
Using Java Enterprise Tuxedo

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Java Enterprise Tuxedo

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document...x

Documentation Conventions .. xii

1. Introducing Java Enterprise Tuxedo
Key Features .. 1-2

JET Workflow ... 1-3

Key Components ... 1-4

JET Class Library... 1-4

Jolt Repository Server .. 1-5

How BEA Tuxedo Services are Distributed 1-6

Workflow for Handling BEA Tuxedo Service Requests 1-7

Tools for Managing Service Definitions.. 1-9

Bulk Loader... 1-9

Jolt Repository Editor ... 1-9

Jolt Servers .. 1-10

Jolt Internet Relay ... 1-11

Using BEA Tuxedo Buffer Types with JET 1-13

Comparison Between Jolt and JET.. 1-16

Overview of Jolt and JET... 1-16

Architecture Comparison ... 1-17

Components Comparison ... 1-18

Functionality Comparison .. 1-19

Class Library Comparison.. 1-20

Packages.. 1-20

Package bea.jolt Components ... 1-20
Using Java Enterprise Tuxedo iii

2. Invoking BEA Tuxedo Services
Configuring JET for Java Server Access... 2-2

Default Repository File .. 2-2

Parameters to Specify in the UBBCONFIG File.. 2-3

GROUPS Section .. 2-3

SERVERS Section .. 2-3

Sample UBBCONFIG File... 2-4

Invoking BEA Tuxedo Services with the JET Class Library 2-6

Importing Packages .. 2-7

Instantiating a JoltService Object... 2-7

Specifying Parameters for the BEA Tuxedo Service 2-8

Specifying String Parameters .. 2-8

Specifying Array Parameters .. 2-8

Specifying Parameters of Various Data Types 2-9

Calling the BEA Tuxedo Service ... 2-9

Handling Results .. 2-10

Handling Exceptions ... 2-10

Handling Returned Parameters.. 2-11

3. Configuring JET for Client Access
Configuring JET .. 3-2

About Configuring JET for Client Access ... 3-2

Step 1: Configure JSL .. 3-3

Step 2: Configure Jolt Relay... 3-4

Configuring JRLY on the Web Server .. 3-4

Configuring JRAD in the Tuxedo Environment 3-7

Step 3: Registering Tuxedo Services with the Repository 3-8

JET Administrative Reference... 3-8

Jolt Server Reference.. 3-8

About Jolt Servers ... 3-9

System Administrator Responsibilities ... 3-9

Starting the JSL ... 3-9

Shutting Down the JSL ... 3-10

Restarting the JSL ... 3-10

Configuring the JSL .. 3-10
iv Using Java Enterprise Tuxedo

JSL Command-Line Options .. 3-10

Sample UBBCONFIG Settings for JSL.. 3-14

Security and Encryption.. 3-17

Jolt Internet Relay Reference ... 3-17

About Jolt Relay and the Jolt Relay Adapter 3-17

Jolt Relay... 3-18

Jolt Relay Adapter... 3-23

4. Using the Bulk Loader Program
Defining Bulk Loader Data Files .. 4-2

About Bulk Loader Data Files ... 4-2

Guidelines for Using Keywords ... 4-3

Keyword Order in the Bulk Loader Data File.. 4-4

Using Service-level Keywords and Values .. 4-5

Using Parameter-level Keywords and Values.. 4-6

Sample Bulk Loader Data File ... 4-7

Running the Bulk Loader .. 4-8

Troubleshooting... 4-9

5. Using the BEA Jolt Repository Editor
Introducing the Jolt Repository Editor .. 5-2

Jolt Repository Editor Window.. 5-2

Components of the Jolt Repository Editor Window 5-4

Getting Started with the Jolt Repository Editor .. 5-5

Starting the Jolt Repository Editor ... 5-5

Starting the Jolt Repository Editor Using the Java Applet Viewer..... 5-5

Starting the Jolt Repository Editor from Your Web Browser............. 5-6

Logging On to the Jolt Repository Editor .. 5-7

Sample Logon Window .. 5-8

Components of the BEA Jolt Repository Editor Logon Window....... 5-8

Exiting the BEA Jolt Repository Editor ... 5-9

Main Components of the BEA Jolt Repository Editor 5-11

Workflow for the BEA Jolt Repository Editor... 5-11

What Is a Package? .. 5-13

Sample Packages Window .. 5-13
Using Java Enterprise Tuxedo v

Components of the Packages Window.. 5-14

Viewing a Package .. 5-15

What Is a Service? .. 5-16

Sample Services Window.. 5-16

Components of the Services Window ... 5-17

Viewing a Service .. 5-17

Working with Parameters ... 5-18

Sample Services Window with Parameters....................................... 5-18

Viewing a Parameter ... 5-19

Setting Up Packages and Services ... 5-19

Saving Your Work.. 5-20

Adding Packages .. 5-20

Sample Package Organizer Window... 5-21

Adding a Package.. 5-21

Adding Services.. 5-22

Sample Edit Services Window.. 5-22

Options for Adding a Service.. 5-23

Adding a Service ... 5-25

Selecting CARRAY or STRING as a Service Buffer Type.............. 5-25

Adding Parameters ... 5-26

Sample Edit Parameters Window.. 5-27

Components of the Adding a Parameter Window............................. 5-27

Adding a Parameter ... 5-28

Selecting CARRAY or STRING as a Parameter Data Type 5-29

Grouping Services Using the Package Organizer.. 5-31

Sample Package Organizer Window .. 5-31

Components of the Package Organizer Window...................................... 5-32

Grouping Services with the Package Organizer 5-33

Modifying Packages, Services, and Parameters .. 5-35

Editing Services.. 5-35

Sample Edit Services Window.. 5-35

Editing a Service ... 5-36

Editing Parameters.. 5-37

Sample Edit Parameters Window.. 5-37

Editing a Parameter ... 5-38
vi Using Java Enterprise Tuxedo

Deleting Parameters, Services, and Packages .. 5-39

Deleting a Parameter ... 5-39

Deleting a Service ... 5-39

Deleting a Package.. 5-40

Making a Service Available to the JET Client .. 5-40

Exporting and Unexporting Services ... 5-40

Sample Packages Window .. 5-40

Exporting or Unexporting a Service ... 5-41

Reviewing the Exported and Unexported Status...................................... 5-42

Testing a Service ... 5-44

Sample Service Test Window .. 5-44

Components of the Service Test Window.. 5-46

Testing a Service .. 5-47

Test Service Process Flow .. 5-47

Testing a Service ... 5-47

Troubleshooting... 5-49

Repository Enhancements for Jolt... 5-51

Index
Using Java Enterprise Tuxedo vii

viii Using Java Enterprise Tuxedo

JB,
e

do

ET

olt
About This Document

This document describes the Java Enterprise Tuxedo™ (JET) component of
BEA WebLogic Enterprise™ (WLE), which enables Java servers running in the
WebLogic Enterprise environment to access services in the BEA Tuxedo®
environment.

This document includes the following topics:

n Chapter 1, “Introducing Java Enterprise Tuxedo,” introduces the JET
architecture and provides an overview of how Java servers (CORBA/Java, E
and RMI servers) running in the WebLogic Enterprise environment can invok
BEA Tuxedo services using JET.

n Chapter 2, “Invoking BEA Tuxedo Services,” describes how to invoke a Tuxe
service from a Java server running in the WebLogic Enterprise environment
using the JET Class Library.

n Chapter 3, “Configuring JET for Client Access,” describes how to configure J
in order to use the Bulk Loader program or the BEA Jolt Repository Editor.

n Chapter 4, “Using the Bulk Loader Program,” describes how to populate the J
Repository with BEA Tuxedo service definitions using the Bulk Loader utility.

n Chapter 5, “Using the BEA Jolt Repository Editor,” describes how to add,
modify, delete, test, and export BEA Tuxedo service definitions in the Jolt
Repository using the Jolt Repository Editor.

In addition, the following interoperability sample applications implement JET:

n CORBA/Java-to-Tuxedo Simpapp sample application

n EJB-to-Tuxedo Simpapp sample application

For more information about these sample applications, see CORBA, J2EE, and Tuxedo
Interoperability and Coexistence.
Using Java Enterprise Tuxedo ix

e at

sing

tion
ent
rise

 you

ree
What You Need to Know

This document is intended for Java programmers and system administrators who want
to develop or support Java server applications that access Tuxedo services within the
WebLogic Enterprise environment. It assumes that you are familiar with BEA Tuxedo
and Java programming. You must also understand the details of any Tuxedo services
that you want to invoke using JET.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for f
from the Adobe Web site at http://www.adobe.com/.
x Using Java Enterprise Tuxedo

How to Print the Document

ng,

s.

date

r the

ou

mer

tion:
Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programmi
and Java programming, see the WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and up
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation fo
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if y
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informa

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Using Java Enterprise Tuxedo xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
xii Using Java Enterprise Tuxedo

Documentation Conventions
{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using Java Enterprise Tuxedo xiii

xiv Using Java Enterprise Tuxedo

CHAPTER

ace

lass
cess
1 Introducing Java
Enterprise Tuxedo

This topic includes the following sections:

n Key Features

n JET Workflow

n Key Components

n Comparison Between Jolt and JET

Java Enterprise Tuxedo™ (JET) is a Java-based application programming interf
(API) to the BEA Tuxedo system for Java servers (CORBA/Java, EJB, and RMI
servers) running in the WebLogic Enterprise (WLE) environment. JET is a Java c
library and API that enables Java servers to invoke BEA Tuxedo services and pro
the results.
Using Java Enterprise Tuxedo 1-1

1 Introducing Java Enterprise Tuxedo
Key Features

With JET, you can leverage existing BEA Tuxedo services from a WebLogic
Enterprise Java server application (CORBA/Java, EJB, or RMI servers). The key
feature of the JET architecture is its simplicity. You can build, deploy, and maintain
robust, modular, and scalable electronic commerce systems that operate over the
Internet.

JET provides the following features:

n Java-based API for simplified development—with its Java-based API, JET
simplifies application development by providing well-designed object interfaces
into BEA Tuxedo services.

n Implicit transaction support— JET enables Java programmers to build Java
servers that use the BEA Tuxedo application and transaction services without
needing to understand detailed transactional semantics or rewrite existing BEA
Tuxedo applications. Transactions are handled implictly by WebLogic Enterprise
and BEA Tuxedo. Java programmers can decide whether a Java server
application participates in, or is excluded from, a transaction.

n BEA Tuxedo-enabled Java server development—using JET, you can build
Java servers that leverage your BEA Tuxedo services. Tuxedo processes can
span multiple domains. JET calls can occur across a bridge or a domain
gateway. JET provides the automatic conversion between Java and native BEA
Tuxedo data types and buffers.

n Easy access to BEA Tuxedo services through the Jolt Repository—the Jolt
Repository contains service definitions that represent Tuxedo services. JET
provides graphical and command-line tools for dynamically populating and
editing service definitions in the Jolt Repository.
1-2 Using Java Enterprise Tuxedo

JET Workflow

ces.”
JET Workflow

Figure 1-1 provides an overview of how JET works.

Figure 1-1 Java Servers Using JET to Invoke BEA Tuxedo Services

A BEA Tuxedo service invocation using JET involves the following steps:

1. A Java server (CORBA/Java, EJB, or RMI server) uses the API in the JET Class
Library to prepare and submit a BEA Tuxedo service request.

2. JET retrieves the service definition for the requested BEA Tuxedo service and
routes the request to the BEA Tuxedo server, which forwards the request to the
Tuxedo service.

3. The BEA Tuxedo service receives the request and generates the results.

4. The BEA Tuxedo service returns the results to the Java server.

5. The Java server uses the JET Class Library to translate the results into a Java
format and process the results.

This entire procedure occurs within the WebLogic Enterprise environment. For a more
detailed description of this process, see Chapter 2, “Invoking BEA Tuxedo Servi

Tuxedo
Service
Request

WebLogic Enterprise Environment

Java Server

Reply

HOST
Tuxedo Environment

Application
Server

CORBA
/Java

Server JE
T

EJB
Server JE

T

RMI
Server JE

T BEA
Tuxedo

Tuxedo
Service
Using Java Enterprise Tuxedo 1-3

1 Introducing Java Enterprise Tuxedo

” on

nt
. The

ess a

ses
itory.
o not
h the

 of
Key Components

JET consists of the following key components:

n JET Class Library

n Jolt Repository Server

n Tools for Managing Service Definitions

Note: JET leverages technology from BEA Jolt®, a BEA product that links Web
clients to BEA Tuxedo services. Certain JET components therefore include
Jolt in the name. However, these components are used by JET, not Jolt. To use
Jolt, you must purchase a Jolt license and install the Jolt software separately.
For more information about Jolt, see “Comparison Between Jolt and JET
page 1-16.

JET Class Library

The JET Class Library is a Java package that contains the class files that impleme
the JET API. These classes enable Java servers to invoke BEA Tuxedo services
JET Class Library includes the functionality needed to prepare, submit, and proc
BEA Tuxedo service request.

The following types of Java servers can use the JET Class Library:

n CORBA/Java servers

n EJB servers

n RMI servers

When developing a JET client application, you need to know only about the clas
that JET provides and the BEA Tuxedo services that are defined in the Jolt Repos
JET hides the underlying application details. To use the JET Class Library, you d
need to understand the underlying transactional semantics, the language in whic
services were coded, buffer manipulation, the location of services, or the names
1-4 Using Java Enterprise Tuxedo

Key Components
databases used. JET handles these operations for you and leverages the implicit
transaction processing mechanisms that WebLogic Enterprise and BEA Tuxedo
provide.

Table 1-1 describes the flow of activity involved in using the JET Class Library to
access BEA Tuxedo services.

For more information about calling Tuxedo services from within Java servers, see
Chapter 2, “Invoking BEA Tuxedo Services.”

Jolt Repository Server

A BEA Tuxedo application is a collection of one or more services. The Jolt Repository
Server (JREPSVR) is a Tuxedo server that manages service definitions of BEA
Tuxedo services for JET. A service definition describes the properties of a BEA
Tuxedo service, such as its name, input and output buffer types, and individual
parameters.

Table 1-1 Using the JET Class Library

Step Process Action

1 Import Library Java server (CORBA/Java, EJB, or RMI server) imports
the package containing the JET Class Library.

2 Prepare Request Java server instantiates a JoltService object and
prepares a BEA Tuxedo service request object using the
JET API.

3 Submit Request Java server invokes the call method to submit the
service request.

4 Process Request BEA Tuxedo application server receives and processes
the service request.

5 Reply BEA Tuxedo returns the results of the service invocation
to the Java server.

6 Process Results The Java server processes the results, including any
exception handling.
Using Java Enterprise Tuxedo 1-5

1 Introducing Java Enterprise Tuxedo

lt

hers

iple
 three

fined
. The
JET uses these service definitions to perform data conversions. Tuxedo service
definitions are stored in a central file, the Jolt Repository, which the JREPSVR
manages. JET uses the JREPSVR to retrieve Tuxedo service definitions from the Jolt
Repository. In addition, the JREPSVR manages updates to service definitions in the
Jolt Repository.

For each BEA Tuxedo service that you want to access using JET, an associated service
definition must be stored in the Jolt Repository. In order to invoke a Tuxedo service,
its service definition must also be explicitly exported, or made available, to Java
servers. All Repository services that are exported to one Java server are exported to all
Java servers. BEA Tuxedo handles the cases where subsets of services may be needed
for one client and not others. You specify and export service definitions using the
graphical and command-line tools described in “Tools for Managing Service
Definitions” on page 1-9.

Before you can use JET, you must configure the JREPSVR in the UBBCONFIG file, as
described in “Configuring JET for Java Server Access” on page 2-2. For each Jo
Repository, you can configure one or more JREPSVRs. Only one instance of the
JREPSVR can be configured with read-write access to the Jolt Repository; all ot
are configured with read-only access.

How BEA Tuxedo Services are Distributed

Figure 1-2 illustrates how the JREPSVR distributes BEA Tuxedo services to mult
Java servers. In this example, the BEA Tuxedo server has four services, but only
are defined in the Jolt Repository. The WITHDRAW service is not defined and
therefore is unavailable to Java servers. In addition, the TRANSFER service is de
in the Jolt Repository but is not exported, or made available, to the Java servers
Java servers are able to invoke only the DEPOSIT and INQUIRY services.
1-6 Using Java Enterprise Tuxedo

Key Components
Figure 1-2 Distributing BEA Tuxedo Services via JET

Workflow for Handling BEA Tuxedo Service Requests

Figure 1-3 shows how JREPSVRs handle BEA Tuxedo service requests from Java
servers.

