':' @,

% hea
BEA WebLogic Enterprise

Using the JDBC Drivers

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the JDBC Drivers

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y 0OU NEed t0 KNOWcceceeiiiciie sttt vii
E-0OCSWED SHE....cceiictececeeee e et s s viii
HOW tO Print the DOCUMENEccceirieiirieirieeree e viii
Related INfOrmation..........couiiiiei et viii
Lo g1 = ox A1 1S RS S iX
Documentation CONVENTIONSciurviriererieerieeseeereeesie e s sesnes iX
Using the WebLogic Enterprise JDBC/XA Drivers

BEfOre Y OU BEJIN.ottt s e 1-2
SUPPOEd PlatfOrmMS.....cccceeeeceeeeceee s 1-3
Adding the JAR Filesto Your CLASSPATH.......ccccoovivvievnvese e, 1-3
Adding Localeto YOour CLASSPATH ...t 1-4
Shared Libraries and Dynamic Link Libraries.........c.ccoceveeevvevceenencenennn, 1-4
Requirements for Making a Connection to aDBMS.........ccccecveeeveennnene. 1-5
About the SaMPIE COUE.........cceiireiee e e 1-5
ADOUL the IDBC AP ..ottt 1-6
Setting Data SoUrce Properties........ccuvivievenieveeseseesieeeseeresseeesrese e seesseneeseens 1-6
AdMINISration SEEPS......coveiveierieriere et e r e 1-7
Use buildXAJS to Create an XA Version of JavaServer 1-7

Use buildtms to Create a Transaction Manager Server Load Module
FOF OFaCl@...cviie e 1-9
Define the Database Open INformationccoevevenneeeienienienennes 1-10
Define JavaServerX A Parameters.........covevvrerennennesisesieese e 1-11
I dentify the Driver Class and Connection Pool Characteristics........ 1-13
Programming SEEPScoerererirene et 1-14
Import the Required APl Packages..........ccoivvererenereieeeneseseeennes 1-14

Using the JDBC Drivers i

Initialize JavaServerX A and Get the Pool Name.........cccccoveveeeeenennee. 1-15
Use aJNDI Lookup to Create a Pool of Connections..............cc...... 1-15
Get Database Connections from the Poolcooveeveeeeiiieceeienns 1-16

2. Using JDBC Connection Pooling

About IDBC Connection POOLING..........cceireeiririeie e 2-2

About the JDBC Drivers and Connection POOIINGceevvevierieresererieereeeenn, 2-2

UBBCONFIG Parameters for Connection Pooling.........cccceevveverererieesicennnn, 2-4
Sample UBBCONFIG File for Connection Poolingcccccoeveevenenenenne 2-5
JDBCCONNPOOLS Parameter VAlUES........ccovveerirerieenieerieeseeeeeeeenas 2-6
Encrypting DBPASSWORD and PROPS..........cccoovieviniene e 2-10

Displaying Information About JIDBC Connection Pools.........c.ccccevereieneenne. 2-11

T_JDBCCONNPOOLS MIB Cl8SS.....cciireerineeierieeneeieneeeseeieseeiesie s seenesens 2-13

AP CharaCteristiCS......cvieirieirircreres et 2-14
APPlICation LEVEL AP ..ottt 2-14
System Level API for the INDI Service Provider..........ccocevevvevvcvevennnne, 2-14
System Level APl for IDBC driVErS......cccoveeievereeeneeeeie e sesie e see e 2-15
Obtaining Connections from a WebL ogic Enterprise Connection Poal .. 2-15
An Application’s View of the Connection Lifecycle............cccccccvveeeeennn. 2-16
The DataSource INTErfaceoouveiiiiiiiiiie e 2-1

3. Using the jdbcKona Drivers

AP SUPPOIT .. e e e e e e e e et e e et e eeeeeeaeeeesberenbrbnbannnanaan 3-
Platforms Supported by the jdbcKona Drivers..........ccccooeevvviiieviveee e, 3-
Adding the JAR Files to Your CLASSPATH ... 3-3
jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries...........cc......... 3-3
Requirements for Making a Connection to a Database Management System
(DBMS) ittt et et e e e e e e aae 3-
Support for IDBC EXtended SQLuuuiiiiiiiiiiiiiiiiiiiee e 3-
The JDBC API with WebLogiC EXtENSIONSccccooviiiiiiiiiiiiiiie e 3-€
Implementing a WebLogic Enterprise Java Application Using the jdbcKona
(D)= PP RRT 3-
IMPOrting PacCKagesoooieiiiiie e 3-
Setting Properties for Connecting to the DBMSoooiiiiiiiiiiins 3-¢
Connecting to the DBMS ...t 3-1(
Making a Simple SQL QUEIYuuuiiiiiiiieaiaiieiie et a e 3-11

iv Using the JDBC Drivers

Inserting, Updating, and Deleting RECOrdS........ccovevveivvereseneseneesieeenes 312

Creating and Using Stored Procedures and FUNCLiONS...........ccccocvereenens 3-13
Disconnecting and Closing ObJECEScccveeeercevenere e 3-15
(0010 L=l e o] o] = R 3-16

4. Using the jdbcKona/Oracle Drivers

D= = R Y] 0 =31, = o] o] oo SRS 4-2
Connecting ajdbcKona/Oracle Driver to an Oracle DBMS...........cccccvvvveeneee. 4-3
LY =1 o I TSR 4-3
MELNOO 2 ...t 4-4
Other Properties Y ou Can Set for the jdbcK ona/Oracle Driver................. 4-4
GENEIAl NOLES.......ceeieeiet et et e b 4-5
Waiting for Oracle DBMS RESOUICES.........cccvieeriereerieeereereeeeessessessessessenseseens 4-5
AULOCOMIMIT ...ttt et sttt sttt st st sbne 4-6
USING Oracl@ BIODS.........couiiiiieee et 4-7
Support for Oracle Array FEICES.........ccvveveeeerrece e e 4-7
USING SLOred ProCEAUIESccvereeiereeeere et seeeesteste et see e seeseeseseenenseeneas 4-8
Syntax for Stored Procedures in the jdbcK ona/Oracle Driver 4-9
Binding a Parameter to an Oracle CUISOr.........ccoeeereeerieeeeenieseseeseeneeseens 4-9
Using CallableStatementccvvveerereseireeseeeseeeere e se e sre e e e 4-11
DatabaseM etaData MethOds...........ooeieieerieieieeeee e 4-12
jdbcK ona/Oracle and the Oracle NUMBER Columncccooeeevreeivneniennnne 4-12

5. jdbcKona Extensions to the JDBC 1.22 API

Index

Using the JDBC Drivers %

Vi

Using the JDBC Drivers

About This Document

This document contains programming and reference information for the JDBC drivers
that are provided with the BEA WebL ogic Enterprise™ software.

This document covers the following topics:

m Chapter 1, “Using the WebLogic Enterprise JDBC/XA Drivers,” explains how
you can use the WebLogic Enterprise JDBC/XA drivers to make local or
distributed connections to Oracle 8.0.5 or 8.1.5 databases.

m Chapter 2, “Using JDBC Connection Pooling,” describes creating a pool of
JDBC connections which get WebLogic Enterprise applications ready access to
connections that are already open.

m Chapter 3, “Using the jdbcKona Drivers,” describes general guidelines for using
the jdbcKona drivers, including a summary of the steps you take to use a
jdbcKona driver in a WebLogic Enterprise Java application.

m Chapter 4, “Using the jdbcKona/Oracle Drivers,” provides guidelines for using
the jdbcKona/Oracle Type 2 driver.

m Chapter 5, “jdbcKona Extensions to the JDBC 1.22 API,” describes the
jdbcKona extensions to the JDBC API.

What You Need to Know

This document is intended for programmers and system administrators who need to
create and maintain transactional, scalable WebLogic Enterprise applications.

Using the JDBC Drivers Vii

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterpris
documentation Home page, click the PDF Files button and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

viii

Before installing the BEA WebLogic Enterprise software, readBe® WeblLogic
Enterprise Release Notes.

For more information about topics covering CORBA, Java 2 Enterprise Edition
(J2EE), BEA Tuxedo®, distributed object computing, transaction processing, and Jav
programming, see th&febl ogic Enterprise Bibliography in the WebLogic Enterprise
online documentation.

Using the JDBC Drivers

Documentation Conventions

Contact Us!

Y our feedback on the BEA WebL ogic Enterprise documentation isimportant to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our
comments will be reviewed directly by the BEA professionals who create and update
the WebL ogi ¢ Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
®m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using the JDBC Drivers iX

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext))
void commt ()
nonospace Identifies variables in code.
italic Example:
text)
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:
bui | dobj client [-v]
[-1 file-list]...

[-0 name] [-f file-list]...

Using the JDBC Drivers

Documentation Conventions

Convention

Item

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:
buil dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Using the JDBC Drivers

Xi

Xii Using the JDBC Drivers

CHAPTER

1 Using the WebLogic

Enterprise JDBC/XA
Drivers

Y ou can use the WebL ogic Enterprise JDBC/XA driversto make local or distributed
connectionsto Oracle 8.0.5 or 8.1.5 databases. Y ou can use the driverswith WebL ogic
Enterprise CORBA Java and WebL ogic Enterprise J2EE (EJB and RM1) applications.

This topic includes the following sections:

m Before You Begin
e Supported Platforms
e Adding the JAR Filesto Your CLASSPATH
e Adding Localeto Your CLASSPATH
e Shared Libraries and Dynamic Link Libraries
e Requirements for Making a Connectionto aDBMS
e About the Sample Code
e About the IDBC API

m Setting Data Source Properties
e Administration Steps
e Programming Steps

For more information about JDBC connection pooling, see Chapter 2, “Using JDBC
Connection Pooling.”

Using the JDBC Drivers 1-1

1 Using the WebLogic Enterprise JDBC/XA Drivers

For more information about using transactions with the WebL ogic Enterprise
JDBC/XA drivers, see Transactionsand the WebL ogic Enterprise JDBC/XA Driverin
the WebL ogic Enterprise online document Using Transactions. It includes the
following topics:

m Loca versusdistributed (global) transactions, with an example showing how to
switch between the two types of transactions

m JDBC/XA accessihility in CORBA Methods
m JDBC/XA accessihility in EJB methods

Before You Begin

1-2

WebL ogic Enterprise applications using the WebL ogic Enterprise JDBC/XA drivers
can perform local transactions as well as distributed (also called global) transactions.
A local transaction involves updates to a single resource manager (RM), such asa
database. A distributed transaction involves updates across multiple resource
managers.

Read the following topics before you start using a WebL ogic Enterprise JDBC/XA
driver:

m Supported Platforms

m Adding the JAR Filesto Your CLASSPATH

m Shared Libraries and Dynamic Link Libraries

m Requirements for Making a ConnectiontoaDBMS
m About the Sample Code

m About the JIDBC API

Using the JDBC Drivers

Before You Begin

Supported Platforms

The WebL ogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5 are supported
on the following platforms:

m Compag Tru64 UNIX (Alpha) 4.0F

m HP-UX 11.0

m IBMAIX 433

m Microsoft Windows 2000 and NT 4.0 SP5
m Sun Solaris2.6and 7.0

For information about any vendor patches required on each platform, and the specific
required version of the Java 2 Software Development Kit (SDK), see the WebL ogic
Enterprise Platform Data Sheets appendix in the WebL ogic Enterprise Installation
Guide.

Adding the JAR Files to Your CLASSPATH

Be sureto add to your environment the WebL ogic Enterprise JavaARchive (JAR) files
that include the classes for the JIDBC/XA drivers. Y ou can do this by appending the
following to your CLASSPATH system environment variable, where TUXDI Ris the
directory in which you installed the WebL ogic Enterprise software:

Windows 2000 or NT
%UXDI R% udat aobj \j avalj dk\ MB. j ar ; %UXDI R udat aobj \ j ava\ j dk\ webl ogi caux. j ar;
UNIX

$TUXDI R/ udat aobj /j ava/ j dk/ MB. j ar ; $TUXDI R/ udat aobj / j ava/ j dk/ webl ogi caux. j ar;

Using the JDBC Drivers 1-3

1 Using the WebLogic Enterprise JDBC/XA Drivers

Adding Locale to Your CLASSPATH

During devel opment, or any time you are using BEA tools, you should also set up the
location for error messages from thetools. Y ou do this by adding the following to your
CLASSPATH, where TUXDI Ris the directory in which you installed the WebL ogic
Enterprise software:

Windows 2000 or NT
9%UXDI R% | ocal e\ j ava\ VB;

UNIX

$TUXDI R/ | ocal e/ j aval MB;

Shared Libraries and Dynamic Link Libraries

14

The JDBC/XA drivers call native libraries that are supplied with the drivers. The
UNIX libraries (shared object files) arein the $TUXDI R/ | i b directory. The Windows
DLL filesareincluded in the WebL ogic Enterprise software kit in the %rUXDI R bi n
directory.

The following table lists the names of the driver files included with the WebL ogic
Enterprise Java system.

Driver Filename Platform

webl ogi coci 805. dlI | Microsoft Windows 2000 and NT 4.0
webl ogi coci 815. dI | SP5

webl ogi coci 805. so Compag Tru64 UNIX 4.0F

webl ogi coci 815. so IBM AlIX 4.3.3

Sun Solaris2.6 and 7

webl ogi coci 805. sl HP-UX 11.0
webl ogi coci 815. sl

Using the JDBC Drivers

Before You Begin

For the WebL ogic Enterprise JDBC/XA drivers, the driver class names are

webl ogi c. j dbc20. oci 805. Dri ver or webl ogi c. j dbc20. oci 815. Dri ver . With
the JDBC 2.0 AP, unlike the API for the jdbcKona 1.22 drivers, you do not identify
the driver class name in your application code. Instead, you assign data source
properties, which include the driver class name. In the WebL ogic Enterprise
environment, this step is done by setting parameters in the WebL ogic Enterprise
application’sUBBCONFI G file. For more information, see “Setting Data Source
Properties” on page 1-6.

For the JDBC/XA drivers, you also need the Oracle-supplied 8.0.5 or 8.1.5 libraries
for the database.

Requirements for Making a Connection to a DBMS

You need the following components to connect to a DBMS using a JDBC/XA driver:
m An Oracle database server, version 8.0.5 or 8.1.5
m The WebLogic Enterprise JDBC/XA driver

m The Java 2 Software Developer Kit (Java 2 SDK). For information about the
specific required version of the Java 2 SDK, sedflebLogic Enterprise
Platform Data Sheets appendixthe WebLogic Enterprisiastallation Guide.

About the Sample Code

In addition to the supported sample applications that are provided with the WebLogic
Enterprise software, BEA provides unsupported samples and tools on its Web site. The
JDBC/XA Bankapp sample code shown in this chapter are part of the unsupported
samples on the Web. For a URL pointer to the JDBC/XA Bankapp sample that is
shown in this chapter, see tBEA WebLogic Enterprise Release Notes.

Using the JDBC Drivers 1-5

1 Using the WebLogic Enterprise JDBC/XA Drivers

About the JDBC API

The WebL ogic Enterprise 5.1 software supports:
m TheJDBC 1.22 API

m Thefollowing additional capabilities are defined in the JDBC 2.0 Optional
Package API:

e Didtributed transactions: the j avax. sql . Dat aSour ce APl
e Connection pooling

e JavaNaming and Directory Interface (JNDI)

New methods that were added in the JIDBC 2.0 API, which were not present in JDBC
1.22, are not supported in this release of WebL ogic Enterprise. If aWebL ogic
Enterprise application calls a new JDBC 2.0 method that was not in JDBC 1.22, an
SQLExcept i on will be thrown.

