
Using the JDBC Drivers

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the JDBC Drivers

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Using the JDBC Drivers iii

Contents

About This Document
What You Need to Know ... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. Using the WebLogic Enterprise JDBC/XA Drivers
Before You Begin.. 1-2

Supported Platforms... 1-3

Adding the JAR Files to Your CLASSPATH.. 1-3

Adding Locale to Your CLASSPATH... 1-4

Shared Libraries and Dynamic Link Libraries ... 1-4

Requirements for Making a Connection to a DBMS 1-5

About the Sample Code.. 1-5

About the JDBC API.. 1-6

Setting Data Source Properties.. 1-6

Administration Steps .. 1-7

Use buildXAJS to Create an XA Version of JavaServer 1-7

Use buildtms to Create a Transaction Manager Server Load Module
for Oracle ... 1-9

Define the Database Open Information .. 1-10

Define JavaServerXA Parameters... 1-11

Identify the Driver Class and Connection Pool Characteristics........ 1-13

Programming Steps .. 1-14

Import the Required API Packages... 1-14

iv Using the JDBC Drivers

Initialize JavaServerXA and Get the Pool Name 1-15

Use a JNDI Lookup to Create a Pool of Connections....................... 1-15

Get Database Connections from the Pool ... 1-16

2. Using JDBC Connection Pooling
About JDBC Connection Pooling.. 2-2

About the JDBC Drivers and Connection Pooling .. 2-2

UBBCONFIG Parameters for Connection Pooling... 2-4

Sample UBBCONFIG File for Connection Pooling 2-5

JDBCCONNPOOLS Parameter Values ... 2-6

Encrypting DBPASSWORD and PROPS.. 2-10

Displaying Information About JDBC Connection Pools 2-11

T_JDBCCONNPOOLS MIB Class... 2-13

API Characteristics .. 2-14

Application Level API.. 2-14

System Level API for the JNDI Service Provider.................................... 2-14

System Level API for JDBC drivers .. 2-15

Obtaining Connections from a WebLogic Enterprise Connection Pool .. 2-15

An Application’s View of the Connection Lifecycle 2-16

The DataSource Interface ... 2-17

3. Using the jdbcKona Drivers
API Support ... 3-2

Platforms Supported by the jdbcKona Drivers.. 3-2

Adding the JAR Files to Your CLASSPATH ... 3-3

jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries 3-3

Requirements for Making a Connection to a Database Management System
(DBMS) .. 3-5

Support for JDBC Extended SQL ... 3-5

The JDBC API with WebLogic Extensions .. 3-6

Implementing a WebLogic Enterprise Java Application Using the jdbcKona
Drivers .. 3-8

Importing Packages .. 3-9

Setting Properties for Connecting to the DBMS .. 3-9

Connecting to the DBMS ... 3-10

Making a Simple SQL Query ... 3-11

Using the JDBC Drivers v

Inserting, Updating, and Deleting Records .. 3-12

Creating and Using Stored Procedures and Functions 3-13

Disconnecting and Closing Objects ... 3-15

Code Example .. 3-16

4. Using the jdbcKona/Oracle Drivers
Data Type Mapping... 4-2

Connecting a jdbcKona/Oracle Driver to an Oracle DBMS 4-3

Method 1 .. 4-3

Method 2 .. 4-4

Other Properties You Can Set for the jdbcKona/Oracle Driver................. 4-4

General Notes ... 4-5

Waiting for Oracle DBMS Resources ... 4-5

Autocommit... 4-6

Using Oracle Blobs.. 4-7

Support for Oracle Array Fetches.. 4-7

Using Stored Procedures ... 4-8

Syntax for Stored Procedures in the jdbcKona/Oracle Driver 4-9

Binding a Parameter to an Oracle Cursor... 4-9

Using CallableStatement .. 4-11

DatabaseMetaData Methods.. 4-12

jdbcKona/Oracle and the Oracle NUMBER Column 4-12

5. jdbcKona Extensions to the JDBC 1.22 API

Index

vi Using the JDBC Drivers

Using the JDBC Drivers vii

About This Document

This document contains programming and reference information for the JDBC drivers
that are provided with the BEA WebLogic Enterprise™ software.

This document covers the following topics:

n Chapter 1, “Using the WebLogic Enterprise JDBC/XA Drivers,” explains how
you can use the WebLogic Enterprise JDBC/XA drivers to make local or
distributed connections to Oracle 8.0.5 or 8.1.5 databases.

n Chapter 2, “Using JDBC Connection Pooling,” describes creating a pool of
JDBC connections which get WebLogic Enterprise applications ready access to
connections that are already open.

n Chapter 3, “Using the jdbcKona Drivers,” describes general guidelines for using
the jdbcKona drivers, including a summary of the steps you take to use a
jdbcKona driver in a WebLogic Enterprise Java application.

n Chapter 4, “Using the jdbcKona/Oracle Drivers,” provides guidelines for using
the jdbcKona/Oracle Type 2 driver.

n Chapter 5, “jdbcKona Extensions to the JDBC 1.22 API,” describes the
jdbcKona extensions to the JDBC API.

What You Need to Know

This document is intended for programmers and system administrators who need to
create and maintain transactional, scalable WebLogic Enterprise applications.

viii Using the JDBC Drivers

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

Before installing the BEA WebLogic Enterprise software, read the BEA WebLogic
Enterprise Release Notes.

For more information about topics covering CORBA, Java 2 Enterprise Edition
(J2EE), BEA Tuxedo®, distributed object computing, transaction processing, and Java
programming, see the WebLogic Enterprise Bibliography in the WebLogic Enterprise
online documentation.

Documentation Conventions

Using the JDBC Drivers ix

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

x Using the JDBC Drivers

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item

Documentation Conventions

Using the JDBC Drivers xi

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Using the JDBC Drivers

Using the JDBC Drivers 1-1

CHAPTER

1 Using the WebLogic
Enterprise JDBC/XA
Drivers

You can use the WebLogic Enterprise JDBC/XA drivers to make local or distributed
connections to Oracle 8.0.5 or 8.1.5 databases. You can use the drivers with WebLogic
Enterprise CORBA Java and WebLogic Enterprise J2EE (EJB and RMI) applications.

This topic includes the following sections:

n Before You Begin

l Supported Platforms

l Adding the JAR Files to Your CLASSPATH

l Adding Locale to Your CLASSPATH

l Shared Libraries and Dynamic Link Libraries

l Requirements for Making a Connection to a DBMS

l About the Sample Code

l About the JDBC API

n Setting Data Source Properties

l Administration Steps

l Programming Steps

For more information about JDBC connection pooling, see Chapter 2, “Using JDBC
Connection Pooling.”

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-2 Using the JDBC Drivers

For more information about using transactions with the WebLogic Enterprise
JDBC/XA drivers, see Transactions and the WebLogic Enterprise JDBC/XA Driver in
the WebLogic Enterprise online document Using Transactions. It includes the
following topics:

n Local versus distributed (global) transactions, with an example showing how to
switch between the two types of transactions

n JDBC/XA accessibility in CORBA Methods

n JDBC/XA accessibility in EJB methods

Before You Begin

WebLogic Enterprise applications using the WebLogic Enterprise JDBC/XA drivers
can perform local transactions as well as distributed (also called global) transactions.
A local transaction involves updates to a single resource manager (RM), such as a
database. A distributed transaction involves updates across multiple resource
managers.

Read the following topics before you start using a WebLogic Enterprise JDBC/XA
driver:

n Supported Platforms

n Adding the JAR Files to Your CLASSPATH

n Shared Libraries and Dynamic Link Libraries

n Requirements for Making a Connection to a DBMS

n About the Sample Code

n About the JDBC API

Before You Begin

Using the JDBC Drivers 1-3

Supported Platforms

The WebLogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5 are supported
on the following platforms:

n Compaq Tru64 UNIX (Alpha) 4.0F

n HP-UX 11.0

n IBM AIX 4.3.3

n Microsoft Windows 2000 and NT 4.0 SP5

n Sun Solaris 2.6 and 7.0

For information about any vendor patches required on each platform, and the specific
required version of the Java 2 Software Development Kit (SDK), see the WebLogic
Enterprise Platform Data Sheets appendix in the WebLogic Enterprise Installation
Guide.

Adding the JAR Files to Your CLASSPATH

Be sure to add to your environment the WebLogic Enterprise Java ARchive (JAR) files
that include the classes for the JDBC/XA drivers. You can do this by appending the
following to your CLASSPATH system environment variable, where TUXDIR is the
directory in which you installed the WebLogic Enterprise software:

Windows 2000 or NT

%TUXDIR%\udataobj\java\jdk\M3.jar;%TUXDIR%\udataobj\java\jdk\weblogicaux.jar;

UNIX

$TUXDIR/udataobj/java/jdk/M3.jar;$TUXDIR/udataobj/java/jdk/weblogicaux.jar;

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-4 Using the JDBC Drivers

Adding Locale to Your CLASSPATH

During development, or any time you are using BEA tools, you should also set up the
location for error messages from the tools. You do this by adding the following to your
CLASSPATH, where TUXDIR is the directory in which you installed the WebLogic
Enterprise software:

Windows 2000 or NT

%TUXDIR%\locale\java\M3;

UNIX

$TUXDIR/locale/java/M3;

Shared Libraries and Dynamic Link Libraries

The JDBC/XA drivers call native libraries that are supplied with the drivers. The
UNIX libraries (shared object files) are in the $TUXDIR/lib directory. The Windows
DLL files are included in the WebLogic Enterprise software kit in the %TUXDIR%\bin
directory.

The following table lists the names of the driver files included with the WebLogic
Enterprise Java system.

Driver Filename Platform

weblogicoci805.dll

weblogicoci815.dll

Microsoft Windows 2000 and NT 4.0
SP5

weblogicoci805.so

weblogicoci815.so

Compaq Tru64 UNIX 4.0F

IBM AIX 4.3.3

Sun Solaris 2.6 and 7

weblogicoci805.sl

weblogicoci815.sl

HP-UX 11.0

Before You Begin

Using the JDBC Drivers 1-5

For the WebLogic Enterprise JDBC/XA drivers, the driver class names are
weblogic.jdbc20.oci805.Driver or weblogic.jdbc20.oci815.Driver. With
the JDBC 2.0 API, unlike the API for the jdbcKona 1.22 drivers, you do not identify
the driver class name in your application code. Instead, you assign data source
properties, which include the driver class name. In the WebLogic Enterprise
environment, this step is done by setting parameters in the WebLogic Enterprise
application’s UBBCONFIG file. For more information, see “Setting Data Source
Properties” on page 1-6.

For the JDBC/XA drivers, you also need the Oracle-supplied 8.0.5 or 8.1.5 libraries
for the database.

Requirements for Making a Connection to a DBMS

You need the following components to connect to a DBMS using a JDBC/XA driver:

n An Oracle database server, version 8.0.5 or 8.1.5

n The WebLogic Enterprise JDBC/XA driver

n The Java 2 Software Developer Kit (Java 2 SDK). For information about the
specific required version of the Java 2 SDK, see the WebLogic Enterprise
Platform Data Sheets appendix in the WebLogic Enterprise Installation Guide.

About the Sample Code

In addition to the supported sample applications that are provided with the WebLogic
Enterprise software, BEA provides unsupported samples and tools on its Web site. The
JDBC/XA Bankapp sample code shown in this chapter are part of the unsupported
samples on the Web. For a URL pointer to the JDBC/XA Bankapp sample that is
shown in this chapter, see the BEA WebLogic Enterprise Release Notes.

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-6 Using the JDBC Drivers

About the JDBC API

The WebLogic Enterprise 5.1 software supports:

n The JDBC 1.22 API

n The following additional capabilities are defined in the JDBC 2.0 Optional
Package API:

l Distributed transactions: the javax.sql.DataSource API

l Connection pooling

l Java Naming and Directory Interface (JNDI)

New methods that were added in the JDBC 2.0 API, which were not present in JDBC
1.22, are not supported in this release of WebLogic Enterprise. If a WebLogic
Enterprise application calls a new JDBC 2.0 method that was not in JDBC 1.22, an
SQLException will be thrown.

Setting Data Source Properties

The JDBC 2.0 Optional Package API, formerly known as the Standard Extension API,
consists of the javax.sql package. This package includes the DataSource interface,
which provides an alternative to the DriverManager class for making a connection to
a data source. The DriverManager class is used with the jdbcKona 1.22 drivers.

Using a DataSource implementation is better for two important reasons:

n It makes code more portable

n It makes code easier to maintain

In the WebLogic Enterprise environment, you set the data source properties separate
from the WebLogic Enterprise application code. You set these properties in the
application’s UBBCONFIG configuration file. The values include the driver class name,
the group in which the Java server runs, and several parameters that define the initial
and run-time behavior of the JDBC connection pool.

Setting Data Source Properties

Using the JDBC Drivers 1-7

When you create a binary TUXCONFIG version of the application’s UBBCONFIG file with
the tmloadcf command, these values are stored as TMIB properties. When the
WebLogic Enterprise application’s Java server is booted, its infrastructure will read
the properties from TMIB and initialize the connection pools.

The setup process can be divided into:

n Administration Steps

n Programming Steps

The steps are described in subsequent sections of this topic. After you complete these
steps, use the tmloadcf and tmboot commands to deploy the WebLogic Enterprise
Java application, as described in Starting and Shutting Down Applications, an
administration topic in the WebLogic Enterprise online documentation.

Administration Steps

The administration steps are as follows:

n Use buildXAJS to Create an XA Version of JavaServer

n Use buildtms to Create a Transaction Manager Server Load Module for Oracle
8.0.5 or 8.1.5

n Define the Database Open Information

n Define JavaServerXA Parameters

n Identify the Driver Class and Connection Pool Characteristics

Use buildXAJS to Create an XA Version of JavaServer

From a system prompt, use the buildXAJS command to build an XA resource manager
that will be used with a JavaServerXA application group.

