BEA WebLogic Enterprise

Using Java Enterprise Tuxedo

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Java Enterprise Tuxedo

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

What Y OU NEed t0 KINOWccoouiiiiiieeeetiece ettt et s X
E-0OCSWED SIte....cueiiiceeiee e sr e b eraenaes X
HoW t0 Print the DOCUMENT..........cee ettt sttt e ere e X
Documentation CONVENLIONSc.coeeueieeieie e e e eereesaesree e sraesaeere e ens Xii

1. Introducing Java Enterprise Tuxedo

KBY FEALUES......eeee ettt st ettt e sn e 1-2
JET WOKFIOW .ttt e 1-3
KEY COMPONENESc.eitieeetirtie ettt see et e e et se et ns s e e seesaesseesreeneesaeenna s 1-4
JET ClasS Librarycce oot et 1-4

JOIt REPOSITONY SEIVEY ...ttt ettt e e 1-5
How BEA Tuxedo Services are Distributedc.coevvneineiiceennen. 1-6
Workflow for Handling BEA Tuxedo Service Requests.................... 1-7

Tools for Managing Service Definitions...........ccooeeeveneieinneenecinen e 1-9
BUIK LOBOEYoviieeiee ettt 1-9

Jolt REPOSITOrY EAItOroeuieeiiee et e 1-9

JOIT SEIVEN'S. ...ttt s e 1-10

JOIt INtENEt REIQY ...t e 1-11

Using BEA Tuxedo Buffer Typeswith JETccocooveviiiieienecenne 1-13
Comparison Between JoIt and JETcooieiineininineee e e 1-16
Overview Of JOIt @Nd JETcooveereeereetireeiieeree et e e e 1-16
Architecture COMPAITSONccc.erueririereereeieiie e e eeeees e e e e eneenes 1-17
Components COMPAITSONcuerereereeie e reeeeieeres e eresees e seeseasaeneesesneas 1-18
Functionality COmMPaIiSONcceieuereereerieie et e s enes 1-19
Class Library COmMPariSon.........ccoevereerieierirneee s s s 1-20
PaCKAQES.......cv ettt st e 1-20
Package beajolt CompoNeNts.........cccvviere e 1-20

Using Java Enterprise Tuxedo iii

2. Invoking BEA Tuxedo Services

Configuring JET fOr JaVa SEIVEr ACCESS......ccuereireeiererrereetesiesesteseeseeseeneeseeseens 2-2
Default REPOSITOrY Filecooiiiiiiiee e s 2-2
Parameters to Specify inthe UBBCONFIG File.........cocooeeniieeiiiece 2-3

GROUPS SECHIONcveieveietireetieetire et eses s s e seeseseens 2-3
SERVERS SECHON ...ttt e 2-3
Sample UBBCONFIG File......ccociiiieeee et 2-4

Invoking BEA Tuxedo Services with the JET Class Librarycccccocevveeennne. 2-6
IMPOItiNg PaCKAOESoieeeeee ettt e s 2-7
Instantiating a JoltService ODJECt........ccooviiiiiiivieeee e 2-7
Specifying Parameters for the BEA Tuxedo Service.........ccooeoereveencennne. 2-8

Specifying String Parameters.coovereeiinnieeree e e e 2-8
Specifying Array Palrameterscoovereeieienenieeinee e s e 2-8
Specifying Parameters of Various Data TYPeScccceeereveenieiesennene 2-9
Calling the BEA TUXEAO SEIVICE......cceiviieiceiicee sttt et et 2-9
Handling RESUILSooueiieiieeee et s 2-10
Handling EXCEPLIONSccureririeee et 2-10
Handling Returned Parameters............ccveveceeiecieie e 2-11

3. Configuring JET for Client Access

L0001 110 04T 0T N OSSR 3-2
About Configuring JET for Client ACCESSccovuereeierereee e 32
Step 1: CONfIGUIE ISL ...ttt e 33
Step 2: Configure Jolt Relay........ccoviiieie i 3-4

Configuring JRLY on the Web Server.........oocoovereieennneeieeeee s 3-4
Configuring JRAD in the Tuxedo Environmentcccceeeeverennnne 37
Step 3: Registering Tuxedo Services with the Repositorycccceeeeuee. 3-8

JET Administrative REFEMENCE.........cooviiie ettt 3-8

JOIt Server REFEIENCE.cco et 3-8
ADOUL JOIT SEIVEI'S ... 39
System Administrator Responsibilities..........ccoovevinece e e 39
StAtiNG thE JSL ..ot e e e 39
Shutting DOWN the JSLvoeiceieeeeere e et 3-10
ReStarting the JSL ... e e e e 3-10
Configuring thE JSL ..o e e e e 3-10

Using Java Enterprise Tuxedo

JSL Command-Line OPtioNScccouereireeeeiriene e 3-10

Sample UBBCONFIG Settings for JSLccoooevineiineieeecircnee 3-14
Security and ENCrYPHON.........ooiie i e s 3-17
Jolt Internet Relay REFEIENCE.......cccoviuiiieee e 3-17
About Jolt Relay and the Jolt Relay Adaptercccooveeeiviiceiccene. 3-17
JOIE REIAY ... e e 3-18
JOIt Relay AADLEN ...ttt 3-23

Using the Bulk Loader Program

Defining Bulk Loader Data FileSc.oooieiieieie e 4-2
About Bulk Loader Data FileScviueirieinieeine s 4-2
Guidelines for Using KeyWOrdS..........coceiereieenieiiene e 4-3
Keyword Order in the Bulk Loader Data File..........ccocooereveicieinieeenn 4-4
Using Service-level Keywordsand Values..........ccccovoieieienieieseneceene 4-5
Using Parameter-level Keywordsand Values...........ccccoeveeeveeveiece e 4-6
Sample Bulk Loader Data File........cooooeiiieiieee e 4-7

RUnning the BUIK LOBENc.ocuiee et 4-8

018 o] = gToTo) 1] oo FOu TSRS 4-9

Using the BEA Jolt Repository Editor

Introducing the Jolt Repository Editorccooeiiiieiirieee e 5-2
Jolt Repository Editor WiNdOWc.cooreeeirineee e 5-2
Components of the Jolt Repository Editor Windowcccceovenenenee. 5-4

Getting Started with the Jolt Repository Editorocoovieiiniie e 5-5
Starting the Jolt REPOSItOry EAItOrccoveieeieeieie e 5-5

Starting the Jolt Repository Editor Using the Java Applet Viewer..... 5-5
Starting the Jolt Repository Editor from Y our Web Browser............. 5-6
Logging On to the Jolt Repository Editorccooveieieieneeieie e 5-7
Sample Logon WINGAOW ... s 5-8
Components of the BEA Jolt Repository Editor Logon Window....... 5-8
Exiting the BEA Jolt Repository Editorccooeereninieie e 5-9

Main Components of the BEA Jolt Repository Editor...........ccceevvieciiienenne 5-11
Workflow for the BEA Jolt Repository Editor.........ccceeineiinienciienieas 5-11
What 1S @Package?cceoieiececee sttt st 5-13

Sample Packages WinAOWcccveeirnnienininene e s 5-13

Using Java Enterprise Tuxedo %

Components of the Packages Window............cccooeeenninencncnenn. 5-14

VieWing @Packagecoeveereeiriireee e e 5-15
WHhaL [S@ SEIVICE? ...ttt e eeen 5-16
Sample ServiceS WINAOW.........cccoerireie e 5-16
Components of the Services Window ..., 5-17
VIEBWING @ SEIVICE ..ocuviiicie ettt st st s 5-17
Working With Parameters..........cccovevieieceieieceeee e 5-18
Sample Services Window with Parameters............ccooveneieiencennnns 5-18
VIiewing aParameterc.ccoecieieiieiiieceeeecee sttt st 5-19
Setting Up Packages and SErVICES.coucvrrreeirieee e 5-19
SAVING Y OUIr WOTKocuiiiiiiiceietcete ettt et e e sr e sreenees 5-20
Adding PaCkagesScueiicieie ettt st 5-20
Sample Package Organizer Window...........cccccueveneeiniennenenenecnennn. 5-21
Adding aPackage........ccoecue e e 5-21
AdING SENVICES.....oocvietie ettt st st st e ere e ee e 5-22
Sample Edit Services Windowcccoceevereieneeneeieie e 5-22
Options for Adding & SErVICe.........evriiiireree e 5-23
AddiNG A SENVICE ...ttt 5-25
Selecting CARRAY or STRING as a Service Buffer Type.............. 5-25
Adding ParameterSccocieieiieeeeseecee ettt e 5-26
Sampl e Edit Parameters Window.............ccoeoeenenecinennene e 5-27
Components of the Adding a Parameter Window............c.cccovennnee. 5-27
Adding aParameter............cocecueiiceeieeeee e 5-28
Selecting CARRAY or STRING as a Parameter Data Type............. 5-29
Grouping Services Using the Package Organizer..........cccoeveevveiececiece e, 5-31
Sample Package Organizer Windowcccoceevveieeicenieseseeie e 5-31
Components of the Package Organizer Window...........ccccceeevvevieeiienieennen. 5-32
Grouping Services with the Package Organizercccoocoveveveviiciennens 5-33
Modifying Packages, Services, and Parameters..........cccoovevveeeveeiieeseeeseesvennn, 5-35
Editing SErVICES......coiciiee ettt 5-35
Sample Edit Services Windowcccceceeveevienieenieseesee e 5-35
Editing @SErVICeccoiveiiiice e 5-36
Editing Parameters...........coe ittt 5-37
Sample Edit Parameters Window..........ccccevveveeceecinieeseecee e, 5-37
Editing aParametercccooeive e 5-38

Vi Using Java Enterprise Tuxedo

Deleting Parameters, Services, and Packages.........cccooeoeeeerenieneseseeenne 5-39

Deleting aParametercccoeie e e e 5-39

DEELNG A SEIVICE.....coiiieeecteete et 5-39
Deleting aPackage........ccccovvevueerieceieie e 5-40

Making a Service Availableto the JET Client.......cccccooevviie e vie e 5-40
Exporting and UneXporting SErVICEScvireeererene e seeenee s eveeees 5-40
Sample Packages Windowcccco e 5-40
Exporting or Unexporting @ ServiCecueveeeeereeneinneee e 5-41
Reviewing the Exported and Unexported Status...........ccoevereeererneneeneen 5-42
TESHNG @ SEIVICE ..ttt ettt ettt e en et e ene s 5-44
Sample Service TeSt WINCAOWccoeirriiieiiriine e e 5-44
Components of the Service Test WiNdOWcceoeveneeinenieeenecneeiiniene 5-46
BI=S g To I S =V ot SRS 5-47
Test Service ProCeSS FIOWcccovcercvinicinecines e 5-47

TESHNG @ SEIVICE....ueiiieieeeetee ettt et sae s renrae 5-47
TroubIESNOOLING.ccuee ettt 5-49
Repository Enhancements for JOIt..........cco i 5-51

Index

Using Java Enterprise Tuxedo Vii

Viii Using Java Enterprise Tuxedo

About This Document

This document describes the Java Enterprise Tuxedo™ (JET) component of
BEA WebLogic Enterprise™ (WLE), which enables Java servers running in the
WebLogic Enterprise environment to access services in the BEA Tuxedo®
environment.

This document includes the following topics:

m Chapter 1, “Introducing Java Enterprise Tuxedo,” introduces the JET
architecture and provides an overview of how Java servers (CORBA/Java, EJB,
and RMI servers) running in the WebLogic Enterprise environment can invoke
BEA Tuxedo services using JET.

m Chapter 2, “Invoking BEA Tuxedo Services,” describes how to invoke a Tuxedo
service from a Java server running in the WebLogic Enterprise environment
using the JET Class Library.

m Chapter 3, “Configuring JET for Client Access,” describes how to configure JET
in order to use the Bulk Loader program or the BEA Jolt Repository Editor.

m Chapter 4, “Using the Bulk Loader Program,” describes how to populate the Jolt
Repository with BEA Tuxedo service definitions using the Bulk Loader utility.

m Chapter 5, “Using the BEA Jolt Repository Editor,” describes how to add,
modify, delete, test, and export BEA Tuxedo service definitions in the Jolt
Repository using the Jolt Repository Editor.

In addition, the following interoperability sample applications implement JET:
m CORBA/Java-to-Tuxedo Simpapp sample application
m EJB-to-Tuxedo Simpapp sample application

For more information about these sample applicationsCO&BA, J2EE, and Tuxedo
Interoperability and Coexistence.

Using Java Enterprise Tuxedo iX

What You Need to Know

This document isintended for Java programmers and system administrators who want
to develop or support Java server applications that access Tuxedo services within the
WebL ogic Enterprise environment. It assumesthat you are familiar with BEA Tuxedo
and Java programming. Y ou must also understand the details of any Tuxedo services
that you want to invoke using JET.

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

X Using Java Enterprise Tuxedo

How to Print the Document

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA

Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see the WebLogic Enterpildéography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company nhame and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using Java Enterprise Tuxedo Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.

M onospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMVAP

f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text

void commit ()

nonospace Identifies variables in code.

italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Xii Using Java Enterprise Tuxedo

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using Java Enterprise Tuxedo Xiii

Xiv Using Java Enterprise Tuxedo

CHAPTER

1

Introducing Java
Enterprise Tuxedo

Thistopic includes the following sections:
m Key Features

m JET Workflow

m Key Components

m Comparison Between Jolt and JET

Java Enterprise Tuxedo™ (JET) is a Java-based application programming interface
(API) to the BEA Tuxedo system for Java servers (CORBA/Java, EJB, and RMI
servers) running in the WeblLogic Enterprise (WLE) environment. JET is a Java class
library and API that enables Java servers to invoke BEA Tuxedo services and process
the results.

Using Java Enterprise Tuxedo 1-1

1

Introducing Java Enterprise Tuxedo

Key Features

1-2

With JET, you can leverage existing BEA Tuxedo services from a WebL ogic
Enterprise Java server application (CORBA/Java, EJB, or RMI servers). The key
feature of the JET architecture isitssimplicity. You can build, deploy, and maintain
robust, modular, and scalable el ectronic commerce systems that operate over the
Internet.

JET provides the following features:

m Java-based API for simplified development—uwith its Java-based API, JET
simplifies application development by providing well-designed object interfaces
into BEA Tuxedo services.

m Implicit transaction support— JET enables Java programmers to build Java
servers that use the BEA Tuxedo application and transaction services without
needing to understand detailed transactional semantics or rewrite existing BEA
Tuxedo applications. Transactions are handled implictly by WebL ogic Enterprise
and BEA Tuxedo. Java programmers can decide whether a Java server
application participatesin, or is excluded from, atransaction.

m BEA Tuxedo-enabled Java server developmentusing JET, you can build
Java servers that leverage your BEA Tuxedo services. Tuxedo processes can
span multiple domains. JET calls can occur across a bridge or adomain
gateway. JET provides the automatic conversion between Java and native BEA
Tuxedo data types and buffers.

m Easy access to BEA Tuxedo services through the Jolt Repositerghe Jolt
Repository contains service definitions that represent Tuxedo services. JET
provides graphical and command-line tools for dynamically populating and
editing service definitions in the Jolt Repository.

Using Java Enterprise Tuxedo

JET Workflow

JET Workflow

Figure 1-1 provides an overview of how JET works.

Figure1-1 Java ServersUsing JET to Invoke BEA Tuxedo Services

WebLogic Enterprise Environment

Java Server HOST
Tuxedo Environment
CORBA =

/Java |W Tuxedo —
Server |7 Service Application

L Request Server

EJB |+ Tuxedo

Server | M < Service

Reply
RMI E BEA
Server | » Tuxedo

A BEA Tuxedo service invocation using JET involves the following steps:

1. A Javaserver (CORBA/Java, EJB, or RMI server) usesthe API in the JET Class
Library to prepare and submit a BEA Tuxedo service request.

2. JET retrieves the service definition for the requested BEA Tuxedo service and
routes the request to the BEA Tuxedo server, which forwards the request to the
Tuxedo service.

3. The BEA Tuxedo service receives the request and generates the resullts.
4. The BEA Tuxedo service returns the results to the Java server.

5. The Javaserver usesthe JET Class Library to translate the resultsinto a Java
format and process the results.

Thisentire procedure occurswithin the WebL ogic Enterprise environment. For amore
detailed description of this process, see Chapter 2, “Invoking BEA Tuxedo Services.”

Using Java Enterprise Tuxedo 1-3

1

Introducing Java Enterprise Tuxedo

Key Components

JET consists of the following key components:
m JET ClassLibrary
m Jolt Repository Server

m Toolsfor Managing Service Definitions

Note: JET leverages technology from BEA Jolt®, a BEA product that links Web
clientsto BEA Tuxedo services. Certain JET components thereforeinclude
Jolt in the name. However, these components are used by JET, not Jolt. To use
Jolt, you must purchase a Jolt license and install the Jolt software separately.
For more information about Jolt, see “Comparison Between Jolt and JET” on
page 1-16.

JET Class Library

1-4

The JET Class Library is a Java package that contains the class files that implement

the JET API. These classes enable Java servers to invoke BEA Tuxedo services. Tl
JET Class Library includes the functionality needed to prepare, submit, and process
BEA Tuxedo service request.

The following types of Java servers can use the JET Class Library:
m CORBA/Java servers

m EJB servers

m RMI servers

When developing a JET client application, you need to know only about the classes
that JET provides and the BEA Tuxedo services that are defined in the Jolt Repositon
JET hides the underlying application details. To use the JET Class Library, you do nc
need to understand the underlying transactional semantics, the language in which tt
services were coded, buffer manipulation, the location of services, or the names of

Using Java Enterprise Tuxedo

Key Components

databases used. JET handles these operations for you and |everages the implicit
transaction processing mechanisms that WebL ogic Enterprise and BEA Tuxedo
provide.

Table 1-1 describes the flow of activity involved in using the JET Class Library to
access BEA Tuxedo services.

Table 1-1 Usingthe JET ClassLibrary

Step Process Action
1 Import Library Java server (CORBA /Java, EJB, or RMI server) imports
the package containing the JET Class Library.
2 Prepare Request Java server instantiatesa Jol t Ser vi ce object and
preparesa BEA Tuxedo service request object using the
JET API.
3 Submit Request Java server invokesthe cal | method to submit the

service request.

4 Process Request BEA Tuxedo application server receives and processes
the service request.

5 Reply BEA Tuxedo returns the results of the service invocation
to the Java server.
6 Process Results The Java server processes the results, including any

exception handling.

For more information about calling Tuxedo services from within Java servers, see
Chapter 2, “Invoking BEA Tuxedo Services.”

Jolt Repository Server

A BEA Tuxedo application is a collection of one or more servicesJallh&epository
Server (JREPSVR]s a Tuxedo server that manages service definitions of BEA
Tuxedo services for JET. gervice definition describes the properties of a BEA
Tuxedo service, such as its name, input and output buffer types, and individual
parameters.

