':' @,

% hea
BEA WebLogic Enterprise

Using the SPI
Implementations for JNDI

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the SPI I mplementations for JNDI

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y 0OU NEed t0 KNMOWcceeeeieciie et s \Y;
E-0OCSWED SHB....ceieieceecee ettt e e e re e e sre e v
How to Print the DOCUMENEccvrieiereeece s s Vi
Related INfOrmation...........ccueii e e Vi
(0o g1 = ox A1 1S SR vii
Documentation CONVENLIONS..........couvererreresesesesieseeeeieseeseeseesessesessessessesnens viii

Using the SPI Implementations for JNDI

Overview of INDI in WebL0giC ENterpriSe.......cccoeeerererienerie e 1-2
The INDI API @0 SPl ...t 14
The Naming Interface — javaxX.naming.........cccccceevveeiievinieeereeee e esesveeeees 1-4
The Directory Interface — javax.naming.direCtorycccccceeeeeiniicvnnnnn. 1-4
The Service Provider Interface — javax.naming.spiccccccevveeeeeeneiiennnns 1-5
Additional WebLogic Enterprise SPI Implementations..............c..ccccvveeee. 1-5
WebLogic Enterprise INDI Packagingcooooiuiiiiiieiiiiiieiiiiiieeeeeeeenn 1-6
Location of the WebLogic Enterprise JNDI Javadoc.............ccccvvvvveeeenennn. 1-6
Unified Naming and Dir€Ctory SEIVICEScuviieiiiiiiiiiiiiiieeeeee e s sineaeeeeeeeee s 1-7
Using the Remote Naming Service for Client Connections and SSL Support.. 1-8
Step 1: Set Up JNDI Environment Properties for the Initial Context........ 1-8
WLEContext.INITIAL_CONTEXT_FACTORY Property................ 1-9
WLEContext.PROVIDER_URL Property.........cccccoeiiiiiiiiiiiiiiineee, 1-9
WLEContext. SECURITY_AUTHENTICATION Property............. 1-10
WebLogic Enterprise Keys Required for BEA TUXEDO Style
AUNENTICALTION ..ottt 1-11
Step 2: Establish an InitialContext with the WebLogic Enterprise
Do) 0=l o OO PRRPPPT 1-12

Using the SPI Implementations for INDI i

iv

Step 3: Use the Context to Look Up a Named Server Object 1-13
Step 4: Use the Named Server Object to Get a Reference for the Desired

Remote Object, and Invoke Operations on the Remote Object 1-13

Step 5: Complete the SESSIONccvveveeecre e 1-14
Providing Remote Client Access to the UserTransaction Interface................. 1-14
Using the Application Naming Serviceto Access Loca Objects................... 1-15
Using the Application Naming Service to Access Global Objects.................. 1-16
OVErVIEW Of FEALUIESooueiiieiieeete et 1-16
Accessing the Factories SUDCONEEXLcooevereennenere e 1-17
Binding Objects into the Factories SUbContextcccveevievvvereceecereens 1-18
Unbinding Objects from the Factories Subcontextcccceeeveneeienenne. 1-19
J2EE REQUITEIMENLSc.eiueeeeieetiie sttt s esie e s se e see s e s 1-19
Cross-DOmaiN SUPPOItcoveuereriereeiereseeeeseseeseese e ste e seeseesesseseeseeseenens 1-20
The J2EE Naming CONLEXLccueoeriererierieeeesie e 1-20
Overview Of REQUIFEMENES........cccuriieieerieeeeee e 1-21
Accessing EnVironment ENtHEScc.veovvvverereeeeie e s eese e seene e 1-21
USINg EJB REFEIENCES.......oiviiieerete e 1-22
Obtaining Resource Factory REfErENCES.........covveverrerenereee s 1-23
Obtaining a UserTransaction ObJeCtcccccvverenerresene e 1-24

Index

Using the SPI Implementations for INDI

About This Document

This document explains how to usethe BEA WebL ogic Enterprise™ Service Provider
Interface (SPI) implementations for Java Naming and Directory Interface (JNDI) in
WebLogic Enterprise applications. The information in this document supplements the
Sun Microsystems, Inc. JNDI 1.2 Specification for the SPI. The basic JNDI framework
implementation in WebLogic Enterprise is based on version 1.2 of the Sun
Microsystems, Inc. standard extension classes.

What You Need to Know

This document is intended mainly for programmers and system administrators who
need to create and maintain transactional, scalable WebLogic Enterprise applications.

e-docs Web Site

The BEA BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.

Using the SPI Implementations for INDI %

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Enterprise documentation Home page, click the PDF Files button and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

Vi

For more information about topics covering Java 2 Enterprise Edition (J2EE),
distributed object computing, transaction processing, and Java programming, see th
Bibliographyin the WebLogic Enterprise online documentation. In addition, the
following online and printed documents may be of interest to developers using JNDI

Java 2 Platform Enterprise Edition home page, Sun Microsystems, Inc., at
http://java.sun.com/j2ee/

JNDI Executive ummary, Sun Microsystems, Inc., at
ftp://ftp.javasoft.com/docs/jndi/1.2/execsumm.pdf

JNDI: Java Naming and Directory Interface, Version 1.2, Sun Microsystems, Inc., at
ftp://ftp.javasoft.com/docs/jndi/1.2/jndi.pdf

JNDI SPI: Java Naming and Directory Service Provider Interface, Version 1.2, Sun
Microsystems, Inc., at ftp://ftp.javasoft.com/docs/jndi/1.2/jndispi.pdf

JNDI 1.2 API and SPI Specification, Sun Microsystems, Inc., in Javadoc format at
http://java.sun.com/products/jndi/1.2/javadoc/index.html

Using the SPI Implementations for INDI

How to Print the Document

Enterprise JavaBeans, Version 1.1, Sun Microsystems, Inc., at
http://java.sun.com/products/ejb/javadoc-1.1/