Setting Data Source Properties

The JDBC 2.0 Optional Package API, formerly known asthe Standard Extension API,
consistsof thej avax. sql package. ThispackageincludestheDat aSour ce interface,
which providesan aternativetotheDr i ver Manager classfor making a connection to
adatasource. The Dri ver Manager classis used with the jdbcKona 1.22 drivers.

Using a Dat aSour ce implementation is better for two important reasons;
m |t makes code more portable
m |t makes code easier to maintain

In the WebL ogic Enterprise environment, you set the data source properties separate

from the WebL ogic Enterprise application code. Y ou set these propertiesin the
application’sUBBCONFI G configuration file. The values include the driver class name,
the group in which the Java server runs, and several parameters that define the initi
and run-time behavior of the JDBC connection pool.

1-6 Using the JDBC Drivers

Setting Data Source Properties

When you create abinary TUXCONFI Gversion of the applicationldBBCONFI Gfile with

thet m oadcf command, these values are stored as TMIB properties. When the
WebLogic Enterprise application’s Java server is booted, its infrastructure will read
the properties from TMIB and initialize the connection pools.

The setup process can be divided into:
m Administration Steps
m Programming Steps

The steps are described in subsequent sections of this topic. After you complete these
steps, use them oadcf andt nboot commands to deploy the WebLogic Enterprise
Java application, as described3arting and Shutting Down Applications, an

administration topic in the WebLogic Enterprise online documentation.

Administration Steps

The administration steps are as follows:
m Use buildXAJS to Create an XA Version of JavaServer

m Use buildtms to Create a Transaction Manager Server Load Module for Oracle
8.0.50r815

m Define the Database Open Information
m Define JavaServerXA Parameters

m |dentify the Driver Class and Connection Pool Characteristics

Use buildXAJS to Create an XA Version of JavaServer

From a system prompt, use the | dXAJS command to build an XA resource manager
that will be used with a JavaServerXA application group.

Syntax

bui | dXAJS [-v] -r rmmane [-0 outfile]

Using the JDBC Drivers 1-7

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-8

Example

The following example builds a JavaServerX A resource manager named

Payr ol |

JavaSer ver XA on a Solaris system:

pronpt >bui dXAJS -r Oracl e_XA -0 Payrol | JavaServer XA

Options

-V

Specifies that the bui | dXAJS command should work in verbose mode. In
particular, it writes the build command to its standard output.

-r rmane

Note: Seethe BEAWebLogic Enterprise Rel ease Notesfor information about the

Specifies the resource manager associated with this server. If the
JavaServerXA is being deployed in multithreaded mode, you must ensure
that the RM containsvaluesfor Oracle 8.0.5 or 8.1.5 (matching your database
software). Attempting to deploy a multithreaded JavaServerXA that is being
linked with an RM other than Oracle 8.0.5 or 8.1.5 is not supported.

The value r manme must appear in the resource manager table located in
$TUXDI R/ udat aobj / RMon UNIX systems, or % UXDI R udat aobj \ RMon
Windows 2000 or NT systems. On UNIX systems, each entry inthisfileis of
theformr mane: rmst ruct ure_name: | i brary_names. On Windows 2000
or NT systems, each entry in thisfileis of the form

rmane; rnstructure_nane; | i brary_nanes.

r mame values that must be supplied for Oracle 8.0.5 and 8.1.5.

Using the r mane value, the entry in $TUXDI R/ udat aobj / RMor

9@ UXDI RA udat aobj \ RMautomatically includes the associated libraries for
the resource manager and properly sets up the interface between the
transaction manager and the resource manager.

If the-r optionis not specified, the default isto use the null resource
manager.

-0 outfile

Specifies the name of the output file. If no name is specified, the default is
JavaServerXA.

Using the JDBC Drivers

Setting Data Source Properties

Environment Variables

TUXDI R
Finds the WebL ogic Enterprise libraries and include files to use when
compiling the server application.

LD_LI BRARY_PATH (Solaris)
SHLI B_PATH (HP-UX)

LI BPATH (IBM AIX)
I ndicates which directories contai n shared objectsto be used by the compiler,
in addition to the WebL ogic Enterprise shared objects. A colon (;) isused to
separate the list of directories.

LI B (Windows 2000 or NT systems)
Indicatesalist of directorieswithin whichto find libraries. A semicolon (;) is
used to separate the list of directories.

Portability

The bui | dXAJS command is supported in UNIX and Windows 2000 or NT 4.0
systems. It is not supported on client-only WebL ogic Enterprise systems.

Use buildtms to Create a Transaction Manager Server Load Module for Oracle

From a system prompt, use the bui | dt r8 command to build a transaction manager
server load modulefor the XA resource manager (RM). Oracle8.0.5 or 8.1.5isthe RM
that you can use with aWebL ogic Enterprise JDBC/XA driver. The files that result
from the bui | dt r8 command need to beinstalled in the %ruxbl R%directory
(Windows 2000 or NT 4.0) or $TUXDI R/ bi n (UNIX) directory.

Syntax
buildtns [-v] -0 name -r rmane
Examples

The following examples build transaction manager server load modules for Oracle
8.0.50r 8.1.5.

Windows 2000 or NT
pronpt> buildtms -0 %UXDI R4 bi n\TMS_ORA -1 Oracl e_XA

Using the JDBC Drivers 1-9

1 Using the WebLogic Enterprise JDBC/XA Drivers

UNIX
pronmpt> buildtnms -0 $TUXDI R/ bin/ TM5_ ORA -r O acl e XA

Options

-V
Specifiesthat bui | dt ms should work in verbose mode. In particular, it writes
thebui | dser ver command toits standard output and specifiesthe- v option
to bui | dserver.

-0 nane
Specifies the filename for the output load module.

- rmane
Specifies the resource manager associated with this server. If the
JavaServerXA is being deployed in multithreaded mode, you must ensure
that the RM contains values for Oracle 8.0.5 or 8.1.5. Attempting to deploy a
multithreaded JavaServerXA that is being linked with an RM ather than
Oracle 8.0.5 or 8.1.5 is not supported.

The value r mane must appear in the resource manager table located in
$TUXDI R/ udat aobj / RMon UNIX systems, or %rUXDI R% udat aobj \ RMon
Windows 2000 or NT systems. On UNIX systems, each entry in thisfileis of
theformr nmane: rnst ruct ure_nane: | i brary_names. OnWindows2000
or NT systems, each entry in thisfileis of the form

rmane; rnstructure_nane; library_nanmes.

Note: Seethe BEA WebLogic Enterprise Release Notes for information about the
r mame values that must be supplied for Oracle 8.0.5 and 8.1.5.

Portability

The bui I dt rs command is supported in UNIX and Windows 2000 or NT systems. It
is not supported on client-only WebL ogic Enterprise systems.

Define the Database Open Information

1-10

In the GROUPS section of the applicationdBBCONFI Gfile, configure theoPENI NFO
parameter according to the definition of treparameter for the Oracle 8.0.5 or 8.1.5
database. Listing 1-1 shows a san@#ENI NFO parameter value. In this example, the
OPENI NFOvalues are defined for a group designatesaai GROUP1.

Using the JDBC Drivers

Setting Data Source Properties

Listing1-1 OPENINFO Setting in Sample UBBCONFIG

* GROUPS
SYS_GRP
LMD
GRPNO
BANK_GROUP1
LMD
GRPNO
OPENI NFO =
" ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTm=100+LogDi r =. +DbgFl =0
x7+MaxCur =15+Thr eads=t r ue"
TVMSNAME = TMS_CRA
TMSCOUNT = 2

SI TE1
1

SI TE1
2

In the example, note how the TMS_ORA name matches the Oracle transaction manager
that was created for Oracle 8.0.5 or 8.1.5 in the previous bui | dt ms step.

Define JavaServerXA Parameters

In the SERVERS section of the application'dBBCONFI Gfile, define parameters to
indicate how this WebLogic Enterprise application will use JavaServerXA.

The JavaServerXA parameter is required if you are using the JDBC/XA driver. If you
want the JavaServerXA to be multithreaded, specify theption for theCLOPT
parameter. To deploy a single-threaded JavaServerXA server, do not-ugejtien.

Each JavaServerXA can only host WebLogic Enterprise JDBC connection pools that
connect to one resource manager. The current release supports the Oracle 8.0.5 or 8.1.5
XA resource manager only.

You must specifisSRVTYPE=JAVA for the JavaServer or JavaServerXA to use JDBC
connection pooling.

Note: In prior WebLogic Enterprise releases, you could also specify the name of the
connection pool on the command-line options (CLOPT) of the JavaServerXA
or JavaServer parameter. Although this is still allowed by the syntax parser,
the new syntax is to list the connection pool’'s name and the application’s JAR
filename in themMODULES section.

Listing 1-2 shows an example of JavaServerXA configured for multithreading in a
sampleUBBCONFI G. Notice the association between BaK_GROUP1 group that was
defined in the previous listing; it contains ttRENI NFO values.

Using the IDBC Drivers 1-11

1 Using the WebLogic Enterprise JDBC/XA Drivers

Also notice how inthe MODULES section, thebank_pool valueislistedto giveahandle
for aJDBC connection pool.

Listing 1-2 Multithreaded Server Configuration in Sample UBBCONFIG

* SERVERS
DEFAULT:
RESTART
MAXCGEN

JavaServer XA
SRVGRP
SRVI D
SRVTYPE

CLOPT =
RESTART = N

BANK_GROUP1
2
J

AVA
"-A-- -M10"

* MODULES

BankApp
SRVGRP = BANK_ GROUP1

SRVID = 2
FI LE = " BankApp.jar"
ARGS = "Tel l erFactory_1 bank_pool "

The - M 10 parameter for the JavaServerX A enables a multithreaded JavaServer with
apool of 10 threads. The threads setting is in addition to the JDBC connection pool
settings, which are defined in the next section, JDBCCONNPOOLS.

Note: Thepotential for aperformance gain fromamultithreaded JavaServer depends
on the application pattern and whether the application is running on a
single-processor or multiprocessor machine. For more information about
enabling multithreaded JavaServers, see Creating a Configuration File, an
administration topic in the WebL ogic Enterprise online documentation.

1-12 Using the JDBC Drivers

Setting Data Source Properties

Identify the Driver Class and Connection Pool Characteristics

The JDBCCONNPOOLS section of the applicationl$BBCONFI Gfile includes several
parameters to set the properties of the JDBC connection pool and the driver it uses.
This JDBCCONNPOOLS section was added to the WebLogic Enterprise product in
version 5.1. Listing 1-3 shows a sample section.

Listing 1-3 Defining Driver and Connection Pooling Propertiesin a Sample
UBBCONFIG

* JDBCCONNPOOL S
bank_pool

SRVGRP
SRVI D
DRI VER
URL
PROPS
ENABLEXA
I Nl TCAPACI TY
MAXCAPACI TY
CAPACI TYI NCR
CREATEONSTARTUP =Y

BANK_GROUP1

2

"webl ogi c. j dbc20. oci 815. Dri ver"

"j dbc: webl ogi c: or acl e: beg- | ocal "
"user=scott; password=tiger;server=Beg- Local "
Y

2
10
1

The SRVGRP parameter valugANK_GROUP1, forms the association between this
bank_pool connection pool and the definition®4NK_GROUP1 in theGROUPS section
of theUBBCONFI G. The definition forBANK_GROUP1 included the Oracle database
OPENI NFOvalues.

The JDBC connection pool is namieghk_pool , which was also identified in the
MODULES section. The use of the server IER(1 D = 2) and thebank_pool name
forms the association between the JavaServerXA that will rBANK_GROUP1 and
this connection pool.

For the WebLogic Enterprise JDBC/XA driver, set bRe VER parameter value to
eitherwebl ogi c. j dbc20. oci 805. Dri ver or
webl ogi c. j dbc20. oci 815. Dri ver. Also, set theENABLEXA parameter to.

See Chapter 2, “Using JDBC Connection Pooling” for information about the other
JDBCCONNPOOL S parameters. They include settings for the initial and run-time
behavior of the named connection pool.

Using the IDBC Drivers 1-13

1 Using the WebLogic Enterprise JDBC/XA Drivers

Programming Steps

The programming steps include the following:

m Import the required API packages

m [nitialize JavaServerXA and Get the Name of the JDBC Connection Pool
m UseaJINDI lookup to create apool of connections

m Get database connection from the pool

After you complete these steps described in these sections, usethet m oadcf and

t mboot commands to deploy the WebL ogic Enterprise Java application, as described
in Sarting and Shutting Down Applications, an administration topic in the WebL ogic
Enterprise online documentation. The steps include:

m Usingtm oadcf to create abinary version of the UBBCONFI Gfile

m Usingt nmboot -y to boot the application

Import the Required API Packages

Listing 1-4 shows the packages that a Java application imports. In particular, note that:

m Thejava. sql.* andj avax. sql . * packages arerequired for database
operations.

m Thej avax. nani ng. * packageisrequired for performing a INDI lookup on the
pool name, which is passed in as a command-line parameter upon server startup.
The pool name must be registered on that server group.

Listing 1-4 Importing Required Packages

import java.io.*;

i mport java.net. URL;

i mport java.sql.*;

i mport javax.sql.*;

i mport javax.nam ng.*;

i mport com beasys. *;

i mport com beasys. Tobj . *;
i mport com beasys. Tobj . TP;

1-14 Using the JDBC Drivers

Setting Data Source Properties

Initialize JavaServerXA and Get the Pool Name

In your Java application code, initialize the JavaServerXA. In the samplefile
BankAppServerimpl.java, when the sample BankApp JavaServerX A isinitialized, it:

m CreatesaTeller factory object reference
m Register the factory reference with the FactoryFinder
m Establishes connections to the database

The two arguments are:
m TellerFactory_1

® bank_pool

The JdbcConnPool Name argument is the name of the connection pool that was
specified in the applicationdBBCONFI Gfile. The JavaServerXA returns this value to
the program.

For example, the following code fragment is from the sample file
BankAppServerimpl.java:

public boolean initialize(String[] args)

{

try {
/1 get input argunents

if(args.length <2) {
TP. user| og("Not enough argunents");
TP. userlog("Correct Argunent list: ");
TP. userlog("Tel l erFactory_1 bank_pool ");
return fal se;

}

tell erFNane = new String(args[0]);
String pool _name = args[1];

/1 write the input argunments to ULOG file

TP. userl og("I nput Argunents for Server.initialize(): ");
TP.userlog("TellerFactory_1: " + tellerFactory 1);

TP. user| og("JDBC connecti on pool name: " + bank_pool);

Use a JNDI Lookup to Create a Pool of Connections

The sample program BankAppServerimpl.java uses the static vabealsour ce,
the connection pool object. For example:

Using the IDBC Drivers 1-15

Using the WebLogic Enterprise JDBC/XA Drivers

static DataSource pool;

Using Dat aSour ce, the sample uses a JINDI lookup to create a pool of connectionsto
the database. For example:

public void get_connpool (String bank_pool)
t hrows Exception

{
try {
javax. nam ng. Context ctx = new Initial Context();
pool = (DataSource)ctx.|ookup("jdbc/" + bank_pool);
catch (javax.nam ng. Nam ngException ex){
TP. user| og(" Coul dn’t obtain JDBC connection pool: " +
bank_pool) ;
t hr ow ex;
}
}

Get Database Connections from the Pool

1-16

In the Dat aSour ce implementation, the Connect i on object that is returned by the
Dat aSour ce. get Connect i on method isidentical to aConnect i on object returned
by the jdbcKona 1.22 Dr i ver Manager . get Connect i on method. Because of the
advantages it offers, using a Dat aSour ce object is the recommended way to obtain a
connection.

For the application programmer, using a Dat aSour ce object isa matter of choice.
However, programmers writing WebL ogic Enterprise JDBC applications that include
distributed (XA) transactions and connection pooling must use a Dat aSour ce object
to get connections.