Using Java Enterprise Tuxedo 1-5

1 Introducing Java Enterprise Tuxedo

JET uses these service definitions to perform data conversions. Tuxedo service
definitions are stored in a central file, the Jolt Repository, which the JREPSVR
manages. JET uses the JREPSVR to retrieve Tuxedo service definitions from the Jolt
Repository. In addition, the JREPSV R manages updates to service definitionsin the
Jolt Repository.

For each BEA Tuxedo servicethat you want to access using JET, an associated service
definition must be stored in the Jolt Repository. In order to invoke a Tuxedo service,
its service definition must also be explicitly exported, or made available, to Java
servers. All Repository servicesthat are exported to one Java server are exported to all
Javaservers. BEA Tuxedo handlesthe cases where subsets of services may be needed
for one client and not others. Y ou specify and export service definitions using the
graphical and command-line tools described in “Tools for Managing Service
Definitions” on page 1-9.

Before you can use JET, you must configure the JREPSVR uBBGONFI Gfile, as
described in “Configuring JET for Java Server Access” on page 2-2. For each Jolt
Repository, you can configure one or more JREPSVRs. Only one instance of the
JREPSVR can be configured with read-write access to the Jolt Repository; all other:
are configured with read-only access.

How BEA Tuxedo Services are Distributed

Figure 1-2 illustrates how the JREPSVR distributes BEA Tuxedo services to multiple
Java servers. In this example, the BEA Tuxedo server has four services, but only thre
are defined in the Jolt Repository. The WITHDRAW service is not defined and
therefore is unavailable to Java servers. In addition, the TRANSFER service is define
in the Jolt Repository but is not exported, or made available, to the Java servers. Th
Java servers are able to invoke only the DEPOSIT and INQUIRY services.

1-6 Using Java Enterprise Tuxedo

Key Components

Figure1-2 Distributing BEA Tuxedo Servicesvia JET

BEA Tuxedo

-) . Java Server
Application Services

DEPOSIT
INQUIRY

| INQUIRY Service

| DEPOSIT Service <«—— > JREPSWR DEPOSIT

A
Y

| WITHDRAW Service K

| Java Server

- A 4 Java Server
| TRANSFER Service T INQUIRY

Jolt Repository
Service Definitions

DEPOSIT
INQUIRY
TRANSFER (Not Exported)

~_
Workflow for Handling BEA Tuxedo Service Requests

Figure 1-3 shows how JREPSV Rs handle BEA Tuxedo service requests from Java
servers.

Using Java Enterprise Tuxedo 1-7

1 Introducing Java Enterprise Tuxedo

Figure 1-3 Workflow for Handling BEA Tuxedo Service Requests

Tuxedo Environment
JREPSVR
Read-Only
Java Servers
Get ‘]REPSV_R Jolt
CORBA| _ Service Read-Write Repository
lJava L,IﬁJ Definition JREPSVR
Server N Read-Only
EJB E
Server | » Invoke Application
Tuxedo Server
Service
RMI E » Tuxedo
Server | > < Service
Return
Results BEA
Tuxedo

Theworkflow occurs in the following sequence:
1. TheJava server submits arequest for aBEA Tuxedo service.

2. JET retrieves the service definition for the requested service from the Jolt
Repository using a JREPSVR. Because it is aread-only request, any available
JREPSVR can service the request.

3. JET uses the service definition to translate buffer data. It submits the request to
the BEA Tuxedo server and returns the results to the calling Java server.

1-8 Using Java Enterprise Tuxedo

Key Components

Tools for Managing Service Definitions

Bulk Loader

Thistopic describes the following JET components, which are used for managing
service definitions:

m Bulk Loader

m Jolt Repository Editor
m Jolt Servers

m Jolt Internet Relay

JET leverages these components from BEA Jolt for the sole purpose of managing

service definitions used by the JREPSVR. In addition, the topic “Using BEA Tuxedo
Buffer Types with JET” on page 1-13 describes the BEA Tuxedo buffer types that JET
supports.

In order to use the Bulk Loader or Jolt Repository Editor to edit service definitions,
you must first configure the Jolt servers. If you want to use these tools across a firewall,
you must also configure Jolt Internet Relay. For configuration instructions, see
Chapter 3, “Configuring JET for Client Access.”

The Bulk Loader program populates service definitions for the JREPSVR. It uses
service definitions that are specified in a specially-formatted text file. For more
information about the Bulk Loader program, see Chapter 4, “Using the Bulk Loader
Program.”

Jolt Repository Editor

The Jolt Repository Editor is a GUI-based administration tool that allows developers
and administrators to add, edit, delete, export, and test individual service definitions.
You can modify parameters for BEA Tuxedo services, logically group BEA Tuxedo
services into packages, and remove services from created packages. For more
information, see Chapter 5, “Using the BEA Jolt Repository Editor.”

Note: The Jolt Repository Editor controls services for JET client applications only.
You cannot use it to make changes to the BEA Tuxedo application.

Using Java Enterprise Tuxedo 1-9

1 Introducing Java Enterprise Tuxedo

Jolt Servers

JET includes the following Jolt servers to handle communications with the JREPSVR
when the Repository Editor or Bulk Loader programs are used:

m Jolt Server Listener (JSL)—receives requests from clients and assigns them to
an available Jolt Server Handler. The JSL is a BEA Tuxedo server.

m Jolt Server Handler (JSH}—manages network connectivity, executes service
requests, and handles the translation of buffer data between BEA Tuxedo and
Jolt buffers. Each JSH retains a cache copy of the Jolt Repository for
performance purposes.

These servers work together to handle incoming requests from the Bulk Loader
program or Jolt Repository Editor to update service definitions. The JSH
communicates with the JREPSVR.

Note: You must configure these Jolt servers before you can update service
definitions. For more information, see Chapter 3, “Configuring JET for Client
Access.”

Figure 1-4 shows how the Jolt servers work together to handle requests from the Jo
Repository Editor or the Bulk Loader program.

Figure 1-4 Workflow for Handling Requests from the Jolt Clients

Servers
Jolt Clients JSH JREPSVR
Repository Read-Only
Editor
» JSL JSH FfREjPV?/V.? Jolt
ead-vvrite Repository
Bulk Loader JREPSVR
< JSH Read-Only

The workflow occurs in the following sequence:
1. The Jolt Repository Editor or Bulk Loader sends an access request to the JSL.

2. The JSL forwards the request to an available JSH.

1-10 Using Java Enterprise Tuxedo

Key Components

3. The JSH directsthe request to an available JREPSVR. If the request isfor

write-access to the Jolt Repository, the JSH directs the request to the one
JREPSRVR that has write-access to the Jolt Repository.

The JREPSVR processes the request in the Jolt Repository and returns the results
to the JSH.

The JSH savestheresults in its cache and returns the results to the client
application that made the request.

The JSL also updates the Jolt Repository cache in other JSHs.

Jolt Internet Relay

Y ou use Jolt Internet Relay only if you want to run the Jolt Repository Editor or Bulk
Loader and access Tuxedo service definitions on the other side of afirewall. Jolt
Internet Relay handles message routing from the Jolt Repository Editor or Bulk L oader
running outside afirewall to aJSL or JSH behind afirewall.

Components of Jolt Internet Relay

Jolt Internet Relay consists of the following components:

Jolt Relay (JRLY)—a standal one software component that routes Jolt messages
to the Jolt Relay Adapter. Requiring only minimal configuration to work with
Jolt clients, the Jolt Relay eliminates the need for the BEA Tuxedo system to run
on the same machine as the Web server.

Jolt Relay Adapter (JRAD)—aBEA Tuxedo system server, but does not
include any BEA Tuxedo services. It requires command-line arguments to allow
it to work with the JSH and the BEA Tuxedo system. JRAD receives client
requests from JRLY, and forwards the request to the appropriate JSH. Replies
from the JSH are forwarded back to the JRAD, which sends the response back to
the JRLY.

A single Jolt Internet Relay (JRLY/JRAD pair) handles multiple clients concurrently.

Note: You must configure Jolt Internet Relay before you can use the Repository

Editor or Bulk Loader outside afirewall. For more information, see Chapter 3,
“Configuring JET for Client Access.”

Using Java Enterprise Tuxedo -1

1

Introducing Java Enterprise Tuxedo

Workflow of Client Requests Using Jolt Internet Relay

Figure 1-5 shows how the JRLY and JRAD work together to route requests from the
Jolt Repository Editor or the Bulk Loader program to a JSH across afirewall.

Figure1-5 Workflow for Jolt I nternet Relay

WebLogic Enterprise/Tuxedo Environment

Clients JSH
- Web Server
Repository R ~
Editor < > < - <>
JRLY Firewall JRAD JSL JSH
< » < N
Bulk Loader \
JSH

1-12

Theworkflow occurs in the following sequence:

1

The Jolt Repository Editor or Bulk L oader sends an access request to the JRLY on
the Web server.

The JRLY forwards the request across the firewall to the JRAD in the WebL ogic
Enterprise environment.

The JRAD forwards the message to the JSL.
The JSL forwards the request to an available JSH.

The JSH directs the request to an available JREPSVR (see Figure 1-4 for an
example). If the request isfor write-access to the Jolt Repository, the JSH directs
the request to the one JREPSRVR that has write-access to the Jolt Repository.

Theresults are returned along the same route.

For subsequent access requests from the Jolt Repository Editor or Bulk Loader,
the JRAD forwards the request to the selected JSH, bypassing the JSL.

Using Java Enterprise Tuxedo

Key Components

Using BEA Tuxedo Buffer Types with JET

Thistopic describes the BEA Tuxedo buffer types that you use when defining
parameters for a Tuxedo service call, as described in “Specifying Parameters for the
BEA Tuxedo Service” on page 2-8. Using a buffer type involves the following steps:

1.

Specifying the buffer type in the service definition using the Bulk Loader program
or the Jolt Repository Editor.

Writing the code that uses the buffer specified in the service definition, as
described in Chapter 2, “Invoking BEA Tuxedo Services.”

Supported BEA Tuxedo Buffer Types

JET supports the following built-in BEA Tuxedo buffer types:

FML, FML32
VIEW, VIEW32
X_COMMON
X_C_TYPE
CARRAY
X_OCTET
STRING

Note: X_OCTET is used identically to CARRAY.

X_COMMON and X_C_TYPE are used identically to VIEW.

For detailed information about the BEA Tuxedo typed buffers, data types, and buffer
types, see thBEA Tuxedo Programmer’s Guide

Of the BEA Tuxedo built-in buffer types, the JET application programmer should be
particularly aware of how JET handlesthe CARRAY (character array) and STRING
built-inbuffer types. The CARRAY typeisused to handle dataopaguely (for example,
the characters of a CARRAY datatype are not interpreted in any way). No data
conversion is performed between a JET client and BEA Tuxedo service.

Using Java Enterprise Tuxedo 1-13

1

Introducing Java Enterprise Tuxedo

For example, if aBEA Tuxedo service usesa CARRAY buffer type and the user sets
a 32-bit integer (in Javathe integer is in big-endian byte order), then the data is sent
unmodified to the BEA Tuxedo service. |f the BEA Tuxedo serviceisrun onamachine
whose processor uses little-endian byte-ordering (for example, Intel processors), the
BEA Tuxedo service must convert the data properly before the data can be used.

STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of hon-null
charactersand is terminated by anull character. The STRING datatypeischar act er
and, unlike CARRAY , you can determine its transmission length by counting the
number of charactersin the buffer until reaching the null character.

Note: During the data conversion from JET to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

CARRAY Buffer Type

FML Buffer Type

1-14

The CARRAY buffer type isasimple character array buffer type that isbuilt into the
BEA Tuxedo system. Because the system does not interpret the data (although the data
typeisknown) when you usethe CARRAY buffer type, you must specify adatalength
inthe JET client application. The JET client must specify a datalength when passing
this buffer type.

To usethe CARRAY buffer type, you first define the BEA Tuxedo service that you
will be using with the buffer type. Then, write the code that uses the buffer type.

Note: X_OCTET isused identically to CARRAY .

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged val ues that are typed, variablein
length, and may have multiple occurrences. The typed buffer istreated as an abstract
datatypein FML.

FML gives you the ability to access and update data val ues without having to know
how the data is structured and stored. In your application program, you simply access
or update afield in the fielded buffer by referencing its identifier. To perform the
operation, the FML run time determines the field location and data type.

Using Java Enterprise Tuxedo

Key Components

FML is especially suited for use with JET clients because the client and server code
can bein two languages (for example, Javaand C); the client/server platformscan have
different data type specifications; or theinterface between the client and the server can
change frequently.

VIEW Buffer Type

VIEW isabuilt-in BEA Tuxedo typed buffer. The VIEW buffer provides away to use
C structures and COBOL records with the BEA Tuxedo system. The VIEW typed
buffer enables the BEA Tuxedo run-time system to understand the format of C
structures and COBOL records based on the view description that is read at run time.

When alocating aVIEW, your application specifiesaVVIEW buffer type and a subtype
that matches the name of the view (the name that appearsin the view description file).
The parameter name must match the field namein that view. Becausethe BEA Tuxedo
run-time system can determine the space needed based on the structure size, your
application need not provide abuffer length. The run-time system can aso
automatically handle such things as computing how much datato send in arequest or
response, and handle encoding and decoding when the message transfers between
different machine types.

Using Java Enterprise Tuxedo 1-15

1

Introducing Java Enterprise Tuxedo

Comparison Between Jolt and JET

This topic includes the following sections:

Overview of Jolt and JET
Architecture Comparison
Components Comparison
Functionality Comparison

Class Library Comparison

Overview of Jolt and JET

1-16

WebL ogic Enterprise provides two technologies that enable Java applications to
invoke BEA Tuxedo services:

Jolt provides client-side access to BEA Tuxedo services. Jolt enables
browser-based clients (applications, such as the Jolt Bulk Loader program, or
applets such as the Jolt Repository Editor) to invoke BEA Tuxedo services and
process the results. Jolt is an optional WebL ogic Enterprise component that is
installed separately from WebL ogic Enterprise.

Java Enterprise Tuxedo (JET) provides server-side access to BEA Tuxedo
services. JET enables Java servers (CORBA/Java, EJB, or RMI servers) running
within the WebL ogic Enterprise domain to invoke BEA Tuxedo services and
process the results. JET isautomatically installed when you install WebL ogic
Enterprise.

The technology that you use depends on the nature of your application. Use Jolt to
provide client applets with access to BEA Tuxedo services, or use JET to provide Java
servers, running in the WebL ogic Enterprise domain, with access to BEA Tuxedo
services.

Using Java Enterprise Tuxedo

Comparison Between Jolt and JET

Architecture Comparison

Figure 1-6 provides an overview of the Jolt and JET architectures.

Figure1-6 Overview of Jolt and JET Architectures

Client Applications

CORBA Clients

RMI Clients

Jolt Client
Applications

Java-Enabled
Web Browser

r— -
| Fire
Iwall

Web

Y

WebLogic Enterprise Environment

ISL/ISHs |«

Server

r————t--

v

Java Server

CORBA/Java

EJB

RMI

JET

AN

Tuxedo
Environment

Application
Server

BEA Tuxedo

Tuxedo
| Services

Jolt
JSL/ISHs /

At run time, requests for BEA Tuxedo services are handled differently:

m For serviets that make service requests using Jolt, requests and replies are routed

For more detailed information about Jolt, see the BEA Jolt documentation in the

to the BEA Tuxedo service through the Java Listener (JSL) to a Java Handler

(JSH).

For Java servers that make service requests using JET, requests and replies are

routed directly through JET, without using the JSL/JSH. The server-side object
lives inside JavaServer(.exe). Because the JavaServer(.exe) is aregular Tuxedo
server, it can call Tuxedo services within its domain or across domains.

WebL ogic Enterprise online documentation.

Using Java Enterprise Tuxedo

1-17

1 Introducing Java Enterprise Tuxedo

Components Comparison

Because JET runsin the WebL ogic Enterprise environment, it does not require all of
the components that Jolt uses. Table 1-2 compares the components used in Jolt and
JET.

Table 1-2 Comparison of Jolt and JET Components

Component Used in Jolt? Used in JET?
Class Library Yes Yes
JoltBeans Yes No
Jolt Repository Yes Yes
Jolt Repository Editor Yes Yes
Bulk Loader Yes Yes
Jolt Repository Server (JREPSVR) Yes Yes
Jolt Servers: Yes Yes

m Jolt Listener (JSL)
= Jolt Handler (JSH)

Jolt Internet Relay: Yes Yes
m Jolt Relay (JRLY)
= Jolt Relay Adapter (JRAD)

Servlet Connectivity for Tuxedo Yes No

ASP Connectivity for Tuxedo Yes No

At run time, Java servers using JET require only the JET Class Library, the Jolt

Repository, and the JREPSVR. All other components are used only when editing BEA
Tuxedo service definitions in the Jolt Repository, as described in “Tools for Managing
Service Definitions” on page 1-9.

1-18 Using Java Enterprise Tuxedo

Comparison Between Jolt and JET

Functionality Comparison

Table 1-3 compares the major features used in Jolt and JET.

Table 1-3 Comparison of Jolt and JET Functionality

Function Jolt JET

Calling code Appletslaunched insideweb Java servers: CORBA/Java,
browsers EJB, and RMI servers

Sessions Yes No

Transactions Explicit; client must establish Implicit; calls can be
transactions explicitly. excluded from transactions.

Events Yes No

Security 56-bit and 128-bit 40-bit only

Class for invoking BEA Jol t Renot eSer vi ce Jol t Servi ce class

Tuxedo service class

Jolt version Jolt 1.2.1 Jolt 1.2

Using Java Enterprise Tuxedo 1-19

1 Introducing Java Enterprise Tuxedo

Class Library Comparison

TheJolt and JET class libraries share some common components. Thistopic describes
the packages, interfaces, and classes that Jolt and JET use.

Packages

Table 1-4 describes the bea. j ol t . * packagesthat Jolt and JET use. The only
common package is bea. j ol t, of which JET uses the subset described in Table 1-5.

Table 1-4 Packages Used in Jolt and JET

Package Name / Component Used in Jolt? Used in JET?
package bea.jolt Yes Yes
package bea.jolt. beans Yes No
package bea.jolt.beans. awt Yes No
package bea.jolt. beans. sw ng Yes No
package bea.jolt.beans.swi ngll Yes No
package bea.jolt. pool Yes No
package bea.jolt. pool.asp Yes No
package bea.jolt. pool.servlet Yes No
package Yes No

bea.jol t.pool.servl et.webl ogi c

Package bea.jolt Components

Table 1-5 describes the components of the bea. j ol t package that Jolt and JET use.
JET uses a subset of thebea. j ol t package.