Java Transaction API (JTA) Version 1.0.1, Sun Microsystems, Inc., at
http://java.sun.com/products/jtal/

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebL ogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA BEA WebL ogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.beasys.com. Y ou can aso
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using the SPI Implementations for INDI Vii

Documentation Conventions

viii

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneoudly.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace .
Example:
t ext amp _
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Using the SPI Implementations for INDI

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-I file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-I file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Using the SPI Implementations for INDI

iX

Using the SPI Implementations for INDI

CHAPTER

1

Using the SPI

Implementations for
JNDI

This topic includes the following sections:

m Overview of INDI in WebL ogic Enterprise

m TheJNDI APl and SPI

m Unified Naming and Directory Services

m Using the Remote Naming Service for Client Connections and SSL Support

Step 1. Set Up INDI Environment Properties for the Initial Context
Step 2: Establish an Initial Context with the WebL ogic Enterprise Domain
Step 3: Use the Context to Look Up a Named Server Object

Step 4: Use the Named Server Object to Get a Reference for the Desired
Remote Object, and Invoke Operations on the Remote Object

Step 5: Compl ete the Session

m Providing Remote Client Access to the UserTransaction Interface

m Using the Application Naming Service to Access Local Objects

m Using the Application Naming Service to Access Global Objects

Overview of Features

Accessing the Factories Subcontext

Using the SPI Implementations for INDI

1-1

1 Using the SPI Implementations for JNDI

e Binding Objectsinto the Factories Subcontext
e Unbinding Objects from the Factories Subcontext
e J2EE Requirements
e Cross-Domain Support
m The J2EE Naming Context
e Overview of Reguirements
e Accessing Environment Entries
e Using EJB References
e Obtaining Resource Factory References

e Obtaining a UserTransaction Object

Overview of JNDI in WebLogic Enterprise

1-2

In the enterprise, naming and directory services provide the meansfor your application
to locate objects on the network. These services are key to building distributed
applications. A naming service provides a mechanism to name objects and retrieve
objectsby name. A directory serviceisanaming servicethat also allowsfor attributes
to be associated with each object, and provides away to retrieve an object by its
attributes instead of its name.

The JavaNaming and Directory Interface (JNDI) isan API that provides directory and
naming services to Java applications. JNDI is an integral component of the Sun
Microsystems Java 2 Platform Enterprise Edition (J2EE) technology.

JNDI is defined to be independent of any specific naming or directory service
implementation. A variety of services, new and existing ones, can be accessed in a
common way. The INDI Service Provider Interface (SPI) provides a means by which
different naming and directory providers can develop and integrate their
implementations so that the corresponding services are accessible from applications
that use JNDI.

Using the SPI Implementations for INDI

Overview of JNDI in WebLogic Enterprise

The INDI support provided in the WebL ogic Enterprise software leverages from the
standard Sun Microsystems, Inc., INDI API classes. This support allows any
service-provider implementation to be plugged into the INDI framework using the
standard SPI conventions. The support alows Java applications in WebL ogic
Enterprise to access external directory services such as LDAP in a standardized
fashion, by plugging in the appropriate service-provider.

In addition, BEA provides two WebL ogic Enterprise specific SPI implementationsto
enable access to naming features in the WebL ogic Enterprise system. The WebL ogic
Enterprise SPI provides the following features:

m A WebL ogic Enterprise remote naming service that provides a point of entry
into the WebL ogic Enterprise system for remote Java clients using RMI on [1OP.
The clients are Java EJB and RMI clients. This remote naming service also
provide a global object naming service for finding server objects in the domain.
The WebL ogic Enterprise FactoryFinder, NameManager, and EventBroker
services are contained in separate system servers, and provide the underlying
infrastructure for global namespace management and replication. The WebL ogic
Enterprise INDI SPI implementation utilizes these WebL ogic Enterprise system
services for its global namespace management.

m A WebL ogic Enterprise application naming service for binding to and looking
up:
e Loca objectsin agiven Java server

e Named server objects throughout a WebL ogic Enterprise domain, and
imported cross-domain objects.

Thelocal objects include deployment information and resources provided to
applications within the containing environment of the server. The naming and
access conventions for these local objects conforms to the J2EE specifications.
Thereis aso aspecially named subcontext, w e. f act ori es, in this namespace,
which provides a mapping to the WebL ogic Enterprise

NameM anager/FactoryFinder for binding to and looking up global object
references.

Note: WebL ogic Enterprise CORBA Java clients continue to use the existing
WebL ogic Enterprise CosLifeCycle::FactoryFinder and CORBA naming
servicesto access named factory objects. Both the CORBA and JNDI naming
implementations share the same underlying namespace infrastructure and are
functionally equivalent. Both programming styles are supported by acommon
naming infrastructure.

Using the SPI Implementations for INDI 1-3

1 Using the SPI Implementations for JNDI

The JNDI API and SPI

The WebL ogic Enterprise SPl implementation for INDI is based on the Sun
Microsystems, Inc. INDI 1.2 and SPI specifications. The basic INDI framework
implementation is based on version 1.2 of the Sun Microsystems Inc. standard
extension classes.

The INDI API iscontained intwo packages: j avax. nani ng for the naming operations
and j avax. nani ng. di r ect ory for directory operations. The INDI SPI is contained
in the package j avax. nami ng. spi .

The Naming Interface — javax.naming

Thej avax. nam ng. Cont ext interface isthe coreinterface that specifies anaming
context. It defines basic operations such as adding a name-to-object binding, looking
up the object bound to a specified name, listing the bindings, removing a
name-to-object binding, and creating and destroying subcontexts of the same type.

Cont ext . | ookup() isthe most commonly used operation. The context
implementation can return an object of whatever classisrequired by the Java
application.

The application is not exposed to any naming service implementation. In fact, anew
type of naming service can be introduced without requiring the application to be
modified or even disrupted if it is running.