For exampl e, the following code fragment is from the sample application file
DBAccessimpl.java:

public void get _valid_accounts(short pinNo, CustAccountsHol der
accounts)
t hrows Dat aBaseExcepti on, Pi nNunber Not Found
{

Statenment stnt=null;
Resul t Set rs=null;
Connection con= null;

try {

Using the JDBC Drivers

Setting Data Source Properties

con = BankAppServer| npl. pool . get Connection();

/] Construct and execute the SQL SELECT st at enent.

stm = con.createStatenent();

String stntBuf =

new String(

" SELECT Checki ngAccount | D, Savi ngsAccountID "
+ "FROM Cust _Data WHERE PinNo = "
+ pi nNo) ;

rs = stnt.executeQery(stntBuf);

Using the IDBC Drivers 1-17

1 Using the WebLogic Enterprise JDBC/XA Drivers

1-18 Using the JDBC Drivers

CHAPTER

2

Using JDBC Connection
Pooling

This topic includes the following sections:
m About JDBC Connection Pooling
m About the JIDBC Drivers and Connection Pooling

m UBBCONFIG Parameters for Connection Pooling
e Sample UBBCONFIG File for Connection Pooling
e JDBCCONNPOOLS Parameter Values
e Encrypting DBPASSWORD and PROPS

m Displaying Information About JDBC Connection Pools
m T _JDBCCONNPOOLSMIB Class
m AP Characteristics

Chapter 1, “Using the WebLogic Enterprise JDBC/XA Drivers,” describes the
JDBC/XA drivers provided with the WebLogic Enterprise software and introduces the
use of connection pooling with those XA drivers for Oracle 8.0.5 and 8.1.5. This
chapter explains how to use connection pooling with any JDBC driver supported by
the WebLogic Enterprise software. This includes the WebLogic Enterprise JDBC/XA
drivers and the jdbcKona drivers that are documented in Chapter 4, “Using the
jdbcKona/Oracle Drivers.”

If you use the jdbcKona drivers, it is not mandatory that you use JDBC connection
pooling to obtain database connections. However, BEA recommends that you use the
connection pooling feature with Java applications. If you use a JDBC/XA driver, you
must use the JDBC connection pooling to obtain database connections.

Using the JDBC Drivers 2-1

2 Using JDBC Connection Pooling

About JDBC Connection Pooling

To conserve system resources and to improve the performance of transactional BEA
WebL ogic Enterprise (WLE) applications, WebL ogic Enterprise allows you to define
apool of JDBC database connections. Y ou can use the JDBC connection pooling
features in WebL ogic Enterprise CORBA Java and WebL ogic Enterprise EJB
applications.

JDBC connections are expensive resources. Opening and closing them are expensive
operations. The JDBC connection pooling feature in WebL ogic Enterprise provides
efficient use of database connections. Creating a pool of JDBC connections gives
WebL ogic Enterprise applications ready access to connections that are already open.
It removes the overhead of opening a new connection for each database user.

WebL ogic Enterprise application devel opers or system administrators configure the
connection pool by using a new section in the applicatioBBSONFI Gfile:
JDBCCONNPOOLS. WebLogic Enterprise applications use the connection pool at
runtime to obtain JDBC connections.

The WebLogic Enterprise software provides connection pooling in its Java
infrastructure, to be used on top of different JDBC drivers that integrates with the
WebLogic Enterprise administration features.

About the JDBC Drivers and Connection
Pooling

The WebLogic Enterprise software provides the following JDBC drivers:
m WebLogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5 (Type 2)
m jdbcKona/Oracle drivers for Oracle 7.3.4, 8.0.5, and 8.1.5 (Type 2)

When you use the jdbcKona drivers, you can optionally use the connection pooling
feature described in this topic. It is not mandatory that you use connection pooling witl
the jdbcKona drivers. The jdbcKona drivers do not support distributed transactions

2-2 Using the JDBC Drivers

About the JDBC Drivers and Connection Pooling

(also called global, or XA transactions). A local transaction involves updatesto a
singleresource manager, such asadatabase. A distributed transaction involves updates
across multiple resource managers.

WebL ogic Enterprise applications that use the IDBC/XA drivers, for local or
distributed transactions, must use connection pooling and Oracle 8.0.5 or 8.1.5.

Table 2-1 summarizes the JDBC connection pooling configuration options and
reguirements.

Table 2-1 JDBC Connection Pooling Options and Requirements
JDBC Driver Category Without JDBC With JDBC Connection

Connection Pooling

Poaling
JDBC drivers supportingthe Obtain JDBC Obtain the WebLogic Enterprise
JOBC 1.x API. connections from providedDat aSour ce (which
Thisincludes the jdbc/K ona Dri ver Manager . wraps around the driver vendor’'s
driversthat areincluded with DriverManager) fromthe
WebL ogic Enterprise: WebLogic Enterprise JNDI service

provider. Then obtain JDBC

" jdbcKona/Oradle 7.3.4 connections fronbat aSour ce.

m jdbcKona/Oracle 8.0.5
(when ENABLEXA in
the application’s
UBBCONFI Gis set tad\)

m jdbcKona/Oracle 8.1.5
(when ENABLEXA in
the application’s
UBBCONFI Gis set td\)

JDBC drivers supporting Obtain the JDBC Obtain the WebLogic Enterprise

JDBC 2.0 Extension API driver vendor's provided DataSource (which wraps
pertaining to Connection Dat aSour ce from around the JDBC driver vendor's
Pooling. the WebLogic Connect i onPool Dat aSour ce)
Enterprise JNDI from the WebLogic Enterprise
service provider. Then JNDI service provider. Then obtain
obtain JDBC JDBC connections from
connections from Dat aSour ce.
Dat aSour ce.

Using the JDBC Drivers 2-3

2 Using JDBC Connection Pooling

Table 2-1 JDBC Connection Pooling Options and Requirements (Continued)

JDBC Driver Category ~ Without JDBC With JDBC Connection
Connection Poaling
Pooling

m WeblL ogic Enterprise Not applicable. (The Obtain the WebLogic Enterprise
JDBC/XA driversfor WebLogic Enterprise providedDat aSour ce from the

Oracle8.0.50r 8.1.5 JDBC/XA drivers for WebLogic Enterprise JNDI service
(when ENABLEXAinthe Oracle 8.0.5 or 8.1.5 provider. Then obtain JDBC
application’s driver must be used in connections fronbat aSour ce.

UBBCONFI Gis set toY). conjunction with
WebLogic Enterprise
JDBC connection

pooling.)

UBBCONFIG Parameters for Connection
Pooling

This section describes the applicatiodBBCONFI G file parameters that are related to
JDBC connection pooling.

The JDBCCONNPOOL S section must be placed after 8#RVERS section in the
configuration file.

The JDBCCONNPOOL S section has the following characteristics:

m The entries in th@ DBCCONNPOOLS section start with the names of connection
pools.

m TheSRVI D andSRVGRP attributes must refer to a JavaServer that is specified in
the SERVERS section.

m Only theSRVGRP, SRVI D, MAXCAPACI TY, andCAPACI TYI NCR attributes are
required for entrieSTESTTABLE must be specified REFRESH is specified or if
TESTONRELEASE or TESTONRESERVE are set to.

2-4 Using the JDBC Drivers

UBBCONFIG Parameters for Connection Pooling

Note:

In the SERVERS section, you must also specify SRVTYPE=JAVA for the
JavaServer or JavaServerX A to use JDBC connection pooling.

Some attributes are dependent on the version of the JDBC driver.

Sample UBBCONFIG File for Connection Pooling

Listing 2-1 shows a UBBCONFI Gfile for a sample multithreaded application that uses
the WebL ogic Enterprise JDBC/XA driver and connection pooling. Subsequent
sections in this topic describe the parameters that are related to JDBC configuration.
Bolded text isusedinthelisting to highlight UBBCONFI Gsection namesand parameters
that are discussed following the example.

Listing 2-1 Sample UBBCONFIG for JDBC/XA Bankapp

* RESOURCES

| PCKEY = 39211
DOVAINI D = sinple
MASTER = SI TE1

MODEL
LDBAL

SHM
N

* MACHI NES

trixie

LMD = SI TE1

APPDIR = “/myapps/banking”

TUXCONFIG = “/myapps/banking/tuxconfig”
TUXDIR “/wledir”

ULOGPFX “/usr/appdir/logs/ULOG”
MAXACCESSERS = 50

* GROUPS
SYS_GRP
LMID =SITE1
GRPNO =1
BANK_GROUP1
LMID = SITE1
GRPNO =2
OPENI NFO =

"ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+DbgFI=0
x7+MaxCur=15+Threads=true"

TMSNAME =TMS_ORA

TMSCOUNT =2

Using the JDBC Drivers 2-5

2 Using JDBC Connection Pooling

* SERVERS
DEFAULT:
RESTART
MAXCGEN

I
a1

JavaSer ver XA
SRVGRP
SRVI D
SRVTYPE

CLOPT
RESTART

BANK_GROUP1
2
JAVA
"-A-- -M 10"
N

* MODULES
BankApp
SRVGRP = BANK_GROUP1
SRVID = 2
FI LE = "BankApp.jar"
ARGS = "Tel l erFactory_1 bank_pool "

* JDBCCONNPOOLS
bank_pool

SRVGRP
SRVI D
DRI VER
URL
PROPS
ENABLEXA
I NI TCAPACI TY
MAXCAPACI TY
CAPACI TYI NCR
CREATEONSTARTUP

BANK_GROUP1

2

"webl ogi c. j dbc20. oci 815. Dri ver"

"j dbc: webl ogi c: or acl e: Beg- Local "
"user=scott; password=ti ger; server=Beg- Local "
Y

2

10

(I

Y

JDBCCONNPOOLS Parameter Values

The following list describes the JDBCCONNPOOL S parameters shown in Listing 2-1,
“Sample UBBCONFIG for JDBC/XA Bankapp,” on page 2-5. Also described are
additionall DBCCONNPOOL S parameters that are not shown in the listing.

2-6 Using the JDBC Drivers

UBBCONFIG Parameters for Connection Pooling

Note: Inthe SERVERS section, you must also specify SRVTYPE=JAVA for the
JavaServer or JavaServerX A to use JDBC connection pooling.

m Specify aname for the connection pool. In this example, bank_pool isused.
This parameter is required and matches the pool name identified in the ARGS
parameter of the MODULES section.

m Usethe required SRVGRP parameter to identify the server group that will use the
connection pool; in this case, BANK_GROUP1. SRVGRP is arequired parameter.
The valueisastring up to 30 characters. Thereis no default value.

m Usethe SRvI D parameter to identify the JavaServer defined in the SERVERS
section. SRVI D isarequired parameter. The value is a number from 1 to 30001.
Thereis no default value.

m Usethe DRI VER parameter to define the class name for the JDBC driver being
used. The values are:
e webl ogi c.j dbc20. oci 815. Dri ver
e webl ogi c. j dbc20. oci 805. Dri ver
e webl ogi c.j dbc20. oci 734. Dri ver
Thewebl ogi c. j dbc20. oci 815. Dri ver valueisthe driver name for both:

e TheWebLogic Enterprise JDBC/XA driver, if you set ENABLEXA=Y, for
distributed XA transactions

e ThejdbcKona/Oracle driver for Oracle 8.1.5, if you set ENABLEXA=N, for
local transactions

Thewebl ogi c. j dbc20. oci 805. Dri ver valueisthedriver namefor both:

e TheWebLogic Enterprise JDBC/XA driver, if you set ENABLEXA=Y, for
distributed XA transactions

e ThejdbcKona/Oracle driver for Oracle 8.0.5, if you set ENABLEXA=N, for
local transactions

The WebL ogic Enterprise JDBC/XA driver is described in Chapter 1, “Using the
WebLogic Enterprise JDBC/XA Drivers.” For this driver, you must use
connection pooling and therefore must hau®BCCONNPOOLS section in the
application’sUBBCONFI Gfile.

The jdbcKona/Oracle driver is described in Chapter 4, “Using the
jdbcKona/Oracle Drivers.” It is not mandatory that you use JDBC connection
pooling with the jdbcKona/Oracle driver. However, if your application uses

Using the JDBC Drivers 2-7

2 Using JDBC Connection Pooling

2-8

connection pooling, you must include a DRI VER parameter in the application’s
UBBCONFI Gfile.

For JDBC drivers that are not JDBC 2.0 compliant, us&heparameter to
identify the Universal Resource Locator (URL) that is associated with this
driver. If you are using connection pooling with a driver that is not compliant
with JDBC 2.0, you must use thieL parameter. The URL value is a string up to
256 characters.

Use the optionabBNAME parameter to identify the name of the database. The
value is a string up to 30 characters.

Use the optionabBUSER parameter to identify the user account name that will
access the database for this WebLogic Enterprise application. The value is a
string up to 30 characters.

Use the optionabBPASSWORD parameter to identify the user password for the
user account that will access the database for this WebLogic Enterprise
application. The value is a string up to 64 characters. This can be specified as
clear text or it can be encrypted using the€oadcf command. For details on

this option, see “Encrypting DBPASSWORD and PROPS” on page 2-10.

Use the optionalSERROLE parameter to identify the SQL role of the user
account that will access the database for this WebLogic Enterprise application.
The value is a string up to 30 characters.

Use the optionabBHOST parameter to identify the host name of the database
server. The value is a string up to 30 characters.

Use the optionabBNETPROTOCOL parameter to identify the network protocol
used to communicate with the database. The value is a string up to 30 character

Use the optionabBPORT parameter to identify the port number used for
database connections. The value is a number up to 65535.

For JDBC drivers that are not JDBC 2.0 compliant, use the PROPS parameter tc
identify vendor-specific properties for the driver. The value can be a string up to
256 characters. This information can be encrypted. For more information, see
“Encrypting DBPASSWORD and PROPS” on page 2-10.

Use theENABLEXA parameter to indicate whether the connection pool will be
used with an XA-compliant driver. The value canvbar N. For applications

using the WebLogic Enterprise JDBC/XA drivers for Oracle 8.0.5 and 8.1.5, this
value must be set % The default value is.

Using the JDBC Drivers

UBBCONFIG Parameters for Connection Pooling

Use the optional CREATEONSTARTUP parameter to indicate whether the
connection pool is created when the Java server is started. Otherwise, the pool is
created when the first request arrives. The value can be Y or N. The default value
iSY.

Use the optional LOG NDELAY parameter to indicate the number of seconds to
wait between each attempt to open a connection to the database. Some database
servers cannot handle multiple requests for connections in rapid succession. This
property allows you to build in asmall delay to allow the database server to
catch up. The value can be any number O or greater. The default value is 0.

Usethe optional | Nl TCAPACI TY parameter to indicate the number of
connectionsinitially supported in the connection pool. This should not exceed
the value of the related MAXCAPACI TY parameter. The value for I Nl TCAPACI TY
can be any number O or greater. The default value is the value for

CAPACI TYI NCR.

Use the required MAXCAPACI TY parameter to indicate the maximum number of
connections supported in the connection pool. The value is any number O or
greater. There is no default value for MAXCAPACI TY.

Use the required CAPACI TYI NCR parameter to set the number of connections
added to the pool when the current limit is exceeded but the maximum capacity
is not yet reached. The value is any number O or greater. There is no default
value.

Use the ALLOASHRI NKI NG parameter to indicate that the connection pool’'s
number of connections can return to the initial capacity, after expanding to meet
demands. The value can YerN. The default value is. The shrinking only

closes unused connections.

Use thesHRI NKPERI 0D parameter to indicate the length of time during which
the Java server shrinks the pool to its initial capacity if additional connections
are not used. The value is a number in units of minutes.

Use theTESTTABLE parameter to identify the name of the database table that is
used to test the validity of connections in the connection pool. The name value
can be a string up to 256 characters.

The querysel ect count (*) from TESTTABLE is used to test a connection.