Java Server
DEPOSIT
INQUIRY

Java Server
DEPOSIT

Java Server
INQUIRY

BEA Tuxedo
Application Services

INQUIRY Service

DEPOSIT Service

TRANSFER Service

WITHDRAW Service

Jolt Repository
Service Definitions

DEPOSIT
INQUIRY

TRANSFER (Not Exported)

JREPSVR
Using Java Enterprise Tuxedo 1-7

1 Introducing Java Enterprise Tuxedo
Figure 1-3 Workflow for Handling BEA Tuxedo Service Requests

The workflow occurs in the following sequence:

1. The Java server submits a request for a BEA Tuxedo service.

2. JET retrieves the service definition for the requested service from the Jolt
Repository using a JREPSVR. Because it is a read-only request, any available
JREPSVR can service the request.

3. JET uses the service definition to translate buffer data. It submits the request to
the BEA Tuxedo server and returns the results to the calling Java server.

Tuxedo Environment

Application
Server

BEA
Tuxedo

Tuxedo
Service

Jolt
Repository

Get
Service
Definition

Invoke
Tuxedo
Service

JREPSVR
Read-Only

JREPSVR
Read-Only

JREPSVR
Read-Write

Java Servers

CORBA
/Java

Server JE
T

EJB
Server JE

T

RMI
Server JE

T

Return
Results
1-8 Using Java Enterprise Tuxedo

Key Components

do
JET

s,
wall,

s

er

ers
ons.
do

ly.
Tools for Managing Service Definitions

This topic describes the following JET components, which are used for managing
service definitions:

n Bulk Loader

n Jolt Repository Editor

n Jolt Servers

n Jolt Internet Relay

JET leverages these components from BEA Jolt for the sole purpose of managing
service definitions used by the JREPSVR. In addition, the topic “Using BEA Tuxe
Buffer Types with JET” on page 1-13 describes the BEA Tuxedo buffer types that
supports.

In order to use the Bulk Loader or Jolt Repository Editor to edit service definition
you must first configure the Jolt servers. If you want to use these tools across a fire
you must also configure Jolt Internet Relay. For configuration instructions, see
Chapter 3, “Configuring JET for Client Access.”

Bulk Loader

The Bulk Loader program populates service definitions for the JREPSVR. It use
service definitions that are specified in a specially-formatted text file. For more
information about the Bulk Loader program, see Chapter 4, “Using the Bulk Load
Program.”

Jolt Repository Editor

The Jolt Repository Editor is a GUI-based administration tool that allows develop
and administrators to add, edit, delete, export, and test individual service definiti
You can modify parameters for BEA Tuxedo services, logically group BEA Tuxe
services into packages, and remove services from created packages. For more
information, see Chapter 5, “Using the BEA Jolt Repository Editor.”

Note: The Jolt Repository Editor controls services for JET client applications on
You cannot use it to make changes to the BEA Tuxedo application.
Using Java Enterprise Tuxedo 1-9

1 Introducing Java Enterprise Tuxedo

d

nt

 Jolt

L.
Jolt Servers

JET includes the following Jolt servers to handle communications with the JREPSVR
when the Repository Editor or Bulk Loader programs are used:

n Jolt Server Listener (JSL)—receives requests from clients and assigns them to
an available Jolt Server Handler. The JSL is a BEA Tuxedo server.

n Jolt Server Handler (JSH)—manages network connectivity, executes service
requests, and handles the translation of buffer data between BEA Tuxedo an
Jolt buffers. Each JSH retains a cache copy of the Jolt Repository for
performance purposes.

These servers work together to handle incoming requests from the Bulk Loader
program or Jolt Repository Editor to update service definitions. The JSH
communicates with the JREPSVR.

Note: You must configure these Jolt servers before you can update service
definitions. For more information, see Chapter 3, “Configuring JET for Clie
Access.”

Figure 1-4 shows how the Jolt servers work together to handle requests from the
Repository Editor or the Bulk Loader program.

Figure 1-4 Workflow for Handling Requests from the Jolt Clients

The workflow occurs in the following sequence:

1. The Jolt Repository Editor or Bulk Loader sends an access request to the JS

2. The JSL forwards the request to an available JSH.

Servers

Jolt
Repository

JSL

Jolt Clients

Repository
Editor

Bulk Loader

JSH

JSH

JSH

JREPSVR
Read-Only

JREPSVR
Read-Only

JREPSVR
Read-Write
1-10 Using Java Enterprise Tuxedo

Key Components
3. The JSH directs the request to an available JREPSVR. If the request is for
write-access to the Jolt Repository, the JSH directs the request to the one
JREPSRVR that has write-access to the Jolt Repository.

4. The JREPSVR processes the request in the Jolt Repository and returns the results
to the JSH.

5. The JSH saves the results in its cache and returns the results to the client
application that made the request.

The JSL also updates the Jolt Repository cache in other JSHs.

Jolt Internet Relay

You use Jolt Internet Relay only if you want to run the Jolt Repository Editor or Bulk
Loader and access Tuxedo service definitions on the other side of a firewall. Jolt
Internet Relay handles message routing from the Jolt Repository Editor or Bulk Loader
running outside a firewall to a JSL or JSH behind a firewall.

Components of Jolt Internet Relay

Jolt Internet Relay consists of the following components:

n Jolt Relay (JRLY)—a standalone software component that routes Jolt messages
to the Jolt Relay Adapter. Requiring only minimal configuration to work with
Jolt clients, the Jolt Relay eliminates the need for the BEA Tuxedo system to run
on the same machine as the Web server.

n Jolt Relay Adapter (JRAD)—a BEA Tuxedo system server, but does not
include any BEA Tuxedo services. It requires command-line arguments to allow
it to work with the JSH and the BEA Tuxedo system. JRAD receives client
requests from JRLY, and forwards the request to the appropriate JSH. Replies
from the JSH are forwarded back to the JRAD, which sends the response back to
the JRLY.

A single Jolt Internet Relay (JRLY/JRAD pair) handles multiple clients concurrently.

Note: You must configure Jolt Internet Relay before you can use the Repository
Editor or Bulk Loader outside a firewall. For more information, see Chapter 3,
“Configuring JET for Client Access.”
Using Java Enterprise Tuxedo 1-11

1 Introducing Java Enterprise Tuxedo
Workflow of Client Requests Using Jolt Internet Relay

Figure 1-5 shows how the JRLY and JRAD work together to route requests from the
Jolt Repository Editor or the Bulk Loader program to a JSH across a firewall.

Figure 1-5 Workflow for Jolt Internet Relay

The workflow occurs in the following sequence:

1. The Jolt Repository Editor or Bulk Loader sends an access request to the JRLY on
the Web server.

2. The JRLY forwards the request across the firewall to the JRAD in the WebLogic
Enterprise environment.

3. The JRAD forwards the message to the JSL.

4. The JSL forwards the request to an available JSH.

5. The JSH directs the request to an available JREPSVR (see Figure 1-4 for an
example). If the request is for write-access to the Jolt Repository, the JSH directs
the request to the one JREPSRVR that has write-access to the Jolt Repository.

6. The results are returned along the same route.

7. For subsequent access requests from the Jolt Repository Editor or Bulk Loader,
the JRAD forwards the request to the selected JSH, bypassing the JSL.

Clients

Repository
Editor

Bulk Loader

Firewall

Web Server

JRLY

WebLogic Enterprise/Tuxedo Environment

JRAD JSH

JSH

JSH

JSL
1-12 Using Java Enterprise Tuxedo

Key Components

ps:

am

ffer
Using BEA Tuxedo Buffer Types with JET

This topic describes the BEA Tuxedo buffer types that you use when defining
parameters for a Tuxedo service call, as described in “Specifying Parameters for the
BEA Tuxedo Service” on page 2-8. Using a buffer type involves the following ste

1. Specifying the buffer type in the service definition using the Bulk Loader progr
or the Jolt Repository Editor.

2. Writing the code that uses the buffer specified in the service definition, as
described in Chapter 2, “Invoking BEA Tuxedo Services.”

Supported BEA Tuxedo Buffer Types

JET supports the following built-in BEA Tuxedo buffer types:

n FML, FML32

n VIEW, VIEW32

n X_COMMON

n X_C_TYPE

n CARRAY

n X_OCTET

n STRING

Note: X_OCTET is used identically to CARRAY.
X_COMMON and X_C_TYPE are used identically to VIEW.

For detailed information about the BEA Tuxedo typed buffers, data types, and bu
types, see the BEA Tuxedo Programmer’s Guide.

Of the BEA Tuxedo built-in buffer types, the JET application programmer should be
particularly aware of how JET handles the CARRAY (character array) and STRING
built-in buffer types. The CARRAY type is used to handle data opaquely (for example,
the characters of a CARRAY data type are not interpreted in any way). No data
conversion is performed between a JET client and BEA Tuxedo service.
Using Java Enterprise Tuxedo 1-13

1 Introducing Java Enterprise Tuxedo
For example, if a BEA Tuxedo service uses a CARRAY buffer type and the user sets
a 32-bit integer (in Java the integer is in big-endian byte order), then the data is sent
unmodified to the BEA Tuxedo service. If the BEA Tuxedo service is run on a machine
whose processor uses little-endian byte-ordering (for example, Intel processors), the
BEA Tuxedo service must convert the data properly before the data can be used.

STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-null
characters and is terminated by a null character. The STRING data type is character
and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from JET to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into the
BEA Tuxedo system. Because the system does not interpret the data (although the data
type is known) when you use the CARRAY buffer type, you must specify a data length
in the JET client application. The JET client must specify a data length when passing
this buffer type.

To use the CARRAY buffer type, you first define the BEA Tuxedo service that you
will be using with the buffer type. Then, write the code that uses the buffer type.

Note: X_OCTET is used identically to CARRAY.

FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged values that are typed, variable in
length, and may have multiple occurrences. The typed buffer is treated as an abstract
data type in FML.

FML gives you the ability to access and update data values without having to know
how the data is structured and stored. In your application program, you simply access
or update a field in the fielded buffer by referencing its identifier. To perform the
operation, the FML run time determines the field location and data type.
1-14 Using Java Enterprise Tuxedo

Key Components
FML is especially suited for use with JET clients because the client and server code
can be in two languages (for example, Java and C); the client/server platforms can have
different data type specifications; or the interface between the client and the server can
change frequently.

VIEW Buffer Type

VIEW is a built-in BEA Tuxedo typed buffer. The VIEW buffer provides a way to use
C structures and COBOL records with the BEA Tuxedo system. The VIEW typed
buffer enables the BEA Tuxedo run-time system to understand the format of C
structures and COBOL records based on the view description that is read at run time.

When allocating a VIEW, your application specifies a VIEW buffer type and a subtype
that matches the name of the view (the name that appears in the view description file).
The parameter name must match the field name in that view. Because the BEA Tuxedo
run-time system can determine the space needed based on the structure size, your
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in a request or
response, and handle encoding and decoding when the message transfers between
different machine types.
Using Java Enterprise Tuxedo 1-15

1 Introducing Java Enterprise Tuxedo
Comparison Between Jolt and JET

This topic includes the following sections:

n Overview of Jolt and JET

n Architecture Comparison

n Components Comparison

n Functionality Comparison

n Class Library Comparison

Overview of Jolt and JET

WebLogic Enterprise provides two technologies that enable Java applications to
invoke BEA Tuxedo services:

n Jolt provides client-side access to BEA Tuxedo services. Jolt enables
browser-based clients (applications, such as the Jolt Bulk Loader program, or
applets such as the Jolt Repository Editor) to invoke BEA Tuxedo services and
process the results. Jolt is an optional WebLogic Enterprise component that is
installed separately from WebLogic Enterprise.

n Java Enterprise Tuxedo (JET) provides server-side access to BEA Tuxedo
services. JET enables Java servers (CORBA/Java, EJB, or RMI servers) running
within the WebLogic Enterprise domain to invoke BEA Tuxedo services and
process the results. JET is automatically installed when you install WebLogic
Enterprise.

The technology that you use depends on the nature of your application. Use Jolt to
provide client applets with access to BEA Tuxedo services, or use JET to provide Java
servers, running in the WebLogic Enterprise domain, with access to BEA Tuxedo
services.
1-16 Using Java Enterprise Tuxedo

Comparison Between Jolt and JET
Architecture Comparison

Figure 1-6 provides an overview of the Jolt and JET architectures.

Figure 1-6 Overview of Jolt and JET Architectures

At run time, requests for BEA Tuxedo services are handled differently:

n For servlets that make service requests using Jolt, requests and replies are routed
to the BEA Tuxedo service through the Java Listener (JSL) to a Java Handler
(JSH).

n For Java servers that make service requests using JET, requests and replies are
routed directly through JET, without using the JSL/JSH. The server-side object
lives inside JavaServer(.exe). Because the JavaServer(.exe) is a regular Tuxedo
server, it can call Tuxedo services within its domain or across domains.

For more detailed information about Jolt, see the BEA Jolt documentation in the
WebLogic Enterprise online documentation.

Fire
wall

WebLogic Enterprise Environment

JSL/JSHs

JET

Jolt

Jolt Client
Applications

Java-Enabled
Web Browser

Java VM

Applets

Tuxedo
Environment

Application
Server

BEA Tuxedo

Tuxedo
Services

Java Server

CORBA/Java

EJB

RMI

ISL/ISHs

Web
Server

Client Applications

CORBA Clients

RMI Clients
Using Java Enterprise Tuxedo 1-17

1 Introducing Java Enterprise Tuxedo

ing
Components Comparison

Because JET runs in the WebLogic Enterprise environment, it does not require all of
the components that Jolt uses. Table 1-2 compares the components used in Jolt and
JET.

At run time, Java servers using JET require only the JET Class Library, the Jolt
Repository, and the JREPSVR. All other components are used only when editing BEA
Tuxedo service definitions in the Jolt Repository, as described in “Tools for Manag
Service Definitions” on page 1-9.

Table 1-2 Comparison of Jolt and JET Components

Component Used in Jolt? Used in JET?

Class Library Yes Yes

JoltBeans Yes No

Jolt Repository Yes Yes

Jolt Repository Editor Yes Yes

Bulk Loader Yes Yes

Jolt Repository Server (JREPSVR) Yes Yes

Jolt Servers:

n Jolt Listener (JSL)

n Jolt Handler (JSH)

Yes Yes

Jolt Internet Relay:

n Jolt Relay (JRLY)

n Jolt Relay Adapter (JRAD)

Yes Yes

Servlet Connectivity for Tuxedo Yes No

ASP Connectivity for Tuxedo Yes No
1-18 Using Java Enterprise Tuxedo

Comparison Between Jolt and JET
Functionality Comparison

Table 1-3 compares the major features used in Jolt and JET.

Table 1-3 Comparison of Jolt and JET Functionality

Function Jolt JET

Calling code Applets launched inside web
browsers

Java servers: CORBA/Java,
EJB, and RMI servers

Sessions Yes No

Transactions Explicit; client must establish
transactions explicitly.

Implicit; calls can be
excluded from transactions.

Events Yes No

Security 56-bit and 128-bit 40-bit only

Class for invoking BEA
Tuxedo service

JoltRemoteService
class

JoltService class

Jolt version Jolt 1.2.1 Jolt 1.2
Using Java Enterprise Tuxedo 1-19

1 Introducing Java Enterprise Tuxedo
Class Library Comparison

The Jolt and JET class libraries share some common components. This topic describes
the packages, interfaces, and classes that Jolt and JET use.

Packages

Table 1-4 describes the bea.jolt.* packages that Jolt and JET use. The only
common package is bea.jolt, of which JET uses the subset described in Table 1-5.

Package bea.jolt Components

Table 1-5 describes the components of the bea.jolt package that Jolt and JET use.
JET uses a subset of the bea.jolt package.

Table 1-4 Packages Used in Jolt and JET

Package Name / Component Used in Jolt? Used in JET?

package bea.jolt Yes Yes

package bea.jolt.beans Yes No

package bea.jolt.beans.awt Yes No

package bea.jolt.beans.swing Yes No

package bea.jolt.beans.swi ng11 Yes No

package bea.jolt.pool Yes No

package bea.jolt.pool.asp Yes No

package bea.jolt.pool.servlet Yes No

package
bea.jolt.pool.servlet.weblogic

Yes No
1-20 Using Java Enterprise Tuxedo

Comparison Between Jolt and JET
Table 1-5 Components of the bea.jolt Package

Package Name / Component Used In Jolt? Used in JET?

Interfaces

Message Yes No

Classes

JoltAdmSession Yes No

JoltDefinition Yes Yes

JoltMessage Yes No

JoltParam Yes No

JoltRemoteService Yes Yes

JoltReply Yes No

JoltRepository Yes No

JoltRequest Yes No

JoltService No Yes

JoltServiceBase No Yes

JoltSession Yes No

JoltSessionAttributes Yes No

JoltTransaction Yes No

JoltUserEvent Yes No

LockMonitor Yes No

SBuffer Yes Yes

Session Yes No

Exceptions

ApplicationException Yes Yes
Using Java Enterprise Tuxedo 1-21

1 Introducing Java Enterprise Tuxedo
Note: Jolt application developers must use the JoltRemoteService class, while
JET application developers should use the JoltService class. Differences
exist between the constructors and the call method.