1-20 Using Java Enterprise Tuxedo

Comparison Between Jolt and JET

Table 1-5 Components of the bea.jolt Package

Package Name / Component Used In Jolt? Used in JET?
Interfaces

Message Yes No
Classes

Jol t AdnBessi on Yes No
Jol t Definition Yes Yes
Jol t Message Yes No
Jol t Param Yes No
Jol t Renot eSer vi ce Yes Yes
Jol t Repl y Yes No
Jol t Repository Yes No
Jol t Request Yes No
Jol t Servi ce No Yes
Jol t Servi ceBase No Yes
Jol t Sessi on Yes No
Jol t Sessi onAttri butes Yes No
Jol t Transacti on Yes No
Jol t User Event Yes No
LockMoni t or Yes No
SBuf f er Yes Yes
Sessi on Yes No
Exceptions

Appl i cati onExcepti on Yes Yes

Using Java Enterprise Tuxedo

1-21

1

Introducing Java Enterprise Tuxedo

1-22

Table 1-5 Components of the bea.jolt Package (Continued)

Package Name / Component Used In Jolt? Used in JET?
DefinitionException Yes No
Event Excepti on Yes No
Jol t Except i on Yes Yes
MessageExcepti on Yes Yes
Ser vi ceExcepti on Yes Yes
Sessi onExcepti on Yes No
Transact i onExcept i on Yes No

Note: Jolt application devel opers must use the Jol t Renot eSer vi ce class, while
JET application developers should usethe Jol t Ser vi ce class. Differences
exist between the constructors and the cal I method.

For detailed information about these classes, see the BEA Jolt Javadoc and the
bea. j ol t packageinthe WebL ogic Enterprise APl Javadoc in the WebL ogic

Enterprise online documentation.

Using Java Enterprise Tuxedo

CHAPTER

2

Invoking BEA Tuxedo
Services

Thistopic includes the following sections:
m Configuring JET for Java Server Access
m Invoking BEA Tuxedo Services with the JET Class Library

The JET ClassLibrary provides developers with aset of object-oriented Javalanguage
classes for accessing BEA Tuxedo services. Thebea. j ol t package contains the JET
Class Library. For more information about the classes that make up the JET Class
Library, seethe bea. j ol t package in the WebL ogic Enterprise APl Javadoc in the
WebL ogic Enterprise online documentation.

Using Java Enterprise Tuxedo 2-1

2 Invoking BEA Tuxedo Services

Configuring JET for Java Server Access

This topic includes the following sections:

m Default Repository File

m Parameters to Specify in the UBBCONFIG File
m Sample UBBCONFIG File

Before a Java server application can usethe JET Class Library to invoke BEA Tuxedo
services, you must first define one or more Jolt Repository Servers (JREPSVRS) to
manage service definitions stored in the Jolt Repository. The configuration must

include a pointer to the location of the Jolt Repository file. Y ou must configure these
JREPSV RS on the same host on which the BEA Tuxedo services are running. For

more information about the JREPSVR, see “Jolt Repository Server” on page 1-5.

To define JREPSVRSs, you change settings irGl@IPS andSERVERS section of the
UBBCONFI Gfile for the application. TheBBCONFI Gfile is an ASCII version of the
BEA Tuxedo configuration file. For eatiBBCONFI G file, you can configure a single
Jolt Repository. Thereafter, you must createttheconf i g file usingt m oadcf , set
environment variables (includingxDl R andCLASSPATH), and then boot the Tuxedo
application using nmboot , as described in “Starting and Shutting Down Applications”
in the Administration Guide.

Default Repository File

JET includes a sample Jolt Repository fileeposi t ory (in theudat aobj \ j ol t
directory), which includes service definitions for the BEA Tuxedo TOUPPER service,
along with other sample service definitions. Start with theposi t or y file provided

with the installation, even if you are not going to use the service definitions it contains
You can simply delete the packages or services that you do not need.

In addition, the CORBA/Java-to-Simpapp and EJB-to-Tuxedo Simpapp sample
applications include local repository files that contain the service definitions needed tc
run the samples. For more information about these sample applicatioGHRBA,

J2EE, and Tuxedo I nteroperability and Coexistence.

2-2 Using Java Enterprise Tuxedo

Configuring JET for Java Server Access

Warning: Do not modify the Repository filesmanually or you will not be ableto use
the Jolt Repository Editor. Although thej r eposi t or y file can be
modified and read with any text editor, JET does not haveintegrity checks
to ensure that the fileisin the proper format. Any manual changesto the
j reposi t ory file might not be detected until run time. For more
information, see “Using the BEA Jolt Repository Editor” on page 5-1.

Parameters to Specify in the UBBCONFIG File

Table 2-1 describes the parameters inUBBCONFI G file to specify.

Table 2-1 Parameters To Specify in UBBCONFIG File

Option Parameters
GROUPS LM D, GRPNO
SERVERS SRVGRP, SRVI D

For more information about th¢BBCONFI Gfile, see “Creating a Configuration File
in the Administration Guide and theBEA Tuxedo Command Reference.

GROUPS Section

A GROUPS entry is required for the group that includes the Jolt Repository. The group
name parameter is a name selected by the application.&rtheS section, complete
the following steps:

1. Specify the same identifiers given as the value of kn® parameter in the
MACH NES section.

2. Specify the value of theRPNO, between 1 and 30000.

SERVERS Section

The JREPSVR contains services for accessing and editing the Repository. Multiple
JREPSVR instances share Jolt Repository information through a shared file.

Using Java Enterprise Tuxedo 2-3

2 Invoking BEA Tuxedo Services

Note: To achieve the fastest performance, configure the Jolt Repository on alocal
drive of the machine on which the Java server runs. At a minimum, the Jolt
Repository must reside on a volume that is network accessible to the
JREPSVR.

To configure JREPSV R, modify the SERVERS section of the UBBCONFI Gfile by
completing the following steps:

1. Indicate anew server identification (for example, 98) with the SRvI D parameter.

2. Specify the - wflag for one (and only one) JREPSVR to ensure that you can edit
service definitions using the Bulk Loader program or the Jolt Repository Editor.

Without explicitly setting thisflag, the Repository is read-only.

Note: Youmustinstall only onewritable JREPSVR (that is, only one JREPSVR
with the - wflag). Multiple read-only JREPSV Rs can be installed on the
same host.

3. Typethe- P flag to specify the path of the Jolt Repository file.

Note: An error messageis displayed in the BEA Tuxedo ULOG fileif the
argument for the - P flag is not entered.

4. Add thefile pathname of the Repository file (for example, / app/ j reposi t ory).

5. Boot the BEA Tuxedo system by using thet m oadcf (for example,
t m oadcf -y ubbconfig)andtnboot commands.

For information about t M oadcf andt nboot , see Administering a BEA Tuxedo
Application at Run Time.

Sample UBBCONFIG File

Listing 2-1 showsrelevant portions of a sample UBBCONFI Gfile.

Listing 2-1 Sample UBBCONFIG File

* CROUPS

JREPGRP GRPNO=94 LM D=SI TE1
* SERVERS

JREPSVR SRVGRP=JREPCGRP SRVI D=98

2-4 Using Java Enterprise Tuxedo

Configuring JET for Java Server Access

RESTART=Y GRACE=0 CLOPT="-A -- -W-P /app/jrepository"
JREPSVR SRVGRP=JREPGRP SRVI D=97
RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"
JREPSVR SRVGRP=JREPGRP SRVI D=96
RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P
[app/jrepository"

Notes: For the CLOPT parameter, the pathname of the file must match the argument
of the - P option.

For UNIX systems, usetheslash (/) when setting the pathtothej r eposi t ory
file (for example, app/ r eposi t ory). For Windows NT systems, use the
backslash (\) and specify the drive name (for example,
c:\app\repository).

Using Java Enterprise Tuxedo 2-5

2

Invoking BEA Tuxedo Services

Invoking BEA Tuxedo Services with the JET
Class Library

2-6

This topic includes the following sections:

m Importing Packages

m Instantiating a JoltService Object

m Specifying Parameters for the BEA Tuxedo Service
m Calling the BEA Tuxedo Service

m Handling Results

This topic shows how to invoke a BEA Tuxedo service using the JET Class Library.
It uses sampl e Javacode from the EJB-to-Tuxedo Simpapp sample application, aswell
as some code fragments from unshipped applications to illustrate other programming
techniques. The EJB-to-Tuxedo Simpapp sample application invokes a BEA Tuxedo
service, TOUPPER, that converts atext string to all uppercase letters. The
EJB-to-Tuxedo Simpapp sample application is located in

sanpl es\interop\ej b_tux.

This topic walks through the portions of the SimpBean code that use the JET Class
Library. For a complete description of this sample application, see “EJB-to-Tuxedo
Simpapp Sample Application” IBORBA, J2EE, and Tuxedo Interoperability and
Coexistence.

Note: At run time, the BEA Tuxedo service(s) that you want to invoke must be
running on the BEA Tuxedo server. The configuration settings specified in
“Configuring JET for Java Server Access” must be activated for the Tuxedo
application.

Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library

Importing Packages

To use JET, an application must import thebea. j ol t . * package, which containsthe
JET Class Library. Listing 2-2, from the EJB-to-Tuxedo Simpapp sample application,
shows how the SimpBean imports the required packages, including the bea. j ol t
package.

Listing 2-2 Importing the bea.jolt Package

package ej b;

inmport java.rm.*;
import javax.ejb.*;

import bea.jolt.*;

Instantiating a JoltService Object

Thej ol t Nati veCal I method iswhere the SimpBean invokes the TOUPPER BEA
Tuxedo service using the JET Class Library. The key component of the Jolt Class
Library isthe Jol t Ser vi ce class.

To access a BEA Tuxedo service using JET, an application begins by creating an
instance of the Jol t Ser vi ce class. The Jol t Ser vi ce object represents the BEA
Tuxedo servicethat you want to invoke. The constructor requiresthe name of the BEA
Tuxedo service. JET usesthis service name to locate the associated service definition
in the Jolt Repository.

Listing 2-3, from the EJB-to-Tuxedo Simpapp sample application, shows the
declaration of thej ol t Nat i veCal | method and the instantiation of aJol t Ser vi ce
to represent the BEA Tuxedo TOUPPER service.

Listing 2-3 Creating an Instance of the JoltService Class

String joltNativeCall (String svcNane, String data)

Using Java Enterprise Tuxedo 2-7

2 Invoking BEA Tuxedo Services

{

Jol t Servi ce svc;

try {
svc = new Jol tServi ce (svcNane);

Specifying Parameters for the BEA Tuxedo Service

After instantiating aJol t Ser vi ce, an application specifies parameters for the BEA
Tuxedo service. The JoltService class provides addXXxX methods that are used to
specify the parameters. For each parameter, the application specifies the buffer type
(such as STRI NG, CARRAY, VI EW and FM_) and the buffer value. For more information,
see “Using BEA Tuxedo Buffer Types with JET” on page 1-13.

Note: The parameters must be valid for the BEA Tuxedo service. If invalid
parameters are specified, the BEA Tuxedo service will return an error.

Specifying String Parameters
Listing 2-4, from the EJB-to-Tuxedo Simpapp sample application, shows the call to

theaddst ri ng method, passing the buffer typ&I'Rl NG) and the text stringdét a)
supplied by the user.

Listing 2-4 Specifying the Parametersfor the TOUPPER Service

svc. addString("STRING', data);

Specifying Array Parameters

Listing 2-5 is a code fragment that shows how to specify array elements for two arra)
parameters: a String array nanwdr ray and a short array namedrr ay.

2-8 Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library

Listing 2-5 Specifying Array Parameters

_service.addsString("svarray", "String[0]");
_service.addstring("svarray", "String[1]");
_service. addShort ("harray", (short) (600));

J
J
J
j _service. addShort (" harray", (short) (700));

Specifying Parameters of Various Data Types

Listing 2-6 is a code fragment that shows how to specify parameters of various data
types.

Listing 2-6 Specifying Parameters of Various Data Types

_service.addlnt("ctime", 100);

_service.addString("hnanme", "***NoNane***");
_service.addFl oat ("fval", (float) 200.00);
_service.addByte("cval", (byte) 'S);
_service.addlnt("lval", 300);
_service.addString("sval","10 bytes(unexpected string)");
_service.addShort("hval ", (short) 400);

]
J
J
J
J
J
J
j _service. addDoubl e("dval ", 500. 00);

Calling the BEA Tuxedo Service

After the parameters are specified, an application callsthe cal I method, which
submits a service reguest to BEA Tuxedo. The cal I method provides two syntax
options:

m Anapplication usescal | () to havethe BEA Tuxedo service call participate in
the current transaction, if applicable. JET usesthe implicit transaction
mechanisms provided by WebL ogic Enterprise and BEA Tuxedo. If the BEA
Tuxedo service cal is part of atransaction and the transaction is rolled back, any
changes made by the BEA Tuxedo service call are rolled back automatically.

m Anapplication usescal | (nul |') to exclude the BEA Tuxedo service call from
participating in the current transaction. Passnul | only if you are certain that any

Using Java Enterprise Tuxedo 2-9

2 Invoking BEA Tuxedo Services

operations performed by the BEA Tuxedo service will never need to be rolled
back.

Listing 2-7, from the EJB-to-Tuxedo Simpapp sample application, shows the call to
the cal | method, passing nul | because the operation performed by the TOUPPER
serviceis not transactional.

Listing 2-7 Invoking the BEA Tuxedo TOUPPER Service

svc.call (null);

At this point, JET obtains the TOUPPER service definition from the Jolt Repository,
converts the buffer datato BEA Tuxedo buffers, submits the request to BEA Tuxedo,
and awaits areply.

Handling Results

This section describes how to handle the results (exceptions and parameters) returned
from a Tuxedo service call.

Handling Exceptions

The JET Class Library returns JET and BEA Tuxedo errors as exceptions. For a
complete list of JET exceptions, see the WebL ogic Enterprise Javadoc in the
WebL ogic Enterprise online documentation.

Listing 2-8, from the EJB-to-Tuxedo Simpapp sample application, shows the code to
catch aServi ceExcepti on.

Listing 2-8 Handling the Results of the BEA Tuxedo Service Call

} catch (ServiceException e) {
System out.println("JoltService got "+e);
return new String("");

2-10 Using Java Enterprise Tuxedo

Invoking BEA Tuxedo Services with the JET Class Library

Handling Returned Parameters

This section describes how to handle parameters that were returned from the BEA
Tuxedo servicecall. TheJol t Ser vi ce class providesget XXXX methods that are used
to retrieve individua parameters. The application passes the name of the parameter to
retrieve, as well as adefault value in case no value isreturned.

Retrieving String Parameters

Listing 2-9, from the EJB-to-Tuxedo Simpapp sample application, shows how to
retrieve the String parameter, specified in Listing 2-4, that was returned by the
TOUPPER service. Inthecall totheget St ri ngDef method, the application passesthe
parameter name (STRI NG) and the default value (" no_r esponse”) if no value was
returned.

Listing 2-9 Retrieving a String Parameter

return svc. getStringDef ("STRING', "no_response");

Retrieving Arrays

Listing 2-10 is a code fragment that shows how to handle the returned array elements
for the two arrays, svar r ay and har r ay, that were specified in Listing 2-5.

Listing 2-10 Retrieving Returned Arrays

/] retrieve svarray el enents

for (int i =0; i < 2; i++)
{

String s;

if ((s = j_service.getStringltenDef(

"svarray", i, null)) == null)

br eak;
Systemout.println(hdr+"]: svarray["+i +"]="+s);
}
/1 retrieve harray elenents
for (int i =0; i < 2; i++4)

{

short h;

Using Java Enterprise Tuxedo 2-11

2 Invoking BEA Tuxedo Services

if ((h =) _service.getShortltenDef(
"harray", i, (short) 0)) == 0)
br eak;

Systemout.println(hdr+"]: harray["+i+"]="+h);

Retrieving Parameters of Various Data Types

Listing 2-11 is a code fragment that shows how to handle the returned parameters, of
various data types, that were specified in Listing 2-6.

Listing 2-11 Retrieving Parametersof Various Data Types

Systemout.println(hdr+"]: ctinme="+

j _service.getlntDef("ctine", 0)+

nhdr +"]: hname="+

j _service.get StringDef("hnanme", null)+
nhdr+"]: sval ="+

j _service.getStringDef("sval", null)+
nhdr+"]: fval ="+

j _service.get Fl oat Def ("fval", (float) 0.0)+
nhdr+"]: cval ="+

j _service.getByteDef("cval", (byte) '.')+
nhdr+"]: lval ="+
j_service.getIntDef("lIval", 0)+

nhdr+"]: hval ="+

j _service.get ShortDef ("hval", (short) 0)+
nhdr+"]: dval ="+

j _service. get Doubl eDef ("dval ", (doubl €)0.0));

2-12 Using Java Enterprise Tuxedo

CHAPTER

3

Configuring JET for
Client Access

Thistopic includes the following sections:
m Configuring JET
m JET Administrative Reference

The section “Configuring JET” on page 3-2 provides the instructions you need to
configure JET for client access. You need to complete these instruatignyou

need to add or edit BEA Tuxedo service definitions using either of the following client
programs: the Bulk Loader program or the Jolt Repository Editor. The section “JET
Administrative Reference” on page 3-8 provides supplemental reference information.

Note: Throughout this topic, the terohient refers to either the Bulk Loader or the
Jolt Repository Editor.

This topic assumes that you are familiar with BEA Tuxedo and that you have
experience with the operating systems and network environment in which you are
configuring JET. It also assumes that you have already configured the Jolt Repository
Server (JREPSVR) according to the configuration instructions in “Configuring JET for
Java Server Access” on page 2-2.

Using Java Enterprise Tuxedo 31

3 Configuring JET for Client Access

Configuring JET

This topic provides instructions for configuring JET for client access. It includes the
following sections:

m About Configuring JET for Client Access
m Step 1: Configure JSL
m Step 2: Configure Jolt Relay

m Step 3: Registering Tuxedo Services with the Repository

About Configuring JET for Client Access

3-2

Before you can use the Bulk Loader program or Jolt Repository Editor to add or edit
BEA Tuxedo service definitions, you must configure and start the following servers:

m Jolt Listener (JSL)—receives requests from clients and assigns them to an
available Jolt Handler (JSH). A JSH manages network connectivity, executes
service requests, and handles the trandlation of buffer data between BEA Tuxedo
and Jolt buffers.

m Jolt Relay (JRLY)—handles communicatioregross a firewall between clients
and the JSL. You doot need to configure Jolt Relay if no firewall exists
between the client and JSL.

For an introduction to these components, see “Tools for Managing Service
Definitions” on page 1-9.

Note: Before you proceed with this topic, you first need to configure the Jolt
Repository Server (JREPSVR) according to the configuration instructions in
“Configuring JET for Java Server Access” on page 2-2.

For more information about théBBCONFI Gfile, see “Creating a Configuration File”
in the Administration Guide.

Using Java Enterprise Tuxedo

Configuring JET

Step 1: Configure JSL

To configure JET for client access, you must configure the JSL on the host on which

the BEA Tuxedo services that you want to invoke are running. Y ou configure the JSL

in the UBBCONFI Gfile. For an introduction to the JSL, see “Jolt Servers” on page 1-10.
For additional information about configuration parameters, see “Jolt Server
Reference” on page 3-8.

Note: Before you begin, be sure to set thiASSPATH to include the directory in
which thej ol t . j ar file resides (such aslat aobj \j ol t).

