
Using the SPI

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Implementations for JNDI

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the SPI Implementations for JNDI

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Using the SPI Implementations for JNDI iii

Contents

About This Document
What You Need to Know ..v

e-docs Web Site...v

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions ... viii

1. Using the SPI Implementations for JNDI
Overview of JNDI in WebLogic Enterprise .. 1-2

The JNDI API and SPI .. 1-4

The Naming Interface — javax.naming... 1-4

The Directory Interface — javax.naming.directory 1-4

The Service Provider Interface — javax.naming.spi 1-5

Additional WebLogic Enterprise SPI Implementations............................. 1-5

WebLogic Enterprise JNDI Packaging .. 1-6

Location of the WebLogic Enterprise JNDI Javadoc................................. 1-6

Unified Naming and Directory Services ... 1-7

Using the Remote Naming Service for Client Connections and SSL Support.. 1-8

Step 1: Set Up JNDI Environment Properties for the Initial Context 1-8

WLEContext.INITIAL_CONTEXT_FACTORY Property................ 1-9

WLEContext.PROVIDER_URL Property.. 1-9

WLEContext.SECURITY_AUTHENTICATION Property............. 1-10

WebLogic Enterprise Keys Required for BEA TUXEDO Style
Authentication.. 1-11

Step 2: Establish an InitialContext with the WebLogic Enterprise
Domain.. 1-12

iv Using the SPI Implementations for JNDI

Step 3: Use the Context to Look Up a Named Server Object 1-13

Step 4: Use the Named Server Object to Get a Reference for the Desired
Remote Object, and Invoke Operations on the Remote Object 1-13

Step 5: Complete the Session ... 1-14

Providing Remote Client Access to the UserTransaction Interface 1-14

Using the Application Naming Service to Access Local Objects 1-15

Using the Application Naming Service to Access Global Objects.................. 1-16

Overview of Features ... 1-16

Accessing the Factories Subcontext ... 1-17

Binding Objects into the Factories Subcontext .. 1-18

Unbinding Objects from the Factories Subcontext 1-19

J2EE Requirements .. 1-19

Cross-Domain Support ... 1-20

The J2EE Naming Context .. 1-20

Overview of Requirements... 1-21

Accessing Environment Entries ... 1-21

Using EJB References .. 1-22

Obtaining Resource Factory References .. 1-23

Obtaining a UserTransaction Object .. 1-24

Index

Using the SPI Implementations for JNDI v

About This Document

This document explains how to use the BEA WebLogic Enterprise™ Service Provider
Interface (SPI) implementations for Java Naming and Directory Interface (JNDI) in
WebLogic Enterprise applications. The information in this document supplements the
Sun Microsystems, Inc. JNDI 1.2 Specification for the SPI. The basic JNDI framework
implementation in WebLogic Enterprise is based on version 1.2 of the Sun
Microsystems, Inc. standard extension classes.

What You Need to Know

This document is intended mainly for programmers and system administrators who
need to create and maintain transactional, scalable WebLogic Enterprise applications.

e-docs Web Site

The BEA BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.

vi Using the SPI Implementations for JNDI

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Enterprise documentation Home page, click the PDF Files button and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

For more information about topics covering Java 2 Enterprise Edition (J2EE),
distributed object computing, transaction processing, and Java programming, see the
Bibliography in the WebLogic Enterprise online documentation. In addition, the
following online and printed documents may be of interest to developers using JNDI.

Java 2 Platform Enterprise Edition home page, Sun Microsystems, Inc., at
http://java.sun.com/j2ee/

JNDI Executive Summary, Sun Microsystems, Inc., at
ftp://ftp.javasoft.com/docs/jndi/1.2/execsumm.pdf

JNDI: Java Naming and Directory Interface, Version 1.2, Sun Microsystems, Inc., at
ftp://ftp.javasoft.com/docs/jndi/1.2/jndi.pdf

JNDI SPI: Java Naming and Directory Service Provider Interface, Version 1.2, Sun
Microsystems, Inc., at ftp://ftp.javasoft.com/docs/jndi/1.2/jndispi.pdf

JNDI 1.2 API and SPI Specification, Sun Microsystems, Inc., in Javadoc format at
http://java.sun.com/products/jndi/1.2/javadoc/index.html

How to Print the Document

Using the SPI Implementations for JNDI vii

Enterprise JavaBeans, Version 1.1, Sun Microsystems, Inc., at
http://java.sun.com/products/ejb/javadoc-1.1/

Java Transaction API (JTA) Version 1.0.1, Sun Microsystems, Inc., at
http://java.sun.com/products/jta/

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

viii Using the SPI Implementations for JNDI

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Documentation Conventions

Using the SPI Implementations for JNDI ix

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

x Using the SPI Implementations for JNDI

Using the SPI Implementations for JNDI 1-1

CHAPTER

1 Using the SPI
Implementations for
JNDI

This topic includes the following sections:

n Overview of JNDI in WebLogic Enterprise

n The JNDI API and SPI

n Unified Naming and Directory Services

n Using the Remote Naming Service for Client Connections and SSL Support

l Step 1: Set Up JNDI Environment Properties for the Initial Context

l Step 2: Establish an InitialContext with the WebLogic Enterprise Domain

l Step 3: Use the Context to Look Up a Named Server Object

l Step 4: Use the Named Server Object to Get a Reference for the Desired
Remote Object, and Invoke Operations on the Remote Object