The Directory Interface — javax.naming.directory

The WebL ogic Enterprise SPI supports the external interfacesin thej avax. nani ng
and j avax. nani ng. spi packages. Thereis no WebL ogic Enterprise SPI support for
thedirectory interfacesinj avax. nami ng. di r ect or y. However, third-party directory
provider services can be plugged-in, as shown in “Unified Naming and Directory
Services” on page 1-7.

1-4 Using the SPI Implementations for INDI

The JNDI API and SPI

The Service Provider Interface — javax.naming.spi

The JNDI SPI alows different naming and directory service providersto develop and
integrate their implementati ons so that the corresponding services are accessible from
applications that use INDI. Also, INDI allows specification of names that span
multiple namespaces. If one service provider implementation needs to interact with
another in order to complete an operation, the SPI provides methods that allow
different provider implementations to cooperate to complete client INDI operations.

Additional WebLogic Enterprise SPI Implementations

In addition to the standard Sun Microsystems Inc. interfaces for the INDI AP,
WebL ogic Enterprise provides its own implementation that uses the standard JNDI
SPI interfaces. Thetwo I ni ti al Cont ext Fact ory classimplementations that are
provided in WebL ogic Enterprise are:

com beasys. j ndi . W.EI ni ti al Cont ext Factory
webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory

In your application code, you do not instantiate either of these classes directly. Instead

you use the standard j avax. nani ng. I ni ti al Cont ext class and set the appropriate
Hashtable keys, as documented in the section “Using the Remote Naming Service for
Client Connections and SSL Support” on page 1-8. All interaction is done through the
j avax. nami ng. Cont ext interface, as described in the JNDI Javadoc.

As a convenience to application programmers, WebLogic Enterprise also provides a
com beasys. j ndi . W.ECont ext interface. This interface extends

j avax. nami ng. Cont ext . There are some JNDI constants defined that you can use
with the JNDI environment. These constants are used for authentication on the

I ni tial Context, as explained in the section “WebLogic Enterprise Keys Required
for BEA TUXEDO Style Authentication” on page 1-11.

Using the SPI Implementations for INDI 1-5

1 Using the SPI Implementations for JNDI

WebLogic Enterprise JNDI Packaging

The server classes for WebL ogic Enterprise INDI are set automatically when the
JavaServer is booted.

The client classes for WebL ogic Enterprise INDI arein:
<drive>:\w edir\java\j dk\ nBenvobj .| ar
<drive>\wedir\java\jdk\w eclient.jar
<drive>:\w edir\java\jdk\w ej 2eecl . j ar

<drive>:\w edi r\java\j dk\ webl ogi caux. j ar

Verify that your CLASSPATH isset correctly. If necessary, set your CLASSPATH to
include the following JAR files:

Client on Windows NT:

set JDI R=9TUXDI R% j aval j dk

set CLASSPATH=. ; %Dl R% nBenvobj . jar; %D RAW eclient.jar;
%Dl RA W ej 2eecl . j ar; %Dl R% webl ogi caux. j ar

set JD R=
Client on UNIX:
export JDI R=${TUXDI R}/ ava/j dk

export CLASSPATH=. : ${JDI R}/ nBenvobj.jar:${IJDIR}/wW eclient.jar:
${IDI R}/ W ej 2eecl . jar: ${ID R}/ webl ogi caux. j ar

export JDI R=

Location of the WebLogic Enterprise JNDI Javadoc

On the following Javadoc start page under the installed WebL ogic Enterprise
directory, thereisahyperlink to the Sun Microsystems, Inc. INDI API documentation:

<drive>:\w edi r\docs\i ndex. htm

1-6 Using the SPI Implementations for INDI

Unified Naming and Directory Services

Unified Naming and Directory Services

The WebL ogic Enterprise INDI SPI implements the standard unified interface to
multiple naming and directory services. The implementation allows a WebL ogic
Enterprise J2EE Java application to connect to any naming and directory service, such
as LDAP, NDS, or NIS, if the appropriate third-party JNDI service provider is used.

WebL ogic Enterprise provides this support by utilizing and redistributing the standard
JINDI extension classes, provided by Sun Microsystemswith JINDI version 1.1.2. BEA
and any third-party vendors conforming to the JINDI Service Provide Interface (SPI)
may provide access to vendor-specific naming and directory services.

The following code fragment uses INDI to access a Sun Microsystems Inc. LDAP
service provider.

Hasht abl e env = new Hasht abl e();
/*
* Specify the initial context inplenentation to use.
* The service provider supplies the factory cl ass.
*

/
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,

"com sun. j ndi .| dap. LdapCt xFact ory");

/* Specify host and port of LDAP server */
env. put (Cont ext . PROVI DER_URL, "I dap:/ /| dap. bi gf oot.com 389");

/* Connect to the server and establish the initial context */
DirContext ctx = new InitialDrContext(env);

/* Access the LDAP directory using the context */

Using the SPI Implementations for INDI 1-7

1 Using the SPI Implementations for JNDI

Using the Remote Naming Service for Client
Connections and SSL Support

The WebL ogic Enterprise remote naming SPI providesan | ni ti al Cont ext
implementation that allows remote Java clientsto connect into aWebL ogic Enterprise
system. The client can specify standard JNDI context environment properties to
identify the WebL ogic Enterprise system and other related connection parameters for
logging into a WebL ogic Enterprise system.

To participatein asession with aWebL ogic Enterprise server application, aJavaclient
must be able to get an object reference for aremote object and invoke operations on
the object. To accomplish this, the client application code must perform the following:

m Step 1: Set Up INDI Environment Properties for the Initial Context
m Step 2: Establish an Initial Context with the WebL ogic Enterprise Domain
m Step 3: Use the Context to Look Up a Named Server Object

m Step 4: Use the Named Server Object to Get a Reference for the Desired Remote
Object, and Invoke Operations on the Remote Object

m Step 5: Complete the Session

Step 1: Set Up JNDI Environment Properties for the
Initial Context

1-8

All Javaremote client applications must first create environment properties. The

I ni tial Context factory usesvarious propertiesto customizethel ni ti al Cont ext
for a specific environment. Y ou can set these properties by using aHashtable. These
properties, which are name-to-value pairs, determine how the

WLEI ni ti al Cont ext Fact ory createsthe W.ECont ext :

Using the SPI Implementations for INDI

Using the Remote Naming Service for Client Connections and SSL Support

WLEContext.INITIAL_CONTEXT_FACTORY Property

Set this property to the WebL ogic Enterpriseinitial context factory,
com beasys. j ndi . W.EI ni ti al Cont ext Fact ory, to accessthe WebLogic
Enterprise domain and remote naming services.

