'a' @,

% hea
BEA WebLogic Enterprise

CORBA, J2EE, and Tuxedo
Interoperability
and Coexistence

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What YOU NEed 10 KNOWcoiiiiiiiiiiiiiie ettt vii
€-0OCS WED Steiieiiieii et e viii
HOW t0 Print the DOCUMENT........oiiiiiiiiieii ettt viii
Related INFOrMEatIONccuuiiii e e viii
CONEACT US! ...t ix
Documentation CONVENLIONSccouuuiie ittt (¢
Introduction
Interoperability Among the CORBA, J2EE, and Tuxedo
Programming MOEIS........coooiiiiiiiiii e 11
BEA ClENtS @Nd SEIVEIS.....ccoiiiiiiiieiitiiiie ettt ettt 1-2
T-Engine Server Interoperabilityoccoooiiiiiiiiiiii e 1-3
Java Enterprise Tuxedo (JET) Softwarecccocooveeeniiiieniiiieeceen 1-5
Transactions and SECUILYeeeiiiiiiiiii it 1-6
T-Engine Client and Server Interoperabilitycccccoviiiiiiiiiiiiniiieen 1-6
Transactions and SECUILYeeeiiiiiiiiir it 1-8
A Note ADOUEt BEA JOIt ..o 1-9
RMI Clients and the WebLogic RMI-on-lIOP Protocol..................... 1-9
J-Engine and T-Engine Interoperabilitycccccoviiieiniiii e 1-10
Third-party ORB Interoperabilityccccooiiiiiiiiiii e 1-11
T-Engine Interdomain Interoperabilitycccocviiiiinii 1-13
WebLogic Enterprise and Tuxedo Domains Interoperability 1-15
Overview of the Interoperability Sample Applications............cccoevevveeniineenn, 1-17

CORBA, J2EE, and Tuxedo Interoperability and Coexistence i

2. EJB-to-CORBA/Java Simpapp Sample Application

How the EJB-to-CORBA/Java Simpapp Sample Application Works 2-2
SOftwWare Prer@qUISITESc.ivveiiiiiiie e 2.
Implementing the Bridge Object to Invoke a CORBA/Java Object........... 2-3

The OMG IDL Code for the EJB-to-CORBA/Java Simpapp Interfaces ... 2-5
Building and Running the EJB-to-CORBA/Java Simpapp Sample

APPICALION .o 2-¢
Verifying the Settings of the Environment Variablescccccceen. 2-7
Verifying the Environment Variablescccooiiiiiii e 2-8
Changing the Environment Variablescccoovvieiniiiiiiniiiee i, 2-C
Copying the Files for the Java Simpapp Sample Application
INO & WOTK DIFECIONY ...ceiiiiiiieiiiiie ettt 2-10
Files in the WOrk DIr€CIOIYcceeiioiiiiiie et 2-11
EJB SIMPapP FileScooiiiiiiie et 2-1
CORBA/Java SImpapp fileS......cueeii e 2-17
ULIIEY FIlES .. 2-12
Changing the Protection Attribute on the Files
for the EJB-to-CORBA/Java Simpapp Sample Application............. 2-13
Executing the runme Commandcoooiiiiiiiiiiee e 2-1
Running the Sample Application............ccooiiiiiiii e 2-1¢
Processes and Files Generated by
the EJB-to-CORBA/Java Simpapp Sample Application 2-16
Processes Startedc.ueeviiiiiiiiriie e 2-
Files Generated in the corbaj DIreCtoryccccovcvveeiriiiieeie e, 2-17
Files Generated in the ejb_corbaj Directorycccccouvveeiiiiiinnenns 2-16
Files Generated in the results DireCtoryccccoevieveecniiieee i, 2-1¢
Stopping the EJB-to-CORBA/Java Simpapp Sample Application 2-21

3. CORBA/C++-to-EJB Simpapp Sample Application

How the CORBA/C++-to-EJB Simpapp Sample Application Works 3-2
SOftWare Prer@qUISITEScoivuiiiiiiiiieie e 3
Implementing the Bridge Object to Invoke an EJB...........cccccoviiviiiiiiennnne 3-3

The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces........... 3-5

Building and Running the CORBA/C++-to-EJB Simpapp
ST=Taq] o] TSN o] o] o 11 o] o U SPPPRPRRRR 3-
Verifying the Settings of the Environment Variablescccccoeen. 3-7

iv CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Verifying the Environment Variables ... 3-8

Changing the Environment Variables...........ccccooiiiiniiie i 3-9
Copying the Files for the CORBA/C++-to-EJB Simpapp Sample Application
INTO & WOTK DIF€CIOTYeviieiiie ettt 3-10
Files in the WOrk DIr€CLOMYcoooueeiiiiiiiiie et 3-11
CORBA/C++ ClENt FileSccciiiiiiiiiiiieee et 3-11
EJIB Server FIleS. ...t 3-12
ULIIEY FIlES o 3-12
Changing the Protection Attribute on the Files
for the CORBA/C++-to-EJB Simpapp Sample Application 3-13
Executing the runme Command...........ccceviiiiiiiin i 3-14
Running the Sample ApPliCationcoocoveiiiiiiiiie e 3-15
Processes and Files Generated
by the CORBA/C++-to-EJB Simpapp Sample Application............. 3-16
Processes STAred........cooiiuiiiiiiiii e 3-16
Files Generated in the cpp DIreCtoryccovuviieiiiiiiiiiiiiiieee e 3-17
File Generated in the cpp_ejb DIreCtorycceevvviieeiniiieieeeiiieeen 3-19
Files Generated in the results DIreCtory.........cccoeveeeieniieieecniiieeenis 3-19
Stopping the CORBA/C++-t0o-EJB Simpapp Sample Application................. 3-21

4. CORBA/Java-to-Tuxedo Simpapp Sample Application

How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works 4-2
Key Application COMPONENESeeeiiiiiiiiii ittt 4-2
APPLICALION FIOW ... 4-3
OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces..... 4-3
Software Prer@qUISItESoooiiiiiieiiiiii e 4-5
EXAMPIE COUC .ottt e 4-5

Building and Running the CORBA/Java-to-Tuxedo Simpapp
Sample APPIICALIONeeiiiiiie et 4-6
Step 1: Verify the Settings of Environment Variablesccccccoveeee 4-7

Required Environment Variables..........cccooiiiiniiiiiniiee e 4-7
Optional Environment Variablesccocoviiiiiiiniiiieee e 4-7
Verifying the Environment Variables.............ccccoo i, 4-8
Changing the Environment Variables............cccoiiiiiniiiie e 4-9
Step 2: Copy the Files into a Work DireCtory.........ccocevvveeeeeeieriniiiiee 4-10
CopYiNG the FIlESeeiiiiee e 4-10

CORBA, J2EE, and Tuxedo Interoperability and Coexistence v

Vi

Files Copied to the Working DireCtoryccceveiiiiieeeeniieeen e, 4-11

Step 3: Change the Protection Attribute on the Files............ccccccceeenn. 4-1:
Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application 4-13
Executing the runme Command...........ccccoeeriiiiiiiiiiin e 4-1:
Running the Sample Application Manuallyccccoccveeiriiineens 4-15

Server Processes Started by the Sample Application........................ 4-1

Files Generated by the Sample Application............cccovvieiiiiiineinns 4-1¢€
Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application............ 4-2C

5. EJB-to-Tuxedo Simpapp Sample Application

How the EJB-to-Tuxedo Simpapp Sample Application Worksccceee.. 5-2
Key Application COMPONENLESoocuiiiiiiiiiiiie et -2
APPICALION FIOW ...ttt 5-3
SOftWare Prer@qUISITESc.ivuiiii i 5.
EXAMPIE COUE ...ttt 5-

Building and Running the EJB-to-Tuxedo Simpapp Sample Application......... 5-5
Step 1: Verify the Settings of Environment Variables..........c.cccccovveennn 5-5

Required Environment Variables ..., -E
Optional Environment Variables...........cccooviiiii e 5-6
Verifying the Environment Variablescccooiiiini e 5-7
Changing the Environment Variablescccooovviiiiiiiiiiniiiee i, 5-€
Step 2: Copy the Files into a WOrk DIir€Ctoryceeeeerivieeeiiiiieeeniieeens 5-8
CopYING the FIlES ... 5-¢
Files Copied to the WOorking Dir€Ctoryccueeeeiiiieeiiiiiiiieeeniiieeeeens 5-9
Step 3: Change the Protection Attribute on the Files
for the EJB-to-Tuxedo Simpapp Sample Application....................... 5-12
Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application................ 5-12
Executing the runme Command...........ccccoeeiiiiiiiiiniiie e 5-1:
Running the Sample Application Manuallyccccoccveeiriiinnens 5-14
Server Processes Started by the Sample Application........................ 5-1
Files Generated by the Sample Application............cccvviieiiiiiencns 5-1F
Stopping the EJB-to-Tuxedo Simpapp Sample Applicationcccceeueee. 5-1¢

Index

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

About This Document

This document describes how to build and run the suite of sample applications, which
show how Enterprise JavaBeans and CORBA objects can coexist in the same BEA
WebLogic Enterprise™ application.

This document includes the following topics:

m Chapter 1, “Introduction,” provides a high-level overview of the interoperability
and coexistence capabilities in the WebLogic Enterprise system among the
CORBA, J2EE, and Tuxedo® programming models. This chapter also describes
the set of interoperability sample applications provided with the WebLogic
Enterprise software.

m Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” describes how
to build and run the EJB-CORBA/Java Simpapp sample application.

m Chapter 3, “CORBA/C++-to-EJB Simpapp Sample Application,” describes how
to build and run the CORBA/C++-EJB Simpapp sample application.

m Chapter 4, “CORBA/Java-to-Tuxedo Simpapp Sample Application,” describes
how to build and run the CORBA/Java-to-Tuxedo Simpapp sample application.

m Chapter 5, “EJB-to-Tuxedo Simpapp Sample Application,” describes how to
build and run the EJB-to-Tuxedo Simpapp sample application.

What You Need to Know

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes you are knowledgeable with
CORBA, Enterprise JavaBeans, and the C++ and Java programming languages.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence vii

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dtttp://www.adobe.corm

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see th&ibliographyin the WebLogic Enterprise online documentation.

viii CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Documentation Conventions

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.conif you have questions or comments. Your
comments will be reviewed directly by the BEA Systems, Inc. professionals who
create and update the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORTvatw.bea.comYou can also

contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence ix

Convention Item

italics Indicates emphasis or book titles.
monospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.

Monospace text also indicates text that you must enter from the keyboard.
Examples

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap
.doc
tux.doc
BITMAP
float
monospace Identifies significant words in code.
boldface Example
text))
void commit ()
monospace Identifies variables in code.
italic Example
text)
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example
buildobjclient [-v] [-0 name] [-f file-list]...

[fileslist ...

X CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Documentation Conventions

Convention

Item

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence xi

Xil CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

1 Introduction

This topic includes the following sections:

m Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

This topic describes the interoperability and coexistence capabilities in the
WebLogic Enterprise (WLE) system among the CORBA, J2EE, and Tuxedo
programming models.

m Overview of the Interoperability Sample Applications

This topic describes the interoperability sample applications provided with the
WebLogic Enterprise software. The sample applications provide client and
server programmers with information about the basic concepts of combining
Enterprise JavaBeans (EJBs) and CORBA objects in the same WebLogic
Enterprise application.

This chapter does not discuss specific interoperability or coexistence details with
regards to WebLogic Server or WebLogic Enterprise Connectivity.

Interoperability Among the CORBA, J2EE,
and Tuxedo Programming Models

The key interoperability features are presented in the following categories:
m T-Engine Server Interoperability
m T-Engine Client and Server Interoperability

m J-Engine and T-Engine Interoperability

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-1

1 introduction

m Third-party ORB Interoperability

m T-Engine Interdomain Interoperability

m WebLogic Enterprise and Tuxedo Domains Interoperability

First, a summary description of BEA clients, servers, the T-Engine, and the J-Engine
follows.

BEA Clients and Servers

Note the following definitions:

m BEAcclient

A BEA client can be any of the following entities, which exist outside the BEA
domain and must use a listener/handler as a gateway to the domain:

Jolt® client application (via the Jolt listener/handler)
Tuxedo /WS client application (via the Tuxedo /WS listener/handler)

WebLogic Enterprise CORBA client application (via the IIOP
listener/handler)

ActiveX client application (via the 1IOP listener/handler)

RMI client application (via the 1IOP listener/handler)

Note that BEA clients invoking other BEA clients is not supported.

m BEA server

A BEA server can fall into one of two general categories:

Tuxedo engine, of-Engine, servers. T-Engine servers include Tuxedo
services, CORBA objects, and EJBs that run on the Tuxedo-based WebLogic
Enterprise infrastructure. These servers run within the administrative unit of
a WebLogic Enterprise domain, and are configured WiBBCONFIdile.

Java engine, al-Engine servers. J-Engine servers include EJBs, Servlets,
and Java Server Pages (JSPs) that run on the WebLogic Server-based
infrastructure.

1-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

T-Engine Server Interoperability

This section describes the interoperability among the following T-Engine server
components:

m Tuxedo service

m CORBA C++ object
m CORBA Java object
m Enterprise JavaBean

Figure 1-1 shows the direct interoperability support among the various T-Engine
server applications. The numbered callouts in the figure are explained in the text that
follows the figure. In this figure, the solid black arrows show the direct invocation
paths that are supported. The dotted arrows show indirect invocation paths that are
supported; for example, a Tuxedo service can invoke a CORBA Java object using
either a CORBA C++ proxy object, or a C++ client stub file compiled from the OMG
IDL for that Java object.

Figure 1-1 T-Engine Server Interoperability

Tuxedo CORBA C++ CORBA Java Enterprise
Service Object Object JavaBean

AN \ / /
N N S /7
N N\~ e
~

e -7 -0

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-3

1 introduction

Note the following details about the preceding figure:

1. CORBA Java object or Enterprise JavaBean invoking a Tuxedo service

WebLogic Enterprise provides the Java Enterprise Tuxedo (JET) API that you
can use to have either a CORBA Java object or an EJB invoke a Tuxedo service
running in the WebLogic Enterprise domain. An example of a CORBA Java
object invoking a Tuxedo service using JET is described in Chapter 4,
“CORBA/Java-to-Tuxedo Simpapp Sample Application,” and an example of an
EJB application invoking a Tuxedo service using JET is described in Chapter 5,
“EJB-to-Tuxedo Simpapp Sample Application.” (Note that RMI server
applications can also run in the WebLogic Enterprise T-Engine domain, and they
can also use JET to invoke Tuxedo services in that domain.)

For considerations about using the JET software, see “Java Enterprise Tuxedo
(JET) Software” on page 1-5.