To configure the JSL:
1. Open theBBCONFI Gfile with a text editor.

2. In theMACHI NES section, speciffWAXWSCLI ENTS=nunber (Required).
Note: If MAXWSCLI ENTS is not set, JSL does not boot.

3. In theGROUPS section, SeBROUPNANE r equi red paranet ers [opt i onal
par anet er s].

4. Set thesERVERS section (Required).
Lines within this section have the form:
JSL required paraneters [optional paraneters]

whereJSL specifies the filenames(ri ng_val ue) of the JSL to be executed by
t mboot (1), as described in the following step.

5. Set the following required parameters J&t:
SVRGRP=string val ue
SRVI D=nunber
CLOPT="-A...-n.../ host port”

For more information about these parameters, see “Creating a Configuration
File” in the Administration Guide.

6. Set the following optional parameters §@L, if you want:
M N # of JSHs
MAX # of JSHs

Using Java Enterprise Tuxedo 3-3

3 Configuring JET for Client Access

Upon startup, the JSL starts the configured minimum number of JSHs. As more
concurrent requests are received, it might start additional JSHsto handle the
reguest load, up to the configured maximum number of JSHs.

To use these parameters, you first need to understand how doing so affects your
application. For moreinformation about these parameters, see “Creating a
Configuration File” in theAdministration Guide.

Step 2: Configure Jolt Relay

To configure JET for client acceasross a firewall, you must also configure Jolt
Internet Relay, which includes the following components:

m Jolt Relay (JRLY)—routes Jolt messages to the Jolt Relay Adapter. JRLY runs
on a Web server outside the firewall.

m Jolt Relay Adapter (JRAD)—receives client requests from JRLY and forwards
the request to the appropriate JSH. The JSH forwards replies back to the JRAD,
which sends the response back to the JRLY. JRAD runs as a Tuxedo server in
the Tuxedo environment behind the firewall. The JRAD does not need to bein
the same APPDI R as the JSL/JSH servers.

Note: You do not need to configure Jolt Relay if no firewall exists between client
programs and the JSL .

For an introduction to Jolt Internet Relay, see “Jolt Internet Relay” on page 1-11.
For additional information about configuration parameters, see “Jolt Internet Relay
Reference” on page 3-17.

Configuring JRLY on the Web Server

34

To configure JRLY, you first start JRLY on the Web server and then change the
configuration file. Be sure to follow the instructions for your Web server platform—
the instructions for UNIX and Windows NT are slightly different. For a detailed
description of JRLY configuration parameters, see “Jolt Internet Relay Reference” or
page 3-17.

Using Java Enterprise Tuxedo

Configuring JET

Note: Theformat for directory and filenamesis determined by the operating system.

UNIX systems use the forward slash (/). Windows NT systems use the
backslash (\). If any files specified in LOGDI R, ACCESS_LOG, or ERROR_LOG
cannot be opened for writing, JRLY prints an error message on st der r and
exits.

Installing and Starting JRLY (Windows NT Only)

JRLY runsasan NT service in the WindowsNT environment. Toinstall JRLY on the
Web server machine, complete the following steps:

1
2.

Create adirectory for Jolt Relay on the Web server machine.

Copy the contents of the / udat aobj /j ol t/ r el ay directory to the directory you
created on the Web server machine.

Install JRLY asan NT service by typing the following command at the system
prompt:

jrly -install
By default, the JRLY serviceis configured to start automatically.

Update the registry with the full path of a new configuration file using the
jrly -set -f command, asshown in the following example:

jrly -set -f c:\tux71\udataobj\jolt\jrly.config

In this example, the default JRLY Windows NT service (Jolt Relay) is assigned
aconfiguration filecaledjrly. confi g that islocated in the following
directory: c:\ t ux71\ udat aobj \j ol t.

Configure the service as needed using the Services Control Panel.

Starting JRLY (UNIX Only)

Start the JRLY process on UNIX by typing the following command at the system
prompt:

jrly -f config file

where confi g_fi I eisthe path and name of the JRLY configuration file. The default
filenameisjrly. config.

Using Java Enterprise Tuxedo 35

3 Configuring JET for Client Access

Note: If the specified configuration file does not exist or it cannot be opened, the
JRLY writes amessage to st der r, attempts to log the startup failure in the
error log, and then exits.

Configuring JRLY (UNIX and Windows NT)

The configuration file uses a TAG=VAL UE syntax. Blank lines or lines starting with the
character are ignored. Listing 3-1 shows an example of the formal specifications of
the configuration file.

Listing 3-1 Formal Configuration File Specifications

LOGDI R=<LOG DI RECTORY_PATH>

ACCESS LOG=<ACCESS FI LE_NAME i n LOGDI R>

ERROR LOG=<ERROR FI LE NAME in LOGD R>

LI STEN=<I| P: Port conbi nati on where JRLY wi || accept

conma- separ at ed connecti ons>

CONNECT=<I| P: Port1, IP:Port2...1P:PortN: Port(List of IP:Port
conbi nati ons associated with JRADs: can be 1...N)>

Configuring the Socket Timeout (Windows NT only; optional)

The SOCKETTI MEQUT setting is specified inthe JRLY configuration file.

SOCKETTI MEOUT isthetime, in seconds, for which JRLY Windows NT service blocks
for network activity (new connections, data to be read, and closed connections).
SOCKETTI MEQUT also affects the Service Control Manager (SCM). When the SCM
reguests the Windows NT service to stop, the SCM must wait for at least

SOCKETTI MEQUT seconds before quitting.

Table 3-1 describes the formats for the host names and the port numbers.

Table 3-1 Host Name and Port Number Formats

Host Name/Port # Description

/ | Host nane: Por t Host nane isastring; Por t isadecimal number.

| P: Port | P isadotted notation |P address; Por t isadecimal number.

3-6 Using Java Enterprise Tuxedo

Configuring JET

Configuring JRAD in the Tuxedo Environment

To configure JRAD, a Tuxedo server, you first start JRAD in the BEA Tuxedo
environment and then change the configuration file.

Starting the Jolt Relay Adapter (JRAD)
To start the Jolt Relay Adapter, complete the following steps:

1. Typetn oadcf -y ubbFil e, where ubbFi | e isthe name of the UBBCONFI Gfile
associated with this JRAD.

2. Typetnboot to boot the JRAD server.

Configuring the JRAD

While configuring the JRAD, consider the following rules:

A single JRAD process can be connected to only one JRLY.

m A JRAD can be configured to communicate with only one JSL and its associated
JSHs.

Multiple JRADs can be configured to communicate with one JSL.

The CLOPT parameter for BEA Tuxedo services must be included in the
UBBCONFI Gfile.

To configure the JRAD, complete the following steps:

1. Type-1 hexadecinal format.(TheJSL porttowhichthe JRLY connectson
behalf of the client.)

2. Type -c hexadeci mal format.(Theaddress of the corresponding JSL to
which JRAD connects.)

Note: Theformat is 0xO002PPPNNN or, in dot notation, 100.100.10.100.

3. Configure networked components.

Using Java Enterprise Tuxedo 3-7

3 Configuring JET for Client Access

Step 3: Registering Tuxedo Services with the Repository

In order to make the JET services available to Java servers, you must define the BEA
Tuxedo servicesthat use BEA Tuxedo. To define the Tuxedo service:

1. Build the BEA Tuxedo server that contains the service. For more information, see
the BEA Tuxedo Application Development Guide.

2. For each Tuxedo service that you want to invoke, you must register its service
definition in the Jolt Repository.

e To populate the Jolt Repository with service definitions defined in a bulk
loader file, see Chapter 4, “Using the Bulk Loader Program.”

e To add or edit service definitions with the Jolt Repository Editor, see
Chapter 5, “Using the BEA Jolt Repository Editor.”

Note: You cannot use the Bulk Loader or Jolt Repository Editit the
JREPSVR and JSL are properly configured and running. In addition, if a
firewall exists between the Jolt Repository Editor and the JSL, Jolt Internet
Relay must also be properly configured and running.

JET Administrative Reference

This topic includes detailed supplemental reference information for the following JET
components:

m Jolt Server Reference

m Jolt Internet Relay Reference

Jolt Server Reference

This section provides supplemental reference information for the Jolt Listener (JSL)
and Jolt Handler (JSH). For an introduction to these servers, see “Jolt Servers” on pag
1-10. For configuration instructions, see “Step 1: Configure JSL” on page 3-3.

3-8 Using Java Enterprise Tuxedo

JET Administrative Reference

About Jolt Servers

JET provides the following Jolt servers:

m Jolt Server Listener (JSL)—isconfigured to support clients on an | P/port
combination.The JSL works with one or more Jolt Server Handlers (JSHSs) to
provide client connectivity to the backend of the WebL ogic Enterprise system.
The JSL runsasaBEA Tuxedo server.

m Jolt Server Handler (JSH)—is a program that runs on aBEA Tuxedo server
machine to provide a network connection point for remote clients. The JSH
works with the JSL to provide client connectivity residing on the backend of the
WebL ogic Enterprise system. One ore more JSHs can be available to the JSL (up
to 32767). For additional information, see the description of the - M
command-line option in “JSL Command-Line Options” on page 3-11.

System Administrator Responsibilities
The system administrator’s responsibilities for the Jolt servers include:
m Determining the JSL network address.

m Determining the number of JET clients to be serviced. The number of clients to
be serviced is limited byAXWSCLI ENTS setting in theJBBCONFI Gfile.

m Determining the minimum and maximum number of JSHs.

Starting the JSL

After you have configured the JSL in thBBCONFI Gfile, you need to complete the
following steps on the Tuxedo server to start all administrative and server processes in
the UBBCONFI Gfile:

1. Typetni oadcf.

This command parses the configuration file and loads the binary version of the
configuration file.

2. Typet nboot -y.
This command activates the application specified in the configuration file.
If you do not enter any options, a prompt asks you if you really want to

overwrite YOUurTUXCONFI Gfile.

Using Java Enterprise Tuxedo 39

3 Configuring JET for Client Access

See Administering a BEA Tuxedo Application at Run Time or the BEA Tuxedo
Command Reference for information about t m oadcf andt mboot .

Shutting Down the JSL
All shutdown requests to the Jolt servers areinitiated by the BEA Tuxedo command:
t nshut down -y
During shutdown:
m No new client connections are accepted.

m All current client connections are terminated. BEA Tuxedo rolls back open
transactions. Each client receives an error message indicating that the service is
unavailable.

Restarting the JSL

BEA Tuxedo monitorsthe JSL and restarts it in the event of afailure. When BEA
Tuxedo restarts the listener process, the following events occur:

m Clients attempting alistener connection must try to reconnect. Clients attempting
ahandler connection receive atimeout or atime delay.

m Clients currently connected to ahandler are disconnected (JSH exits when its
corresponding JSL exits normally).

Configuring the JSL

The Jolt Server Listener (JSL) isa BEA Tuxedo server that isresponsible for
distributing connection requests from JET to an available Jolt Server Handler (JSH).
BEA Tuxedo must be running on the host machine where the JSL and the JREPSVR
arelocated.

JSL Command-Line Options

The server may need to obtain information from the command-line. The CLOPT
parameter allowsyou to specify command-line options that can change some defaults
in the server. Table 3-2 describes the JSL command-line options.

3-10 Using Java Enterprise Tuxedo

JET Administrative Reference

Table 3-2 JSL Command-Line Options

Option

Description

[-c conpression_threshol d]

[-d device _nane]

[-H ext er nal net addr]

[-1

init-timeout]

Enables application data sent between a JET client and a Jolt server
(JSH) to be compressed during transmission over the network.

conpressi on_t hreshol disanumber that you specify between 0
and 2,147,483,647 bytes. Any messagesthat arelarger than the specified
compression threshold are compressed before transmission.

The default is no compression; that is, if no compression threshold is
specified, messages are not compressed on client or server.

The previous - ¢ connect i on- node option has been replaced with
the-j connecti on- node option.

The device for platforms using the Transport Layer Interface. Thereis
no default. Required. (Optional for sockets)

ext ernal netaddr isthe network address JET that clients use to
connect to the application. The JSL process usesthisaddresstolisten for
clients attempting to connect at this address. If the addressis
0x0002MvvMiddddddd and JSH network addressis

0x00021111f fffffff, theknown network addressis
0x00021111dddd dddd. If the address startswith / / net wor k
addr ess, thetypeis|P based and the TCP/IP port number of JSH
network addressis copied into the address to form the combined
network address.

The |P address must be specified in the following format:
-H //external ip address: MMM
(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

The time (in seconds) that a JET client is allowed to complete
initiaization through the JSH before it is timed out by the JSL. Default
is 60 seconds. (Optional)

Using Java Enterprise Tuxedo ~ 3-11

3 Configuring JET for Client Access

Table 3-2 JSL Command-Line Options (Continued)

Option Description

[-] connection_npde] The following connection modes from clients are alowed:

m RETAINED—the network connection is retained for the full
duration of a session.

m RECONNECT—the client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

m ANY—the server allows a client to request either a RETAINED or
RECONNECT type of connection for a session.

The default is ANY. That is, if no option is specified, the server allows
a client to request either a RETAINED or RECONNECT type of
connection. (Optional)

Note: This option has been changed in this release from
[connection_node] to-j [connection_node].

[-m m nh] The minimum number of JSHs that are available in conjunction with the
JSL at one time. The range of this parameter is from 0 through 255.
Default is 0. (Optional)

[- M nmaxh] The maximum number of JSHs that are available in conjunction with the
JSL at one time. If this option is not specified, the parameter defaults to
MAXWSCLI ENTS divided by the rounded-upx multiplexing factor
(MPX). If specified, the Moption takes a value from 1 to 32767.
(Optional)

3-12 Using Java Enterprise Tuxedo

JET Administrative Reference

Table 3-2 JSL Command-Line Options (Continued)

Option

Description

[-n netaddr]

[-T dient-timeout]

[-w JSH

Network address used by the Jolt listener with BEA Tuxedo 6.4 and 6.5,
and WebL ogic Enterprise 4.2, 5.0, and 5.1.

TCP/IP addresses may be specified in the following formats:

"Il host. name: port_nunber"

"I # ## #: port_nunmber”

In the first format, the domain finds an address for host nane by using
the local name resolution facilities (usually DNS). host nane must be
the local machine, and the local name resolution facilities must
unambiguously resolve hosthame to the address of the local machine.

This command-line option indicates the Jolt Server Handler. Default is
JSH. (Optional)

In the second example, the#. #. #. # isin dotted decimal format. In
dotted decimal format, each # should be a number from 0 to 255. This
dotted decimal number representsthe | P address of thelocal machine. In
both of the above formats, por t _nunber isthe TCP port number at
whichthe domain processlistensfor incoming requests. por t _nunber
can either be a number between 0 and 65535 or a name.

If port _nunber isaname, then it must be found in the network

services database on your local machine. The address can dso be

specified in hexadecimal format when preceded by the characters “0x”.
Each character after the initial “Ox” is a number from 0 to 9 or a letter
from A to F (case insensitive). The hexadecimal format is useful for
arbitrary binary network addresses such as IPX/SPX or TCP/IP.

There is no default. (Required)

The time (in minutes) allowed for a client to stay idle. If a client does not
make any requests during this time, the JSH disconnects the client and
the session is terminated. If an argument is not supplied, the session does
not timeout.

When the j ANY or-j RECONNECT option is used, always specify

- T with an idle timeout value. KT is not specified and the connection
is suspended, JSH does not automatically terminate the session. The
session never terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout. (Optional)

This command-line option indicates the Jolt Server Handler. Default is
JSH. (Optional)

Using Java Enterprise Tuxedo 3-13

3 Configuring JET for Client Access

Table 3-2 JSL Command-Line Options (Continued)

Option Description

[-x npx-factor] The number of clients that one JSH can service. Use this parameter to
control the degree of multiplexing within each JSH process. If specified,
this parameter takes a value from 1 to 32767 for UNIX and
Windows NT. Default valueis 10. (Optiona)

[-Z 0]40]128] When a network link between a JET client and the JSH is being
established, this option allows encryption up to the specified level.The
initial 0 means no DH nodes, no RC4. The numbers 56 and 128 specify
the length (in bits) of the encryption key. The DH key exchangeis
needed to generate keys. Session keys are not transmitted over the
network. The default valueis 0.

Sample UBBCONFIG Settings for JSL

Listing 3-2 showsrelevant portions of the UBBCONFI G file configured for JSL.

Listing 3-2 Sections of UBBCONFIG File Related to JSL Configuration

* MACHI NES

MACHL LM D=SI TE1

MAXWSCLI ENTS=40

* GROUPS

JSLGRP GRPNO=95 LM D=SI TE1
* SERVERS

JSL SRVGRP=JSLCGRP SRVID=30 CLOPT="-- -n 0x0002PPPPNNNNNNNN -d
/devi/tcp -m2 -M4 -x10”

Theparameters shown in Table 3-3 arethe only parametersthat must be designated for
the Jolt server groups and Jolt servers. Y ou are not required to specify any other
parameters.

Table 3-3 UBBCONFIG File Sections

Section Par ametersto Specify

MACHINES MAXWSCLIENTS

3-14 Using Java Enterprise Tuxedo

JET Administrative Reference

Table 3-3 UBBCONFIG File Sections (Continued)

Section Parameter sto Specify
GROUPS GRPNO, LM D
SERVERS SRVGRP, SRVI D, CLOPT

For more information about these parameters, see “Creating a Configuration File” in
the Administration Guide.

MACHINES Section

The MACH NES section must contain an entry for each physical processor used by the
application. Entries have the form:

ADDRESS or NANE required paraneters [optional paraneters]

whereADDRESS is the physical name of the processor, for example, the value produced
by the UNIX systenunane -n command.

LM D=string val ue

This parameter specifies that thwer i ng_val ue is to be used in other sections as the
symbolic name foADDRESS. This name cannot contain a comma, and must be 30
characters or less. This parameter is required. There must.iye @fine for every
machine used in a configuration.

MAXWSCLI ENTS=nunber

The MAXWSCLI ENTS parameter is required in thMaCH NES section of the

configuration file. It specifies the number of accessor entries on this processor to be
reserved for Jolt and Workstation clients only. The value of this parameter must be
between 0 and 32768, inclusive.

The Jolt server and Workstation UgeX\WSCLI ENTS in the same way. For example, if
200 slots are configured fMAXWSCLI ENTS, this number configures BEA Tuxedo for
the total number of remote clients used by Jolt and Workstation.

Note: Be sure to specifyBXWSCLI ENTS in the configuration file. If it is not
specified, the default is 0.

Note: If MAXWSCLI ENTS is not set, the JSL does not boot.

Using Java Enterprise Tuxedo 3-15

3 Configuring JET for Client Access

GROUPS Section

A GROUPS entry is required for the group that includes the Jolt Server Listener (JSL).
Make the GROUPS entry as follows:

1. Thegroup nameisselected by the application, for example: JSLGRP and JREPGRP.

2. Specify the same identifiers given as the value of the LM D parameter in the
MACHI NES section.

3. Specify the value of the GRPNO between 1 and 30000 in the * GROUPS section.

Note: Make sure that Resource Managers are not assigned as a default value for all
groups in the GROUPS section of your UBBCONFI Gfile. Making Resource
Managers the default value assigns a Resource Manager to the JSL and you
receive an error during t nboot . In the SERVERS section, default values for
RESTART, MAXGEN, and so on, are acceptabl e defaults for the JSL.