The table must exist and be accessible to the database user for the connection.
This TESTTABLE parameter is required if tiREFRESH parameter is specified, or

if the parameteTESTONREL EASE or TESTONRESERVE is set toy.

Using the JDBC Drivers 2-9

2 Using JDBC Connection Pooling

m Usethe REFRESH parameter to specify atimeinterval for tests performed on the
connection pool. This parameter is used in conjunction with the TESTTABLE
parameter to enable automatic refreshes of connections in pools. The value for
the interval is a number in units of minutes. At the specified interval, each
unused connection in the pool istested by executing an SQL query on the
connection. If the test fails, the connection’s resources are dropped and a new
connection is created to replace it.

m Use the optionalESTONRESERVE parameter to indicate whether the Java server
tests a connection after removing it from the pool and before giving it to the
client. The value can beorN. The default value is.

m Use the optionalESTONRELEASE parameter to indicate whether the Java server
tests a connection before returning it to the connection pool. If all connections in
a pool are in use and a client is waiting for a connection, the client will wait
longer while the connection is tested. This feature requires that you specify a
value for the relate@ESTTABLE parameter (a database table name). The value
can bey or N. The default value is.

m Use the optionahAl TFORCONN parameter to indicate whether an application
waits indefinitely for a connection if none is currently available. The value can
beY orN. If the wal TFORCONN parameter i8l, the request for a connection
returns to the caller. If theal TTI MEQUT parameter is specified, the default for
thewal TFORCONN parameter isl. If the WAl TTI MEQUT parameter is not specified,
the default for th&al TFORCONN parameter ig.

m Use the optionahal TTI MEQUT parameter to defines the time interval (in
seconds) for an application to wait for a connection to become available. The
WAl TFORCONN andWAl TTI MEQUT parameters are mutually exclusive. The value
for thewal TTI MEQUT parameter can be a number O or greater, and represents
time units in seconds. There is no default value.

Encrypting DBPASSWORD and PROPS

The DBPASSWORD andPROPS parameters in thEDBCCONNPOOLS section specify
sensitive data that you may want to encrypt. Values for these attributes can be
encrypted in th&BBCONFI Gfile using thet ml oadcf andt munl oadcf utilities.

2-10 Using the JDBC Drivers

Displaying Information About JDBC Connection Pools

To store avalue for DBPASSWORD or PROPS in encrypted form, you initially use atext
editor to enter a string of five or more continuous asterisks in the parameter valuein
place of the password in the UBBCONFI Gfile. This string of asterisksis a placeholder
for the password. The following is a sample DBPASSWORD statement illustrating this:

DBPASSWORD=" * %% #x # x

When t m oadcf encountersthis string of asterisks, it prompts the user to select a
password. For example:

>tm oadcf -y e:/w e5/ sanpl es/ at m / bankapp/ xx
DBPASSWORD (" pool 2" SRVGRP=GROUP1 SRVI D=5):

After entering the password, t m oadcf stores the password in the TUXCONFI Gfilein
encrypted form. If you uset munl oadcf to generate a UBBCONFI Gfile, the encrypted
password entered iswritten into the DBPASSWORD statement in the UBBCONFI Gfilewith
@as delimiters. The following is a sample DBPASSWORD statement generated by

t munl oadcf :

DBPASSWWORD=" @@\0986F7733D4 @@

When't m oadcf encounters an encrypted password in a UBBCONFI Gfile generated by
using t munl oadcf , it does not prompt the user to create a password. Instead, the
t m oadcf command uploads the encrypted password back into the system.

Note: The UBBCONFI Gfilewith the encrypted form of the password may be uploaded
back into the system only once; subsequent attempts will fail.

Use of encrypted passwordsis only recommended for production environments.
Clear-text passwords can be used during application development.

Displaying Information About JDBC
Connection Pools

You can usethet madni n printj dbcconnpool command to report statistics on
JDBC connection pools. The data includes the maximum number of connections per
pool, the number of connectionsin use, the number of clientswaiting for aconnection,
and the high-water mark (HWM) or highest number of connections used for a pool.

Using the IDBC Drivers ~ 2-11

2 Using JDBC Connection Pooling

Listing 2-2 showsthe output produced by runningthepri nt j dbcconnpool command
in terse and verbose modes. In terse mode the maximum pool size, the current pool
size, and the number of connections currently in use are shown. In verbose mode the
number of clients waiting and the high-water mark are also shown.

Listing 2-2 Sample Output from tmadmin printjdbcconnpool Command

>printj dbcconnpool

Pool Name G p Nane
ej bPool J_SRVGRP
Pool J_SRVGRP

Srv |d Size Max Size Used

101 1
10

15 0
30 3

The following is the verbose mode output for a single connection pool:

Pool Nane

Goup I D

Server |ID:

Driver:

URL:

Dat abase Nane:

User:

Host

Passwor d:

Net Protocol

Port:

Props:

Enabl e XA
Create On Startup:
Pool Size
Maxi num Si ze
Capacity increnent:
Al l ow shri nki ng
Shrink interval
Logi n del ay:
Connections in use:
Connections awaiting:
HWM connections in use
Test table

Refresh interval
Test conn OnReserve
Test conn OnRel ease:

2-12 Using the JDBC Drivers

Pool 2
J_SRVGRP
102
(none)
(none)

Db

|l eia

S| TE1

my pwd
odbc

120
(none)

No

Yes

10

30

3

Yes

10 m n(s)
1 sec(s)
3

0

5
testtable
20 sec(s)
Yes

No

T_JDBCCONNPOOLS MIB Class

For exampleif the high-water mark (HWM) of connectionsin useisat or closeto the
maximum size, or connections in use is close to the maximum size and clients are
waiting for connections, then you may want to expand the maximum size of the pool.
To do this, you must:

m Shut down the WebL ogic Enterprise application with the t mshut down
command.

m Edit the WebL ogic Enterprise application’sUBBCONFI Gfile and reconsider the
values specified for the particular connection poi&CAPACI TY parameter in
the JDBCCONNPOOL S section. You might also want to experiment with the values
for the following related DBCCONNPOOLS parameters: Nl TCAPACI TY,

CAPACI TYI NCR, ALLOWBHRI NKI NG, SHRI NKPERI OD, andWAl TFORCONN or
WAI TTI MEQUT. See the section “JDBCCONNPOOLS Parameter Values” on
page 2-6 for details.

m Use thet nl oadcf command to create a new binaxyxCONFI G version of the
application’s configuration file.

m Use the nboot -y command to restart the application.

Note: Currently, the WebLogic Enterprise software does not support runtime
changes to connection pools in running applications.

T_JDBCCONNPOOLS MIB Class

The BEA Tuxedo infrastructure supports WebLogic Enterprise features by providing
new or enhanced TMIB classes. For JDBC connection pooling, this includes a new
T_JDBCCONNPOOLS TMIB class. The values that you supply in the a WebLogic
Enterprise application'sBBCONFI Gfile are stored in the TMIB classes. The properties
defined in these classes are read by the WebLogic Enterprise Java server infrastructure
(at boot time) to determine the defined behavior of the application, including the
behavior of any connection pools.

System programmers can access the T_JDBCCONNPOOL class directly to administer
WebLogic Enterprise applications, by using the currently supported TMIB access
means. The T_JDBCCONNPOOL TMIB class is document&eation 5 of th8EA

Tuxedo Reference Manual. This document has been updated and is included in the
WebLogic Enterprise online documentation.

Using the IDBC Drivers ~ 2-13

2 Using JDBC Connection Pooling

API Characteristics

The WebL ogic Enterprise connection pooling feature supports the full JDBC 2.0
Optional Package connection pooling subset, which consists of an application level
APl and a system level API for interacting with a JNDI Service Provider or other
JDBC drivers.

Note: The JDBC 2.0 Optiona Package was formerly known as the JDBC 2.0
Standard Extension API.

Application Level API

The JDBC 2.0 application level API provides interfaces for an application to obtain
JDBC connections. In the JDBC 2.0 Optional Package, JDBC data sources are
implemented by the application server. The data sources serve as JDBC connection
factories, through which application users obtain JDBC connections.

The application level API consists of the following interfaces:
B javax. sql . Dat aSource

B java.sql.Connection

For JDBC drivers that are compliant with the JDBC 2.0 Optional Package API, the
connection is obtained from the driver (which is areference to the actual

Pool edConnect i on) and returned to the application directly. However, for aJDBC
1.x driver, the connection object returned to the application isimplemented by the
WebL ogic Enterprise connection pooling module; the connection object isonly a
reference to the actual database connection returned by the underlying driver.

System Level API for the JNDI Service Provider

2-14

WebL ogic Enterprise data sources also implement the following interfaces as an
external contract to the WebL ogic Enterprise local INDI Service Provider so that the
JNDI Service Provider can interact with it in a standard way:

B javax. nam ng. Ref erence

Using the JDBC Drivers

API Characteristics

B j avax. nam ng. spi . Obj ect Factory

System Level API for JDBC drivers

For JDBC 1.x driversthat do not directly support the JDBC 2.0 Optional Package API
for connection pooling, the WebL ogic Enterprise connection pooling facility provides
JDBC 2.0 interface wrappers. Therefore, from the connection pooling module’s
perspective, it interacts with all drivers with the JDBC 2.0 Optional Package API
protocol.

The interfaces supported on behalf of the JDBC 1.x drivers are:
® javax. sgl . Connecti onPool Dat aSour ce

B javax. sql . Pool edConnecti on

The WebLogic Enterprise JDBC connection pooling module also supports the
following interface as an external contract to the pooled connections of the JIDBC
drivers:j avax. sql . Connect i onEvent Li st ener.

Obtaining Connections from a WebLogic Enterprise
Connection Pool

A WebLogic Enterprise application completes the following steps to obtain a JDBC
connection from the WebLogic Enterprise connection pool:

1. Obtains a WebLogic Enterprise JNDI implementation

WebLogic Enterprise provides a local JINDI implementation for use within a
WebLogic Enterprise JavaServer. Users specify the WebLogic Enterprise initial
context factory as the initialization parameter when they get the JNDI initial
context, as follows:

Context ctx = new Initial Context();

For the local WebLogic Enterprise JNDI service provider, you do not have to
specify the initial context factory.

2. Obtains the JDBC data source and connection

Using the JDBC Drivers ~ 2-15

2 Using JDBC Connection Pooling

Data sources are registered in the INDI namespace by WebL ogic Enterprise
JavaServers. The name by which it isregistered is specified as one of the data
source properties in the applicationBBCONFI Gfile. All JIDBC data sources are
registered in thgdbc” INDI naming subcontext of the INDI root naming
context. For example, a data source with the name “EmployeeDB” will be
registered with the INDI name “jdbc/EmployeeDB”

Assume an application needs to obtain awell-known data source called
“jdbc/EmployeeDB” from JNDI. The application can get the JDBC connection
from the data source, as shown in the following code fragment:

/*

* Assume that it has already obtained JNDI context as in

* previous step
*/

DataSource ds = (DataSource)ctx.lookup(“jdbc/EmployeeDB”);
Connection con = ds.getConnection();

An Application’s View of the Connection Lifecycle

2-16

The Connect i on object returned to the application is only areference to the
underlying database connection. The Connect i on object has the following lifecycle:

m When an application calls Dat aSour ce. get Connect i on, the WebL ogic

Enterprise connection pooling module creates a new Connect i on object on top
of an actual database connection that was previously cached or created from the
JDBC driver. The Connect i on object is how in the OPEN state.

m When the application calls Connect i on. cl ose, or when the connection is

implicitly closed by the application server, the connection object is now in the
CLOSED state, and any subsequent invocation would result in SQLExcept i on.
The underlying database connection is then returned to the connection pool
ready to be reused.

m When the connection object is not referenced, it will be subjected to garbage

collection.

Using the JDBC Drivers

API Characteristics

The DataSource Interface

The Dat aSour ce implementation in WebL ogic Enterprise has the following
semantics:

m get Connection()

public java.sqgl.Connection get Connection()
throws java.sql.SQ.Exception

Application users use this get Connect i on method to obtain JDBC connections
from the data source. Unlike the JDBC 1.0 Dr i ver Manager . get Connect i on
API, you do not need to supply the username, password, and URL arguments.
The relevant information is made available to the data source viathe JDBC data
source properties. Applications are responsible for ensuring that the sign-on
information is available through appropriate data source properties. That is:

e For JDBC 1.x drivers, through thedr i ver Pr ops data source properties

e For JDBC 2.0 drivers, through the user nane and passwor d data source
properties

You can decide whether to wait for the connection if noneis available, and how
long to wait for it via the two optional JDBC data source properties:

e wait For Connecti on

e wait SecondsFor Connecti on

If the property is not specified, by default get Connect i on will block until a
connection is available. If ho connection is available after the wait period is
specified, an SQLExcept i on with be thrown, with a message indicating no
connection is available.

m get Connection(usernanme, password)

public java.sql.Connection getConnection(
java.lang. String usernaneg,

java.lang. String password)

throws java. sql . SQLExcepti on

If the application uses this method to get a connection, the user nane and
passwor d specified in the arguments will be checked against the values
specified in the corresponding JDBC data source properties (which are required
for WebL ogic Enterprise but not for standard JDBC). If the values match, it
behaves the same as the previous method. Otherwise, a SQLExcept i on will be
thrown.

Using the IDBC Drivers ~ 2-17

2 Using JDBC Connection Pooling

2-18

B getlLogWiter()

public java.io.PrintWiter getLogWiter()
throws java.sql.SQLException

Returns the log writer for the data source.

set LogWiter()

public void setlLogWiter(java.io.PrintWiter out)
throws java.sql.SQLException

The application sets the log writer for the data source using this API.

The WebL ogic Enterprise connection pooling facility will intercept the log writer
and write the logging information to ULOG as well if the Java server CLOPT
option includes the following parameter: - j dbcl og.

set Logi nTi neout

public void setLoginTinmeout (i nt seconds) throws
java. sql . SQLExcepti on

Sets the maximum time in seconds that this data source will wait while
attempting to connect to a database.

get Logi nTi neout
public int getLoginTi neout() throws java.sql.SQ.Exception

Gets the maximum time in seconds that this data source can wait while
attempting to connect to a database.

Using the JDBC Drivers

CHAPTER

3 Using the jdbcKona
Drivers

This chapter covers general guidelines for using the jdbcKona drivers and some
vendor-specific notes on each driver. Included at the end of this chapter isa summary
of the steps you take, including sample code, to use a JDBC driver in aWebL ogic
Enterprise Java application.

This topic includes the following sections:

m APl Support

m Adding the JAR Filesto Your CLASSPATH

m jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries

m Requirements for Making a Connection to a Database Management System
(DBMS)

m Support for IDBC Extended SQL
m The JDBC API with WebL ogic Extensions

m |mplementing a WebL ogic Enterprise Java Application Using the jdbcK ona
Drivers

Using the JDBC Drivers 31

3 Using the jdbcKona Drivers

API Support

The WebL ogic Enterprise 5.1 software supports:
m TheJDBC 1.22 API

m Thefollowing additional capabilities defined in the JDBC 2.0 Optional Package
API:

e Distributed transactions: the j avax. sql . Dat aSour ce APl
e Connection pooling

e JavaNaming and Directory Interface (JNDI)

New methods that were added in the JIDBC 2.0 API, which were not present in JDBC
1.22, are not supported in this release of WebL ogic Enterprise. If aWebL ogic
Enterprise application calls a new JDBC 2.0 method that was not in JDBC 1.22, an
SQ.Except i on will be thrown.

Platforms Supported by the jdbcKona

Drivers

32

The jdbcK ona/Oracle drivers are supported on the following platforms:
m Compag Tru64 UNIX (Alpha) 4.0F

m HP-UX 11.0

m IBM AIX 433

m Microsoft Windows 2000 and NT 4.0 SP5

m SunSolaris2.6and 7

For information about any vendor patches required on each platform, and the specific
required version of the Java 2 Software Development Kit (SDK), see the WebL ogic
Enterprise Platform Data Sheets in the WebL ogic Enterprise Installation Guide.