The classcom beasys. j ndi . W.EI ni ti al Cont ext Fact ory providesthe
implementation for delegating JINDI methods to the WebL ogic Enterprise INDI
implementation. The class com beasys. j ndi . W.EI ni t i al Cont ext Fact ory
provides an entry point for a client into the WebL ogic Enterprise domain namespace.

For example:

Hasht abl e env = new Hashtabl e();
/*
* Specify the initial context inplenmentation to use.
* The service provider supplies the factory cl ass.
*

/
env. put (WLECont ext . | NI TI AL_CONTEXT_FACTORY,

"com beasys. j ndi . WLEI ni ti al Cont ext Factory");

WLEContext.PROVIDER_URL Property

Set the URL of the service provider with the property name
j ava. nami ng. provi der. url . This property value should specify an I|OP
Listener/Handler for the desired WebL ogic Enterprise target domain.

For example:

env. put (\WLECont ext . PROVI DER_URL,
"corbal oc:// myhost: 1000");

The URL isinterpreted directly by the Tobj_Bootstrap. The same syntax rules apply
to indicate the search order or equivalence of handler addresses. Y ou can also use the
URL to specify an SSL connection using thecor bal ocs: URL scheme. The
acceptable syntaxes for the URL are described in the Javadoc file for Tobj_Bootstrap.

Using the SPI Implementations for INDI 1-9

1 Using the SPI Implementations for JNDI

The host and port combination specified in the URL must match the ISL parameter in

the WebLogic Enterprise applicatioBBCONFI Gfile. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not matc
the communication with the WebLogic Enterprise domain fails.

A WebLogic Enterprise server that acts as a client should not specify this

Cont ext . PROVI DER_URL property because the server is already connected to the
application in which it is booted. If this property is specified on the server it must be
set to an empty string or null values.

WLEContext.SECURITY_AUTHENTICATION Property

1-10

The WebLogic Enterprise system supports different levels of authentication. The
SECURI TY_AUTHENTI CATI ON value determines whether certificate-based SSL
authentication is attempted or BEA TUXEDO style authentication is used.

Valid values for this property key at@ne” |, “simple” , or “strong” , as
recommended by the Sun Microsystems Inc. INDI specification.

For example:

env.put(WLEContext. SECURITY_AUTHENTICATION,
"strong");

If you explicitly specify WLEContext. SECURITY_AUTHENTICATION="none", this
setting causes WebL ogic Enterprise client software to bypass all security setup on the
initial connection. If you do not include the

WLEContext. SECURITY_AUTHENTICATION property at al, the default behavior isfor
the client code to check the current security level on the target domain and check for
any required authentication parameters. Y ou can explicitly set

WLEContext. SECURITY_AUTHENTICATION="none" if your intentionisto bypassthe
security level checking and authentication setup on the client. This might be done, for
example, in a case where you know there is no authentication required on the target
domain and you want to optimize performance. However, if authentication isrequired
on the target domain and the WLEContext. SECURITY_AUTHENTICATION="none” , a
security exception might be generated until the client later attempts to access an object
on the server.

Using the SPI Implementations for INDI

Using the Remote Naming Service for Client Connections and SSL Support

If you specify the“strong” value, certificate-based authentication is attempted using
SSL protocols. Thisisimplemented using the CORBA
PrincipalAuthenticator.authenticate method with an

AuthenticationMethod value of CertificateBased

If the SECURITY_AUTHENTICATION/alue is i npl e” or is not specified, BEA

TUXEDO style authentication is used. See the next section for information about the
WebLogic Enterprise specific keys used to support BEA TUXEDO style
authentication.

WebLogic Enterprise Keys Required for BEA TUXEDO Style Authentication

The WebLogic Enterprise specific property keys in this section provide the additional
parameters needed for BEA TUXEDO style authentication. For example:

Hasht abl e env = new Hasht abl e() ;
env. put (WLECont ext . PROVI DER_URL, "corbal oc://nyhost: 1000");
env. put (WLECont ext . | NI TI AL_CONTEXT_FACTORY,

"com beasys. j ndi . WLEI ni ti al Cont ext Factory");

// Add Aut hentication paraneters

env. put (WLECont ext . SECURI TY_AUTHENTI CATI ON, "si nple");
env. put (\WLECont ext . SYSTEM PASSWORD, "RM ") ;

env. put (WLECont ext . SECURI TY_PRI NCI PAL, "user");

env. put (WLECont ext . CLI ENT_NAME, "client");

env. put (WLECont ext . SECURI TY_CREDENTI ALS, "userpw');

Context ctx = new I nitial Context(env);

The property keys are as follows:
W.ECont ext . SECURI TY_PRI NCI PAL

Specifies the identity of the principal for authenticating the caller to the WebLogic
Enterprise domain.

WLECont ext . SECURI TY_CREDENTI ALS

Specifies the credentials of the principal for authenticating the caller to the WebLogic
Enterprise domain. For SSL certificate-based authentication, enabled via
SECURITY_AUTHENTICATION="strong”, it specifiesapass phrasefor accessing the
private key and client certificate. For BEA TUXEDO style authentication, it identifies

a String user password ~ or an arbitrary Object user_data for the BEA TUXEDO
AUTHSVC

WLECont ext . CLI ENT_NAVME

Using the SPI Implementations for INDI 1-11

1 Using the SPI Implementations for JNDI

Specifies the client name for BEA TUXEDO style authentication.
WLECont ext . SYSTEM PASSWORD

Specifies the system password for BEA TUXEDO style authentication.
WLECont ext . CODEBASE

Specifies the URL for network class loading.