Lines within the GROUPS section have the form:
GROUPNANVE required paraneters [optional paraneters]

where GROUPNANE specifiesthelogical name (st ri ng_val ue) of thegroup. Thegroup
name must be unique within all group names in the GROUPS section and LM D values
in the MACHI NES section. The group name cannot contain an asterisk(*), comma, or
colon, and must be 30 characters or less.

SERVERS Section

Clients connect to Jolt Repository through the Jolt Server Listener (JSL). Servicesare
accessed through the Jolt Server Handler (JSH). The JSL supports multiple clients and
actsas asingle point of contact for all the clients to connect to the application at the
network addressthat is specified on the JSL command-line. The JSL schedules work
for handler processes. A handler process acts as a substitute for clients on remote
workstations within the administrative domain of the application. The handler uses a
multiplexing scheme to support multiple clients on one port concurrently.

The network address specified for the JSL designates a TCP/IP address for both the
JSL and any JSH processes associated with that JSL. The port number identified by the
network address specifies the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses consecutive port numbers at the
same TCP/IP address. For example, if theinitial JSL port number is 8000 and thereare
amaximum of three JSH processes, the JSH processes use ports 8001, 8002, and 8003.

3-16 Using Java Enterprise Tuxedo

JET Administrative Reference

Note: Besureto provide sufficient space between JSL port numbers (for example,
use 8000, 8020, 8040, etc. for JSL port numbers). Misconfiguration of
subsequent JSL port numbers results in a port number collision.

Security and Encryption

Authentication and key exchange data are transmitted between JET clients and the
JSL/JSH using the DES key exchange and a 128-bit key, with 40 bitsencrypted and 88
bits exposed.

Jolt Internet Relay Reference

This section provides supplemental reference information for the Jolt Relay (JRLY)

and its associated Jolt Relay Adapter (JRAD). For an introduction to these

components, see “Jolt Internet Relay” on page 1-11. For configuration instructions, see
“Step 2: Configure Jolt Relay” on page 3-4.

About Jolt Relay and the Jolt Relay Adapter

The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter
(JRAD) is typically referred to as the Internet Relay. Jolt Relay routes messages from
a JET client to a JSL or JSH. This eliminates the need for the JSH and BEA Tuxedo to
run on the same machine as the Web server (which is generally considered insecure).
The Jolt Relay consists of the following two components:

m Jolt Relay (JRLY)—is the Jolt Relay frontend. It is not a BEA Tuxedo client or
server and is not dependent on the BEA Tuxedo version. It is a standalone
software component. It requires only minimal configuration to allow it to work
with JET clients.

m Jolt Relay Adapter (JRAD)—is the Jolt Relay backend. It is a BEA Tuxedo
system server, but does not include any BEA Tuxedo services. It requires
command-line arguments to allow it to work with the JSL and the BEA Tuxedo
system.

Note: The Jolt Relay is transparent to Java clients and servers. A Jolt server can

simultaneously connect to Intranet clients directly, or through the Jolt Relay to
Internet clients.

Using Java Enterprise Tuxedo 3-17

3 Configuring JET for Client Access

Jolt Relay

This section describes configuration optionsfor JRLY .

Jolt Relay Failover

There are two points of failovers associated with JRLY :
m Jolt client to JRLY connection failover

m JRLY to JRAD adapter connection failover

Jolt Client to JRLY Connection Failover

If one server address does not result in asuccessful session, the failover function
allowsthe Jolt Client API to connect to the next free (unconnected) JRLY specifiedin
the argument list of the API. To enablethisfailover in the WindowsNT environment,
multiple Windows NT JRLY services can be executed. In anon-NT environment,
multiple JRLY processes are executed. Each JRLY (service or process) has its own
configurationfile. Thistype of failover ishandled by client API featuresthat allow you
to specify alist of Jolt server addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file hasalist of JRAD addresses. When aJRAD is
unavailable, JRLY tries to connect to the next free (unconnected) JRAD, in a
round-robin fashion. Two JRLY scannot connect to the same JRAD. However, you can
make the connection efficient by giving different JRAD address orders—if you make
one extraJRAD available on standby, thefirst JRLY that losesits JRAD connects to
the extra JRAD. Thistype of failover is handled by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial
connection fails. When a JET client triesto connect to JRLY, the JRLY again triesto
connect to the JRAD.

To accommodate the failover functionality, you need to boot multiple JRADs by
configuring them in the UBBCONFI Gfile.

3-18 Using Java Enterprise Tuxedo

JET Administrative Reference

Jolt Relay Process

TheJRLY (frontend relay) process can be started before or after the JRAD is started. If the
JRAD isnot availablewhenthe JRLY isstarted, the JRLY attemptsto connect to the JRAD
when it receives aclient request. If JRLY is still unable to connect to the JRAD, the client
is denied access and awarning is written to the JRLY error log file.

Starting the JRLY on UNIX

Start the JRLY process by typing the command name at a system prompt:
jrly -f config file

where confi g_fil e isthe path and name of the JRLY configuration file. The default
filenameisj rly. confi g. If the configuration file does not exist or cannot be opened, the
JRLY printsan error message. For information about JRLY error messages, seethe System
Messages in the WebL ogic Enterprise online documentation.

If the JRLY isunableto start, it writesamessageto st der r and attemptsto log the startup
failurein the error log (specified in the JRLY configuration file), and then exits.
JRLY Command-Line Options for Windows NT

This section describes command-line options that are available for the Windows NT
version of JRLY. exe. Note the following:

m JRLY asaWindows NT serviceisavailable only for Windows NT.

m When the display suffix is optional (when [di sp! ay_suf fix] isshown), al
operations are performed on the default JRLY Windows NT service instance.

m For manually installed, additional JRLY services, a suffix (any string) is required.
Also, you can install the default service manually by omitting the optional string
suffix.

m Eachinstance of JRLY Windows NT service uses the same binary executablefile.
m A new processis started for each instance of JRLY Windows NT service.

m The syntax for these optionsis: jrly -command.

m Text specified within brackets ([]) isoptional.

m All commandsin Table 3-4, except for - st art and - st op, require that you have

write access to the Windows NT Registry.

Using Java Enterprise Tuxedo 3-19

3 Configuring JET for Client Access

m The -start and- st op commands require that you have Windows NT service
control access. These requirements are based on Windows NT user restrictions.

Table 3-4 describesthe JRLY command-line options.

Table 3-4 JRLY Command-Line Options for WindowsNT

Option

Description

jrly -install
[di spl ay_suffix]

Installsj r 1y asaWindows NT service.

Example 1:

jrly -install

In thisexample, the default JRLY isinstalled asa Windows NT service
and is displayed in the Service Control Manager (SCM) as Jolt Relay.
Example 2:

jrly -install MASTER

In this case, an instance of JRLY isinstaled asaWindows NT service
and is displayed in the SCM as Jolt Relay M ASTER. The suffix,
MASTER, does not have any significance; it is only used to uniquely
identify various instances of JRLY's.

At this point, thisinstance of JRLY is not ready to start. It must be
assigned the configuration file (seethe set command discussion) that
specifies the listening TCP/IP port, JSH connection TCP/IP port, log
files, and SOCKETTI MEQUT). This file should not be shared between
various instances of JRLY .

jrly -renove
[di splay_suffix]

| -all

Removes one or all instances of JRLY from aWindows NT service.

If [di spl ay_suffix] isspecified, thiscommand removes the
specified JRLY service.

If [di spl ay_suffix] isnot specified, this command removes the
default JRLY from being a Windows NT service.

If the-al | optionisspecified, al JRLY Windows NT services are
removed. Related Windows NT registry entries are removed.

3-20 Using Java Enterprise Tuxedo

JET Administrative Reference

Table 3-4 JRLY Command-Line Optionsfor Windows NT (Continued)

Option

Description

jrly -set
[-d display suffix] -f
config file

Updates the registry with the full path of a new configuration file.

Example 1:

jrly -set -f c:\tux7l\udataobj\jolt\jrly.config
In this example, the default JRLY Windows NT service (Jolt Relay) is
assigned a configuration filecadledj r 1 y. confi g that islocated in
c:\tux71\ udat aobj\j ol t directory.

Example 2:

jrly -set -d MASTER -f

c:\tux71\udat aobj\jol t\ master. con

Here, the JRLY Windows NT service instance, called Jolt

Relay MASTER isassigned a configuration file called

jrly _master.conthatislocatedinc:\t ux71\ udat aobj\jol t
directory.

jrly -manual [display_suffix]

Sets the start/stop to manud.

This command sets the specified JRLY instance to be manually
controlled, using either the command-line options or the SCM.

jrly -auto [display suffiX]

Sets the start/stop to automatic.

This command sets all the operations for the specified Windows NT
serviceto be automatically started when the OS boots and stopped when
the OS shuts down.

jrly -start [display_suffix]

Starts the specified JRLY .

jrly -stop [display_suffiX]

Stops the specified JRLY .

jrly -version

Prints the current version of JRLY binary.

jrly -help

Prints command-line options with brief descriptions.

JRLY Command-Line Option for UNIX

Table 3-5 describes the one JRLY command-line option for UNIX.

Using Java Enterprise Tuxedo 3-21

3 Configuring JET for Client Access

Table 3-5 JRLY Command-Line Option for UNIX

Option

Description

jrly -f config file Startsthe JRLY process.

Thisoption startsthe JRLY processwith the specified configurationfile
(path and name). If the configuration file does not exist or cannot be
opened, the JRLY prints an error message. If the JRLY cannot start, it
writes amessage to st der r, attempts to log the startup failure in the
error log, then exits.

JRLY Configuration File

3-22

Theformat of the configuration fileis a TAG=VALUE format. Blank lines or lines
starting with the # character areignored. Listing 3-3 contains an example of theformal
specifications of the configuration file.

Listing 3-3 Specification of Configuration File

LOGDI R=<LOG DI RECTORY_PATH>

ACCESS LOG=<ACCESS FI LE_NAME i n LOGDI R>

ERROR_LOG=<ERROR _FI LE_NAME in LOGDI R>

LI STEN=<I| P: Port conbi nati on where JRLY wi || accept connections>
CONNECT=<I P: Port conbi nati on associ ated with JRAD>

SOCKETTI MEQUT=<Seconds for socket accept()function>

SOCKETTI MEQUT isthe duration (in seconds) of which the relay Windows NT service
blocks the establishment of new socket connectionsto allow network activity (new
connections, data to be read, closed connections). It isvalid only on Windows NT
machines. SOCKETTI MEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least SOCKETTI MEQUT seconds before doing so.

Listing 3-4 shows an example of the JRLY configuration file. The CONNECT line
specifiesthe IP address and port number of JRAD machine.

Using Java Enterprise Tuxedo

JET Administrative Reference

Listing 3-4 Example of JRLY Configuration File

LOGDI R=/ usr/ | og/rel ay

ACCESS LOG=access_| og

ERROR _LOG=errorl og

jrly will listen on port 4444

LI STEN=200. 100. 10. 100: 4444

CONNECT=200. 100. 20. 200: 4444, 200. 100. 20. 200: 5555, . ..

SOCKETTI MEQUT=30 /] See text under listing

The format for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows NT systems use the backslash (V). If any
filespecifiedin LOGDI R, ACCESS_LOGor ERROR_LOGcannot be opened for writing, the
JRLY prints an error message on st der r and exits.

Table 3-6 describes the formats for host names and port numbers.

Table 3-6 Host Name and Port Number Formats

Host Name/Port # Description

Host nane: Port Host nanmeisastring, Port isadecimal number.

/| Host nane: Port Host nanmeisastring, Port isadecimal number.

| P: Port | Pis adotted notation |P address, Port isadecima number.

Jolt Relay Adapter

The Jolt Relay Adapter (backend relay) isaBEA Tuxedo system server. The Jolt Relay
Adapter (JRAD) server may or may not be located on the same BEA Tuxedo host
machine in single host mode (SHM) and server group to which the JSL server is
connected.

The JRAD can be started independently of its associated JRLY . JRAD tracksits
startup and shutdown activity in the BEA Tuxedo log file.

Using Java Enterprise Tuxedo 3-23

3 Configuring JET for Client Access

JRAD Configuration

A single JRAD process can only be connected to asingle JRLY . A JRAD can be
configured to communicate with only one JSL and its associated JSHs. However,
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for the BEA Tuxedo servers must be included in the UBBCONFI Gfile.
Listing 3-5 shows a sample of thefile.

Table 3-7 describes additional information about the CLOPT parameters.

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l hexadeci mal fornmat Port to listen for the JRLY to connect on behalf of the
client.

-c hexadecimal format The address of the corresponding JSL to which JRAD
connects.

-H hexadeci mal fornmat Used when there is a network address translation
performed for JRLY listen address.

Note: Theformat is 0x0002PPPPNNN.

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL
port 8000 on the sane host

JRAD SRVCRP=JSLGRP SRVI D=60
CLOPT="-A -- -| 0x000207D0C864640A —c 0x00021f40C864640A"

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components work
together. Prior to configuration, review the criteriain Table 3-8 and record the
information to minimize the possibility of misconfiguration.

3-24 Using Java Enterprise Tuxedo

JET Administrative Reference

Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Locat i on -l : Location where -n: Location of JSL.
where the clients the [|istener Must match - ¢ parameter of
connect connects to the JRLY JRAD

CONNECT: Locat i on -c: Location of JSL.

of your JRAD Must Must match - n parameter of

match the- | parameter of JSL

JRAD

Using Java Enterprise Tuxedo 3-25

3 Configuring JET for Client Access

3-26 Using Java Enterprise Tuxedo

CHAPTER

A4

Using the Bulk Loader
Program

Thistopic includes the following sections:
m Defining Bulk Loader Data Files

m Running the Bulk L oader

m Troubleshooting

Asa systems administrator, you may have an existing BEA Tuxedo application with
multiple BEA Tuxedo services. Manually creating these definitionsin the Jolt
Repository database may take along time to complete. The Jolt Bulk Loader isa
command utility that allowsyou to load multiple, previously defined BEA Tuxedo
services to the Jolt Repository database in asingle step. Using thej bl d program, the
Bulk Loader utility readsthe BEA Tuxedo service definitions from atext file (that you
create according to a specific format) and loads them into the Jolt Repository. The
service definitions are loaded to the Repository database in one bulk load. After the
services populate the Jolt Repository, you can create, edit, and group servicesusing the
Jolt Repository Editor.

Note: Inorder to use the Bulk Loader to add service definitions, you must first
configure the Jolt Servers (JSL and JSHs). If you want to use this tool across
afirewall, you must also configure Jolt Internet Relay. For configuration
instructions, see Chapter 3, “Configuring JET for Client Access.”

Using Java Enterprise Tuxedo 4-1

4 Using the Bulk Loader Program

Defining Bulk Loader Data Files

This topic includes the following sections:

m About Bulk Loader Data Files

m Guidelines for Using Keywords

m Keyword Order in the Bulk Loader Data File
m Using Service-level Keywords and Values

m Sample Bulk Loader DataFile

About Bulk Loader Data Files

4-2

The bulk loader data file is atext file that defines BEA Tuxedo services and their
associated parameters. Y ou create thistext file (using atext editor) in accordance with
the syntax rules described later in this topic.

The Bulk Loader |oads the services defined in the bulk loader data file into the Jolt
Repository using the package name BULKPKG by default. The - p command overrides
the default and you can give the package any name you choose. If another load is
performed from abulk loader data file with the same - p option, all the servicesin the
original package are deleted and a new package is created with the services from the
new bulk loader datafile.

If aservice exists in a package other than the package you name that usesthe - p

option, the Bulk L oader reports the conflict and does not load a service from the bulk

loader Datafileinto the Repository. Usethe Jolt Repository Editor to remove duplicate
services and load the bulk loader Data file again. See “Using the BEA Jolt Repositon
Editor” on page 5-1 for additional information.

Each service definition consists of service properties and parameters that have a se
number of parameter properties. Each property is represented by a keyword and a
value. Keywords are divided into two levels:

m Service-level

m Parameter-level

Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files

Guidelines for Using Keywords

Thej bl d program reads the service definitions from atext file. To use the keywords,
observe the guidelinesin Table 4-1.

Table4-1 Guideinesfor Using Keywords

Guiddine

Example

Each keyword must befollowed
by an equal sign (=) and the
value

Correct: t ype=string
Incorrect: t ype

Only onekeyword isallowed on
each line

Correct: type=string
Incorrect: t ype=string access=out

Any lines not having an equal
sign (=) areignored

Correct: t ype=string
Incorrect: t ype string

Certain keywords only accept a
well-defined set of values

The keyword access accepts only these values:
i n,out,inout,noaccess

Theinput file can contain
multiple service definitions

servi ce=l NQU RY
<servi ce keywords and
servi ce=DEPCSI T
<servi ce keywords and
servi ce=W THDRAWAL
<servi ce keywords and
ser vi ce=TRANSFER
<servi ce keywords and

val ues>

val ues>

val ues>

val ues>

Each service definition consists
of multiple keywords and values

servi ce=DEPCSI T
export=true

i nbuf =VI EWB2

out buf =VI EW82

i nvi ew=l NVI EW
out vi ew=0OUTVI EW

Using Java Enterprise Tuxedo 4-3

4 Using the Bulk Loader Program

Keyword Order in the Bulk Loader Data File

4-4

Keyword order must be maintained within the data filesto ensure an error-freetransfer
during the bulk load.

Thefirst keyword definition in the bulk |oader data text file must be the initial

ser vi ce=<NAME> keyword definition (shown in Listing 4-1). Following the

ser vi ce=<NAME> keyword, al remaining service keywords that apply to the named
service must be specified before the first par am=<NAME> definition. These remaining
service keywords can be in any order.

All parameters associated with the service must be specified. Following each

par ame<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can bein any order. When al the parameters associated with the
first service are defined, specify anew ser vi ce=<NAME> keyword definition.

Listing4-1 Keyword Hierarchical Order in a Data File

ser vi ce=<NAME>

<servi ce keyword>=<val ue>
<servi ce keyword>=<val ue>
<servi ce keyword>=<val ue>
par am=<NANME>

<par anet er keywor d>=<val ue>
<par anet er keywor d>=<val ue>
par am=<NANME>

<par anet er keywor d>=<val ue>
<par anet er keywor d>=<val ue>

Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files

Using Service-level Keywords and Values

A service definition must begin with the ser vi ce=<NAME> keyword. Services using
CARRAY or STRING buffer types should only have one parameter inthe service. The
recommended parameter name for a service that uses a CARRAY buffer typeis CARRAY

with car r ay asthe datatype. For a servicethat uses a STRI NG buffer type, the

recommended parameter name is STRI NGwith st ri ng asthe datatype.

