
CORBA, J2EE, and Tuxedo

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Interoperability
and Coexistence

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

.. vii

... viii

. viii

.. viii

.... ix

.... ix

. 1-1

. 1-2

1-3

. 1-5

. 1-6

1-6

. 1-8

1-9

-9

-10

-11

-13

-15

-17
Contents

About This Document
What You Need to Know ...

e-docs Web Site ..

How to Print the Document..

Related Information...

Contact Us! ..

Documentation Conventions ...

1. Introduction
Interoperability Among the CORBA, J2EE, and Tuxedo

Programming Models..

BEA Clients and Servers...

T-Engine Server Interoperability ...

Java Enterprise Tuxedo (JET) Software ..

Transactions and Security ..

T-Engine Client and Server Interoperability ..

Transactions and Security ..

A Note About BEA Jolt ..

RMI Clients and the WebLogic RMI-on-IIOP Protocol..................... 1

J-Engine and T-Engine Interoperability ... 1

Third-party ORB Interoperability .. 1

T-Engine Interdomain Interoperability .. 1

WebLogic Enterprise and Tuxedo Domains Interoperability 1

Overview of the Interoperability Sample Applications................................... 1
CORBA, J2EE, and Tuxedo Interoperability and Coexistence iii

2-2

.. 2-3

-3

-5

. 2-6

2-7

-8

2-9

-10

-11

2-11

-12

-12

13

2-14

-15

-16

. 2-16

-17

-19

-19

-21

-2

.. 3-3

3-3

-5

. 3-6

3-7
2. EJB-to-CORBA/Java Simpapp Sample Application
How the EJB-to-CORBA/Java Simpapp Sample Application Works

Software Prerequisites ..

Implementing the Bridge Object to Invoke a CORBA/Java Object........... 2

The OMG IDL Code for the EJB-to-CORBA/Java Simpapp Interfaces ... 2

Building and Running the EJB-to-CORBA/Java Simpapp Sample
Application ..

Verifying the Settings of the Environment Variables

Verifying the Environment Variables ... 2

Changing the Environment Variables ...

Copying the Files for the Java Simpapp Sample Application
into a Work Directory ... 2

Files in the Work Directory.. 2

EJB Simpapp Files ..

CORBA/Java Simpapp files.. 2

Utility Files.. 2

Changing the Protection Attribute on the Files
for the EJB-to-CORBA/Java Simpapp Sample Application............. 2-

Executing the runme Command ...

Running the Sample Application.. 2

Processes and Files Generated by
the EJB-to-CORBA/Java Simpapp Sample Application 2

Processes Started ..

Files Generated in the corbaj Directory .. 2

Files Generated in the ejb_corbaj Directory 2

Files Generated in the results Directory .. 2

Stopping the EJB-to-CORBA/Java Simpapp Sample Application 2

3. CORBA/C++-to-EJB Simpapp Sample Application
How the CORBA/C++-to-EJB Simpapp Sample Application Works 3

Software Prerequisites ..

Implementing the Bridge Object to Invoke an EJB....................................

The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces........... 3

Building and Running the CORBA/C++-to-EJB Simpapp
Sample Application ...

Verifying the Settings of the Environment Variables
iv CORBA, J2EE, and Tuxedo Interoperability and Coexistence

3-8

3-9

n
-10

-11

-11

3-12

-12

13

3-14

-15

16

. 3-16

-17

-19

-19

-21

4-2

. 4-2

4-3

-3

.. 4-5

.. 4-5

. 4-6

4-7

4-7

4-7

4-8

4-9

-10

-10
Verifying the Environment Variables ...

Changing the Environment Variables ...

Copying the Files for the CORBA/C++-to-EJB Simpapp Sample Applicatio
into a Work Directory ... 3

Files in the Work Directory.. 3

CORBA/C++ Client Files ... 3

EJB Server Files..

Utility Files ... 3

Changing the Protection Attribute on the Files
for the CORBA/C++-to-EJB Simpapp Sample Application 3-

Executing the runme Command...

Running the Sample Application ... 3

Processes and Files Generated
by the CORBA/C++-to-EJB Simpapp Sample Application 3-

Processes Started..

Files Generated in the cpp Directory .. 3

File Generated in the cpp_ejb Directory ... 3

Files Generated in the results Directory.. 3

Stopping the CORBA/C++-to-EJB Simpapp Sample Application 3

4. CORBA/Java-to-Tuxedo Simpapp Sample Application
How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

Key Application Components ...

Application Flow..

OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces..... 4

Software Prerequisites..

Example Code ..

Building and Running the CORBA/Java-to-Tuxedo Simpapp
Sample Application ...

Step 1: Verify the Settings of Environment Variables

Required Environment Variables..

Optional Environment Variables ..

Verifying the Environment Variables ...

Changing the Environment Variables ...

Step 2: Copy the Files into a Work Directory.. 4

Copying the Files .. 4
CORBA, J2EE, and Tuxedo Interoperability and Coexistence v

11

-13

-13

4-13

-15

4-16

-16

-20

5-2

. 5-2

5-3

.. 5-3

.. 5-3

5-5

5-5

5-5

5-6

-7

5-8

5-8

. 5-9

-9

-12

-12

5-12

-14

5-15

-15

-18
Files Copied to the Working Directory ... 4-

Step 3: Change the Protection Attribute on the Files 4

Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application 4

Executing the runme Command..

Running the Sample Application Manually4

Server Processes Started by the Sample Application........................

Files Generated by the Sample Application......................................4

Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application............ 4

5. EJB-to-Tuxedo Simpapp Sample Application
How the EJB-to-Tuxedo Simpapp Sample Application Works

Key Application Components ...

Application Flow ..

Software Prerequisites ..

Example Code ..

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

Step 1: Verify the Settings of Environment Variables

Required Environment Variables ..

Optional Environment Variables...

Verifying the Environment Variables ... 5

Changing the Environment Variables ...

Step 2: Copy the Files into a Work Directory ..

Copying the Files ...

Files Copied to the Working Directory ... 5

Step 3: Change the Protection Attribute on the Files
for the EJB-to-Tuxedo Simpapp Sample Application....................... 5

Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application................5

Executing the runme Command..

Running the Sample Application Manually5

Server Processes Started by the Sample Application........................

Files Generated by the Sample Application......................................5

Stopping the EJB-to-Tuxedo Simpapp Sample Application 5

Index
vi CORBA, J2EE, and Tuxedo Interoperability and Coexistence

hich
A

es

w

w

.

,
e with
About This Document

This document describes how to build and run the suite of sample applications, w
show how Enterprise JavaBeans and CORBA objects can coexist in the same BE
WebLogic Enterprise™ application.

This document includes the following topics:

� Chapter 1, “Introduction,” provides a high-level overview of the interoperability
and coexistence capabilities in the WebLogic Enterprise system among the
CORBA, J2EE, and Tuxedo® programming models. This chapter also describ
the set of interoperability sample applications provided with the WebLogic
Enterprise software.

� Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” describes ho
to build and run the EJB-CORBA/Java Simpapp sample application.

� Chapter 3, “CORBA/C++-to-EJB Simpapp Sample Application,” describes ho
to build and run the CORBA/C++-EJB Simpapp sample application.

� Chapter 4, “CORBA/Java-to-Tuxedo Simpapp Sample Application,” describes
how to build and run the CORBA/Java-to-Tuxedo Simpapp sample application

� Chapter 5, “EJB-to-Tuxedo Simpapp Sample Application,” describes how to
build and run the EJB-to-Tuxedo Simpapp sample application.

What You Need to Know

This document is intended for programmers who are interested in creating secure
scalable, transaction-based server applications. It assumes you are knowledgeabl
CORBA, Enterprise JavaBeans, and the C++ and Java programming languages.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence vii

at

ing

on
ent
rise
you

m

do,
a
.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by us
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentati
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free fro
the Adobe Web site athttp://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxe
distributed object computing, transaction processing, C++ programming, and Jav
programming, see theBibliographyin the WebLogic Enterprise online documentation
viii CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Documentation Conventions

s.

the

u

mer

ion:
Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail atdocsupport@bea.comif you have questions or comments. Your
comments will be reviewed directly by the BEA Systems, Inc. professionals who
create and update the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if yo
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT atwww.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informat

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence ix

d
s.

d.
italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures an
their members, data types, directories, and filenames and their extension
Monospace text also indicates text that you must enter from the keyboar

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
x CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Documentation Conventions

n

.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other informatio

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line
The vertical ellipsis itself should never be typed.

Convention Item
CORBA, J2EE, and Tuxedo Interoperability and Coexistence xi

xii CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER
1 Introduction

This topic includes the following sections:

� Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

This topic describes the interoperability and coexistence capabilities in the
WebLogic Enterprise (WLE) system among the CORBA, J2EE, and Tuxedo
programming models.

� Overview of the Interoperability Sample Applications

This topic describes the interoperability sample applications provided with the
WebLogic Enterprise software. The sample applications provide client and
server programmers with information about the basic concepts of combining
Enterprise JavaBeans (EJBs) and CORBA objects in the same WebLogic
Enterprise application.

This chapter does not discuss specific interoperability or coexistence details with
regards to WebLogic Server or WebLogic Enterprise Connectivity.

Interoperability Among the CORBA, J2EE,
and Tuxedo Programming Models

The key interoperability features are presented in the following categories:

� T-Engine Server Interoperability

� T-Engine Client and Server Interoperability

� J-Engine and T-Engine Interoperability
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-1

1 Introduction

ine

gic
f

� Third-party ORB Interoperability

� T-Engine Interdomain Interoperability

� WebLogic Enterprise and Tuxedo Domains Interoperability

First, a summary description of BEA clients, servers, the T-Engine, and the J-Eng
follows.