l Step 5: Complete the Session

n Providing Remote Client Access to the UserTransaction Interface

n Using the Application Naming Service to Access Local Objects

n Using the Application Naming Service to Access Global Objects

l Overview of Features

l Accessing the Factories Subcontext

1 Using the SPI Implementations for JNDI

1-2 Using the SPI Implementations for JNDI

l Binding Objects into the Factories Subcontext

l Unbinding Objects from the Factories Subcontext

l J2EE Requirements

l Cross-Domain Support

n The J2EE Naming Context

l Overview of Requirements

l Accessing Environment Entries

l Using EJB References

l Obtaining Resource Factory References

l Obtaining a UserTransaction Object

Overview of JNDI in WebLogic Enterprise

In the enterprise, naming and directory services provide the means for your application
to locate objects on the network. These services are key to building distributed
applications. A naming service provides a mechanism to name objects and retrieve
objects by name. A directory service is a naming service that also allows for attributes
to be associated with each object, and provides a way to retrieve an object by its
attributes instead of its name.

The Java Naming and Directory Interface (JNDI) is an API that provides directory and
naming services to Java applications. JNDI is an integral component of the Sun
Microsystems Java 2 Platform Enterprise Edition (J2EE) technology.

JNDI is defined to be independent of any specific naming or directory service
implementation. A variety of services, new and existing ones, can be accessed in a
common way. The JNDI Service Provider Interface (SPI) provides a means by which
different naming and directory providers can develop and integrate their
implementations so that the corresponding services are accessible from applications
that use JNDI.

Overview of JNDI in WebLogic Enterprise

Using the SPI Implementations for JNDI 1-3

The JNDI support provided in the WebLogic Enterprise software leverages from the
standard Sun Microsystems, Inc., JNDI API classes. This support allows any
service-provider implementation to be plugged into the JNDI framework using the
standard SPI conventions. The support allows Java applications in WebLogic
Enterprise to access external directory services such as LDAP in a standardized
fashion, by plugging in the appropriate service-provider.

In addition, BEA provides two WebLogic Enterprise specific SPI implementations to
enable access to naming features in the WebLogic Enterprise system. The WebLogic
Enterprise SPI provides the following features:

n A WebLogic Enterprise remote naming service that provides a point of entry
into the WebLogic Enterprise system for remote Java clients using RMI on IIOP.
The clients are Java EJB and RMI clients. This remote naming service also
provide a global object naming service for finding server objects in the domain.
The WebLogic Enterprise FactoryFinder, NameManager, and EventBroker
services are contained in separate system servers, and provide the underlying
infrastructure for global namespace management and replication. The WebLogic
Enterprise JNDI SPI implementation utilizes these WebLogic Enterprise system
services for its global namespace management.

n A WebLogic Enterprise application naming service for binding to and looking
up:

l Local objects in a given Java server

l Named server objects throughout a WebLogic Enterprise domain, and
imported cross-domain objects.

The local objects include deployment information and resources provided to
applications within the containing environment of the server. The naming and
access conventions for these local objects conforms to the J2EE specifications.
There is also a specially named subcontext, wle.factories, in this namespace,
which provides a mapping to the WebLogic Enterprise
NameManager/FactoryFinder for binding to and looking up global object
references.

Note: WebLogic Enterprise CORBA Java clients continue to use the existing
WebLogic Enterprise CosLifeCycle::FactoryFinder and CORBA naming
services to access named factory objects. Both the CORBA and JNDI naming
implementations share the same underlying namespace infrastructure and are
functionally equivalent. Both programming styles are supported by a common
naming infrastructure.

1 Using the SPI Implementations for JNDI

1-4 Using the SPI Implementations for JNDI

The JNDI API and SPI

The WebLogic Enterprise SPI implementation for JNDI is based on the Sun
Microsystems, Inc. JNDI 1.2 and SPI specifications. The basic JNDI framework
implementation is based on version 1.2 of the Sun Microsystems Inc. standard
extension classes.

The JNDI API is contained in two packages: javax.naming for the naming operations
and javax.naming.directory for directory operations. The JNDI SPI is contained
in the package javax.naming.spi.

The Naming Interface — javax.naming

The javax.naming.Context interface is the core interface that specifies a naming
context. It defines basic operations such as adding a name-to-object binding, looking
up the object bound to a specified name, listing the bindings, removing a
name-to-object binding, and creating and destroying subcontexts of the same type.

Context.lookup() is the most commonly used operation. The context
implementation can return an object of whatever class is required by the Java
application.

The application is not exposed to any naming service implementation. In fact, a new
type of naming service can be introduced without requiring the application to be
modified or even disrupted if it is running.

The Directory Interface — javax.naming.directory

The WebLogic Enterprise SPI supports the external interfaces in the javax.naming
and javax.naming.spi packages. There is no WebLogic Enterprise SPI support for
the directory interfaces in javax.naming.directory. However, third-party directory
provider services can be plugged-in, as shown in “Unified Naming and Directory
Services” on page 1-7.

The JNDI API and SPI

Using the SPI Implementations for JNDI 1-5

The Service Provider Interface — javax.naming.spi

The JNDI SPI allows different naming and directory service providers to develop and
integrate their implementations so that the corresponding services are accessible from
applications that use JNDI. Also, JNDI allows specification of names that span
multiple namespaces. If one service provider implementation needs to interact with
another in order to complete an operation, the SPI provides methods that allow
different provider implementations to cooperate to complete client JNDI operations.