Using the JDBC Drivers

Adding the JAR Files to Your CLASSPATH

Adding the JAR Files to Your CLASSPATH

Be sure to add the WebL ogic Enterprise Java ARchive (JAR) files that include the
jdbcKonadriver classes to your environment.

Note: In%aUXDI Re(Windows 2000 or NT) or $TUXDI R (UNIX), the
/ udat aobj / j aval j dbc/ j dbckona. j ar file used in the WebL ogic
Enterprise 4.2 and prior WebL ogic Enterprise Java releases no longer exists.
On systems running the WebL ogic Enterprise 5.1 software that will continue
to use ajdbcKona driver, update your CLASSPATH to reference the JAR files
shown in the next example.

Append the following to your CLASSPATH system environment variable, where
TUXDI Risthe directory in which you installed the WebL ogic Enterprise software:

Windows 2000 or NT

%UXDI R% udat aobj \ j ava\j dk\ MB. j ar ; %rUXDI R4 udat aobj \ j ava\j dk\ webl ogi caux. j ar;
UNIX

$TUXDI R/ udat aobj /j ava/ j dk/ MB. j ar ; $TUXDI R/ udat aobj / j ava/ j dk/ webl ogi caux. j ar;

jdbcKona/Oracle Shared Libraries and
Dynamic Link Libraries

The jdbcKona/Oracle (Type 2) driver calls native libraries that are supplied with the
driver. The UNIX libraries (shared object files) areinthe $TUXDI R/ | i b directory. The
Windows DLL files are included in the WebL ogic Enterprise Java software kit in the

$TUXDI R bi n directory.

Using the JDBC Drivers 3-3

3 Using the jdbcKona Drivers

Table 3-1liststhe updated names of the jdbcK ona/Oracledriver filesincluded with the
WebL ogic Enterprise Java system.

Table 3-1 Updated jdbcK ona/Oracle Driver Names

Windows 2000

Solaris, Compaq Tru64 HP-UX

and NT UNIX, IBM AIX

webl ogi coci 734. dl | |'i bwebl ogi coci 734. so | i bwebl ogi coci 805. sl
webl ogi coci 805. dI | (Solaris only) | i bwebl ogi coci 815. sl
webl ogi coci 815. dI | I'i bwebl ogi coci 805. so

| i bwebl ogi coci 815. so

The jdbcK ona drivers used in WebL ogic Enterprise 4.2 and prior Javareleases are
removed in the current release. The former driver names were:

®m webl ogi coci 33. dlI I on Windows NT systems
®m webl ogi coci 33. so on Solaris systems

However, accessing the non-X A jdbcK onadriverswith the APl used in version 4.2 and
prior WebL ogic Enterprise releases is still supported; that is, using the

java. sql . Dri ver Manager API. For example, JDBC applications from WebL ogic
Enterprise 4.2 should be able to use a WebL ogic Enterprise 5.1 jdbcK ona/Oracle
driver, provided you change the driver class name for the Oracle driver.

The jdbcK ona/Oracle driver class names are as follows:
B webl ogi c.j dbc20. oci 734. Dri ver
B webl ogi c. j dbc20. oci 805. Dri ver

®m webl ogi c. j dbc20. oci 815. Dri ver (non-XA version)

Note: ThejdbcKona/Oracle driver for version 8.1.5 isthe non-XA version of
webl ogi c. j dbc20. oci 815. Dri ver. Thisnon-XA 8.1.5 driver (local
transactions only) is used when the driver value is specified and ENABLEXA=N
is set in the JIDBCCONNPOOLS section of the applicationdBBCONFI G file.

For the jdbcKona/Oracle drivers, you also need the vendor-supplied libraries for the
database.

34 Using the JDBC Drivers

Requirements for Making a Connection to a Database Management System (DBMS)

Requirements for Making a Connection to a
Database Management System (DBMS)

Y ou need the following components to connect to a DBM S using a jdbcKona driver:
m A database server (Oracle)
m ThejdbcKonadriver for your database

m The Java 2 software

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes SQL Extensions, also called
L Escape Syntax. All jdbcK ona drivers support Extended SQL. Extended SQL
provides accessto common SQL extensionsin away that is portable between DBMSs.

For exampl e, the function to extract the day namefrom adateisnot defined by the SQL
standards. For Oracle, the SQL is:

sel ect to_char(date_colum, 'DAY') fromtable_wi th_dates

Using Extended SQL, you can retrieve the day name for both DBMSs, as follows:
select {fn daynane(date_colum)} fromtable w th_dates

The following is an example that demonstrates several features of Extended SQL:

String insert=

"-- This SQ includes comments and JDBC extended SQL synt ax. \n" +
"insert into date_table values({fn now()}, -- current time \n" +
" {d "1997-05-24"}, -- a date \n" +
{t '10:30:29" 1}, -- atine \n" +

{ts '1997-05-24 10:30:29.123'}, ~-- atimestanp \n" +

"{string data with { or } will not be altered’) \n" +

"-- Also note that you can safely include { and } in coments or \n" +

"-- string data.";
Statement stnt = conn.createStatenent();

Using the JDBC Drivers 35

3 Using the jdbcKona Drivers

st nt . execut eUpdat e(query);

Extended SQL isdelimited with curly braces ({ }) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a newline character
(\ n). The entire Extended SQL sequence, including comments, SQL, and Extended
SQL, is placed within double quotes and is passed to the execut e method of a

St at ement object.

The following Extended SQL isused as part of aCal | abl eSt at ement object:

Cal | abl eSt at ement cstnt
conn. prepareCall ("{ ?

call func_squarelnt(?)}");
The following example shows that you can nest extended SQL expressions:

sel ect {fn dayname({fn now()})}

Y ou can retrieve lists of supported Extended SQL functions from a
Dat abaseMet aDat a object. Thefollowing example shows how to list all the functions

a JDBC driver supports:

Dat abaseMet aDat a nd = conn. get Met aDat a() ;

Systemout. println("Nuneric functions:
Systemout.println("\nString functions:
Systemout. println("\nTi me/date functions:
Systemout. println("\nSystem functions:

conn. cl ose();

nmd. get Nuneri cFunctions());
md. get Stri ngFunctions());
nmd. get Ti meDat eFunctions());
md. get Syst enfunctions());

+ 4+ 4+ +

For a description of Extended SQL, refer to the Sun Microsystems, Inc. Web site,
JDBC Specification 1.2, Chapter 11.

The JDBC API with WebLogic Extensions

For the compl ete set of JDBC API documentation, see the following Web site:
htt p: // www. webl ogi c. conf docs/ cl assdocs/ packages. ht m #j dbc

The following packages, classes, interfaces, and WebL ogic extensions compose the
JDBC API.

3-6 Using the JDBC Drivers

The JDBC API with WebLogic Extensions

Note: Inthe class paths, this section shows oci 815. However, you would use
oci 805 or oci 734, if youareusing Oracle8.0.5 or Oracle 7.3.4, respectively.

Package j ava. sql
Package java.math

Cl ass java.l ang. Obj ect
Interface java.sql.Call abl eSt at enent
(extends java. sql . PreparedSt at enent)
Interface java.sqgl.Connection
Interface java. sql . Dat abaseMet aDat a
Class java.util.Date
Class java.sql.Date
Class java.sql.Tine
Cl ass java. sql . Ti mestanp
Class java.util.Dictionary
Class java.util.Hashtabl e
(i mpl enents java.l ang. d oneabl e)
Class java.util.Properties
Interface java.sql.Driver
Cl ass java.sql.Driver Manager
Class java.sql.DriverPropertylnfo
Class java.l ang. Math
Cl ass java. | ang. Nunber
Cl ass java. nat h. Bi gDeci nal
Cl ass java. nat h. Bi gl nt eger
Interface java.sql.PreparedSt at ement
(extends java.sql . Statenent)
Interface java.sql.Result Set
Interface java. sql . Resul t Set Met aDat a
Interface java.sql.Statenent
Cl ass java. |l ang. Throwabl e
Cl ass java.l ang. Exception
Cl ass java.sql . SQLExcepti on
Cl ass java. sqgl . SQLWar ni ng
Cl ass java. sqgl.DataTruncation
Class java.sql. Types
Cl ass webl ogi c. j dbc20. oci 815. Connecti on
(i mpl ements java. sql . Connecti on)
Cl ass webl ogi c. j dbc20. oci 815. St at enent
(impl ements java. sql. Statenent)
Cl ass webl ogi c. j dbc20. oci 815. Pr epar edSt at ement
Cl ass webl ogi c. j dbc20. oci 815. Cal | abl eSt at ement
(impl ements java.sql. Call abl eSt at enent)

The jdbcK ona drivers provide extensions to JDBC for certain database-specific
enhancements. The jdbcK ona drivers have the following extended classes:

Using the JDBC Drivers 3-7

3 Using the jdbcKona Drivers

Cl ass webl ogi c. j dbc20. oci 815. Cal | abl eSt at enent
Cl ass webl ogi c. j dbc20. oci 815. Connecti on
Cl ass webl ogi c. j dbc20. oci 815. St at enent

For more information about these extensions, see Chapter 5, “jdbcKona Extensions |
the JDBC 1.22 APL.”

Implementing a WebLogic Enterprise Java
Application Using the jdbcKona Drivers

3-8

This section describes the following steps involved in implementing a simple
WebLogic Enterprise Java application that uses a jdbcKona driver to connect to a
DBMS:

m Importing Packages

m Setting Properties for Connecting to the DBMS

m Connecting to the DBMS

m Making a Simple SQL Query

m Inserting, Updating, and Deleting Records

m Creating and Using Stored Procedures and Functions
m Disconnecting and Closing Objects

Many of the steps described in this section include code snippets from a
comprehensive code example that is provided at the end of this chapter.

For database-specific details on implementing WebLogic Enterprise Java application
using the jdbcKona drivers, see Chapter 4, “Using the jdbcKona/Oracle Drivers.”

Using the JDBC Drivers

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Importing Packages

Theclassesthat you import into your WebL ogic Enterprise JavaServer application that
uses a jdbcK ona driver should include;

i mport java.sql.*;
import java.util.Properties;

The jdbcKona driversimplement thej ava. sql interface. Y ou write your WebL ogic
Enterprise Java application using thej ava. sql classes; the
java.sql . Dri ver Manager maps the jdbcKonadriver to thej ava. sql classes.

Y ou do not import the jdbcK ona driver class; instead, you load the driver inside the
application. This allows you to select an appropriate driver at run time. Y ou can even
decide after the program is compiled what DBM S to connect to.

Included in the WebL ogic Enterprise Java software is the latest version of the JIDBC
API classfiles. Make sure you do not have any earlier versions of thej ava. sql
classesin your CLASSPATH.

You need toimport thej ava. uti | . Properti es classonly if youuseaPr operties
object to set parameters for connecting to the DBMS.

Setting Properties for Connecting to the DBMS

In the following example, aj ava. uti |l . Properti es object setsthe parametersfor
connecting to the DBMS. There are other ways of passing these parameters to the
DBMS that do not require aPr oper t i es object, asin the following snippet:

Properties props = new Properties();

props. put ("user", "scott");
props. put (" password"”, "tiger");
props. put ("server", "DEMD') ;

The value for the server property may be vendor-specific; in this example, it isthe
version 2 alias of an Oracle database running over TCP. Y ou may also add the server
name to the URL (see the next section) instead of setting it with the
java.util.Properties object.

Using the JDBC Drivers 39

3 Using the jdbcKona Drivers

Connecting to the DBMS

To connect to the DBMS, complete the following steps:

1. Load the proper jdbcKona driver.

The most efficient way to load the jdbcKona driver is to invoke the

d ass. for Name() . new nst ance method with the name of the driver class.
Thisloads and registers the jdbcK ona driver, asin the following example for
jdbcKona/Oracle for 8.1.5:

Cl ass. f or Nane(" webl ogi c. j dbc20. oci 815. Dri ver"). new nstance();
2. Obtain a JDBC connection.

You request a IDBC connection by invoking the

Dri ver Manager . get Connect i on method, which takes as its parameters the
URL of the driver and other information about the connection, such as the
location of the database and login information.

Note: Seethe section “Obtaining Connections from a WebLogic Enterprise
Connection Pool” on page 2-15 for more information about an alternative way
of connecting to the DBMS.

Note that both steps describe the jdbcKona driver, but in different formats. The full
pathname for the driver is period-separated, while the URL is colon-separated. The
following table lists the class paths and URLs for the jdbcKona drivers:

JDBC Driver Driver Class Pathname ClassURL
Type

jdbcKona/Oracle Type2 webl ogi c. j dbc20. oci 734. Dri ver jdbc: webl ogi c: oci
webl ogi c. j dbc20. oci 815. Dri ver

Additional information required to form a database connection varies by DBMS
vendor and by whether the jdbcKona driver is of Type 2 or Type 4. There are also a
variety of methods for specifying this information in your program.

For full details about the jdbcKona drivers, refer to Chapter 4, “Using the
jdbcKona/Oracle Drivers.” For a complete code example, see “Implementing a
WebLogic Enterprise Java Application Using the jdbcKona Drivers” on page 3-8.

3-10 Using the JDBC Drivers

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

The connectiontothe DBM Sishandled by thejdbcK onadriver. Y ou use both the class
name of the driver (in dot-notation) and the URL of the driver (with colons as
separators). Class names are case sensitive.

Thed ass. f or Name() . newl nst ance method loads the driver and registers the
driver with the Dri ver Manager object.

Note: The Sun Microsystems, Inc. JDBC API Reference for thej ava. sql . Dri ver
interface recommends simply invoking d ass. f or Name(" dri ver - cl ass")
to load the driver.

The connection is created with the Dri ver Manager . get Connect i on method, which
takesasargumentsthe URL of thedriver and aPr operti es object, asinthefollowing
code fragment. The URL is not case sensitive.

C ass. f or Nane(" webl ogi c. j dbc20. oci 815. Dri ver").new nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

props);
conn. set Aut oComi t (f al se);

The default transaction mode for JDBC assumes aut oconmi t to be true. Setting
aut oconmi t to false improves performance.

The Connect i on object isanimportant part of the application. The Connect i on class
has constructors for many fundamental database objects that you will use throughout
the application. In the examples that follow, you will see the Connection object conn
used repeatedly.

Connecting to the database completestheinitial portion of a\WebL ogic Enterprise Java
application, which will be very much the same for any application.

Invokethecl ose method on the Connection object as soon as you finish working with
the object, usually at the end of aclass.

Making a Simple SQL Query
The most fundamental task in database accessis to retrieve data. With ajdbcKona

driver, retrieving datais a three-step process.

1. Createast at enent object to send an SQL query to the DBMS.

Using the IDBC Drivers 3-11

3 Using the jdbcKona Drivers

2. Executethe St at enent .
3. Retrievetheresultsinto aResul t Set object.

In the following code snippet, we execute asimple query on the Enpl oyee table (alias
"enp") and display datafrom three of the columns. We also access and display
metadata about the table from which the data was retrieved. Note that we close the
Statement at the end.