BEA Clients and Servers

Note the following definitions:

� BEA client

A BEA client can be any of the following entities, which exist outside the BEA
domain and must use a listener/handler as a gateway to the domain:

� Jolt® client application (via the Jolt listener/handler)

� Tuxedo /WS client application (via the Tuxedo /WS listener/handler)

� WebLogic Enterprise CORBA client application (via the IIOP
listener/handler)

� ActiveX client application (via the IIOP listener/handler)

� RMI client application (via the IIOP listener/handler)

Note that BEA clients invoking other BEA clients is not supported.

� BEA server

A BEA server can fall into one of two general categories:

� Tuxedo engine, orT-Engine, servers. T-Engine servers include Tuxedo
services, CORBA objects, and EJBs that run on the Tuxedo-based WebLo
Enterprise infrastructure. These servers run within the administrative unit o
a WebLogic Enterprise domain, and are configured via aUBBCONFIGfile.

� Java engine, orJ-Engine servers. J-Engine servers include EJBs, Servlets,
and Java Server Pages (JSPs) that run on the WebLogic Server-based
infrastructure.
1-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

that

re
g
G

T-Engine Server Interoperability

This section describes the interoperability among the following T-Engine server
components:

� Tuxedo service

� CORBA C++ object

� CORBA Java object

� Enterprise JavaBean

Figure 1-1 shows the direct interoperability support among the various T-Engine
server applications. The numbered callouts in the figure are explained in the text
follows the figure. In this figure, the solid black arrows show the direct invocation
paths that are supported. The dotted arrows show indirect invocation paths that a
supported; for example, a Tuxedo service can invoke a CORBA Java object usin
either a CORBA C++ proxy object, or a C++ client stub file compiled from the OM
IDL for that Java object.

Figure 1-1 T-Engine Server Interoperability

Tuxedo
Service

Enterprise
JavaBean

CORBA Java
Object

CORBA C++
Object

1

1

2 3 4

5 6
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-3

1 Introduction

ice

n
5,

ey

o

+

Note the following details about the preceding figure:

1. CORBA Java object or Enterprise JavaBean invoking a Tuxedo service

WebLogic Enterprise provides the Java Enterprise Tuxedo (JET) API that you
can use to have either a CORBA Java object or an EJB invoke a Tuxedo serv
running in the WebLogic Enterprise domain. An example of a CORBA Java
object invoking a Tuxedo service using JET is described in Chapter 4,
“CORBA/Java-to-Tuxedo Simpapp Sample Application,” and an example of a
EJB application invoking a Tuxedo service using JET is described in Chapter
“EJB-to-Tuxedo Simpapp Sample Application.” (Note that RMI server
applications can also run in the WebLogic Enterprise T-Engine domain, and th
can also use JET to invoke Tuxedo services in that domain.)

For considerations about using the JET software, see “Java Enterprise Tuxed
(JET) Software” on page 1-5.

2. Tuxedo service invoking a CORBA C++ object and vice versa

A C++ object can include ATMI calls to Tuxedo services. See the Wrapper
University sample application, available from theGuide to the University
Sample Applications, for an example application that shows this feature.

A Tuxedo service can invoke a CORBA C++ object using the compiled C++
client stub file for that object. (One way to do this is to implement the Tuxedo
service as a C-callable C++ function that invokes the client stub file for the C+
object. If you use this approach, note that you need to link in the C++ ORB
libraries when you build the Tuxedo service.)

3. CORBA C++ object invoking a CORBA Java object and vice versa

CORBA C++ and CORBA Java objects that run in the same WebLogic
Enterprise domain can invoke each other directly. For information about
invoking across WebLogic Enterprise domains, see the section “T-Engine
Interdomain Interoperability” on page 1-13.

4. CORBA Java object invoking an EJB and vice versa

In the WebLogic Enterprise environment, a CORBA Java object can invoke
methods on an EJB directly. See Chapter 3, “CORBA/C++-to-EJB Simpapp
Sample Application,” for an example application that includes a CORBA Java
object that invokes an EJB.
1-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

ava
do
te
ares
e
the

ility
y”
5. Tuxedo service invoking a CORBA Java object

A Tuxedo service can invoke a CORBA Java object by compiling the Java
object’s OMG IDL file with theidl command, which produces a C++ client
stub file that the Tuxedo service can invoke, using an approach similar to the
one described in point 2.

6. EJB invoking a CORBA C++ object and vice versa

Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” shows an
example of an EJB invoking a CORBA Java object. You can extend this
example to include a CORBA C++ object by designing the Java object in that
application to serve as an intermediary, or wrapper, object that delegates
invocations from the EJB to the C++ object, and vice versa. An alternative
means for having an EJB invoke a C++ object is to compile the OMG IDL file
for the C++ object using them3idltojava command, which produces a Java
client stub file that the EJB can invoke directly.

Java Enterprise Tuxedo (JET) Software

The WebLogic Enterprise software includes the JET API, which allows T-Engine J
entities -- namely, EJBs and CORBA Java objects -- to make ATMI calls on Tuxe
services that exist in either the same WebLogic Enterprise domain or in a separa
WebLogic Enterprise domain. JET is a server-side adaptation of BEA Jolt. JET sh
some of its software components with Jolt, including the Repository Editor and th
bulk loader. To take full advantage of all the capabilities of JET, you need to install
Jolt software, which is included with the WebLogic Enterprise software.

For more information about JET, seeUsing Java Enterprise Tuxedo (JET). For more
information about installing Jolt, see theJolt Installation Guide, which is included in
the WebLogic Enterprise package.

Note: JET cannot be used by Java clients to invoke Tuxedo services; this capab
is provided by BEA Jolt, which is summarized in “Transactions and Securit
on page 1-8.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-5

1 Introduction

ning
Transactions and Security

Transaction and security context propagation among BEA server applications run
in a WebLogic Enterprise domain is fully supported.

T-Engine Client and Server Interoperability

Figure 1-2 shows the interoperability support among BEA clients invoking BEA
servers.

Figure 1-2 T-Engine Client and Server Interoperability

Jolt RMIActiveX
CORBA

Java
CORBA

C++
Tuxedo

/WS

JSL/JSH ISL/ISHWSL/WSH

Tuxedo
Service

Enterprise
JavaBean

CORBA Java
Object

CORBA C++
Object

WebLogic Enterprise T-Engine

1 2 3 4 5 6
1-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

r.

r.

r.

r

e

Note the following details in the preceding figure:

1. Jolt client application invoking a Tuxedo service

A Jolt client can invoke a Tuxedo service running in the WebLogic Enterprise
domain via a Jolt listener/handler. For more information about Jolt, see theBEA
Jolt online documentation.

2. Tuxedo /WS client application invoking a Tuxedo service

A Tuxedo /WS client application can invoke a Tuxedo service running in the
WebLogic Enterprise domain via the Workstation listener/handler.

3. BEA CORBA C++ client application invoking a CORBA object

A BEA CORBA C++ client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the IIOP listener/handle
For more information, seeCreating CORBA Client Applications.

4. BEA CORBA Java client application invoking a CORBA server-side object

A BEA CORBA Java client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the IIOP listener/handle
For more information, seeCreating CORBA Client Applications.

5. BEA ActiveX client application invoking a CORBA server-side object

A BEA ActiveX client application can invoke both CORBA C++ and Java
objects running in a WebLogic Enterprise domain via the IIOP listener/handle
For more information, seeCreating CORBA Client Applications.

6. RMI client application invoking an Enterprise JavaBean

An RMI client application can invoke an Enterprise JavaBean running in the
WebLogic Enterprise domain via the IIOP listener/handler using the WebLogic
RMI-on-IIOP protocol. For more information, seeUsing RMI in a WebLogic
Enterprise Environment. (Note that an RMI client can also invoke an RMI serve
running in a WebLogic Enterprise domain.)

The following additional invocation paths are also supported in the WebLogic
Enterprise environment via proxy objects or servers:

� BEA CORBA C++ client application invoking a Tuxedo service

You can create a C++ client with a set of operations that map one-to-one with
calls to Tuxedo services using an intermediary C++ server-side object. See th
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-7

1 Introduction

ibed
:

ct
ple

o

itly
te
Wrapper University sample application for an example application that shows
this feature, available in theGuide to the University Sample Applications.

� WebLogic Enterprise RMI client application invoking a CORBA C++ object

A WebLogic Enterprise RMI client application can invoke a CORBA C++
object by using an EJB and a CORBA Java object in the server process as
intermediaries. For an example, you can extend the sample application descr
in Chapter 2, “EJB-to-CORBA/Java Simpapp Sample Application,” as follows

� The RMI client application invokes the EJB to initiate the request.

� The CORBA Java object, which is invoked by the EJB, delegates the
invocation to the C++ object.

� WebLogic Enterprise RMI client application invoking a CORBA Java object

A WebLogic Enterprise RMI client application can invoke a CORBA Java obje
by using an EJB as an intermediary. For an example, you can extend the sam
application described in Chapter 2, “EJB-to-CORBA/Java Simpapp Sample
Application,” to have the RMI client application initiate the request instead of
the EJB.

� Tuxedo/WS client application invoking a CORBA C++ object

Interoperability is provided via a Tuxedo service wrapper. You create a Tuxed
service wrapper as a CORBA C++ object that runs in the WebLogic Enterprise
domain and that makes invocations on the legacy CORBA C++ object.

� Tuxedo/WS client application invoking a CORBA Java object

Interoperability is provided via a Tuxedo service wrapper.