For detailed information about these classes, see the BEA Jolt Javadoc and the
bea.jolt package in the WebLogic Enterprise API Javadoc in the WebLogic
Enterprise online documentation.

DefinitionException Yes No

EventException Yes No

JoltException Yes Yes

MessageException Yes Yes

ServiceException Yes Yes

SessionException Yes No

TransactionException Yes No

Table 1-5 Components of the bea.jolt Package (Continued)

Package Name / Component Used In Jolt? Used in JET?
1-22 Using Java Enterprise Tuxedo

CHAPTER
2 Invoking BEA Tuxedo
Services

This topic includes the following sections:

n Configuring JET for Java Server Access

n Invoking BEA Tuxedo Services with the JET Class Library

The JET Class Library provides developers with a set of object-oriented Java language
classes for accessing BEA Tuxedo services. The bea.jolt package contains the JET
Class Library. For more information about the classes that make up the JET Class
Library, see the bea.jolt package in the WebLogic Enterprise API Javadoc in the
WebLogic Enterprise online documentation.
Using Java Enterprise Tuxedo 2-1

2 Invoking BEA Tuxedo Services

.

”

ice,

ins.

d to
Configuring JET for Java Server Access

This topic includes the following sections:

n Default Repository File

n Parameters to Specify in the UBBCONFIG File

n Sample UBBCONFIG File

Before a Java server application can use the JET Class Library to invoke BEA Tuxedo
services, you must first define one or more Jolt Repository Servers (JREPSVRs) to
manage service definitions stored in the Jolt Repository. The configuration must
include a pointer to the location of the Jolt Repository file. You must configure these
JREPSVRS on the same host on which the BEA Tuxedo services are running. For
more information about the JREPSVR, see “Jolt Repository Server” on page 1-5

To define JREPSVRs, you change settings in the GROUPS and SERVERS section of the
UBBCONFIG file for the application. The UBBCONFIG file is an ASCII version of the
BEA Tuxedo configuration file. For each UBBCONFIG file, you can configure a single
Jolt Repository. Thereafter, you must create the tuxconfig file using tmloadcf, set
environment variables (including TUXDIR and CLASSPATH), and then boot the Tuxedo
application using tmboot, as described in “Starting and Shutting Down Applications
in the Administration Guide.

Default Repository File

JET includes a sample Jolt Repository file, jrepository (in the udataobj\jolt
directory), which includes service definitions for the BEA Tuxedo TOUPPER serv
along with other sample service definitions. Start with the jrepository file provided
with the installation, even if you are not going to use the service definitions it conta
You can simply delete the packages or services that you do not need.

In addition, the CORBA/Java-to-Simpapp and EJB-to-Tuxedo Simpapp sample
applications include local repository files that contain the service definitions neede
run the samples. For more information about these sample applications, see CORBA,
J2EE, and Tuxedo Interoperability and Coexistence.
2-2 Using Java Enterprise Tuxedo

Configuring JET for Java Server Access

oup

ple
Warning: Do not modify the Repository files manually or you will not be able to use
the Jolt Repository Editor. Although the jrepository file can be
modified and read with any text editor, JET does not have integrity checks
to ensure that the file is in the proper format. Any manual changes to the
jrepository file might not be detected until run time. For more
information, see “Using the BEA Jolt Repository Editor” on page 5-1.

Parameters to Specify in the UBBCONFIG File

Table 2-1 describes the parameters in the UBBCONFIG file to specify.

For more information about the UBBCONFIG file, see “Creating a Configuration File”
in the Administration Guide and the BEA Tuxedo Command Reference.

GROUPS Section

A GROUPS entry is required for the group that includes the Jolt Repository. The gr
name parameter is a name selected by the application. In the GROUPS section, complete
the following steps:

1. Specify the same identifiers given as the value of the LMID parameter in the
MACHINES section.

2. Specify the value of the GRPNO, between 1 and 30000.

SERVERS Section

The JREPSVR contains services for accessing and editing the Repository. Multi
JREPSVR instances share Jolt Repository information through a shared file.

Table 2-1 Parameters To Specify in UBBCONFIG File

Option Parameters

GROUPS LMID, GRPNO

SERVERS SRVGRP, SRVID
Using Java Enterprise Tuxedo 2-3

2 Invoking BEA Tuxedo Services
Note: To achieve the fastest performance, configure the Jolt Repository on a local
drive of the machine on which the Java server runs. At a minimum, the Jolt
Repository must reside on a volume that is network accessible to the
JREPSVR.

To configure JREPSVR, modify the SERVERS section of the UBBCONFIG file by
completing the following steps:

1. Indicate a new server identification (for example, 98) with the SRVID parameter.

2. Specify the -W flag for one (and only one) JREPSVR to ensure that you can edit
service definitions using the Bulk Loader program or the Jolt Repository Editor.

Without explicitly setting this flag, the Repository is read-only.

Note: You must install only one writable JREPSVR (that is, only one JREPSVR
with the -W flag). Multiple read-only JREPSVRs can be installed on the
same host.

3. Type the -P flag to specify the path of the Jolt Repository file.

Note: An error message is displayed in the BEA Tuxedo ULOG file if the
argument for the -P flag is not entered.

4. Add the file pathname of the Repository file (for example, /app/jrepository).

5. Boot the BEA Tuxedo system by using the tmloadcf (for example,
tmloadcf -y ubbconfig) and tmboot commands.

For information about tmloadcf and tmboot, see Administering a BEA Tuxedo
Application at Run Time.

Sample UBBCONFIG File

Listing 2-1 shows relevant portions of a sample UBBCONFIG file.

Listing 2-1 Sample UBBCONFIG File

*GROUPS
 JREPGRP GRPNO=94 LMID=SITE1
*SERVERS
 JREPSVR SRVGRP=JREPGRP SRVID=98
2-4 Using Java Enterprise Tuxedo

Configuring JET for Java Server Access
 RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"
 JREPSVR SRVGRP=JREPGRP SRVID=97
 RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"
 JREPSVR SRVGRP=JREPGRP SRVID=96
 RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P
/app/jrepository"

Notes: For the CLOPT parameter, the pathname of the file must match the argument
of the -P option.

For UNIX systems, use the slash (/) when setting the path to the jrepository
file (for example, app/repository). For Windows NT systems, use the
backslash (\) and specify the drive name (for example,
c:\app\repository).
Using Java Enterprise Tuxedo 2-5

2 Invoking BEA Tuxedo Services

do

n
do
Invoking BEA Tuxedo Services with the JET
Class Library

This topic includes the following sections:

n Importing Packages

n Instantiating a JoltService Object

n Specifying Parameters for the BEA Tuxedo Service

n Calling the BEA Tuxedo Service

n Handling Results

This topic shows how to invoke a BEA Tuxedo service using the JET Class Library.
It uses sample Java code from the EJB-to-Tuxedo Simpapp sample application, as well
as some code fragments from unshipped applications to illustrate other programming
techniques. The EJB-to-Tuxedo Simpapp sample application invokes a BEA Tuxedo
service, TOUPPER, that converts a text string to all uppercase letters. The
EJB-to-Tuxedo Simpapp sample application is located in
samples\interop\ejb_tux.

This topic walks through the portions of the SimpBean code that use the JET Class
Library. For a complete description of this sample application, see “EJB-to-Tuxe
Simpapp Sample Application” in CORBA, J2EE, and Tuxedo Interoperability and
Coexistence.

Note: At run time, the BEA Tuxedo service(s) that you want to invoke must be
running on the BEA Tuxedo server. The configuration settings specified i
“Configuring JET for Java Server Access” must be activated for the Tuxe
application.
2-6 Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library
Importing Packages

To use JET, an application must import the bea.jolt.* package, which contains the
JET Class Library. Listing 2-2, from the EJB-to-Tuxedo Simpapp sample application,
shows how the SimpBean imports the required packages, including the bea.jolt
package.

Listing 2-2 Importing the bea.jolt Package

package ejb;

import java.rmi.*;
import javax.ejb.*;

import bea.jolt.*;

Instantiating a JoltService Object

The joltNativeCall method is where the SimpBean invokes the TOUPPER BEA
Tuxedo service using the JET Class Library. The key component of the Jolt Class
Library is the JoltService class.

To access a BEA Tuxedo service using JET, an application begins by creating an
instance of the JoltService class. The JoltService object represents the BEA
Tuxedo service that you want to invoke. The constructor requires the name of the BEA
Tuxedo service. JET uses this service name to locate the associated service definition
in the Jolt Repository.

Listing 2-3, from the EJB-to-Tuxedo Simpapp sample application, shows the
declaration of the joltNativeCall method and the instantiation of a JoltService
to represent the BEA Tuxedo TOUPPER service.

Listing 2-3 Creating an Instance of the JoltService Class

 String joltNativeCall (String svcName, String data)
Using Java Enterprise Tuxedo 2-7

2 Invoking BEA Tuxedo Services

 to

rray
 {
 JoltService svc;

 try {
 svc = new JoltService (svcName);

Specifying Parameters for the BEA Tuxedo Service

After instantiating a JoltService, an application specifies parameters for the BEA
Tuxedo service. The JoltService class provides addXXXX methods that are used to
specify the parameters. For each parameter, the application specifies the buffer type
(such as STRING, CARRAY, VIEW, and FML) and the buffer value. For more information,
see “Using BEA Tuxedo Buffer Types with JET” on page 1-13.

Note: The parameters must be valid for the BEA Tuxedo service. If invalid
parameters are specified, the BEA Tuxedo service will return an error.

Specifying String Parameters

Listing 2-4, from the EJB-to-Tuxedo Simpapp sample application, shows the call
the addString method, passing the buffer type (STRING) and the text string (data)
supplied by the user.

Listing 2-4 Specifying the Parameters for the TOUPPER Service

 svc.addString("STRING", data);

Specifying Array Parameters

Listing 2-5 is a code fragment that shows how to specify array elements for two a
parameters: a String array named svarray and a short array named harray.
2-8 Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library
Listing 2-5 Specifying Array Parameters

j_service.addString("svarray", "String[0]");
j_service.addString("svarray", "String[1]");
j_service.addShort("harray", (short) (600));
j_service.addShort("harray", (short) (700));

Specifying Parameters of Various Data Types

Listing 2-6 is a code fragment that shows how to specify parameters of various data
types.

Listing 2-6 Specifying Parameters of Various Data Types

j_service.addInt("ctime", 100);
j_service.addString("hname", "***NoName***");
j_service.addFloat("fval", (float) 200.00);
j_service.addByte("cval", (byte) ’S’);
j_service.addInt("lval", 300);
j_service.addString("sval","10 bytes(unexpected string)");
j_service.addShort("hval", (short) 400);
j_service.addDouble("dval", 500.00);

Calling the BEA Tuxedo Service

After the parameters are specified, an application calls the call method, which
submits a service request to BEA Tuxedo. The call method provides two syntax
options:

n An application uses call() to have the BEA Tuxedo service call participate in
the current transaction, if applicable. JET uses the implicit transaction
mechanisms provided by WebLogic Enterprise and BEA Tuxedo. If the BEA
Tuxedo service call is part of a transaction and the transaction is rolled back, any
changes made by the BEA Tuxedo service call are rolled back automatically.

n An application uses call(null) to exclude the BEA Tuxedo service call from
participating in the current transaction. Pass null only if you are certain that any
Using Java Enterprise Tuxedo 2-9

2 Invoking BEA Tuxedo Services
operations performed by the BEA Tuxedo service will never need to be rolled
back.

Listing 2-7, from the EJB-to-Tuxedo Simpapp sample application, shows the call to
the call method, passing null because the operation performed by the TOUPPER
service is not transactional.

Listing 2-7 Invoking the BEA Tuxedo TOUPPER Service

 svc.call (null);

At this point, JET obtains the TOUPPER service definition from the Jolt Repository,
converts the buffer data to BEA Tuxedo buffers, submits the request to BEA Tuxedo,
and awaits a reply.

Handling Results

This section describes how to handle the results (exceptions and parameters) returned
from a Tuxedo service call.

Handling Exceptions

The JET Class Library returns JET and BEA Tuxedo errors as exceptions. For a
complete list of JET exceptions, see the WebLogic Enterprise Javadoc in the
WebLogic Enterprise online documentation.

Listing 2-8, from the EJB-to-Tuxedo Simpapp sample application, shows the code to
catch a ServiceException.

Listing 2-8 Handling the Results of the BEA Tuxedo Service Call

 } catch (ServiceException e) {
 System.out.println("JoltService got "+e);
 return new String("");
2-10 Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library
Handling Returned Parameters

This section describes how to handle parameters that were returned from the BEA
Tuxedo service call. The JoltService class provides getXXXX methods that are used
to retrieve individual parameters. The application passes the name of the parameter to
retrieve, as well as a default value in case no value is returned.

Retrieving String Parameters

Listing 2-9, from the EJB-to-Tuxedo Simpapp sample application, shows how to
retrieve the String parameter, specified in Listing 2-4, that was returned by the
TOUPPER service. In the call to the getStringDef method, the application passes the
parameter name (STRING) and the default value ("no_response") if no value was
returned.

Listing 2-9 Retrieving a String Parameter

 return svc.getStringDef("STRING", "no_response");

Retrieving Arrays

Listing 2-10 is a code fragment that shows how to handle the returned array elements
for the two arrays, svarray and harray, that were specified in Listing 2-5.

Listing 2-10 Retrieving Returned Arrays

// retrieve svarray elements
for (int i = 0; i < 2; i++)
{
 String s;
 if ((s = j_service.getStringItemDef(
 "svarray", i, null)) == null)
 break;
System.out.println(hdr+"]: svarray["+i+"]="+s);
}
// retrieve harray elements
for (int i = 0; i < 2; i++)
 {
 short h;
Using Java Enterprise Tuxedo 2-11

2 Invoking BEA Tuxedo Services
 if ((h = j_service.getShortItemDef(
 "harray", i, (short) 0)) == 0)
 break;
 System.out.println(hdr+"]: harray["+i+"]="+h);
}

Retrieving Parameters of Various Data Types

Listing 2-11 is a code fragment that shows how to handle the returned parameters, of
various data types, that were specified in Listing 2-6.

Listing 2-11 Retrieving Parameters of Various Data Types

System.out.println(hdr+"]: ctime="+
j_service.getIntDef("ctime", 0)+
nhdr+"]: hname="+
j_service.getStringDef("hname", null)+
nhdr+"]: sval="+
j_service.getStringDef("sval", null)+
nhdr+"]: fval="+
j_service.getFloatDef("fval",(float) 0.0)+
nhdr+"]: cval="+
j_service.getByteDef("cval", (byte) ’.’)+
nhdr+"]: lval="+
j_service.getIntDef("lval", 0)+
nhdr+"]: hval="+
j_service.getShortDef("hval", (short) 0)+
nhdr+"]: dval="+
j_service.getDoubleDef("dval",(double)0.0));
2-12 Using Java Enterprise Tuxedo

CHAPTER

ient
ET
tion.

e
itory
 for
3 Configuring JET for
Client Access

This topic includes the following sections:

n Configuring JET

n JET Administrative Reference

The section “Configuring JET” on page 3-2 provides the instructions you need to
configure JET for client access. You need to complete these instructions only if you
need to add or edit BEA Tuxedo service definitions using either of the following cl
programs: the Bulk Loader program or the Jolt Repository Editor. The section “J
Administrative Reference” on page 3-8 provides supplemental reference informa

Note: Throughout this topic, the term client refers to either the Bulk Loader or the
Jolt Repository Editor.

This topic assumes that you are familiar with BEA Tuxedo and that you have
experience with the operating systems and network environment in which you ar
configuring JET. It also assumes that you have already configured the Jolt Repos
Server (JREPSVR) according to the configuration instructions in “Configuring JET
Java Server Access” on page 2-2.
Using Java Enterprise Tuxedo 3-1

3 Configuring JET for Client Access

 in
Configuring JET

This topic provides instructions for configuring JET for client access. It includes the
following sections:

n About Configuring JET for Client Access

n Step 1: Configure JSL

n Step 2: Configure Jolt Relay

n Step 3: Registering Tuxedo Services with the Repository

About Configuring JET for Client Access

Before you can use the Bulk Loader program or Jolt Repository Editor to add or edit
BEA Tuxedo service definitions, you must configure and start the following servers:

n Jolt Listener (JSL)—receives requests from clients and assigns them to an
available Jolt Handler (JSH). A JSH manages network connectivity, executes
service requests, and handles the translation of buffer data between BEA Tuxedo
and Jolt buffers.

n Jolt Relay (JRLY)—handles communications across a firewall between clients
and the JSL. You do not need to configure Jolt Relay if no firewall exists
between the client and JSL.