2. Tuxedo service invoking a CORBA C++ object and vice versa

A C++ object can include ATMI calls to Tuxedo services. See the Wrapper
University sample application, available from tBeide to the University
Sample Applicationdor an example application that shows this feature.

A Tuxedo service can invoke a CORBA C++ object using the compiled C++
client stub file for that object. (One way to do this is to implement the Tuxedo
service as a C-callable C++ function that invokes the client stub file for the C++
object. If you use this approach, note that you need to link in the C++ ORB
libraries when you build the Tuxedo service.)

3. CORBA C++ object invoking a CORBA Java object and vice versa

CORBA C++ and CORBA Java objects that run in the same WebLogic
Enterprise domain can invoke each other directly. For information about
invoking across WebLogic Enterprise domains, see the section “T-Engine
Interdomain Interoperability” on page 1-13.

4. CORBA Java object invoking an EJB and vice versa

In the WebLogic Enterprise environment, a CORBA Java object can invoke
methods on an EJB directly. See Chapter 3, “CORBA/C++-to-EJB Simpapp
Sample Application,” for an example application that includes a CORBA Java
object that invokes an EJB.

1-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

5. Tuxedo service invoking a CORBA Java object

A Tuxedo service can invoke a CORBA Java object by compiling the Java
object’'s OMG IDL file with theidl command, which produces a C++ client
stub file that the Tuxedo service can invoke, using an approach similar to the
one described in point 2.

6. EJB invoking a CORBA C++ object and vice versa

Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” shows an
example of an EJB invoking a CORBA Java object. You can extend this
example to include a CORBA C++ object by designing the Java object in that
application to serve as an intermediary, or wrapper, object that delegates
invocations from the EJB to the C++ object, and vice versa. An alternative
means for having an EJB invoke a C++ object is to compile the OMG IDL file
for the C++ object using thm3idlitojava ~ command, which produces a Java
client stub file that the EJB can invoke directly.

Java Enterprise Tuxedo (JET) Software

The WebLogic Enterprise software includes the JET API, which allows T-Engine Java
entities -- namely, EJBs and CORBA Java objects -- to make ATMI calls on Tuxedo
services that exist in either the same WebLogic Enterprise domain or in a separate
WebLogic Enterprise domain. JET is a server-side adaptation of BEA Jolt. JET shares
some of its software components with Jolt, including the Repository Editor and the
bulk loader. To take full advantage of all the capabilities of JET, you need to install the
Jolt software, which is included with the WebLogic Enterprise software.

For more information about JET, séksing Java Enterprise Tuxedo (JEHor more
information about installing Jolt, see thelt Installation Guidewhich is included in
the WebLogic Enterprise package.

Note: JET cannot be used by Java clients to invoke Tuxedo services; this capability

is provided by BEA Jolt, which is summarized in “Transactions and Security”
on page 1-8.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-5

1 introduction

Transactions and Security

Transaction and security context propagation among BEA server applications running

in a WebLogic Enterprise domain is fully supported.

T-Engine Client and Server Interoperability

Figure 1-2 shows the interoperability support among BEA clients invoking BEA

servers.

Figure 1-2 T-Engine Client and Server Interoperability

CORBA
C++
1 2

— JSL/IJSH WSL/WSH ISL/ISH
Tuxedo CORBA C++ CORBA Java
Service Object Object

Enterprise
JavaBean

WebLogic Enterprise T-Engine

1-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

Note the following details in the preceding figure:

1.

Jolt client application invoking a Tuxedo service

A Jolt client can invoke a Tuxedo service running in the WebLogic Enterprise
domain via a Jolt listener/handler. For more information about Jolt, se@HEie
Jolt online documentation

Tuxedo /WS client application invoking a Tuxedo service

A Tuxedo /WS client application can invoke a Tuxedo service running in the
WebLogic Enterprise domain via the Workstation listener/handler.

BEA CORBA C++ client application invoking a CORBA object

A BEA CORBA C++ client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the I1OP listener/handler.
For more information, se€reating CORBA Client Applications

BEA CORBA Java client application invoking a CORBA server-side object

A BEA CORBA Java client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the 11OP listener/handler.
For more information, se€reating CORBA Client Applications

BEA ActiveX client application invoking a CORBA server-side object

A BEA ActiveX client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the 11OP listener/handler.
For more information, se€reating CORBA Client Applications

RMI client application invoking an Enterprise JavaBean

An RMI client application can invoke an Enterprise JavaBean running in the
WebLogic Enterprise domain via the 1IOP listener/handler using the WebLogic
RMI-on-11OP protocol. For more information, séksing RMI in a WebLogic
Enterprise Environmen{Note that an RMI client can also invoke an RMI server
running in a WebLogic Enterprise domain.)

The following additional invocation paths are also supported in the WebLogic
Enterprise environment via proxy objects or servers:

BEA CORBA C++ client application invoking a Tuxedo service

You can create a C++ client with a set of operations that map one-to-one with
calls to Tuxedo services using an intermediary C++ server-side object. See the

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-7

1 introduction

Wrapper University sample application for an example application that shows
this feature, available in th@uide to the University Sample Applications

m WebLogic Enterprise RMI client application invoking a CORBA C++ object

A WebLogic Enterprise RMI client application can invoke a CORBA C++

object by using an EJB and a CORBA Java object in the server process as
intermediaries. For an example, you can extend the sample application describec
in Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” as follows:

e The RMI client application invokes the EJB to initiate the request.

¢ The CORBA Java object, which is invoked by the EJB, delegates the
invocation to the C++ object.

m WebLogic Enterprise RMI client application invoking a CORBA Java object

A WebLogic Enterprise RMI client application can invoke a CORBA Java object
by using an EJB as an intermediary. For an example, you can extend the sample
application described in Chapter 2, “EJB-to-CORBA/Java Simpapp Sample
Application,” to have the RMI client application initiate the request instead of

the EJB.

m Tuxedo/WS client application invoking a CORBA C++ object

Interoperability is provided via a Tuxedo service wrapper. You create a Tuxedo
service wrapper as a CORBA C++ object that runs in the WebLogic Enterprise
domain and that makes invocations on the legacy CORBA C++ object.

m Tuxedo/WS client application invoking a CORBA Java object
Interoperability is provided via a Tuxedo service wrapper.
m Tuxedo/WS client application invoking an EJB

Interoperability is provided via a Tuxedo service wrapper on a CORBA Java
object in the server process, which then delegates the invocation to the EJB.

Transactions and Security

Transaction and security context propagation between BEA client and server
applications is fully supported, with the following restrictions:

m BEA client applications can demarcate a transaction -- that is, they can explicitly
begin, suspend, resume, and commit a transaction -- but they cannot participate
in a transaction.

1-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

For example, a client can begin a transaction and make multiple invocations on
services and objects within the domain, and those services and objects can in
turn make invocations on yet other services and objects. However, the client
application cannot, within the scope of that transaction, perform operations
locally and have them included in that transaction. That is, if the client
application starts a transaction, invokes an object within the domain, then writes
data to a database local to the client, the local database operation cannot not be
included in the transaction.

m When a client application authenticates itself to the domain, and invokes various
services and objects in the domain -- which in turn may invoke other services
and objects in the domain -- the client's security context is passed along with
each operation. However, if in the course of satisfying a client request, a service
in one domain makes an invocation on a service in a second domain, the client's
security context cannot be passed to the second domain. The service in the
second domain does not have knowledge of the original client.

A Note About BEA Jolt

BEA Jolt provides a means for allowing Java clients to make ATMI calls on Tuxedo
services that exists in a Tuxedo or WebLogic Enterprise domain. Jolt also provides a
means for allowing J-Engine servers to invoke T-Engine Tuxedo services . This latter
capability is performed via Jolt connection pools, which is shown in “J-Engine and
T-Engine Interoperability” on page 1-10. BEA provides Jolt with the WebLogic
Enterprise software.

For more information, see the following documents:

m For more information about Jolt, see tBEA Jolt version 1.2 online
documentation

m For more information about setting up Jolt connection pools to connect J-Engine
servers to T-Engine Tuxedo services, §kng WebLogic Enterprise
Connectivity

RMI Clients and the WebLogic RMI-on-110P Protocol

RMI clients of EJBs running in a T-Engine domain must use the WebLogic
RMI-on-lIOP protocol. This is a proprietary protocol and is different from the
RMI-over-110P protocol, which is used by clients of the BEA WebLogic Server™
system.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-9

1 introduction

For more information about the WebLogic RMI-on-IIOP protocol, Eséng RMI in
a WebLogic Enterprise Environment

J-Engine and T-Engine Interoperability

The WebLogic Enterprise domain can comprise both T-Engine and J-Engine
components. As of WebLogic Enterprise 5.1, this connectivity is available in only one
direction -- from the J-Engine to the T-Engine -- via IIOP and Jolt connection pools.

Figure 1-3 shows how these connection pools allow components hosted by the
J-Engine can invoke objects and services hosted by a T-Engine running in the same
WebLogic Enterprise domain.

Figure 1-3 J-Engine and T-Engine Interoperability

WebLogic Enterprise

Java Server
Browser Page
Clients

Enterprise
JavaBean
CORBA Java
Object
CORBA C++
Object
JOLT Connection Pool JSH

Service

J-Engine T-Engine

IIOP Connection Pool ISH

Enterprise
JavaBean

i
Wi

1-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

Note the following about these connection pools:

m |IOP connection pools allow J-Engine applications to invoke T-Engine EJBs and
CORBA objects in a WebLogic Enterprise domain. For information about setting
up and using IIOP connection pools, déging WebLogic Connectivity

m Jolt connection pools allow J-Engine applications to invoke Tuxedo services in a
WebLogic Enterprise domain. For information about setting up and using Jolt
connection pools, se@onfiguring Jolt for WebLogic

For details about the versions of J-Engine and T-Engine server components that can
interoperate, see theelease Notes

Third-party ORB Interoperability

CORBA applications based on third-party ORBs can interoperate with CORBA,
Tuxedo, and J2EE server applications running in a WebLogic Enterprise domain
provided that there is a correct match-up between IIOP protocols. Figure 1-4 provides
a high-level view of third-party ORB interoperability with the WebLogic Enterprise
domain.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-11

1 introduction

Figure 1-4 Third-party ORB Interoperability

Third-Party ORB

Java Server
Page

Enterprise
JavaBean

URURCES

J-Engine

Enterprise
JavaBean

CORBA Java
Object

CORBA C++
Object

Tuxedo
Service

T-Engine

WebLogic Enterprise

Note the following regarding third-party ORB interoperability with the WebLogic
Enterprise domain:

The WebLogic Enterprise C++ ORB supports the IIOP 1.2 protocol, and the
WebLogic Enterprise Java ORB supports the IIOP 1.0 protocol. Both ORBs
interoperate with client products from other vendors that support the IIOP 1.2, or
earlier, protocol.

WebLogic Enterprise provides transactional and security support for the
following third-party client products. However, BEA does not provide
environmental objects for these clients, so these products cannot directly access
transactional and security capabilities inside the WebLogic Enterprise domain.
These client products can connect to a WebLogic Enterprise server application
using a stringified object reference.

1-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

e ActiveX
¢ Netscape Communicator
e Visibroker C++ version 3.3 (not clients using the Visibroker Java ORB)

e Orbix 2.3c02 (with patch 26 or greater)

m CORBA applications that use a third-party ORB cannot initiate or coordinate a
transaction propagated to the WebLogic Enterprise domain. These applications
can invoke transactional objects running in the WebLogic Enterprise domain,
and the WebLogic Enterprise transaction coordinator can manage those
transactions; however, all the transactional management is fully delegated to the
WebLogic Enterprise domain.

m If the CORBA application using the third-party ORB supports the Secure
Sockets Layer (SSL), that application can use SSL mutual authentication as an
alternative authentication mechanism.

m WebLogic Enterprise can call out to applications using third-party ORBSs, using
whatever callback mechanism is supported by the third-party ORB.

m WebLogic Enterprise client ORBs can interoperate with third-party ORBs
(including SSL support).

m The WebLogic Enterprise J-Engine supports RMI over IIOP; therefore, J-Engine
server applications can interoperate with third-party ORBs and other J2EE
application servers that support the RMI over IIOP protocol. For information
about restrictions or limitations on this interoperability, seeRiedease Notes

T-Engine Interdomain Interoperability

A server application running in one WebLogic Enterprise domain can interoperate
with a server application running in another WebLogic Enterprise domain via the
domain gateway (andot IIOP), as shown in Figure 1-5.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-13

1 introduction

Figure 1-5 T-Engine Interdomain Interoperability

IIOP

Domain Gateway

Domain A Domain B

WebLogic Enterprise T-Engine

Domain gateways provide the following interoperability features:

m Domains can be heterogeneous with respect to the WebLogic Enterprise version
That is, a given WebLogic Enterprise can run both versioradd version 5
WebLogic Enterprise applications; and those applications can invoke operations
on either WebLogic Enterprise versiorx4r version 5x applications running in
a separate domain.

m Domain gateways fully support transaction propagation across domains. For
example, a transactional object in one WebLogic Enterprise domain can include
an object running in another domain in that transaction.

m Security context propagation is fully supported across domains for CORBA and
EJB applications. (Interdomain security context propagation that span Tuxedo
services running in WebLogic Enterprise domains is not supported.) However,
note the following restriction:

1-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

When a client application authenticates itself to the domain, and invokes various
services and objects in the domain -- which in turn may invoke other services
and objects in the domain -- the client's security context is passed along with
each operation. However, if in the course of satisfying a client request, a service
in one domain makes an invocation on a service in a second domain, the client's
security context cannot be passed to the second domain. The service in the
second domain does not have knowledge of the original client.

m You can secure all domain gateway communications with Link-Level Encryption
(LLE).

m You can advertise factory objects and EJB home interfaces across domains.

For more information about interdomain WebLogic Enterprise interoperability, see
Administrationin the WebLogic Enterprise online documentation.

WebLogic Enterprise and Tuxedo Domains
Interoperability

WebLogic Enterprise and Tuxedo domains can interoperate via domain gateways, as
shown in Figure 1-6.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-15

1 introduction

Figure 1-6 WebLogic Enterprise and Tuxedo Domains Interoperability

Tuxedo 6.4

Domain Gateway
Tuxedo 6.5

WLE Domain Tuxedo Domain

WebLogic Enterprise T-Engine

Note the following about WebLogic Enterprise and Tuxedo interdomain
interoperability:

m Transactions and security contexts can be fully propagated between WebLogic
Enterprise and Tuxedo domains.

m Domain mixing is still not supported,; that is, you cannot combine a WebLogic
Enterprise domain and a Tuxedo domain into a single domain.

For more information about WebLogic Enterprise and Tuxedo domains
interoperability, seédministrationin the WebLogic Enterprise online
documentation.