� Tuxedo/WS client application invoking an EJB

Interoperability is provided via a Tuxedo service wrapper on a CORBA Java
object in the server process, which then delegates the invocation to the EJB.

Transactions and Security

Transaction and security context propagation between BEA client and server
applications is fully supported, with the following restrictions:

� BEA client applications can demarcate a transaction -- that is, they can explic
begin, suspend, resume, and commit a transaction -- but they cannot participa
in a transaction.
1-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

n

es
be

us

ce
t's

o
s a
tter

ine
For example, a client can begin a transaction and make multiple invocations o
services and objects within the domain, and those services and objects can in
turn make invocations on yet other services and objects. However, the client
application cannot, within the scope of that transaction, perform operations
locally and have them included in that transaction. That is, if the client
application starts a transaction, invokes an object within the domain, then writ
data to a database local to the client, the local database operation cannot not
included in the transaction.

� When a client application authenticates itself to the domain, and invokes vario
services and objects in the domain -- which in turn may invoke other services
and objects in the domain -- the client's security context is passed along with
each operation. However, if in the course of satisfying a client request, a servi
in one domain makes an invocation on a service in a second domain, the clien
security context cannot be passed to the second domain. The service in the
second domain does not have knowledge of the original client.

A Note About BEA Jolt

BEA Jolt provides a means for allowing Java clients to make ATMI calls on Tuxed
services that exists in a Tuxedo or WebLogic Enterprise domain. Jolt also provide
means for allowing J-Engine servers to invoke T-Engine Tuxedo services . This la
capability is performed via Jolt connection pools, which is shown in “J-Engine and
T-Engine Interoperability” on page 1-10. BEA provides Jolt with the WebLogic
Enterprise software.

For more information, see the following documents:

� For more information about Jolt, see theBEA Jolt version 1.2 online
documentation.

� For more information about setting up Jolt connection pools to connect J-Eng
servers to T-Engine Tuxedo services, seeUsing WebLogic Enterprise
Connectivity.

RMI Clients and the WebLogic RMI-on-IIOP Protocol

RMI clients of EJBs running in a T-Engine domain must use the WebLogic
RMI-on-IIOP protocol. This is a proprietary protocol and is different from the
RMI-over-IIOP protocol, which is used by clients of the BEA WebLogic Server™
system.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 1-9

1 Introduction

ne
ls.

me
For more information about the WebLogic RMI-on-IIOP protocol, seeUsing RMI in
a WebLogic Enterprise Environment.

J-Engine and T-Engine Interoperability

The WebLogic Enterprise domain can comprise both T-Engine and J-Engine
components. As of WebLogic Enterprise 5.1, this connectivity is available in only o
direction -- from the J-Engine to the T-Engine -- via IIOP and Jolt connection poo

Figure 1-3 shows how these connection pools allow components hosted by the
J-Engine can invoke objects and services hosted by a T-Engine running in the sa
WebLogic Enterprise domain.

Figure 1-3 J-Engine and T-Engine Interoperability

Browser
Clients

Enterprise
JavaBean

Tuxedo
Service

CORBA C++
Object

CORBA Java
Object

ISH

JSH

T-Engine

Java Server
Page

Servlet

Enterprise
JavaBean

J-Engine

WebLogic Enterprise

IIOP Connection Pool

JOLT Connection Pool
1-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

nd
ng

a

can

ides
Note the following about these connection pools:

� IIOP connection pools allow J-Engine applications to invoke T-Engine EJBs a
CORBA objects in a WebLogic Enterprise domain. For information about setti
up and using IIOP connection pools, seeUsing WebLogic Connectivity.

� Jolt connection pools allow J-Engine applications to invoke Tuxedo services in
WebLogic Enterprise domain. For information about setting up and using Jolt
connection pools, seeConfiguring Jolt for WebLogic.

For details about the versions of J-Engine and T-Engine server components that
interoperate, see theRelease Notes.

Third-party ORB Interoperability

CORBA applications based on third-party ORBs can interoperate with CORBA,
Tuxedo, and J2EE server applications running in a WebLogic Enterprise domain
provided that there is a correct match-up between IIOP protocols. Figure 1-4 prov
a high-level view of third-party ORB interoperability with the WebLogic Enterprise
domain.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence1-11

1 Introduction

or

ess
.
n

Figure 1-4 Third-party ORB Interoperability

Note the following regarding third-party ORB interoperability with the WebLogic
Enterprise domain:

� The WebLogic Enterprise C++ ORB supports the IIOP 1.2 protocol, and the
WebLogic Enterprise Java ORB supports the IIOP 1.0 protocol. Both ORBs
interoperate with client products from other vendors that support the IIOP 1.2,
earlier, protocol.

� WebLogic Enterprise provides transactional and security support for the
following third-party client products. However, BEA does not provide
environmental objects for these clients, so these products cannot directly acc
transactional and security capabilities inside the WebLogic Enterprise domain
These client products can connect to a WebLogic Enterprise server applicatio
using a stringified object reference.

Enterprise
JavaBean

Tuxedo
Service

CORBA C++
Object

CORBA Java
Object

T-Engine

Java Server
Page

Servlet

Enterprise
JavaBean

J-Engine

WebLogic Enterprise

Third-Party ORB
1-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

s

the

n

ne

e

� ActiveX

� Netscape Communicator

� Visibroker C++ version 3.3 (not clients using the Visibroker Java ORB)

� Orbix 2.3c02 (with patch 26 or greater)

� CORBA applications that use a third-party ORB cannot initiate or coordinate a
transaction propagated to the WebLogic Enterprise domain. These application
can invoke transactional objects running in the WebLogic Enterprise domain,
and the WebLogic Enterprise transaction coordinator can manage those
transactions; however, all the transactional management is fully delegated to
WebLogic Enterprise domain.

� If the CORBA application using the third-party ORB supports the Secure
Sockets Layer (SSL), that application can use SSL mutual authentication as a
alternative authentication mechanism.

� WebLogic Enterprise can call out to applications using third-party ORBs, using
whatever callback mechanism is supported by the third-party ORB.

� WebLogic Enterprise client ORBs can interoperate with third-party ORBs
(including SSL support).

� The WebLogic Enterprise J-Engine supports RMI over IIOP; therefore, J-Engi
server applications can interoperate with third-party ORBs and other J2EE
application servers that support the RMI over IIOP protocol. For information
about restrictions or limitations on this interoperability, see theRelease Notes.

T-Engine Interdomain Interoperability

A server application running in one WebLogic Enterprise domain can interoperat
with a server application running in another WebLogic Enterprise domain via the
domain gateway (andnot IIOP), as shown in Figure 1-5.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence1-13

1 Introduction

ion.

ns

de

d

,

Figure 1-5 T-Engine Interdomain Interoperability

Domain gateways provide the following interoperability features:

� Domains can be heterogeneous with respect to the WebLogic Enterprise vers
That is, a given WebLogic Enterprise can run both version 4.x and version 5.x
WebLogic Enterprise applications; and those applications can invoke operatio
on either WebLogic Enterprise version 4.x or version 5.x applications running in
a separate domain.

� Domain gateways fully support transaction propagation across domains. For
example, a transactional object in one WebLogic Enterprise domain can inclu
an object running in another domain in that transaction.

� Security context propagation is fully supported across domains for CORBA an
EJB applications. (Interdomain security context propagation that span Tuxedo
services running in WebLogic Enterprise domains is not supported.) However
note the following restriction:

WebLogic Enterprise T-Engine

Domain A

WLE 4.x

WLE 5.x

Domain B

WLE 4.x

WLE 5.x
Domain Gateway

IIOP
1-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models

us

ce
t's

on

e

s, as
When a client application authenticates itself to the domain, and invokes vario
services and objects in the domain -- which in turn may invoke other services
and objects in the domain -- the client's security context is passed along with
each operation. However, if in the course of satisfying a client request, a servi
in one domain makes an invocation on a service in a second domain, the clien
security context cannot be passed to the second domain. The service in the
second domain does not have knowledge of the original client.

� You can secure all domain gateway communications with Link-Level Encrypti
(LLE).

� You can advertise factory objects and EJB home interfaces across domains.

For more information about interdomain WebLogic Enterprise interoperability, se
Administrationin the WebLogic Enterprise online documentation.

WebLogic Enterprise and Tuxedo Domains
Interoperability

WebLogic Enterprise and Tuxedo domains can interoperate via domain gateway
shown in Figure 1-6.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence1-15

1 Introduction

ic
Figure 1-6 WebLogic Enterprise and Tuxedo Domains Interoperability

Note the following about WebLogic Enterprise and Tuxedo interdomain
interoperability:

� Transactions and security contexts can be fully propagated between WebLog
Enterprise and Tuxedo domains.

� Domain mixing is still not supported; that is, you cannot combine a WebLogic
Enterprise domain and a Tuxedo domain into a single domain.

For more information about WebLogic Enterprise and Tuxedo domains
interoperability, seeAdministrationin the WebLogic Enterprise online
documentation.

WebLogic Enterprise T-Engine

WLE 4.x

WLE 5.x
Domain Gateway

WebLogic Enterprise T-Engine

WLE Domain

WLE 4.x

WLE 5.x
Domain Gateway

Tuxedo Domain

Tuxedo 6.4

Tuxedo 6.5
1-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Overview of the Interoperability Sample Applications

in

ice

I.
Overview of the Interoperability Sample
Applications

The WebLogic Enterprise software includes the sample applications as described
Table 1-1.