Step 2: Establish an InitialContext with the WebLogic
Enterprise Domain

1-12

Toaccessaservice provider using JNDI, you createan | ni ti al Cont ext and identify
a context factory, which creates the context for a certain provider.

To access a WebL ogic Enterprise domain, use the WebL ogic Enterprise context

factory, “com.beasys.jndi.WLEInitialContextFactory " as an argument. After
the context is created, it provides client access to factory names in the WebLogic
Enterprise domain using WebLogic Enterprise as the name service provider.

To create a WebLogic Enterprise remote domain context from a remote Java client,
you must minimally specify this factory as the initial context factory, and specify the
JNDI environment as properties passed to the constructor bfitheal Cont ext .

The following example shows how to setup the initial environment properties and
create the initial context:

Hasht abl e env = new Hasht abl e() ;

/*

* Specify the initial context inplenentation to use.

* This exanple will access the renpte W.E donmin context.
*/

env. put (WLECont ext . | NI TI AL_CONTEXT _FACTORY,

"com beasys. jndi . W.EI ni ti al Cont ext Factory");

/ *
* Specify host and port of ISL/ISH gateway — this is only
* specified for remote clients.
*
/
env.put(WLEContext.PROVIDER _URL, "corbaloc://myhost:1000");

/* Connect to the domain and establish the initial context */
Context ctx = new InitialContext(env);

Using the SPI Implementations for INDI

Using the Remote Naming Service for Client Connections and SSL Support

Step 3: Use the Context to Look Up a Named Server
Object

The client application must obtain an initial object that provides services for the
application. This object is named by the server and is bound to the domain namespace.

For EJB applications this object is usually an EJB Home object and provides
references to other remote objectsin the application. The | ookup method on the
Cont ext object is used to obtain this named object. The argument passed to the
| ookup method is a string that contains the name of the desired server object.

The following code fragment shows how to get access to a named server object:

CartHome cartHome = (CartHome) ctx.lookup(“johns-carts”);

Step 4: Use the Named Server Object to Get a Reference
for the Desired Remote Object, and Invoke Operations on
the Remote Object

CORBA client applications get object referencesto other CORBA remote objectsfrom
factories.

EJB client applications get object referencesto EJB remote objects from EJB Homes.

RMI client applications can also get object references to other RMI remote objects
from an initial named object.

All of these initial named remote objects are known to the WebL ogic Enterprise

system generically as a “factory”.fActory is any server object that can return a
reference to another remote object and is bound into the WebLogic Enterprise domain
namespace.

Using the SPI Implementations for INDI 1-13

1 Using the SPI Implementations for JNDI

The client application invokes a method on afactory to obtain areference to aremote
object of a specific class. The client applications then invoke methods on the remote
object, passing any arguments that it requires.

The following code fragment obtains the desired remote object, and then invokes a
method on the remote object:

Cart cart = cartHome.create(“John”, “7506");

cart.addItem(66);

Step 5: Complete the Session

After aclient isfinished working with a context, the client should close the context in
order to release resources for the session and implicitly logoff. For example:

try {
ctx.close();

} catch (Exception e) {
/Il a failure occurred

}

Providing Remote Client Access to the
UserTransaction Interface

The Java Transaction API (JTA) defines the UserTransaction interface that is used by
applications to start and commit or abort transactions. An application client gets a
UserTransaction object through a INDI lookup by using the name
“java:comp/UserTransaction”.

For example:
Context initCtx = new InitialContext(env);
UserTransaction utx = (UserTransaction)initCtx.lookup(

“java:comp/UserTransaction”);
utx.begin();

1-14 Using the SPI Implementations for INDI

Using the Application Naming Service to Access Local Objects

utx.comit();

Using the Application Naming Service to
Access Local Objects

The WebL ogic Enterprise application naming SPI provides an application naming
service for both:

m Local objectson agiven Java server
m Global object references known throughout the domain

By default the root context and any application-created subcontexts are mapped into a
local namestore on the server. Thislocal namestore allows Java server applicationsto
accesslocal objectsusing standard JINDI conventions. This application naming service
supports a hierarchical namespace and the creation of subcontexts.

Note: Thereisalso apredefined subcontext namedw e. f act ori es thatismapped
to the FactoryFinder/NameM anager servicesin the WebL ogic Enterprise
domain. This global context is discussed in the section “Accessing the
Factories Subcontext” on page 1-17.

If an application running on a WebLogic Enterprise server, such as an EJB or RMI
object, needs access to local objects in the current JavaServer, it can create a JNDI
Context. Because the object making the call is already logically in the environment of
the server, there is no need to specify environment properties to access the default
application namespace.

To create a context from within a server-side object, all you need to do is construct a
newl nitial Context. For example:

Context ctx = new Initial Context();

You do not need to specify a factory or a provider URL. By default, the context will
be created as a WebLogic Enterprise application context and will connect to the default
naming service.

Using the SPI Implementations for INDI 1-15

1 Using the SPI Implementations for JNDI

Using the Application Naming Service to
Access Global Objects

This section describes the foll owing topics about using the WebL ogic Enterprise
application naming service to access global objects:

m Overview of Features

m Accessing the Factories Subcontext

m Binding Objectsinto the Factories Subcontext

m Unbinding Objects from the Factories Subcontext
m J2EE Requirements

m Cross-Domain Support

Overview of Features

1-16

The WebL ogic Enterprise application naming SPI provides an application naming
service for both:

m Local objectson agiven Java server, as described in the previous section,
“Using the Application Naming Service to Access Local Objects” on page 1-15.

m Global object references known throughout the domain, as described in this
section.

The WebLogic Enterprise application naming SPI provides a specially identified
named subcontexj e. f act ori es, that provides naming services for server objects
identified throughout a WebLogic Enterprise domain.