For an introduction to these components, see “Tools for Managing Service
Definitions” on page 1-9.

Note: Before you proceed with this topic, you first need to configure the Jolt
Repository Server (JREPSVR) according to the configuration instructions
“Configuring JET for Java Server Access” on page 2-2.

For more information about the UBBCONFIG file, see “Creating a Configuration File”
in the Administration Guide.
3-2 Using Java Enterprise Tuxedo

Configuring JET

10.
Step 1: Configure JSL

To configure JET for client access, you must configure the JSL on the host on which
the BEA Tuxedo services that you want to invoke are running. You configure the JSL
in the UBBCONFIG file. For an introduction to the JSL, see “Jolt Servers” on page 1-
For additional information about configuration parameters, see “Jolt Server
Reference” on page 3-8.

Note: Before you begin, be sure to set the CLASSPATH to include the directory in
which the jolt.jar file resides (such as udataobj\jolt).

To configure the JSL:

1. Open the UBBCONFIG file with a text editor.

2. In the MACHINES section, specify MAXWSCLIENTS=number (Required).

Note: If MAXWSCLIENTS is not set, JSL does not boot.

3. In the GROUPS section, set GROUPNAME required parameters [optional
parameters].

4. Set the SERVERS section (Required).

Lines within this section have the form:

JSL required parameters [optional parameters]

where JSL specifies the filename (string_value) of the JSL to be executed by
tmboot(1), as described in the following step.

5. Set the following required parameters for JSL:

SVRGRP=string_value

SRVID=number

CLOPT=”-A...-n...// host port”

For more information about these parameters, see “Creating a Configuration
File” in the Administration Guide.

6. Set the following optional parameters for JSL, if you want:

MIN # of JSHs

MAX # of JSHs
Using Java Enterprise Tuxedo 3-3

3 Configuring JET for Client Access

y

—

” on
Upon startup, the JSL starts the configured minimum number of JSHs. As more
concurrent requests are received, it might start additional JSHs to handle the
request load, up to the configured maximum number of JSHs.

To use these parameters, you first need to understand how doing so affects your
application. For more information about these parameters, see “Creating a
Configuration File” in the Administration Guide.

Step 2: Configure Jolt Relay

To configure JET for client access across a firewall, you must also configure Jolt
Internet Relay, which includes the following components:

n Jolt Relay (JRLY)—routes Jolt messages to the Jolt Relay Adapter. JRLY runs
on a Web server outside the firewall.

n Jolt Relay Adapter (JRAD)—receives client requests from JRLY and forwards
the request to the appropriate JSH. The JSH forwards replies back to the JRAD,
which sends the response back to the JRLY. JRAD runs as a Tuxedo server in
the Tuxedo environment behind the firewall. The JRAD does not need to be in
the same APPDIR as the JSL/JSH servers.

Note: You do not need to configure Jolt Relay if no firewall exists between client
programs and the JSL.

For an introduction to Jolt Internet Relay, see “Jolt Internet Relay” on page 1-11.
For additional information about configuration parameters, see “Jolt Internet Rela
Reference” on page 3-17.

Configuring JRLY on the Web Server

To configure JRLY, you first start JRLY on the Web server and then change the
configuration file. Be sure to follow the instructions for your Web server platform
the instructions for UNIX and Windows NT are slightly different. For a detailed
description of JRLY configuration parameters, see “Jolt Internet Relay Reference
page 3-17.
3-4 Using Java Enterprise Tuxedo

Configuring JET
Note: The format for directory and filenames is determined by the operating system.
UNIX systems use the forward slash (/). Windows NT systems use the
backslash (\). If any files specified in LOGDIR, ACCESS_LOG, or ERROR_LOG
cannot be opened for writing, JRLY prints an error message on stderr and
exits.

Installing and Starting JRLY (Windows NT Only)

JRLY runs as an NT service in the Windows NT environment. To install JRLY on the
Web server machine, complete the following steps:

1. Create a directory for Jolt Relay on the Web server machine.

2. Copy the contents of the /udataobj/jolt/relay directory to the directory you
created on the Web server machine.

3. Install JRLY as an NT service by typing the following command at the system
prompt:

jrly -install

By default, the JRLY service is configured to start automatically.

4. Update the registry with the full path of a new configuration file using the
jrly -set -f command, as shown in the following example:

jrly -set -f c:\tux71\udataobj\jolt\jrly.config

In this example, the default JRLY Windows NT service (Jolt Relay) is assigned
a configuration file called jrly.config that is located in the following
directory: c:\tux71\udataobj\jolt.

5. Configure the service as needed using the Services Control Panel.

Starting JRLY (UNIX Only)

Start the JRLY process on UNIX by typing the following command at the system
prompt:

jrly -f config_file

where config_file is the path and name of the JRLY configuration file. The default
filename is jrly.config.
Using Java Enterprise Tuxedo 3-5

3 Configuring JET for Client Access
Note: If the specified configuration file does not exist or it cannot be opened, the
JRLY writes a message to stderr, attempts to log the startup failure in the
error log, and then exits.

Configuring JRLY (UNIX and Windows NT)

The configuration file uses a TAG=VALUE syntax. Blank lines or lines starting with the
character are ignored. Listing 3-1 shows an example of the formal specifications of
the configuration file.

Listing 3-1 Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept
comma-separated connections>
CONNECT=<IP:Port1, IP:Port2...IP:PortN:Port(List of IP:Port
combinations associated with JRADs: can be 1...N)>

Configuring the Socket Timeout (Windows NT only; optional)

The SOCKETTIMEOUT setting is specified in the JRLY configuration file.
SOCKETTIMEOUT is the time, in seconds, for which JRLY Windows NT service blocks
for network activity (new connections, data to be read, and closed connections).
SOCKETTIMEOUT also affects the Service Control Manager (SCM). When the SCM
requests the Windows NT service to stop, the SCM must wait for at least
SOCKETTIMEOUT seconds before quitting.

Table 3-1 describes the formats for the host names and the port numbers.

Table 3-1 Host Name and Port Number Formats

Host Name/Port # Description

//Hostname:Port Hostname is a string; Port is a decimal number.

IP:Port IP is a dotted notation IP address; Port is a decimal number.
3-6 Using Java Enterprise Tuxedo

Configuring JET
Configuring JRAD in the Tuxedo Environment

To configure JRAD, a Tuxedo server, you first start JRAD in the BEA Tuxedo
environment and then change the configuration file.

Starting the Jolt Relay Adapter (JRAD)

To start the Jolt Relay Adapter, complete the following steps:

1. Type tmloadcf -y ubbFile, where ubbFile is the name of the UBBCONFIG file
associated with this JRAD.

2. Type tmboot to boot the JRAD server.

Configuring the JRAD

While configuring the JRAD, consider the following rules:

n A single JRAD process can be connected to only one JRLY.

n A JRAD can be configured to communicate with only one JSL and its associated
JSHs.

n Multiple JRADs can be configured to communicate with one JSL.

n The CLOPT parameter for BEA Tuxedo services must be included in the
UBBCONFIG file.

To configure the JRAD, complete the following steps:

1. Type -l hexadecimal format. (The JSL port to which the JRLY connects on
behalf of the client.)

2. Type -c hexadecimal format. (The address of the corresponding JSL to
which JRAD connects.)

Note: The format is 0x0002PPPNNN or, in dot notation, 100.100.10.100.

3. Configure networked components.
Using Java Enterprise Tuxedo 3-7

3 Configuring JET for Client Access

f a
net

ET

SL)
 page
Step 3: Registering Tuxedo Services with the Repository

In order to make the JET services available to Java servers, you must define the BEA
Tuxedo services that use BEA Tuxedo. To define the Tuxedo service:

1. Build the BEA Tuxedo server that contains the service. For more information, see
the BEA Tuxedo Application Development Guide.

2. For each Tuxedo service that you want to invoke, you must register its service
definition in the Jolt Repository.

l To populate the Jolt Repository with service definitions defined in a bulk
loader file, see Chapter 4, “Using the Bulk Loader Program.”

l To add or edit service definitions with the Jolt Repository Editor, see
Chapter 5, “Using the BEA Jolt Repository Editor.”

Note: You cannot use the Bulk Loader or Jolt Repository Editor until the
JREPSVR and JSL are properly configured and running. In addition, i
firewall exists between the Jolt Repository Editor and the JSL, Jolt Inter
Relay must also be properly configured and running.

JET Administrative Reference

This topic includes detailed supplemental reference information for the following J
components:

n Jolt Server Reference

n Jolt Internet Relay Reference

Jolt Server Reference

This section provides supplemental reference information for the Jolt Listener (J
and Jolt Handler (JSH). For an introduction to these servers, see “Jolt Servers” on
1-10. For configuration instructions, see “Step 1: Configure JSL” on page 3-3.
3-8 Using Java Enterprise Tuxedo

JET Administrative Reference

to

es in

e
About Jolt Servers

JET provides the following Jolt servers:

n Jolt Server Listener (JSL)—is configured to support clients on an IP/port
combination.The JSL works with one or more Jolt Server Handlers (JSHs) to
provide client connectivity to the backend of the WebLogic Enterprise system.
The JSL runs as a BEA Tuxedo server.

n Jolt Server Handler (JSH)—is a program that runs on a BEA Tuxedo server
machine to provide a network connection point for remote clients. The JSH
works with the JSL to provide client connectivity residing on the backend of the
WebLogic Enterprise system. One ore more JSHs can be available to the JSL (up
to 32767). For additional information, see the description of the -M
command-line option in “JSL Command-Line Options” on page 3-11.

System Administrator Responsibilities

The system administrator’s responsibilities for the Jolt servers include:

n Determining the JSL network address.

n Determining the number of JET clients to be serviced. The number of clients
be serviced is limited by MAXWSCLIENTS setting in the UBBCONFIG file.

n Determining the minimum and maximum number of JSHs.

Starting the JSL

After you have configured the JSL in the UBBCONFIG file, you need to complete the
following steps on the Tuxedo server to start all administrative and server process
the UBBCONFIG file:

1. Type tmloadcf.

This command parses the configuration file and loads the binary version of th
configuration file.

2. Type tmboot -y.

This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to
overwrite your TUXCONFIG file.
Using Java Enterprise Tuxedo 3-9

3 Configuring JET for Client Access
See Administering a BEA Tuxedo Application at Run Time or the BEA Tuxedo
Command Reference for information about tmloadcf and tmboot.

Shutting Down the JSL

All shutdown requests to the Jolt servers are initiated by the BEA Tuxedo command:

 tmshutdown -y

During shutdown:

n No new client connections are accepted.

n All current client connections are terminated. BEA Tuxedo rolls back open
transactions. Each client receives an error message indicating that the service is
unavailable.

Restarting the JSL

BEA Tuxedo monitors the JSL and restarts it in the event of a failure. When BEA
Tuxedo restarts the listener process, the following events occur:

n Clients attempting a listener connection must try to reconnect. Clients attempting
a handler connection receive a timeout or a time delay.

n Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits normally).

Configuring the JSL

The Jolt Server Listener (JSL) is a BEA Tuxedo server that is responsible for
distributing connection requests from JET to an available Jolt Server Handler (JSH).
BEA Tuxedo must be running on the host machine where the JSL and the JREPSVR
are located.

JSL Command-Line Options

The server may need to obtain information from the command-line. The CLOPT
parameter allows you to specify command-line options that can change some defaults
in the server. Table 3-2 describes the JSL command-line options.
3-10 Using Java Enterprise Tuxedo

JET Administrative Reference
Table 3-2 JSL Command-Line Options

Option Description

[-c compression_threshold] Enables application data sent between a JET client and a Jolt server
(JSH) to be compressed during transmission over the network.

compression_threshold is a number that you specify between 0
and 2,147,483,647 bytes. Any messages that are larger than the specified
compression threshold are compressed before transmission.

The default is no compression; that is, if no compression threshold is
specified, messages are not compressed on client or server.

The previous -c connection-mode option has been replaced with
the -j connection-mode option.

[-d device_name] The device for platforms using the Transport Layer Interface. There is
no default. Required. (Optional for sockets)

[-H external netaddr] external netaddr is the network address JET that clients use to
connect to the application. The JSL process uses this address to listen for
clients attempting to connect at this address. If the address is
0x0002MMMMdddddddd and JSH network address is
0x00021111ffffffff, the known network address is
0x00021111dddd dddd. If the address starts with // network
address, the type is IP based and the TCP/IP port number of JSH
network address is copied into the address to form the combined
network address.

The IP address must be specified in the following format:

-H //external ip address:MMMM

(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

[-I init-timeout] The time (in seconds) that a JET client is allowed to complete
initialization through the JSH before it is timed out by the JSL. Default
is 60 seconds. (Optional)
Using Java Enterprise Tuxedo 3-11

3 Configuring JET for Client Access

e
o
[-j connection_mode] The following connection modes from clients are allowed:

n RETAINED—the network connection is retained for the full
duration of a session.

n RECONNECT—the client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

n ANY—the server allows a client to request either a RETAINED or
RECONNECT type of connection for a session.

The default is ANY. That is, if no option is specified, the server allows
a client to request either a RETAINED or RECONNECT type of
connection. (Optional)

Note: This option has been changed in this release from -c
[connection_mode] to -j [connection_mode].

[-m minh] The minimum number of JSHs that are available in conjunction with the
JSL at one time. The range of this parameter is from 0 through 255.
Default is 0. (Optional)

[-M maxh] The maximum number of JSHs that are available in conjunction with th
JSL at one time. If this option is not specified, the parameter defaults t
MAXWSCLIENTS divided by the rounded-up -x multiplexing factor
(MPX). If specified, the -M option takes a value from 1 to 32767.
(Optional)

Table 3-2 JSL Command-Line Options (Continued)

Option Description
3-12 Using Java Enterprise Tuxedo

JET Administrative Reference

”.

t
d
es

[-n netaddr] Network address used by the Jolt listener with BEA Tuxedo 6.4 and 6.5,
and WebLogic Enterprise 4.2, 5.0, and 5.1.

TCP/IP addresses may be specified in the following formats:

"//host.name:port_number"
"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostname by using
the local name resolution facilities (usually DNS). hostname must be
the local machine, and the local name resolution facilities must
unambiguously resolve hostname to the address of the local machine.

This command-line option indicates the Jolt Server Handler. Default is
JSH. (Optional)

In the second example, the #.#.#.# is in dotted decimal format. In
dotted decimal format, each # should be a number from 0 to 255. This
dotted decimal number represents the IP address of the local machine. In
both of the above formats, port_number is the TCP port number at
which the domain process listens for incoming requests. port_number
can either be a number between 0 and 65535 or a name.

If port_number is a name, then it must be found in the network
services database on your local machine. The address can also be
specified in hexadecimal format when preceded by the characters “0x
Each character after the initial “0x” is a number from 0 to 9 or a letter
from A to F (case insensitive). The hexadecimal format is useful for
arbitrary binary network addresses such as IPX/SPX or TCP/IP.

There is no default. (Required)

[-T Client-timeout] The time (in minutes) allowed for a client to stay idle. If a client does no
make any requests during this time, the JSH disconnects the client an
the session is terminated. If an argument is not supplied, the session do
not timeout.

When the -j ANY or -j RECONNECT option is used, always specify
-T with an idle timeout value. If -T is not specified and the connection
is suspended, JSH does not automatically terminate the session. The
session never terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout. (Optional)

[-w JSH] This command-line option indicates the Jolt Server Handler. Default is
JSH. (Optional)

Table 3-2 JSL Command-Line Options (Continued)

Option Description
Using Java Enterprise Tuxedo 3-13

3 Configuring JET for Client Access
Sample UBBCONFIG Settings for JSL

Listing 3-2 shows relevant portions of the UBBCONFIG file configured for JSL.

Listing 3-2 Sections of UBBCONFIG File Related to JSL Configuration

*MACHINES
 MACH1 LMID=SITE1

MAXWSCLIENTS=40
*GROUPS
 JSLGRP GRPNO=95 LMID=SITE1
*SERVERS
 JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d
/dev/tcp -m2 -M4 -x10”

The parameters shown in Table 3-3 are the only parameters that must be designated for
the Jolt server groups and Jolt servers. You are not required to specify any other
parameters.