Table 1-1 The Interoperability Sample Applications

Use the interoperability sample applications in conjunction with the following
documents:

� Getting Started

� Guide to the University Sample Applications

� Guide to the Java Sample Applications

Application Description

EJB-to-CORBA/Java
Simpapp

Shows an EJB server acting as a client invoking a request
and receiving a response from a CORBA/Java object.

CORBA/C++-to-EJB
Simpapp

Shows CORBA/C++ client invoking a request and receiving
a response from an EJB server.

CORBA/Java-to-Tuxedo Shows a CORBA/Java object that invokes a Tuxedo serv
using the Java Enterprise Tuxedo (JET) API.

EJB-to-Tuxedo Shows an Enterprise JavaBean application that invokes a
Tuxedo service using the Java Enterprise Tuxedo (JET) AP
CORBA, J2EE, and Tuxedo Interoperability and Coexistence1-17

1 Introduction
1-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

ise
2 EJB-to-CORBA/Java
Simpapp Sample
Application

The topic includes the following sections:

� How the EJB-to-CORBA/Java Simpapp Sample Application Works

� Software Prerequisites

� Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

� Stopping the EJB-to-CORBA/Java Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterpr
software includes aReadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
EJB-to-CORBA/Java sample application:

Window NT

$TUXDIR\samples\interop\ejb_corbaj

UNIX

$TUXDIR/samples/interop/ejb_corbaj
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-1

2 EJB-to-CORBA/Java Simpapp Sample Application
How the EJB-to-CORBA/Java Simpapp
Sample Application Works

The EJB-to-CORBA/Java Simpapp sample application has an EJB client, an EJB
server deploying theSimpBean EJB and an EJB-to-CORBA bridge object, and a
CORBA server deploying a CORBA object.

TheSimpBean EJB has the following two remote methods:

� Theupper method delegates invocations to theto_upper method on the
CORBA Simple object.

� The lower method method delegates invocations to theto_lower method on
the CORBA Simple object.

The CORBA Simple object has the following two methods:

� The to_upper method accepts a string from the bridge object and converts the
string to uppercase letters.

� The to_lower method accepts a string from the bridge object and converts the
string to lowercase letters.

Figure 2-1 illustrates how the EJB-to-CORBA/Java Simpapp sample application
works.

Figure 2-1 EJB-to-CORBA/Java Simpapp Sample Application

SimpClient

upper();
lower();

EJB Server

SimpBean EJB

upper();
lower();

SimpleBridge
CORBA client

find_simple();
doUpper();
doLower();

CORBA/Java
Server Object

SimpleFactory
find_simple()

Simple
to_upper()
to_lower()

Server Client
2-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-CORBA/Java Simpapp Sample Application Works

p
or

es
Software Prerequisites

To run them3idltojava compiler that is used by the EJB-to-CORBA/Java Simpap
sample application, you need to install Visual C++ version 6.0 with Service Pack 3
later for Visual Studio. Them3idltojava compiler is installed by the WebLogic
Enterprise software in thebin directory underTUXDIR.

Implementing the Bridge Object to Invoke a CORBA/Java
Object

TheSimpleBridge Java object implements bridge design pattern. This object serv
as a bridge between theSimpBean EJB and the CORBA/JavaSimple object, and it is
created by theSimpBean EJB.

TheSimpleBridge Java object performs the following functions:

� Uses the Bootstrap object to obtain a reference to the WebLogic Enterprise
FactoryFinder, from which theSimpleBridge object can obtain a reference to
theSimpleFactory object.

� Invokes theSimpleFactory object to obtain a reference to theSimple object.

� Invokes the appropriate methods on theSimple object to satisfy theSimpBean ’s
requests.

Listing 2-1 shows the methods on theSimpleBridge object that delegate the
SimpBean requests to the CORBA/JavaSimple object.

Listing 2-1 SimpleBridge Object Code

public class SimpleBridge
{

private Simple simple = null;

public SimpleBridge ()
{

simple = getSimple();
}

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-3

2 EJB-to-CORBA/Java Simpapp Sample Application
public String doUpper(String mixedStr)
{

// Convert the string to upper case.
org.omg.CORBA.StringHolder upperStr =

new org.omg.CORBA.StringHolder(mixedStr);
simple.to_upper(upperStr);

System.out.println("in SimpleBridge.doUpper()");
return upperStr.value;

}

public String doLower(String mixedStr)
{

// Convert the string to lower case.
String lowerStr = simple.to_lower(mixedStr);

System.out.println("in SimpleBridge.doLower()");
return lowerStr;

}

public Simple getSimple()
{

try {
// Obtain the bootstrap object,

// the TOBJADDR property contains host and port to connect to.
Tobj_Bootstrap bootstrap = TP.bootstrap();

// Use the bootstrap object to find the factory finder.
org.omg.CORBA.Object fact_finder_oref =

bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =

FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =

fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

// Narrow the simple factory.
SimpleFactory simple_factory_ref =

SimpleFactoryHelper.narrow(simple_fact_oref);

// Find the simple object.
Simple simple = simple_factory_ref.find_simple();
2-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-CORBA/Java Simpapp Sample Application Works

es
// everything succeeded.
return simple;

}
// catch the exceptions
return null;

}
}

The OMG IDL Code for the EJB-to-CORBA/Java Simpapp
Interfaces

The sample application described in this chapter implements the CORBA interfac
listed in Table 2-1.

Listing 2-2 shows thesimple.idl file that defines the CORBA interfaces in the
EJB-to-CORBA/Java Simpapp sample application.

Listing 2-2 OMG IDL Code for the EJB-to-CORBA/Java Simpapp Sample
Application

#pragma prefix "beasys.com"

interface Simple
{

//Convert a string to lower case (return a new string)
string to_lower(in string val);

//Convert a string to upper case (in place)
void to_upper(inout string val);

Table 2-1 Sample Application IDL Interfaces

Interface Description Operation Policies

SimpleFactory Creates object references to theSimple
object

find_simple() Activation: method

Transaction:optional

Simple Converts the case of a string to_upper()

to_lower()

Activation: method

Transaction:optional
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-5

2 EJB-to-CORBA/Java Simpapp Sample Application

the

app
};

interface SimpleFactory
{

Simple find_simple();
};

Building and Running the
EJB-to-CORBA/Java Simpapp Sample
Application

To build and run the EJB-to-CORBA/Java Simpapp sample application, complete
following steps:

1. Verify the environment variables.

2. Copy the files for the EJB-to-CORBA/Java Simpapp sample application into a
work directory.

3. Change the protection attribute on the files for the EJB-to-CORBA/Java Simp
sample application.

4. Execute therunme command.

The following sections describe these steps, and also explain the following:

� How to run the EJB-to-CORBA/Java Simpapp sample application

� Processes and files created by the EJB-to-CORBA/Java Simpapp sample
application
2-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

n,
most

rect

ir
on
Verifying the Settings of the Environment Variables

Before building and running the EJB-to-CORBA/Java Simpapp sample applicatio
you need to ensure that certain environment variables are set on your system. In
cases, these environment variables are set as part of the installation procedure.
However, you need to check the environment variables to ensure they reflect cor
information.

Table 2-2 lists the environment variables required to run the EJB-to-CORBA/Java
Simpapp sample application.

You may optionally set the following system environment variables to change the
default value prior to running the EJB-to-CORBA/Java Simpapp sample applicati
runme command. See theAdministration Guidefor more information about selecting
appropriate values for these environment variables.

Table 2-3 lists the optional environment variables required to run the
EJB-to-CORBA/Java Simpapp sample application.

Table 2-2 Required Environment Variables for the EJB-to-CORBA/Java
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX

TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT

JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME=/usr/local/JDK1.2.2
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-7

2 EJB-to-CORBA/Java Simpapp Sample Application

on

y

5.

er
Verifying the Environment Variables

To verify that the information for the environment variables defined during installati
is correct, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings forTUXDIR andJAVA_HOME.

Table 2-3 Optional Environment Variables for the EJB-to-CORBA/Java
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used b
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests; it must be a number between 0 and 6553
The default value is 2468.

IPCKEY The address of shared memory; the address must be a numb
greater than 32769 unique to this application on this system.
The default value is 55432.
2-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

nt
UNIX

1. Enter theksh command to use the Korn shell.

2. Enter theprintenv command to display the values ofTUXDIR andJAVA_HOME,
as in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables

To change the environment variable settings, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change or enter the name of the environme
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.

7. Click OK to save the changes.

UNIX

1. Enter theksh command to use the Korn shell.

2. Enter theexport command to set the correct values for theTUXDIR and
JAVA_HOMEenvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 2-9

2 EJB-to-CORBA/Java Simpapp Sample Application

ion

R:

les

va
Copying the Files for the Java Simpapp Sample
Application into a Work Directory

You need to copy the files for the EJB-to-CORBA/Java Simpapp sample applicat
into a work directory on your local machine. The files for the EJB-to-CORBA/Java
Simpapp sample application are located in the following directories under TUXDI

Windows NT

$TUXDIR\samples\interop\ejb_corbaj

UNIX

$TUXDIR/samples/interop/ejb_corbaj

The following steps describe how to execute a makefile to copy all the example fi
into a work directory.

1. Create the work directory on your machine.

2. Copy the entireejb_corbaj directory to the work directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\ejb_corbaj*.* < work_directory >

UNIX

> cp -R $TUXDIR/samples/interop/ejb_corbaj/* < work_directory >

3. Change to the work directory created in step 1.

4. Enter the following command, which copies the remaining EJB-to-CORBA/Ja
Simpapp sample application files to the work directory:

Windows NT

>nmake -f makefile.nt copy

UNIX

>make -f makefile.mk copy
2-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

ave

ets:
Files in the Work Directory

This section lists and describes the files copied into your work directory after you h
completed the steps described in the previous section.