Statenent stnt = conn.createStatenent();
stnt.execute("select * fromenp");
ResultSet rs = stnt.getResultSet();

while (rs.next()) {

Systemout.println(rs.getString("enpid") + " - " +
rs.getString("name") + " - " +
rs.getString("dept"));

}

Resul t Set Met aData nd = rs. get Met aData();

Systemout. println("Nunber of columms: " + nd.get Col umCount());

for (int i = 1; i <= md.getColumCount(); i++) {
System out. println("Colum Name: " + nd. get Col utmNane(i));
System out. println("Nullable: + nd.isNullable(i));
System out. println("Precision: + nd. getPrecision(i));
System out. println("Scal e: + md. get Scal e(i));
System out. println("Size: + md. get Col umbDi spl aySi ze(i));
System out. println("Colum Type: + nd. get Col umType(i));
System out. println("Colum Type Nane: "+ nd. get Col umTypeNanme(i));

Systemout.printin("");

}

stnt.close();

Inserting, Updating, and Deleting Records

The following snippet shows three common database tasks: inserting, updating, and
deleting records from a database table. We use a JDBC Pr epar edSt at ement object
for these operations; we create the Pr epar edSt at enent object, then execute the
object and close it.

3-12 Using the JDBC Drivers

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

A Prepar edSt at enent object (subclassed from JDBC st at emrent) allows you to
execute the same SQL over and over again with different values.
Prepar edSt at ement objects usethe JIDBC " ?" syntax.

String inssgl = "insert into enp(enpid, name, dept) values (?, ?, ?2)";
Pr epar edSt at ement pstnt = conn. prepareSt at enent (i nssql);

for (int i =0; i < 100; i++) {
pstnt.setlnt(1, i);
pstmt.setString(2, "Person " + i);
pstmt.setInt(3, i);
pstnt . execute():

pstnt.close();

We also use aPr epar edSt at enent object to update records. In the following code
snippet, we add the value of the counter i " to the current value of the " dept " field.

String updsqgl = "update enp set dept = dept + ? where enpid = ?";
PreparedSt at ement pstnmt 2 = conn. prepareSt at ement (updsql) ;

for (int i =0; i < 100; i++) {
pstmt2.setInt(1, i);
pstnt2.setlnt(2, i);
pst nt 2. execut e();

pstnt 2. cl ose();

Finally, we useaPr epar edSt at ement object to delete the records that we added and
then updated, as in the following snippet:

String delsql = "delete fromenp where enpid = ?";
Prepar edSt at ement pstnt3 = conn. prepareSt at enent (del sql) ;

for (int i =0; i < 100; i++) {
pstnt3.setlnt(1, i);
pst mt 3. execut e();

pstnt 3. cl ose();

Creating and Using Stored Procedures and Functions

Y ou can use a jdbcKona driver to create, use, and drop stored procedures and
functions. First, we execute a series of St at ement objects to drop a set of stored
procedures and functions from the database, as in the following code snippet:

Using the IDBC Drivers ~ 3-13

3 Using the jdbcKona Drivers

Statenent stnt = conn.createStatenent();

try {stnt.execute("drop procedure proc_squarelnt");}
catch (SQLException e) {;}

try {stnt.execute("drop procedure func_squarelnt");}
catch (SQLException e) {;}

try {stnt.execute("drop procedure proc_getresults");}
catch (SQ.Exception e) {;}

stnt.close();

Weuse aJDBC st at enent object to create a stored procedure or function, and then
use aJDBC Cal | abl eSt at ement object (subclassed from the St at ement object)
withthe JDBC " ?" syntax to set | N and OUT parameters. For information about doing
this with the jdbcKona/Oracle driver, see Chapter 4, “Using the jdbcKona/Oracle
Drivers.”

The first two code snippets that follow use the jdbcKona/Oracle driver. Note that
Oracle does not natively support binding ®9 values in an SQL statement. Instead,
ituses': 1",": 2", and so forth. You can use either syntax in your SQL with the
jdbcKona/Oracle driver.

Stored procedure input parameters are mapped to JRB@rameters, using the

Cal | abl eSt at enent . set xxx methods, such aet I nt (), and the ?" syntax of the
JDBCPr epar edSt at enent object. Stored procedure output parameters are mapped
to JDBCOUT parameters, using th@al | abl eSt at enent . r egi st er Qut Par anet er
methods and the?" syntax of the JDB®r epar edSt at enent object. A parameter
may be both N andout, which requires both set xxx() and a

regi st er Qut Par anet er () invocation to be made on the same parameter number.

In the following code snippet, we use a JDBGt emrent object to create an Oracle
stored procedure; then we execute the stored procedure @ith abl eSt at enent
object. We use theegi st er Qut Par anet er method to set an output parameter for the
squared value.

Statenent stntl = conn.createStatenent();
st nt 1. execut e(" CREATE OR REPLACE PROCEDURE proc_squarelnt " +

"(fieldl IN QUT INTEGER, field2 OUT INTEGER) IS " +
"BEGA N field2 :=fieldl * fieldl; fieldl :=" +
"fieldl * fieldl;, END proc_squarelnt;");

stnt 1. cl ose();

/1l Native Oracle SQ is commented out here
/1 String sql = "BEA N proc_squarelnt(?, ?); END;"

/1 This is the correct syntax as specified by JDBC

String sgql = "{call proc_squarelnt(?, ?)}";
Cal | abl eSt atenment cstnt1l = conn. prepareCall (sql);

3-14 Using the JDBC Drivers

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

/] Register out paraneters
cstnt 1. regi sterQutParaneter(2, java.sql.Types.|NTEGER);
for (int i =0; i <5; i++) {
cstnl.setInt(1, i);
cstnt 1. execute();
Systemout.println(i +" " + cstnml.getint(1l) +
" " + cstntl.getint(2));

cstmt 1. close();

In the following code snippet, we use similar code to create and execute a stored
function that squares an integer.

Statement stnt2 = conn.createStatenent();

stnt 2. execut e(" CREATE OR REPLACE FUNCTI ON func_squarelnt " +
"(fieldl IN INTEGER) RETURN INTEGER | S " +
"BEG@ N return fieldl * fieldl; " +
"END func_squarelnt;");

stmt 2. close();

/1 Native Oracle SQ is conmented out here
I/l sql = "BEAN ? := func_squarelnt(?); END;";

/1 This is the correct syntax specified by JDBC
sql = "{ ? = call func_squarelnt(?)}";
Cal | abl eStatenment cstnt2 = conn. prepareCal |l (sql);

cstnt 2. regi sterQut Paraneter (1, Types.|NTEGER);
for (int i =0; i <5; i++) {
cstm2.setInt(2, i);
cstnt 2. execute();
Systemout.printin(i +" " + cstm2.getInt(1) +
" "+ cstm2.getInt(2));

cstnt 2. cl ose();

Disconnecting and Closing Objects

Close st at ement , Resul t Set , Connect i on, and other such objectswith their cl ose
methods after you have finished using them. Closing these objects rel eases resources
on the remote DBM S and within your application. When you use one object to
construct another, closethe objectsinthereverse order in which they were created. For
example:

Using the JDBC Drivers 3-15

3 Using the jdbcKona Drivers

Statenent stnt = conn.createStatenent();
ResultSet rs = stnt.executeQuery("select * from enpno");

(process the Result Set)

rs.close();
stnt.close();

Always closethej ava. sql . Connect i on aswell, usually as one of the last stepsin
your program. Every connection should be closed, even if alogin fails. An Oracle
connection will cause a system failure (such as a segment violation) when the finalizer
thread attempts to close a connection that you have inadvertently left open. If you do
not close connections to log out of the database, you may also exceed the maximum
number of database logins. Once aconnection isclosed, al of the objects created inits
context become unusable.

There are occasions in which you will want to invoke the conmi t method to commit
changes you have made to the database before you close the connection.

When aut ocommi t is set to true (the default JIDBC transaction mode), each SQL
statement isits own transaction. After we created the Connect i on object for these
examples, however, we set aut ocommi t tofalse; inthismode, the Connect i on object
always has an implicit transaction associated with it, and any invocation to the

rol | back or commi t methods will end the current transaction and start a new one.
Invoking conmi t () beforecl ose() ensuresthat all of the transactions are completed
before closing the connection.

Just asyou close St at enent , Pr epar edSt at ement , and Cal | abl eSt at ement
objects when you have finished working with them, alwaysinvoke the cl ose method
on the connection as final cleanup in your application; enclose the cl ose method
invocationinatry {} block in order to catch exceptions and deal with them
appropriately. The final two lines of the example include an invocation tocommi t ()
and then cl ose() to close the connection, asin the following snippet:

conn.comit();
conn. cl ose();

Code Example

The following is a sample implementation to give you an overall idea of the structure
for aWebL ogic Enterprise Java application that uses ajdbcK onadriver to access a
DBMS. The code example shown here includes retrieving data, displaying metadata,

3-16 Using the JDBC Drivers

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

i mport
i mpor t
i mport

public
st at
St at

publ
tr

inserting, deleting, and updating data, and stored procedures and functions. Note the
explicitinvocationsto cl ose() for each JDBC-related object, and note also that we

closethe connectionitself inafinal Iy {} block, with theinvocationtocl ose()

wrappedinatry {} block.

java.sql.*;
java.util.Properties;
webl ogi c. common. *;

class test {
icint i;

ement stmt = null;

ic static void main(String[] argv) {

y {

Properties props = new Properties();
props. put ("user", "scott");
props. put ("password"”, "tiger");
props. put ("server", "DEMD') ;

Cl ass. f or Nane(" webl ogi c. j dbc20. oci 815. Dri ver"). new nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

props);
catch (Exception e)
e.printStackTrace();
}
try {
/1 This will inprove performance in Oracle
/1 You'll need an explicit commt() call later

conn. set AutoCommi t (f al se);

stm = conn.createStatenent();
stnt.execute("select * fromenp");
ResultSet rs = stnt.getResultSet();

while (rs.next()) {
Systemout.println(rs.getString("enpid") + " - " +
rs.getString("name") + " - " +
rs.getString("dept"));
}

Resul t Set Met aData nd = rs. get MetaDat a();

System out. println("Nunber of Colums: " + nd.getCol umCount());
for (i = 1; i <= nd.getCol umGCount(); i++) {

Using the JDBC Drivers

317

3 Using the jdbcKona Drivers

3-18

System out . pri
System out . pri
System out. pri
System out . pri
System out. pri
System out. pri
System out . pri
System out . pri

rs.close();
stnt.close();

ntln("Colum Nanme: "
ntin("Nullable: "
ntln("Precision: "
ntln("Scale: "
ntin("Size: "
ntln("Colum Type: "
ntln("Colum Type Nane:
ntin("");

ddddddd

Statenent stntdrop = conn.createStatenent();
try {stntdrop.execute("drop procedure proc_squarelnt");}
catch (SQLException e) {;}
try {stntdrop.execute("drop procedure func_squarelnt"); }
catch (SQLException e) {;}
try {stntdrop.execute("drop procedure proc_getresults"); }
catch (SQLException e) {;}
stnt drop. cl ose();

// Create a stored procedure

Statenent stntl

= conn. createStatenent ();

get Col umName(i));

.isNullable(i));
.getPrecision(i));
.getScale(i));

get Col umbDi spl aySi ze(i));
get Col umType(i));
get Col umTypeNane(i));

stnt 1. execut e(" CREATE OR REPLACE PROCEDURE proc_squarelnt " +
"(fieldl IN QUT I NTEGER, " +
"field2 QUT INTEGER) IS " +

"BEGA N field2

"fieldl :=fieldl * fieldl;
"END proc_squarelnt;");

stnt 1. close();

Cal | abl eStatenent cstnmtl =

conn. prepareCal | ("BEG N proc_squar el nt (?,
cstnt 1. registerQutParaneter (2, Types.|NTEGER);

for (i =0; i <

100; i++) {

cstnml.setint(l, i);

cstnt 1. execute();

ntln(i +" " + cstntl.getlnt(1) +
" " + cstntl.getint(2));

System out . pri

cstnt 1. cl ose();

/!l Create a stored function

St at enent stnt 2

= conn. createStatement ();

+

?)

= fieldl * fieldl; " +

; END "),

st nt 2. execut e(" CREATE OR REPLACE FUNCTI ON func_squarelnt " +
"(fieldl IN INTEGER) RETURN INTEGER | S " +
"BEA N return fieldl * fieldl;

stnt 2. close();

Using the JDBC Drivers

END func_squarelnt;");

Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers

Cal | abl eSt atement cstnmt2 =

conn. prepareCall ("BEA@ N ? := func_squarelnt(?); END;");
cstmt 2. regi sterQut Paraneter (1, Types.|NTEGER);
for (i =0; i < 100; i++) {

cstnt2.setInt(2, i);

cstmt 2. execute();

Systemout.println(i + " " + cstm2.getInt(1) +

" " + cstnmt2.getInt(2));

}
cstnt 2. close();

/1 Insert 100 records

Systemout.printin("Inserting 100 records...");

String inssgl = "insert into enp(enpid, name, dept) values (?, ?, ?2)";
Prepar edSt at ement pstmt = conn. prepar eSt at ement (i nssql);

for (i =0; i < 100; i++) {
pstnt.setInt(1, i);
pstnt.setString(2, "Person " + i);
pstnt.setInt(3, i);
pstnt.execute();

pstmt.close();

/1 Update 100 records

Systemout. println("Updating 100 records...");

String updsql = "update enp set dept = dept + ? where enpid = ?";
PreparedSt at enent pstnt2 = conn. prepareSt at ement (updsql) ;

for (i =0; i < 100; i++) {
pstm2.setint(1, i);
pstm2.setInt(2, i);
pstnt 2. execute();

pstmt 2. cl ose();
/1 Delete 100 records
Systemout.println("Deleting 100 records...");
String delsql = "delete fromenp where enpid = ?";
Prepar edSt at enent pstnt3 = conn. prepareSt at enent (del sql) ;
for (i =0; i < 100; i++) {
pstm3.setInt(1, i);
pstnt 3. execute();
}
pstnt 3. cl ose();

conn.comit();

Using the JDBC Drivers 3-19

3 Using the jdbcKona Drivers

}
catch (Exception e) {

/] Deal with failures appropriately
}

finally {
try {conn.close();}
catch (Exception e) {
/1 Catch and deal with exception

}
}

3-20 Using the JDBC Drivers

CHAPTER

4 Using the

jdbcKona/Oracle
Drivers

This chapter provides guidelines for using the jdbcK ona/Oracle Type 2 drivers. For

general notes about and an example of using the jdbcK ona drivers, see Chapter 3,

“Using the jdbcKona Drivers.”

This topic includes the following sections:

Data Type Mapping

Connecting a jdbcKona/Oracle Driver to an Oracle DBMS
Waiting for Oracle DBMS Resources

Autocommit

Using Oracle Blobs

Support for Oracle Array Fetches

Using Stored Procedures

DatabaseMetaData Methods

jdbcKona/Oracle and the Oracle NUMBER Column

Using the JDBC Drivers

4 Using the jdbcKona/Oracle Drivers

Data Type Mapping

Mapping of types between Oracle and the jdbcK ona/Oracle driversare provided in the
following table.

Oracle jdbcKona/Oracle Drivers
Var char String

Nunber Ti nyi nt

Nurber Smal | i nt

Nunber I nt eger

Nunber Long

Nurber Fl oat

Nurber Nurreri c

Nurber Doubl e

Long Longvar char

Rowl D String

Dat e Ti mest anp

Raw (var)Binary

Long raw Longvar bi nary
Char (var) Char

Bool ean* Number or Var char

M.S | abel String

Note: When the Pr epar edSt at ement . set Bool ean method isinvoked, this
method converts a VARCHAR typeto " 1" or "0" (stri ng), and it convertsa
NUMBER typeto 1 or O (number).

4-2 Using the JDBC Drivers

Connecting a jdbcKona/Oracle Driver to an Oracle DBMS

Connecting a jdbcKona/Oracle Driver to an
Oracle DBMS

To make a DBMS connection, compl ete the following steps:

Note: See the section “Obtaining Connections from a WebLogic Enterprise
Connection Pool” on page 2-15 for more information about an alternative way
of connecting to the DBMS.