Syntax

buildXAJS [-v] -r rmname [-o outfile]

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-8 Using the JDBC Drivers

Example

The following example builds a JavaServerXA resource manager named
PayrollJavaServerXA on a Solaris system:

prompt>buildXAJS -r Oracle_XA -o PayrollJavaServerXA

Options

-v

Specifies that the buildXAJS command should work in verbose mode. In
particular, it writes the build command to its standard output.

-r rmname

Specifies the resource manager associated with this server. If the
JavaServerXA is being deployed in multithreaded mode, you must ensure
that the RM contains values for Oracle 8.0.5 or 8.1.5 (matching your database
software). Attempting to deploy a multithreaded JavaServerXA that is being
linked with an RM other than Oracle 8.0.5 or 8.1.5 is not supported.

The value rmname must appear in the resource manager table located in
$TUXDIR/udataobj/RM on UNIX systems, or %TUXDIR%\udataobj\RM on
Windows 2000 or NT systems. On UNIX systems, each entry in this file is of
the form rmname:rmstructure_name:library_names. On Windows 2000
or NT systems, each entry in this file is of the form
rmname;rmstructure_name;library_names.

Note: See the BEA WebLogic Enterprise Release Notes for information about the
rmname values that must be supplied for Oracle 8.0.5 and 8.1.5.

Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries for
the resource manager and properly sets up the interface between the
transaction manager and the resource manager.

If the -r option is not specified, the default is to use the null resource
manager.

-o outfile

Specifies the name of the output file. If no name is specified, the default is
JavaServerXA.

Setting Data Source Properties

Using the JDBC Drivers 1-9

Environment Variables

TUXDIR

Finds the WebLogic Enterprise libraries and include files to use when
compiling the server application.

LD_LIBRARY_PATH (Solaris)

SHLIB_PATH (HP-UX)

LIBPATH (IBM AIX)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WebLogic Enterprise shared objects. A colon (:) is used to
separate the list of directories.

LIB (Windows 2000 or NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability

The buildXAJS command is supported in UNIX and Windows 2000 or NT 4.0
systems. It is not supported on client-only WebLogic Enterprise systems.

Use buildtms to Create a Transaction Manager Server Load Module for Oracle

From a system prompt, use the buildtms command to build a transaction manager
server load module for the XA resource manager (RM). Oracle 8.0.5 or 8.1.5 is the RM
that you can use with a WebLogic Enterprise JDBC/XA driver. The files that result
from the buildtms command need to be installed in the %TUXDIR% directory
(Windows 2000 or NT 4.0) or $TUXDIR/bin (UNIX) directory.

Syntax

buildtms [-v] -o name -r rmname

Examples

The following examples build transaction manager server load modules for Oracle
8.0.5 or 8.1.5.

Windows 2000 or NT

prompt> buildtms -o %TUXDIR%\bin\TMS_ORA -r Oracle_XA

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-10 Using the JDBC Drivers

UNIX

prompt> buildtms -o $TUXDIR/bin/TMS_ORA -r Oracle_XA

Options

-v

Specifies that buildtms should work in verbose mode. In particular, it writes
the buildserver command to its standard output and specifies the -v option
to buildserver.

-o name

Specifies the filename for the output load module.

-r rmname

Specifies the resource manager associated with this server. If the
JavaServerXA is being deployed in multithreaded mode, you must ensure
that the RM contains values for Oracle 8.0.5 or 8.1.5. Attempting to deploy a
multithreaded JavaServerXA that is being linked with an RM other than
Oracle 8.0.5 or 8.1.5 is not supported.

The value rmname must appear in the resource manager table located in
$TUXDIR/udataobj/RM on UNIX systems, or %TUXDIR%\udataobj\RM on
Windows 2000 or NT systems. On UNIX systems, each entry in this file is of
the form rmname:rmstructure_name:library_names. On Windows 2000
or NT systems, each entry in this file is of the form
rmname;rmstructure_name;library_names.

Note: See the BEA WebLogic Enterprise Release Notes for information about the
rmname values that must be supplied for Oracle 8.0.5 and 8.1.5.

Portability

The buildtms command is supported in UNIX and Windows 2000 or NT systems. It
is not supported on client-only WebLogic Enterprise systems.

Define the Database Open Information

In the GROUPS section of the application’s UBBCONFIG file, configure the OPENINFO
parameter according to the definition of the XA parameter for the Oracle 8.0.5 or 8.1.5
database. Listing 1-1 shows a sample OPENINFO parameter value. In this example, the
OPENINFO values are defined for a group designated as BANK_GROUP1.

Setting Data Source Properties

Using the JDBC Drivers 1-11

Listing 1-1 OPENINFO Setting in Sample UBBCONFIG

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
 OPENINFO =
"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+DbgFl=0
x7+MaxCur=15+Threads=true"
 TMSNAME = TMS_ORA
 TMSCOUNT = 2

In the example, note how the TMS_ORA name matches the Oracle transaction manager
that was created for Oracle 8.0.5 or 8.1.5 in the previous buildtms step.

Define JavaServerXA Parameters

In the SERVERS section of the application’s UBBCONFIG file, define parameters to
indicate how this WebLogic Enterprise application will use JavaServerXA.

The JavaServerXA parameter is required if you are using the JDBC/XA driver. If you
want the JavaServerXA to be multithreaded, specify the -M option for the CLOPT
parameter. To deploy a single-threaded JavaServerXA server, do not use the -M option.

Each JavaServerXA can only host WebLogic Enterprise JDBC connection pools that
connect to one resource manager. The current release supports the Oracle 8.0.5 or 8.1.5
XA resource manager only.

You must specify SRVTYPE=JAVA for the JavaServer or JavaServerXA to use JDBC
connection pooling.

Note: In prior WebLogic Enterprise releases, you could also specify the name of the
connection pool on the command-line options (CLOPT) of the JavaServerXA
or JavaServer parameter. Although this is still allowed by the syntax parser,
the new syntax is to list the connection pool’s name and the application’s JAR
filename in the MODULES section.

Listing 1-2 shows an example of JavaServerXA configured for multithreading in a
sample UBBCONFIG. Notice the association between the BANK_GROUP1 group that was
defined in the previous listing; it contains the OPENINFO values.

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-12 Using the JDBC Drivers

Also notice how in the MODULES section, the bank_pool value is listed to give a handle
for a JDBC connection pool.

Listing 1-2 Multithreaded Server Configuration in Sample UBBCONFIG

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 .
 .
 .
 JavaServerXA
 SRVGRP = BANK_GROUP1
 SRVID = 2
 SRVTYPE = JAVA
 CLOPT = "-A -- -M 10"
 RESTART = N

 .
 .
 .

*MODULES
 BankApp
 SRVGRP = BANK_GROUP1
 SRVID = 2
 FILE = "BankApp.jar"
 ARGS = "TellerFactory_1 bank_pool"

The -M 10 parameter for the JavaServerXA enables a multithreaded JavaServer with
a pool of 10 threads. The threads setting is in addition to the JDBC connection pool
settings, which are defined in the next section, JDBCCONNPOOLS.

Note: The potential for a performance gain from a multithreaded JavaServer depends
on the application pattern and whether the application is running on a
single-processor or multiprocessor machine. For more information about
enabling multithreaded JavaServers, see Creating a Configuration File, an
administration topic in the WebLogic Enterprise online documentation.

Setting Data Source Properties

Using the JDBC Drivers 1-13

Identify the Driver Class and Connection Pool Characteristics

The JDBCCONNPOOLS section of the application’s UBBCONFIG file includes several
parameters to set the properties of the JDBC connection pool and the driver it uses.
This JDBCCONNPOOLS section was added to the WebLogic Enterprise product in
version 5.1. Listing 1-3 shows a sample section.

Listing 1-3 Defining Driver and Connection Pooling Properties in a Sample
UBBCONFIG

*JDBCCONNPOOLS
 bank_pool
 SRVGRP = BANK_GROUP1
 SRVID = 2
 DRIVER = "weblogic.jdbc20.oci815.Driver"
 URL = "jdbc:weblogic:oracle:beq-local"
 PROPS = "user=scott;password=tiger;server=Beq-Local"
 ENABLEXA = Y
 INITCAPACITY = 2
 MAXCAPACITY = 10
 CAPACITYINCR = 1
 CREATEONSTARTUP = Y

The SRVGRP parameter value, BANK_GROUP1, forms the association between this
bank_pool connection pool and the definition of BANK_GROUP1 in the GROUPS section
of the UBBCONFIG. The definition for BANK_GROUP1 included the Oracle database
OPENINFO values.

The JDBC connection pool is named bank_pool, which was also identified in the
MODULES section. The use of the server ID (SRVID = 2) and the bank_pool name
forms the association between the JavaServerXA that will run in BANK_GROUP1 and
this connection pool.

For the WebLogic Enterprise JDBC/XA driver, set the DRIVER parameter value to
either weblogic.jdbc20.oci805.Driver or
weblogic.jdbc20.oci815.Driver. Also, set the ENABLEXA parameter to Y.

See Chapter 2, “Using JDBC Connection Pooling” for information about the other
JDBCCONNPOOLS parameters. They include settings for the initial and run-time
behavior of the named connection pool.

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-14 Using the JDBC Drivers

Programming Steps

The programming steps include the following:

n Import the required API packages

n Initialize JavaServerXA and Get the Name of the JDBC Connection Pool

n Use a JNDI lookup to create a pool of connections

n Get database connection from the pool

After you complete these steps described in these sections, use the tmloadcf and
tmboot commands to deploy the WebLogic Enterprise Java application, as described
in Starting and Shutting Down Applications, an administration topic in the WebLogic
Enterprise online documentation. The steps include:

n Using tmloadcf to create a binary version of the UBBCONFIG file

n Using tmboot -y to boot the application

Import the Required API Packages

Listing 1-4 shows the packages that a Java application imports. In particular, note that:

n The java.sql.* and javax.sql.* packages are required for database
operations.

n The javax.naming.* package is required for performing a JNDI lookup on the
pool name, which is passed in as a command-line parameter upon server startup.
The pool name must be registered on that server group.

Listing 1-4 Importing Required Packages

import java.io.*;
import java.net.URL;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import com.beasys.*;
import com.beasys.Tobj.*;
import com.beasys.Tobj.TP;

Setting Data Source Properties

Using the JDBC Drivers 1-15

Initialize JavaServerXA and Get the Pool Name

In your Java application code, initialize the JavaServerXA. In the sample file
BankAppServerImpl.java, when the sample BankApp JavaServerXA is initialized, it:

n Creates a Teller factory object reference

n Register the factory reference with the FactoryFinder

n Establishes connections to the database

The two arguments are:

n TellerFactory_1

n bank_pool

The JdbcConnPoolName argument is the name of the connection pool that was
specified in the application’s UBBCONFIG file. The JavaServerXA returns this value to
the program.

For example, the following code fragment is from the sample file
BankAppServerImpl.java:

 public boolean initialize(String[] args)
 {
 try {
 // get input arguments
 if(args.length < 2) {

TP.userlog("Not enough arguments");
TP.userlog("Correct Argument list: ");
TP.userlog("TellerFactory_1 bank_pool");
return false;

 }

 tellerFName = new String(args[0]);
 String pool_name = args[1];

 // write the input arguments to ULOG file
 TP.userlog("Input Arguments for Server.initialize(): ");
 TP.userlog("TellerFactory_1: " + tellerFactory_1);
 TP.userlog("JDBC connection pool name: " + bank_pool);

Use a JNDI Lookup to Create a Pool of Connections

The sample program BankAppServerImpl.java uses the static variable DataSource,
the connection pool object. For example:

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-16 Using the JDBC Drivers

static DataSource pool;

Using DataSource, the sample uses a JNDI lookup to create a pool of connections to
the database. For example:

 public void get_connpool(String bank_pool)
 throws Exception
 {
 try {
 javax.naming.Context ctx = new InitialContext();
 pool = (DataSource)ctx.lookup("jdbc/" + bank_pool);
 }
 catch (javax.naming.NamingException ex){
 TP.userlog("Couldn’t obtain JDBC connection pool: " +
 bank_pool);
 throw ex;
 }
 }

Get Database Connections from the Pool

In the DataSource implementation, the Connection object that is returned by the
DataSource.getConnection method is identical to a Connection object returned
by the jdbcKona 1.22 DriverManager.getConnection method. Because of the
advantages it offers, using a DataSource object is the recommended way to obtain a
connection.

For the application programmer, using a DataSource object is a matter of choice.
However, programmers writing WebLogic Enterprise JDBC applications that include
distributed (XA) transactions and connection pooling must use a DataSource object
to get connections.

For example, the following code fragment is from the sample application file
DBAccessImpl.java:

public void get_valid_accounts(short pinNo, CustAccountsHolder
accounts)
 throws DataBaseException, PinNumberNotFound
 {

 Statement stmt=null;
 ResultSet rs=null;
 Connection con= null;

 try {

Setting Data Source Properties

Using the JDBC Drivers 1-17

 con = BankAppServerImpl.pool.getConnection();
 // Construct and execute the SQL SELECT statement.
 stmt = con.createStatement();
 String stmtBuf =

new String(
 "SELECT CheckingAccountID, SavingsAccountID "
 + "FROM Cust_Data WHERE PinNo = "
 + pinNo);

 rs = stmt.executeQuery(stmtBuf);

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-18 Using the JDBC Drivers

Using the JDBC Drivers 2-1

CHAPTER

2 Using JDBC Connection
Pooling

This topic includes the following sections:

n About JDBC Connection Pooling

n About the JDBC Drivers and Connection Pooling

n UBBCONFIG Parameters for Connection Pooling

l Sample UBBCONFIG File for Connection Pooling

l JDBCCONNPOOLS Parameter Values

l Encrypting DBPASSWORD and PROPS

n Displaying Information About JDBC Connection Pools

n T_JDBCCONNPOOLS MIB Class

n API Characteristics

Chapter 1, “Using the WebLogic Enterprise JDBC/XA Drivers,” describes the
JDBC/XA drivers provided with the WebLogic Enterprise software and introduces the
use of connection pooling with those XA drivers for Oracle 8.0.5 and 8.1.5. This
chapter explains how to use connection pooling with any JDBC driver supported by
the WebLogic Enterprise software. This includes the WebLogic Enterprise JDBC/XA
drivers and the jdbcKona drivers that are documented in Chapter 4, “Using the
jdbcKona/Oracle Drivers.”