The WebLogic Enterprise application naming SPI also provides support for named
objects imported from other domains via the FactoryFinder cross-domain feature. Thi
subcontext uses the WebLogic Enterprise FactoryFinder and NameManager service

Using the SPI Implementations for INDI

Using the Application Naming Service to Access Global Objects

to manageitsbindings. To increase availability and reliability, you can create multiple
FactoryFinders and NameManagers in the event one FactoryFinder or NameM anager
fails.

Thew e. f act ori es subcontext is mapped directly into the namespace managed by
the FactoryFinder and NameManager. This subcontext is aflat namespace:

m |tisasingle-level INDI subcontext, without any imbedded subcontexts

m All remote objects bound into the namespace are known throughout the
WebL ogic Enterprise domain

The underlying namespace is also used by CORBA clients, and is extended via JNDI
to support EJB and RMI clients. The CORBA client usesthe CORBA FactoryFinder
to access remote CORBA factory objects. An EJB or RMI client uses INDI to access
registered remote objects. An application may choose to implement naming
conventionsif it is desirable to prevent name collisions or to partition the namespace
using its own syntax conventions.

Accessing the Factories Subcontext

Remote Java clients access the WebL ogic Enterprise domain namespace using the
procedures described in the section “Using the Remote Naming Service for Client
Connections and SSL Support” on page 1-8. Remote clients may pérfokip
methods on the remote context, but cannot perform binding methods on the
namespace.

Server applications access the WebLogic Enterprise domain namespace by using the
wl e. fact ori es subcontext under the defaulii t i al Cont ext on the server. The

server initializes thed e. f act or i es subcontext to the domain namespace in which it

is booted. Server applications have full access to the subcontext and may bind objects
into it. In the following example, a server object connects to the factories subcontext:

/* Get a default context and retrieve the factories subcontext */

Context rootCtx = new Initial Context();
Context factoryCtx = (Context) rootCtx.lookup(“wle.factories”);

Using the SPI Implementations for INDI 1-17

1 Using the SPI Implementations for JNDI

Binding Objects into the Factories Subcontext

Server applications can create named objects in the domain namespace, which then
allows client applications to easily locate the objects managed by the server. These
objects are usually factories so that client applications can obtain references to other
remote objectsin the application from theinitial named objects. The binding of named
remote objects into the domain namespace is typically the final step of the server
application initialization process.

Note: For EJB applications the named factories are called Home objects. The EJB
bean provider code does not need to explicitly bind the Homeinto the Context.
The binding operation is done automatically by the EJB Container during
server deployment, based on the bean-name in the deployment descriptor.

Tousean object inthe WebL ogic Enterprise domain namespace, WebL ogic Enterprise
requires that objects returned by lookup must be remotely accessed from the client in
aformthat preservesits functionality. Thusit must be known to WebL ogic Enterprise
as aremote object. What is actually stored in the underlying WebL ogic Enterprise
NameManager is a mapping from the registered name to the WebL ogic Enterprise
remote object reference.

The sample program in Listing 1-1 shows how to bind an RM| remote object into the
WebL ogic Enterprise factories context during server startup. This makes the object
available to clients who wish to lookup the object by name. The sample a so shows
how to remove the object from the INDI context during server shutdown.

Listing1-1 Sample bind.java Program

i mport javax.nam ng.*; /'l Use standard JNDI 1.2 interfaces

public class Serverlnpl extends com beasys. Tobj . Server {
static final String factoryNane = "Si npFactory";
Si mpFact oryl npl factory;
Cont ext factoryCtx;

/1 The initialize method is called during JavaServer startup
public boolean initialize(String[] argv) {

try {

/|l Get the "w e.factories" subcontext fromthe default Initial Context

factoryCtx = (Context) new Initial Context().!|ookup("w e.factories");

1-18 Using the SPI Implementations for INDI

Using the Application Naming Service to Access Global Objects

/1l Create the factory and make it available to clients via JNDI
fact oryC x. bi nd(fact oryNane, new Si npFactoryl npl ());
} catch (Exception e) {
e.printStackTrace();
return fal se;
}

return true;

}

/1 The release nmethod is called during JavaServer shutdown
public void release() {
try {
/1 Rermove the binding fromthe "we.factories" subcontext
fact oryCt x. unbi nd(f act or yNane) ;
} catch (Exception e) {
e.printStackTrace();
}
}
}

Unbinding Objects from the Factories Subcontext

Once a server application receives arequest to shut down, the server application can
no longer receive requestsfrom clients. During server shutdown it should unbind each
of the objects previously bound into the namespace.

/'l Renmove this factory reference fromthe W.E nanespace
fact oryC x. unbi nd(tel | er Fnanme) ;

J2EE Requirements

The enterprise beantdome interface defines the methods for the client to create,
remove, and find EJB objects of the same type. That is, they are implemented by the
same enterprise bean. The Home interface is specified by the Bean Provider. The
Container creates a class that implements the Home interface. The Home interface
extends th¢avax. ej b. EJBHone interface.

The container is responsible for making the Home interfaces of the deployed enterprise
beans available to the client through JNDI. A client can locate an enterprise Bean
Home interface through the WebLogic Enterprise JNDI remote namespace provider.

Using the SPI Implementations for INDI 1-19

1 Using the SPI Implementations for JNDI

When an EJB-JAR module is deployed into a WebL ogic Enterprise JavaServer, the
runtime system will automatically read the deployment descriptor and bind the remote
Home into the INDI factories subcontext.

Cross-Domain Support

For multidomain configurations the FactoryFinder supports access to named object
references in another domain. Y ou or your administrator define domain parametersin
the application’®©MCONFI G configuration file. The WebLogic Enterprise application
naming service is built on top of the FactoryFinder. When the FactoryFinder is
configured for multidomain naming support, cross-domain names are available
through the WebLogic Enterprise application namespace.