The EJB-to-CORBA/Java Simpapp sample application files exist in the following s

� EJB Simpapp files

� CORBA/Java Simpapp files

� EJB-to-CORBA/Java utility files

EJB Simpapp Files

Table 2-4 lists and describes the source files for the EJB portion of this sample
application. These are the files that exist after you execute themake command. These
files are copied into a subdirectory namedejb .

Table 2-4 EJB Simpapp Files

File Description

ejb-jar.xml The standard deployment descriptor for the
SimpBean class.

weblogic-ejb-extensions.xml The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

SimpClient.java The EJB Simpapp client.

SimpBean.java TheSimpBean class. This is an example of a
stateless session bean. This bean contains the
methods that invoke theSimpleBridge class to
delegate the invocations on theSimple
CORBA/Java object.

Simp.java The Remote interface of theSimpBean class.

SimpHome.java The Home interface of theSimpBean class.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-11

2 EJB-to-CORBA/Java Simpapp Sample Application
CORBA/Java Simpapp files

Table 2-5 lists and describes the source files for the CORBA/Java portion of this
sample application. They are copied into a subdirectory namedcorbaj .

Utility Files

Table 2-6 lists and describes the utility files for this sample application.

Table 2-5 CORBA/Java Simpapp Files

File Description

Simple.idl The OMG IDL that declares theSimpleFactory and
Simple interfaces.

Simple.xml The Server Description File for theSimple CORBA
object.

SimpleBridge.Java The EJB-to-CORBA/Java SimpappSimpleBridge
class. This class is used by theSimpBean class to
communicate with the CORBA/JavaSimple object.
This is the class that effects the interoperability between
the EJB and the CORBA/Java object.

ServerImpl.Java The implementation of theServer.initialize and
Server.release methods.

SimpleFactoryImpl.Java The implementation of theSimpleFactory methods.

SimpleImpl.Java The implementation of theSimple methods.

Table 2-6 EJB-to-CORBA/Java Utility Files

File Description

Readme.txt Contains directions for building and executing the
EJB-to-CORBA/Java Simpapp sample application.

runme.cmd The Windows NT batch file that contains commands to
build and execute the EJB-to-CORBA/Java Simpapp
sample application.
2-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

n

tion

of

é

Changing the Protection Attribute on the Files for the
EJB-to-CORBA/Java Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample applicatio
files are marked read-only. Before you can edit or build the files in the
EJB-to-CORBA/Java Simpapp sample application, you need to change the protec
attribute of the files you copied into your work directory (including the respectiveejb

andcorbaj subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory *.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod +w / workdirectory /*.*

On the UNIX operating system platform, you also need to change the permission
runme.ksh to give execute permission to the file, as follows:

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the EJB-to-CORBA/Java Simpapp
sample application.

makefile.nt The common makefile for the EJB-to-CORBA/Java
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++ nmake command. Themakefile.nt file is
included by thesmakefile.nt file.

smakefile.nt The makefile for the EJB-to-CORBA/Java Simpapp
sample application to be used by Symantec's Visual Caf
smake program.

makefile.mk The makefile for the EJB-to-CORBA/Java Simpapp
sample application on the UNIX platform.

Table 2-6 EJB-to-CORBA/Java Utility Files (Continued)

File Description
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-13

2 EJB-to-CORBA/Java Simpapp Sample Application

ng
ksh prompt>chmod +x runme.ksh

Executing the runme Command

The runme command automates the following steps:

1. Sets the system environment variables

2. Loads theUBBCONFIGfile

3. Compiles the code for the EJB server object

4. Compiles the code for the CORBA/Java server application

5. Starts the server application using thetmboot command

6. Starts the client application

7. Stops the server application using thetmshutdown command

To build and run the EJB-to-CORBA Simpapp sample application, enter therunme

command, as follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The EJB-to-CORBA/Java Simpapp sample application runs and prints the followi
messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
2-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

e

saved results
PASSED

All of the sample application output is placed in theresults directory, which is
located in theejb_corbaj work directory. You can check in theresults directory
for the following files:

� The log file, for any compile, server boot, or server shutdown errors

� TheULOGfile for server application errors and exceptions

� Theoutput file for EJB client application output and exceptions

Running the Sample Application

After you have executed therunme command, you can run the EJB-to-CORBA/Java
Simpapp sample application manually if you like.

To manually run the EJB-to-CORBA/Java Simpapp sample application:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh

2. Run the sample, as follows:

Windows NT

prompt>tmboot -y
prompt>java -classpath %CLIENTCLASSPATH% ejb.SimpClient corbaloc:%TOBJADDR%

UNIX

prompt>tmboot -y
prompt>java -classpath ${CLIENTCLASSPATH} ejb.SimpClient corbaloc:${TOBJADDR}

3. The EJB-to-CORBA/Java Simpapp sample application prompts you to enter a
string. After you enter the string, the application returns the string in uppercas
and lowercase characters, respectively:
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-15

2 EJB-to-CORBA/Java Simpapp Sample Application

the

p

String?
Hello World
HELLO WORLD
hello world

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors

� TheULOGfile for server application errors and exceptions

� Theoutput file for EJB client application output and exceptions

Processes and Files Generated by the EJB-to-CORBA/Java
Simpapp Sample Application

This section lists and describes the processes started and the files generated by
EJB-to-CORBA/Java Simpapp sample application.

Processes Started

When thetmboot command is executed to start the EJB-to-CORBA/Java Simpap
sample application, the server processes in Table 2-7 are started:

Table 2-7 EJB-to-CORBA/Java Simpapp Server Processes

Process Description

TMSYSEVT The BEA Tuxedo system Event Broker.
2-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application

t

Files Generated in the corbaj Directory

Table 2-8 lists and describes the files that are generated in thecorbaj work directory.

TMFFNAME Starts the following TMFFNAME processes:

� The TMFFNAME server process with the-N option and the
-M option is the MASTERNameManager service. The-N
option says to start the NameManager Service; the-M option
says to start this name manager as a Master. This service
maintains a mapping of application-supplied names to objec
references.

� The TMFFNAME server process with the-N option only is a
SLAVE NameManager service.

� The TMFFNAME server with the-F option contains the
FactoryFinder object.

JavaServer The JavaServer process that deploys theSimpBean EJB and
hosts the implementation of theSimpBridge CORBA object.
The JavaServer takes one argument,SimpleEjb.jar , which is
the module for theSimpBean EJB.

JavaServer The JavaServer process which deploys theSimple CORBA
object (the deployment of this process also includes the
SimpleFactory factory for theSimple object). The
JavaServer takes one argument,SimpleCorba.jar , which is
the module for theSimple CORBA object.

ISL The IIOP Listener/Handler.

Table 2-7 EJB-to-CORBA/Java Simpapp Server Processes (Continued)

Process Description

Table 2-8 Files Generated in the corbaj Directory

File Description

Simple.java Generated by them3idltojava command for
theSimple interface. This interface contains the
Java version of the IDL interface. It extends the
org.omg.CORBA.Object class.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-17

2 EJB-to-CORBA/Java Simpapp Sample Application
SimpleHelper.java Generated by them3idltojava command for
theSimple interface. This class provides
auxiliary functionality, notably the narrow
method.

SimpleHolder.java Generated by them3idltojava command for
theSimple interface. This class holds a public
instance member of typeSimple . It provides
operations forout andinout arguments, which
CORBA has, but which do not map easily to Java's
semantics.

_SimpleImplBase.java Generated by them3idltojava command for
theSimple interface. This abstract class is the
server skeleton. It implements theSimple.java
interface. The server classSimpleImpl extends
_SimpleImplBase .

_SimpleStub.java Generated by them3idltojava command for
theSimple interface. This class is the client stub.
It implements theSimple.java interface.

SimpleFactory.java
SimpleFactoryHelper.java
SimpleFactoryHolder.java
_SimpleFactoryImplBase.java
_SimpleFactoryStub.java

Generated by them3idltojava command for
theSimpleFactory interface.

Simple.ser The server descriptor file that is generated by the
buildjavaserver command.

Simple.jar The Java ARchive (JAR) file that is generated by
thebuildjavaserver command.

Table 2-8 Files Generated in the corbaj Directory (Continued)

File Description
2-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-CORBA/Java Simpapp Sample Application
Files Generated in the ejb_corbaj Directory

Table 2-9 lists and describes the files generated in theejb_corbaj directory.

Files Generated in the results Directory

Table 2-10 lists and describes the files that are generated in theresults directory,
which is a subdirectory of theejb_corbaj work directory.

Table 2-9 Files Generated in the ejb_corbaj Directory

File Description

results directory Generated by therunme comand.

.adm/.keydb Generated by thetmloadcf command. Contains
the security encryption key database.