If you use the jdbcKona drivers, it is not mandatory that you use JDBC connection
pooling to obtain database connections. However, BEA recommends that you use the
connection pooling feature with Java applications. If you use a JDBC/XA driver, you
must use the JDBC connection pooling to obtain database connections.

2 Using JDBC Connection Pooling

2-2 Using the JDBC Drivers

About JDBC Connection Pooling

To conserve system resources and to improve the performance of transactional BEA
WebLogic Enterprise (WLE) applications, WebLogic Enterprise allows you to define
a pool of JDBC database connections. You can use the JDBC connection pooling
features in WebLogic Enterprise CORBA Java and WebLogic Enterprise EJB
applications.

JDBC connections are expensive resources. Opening and closing them are expensive
operations. The JDBC connection pooling feature in WebLogic Enterprise provides
efficient use of database connections. Creating a pool of JDBC connections gives
WebLogic Enterprise applications ready access to connections that are already open.
It removes the overhead of opening a new connection for each database user.

WebLogic Enterprise application developers or system administrators configure the
connection pool by using a new section in the application’s UBBCONFIG file:
JDBCCONNPOOLS. WebLogic Enterprise applications use the connection pool at
runtime to obtain JDBC connections.

The WebLogic Enterprise software provides connection pooling in its Java
infrastructure, to be used on top of different JDBC drivers that integrates with the
WebLogic Enterprise administration features.

About the JDBC Drivers and Connection
Pooling

The WebLogic Enterprise software provides the following JDBC drivers:

n WebLogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5 (Type 2)

n jdbcKona/Oracle drivers for Oracle 7.3.4, 8.0.5, and 8.1.5 (Type 2)

When you use the jdbcKona drivers, you can optionally use the connection pooling
feature described in this topic. It is not mandatory that you use connection pooling with
the jdbcKona drivers. The jdbcKona drivers do not support distributed transactions

About the JDBC Drivers and Connection Pooling

Using the JDBC Drivers 2-3

(also called global, or XA transactions). A local transaction involves updates to a
single resource manager, such as a database. A distributed transaction involves updates
across multiple resource managers.

WebLogic Enterprise applications that use the JDBC/XA drivers, for local or
distributed transactions, must use connection pooling and Oracle 8.0.5 or 8.1.5.

Table 2-1 summarizes the JDBC connection pooling configuration options and
requirements.

Table 2-1 JDBC Connection Pooling Options and Requirements

JDBC Driver Category Without JDBC
Connection
Pooling

With JDBC Connection
Pooling

JDBC drivers supporting the
JDBC 1.x API.

This includes the jdbc/Kona
drivers that are included with
WebLogic Enterprise:

n jdbcKona/Oracle 7.3.4

n jdbcKona/Oracle 8.0.5
(when ENABLEXA in
the application’s
UBBCONFIG is set to N)

n jdbcKona/Oracle 8.1.5
(when ENABLEXA in
the application’s
UBBCONFIG is set to N)

Obtain JDBC
connections from
DriverManager.

Obtain the WebLogic Enterprise
provided DataSource (which
wraps around the driver vendor’s
DriverManager) from the
WebLogic Enterprise JNDI service
provider. Then obtain JDBC
connections from DataSource.

JDBC drivers supporting
JDBC 2.0 Extension API
pertaining to Connection
Pooling.

Obtain the JDBC
driver vendor's
DataSource from
the WebLogic
Enterprise JNDI
service provider. Then
obtain JDBC
connections from
DataSource.

Obtain the WebLogic Enterprise
provided DataSource (which wraps
around the JDBC driver vendor's
ConnectionPoolDataSource)
from the WebLogic Enterprise
JNDI service provider. Then obtain
JDBC connections from
DataSource.

2 Using JDBC Connection Pooling

2-4 Using the JDBC Drivers

UBBCONFIG Parameters for Connection
Pooling

This section describes the application’s UBBCONFIG file parameters that are related to
JDBC connection pooling.

The JDBCCONNPOOLS section must be placed after the SERVERS section in the
configuration file.

The JDBCCONNPOOLS section has the following characteristics:

n The entries in the JDBCCONNPOOLS section start with the names of connection
pools.

n The SRVID and SRVGRP attributes must refer to a JavaServer that is specified in
the SERVERS section.

n Only the SRVGRP, SRVID, MAXCAPACITY, and CAPACITYINCR attributes are
required for entries. TESTTABLE must be specified if REFRESH is specified or if
TESTONRELEASE or TESTONRESERVE are set to Y.

n WebLogic Enterprise
JDBC/XA drivers for
Oracle 8.0.5 or 8.1.5
(when ENABLEXA in the
application’s
UBBCONFIG is set to Y).

Not applicable. (The
WebLogic Enterprise
JDBC/XA drivers for
Oracle 8.0.5 or 8.1.5
driver must be used in
conjunction with
WebLogic Enterprise
JDBC connection
pooling.)

Obtain the WebLogic Enterprise
provided DataSource from the
WebLogic Enterprise JNDI service
provider. Then obtain JDBC
connections from DataSource.

Table 2-1 JDBC Connection Pooling Options and Requirements (Continued)

JDBC Driver Category Without JDBC
Connection
Pooling

With JDBC Connection
Pooling

UBBCONFIG Parameters for Connection Pooling

Using the JDBC Drivers 2-5

Note: In the SERVERS section, you must also specify SRVTYPE=JAVA for the
JavaServer or JavaServerXA to use JDBC connection pooling.

Some attributes are dependent on the version of the JDBC driver.

Sample UBBCONFIG File for Connection Pooling

Listing 2-1 shows a UBBCONFIG file for a sample multithreaded application that uses
the WebLogic Enterprise JDBC/XA driver and connection pooling. Subsequent
sections in this topic describe the parameters that are related to JDBC configuration.
Bolded text is used in the listing to highlight UBBCONFIG section names and parameters
that are discussed following the example.

Listing 2-1 Sample UBBCONFIG for JDBC/XA Bankapp

*RESOURCES
IPCKEY = 39211
DOMAINID = simple
MASTER = SITE1
MODEL = SHM
LDBAL = N

*MACHINES
trixie
LMID = SITE1
APPDIR = “/myapps/banking”
TUXC0NFIG = “/myapps/banking/tuxconfig”
TUXDIR “/wledir”
ULOGPFX “/usr/appdir/logs/ULOG”
MAXACCESSERS = 50

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
 OPENINFO =
"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+DbgFl=0
x7+MaxCur=15+Threads=true"
 TMSNAME = TMS_ORA
 TMSCOUNT = 2

2 Using JDBC Connection Pooling

2-6 Using the JDBC Drivers

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 .
 .
 .

 JavaServerXA
 SRVGRP = BANK_GROUP1
 SRVID = 2
 SRVTYPE = JAVA
 CLOPT = "-A -- -M 10"
 RESTART = N
 .
 .
 .

*MODULES
 BankApp
 SRVGRP = BANK_GROUP1
 SRVID = 2
 FILE = "BankApp.jar"
 ARGS = "TellerFactory_1 bank_pool"

*JDBCCONNPOOLS
 bank_pool
 SRVGRP = BANK_GROUP1
 SRVID = 2
 DRIVER = "weblogic.jdbc20.oci815.Driver"
 URL = "jdbc:weblogic:oracle:Beq-Local"
 PROPS = "user=scott;password=tiger;server=Beq-Local"
 ENABLEXA = Y
 INITCAPACITY = 2
 MAXCAPACITY = 10
 CAPACITYINCR = 1
 CREATEONSTARTUP = Y

JDBCCONNPOOLS Parameter Values

The following list describes the JDBCCONNPOOLS parameters shown in Listing 2-1,
“Sample UBBCONFIG for JDBC/XA Bankapp,” on page 2-5. Also described are
additional JDBCCONNPOOLS parameters that are not shown in the listing.

UBBCONFIG Parameters for Connection Pooling

Using the JDBC Drivers 2-7

Note: In the SERVERS section, you must also specify SRVTYPE=JAVA for the
JavaServer or JavaServerXA to use JDBC connection pooling.

n Specify a name for the connection pool. In this example, bank_pool is used.
This parameter is required and matches the pool name identified in the ARGS
parameter of the MODULES section.

n Use the required SRVGRP parameter to identify the server group that will use the
connection pool; in this case, BANK_GROUP1. SRVGRP is a required parameter.
The value is a string up to 30 characters. There is no default value.

n Use the SRVID parameter to identify the JavaServer defined in the SERVERS
section. SRVID is a required parameter. The value is a number from 1 to 30001.
There is no default value.

n Use the DRIVER parameter to define the class name for the JDBC driver being
used. The values are:

l weblogic.jdbc20.oci815.Driver

l weblogic.jdbc20.oci805.Driver

l weblogic.jdbc20.oci734.Driver

The weblogic.jdbc20.oci815.Driver value is the driver name for both:

l The WebLogic Enterprise JDBC/XA driver, if you set ENABLEXA=Y, for
distributed XA transactions

l The jdbcKona/Oracle driver for Oracle 8.1.5, if you set ENABLEXA=N, for
local transactions

The weblogic.jdbc20.oci805.Driver value is the driver name for both:

l The WebLogic Enterprise JDBC/XA driver, if you set ENABLEXA=Y, for
distributed XA transactions

l The jdbcKona/Oracle driver for Oracle 8.0.5, if you set ENABLEXA=N, for
local transactions

The WebLogic Enterprise JDBC/XA driver is described in Chapter 1, “Using the
WebLogic Enterprise JDBC/XA Drivers.” For this driver, you must use
connection pooling and therefore must have a JDBCCONNPOOLS section in the
application’s UBBCONFIG file.

The jdbcKona/Oracle driver is described in Chapter 4, “Using the
jdbcKona/Oracle Drivers.” It is not mandatory that you use JDBC connection
pooling with the jdbcKona/Oracle driver. However, if your application uses

2 Using JDBC Connection Pooling

2-8 Using the JDBC Drivers

connection pooling, you must include a DRIVER parameter in the application’s
UBBCONFIG file.

n For JDBC drivers that are not JDBC 2.0 compliant, use the URL parameter to
identify the Universal Resource Locator (URL) that is associated with this
driver. If you are using connection pooling with a driver that is not compliant
with JDBC 2.0, you must use the URL parameter. The URL value is a string up to
256 characters.

n Use the optional DBNAME parameter to identify the name of the database. The
value is a string up to 30 characters.

n Use the optional DBUSER parameter to identify the user account name that will
access the database for this WebLogic Enterprise application. The value is a
string up to 30 characters.

n Use the optional DBPASSWORD parameter to identify the user password for the
user account that will access the database for this WebLogic Enterprise
application. The value is a string up to 64 characters. This can be specified as
clear text or it can be encrypted using the tmloadcf command. For details on
this option, see “Encrypting DBPASSWORD and PROPS” on page 2-10.

n Use the optional USERROLE parameter to identify the SQL role of the user
account that will access the database for this WebLogic Enterprise application.
The value is a string up to 30 characters.

n Use the optional DBHOST parameter to identify the host name of the database
server. The value is a string up to 30 characters.

n Use the optional DBNETPROTOCOL parameter to identify the network protocol
used to communicate with the database. The value is a string up to 30 characters.

n Use the optional DBPORT parameter to identify the port number used for
database connections. The value is a number up to 65535.

n For JDBC drivers that are not JDBC 2.0 compliant, use the PROPS parameter to
identify vendor-specific properties for the driver. The value can be a string up to
256 characters. This information can be encrypted. For more information, see
“Encrypting DBPASSWORD and PROPS” on page 2-10.

n Use the ENABLEXA parameter to indicate whether the connection pool will be
used with an XA-compliant driver. The value can be Y or N. For applications
using the WebLogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5, this
value must be set to Y. The default value is N.

UBBCONFIG Parameters for Connection Pooling

Using the JDBC Drivers 2-9

n Use the optional CREATEONSTARTUP parameter to indicate whether the
connection pool is created when the Java server is started. Otherwise, the pool is
created when the first request arrives. The value can be Y or N. The default value
is Y.

n Use the optional LOGINDELAY parameter to indicate the number of seconds to
wait between each attempt to open a connection to the database. Some database
servers cannot handle multiple requests for connections in rapid succession. This
property allows you to build in a small delay to allow the database server to
catch up. The value can be any number 0 or greater. The default value is 0.

n Use the optional INITCAPACITY parameter to indicate the number of
connections initially supported in the connection pool. This should not exceed
the value of the related MAXCAPACITY parameter. The value for INITCAPACITY
can be any number 0 or greater. The default value is the value for
CAPACITYINCR.

n Use the required MAXCAPACITY parameter to indicate the maximum number of
connections supported in the connection pool. The value is any number 0 or
greater. There is no default value for MAXCAPACITY.

n Use the required CAPACITYINCR parameter to set the number of connections
added to the pool when the current limit is exceeded but the maximum capacity
is not yet reached. The value is any number 0 or greater. There is no default
value.

n Use the ALLOWSHRINKING parameter to indicate that the connection pool’s
number of connections can return to the initial capacity, after expanding to meet
demands. The value can be Y or N. The default value is N. The shrinking only
closes unused connections.

n Use the SHRINKPERIOD parameter to indicate the length of time during which
the Java server shrinks the pool to its initial capacity if additional connections
are not used. The value is a number in units of minutes.

n Use the TESTTABLE parameter to identify the name of the database table that is
used to test the validity of connections in the connection pool. The name value
can be a string up to 256 characters.