1-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Overview of the Interoperability Sample Applications

Overview of the Interoperability Sample
Applications

The WebLogic Enterprise software includes the sample applications as described in
Table 1-1.

Table 1-1 The Interoperability Sample Applications

Application Description

EJB-to-CORBA/Java Shows an EJB server acting as a client invoking a request
Simpapp and receiving a response from a CORBA/Java object.
CORBA/C++-to-EJB Shows CORBA/C++ clientinvoking a request and receiving
Simpapp a response from an EJB server.

CORBA/Java-to-Tuxedo Shows a CORBA/Java object that invokes a Tuxedo service

using the Java Enterprise Tuxedo (JET) API.

EJB-to-Tuxedo Shows an Enterprise JavaBean application that invokes a
Tuxedo service using the Java Enterprise Tuxedo (JET) API.

Use the interoperability sample applications in conjunction with the following
documents:

m Getting Started
m Guide to the University Sample Applications

m Guide to the Java Sample Applications

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-17

1 introduction

1-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

2

EJB-to-CORBA/Java
Simpapp Sample
Application

The topic includes the following sections:

m How the EJB-to-CORBA/Java Simpapp Sample Application Works

m Software Prerequisites

m Building and Running the EJB-to-CORBA/Java Simpapp Sample Application
m Stopping the EJB-to-CORBA/Java Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterprise
software includes &eadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
EJB-to-CORBA/Java sample application:

Window NT

$TUXDIR\samples\interop\ejb_corbaj

UNIX
$TUXDIR/samples/interop/ejb_corbaj

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-1

2 EJB-to-CORBA/Java Simpapp Sample Application

How the

EJB-to-CORBA/Java Simpapp

Sample Application Works

The EJB-to-CORBA/Java Simpapp sample application has an EJB client, an EJB

ser

ver deploying theimpBean EJB and an EJB-to-CORBA bridge object, and a

CORBA server deploying a CORBA object.

The SimpBean EJB has the following two remote methods:

Theupper method delegates invocations to theupper method on the
CORBA Simple object.

Thelower method method delegates invocations totthéower method on
the CORBA Simple object.

The CORBA Simple object has the following two methods:

Theto_upper method accepts a string from the bridge object and converts the
string to uppercase letters.

Theto_lower method accepts a string from the bridge object and converts the
string to lowercase letters.

Figure 2-1 illustrates how the EJB-to-CORBA/Java Simpapp sample application
works.
Figure 2-1 EJB-to-CORBA/Java Simpapp Sample Application
SimpClient EJB Server CORBA/Java
Server Client Server Object
SimpBean EJB SimpleBridge
CORBA client SimpleFactory
> find_simple()
upper(); — ||)) . }
lower(); * upper(); — find_simple();
> lower(); — | 7> doUpper(); ___|| | Simple
[doLower(); —| [T to_upper()
> to_lower()

2-2 CORBA, J2

EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-CORBA/Java Simpapp Sample Application Works

Software Prerequisites

To run them3iditojava compiler that is used by the EJB-to-CORBA/Java Simpapp
sample application, you need to install Visual C++ version 6.0 with Service Pack 3 or
later for Visual Studio. Then3idltojava compiler is installed by the WebLogic
Enterprise software in thign directory undeTUXDIR.

Implementing the Bridge Object to Invoke a CORBA/Java
Object

ThesSimpleBridge Java object implements bridge design pattern. This object serves
as a bridge between tigimpBean EJB and the CORBA/Jawgimple object, and itis
created by th&impBean EJB.

ThesSimpleBridge Java object performs the following functions:

m Uses the Bootstrap object to obtain a reference to the WebLogic Enterprise
FactoryFinder, from which thsimpleBridge object can obtain a reference to
theSimpleFactory ~ object.

m Invokes theSimpleFactory ~ object to obtain a reference to tBenple object.

m Invokes the appropriate methods on Bimple object to satisfy th&impBean's
requests.

Listing 2-1 shows the methods on tBenpleBridge object that delegate the
SimpBean requests to the CORBA/Ja®mple object.

Listing 2-1 SimpleBridge Object Code

public class SimpleBridge
{

private Simple simple = null;
public SimpleBridge ()

{
simple = getSimple();

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-3

2 EJB-to-CORBA/Java Simpapp Sample Application

public String doUpper(String mixedStr)
{
/I Convert the string to upper case.
org.omg.CORBA.StringHolder upperStr =
new org.omg.CORBA.StringHolder(mixedStr);
simple.to_upper(uppersStr);

System.out.printin("in SimpleBridge.doUpper()");
return upperStr.value;

public String doLower(String mixedStr)
{
/I Convert the string to lower case.
String lowerStr = simple.to_lower(mixedStr);

System.out.printin("in SimpleBridge.doLower()");
return lowerStr;

public Simple getSimple()
{

try {
/I Obtain the bootstrap object,

/I the TOBJADDR property contains host and port to connect to.
Tobj_Bootstrap bootstrap = TP.bootstrap();

/Il Use the bootstrap object to find the factory finder.
org.omg.CORBA.Object fact_finder_oref =
bootstrap.resolve_initial_references("FactoryFinder");

/I Narrow the factory finder.
FactoryFinder fact_finder_ref =
FactoryFinderHelper.narrow(fact_finder_oref);

/I Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =

fact_finder_ref.find_one_factory by _id(SimpleFactoryHelper.id());
/I Narrow the simple factory.
SimpleFactory simple_factory ref =

SimpleFactoryHelper.narrow(simple_fact_oref);

/I Find the simple object.
Simple simple = simple_factory_ref.find_simple();

2-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-CORBA/Java Simpapp Sample Application Works

/I everything succeeded.
return simple;

/I catch the exceptions
return null;

The OMG IDL Code for the EJB-to-CORBA/Java Simpapp
Interfaces

The sample application described in this chapter implements the CORBA interfaces
listed in Table 2-1.

Table 2-1 Sample Application IDL Interfaces

Interface Description Operation Policies
SimpleFactory Createsobjectreferencesto 8ieple find_simple() Activation: method
object Transactionoptional
Simple Converts the case of a string to_upper() Activation: method
to_lower() Transactionoptional

Listing 2-2 shows thaimple.idl file that defines the CORBA interfaces in the
EJB-to-CORBA/Java Simpapp sample application.

Listing 2-2 OMG IDL Code for the EJB-to-CORBA/Java Simpapp Sample
Application

#pragma prefix "beasys.com"

interface Simple

{

/IConvert a string to lower case (return a new string)
string to_lower(in string val);

/IConvert a string to upper case (in place)
void to_upper(inout string val);

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-5

2 EJB-to-CORBA/Java Simpapp Sample Application

h
interface SimpleFactory

Simple find_simple();

Building and Running the
EJB-to-CORBA/Java Simpapp Sample
Application

To build and run the EJB-to-CORBA/Java Simpapp sample application, complete the
following steps:

1. Verify the environment variables.

2. Copy the files for the EJB-to-CORBA/Java Simpapp sample application into a
work directory.

3. Change the protection attribute on the files for the EJB-to-CORBA/Java Simpapp
sample application.

4. Execute theunme command.
The following sections describe these steps, and also explain the following:
m How to run the EJB-to-CORBA/Java Simpapp sample application

m Processes and files created by the EJB-to-CORBA/Java Simpapp sample
application

2-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

Verifying the Settings of the Environment Variables

Before building and running the EJB-to-CORBA/Java Simpapp sample application,
you need to ensure that certain environment variables are set on your system. In most
cases, these environment variables are set as part of the installation procedure.
However, you need to check the environment variables to ensure they reflect correct
information.

Table 2-2 lists the environment variables required to run the EJB-to-CORBA/Java
Simpapp sample application.

Table 2-2 Required Environment Variables for the EJB-to-CORBA/Java
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT
TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT
JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME-=/usr/local/JDK1.2.2

You may optionally set the following system environment variables to change their
default value prior to running the EJB-to-CORBA/Java Simpapp sample application
runme command. See theédministration Guiddor more information about selecting
appropriate values for these environment variables.

Table 2-3 lists the optional environment variables required to run the
EJB-to-CORBA/Java Simpapp sample application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-7

EJB-to-CORBA/Java Simpapp Sample Application

Table 2-3 Optional Environment Variables for the EJB-to-CORBA/Java
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used by

the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for

incoming requests; it must be a number between 0 and 65535.
The default value is 2468.

IPCKEY The address of shared memory; the address must be a number

greater than 32769 unique to this application on this system.
The default value is 55432.

Verifying the Environment Variables

To verify that the information for the environment variables defined during installation
is correct, complete the following steps:

Windows NT

1.
2.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

Check the settings fatuxbDIR and JAVA_HOME

2-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

UNIX
1. Enter theksh command to use the Korn shell.

2. Enter theprintenv. command to display the values DfXDIR andJAVA_HOME
as in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables
To change the environment variable settings, complete the following steps:
Windows NT
1. From the Start menu, select Settings.
2. From the Settings menu, select the Control Panel.
The Control Panel appears.
3. Click the System icon.
The System Properties window appears.
4. Click the Environment tab.
The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change or enter the name of the environment
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.
7. Click OK to save the changes.

UNIX

1. Enter theksh command to use the Korn shell.

2. Enter theexport command to set the correct values for théxDIR and
JAVA_HOMEeNnvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-9

2 EJB-to-CORBA/Java Simpapp Sample Application

Copying the Files for the Java Simpapp Sample
Application into a Work Directory

You need to copy the files for the EJB-to-CORBA/Java Simpapp sample application
into a work directory on your local machine. The files for the EJB-to-CORBA/Java
Simpapp sample application are located in the following directories under TUXDIR:

Windows NT
$TUXDIR\samples\interop\ejb_corbaj

UNIX
$TUXDIR/samples/interop/ejb_corbaj

The following steps describe how to execute a makefile to copy all the example files
into a work directory.

1. Create the work directory on your machine.

2. Copy the entirejb_corbaj directory to the work directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\ejb_corbaj*.* < work_directory >
UNIX

> cp -R $TUXDIR/samples/interop/ejb_corbaj/* < work_directory >

3. Change to the work directory created in step 1.

4. Enter the following command, which copies the remaining EJB-to-CORBA/Java
Simpapp sample application files to the work directory:

Windows NT
>nmake -f makefile.nt copy
UNIX

>make -f makefile.mk copy

2-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

Files in the Work Directory

This section lists and describes the files copied into your work directory after you have
completed the steps described in the previous section.

The EJB-to-CORBA/Java Simpapp sample application files exist in the following sets:
m EJB Simpapp files

m CORBA/Java Simpapp files

m EJB-to-CORBA/Java utility files

EJB Simpapp Files
Table 2-4 lists and describes the source files for the EJB portion of this sample

application. These are the files that exist after you executsmsiie command. These
files are copied into a subdirectory namshl .

Table 2-4 EJB Simpapp Files

File Description

ejb-jar.xml The standard deployment descriptor for the
SimpBean class.

weblogic-ejb-extensions.xml The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

SimpClient.java The EJB Simpapp client.

SimpBean.java The SimpBean class. This is an example of a

stateless session bean. This bean contains the
methods that invoke th®&mpleBridge class to
delegate the invocations on tBémple

CORBA/Java object.
Simp.java The Remote interface of tf&impBean class.
SimpHome.java The Home interface of thBimpBean class.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence?-11

2 EJB-to-CORBA/Java Simpapp Sample Application

CORBA/Java Simpapp files

Table 2-5 lists and describes the source files for the CORBA/Java portion of this
sample application. They are copied into a subdirectory nasordd;

Table 2-5 CORBA/Java Simpapp Files

File Description

Simple.idl The OMG IDL that declares th&impleFactory and
Simple interfaces.

Simple.xml The Server Description File for tigimple CORBA

object.

SimpleBridge.Java

The EJB-to-CORBA/Java Simpa@impleBridge

class. This class is used by tBenpBean class to
communicate with the CORBA/Ja&imple object.

This is the class that effects the interoperability between
the EJB and the CORBA/Java object.

Serverimpl.Java

The implementation of th8erver.initialize and
Server.release methods.

SimpleFactorylmpl.Java

The implementation of th8impleFactory ~ methods.

Simplelmpl.Java

The implementation of th8imple methods.

Utility Files

Table 2-6 lists and describes the utility files for this sample application.

Table 2-6 EJB-to-CORBA/Java Utility Files

File Description

Readme.txt Contains directions for building and executing the
EJB-to-CORBA/Java Simpapp sample application.

runme.cmd The Windows NT batch file that contains commands to

build and execute the EJB-to-CORBA/Java Simpapp
sample application.

2-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

Table 2-6 EJB-to-CORBA/Java Utility Files (Continued)

File Description

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the EJB-to-CORBA/Java Simpapp
sample application.

makefile.nt The common makefile for the EJB-to-CORBA/Java
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++nmake command. Thenakefile.nt file is
included by thesmakefile.nt file.

smakefile.nt The makefile for the EJB-to-CORBA/Java Simpapp
sample application to be used by Symantec's Visual Café
smake program.

makefile.mk The makefile for the EJB-to-CORBA/Java Simpapp
sample application on the UNIX platform.

Changing the Protection Attribute on the Files for the
EJB-to-CORBA/Java Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the
EJB-to-CORBA/Java Simpapp sample application, you need to change the protection
attribute of the files you copied into your work directory (including the respeeitve
andcorbaj subdirectories), as follows:

Windows NT
prompt>attrib /S -r drive:\workdirectory * *

UNIX
prompt>/bin/ksh
ksh prompt>chmod +w / workdirectory [*.*

On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-13

2 EJB-to-CORBA/Java Simpapp Sample Application

ksh prompt>chmod +x runme.ksh

Executing the runme Command

The runme command automates the following steps:

Sets the system environment variables

Loads theJBBCONFIdile

Compiles the code for the EJB server object

Compiles the code for the CORBA/Java server application
Starts the server application using tim@oot command

Starts the client application

N g~ w doPE

Stops the server application using thehutdown command

To build and run the EJB-to-CORBA Simpapp sample application, enteutie
command, as follows:

Windows NT
prompt>cd workdirectory

prompt>runme

UNIX
ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The EJB-to-CORBA/Java Simpapp sample application runs and prints the following
messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown

2-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

saved results
PASSED

All of the sample application output is placed in tlesults directory, which is
located in theejb_corbaj work directory. You can check in thesults directory
for the following files:

m Thelog file, for any compile, server boot, or server shutdown errors
m TheULOfile for server application errors and exceptions

m Theoutput file for EJB client application output and exceptions

Running the Sample Application

After you have executed thenme command, you can run the EJB-to-CORBA/Java
Simpapp sample application manually if you like.