Table 2-10 Files Generated in the results Directory

File Description

input Generated by therunme command. Contains the input that
runme gives to theSimpleClient Java application.

output Generated by therunme command. Contains the output that
is produced whenrunme executes theSimpleClient
Java application.

expected_output Generated by therunme command. Contains the output that
is expected when theSimpleClient Java application is
executed by therunme command. The data in the output file
is compared with the data in theexpected_output file to
determine whether the test passed or failed.

log Generated by therunme command. Contains the output
generated by therunme command. If therunme command
fails, check this file and theULOGfile for errors.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-19

2 EJB-to-CORBA/Java Simpapp Sample Application
setenv.cmd Generated by the Windows NTrunme.cmd command.
Contains the commands to set the environment variables
needed to build and execute the EJB-to-CORBA/Java
Simpapp sample application.

setenv.ksh Generated by the UNIXrunme.ksh command. Contains
the commands to set the environment variables needed to
build and execute theSimpapp sample.

stderr Generated by thetmboot command, which is executed by
therunme command. If the-noredirect server option is
specified in theUBBCONFIGfile, the
System.err.println method sends the output to the
stderr file instead of to theULOGuser log file.

stdout Generated by thetmboot command, which is executed by
therunme command. If the-noredirec t server option is
specified in theUBBCONFIGfile, the
System.out.println method sends the output to the
stdout file instead of to theULOGuser log file.

tmsysevt.dat Generated by thetmboot command, which is executed by
the runme command. It contains filtering and notification
rules used by theTMSYSEVT(system event reporting)
process.

tuxconfig Generated by thetmloadcf command, which is executed
by therunme command.

ubb TheUBBCONFIGfile for the EJB-to-CORBA/Java Simpapp
sample application.

ULOG.<date > A log file that contains messages generated by thetmboot
command. If there are any compile or run-time errors, check
this file.

Table 2-10 Files Generated in the results Directory (Continued)

File Description
2-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the EJB-to-CORBA/Java Simpapp Sample Application

les
Stopping the EJB-to-CORBA/Java Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
EJB-to-CORBA/Java Simpapp sample application and to remove unnecessary fi
from the work directory.

1. To stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

2. To restore the work directory to its original state:

Windows NT

prompt>nmake -f makefile.nt clean

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

3. If Symantec's Visual Café is installed on your system, you can use the
smakefile.nt file rather than themakefile.nt file, which is intended for use
with the Visual C++nmake program. For example, execute the following
commands:

prompt>results\setenv
prompt>set JDKDIR=%JAVA_HOME%
prompt>smake -f smakefile.nt
CORBA, J2EE, and Tuxedo Interoperability and Coexistence2-21

2 EJB-to-CORBA/Java Simpapp Sample Application
2-22 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

ise
3 CORBA/C++-to-EJB
Simpapp Sample
Application

This topic includes the following sections:

� How the CORBA/C++-to-EJB Simpapp Sample Application Works

� Software Prerequisites

� The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces

� Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

� Stopping the CORBA/C++-to-EJB Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterpr
software includes aReadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
CORBA/C++-to-EJB Simpapp sample application.

Windows NT

$TUXDIR\samples\interop\cpp_ejb

UNIX

$TUXDIR/samples/interop/cpp_ejb
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-1

3 CORBA/C++-to-EJB Simpapp Sample Application

ing
How the CORBA/C++-to-EJB Simpapp
Sample Application Works

The CORBA/C++-to-EJB Simpapp sample application features the following:

� A CORBA/C++ client application.

� A CORBA/Java server application acting as a liaison between the C++ client
application and an EJB server. Contains theSimpleImpl object, and the
SimpleBridge Java object.

� An EJB server that provides the following two operations:

� One operation accepts a string from the client and converts the string to
uppercase letters.

� Another operation that accepts a string from the client and converts the str
to lowercase letters.

Figure 3-1 illustrates how the CORBA/C++-to-EJB Simpapp sample application
works.

Figure 3-1 CORBA/C++-to-EJB Simpapp Sample Application

CORBA/C++
Client

to_upper()
to_lower()

CORBA/Java Server EJB Server

SimpleImpl
Java Object

doUpper()
doLower()

SimpleBridge
Java Object

upper()
lower()

SimpBean Home Interface
find_SimpBean()

SimpBean Remote
Interface

to_upper()
to_lower()

Server Client
3-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the CORBA/C++-to-EJB Simpapp Sample Application Works

p
or

ava
Software Prerequisites

To run them3idltojava compiler that is used by the CORBA/C++-to-EJB Simpap
sample application, you need to install Visual C++ version 6.0 with Service Pack 3
later for Visual Studio. Them3idltojava compiler is installed by the WebLogic
Enterprise software in thebin directory underTUXDIR.

Implementing the Bridge Object to Invoke an EJB

TheSimpleBridge Java object serves as the intermediary between the CORBA/J
server and the EJB server application. TheSimpleBridge Java object is created by
theSimpleImpl Java object. TheSimpleBridge Java object performs the following
functions:

� Obtains the initial context for the EJB server application.

� Performs a lookup on the EJB Home interface.

� Invokes the appropriate methods on theSimpBean class to satisfy the client
application requests.

Listing 3-1 shows the methods on theSimpleBridge object that delegate the
SimpleImpl object’s requests to the EJB server application:

Listing 3-1 SimpleBridge Object Implementation Code

public class SimpBridge {

public String doUpper(String mixedStr)
{

String upperStr = "";
javax.naming.Context ctx = null;

SimpHome home = null;

try {
// create connection
ctx = getContext();

// look up home object
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-3

3 CORBA/C++-to-EJB Simpapp Sample Application
home = (SimpHome) ctx.lookup("ejb.SimpHome");

// create the object and use it
Simp simp = home.create();
upperStr = simp.upper(mixedStr);

} // catch exceptions
}

return upperStr;
}

public String doLower(String mixedStr)
{

String lowerStr = "";
javax.naming.Context ctx = null;
SimpHome home = null;

try {
// create connection
ctx = getContext();

// look up home object
home = (SimpHome) ctx.lookup("ejb.SimpHome");

// create the object and use it
Simp simp = home.create();
lowerStr = simp.lower(mixedStr);

} // catch exceptions
}

return lowerStr;
}

public static Context getContext()
{

Context context = null;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.beasys.jndi.WLEInitialContextFactory");
env.put(Context.SECURITY_AUTHENTICATION, "none");

try {
context = new InitialContext(env);

} catch (NamingException ee) {
System.out.println("getContext failed: " + ee);
ee.printStackTrace();
3-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces
}

return context;
}

}

The OMG IDL Code for the
CORBA/C++-to-EJB Simpapp Interfaces

The C++ and Java objects in the sample application described in this chapter
implement the CORBA interfaces listed in Table 3-1.

Listing 3-2 shows thesimple.idl file that defines the CORBA interfaces in the
CORBA/C++-to-EJB Simpapp sample application.

Listing 3-2 OMG IDL Code for the CORBA/C++-to-EJB Simpapp Sample
Application

#pragma prefix "beasys.com"

interface Simple
{

//Convert a string to lower case (return a new string)
string to_lower(in string val);

//Convert a string to upper case (in place)

Table 3-1 Sample Application IDL Interfaces

Interface Description Operation Policies

SimpleFactory Creates object references to theSimple
object.

find_simple() Activation: method

Transaction:optional

Simple Delegates the conversion of the string to
the EJB server.

to_upper()

to_lower()

Activation: method

Transaction:optional
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-5

3 CORBA/C++-to-EJB Simpapp Sample Application

the

pp
void to_upper(inout string val);
};

interface SimpleFactory
{

Simple find_simple();
};

Building and Running the
CORBA/C++-to-EJB Simpapp Sample
Application

To build and run the CORBA/C++-to-EJB Simpapp sample application, complete
following steps:

1. Verify the environment variables.

2. Copy the files for the CORBA/C++-to-EJB Simpapp sample application into a
work directory.

3. Change the protection attribute on the files for the CORBA/C++-to-EJB Simpa
sample application.

4. Execute therunme command.

The following sections describe these steps, and also explain the following:

� How to run the CORBA/C++-to-EJB Simpapp sample application

� Processes and files generated by the CORBA/C++-to-EJB Simpapp sample
application
3-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

n,
most

rect

ir

the
Verifying the Settings of the Environment Variables

Before building and running the CORBA/C++-to-EJB Simpapp sample applicatio
you need to ensure that certain environment variables are set on your system. In
cases, these environment variables are set as part of the installation procedure.
However, you need to check the environment variables to ensure they reflect cor
information.

Table 3-2 lists the environment variables required to run the CORBA/C++-to-EJB
Simpapp sample application.

You may optionally set the following system environment variables to change the
default value prior to running the CORBA/C++-to-EJB Simpapp samplerunme

command. See theAdministration Guidefor more information about selecting
appropriate values for these environment variables.

Table 3-3 lists the optional environment variables you can assign prior to running
CORBA/C++-to-EJB Simpapp sample application.

Table 3-2 Required Environment Variables for the CORBA/C++-to-EJB
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX

TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT

JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME=/usr/local/JDK1.2.2
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-7

3 CORBA/C++-to-EJB Simpapp Sample Application

on

y

5.
Verifying the Environment Variables

To verify that the information for the environment variables defined during installati
is correct, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings forTUXDIR andJAVA_HOME.

UNIX

1. Enter theksh command to use the Korn shell.

Table 3-3 Optional Environment Variables for the CORBA/C++-to-EJB
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used b
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests; it must be a number between 0 and 6553
The default value is 2468.

IPCKEY The address of shared memory; it must be a number greater
than 32769 unique to this application on this system. The
default value is 55432.
3-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

nt
2. Enter theprintenv command to display the values ofTUXDIR andJAVA_HOME,
as in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables

To change the environment variable settings, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change or enter the name of the environme
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.

7. Click OK to save the changes.

UNIX

1. Enter theksh command to use the Korn shell.

2. Enter theexport command to set the correct values for theTUXDIR and
JAVA_HOMEenvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 3-9

3 CORBA/C++-to-EJB Simpapp Sample Application

on

les

va
Copying the Files for the CORBA/C++-to-EJB Simpapp
Sample Application into a Work Directory

You need to copy the files for the CORBA/C++-to-EJB Simpapp sample applicati
into a work directory on your local machine. The files for the CORBA/C++-to-EJB
Simpapp sample application are located in the following directories.