Additional WebLogic Enterprise SPI Implementations

In addition to the standard Sun Microsystems Inc. interfaces for the JNDI API,
WebLogic Enterprise provides its own implementation that uses the standard JNDI
SPI interfaces. The two InitialContextFactory class implementations that are
provided in WebLogic Enterprise are:

com.beasys.jndi.WLEInitialContextFactory

weblogic.jndi.WLInitialContextFactory

In your application code, you do not instantiate either of these classes directly. Instead
you use the standard javax.naming.InitialContext class and set the appropriate
Hashtable keys, as documented in the section “Using the Remote Naming Service for
Client Connections and SSL Support” on page 1-8. All interaction is done through the
javax.naming.Context interface, as described in the JNDI Javadoc.

As a convenience to application programmers, WebLogic Enterprise also provides a
com.beasys.jndi.WLEContext interface. This interface extends
javax.naming.Context. There are some JNDI constants defined that you can use
with the JNDI environment. These constants are used for authentication on the
InitialContext, as explained in the section “WebLogic Enterprise Keys Required
for BEA TUXEDO Style Authentication” on page 1-11.

1 Using the SPI Implementations for JNDI

1-6 Using the SPI Implementations for JNDI

WebLogic Enterprise JNDI Packaging

The server classes for WebLogic Enterprise JNDI are set automatically when the
JavaServer is booted.

The client classes for WebLogic Enterprise JNDI are in:

<drive>:\wledir\java\jdk\m3envobj.jar

<drive>:\wledir\java\jdk\wleclient.jar

<drive>:\wledir\java\jdk\wlej2eecl.jar

<drive>:\wledir\java\jdk\weblogicaux.jar

Verify that your CLASSPATH is set correctly. If necessary, set your CLASSPATH to
include the following JAR files:

Client on Windows NT:

set JDIR=%TUXDIR%\java\jdk

set CLASSPATH=.;%JDIR%\m3envobj.jar;%JDIR%\wleclient.jar;
%JDIR%\wlej2eecl.jar;%JDIR%\weblogicaux.jar

set JDIR=

Client on UNIX:

export JDIR=${TUXDIR}/java/jdk

export CLASSPATH=.:${JDIR}/m3envobj.jar:${JDIR}/wleclient.jar:
${JDIR}/wlej2eecl.jar:${JDIR}/weblogicaux.jar

export JDIR=

Location of the WebLogic Enterprise JNDI Javadoc

On the following Javadoc start page under the installed WebLogic Enterprise
directory, there is a hyperlink to the Sun Microsystems, Inc. JNDI API documentation:

<drive>:\wledir\docs\index.html

Unified Naming and Directory Services

Using the SPI Implementations for JNDI 1-7

Unified Naming and Directory Services

The WebLogic Enterprise JNDI SPI implements the standard unified interface to
multiple naming and directory services. The implementation allows a WebLogic
Enterprise J2EE Java application to connect to any naming and directory service, such
as LDAP, NDS, or NIS, if the appropriate third-party JNDI service provider is used.

WebLogic Enterprise provides this support by utilizing and redistributing the standard
JNDI extension classes, provided by Sun Microsystems with JNDI version 1.1.2. BEA
and any third-party vendors conforming to the JNDI Service Provide Interface (SPI)
may provide access to vendor-specific naming and directory services.

The following code fragment uses JNDI to access a Sun Microsystems Inc. LDAP
service provider.

Hashtable env = new Hashtable();
/*
* Specify the initial context implementation to use.
* The service provider supplies the factory class.
*/
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

/* Specify host and port of LDAP server */
env.put(Context.PROVIDER_URL, "ldap://ldap.bigfoot.com:389");

/* Connect to the server and establish the initial context */
DirContext ctx = new InitialDirContext(env);

/* Access the LDAP directory using the context */
 .
 .
 .

1 Using the SPI Implementations for JNDI

1-8 Using the SPI Implementations for JNDI

Using the Remote Naming Service for Client
Connections and SSL Support

The WebLogic Enterprise remote naming SPI provides an InitialContext
implementation that allows remote Java clients to connect into a WebLogic Enterprise
system. The client can specify standard JNDI context environment properties to
identify the WebLogic Enterprise system and other related connection parameters for
logging into a WebLogic Enterprise system.

To participate in a session with a WebLogic Enterprise server application, a Java client
must be able to get an object reference for a remote object and invoke operations on
the object. To accomplish this, the client application code must perform the following:

n Step 1: Set Up JNDI Environment Properties for the Initial Context

n Step 2: Establish an InitialContext with the WebLogic Enterprise Domain

n Step 3: Use the Context to Look Up a Named Server Object

n Step 4: Use the Named Server Object to Get a Reference for the Desired Remote
Object, and Invoke Operations on the Remote Object

n Step 5: Complete the Session

Step 1: Set Up JNDI Environment Properties for the
Initial Context

All Java remote client applications must first create environment properties. The
InitialContext factory uses various properties to customize the InitialContext
for a specific environment. You can set these properties by using a Hashtable. These
properties, which are name-to-value pairs, determine how the
WLEInitialContextFactory creates the WLEContext:

Using the Remote Naming Service for Client Connections and SSL Support

Using the SPI Implementations for JNDI 1-9

WLEContext.INITIAL_CONTEXT_FACTORY Property

Set this property to the WebLogic Enterprise initial context factory,
com.beasys.jndi.WLEInitialContextFactory, to access the WebLogic
Enterprise domain and remote naming services.