The domain of an object reference is unknown to the application, and invocations ol
an object reference for a remote domain are transparent to the application. This
transparency allows administrators to configure services in individual domains and t
spread resources across multiple domains. Administrators are required to identify ar
named remote objects that can be used in the current (local) domain, but that are
resident in a different (remote) domain. You identify these objects in a FactoryFindel
domain configuration file namedact ory_fi nder. i ni . This is an ASCII file that

can be created and updated using a text editor.

For related information, s&eonfiguring Multiple Domains (WebLogic Enterprise
System)in the WebLogic Enterprise online documentation.

The J2EE Naming Context

This section describes the following topics about the J2EE naming context:
m Overview of Requirements

m Accessing Environment Entries

m Using EJB References

m Obtaining Resource Factory References

1-20 Using the SPI Implementations for INDI

The J2EE Naming Context

m Obtaining a UserTransaction Object

Overview of Requirements

The Sun Microsystems Inc. J2EE specification at ht t p: // j ava. sun. con j 2ee/
identifies specific INDI requirements for an enterprise component to access named
objects and external resourcesin a uniform manner. These requirements include:

1. Anapplication component naming environment, for generic customization of the
application component’s business logic

2. Interfaces for obtaining the Home interface of an enterprise bean, using an EJB
reference

An EJB referenceis a special entry in the application component’s
environment.

3. Interfaces for obtaining a resource factory, using a resource factory reference

A resource factory reference is a special entry in the application component’s
environment.

4. Interfaces for obtaining the JTé&er Tr ansact i on interface to start, commit,
and abort transactions

Accessing Environment Entries

An EJB component instance locates the environment naming context using the JNDI
interfaces. An instance createjsaaax. nani ng. | ni ti al Cont ext object by using

the constructor with no arguments, and looks up the naming environment via the

I ni tial Context under the namjava: conp/ env.

The EJB’s environment entries are stored directly in the environment naming context,
or in any of its direct or indirect subcontexts. The value of an environment entry is of
the Java type declared by the Bean Provider in the deployment descriptor. The

environment entries are declared using<es- ent ry> elements in the deployment
descriptor.

The following code fragment shows how an EJB accesses its environment entries:

Using the SPI Implementations for INDI 1-21

http://java.sun.com/j2ee/

1 Using the SPI Implementations for JNDI

public void setTaxlnfo(int nunber Of Exenptions, ...)
throws I nval i dNunber Of Exenpti onsException {

// Obtain the application component’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup(“java:comp/env");

/I Obtain the maximum number of tax exemptions
/I configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
/I configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

/I Use the environment entries to customize business logic.
if (numberOfExeptions > max.intValue() ||
numberOfExemptions < min.intValue())
throw new InvalidNumberOfExemptionsException();

/I Get some more environment entries. These environment
// entries are stored in subcontexts.

String vall = (String)myEnv.lookup(“foo/namel”);

Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

/I The application component can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup(“java:comp/env/name3");

Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");

Using EJB References

This section describes the programming and deployment descriptor interfaces that

allow the Bean Provider to refer to the Homes of enterprise beans using logical names

called EJB references. The EJB references are special entries in the EJB’s
environment. The Deployer binds the EJB references to the enterprise bean’s Home
interfaces in the WebLogic Enterprise operational environment.

1-22 Using the SPI Implementations for INDI

The J2EE Naming Context

The deployment descriptor also allows the Application Assembler to link an EJB
reference declared in one application component to an enterprise bean contained in an
EJB-JAR filein the same J2EE application. Thelink isan instruction to the tools used
by the Deployer that the EJB reference should be bound to the home of the specified
target enterprise bean.

Thefollowing example shows how an application component uses an EJB referenceto
locate the Home interface of an enterprise bean:

public void changePhoneNunmber(...) {

// Obtain the default initial JND context.
Context initCtx = new Initial Context();

/1 Look up the honme interface of the Enpl oyeeRecord
I/ enterprise bean in the environnent.

oj ect result = initCtx.lookup(

"java: conp/ env/ ej b/ Enpl Record");

/1 Convert the result to the proper type.

Enpl oyeeRecor dHone enpl Recor dHone = (Enpl oyeeRecor dHone)
javax.rm . Portabl eRenpt eObj ect. narrow(resul t,
Enpl oyeeRecor dHon®e. cl ass");

}

In the previous example, the Bean Provider assigned the environment entry

ej b/ Enpl Recor d asthe EJB reference name to refer to the Home of an enterprise
bean. The Bean Provider must declare all the EJB references using the <ej b- r ef >
elements of the deployment descriptor.

Obtaining Resource Factory References

A resourceisan object that encapsul ates access to a resource manager. A resource
factory isan object that is used to create resources. For example, an object that
implementsthej ava. sql . Connect i on interfaceisaresourcethat provides accessto
a database management system, and an object that implements the

j avax. sql . Dat aSour ce interface is aresource factory.

Using the SPI Implementations for INDI 1-23

1 Using the SPI Implementations for JNDI

This section describes the application component programming and deployment

descriptor interfaces that allow the application component code to refer to resource
factoriesusing logical names called resourcefactory references. Theresour cefactory
references are special entries in the EJB’s environment. The Deployer binds the
resource factory references to the actual resource factories in the WebLogic Enterpri:
operational environment.

The following code fragment illustrates obtaining a resource:

public void changePhoneNunber(...) {

/1 obtain the initial JND context
Context initCtx = new Initial Context();

/1 performJNDI | ookup to obtain resource factory
j avax. sql . Dat aSource ds = (javax. sql . Dat aSour ce)
initCQx.lookup("java: conp/ env/jdbc/ Enpl oyeeAppDB");

/1 1nvoke factory to obtain a resource.
j ava. sgl . Connection con = ds. get Connection();

}

The Bean Provider must declare all the resource factory references in the deployme
descriptor using ther esour ce- r ef > elements.

Obtaining a UserTransaction Object

1-24

Many J2EE application component types are allowed to use the JTA

User Tr ansact i on interface to start, commit, and abort transactions. Such application
components can find an appropriate object that implementgthdr ansacti on
interface by looking up the JNDI narheva: conp/ User Tr ansact i on.