Table 4-2 describesthe guidelinesfor use of the service-level keywordsand acceptable

values for each.

Table 4-2 Service-level Keywordsand Values

Keyword

Value

service

Any BEA Tuxedo service name.

export

Either t rue or f al se (default isf al se).

i nbuf / out buf

Select one of these buffer types:

FML

FM_32

VI EW

VI EVB2

STRI NG

CARRAY

X_OCTET

X_COVMON

X_C_TYPE

For more information, see “Using BEA Tuxedo
Buffer Types with JET” on page 1-13.

i nvi ew

Any view name for input parameters.

(This keyword is optionadnly if one of the
following buffer types is used/l EW VI EVB2,
X_COMMON, X_C TYPE.)

out vi ew

Any view name for output parameters. (Optional)

Using Java Enterprise Tuxedo

4 Using the Bulk Loader Program

Using Parameter-level Keywords and Values

4-6

A parameter begins with the par am=<NAME> keyword followed by a number of
parameter keywords. It ends when another par amor ser vi ce keyword, or end-of-file
is encountered. The parameters can be in any order after the par am=<NAME> keyword.

Table 4-3 contains the guidelines for use of the parameter-level keywords and
acceptable values for each.

Table 4-3 Parameter-level Keywordsand Values

Keyword Values

par am Any parameter name.

type byt e
short
i nt eger
fl oat
doubl e
string
carray

access in
out
i nout
noaccess

count Maximum number of occurrences (default is 1). The
valuefor unlimited occurrencesis0. Used only by the
Jolt Repository Editor to format test screens.

Using Java Enterprise Tuxedo

Defining Bulk Loader Data Files

Sample Bulk Loader Data File

Listing 4-2 contains asample datafilein the correct format using the UNIX command
cat servicefil e. Thissampleloads TRANSFER, LOG N, and PAYROLL service
definitions to the BULKPKG.

Listing4-2 SampleBulk L oader Data File

ser vi ce=TRANSFER
export=true

i nbuf =FML

out buf =FM_

par amrACCOUNT _I D
type=i nt eger
access=in
count =2

par am=SAMOUNT
type=string
access=in

par amFSBALANCE
type=string
access=out
count =2

par anESTATLI N
type=string
access=out

servi ce=LOG N
i nbuf =VI EW

i nvi ew=sLOG NS
out vi ew=LOA NR
export=true
par amFuser
type=string
access=in

par anrpasswd
type=string
access=in

par anrt oken
type=i nt eger
access=out

servi ce=PAYROLL

i nbuf =FML
out buf =FML

Using Java Enterprise Tuxedo 4-7

4 Using the Bulk Loader Program

par amrEMPLOYEE_NUM
type=i nt eger
access=in

par anrSALARY
type=f | oat

access=i nout

par an=H RE_DATE
type=string
access=i nout

Running the Bulk Loader

4-8

Thej bl d program is a Java application. Before running the j bl d command, set the
CLASSPATH environment variable (or itsequival ent) to point to the directory wherethe
Jolt classdirectory (thatis,jolt.jar and j ol tadnin.j ar)islocated. If the
CLASSPATH Vvariableisnot set, the Java Virtual Machine (JVM) cannot locate any JET
classes.

Note: If thens. jar fileisalready specified in the CLASSPATH, then the directory
containingthejol t.jar andj ol tadni n.j ar files must be specified ahead
of the directory containing the n8. j ar file.

The Bulk Loader utility getsitsinput from command-line arguments and from the
input file. For security reasons, j bl d does not use command-line argumentsto specify
user authentication information (user password or application password). Depending
on the server’s security levélpl d automatically prompts the user for passwords.

To run the Bulk Loader:

1. Type the following at the prompt (with the correct options):

java bea.jolt.admn.jbld [-n][-p package][-u usrnane][-r
usrrol e] //host:port filenane

2. Use the command-line options described in Table 4-4.

Using Java Enterprise Tuxedo

Troubleshooting

Table 4-4 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory, if required by security)

-r usrrole Specifies the user role (default isadmi n).
(Mandatory, if required by security)

-n Validatesinput file against the current Repository; no
updates are made to the Repository. (Optional)

-p package Repository package name (default is BULKPKG).

// host : port

Specifiesthe JRLY or JSL address (host name and |P
port number). (Mandatory)

fil enane

Specifies the file containing the service definitions.
(Mandatory)

Troubleshooting

See Table4-5if yo

u encounter problems using the Bulk Loader utility.

Table 4-5 Bulk Loader Troubleshooting Table

If... Then. ..
The datafileis not found Check to ensure that the path is correct
The keyword isinvalid Check to ensure that the keyword is valid for the

package, service, or parameter

The value of the keyword is null Type avalue for the keyword

Thevaueisinvalid

Check to ensure that the value of a parameter iswithin
the allocated range for that parameter

Using Java Enterprise Tuxedo 4-9

4 Using the Bulk Loader Program

Table 4-5 Bulk Loader Troubleshooting Table (Continued)

If... Then...
The datatypeisinvalid Check to ensure that the parameter isusing avalid data
type

4-10 Using Java Enterprise Tuxedo

CHAPTER

5

Using the BEA Jolt
Repository Editor

Use the BEA Jolt Repository Editor to add, modify, test, export, and delete BEA
Tuxedo service definitionsfrom the Jolt Repository based on theinformation available
from the BEA Tuxedo configuration file. The Jolt Repository Editor accepts BEA
Tuxedo service definitions, including the names of the packages, services, and
parameters.

Note: Before you use the Jolt Repository Editor, you must first configure the JET

system according to the instructions in Chapter 3, “Configuring JET for Client
Access.” In particular, the JSL and JSHs must be correctly configured and
running.

This topic includes the following sections:

Introducing the Jolt Repository Editor

Getting Started with the Jolt Repository Editor

Main Components of the BEA Jolt Repository Editor
Setting Up Packages and Services

Grouping Services Using the Package Organizer
Modifying Packages, Services, and Parameters
Making a Service Available to the JET Client
Testing a Service

Troubleshooting

Using Java Enterprise Tuxedo 5-1

5 Using the BEA Jolt Repository Editor

m Repository Enhancements for Jolt

Note: In order to use the Jolt Repository Editor to edit service definitions, you must
first configure the Jolt Servers (JSL and JSHS). If you want to use this tool
across afirewall, you must also configure Jolt Internet Relay. For
configuration instructions, see Chapter 3, “Configuring JET for Client
Access.”

Introducing the Jolt Repository Editor

This topic includes the following sections:
m Jolt Repository Editor Window
m Components of the Jolt Repository Editor Window

The Jolt Repository is used internally by JET to translate data between JET and BE,
Tuxedo type buffers. The Jolt Repository Editor is used to edit service definitions in
the Repository. The Jolt Repository Editor is available as a downloadable Java apple
When a BEA Tuxedo service is added to the Repository, it must be exported to the Jc
server to ensure that the client requests can be made from a JET client.

Jolt Repository Editor Window

Jolt Repository Editor windows contain entry fields, scrollable displays, command
buttons, status, and radio buttons. Figure 5-1 illustrates the parts of the window.
Table 5-1 describes each component.

5-2 Using Java Enterprise Tuxedo

Introducing the Jolt Repository Editor

Figure5-1 Jolt Repository Editor Window

EjApplet Viewer: bea jolt. admin RE class

Applet

Edit Services
Editing existing service in package: BARNKAPP

1 Service Mame WITHDRAWAL 3 Parameters
2 Input Buffer Type FhL - A DUNT_ID
Input YWiew Marme FORMMAM
SAMOLIMNT
COutput Buffer Type FmL - SEALAMCE
Cutput Yiew BMame STATLIN

ExportStatus 5 (™ Unexport @ Export

Service level actions Farameter level actions

Save Service | Testl Elackl 4 e | Edit... | Delete |

Using Java Enterprise Tuxedo 5-3

5 Using the BEA Jolt Repository Editor

Components of the Jolt Repository Editor Window

5-4

Table 5-1 describes the parts of the Jolt Repository Editor window shown in
Figure 5-1.

Table 5-1 Jolt Repository Editor Window Components

Component

Description

1 Textboxes Enter text, numbers, or alphanumeric characters such as
Ser vi ce Nane,| nput Vi ew Nane, server names, or port
numbers. In Figure 5-1, Ser vi ce Nane is used.

2 Drop-down View lists that extend beyond the display using an arrow

arrow button. In Figure 5-1, | nput Buf fer Type isused.

3 Display list Select from alist of predefined items such as the Parameters
list or select from alist of items that have been defined.

4 Command Activate an operation such as displaying the Packages

buttons window, Services window, or Package Organizer. In
Figure 5-1, command buttons include: Save Service, Test,
Back, New, Edit, and Delete.
5 Radiobuttons Select one of a number of options. Only one of the radio

buttons can be activated at atime. For example, Export Status
can only be Unexport or Export.

Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor

Getting Started with the Jolt Repository
Editor

Note: Before you use the Jolt Repository Editor, you must first configure the JET
system according to the instructions in Chapter 3, “Configuring JET for Client
Access.” In particular, the JSL and JSHs must be correctly configured and

running.
To use the Jolt Repository Editor:

1. Start the Jolt Repository Editor.

You can start the Jolt Repository Editor from either the JavaPpfftet vi ewer
or from your Web browser. Both of these methods are detailed in the following

sections.
2. Log on to the Jolt Repository Editor.

Note: For information about exiting the Jolt Repository Editor after you enter
information, see “Exiting the BEA Jolt Repository Editor” on page 5-9.

Starting the Jolt Repository Editor

You can start the Jolt Repository Editor from either the JavaBpfftet vi ewer or
from your Web browser.

Starting the Jolt Repository Editor Using the Java Applet Viewer

To start the Jolt Repository Editor using the Java applet viewer:

1. Set theCLASSPATH to include the Jolt class directory or the directory in which the
*.jar files reside (such as thel t . ar file underudat aobj\j ol t).

Note: Ifthens. | ar file is already specified in th@ ASSPATH, then the directory
containing theg ol t . j ar file must be specifiedhead of the directory
containing then8. j ar file.

Using Java Enterprise Tuxedo 5-5

5 Using the BEA Jolt Repository Editor

2. If you areloading the applet from alocal disk, set the default directory to the
directory where the RE. ht i file resides (such asudat aobj \ j ol t), and then
type the following at the URL location:

appl et vi ewer RE. html

If you are loading the applet from the Web server, type the following at the URL
location (including the full path):

appl et vi ewer http://<ww. server >/ <URL pat h>/ RE. ht m

3. Press Enter.
Thewindow is displayed as shown in Figure 5-2.

Starting the Jolt Repository Editor from Your Web Browser
From aWeb browser, you can start the Jolt Repository Editor from alocal file or from
aWeb server.

Starting from a Local File
To start the Jolt Repository Editor from alocal file:

1. Setthe CLASSPATH to include the Jolt class directory or the directory in which the
* . jar filesreside (such asthejol t.jar fileunder udataobj\j ol t).

2. Set the default directory to the directory where the RE. ht 1 file resides (such as
udat aobj \jolt).

3. Typethe following command:

file:RE htm
4. Press Enter.
The BEA Jolt Repository Editor Login window appears, as shown in the

example in Figure 5-2.
Starting from a Web Server
To start the Jolt Repository Editor from a Web server:
1. Ensure that the CLASSPATH does not include the Jolt class directory.

2. Removethe Jolt classes from the CLASSPATH.

5-6 Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor

3. Typethefollowing, including the full path:
http:// <ww. server>/ <URL pat h>/ RE. ht

Note: Ifjolt.jar andadm n.jar areinthe samedirectory asRE. ht ni , the
Web server provides the classes. If they are not in the same directory as
RE. ht ni , modify the appl et codebase parameter inthe Re. ht ni file.

4. PressEnter.

The BEA Jolt Repository Editor Login window appears, as shown in the
examplein Figure 5-2.

Logging On to the Jolt Repository Editor

After starting the Jolt Repository Editor, complete the following steps to log on:

Note: The Jolt Repository Editor Logon Window must be displayed before you log
on. See Figure 5-2 as you perform the following procedure.

=

In the logon window, type the name of the Server machine designated as the
“access point” to the BEA Tuxedo application, and then press Tab.

2. Type the Port Number and press Enter.
The system validates the server and port information.

Note: Unless you are logging on through Jolt Relay, the same port number is used
to configure the Jolt Listener. See yaBBCONFI G file for additional
information.

3. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete steps 4 and 5 as required.
4. Type the BEA Tuxedo User Name and press Tab.
5. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Using Java Enterprise Tuxedo 5-7

5 Using the BEA Jolt Repository Editor

Sample Logon Window

Figure5-2 BEA Jolt Repository Editor L ogon Window

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Part Murnber: 55557
User Role: joltadmin

Application Password:

User Mame:

Uszer Password:

EErkanes | SENICES | 1S

Table 5-2, describes the Jolt Repository Editor logon window el ements.

Components of the BEA Jolt Repository Editor Logon Window

Table 5-2 describesthe components of the BEA Jolt Repository Editor Logon window
shown in Figure 5-2.

Table 5-2 BEA Jolt Repository Editor L ogon Window Components

Option Description

Server Server name.

5-8 Using Java Enterprise Tuxedo

Getting Started with the Jolt Repository Editor

Table 5-2 BEA Jolt Repository Editor L ogon Window Components (Continued)

Option

Description

Port Number

Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Nameand Password fieldsare activated. Activationis
based on the authentication level of the BEA Tuxedo
application.

User Role

BEA Tuxedo user role. Required only if BEA Tuxedo authentication
level isSUSER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name

BEA Tuxedo user identification text entry. Thefirst character must
be an alpha character.

User Password

BEA Tuxedo password text entry.

Packages

Accesses the Packages window. (Enabled after the logon.)

Services

Accesses the Services window. (Enabled after the logon.)

Log Off

Terminates the connection with the server.

Exiting the BEA Jolt Repository Editor

Exit the BEA Jolt Repository Editor when you finish adding, editing, testing, or
deleting packages, services, and parameters. Prior to exiting, the window is displayed
as shown in Figure 5-3.

Figure5-3 BEA Jolt Repository Editor Logon Window Prior to Exiting

Using Java Enterprise Tuxedo 5-9

5 Using the BEA Jolt Repository Editor

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Part Murnber: 55557
User Role: joltadmin

Application Password:
User Mame:

Uszer Password:

Fackanes | Services | Log Off

Note that only the Packages, Services, and Log Off command buttons are enabled. All
of the text entry fields are disabled.

To exit the Jolt Repository Editor:
1. Click Back to return to the Jolt Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Jolt Repository Editor Logon window shows disabled fields.

3. Click Close from your browser menu to close the window.

5-10 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor

Main Components of the BEA Jolt
Repository Editor

Thistopic includes the following sections:

Workflow for the BEA Jolt Repository Editor
What |s a Package?
What |s a Service?

Working with Parameters

The Jolt Repository Editor allows you to add, modify, or delete any of the following
components: packages, services (you can al so test and group services), and parameters.

Workflow for the BEA Jolt Repository Editor

After you log on to the Jolt Repository Editor, two buttons are enabled, Packages and
Services.

Figure 5-4 illustrates the Jolt Repository Editor flow to help you determine which of
these two buttons to select.

Using Java Enterprise Tuxedo 5-11

5 Using the BEA Jolt Repository Editor

Figure5-4 Jolt Repository Editor Flow Diagram

ﬁ Packages
View
Package

& Services
Logon to the Repository Move s
Editar. :

Pack

Determine Service ackage
teske Delete
tasks to Poeete,
complate.

f:; e

| I
Add

: : Delete
rdlgasr:;nv:aﬁgr Senvice or Test Service
Parameter,

Service or
Parameter

Select Packages to open the Packages window and perform the following functions:
m View packages and services

e Make aservice available using Export or Unexport

e Select apackageto delete
m Access the Package Organizer to:

¢ Move services from one package to another

e Create anew package

5-12 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor

See “What Is a Package?” on page 5-13 for complete details.

Use Services to open the Services window and perform the following functions:
m Create, add, edit, or delete service definitions

m Create, add, edit, or delete parameters

m Test the services and parameters

See “What Is a Service?” on page 5-16 for complete details.

What Is a Package?

Packages provide a convenient method for grouping services for Jolt administration.

You use the Packages window to perform the following tasks:

View packages and services.

Export or unexport services.

Delete packages.

m Access Package Organizer to:
¢ Move services

e Create a new package

Click the Packages button in the Jolt Repository Editor logon window to display the
available packages. When you select a specific package from the display list, its
services within that package are displayed.

Sample Packages Window

Figure 5-5 contains a sample Packages window.

Using Java Enterprise Tuxedo 5-13

5 Using the BEA Jolt Repository Editor

Figure5-5 Packages Window

EiApplet Viewer: bea jolt. admin RE class

Applet
Packages
Fackages Services
PAMNICAPP DEPQSIT
BULKPKG INQUIRY
SIMPSERY TRAMNSFER
I THDRAYYAL

Fackage Qrganizer | Export | Lnexpart | [eete | Back |

Components of the Packages Window

Table 5-3 describes the components of the Packages window shown in Figure 5-3.

Table 5-3 Packages Window Components

Option Description
Packages Lists avail able packages.
Services Lists avail able services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use thiswindow to move the services among
the packages or add a new package.

5-14 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor

Table 5-3 Packages Window Components (Continued)

Option Description

Export M akes the most current services available to the client. Thisoption
is enabled when a package is selected.

Unexport Select this option before testing an existing service. Thisoptionis
enabled when a package is selected.

Delete Deletesapackage. This optionis enabled when apackageis selected
and the package is empty (no services contained within the
package).

Back Returns the user to the previous window.

Viewing a Package
To view a package:
1. Click Packagesin the Jolt Repository Editor Logon window.

The Packages window opens and displays the list of available packages.
In Figure 5-5, BANKAPP, BULKPKG and SI MPSERV are the avail able packages.

2. See “Viewing a Parameter” on page 5-19 for additional information.

Using Java Enterprise Tuxedo 5-15

5 Using the BEA Jolt Repository Editor

What Is a Service?

A service definition describes the properties of aBEA Tuxedo service, such asits
name, input and output buffer types, and individual parameters. Adding or editing a
Jolt service in the Jolt Repository does not change an existing BEA Tuxedo service.

Sample Services Window

Y ou use the Services Window to add, edit, or delete services. Figure 5-6 shows an
exampl e of a Services window with the BANKAPP package selected, and thedisplay list
of services and parameters available for this package (parameters are detailed later).

Figure5-6 Services Window

EiApplet Viewer: bea jolt. admin RE class

Applet
Services

Fackages

BULKPKG

SIMPSERY

Senvices Parameters

ACCOUNT_ID
F ORI MAM
SHALAMCE
STATLIM

MNew. | Edit. | Delste | Back|

5-16 Using Java Enterprise Tuxedo

Main Components of the BEA Jolt Repository Editor

Components of the Services Window

Table 5-4 describes the componentsin the Services window shown in Figure 5-4.

Table 5-4 Services Window Description

Option

Description

Packages

Liststhe available packages.