The query select count(*) from TESTTABLE is used to test a connection.
The table must exist and be accessible to the database user for the connection.
This TESTTABLE parameter is required if the REFRESH parameter is specified, or
if the parameter TESTONRELEASE or TESTONRESERVE is set to Y.

2 Using JDBC Connection Pooling

2-10 Using the JDBC Drivers

n Use the REFRESH parameter to specify a time interval for tests performed on the
connection pool. This parameter is used in conjunction with the TESTTABLE
parameter to enable automatic refreshes of connections in pools. The value for
the interval is a number in units of minutes. At the specified interval, each
unused connection in the pool is tested by executing an SQL query on the
connection. If the test fails, the connection’s resources are dropped and a new
connection is created to replace it.

n Use the optional TESTONRESERVE parameter to indicate whether the Java server
tests a connection after removing it from the pool and before giving it to the
client. The value can be Y or N. The default value is N.

n Use the optional TESTONRELEASE parameter to indicate whether the Java server
tests a connection before returning it to the connection pool. If all connections in
a pool are in use and a client is waiting for a connection, the client will wait
longer while the connection is tested. This feature requires that you specify a
value for the related TESTTABLE parameter (a database table name). The value
can be Y or N. The default value is N.

n Use the optional WAITFORCONN parameter to indicate whether an application
waits indefinitely for a connection if none is currently available. The value can
be Y or N. If the WAITFORCONN parameter is N, the request for a connection
returns to the caller. If the WAITTIMEOUT parameter is specified, the default for
the WAITFORCONN parameter is N. If the WAITTIMEOUT parameter is not specified,
the default for the WAITFORCONN parameter is Y.

n Use the optional WAITTIMEOUT parameter to defines the time interval (in
seconds) for an application to wait for a connection to become available. The
WAITFORCONN and WAITTIMEOUT parameters are mutually exclusive. The value
for the WAITTIMEOUT parameter can be a number 0 or greater, and represents
time units in seconds. There is no default value.

Encrypting DBPASSWORD and PROPS

The DBPASSWORD and PROPS parameters in the JDBCCONNPOOLS section specify
sensitive data that you may want to encrypt. Values for these attributes can be
encrypted in the UBBCONFIG file using the tmloadcf and tmunloadcf utilities.

Displaying Information About JDBC Connection Pools

Using the JDBC Drivers 2-11

To store a value for DBPASSWORD or PROPS in encrypted form, you initially use a text
editor to enter a string of five or more continuous asterisks in the parameter value in
place of the password in the UBBCONFIG file. This string of asterisks is a placeholder
for the password. The following is a sample DBPASSWORD statement illustrating this:

DBPASSWORD="*******"

When tmloadcf encounters this string of asterisks, it prompts the user to select a
password. For example:

>tmloadcf -y e:/wle5/samples/atmi/bankapp/xx

DBPASSWORD ("pool2" SRVGRP=GROUP1 SRVID=5):

After entering the password, tmloadcf stores the password in the TUXCONFIG file in
encrypted form. If you use tmunloadcf to generate a UBBCONFIG file, the encrypted
password entered is written into the DBPASSWORD statement in the UBBCONFIG file with
@@ as delimiters. The following is a sample DBPASSWORD statement generated by
tmunloadcf:

DBPASSWORD="@@A0986F7733D4@@"

When tmloadcf encounters an encrypted password in a UBBCONFIG file generated by
using tmunloadcf, it does not prompt the user to create a password. Instead, the
tmloadcf command uploads the encrypted password back into the system.

Note: The UBBCONFIG file with the encrypted form of the password may be uploaded
back into the system only once; subsequent attempts will fail.

Use of encrypted passwords is only recommended for production environments.
Clear-text passwords can be used during application development.

Displaying Information About JDBC
Connection Pools

You can use the tmadmin printjdbcconnpool command to report statistics on
JDBC connection pools. The data includes the maximum number of connections per
pool, the number of connections in use, the number of clients waiting for a connection,
and the high-water mark (HWM) or highest number of connections used for a pool.

2 Using JDBC Connection Pooling

2-12 Using the JDBC Drivers

Listing 2-2 shows the output produced by running the printjdbcconnpool command
in terse and verbose modes. In terse mode the maximum pool size, the current pool
size, and the number of connections currently in use are shown. In verbose mode the
number of clients waiting and the high-water mark are also shown.

Listing 2-2 Sample Output from tmadmin printjdbcconnpool Command

>printjdbcconnpool
Pool Name Grp Name Srv Id Size Max Size Used
----------- ---------- ------ ---- -------- ----
ejbPool J_SRVGRP 101 1 15 0
Pool J_SRVGRP 102 10 30 3

The following is the verbose mode output for a single connection pool:

 Pool Name: Pool2
 Group ID: J_SRVGRP
 Server ID: 102
 Driver: (none)
 URL: (none)
 Database Name: Db
 User: leia
 Host: SITE1
 Password: mypwd
 Net Protocol: odbc
 Port: 120
 Props: (none)
 Enable XA: No
 Create On Startup: Yes
 Pool Size: 10
 Maximum Size: 30
 Capacity increment: 3
 Allow shrinking: Yes
 Shrink interval: 10 min(s)
 Login delay: 1 sec(s)
 Connections in use: 3
 Connections awaiting: 0
HWM connections in use: 5
 Test table: testtable
 Refresh interval: 20 sec(s)
 Test conn OnReserve: Yes
 Test conn OnRelease: No

T_JDBCCONNPOOLS MIB Class

Using the JDBC Drivers 2-13

For example if the high-water mark (HWM) of connections in use is at or close to the
maximum size, or connections in use is close to the maximum size and clients are
waiting for connections, then you may want to expand the maximum size of the pool.
To do this, you must:

n Shut down the WebLogic Enterprise application with the tmshutdown
command.

n Edit the WebLogic Enterprise application’s UBBCONFIG file and reconsider the
values specified for the particular connection pool’s MAXCAPACITY parameter in
the JDBCCONNPOOLS section. You might also want to experiment with the values
for the following related JDBCCONNPOOLS parameters: INITCAPACITY,
CAPACITYINCR, ALLOWSHRINKING, SHRINKPERIOD, and WAITFORCONN or
WAITTIMEOUT. See the section “JDBCCONNPOOLS Parameter Values” on
page 2-6 for details.

n Use the tmloadcf command to create a new binary TUXCONFIG version of the
application’s configuration file.

n Use the tmboot -y command to restart the application.

Note: Currently, the WebLogic Enterprise software does not support runtime
changes to connection pools in running applications.

T_JDBCCONNPOOLS MIB Class

The BEA Tuxedo infrastructure supports WebLogic Enterprise features by providing
new or enhanced TMIB classes. For JDBC connection pooling, this includes a new
T_JDBCCONNPOOLS TMIB class. The values that you supply in the a WebLogic
Enterprise application’s UBBCONFIG file are stored in the TMIB classes. The properties
defined in these classes are read by the WebLogic Enterprise Java server infrastructure
(at boot time) to determine the defined behavior of the application, including the
behavior of any connection pools.

System programmers can access the T_JDBCCONNPOOL class directly to administer
WebLogic Enterprise applications, by using the currently supported TMIB access
means. The T_JDBCCONNPOOL TMIB class is documented in Section 5 of the BEA
Tuxedo Reference Manual. This document has been updated and is included in the
WebLogic Enterprise online documentation.

2 Using JDBC Connection Pooling

2-14 Using the JDBC Drivers

API Characteristics

The WebLogic Enterprise connection pooling feature supports the full JDBC 2.0
Optional Package connection pooling subset, which consists of an application level
API and a system level API for interacting with a JNDI Service Provider or other
JDBC drivers.

Note: The JDBC 2.0 Optional Package was formerly known as the JDBC 2.0
Standard Extension API.

Application Level API

The JDBC 2.0 application level API provides interfaces for an application to obtain
JDBC connections. In the JDBC 2.0 Optional Package, JDBC data sources are
implemented by the application server. The data sources serve as JDBC connection
factories, through which application users obtain JDBC connections.

The application level API consists of the following interfaces:

n javax.sql.DataSource

n java.sql.Connection

For JDBC drivers that are compliant with the JDBC 2.0 Optional Package API, the
connection is obtained from the driver (which is a reference to the actual
PooledConnection) and returned to the application directly. However, for a JDBC
1.x driver, the connection object returned to the application is implemented by the
WebLogic Enterprise connection pooling module; the connection object is only a
reference to the actual database connection returned by the underlying driver.

System Level API for the JNDI Service Provider

WebLogic Enterprise data sources also implement the following interfaces as an
external contract to the WebLogic Enterprise local JNDI Service Provider so that the
JNDI Service Provider can interact with it in a standard way:

n javax.naming.Reference

API Characteristics

Using the JDBC Drivers 2-15

n javax.naming.spi.ObjectFactory

System Level API for JDBC drivers

For JDBC 1.x drivers that do not directly support the JDBC 2.0 Optional Package API
for connection pooling, the WebLogic Enterprise connection pooling facility provides
JDBC 2.0 interface wrappers. Therefore, from the connection pooling module’s
perspective, it interacts with all drivers with the JDBC 2.0 Optional Package API
protocol.

The interfaces supported on behalf of the JDBC 1.x drivers are:

n javax.sql.ConnectionPoolDataSource

n javax.sql.PooledConnection

The WebLogic Enterprise JDBC connection pooling module also supports the
following interface as an external contract to the pooled connections of the JDBC
drivers: javax.sql.ConnectionEventListener.

Obtaining Connections from a WebLogic Enterprise
Connection Pool

A WebLogic Enterprise application completes the following steps to obtain a JDBC
connection from the WebLogic Enterprise connection pool:

1. Obtains a WebLogic Enterprise JNDI implementation

WebLogic Enterprise provides a local JNDI implementation for use within a
WebLogic Enterprise JavaServer. Users specify the WebLogic Enterprise initial
context factory as the initialization parameter when they get the JNDI initial
context, as follows:

Context ctx = new InitialContext();

For the local WebLogic Enterprise JNDI service provider, you do not have to
specify the initial context factory.

2. Obtains the JDBC data source and connection

2 Using JDBC Connection Pooling

2-16 Using the JDBC Drivers

Data sources are registered in the JNDI namespace by WebLogic Enterprise
JavaServers. The name by which it is registered is specified as one of the data
source properties in the application’s UBBCONFIG file. All JDBC data sources are
registered in the “jdbc” JNDI naming subcontext of the JNDI root naming
context. For example, a data source with the name “EmployeeDB” will be
registered with the JNDI name “jdbc/EmployeeDB” .

Assume an application needs to obtain a well-known data source called
“jdbc/EmployeeDB” from JNDI. The application can get the JDBC connection
from the data source, as shown in the following code fragment:

/*
 * Assume that it has already obtained JNDI context as in
 * previous step
 */

DataSource ds = (DataSource)ctx.lookup(“jdbc/EmployeeDB”);
Connection con = ds.getConnection();

An Application’s View of the Connection Lifecycle

The Connection object returned to the application is only a reference to the
underlying database connection. The Connection object has the following lifecycle:

n When an application calls DataSource.getConnection, the WebLogic
Enterprise connection pooling module creates a new Connection object on top
of an actual database connection that was previously cached or created from the
JDBC driver. The Connection object is now in the OPEN state.

n When the application calls Connection.close, or when the connection is
implicitly closed by the application server, the connection object is now in the
CLOSED state, and any subsequent invocation would result in SQLException.
The underlying database connection is then returned to the connection pool
ready to be reused.

n When the connection object is not referenced, it will be subjected to garbage
collection.

API Characteristics

Using the JDBC Drivers 2-17

The DataSource Interface

The DataSource implementation in WebLogic Enterprise has the following
semantics:

n getConnection()

public java.sql.Connection getConnection()
throws java.sql.SQLException

Application users use this getConnection method to obtain JDBC connections
from the data source. Unlike the JDBC 1.0 DriverManager.getConnection
API, you do not need to supply the username, password, and URL arguments.
The relevant information is made available to the data source via the JDBC data
source properties. Applications are responsible for ensuring that the sign-on
information is available through appropriate data source properties. That is:

l For JDBC 1.x drivers, through the driverProps data source properties

l For JDBC 2.0 drivers, through the username and password data source
properties

You can decide whether to wait for the connection if none is available, and how
long to wait for it via the two optional JDBC data source properties:

l waitForConnection

l waitSecondsForConnection

If the property is not specified, by default getConnection will block until a
connection is available. If no connection is available after the wait period is
specified, an SQLException with be thrown, with a message indicating no
connection is available.

n getConnection(username, password)

public java.sql.Connection getConnection(
java.lang.String username,
java.lang.String password)
throws java.sql.SQLException

If the application uses this method to get a connection, the username and
password specified in the arguments will be checked against the values
specified in the corresponding JDBC data source properties (which are required
for WebLogic Enterprise but not for standard JDBC). If the values match, it
behaves the same as the previous method. Otherwise, a SQLException will be
thrown.

2 Using JDBC Connection Pooling

2-18 Using the JDBC Drivers

n getLogWriter()

public java.io.PrintWriter getLogWriter()
throws java.sql.SQLException

Returns the log writer for the data source.

n setLogWriter()

public void setLogWriter(java.io.PrintWriter out)
throws java.sql.SQLException

The application sets the log writer for the data source using this API.

The WebLogic Enterprise connection pooling facility will intercept the log writer
and write the logging information to ULOG as well if the Java server CLOPT
option includes the following parameter: -jdbclog.

n setLoginTimeout

public void setLoginTimeout(int seconds) throws
java.sql.SQLException

Sets the maximum time in seconds that this data source will wait while
attempting to connect to a database.

n getLoginTimeout

public int getLoginTimeout() throws java.sql.SQLException

Gets the maximum time in seconds that this data source can wait while
attempting to connect to a database.

Using the JDBC Drivers 3-1

CHAPTER

3 Using the jdbcKona
Drivers

This chapter covers general guidelines for using the jdbcKona drivers and some
vendor-specific notes on each driver. Included at the end of this chapter is a summary
of the steps you take, including sample code, to use a JDBC driver in a WebLogic
Enterprise Java application.