To manually run the EJB-to-CORBA/Java Simpapp sample application:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh
2. Run the sample, as follows:

Windows NT

prompt>tmboot -y
prompt>java -classpath %CLIENTCLASSPATH% ejb.SimpClient corbaloc:%TOBJADDR%Y%

UNIX

prompt>tmboot -y
prompt>java -classpath ${CLIENTCLASSPATH} ejb.SimpClient corbaloc:${TOBJADDR}

3. The EJB-to-CORBA/Java Simpapp sample application prompts you to enter a
string. After you enter the string, the application returns the string in uppercase
and lowercase characters, respectively:

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-15

2 EJB-to-CORBA/Java Simpapp Sample Application

String?

Hello World
HELLO WORLD
hello world

All of the sample application outputis placed in tiesults ~ directory. You can check
in that directory for the following files:

m The.log file, for any compile, server boot, or server shutdown errors
m TheULOGle for server application errors and exceptions

m Theoutput file for EJB client application output and exceptions

Processes and Files Generated by the EJB-to-CORBA/Java
Simpapp Sample Application

This section lists and describes the processes started and the files generated by the
EJB-to-CORBA/Java Simpapp sample application.

Processes Started

When thetmboot command is executed to start the EJB-to-CORBA/Java Simpapp
sample application, the server processes in Table 2-7 are started:

Table 2-7 EJB-to-CORBA/Java Simpapp Server Processes

Process Description

TMSYSEVT The BEA Tuxedo system Event Broker.

2-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

Table 2-7 EJB-to-CORBA/Java Simpapp Server Processes (Continued)

Process Description

TMFENAME Starts the following TMFFNAME processes:

m The TMFFNAME server process with thR option and the
-M option is the MASTERNameManager service. TheN
option says to start the NameManager Service;kheption
says to start this name manager as a Master. This service
maintains a mapping of application-supplied names to object
references.

m The TMFFNAME server process with tAl option only is a
SLAVE NameManager service.

m The TMFFNAME server with theF option contains the
FactoryFinder object.

JavaServer The JavaServer process that deploy&itigBean EJB and
hosts the implementation of ttf&mpBridge CORBA object.
The JavaServer takes one argum8impleEjb.jar , which is
the module for th&SimpBean EJB.

JavaServer The JavaServer process which deploySithge CORBA
object (the deployment of this process also includes the
SimpleFactory factory for theSimple object). The
JavaServer takes one argumeSitnpleCorba.jar , which is
the module for th&Simple CORBA object.

ISL The IIOP Listener/Handler.

Files Generated in the corbaj Directory

Table 2-8 lists and describes the files that are generated iothg work directory.

Table 2-8 Files Generated in the corbaj Directory

File Description

Simple.java Generated by thm3idltojava command for
theSimple interface. This interface contains the
Java version of the IDL interface. It extends the
org.omg.CORBA.Object class.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-17

2 EJB-to-CORBA/Java Simpapp Sample Application

Table 2-8 Files Generated in the corbaj Directory (Continued)

File

Description

SimpleHelper.java

Generated by them3idltojava ~ command for
theSimple interface. This class provides
auxiliary functionality, notably the narrow
method.

SimpleHolder.java

Generated by them3idltojava ~ command for
theSimple interface. This class holds a public
instance member of typg@mple . It provides
operations foout andinout arguments, which
CORBA has, but which do not map easily to Java's
semantics.

_SimplelmplBase.java

Generated by them3idltojava ~ command for
theSimple interface. This abstract class is the
server skeleton. Itimplements tBemple.java
interface. The server claSsmplelmpl extends
_SimplelmplBase

_SimpleStub.java

Generated by them3idltojava ~ command for
theSimple interface. This class is the client stub.
It implements theSimple.java interface.

SimpleFactory.java
SimpleFactoryHelper.java
SimpleFactoryHolder.java
_SimpleFactorylmplBase.java
_SimpleFactoryStub.java

Generated by them3idltojava ~ command for
the SimpleFactory interface.

Simple.ser The server descriptor file that is generated by the
buildjavaserver command.
Simple.jar The Java ARchive (JAR) file that is generated by

thebuildjavaserver command.

2-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

Files Generated in the ejb_corbaj Directory

Table 2-9 lists and describes the files generated irjfheorbaj directory.

Table 2-9 Files Generated in the ejb_corbaj Directory

File Description
results directory Generated by theunme comand.
.adm/.keydb Generated by thenloadcf command. Contains

the security encryption key database.

Files Generated in the results Directory

Table 2-10 lists and describes the files that are generated iedhies directory,
which is a subdirectory of theb_corbaj work directory.

Table 2-10 Files Generated in the results Directory

File Description

input Generated by theinme command. Contains the input that
runme gives to theSimpleClient ~ Java application.

output Generated by theinme command. Contains the output that
is produced whenunme executes th&impleClient
Java application.

expected_output Generated by theinme command. Contains the output that
is expected when thgimpleClient ~ Java application is
executed by theunme command. The data in the output file
is compared with the data in tle&pected_output file to
determine whether the test passed or failed.

log Generated by theunme command. Contains the output
generated by theinme command. If theunme command
fails, check this file and thelLOGfile for errors.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-19

2

EJB-to-CORBA/Java Simpapp Sample Application

2-20

Table 2-10 Files Generated in the results Directory (Continued)

File

Description

setenv.cmd

Generated by the Windows Nfinme.cmd command.
Contains the commands to set the environment variables
needed to build and execute the EJB-to-CORBA/Java
Simpapp sample application.

setenv.ksh

Generated by the UNIXunme.ksh command. Contains
the commands to set the environment variables needed to
build and execute th8impapp sample.

stderr

Generated by themboot command, which is executed by
therunme command. If thenoredirect server option is
specified in thdUBBCONFIGile, the

System.err.printin method sends the output to the
stderr file instead of to the&JLOGuser log file.

stdout

Generated by themboot command, which is executed by
therunme command. If thenoredirec t server option is
specified in thdUBBCONFIGile, the

System.out.printin method sends the output to the
stdout file instead of to the&JLOGuser log file.

tmsysevt.dat

Generated by themboot command, which is executed by
therunme command. It contains filtering and notification
rules used by th# MSYSEVTsystem event reporting)
process.

tuxconfig Generated by themloadcf command, which is executed
by therunme command.
ubb TheUBBCONFIGile for the EJB-to-CORBA/Java Simpapp

sample application.

ULOG.<date >

A log file that contains messages generated bytritteoot
command. Ifthere are any compile or run-time errors, check
this file.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the EJB-to-CORBA/Java Simpapp Sample Application

Stopping the EJB-to-CORBA/Java Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
EJB-to-CORBA/Java Simpapp sample application and to remove unnecessary files
from the work directory.

1.

To stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

To restore the work directory to its original state:
Windows NT

prompt>nmake -f makefile.nt clean

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

If Symantec's Visual Café is installed on your system, you can use the
smakefile.nt file rather than thenakefile.nt file, which is intended for use
with the Visual C++nmake program. For example, execute the following
commands:

prompt>results\setenv
prompt>set JDKDIR=%JAVA_HOME%
prompt>smake -f smakefile.nt

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-21

2 EJB-to-CORBA/Java Simpapp Sample Application

2-22 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

3

CORBA/C++-to-EJB
Simpapp Sample
Application

This topic includes the following sections:

How the CORBA/C++-to-EJB Simpapp Sample Application Works

Software Prerequisites

The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces
Building and Running the CORBA/C++-to-EJB Simpapp Sample Application
Stopping the CORBA/C++-to-EJB Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterprise

software includes &eadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
CORBA/C++-to-EJB Simpapp sample application.

Windows NT
$TUXDIR\samples\interop\cpp_ejb

UNIX
$TUXDIR/samples/interop/cpp_ejb

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-1

3 CORBA/C++-to-EJB Simpapp Sample Application

How the CORBA/C++-to-EJB Simpapp
Sample Application Works

The CORBA/C++-to-EJB Simpapp sample application features the following:

m A CORBA/C++ client application.

m A CORBA/Java server application acting as a liaison between the C++ client
application and an EJB server. Contains $hapleimpl
Java object.

SimpleBridge

m An EJB server that provides the following two operations:

e One operation accepts a string from the client and converts the string to
uppercase letters.

e Another operation that accepts a string from the client and converts the string

to lowercase letters.

Figure 3-1 illustrates how the CORBA/C++-to-EJB Simpapp sample application

works.

Figure 3-1 CORBA/C++-to-EJB Simpapp Sample Application

CORBA/C++
Client

to_upper() —_|
to_lower() —__|

\:* doUpper()
™ doLower()

CORBA/Java Server
Server Client
Simplelmpl SimpleBridge
Java Object Java Object

EJB Server

SimpBean Home Interface

find_SimpBean()

A
g
s
@
/]
/

T~
T~

SimpBean Remote

Interface

to_upper()
to_lower()

3-2

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

object, and the

How the CORBA/C++-to-EJB Simpapp Sample Application Works

Software Prerequisites

To run them3idltojava compiler that is used by the CORBA/C++-to-EJB Simpapp
sample application, you need to install Visual C++ version 6.0 with Service Pack 3 or
later for Visual Studio. Then3idltojava compiler is installed by the WebLogic
Enterprise software in thign directory undeTUXDIR.

Implementing the Bridge Object to Invoke an EJB

TheSimpleBridge Java object serves as the intermediary between the CORBA/Java
server and the EJB server application. HepleBridge Java object is created by
theSimpleimpl Java object. ThaimpleBridge Java object performs the following
functions:

m Obtains the initial context for the EJB server application.
m Performs a lookup on the EJB Home interface.

m Invokes the appropriate methods on BimpBean class to satisfy the client
application requests.

Listing 3-1 shows the methods on tBenpleBridge object that delegate the
Simplelmpl object’s requests to the EJB server application:

Listing 3-1 SimpleBridge Object Implementation Code

public class SimpBridge {

public String doUpper(String mixedStr)
{
String upperStr = "
javax.naming.Context ctx = null;
SimpHome home = null;

try { _
/I create connection
ctx = getContext();

/I look up home object

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-3

3 CORBA/C++-to-EJB Simpapp Sample Application

home = (SimpHome) ctx.lookup("ejb.SimpHome");

/I create the object and use it

Simp simp = home.create();

upperStr = simp.upper(mixedsStr);
} /I catch exceptions

}

return upperStr;

public String doLower(String mixedStr)

String lowerStr = "
javax.naming.Context ctx = null;
SimpHome home = null;

try {
/I create connection
ctx = getContext();

/I look up home object
home = (SimpHome) ctx.lookup("ejb.SimpHome");

/I create the object and use it

Simp simp = home.create();

lowerStr = simp.lower(mixedStr);
} /I catch exceptions

}

return lowerStr;

public static Context getContext()

{

Context context = null;

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.beasys.jndi.WLElInitialContextFactory");

env.put(Context. SECURITY_AUTHENTICATION, "none");

try {
context = new InitialContext(env);

} catch (NamingException ee) {
System.out.printin("getContext failed: " + ee);
ee.printStackTrace();

3-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces

}

return context;

}
}

The OMG IDL Code for the
CORBA/C++-to-EJB Simpapp Interfaces

The C++ and Java objects in the sample application described in this chapter
implement the CORBA interfaces listed in Table 3-1.

Table 3-1 Sample Application IDL Interfaces

Interface Description Operation Policies

SimpleFactory Createsobjectreferencesto 8ieple find_simple() Activation: method
object. Transactionoptional

Simple Delegates the conversion of the string tato_upper() Activation: method
the EJB server. to_lower() Transactionoptional

Listing 3-2 shows thaimple.idl file that defines the CORBA interfaces in the
CORBA/C++-to-EJB Simpapp sample application.

Listing 3-2 OMG IDL Code for the CORBA/C++-to-EJB Simpapp Sample
Application

#pragma prefix "beasys.com"
interface Simple

{

/IConvert a string to lower case (return a new string)
string to_lower(in string val);

/IConvert a string to upper case (in place)

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-5

3 CORBA/C++-to-EJB Simpapp Sample Application

void to_upper(inout string val);

h
interface SimpleFactory

Simple find_simple();

Building and Running the
CORBA/C++-to-EJB Simpapp Sample
Application

To build and run the CORBA/C++-to-EJB Simpapp sample application, complete the
following steps:

1. Verify the environment variables.

2. Copy the files for the CORBA/C++-to-EJB Simpapp sample application into a
work directory.

3. Change the protection attribute on the files for the CORBA/C++-to-EJB Simpapp
sample application.

4. Execute theunme command.
The following sections describe these steps, and also explain the following:
m How to run the CORBA/C++-to-EJB Simpapp sample application

m Processes and files generated by the CORBA/C++-to-EJB Simpapp sample
application

3-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

Verifying the Settings of the Environment Variables

Before building and running the CORBA/C++-to-EJB Simpapp sample application,
you need to ensure that certain environment variables are set on your system. In most
cases, these environment variables are set as part of the installation procedure.
However, you need to check the environment variables to ensure they reflect correct
information.

Table 3-2 lists the environment variables required to run the CORBA/C++-to-EJB
Simpapp sample application.

Table 3-2 Required Environment Variables for the CORBA/C++-to-EJB
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT
TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT
JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME-=/usr/local/JDK1.2.2

You may optionally set the following system environment variables to change their
default value prior to running the CORBA/C++-to-EJB Simpapp sampiee
command. See thedministration Guiddor more information about selecting
appropriate values for these environment variables.

Table 3-3 lists the optional environment variables you can assign prior to running the
CORBA/C++-to-EJB Simpapp sample application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-7

3 CORBA/C++-to-EJB Simpapp Sample Application

Table 3-3 Optional Environment Variables for the CORBA/C++-to-EJB
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used by
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests; it must be a number between 0 and 65535.
The default value is 2468.

IPCKEY The address of shared memory; it must be a number greater
than 32769 unique to this application on this system. The
default value is 55432.

Verifying the Environment Variables

To verify that the information for the environment variables defined during installation
is correct, complete the following steps:

Windows NT
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.
5. Check the settings faruUxDIR andJAVA_HOME
UNIX

1. Enter theksh command to use the Korn shell.

3-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

2.

Enter theprintenv. command to display the values DfXDIR andJAVA_HOME
as in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables

To change the environment variable settings, complete the following steps:

Windows NT

1.
2.

6.
7.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

The Environment page appears.

On the Environment page in the System Properties window, click the
environment variable you want to change or enter the name of the environment
variable in the Variable field.

Enter the correct information for the environment variable in the Value field.

Click OK to save the changes.

UNIX

1.
2.

Enter theksh command to use the Korn shell.

Enter theexport command to set the correct values for te&XDIR and
JAVA_HOMEeNnvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-9

3 CORBA/C++-to-EJB Simpapp Sample Application

Copying the Files for the CORBA/C++-to-EJB Simpapp
Sample Application into a Work Directory

You need to copy the files for the CORBA/C++-to-EJB Simpapp sample application
into a work directory on your local machine. The files for the CORBA/C++-to-EJB
Simpapp sample application are located in the following directories.