The class com.beasys.jndi.WLEInitialContextFactory provides the
implementation for delegating JNDI methods to the WebLogic Enterprise JNDI
implementation. The class com.beasys.jndi.WLEInitialContextFactory
provides an entry point for a client into the WebLogic Enterprise domain namespace.

For example:

Hashtable env = new Hashtable();
/*
* Specify the initial context implementation to use.
* The service provider supplies the factory class.
*/
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");
 .
 .
 .

WLEContext.PROVIDER_URL Property

Set the URL of the service provider with the property name
java.naming.provider.url. This property value should specify an IIOP
Listener/Handler for the desired WebLogic Enterprise target domain.

For example:

 .
 .
 .
env.put(WLEContext.PROVIDER_URL,
 "corbaloc://myhost:1000");
 .
 .
 .

The URL is interpreted directly by the Tobj_Bootstrap. The same syntax rules apply
to indicate the search order or equivalence of handler addresses. You can also use the
URL to specify an SSL connection using the corbalocs: URL scheme. The
acceptable syntaxes for the URL are described in the Javadoc file for Tobj_Bootstrap.

1 Using the SPI Implementations for JNDI

1-10 Using the SPI Implementations for JNDI

The host and port combination specified in the URL must match the ISL parameter in
the WebLogic Enterprise application’s UBBCONFIG file. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the communication with the WebLogic Enterprise domain fails.

A WebLogic Enterprise server that acts as a client should not specify this
Context.PROVIDER_URL property because the server is already connected to the
application in which it is booted. If this property is specified on the server it must be
set to an empty string or null values.

WLEContext.SECURITY_AUTHENTICATION Property

The WebLogic Enterprise system supports different levels of authentication. The
SECURITY_AUTHENTICATION value determines whether certificate-based SSL
authentication is attempted or BEA TUXEDO style authentication is used.

Valid values for this property key are “none” , “simple” , or “strong” , as
recommended by the Sun Microsystems Inc. JNDI specification.

For example:

 .
 .
 .
env.put(WLEContext.SECURITY_AUTHENTICATION,
 "strong");
 .
 .
 .

If you explicitly specify WLEContext.SECURITY_AUTHENTICATION="none", this
setting causes WebLogic Enterprise client software to bypass all security setup on the
initial connection. If you do not include the
WLEContext.SECURITY_AUTHENTICATION property at all, the default behavior is for
the client code to check the current security level on the target domain and check for
any required authentication parameters. You can explicitly set
WLEContext.SECURITY_AUTHENTICATION="none" if your intention is to bypass the
security level checking and authentication setup on the client. This might be done, for
example, in a case where you know there is no authentication required on the target
domain and you want to optimize performance. However, if authentication is required
on the target domain and the WLEContext.SECURITY_AUTHENTICATION=”none” , a
security exception might be generated until the client later attempts to access an object
on the server.

Using the Remote Naming Service for Client Connections and SSL Support

Using the SPI Implementations for JNDI 1-11

If you specify the “strong” value, certificate-based authentication is attempted using
SSL protocols. This is implemented using the CORBA
PrincipalAuthenticator.authenticate method with an
AuthenticationMethod value of CertificateBased .

If the SECURITY_AUTHENTICATION value is “simple” or is not specified, BEA
TUXEDO style authentication is used. See the next section for information about the
WebLogic Enterprise specific keys used to support BEA TUXEDO style
authentication.

WebLogic Enterprise Keys Required for BEA TUXEDO Style Authentication

The WebLogic Enterprise specific property keys in this section provide the additional
parameters needed for BEA TUXEDO style authentication. For example:

Hashtable env = new Hashtable();
env.put(WLEContext.PROVIDER_URL, "corbaloc://myhost:1000");
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
 "com.beasys.jndi.WLEInitialContextFactory");

// Add Authentication parameters
env.put(WLEContext.SECURITY_AUTHENTICATION, "simple");
env.put(WLEContext.SYSTEM_PASSWORD, "RMI");
env.put(WLEContext.SECURITY_PRINCIPAL, "user");
env.put(WLEContext.CLIENT_NAME, "client");
env.put(WLEContext.SECURITY_CREDENTIALS, "userpw");

Context ctx = new InitialContext(env);

The property keys are as follows:

WLEContext.SECURITY_PRINCIPAL

Specifies the identity of the principal for authenticating the caller to the WebLogic
Enterprise domain.

WLEContext.SECURITY_CREDENTIALS

Specifies the credentials of the principal for authenticating the caller to the WebLogic
Enterprise domain. For SSL certificate-based authentication, enabled via
SECURITY_AUTHENTICATION=”strong”, it specifies a pass phrase for accessing the
private key and client certificate. For BEA TUXEDO style authentication, it identifies
a String user password or an arbitrary Object user_data for the BEA TUXEDO
AUTHSVC.

WLEContext.CLIENT_NAME

1 Using the SPI Implementations for JNDI

1-12 Using the SPI Implementations for JNDI

Specifies the client name for BEA TUXEDO style authentication.

WLEContext.SYSTEM_PASSWORD

Specifies the system password for BEA TUXEDO style authentication.

WLEContext.CODEBASE

Specifies the URL for network class loading.

Step 2: Establish an InitialContext with the WebLogic
Enterprise Domain

To access a service provider using JNDI, you create an InitialContext and identify
a context factory, which creates the context for a certain provider.