This topic includes the following sections:

n API Support

n Adding the JAR Files to Your CLASSPATH

n jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries

n Requirements for Making a Connection to a Database Management System
(DBMS)

n Support for JDBC Extended SQL

n The JDBC API with WebLogic Extensions

n Implementing a WebLogic Enterprise Java Application Using the jdbcKona
Drivers

3 Using the jdbcKona Drivers

3-2 Using the JDBC Drivers

API Support

The WebLogic Enterprise 5.1 software supports:

n The JDBC 1.22 API

n The following additional capabilities defined in the JDBC 2.0 Optional Package
API:

l Distributed transactions: the javax.sql.DataSource API

l Connection pooling

l Java Naming and Directory Interface (JNDI)

New methods that were added in the JDBC 2.0 API, which were not present in JDBC
1.22, are not supported in this release of WebLogic Enterprise. If a WebLogic
Enterprise application calls a new JDBC 2.0 method that was not in JDBC 1.22, an
SQLException will be thrown.

Platforms Supported by the jdbcKona
Drivers

The jdbcKona/Oracle drivers are supported on the following platforms:

n Compaq Tru64 UNIX (Alpha) 4.0F

n HP-UX 11.0

n IBM AIX 4.3.3

n Microsoft Windows 2000 and NT 4.0 SP5

n Sun Solaris 2.6 and 7

For information about any vendor patches required on each platform, and the specific
required version of the Java 2 Software Development Kit (SDK), see the WebLogic
Enterprise Platform Data Sheets in the WebLogic Enterprise Installation Guide.

Adding the JAR Files to Your CLASSPATH

Using the JDBC Drivers 3-3

Adding the JAR Files to Your CLASSPATH

Be sure to add the WebLogic Enterprise Java ARchive (JAR) files that include the
jdbcKona driver classes to your environment.

Note: In %TUXDIR% (Windows 2000 or NT) or $TUXDIR (UNIX), the
/udataobj/java/jdbc/jdbckona.jar file used in the WebLogic
Enterprise 4.2 and prior WebLogic Enterprise Java releases no longer exists.
On systems running the WebLogic Enterprise 5.1 software that will continue
to use a jdbcKona driver, update your CLASSPATH to reference the JAR files
shown in the next example.

Append the following to your CLASSPATH system environment variable, where
TUXDIR is the directory in which you installed the WebLogic Enterprise software:

Windows 2000 or NT

%TUXDIR%\udataobj\java\jdk\M3.jar;%TUXDIR%\udataobj\java\jdk\weblogicaux.jar;

UNIX

$TUXDIR/udataobj/java/jdk/M3.jar;$TUXDIR/udataobj/java/jdk/weblogicaux.jar;

jdbcKona/Oracle Shared Libraries and
Dynamic Link Libraries

The jdbcKona/Oracle (Type 2) driver calls native libraries that are supplied with the
driver. The UNIX libraries (shared object files) are in the $TUXDIR/lib directory. The
Windows DLL files are included in the WebLogic Enterprise Java software kit in the
$TUXDIR\bin directory.

3 Using the jdbcKona Drivers

3-4 Using the JDBC Drivers

Table 3-1 lists the updated names of the jdbcKona/Oracle driver files included with the
WebLogic Enterprise Java system.

The jdbcKona drivers used in WebLogic Enterprise 4.2 and prior Java releases are
removed in the current release. The former driver names were:

n weblogicoci33.dll on Windows NT systems

n weblogicoci33.so on Solaris systems

However, accessing the non-XA jdbcKona drivers with the API used in version 4.2 and
prior WebLogic Enterprise releases is still supported; that is, using the
java.sql.DriverManager API. For example, JDBC applications from WebLogic
Enterprise 4.2 should be able to use a WebLogic Enterprise 5.1 jdbcKona/Oracle
driver, provided you change the driver class name for the Oracle driver.

The jdbcKona/Oracle driver class names are as follows:

n weblogic.jdbc20.oci734.Driver

n weblogic.jdbc20.oci805.Driver

n weblogic.jdbc20.oci815.Driver (non-XA version)

Note: The jdbcKona/Oracle driver for version 8.1.5 is the non-XA version of
weblogic.jdbc20.oci815.Driver. This non-XA 8.1.5 driver (local
transactions only) is used when the driver value is specified and ENABLEXA=N
is set in the JDBCCONNPOOLS section of the application’s UBBCONFIG file.

For the jdbcKona/Oracle drivers, you also need the vendor-supplied libraries for the
database.

Table 3-1 Updated jdbcKona/Oracle Driver Names

Windows 2000
and NT

Solaris, Compaq Tru64
UNIX, IBM AIX

HP-UX

weblogicoci734.dll

weblogicoci805.dll

weblogicoci815.dll

libweblogicoci734.so
 (Solaris only)

libweblogicoci805.so

libweblogicoci815.so

libweblogicoci805.sl

libweblogicoci815.sl

Requirements for Making a Connection to a Database Management System (DBMS)

Using the JDBC Drivers 3-5

Requirements for Making a Connection to a
Database Management System (DBMS)

You need the following components to connect to a DBMS using a jdbcKona driver:

n A database server (Oracle)

n The jdbcKona driver for your database

n The Java 2 software

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes SQL Extensions, also called
SQL Escape Syntax. All jdbcKona drivers support Extended SQL. Extended SQL
provides access to common SQL extensions in a way that is portable between DBMSs.

For example, the function to extract the day name from a date is not defined by the SQL
standards. For Oracle, the SQL is:

select to_char(date_column, ’DAY’) from table_with_dates

Using Extended SQL, you can retrieve the day name for both DBMSs, as follows:

select {fn dayname(date_column)} from table_with_dates

The following is an example that demonstrates several features of Extended SQL:

String insert=
"-- This SQL includes comments and JDBC extended SQL syntax. \n" +
"insert into date_table values({fn now()}, -- current time \n" +
" {d ’1997-05-24’}, -- a date \n" +
" {t ’10:30:29’ }, -- a time \n" +
" {ts ’1997-05-24 10:30:29.123’}, -- a timestamp \n" +
" ’{string data with { or } will not be altered’) \n" +
"-- Also note that you can safely include { and } in comments or \n" +
"-- string data.";

Statement stmt = conn.createStatement();

3 Using the jdbcKona Drivers

3-6 Using the JDBC Drivers

stmt.executeUpdate(query);

Extended SQL is delimited with curly braces ({}) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a newline character
(\n). The entire Extended SQL sequence, including comments, SQL, and Extended
SQL, is placed within double quotes and is passed to the execute method of a
Statement object.

The following Extended SQL is used as part of a CallableStatement object:

CallableStatement cstmt =
conn.prepareCall("{ ? = call func_squareInt(?)}");

The following example shows that you can nest extended SQL expressions:

select {fn dayname({fn now()})}

You can retrieve lists of supported Extended SQL functions from a
DatabaseMetaData object. The following example shows how to list all the functions
a JDBC driver supports:

DatabaseMetaData md = conn.getMetaData();
System.out.println("Numeric functions: " + md.getNumericFunctions());
System.out.println("\nString functions: " + md.getStringFunctions());
System.out.println("\nTime/date functions: " + md.getTimeDateFunctions());
System.out.println("\nSystem functions: " + md.getSystemFunctions());
conn.close();

For a description of Extended SQL, refer to the Sun Microsystems, Inc. Web site,
JDBC Specification 1.2, Chapter 11.

The JDBC API with WebLogic Extensions

For the complete set of JDBC API documentation, see the following Web site:

http://www.weblogic.com/docs/classdocs/packages.html#jdbc

The following packages, classes, interfaces, and WebLogic extensions compose the
JDBC API.

The JDBC API with WebLogic Extensions

Using the JDBC Drivers 3-7

Note: In the class paths, this section shows oci815. However, you would use
oci805 or oci734, if you are using Oracle 8.0.5 or Oracle 7.3.4, respectively.

Package java.sql
Package java.math

Class java.lang.Object
Interface java.sql.CallableStatement
(extends java.sql.PreparedStatement)

 Interface java.sql.Connection
 Interface java.sql.DatabaseMetaData
 Class java.util.Date
 Class java.sql.Date
 Class java.sql.Time
 Class java.sql.Timestamp
 Class java.util.Dictionary
 Class java.util.Hashtable
 (implements java.lang.Cloneable)
 Class java.util.Properties
 Interface java.sql.Driver
 Class java.sql.DriverManager
 Class java.sql.DriverPropertyInfo
 Class java.lang.Math
 Class java.lang.Number
 Class java.math.BigDecimal
 Class java.math.BigInteger
 Interface java.sql.PreparedStatement
 (extends java.sql.Statement)
 Interface java.sql.ResultSet
 Interface java.sql.ResultSetMetaData
 Interface java.sql.Statement
 Class java.lang.Throwable
 Class java.lang.Exception
 Class java.sql.SQLException
 Class java.sql.SQLWarning
 Class java.sql.DataTruncation
 Class java.sql.Types
 Class weblogic.jdbc20.oci815.Connection
 (implements java.sql.Connection)
 Class weblogic.jdbc20.oci815.Statement
 (implements java.sql.Statement)
 Class weblogic.jdbc20.oci815.PreparedStatement
 Class weblogic.jdbc20.oci815.CallableStatement
 (implements java.sql.CallableStatement)

The jdbcKona drivers provide extensions to JDBC for certain database-specific
enhancements. The jdbcKona drivers have the following extended classes:

3 Using the jdbcKona Drivers

3-8 Using the JDBC Drivers

Class weblogic.jdbc20.oci815.CallableStatement
Class weblogic.jdbc20.oci815.Connection
Class weblogic.jdbc20.oci815.Statement

For more information about these extensions, see Chapter 5, “jdbcKona Extensions to
the JDBC 1.22 API.”

Implementing a WebLogic Enterprise Java
Application Using the jdbcKona Drivers

This section describes the following steps involved in implementing a simple
WebLogic Enterprise Java application that uses a jdbcKona driver to connect to a
DBMS:

n Importing Packages

n Setting Properties for Connecting to the DBMS

n Connecting to the DBMS

n Making a Simple SQL Query

n Inserting, Updating, and Deleting Records

n Creating and Using Stored Procedures and Functions

n Disconnecting and Closing Objects

Many of the steps described in this section include code snippets from a
comprehensive code example that is provided at the end of this chapter.

For database-specific details on implementing WebLogic Enterprise Java applications
using the jdbcKona drivers, see Chapter 4, “Using the jdbcKona/Oracle Drivers.”

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-9

Importing Packages

The classes that you import into your WebLogic Enterprise JavaServer application that
uses a jdbcKona driver should include:

import java.sql.*;
import java.util.Properties;

The jdbcKona drivers implement the java.sql interface. You write your WebLogic
Enterprise Java application using the java.sql classes; the
java.sql.DriverManager maps the jdbcKona driver to the java.sql classes.

You do not import the jdbcKona driver class; instead, you load the driver inside the
application. This allows you to select an appropriate driver at run time. You can even
decide after the program is compiled what DBMS to connect to.

Included in the WebLogic Enterprise Java software is the latest version of the JDBC
API class files. Make sure you do not have any earlier versions of the java.sql
classes in your CLASSPATH.

You need to import the java.util.Properties class only if you use a Properties
object to set parameters for connecting to the DBMS.

Setting Properties for Connecting to the DBMS

In the following example, a java.util.Properties object sets the parameters for
connecting to the DBMS. There are other ways of passing these parameters to the
DBMS that do not require a Properties object, as in the following snippet:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

The value for the server property may be vendor-specific; in this example, it is the
version 2 alias of an Oracle database running over TCP. You may also add the server
name to the URL (see the next section) instead of setting it with the
java.util.Properties object.

3 Using the jdbcKona Drivers

3-10 Using the JDBC Drivers

Connecting to the DBMS

To connect to the DBMS, complete the following steps:

1. Load the proper jdbcKona driver.

The most efficient way to load the jdbcKona driver is to invoke the
Class.forName().newInstance method with the name of the driver class.
This loads and registers the jdbcKona driver, as in the following example for
jdbcKona/Oracle for 8.1.5:

Class.forName("weblogic.jdbc20.oci815.Driver").newInstance();

2. Obtain a JDBC connection.

You request a JDBC connection by invoking the
DriverManager.getConnection method, which takes as its parameters the
URL of the driver and other information about the connection, such as the
location of the database and login information.

Note: See the section “Obtaining Connections from a WebLogic Enterprise
Connection Pool” on page 2-15 for more information about an alternative way
of connecting to the DBMS.

Note that both steps describe the jdbcKona driver, but in different formats. The full
pathname for the driver is period-separated, while the URL is colon-separated. The
following table lists the class paths and URLs for the jdbcKona drivers:

 Additional information required to form a database connection varies by DBMS
vendor and by whether the jdbcKona driver is of Type 2 or Type 4. There are also a
variety of methods for specifying this information in your program.

For full details about the jdbcKona drivers, refer to Chapter 4, “Using the
jdbcKona/Oracle Drivers.” For a complete code example, see “Implementing a
WebLogic Enterprise Java Application Using the jdbcKona Drivers” on page 3-8.

JDBC Driver Driver
Type

Class Pathname Class URL

jdbcKona/Oracle Type 2 weblogic.jdbc20.oci734.Driver

weblogic.jdbc20.oci815.Driver

jdbc:weblogic:oci

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-11

The connection to the DBMS is handled by the jdbcKona driver. You use both the class
name of the driver (in dot-notation) and the URL of the driver (with colons as
separators). Class names are case sensitive.

The Class.forName().newInstance method loads the driver and registers the
driver with the DriverManager object.

Note: The Sun Microsystems, Inc. JDBC API Reference for the java.sql.Driver
interface recommends simply invoking Class.forName("driver-class")
to load the driver.

The connection is created with the DriverManager.getConnection method, which
takes as arguments the URL of the driver and a Properties object, as in the following
code fragment. The URL is not case sensitive.