Windows NT
$TUXDIR\samples\interop\cpp_ejb

UNIX
$TUXDIR/samples/interop/cpp_ejb

The following steps describe how to execute a makefile to copy all the example files
into a work directory.

1. Create the work directory on your machine.

2. Copy the entirepp_ejb directory to the work directory created in the previous

step:
Windows NT

> copy $TUXDIR\samples\interop\cpp_ejb*.* < work_directory >
UNIX

> cp -R $TUXDIR/samples/interop/cpp_ejb/* < work_directory >

3. Change to the work directory created in step 1.

4. Enter the following command, which copies the remaining EJB-to-CORBA/Java
Simpapp sample application files to the work directory:

Windows NT
>nmake -f makefile.nt copy
UNIX

>make -f makefile.mk copy

3-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

Files in the Work Directory

This section lists and describes the files copied into your work directory after you have
completed the steps described in the previous section.

The CORBA/C++-t0-EJB Simpapp sample application files existin the following sets:
m CORBA C++ and Java source files
m EJB source files

m CORBA/C++-to-EJB Simpapp utility files

CORBA/C++ (Client Files

Table 3-4 lists and describes the files needed to create the CORBA/C++ client. Also
included are the files needed to create the CORBA/Java server that acts as a bridge for
the CORBA/C++-to-EJB Simpapp sample application. These files are located in the
cpp subdirectory.

Table 3-4 CORBA C++ and Java Files for the CORBA/C++-to-EJB Simpapp
Sample Application

File Description

simplec.cpp C++ client program for theimple sample
application.

simple.idl The OMG IDL that declares th&impleFactory and

Simple interfaces.

simple.xml The XML source file used to associate activation and
transaction policy values with interfaces.

Serverimpl.Java The Java source code that implements the
Server.initialize andServer.release
methods.

SimpleFactorylmpl.Java The Java source code that implements the

SimpleFactory methods.

Simplelmpl.Java The Java source code that implementsSimaple
methods.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-11

3 CORBA/C++-to-EJB Simpapp Sample Application

EJB Server Files

Table 3-5 lists and describes the files needed to create the EJB server for the
CORBA/C++-to-EJB Simpapp sample application. These files are located #jbthe

subdirectory.

Table 3-5 EJB Source Files for the CORBA/C++-to-EJB Simpapp Sample

Application

File

Description

weblogic-ejb-extensions. XML

The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

SimpBean.java

The Java source code for tBémpBean class.
This is an example of a stateless session bean.
This bean contains the methods invoked by the
SimpleBridge class.

Simp.java

The Java source code for the Remote interface
of the SimpBean class.

SimpHome java

The Java source code for the Home interface of
the SimpBean class.

SimpleBridge.java

The Java source code for tBémpleBridge

class. This class is used by tBenmplelmpl

class to communicate with the EJB server. This
is the class that effects the interoperability
between the CORBA/C++ object and the EJB
server.

Utility Files

3-12

Table 3-6 lists and describes the utility files for this sample application.

Table 3-6 CORBA/C++-to-EJB Simpapp Utility Files

File

Description

Readme.txt

Contains directions for building and executing the
CORBA/C++-to-EJB Simpapp sample application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

Table 3-6 CORBA/C++-to-EJB Simpapp Utility Files (Continued)

File Description

runme.cmd The Windows NT batch file that contains commands to
build and execute the CORBA/C++-to-EJB Simpapp
sample application.

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the CORBA/C++-to-EJB Simpapp
sample application.

makefile.nt The common makefile for the CORBA/C++-to-EJB
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++nmake command. Thenakefile.nt file is
included by thesmakefile.nt file.

smakefile.nt The makefile for the CORBA/C++-to-EJB Simpapp
sample application to be used by Symantec's Visual Café
smake program.

makefile.mk The makefile for the CORBA/C++-to-EJB Simpappp
sample application on the UNIX platform.

Changing the Protection Attribute on the Files for the
CORBA/C++-to-EJB Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the
CORBA/C++-to-EJB Simpapp sample application, you need to change the protection
attribute of the files you copied into your work directory (including the respeeitve
andcorbaj subdirectories), as follows:

Windows NT
prompt>attrib /S -r drive:\workdirectory * *

UNIX

prompt>/bin/ksh
ksh prompt>chmod +w / workdirectory [*.*

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-13

3 CORBA/C++-to-EJB Simpapp Sample Application

On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Executing the runme Command

The runme command automates the following steps:

Sets the system environment variables

Loads theJBBCONFIdile

Compiles the code for the EJB server object

Compiles the code for the CORBA/C++ joint client/server application
Compiles the code for the CORBA/Java server application

Starts the server application using ti@oot command

Starts the client application

© N o o0 A~ w N PF

Stops the server application using thahutdown command

To build and run the CORBA/Java Simpapp sample application, entearthe
command, as follows:

Windows NT

prompt>cd workdirectory
prompt>runme

UNIX

ksh prompt>cd workdirectory
ksh prompt>./runme.ksh

The CORBA/C++-to-EJB Simpapp sample application runs and prints the following
messages:

Testing simpapp

cleaned up
prepared

3-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

built

loaded ubb

booted

ran

shutdown

saved results
PASSED

All of the sample application outputis placed in teeults ~ directory. You can check
in that directory for the following files:

m The.log file, for any compile, server boot, or server shutdown errors
m TheULOdfile for server application errors and exceptions

m Theoutput file for EJB client application output and exceptions

Running the Sample Application

After you have executed threnme command, you can run the CORBA/C++-to-EJB
Simpapp sample application manually, if you like.

To manually run the CORBA/C++-to-EJB Simpapp sample application:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh
2. Run the sample:

Windows NT

prompt>tmboot -y
prompt>java -DTOBJADDR=%TOBJADDR% SimpleClient

UNIX

prompt>tmboot -y
prompt>java -DTOBJADDR=$TOBJADDR SimpleClient

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-15

3 CORBA/C++-to-EJB Simpapp Sample Application

3. Torunthe CORBA/C++ joint client/server application, enter a string. After you
enter the string, the application returns the string in uppercase and lowercase
characters, respectively:

String?

Hello World
HELLO WORLD
hello world

All of the sample application outputis placed in tiesults ~ directory. You can check
in that directory for the following files:

m The.log file, for any compile, server boot, or server shutdown errors
m TheULOGle for server application errors and exceptions

m Theoutput file for EJB client application output and exceptions

Processes and Files Generated by the CORBA/C++-to-EJB
Simpapp Sample Application

This section lists and describes the processes started and the files generated by the
CORBA/C++-to-EJB Simpapp sample application.

Processes Started

When thetmboot command is executed to start the CORBA/C++-to-EJB Simpapp
sample application, the server processes in Table 3-7 are started:

Table 3-7 CORBA/C++-to-EJB Simpapp Server Processes

Process Description

TMSYSEVT The BEA Tuxedo system Event Broker.

3-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

Table 3-7 CORBA/C++-to-EJB Simpapp Server Processes (Continued)

Process Description

TMFENAME Starts the following TMFFNAME processes:

m The TMFFNAME server process with th option and
the-M option isthe MASTERNameManager service. The
-N option says to start the NameManager Service:the
option says to start this name manager as a Master. This
service maintains a mapping of application-supplied names
to object references.

m The TMFFNAME server process with th option only
is a SLAVE NameManager service.

m The TMFFNAME server with theF option contains the
FactoryFinder object.

JavaServer The Simpapp server process that implements EJB JAR file for
theSimpBean andSimpHomeinterfaces. The JavaServer has
one argumentSimpleEjb.jar , which is the EJB Java
ARchive (JAR) file that was created for the application.

JavaServer The Simpapp server process that implements the
SimpleFactory interface and th&imple interface. The
JavaServer has one argumesitmpleCorba.jar , which is
the CORBA Java ARchive (JAR) file that was created for the
application.

ISL The IIOP Listener/Handler.

Files Generated in the cpp Directory

Table 3-8 lists and describes the files generated ircphedirectory.

Table 3-8 Files Generated in the cpp Directory

File Description

Simple_c.cpp Client stubs for th&imple and
SimpleFactory interfaces.

Simple_c.h Client stub header for th&imple and
SimpleFactory interfaces.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-17

3 CORBA/C++-to-EJB Simpapp Sample Application

Table 3-8 Files Generated in the cpp Directory (Continued)

File

Description

Simple_client.exe

C++ client executable.

Simple.java

Generated by thm3idltojava command for
theSimple interface. This interface contains
the Java version of the IDL interface. It extends
the base classrg.omg.CORBA.Object

SimpleHelper.java

Generated by thm3idltojava command for
theSimple interface. This class provides
auxiliary functionality, notably th@arrow
method.

SimpleHolder.java

Generated by thm3idltojava command for
theSimple interface. This class holds a public
instance member of typ@imple . It provides
operations foout andinout arguments,
which CORBA has, but which do not map
easily to Java's semantics.

_SimplelmplBase.java

Generated by thm3idltojava command for
theSimple interface. This abstract class is the
server skeleton. Itimplements the

Simple.java interface. The server class
Simplelmpl extends SimplelmplBase

_SimpleStub.java

Generated by thm3idltojava command for
theSimple interface. This class is the client
stub. It implements th&imple.java

interface.

SimpleFactory.java
SimpleFactoryHelper.java
SimpleFactoryHolder.java
_SimpleFactorylmplBase.java
_SimpleFactoryStub.java

Generated by thm3idltojava command for
the SimpleFactory interface.

Simple.ser

The server descriptor file that is generated by
the buildjavaserver command.

Simple.jar

The Java ARchive (JAR) file that is generated
by thebuildjavaserver command.

3-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

File Generated in the cpp_ejb Directory

Table 3-9lists and described the files generated ircpipeejb directory.

Table 3-9 Files Generated in the cpp_ejb Directory

File Description

results directory Generated by thenme command.

.adm/.keydb Generated by themloadcf command. Contains the security
encryption key database.

Files Generated in the results Directory

Table 3-10 lists and describes the files that are generated iedhies directory,
which is a subdirectory of theorbaj work directory.

Table 3-10 Files Generated in the results Directory

File Description

input Generated by theunme command. Contains the input that
runme gives to theSimpleClient ~ Java application.

output Generated by theinme command. Contains the output that is
produced whemunme executes th&impleClient Java
application.

expected_output Generated by theinme command. Contains the output that is

expected when th8impleClient ~ Java application is
executed by theunme command. The data in theitput file
is compared with the data in thexpected_output file to
determine whether the test passed or failed.

log Generated by theunme command. Contains the output
generated by theunme command. If theunme command
fails, check this file, and thelLOile, for errors.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-19

3 CORBA/C++-to-EJB Simpapp Sample Application

Table 3-10 Files Generated in the results Directory (Continued)

File Description

setenv.cmd Generated by the Windows Nlinme.cmd command.
Contains the commands to set the environment variables
needed to build and execute the CORBA/C++-to-EJB Simpapp
sample application.

setenv.ksh Generated by the UNIXunme.ksh command. Contains the
commands to set the environment variables needed to build and
execute the&Simpapp sample application.

stderr Generated by thenboot command, which is executed by the
runme command. If thenoredirect server option is
specified in thdJBBCONFIGile, the
System.err.printin method sends the outputdtmerr
instead of to theJLOQuser log file.

stdout Generated by thenboot command, which is executed by the
runme command. If thenoredirec t server option is
specified in thdJBBCONFIGile, the
System.out.println method sends the output to the
stdout file instead of to th&JLOGuser log file.

tmsysevt.dat Generated by thenboot command, which is executed by the
runme command. It contains filtering and notification rules
used by theTMSYSEVTsystem event reporting) process.

tuxconfig Generated by thenloadcf command, which is executed by
therunme command.

ubb The UBBCONFIGile for the CORBA/C++-to-EJB
Simpappsample application.

ULOG.<date > A log file that contains messages generated bytrtitgoot
command.

3-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the CORBA/C++-to-EJB Simpapp Sample Application

Stopping the CORBA/C++-to-EJB Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
CORBA/C++-to-EJB Simpapp sample application and to remove unnecessary files
from the work directory:

1.

To stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

To restore the work directory to its original state:
Windows NT

prompt>nmake -f makefile.nt clean

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

If Symantec's Visual Café is installed on your system, you can use the
smakefile.nt file rather than thenakefile.nt file, which is intended for use
with the Visual C++nmake program. For example, execute the following
commands:

prompt>results\setenv
prompt>set JDKDIR=%JAVA_HOME%
prompt>smake -f smakefile.nt

CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-21

3 CORBA/C++-to-EJB Simpapp Sample Application

3-22 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

A

CORBA/Java-to-Tuxedo
Simpapp Sample
Application

This topic includes the following sections:
m How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

m Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample
Application

m Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterprise
software includes &eadme.txt file that explains how to build and run the

sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
CORBA/Java-to-Tuxedo sample application:

Window NT
$TUXDIR\samples\interop\corbaj_tux

UNIX
$TUXDIR/samples/interop/corbaj_tux

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-1

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

How the CORBA/Java-to-Tuxedo Simpapp
Sample Application Works

This topic includes the following sections:

m Key Application Components

m Application Flow

m OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces
m Software Prerequisites

m Example Code

The CORBA/Java-to-Tuxedo Simpapp sample application demonstrates the use of
Java Enterprise Tuxedo (JET) technology to invoke a Tuxedo service from a
CORBA/Java server running in the WebLogic Enterprise domain. For more
information about JET, sedsing Java Enterprise Tuxedo

Key Application Components

4-2

The CORBA/Java-to-Tuxedo Simpapp sample application consists of the following
components:

m A CORBA/Java client§impleClient) prompts the user for a string and then
invokes methods on the CORBA/Java serwenipper andto_lower |, to
convert the string to all uppercase and all lowercase text, respectively. This
client then displays the results of the conversion to the user.

m A CORBA/Java server objecsimplelmpl) acts as the bridge between the
WebLogic Enterprise and Tuxedo environments. This object provides the
following methods to handle the conversion:

e Theto_upper method calls another methgditNativeCall , Which
instantiates doltService object and uses thall method to invoke the
TOUPPER service in the Tuxedo environment. ThigService classis a
component of the JET Class Library.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

e Theto_lower method uses the JawslLowerCase method to perform the
lowercase conversion.

m The TOUPPER service in the Tuxedo environment, which converts a text string
to all uppercase characters.

Application Flow

Figure 4-1 illustrates how the CORBA/Java-to-Tuxedo Simpapp sample application
works.