The container is only required to proviflava: conp/ User Tr ansact i on for those
components that can make valid use of it. Any suseh Tr ansact i on object is only

valid within the component instance that performed the lookup. Only some applicatior
component types are required to have accessMderar ansact i on object. For

details, refer to the Sun Microsystems Inc. EJB 1.1 specification.

Using the SPI Implementations for INDI

The J2EE Naming Context

Note: For your convenience, a PDF copy of the EJB 1.1 specification isincluded
with the WebL ogic Enterprise online documentation. To accessthe HTML
page that includes a copy of the EJB 1.1 specification, click the PDF Files
button at the top of aWebL ogic Enterprise online documentation HTML page.

The following example illustrates how an application component acquires and uses a
UserTransaction object:

public void updateData(...) {

/] Cbtain the default initial JND context.
Context initCtx = new Initial Context();

/1 Look up the UserTransaction object.
User Transaction tx = (UserTransaction)initCtx. | ookup(
"java: conp/ User Transaction");

/]l Start a transaction.
t x. begi n();

/1 Performtransactional operations on data.

/1 Conmit the transaction.
tx.commt();

Using the SPI Implementations for INDI 1-25

1 Using the SPI Implementations for JNDI

1-26 Using the SPI Implementations for INDI

Index

A

accessing environment entries 1-21
application naming service

global objects 1-16

local objects 1-15
authentication

TUXEDO style 1-11

BEA TUXEDO
authentication properties 1-11

C

CLASSPATH

setting for WLE JAR files 1-6
client access

to UserTransaction 1-14
CLIENT_NAME property key 1-11
completing asession 1-14
connecting remote Java clients 1-8
cross-domain support 1-20
customer support contact information vii

D

directory service

definition 1-2
directory services 1-7
documentation, whereto find it v
domains

interdomain support 1-20

E

EJB

using references 1-22
environment naming context 1-21
establishing initial context 1-12

F

factories
resource references 1-23
using to get remote objects 1-13

G

global objects
using application naming service 1-16

H

hashtables
setting environment properties 1-8

initial context
establishing 1-12
INITIAL_CONTEXT_FACTORY property
1-9
Initial ContextFactory class 1-5

Using the SPI Implementations for INDI -1

Introduction

WLE JNDI SPI implementation 1-2

J
JAR packages

for WLE 1-6
java

comp/env initial context 1-21
Java archivefiles 1-6
Javadoc

location 1-6
javax.ejb.EJBHome interface 1-19
javax.naming interface 1-4
javax.naming.spi interface 1-5
JNDI

looking up server objects 1-13

M
m3.jar file 1-6
m3envobj.jar file 1-6

N

named server objects
looking up 1-13
naming context
environment 1-21
naming interface 1-4
naming service
definition 1-2
naming services 1-7
none security property 1-10

0

objects
looking up viaJNDI 1-13
obtaining UserTransaction 1-24

obtaining resource factory references 1-23

[-2 Using the SPI Implementations for INDI

P
packages
JAR files 1-6
passwords
SYSTEM_PASSWORD property key 1-
11
printing product documentation vi
PROVIDER_URL property 1-9

R

references

EJB 1-22
related information vi
remote clients

accessto UserTransaction 1-14
remote Java clients

connecting into WLE 1-8
remote naming service 1-8
remote objects

accessing viaafactory 1-13
resource factory references 1-23

S

SECURITY_AUTHENTICATION property
1-10
SECURITY_CREDENTIALS property key
1-11
SECURITY_PRINCIPAL property key 1-11
server objects
looking up 1-13
Service Provider Interface (SPI)
overview 1-3
sessions
completing 1-14
simple security property 1-10
SPI implementation
overview 1-3
strong security property 1-10
support

technical vii
SYSTEM_PASSWORD property key 1-11

T

TUXEDO
authentication properties 1-11

U

UserTransaction interface

providing remote client access 1-14
UserTransaction objects

obtaining 1-24

W
weblogicaux.jar file 1-6
wleclient.jar file 1-6
WLEContext
setting environment properties 1-9
WL EInitial ContextFactory
setting 1-12
WL ElInitial ContextFactory class 1-5
WL Initial ContextFactory class 1-5

Using the SPI Implementations for INDI

-3

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Using the SPI Implementations for JNDI
	Overview of JNDI in WebLogic Enterprise
	The JNDI API and SPI
	The Naming Interface — javax.naming
	The Directory Interface — javax.naming.directory
	The Service Provider Interface — javax.naming.spi
	Additional WebLogic Enterprise SPI Implementations
	WebLogic Enterprise JNDI Packaging
	Location of the WebLogic Enterprise JNDI Javadoc

	Unified Naming and Directory Services
	Using the Remote Naming Service for Client Connections and SSL Support
	Step 1: Set Up JNDI Environment Properties for the Initial Context
	WLEContext.INITIAL_CONTEXT_FACTORY Property
	WLEContext.PROVIDER_URL Property
	WLEContext.SECURITY_AUTHENTICATION Property
	WebLogic Enterprise Keys Required for BEA TUXEDO Style Authentication

	Step 2: Establish an InitialContext with the WebLogic Enterprise Domain
	Step 3: Use the Context to Look Up a Named Server Object
	Step 4: Use the Named Server Object to Get a Reference for the Desired Remote Object, and Invoke ...
	Step 5: Complete the Session

	Providing Remote Client Access to the UserTransaction Interface
	Using the Application Naming Service to Access Local Objects
	Using the Application Naming Service to Access Global Objects
	Overview of Features
	Accessing the Factories Subcontext
	Binding Objects into the Factories Subcontext
	Unbinding Objects from the Factories Subcontext
	J2EE Requirements
	Cross-Domain Support

	The J2EE Naming Context
	Overview of Requirements
	Accessing Environment Entries
	Using EJB References
	Obtaining Resource Factory References
	Obtaining a UserTransaction Object

	Index