To access a WebLogic Enterprise domain, use the WebLogic Enterprise context
factory, “com.beasys.jndi.WLEInitialContextFactory ” as an argument. After
the context is created, it provides client access to factory names in the WebLogic
Enterprise domain using WebLogic Enterprise as the name service provider.

To create a WebLogic Enterprise remote domain context from a remote Java client,
you must minimally specify this factory as the initial context factory, and specify the
JNDI environment as properties passed to the constructor of the InitialContext.

The following example shows how to setup the initial environment properties and
create the initial context:

Hashtable env = new Hashtable();
/*
* Specify the initial context implementation to use.
* This example will access the remote WLE domain context.
*/
env.put(WLEContext.INITIAL_CONTEXT_FACTORY,
"com.beasys.jndi.WLEInitialContextFactory");

/*
* Specify host and port of ISL/ISH gateway – this is only
* specified for remote clients.
*/
env.put(WLEContext.PROVIDER_URL, "corbaloc://myhost:1000");

/* Connect to the domain and establish the initial context */
Context ctx = new InitialContext(env);

Using the Remote Naming Service for Client Connections and SSL Support

Using the SPI Implementations for JNDI 1-13

 .
 .
 .

Step 3: Use the Context to Look Up a Named Server
Object

The client application must obtain an initial object that provides services for the
application. This object is named by the server and is bound to the domain namespace.

For EJB applications this object is usually an EJB Home object and provides
references to other remote objects in the application. The lookup method on the
Context object is used to obtain this named object. The argument passed to the
lookup method is a string that contains the name of the desired server object.

The following code fragment shows how to get access to a named server object:

CartHome cartHome = (CartHome) ctx.lookup(“johns-carts”);

Step 4: Use the Named Server Object to Get a Reference
for the Desired Remote Object, and Invoke Operations on
the Remote Object

CORBA client applications get object references to other CORBA remote objects from
factories.

EJB client applications get object references to EJB remote objects from EJB Homes.

RMI client applications can also get object references to other RMI remote objects
from an initial named object.

All of these initial named remote objects are known to the WebLogic Enterprise
system generically as a “factory”. A factory is any server object that can return a
reference to another remote object and is bound into the WebLogic Enterprise domain
namespace.

1 Using the SPI Implementations for JNDI

1-14 Using the SPI Implementations for JNDI

The client application invokes a method on a factory to obtain a reference to a remote
object of a specific class. The client applications then invoke methods on the remote
object, passing any arguments that it requires.

The following code fragment obtains the desired remote object, and then invokes a
method on the remote object:

Cart cart = cartHome.create(“John”, “7506”);

cart.addItem(66);

Step 5: Complete the Session

After a client is finished working with a context, the client should close the context in
order to release resources for the session and implicitly logoff. For example:

try {
 ctx.close();

} catch (Exception e) {
// a failure occurred
}

Providing Remote Client Access to the
UserTransaction Interface

The Java Transaction API (JTA) defines the UserTransaction interface that is used by
applications to start and commit or abort transactions. An application client gets a
UserTransaction object through a JNDI lookup by using the name
“java:comp/UserTransaction”.

For example:

Context initCtx = new InitialContext(env);
UserTransaction utx = (UserTransaction)initCtx.lookup(
“java:comp/UserTransaction”);
utx.begin();
 .

Using the Application Naming Service to Access Local Objects

Using the SPI Implementations for JNDI 1-15

 .
 .

utx.commit();

Using the Application Naming Service to
Access Local Objects

The WebLogic Enterprise application naming SPI provides an application naming
service for both:

n Local objects on a given Java server

n Global object references known throughout the domain

By default the root context and any application-created subcontexts are mapped into a
local namestore on the server. This local namestore allows Java server applications to
access local objects using standard JNDI conventions. This application naming service
supports a hierarchical namespace and the creation of subcontexts.

Note: There is also a predefined subcontext named wle.factories that is mapped
to the FactoryFinder/NameManager services in the WebLogic Enterprise
domain. This global context is discussed in the section “Accessing the
Factories Subcontext” on page 1-17.

If an application running on a WebLogic Enterprise server, such as an EJB or RMI
object, needs access to local objects in the current JavaServer, it can create a JNDI
Context. Because the object making the call is already logically in the environment of
the server, there is no need to specify environment properties to access the default
application namespace.

To create a context from within a server-side object, all you need to do is construct a
new InitialContext. For example:

Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context will
be created as a WebLogic Enterprise application context and will connect to the default
naming service.

1 Using the SPI Implementations for JNDI

1-16 Using the SPI Implementations for JNDI

Using the Application Naming Service to
Access Global Objects

This section describes the following topics about using the WebLogic Enterprise
application naming service to access global objects:

n Overview of Features

n Accessing the Factories Subcontext

n Binding Objects into the Factories Subcontext

n Unbinding Objects from the Factories Subcontext

n J2EE Requirements

n Cross-Domain Support

Overview of Features

The WebLogic Enterprise application naming SPI provides an application naming
service for both:

n Local objects on a given Java server, as described in the previous section,
“Using the Application Naming Service to Access Local Objects” on page 1-15.

n Global object references known throughout the domain, as described in this
section.

The WebLogic Enterprise application naming SPI provides a specially identified
named subcontext, wle.factories, that provides naming services for server objects
identified throughout a WebLogic Enterprise domain.