Services

Liststhe servicesin the selected package, which you can edit or
delete. Selecting a service displays the parameters within the
service.

Parameters

Displays the parameters of the selected service.

New

Displays the Edit Services window for adding a new service.

Edit

Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete

Deletes aservice. This button is only enabled if a service has been
selected.

Back

Returns the user to the previous window.

Viewing a Service

To view aservice:

1. Select Servicesfrom the Jolt Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select apackage.

Thelist of available services for the selected package is displayed.

In Figure 5-6, BANKAPP is the sel ected package. DEPOSI T, | NQUI RY, TRANSFER,
and W THDRAWAL are the availabl e services for BANKAPP.

3. See “Viewing a Parameter” on page 5-19 for additional information.

Using Java Enterprise Tuxedo 5-17

5 Using the BEA Jolt Repository Editor

Working with Parameters

A service contains parameters, which may be apin number, account number, payment,
rate, term, age, or Social Security number.

Sample Services Window with Parameters

Figure 5-7 shows a Services window displaying a selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA
Tuxedo Service.

Figure5-7 Services Window with ParametersList

EiApplet Viewer: bea jolt. admin RE class

Applet
Services

Fackages

BAMNKAPP

BULKPKG

SIMPSERY

Senvices Parameters
ACCOUNT_ID
F ORI MAM
SHALAMCE
STATLIM

MNew. | Edit. | Delste | Back|

5-18 Using Java Enterprise Tuxedo

Setting Up Packages and Services

Viewing a Parameter

To view a parameter:

1. Select Servicesfrom the Jolt Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select apackage.
Thelist of available services for the selected package is displayed.
In Figure 5-7, BANKAPP is the selected package.

3. Select aservice.
Thelist of available parameters for the selected service is displayed.
In Figure 5-7, | NQUI RY is the selected service.

4. View the parametersfor a selected service in the Parameters display list.

In Figure 5-7, ACCOUNT_I D, FORMNAM SBALANCE, and STATLI N arethe
available parameters for the | NQUI RY service.

5. See “Adding Parameters” on page 5-26 for additional information.

Setting Up Packages and Services

This topic includes the necessary steps for setting up a package and its services:
m Saving Your Work

m Adding Packages

m Adding Services

m Adding Parameters

Using Java Enterprise Tuxedo 5-19

5 Using the BEA Jolt Repository Editor

Saving Your Work

Asyou create and edit services and parameters, it isimportant to regularly save
information to avoid losing input. Clicking Save Servicein the Edit Services window
can prevent the need to re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must select Add
before choosing Back from the Edit Parameters window and returning to
the Edit Services window.

If adding a new service or modifying an existing service in the Edit Services window,
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, awarning is briefly displayed on the status line at the
bottom of the window.

Adding Packages

5-20

When you need to add a new group of services, you create a new package before

adding the services. The “Package Organizer Window” on page 5-21 and the followin
procedure show how to add a new pack&geANCE, to the Packages listing.

Using Java Enterprise Tuxedo

Setting Up Packages and Services

Sample Package Organizer Window

Figure5-8 Package Organizer Window

EiApplet Viewer: bea jolt.admin RE class
Applet

Package Organizer
Fackages Fackages
e T
BULKPKG BULKPKG
SIMPSERV

SIMPSERY
Services Serdces
DEFOSIT =—— |IPASSFML
INQUIRY — [SIMPYIEW
TRAMNSFER TOUFPPER
WWITHD RAWAL
Mlewr Package I Back |
Adding a Package
To add a package:

1. Click Packagesin the Jolt Repository Editor Logon window to display the
Packages window.

2. Select Package Organizer to display the Package Organizer window, similar to
the one shown in Figure 5-8.

For a description of contents of thiswindow, see Table 5-7.

3. Click the New Package button in the Package Organizer window.

Using Java Enterprise Tuxedo 5-21

Using the BEA Jolt Repository Editor

Thetext field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (shown in Figure 5-8 as BALANCE) is displayed on the Packages
list in random order.

Adding Services

Services are definitions of available BEA Tuxedo services and can only be a part of a
Jolt package.Y ou must create the service as a part of anew or existing package.

The Jolt Repository Editor accepts the new service name exactly asit istyped (that is,
all uppercase letters, abbreviations, misspellings are accepted). Service names must
not exceed 30 characters.

Sample Edit Services Window

5-22

Figure 5-9 shows the Edit Services window for adding a service.

Using Java Enterprise Tuxedo

Setting Up Packages and Services

Figure5-9 Edit ServicesWindow: Add a New Serviceto a Package

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding new service to packzge BANKAPP
Service Mame Farameters
Input Buffer Type FmL -

Input View Mame
Output Buffer Type FhiL -

Output Yiew Mame

Export Status % Unexport € Export
Service level actions Parameter level actions
Save Service | NEST | Back | e | Edit:. | [Welete |

Options for Adding a Service

Table 5-5 describes the options for adding services to apackage in a package window.

Table5-5 Optionsfor Adding a Service

Option Description

Using Java Enterprise Tuxedo 5-23

5 Using the BEA Jolt Repository Editor

Table 5-5 Optionsfor Adding a Service (Continued)

Edit Services Service Name Name of the new service to be added to the Jolt Repository.

Selections
Input Buffer m VIEW— C-structure and 16-bit integer field. Contains subtypes
Type/Output Buffer that have a particular structure. X_C_TYPE and X_COMMON
Type are equivalent. X_COMMON is used for COBOL and C.

m VIEW32—similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

m CARRAY—array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

m FML—type in which each field carries its own definition.

m FML32—similar to FML except the ID field and length field are
32 bits long.

m STRING—character array terminated by a null character that is
encoded or decoded.

For more information, see “Using BEA Tuxedo Buffer Types with

JET” on page 1-13.

Input View Unique name assigned to the Input View Buffer and Output View
Name/Output View Buffer types. These fields are only enabled if VIEW or VIEW32 are
Name the selected buffer types.
Export Status Unexport Radio button with current status of the service. EXPORT or
Export UNEXPORT status is checked. UNEXPORT is the default.
Service Level Save Service Saves the newly created service in the Repository.
Actions
Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.
Back Returns you to the previous window.
Parameter Parameters List of service parameters to edit or delete.
Parameter Level | New Adds new parameters to the service.
Actions
Edit Edits an existing parameter. This command button is disabled until

a new parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is

selected.

5-24 Using Java Enterprise Tuxedo

Setting Up Packages and Services

Adding a Service

To add a service:

1

7.

Select Services from the Jolt Repository Editor Logon window.

The Services window opens, similar to the one shown in Figure 5-6.

Select the package to which you will add the service.

If you later decide that another package should contain the new service, use the
Package Organizer to move the service to a different package. (See “Grouping
Services Using the Package Organizer” on page 5-31 for additional information.)

From the Services window, select New to display the Edit Services window, as
shown in Figure 5-9.

Select the Service Name text field to activate it.
Type the name of the new service you want to add.

Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can select a different Output Buffer type.

e If VI Ewor VI EWB2 is selected, you must type the Input View Name and
Output View Name in the associated text fields.

¢ If another buffer type is selected, the Input View Name and Output View
Name text fields are disabled.

e If CARRAY or STRI NG is selected, see “Selecting CARRAY or STRING as a
Service Buffer Type” on page 5-25 for additional instructions.

Select Save Servide save the newly created service.

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRI NG is selected as the buffer type for a new service, OfiRRAY or

STRI NG can be added as the data type for the accompanying parameters. See also
“Adding Parameters” on page 5-26 and “Selecting CARRAY or STRING as a
Parameter Data Type” on page 5-29. For additional information, see Chapter 2,
“Invoking BEA Tuxedo Services.”

Using Java Enterprise Tuxedo 5-25

5 Using the BEA Jolt Repository Editor

Figure 5-10 shows an exampl e Edit Serviceswindow with STRI NG selected as the
buffer type for the service SI MPAPP.

Figure5-10 Edit ServicesWindow: Select STRING Buffer Type

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding new service to package: SIMPSERY

Service Mame I SIMPAFPP Parameters

Input Buffer Type

Input View Mame

Output Buffer Type STRIMG VI

Output Yiew Mame

Export Status % Unexport € Export
Service level actions Parameter level actions
Save Service | NEST | Back | e | Edit:. | [Welete |

Adding Parameters

Clicking New under the label Parameter level actionsin the Edit Services window
displaysthe Edit Parameters window.

5-26 Using Java Enterprise Tuxedo

Setting Up Packages and Services

Sample Edit Parameters Window

Figure 5-11 shows an exampl e of the Edit Parameters window, which you useto enter
the parameter and screen information for a service.

Figure5-11 Edit Parameters Window: Add a Parameter

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Adding new parameter to package: SIMPSERY service: SIMPAPP

Farameter Information Screen Information

Field Mame Screen Label I
Diata Type string vl

Direction input (0 output (® both
Qcourrencels)
Clearl Ehame | Adid | Back | ===) L g =

Components of the Adding a Parameter Window

Table 5-6 describes the components of the Parameter window shown in Figure 5-11.

Using Java Enterprise Tuxedo 5-27

5 Using the BEA Jolt Repository Editor

Table 5-6 Parameter Window Components

Option Description
Field Name Adds the field name (for example, asset).
Data Type Lists data type choices:
m byte—8-bit
m short—16-bit
®m integer—32-bit
m float—32-bit
m double—64-bit
m string—null-terminated character array
m carray—variable length 8-bit character array
Direction Radio button choices for direction of information:
m Input —information is directed from the client to the server.
m Output—information is directed from the server to the client.
m Both—information is directed from the client to the server, and
from the server to the client.
Occurrence(s) Number of times that an identical field name can be used. If 0, the

field name can be used an unlimited number of times. Occurrences
are used by JET to build test screens; not to limit information sent or
retrieved by BEA Tuxedo.

Screen Information

This button is disabled when the window is launched.

Clear Clears the fields of the window.

Change Is disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved when
the service is saved.

Back Returns the user to the previous window.

Adding a Parameter

5-28

To add a parameter:

Using Java Enterprise Tuxedo

Setting Up Packages and Services

1. Select Field Name to activate the field, and type the field name.

Note: If the buffer typeis FML or VIEW, the field name must match the
corresponding parameter field namein FML or VIEW.

2. Select the data type.
3. Specify adirection by selecting the input, output, or both radio buttons.

4. Select the Occurrence text field to activate it, and then enter the number of
occurrences.

5. Select Add to append the information. Add does not save the parameter.

6. Inthe Edit Services window, click Save Service to save the parameter as a part of
the service.

Warning: If you do not click Save Service before you click Back, the parameters
are not saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRI NGis the selected buffer type for a new service, only acarray or
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “CARRAY” for a CARRAYOUffer type, and the parameter name
“STRING” for a STRING buffer type.

See also “Adding a Service” on page 5-25 and “Selecting CARRAY or STRING as a
Service Buffer Type” on page 5-25. For additional information, see Chapter 2,
“Invoking BEA Tuxedo Services.”

Figure 5-12 shows an example of the Edit Parameters windowsTHRIMG as the
selected data type for the parameter. The Data Type defaSitRItNG and does not
allow you to modify that particular data type. The Field Name can be any name.

Using Java Enterprise Tuxedo 5-29

Using the BEA Jolt Repository Editor

5-30

Figure5-12 Edit ParametersWindow: string Data Type

EiApplet Viewer: bea jolt. admin RE class

Applet

Edit Parameters

Adding new parameter to package: SIMPSERY service: SIMPAPP

Parameter Information Screen Information

Field Name INPUT Screenlabel | |
Diata Type m

Direction

input (0 output (® both

Qcourrencels) I 1

clear | Ghanae |

Back | Enreen| | AfermEten

adding INPUT parameter

Using Java Enterprise Tuxedo

Grouping Services Using the Package Organizer

Grouping Services Using the Package
Organizer

Thistopic includes the following sections:

m Sample Package Organizer Window

m Components of the Package Organizer Window
m Grouping Services with the Package Organizer

The Package Organizer moves services between packages. Y ou may want to group
rel ated servicesin apackage (for example, WITHDRAWAL servicesthat are exported
only at a certain time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package to
another. These buttons are useful if you have several services to move between
packages. The packages and services display listings to help track a service within a
particular package.

Sample Package Organizer Window

Figure 5-13 shows an example of a Package Organizer window with a service selected
for transfer to another package.

Using Java Enterprise Tuxedo 5-31

5 Using the BEA Jolt Repository Editor

Figure5-13 Package Organizer Window

EiApplet Viewer: bea jolt. admin RE class

Applet

Package Organizer

Fackages FPackanes

BAMKAPF

BULKPKG BULKPKG
SIMFSERY SIMPSERY
Services Setvices

Mew Fackage I Back |

Added Mew Package: BANIK

Components of the Package Organizer Window

Table 5-7 describes the components of the Package Organizer window shown in
Figure5-12.

Table 5-7 Package Organizer Window Components

Option Description
Packages Lists packages containing services in the selected package.
(Ieft display list)

5-32 Using Java Enterprise Tuxedo

Grouping Services Using the Package Organizer

Table 5-7 Package Organizer Window Components (Continued)

Option Description

Packages Lists packages avail able as destinations for the selected service.
(right display list)

Services Listsavailable services for the selected package.

(left display list)

Services Listsavailable services of the highlighted package that you moved.

(right display list)

Left arrow M ovesservices (one service a atime) to the package highlighted on
the left.

Right arrow Movesservices (one service a atime) to the package highlighted on
theright.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Grouping Services with the Package Organizer

To group services with the Package Organizer:
1. Inthe Packages window, click Package Organizer.

2. Inthe Package Organizer window, select the package containing the servicesto
be moved from the Packages | eft display window.

3. Select the service to be moved from the Services |eft display window.
In Figure 5-14, I NQUI RY is the selected service in the BANKAPP package.

4. Select the package to receive the service from the Packages right display
window.

Figure 5-14 shows the selected service, | NQUI RY, and the selected package,
BANK, to which the | NQUI RY service will be moved.

Using Java Enterprise Tuxedo 5-33

Using the BEA Jolt Repository Editor

5-34

Figure5-14 Example of a Moved Service

EiApplet Viewer: bea jolt. admin RE class

Applet

Package Organizer

Fackages

|EIANK

BULKPKG
SIMPSERY

Services
DEPOQSIT P

TRAMSFER
W THD RAWAL

FPackanes

BAMKAPF
BULKPKG
SIMPSERY

Setvices

INGILIRY

Mew Fackage I

Added Mew Package: BANIK

Elackl

5. Tomovethe service between the packages, select theleft arrow (<) or right arrow

(=)

These keys are activated only when both packages (left and right are displayed)
and a service are selected. The keys are only active in the direction of the
package where the service is to be moved. Figure 5-14 showsthat the | NQUI RY
service has been moved to the BANK package on theright.

Note: Y ou cannot select the same package in both the left and right display lists.

Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters

Modifying Packages, Services, and
Parameters

Thistopic includes the following sections:
m Editing Services
m Editing Parameters

m Deleting Parameters, Services, and Packages

Editing Services

Y ou can edit an existing service name or serviceinformation, or access the window to
add new parametersto an existing service. For a description of the Edit Services
window, see “Options for Adding a Service” on page 5-23.

Sample Edit Services Window

Figure 5-15 shows an example of the Edit Services window.

Using Java Enterprise Tuxedo 5-35

5 Using the BEA Jolt Repository Editor

Figure5-15 Edit Services Window

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BARNKAPP

Service Mame TRAMSFER Parameters
Input Buffer Type FmL - ACCOUNT_ID
Input View Mame FORMNAM
SAMOLINT
Qutput Buffer Type |FML j SBALAMCE
Cutput Wiew Marme STATLIMN
Export Status (7 Unexport (& Export
Service level actions Parameter level actions
Save Service | Test | Back | e | Edit:. | [Welete |

Editing a Service
To edit aservice:

1. From the Services window, select the package containing the service that requires
editing.

The services available for the selected package are displayed.
2. Select the service to edit.
The parameters available for the selected service are displayed.

3. Click Edit to display the Edit Services window, as shown in Figure 5-15.

5-36 Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters

4. Type or select the new information, and click Save Service.

Editing Parameters

All parameter elements can be changed, including the name of the parameter.

Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter.

Sample Edit Parameters Window

Figure 5-16 shows an example of the Edit Parameters window.

Using Java Enterprise Tuxedo 5-37

5 Using the BEA Jolt Repository Editor

Figure5-16 Edit Parameters Window

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BANKAPP service: TRANSFER

Farameter Information Screen Information

Field Mame ACCOUNT_ID Screen Lahel I
Diata Type integer vl

Direction @ jnput 0 output ¢ both
Qcourrencels) I 2
Clearl Change | Felid | Back | ===) L g =

Editing a Parameter

To change a parameter:

1. Inthe Services window (see “Services Window with Parameters List"), select the
package and service that contain the parameter you want to change.

2. Click Edit to display the Edit Services window.

3. Select the Parameter you want to edit from the Parameters display list and click
Edit.

The Edit Parameters Window is displayed as shown in Figure 5-16.

4. Type the new information and click Change.

5-38 Using Java Enterprise Tuxedo

Modifying Packages, Services, and Parameters

5. Click Back to return to the previous window.

Deleting Parameters, Services, and Packages

This section describe how to delete a package. Before deleting a package, all the
services must be deleted from the package. The Delete option is not enabled until all
components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or packageis scheduled to
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter
To delete a parameter:
1. Inthelogon window, click Services to display the Services window.

2. Inthe Services window, select the package and service that contain the parameter
you want to delete.

3. Click Edit to display the Edit Services window.
4. Select the parameter you want to delete from the Parameters display list.

5. Under Parameter Level Actions, click Delete.

Deleting a Service
To delete a service:

Note: Make certain that all parameters within this service are deleted before
selecting this option.

1. Select the package containing the service you want to delete.

2. Select the service you want to delete.

Delete is enabled.

3. Click Delete. The serviceis deleted.

Using Java Enterprise Tuxedo 5-39

5 Using the BEA Jolt Repository Editor

Deleting a Package
To delete a package:

Note: Make sure all services contained in this package are deleted or moved to
another package before selecting this option.

1. Inthe Jolt Repository Editor Logon window, click Packagesto display the
Packages window.

2. Select apackage.

3. Click Delete.
The package is deleted.

Making a Service Available to the JET Client

To make aservice availableto a JET client, you export it. All servicesin apackage
must be exported or unexported as agroup. A service is made available by using the
Export and Unexport radio buttons.

This topic includes the following sections:
m Exporting and Unexporting Services

m Reviewing the Exported and Unexported Status

Exporting and Unexporting Services

Determine which services are being made available or unavailable to the JET client.
Services are exported to ensure that the JET client can access the most current service
definitions from the Jolt server.

Sample Packages Window

Figure 5-17 shows the Packages window, where you can export and unexport services.