1. Load the proper jdbcKona driver.

The most efficient way to do this is to invoke the
d ass. for Name() . newl nst ance() method with the name of the driver class,
which properly loads and registers the jdbcKona driver. For example:

O ass. f or Nane(" webl ogi c. j dbc20. oci 734. Driver").new nst ance();

2. Request a JDBC connection by invoking thever Manager . get Connect i on
method, which takes as its parameters the URL of the driver and other
information about the connection.

Both steps describe the jdbcKona driver, but in a different format. The full package
name is period-separated, and the URL is colon-separated. The URL must include at
leastj dbc: webl ogi c: or acl e, and may include other information, including server
name and database name.

There are several variations on this basic pattern, which are described here for Oracle.
For a full code example, see Chapter 3, “Using the jdbcKona Drivers.”

Method 1

The simplest way to connect to an Oracle DBMS is by passing the URL of the driver
that includes the name of the server, along with a username and a password, as
arguments to theri ver Manager . get Connect i on method, as in the following
jdbcKona/Oracle example:

C ass. f or Nane(" webl ogi c. j dbc20. oci 734. Driver").new nst ance();
Connection conn =

Using the JDBC Drivers 4-3

Using the jdbcKona/Oracle Drivers

Dri ver Manager . get Connecti on("j dbc: webl ogi c: or acl e: DEMJ',
"scott",
"tiger");

In the example, DEMDis the version 2 alias of an Oracle database. Note that invoking
thed ass. f or Name() . newl nst ance() method properly loads and registers the
driver.

Method 2

Youcanasopassajava. util . Properties object with parameters for connection
as an argument to the Dr i ver Manager . get Connect i on method. The following
exampl e shows how to connect to the DEMD database:

Properties props = new Properties();

props. put ("user", "scott");
props. put (" password”, "tiger");
props. put ("server", " DEMD')

Cl ass. for Nane(" webl ogi c. j dbc20. oci 734. Driver").newl nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

props);

If you do not supply aserver name (DEMOin the preceding example), the system looks
for an environment variable (ORACLE_SI Dinthe case of Oracle). Y ou can also add the
server name to the URL, using the following format:

"j dbc: webl ogi c: or acl e: DEMD'

When you use the preceding format, you do not need to providea" ser ver " property.

Other Properties You Can Set for the jdbcKona/Oracle
Driver

4-4

There are other properties that you can set for the jdbcK ona/Oracle driver, which are
covered later in this document. The jdbcK ona/Oracle driver also allows setting a
property -- al | owM xedCaseMet aDat a -- to the boolean t r ue. This property setsup
the connection to use mixed caselettersin invocation to Dat abaseMet aDat a methods.
Otherwise, Oracle defaults to uppercase |etters for database metadata.

Using the JDBC Drivers

Waiting for Oracle DBMS Resources

The following is an example of setting up the properties to include this feature:

Properties props = new Properties();

props. put ("user", "scott");
props. put ("password"”, "tiger");
props. put ("server", "DEMD') ;

props. put ("al | owM xedCaseMet aDat a", "true");

Connection conn =
Dri ver Manager . get Connection("j dbc: webl ogi c: oracl e",

props);

If you do not set this property, the jdbcKona/Oracle driver defaultsto the Oracle
default, which uses uppercase letters for database metadata.

General Notes

Alwaysinvoke the Connect i on. cl ose method to close the connection when you
have finished working withiit. Closing objectsrel eases resources on theremote DBM S
and within your application, as well as being good programming practice. Other
jdbcK ona objects on which you should invoke the ¢l ose method after final use
include:

m Statenent (PreparedStatenent, Cal | abl eSt at enent)

B Resul t Set

Waiting for Oracle DBMS Resources

The jdbcK ona/Oracle driver supportsthe Oracle oopt () CAPI, which allowsaclient
to wait until resources become available. The Oracle C function sets optionsin cases
where reguested resources are not available; for example, whether to wait for locks.

Y ou can set whether a client waits for DBM S resources, or receives an immediate
exception.

Note: Inthedriver class path examples, the format is:

webl ogi c. j dbc20. oci XXX. Dri ver

Using the JDBC Drivers 4-5

4 Using the jdbcKona/Oracle Drivers

Where XXX isthe version of the Oracle database: 734 for version 7.3.4, or 805
for version 8.0.5, or 815 for version 8.1.5.

java.util.Properties props = new java.util.Properties();

props. put ("user", "scott");
props. put ("password", "tiger");
props. put ("server", "gol dengate");

Cl ass. f or Nane(" webl ogi c. j dbc20. oci 734. Dri ver"). new nstance();

/1 You must cast the Connection as a
/1 webl ogi c. j dbc20. oci XXX. Connecti on
/1 to take advantage of this extension
Connection conn =
(webl ogi c. j dbc. oci 734. Connect i on)
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e", props);

/1 After constructing the Connection object, inmediately call
/1 the waitOnResources nethod
conn. wai t OnResour ces(true);

Thewai t OnResour ces() method can cause several error return codes while waiting
for internal resources that are locked for short durations.

To take advantage of this feature, you must first cast your Connect i on object asa
webl ogi c. j dbc20. oci [ver si on] . Connect i on object, and then invoke the
wai t OnResour ces method (where[ver si on] is 734, or 805, or 815).

This functionality is described in section 4-97 of The OCI Functions for C, published
by Oracle Corporation.

Autocommit

4-6

The default transaction mode for JDBC assumes aut ocommi t to be true. Y ou will
improve the performance of your programs by setting aut oconmi t to false after
creating a Connect i on object with the following statement:

Connecti on. set Aut oCommi t (f al se);

Using the JDBC Drivers

Using Oracle Blobs

Using Oracle Blobs

The jdbcKona/Oracle driver supports two new properties to support Oracle Blob
chunking:

B webl ogi c. oci . insertBl obChunkSi ze

This property affects the buffer size of input streams bound to a

Pr epar edSt at enent object. Blob chunking requires an Oracle 7.3.x or higher
Oracle Server; to use this property, you must be connected to an Oracle Server
that supports this feature.

Set this property to a positive integer to insert Blobs into an Oracle DBM S with
the Blob chunking feature. By default, this property is set to 0 (zero), which
means that Blob chunking is turned off.

B webl ogi c. oci . sel ect Bl obChunkSi ze

This property sets the size of output streams associated with aJDBC Resul t Set
object. The mechanism for piecewise selects does not have the same use
restrictions as that for Blob inserts, so this property is set to 65534 by default. It
is not necessary to turn this property off.

Set this property to the size of the desired output stream, in bytes.

Support for Oracle Array Fetches

With WLE Java, the jdbcK ona/Oracle driver supports Oracle array fetches. With this
feature support, invoking the Resul t Set . next method the first time gets an array of
rows and stores it in memory, rather than retrieving a single row. Each subsequent
invocation of the next method reads a row from the rows in memory until they are
exhausted, and only then does the next method go back to the database.

You set aproperty (j ava. util . Property)to control the size of the array fetch. The
property iswebl ogi c. oci . cacheRows; itisset by default to 100. Thefollowingisan
example of setting this property to 300, which means that invocations to the next
method hit the database only once for each 300 rows retrieved by the client:

Using the JDBC Drivers 4-7

4 Using the jdbcKona/Oracle Drivers

Properties props = new Properties();

props. put ("user", "scott");
props. put ("password", "tiger");
props. put ("server", "DEMO'") ;

props. put ("webl ogi c. oci . cacheRows", "300");

Cl ass. for Nane(" webl ogi c. j dbc20. oci 734. Driver").newl nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",
props) ;

Y ou can improve client performance and lower the load on the database server by
taking advantage of this JDBC extension. Caching rows in the client, however,
requires client resources. Tune your application for the best balance between
performance and client resources, depending upon your network configuration and
your application.

If any columnsin a SELECT statement are of type LONG, the cache size will be
temporarily reset to 1 (one) for the Resul t Set object associated with that select
Statement.

Using Stored Procedures

4-8

The following sections describe how to use stored procedures:
m Syntax for Stored Procedures in the jdbcK ona/Oracle Driver
m Binding a Parameter to an Oracle Cursor

m Using CadllableStatement

Using the JDBC Drivers

Using Stored Procedures

Syntax for Stored Procedures in the jdbcKona/Oracle
Driver

The syntax for stored procedures in Oracle was altered in the jdbcK ona/Oracle driver
examples to match the JIDBC specification. (All of the examples also show native
Oracle SQL, commented out, just above the correct usage; the native Oracle syntax
works asit did in the past.) Y ou can read more about stored procedures for the
jdbcKonadrivers in Chapter 3, “Using the jdbcKona Drivers.”

Note that Oracle does not natively support bindingetovalues in an SQL statement.
Instead it uses ":1", ":2", and so forth. We allow you to use either in your SQL with the
jdbcKona/Oracle driver.

Binding a Parameter to an Oracle Cursor

BEA Systems, Inc. has created an extension to JDBC,

webl ogi c. j dbc20. oci [versi on] . Cal | abl eSt at enent , that allows you to bind a
parameter for a stored procedure to an Oracle cursor (pwarei on] iS734, 0r805,

or 815. You can create a JDBResul t Set object with the results of the stored
procedure. This allows you to return multipiesul t Set objects in an organized way.
TheResul t Set objects are determined at run time in the stored procedure. An
example procedure follows.

First, define the stored procedures, as follows:

create or replace package

curs_types as

type EnpCur Type is REF CURSOR RETURN enp%ROM YPE;
end curs_types;

/

create or replace procedure
single_cursor(cursl I N QUT curs_types. EnpCur Type,
ctype in nunber) AS BEG N
if ctype = 1 then
OPEN cursl FOR SELECT * FROM enp;
elsif ctype = 2 then
OPEN cursl FOR SELECT * FROM enp where sal > 2000;
elsif ctype = 3 then
OPEN cursl FOR SELECT * FROM enp where deptno = 20;

Using the JDBC Drivers 4-9

4 Using the jdbcKona/Oracle Drivers

4-10

end if;
END si ngl e_cursor;
/

create or replace procedure
mul ti _cursor(cursl IN OQUT curs_types. EnpCur Type,
curs2 I N QUT curs_types. EmpCur Type,
curs3 I N OQUT curs_types. EmpCur Type) AS
BEG N
OPEN cursl FOR SELECT * FROM enp;
OPEN curs2 FOR SELECT * FROM enp where sal > 2000;
OPEN curs3 FOR SELECT * FROM enp where deptno = 20;
END mul ti_cursor;
/

In your Java code, construct Cal | abl eSt at ement objects with the stored procedures
and register the output parameter as datatype j ava. sql . Types. OTHER. When you

retrieve the datainto aResul t Set object, use the output parameter index as an
argument for the get Resul t Set method. For example:

webl ogi c. j dbc20. oci 734. Cal | abl eSt at ement cstnt =
(webl ogi c. j dbc20. oci 734. Cal | abl eSt at ement) conn. prepareCal | (
"BEG N OPEN ? " +
"FOR select * fromenp; END;");
cstnt.registerQutParaneter(1l, java.sql.Types. OTHER);

cstmt . execute();

ResultSet rs = cstnt.getResultSet(1);
printResul tSet(rs);

rs.close();

cstnt.close();

webl ogi c. j dbc20. oci 734. Cal | abl eSt atement cstnt2 =
(webl ogi c. j dbc20. oci 734. Cal | abl eSt at ement) conn. prepareCal | (
"BEGA N single_cursor(?, ?); END,");
cstnt 2. regi sterQut Paraneter (1, java.sql.Types. OTHER);

cstnt2.setInt(2, 1);

cstt 2. execute();

rs = cstnt 2. getResultSet(1);
printResul tSet(rs);

cstnt2.setInt(2, 2);

cstnt 2. execute();

rs = cstnt2.getResultSet(1);
printResul tSet(rs);

cstm2.setlnt(2, 3);

Using the JDBC Drivers

Using Stored Procedures

cstnt 2. execute();
rs = cstnt2.getResultSet(1);
printResul tSet(rs);

cstnt 2. close();

webl ogi c. j dbc20. oci 734. Cal | abl eStatenent cstnt3 =
(webl ogi c. j dbc20. oci 734. Cal | abl eSt at enent) conn. prepareCal | (
"BEA N rmulti_cursor(?, ?, ?); END");
cstnt 3. regi sterQut Paraneter (1, java.sgl.Types. OTHER);
cstnt 3. regi sterQutParaneter(2, java.sql.Types. OTHER);
cstnt 3. regi sterQut Paraneter (3, java.sql.Types. OTHER);

cstnt 3. execute();
Resul t Set rsl

Resul t Set rs2
Resul t Set rs3

cstnt 3. get Resul t Set (1) ;
cstnt 3. get Resul t Set (2);
cstnt 3. get Resul t Set (3);

Note that the default size of an Oracle-stored procedure string is 256K .

Using CallableStatement

The default length of a string bound to an QUTPUT parameter of a
Cal | abl eSt at enent object is 128 characters. If the value you assign to the bound
parameter exceeds that length, you get the following error:

ORA- 6502: val ue or nuneric error

Y ou can adjust the length of the value of the bound parameter by passing an explicit
length with the scale argument to the

Cal | abl eSt at ement . r egi st er Qut put Par anet er method. The following isa
code example that binds a VARCHAR that will never be larger than 256 characters:

Cal | abl eSt at ement cstnt =
conn. prepareCal | ("BEG N testproc(?); END;");

cstnt.regi sterQutputParaneter(1l, Types.VARCHAR, 256);
cstnt.execute();
Systemout.printin(cstnt.getString());

cstnt.close();

Using the IDBC Drivers 4-11

4 Using the jdbcKona/Oracle Drivers

DatabaseMetaData Methods

DatabaseM etaDataisimplemented in its entirety in the jdbcK ona/Oracle driver. There
are some variations that are specific to Oracle, which are as follows:

m Asagenera rule, the String catalog argument isignored in al
DatabaseM etaData methods.

m Inthe Dat abaseMet aDat a. get Pr ocedur eCol unms method:
e The String cat al og argument is ignored.

e The String schenmaPat t er n argument accepts only exact matches (no pattern
matching).

e The String pr ocedur eNanePat t er n argument accepts only exact matches
(no pattern matching).

e The String col unmNanePat t er n argument is ignored.

jdbcKona/Oracle and the Oracle NUMBER
Column

Oracle provides a column type called NUMBER, which can be optionally specified with
aprecision and ascale, in the forms NUMBER(P) and NUMBER(P, S) . Evenin the
simple, unqualified NUMBER form, this column can hold al number types from small
integer values to very large floating point numbers, with high precision.

The jdbcK ona/Oracle driver reliably converts the values in a column to the Javatype
requested when a WL E Java application asks for a value from such a column. Of
course, if avalue of 123. 456 isasked for with get | nt () , the value will be rounded.

4-12 Using the JDBC Drivers

jdbcKona/Oracle and the Oracle NUMBER Column

The method get Qbj ect , however, poses alittle more complexity. The

jdbcK ona/Oracle driver guaranteesto return aJavaobject that will represent any value
in a NUMBER column with no lossin precision. This means that avalue of 1 can be
returned in an | nt eger , but avalue like 123434567890. 123456789 can only be
returned in aBi gDeci mal .

Thereisno metadatafrom Oracle to report the maximum precision of the valuesin the
column, so the jdbcK ona/Oracle driver must decide what sort of object to return based
on each value. Thismeans that one Resul t Set object may return multiple Javatypes
fromtheget Qbj ect method for agiven NUMBER column. A tablefull of integer values
may all bereturned as| nt eger from the get Obj ect method, whereas a table of
floating point measurements may be returned primarily as Doubl e, with some

I nt eger if any value happens to be something like 123. 00. Oracle does not provide
any information to distinguish between a NUMBER value of 1 and a NUMBER of

1. 0000000000.

Thereis morereliable behavior with qualified NUVBER columns; that is, those defined
with a specific precision. Oracle's metadata provides these parametersto the driver so
the jdbcK ona/Oracle driver always returns a Java object appropriate for the given
precision and scale, regardless of the values shown in the following table. The
following table shows the Java objects returned for each qualified NUVMBER column.