Figure 4-1 Overview of CORBA/Java-to-Tuxedo Simpapp Sample Application

WLE Environment

CORBA/Java Client CORBA/Java Server Tuxedo
(SimpleClient)
Simplelmpl
Java Object

A4

JET
Get String to_upper() < > T(S)grl\:/ti):ER
Display Results to_lower()

<

OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp
Interfaces

Table 4-1 describes the CORBA interfaces that are implemented in the
CORBA/Java-to-Tuxedo Simpapp application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-3

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Table 4-1 CORBA Interfaces Implemented in CORBA/Java-to-Tuxedo Simpapp Application

Interface Description Operation Policies
SimpleFactory Creates object references to the Simpldind_simple() Activation: method
object Transactionoptional
Simple Converts the case of a string to_upper() Activation: method
to_lower() Transactionoptional

Listing 4-1 shows theimple.idl file that defines the CORBA interfaces in the
CORBA/Java-to-Tuxedo Simpapp sample application.

Listing 4-1 OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Sample
Application

#pragma prefix "beasys.com”
interface Simple

{
/I convert a string to lower case (return a new string)
string to_lower(in string val);
/I convert a string to upper case (in place)
void to_upper(inout string val);
h
interface SimpleFactory
{
Simple find_simple();
/I To make simpapp scalable have the SimpleFactory use some means
/I to identify (specify in criteria) the user in the Simple object
/I reference it creates. eg. Name (string), SS# (unsigned long),
/I tel_no (string).
h

4-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

Software Prerequisites

To run them3iditojava compiler that is used by the CORBA/Java-to-Tuxedo
Simpapp sample application, you need to install Visual C++ version 6.0 with Service
Pack 3 or later for Visual Studio. Theidltojava compiler is installed by the
WebLogic Enterprise software in thén directory undemUXDIR.

Example Code

Listing 4-2 shows thépltNativeCall method from the Simpleimpl CORBA/Java
server in the CORBA/Java-to-Tuxedo Simpapp sample application. This method uses
JET technology to invoke the TOUPPER service in the Tuxedo environment. It accepts
the following parameters:

m svcName is the name of the Tuxedo service to invoke (TOUPPER).

m data is the string that the user entered in the SimpleClient CORBA/Java client.

Listing 4-2 The joltNativeCall() Method in the Simplelmpl CORBA/Java Server

String joltNativeCall (String svcName, org.omg.CORBA.StringHolder
data)
{

JoltService svc;

try {
svc = new JoltService (svcName);
svc.addString("STRING", data.value);
svc.call (null);

} catch (ServiceException ee) {
System.out.printin("JoltService got " + ee);
return new String("");

}

return svc.getStringDef("STRING", "no_response”);

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-5

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

ThejoltNativeCall() method performs the following operations:

m Instantiating a newoltService object to represent the Tuxedo TOUPPER
service. TheloltService class is part of the JET Class Library. For more
information about the JET Class Library, désing Java Enterprise Tuxedo

m Calling theaddstring method on th&oltService object to set up the input
parameters to the TOUPPER service: the conversion tgi&R(NG”) and the
string to convertdata).

m Calling thecall method to invoke the TOUPPER service.

m Returning the results to the calling methaeal,upper , in the Simplelmpl
CORBA/Java server object.

Building and Running the
CORBA/Java-to-Tuxedo Simpapp Sample
Application

To build and run the CORBA/Java-to-Tuxedo Simpapp sample application, complete
the following steps:

m Step 1: Verify the Settings of Environment Variables
m Step 2: Copy the Files into a Work Directory
m Step 3: Change the Protection Attribute on the Files

m Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application

4-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

Step 1: Verify the Settings of Environment Variables

Before building and running the CORBA/Java-to-Tuxedo Simpapp sample
application, you need to ensure that certain environment variables are set on your
system. In most cases, these environment variables are set as part of the installation
procedure. However, you need to check the environment variables to ensure that they
reflect correct information.

Required Environment Variables

Table 4-2 describes the environment variables that are required to run the
CORBA/Java-to-Tuxedo Simpapp sample application.

Table 4-2 Required Environment Variables for the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT
TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT
JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME-=/usr/local/JDK1.2.2

Optional Environment Variables

You may optionally set the following system environment variables to change their
default value before running the CORBA/Java-to-Tuxedo Simpapp sample application
runme command. See thedministration Guiddor more information about selecting
appropriate values for these environment variables.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-7

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Table 4-3 describes the optional environment variables that you can set before runnin
the CORBA/Java-to-Tuxedo Simpapp sample application.

Table 4-3 Optional Environment Variables for the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used by
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests. It must be a number between 0 and 65535.
The default value is 2468.

IPCKEY The address of shared memory. The address must be a number
greater than 32769 that is unique to this application on this
system. The default value is 55432.

Verifying the Environment Variables

To verify that the information for the environment variables defined during installation
is correct, complete the following steps:

Windows NT
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings faruUxDIR andJAVA_HOME

4-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

UNIX
1. Execute thé&sh command to use the Korn shell.

2. Execute therintenv command to display the values DfXDIR and
JAVA_HOMEas shown in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables
To change the environment variable settings, complete the following steps:
Windows NT
1. From the Start menu, select Settings.
2. From the Settings menu, select the Control Panel.
The Control Panel appears.
3. Click the System icon.
The System Properties window appears.
4. Click the Environment tab.
The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change, or enter the name of the environment
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.
7. Click OK to save the changes.

UNIX

1. Execute th&sh command to use the Korn shell.

2. Execute thexport command to set the correct values for thexDIR and
JAVA_HOMEeNnvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-9

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Step 2: Copy the Files into a Work Directory

You need to copy the files for the CORBA/Java-to-Tuxedo Simpapp sample
application into a work directory on your local machine. The files for the
CORBA/Java-to-Tuxedo Simpapp sample application are located in the following
directories undeTUXDIR:

Windows NT

$TUXDIR\samples\interop\corbaj_tux

UNIX

$TUXDIR/samples/interop/corbaj_tux

Copying the Files

The following steps describe how to execute a makefile to copy all of the example files
into a work directory.

1.
2.

o o &~ W

Create the work directory on your machine.

Copy the entireorbaj_tux directory to the working directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\corbaj_tux*.* < work_directory >
UNIX

> cp -R $TUXDIR/samples/interop/corbaj_tux/* < work_directory >

Change to the working directory created in step 1.
For UNIX, start &sh .
Change the permissions on all the files to give them read-access.

Verify that the following command is in your search path:
Windows NT

nmake

UNIX

make

4-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

7. Execute the following command, which copies the remaining
CORBA/Java-to-Tuxedo Simpapp sample application files to the working
directory:

Windows NT
>nmake -f makefile.nt copy
UNIX

>make -f makefile.mk copy

Files Copied to the Working Directory

This section describes the directories and files that were copied into your working
directory when you executed the makefile.

Utility Files

Table 4-4 describes the utility files for this sample application. These files reside in the
root of the working directory.

Table 4-4 Utility Files in the Root of the Working Directory

File Description

Readme.txt Contains directions for building and executing the
CORBA/Java-to-Tuxedo Simpapp sample application.

runme.cmd The Windows NT batch file that contains commands to
build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

makefile.nt The common makefile for the CORBA/Java-to-Tuxedo
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++nmake command.

makefile.mk The makefile for the CORBA/Java-to-Tuxedo Simpapp
sample application on the UNIX platform.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencet-11

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

CORBA/Java Client and Server Files

Table 4-5 describes the source files for the CORBA/Java client and server portions o
this sample application. These files reside in¢heaj subdirectory of the working
directory.

Table 4-5 CORBA/Java Client and Server Files in the corbaj Subdirectory

File Description
SimpleClient.java CORBA/Java client application.
Simple.idl The OMG IDL that declares th&impleFactory and

Simple interfaces.

Simple.xml The Server Description File for ti@mple
CORBA/Java server object.

SimpleFactorylmpl.Java The implementation of th8impleFactory methods.

Simplelmpl.Java The implementation of th8imple methods. lllustrates
the interoperability between the CORBA/Java server and
the Tuxedo server by providing the bridge between them.

Serverimpl.Java The implementation of th8erver.initialize and
Server.release methods.

Tuxedo Files

Table 4-6 describes the source files for the Tuxedo portion of this sample application.
These files reside in thex subdirectory of the working directory.

Table 4-6 Tuxedo Files in the tux Subdirectory

File Description
jrepository Jolt Repository definition file.
simpserv.c Simpapp server source code.

4-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

Step 3: Change the Protection Attribute on the Files

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the
CORBA/Java-to-Tuxedo Simpapp sample application, you need to change the
protection attribute of the files you copied into your work directory (including the
respectiveejp andcorbaj subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory * *

UNIX
prompt>/bin/ksh

ksh prompt>chmod +w / workdirectory [*.*

On UNIX, you also need to change the permissiornuafne.ksh to give execute
permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample
Application
Once you have copied the files and changed their protection attributes, you can build
and run the CORBA/Java-to-Tuxedo Simpapp sample application by executing the
runme command, which starts server processes, generates files in various
subdirectories of the working directory, and starts the sample application.
Executing the runme Command
Therunme command automates the following steps:
1. Setthe system environment variables.
2. Load theUBBCONFIdile.

3. Compile the code for the CORBA/Java Server application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-13

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Compile the code for the Jet Server application.
Start the server application using theoot command.

Start the client application.

N g &

Stop the server application using thehutdown command.

To build and run the EJB-to-CORBA Simpapp sample application, executertie
command, as follows:

Windows NT

prompt>cd workdirectory
prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The CORBA/Java-to-Tuxedo Simpapp sample application runs and prints the
following messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

All of the sample application output is placed in tleeults directory, which is
located in theorbaj tux working directory. You can check in thesults ~ directory
for the following files:

m Thelog file, for any compile, server boot, or server shutdown errors.
m TheULOGle for server application errors and exceptions.

m Theoutput file for CORBA/Java client application output and exceptions.

4-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

Running the Sample Application Manually

After you have executed thanme command one time, you can subsequently run the
CORBA/Java-to-Tuxedo Simpapp sample application manually.

To run the CORBA/Java-to-Tuxedo Simpapp sample application manually:

1.

Verify that your environment variables are correct by entering the following
command:

Windows NT
prompt>results\setenv
UNIX

prompt>. results/setenv.ksh
Run the sample, as follows:
Windows NT

prompt>tmboot -y
prompt>java -DTOBJADDR=%TOBJADDR% -classpath %CLIENTCLASSPATH%
SimpleClient

UNIX

prompt>tmboot -y
prompt>java -DTOBJADDR=${TOBJADDR} -classpath
${CLIENTCLASSPATH} SimpleClient

The CORBA/Java-to-Tuxedo Simpapp sample application prompts you to enter a
string. After you enter the string, the application returns the string in uppercase
and lowercase characters, respectively:

String?

Hello World
HELLO WORLD
hello world

All of the sample application outputis placed in tesults ~ directory. You can check
in that directory for the following files:

The.log file, for any compile, server boot, or server shutdown errors.
The ULOGfile for server application errors and exceptions.

Theoutput file for CORBA/Java client application output and exceptions.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-15

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Server Processes Started by the Sample Application

Table 4-7 describes the server processes that are started whebdbe command is
executed to start the CORBA/Java-to-Tuxedo Simpapp sample application.

Table 4-7 Server Processes Started When tmboot Is Executed

Process Description
TMSYSEVT BEA Tuxedo system Event Broker.
TMFFENAME Starts the following TMFFNAME processes:

m The TMFFNAME server process with thl option and the
-M option is the MASTERNameManager service.
The-N option says to start the NameManager Service.
The-M option says to start this name manager as a Master.
This service maintains a mapping of application-supplied
names to object references.

m The TMFFNAME server process with thid option only is
a SLAVE NameManager service.

m The TMFFNAME server with theF option contains the
FactoryFinder object.

JavaServer JavaServer process that deploys 8iaple CORBA/Java
object (the deployment of this process also includes the
SimpleFactory factory for theSimple object). The
JavaServer takes one argumeitmple.jar , which is the
module for theSimple CORBA/Java server object.

JREPSVR Jolt Repository Server, which manages the Jolt Repository.
The Jolt Repository contains service definitions for BEA
Tuxedo services.

ISL IIOP Listener/Handler.

Files Generated by the Sample Application

This section describes the files that are generated in various subdirectories of the
working directory.

4-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

File Generated in the .adm Subdirectory

Table 4-8 describes the file that is generated in.éden subdirectory.

Table 4-8 File in the .adm Subdirectory

File Description

.keydb Generated by themloadcf command.
Contains the security encryption key database.

Files Generated in the corbaj Subdirectory

Table 4-9 describes the files that are generated irdh®j subdirectory.

Table 4-9 Files Generated in the corbaj Subdirectory

File Description

Simple.java Generated by thm3idltojava command for
theSimple interface. This interface contains the
Java version of the IDL interface. It extends the
org.omg.CORBA.Object class.

SimpleHelper.java Generated by thm3idltojava command for
theSimple interface. This class provides
auxiliary functionality, notably th@arrow
method.

SimpleHolder.java Generated by thm3idltojava command for
the Simple interface. This class holds a public
instance member of typ@imple . It provides
operations foout andinout arguments, which
CORBA has, but which do not map easily to Java's
semantics.

_SimplelmplBase.java Generated by thm3idltojava command for
theSimple interface. This abstract class is the
server skeleton. Itimplements tBample.java
interface. The server clagmplelmpl extends
_SimplelmplBase

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-17

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Table 4-9 Files Generated in the corbaj Subdirectory (Continued)

File Description

_SimpleStub.java Generated by them3idltojava ~ command for
theSimple interface. This class is the client stub.
It implements theSimple.java interface.

SimpleFactory.java Generated by them3idltojava ~ command for
SimpleFactoryHelper.java the SimpleFactory interface.
SimpleFactoryHolder.java

_SimpleFactorylmplBase.java

_SimpleFactoryStub.java

Simple.ser The server descriptor file that is generated by the
buildjavaserver command.

Simple.jar The CORBA/Java server archive file that is
generated by thkuildjavaserver command.

SimpleClient.jar The CORBA/Java client archive file that is

generated by thmake or nmake command.

Files Generated in the tux Subdirectory

Table 4-10 describes the files that are generated imnthesubdirectory.

Table 4-10 File Generated in the tux Subdirectory

simpserv.exe Simpapp server object file that is generated by the
buildserver command.

simpserv.obj Simpapp server object file.

Files Generated in the results Subdirectory

Table 4-11 describes the files that are generated imetuits subdirectory.