Windows NT

$TUXDIR\samples\interop\cpp_ejb

UNIX

$TUXDIR/samples/interop/cpp_ejb

The following steps describe how to execute a makefile to copy all the example fi
into a work directory.

1. Create the work directory on your machine.

2. Copy the entirecpp_ejb directory to the work directory created in the previous
step:

Windows NT

> copy $TUXDIR\samples\interop\cpp_ejb*.* < work_directory >

UNIX

> cp -R $TUXDIR/samples/interop/cpp_ejb/* < work_directory >

3. Change to the work directory created in step 1.

4. Enter the following command, which copies the remaining EJB-to-CORBA/Ja
Simpapp sample application files to the work directory:

Windows NT

>nmake -f makefile.nt copy

UNIX

>make -f makefile.mk copy
3-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

ave

ts:

lso
e for

the
Files in the Work Directory

This section lists and describes the files copied into your work directory after you h
completed the steps described in the previous section.

The CORBA/C++-to-EJB Simpapp sample application files exist in the following se

� CORBA C++ and Java source files

� EJB source files

� CORBA/C++-to-EJB Simpapp utility files

CORBA/C++ Client Files

Table 3-4 lists and describes the files needed to create the CORBA/C++ client. A
included are the files needed to create the CORBA/Java server that acts as a bridg
the CORBA/C++-to-EJB Simpapp sample application. These files are located in
cpp subdirectory.

Table 3-4 CORBA C++ and Java Files for the CORBA/C++-to-EJB Simpapp
Sample Application

File Description

simplec.cpp C++ client program for thesimple sample
application.

simple.idl The OMG IDL that declares theSimpleFactory and
Simple interfaces.

simple.xml The XML source file used to associate activation and
transaction policy values with interfaces.

ServerImpl.Java The Java source code that implements the
Server.initialize andServer.release
methods.

SimpleFactoryImpl.Java The Java source code that implements the
SimpleFactory methods.

SimpleImpl.Java The Java source code that implements theSimple
methods.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-11

3 CORBA/C++-to-EJB Simpapp Sample Application
EJB Server Files

Table 3-5 lists and describes the files needed to create the EJB server for the
CORBA/C++-to-EJB Simpapp sample application. These files are located in theejb

subdirectory.

Utility Files

Table 3-6 lists and describes the utility files for this sample application.

Table 3-5 EJB Source Files for the CORBA/C++-to-EJB Simpapp Sample
Application

File Description

weblogic-ejb-extensions.XML The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

SimpBean.java The Java source code for theSimpBean class.
This is an example of a stateless session bean.
This bean contains the methods invoked by the
SimpleBridge class.

Simp.java The Java source code for the Remote interface
of theSimpBean class.

SimpHome.java The Java source code for the Home interface of
theSimpBean class.

SimpleBridge.java The Java source code for theSimpleBridge
class. This class is used by theSimpleImpl
class to communicate with the EJB server. This
is the class that effects the interoperability
between the CORBA/C++ object and the EJB
server.

Table 3-6 CORBA/C++-to-EJB Simpapp Utility Files

File Description

Readme.txt Contains directions for building and executing the
CORBA/C++-to-EJB Simpapp sample application.
3-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

n

tion

é

Changing the Protection Attribute on the Files for the
CORBA/C++-to-EJB Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample applicatio
files are marked read-only. Before you can edit or build the files in the
CORBA/C++-to-EJB Simpapp sample application, you need to change the protec
attribute of the files you copied into your work directory (including the respectiveejb

andcorbaj subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory *.*

UNIX

prompt>/bin/ksh
ksh prompt>chmod +w / workdirectory /*.*

runme.cmd The Windows NT batch file that contains commands to
build and execute the CORBA/C++-to-EJB Simpapp
sample application.

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the CORBA/C++-to-EJB Simpapp
sample application.

makefile.nt The common makefile for the CORBA/C++-to-EJB
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++ nmake command. Themakefile.nt file is
included by thesmakefile.nt file.

smakefile.nt The makefile for the CORBA/C++-to-EJB Simpapp
sample application to be used by Symantec's Visual Caf
smake program.

makefile.mk The makefile for the CORBA/C++-to-EJB Simpappp
sample application on the UNIX platform.

Table 3-6 CORBA/C++-to-EJB Simpapp Utility Files (Continued)

File Description
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-13

3 CORBA/C++-to-EJB Simpapp Sample Application

of

ng
On the UNIX operating system platform, you also need to change the permission
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Executing the runme Command

The runme command automates the following steps:

1. Sets the system environment variables

2. Loads theUBBCONFIGfile

3. Compiles the code for the EJB server object

4. Compiles the code for the CORBA/C++ joint client/server application

5. Compiles the code for the CORBA/Java server application

6. Starts the server application using thetmboot command

7. Starts the client application

8. Stops the server application using thetmshutdown command

To build and run the CORBA/Java Simpapp sample application, enter therunme

command, as follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The CORBA/C++-to-EJB Simpapp sample application runs and prints the followi
messages:

Testing simpapp
cleaned up
prepared
3-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors

� TheULOGfile for server application errors and exceptions

� Theoutput file for EJB client application output and exceptions

Running the Sample Application

After you have executed therunme command, you can run the CORBA/C++-to-EJB
Simpapp sample application manually, if you like.

To manually run the CORBA/C++-to-EJB Simpapp sample application:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh

2. Run the sample:

Windows NT

prompt>tmboot -y
prompt>java -DTOBJADDR=%TOBJADDR% SimpleClient

UNIX

prompt>tmboot -y
prompt>java -DTOBJADDR=$TOBJADDR SimpleClient
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-15

3 CORBA/C++-to-EJB Simpapp Sample Application

u

the
3. To run the CORBA/C++ joint client/server application, enter a string. After yo
enter the string, the application returns the string in uppercase and lowercase
characters, respectively:

String?
Hello World
HELLO WORLD
hello world

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors

� TheULOGfile for server application errors and exceptions

� Theoutput file for EJB client application output and exceptions

Processes and Files Generated by the CORBA/C++-to-EJB
Simpapp Sample Application

This section lists and describes the processes started and the files generated by
CORBA/C++-to-EJB Simpapp sample application.

Processes Started

When thetmboot command is executed to start the CORBA/C++-to-EJB Simpapp
sample application, the server processes in Table 3-7 are started:

Table 3-7 CORBA/C++-to-EJB Simpapp Server Processes

Process Description

TMSYSEVT The BEA Tuxedo system Event Broker.
3-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application

s

for
Files Generated in the cpp Directory

Table 3-8 lists and describes the files generated in thecpp directory.

TMFFNAME Starts the following TMFFNAME processes:

� The TMFFNAME server process with the-N option and
the-M option is the MASTERNameManager service. The
-N option says to start the NameManager Service; the-M
option says to start this name manager as a Master. This
service maintains a mapping of application-supplied name
to object references.

� The TMFFNAME server process with the-N option only
is a SLAVENameManager service.

� The TMFFNAME server with the-F option contains the
FactoryFinder object.

JavaServer The Simpapp server process that implements EJB JAR file
theSimpBean andSimpHomeinterfaces. The JavaServer has
one argument,SimpleEjb.jar , which is the EJB Java
ARchive (JAR) file that was created for the application.

JavaServer The Simpapp server process that implements the
SimpleFactory interface and theSimple interface. The
JavaServer has one argument,SimpleCorba.jar , which is
the CORBA Java ARchive (JAR) file that was created for the
application.

ISL The IIOP Listener/Handler.

Table 3-7 CORBA/C++-to-EJB Simpapp Server Processes (Continued)

Process Description

Table 3-8 Files Generated in the cpp Directory

File Description

Simple_c.cpp Client stubs for theSimple and
SimpleFactory interfaces.

Simple_c.h Client stub header for theSimple and
SimpleFactory interfaces.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-17

3 CORBA/C++-to-EJB Simpapp Sample Application
Simple_client.exe C++ client executable.

Simple.java Generated by them3idltojava command for
theSimple interface. This interface contains
the Java version of the IDL interface. It extends
the base classorg.omg.CORBA.Object .

SimpleHelper.java Generated by them3idltojava command for
theSimple interface. This class provides
auxiliary functionality, notably thenarrow
method.

SimpleHolder.java Generated by them3idltojava command for
theSimple interface. This class holds a public
instance member of typeSimple . It provides
operations forout andinout arguments,
which CORBA has, but which do not map
easily to Java's semantics.

_SimpleImplBase.java Generated by them3idltojava command for
theSimple interface. This abstract class is the
server skeleton. It implements the
Simple.java interface. The server class
SimpleImpl extends_SimpleImplBase .

_SimpleStub.java Generated by them3idltojava command for
theSimple interface. This class is the client
stub. It implements theSimple.java
interface.

SimpleFactory.java
SimpleFactoryHelper.java
SimpleFactoryHolder.java
_SimpleFactoryImplBase.java
_SimpleFactoryStub.java

Generated by them3idltojava command for
theSimpleFactory interface.

Simple.ser The server descriptor file that is generated by
thebuildjavaserver command.

Simple.jar The Java ARchive (JAR) file that is generated
by thebuildjavaserver command.

Table 3-8 Files Generated in the cpp Directory (Continued)

File Description
3-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/C++-to-EJB Simpapp Sample Application
File Generated in the cpp_ejb Directory

Table 3-9lists and described the files generated in thecpp_ejb directory.

Files Generated in the results Directory

Table 3-10 lists and describes the files that are generated in theresults directory,
which is a subdirectory of thecorbaj work directory.