Class.forName("weblogic.jdbc20.oci815.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);
conn.setAutoCommit(false);

The default transaction mode for JDBC assumes autocommit to be true. Setting
autocommit to false improves performance.

The Connection object is an important part of the application. The Connection class
has constructors for many fundamental database objects that you will use throughout
the application. In the examples that follow, you will see the Connection object conn
used repeatedly.

Connecting to the database completes the initial portion of a WebLogic Enterprise Java
application, which will be very much the same for any application.

Invoke the close method on the Connection object as soon as you finish working with
the object, usually at the end of a class.

Making a Simple SQL Query

The most fundamental task in database access is to retrieve data. With a jdbcKona
driver, retrieving data is a three-step process:

1. Create a Statement object to send an SQL query to the DBMS.

3 Using the jdbcKona Drivers

3-12 Using the JDBC Drivers

2. Execute the Statement.

3. Retrieve the results into a ResultSet object.

In the following code snippet, we execute a simple query on the Employee table (alias
"emp") and display data from three of the columns. We also access and display
metadata about the table from which the data was retrieved. Note that we close the
Statement at the end.

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

ResultSetMetaData md = rs.getMetaData();

System.out.println("Number of columns: " + md.getColumnCount());
for (int i = 1; i <= md.getColumnCount(); i++) {
 System.out.println("Column Name: " + md.getColumnName(i));
 System.out.println("Nullable: " + md.isNullable(i));
 System.out.println("Precision: " + md.getPrecision(i));
 System.out.println("Scale: " + md.getScale(i));
 System.out.println("Size: " + md.getColumnDisplaySize(i));
 System.out.println("Column Type: " + md.getColumnType(i));
 System.out.println("Column Type Name: "+ md.getColumnTypeName(i));
 System.out.println("");
 }

stmt.close();

Inserting, Updating, and Deleting Records

The following snippet shows three common database tasks: inserting, updating, and
deleting records from a database table. We use a JDBC PreparedStatement object
for these operations; we create the PreparedStatement object, then execute the
object and close it.

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-13

A PreparedStatement object (subclassed from JDBC Statement) allows you to
execute the same SQL over and over again with different values.
PreparedStatement objects use the JDBC "?" syntax.

String inssql = "insert into emp(empid, name, dept) values (?, ?, ?)";
PreparedStatement pstmt = conn.prepareStatement(inssql);

for (int i = 0; i < 100; i++) {
pstmt.setInt(1, i);
pstmt.setString(2, "Person " + i);
pstmt.setInt(3, i);
pstmt.execute():

}
pstmt.close();

We also use a PreparedStatement object to update records. In the following code
snippet, we add the value of the counter "i" to the current value of the "dept" field.

String updsql = "update emp set dept = dept + ? where empid = ?";
PreparedStatement pstmt2 = conn.prepareStatement(updsql);

for (int i = 0; i < 100; i++) {
pstmt2.setInt(1, i);
pstmt2.setInt(2, i);
pstmt2.execute();

}
pstmt2.close();

Finally, we use a PreparedStatement object to delete the records that we added and
then updated, as in the following snippet:

String delsql = "delete from emp where empid = ?";
PreparedStatement pstmt3 = conn.prepareStatement(delsql);

for (int i = 0; i < 100; i++) {
pstmt3.setInt(1, i);
pstmt3.execute();

}
pstmt3.close();

Creating and Using Stored Procedures and Functions

You can use a jdbcKona driver to create, use, and drop stored procedures and
functions. First, we execute a series of Statement objects to drop a set of stored
procedures and functions from the database, as in the following code snippet:

3 Using the jdbcKona Drivers

3-14 Using the JDBC Drivers

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure func_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure proc_getresults");}
catch (SQLException e) {;}
stmt.close();

We use a JDBC Statement object to create a stored procedure or function, and then
use a JDBC CallableStatement object (subclassed from the Statement object)
with the JDBC "?" syntax to set IN and OUT parameters. For information about doing
this with the jdbcKona/Oracle driver, see Chapter 4, “Using the jdbcKona/Oracle
Drivers.”

The first two code snippets that follow use the jdbcKona/Oracle driver. Note that
Oracle does not natively support binding to "?" values in an SQL statement. Instead,
it uses ":1", ":2", and so forth. You can use either syntax in your SQL with the
jdbcKona/Oracle driver.

Stored procedure input parameters are mapped to JDBC IN parameters, using the
CallableStatement.setxxx methods, such as setInt(), and the "?" syntax of the
JDBC PreparedStatement object. Stored procedure output parameters are mapped
to JDBC OUT parameters, using the CallableStatement.registerOutParameter
methods and the "?" syntax of the JDBC PreparedStatement object. A parameter
may be both IN and OUT, which requires both a setxxx() and a
registerOutParameter() invocation to be made on the same parameter number.

In the following code snippet, we use a JDBC Statement object to create an Oracle
stored procedure; then we execute the stored procedure with a CallableStatement
object. We use the registerOutParameter method to set an output parameter for the
squared value.

Statement stmt1 = conn.createStatement();
stmt1.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; field1 := " +
 "field1 * field1; END proc_squareInt;");
stmt1.close();

// Native Oracle SQL is commented out here
// String sql = "BEGIN proc_squareInt(?, ?); END;";

// This is the correct syntax as specified by JDBC
String sql = "{call proc_squareInt(?, ?)}";
CallableStatement cstmt1 = conn.prepareCall(sql);

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-15

// Register out parameters
cstmt1.registerOutParameter(2, java.sql.Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) +
" " + cstmt1.getInt(2));
}
cstmt1.close();

In the following code snippet, we use similar code to create and execute a stored
function that squares an integer.

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; " +
 "END func_squareInt;");
stmt2.close();

// Native Oracle SQL is commented out here
// sql = "BEGIN ? := func_squareInt(?); END;";

// This is the correct syntax specified by JDBC
sql = "{ ? = call func_squareInt(?)}";
CallableStatement cstmt2 = conn.prepareCall(sql);

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
}
cstmt2.close();

Disconnecting and Closing Objects

Close Statement, ResultSet, Connection, and other such objects with their close
methods after you have finished using them. Closing these objects releases resources
on the remote DBMS and within your application. When you use one object to
construct another, close the objects in the reverse order in which they were created. For
example:

3 Using the jdbcKona Drivers

3-16 Using the JDBC Drivers

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from empno");

(process the ResultSet)

rs.close();
stmt.close();

Always close the java.sql.Connection as well, usually as one of the last steps in
your program. Every connection should be closed, even if a login fails. An Oracle
connection will cause a system failure (such as a segment violation) when the finalizer
thread attempts to close a connection that you have inadvertently left open. If you do
not close connections to log out of the database, you may also exceed the maximum
number of database logins. Once a connection is closed, all of the objects created in its
context become unusable.

There are occasions in which you will want to invoke the commit method to commit
changes you have made to the database before you close the connection.

When autocommit is set to true (the default JDBC transaction mode), each SQL
statement is its own transaction. After we created the Connection object for these
examples, however, we set autocommit to false; in this mode, the Connection object
always has an implicit transaction associated with it, and any invocation to the
rollback or commit methods will end the current transaction and start a new one.
Invoking commit() before close() ensures that all of the transactions are completed
before closing the connection.

Just as you close Statement, PreparedStatement, and CallableStatement
objects when you have finished working with them, always invoke the close method
on the connection as final cleanup in your application; enclose the close method
invocation in a try {} block in order to catch exceptions and deal with them
appropriately. The final two lines of the example include an invocation to commit()
and then close() to close the connection, as in the following snippet:

conn.commit();
conn.close();

Code Example

The following is a sample implementation to give you an overall idea of the structure
for a WebLogic Enterprise Java application that uses a jdbcKona driver to access a
DBMS. The code example shown here includes retrieving data, displaying metadata,

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-17

inserting, deleting, and updating data, and stored procedures and functions. Note the
explicit invocations to close() for each JDBC-related object, and note also that we
close the connection itself in a finally {} block, with the invocation to close()
wrapped in a try {} block.

import java.sql.*;
import java.util.Properties;
import weblogic.common.*;

public class test {
 static int i;
 Statement stmt = null;

 public static void main(String[] argv) {
 try {
 Properties props = new Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");

 Class.forName("weblogic.jdbc20.oci815.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:weblogic:oracle",
 props);
 }
 catch (Exception e)
 e.printStackTrace();
 }

 try {
 // This will improve performance in Oracle
 // You’ll need an explicit commit() call later
 conn.setAutoCommit(false);

 stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();

 while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

 ResultSetMetaData md = rs.getMetaData();

 System.out.println("Number of Columns: " + md.getColumnCount());
 for (i = 1; i <= md.getColumnCount(); i++) {

3 Using the jdbcKona Drivers

3-18 Using the JDBC Drivers

 System.out.println("Column Name: " + md.getColumnName(i));
 System.out.println("Nullable: " + md.isNullable(i));
 System.out.println("Precision: " + md.getPrecision(i));
 System.out.println("Scale: " + md.getScale(i));
 System.out.println("Size: " + md.getColumnDisplaySize(i));
 System.out.println("Column Type: " + md.getColumnType(i));
 System.out.println("Column Type Name: "+ md.getColumnTypeName(i));
 System.out.println("");
 }
 rs.close();
 stmt.close();

 Statement stmtdrop = conn.createStatement();
 try {stmtdrop.execute("drop procedure proc_squareInt");}
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure func_squareInt"); }
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure proc_getresults"); }
 catch (SQLException e) {;}
 stmtdrop.close();

 // Create a stored procedure
 Statement stmt1 = conn.createStatement();
 stmt1.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, " +
 "field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; " +
 "field1 := field1 * field1; " +
 "END proc_squareInt;");
 stmt1.close();

 CallableStatement cstmt1 =
 conn.prepareCall("BEGIN proc_squareInt(?, ?); END;");
 cstmt1.registerOutParameter(2, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) +
 " " + cstmt1.getInt(2));
 }
 cstmt1.close();

 // Create a stored function
 Statement stmt2 = conn.createStatement();
 stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; END func_squareInt;");
 stmt2.close();

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Using the JDBC Drivers 3-19

 CallableStatement cstmt2 =
 conn.prepareCall("BEGIN ? := func_squareInt(?); END;");
 cstmt2.registerOutParameter(1, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
 }
 cstmt2.close();

 // Insert 100 records
 System.out.println("Inserting 100 records...");
 String inssql = "insert into emp(empid, name, dept) values (?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(inssql);

 for (i = 0; i < 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person " + i);
 pstmt.setInt(3, i);
 pstmt.execute();
 }
 pstmt.close();

 // Update 100 records
 System.out.println("Updating 100 records...");
 String updsql = "update emp set dept = dept + ? where empid = ?";
 PreparedStatement pstmt2 = conn.prepareStatement(updsql);

 for (i = 0; i < 100; i++) {
 pstmt2.setInt(1, i);
 pstmt2.setInt(2, i);
 pstmt2.execute();
 }
 pstmt2.close();

 // Delete 100 records
 System.out.println("Deleting 100 records...");
 String delsql = "delete from emp where empid = ?";
 PreparedStatement pstmt3 = conn.prepareStatement(delsql);

 for (i = 0; i < 100; i++) {
 pstmt3.setInt(1, i);
 pstmt3.execute();
 }
 pstmt3.close();

 conn.commit();

3 Using the jdbcKona Drivers

3-20 Using the JDBC Drivers

 }
 catch (Exception e) {
 // Deal with failures appropriately
 }
 finally {
 try {conn.close();}
 catch (Exception e) {
 // Catch and deal with exception
 }
 }
 }
}

Using the JDBC Drivers 4-1

CHAPTER

4 Using the
jdbcKona/Oracle
Drivers

This chapter provides guidelines for using the jdbcKona/Oracle Type 2 drivers. For
general notes about and an example of using the jdbcKona drivers, see Chapter 3,
“Using the jdbcKona Drivers.”

This topic includes the following sections:

n Data Type Mapping

n Connecting a jdbcKona/Oracle Driver to an Oracle DBMS

n Waiting for Oracle DBMS Resources

n Autocommit

n Using Oracle Blobs

n Support for Oracle Array Fetches

n Using Stored Procedures

n DatabaseMetaData Methods

n jdbcKona/Oracle and the Oracle NUMBER Column

4 Using the jdbcKona/Oracle Drivers

4-2 Using the JDBC Drivers

Data Type Mapping

Mapping of types between Oracle and the jdbcKona/Oracle drivers are provided in the
following table.

Note: When the PreparedStatement.setBoolean method is invoked, this
method converts a VARCHAR type to "1" or "0" (string), and it converts a
NUMBER type to 1 or 0 (number).

Oracle jdbcKona/Oracle Drivers

Varchar String

Number Tinyint

Number Smallint

Number Integer

Number Long

Number Float

Number Numeric

Number Double

Long Longvarchar

RowID String

Date Timestamp

Raw (var)Binary

Long raw Longvarbinary

Char (var)Char

Boolean* Number or Varchar

MLS label String

Connecting a jdbcKona/Oracle Driver to an Oracle DBMS

Using the JDBC Drivers 4-3

Connecting a jdbcKona/Oracle Driver to an
Oracle DBMS

To make a DBMS connection, complete the following steps:

Note: See the section “Obtaining Connections from a WebLogic Enterprise
Connection Pool” on page 2-15 for more information about an alternative way
of connecting to the DBMS.

1. Load the proper jdbcKona driver.

The most efficient way to do this is to invoke the
Class.forName().newInstance() method with the name of the driver class,
which properly loads and registers the jdbcKona driver. For example:

Class.forName("weblogic.jdbc20.oci734.Driver").newInstance();

2. Request a JDBC connection by invoking the DriverManager.getConnection
method, which takes as its parameters the URL of the driver and other
information about the connection.

Both steps describe the jdbcKona driver, but in a different format. The full package
name is period-separated, and the URL is colon-separated. The URL must include at
least jdbc:weblogic:oracle, and may include other information, including server
name and database name.