Column Definition Returned by get Qbj ect ()
NUVBER(P <= 9) I nt eger

NUVBER(P <= 18) Long

NUMBER(P >= 19) Bi gDeci nal

NUMBER(P <=16, S > 0) Doubl e

NUMBER(P >= 17, S > 0) Bi gDeci nal

Using the IDBC Drivers 4-13

4 Using the jdbcKona/Oracle Drivers

4-14 Using the JDBC Drivers

CHAPTER

5 jdbcKona Extensions to
the JDBC 1.22 API

This chapter describes the following jdbcK ona extensions to the JDBC API:
B (C ass webl ogi c.jdbc20. oci[version].Call abl eSt at enent
m Cl ass webl ogi c. j dbc20. oci [versi on]. Connecti on

B (C ass webl ogi c.jdbc20. oci[version]. Statenent

Note: Inthepreviouslist, oci [ver si on] refersto the Oracle version number (734,
805, or 815). The samples in this chapter show oci 734. For example:

Cl ass webl ogi c. j dbc20. oci 734. Cal | abl eSt at enent

However, you would use oci 805 or oci 815, if you are using Oracle 8.0.5 or
Oracle 8.1.5, respectively.

For complete details on this JIDBC API, refer to the following Web site:
http://ww. webl ogi c. conf docs51/ cl assdocs/ j dbcdri vers. htm

If this URL changes and you cannot locate this BEA WebLogic JIDBC API, please go
to http://e-docs.bea.com/. On that page, click thelink for the BEA WebL ogic Server™
(WLS) documentation. Onthe WL S page, click the IDBC link in the Quick Links box.

Using the JDBC Drivers 51

5 jdbcKona Extensions to the JDBC 1.22 API

Class CallableStatement

Classwebl ogi c. j dbc20. oci 734. Cal | abl eSt at ement contains jdbcKona
extensions to JDBC to support the use of cursors as parametersin
Cal | abl eSt at ement objects.

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

ThecCal | abl eSt at ement class:
m Extendsthe Prepar edSt at enent class
m Implementsthe Cal | abl eSt at ement interface

m Hasthe following inheritance hierarchy:

j ava. | ang. Obj ect

|
+----webl ogi c. j dbc20. oci 734. St at enent

|
+----webl ogi c. j dbc20. oci 734. Pr epar edSt at enent

I
+----webl ogi c. j dbc20. oci 734. Cal | abl eSt at enent

m Hastheget Resul t Set method

5-2 Using the JDBC Drivers

Class CallableStatement

weblogic.jdbc20.oci734.CallableStatement.getResultSet

Synopsis

Java Mapping

Parameters

Throws

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

ReturnsaResul t Set object from a stored procedure where the specified parameter
has been bound to an Oracle cursor. Register the output parameter with the
regi st er Qut put Par amet er method, using j ava. sql . Types. OTHER as the data

type.

public ResultSet getResultSet(int paraneterlndex) throws
SQLException

par anet er | ndex
This parameter is an index into the set of parametersfor the stored procedure.

SQLExcepti on
This exception isthrown if the operation cannot be compl eted.

Using the JDBC Drivers 5-3

5 jdbcKona Extensions to the JDBC 1.22 API

Class Connection

This section describes only the jdbcK ona extension to JDBC that accesses the Oracle
OCI C Function oopt () . Other information about this class isin the description for
classj ava. sql . Connecti on. A Connect i on object is usually constructed as a

j ava. sgl . Connect i on class. To usethisextensionto JDBC, you must explicitly cast
your Connect i on object asawebl ogi c. j dbc20. oci 734. Connect i on class.

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

The public Connection class:

Extends the Qbj ect class

Implements the Connect i on interface

Has the following inheritance hierarchy:

j ava. | ang. Obj ect

|
+----webl ogi c. j dbc20. oci 734. Connecti on

Has the wai t OnResour ces method

5-4 Using the JDBC Drivers

Class Connection

weblogic.jdbc20.0ci734.Connection.waitOnResources

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Use this method to access the Oracle oopt () function for C (see section 4-97 of The
OCI Functionsfor C). The Oracle C function sets options in cases where requested
resources are not available; for example, whether to wait for locks.

When the argument to this method is true, this jdbcK ona extension to JDBC setsthis
option so that your program will receive an error return code whenever aresource is
reguested but is unavailable. Use of this method can cause several error return codes
while waiting for internal resources that are locked for short durations.

Java Mapping public voi d wai t OnResour ces(bool ean val)

Parameters val
This parameter is set to true if the connection should wait on resources.

Using the JDBC Drivers 55

5 jdbcKona Extensions to the JDBC 1.22 API

Class weblogic.jdbc20.0ci734.Statement

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you are using Oracle 8.0.5 or Oracle 8.1.5, respectively.

This class contains jdbcK ona extensions to JDBC to support parsing of SQL
statements and adjusting of the fetch size. Only those methods are documented here.

Thewebl ogi c. j dbc20. oci 734. St at enent class:
m Extends the Object base class

m Hasthe following inheritance hierarchy:
j ava. | ang. Obj ect
+----webl ogi c. j dbc20. oci 734. St at enent

m Hasthe following methods:
e fetchsize

e parse

5-6 Using the JDBC Drivers

Class weblogic.jdbc20.o0ci734.Statement

weblogic.jdbc20.0ci734.Statement.fetchsize

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

Synopsis Allowstuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch sizeis 100. Memory for 100 rowsis allocated in the native stack for
every query. For queriesthat need fewer rows, this size can be adjusted appropriately.
This saves on the swappabl eimage size of the application and will benefit performance
if only as many rows as needed are fetched.

Java Mapping public void fetchSize(int size)

Parameters si ze
This parameter specifies the number of rows to be prefetched.

Using the JDBC Drivers 5-7

5 jdbcKona Extensions to the JDBC 1.22 API

weblogic.jdbc20.0ci734.Statement.parse

Synopsis

Java Mapping

Parameters

Throws

Note: Inthe class paths, this section shows oci 734. However, you would use
oci 805 or oci 815, if you areusing Oracle 8.0.5 or Oracle 8.1.5, respectively.

Allowstuning of the size of prefetch array used for Oraclerow results. Oracle provides
the meansto do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch sizeis 100. Memory for 100 rowsis alocated in the native stack for
every query. For queriesthat need fewer rows, this size can be adjusted appropriately.
Thissaveson the swappableimage size of the application and will benefit performance
if only as many rows as needed are fetched.

public int parse(String sqgl) throws SQ.Exception

sql
This parameter isthe SQL statement to be verified.

SQLException
This exception isthrown if the operation cannot be compl eted.

5-8 Using the JDBC Drivers

Index

A

ALLOWSHRINKING parameter 2-9
array fetches

support for 4-7
autocommit

using with Oracle 4-6

Blobs
Oracle 4-7

C

CallableStatement class 4-11

API for WebL ogic extension to 5-2
CAPACITYINCR parameter 2-9
class pathname

for DBMS connection 3-10
CLASSPATH 1-3, 3-3
closing objects 3-15
connectingto aDBMS 3-10

requirements for making 1-5, 3-5
Connection class

API for WebL ogic extension to 5-4
connection pooling 2-1, 2-2
connection pools

displaying data about 2-11
CREATEONSTARTUP parameter 2-9
customer support contact information ix

D
data type mapping 4-2
database management system
see DBMS
DatabaseM etaData methods
using 4-4
variations specific to Oracle 4-12
DataSource interface 2-17
getConnection 2-17
getLoginTimeout 2-18
getLogWriter 2-18
setLoginTimeout 2-18
setLogWriter 2-18
using with JDBC/XA driver 1-6
DBHOST parameter 2-8
DBMS connections
class pathname 3-10
making 3-10
reguirements for making 1-5, 3-5
setting properties for 3-9
DBNAME 2-8
DBNETPROTOCOL parameter 2-8
DBPASSWORD parameter 2-8
DBPORT parameter 2-8
DBUSER parameter 2-8
distributed transactions
JDBC/XA driver 1-1
DLLs
for jdbcK ona/Oracle 3-3
documentation, where to find it viii
DRIVER parameter 2-7

Using the JDBC Drivers -1

E

ENABLEXA parameter 2-8
encrypting passwords 2-10
Extended SQL

JDBC support for 3-5

F
fetchsize method 5-7

G

getConnection method 2-16, 4-3
getResultSet method 5-3

implementing, using jdbcKona drivers 3-8
importing packages 3-9

INITCAPACITY parameter 2-9

Initial Context method 2-15

J
Java21-3, 3-2
java.math 3-6
java.sgl 3-6
javax.sgl.ConnectionEventListener 2-15
javax.sql.ConnectionPool DataSource 2-15
JDBC
API 3-6
Extended SQL
support for 3-5
jdbcK ona extensions to 3-6
supported version 1-1, 3-1
JDBC connection pooling 2-1, 2-2
API 2-14
application level API 2-14
connection lifecycle 2-16

system level API for JDBC drivers 2-15

system level API for INDI 2-14

[-2 Using the JDBC Drivers

JDBC connection pools
attributes of 2-6
encrypting passwords used with 2-10
JDBC/XA driver
using 1-1
JDBCCONNPOOLS
ALLOWSHRINKING parameter 2-9
CAPACITYINCR parameter 2-9
CREATEONSTARTUP parameter 2-9
DBHOST parameter 2-8
DBNAME parameter 2-8
DBNETPROTOCOL parameter 2-8
DBPASSWORD parameter 2-8
DBPORT parameter 2-8
DBUSER parameter 2-8
DRIVER parameter 2-7
ENABLEXA parameter 2-8
INITCAPACITY parameter 2-9
LOGINDELAY parameter 2-9
MAXCAPACITY parameter 2-9
parameters 2-6
pool name 2-7
PROPS parameter 2-8
REFRESH parameter 2-10
sample section 2-5
SHRINKPERIOD parameter 2-9
SRV GRP parameter 2-7
SRVID parameter 2-7
TESTONRELEASE parameter 2-10
TESTONRESERVE parameter 2-10
TESTTABLE parameter 2-9
URL parameter 2-8
USERROLE parameter 2-8
WAITFORCONN parameter 2-10
WAITTIMEOUT parameter 2-10

jdbcKonadrivers

implementinginaWLE Javaapplication
3-8

JARfile 1-3, 3-3

making an SQL query with 3-11

platforms supported on 1-3, 3-2

sample code using 3-16
support for IDBC Extended SQL 3-5
jdbcKona/Oracle drivers
and array fetches 4-7
and Blob chunking 4-7
and Oracle NUMBER column 4-12
closing connections with 4-5
connecting to Oracle DBMS 4-3
DLLs3-3
shared libraries 3-3
using stored proceduresin 4-8
JDK 1.2
See Java 2

L
LOGINDELAY parameter 2-9

M
MAXCAPACITY parameter 2-9

N

newlnstance method 4-3
NUMBER column 4-12

0
objects
disconnecting and closing 3-15
Oracle cursor 4-9
Oracle oopt() C function
accessing 5-5
API 4-5
Oracle rows 5-7

P

packages
importing 3-9

parameter

binding to an Oracle cursor 4-9
parse method 5-8
passwords

encrypting 2-10
pooling

database connections 2-1

JDBC connections 2-2
PreparedStatement class 3-12
printing product documentation viii
printjdbcconnpool option 2-11
properties

setting for a DBM S connection 3-9
Properties object 4-4
PROPS parameter 2-8

R

records

inserting, updating, and deleting 3-12
REFRESH parameter 2-10
related information viii
resources

waiting for Oracle DBMS 4-5
ResultSet class 4-9
ResultSet object

returning from stored procedure 5-3

S

shared libraries

for jdbcK ona/Oracle 3-3
shrinking connection pools 2-9
SHRINKPERIOD parameter 2-9
Solaris 1-3, 3-2
SQL query

making with ajdbcKona driver 3-11
Statement class

API for WebL ogic extension to 5-6
stored procedures

creating and using 3-13

returning ResultSet object from 5-3

Using the JDBC Drivers

-3

using in jdbcK ona/Oracle 4-8
support
technical ix

T

T_JDBCCONNPOOLS TMIB class 2-13
TESTONRELEASE parameter 2-10
TESTONRESERVE parameter 2-10
TESTTABLE parameter 2-9
tmadmin command

printjdbcconnpool option 2-11

U

UBBCONFIG
JDBCCONNPOOLS sample 2-5
parameters for connection pooling 2-4
sample file for connection pooling 2-5
USERROLE parameter 2-8

w

WAITFORCONN parameter 2-10
waitOnResources method 5-5
WAITTIMEOUT parameter 2-10
WebL ogic extensions

Connection class 5-4

to CallableStatement class 5-2

to JDBC (list) 3-6

to Statement class 5-6
weblogic.jdbc20.oci734.Driver 2-7
weblogic.jdbc20.0ci804.Driver 2-7
weblogic.jdbc20.0ci815.Driver 2-7, 3-4
Windows NT 4.0 1-3, 3-2
WLE Java application 3-8

X

XA
JDBC/XA driver 1-1

-4 Using the JDBC Drivers

	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 Using the WebLogic Enterprise JDBC/XA Drivers
	Before You Begin
	Supported Platforms
	Adding the JAR Files to Your CLASSPATH
	Adding Locale to Your CLASSPATH
	Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a DBMS
	About the Sample Code
	About the JDBC API

	Setting Data Source Properties
	Administration Steps
	Use buildXAJS to Create an XA Version of JavaServer
	Use buildtms to Create a Transaction Manager Server Load Module for Oracle
	Define the Database Open Information
	Define JavaServerXA Parameters
	Identify the Driver Class and Connection Pool Characteristics

	Programming Steps
	Import the Required API Packages
	Initialize JavaServerXA and Get the Pool Name
	Use a JNDI Lookup to Create a Pool of Connections
	Get Database Connections from the Pool

	2 Using JDBC Connection Pooling
	About JDBC Connection Pooling
	About the JDBC Drivers and Connection Pooling
	UBBCONFIG Parameters for Connection Pooling
	Sample UBBCONFIG File for Connection Pooling
	JDBCCONNPOOLS Parameter Values
	Encrypting DBPASSWORD and PROPS

	Displaying Information About JDBC Connection Pools
	T_JDBCCONNPOOLS MIB Class
	API Characteristics
	Application Level API
	System Level API for the JNDI Service Provider
	System Level API for JDBC drivers
	Obtaining Connections from a WebLogic Enterprise Connection Pool
	An Application’s View of the Connection Lifecycle
	The DataSource Interface

	3 Using the jdbcKona Drivers
	API Support
	Platforms Supported by the jdbcKona Drivers
	Adding the JAR Files to Your CLASSPATH
	jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a Database Management System (DBMS)
	Support for JDBC Extended SQL
	The JDBC API with WebLogic Extensions
	Implementing a WebLogic Enterprise Java Application Using the jdbcKona Drivers
	Importing Packages
	Setting Properties for Connecting to the DBMS
	Connecting to the DBMS
	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Code Example

	4 Using the jdbcKona/Oracle Drivers
	Data Type Mapping
	Connecting a jdbcKona/Oracle Driver to an Oracle DBMS
	Method 1
	Method 2
	Other Properties You Can Set for the jdbcKona/Oracle Driver
	General Notes

	Waiting for Oracle DBMS Resources
	Autocommit
	Using Oracle Blobs
	Support for Oracle Array Fetches
	Using Stored Procedures
	Syntax for Stored Procedures in the jdbcKona/Oracle Driver
	Binding a Parameter to an Oracle Cursor
	Using CallableStatement

	DatabaseMetaData Methods
	jdbcKona/Oracle and the Oracle NUMBER Column

	5 jdbcKona Extensions to the JDBC 1.22 API
	Index

