implementaton of the dest r oy operation caught a Java exception while
disconnecting from the ORB.

14-10 CORBA Java Programming Reference

	Restricted Rights Legend
	Trademarks or Service Marks
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 OMG IDL Syntax
	OMG IDL Extensions

	2 Server Description File
	Creating the Server Description File
	About Object Activation and Deactivation
	Server Description File Syntax
	Prolog
	Server Declaration
	Module and Implementation Declarations
	Module Declaration Syntax
	Implementation Declaration Syntax

	Archive Declaration
	Archive Declaration Syntax

	Sample Server Description File

	3 Java TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	Object State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution

	Self-deactivation

	Saving and Restoring Object State
	Use of Constructors for Java Corba Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	Voting on Transaction Outcome
	Transaction Time-outs

	Java TP Framework Interfaces
	Tobj_Servant Interface
	Server Object
	TP Interface
	Usage Note

	Error Conditions and Exceptions
	Exceptions Raised by the Java TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions

	4 Java Bootstrap Object Programming Reference
	Why Bootstrap Objects Are Needed
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Java Mapping

	Programming Examples
	Getting a SecurityCurrent Object
	Getting a UserTransaction Object

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Locating a Factory
	CORBAservices Naming Service Module OMG IDL
	CORBAservices Life Cycle Service Module OMG IDL
	Tobj Module OMG IDL
	Locating Factories in Another Domain
	Why Use BEA WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL form
	Translating an IDL Form
	Destroying a Library Name Pseudo-object

	Java Mapping

	Java Methods
	Java Programming Examples
	Server Registering a Factory
	Client Obtaining a FactoryFinder Object Reference
	Client Finding One Factory Using the Tobj Approach

	6 Security Service
	7 Transactions Service
	8 Notification Service
	9 Request-Level Interceptors
	10 Interface Repository Interfaces
	Structure and Usage
	From the Programmer’s Point of View
	Performance Implications

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	11 Joint Client/Server Applications
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects Using BEAWrapper Callbacks
	Threading Considerations in the Main Program
	Multiple Threads

	Java Client ORB Initialization
	IIOP Support
	Java Applet Support
	Port Numbers for Persistent Object References

	Callbacks Interface API

	12 Java Development and Administration Commands
	13 CORBA ORB
	Initializing the ORB
	Passing the Address of the IIOP Listener

	14 Mapping IDL-to-Java
	IDL-to-Java Overview
	Package Comments on Holder Classes
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