There are several variations on this basic pattern, which are described here for Oracle.
For a full code example, see Chapter 3, “Using the jdbcKona Drivers.”

Method 1

The simplest way to connect to an Oracle DBMS is by passing the URL of the driver
that includes the name of the server, along with a username and a password, as
arguments to the DriverManager.getConnection method, as in the following
jdbcKona/Oracle example:

Class.forName("weblogic.jdbc20.oci734.Driver").newInstance();
Connection conn =

4 Using the jdbcKona/Oracle Drivers

4-4 Using the JDBC Drivers

 DriverManager.getConnection("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

In the example, DEMO is the version 2 alias of an Oracle database. Note that invoking
the Class.forName().newInstance() method properly loads and registers the
driver.

Method 2

You can also pass a java.util.Properties object with parameters for connection
as an argument to the DriverManager.getConnection method. The following
example shows how to connect to the DEMO database:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

Class.forName("weblogic.jdbc20.oci734.Driver").newInstance();
Connection conn =
 DriverManager.getConnection("jdbc:weblogic:oracle",
 props);

If you do not supply a server name (DEMO in the preceding example), the system looks
for an environment variable (ORACLE_SID in the case of Oracle). You can also add the
server name to the URL, using the following format:

"jdbc:weblogic:oracle:DEMO"

When you use the preceding format, you do not need to provide a "server" property.

Other Properties You Can Set for the jdbcKona/Oracle
Driver

There are other properties that you can set for the jdbcKona/Oracle driver, which are
covered later in this document. The jdbcKona/Oracle driver also allows setting a
property -- allowMixedCaseMetaData -- to the boolean true. This property sets up
the connection to use mixed case letters in invocation to DatabaseMetaData methods.
Otherwise, Oracle defaults to uppercase letters for database metadata.

Waiting for Oracle DBMS Resources

Using the JDBC Drivers 4-5

The following is an example of setting up the properties to include this feature:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("allowMixedCaseMetaData", "true");

Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);

If you do not set this property, the jdbcKona/Oracle driver defaults to the Oracle
default, which uses uppercase letters for database metadata.

General Notes

Always invoke the Connection.close method to close the connection when you
have finished working with it. Closing objects releases resources on the remote DBMS
and within your application, as well as being good programming practice. Other
jdbcKona objects on which you should invoke the close method after final use
include:

n Statement (PreparedStatement, CallableStatement)

n ResultSet

Waiting for Oracle DBMS Resources

The jdbcKona/Oracle driver supports the Oracle oopt() C API, which allows a client
to wait until resources become available. The Oracle C function sets options in cases
where requested resources are not available; for example, whether to wait for locks.

You can set whether a client waits for DBMS resources, or receives an immediate
exception.

Note: In the driver class path examples, the format is:

weblogic.jdbc20.ociXXX.Driver

4 Using the jdbcKona/Oracle Drivers

4-6 Using the JDBC Drivers

Where XXX is the version of the Oracle database: 734 for version 7.3.4, or 805
for version 8.0.5, or 815 for version 8.1.5.

java.util.Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "goldengate");

Class.forName("weblogic.jdbc20.oci734.Driver").newInstance();

// You must cast the Connection as a
// weblogic.jdbc20.ociXXX.Connection
// to take advantage of this extension
Connection conn =
(weblogic.jdbc.oci734.Connection)

DriverManager.getConnection("jdbc:weblogic:oracle", props);

// After constructing the Connection object, immediately call
// the waitOnResources method
conn.waitOnResources(true);

The waitOnResources() method can cause several error return codes while waiting
for internal resources that are locked for short durations.

To take advantage of this feature, you must first cast your Connection object as a
weblogic.jdbc20.oci[version].Connection object, and then invoke the
waitOnResources method (where [version] is 734, or 805, or 815).

This functionality is described in section 4-97 of The OCI Functions for C, published
by Oracle Corporation.

Autocommit

The default transaction mode for JDBC assumes autocommit to be true. You will
improve the performance of your programs by setting autocommit to false after
creating a Connection object with the following statement:

Connection.setAutoCommit(false);

Using Oracle Blobs

Using the JDBC Drivers 4-7

Using Oracle Blobs

The jdbcKona/Oracle driver supports two new properties to support Oracle Blob
chunking:

n weblogic.oci.insertBlobChunkSize

This property affects the buffer size of input streams bound to a
PreparedStatement object. Blob chunking requires an Oracle 7.3.x or higher
Oracle Server; to use this property, you must be connected to an Oracle Server
that supports this feature.

Set this property to a positive integer to insert Blobs into an Oracle DBMS with
the Blob chunking feature. By default, this property is set to 0 (zero), which
means that Blob chunking is turned off.

n weblogic.oci.selectBlobChunkSize

This property sets the size of output streams associated with a JDBC ResultSet
object. The mechanism for piecewise selects does not have the same use
restrictions as that for Blob inserts, so this property is set to 65534 by default. It
is not necessary to turn this property off.

Set this property to the size of the desired output stream, in bytes.

Support for Oracle Array Fetches

With WLE Java, the jdbcKona/Oracle driver supports Oracle array fetches. With this
feature support, invoking the ResultSet.next method the first time gets an array of
rows and stores it in memory, rather than retrieving a single row. Each subsequent
invocation of the next method reads a row from the rows in memory until they are
exhausted, and only then does the next method go back to the database.

You set a property (java.util.Property) to control the size of the array fetch. The
property is weblogic.oci.cacheRows; it is set by default to 100. The following is an
example of setting this property to 300, which means that invocations to the next
method hit the database only once for each 300 rows retrieved by the client:

4 Using the jdbcKona/Oracle Drivers

4-8 Using the JDBC Drivers

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("weblogic.oci.cacheRows", "300");

Class.forName("weblogic.jdbc20.oci734.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);

You can improve client performance and lower the load on the database server by
taking advantage of this JDBC extension. Caching rows in the client, however,
requires client resources. Tune your application for the best balance between
performance and client resources, depending upon your network configuration and
your application.

If any columns in a SELECT statement are of type LONG, the cache size will be
temporarily reset to 1 (one) for the ResultSet object associated with that select
statement.

Using Stored Procedures

The following sections describe how to use stored procedures:

n Syntax for Stored Procedures in the jdbcKona/Oracle Driver

n Binding a Parameter to an Oracle Cursor

n Using CallableStatement

Using Stored Procedures

Using the JDBC Drivers 4-9

Syntax for Stored Procedures in the jdbcKona/Oracle
Driver

The syntax for stored procedures in Oracle was altered in the jdbcKona/Oracle driver
examples to match the JDBC specification. (All of the examples also show native
Oracle SQL, commented out, just above the correct usage; the native Oracle syntax
works as it did in the past.) You can read more about stored procedures for the
jdbcKona drivers in Chapter 3, “Using the jdbcKona Drivers.”

Note that Oracle does not natively support binding to "?" values in an SQL statement.
Instead it uses ":1", ":2", and so forth. We allow you to use either in your SQL with the
jdbcKona/Oracle driver.

Binding a Parameter to an Oracle Cursor

BEA Systems, Inc. has created an extension to JDBC,
weblogic.jdbc20.oci[version].CallableStatement, that allows you to bind a
parameter for a stored procedure to an Oracle cursor (where [version] is 734, or 805,
or 815. You can create a JDBC ResultSet object with the results of the stored
procedure. This allows you to return multiple ResultSet objects in an organized way.
The ResultSet objects are determined at run time in the stored procedure. An
example procedure follows.

First, define the stored procedures, as follows:

create or replace package
curs_types as
type EmpCurType is REF CURSOR RETURN emp%ROWTYPE;
end curs_types;
/

create or replace procedure
single_cursor(curs1 IN OUT curs_types.EmpCurType,
ctype in number) AS BEGIN
 if ctype = 1 then
 OPEN curs1 FOR SELECT * FROM emp;
 elsif ctype = 2 then
 OPEN curs1 FOR SELECT * FROM emp where sal > 2000;
 elsif ctype = 3 then
 OPEN curs1 FOR SELECT * FROM emp where deptno = 20;

4 Using the jdbcKona/Oracle Drivers

4-10 Using the JDBC Drivers

 end if;
END single_cursor;
/

create or replace procedure
multi_cursor(curs1 IN OUT curs_types.EmpCurType,
 curs2 IN OUT curs_types.EmpCurType,
 curs3 IN OUT curs_types.EmpCurType) AS
BEGIN
 OPEN curs1 FOR SELECT * FROM emp;
 OPEN curs2 FOR SELECT * FROM emp where sal > 2000;
 OPEN curs3 FOR SELECT * FROM emp where deptno = 20;
END multi_cursor;
/

In your Java code, construct CallableStatement objects with the stored procedures
and register the output parameter as data type java.sql.Types.OTHER. When you
retrieve the data into a ResultSet object, use the output parameter index as an
argument for the getResultSet method. For example:

weblogic.jdbc20.oci734.CallableStatement cstmt =
 (weblogic.jdbc20.oci734.CallableStatement)conn.prepareCall(
 "BEGIN OPEN ? " +
 "FOR select * from emp; END;");
cstmt.registerOutParameter(1, java.sql.Types.OTHER);

cstmt.execute();
ResultSet rs = cstmt.getResultSet(1);
printResultSet(rs);
rs.close();
cstmt.close();

weblogic.jdbc20.oci734.CallableStatement cstmt2 =
 (weblogic.jdbc20.oci734.CallableStatement)conn.prepareCall(
 "BEGIN single_cursor(?, ?); END;");
cstmt2.registerOutParameter(1, java.sql.Types.OTHER);

cstmt2.setInt(2, 1);
cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.setInt(2, 2);
cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.setInt(2, 3);

Using Stored Procedures

Using the JDBC Drivers 4-11

cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.close();

weblogic.jdbc20.oci734.CallableStatement cstmt3 =
 (weblogic.jdbc20.oci734.CallableStatement)conn.prepareCall(
 "BEGIN multi_cursor(?, ?, ?); END;");
cstmt3.registerOutParameter(1, java.sql.Types.OTHER);
cstmt3.registerOutParameter(2, java.sql.Types.OTHER);
cstmt3.registerOutParameter(3, java.sql.Types.OTHER);

cstmt3.execute();

ResultSet rs1 = cstmt3.getResultSet(1);
ResultSet rs2 = cstmt3.getResultSet(2);
ResultSet rs3 = cstmt3.getResultSet(3);

Note that the default size of an Oracle-stored procedure string is 256K.

Using CallableStatement

The default length of a string bound to an OUTPUT parameter of a
CallableStatement object is 128 characters. If the value you assign to the bound
parameter exceeds that length, you get the following error:

ORA-6502: value or numeric error

You can adjust the length of the value of the bound parameter by passing an explicit
length with the scale argument to the
CallableStatement.registerOutputParameter method. The following is a
code example that binds a VARCHAR that will never be larger than 256 characters:

CallableStatement cstmt =
conn.prepareCall("BEGIN testproc(?); END;");

cstmt.registerOutputParameter(1, Types.VARCHAR, 256);
cstmt.execute();
System.out.println(cstmt.getString());
cstmt.close();

4 Using the jdbcKona/Oracle Drivers

4-12 Using the JDBC Drivers

DatabaseMetaData Methods

DatabaseMetaData is implemented in its entirety in the jdbcKona/Oracle driver. There
are some variations that are specific to Oracle, which are as follows:

n As a general rule, the String catalog argument is ignored in all
DatabaseMetaData methods.

n In the DatabaseMetaData.getProcedureColumns method:

l The String catalog argument is ignored.

l The String schemaPattern argument accepts only exact matches (no pattern
matching).

l The String procedureNamePattern argument accepts only exact matches
(no pattern matching).

l The String columnNamePattern argument is ignored.

jdbcKona/Oracle and the Oracle NUMBER
Column

Oracle provides a column type called NUMBER, which can be optionally specified with
a precision and a scale, in the forms NUMBER(P) and NUMBER(P,S). Even in the
simple, unqualified NUMBER form, this column can hold all number types from small
integer values to very large floating point numbers, with high precision.

The jdbcKona/Oracle driver reliably converts the values in a column to the Java type
requested when a WLE Java application asks for a value from such a column. Of
course, if a value of 123.456 is asked for with getInt(), the value will be rounded.

jdbcKona/Oracle and the Oracle NUMBER Column

Using the JDBC Drivers 4-13

The method getObject, however, poses a little more complexity. The
jdbcKona/Oracle driver guarantees to return a Java object that will represent any value
in a NUMBER column with no loss in precision. This means that a value of 1 can be
returned in an Integer, but a value like 123434567890.123456789 can only be
returned in a BigDecimal.

There is no metadata from Oracle to report the maximum precision of the values in the
column, so the jdbcKona/Oracle driver must decide what sort of object to return based
on each value. This means that one ResultSet object may return multiple Java types
from the getObject method for a given NUMBER column. A table full of integer values
may all be returned as Integer from the getObject method, whereas a table of
floating point measurements may be returned primarily as Double, with some
Integer if any value happens to be something like 123.00. Oracle does not provide
any information to distinguish between a NUMBER value of 1 and a NUMBER of
1.0000000000.

There is more reliable behavior with qualified NUMBER columns; that is, those defined
with a specific precision. Oracle’s metadata provides these parameters to the driver so
the jdbcKona/Oracle driver always returns a Java object appropriate for the given
precision and scale, regardless of the values shown in the following table. The
following table shows the Java objects returned for each qualified NUMBER column.