[-x mpx-factor] The number of clients that one JSH can service. Use this parameter to
control the degree of multiplexing within each JSH process. If specified,
this parameter takes a value from 1 to 32767 for UNIX and
Windows NT. Default value is 10. (Optional)

[-Z 0|40|128] When a network link between a JET client and the JSH is being
established, this option allows encryption up to the specified level.The
initial 0 means no DH nodes, no RC4. The numbers 56 and 128 specify
the length (in bits) of the encryption key. The DH key exchange is
needed to generate keys. Session keys are not transmitted over the
network. The default value is 0.

Table 3-2 JSL Command-Line Options (Continued)

Option Description

Table 3-3 UBBCONFIG File Sections

Section Parameters to Specify

MACHINES MAXWSCLIENTS
3-14 Using Java Enterprise Tuxedo

JET Administrative Reference

 the

ced

e

 be
be

For more information about these parameters, see “Creating a Configuration File” in
the Administration Guide.

MACHINES Section

The MACHINES section must contain an entry for each physical processor used by
application. Entries have the form:

ADDRESS or NAME required parameters [optional parameters]

where ADDRESS is the physical name of the processor, for example, the value produ
by the UNIX system uname -n command.

LMID=string_value

This parameter specifies that the string_value is to be used in other sections as th
symbolic name for ADDRESS. This name cannot contain a comma, and must be 30
characters or less. This parameter is required. There must be an LMID line for every
machine used in a configuration.

MAXWSCLIENTS=number

The MAXWSCLIENTS parameter is required in the MACHINES section of the
configuration file. It specifies the number of accessor entries on this processor to
reserved for Jolt and Workstation clients only. The value of this parameter must
between 0 and 32768, inclusive.

The Jolt server and Workstation use MAXWSCLIENTS in the same way. For example, if
200 slots are configured for MAXWSCLIENTS, this number configures BEA Tuxedo for
the total number of remote clients used by Jolt and Workstation.

Note: Be sure to specify MAXWSCLIENTS in the configuration file. If it is not
specified, the default is 0.

Note: If MAXWSCLIENTS is not set, the JSL does not boot.

GROUPS GRPNO, LMID

SERVERS SRVGRP, SRVID, CLOPT

Table 3-3 UBBCONFIG File Sections (Continued)

Section Parameters to Specify
Using Java Enterprise Tuxedo 3-15

3 Configuring JET for Client Access
GROUPS Section

A GROUPS entry is required for the group that includes the Jolt Server Listener (JSL).
Make the GROUPS entry as follows:

1. The group name is selected by the application, for example: JSLGRP and JREPGRP.

2. Specify the same identifiers given as the value of the LMID parameter in the
MACHINES section.

3. Specify the value of the GRPNO between 1 and 30000 in the *GROUPS section.

Note: Make sure that Resource Managers are not assigned as a default value for all
groups in the GROUPS section of your UBBCONFIG file. Making Resource
Managers the default value assigns a Resource Manager to the JSL and you
receive an error during tmboot. In the SERVERS section, default values for
RESTART, MAXGEN, and so on, are acceptable defaults for the JSL.

Lines within the GROUPS section have the form:

GROUPNAME required parameters [optional parameters]

where GROUPNAME specifies the logical name (string_value) of the group. The group
name must be unique within all group names in the GROUPS section and LMID values
in the MACHINES section. The group name cannot contain an asterisk(*), comma, or
colon, and must be 30 characters or less.

SERVERS Section

Clients connect to Jolt Repository through the Jolt Server Listener (JSL). Services are
accessed through the Jolt Server Handler (JSH). The JSL supports multiple clients and
acts as a single point of contact for all the clients to connect to the application at the
network address that is specified on the JSL command-line. The JSL schedules work
for handler processes. A handler process acts as a substitute for clients on remote
workstations within the administrative domain of the application. The handler uses a
multiplexing scheme to support multiple clients on one port concurrently.

The network address specified for the JSL designates a TCP/IP address for both the
JSL and any JSH processes associated with that JSL. The port number identified by the
network address specifies the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses consecutive port numbers at the
same TCP/IP address. For example, if the initial JSL port number is 8000 and there are
a maximum of three JSH processes, the JSH processes use ports 8001, 8002, and 8003.
3-16 Using Java Enterprise Tuxedo

JET Administrative Reference

, see

from
do to
cure).

o

n
y to
Note: Be sure to provide sufficient space between JSL port numbers (for example,
use 8000, 8020, 8040, etc. for JSL port numbers). Misconfiguration of
subsequent JSL port numbers results in a port number collision.

Security and Encryption

Authentication and key exchange data are transmitted between JET clients and the
JSL/JSH using the DES key exchange and a 128-bit key, with 40 bits encrypted and 88
bits exposed.

Jolt Internet Relay Reference

This section provides supplemental reference information for the Jolt Relay (JRLY)
and its associated Jolt Relay Adapter (JRAD). For an introduction to these
components, see “Jolt Internet Relay” on page 1-11. For configuration instructions
“Step 2: Configure Jolt Relay” on page 3-4.

About Jolt Relay and the Jolt Relay Adapter

The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter
(JRAD) is typically referred to as the Internet Relay. Jolt Relay routes messages
a JET client to a JSL or JSH. This eliminates the need for the JSH and BEA Tuxe
run on the same machine as the Web server (which is generally considered inse
The Jolt Relay consists of the following two components:

n Jolt Relay (JRLY)—is the Jolt Relay frontend. It is not a BEA Tuxedo client or
server and is not dependent on the BEA Tuxedo version. It is a standalone
software component. It requires only minimal configuration to allow it to work
with JET clients.

n Jolt Relay Adapter (JRAD)—is the Jolt Relay backend. It is a BEA Tuxedo
system server, but does not include any BEA Tuxedo services. It requires
command-line arguments to allow it to work with the JSL and the BEA Tuxed
system.

Note: The Jolt Relay is transparent to Java clients and servers. A Jolt server ca
simultaneously connect to Intranet clients directly, or through the Jolt Rela
Internet clients.
Using Java Enterprise Tuxedo 3-17

3 Configuring JET for Client Access
Jolt Relay

This section describes configuration options for JRLY.

Jolt Relay Failover

There are two points of failovers associated with JRLY:

n Jolt client to JRLY connection failover

n JRLY to JRAD adapter connection failover

Jolt Client to JRLY Connection Failover

If one server address does not result in a successful session, the failover function
allows the Jolt Client API to connect to the next free (unconnected) JRLY specified in
the argument list of the API. To enable this failover in the Windows NT environment,
multiple Windows NT JRLY services can be executed. In a non-NT environment,
multiple JRLY processes are executed. Each JRLY (service or process) has its own
configuration file. This type of failover is handled by client API features that allow you
to specify a list of Jolt server addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file has a list of JRAD addresses. When a JRAD is
unavailable, JRLY tries to connect to the next free (unconnected) JRAD, in a
round-robin fashion. Two JRLYs cannot connect to the same JRAD. However, you can
make the connection efficient by giving different JRAD address orders—if you make
one extra JRAD available on standby, the first JRLY that loses its JRAD connects to
the extra JRAD. This type of failover is handled by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial
connection fails. When a JET client tries to connect to JRLY, the JRLY again tries to
connect to the JRAD.

To accommodate the failover functionality, you need to boot multiple JRADs by
configuring them in the UBBCONFIG file.
3-18 Using Java Enterprise Tuxedo

JET Administrative Reference
Jolt Relay Process

The JRLY (frontend relay) process can be started before or after the JRAD is started. If the
JRAD is not available when the JRLY is started, the JRLY attempts to connect to the JRAD
when it receives a client request. If JRLY is still unable to connect to the JRAD, the client
is denied access and a warning is written to the JRLY error log file.

Starting the JRLY on UNIX

Start the JRLY process by typing the command name at a system prompt:

jrly -f config_file

where config_file is the path and name of the JRLY configuration file. The default
filename is jrly.config. If the configuration file does not exist or cannot be opened, the
JRLY prints an error message. For information about JRLY error messages, see the System
Messages in the WebLogic Enterprise online documentation.

If the JRLY is unable to start, it writes a message to stderr and attempts to log the startup
failure in the error log (specified in the JRLY configuration file), and then exits.

JRLY Command-Line Options for Windows NT

This section describes command-line options that are available for the Windows NT
version of JRLY.exe. Note the following:

n JRLY as a Windows NT service is available only for Windows NT.

n When the display suffix is optional (when [display_suffix] is shown), all
operations are performed on the default JRLY Windows NT service instance.

n For manually installed, additional JRLY services, a suffix (any string) is required.
Also, you can install the default service manually by omitting the optional string
suffix.

n Each instance of JRLY Windows NT service uses the same binary executable file.

n A new process is started for each instance of JRLY Windows NT service.

n The syntax for these options is: jrly -command.

n Text specified within brackets ([]) is optional.

n All commands in Table 3-4, except for -start and -stop, require that you have
write access to the Windows NT Registry.
Using Java Enterprise Tuxedo 3-19

3 Configuring JET for Client Access
n The -start and -stop commands require that you have Windows NT service
control access. These requirements are based on Windows NT user restrictions.

Table 3-4 describes the JRLY command-line options.

Table 3-4 JRLY Command-Line Options for Windows NT

Option Description

jrly -install
[display_suffix]

Installs jrly as a Windows NT service.

Example 1:

jrly -install

In this example, the default JRLY is installed as a Windows NT service
and is displayed in the Service Control Manager (SCM) as Jolt Relay.

Example 2:

jrly -install MASTER

In this case, an instance of JRLY is installed as a Windows NT service
and is displayed in the SCM as Jolt Relay_MASTER. The suffix,
MASTER, does not have any significance; it is only used to uniquely
identify various instances of JRLYs.

At this point, this instance of JRLY is not ready to start. It must be
assigned the configuration file (see the set command discussion) that
specifies the listening TCP/IP port, JSH connection TCP/IP port, log
files, and SOCKETTIMEOUT). This file should not be shared between
various instances of JRLY.

jrly -remove
[display_suffix] | -all

Removes one or all instances of JRLY from a Windows NT service.

If [display_suffix] is specified, this command removes the
specified JRLY service.

If [display_suffix] is not specified, this command removes the
default JRLY from being a Windows NT service.

If the -all option is specified, all JRLY Windows NT services are
removed. Related Windows NT registry entries are removed.
3-20 Using Java Enterprise Tuxedo

JET Administrative Reference
JRLY Command-Line Option for UNIX

Table 3-5 describes the one JRLY command-line option for UNIX.

jrly -set
[-d display_suffix] -f
config_file

Updates the registry with the full path of a new configuration file.

Example 1:

jrly -set -f c:\tux71\udataobj\jolt\jrly.config

In this example, the default JRLY Windows NT service (Jolt Relay) is
assigned a configuration file called jrly.config that is located in
c:\tux71\udataobj\jolt directory.

Example 2:

jrly -set -d MASTER -f
c:\tux71\udataobj\jolt\master.con

Here, the JRLY Windows NT service instance, called Jolt
Relay_MASTER is assigned a configuration file called
jrly_master.con that is located in c:\tux71\udataobj\jolt
directory.

jrly -manual [display_suffix] Sets the start/stop to manual.

This command sets the specified JRLY instance to be manually
controlled, using either the command-line options or the SCM.

jrly -auto [display_suffix] Sets the start/stop to automatic.

This command sets all the operations for the specified Windows NT
service to be automatically started when the OS boots and stopped when
the OS shuts down.

jrly -start [display_suffix] Starts the specified JRLY.

jrly -stop [display_suffix] Stops the specified JRLY.

jrly -version Prints the current version of JRLY binary.

jrly -help Prints command-line options with brief descriptions.

Table 3-4 JRLY Command-Line Options for Windows NT (Continued)

Option Description
Using Java Enterprise Tuxedo 3-21

3 Configuring JET for Client Access
JRLY Configuration File

The format of the configuration file is a TAG=VALUE format. Blank lines or lines
starting with the # character are ignored. Listing 3-3 contains an example of the formal
specifications of the configuration file.

Listing 3-3 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept connections>
CONNECT=<IP:Port combination associated with JRAD>

SOCKETTIMEOUT=<Seconds for socket accept()function>

SOCKETTIMEOUT is the duration (in seconds) of which the relay Windows NT service
blocks the establishment of new socket connections to allow network activity (new
connections, data to be read, closed connections). It is valid only on Windows NT
machines. SOCKETTIMEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least SOCKETTIMEOUT seconds before doing so.

Listing 3-4 shows an example of the JRLY configuration file. The CONNECT line
specifies the IP address and port number of JRAD machine.

Table 3-5 JRLY Command-Line Option for UNIX

Option Description

jrly -f config_file Starts the JRLY process.

This option starts the JRLY process with the specified configuration file
(path and name). If the configuration file does not exist or cannot be
opened, the JRLY prints an error message. If the JRLY cannot start, it
writes a message to stderr, attempts to log the startup failure in the
error log, then exits.
3-22 Using Java Enterprise Tuxedo

JET Administrative Reference
Listing 3-4 Example of JRLY Configuration File

LOGDIR=/usr/log/relay
ACCESS_LOG=access_log
ERROR_LOG=errorlog
jrly will listen on port 4444
LISTEN=200.100.10.100:4444
CONNECT=200.100.20.200:4444, 200.100.20.200:5555,...

SOCKETTIMEOUT=30 //See text under listing

The format for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows NT systems use the backslash (\). If any
file specified in LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writing, the
JRLY prints an error message on stderr and exits.

Table 3-6 describes the formats for host names and port numbers.

Jolt Relay Adapter

The Jolt Relay Adapter (backend relay) is a BEA Tuxedo system server. The Jolt Relay
Adapter (JRAD) server may or may not be located on the same BEA Tuxedo host
machine in single host mode (SHM) and server group to which the JSL server is
connected.

The JRAD can be started independently of its associated JRLY. JRAD tracks its
startup and shutdown activity in the BEA Tuxedo log file.

Table 3-6 Host Name and Port Number Formats

Host Name/Port # Description

Hostname:Port Hostname is a string, Port is a decimal number.

//Hostname:Port Hostname is a string, Port is a decimal number.

IP:Port IP is a dotted notation IP address, Port is a decimal number.
Using Java Enterprise Tuxedo 3-23

3 Configuring JET for Client Access
JRAD Configuration

A single JRAD process can only be connected to a single JRLY. A JRAD can be
configured to communicate with only one JSL and its associated JSHs. However,
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for the BEA Tuxedo servers must be included in the UBBCONFIG file.
Listing 3-5 shows a sample of the file.

Table 3-7 describes additional information about the CLOPT parameters.

Note: The format is 0x0002PPPPNNN.

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL
port 8000 on the same host

JRAD SRVGRP=JSLGRP SRVID=60
 CLOPT="-A -- -l 0x000207D0C864640A –c 0x00021f40C864640A"

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components work
together. Prior to configuration, review the criteria in Table 3-8 and record the
information to minimize the possibility of misconfiguration.

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l hexadecimal format Port to listen for the JRLY to connect on behalf of the
client.

-c hexadecimal format The address of the corresponding JSL to which JRAD
connects.

-H hexadecimal format Used when there is a network address translation
performed for JRLY listen address.
3-24 Using Java Enterprise Tuxedo

JET Administrative Reference
Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location
where the clients
connect

CONNECT: Location
of your JRAD. Must
match the -l parameter of
JRAD

-l: Location where
the listener
connects to the JRLY

-c: Location of JSL.
Must match -n parameter of
JSL

-n: Location of JSL.
Must match -c parameter of
JRAD
Using Java Enterprise Tuxedo 3-25

3 Configuring JET for Client Access
3-26 Using Java Enterprise Tuxedo

CHAPTER
4 Using the Bulk Loader
Program

This topic includes the following sections:

n Defining Bulk Loader Data Files

n Running the Bulk Loader

n Troubleshooting

As a systems administrator, you may have an existing BEA Tuxedo application with
multiple BEA Tuxedo services. Manually creating these definitions in the Jolt
Repository database may take a long time to complete. The Jolt Bulk Loader is a
command utility that allows you to load multiple, previously defined BEA Tuxedo
services to the Jolt Repository database in a single step. Using the jbld program, the
Bulk Loader utility reads the BEA Tuxedo service definitions from a text file (that you
create according to a specific format) and loads them into the Jolt Repository. The
service definitions are loaded to the Repository database in one bulk load. After the
services populate the Jolt Repository, you can create, edit, and group services using the
Jolt Repository Editor.

Note: In order to use the Bulk Loader to add service definitions, you must first
configure the Jolt Servers (JSL and JSHs). If you want to use this tool across
a firewall, you must also configure Jolt Internet Relay. For configuration
instructions, see Chapter 3, “Configuring JET for Client Access.”
Using Java Enterprise Tuxedo 4-1

4 Using the Bulk Loader Program

itory

 set
 a
Defining Bulk Loader Data Files

This topic includes the following sections:

n About Bulk Loader Data Files

n Guidelines for Using Keywords

n Keyword Order in the Bulk Loader Data File

n Using Service-level Keywords and Values

n Sample Bulk Loader Data File

About Bulk Loader Data Files

The bulk loader data file is a text file that defines BEA Tuxedo services and their
associated parameters. You create this text file (using a text editor) in accordance with
the syntax rules described later in this topic.