5-40 Using Java Enterprise Tuxedo

Making a Service Available to the JET Client

Figure5-17 PackagesWindow: Export and Unexport Buttons

E%_}':Applet Yiewer: bea.jolt.admin_ RE_class

Applet
Packages
Fackages Senices
BAMNKAPP DEPOSIT
SIMPSERY INQUIRY
TRAMNSFER
WITHDRAVWAL

Fackage Qrganizer | Export | Lnexpart | [eete | Back |

Exporting or Unexporting a Service
To export or unexport a service:

1. From the Jolt Repository Editor Logon window, select Packages to display the
Packages window.

2. Select apackage.
The Export and Unexport buttons are enabled.

3. To make the services in the selected package available, click Export.

To make the services in the selected package unavailable, select Unexport.

Using Java Enterprise Tuxedo 5-41

5 Using the BEA Jolt Repository Editor

Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the Exported and
Unexported Status” on page 5-42 for additional information.

Reviewing the Exported and Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window.

Figure 5-18 displays the Export radio button as active, for Export Status; therefore, th
current status for the servit®ANSFER is exported.

Figure5-18 Export Status

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BARNKAPP

Service Mame TRAMSFER Parameters
Input Buffer Type FmL - ACCOUNT_ID
Input Yiew Mame FORMMAM

SAMOLINT
Output Buffer Type FhiL - SEALAMCE
Cutput Yiew Name STATLIM
Export Status

(7 Unexport (& Export

Service level actions Parameter level actions

Save Service | Testl Elackl e | Edit:. | [Welete |

To review the current exported or unexported status of a service:

5-42 Using Java Enterprise Tuxedo

Making a Service Available to the JET Client

. From the Jolt Repository Editor Logon window, select Servicesto display the
Services window shown in the “Services Window” on page 5-16.

. Select a package from the Package display list.

The Services display list of available services for the selected package is
displayed.

. Select the service you want to review.

. Click Edit.

The Edit Services window is displayed as shown in Figure 5-15.

One of the radio buttons (Export or Unexport) next to the Export Status label
will be active, indicating the current status of the service.

Using Java Enterprise Tuxedo 5-43

5 Using the BEA Jolt Repository Editor

Testing a Service

This topic includes the following sections:

m Sample Service Test Window

m Components of the Service Test Window
m Testing a Service

Test aservice and its parameters before you make them available to JET clients. You
can test currently available services without making changes to the services and
parameters.

Note: The Jolt Repository Editor allowsyou to test an existing BEA Tuxedo service
with JET, without writing aline of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

Sample Service Test Window

Use the Run button to test the service to ensure that the parameter information is
accurate. A service can only be tested when the corresponding BEA Tuxedo server is
running for the service being tested.

Although the Test button in the Edit Services window is enabled when parameters are

not added to the service, the Service Test window displays unused in the parameter

fields, and they are disabled. See “Service Test Window” on page 5-45 for an exampl
of unused parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

Figure 5-19 shows an example of a Service Test window with both writable and
read-only text fields.

5-44 Using Java Enterprise Tuxedo

Testing a Service

Figure5-19 Service Test Window

EiApplet Viewer: bea jolt. admin RE class

Applet
Service: INQUIRY 1-4 of 4 Params
ACCOUNT_IDI integer[32]
FOHMNAMI String (Readnh
SEIALANCEI String (ReadCnlky)
STATLINI String (Readnh

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Lnused

Unusedl Unused

RUN | clear | ed| Prev]| Back|

Using Java Enterprise Tuxedo 5-45

5 Using the BEA Jolt Repository Editor

Components of the Service Test Window

Table 5-8 describes the components of the Service Test window shown in Figure 5-19.

Note: You can enter atwo-digit hexadecimal character (0-9, a-f, A-F) for each byte
inthe CARRAY datafield. For example, the hexadecimal value for 1234
decimal is 0422.

Table 5-8 Service Test Window Components

Option Description

Service Displays the name of the tested service (read-only).

Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. Thesefieldsare writable
or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clearsthe text entry field.

Next Lists additional parameter fields, if applicable.
Prev Lists previous parameter fields, if applicable.
Back Returns to the Edit Services window.

5-46 Using Java Enterprise Tuxedo

Testing a Service

Testing a Service

Y ou can test a service without making changesto the service or its parameters. Y ou
can aso test a service after editing the service or its parameters.

Test Service Process Flow
Figure 5-20 shows a typical Jolt Repository Editor service flow test.

Figure5-20 Test Service Flow

Select Test <

G

Testing a Service

For troubleshooting information, see the first two entries in Table 5-9.

Using Java Enterprise Tuxedo 5-47

5 Using the BEA Jolt Repository Editor

To test aservice:

1. Select Services from the Jolt Repository Editor Logon window.
The Services window is displayed.

Select the package and the service to test.
Click Edit to access the Edit Services window.
Click Test to access the Service Test window.

Enter data in the Service test window parameter text fields.

o g ~c w DN

Click RUN.

The status line displays the outcome as follows:
e |If the test passedRun Conpl eted K’

e If the test failed: Cal I Fai | ed”

See “Jolt Repository Editor Troubleshooting” on page 5-49 for additional
Jolt Repository Editor troubleshooting information.

If edits are required after testing:

1. Return to the Jolt Repository Editor Logon window and click Packages.
. Select the package with the services to be retested.
. Click Unexport.

. Click Backto return to the Jolt Repository Editor Logon window.

. Select the package and the service that requires editing and click Edit.

2
3
4
5. Click Services to display the Services window.
6
7. In the Edit Services window, edit the service.
8

. Save the service, click Test, and repeat steps 5 and 6 of the “Testing a Service”
section.

5-48 Using Java Enterprise Tuxedo

Troubleshooting

Troubleshooting

Table 5-9 providestroubleshooting tipsif you encounter problemswhile using the Jolt
Repository Editor.

Table 5-9 Jolt Repository Editor Troubleshooting

Problem Suggested Action(s)

A parameter isincorrect Edit the service.

The Jolt server is down Check the server. The BEA Tuxedo service is down. Y ou do not need to edit
the service.

Y ou receive any error M ake sure the browser you are running is Java-enabled:

m For Netscape browsers, make sure that Enable Java and Enable JavaScript
are checked under Edit | Preferences | Advanced. Then select
Communicator | Tools | Java Console. If the Java Console does not exist
on the menu, the browser probably does not support Java.

m For Internet Explorer, make sure the version is 3.0 (or later).

= If running Netscape Navigator, check the Java Consolefor error messages.

m If running appl et vi ewer , check the system console (or the window
where you started the appl et vi ewer).

Y ou cannot connect to the Jolt | Make sure that:

server (after entering Server | g your Server nameis correct (and accessible from your machine). Check
andPort Nunber) that the port number isthe correct port. A JSL or JRLY must be configured
to listen on that port.

m The Jolt server is up and running. If any authentication is enabled, check
that you are entering the correct usernames and passwords.

m If the applet was loaded through http, the Web server, JRLY and the Jolt
server are on the same machine (that is, the server name entered into the
Jolt Repository Editor must be the same machine as the one used in the
URL to download the appl et).

Using Java Enterprise Tuxedo 5-49

5 Using the BEA Jolt Repository Editor

Table 5-9 Jolt Repository Editor Troubleshooting (Continued)

Problem Suggested Action(s)
Y ou cannot start the Jolt If you are running the editor in a browser and downl oading the Jolt Repository
Repository Editor Editor applet through http, make sure that:

m Thebrowser is Java-enabled.

m TheWeb server isrunning and accessible.

m TheRE. htnl fileisavailableto the Web server.
|]

TheRE. ht m file contains the correct <codebase> parameter. Codebase
identifies where the Jolt class files are located.

If running the editor in abrowser (or appl et vi ewer) and loading the appl et
from disk, make sure that:

m Thebrowser is Java-enabled.
m TheRE. htnl fileexistsand isreadable.
m TheRE. htnl fileis Java-enabled.

m TheRE. ht m file containsthe correct <codebase> parameter (thisis
where the Jolt classfiles areinstalled on the local disk).

m CLASSPATHis set and points to the Jolt class directory.

Youcannotdisplay Packages | m Make sure that the Jolt Repository server (JREPSVR) is running.
or Ser vi ces eventhoughyou | g \jake sure that the JREPSVR can access the Repository file.

aesurethey exist m Make sure of the configuration for JREPSVR: verify CLOPT parameters
and verify that j r ep. f 16 (FML definitionfile) isinstalled and accessible
(follow the installation documentation).

Y ou cannot save changesinthe | Check permissionsonthe Repository file. Thefile must bewritable by the user
Jolt Repository Editor who starts JREPSVR.

Y ou cannot test services m Check that the serviceis available.
m Veify the service definition matches the service.

m If BEA Tuxedo authentication is enabled, check that you havethe required
permissions to execute the service.

m Check if the application file (FML or VIEW) is specified correctly in the
variables (FIELDTBLS or VIEWFILES) in the ENVFILE. All
applications FML field tables or VIEW files must be specified in the
FIELDTBLSand VIEWFILES environment variablesinthe ENVFILE. If
these files are not specified, the JSH cannot process data conversion and
you receive the following message: Ser vi ceExcepti on: TPEJOLT
data conversion fail ed.

m Check the ULOGfile for any additional diagnostic messages.

5-50 Using Java Enterprise Tuxedo

Repository Enhancements for Jolt

Repository Enhancements for Jolt

The Jolt Repository uses the FML 32 buffer type, which increases the internal buffer
size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATMI
buffer types:

m X_OCTET
m X C TYPE
m X_COMMON

Using Java Enterprise Tuxedo 5-51

5 Using the BEA Jolt Repository Editor

5-52 Using Java Enterprise Tuxedo

Index

A
adding packages 5-20
appletview, in Repository Editor 5-5

BEA Tuxedo
distributing services 1-7
service definitions, toolsfor managing 1-

9

service requests 1-7

buffer types
about BEA Tuxedo buffer types 1-13
CARRAY buffer type 1-14
FML buffer type 1-14
STRING buffer type 1-14
supported 1-13
VIEW buffer type 1-15

bulk loader
about the Bulk L oader 1-9
bulk load file 4-2
command line options 4-8
introduction 4-1
keyword guidelines 4-3
keyword ordering 4-4
parameter-level keywords 4-6
sample data 4-7
service-level keywords 4-5
troubleshooting 4-9

C

call method 2-9
CARRAY buffer type 1-14
command-line options
Jolt Relay (JRLY) 3-19, 3-21
Jolt Server Listener (JSL) 3-10
configuration
Jolt Relay (JRLY) 3-4
Jolt Relay Adapter (JRAD) 3-7, 3-24
Jolt Server Listener (JSL) 3-2, 3-3, 3-10
network address 3-24
configuration file
Jolt Relay (JRLY) 3-22
configure
Jolt Relay (JRLY) 3-18
configuring
JET 3-2
JET for Java server access 2-2
customer support contact information xi

D

default repository file 2-2
documentation, where to find it x

E

encryption 3-17
exceptions 2-10
exporting services 5-40

Using Java Enterprise Tuxedo -1

F

failover
Jolt Client to JRLY connection 3-18
JRLY to JRAD connection 3-18
FML buffer type 1-14

G

GROUPS section, in UBBCONFIG 2-3
GRPNO parameter 2-3

|

importing packages 2-7

invoking BEA Tuxedo services
configuring JET for Javaserver access 2-

2

handling exceptions 2-10
handling returned parameters 2-11
importing packages 2-7
instantiating a JoltService object 2-7
invoking the service 2-9
specifying parameters 2-8

J

JET
configuring 3-2
key components 1-4
key features 1-2
workflow 1-3
JET ClassLibrary
about the JET Class Library 1-4
Jolt Internet Relay 3-17
about Jolt Internet Relay 1-11
workflow 1-12
Jolt Relay (JRLY)
about Jolt Relay 1-11
command-line optionsfor NT 3-19
command-line options for Unix 3-21
configuration file 3-22

[-2 Using Java Enterprise Tuxedo

configuring 3-4, 3-18

failover 3-18

starting 3-19
Jolt Relay Adapter (JRAD)

about the Jolt Relay Adapter 1-11

configuration 3-24

configuring 3-7, 3-24
Jolt Repository

initializing services 3-8

testing services 5-44
Jolt Repository Editor

about the Jolt Repository Editor 1-9
Jolt Repository Server

about the Jolt Repository Server 1-5
Jolt Server Handler (JSH)

about the Jolt Server Handler 1-10
Jolt Server Listener (JSL)

about the Jolt Server Listener 1-10

command-line options 3-10

configuring 3-3, 3-10

restarting 3-10

shutting down 3-10

starting 3-9

UBBCONFIG file (sample) 3-14
Jolt servers, about Jolt servers 1-10
JoltService object, instantiating 2-7
jrepository 2-2
JRLY See Jolt Relay

K

key components 1-4
key features 1-2

L

LMID parameter 2-3
logging on to Repository Editor 5-7

N
network address configuration 3-24

P

package organizer 5-31

packages
adding packages 5-20
deleting packages 5-40
package organizer 5-31
Repository Editor 5-13

parameters
adding parameters 5-26
deleting parameters 5-39
handling returned parameters 2-11
in the Repository Editor 5-18
modifying parameters 5-37

specifying for aBEA Tuxedo service 2-8

printing product documentation x

R
registering services, in the repository 3-8
related information Xi
Repository Editor
adding packages 5-20
adding parameters 5-26
adding services 5-22

components of the Repository Editor 5-

11
deleting packages 5-40
deleting parameters 5-39
deleting services 5-39
editing parameters 5-37
editing services 5-35
exiting 5-9
exporting services 5-40
grouping services 5-31
introduction 5-2
logging on 5-7

making services available to clients 5-40

package organizer 5-31
packages 5-13

packages, setting up 5-19
parameters 5-18

sample window 5-2

sample window description 5-4
saving your work 5-20

service definitions 5-16
services, setting up 5-19

starting from a Web browser 5-6
starting with the appletviewer 5-5
troubleshooting 5-49
unexporting services 5-40
viewing service definitions 5-17
workflow 5-11

S

saving your work 5-20
security 3-17
SERVERS section, in UBBCONFIG 2-3
services
add services 5-22
deleting services 5-39
distributing 1-7
exporting services 5-40
grouping 5-31
Jolt client
make service available to 5-40
modifying a service 5-35
parameters 5-18
testing services 5-44
unexporting 5-40
SRV GRP parameter 2-3
SRVID parameter 2-3
STRING buffer type 1-14

support

technical xi

Using Java Enterprise Tuxedo

T
testing services 5-44
troubleshooting

Repository Editor 5-49

U

unexporting services 5-40

Vv
VIEW buffer type 1-15

W

workflow 1-3
BEA Tuxedo service requests 1-7
handling requests from Jolt clients 1-10
Jolt Internet Relay 1-12
Repository Editor 5-11

-4 Using Java Enterprise Tuxedo

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Introducing Java Enterprise Tuxedo
	Key Features
	JET Workflow
	Key Components
	JET Class Library
	Jolt Repository Server
	How BEA Tuxedo Services are Distributed
	Workflow for Handling BEA Tuxedo Service Requests

	Tools for Managing Service Definitions
	Bulk Loader
	Jolt Repository Editor
	Jolt Servers
	Jolt Internet Relay
	Using BEA Tuxedo Buffer Types with JET

	Comparison Between Jolt and JET
	Overview of Jolt and JET
	Architecture Comparison
	Components Comparison
	Functionality Comparison
	Class Library Comparison
	Packages
	Package bea.jolt Components

	2 Invoking BEA Tuxedo Services
	Configuring JET for Java Server Access
	Default Repository File
	Parameters to Specify in the UBBCONFIG File
	GROUPS Section
	SERVERS Section

	Sample UBBCONFIG File

	Invoking BEA Tuxedo Services with the JET Class Library
	Importing Packages
	Instantiating a JoltService Object
	Specifying Parameters for the BEA Tuxedo Service
	Specifying String Parameters
	Specifying Array Parameters
	Specifying Parameters of Various Data Types

	Calling the BEA Tuxedo Service
	Handling Results
	Handling Exceptions
	Handling Returned Parameters

	3 Configuring JET for Client Access
	Configuring JET
	About Configuring JET for Client Access
	Step 1: Configure JSL
	Step 2: Configure Jolt Relay
	Configuring JRLY on the Web Server
	Configuring JRAD in the Tuxedo Environment

	Step 3: Registering Tuxedo Services with the Repository

	JET Administrative Reference
	Jolt Server Reference
	About Jolt Servers
	System Administrator Responsibilities
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-Line Options
	Sample UBBCONFIG Settings for JSL
	Security and Encryption

	Jolt Internet Relay Reference
	About Jolt Relay and the Jolt Relay Adapter
	Jolt Relay
	Jolt Relay Adapter

	4 Using the Bulk Loader Program
	Defining Bulk Loader Data Files
	About Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-level Keywords and Values
	Using Parameter-level Keywords and Values
	Sample Bulk Loader Data File

	Running the Bulk Loader
	Troubleshooting

	5 Using the BEA Jolt Repository Editor
	Introducing the Jolt Repository Editor
	Jolt Repository Editor Window
	Components of the Jolt Repository Editor Window

	Getting Started with the Jolt Repository Editor
	Starting the Jolt Repository Editor
	Starting the Jolt Repository Editor Using the Java Applet Viewer
	Starting the Jolt Repository Editor from Your Web Browser

	Logging On to the Jolt Repository Editor
	Sample Logon Window
	Components of the BEA Jolt Repository Editor Logon Window

	Exiting the BEA Jolt Repository Editor

	Main Components of the BEA Jolt Repository Editor
	Workflow for the BEA Jolt Repository Editor
	What Is a Package?
	Sample Packages Window
	Components of the Packages Window
	Viewing a Package

	What Is a Service?
	Sample Services Window
	Components of the Services Window
	Viewing a Service

	Working with Parameters
	Sample Services Window with Parameters
	Viewing a Parameter

	Setting Up Packages and Services
	Saving Your Work
	Adding Packages
	Sample Package Organizer Window
	Adding a Package

	Adding Services
	Sample Edit Services Window
	Options for Adding a Service
	Adding a Service
	Selecting CARRAY or STRING as a Service Buffer Type

	Adding Parameters
	Sample Edit Parameters Window
	Components of the Adding a Parameter Window
	Adding a Parameter
	Selecting CARRAY or STRING as a Parameter Data Type

	Grouping Services Using the Package Organizer
	Sample Package Organizer Window
	Components of the Package Organizer Window
	Grouping Services with the Package Organizer

	Modifying Packages, Services, and Parameters
	Editing Services
	Sample Edit Services Window
	Editing a Service

	Editing Parameters
	Sample Edit Parameters Window
	Editing a Parameter

	Deleting Parameters, Services, and Packages
	Deleting a Parameter
	Deleting a Service
	Deleting a Package

	Making a Service Available to the JET Client
	Exporting and Unexporting Services
	Sample Packages Window
	Exporting or Unexporting a Service

	Reviewing the Exported and Unexported Status

	Testing a Service
	Sample Service Test Window
	Components of the Service Test Window
	Testing a Service
	Test Service Process Flow
	Testing a Service

	Troubleshooting
	Repository Enhancements for Jolt

	Index