Column Definition Returned by getObject()

NUMBER(P <= 9) Integer

NUMBER(P <= 18) Long

NUMBER(P >= 19) BigDecimal

NUMBER(P <=16, S > 0) Double

NUMBER(P >= 17, S > 0) BigDecimal

4 Using the jdbcKona/Oracle Drivers

4-14 Using the JDBC Drivers

Using the JDBC Drivers 5-1

CHAPTER

5 jdbcKona Extensions to
the JDBC 1.22 API

This chapter describes the following jdbcKona extensions to the JDBC API:

n Class weblogic.jdbc20.oci[version].CallableStatement

n Class weblogic.jdbc20.oci[version].Connection

n Class weblogic.jdbc20.oci[version].Statement

Note: In the previous list, oci[version] refers to the Oracle version number (734,
805, or 815). The samples in this chapter show oci734. For example:

Class weblogic.jdbc20.oci734.CallableStatement

However, you would use oci805 or oci815, if you are using Oracle 8.0.5 or
Oracle 8.1.5, respectively.

For complete details on this JDBC API, refer to the following Web site:

http://www.weblogic.com/docs51/classdocs/jdbcdrivers.html

If this URL changes and you cannot locate this BEA WebLogic JDBC API, please go
to http://e-docs.bea.com/. On that page, click the link for the BEA WebLogic ServerTM
(WLS) documentation. On the WLS page, click the JDBC link in the Quick Links box.

5 jdbcKona Extensions to the JDBC 1.22 API

5-2 Using the JDBC Drivers

Class CallableStatement

Class weblogic.jdbc20.oci734.CallableStatement contains jdbcKona
extensions to JDBC to support the use of cursors as parameters in
CallableStatement objects.

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

The CallableStatement class:

n Extends the PreparedStatement class

n Implements the CallableStatement interface

n Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc20.oci734.Statement
 |
 +----weblogic.jdbc20.oci734.PreparedStatement
 |
 +----weblogic.jdbc20.oci734.CallableStatement

n Has the getResultSet method

Class CallableStatement

Using the JDBC Drivers 5-3

weblogic.jdbc20.oci734.CallableStatement.getResultSet

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Returns a ResultSet object from a stored procedure where the specified parameter
has been bound to an Oracle cursor. Register the output parameter with the
registerOutputParameter method, using java.sql.Types.OTHER as the data
type.

Java Mapping public ResultSet getResultSet(int parameterIndex) throws
SQLException

Parameters parameterIndex

This parameter is an index into the set of parameters for the stored procedure.

Throws SQLException

This exception is thrown if the operation cannot be completed.

5 jdbcKona Extensions to the JDBC 1.22 API

5-4 Using the JDBC Drivers

Class Connection

This section describes only the jdbcKona extension to JDBC that accesses the Oracle
OCI C Function oopt(). Other information about this class is in the description for
class java.sql.Connection. A Connection object is usually constructed as a
java.sql.Connection class. To use this extension to JDBC, you must explicitly cast
your Connection object as a weblogic.jdbc20.oci734.Connection class.

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

The public Connection class:

n Extends the Object class

n Implements the Connection interface

n Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc20.oci734.Connection

n Has the waitOnResources method

Class Connection

Using the JDBC Drivers 5-5

weblogic.jdbc20.oci734.Connection.waitOnResources

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Use this method to access the Oracle oopt() function for C (see section 4-97 of The
OCI Functions for C). The Oracle C function sets options in cases where requested
resources are not available; for example, whether to wait for locks.

When the argument to this method is true, this jdbcKona extension to JDBC sets this
option so that your program will receive an error return code whenever a resource is
requested but is unavailable. Use of this method can cause several error return codes
while waiting for internal resources that are locked for short durations.

Java Mapping public void waitOnResources(boolean val)

Parameters val
This parameter is set to true if the connection should wait on resources.

5 jdbcKona Extensions to the JDBC 1.22 API

5-6 Using the JDBC Drivers

Class weblogic.jdbc20.oci734.Statement

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

This class contains jdbcKona extensions to JDBC to support parsing of SQL
statements and adjusting of the fetch size. Only those methods are documented here.

The weblogic.jdbc20.oci734.Statement class:

n Extends the Object base class

n Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc20.oci734.Statement

n Has the following methods:

l fetchsize

l parse

Class weblogic.jdbc20.oci734.Statement

Using the JDBC Drivers 5-7

weblogic.jdbc20.oci734.Statement.fetchsize

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Allows tuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch size is 100. Memory for 100 rows is allocated in the native stack for
every query. For queries that need fewer rows, this size can be adjusted appropriately.
This saves on the swappable image size of the application and will benefit performance
if only as many rows as needed are fetched.

Java Mapping public void fetchSize(int size)

Parameters size

This parameter specifies the number of rows to be prefetched.

5 jdbcKona Extensions to the JDBC 1.22 API

5-8 Using the JDBC Drivers

weblogic.jdbc20.oci734.Statement.parse

Note: In the class paths, this section shows oci734. However, you would use
oci805 or oci815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Allows tuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch size is 100. Memory for 100 rows is allocated in the native stack for
every query. For queries that need fewer rows, this size can be adjusted appropriately.
This saves on the swappable image size of the application and will benefit performance
if only as many rows as needed are fetched.

Java Mapping public int parse(String sql) throws SQLException

Parameters sql

This parameter is the SQL statement to be verified.

Throws SQLException
This exception is thrown if the operation cannot be completed.

Using the JDBC Drivers I-1

Index

A
ALLOWSHRINKING parameter 2-9
array fetches

support for 4-7
autocommit

using with Oracle 4-6

B
Blobs

Oracle 4-7

C
CallableStatement class 4-11

API for WebLogic extension to 5-2
CAPACITYINCR parameter 2-9
class pathname

for DBMS connection 3-10
CLASSPATH 1-3, 3-3
closing objects 3-15
connecting to a DBMS 3-10

requirements for making 1-5, 3-5
Connection class

API for WebLogic extension to 5-4
connection pooling 2-1, 2-2
connection pools

displaying data about 2-11
CREATEONSTARTUP parameter 2-9
customer support contact information ix

D
data type mapping 4-2
database management system

see DBMS
DatabaseMetaData methods

using 4-4
variations specific to Oracle 4-12

DataSource interface 2-17
getConnection 2-17
getLoginTimeout 2-18
getLogWriter 2-18
setLoginTimeout 2-18
setLogWriter 2-18
using with JDBC/XA driver 1-6

DBHOST parameter 2-8
DBMS connections

class pathname 3-10
making 3-10
requirements for making 1-5, 3-5
setting properties for 3-9

DBNAME 2-8
DBNETPROTOCOL parameter 2-8
DBPASSWORD parameter 2-8
DBPORT parameter 2-8
DBUSER parameter 2-8
distributed transactions

JDBC/XA driver 1-1
DLLs

for jdbcKona/Oracle 3-3
documentation, where to find it viii
DRIVER parameter 2-7

I-2 Using the JDBC Drivers

E
ENABLEXA parameter 2-8
encrypting passwords 2-10
Extended SQL

JDBC support for 3-5

F
fetchsize method 5-7

G
getConnection method 2-16, 4-3
getResultSet method 5-3

I
implementing, using jdbcKona drivers 3-8
importing packages 3-9
INITCAPACITY parameter 2-9
InitialContext method 2-15

J
Java 2 1-3, 3-2
java.math 3-6
java.sql 3-6
javax.sql.ConnectionEventListener 2-15
javax.sql.ConnectionPoolDataSource 2-15
JDBC

API 3-6
Extended SQL

support for 3-5
jdbcKona extensions to 3-6
supported version 1-1, 3-1

JDBC connection pooling 2-1, 2-2
API 2-14
application level API 2-14
connection lifecycle 2-16
system level API for JDBC drivers 2-15
system level API for JNDI 2-14

JDBC connection pools
attributes of 2-6
encrypting passwords used with 2-10

JDBC/XA driver
using 1-1

JDBCCONNPOOLS
ALLOWSHRINKING parameter 2-9
CAPACITYINCR parameter 2-9
CREATEONSTARTUP parameter 2-9
DBHOST parameter 2-8
DBNAME parameter 2-8
DBNETPROTOCOL parameter 2-8
DBPASSWORD parameter 2-8
DBPORT parameter 2-8
DBUSER parameter 2-8
DRIVER parameter 2-7
ENABLEXA parameter 2-8
INITCAPACITY parameter 2-9
LOGINDELAY parameter 2-9
MAXCAPACITY parameter 2-9
parameters 2-6
pool name 2-7
PROPS parameter 2-8
REFRESH parameter 2-10
sample section 2-5
SHRINKPERIOD parameter 2-9
SRVGRP parameter 2-7
SRVID parameter 2-7
TESTONRELEASE parameter 2-10
TESTONRESERVE parameter 2-10
TESTTABLE parameter 2-9
URL parameter 2-8
USERROLE parameter 2-8
WAITFORCONN parameter 2-10
WAITTIMEOUT parameter 2-10

jdbcKona drivers
implementing in a WLE Java application

3-8
JAR file 1-3, 3-3
making an SQL query with 3-11
platforms supported on 1-3, 3-2

Using the JDBC Drivers I-3

sample code using 3-16
support for JDBC Extended SQL 3-5

jdbcKona/Oracle drivers
and array fetches 4-7
and Blob chunking 4-7
and Oracle NUMBER column 4-12
closing connections with 4-5
connecting to Oracle DBMS 4-3
DLLs 3-3
shared libraries 3-3
using stored procedures in 4-8

JDK 1.2
See Java 2

L
LOGINDELAY parameter 2-9

M
MAXCAPACITY parameter 2-9

N
newInstance method 4-3
NUMBER column 4-12

O
objects

disconnecting and closing 3-15
Oracle cursor 4-9
Oracle oopt() C function

accessing 5-5
API 4-5

Oracle rows 5-7

P
packages

importing 3-9
parameter

binding to an Oracle cursor 4-9
parse method 5-8
passwords

encrypting 2-10
pooling

database connections 2-1
JDBC connections 2-2

PreparedStatement class 3-12
printing product documentation viii
printjdbcconnpool option 2-11
properties

setting for a DBMS connection 3-9
Properties object 4-4
PROPS parameter 2-8

R
records

inserting, updating, and deleting 3-12
REFRESH parameter 2-10
related information viii
resources

waiting for Oracle DBMS 4-5
ResultSet class 4-9
ResultSet object

returning from stored procedure 5-3

S
shared libraries

for jdbcKona/Oracle 3-3
shrinking connection pools 2-9
SHRINKPERIOD parameter 2-9
Solaris 1-3, 3-2
SQL query

making with a jdbcKona driver 3-11
Statement class

API for WebLogic extension to 5-6
stored procedures

creating and using 3-13
returning ResultSet object from 5-3

I-4 Using the JDBC Drivers

using in jdbcKona/Oracle 4-8
support

technical ix

T
T_JDBCCONNPOOLS TMIB class 2-13
TESTONRELEASE parameter 2-10
TESTONRESERVE parameter 2-10
TESTTABLE parameter 2-9
tmadmin command

printjdbcconnpool option 2-11

U
UBBCONFIG

JDBCCONNPOOLS sample 2-5
parameters for connection pooling 2-4
sample file for connection pooling 2-5

USERROLE parameter 2-8

W
WAITFORCONN parameter 2-10
waitOnResources method 5-5
WAITTIMEOUT parameter 2-10
WebLogic extensions

Connection class 5-4
to CallableStatement class 5-2
to JDBC (list) 3-6
to Statement class 5-6

weblogic.jdbc20.oci734.Driver 2-7
weblogic.jdbc20.oci804.Driver 2-7
weblogic.jdbc20.oci815.Driver 2-7, 3-4
Windows NT 4.0 1-3, 3-2
WLE Java application 3-8

X
XA

JDBC/XA driver 1-1

	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 Using the WebLogic Enterprise JDBC/XA Drivers
	Before You Begin
	Supported Platforms
	Adding the JAR Files to Your CLASSPATH
	Adding Locale to Your CLASSPATH
	Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a DBMS
	About the Sample Code
	About the JDBC API

	Setting Data Source Properties
	Administration Steps
	Use buildXAJS to Create an XA Version of JavaServer
	Use buildtms to Create a Transaction Manager Server Load Module for Oracle
	Define the Database Open Information
	Define JavaServerXA Parameters
	Identify the Driver Class and Connection Pool Characteristics

	Programming Steps
	Import the Required API Packages
	Initialize JavaServerXA and Get the Pool Name
	Use a JNDI Lookup to Create a Pool of Connections
	Get Database Connections from the Pool

	2 Using JDBC Connection Pooling
	About JDBC Connection Pooling
	About the JDBC Drivers and Connection Pooling
	UBBCONFIG Parameters for Connection Pooling
	Sample UBBCONFIG File for Connection Pooling
	JDBCCONNPOOLS Parameter Values
	Encrypting DBPASSWORD and PROPS

	Displaying Information About JDBC Connection Pools
	T_JDBCCONNPOOLS MIB Class
	API Characteristics
	Application Level API
	System Level API for the JNDI Service Provider
	System Level API for JDBC drivers
	Obtaining Connections from a WebLogic Enterprise Connection Pool
	An Application’s View of the Connection Lifecycle
	The DataSource Interface

	3 Using the jdbcKona Drivers
	API Support
	Platforms Supported by the jdbcKona Drivers
	Adding the JAR Files to Your CLASSPATH
	jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a Database Management System (DBMS)
	Support for JDBC Extended SQL
	The JDBC API with WebLogic Extensions
	Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers
	Importing Packages
	Setting Properties for Connecting to the DBMS
	Connecting to the DBMS
	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Code Example

	4 Using the jdbcKona/Oracle Drivers
	Data Type Mapping
	Connecting a jdbcKona/Oracle Driver to an Oracle DBMS
	Method 1
	Method 2
	Other Properties You Can Set for the jdbcKona/Oracle Driver
	General Notes

	Waiting for Oracle DBMS Resources
	Autocommit
	Using Oracle Blobs
	Support for Oracle Array Fetches
	Using Stored Procedures
	Syntax for Stored Procedures in the jdbcKona/Oracle Driver
	Binding a Parameter to an Oracle Cursor
	Using CallableStatement

	DatabaseMetaData Methods
	jdbcKona/Oracle and the Oracle NUMBER Column

	5 jdbcKona Extensions to the JDBC 1.22 API
	Index