The Bulk Loader loads the services defined in the bulk loader data file into the Jolt
Repository using the package name BULKPKG by default. The -p command overrides
the default and you can give the package any name you choose. If another load is
performed from a bulk loader data file with the same -p option, all the services in the
original package are deleted and a new package is created with the services from the
new bulk loader data file.

If a service exists in a package other than the package you name that uses the -p
option, the Bulk Loader reports the conflict and does not load a service from the bulk
loader Data file into the Repository. Use the Jolt Repository Editor to remove duplicate
services and load the bulk loader Data file again. See “Using the BEA Jolt Repos
Editor” on page 5-1 for additional information.

Each service definition consists of service properties and parameters that have a
number of parameter properties. Each property is represented by a keyword and
value. Keywords are divided into two levels:

n Service-level

n Parameter-level
4-2 Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files
Guidelines for Using Keywords

The jbld program reads the service definitions from a text file. To use the keywords,
observe the guidelines in Table 4-1.

Table 4-1 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed
by an equal sign (=) and the
value

Correct: type=string

Incorrect: type

Only one keyword is allowed on
each line

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) are ignored

Correct: type=string

Incorrect: type string

Certain keywords only accept a
well-defined set of values

The keyword access accepts only these values:
in, out, inout, noaccess

The input file can contain
multiple service definitions

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists
of multiple keywords and values

service=DEPOSIT
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW
Using Java Enterprise Tuxedo 4-3

4 Using the Bulk Loader Program
Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in Listing 4-1). Following the
service=<NAME> keyword, all remaining service keywords that apply to the named
service must be specified before the first param=<NAME> definition. These remaining
service keywords can be in any order.

All parameters associated with the service must be specified. Following each
param=<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify a new service=<NAME> keyword definition.

Listing 4-1 Keyword Hierarchical Order in a Data File

service=<NAME>
<service keyword>=<value>
<service keyword>=<value>
<service keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>
4-4 Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files
Using Service-level Keywords and Values

A service definition must begin with the service=<NAME> keyword. Services using
CARRAY or STRING buffer types should only have one parameter in the service. The
recommended parameter name for a service that uses a CARRAY buffer type is CARRAY
with carray as the data type. For a service that uses a STRING buffer type, the
recommended parameter name is STRING with string as the data type.

Table 4-2 describes the guidelines for use of the service-level keywords and acceptable
values for each.

Table 4-2 Service-level Keywords and Values

Keyword Value

service Any BEA Tuxedo service name.

export Either true or false (default is false).

inbuf/outbuf Select one of these buffer types:

FML
FML32
VIEW
VIEW32
STRING
CARRAY

X_OCTET

X_COMMON

X_C_TYPE

For more information, see “Using BEA Tuxedo
Buffer Types with JET” on page 1-13.

inview Any view name for input parameters.

(This keyword is optional only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.)

outview Any view name for output parameters. (Optional)
Using Java Enterprise Tuxedo 4-5

4 Using the Bulk Loader Program
Using Parameter-level Keywords and Values

A parameter begins with the param=<NAME> keyword followed by a number of
parameter keywords. It ends when another param or service keyword, or end-of-file
is encountered. The parameters can be in any order after the param=<NAME> keyword.

Table 4-3 contains the guidelines for use of the parameter-level keywords and
acceptable values for each.

Table 4-3 Parameter-level Keywords and Values

Keyword Values

param Any parameter name.

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Jolt Repository Editor to format test screens.
4-6 Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files
Sample Bulk Loader Data File

Listing 4-2 contains a sample data file in the correct format using the UNIX command
cat servicefile. This sample loads TRANSFER, LOGIN, and PAYROLL service
definitions to the BULKPKG.

Listing 4-2 Sample Bulk Loader Data File

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in
count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string
access=in
param=token
type=integer
access=out

service=PAYROLL
inbuf=FML
outbuf=FML
Using Java Enterprise Tuxedo 4-7

4 Using the Bulk Loader Program
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout

Running the Bulk Loader

The jbld program is a Java application. Before running the jbld command, set the
CLASSPATH environment variable (or its equivalent) to point to the directory where the
Jolt class directory (that is, jolt.jar and joltadmin.jar) is located. If the
CLASSPATH variable is not set, the Java Virtual Machine (JVM) cannot locate any JET
classes.

Note: If the m3.jar file is already specified in the CLASSPATH, then the directory
containing the jolt.jar and joltadmin.jar files must be specified ahead
of the directory containing the m3.jar file.

The Bulk Loader utility gets its input from command-line arguments and from the
input file. For security reasons, jbld does not use command-line arguments to specify
user authentication information (user password or application password). Depending
on the server’s security level, jbld automatically prompts the user for passwords.

To run the Bulk Loader:

1. Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package][-u usrname][-r
usrrole] //host:port filename

2. Use the command-line options described in Table 4-4.
4-8 Using Java Enterprise Tuxedo

Troubleshooting
Troubleshooting

See Table 4-5 if you encounter problems using the Bulk Loader utility.

Table 4-4 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory, if required by security)

-r usrrole Specifies the user role (default is admin).
(Mandatory, if required by security)

-n Validates input file against the current Repository; no
updates are made to the Repository. (Optional)

-p package Repository package name (default is BULKPKG).

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

Table 4-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

The data file is not found Check to ensure that the path is correct

The keyword is invalid Check to ensure that the keyword is valid for the
package, service, or parameter

The value of the keyword is null Type a value for the keyword

The value is invalid Check to ensure that the value of a parameter is within
the allocated range for that parameter
Using Java Enterprise Tuxedo 4-9

4 Using the Bulk Loader Program
The data type is invalid Check to ensure that the parameter is using a valid data
type

Table 4-5 Bulk Loader Troubleshooting Table (Continued)

If . . . Then . . .
4-10 Using Java Enterprise Tuxedo

CHAPTER

ent
d
5 Using the BEA Jolt
Repository Editor

Use the BEA Jolt Repository Editor to add, modify, test, export, and delete BEA
Tuxedo service definitions from the Jolt Repository based on the information available
from the BEA Tuxedo configuration file. The Jolt Repository Editor accepts BEA
Tuxedo service definitions, including the names of the packages, services, and
parameters.

Note: Before you use the Jolt Repository Editor, you must first configure the JET
system according to the instructions in Chapter 3, “Configuring JET for Cli
Access.” In particular, the JSL and JSHs must be correctly configured an
running.

This topic includes the following sections:

n Introducing the Jolt Repository Editor

n Getting Started with the Jolt Repository Editor

n Main Components of the BEA Jolt Repository Editor

n Setting Up Packages and Services

n Grouping Services Using the Package Organizer

n Modifying Packages, Services, and Parameters

n Making a Service Available to the JET Client

n Testing a Service

n Troubleshooting
Using Java Enterprise Tuxedo 5-1

5 Using the BEA Jolt Repository Editor

 BEA
 in

pplet.
e Jolt

d

n Repository Enhancements for Jolt

Note: In order to use the Jolt Repository Editor to edit service definitions, you must
first configure the Jolt Servers (JSL and JSHs). If you want to use this tool
across a firewall, you must also configure Jolt Internet Relay. For
configuration instructions, see Chapter 3, “Configuring JET for Client
Access.”

Introducing the Jolt Repository Editor

This topic includes the following sections:

n Jolt Repository Editor Window

n Components of the Jolt Repository Editor Window

The Jolt Repository is used internally by JET to translate data between JET and
Tuxedo type buffers. The Jolt Repository Editor is used to edit service definitions
the Repository. The Jolt Repository Editor is available as a downloadable Java a
When a BEA Tuxedo service is added to the Repository, it must be exported to th
server to ensure that the client requests can be made from a JET client.

Jolt Repository Editor Window

Jolt Repository Editor windows contain entry fields, scrollable displays, comman
buttons, status, and radio buttons. Figure 5-1 illustrates the parts of the window.
Table 5-1 describes each component.
5-2 Using Java Enterprise Tuxedo

Introducing the Jolt Repository Editor
Figure 5-1 Jolt Repository Editor Window

31
2

5

4

Using Java Enterprise Tuxedo 5-3

5 Using the BEA Jolt Repository Editor
Components of the Jolt Repository Editor Window

Table 5-1 describes the parts of the Jolt Repository Editor window shown in
Figure 5-1.

Table 5-1 Jolt Repository Editor Window Components

Component Description

1 Text boxes Enter text, numbers, or alphanumeric characters such as
Service Name, Input View Name, server names, or port
numbers. In Figure 5-1, Service Name is used.

2 Drop-down
arrow

View lists that extend beyond the display using an arrow
button. In Figure 5-1, Input Buffer Type is used.

3 Display list Select from a list of predefined items such as the Parameters
list or select from a list of items that have been defined.

4 Command
buttons

Activate an operation such as displaying the Packages
window, Services window, or Package Organizer. In
Figure 5-1, command buttons include: Save Service, Test,
Back, New, Edit, and Delete.

5 Radio buttons Select one of a number of options. Only one of the radio
buttons can be activated at a time. For example, Export Status
can only be Unexport or Export.
5-4 Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor

ent
d

g

e
Getting Started with the Jolt Repository
Editor

Note: Before you use the Jolt Repository Editor, you must first configure the JET
system according to the instructions in Chapter 3, “Configuring JET for Cli
Access.” In particular, the JSL and JSHs must be correctly configured an
running.

To use the Jolt Repository Editor:

1. Start the Jolt Repository Editor.

You can start the Jolt Repository Editor from either the JavaSoft appletviewer
or from your Web browser. Both of these methods are detailed in the followin
sections.

2. Log on to the Jolt Repository Editor.

Note: For information about exiting the Jolt Repository Editor after you enter
information, see “Exiting the BEA Jolt Repository Editor” on page 5-9.

Starting the Jolt Repository Editor

You can start the Jolt Repository Editor from either the JavaSoft appletviewer or
from your Web browser.

Starting the Jolt Repository Editor Using the Java Applet Viewer

To start the Jolt Repository Editor using the Java applet viewer:

1. Set the CLASSPATH to include the Jolt class directory or the directory in which th
*.jar files reside (such as the jolt.jar file under udataobj\jolt).

Note: If the m3.jar file is already specified in the CLASSPATH, then the directory
containing the jolt.jar file must be specified ahead of the directory
containing the m3.jar file.
Using Java Enterprise Tuxedo 5-5

5 Using the BEA Jolt Repository Editor
2. If you are loading the applet from a local disk, set the default directory to the
directory where the RE.html file resides (such as udataobj\jolt), and then
type the following at the URL location:

appletviewer RE.html

If you are loading the applet from the Web server, type the following at the URL
location (including the full path):

appletviewer http://<www.server>/<URL path>/RE.html

3. Press Enter.

The window is displayed as shown in Figure 5-2.

Starting the Jolt Repository Editor from Your Web Browser

From a Web browser, you can start the Jolt Repository Editor from a local file or from
a Web server.

Starting from a Local File

To start the Jolt Repository Editor from a local file:

1. Set the CLASSPATH to include the Jolt class directory or the directory in which the
*.jar files reside (such as the jolt.jar file under udataobj\jolt).

2. Set the default directory to the directory where the RE.html file resides (such as
udataobj\jolt).

3. Type the following command:

file:RE.html

4. Press Enter.

The BEA Jolt Repository Editor Login window appears, as shown in the
example in Figure 5-2.

Starting from a Web Server

To start the Jolt Repository Editor from a Web server:

1. Ensure that the CLASSPATH does not include the Jolt class directory.

2. Remove the Jolt classes from the CLASSPATH.
5-6 Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor

used

.

3. Type the following, including the full path:

http://<www.server>/<URL path>/RE.html

Note: If jolt.jar and admin.jar are in the same directory as RE.html, the
Web server provides the classes. If they are not in the same directory as
RE.html, modify the applet codebase parameter in the Re.html file.

4. Press Enter.

The BEA Jolt Repository Editor Login window appears, as shown in the
example in Figure 5-2.

Logging On to the Jolt Repository Editor

After starting the Jolt Repository Editor, complete the following steps to log on:

Note: The Jolt Repository Editor Logon Window must be displayed before you log
on. See Figure 5-2 as you perform the following procedure.

1. In the logon window, type the name of the Server machine designated as the
“access point” to the BEA Tuxedo application, and then press Tab.

2. Type the Port Number and press Enter.

The system validates the server and port information.

Note: Unless you are logging on through Jolt Relay, the same port number is
to configure the Jolt Listener. See your UBBCONFIG file for additional
information.

3. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete steps 4 and 5 as required

4. Type the BEA Tuxedo User Name and press Tab.

5. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.
Using Java Enterprise Tuxedo 5-7

5 Using the BEA Jolt Repository Editor
Sample Logon Window

Figure 5-2 BEA Jolt Repository Editor Logon Window

Table 5-2, describes the Jolt Repository Editor logon window elements.

Components of the BEA Jolt Repository Editor Logon Window

Table 5-2 describes the components of the BEA Jolt Repository Editor Logon window
shown in Figure 5-2.

Table 5-2 BEA Jolt Repository Editor Logon Window Components

Option Description

Server Server name.
5-8 Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor
Exiting the BEA Jolt Repository Editor

Exit the BEA Jolt Repository Editor when you finish adding, editing, testing, or
deleting packages, services, and parameters. Prior to exiting, the window is displayed
as shown in Figure 5-3.

Figure 5-3 BEA Jolt Repository Editor Logon Window Prior to Exiting

Port Number Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation is
based on the authentication level of the BEA Tuxedo
application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo authentication
level is USER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name BEA Tuxedo user identification text entry. The first character must
be an alpha character.

User Password BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)

Log Off Terminates the connection with the server.

Table 5-2 BEA Jolt Repository Editor Logon Window Components (Continued)

Option Description
Using Java Enterprise Tuxedo 5-9

5 Using the BEA Jolt Repository Editor
.

Note that only the Packages, Services, and Log Off command buttons are enabled. All
of the text entry fields are disabled.

To exit the Jolt Repository Editor:

1. Click Back to return to the Jolt Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Jolt Repository Editor Logon window shows disabled fields.

3. Click Close from your browser menu to close the window.
5-10 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor
Main Components of the BEA Jolt
Repository Editor

This topic includes the following sections:

n Workflow for the BEA Jolt Repository Editor

n What Is a Package?

n What Is a Service?

n Working with Parameters

The Jolt Repository Editor allows you to add, modify, or delete any of the following
components: packages, services (you can also test and group services), and parameters.

Workflow for the BEA Jolt Repository Editor

After you log on to the Jolt Repository Editor, two buttons are enabled, Packages and
Services.

Figure 5-4 illustrates the Jolt Repository Editor flow to help you determine which of
these two buttons to select.
Using Java Enterprise Tuxedo 5-11

5 Using the BEA Jolt Repository Editor
Figure 5-4 Jolt Repository Editor Flow Diagram

Select Packages to open the Packages window and perform the following functions:

n View packages and services

l Make a service available using Export or Unexport

l Select a package to delete

n Access the Package Organizer to:

l Move services from one package to another

l Create a new package
5-12 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor

tion.

the

See “What Is a Package?” on page 5-13 for complete details.

Use Services to open the Services window and perform the following functions:

n Create, add, edit, or delete service definitions

n Create, add, edit, or delete parameters

n Test the services and parameters

See “What Is a Service?” on page 5-16 for complete details.

What Is a Package?

Packages provide a convenient method for grouping services for Jolt administra

You use the Packages window to perform the following tasks:

n View packages and services.

n Export or unexport services.

n Delete packages.

n Access Package Organizer to:

l Move services

l Create a new package

Click the Packages button in the Jolt Repository Editor logon window to display
available packages. When you select a specific package from the display list, its
services within that package are displayed.

Sample Packages Window

Figure 5-5 contains a sample Packages window.
Using Java Enterprise Tuxedo 5-13

5 Using the BEA Jolt Repository Editor
Figure 5-5 Packages Window

Components of the Packages Window

Table 5-3 describes the components of the Packages window shown in Figure 5-3.

Table 5-3 Packages Window Components

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use this window to move the services among
the packages or add a new package.
5-14 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor
Viewing a Package

To view a package:

1. Click Packages in the Jolt Repository Editor Logon window.

The Packages window opens and displays the list of available packages.

In Figure 5-5, BANKAPP, BULKPKG, and SIMPSERV are the available packages.

2. See “Viewing a Parameter” on page 5-19 for additional information.

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option is
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is selected
and the package is empty (no services contained within the
package).

Back Returns the user to the previous window.