4-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

Table 4-11 Files Generated in the results Subdirectory

File Description

input Generated by theunme command. Contains the input that
runme gives to theSimpleClient ~ CORBA/Java application.

output Generated by theunme command. Contains the output that is

produced whemunme executes th&impleClient
CORBA/Java application.

expected_output

Generated by theunme command. Contains the output that is
expected when th8impleClient =~ CORBA/Java application
is executed by theunme command. The data in the output file
is compared with the data in thexpected_output file to
determine whether the test passed or failed.

log

Generated by theunme command. Contains the output
generated by theunme command. If theunme command
fails, check this file and the)LOGile for errors.

setenv.cmd

Generated by the Windows Niinme.cmd command.

Contains the commands to set the environment variables needed
to build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

setenv.ksh

Generated by the UNIXunme.ksh command. Contains the
commands to set the environment variables needed to build and
execute th&Simpapp sample.

stderr

Generated by themboot command, which is executed by the
runme command. If thenoredirect server option is
specified in theJBBCONFIGile, the System.err.printin

method sends the output to telerr file instead of to the
ULOGuser log file.

stdout

Generated by themboot command, which is executed by the
runme command. If thenoredirec t server option is
specified in theJBBCONFIGile, the System.out.printin

method sends the output to telout file instead of to the
ULOGuser log file

tmsysevt.dat

Generated by themboot command, which is executed by the
runme command. It contains filtering and notification rules
used by th&TMSYSEVTsystem event reporting) process.

CORBA, J2EE, and Tuxedo Interoperability and Coexistencel-19

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

Table 4-11 Files Generated in the results Subdirectory (Continued)

File Description

tuxconfig Generated by thenloadcf command, which is executed by
therunme command.

ubb TheUBBCONFIGile for the CORBA/Java-to-Tuxedo Simpapp
sample application.

ULOG.<date > A log file that contains messages generated bytrifiteoot
command. If there are any compile or run-time errors, check this
file.

Stopping the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Before using another sample application, use the following procedure to stop the
CORBA/Java-to-Tuxedo Simpapp sample application and to remove unnecessary file
from the work directory.

1. Stop the application:
Windows NT
prompt>tmshutdown -y
UNIX
ksh prompt>tmshutdown -y
2. Restore the working directory to its original state:
Windows NT
prompt>nmake -f makefile.nt clean
UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

4-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

5

EJB-to-Tuxedo
Simpapp Sample
Application

This topic includes the following sections:
m How the EJB-to-Tuxedo Simpapp Sample Application Works
m Building and Running the EJB-to-Tuxedo Simpapp Sample Application

m Stopping the EJB-to-Tuxedo Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterprise
software includes &eadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the EJB-to-Tuxedo
Simpapp sample application.

Windows NT
$TUXDIR\samples\interop\ejb_tux
UNIX

$TUXDIR/samples/interop/ejb_tux

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-1

O EJB-to-Tuxedo Simpapp Sample Application

How the EJB-to-Tuxedo Simpapp Sample
Application Works

This topic includes the following sections:
m Key Application Components

m Application Flow

m Software Prerequisites

m Example Code

The EJB-to-Tuxedo Simpapp sample application demonstrates the use of Java
Enterprise Tuxedo (JET) technology to invoke a Tuxedo service from an EJB server
running in the WebLogic Enterprise EJB container. For more information about JET,
SeeUsing Java Enterprise Tuxedo

Key Application Components

The EJB-to-Tuxedo Simpapp sample application consists of the following main
components:

m An EJB client GimpClient) prompts the user for a string and then invokes
methods on the EJBipper andlower , to convert the string to all uppercase and
all lowercase text, respectively. This client then displays the results of the
conversion to the user.

m An Enterprise JavaBeaBimpBean) acts as the bridge between the WebLogic
Enterprise and Tuxedo environments. This object provides the following
methods to handle the conversion:

e Theupper method calls another methdditNativeCall , Which
instantiates doltService object and uses thaall method to invoke the
TOUPPER service in the Tuxedo environment. ThigService classis a
component of the JET Class Library.

5-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-Tuxedo Simpapp Sample Application Works

e Thelower method uses the Jaw@owerCase method to perform the
lowercase conversion.

m The TOUPPER service in the Tuxedo environment, which converts a text string
to all uppercase characters.

Application Flow

Figure 5-1 illustrates how the EJB-to-Tuxedo Simpapp sample application works.

Figure 5-1 Overview of the EJB-to-Tuxedo Simpapp Sample Application

WLE Environment

SimpClient EJB Server Tuxedo
(EJB Client)
SimpBean
EJB
JET
Get String upper() < T(S);f/)izER
Display Results < lower()

Software Prerequisites

In order to invoke a Tuxedo service using JET, you need to install Visual C++
version 6.0 with Service Pack 3 or later for Visual Studio.

Example Code

Listing 5-1 shows thépltNativeCall method from the SimpBean EJB in the
EJB-to-Tuxedo Simpapp sample application. This method uses JET technology to
invoke the TOUPPER service in the Tuxedo environment. It accepts the following
parameters:

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-3

O EJB-to-Tuxedo Simpapp Sample Application

m svcName is the name of the Tuxedo service to invoke (TOUPPER).

m data is the string that the user entered in 8impClient client.

Listing 5-1 The joltNativeCall() Method in the SimpBean EJB

String joltNativeCall (String svcName, String data)

JoltService svc;

try {
svc = new JoltService (svcName);
svc.addString("STRING", data);
sve.call (null);

} catch (ServiceException e) {
System.out.printin("JoltService got "+e);
return new String("");

}

return svc.getStringDef("STRING", "no_response");

ThejoltNativeCall method performs the following operations:

Instantiating a newoltService ~ object to represent the Tuxedo TOUPPER
service. TheloltService class is part of the JET Class Library. For more
information about the JET Class Library, désing Java Enterprise Tuxedo

m Calling theaddstring method on th&oltService object to set up the input
parameters to the TOUPPER service: the conversion tgiR(NG”) and the
string to convertdata).

m Calling thecall method to invoke the TOUPPER service.

m Returning the results to the calling methagdper() , in theSimpBean EJB.

5-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Building and Running the EJB-to-Tuxedo
Simpapp Sample Application

This section includes the following steps to build the EJB-to-Tuxedo Simpapp sample
application:

Step 1: Verify the Settings of Environment Variables
Step 2: Copy the Files into a Work Directory

Step 3: Change the Protection Attribute on the Files for the EJB-to-Tuxedo
Simpapp Sample Application

Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application

Step 1: Verify the Settings of Environment Variables

Before building and running the EJB-to-Tuxedo Simpapp sample application, you
need to ensure that certain environment variables are set on your system. In most cases,
these environment variables are set as part of the installation procedure. However, you
need to check the environment variables to ensure that they reflect correct information.

Required Environment Variables

Table 5-1 describes the environment variables that are required to run the
EJB-to-Tuxedo Simpapp sample application.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-5

O EJB-to-Tuxedo Simpapp Sample Application

Table 5-1 Required Environment Variables for the EJB-to-Tuxedo Simpapp

Sample Application

Environment Variable

Description

TUXDIR

The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT
TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME

The directory path where you installed the JDK software. For
example:

Windows NT
JAVA_HOME=c:\JDK1.2.2

UNIX

JAVA_ HOME-=/usr/local/JDK1.2.2

Optional Environment Variables

You may optionally set the following system environment variables to change their
default value before running the EJB-to-Tuxedo Simpapp sampike command.

See theAdministration Guiddor more information about selecting appropriate values
for these environment variables.

Table 5-2 describes the optional environment variables that you can set before runnin
the EJB-to-Tuxedo Simpapp sample application.

Table 5-2 Optional Environment Variables for the EJB-to-Tuxedo Simpapp

Sample Application

Environment Variable

Description

HOST

The host name portion of the TCP/IP network address used by
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

5-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Table 5-2 Optional Environment Variables for the EJB-to-Tuxedo Simpapp
Sample Application (Continued)

Environment Variable Description

PORT The TCP port number at which the ISL process listens for
incoming requests. It must be a number between 0 and 65535.
The default value is 2468.

IPCKEY The address of shared memory. It must be a number greater
than 32769 that is unique to this application on this system.
The default value is 55432.

Verifying the Environment Variables

To verify that the information for the environment variables defined during installation
is correct, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.
5. Check the settings faruxDIR andJAVA_HOME
UNIX
1. Execute th&sh command to use the Korn shell.

2. Execute therintenv command to display the values DfXDIR and
JAVA_HOMEas shown in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-7

O EJB-to-Tuxedo Simpapp Sample Application

Changing the Environment Variables
To change the environment variable settings, complete the following steps:
Windows NT
1. From the Start menu, select Settings.
2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.

The System Properties window appears.
4. Click the Environment tab.

The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change, or enter the name of the environment
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.
7. Click OK to save the changes.

UNIX

1. Execute thé&sh command to use the Korn shell.

2. Execute thexport command to set the correct values for iexDIR and
JAVA_HOMEeNnvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath

Step 2: Copy the Files into a Work Directory

You need to copy the files for the EJB-to-Tuxedo Simpapp sample application into a
work directory on your local machine. The files for the EJB-to-Tuxedo Simpapp
sample application are located in the following directories untxDIR:

5-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Windows NT

$TUXDIR\samples\interop\ejb_tux

UNIX
$TUXDIR/samples/interop/ejb_tux

Copying the Files

The following steps describe how to execute a makefile to copy all of the example files
into a work directory.

1. Create the work directory on your machine.

2. Copy the entirejb_tux directory to the working directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\ejb_tux*.* < work_directory >
UNIX

> cp -R $TUXDIR/samples/interop/ejb_tux/* < work_directory >

3. Change to the working directory created in step 1.

4. Execute the following command, which copies the remaining EJB-to-Tuxedo
Simpapp sample application files to the working directory:

Windows NT
>nmake -f makefile.nt copy
UNIX

>make -f makefile.mk copy

Files Copied to the Working Directory

This section describes the files that were copied into your working directory when you
executed the makefile.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-9

O EJB-to-Tuxedo Simpapp Sample Application

Utility Files
Table 5-3 describes the utility files for this sample application. These files reside in the
root of the working directory.
Table 5-3 Utility Files in the Root of the Working Directory
File Description
Readme.txt Contains directions for building and executing the
EJB-to-Tuxedo Simpapp sample application.
runme.cmd Windows NT batch file that contains commands to build
and execute the EJB-to-Tuxedo Simpapp sample
application.
runme.ksh UNIX Korn shell script that contains commands to build
and execute the EJB-to-Tuxedo Simpapp sample
application.
makefile.nt Common makefile for the EJB-to-Tuxedo Simpapp
sample application on the Windows NT platform. This
makefile can be used directly by the Visual Carmake
command.
makefile.mk Makefile for the EJB-to-Tuxedo Simpapp sample
application on the UNIX platform.
EJB Files

Table 5-4 describes the files that are needed to create the EJB client and EJB server f
this sample application. These files reside indite subdirectory of the working
directory.

Table 5-4 EJB Files in the ejb Subdirectory

File Description

SimpClient.java The EJB client application that calls methods on
the SimpBean object.

5-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Table 5-4 EJB Files in the ejb Subdirectory (Continued)

File Description

SimpBean.java The Java source code for tBimpBean class.
This is an example of a stateless session bean.
This bean contains the methods that are invoked
by theSimpClient class.

Simp.java The Java source code for the Remote interface
of theSimpBean class.

SimpHome.Java The Java source code for the Home interface of
the SimpBean class.

weblogic-ejb-extensions. XML The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

ejb-jar.xml The standard deployment descriptor for the
SimpBean class.

Tuxedo Files

Table 5-5 describes the source files for the Tuxedo portion of this sample application.
These files reside in thex subdirectory of the working directory.

Table 5-5 Tuxedo Files in the tux Subdirectory

File Description
jrepository Jolt Repository definition file.
simpserv.c Simpapp server source code.

CORBA, J2EE, and Tuxedo Interoperability and Coexistences-11

O EJB-to-Tuxedo Simpapp Sample Application

Step 3: Change the Protection Attribute on the Files for
the EJB-to-Tuxedo Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample application
files are marked read-only. Before you can edit or build the files in the EJB-to-Tuxedo
Simpapp sample application, you need to change the protection attribute of the files
you copied into your work directory (including the respectije andcorbaj
subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory * *

UNIX

prompt>/bin/ksh
ksh prompt>chmod +w / workdirectory [*.*

On UNIX, you also need to change the permissioruafne.ksh to give execute
permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 4: Run the EJB-to-Tuxedo Simpapp Sample
Application
Once you have copied the files and changed their protection attributes, you can builc
and run the EJB-to-Tuxedo Simpapp sample application by executingrtine
command, which starts server processes, generates files in various subdirectories of
the working directory, and starts the sample application.

Executing the runme Command

Therunme command automates the following steps:
1. Setthe system environment variables.

2. Load theUBBCONFIdile.

5-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Compile the code for the EJB server object.
Compile the code for the Jet Server application.
Start the server application using théoot command.

Start the client application.

N oo g ok~ w

Stop the server application using thehutdown command.

To build and run the CORBA/Java Simpapp sample application, executerthe
command, as follows:

Windows NT

prompt>cd workdirectory
prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The EJB-to-Tuxedo Simpapp sample application runs and prints the following
messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

All of the sample application outputis placed in tesults directory. You can check
in that directory for the following files:

m The.log file, for any compile, server boot, or server shutdown errors.
m TheULOGfile for server application errors and exceptions.

m Theoutput file for EJB client application output and exceptions.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-13

O EJB-to-Tuxedo Simpapp Sample Application

Running the Sample Application Manually

After you have executed thenme command one time, you can subsequently run the
EJB-to-Tuxedo Simpapp sample application manually.

To run the EJB-to-Tuxedo Simpapp sample application manually:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh
2. Run the sample:

Windows NT

prompt>tmboot -y
prompt>java -classpath %CLIENTCLASSPATH% ejb.SimpClient
corbaloc:%TOBJADDR%

UNIX

prompt>tmboot -y
prompt>java -classpath ${CLIENTCLASSPATH} ejb.SimpClient
corbaloc:${TOBJADDR}

3. Torun the CORBA/C++ joint client/server application, enter a string. After you
enter the string, the application returns the string in uppercase and lowercase
characters, respectively:

String?

Hello World
HELLO WORLD
hello world

All of the sample application output is placed in tiesults ~ directory. You can check
in that directory for the following files:

m The.log file, for any compile, server boot, or server shutdown errors.
m TheULOGle for server application errors and exceptions.

m Theoutput file for EJB client application output and exceptions.

5-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Server Processes Started by the Sample Application

Table 5-6 describes the server processes that are started whebdbe command is
executed to start the EJB-to-Tuxedo Simpapp sample application.