The WebLogic Enterprise application naming SPI also provides support for named
objects imported from other domains via the FactoryFinder cross-domain feature. This
subcontext uses the WebLogic Enterprise FactoryFinder and NameManager services

Using the Application Naming Service to Access Global Objects

Using the SPI Implementations for JNDI 1-17

to manage its bindings. To increase availability and reliability, you can create multiple
FactoryFinders and NameManagers in the event one FactoryFinder or NameManager
fails.

The wle.factories subcontext is mapped directly into the namespace managed by
the FactoryFinder and NameManager. This subcontext is a flat namespace:

n It is a single-level JNDI subcontext, without any imbedded subcontexts

n All remote objects bound into the namespace are known throughout the
WebLogic Enterprise domain

The underlying namespace is also used by CORBA clients, and is extended via JNDI
to support EJB and RMI clients. The CORBA client uses the CORBA FactoryFinder
to access remote CORBA factory objects. An EJB or RMI client uses JNDI to access
registered remote objects. An application may choose to implement naming
conventions if it is desirable to prevent name collisions or to partition the namespace
using its own syntax conventions.

Accessing the Factories Subcontext

Remote Java clients access the WebLogic Enterprise domain namespace using the
procedures described in the section “Using the Remote Naming Service for Client
Connections and SSL Support” on page 1-8. Remote clients may perform lookup
methods on the remote context, but cannot perform binding methods on the
namespace.

Server applications access the WebLogic Enterprise domain namespace by using the
wle.factories subcontext under the default InitialContext on the server. The
server initializes the wle.factories subcontext to the domain namespace in which it
is booted. Server applications have full access to the subcontext and may bind objects
into it. In the following example, a server object connects to the factories subcontext:

/* Get a default context and retrieve the factories subcontext */

Context rootCtx = new InitialContext();
Context factoryCtx = (Context) rootCtx.lookup(“wle.factories”);

1 Using the SPI Implementations for JNDI

1-18 Using the SPI Implementations for JNDI

Binding Objects into the Factories Subcontext

Server applications can create named objects in the domain namespace, which then
allows client applications to easily locate the objects managed by the server. These
objects are usually factories so that client applications can obtain references to other
remote objects in the application from the initial named objects. The binding of named
remote objects into the domain namespace is typically the final step of the server
application initialization process.

Note: For EJB applications the named factories are called Home objects. The EJB
bean provider code does not need to explicitly bind the Home into the Context.
The binding operation is done automatically by the EJB Container during
server deployment, based on the bean-name in the deployment descriptor.

To use an object in the WebLogic Enterprise domain namespace, WebLogic Enterprise
requires that objects returned by lookup must be remotely accessed from the client in
a form that preserves its functionality. Thus it must be known to WebLogic Enterprise
as a remote object. What is actually stored in the underlying WebLogic Enterprise
NameManager is a mapping from the registered name to the WebLogic Enterprise
remote object reference.

The sample program in Listing 1-1 shows how to bind an RMI remote object into the
WebLogic Enterprise factories context during server startup. This makes the object
available to clients who wish to lookup the object by name. The sample also shows
how to remove the object from the JNDI context during server shutdown.

Listing 1-1 Sample bind.java Program

import javax.naming.*; // Use standard JNDI 1.2 interfaces

public class ServerImpl extends com.beasys.Tobj.Server {
 static final String factoryName = "SimpFactory";
 SimpFactoryImpl factory;
 Context factoryCtx;

 // The initialize method is called during JavaServer startup
 public boolean initialize(String[] argv) {
 try {
 // Get the "wle.factories" subcontext from the default InitialContext

factoryCtx = (Context) new InitialContext().lookup("wle.factories");

Using the Application Naming Service to Access Global Objects

Using the SPI Implementations for JNDI 1-19

 // Create the factory and make it available to clients via JNDI
 factoryCtx.bind(factoryName, new SimpFactoryImpl());
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 return true;
 }

 // The release method is called during JavaServer shutdown
 public void release() {
 try {
 // Remove the binding from the "wle.factories" subcontext
 factoryCtx.unbind(factoryName);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Unbinding Objects from the Factories Subcontext

Once a server application receives a request to shut down, the server application can
no longer receive requests from clients. During server shutdown it should unbind each
of the objects previously bound into the namespace.

// Remove this factory reference from the WLE namespace
factoryCtx.unbind(tellerFname);

J2EE Requirements

The enterprise bean’s Home interface defines the methods for the client to create,
remove, and find EJB objects of the same type. That is, they are implemented by the
same enterprise bean. The Home interface is specified by the Bean Provider. The
Container creates a class that implements the Home interface. The Home interface
extends the javax.ejb.EJBHome interface.

The container is responsible for making the Home interfaces of the deployed enterprise
beans available to the client through JNDI. A client can locate an enterprise Bean
Home interface through the WebLogic Enterprise JNDI remote namespace provider.

1 Using the SPI Implementations for JNDI

1-20 Using the SPI Implementations for JNDI

When an EJB-JAR module is deployed into a WebLogic Enterprise JavaServer, the
runtime system will automatically read the deployment descriptor and bind the remote
Home into the JNDI factories subcontext.

Cross-Domain Support

For multidomain configurations the FactoryFinder supports access to named object
references in another domain. You or your administrator define domain parameters in
the application’s DMCONFIG configuration file. The WebLogic Enterprise application
naming service is built on top of the FactoryFinder. When the FactoryFinder is
configured for multidomain naming support, cross-domain names are available
through the WebLogic Enterprise application namespace.