Table 5-3 Packages Window Components (Continued)

Option Description
Using Java Enterprise Tuxedo 5-15

5 Using the BEA Jolt Repository Editor
What Is a Service?

A service definition describes the properties of a BEA Tuxedo service, such as its
name, input and output buffer types, and individual parameters. Adding or editing a
Jolt service in the Jolt Repository does not change an existing BEA Tuxedo service.

Sample Services Window

You use the Services Window to add, edit, or delete services. Figure 5-6 shows an
example of a Services window with the BANKAPP package selected, and the display list
of services and parameters available for this package (parameters are detailed later).

Figure 5-6 Services Window
5-16 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor
Components of the Services Window

Table 5-4 describes the components in the Services window shown in Figure 5-4.

Viewing a Service

To view a service:

1. Select Services from the Jolt Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select a package.

The list of available services for the selected package is displayed.

In Figure 5-6, BANKAPP is the selected package. DEPOSIT, INQUIRY, TRANSFER,
and WITHDRAWAL are the available services for BANKAPP.

3. See “Viewing a Parameter” on page 5-19 for additional information.

Table 5-4 Services Window Description

Option Description

Packages Lists the available packages.

Services Lists the services in the selected package, which you can edit or
delete. Selecting a service displays the parameters within the
service.

Parameters Displays the parameters of the selected service.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.

Back Returns the user to the previous window.
Using Java Enterprise Tuxedo 5-17

5 Using the BEA Jolt Repository Editor
Working with Parameters

A service contains parameters, which may be a pin number, account number, payment,
rate, term, age, or Social Security number.

Sample Services Window with Parameters

Figure 5-7 shows a Services window displaying a selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA
Tuxedo Service.

Figure 5-7 Services Window with Parameters List
5-18 Using Java Enterprise Tuxedo

Setting Up Packages and Services

:
Viewing a Parameter

To view a parameter:

1. Select Services from the Jolt Repository Editor Logon window.

 The Services window opens and displays the list of available packages.

2. Select a package.

The list of available services for the selected package is displayed.

 In Figure 5-7, BANKAPP is the selected package.

3. Select a service.

The list of available parameters for the selected service is displayed.

In Figure 5-7, INQUIRY is the selected service.

4. View the parameters for a selected service in the Parameters display list.

In Figure 5-7, ACCOUNT_ID, FORMNAM, SBALANCE, and STATLIN are the
available parameters for the INQUIRY service.

5. See “Adding Parameters” on page 5-26 for additional information.

Setting Up Packages and Services

This topic includes the necessary steps for setting up a package and its services

n Saving Your Work

n Adding Packages

n Adding Services

n Adding Parameters
Using Java Enterprise Tuxedo 5-19

5 Using the BEA Jolt Repository Editor

wing
Saving Your Work

As you create and edit services and parameters, it is important to regularly save
information to avoid losing input. Clicking Save Service in the Edit Services window
can prevent the need to re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must select Add
before choosing Back from the Edit Parameters window and returning to
the Edit Services window.

If adding a new service or modifying an existing service in the Edit Services window,
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, a warning is briefly displayed on the status line at the
bottom of the window.

Adding Packages

When you need to add a new group of services, you create a new package before
adding the services. The “Package Organizer Window” on page 5-21 and the follo
procedure show how to add a new package, BALANCE, to the Packages listing.
5-20 Using Java Enterprise Tuxedo

Setting Up Packages and Services
Sample Package Organizer Window

Figure 5-8 Package Organizer Window

Adding a Package

To add a package:

1. Click Packages in the Jolt Repository Editor Logon window to display the
Packages window.

2. Select Package Organizer to display the Package Organizer window, similar to
the one shown in Figure 5-8.

For a description of contents of this window, see Table 5-7.

3. Click the New Package button in the Package Organizer window.
Using Java Enterprise Tuxedo 5-21

5 Using the BEA Jolt Repository Editor
The text field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (shown in Figure 5-8 as BALANCE) is displayed on the Packages
list in random order.

Adding Services

Services are definitions of available BEA Tuxedo services and can only be a part of a
Jolt package.You must create the service as a part of a new or existing package.

The Jolt Repository Editor accepts the new service name exactly as it is typed (that is,
all uppercase letters, abbreviations, misspellings are accepted). Service names must
not exceed 30 characters.

Sample Edit Services Window

Figure 5-9 shows the Edit Services window for adding a service.
5-22 Using Java Enterprise Tuxedo

Setting Up Packages and Services
Figure 5-9 Edit Services Window: Add a New Service to a Package

Options for Adding a Service

Table 5-5 describes the options for adding services to a package in a package window.

Table 5-5 Options for Adding a Service

Option Description
Using Java Enterprise Tuxedo 5-23

5 Using the BEA Jolt Repository Editor

l

is

til

Edit Services
Selections

Service Name Name of the new service to be added to the Jolt Repository.

Input Buffer
Type/Output Buffer
Type

n VIEW— C-structure and 16-bit integer field. Contains subtypes
that have a particular structure. X_C_TYPE and X_COMMON
are equivalent. X_COMMON is used for COBOL and C.

n VIEW32—similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

n CARRAY—array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain nul
characters. X_OCTET is equivalent.

n FML—type in which each field carries its own definition.

n FML32—similar to FML except the ID field and length field are
32 bits long.

n STRING—character array terminated by a null character that
encoded or decoded.

For more information, see “Using BEA Tuxedo Buffer Types with
JET” on page 1-13.

Input View
Name/Output View
Name

Unique name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32 are
the selected buffer types.

Export Status Unexport
Export

Radio button with current status of the service. EXPORT or
UNEXPORT status is checked. UNEXPORT is the default.

Service Level
Actions

Save Service Saves the newly created service in the Repository.

Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.

Back Returns you to the previous window.

Parameter Parameters List of service parameters to edit or delete.

Parameter Level
Actions

New Adds new parameters to the service.

Edit Edits an existing parameter. This command button is disabled un
a new parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is
selected.

Table 5-5 Options for Adding a Service (Continued)
5-24 Using Java Enterprise Tuxedo

Setting Up Packages and Services

g
on.)

s

so
Adding a Service

To add a service:

1. Select Services from the Jolt Repository Editor Logon window.

The Services window opens, similar to the one shown in Figure 5-6.

2. Select the package to which you will add the service.

If you later decide that another package should contain the new service, use the
Package Organizer to move the service to a different package. (See “Groupin
Services Using the Package Organizer” on page 5-31 for additional informati

3. From the Services window, select New to display the Edit Services window, a
shown in Figure 5-9.

4. Select the Service Name text field to activate it.

5. Type the name of the new service you want to add.

6. Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can select a different Output Buffer type.

l If VIEW or VIEW32 is selected, you must type the Input View Name and
Output View Name in the associated text fields.

l If another buffer type is selected, the Input View Name and Output View
Name text fields are disabled.

l If CARRAY or STRING is selected, see “Selecting CARRAY or STRING as a
Service Buffer Type” on page 5-25 for additional instructions.

7. Select Save Service to save the newly created service.

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRING is selected as the buffer type for a new service, only CARRAY or
STRING can be added as the data type for the accompanying parameters. See al
“Adding Parameters” on page 5-26 and “Selecting CARRAY or STRING as a
Parameter Data Type” on page 5-29. For additional information, see Chapter 2,
“Invoking BEA Tuxedo Services.”
Using Java Enterprise Tuxedo 5-25

5 Using the BEA Jolt Repository Editor
Figure 5-10 shows an example Edit Services window with STRING selected as the
buffer type for the service SIMPAPP.

Figure 5-10 Edit Services Window: Select STRING Buffer Type

Adding Parameters

Clicking New under the label Parameter level actions in the Edit Services window
displays the Edit Parameters window.
5-26 Using Java Enterprise Tuxedo

Setting Up Packages and Services
Sample Edit Parameters Window

Figure 5-11 shows an example of the Edit Parameters window, which you use to enter
the parameter and screen information for a service.

Figure 5-11 Edit Parameters Window: Add a Parameter

Components of the Adding a Parameter Window

Table 5-6 describes the components of the Parameter window shown in Figure 5-11.
Using Java Enterprise Tuxedo 5-27

5 Using the BEA Jolt Repository Editor

e
s
r

en
Adding a Parameter

To add a parameter:

Table 5-6 Parameter Window Components

Option Description

Field Name Adds the field name (for example, asset).

Data Type Lists data type choices:

n byte—8-bit

n short—16-bit

n integer—32-bit

n float—32-bit

n double—64-bit

n string—null-terminated character array

n carray—variable length 8-bit character array

Direction Radio button choices for direction of information:

n Input —information is directed from the client to the server.

n Output—information is directed from the server to the client.

n Both—information is directed from the client to the server, and
from the server to the client.

Occurrence(s) Number of times that an identical field name can be used. If 0, th
field name can be used an unlimited number of times. Occurrence
are used by JET to build test screens; not to limit information sent o
retrieved by BEA Tuxedo.

Screen Information This button is disabled when the window is launched.

Clear Clears the fields of the window.

Change Is disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved wh
the service is saved.

Back Returns the user to the previous window.
5-28 Using Java Enterprise Tuxedo

Setting Up Packages and Services

s a
1. Select Field Name to activate the field, and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

2. Select the data type.

3. Specify a direction by selecting the input, output, or both radio buttons.

4. Select the Occurrence text field to activate it, and then enter the number of
occurrences.

5. Select Add to append the information. Add does not save the parameter.

6. In the Edit Services window, click Save Service to save the parameter as a part of
the service.

Warning: If you do not click Save Service before you click Back, the parameters
are not saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRING is the selected buffer type for a new service, only a carray or
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “CARRAY” for a CARRAY buffer type, and the parameter name
“STRING” for a STRING buffer type.

See also “Adding a Service” on page 5-25 and “Selecting CARRAY or STRING a
Service Buffer Type” on page 5-25. For additional information, see Chapter 2,
“Invoking BEA Tuxedo Services.”

Figure 5-12 shows an example of the Edit Parameters window with STRING as the
selected data type for the parameter. The Data Type defaults to STRING and does not
allow you to modify that particular data type. The Field Name can be any name.
Using Java Enterprise Tuxedo 5-29

5 Using the BEA Jolt Repository Editor
Figure 5-12 Edit Parameters Window: string Data Type
5-30 Using Java Enterprise Tuxedo

Grouping Services Using the Package Organizer
Grouping Services Using the Package
Organizer

This topic includes the following sections:

n Sample Package Organizer Window

n Components of the Package Organizer Window

n Grouping Services with the Package Organizer

The Package Organizer moves services between packages. You may want to group
related services in a package (for example, WITHDRAWAL services that are exported
only at a certain time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package to
another. These buttons are useful if you have several services to move between
packages. The packages and services display listings to help track a service within a
particular package.

Sample Package Organizer Window

Figure 5-13 shows an example of a Package Organizer window with a service selected
for transfer to another package.
Using Java Enterprise Tuxedo 5-31

5 Using the BEA Jolt Repository Editor
Figure 5-13 Package Organizer Window

Components of the Package Organizer Window

Table 5-7 describes the components of the Package Organizer window shown in
Figure 5-12.

Table 5-7 Package Organizer Window Components

Option Description

Packages
(left display list)

Lists packages containing services in the selected package.
5-32 Using Java Enterprise Tuxedo

Grouping Services Using the Package Organizer
Grouping Services with the Package Organizer

To group services with the Package Organizer:

1. In the Packages window, click Package Organizer.

2. In the Package Organizer window, select the package containing the services to
be moved from the Packages left display window.

3. Select the service to be moved from the Services left display window.

In Figure 5-14, INQUIRY is the selected service in the BANKAPP package.

4. Select the package to receive the service from the Packages right display
window.

Figure 5-14 shows the selected service, INQUIRY, and the selected package,
BANK, to which the INQUIRY service will be moved.

Packages
(right display list)

Lists packages available as destinations for the selected service.

Services
(left display list)

Lists available services for the selected package.

Services
(right display list)

Lists available services of the highlighted package that you moved.

Left arrow Moves services (one service at a time) to the package highlighted on
the left.

Right arrow Moves services (one service at a time) to the package highlighted on
the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Table 5-7 Package Organizer Window Components (Continued)

Option Description
Using Java Enterprise Tuxedo 5-33

5 Using the BEA Jolt Repository Editor
Figure 5-14 Example of a Moved Service

5. To move the service between the packages, select the left arrow (←) or right arrow
(→).

These keys are activated only when both packages (left and right are displayed)
and a service are selected. The keys are only active in the direction of the
package where the service is to be moved. Figure 5-14 shows that the INQUIRY
service has been moved to the BANK package on the right.

Note: You cannot select the same package in both the left and right display lists.
5-34 Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters
Modifying Packages, Services, and
Parameters

This topic includes the following sections:

n Editing Services

n Editing Parameters

n Deleting Parameters, Services, and Packages

Editing Services

You can edit an existing service name or service information, or access the window to
add new parameters to an existing service. For a description of the Edit Services
window, see “Options for Adding a Service” on page 5-23.

Sample Edit Services Window

Figure 5-15 shows an example of the Edit Services window.
Using Java Enterprise Tuxedo 5-35

5 Using the BEA Jolt Repository Editor
Figure 5-15 Edit Services Window

Editing a Service

To edit a service:

1. From the Services window, select the package containing the service that requires
editing.

The services available for the selected package are displayed.

2. Select the service to edit.

The parameters available for the selected service are displayed.

3. Click Edit to display the Edit Services window, as shown in Figure 5-15.
5-36 Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters
4. Type or select the new information, and click Save Service.

Editing Parameters

All parameter elements can be changed, including the name of the parameter.

Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter.

Sample Edit Parameters Window

Figure 5-16 shows an example of the Edit Parameters window.
Using Java Enterprise Tuxedo 5-37

5 Using the BEA Jolt Repository Editor

 the

lick
Figure 5-16 Edit Parameters Window
.

Editing a Parameter

To change a parameter:

1. In the Services window (see “Services Window with Parameters List”), select
package and service that contain the parameter you want to change.

2. Click Edit to display the Edit Services window.

3. Select the Parameter you want to edit from the Parameters display list and c
Edit.

The Edit Parameters Window is displayed as shown in Figure 5-16.

4. Type the new information and click Change.
5-38 Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters
5. Click Back to return to the previous window.

Deleting Parameters, Services, and Packages

This section describe how to delete a package. Before deleting a package, all the
services must be deleted from the package. The Delete option is not enabled until all
components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or package is scheduled to
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter

To delete a parameter:

1. In the logon window, click Services to display the Services window.

2. In the Services window, select the package and service that contain the parameter
you want to delete.

3. Click Edit to display the Edit Services window.

4. Select the parameter you want to delete from the Parameters display list.

5. Under Parameter Level Actions, click Delete.

Deleting a Service

To delete a service:

Note: Make certain that all parameters within this service are deleted before
selecting this option.

1. Select the package containing the service you want to delete.

2. Select the service you want to delete.

Delete is enabled.

3. Click Delete. The service is deleted.
Using Java Enterprise Tuxedo 5-39

5 Using the BEA Jolt Repository Editor
Deleting a Package

To delete a package:

Note: Make sure all services contained in this package are deleted or moved to
another package before selecting this option.

1. In the Jolt Repository Editor Logon window, click Packages to display the
Packages window.

2. Select a package.

3. Click Delete.

The package is deleted.

Making a Service Available to the JET Client

To make a service available to a JET client, you export it. All services in a package
must be exported or unexported as a group. A service is made available by using the
Export and Unexport radio buttons.

This topic includes the following sections:

n Exporting and Unexporting Services

n Reviewing the Exported and Unexported Status

Exporting and Unexporting Services

Determine which services are being made available or unavailable to the JET client.
Services are exported to ensure that the JET client can access the most current service
definitions from the Jolt server.

Sample Packages Window

Figure 5-17 shows the Packages window, where you can export and unexport services.
5-40 Using Java Enterprise Tuxedo

Making a Service Available to the JET Client
Figure 5-17 Packages Window: Export and Unexport Buttons

Exporting or Unexporting a Service

To export or unexport a service:

1. From the Jolt Repository Editor Logon window, select Packages to display the
Packages window.

2. Select a package.

The Export and Unexport buttons are enabled.

3. To make the services in the selected package available, click Export.

To make the services in the selected package unavailable, select Unexport.
Using Java Enterprise Tuxedo 5-41

5 Using the BEA Jolt Repository Editor

it

, the
Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the Exported and
Unexported Status” on page 5-42 for additional information.

Reviewing the Exported and Unexported Status

When a service is exported or unexported, you can review its status from the Ed
Services window.

Figure 5-18 displays the Export radio button as active, for Export Status; therefore
current status for the service TRANSFER is exported.