Table 5-6 Server Processes Started When tmboot Is Executed

Process Description
TMSYSEVT The BEA Tuxedo system Event Broker.
TMFFNAME Starts the following TMFFNAME processes:

m The TMFFNAME server process with thl option and the
-M option is the MASTERNameManager service.
The-N option says to start the NameManager Service.
The-M option says to start this name manager as a Master.
This service maintains a mapping of application-supplied
names to object references.

m The TMFFNAME server process with tAN option only is
a SLAVE NameManager service.

m The TMFFNAME server with theF option contains the
FactoryFinder object.

JavaServer The Simpapp server process that implements EJB-JAR file for
the SimpBean andSimpHomeinterfaces. The JavaServer has
one argumentSimpleEjb.jar , which is the EJB Java
ARchive (JAR) file that was created for the application.

JREPSVR Jolt Repository Server, which manages the Jolt Repository.
The Jolt Repository contains service definitions for BEA
Tuxedo services.

ISL The IIOP Listener/Handler.

Files Generated by the Sample Application

This section describes the files that are generated in various subdirectories of the
working directory.

CORBA, J2EE, and Tuxedo Interoperability and Coexistenceé-15

O EJB-to-Tuxedo Simpapp Sample Application

File Generated in the .adm Subdirectory

Table 5-7 describes the file that is generated in.éden subdirectory.

Table 5-7 File in the .adm Subdirectory

File Description

.keydb Generated by thenloadcf command.
Contains the security encryption key database.

File Generated in the ejb Subdirectory

Table 5-10 describes the file that is generated inejhesubdirectory.

Table 5-8 File Generated in the ejb Subdirectory

File Description
ejb.jar EJB client archive file that is generated by thnaeke or nmake
command.

Files Generated in the tux Subdirectory

Table 5-9 describes the files that are generated inuthesubdirectory.

Table 5-9 File Generated in the tux Subdirectory

simpserv.exe Simpapp server object file that is generated by the
buildserver command.

simpserv.obj Simpapp server object file.

5-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Files Generated in the results Subdirectory

Table 5-10 describes the files that are generated inethuts subdirectory.

Table 5-10 Files Generated in the results Subdirectory

File

Description

input

Generated by theunme command. Contains the input that
runme gives to theSimpClient Java application.

output

Generated by theunme command. Contains the output that is
produced whemunme executes th8&impClient Java
application.

expected_output

Generated by theunme command. Contains the output that is
expected when th8impClient Java application is executed
by therunme command. The data in theutput file is
compared with the data in thexpected_output file to
determine whether the test passed or failed.

Generated by theunme command. Contains the output
generated by theusnme command. If theunme command
fails, check this file, and thelLOile, for errors.

setenv.cmd

Generated by the Windows Niinme.cmd command.

Contains the commands to set the environment variables needed
to build and execute the EJB-to-Tuxedo Simpapp sample
application.

setenv.ksh

Generated by the UNIXunme.ksh command. Contains the
commands to set the environment variables needed to build and
execute the&Simpapp sample application.

stderr

Generated by themboot command, which is executed by the
runme command. If thenoredirect server option is
specified in theJBBCONFIGile, the System.err.printin

method sends the outputdterr instead of to th&JLOQuser
log file.

stdout

Generated by themboot command, which is executed by the
runme command. If thenoredirec t server option is
specified in theJBBCONFIGile, the System.out.printin

method sends the output to telout file instead of to the
ULOGuser log file.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-17

O EJB-to-Tuxedo Simpapp Sample Application

Table 5-10 Files Generated in the results Subdirectory (Continued)

File Description

tmsysevt.dat Generated by thenboot command, which is executed by the
runme command. It contains filtering and notification rules
used by the TMSYSEVT (system event reporting) process.

tuxconfig Generated by thenloadcf command, which is executed by
therunme command.

ubb The UBBCONFIGile for the EJB-to-Tuxedo Simpapp sample
application.

ULOG.<date > A log file that contains messages generated bytrifteoot
command.

Stopping the EJB-to-Tuxedo Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
EJB-to-Tuxedo Simpapp sample application and to remove unnecessary files from th
work directory:

1. Stop the application:
Windows NT

prompt>tmshutdown -y
UNIX
ksh prompt>tmshutdown -y
2. Restore the working directory to its original state:
Windows NT

prompt>nmake -f makefile.nt clean

5-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the EJB-to-Tuxedo Simpapp Sample Application

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

CORBA, J2EE, and Tuxedo Interoperability and Coexistence-19

O EJB-to-Tuxedo Simpapp Sample Application

5-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Index

C
compiling
client applications
CORBA/C++-to-EJB Simpapp
sample application 3-14
EJB-to-CORBA/Java Simpapp
sample application 2-14
server applications
CORBA/C++-to-EJB Simpapp
sample application 3-14
CORBA/Java-to-Tuxedo Simpapp
sample application 4-13, 4-
14
EJB-to-CORBA/Java Simpapp
sample application 2-14
EJB-to-Tuxedo Simpapp sample
application 5-13
copied files
CORBA/Java-to-Tuxedo Simpapp
sample application 4-11
EJB-to-Tuxedo Simpapp sample
application 5-9
CORBA/C++-to-EJB Simpapp sample
application 3-1
changing protection on files 3-13
compiling the Java client application 3-
14
compiling the Java server application 3-
14
loading the UBBCONFIG file 3-14
required environment variables 3-7

runme command 3-14
setting up the work directory 3-10
CORBA/Java-to-Tuxedo Simpapp sample
application
application flow 4-3
changing protection on files 4-13
compiling the CORBA/Java server
application 4-13
compiling the JET server application 4-
14
components of 4-2
copied files 4-11
environment variables 4-7
example code 4-5
generated files 4-16
how it works 4-2
loading the UBBCONFIG file 4-13
OMG IDL code 4-3
runme command 4-13
running the application manually 4-15
server processes started 4-16
setting up the work directory 4-10
software prerequisites 4-5
source files 4-10
starting the client application 4-14, 4-15
starting the server application 4-14
stopping 4-20
customer support contact information ix

CORBA, J2EE, and Tuxedo Interoperability and Coexistence I-1

D

directory location of source files
CORBA/Java-to-Tuxedo Simpapp
sample application 4-10
EJB-to-CORBA/Java Simpapp sample
application 2-10, 3-10
EJB-to-Tuxedo Simpapp sample
application 5-9
documentation, where to find it viii

E

EJBs
third-party 1-11
EJB-to-CORBA/Java sample application 2-2
EJB-to-CORBA/Java Simpapp sample
application
changing protection on files 2-13
compiling the Java client application 2-
14
compiling the Java server application 2-
14
files for 2-10
loading the UBBCONFIG file 2-14
required environment variables 2-7
runme command 2-14
setting up the work directory 2-10
source files 2-10, 3-10
EJB-to-Tuxedo Simpapp sample application
application flow 5-3
changing protection on files 5-12
compiling the EJB server object 5-13
compiling the JET server application 5-
13
components of 5-2
copied files 5-9
environment variables 5-5
example code 5-3
generated files 5-15
how it works 5-2
loading the UBBCONFIG file 5-12

runme command 5-12

running the application manually 5-14

server processes started 5-15

setting up the work directory 5-8

software prerequisites 5-3

source files 5-9

starting the client application 5-13, 5-14

starting the server application 5-13

stopping 5-18

environment variables

changing 2-9

CORBA/C++-to-EJB Simpapp sample
application 3-7

CORBA/Java-to-Tuxedo Simpapp
sample application 4-7

EJB-to-CORBA/Java Simpapp sample
application 2-7

EJB-to-Tuxedo Simpapp sample
application 5-5

HOST 4-8, 5-6

IPCKEY 4-8, 5-7

JAVA _HOME 2-7, 3-7, 4-7, 5-6

PORT 4-8, 5-7

TUXDIR 2-7, 3-7, 4-7, 5-6

verifying 2-8

example code

CORBA/Java-to-Tuxedo Simpapp
sample application 4-5

EJB-to-Tuxedo Simpapp sample
application 5-3

F

file protections

CORBA/C++-to-EJB Simpapp sample
application 3-13

CORBA/Java-to-Tuxedo Simpapp
sample application 4-13

EJB-to-CORBA/Java Simpapp sample
application 2-13

EJB-to-Tuxedo Simpapp sample

[-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

application 5-12

G

generated files
CORBA/Java-to-Tuxedo Simpapp
sample application 4-16
EJB-to-Tuxedo Simpapp sample
application 5-15

H

HOST 2-7
HOST environment variable 4-8, 5-6

|
interoperability
third-party 1-11
IPCKEY 2-7
IPCKEY environment variable 4-8, 5-7
ISL process 2-16, 4-16, 5-15

J
JAVA_HOME environment variable 4-7, 5-6
JAVA_HOME parameter
CORBA/C++-to-EJB Simpapp sample
application 3-7
EJB-to-CORBA/Java Simpapp sample
application 2-7
JavaServer process 2-16, 4-16, 5-15
JREPSVR process 4-16, 5-15

M

m3idltojava compiler 2-5, 4-5

0

ORBs
third-party 1-11

P

PORT 2-7
PORT environment variable 4-8, 5-7
printing product documentation viii

R

related information viii
runme command
CORBA/Java-to-Tuxedo Simpapp
sample application 4-13
description 2-14, 3-14
EJB-to-Tuxedo Simpapp sample
application 5-12
running the application manually
CORBA/Java-to-Tuxedo Simpapp
sample application 4-15
EJB-to-Tuxedo Simpapp sample
application 5-14

S

sample applications
EJB-to-CORBA 2-2
setting up the work directory
CORBA/Java-to-Tuxedo Simpapp
sample application 4-10
EJB-to-Tuxedo Simpapp sample
application 5-8
Simpapp 2-2
SimpBean 3-7
software prerequisites 2-5
CORBA/Java-to-Tuxedo Simpapp
sample application 4-5
EJB-to-Tuxedo Simpapp sample
application 5-3
stopping
CORBA/Java-to-Tuxedo Simpapp
sample application 4-20
EJB-to-Tuxedo Simpapp sample
application 5-18

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-3

support
technical ix
Symantec Visual Cafe 2-21

T
the 2-14, 3-14
third-party interoperability 1-11
TMFFNAME process 2-16, 4-16, 5-15
tmshutdown 2-21, 4-20
TMSYSEVT process 2-16, 4-16, 5-15
TUXDIR 2-7
TUXDIR environment variable 4-7, 5-6
TUXDIR parameter
CORBA/C++-to-EJB Simpapp sample
application 3-7
EJB-to-CORBA/Java Simpapp sample
application 2-7

U

UBBCONFIG file
CORBA/C++-to-EJB Simpapp sample
application 3-14
EJB-to-CORBA/Java Simpapp sample
application 2-14

Vv
Visual C++ compiler 2-5, 4-5, 5-3
Visual Cafe 2-21

I-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models
	BEA Clients and Servers
	T-Engine Server Interoperability
	Java Enterprise Tuxedo (JET) Software
	Transactions and Security

	T-Engine Client and Server Interoperability
	Transactions and Security
	A Note About BEA Jolt
	RMI Clients and the WebLogic RMI-on-IIOP Protocol

	J-Engine and T-Engine Interoperability
	Third-party ORB Interoperability
	T-Engine Interdomain Interoperability
	WebLogic Enterprise and Tuxedo Domains Interoperability

	Overview of the Interoperability Sample Applications

	2 EJB-to-CORBA/Java Simpapp Sample Application
	How the EJB-to-CORBA/Java Simpapp Sample Application Works
	Software Prerequisites
	Implementing the Bridge Object to Invoke a CORBA/Java Object
	The OMG IDL Code for the EJB-to-CORBA/Java Simpapp Interfaces

	Building and Running the EJB-to-CORBA/Java Simpapp Sample Application
	Verifying the Settings of the Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Copying the Files for the Java Simpapp Sample Application into a Work Directory
	Files in the Work Directory
	EJB Simpapp Files
	CORBA/Java Simpapp files
	Utility Files

	Changing the Protection Attribute on the Files for the EJB-to-CORBA/Java Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application
	Processes and Files Generated by the EJB-to-CORBA/Java Simpapp Sample Application
	Processes Started
	Files Generated in the corbaj Directory
	Files Generated in the ejb_corbaj Directory
	Files Generated in the results Directory

	Stopping the EJB-to-CORBA/Java Simpapp Sample Application

	3 CORBA/C++-to-EJB Simpapp Sample Application
	How the CORBA/C++-to-EJB Simpapp Sample Application Works
	Software Prerequisites
	Implementing the Bridge Object to Invoke an EJB

	The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces
	Building and Running the CORBA/C++-to-EJB Simpapp Sample Application
	Verifying the Settings of the Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Copying the Files for the CORBA/C++-to-EJB Simpapp Sample Application into a Work Directory
	Files in the Work Directory
	CORBA/C++ Client Files
	EJB Server Files
	Utility Files

	Changing the Protection Attribute on the Files for the CORBA/C++-to-EJB Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application
	Processes and Files Generated by the CORBA/C++-to-EJB Simpapp Sample Application
	Processes Started
	Files Generated in the cpp Directory
	File Generated in the cpp_ejb Directory
	Files Generated in the results Directory

	Stopping the CORBA/C++-to-EJB Simpapp Sample Application

	4 CORBA/Java-to-Tuxedo Simpapp Sample Application
	How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works
	Key Application Components
	Application Flow
	OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces
	Software Prerequisites
	Example Code

	Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application
	Step 1: Verify the Settings of Environment Variables
	Required Environment Variables
	Optional Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Step 2: Copy the Files into a Work Directory
	Copying the Files
	Files Copied to the Working Directory
	Utility Files
	CORBA/Java Client and Server Files
	Tuxedo Files

	Step 3: Change the Protection Attribute on the Files
	Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application Manually
	Server Processes Started by the Sample Application
	Files Generated by the Sample Application
	File Generated in the .adm Subdirectory
	Files Generated in the corbaj Subdirectory
	Files Generated in the tux Subdirectory
	Files Generated in the results Subdirectory

	Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application

	5 EJB-to-Tuxedo Simpapp Sample Application
	How the EJB-to-Tuxedo Simpapp Sample Application Works
	Key Application Components
	Application Flow
	Software Prerequisites
	Example Code

	Building and Running the EJB-to-Tuxedo Simpapp Sample Application
	Step 1: Verify the Settings of Environment Variables
	Required Environment Variables
	Optional Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Step 2: Copy the Files into a Work Directory
	Copying the Files
	Files Copied to the Working Directory
	Utility Files
	EJB Files
	Tuxedo Files

	Step 3: Change the Protection Attribute on the Files for the EJB-to-Tuxedo Simpapp Sample Applica...
	Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application Manually
	Server Processes Started by the Sample Application
	Files Generated by the Sample Application
	File Generated in the .adm Subdirectory
	File Generated in the ejb Subdirectory
	Files Generated in the tux Subdirectory
	Files Generated in the results Subdirectory

	Stopping the EJB-to-Tuxedo Simpapp Sample Application

	Index