The domain of an object reference is unknown to the application, and invocations on
an object reference for a remote domain are transparent to the application. This
transparency allows administrators to configure services in individual domains and to
spread resources across multiple domains. Administrators are required to identify any
named remote objects that can be used in the current (local) domain, but that are
resident in a different (remote) domain. You identify these objects in a FactoryFinder
domain configuration file named factory_finder.ini. This is an ASCII file that
can be created and updated using a text editor.

For related information, see Configuring Multiple Domains (WebLogic Enterprise
System) in the WebLogic Enterprise online documentation.

The J2EE Naming Context

This section describes the following topics about the J2EE naming context:

n Overview of Requirements

n Accessing Environment Entries

n Using EJB References

n Obtaining Resource Factory References

The J2EE Naming Context

Using the SPI Implementations for JNDI 1-21

n Obtaining a UserTransaction Object

Overview of Requirements

The Sun Microsystems Inc. J2EE specification at http://java.sun.com/j2ee/
identifies specific JNDI requirements for an enterprise component to access named
objects and external resources in a uniform manner. These requirements include:

1. An application component naming environment, for generic customization of the
application component’s business logic

2. Interfaces for obtaining the Home interface of an enterprise bean, using an EJB
reference

An EJB reference is a special entry in the application component’s
environment.

3. Interfaces for obtaining a resource factory, using a resource factory reference

A resource factory reference is a special entry in the application component’s
environment.

4. Interfaces for obtaining the JTA UserTransaction interface to start, commit,
and abort transactions

Accessing Environment Entries

An EJB component instance locates the environment naming context using the JNDI
interfaces. An instance creates a javax.naming.InitialContext object by using
the constructor with no arguments, and looks up the naming environment via the
InitialContext under the name java:comp/env.

The EJB’s environment entries are stored directly in the environment naming context,
or in any of its direct or indirect subcontexts. The value of an environment entry is of
the Java type declared by the Bean Provider in the deployment descriptor. The
environment entries are declared using the <env-entry> elements in the deployment
descriptor.

The following code fragment shows how an EJB accesses its environment entries:

http://java.sun.com/j2ee/

1 Using the SPI Implementations for JNDI

1-22 Using the SPI Implementations for JNDI

public void setTaxInfo(int numberOfExemptions, ...)
throws InvalidNumberOfExemptionsException {
 .
 .
 .

// Obtain the application component’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > max.intValue() ||
 numberOfExemptions < min.intValue())
 throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The application component can also lookup using full pathnames.
Integer val3 = (Integer)
initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)
initCtx.lookup("java:comp/env/foo/name4");
 .
 .
 .

}

Using EJB References

This section describes the programming and deployment descriptor interfaces that
allow the Bean Provider to refer to the Homes of enterprise beans using logical names
called EJB references. The EJB references are special entries in the EJB’s
environment. The Deployer binds the EJB references to the enterprise bean’s Home
interfaces in the WebLogic Enterprise operational environment.

The J2EE Naming Context

Using the SPI Implementations for JNDI 1-23

The deployment descriptor also allows the Application Assembler to link an EJB
reference declared in one application component to an enterprise bean contained in an
EJB-JAR file in the same J2EE application. The link is an instruction to the tools used
by the Deployer that the EJB reference should be bound to the home of the specified
target enterprise bean.

The following example shows how an application component uses an EJB reference to
locate the Home interface of an enterprise bean:

public void changePhoneNumber(...) {
 .
 .
 .
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(
"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
 javax.rmi.PortableRemoteObject.narrow(result,
 EmployeeRecordHome.class");
 .
 .
 .

}

In the previous example, the Bean Provider assigned the environment entry
ejb/EmplRecord as the EJB reference name to refer to the Home of an enterprise
bean. The Bean Provider must declare all the EJB references using the <ejb-ref>
elements of the deployment descriptor.

Obtaining Resource Factory References

A resource is an object that encapsulates access to a resource manager. A resource
factory is an object that is used to create resources. For example, an object that
implements the java.sql.Connection interface is a resource that provides access to
a database management system, and an object that implements the
javax.sql.DataSource interface is a resource factory.

1 Using the SPI Implementations for JNDI

1-24 Using the SPI Implementations for JNDI

This section describes the application component programming and deployment
descriptor interfaces that allow the application component code to refer to resource
factories using logical names called resource factory references. The resource factory
references are special entries in the EJB’s environment. The Deployer binds the
resource factory references to the actual resource factories in the WebLogic Enterprise
operational environment.

The following code fragment illustrates obtaining a resource:

public void changePhoneNumber(...) {
 .
 .
 .

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource factory
javax.sql.DataSource ds = (javax.sql.DataSource)
 initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a resource.
java.sql.Connection con = ds.getConnection();
 .
 .
 .

}

The Bean Provider must declare all the resource factory references in the deployment
descriptor using the <resource-ref> elements.

Obtaining a UserTransaction Object

Many J2EE application component types are allowed to use the JTA
UserTransaction interface to start, commit, and abort transactions. Such application
components can find an appropriate object that implements the UserTransaction
interface by looking up the JNDI name java:comp/UserTransaction.

The container is only required to provide java:comp/UserTransaction for those
components that can make valid use of it. Any such UserTransaction object is only
valid within the component instance that performed the lookup. Only some application
component types are required to have access to a UserTransaction object. For
details, refer to the Sun Microsystems Inc. EJB 1.1 specification.