Figure 5-18 Export Status

To review the current exported or unexported status of a service:
5-42 Using Java Enterprise Tuxedo

Making a Service Available to the JET Client
1. From the Jolt Repository Editor Logon window, select Services to display the
Services window shown in the “Services Window” on page 5-16.

2. Select a package from the Package display list.

The Services display list of available services for the selected package is
displayed.

3. Select the service you want to review.

4. Click Edit.

The Edit Services window is displayed as shown in Figure 5-15.

One of the radio buttons (Export or Unexport) next to the Export Status label
will be active, indicating the current status of the service.
Using Java Enterprise Tuxedo 5-43

5 Using the BEA Jolt Repository Editor

mple

nce

Testing a Service

This topic includes the following sections:

n Sample Service Test Window

n Components of the Service Test Window

n Testing a Service

Test a service and its parameters before you make them available to JET clients. You
can test currently available services without making changes to the services and
parameters.

Note: The Jolt Repository Editor allows you to test an existing BEA Tuxedo service
with JET, without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

Sample Service Test Window

Use the Run button to test the service to ensure that the parameter information is
accurate. A service can only be tested when the corresponding BEA Tuxedo server is
running for the service being tested.

Although the Test button in the Edit Services window is enabled when parameters are
not added to the service, the Service Test window displays unused in the parameter
fields, and they are disabled. See “Service Test Window” on page 5-45 for an exa
of unused parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurre
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

Figure 5-19 shows an example of a Service Test window with both writable and
read-only text fields.
5-44 Using Java Enterprise Tuxedo

Testing a Service
Figure 5-19 Service Test Window
Using Java Enterprise Tuxedo 5-45

5 Using the BEA Jolt Repository Editor
Components of the Service Test Window

Table 5-8 describes the components of the Service Test window shown in Figure 5-19.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each byte
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Table 5-8 Service Test Window Components

Option Description

Service Displays the name of the tested service (read-only).

Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are writable
or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.

Prev Lists previous parameter fields, if applicable.

Back Returns to the Edit Services window.
5-46 Using Java Enterprise Tuxedo

Testing a Service
Testing a Service

You can test a service without making changes to the service or its parameters. You
can also test a service after editing the service or its parameters.

Test Service Process Flow

Figure 5-20 shows a typical Jolt Repository Editor service flow test.

Figure 5-20 Test Service Flow

Testing a Service

For troubleshooting information, see the first two entries in Table 5-9.
Using Java Enterprise Tuxedo 5-47

5 Using the BEA Jolt Repository Editor

ce”
To test a service:

1. Select Services from the Jolt Repository Editor Logon window.

The Services window is displayed.

2. Select the package and the service to test.

3. Click Edit to access the Edit Services window.

4. Click Test to access the Service Test window.

5. Enter data in the Service test window parameter text fields.

6. Click RUN.

The status line displays the outcome as follows:

l If the test passed: “Run Completed OK”

l If the test failed: “Call Failed”

See “Jolt Repository Editor Troubleshooting” on page 5-49 for additional
Jolt Repository Editor troubleshooting information.

If edits are required after testing:

1. Return to the Jolt Repository Editor Logon window and click Packages.

2. Select the package with the services to be retested.

3. Click Unexport.

4. Click Back to return to the Jolt Repository Editor Logon window.

5. Click Services to display the Services window.

6. Select the package and the service that requires editing and click Edit.

7. In the Edit Services window, edit the service.

8. Save the service, click Test, and repeat steps 5 and 6 of the “Testing a Servi
section.
5-48 Using Java Enterprise Tuxedo

Troubleshooting
Troubleshooting

Table 5-9 provides troubleshooting tips if you encounter problems while using the Jolt
Repository Editor.

Table 5-9 Jolt Repository Editor Troubleshooting

Problem Suggested Action(s)

A parameter is incorrect Edit the service.

The Jolt server is down Check the server. The BEA Tuxedo service is down. You do not need to edit
the service.

You receive any error Make sure the browser you are running is Java-enabled:

n For Netscape browsers, make sure that Enable Java and Enable JavaScript
are checked under Edit | Preferences | Advanced. Then select
Communicator | Tools | Java Console. If the Java Console does not exist
on the menu, the browser probably does not support Java.

n For Internet Explorer, make sure the version is 3.0 (or later).

n If running Netscape Navigator, check the Java Console for error messages.

n If running appletviewer, check the system console (or the window
where you started the appletviewer).

You cannot connect to the Jolt
server (after entering Server
and Port Number)

Make sure that:

n Your Server name is correct (and accessible from your machine). Check
that the port number is the correct port. A JSL or JRLY must be configured
to listen on that port.

n The Jolt server is up and running. If any authentication is enabled, check
that you are entering the correct usernames and passwords.

n If the applet was loaded through http, the Web server, JRLY and the Jolt
server are on the same machine (that is, the server name entered into the
Jolt Repository Editor must be the same machine as the one used in the
URL to download the applet).
Using Java Enterprise Tuxedo 5-49

5 Using the BEA Jolt Repository Editor
You cannot start the Jolt
Repository Editor

If you are running the editor in a browser and downloading the Jolt Repository
Editor applet through http, make sure that:

n The browser is Java-enabled.

n The Web server is running and accessible.

n The RE.html file is available to the Web server.

n The RE.html file contains the correct <codebase> parameter. Codebase
identifies where the Jolt class files are located.

If running the editor in a browser (or appletviewer) and loading the applet
from disk, make sure that:

n The browser is Java-enabled.

n The RE.html file exists and is readable.

n The RE.html file is Java-enabled.

n The RE.html file contains the correct <codebase> parameter (this is
where the Jolt class files are installed on the local disk).

n CLASSPATH is set and points to the Jolt class directory.

You cannot display Packages
or Services even though you
are sure they exist

n Make sure that the Jolt Repository server (JREPSVR) is running.

n Make sure that the JREPSVR can access the Repository file.

n Make sure of the configuration for JREPSVR: verify CLOPT parameters
and verify that jrep.f16 (FML definition file) is installed and accessible
(follow the installation documentation).

You cannot save changes in the
Jolt Repository Editor

Check permissions on the Repository file. The file must be writable by the user
who starts JREPSVR.

You cannot test services n Check that the service is available.

n Verify the service definition matches the service.

n If BEA Tuxedo authentication is enabled, check that you have the required
permissions to execute the service.

n Check if the application file (FML or VIEW) is specified correctly in the
variables (FIELDTBLS or VIEWFILES) in the ENVFILE. All
applications FML field tables or VIEW files must be specified in the
FIELDTBLS and VIEWFILES environment variables in the ENVFILE. If
these files are not specified, the JSH cannot process data conversion and
you receive the following message: ServiceException: TPEJOLT
data conversion failed.

n Check the ULOG file for any additional diagnostic messages.

Table 5-9 Jolt Repository Editor Troubleshooting (Continued)

Problem Suggested Action(s)
5-50 Using Java Enterprise Tuxedo

Repository Enhancements for Jolt
Repository Enhancements for Jolt

The Jolt Repository uses the FML32 buffer type, which increases the internal buffer
size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATMI
buffer types:

n X_OCTET

n X_C_TYPE

n X_COMMON
Using Java Enterprise Tuxedo 5-51

5 Using the BEA Jolt Repository Editor
5-52 Using Java Enterprise Tuxedo

Index

A
adding packages 5-20
appletview, in Repository Editor 5-5

B
BEA Tuxedo

distributing services 1-7
service definitions, tools for managing 1-

9
service requests 1-7

buffer types
about BEA Tuxedo buffer types 1-13
CARRAY buffer type 1-14
FML buffer type 1-14
STRING buffer type 1-14
supported 1-13
VIEW buffer type 1-15

bulk loader
about the Bulk Loader 1-9
bulk load file 4-2
command line options 4-8
introduction 4-1
keyword guidelines 4-3
keyword ordering 4-4
parameter-level keywords 4-6
sample data 4-7
service-level keywords 4-5
troubleshooting 4-9

C
call method 2-9
CARRAY buffer type 1-14
command-line options

Jolt Relay (JRLY) 3-19, 3-21
Jolt Server Listener (JSL) 3-10

configuration
Jolt Relay (JRLY) 3-4
Jolt Relay Adapter (JRAD) 3-7, 3-24
Jolt Server Listener (JSL) 3-2, 3-3, 3-10
network address 3-24

configuration file
Jolt Relay (JRLY) 3-22

configure
Jolt Relay (JRLY) 3-18

configuring
JET 3-2
JET for Java server access 2-2

customer support contact information xi

D
default repository file 2-2
documentation, where to find it x

E
encryption 3-17
exceptions 2-10
exporting services 5-40
Using Java Enterprise Tuxedo I-1

F
failover

Jolt Client to JRLY connection 3-18
JRLY to JRAD connection 3-18

FML buffer type 1-14

G
GROUPS section, in UBBCONFIG 2-3
GRPNO parameter 2-3

I
importing packages 2-7
invoking BEA Tuxedo services

configuring JET for Java server access 2-
2

handling exceptions 2-10
handling returned parameters 2-11
importing packages 2-7
instantiating a JoltService object 2-7
invoking the service 2-9
specifying parameters 2-8

J
JET

configuring 3-2
key components 1-4
key features 1-2
workflow 1-3

JET Class Library
about the JET Class Library 1-4

Jolt Internet Relay 3-17
about Jolt Internet Relay 1-11
workflow 1-12

Jolt Relay (JRLY)
about Jolt Relay 1-11
command-line options for NT 3-19
command-line options for Unix 3-21
configuration file 3-22

configuring 3-4, 3-18
failover 3-18
starting 3-19

Jolt Relay Adapter (JRAD)
about the Jolt Relay Adapter 1-11
configuration 3-24
configuring 3-7, 3-24

Jolt Repository
initializing services 3-8
testing services 5-44

Jolt Repository Editor
about the Jolt Repository Editor 1-9

Jolt Repository Server
about the Jolt Repository Server 1-5

Jolt Server Handler (JSH)
about the Jolt Server Handler 1-10

Jolt Server Listener (JSL)
about the Jolt Server Listener 1-10
command-line options 3-10
configuring 3-3, 3-10
restarting 3-10
shutting down 3-10
starting 3-9
UBBCONFIG file (sample) 3-14

Jolt servers, about Jolt servers 1-10
JoltService object, instantiating 2-7
jrepository 2-2
JRLY See Jolt Relay

K
key components 1-4
key features 1-2

L
LMID parameter 2-3
logging on to Repository Editor 5-7
I-2 Using Java Enterprise Tuxedo

N
network address configuration 3-24

P
package organizer 5-31
packages

adding packages 5-20
deleting packages 5-40
package organizer 5-31
Repository Editor 5-13

parameters
adding parameters 5-26
deleting parameters 5-39
handling returned parameters 2-11
in the Repository Editor 5-18
modifying parameters 5-37
specifying for a BEA Tuxedo service 2-8

printing product documentation x

R
registering services, in the repository 3-8
related information xi
Repository Editor

adding packages 5-20
adding parameters 5-26
adding services 5-22
components of the Repository Editor 5-

11
deleting packages 5-40
deleting parameters 5-39
deleting services 5-39
editing parameters 5-37
editing services 5-35
exiting 5-9
exporting services 5-40
grouping services 5-31
introduction 5-2
logging on 5-7
making services available to clients 5-40

package organizer 5-31
packages 5-13
packages, setting up 5-19
parameters 5-18
sample window 5-2
sample window description 5-4
saving your work 5-20
service definitions 5-16
services, setting up 5-19
starting from a Web browser 5-6
starting with the appletviewer 5-5
troubleshooting 5-49
unexporting services 5-40
viewing service definitions 5-17
workflow 5-11

S
saving your work 5-20
security 3-17
SERVERS section, in UBBCONFIG 2-3
services

add services 5-22
deleting services 5-39
distributing 1-7
exporting services 5-40
grouping 5-31
Jolt client

make service available to 5-40
modifying a service 5-35
parameters 5-18
testing services 5-44
unexporting 5-40

SRVGRP parameter 2-3
SRVID parameter 2-3
STRING buffer type 1-14
support

technical xi
Using Java Enterprise Tuxedo I-3

T
testing services 5-44
troubleshooting

Repository Editor 5-49

U
unexporting services 5-40

V
VIEW buffer type 1-15

W
workflow 1-3

BEA Tuxedo service requests 1-7
handling requests from Jolt clients 1-10
Jolt Internet Relay 1-12
Repository Editor 5-11
I-4 Using Java Enterprise Tuxedo

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Introducing Java Enterprise Tuxedo
	Key Features
	JET Workflow
	Key Components
	JET Class Library
	Jolt Repository Server
	How BEA Tuxedo Services are Distributed
	Workflow for Handling BEA Tuxedo Service Requests

	Tools for Managing Service Definitions
	Bulk Loader
	Jolt Repository Editor
	Jolt Servers
	Jolt Internet Relay
	Using BEA Tuxedo Buffer Types with JET

	Comparison Between Jolt and JET
	Overview of Jolt and JET
	Architecture Comparison
	Components Comparison
	Functionality Comparison
	Class Library Comparison
	Packages
	Package bea.jolt Components

	2 Invoking BEA Tuxedo Services
	Configuring JET for Java Server Access
	Default Repository File
	Parameters to Specify in the UBBCONFIG File
	GROUPS Section
	SERVERS Section

	Sample UBBCONFIG File

	Invoking BEA Tuxedo Services with the JET Class Library
	Importing Packages
	Instantiating a JoltService Object
	Specifying Parameters for the BEA Tuxedo Service
	Specifying String Parameters
	Specifying Array Parameters
	Specifying Parameters of Various Data Types

	Calling the BEA Tuxedo Service
	Handling Results
	Handling Exceptions
	Handling Returned Parameters

	3 Configuring JET for Client Access
	Configuring JET
	About Configuring JET for Client Access
	Step 1: Configure JSL
	Step 2: Configure Jolt Relay
	Configuring JRLY on the Web Server
	Configuring JRAD in the Tuxedo Environment

	Step 3: Registering Tuxedo Services with the Repository

	JET Administrative Reference
	Jolt Server Reference
	About Jolt Servers
	System Administrator Responsibilities
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-Line Options
	Sample UBBCONFIG Settings for JSL
	Security and Encryption

	Jolt Internet Relay Reference
	About Jolt Relay and the Jolt Relay Adapter
	Jolt Relay
	Jolt Relay Adapter

	4 Using the Bulk Loader Program
	Defining Bulk Loader Data Files
	About Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-level Keywords and Values
	Using Parameter-level Keywords and Values
	Sample Bulk Loader Data File

	Running the Bulk Loader
	Troubleshooting

	5 Using the BEA Jolt Repository Editor
	Introducing the Jolt Repository Editor
	Jolt Repository Editor Window
	Components of the Jolt Repository Editor Window

	Getting Started with the Jolt Repository Editor
	Starting the Jolt Repository Editor
	Starting the Jolt Repository Editor Using the Java Applet Viewer
	Starting the Jolt Repository Editor from Your Web Browser

	Logging On to the Jolt Repository Editor
	Sample Logon Window
	Components of the BEA Jolt Repository Editor Logon Window

	Exiting the BEA Jolt Repository Editor

	Main Components of the BEA Jolt Repository Editor
	Workflow for the BEA Jolt Repository Editor
	What Is a Package?
	Sample Packages Window
	Components of the Packages Window
	Viewing a Package

	What Is a Service?
	Sample Services Window
	Components of the Services Window
	Viewing a Service

	Working with Parameters
	Sample Services Window with Parameters
	Viewing a Parameter

	Setting Up Packages and Services
	Saving Your Work
	Adding Packages
	Sample Package Organizer Window
	Adding a Package

	Adding Services
	Sample Edit Services Window
	Options for Adding a Service
	Adding a Service
	Selecting CARRAY or STRING as a Service Buffer Type

	Adding Parameters
	Sample Edit Parameters Window
	Components of the Adding a Parameter Window
	Adding a Parameter
	Selecting CARRAY or STRING as a Parameter Data Type

	Grouping Services Using the Package Organizer
	Sample Package Organizer Window
	Components of the Package Organizer Window
	Grouping Services with the Package Organizer

	Modifying Packages, Services, and Parameters
	Editing Services
	Sample Edit Services Window
	Editing a Service

	Editing Parameters
	Sample Edit Parameters Window
	Editing a Parameter

	Deleting Parameters, Services, and Packages
	Deleting a Parameter
	Deleting a Service
	Deleting a Package

	Making a Service Available to the JET Client
	Exporting and Unexporting Services
	Sample Packages Window
	Exporting or Unexporting a Service

	Reviewing the Exported and Unexported Status

	Testing a Service
	Sample Service Test Window
	Components of the Service Test Window
	Testing a Service
	Test Service Process Flow
	Testing a Service

	Troubleshooting
	Repository Enhancements for Jolt

	Index