The J2EE Naming Context

Using the SPI Implementations for JNDI 1-25

Note: For your convenience, a PDF copy of the EJB 1.1 specification is included
with the WebLogic Enterprise online documentation. To access the HTML
page that includes a copy of the EJB 1.1 specification, click the PDF Files
button at the top of a WebLogic Enterprise online documentation HTML page.

The following example illustrates how an application component acquires and uses a
UserTransaction object:

public void updateData(...) {
 .
 .
 .

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the UserTransaction object.
UserTransaction tx = (UserTransaction)initCtx.lookup(
 "java:comp/UserTransaction");

// Start a transaction.
tx.begin();
 .
 .
 .

// Perform transactional operations on data.
 .
 .
 .

// Commit the transaction.
tx.commit();
 .
 .
 .
}

1 Using the SPI Implementations for JNDI

1-26 Using the SPI Implementations for JNDI

Using the SPI Implementations for JNDI I-1

Index

A
accessing environment entries 1-21
application naming service

global objects 1-16
local objects 1-15

authentication
TUXEDO style 1-11

B
BEA TUXEDO

authentication properties 1-11

C
CLASSPATH

setting for WLE JAR files 1-6
client access

to UserTransaction 1-14
CLIENT_NAME property key 1-11
completing a session 1-14
connecting remote Java clients 1-8
cross-domain support 1-20
customer support contact information vii

D
directory service

definition 1-2
directory services 1-7
documentation, where to find it v
domains

interdomain support 1-20

E
EJB

using references 1-22
environment naming context 1-21
establishing initial context 1-12

F
factories

resource references 1-23
using to get remote objects 1-13

G
global objects

using application naming service 1-16

H
hashtables

setting environment properties 1-8

I
initial context

establishing 1-12
INITIAL_CONTEXT_FACTORY property

1-9
InitialContextFactory class 1-5

I-2 Using the SPI Implementations for JNDI

Introduction
WLE JNDI SPI implementation 1-2

J
JAR packages

for WLE 1-6
java

comp/env initial context 1-21
Java archive files 1-6
Javadoc

location 1-6
javax.ejb.EJBHome interface 1-19
javax.naming interface 1-4
javax.naming.spi interface 1-5
JNDI

looking up server objects 1-13

M
m3.jar file 1-6
m3envobj.jar file 1-6

N
named server objects

looking up 1-13
naming context

environment 1-21
naming interface 1-4
naming service

definition 1-2
naming services 1-7
none security property 1-10

O
objects

looking up via JNDI 1-13
obtaining UserTransaction 1-24

obtaining resource factory references 1-23

P
packages

JAR files 1-6
passwords

SYSTEM_PASSWORD property key 1-
11

printing product documentation vi
PROVIDER_URL property 1-9

R
references

EJB 1-22
related information vi
remote clients

access to UserTransaction 1-14
remote Java clients

connecting into WLE 1-8
remote naming service 1-8
remote objects

accessing via a factory 1-13
resource factory references 1-23

S
SECURITY_AUTHENTICATION property

1-10
SECURITY_CREDENTIALS property key

1-11
SECURITY_PRINCIPAL property key 1-11
server objects

looking up 1-13
Service Provider Interface (SPI)

overview 1-3
sessions

completing 1-14
simple security property 1-10
SPI implementation

overview 1-3
strong security property 1-10
support

Using the SPI Implementations for JNDI I-3

technical vii
SYSTEM_PASSWORD property key 1-11

T
TUXEDO

authentication properties 1-11

U
UserTransaction interface

providing remote client access 1-14
UserTransaction objects

obtaining 1-24

W
weblogicaux.jar file 1-6
wleclient.jar file 1-6
WLEContext

setting environment properties 1-9
WLEInitialContextFactory

setting 1-12
WLEInitialContextFactory class 1-5
WLInitialContextFactory class 1-5

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Using the SPI Implementations for JNDI
	Overview of JNDI in WebLogic Enterprise
	The JNDI API and SPI
	The Naming Interface — javax.naming
	The Directory Interface — javax.naming.directory
	The Service Provider Interface — javax.naming.spi
	Additional WebLogic Enterprise SPI Implementations
	WebLogic Enterprise JNDI Packaging
	Location of the WebLogic Enterprise JNDI Javadoc

	Unified Naming and Directory Services
	Using the Remote Naming Service for Client Connections and SSL Support
	Step 1: Set Up JNDI Environment Properties for the Initial Context
	WLEContext.INITIAL_CONTEXT_FACTORY Property
	WLEContext.PROVIDER_URL Property
	WLEContext.SECURITY_AUTHENTICATION Property
	WebLogic Enterprise Keys Required for BEA TUXEDO Style Authentication

	Step 2: Establish an InitialContext with the WebLogic Enterprise Domain
	Step 3: Use the Context to Look Up a Named Server Object
	Step 4: Use the Named Server Object to Get a Reference for the Desired Remote Object, and Invoke ...
	Step 5: Complete the Session

	Providing Remote Client Access to the UserTransaction Interface
	Using the Application Naming Service to Access Local Objects
	Using the Application Naming Service to Access Global Objects
	Overview of Features
	Accessing the Factories Subcontext
	Binding Objects into the Factories Subcontext
	Unbinding Objects from the Factories Subcontext
	J2EE Requirements
	Cross-Domain Support

	The J2EE Naming Context
	Overview of Requirements
	Accessing Environment Entries
	Using EJB References
	Obtaining Resource Factory References
	Obtaining a UserTransaction Object

	Index