Table 3-9 Files Generated in the cpp_ejb Directory

File Description

results directory Generated by therunme command.

.adm/.keydb Generated by thetmloadcf command. Contains the security
encryption key database.

Table 3-10 Files Generated in the results Directory

File Description

input Generated by therunme command. Contains the input that
runme gives to theSimpleClient Java application.

output Generated by therunme command. Contains the output that is
produced whenrunme executes theSimpleClient Java
application.

expected_output Generated by therunme command. Contains the output that is
expected when theSimpleClient Java application is
executed by therunme command. The data in theoutput file
is compared with the data in theexpected_output file to
determine whether the test passed or failed.

log Generated by therunme command. Contains the output
generated by therunme command. If therunme command
fails, check this file, and theULOGfile, for errors.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-19

3 CORBA/C++-to-EJB Simpapp Sample Application

p

d

setenv.cmd Generated by the Windows NTrunme.cmd command.
Contains the commands to set the environment variables
needed to build and execute the CORBA/C++-to-EJB Simpap
sample application.

setenv.ksh Generated by the UNIXrunme.ksh command. Contains the
commands to set the environment variables needed to build an
execute theSimpapp sample application.

stderr Generated by thetmboot command, which is executed by the
runme command. If the-noredirect server option is
specified in theUBBCONFIGfile, the
System.err.println method sends the output tostderr
instead of to theULOGuser log file.

stdout Generated by thetmboot command, which is executed by the
runme command. If the-noredirec t server option is
specified in theUBBCONFIGfile, the
System.out.println method sends the output to the
stdout file instead of to theULOGuser log file.

tmsysevt.dat Generated by thetmboot command, which is executed by the
runme command. It contains filtering and notification rules
used by theTMSYSEVT(system event reporting) process.

tuxconfig Generated by thetmloadcf command, which is executed by
therunme command.

ubb TheUBBCONFIGfile for the CORBA/C++-to-EJB
Simpappsample application.

ULOG.<date > A log file that contains messages generated by thetmboot
command.

Table 3-10 Files Generated in the results Directory (Continued)

File Description
3-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the CORBA/C++-to-EJB Simpapp Sample Application

es
Stopping the CORBA/C++-to-EJB Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
CORBA/C++-to-EJB Simpapp sample application and to remove unnecessary fil
from the work directory:

1. To stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

2. To restore the work directory to its original state:

Windows NT

prompt>nmake -f makefile.nt clean

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

3. If Symantec's Visual Café is installed on your system, you can use the
smakefile.nt file rather than themakefile.nt file, which is intended for use
with the Visual C++nmake program. For example, execute the following
commands:

prompt>results\setenv
prompt>set JDKDIR=%JAVA_HOME%
prompt>smake -f smakefile.nt
CORBA, J2EE, and Tuxedo Interoperability and Coexistence3-21

3 CORBA/C++-to-EJB Simpapp Sample Application
3-22 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

ise
4 CORBA/Java-to-Tuxedo
Simpapp Sample
Application

This topic includes the following sections:

� How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

� Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample
Application

� Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterpr
software includes aReadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the
CORBA/Java-to-Tuxedo sample application:

Window NT

$TUXDIR\samples\interop\corbaj_tux

UNIX

$TUXDIR/samples/interop/corbaj_tux
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-1

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

of

g

How the CORBA/Java-to-Tuxedo Simpapp
Sample Application Works

This topic includes the following sections:

� Key Application Components

� Application Flow

� OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces

� Software Prerequisites

� Example Code

The CORBA/Java-to-Tuxedo Simpapp sample application demonstrates the use
Java Enterprise Tuxedo (JET) technology to invoke a Tuxedo service from a
CORBA/Java server running in the WebLogic Enterprise domain. For more
information about JET, seeUsing Java Enterprise Tuxedo.

Key Application Components

The CORBA/Java-to-Tuxedo Simpapp sample application consists of the followin
components:

� A CORBA/Java client (SimpleClient) prompts the user for a string and then
invokes methods on the CORBA/Java server,to_upper andto_lower , to
convert the string to all uppercase and all lowercase text, respectively. This
client then displays the results of the conversion to the user.

� A CORBA/Java server object (SimpleImpl) acts as the bridge between the
WebLogic Enterprise and Tuxedo environments. This object provides the
following methods to handle the conversion:

� The to_upper method calls another method,joltNativeCall , which
instantiates aJoltService object and uses thecall method to invoke the
TOUPPER service in the Tuxedo environment. TheJoltService class is a
component of the JET Class Library.
4-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

g

on
� The to_lower method uses the JavatoLowerCase method to perform the
lowercase conversion.

� The TOUPPER service in the Tuxedo environment, which converts a text strin
to all uppercase characters.

Application Flow

Figure 4-1 illustrates how the CORBA/Java-to-Tuxedo Simpapp sample applicati
works.

Figure 4-1 Overview of CORBA/Java-to-Tuxedo Simpapp Sample Application

OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp
Interfaces

Table 4-1 describes the CORBA interfaces that are implemented in the
CORBA/Java-to-Tuxedo Simpapp application.

WLE Environment

TuxedoCORBA/Java Client
(SimpleClient)

TOUPPER
Service

Get String

CORBA/Java Server

SimpleImpl
Java Object

to_upper()
to_lower()Display Results

JET
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-3

4 CORBA/Java-to-Tuxedo Simpapp Sample Application
Listing 4-1 shows thesimple.idl file that defines the CORBA interfaces in the
CORBA/Java-to-Tuxedo Simpapp sample application.

Listing 4-1 OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Sample
Application

#pragma prefix "beasys.com"
interface Simple
{

// convert a string to lower case (return a new string)
string to_lower(in string val);

// convert a string to upper case (in place)
void to_upper(inout string val);

};

interface SimpleFactory
{

Simple find_simple();

// To make simpapp scalable have the SimpleFactory use some means
// to identify (specify in criteria) the user in the Simple object
// reference it creates. eg. Name (string), SS# (unsigned long),
// tel_no (string).

};

Table 4-1 CORBA Interfaces Implemented in CORBA/Java-to-Tuxedo Simpapp Application

Interface Description Operation Policies

SimpleFactory Creates object references to the Simple
object

find_simple() Activation:method

Transaction:optional

Simple Converts the case of a string to_upper()

to_lower()

Activation:method

Transaction:optional
4-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works

ice

ses
epts

t.
Software Prerequisites

To run them3idltojava compiler that is used by the CORBA/Java-to-Tuxedo
Simpapp sample application, you need to install Visual C++ version 6.0 with Serv
Pack 3 or later for Visual Studio. Them3idltojava compiler is installed by the
WebLogic Enterprise software in thebin directory underTUXDIR.

Example Code

Listing 4-2 shows thejoltNativeCall method from the SimpleImpl CORBA/Java
server in the CORBA/Java-to-Tuxedo Simpapp sample application. This method u
JET technology to invoke the TOUPPER service in the Tuxedo environment. It acc
the following parameters:

� svcName is the name of the Tuxedo service to invoke (TOUPPER).

� data is the string that the user entered in the SimpleClient CORBA/Java clien

Listing 4-2 The joltNativeCall() Method in the SimpleImpl CORBA/Java Server

String joltNativeCall (String svcName, org.omg.CORBA.StringHolder
data)

{
JoltService svc;

try {
svc = new JoltService (svcName);
svc.addString("STRING", data.value);
svc.call (null);

} catch (ServiceException ee) {
System.out.println("JoltService got " + ee);
return new String("");

}

return svc.getStringDef("STRING", "no_response");
}

}

CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-5

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

lete
The joltNativeCall() method performs the following operations:

� Instantiating a newJoltService object to represent the Tuxedo TOUPPER
service. TheJoltService class is part of the JET Class Library. For more
information about the JET Class Library, seeUsing Java Enterprise Tuxedo.

� Calling theaddString method on theJoltService object to set up the input
parameters to the TOUPPER service: the conversion type (“STRING”) and the
string to convert (data).

� Calling thecall method to invoke the TOUPPER service.

� Returning the results to the calling method,to_upper , in the SimpleImpl
CORBA/Java server object.

Building and Running the
CORBA/Java-to-Tuxedo Simpapp Sample
Application

To build and run the CORBA/Java-to-Tuxedo Simpapp sample application, comp
the following steps:

� Step 1: Verify the Settings of Environment Variables

� Step 2: Copy the Files into a Work Directory

� Step 3: Change the Protection Attribute on the Files

� Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application
4-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

r
tion
they

ir
tion
Step 1: Verify the Settings of Environment Variables

Before building and running the CORBA/Java-to-Tuxedo Simpapp sample
application, you need to ensure that certain environment variables are set on you
system. In most cases, these environment variables are set as part of the installa
procedure. However, you need to check the environment variables to ensure that
reflect correct information.

Required Environment Variables

Table 4-2 describes the environment variables that are required to run the
CORBA/Java-to-Tuxedo Simpapp sample application.

Optional Environment Variables

You may optionally set the following system environment variables to change the
default value before running the CORBA/Java-to-Tuxedo Simpapp sample applica
runme command. See theAdministration Guidefor more information about selecting
appropriate values for these environment variables.

Table 4-2 Required Environment Variables for the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT

JAVA_HOME=c:\JDK1.2.2

UNIX

JAVA_HOME=/usr/local/JDK1.2.2
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-7

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

ning

on

y

5.

er
Table 4-3 describes the optional environment variables that you can set before run
the CORBA/Java-to-Tuxedo Simpapp sample application.

Verifying the Environment Variables

To verify that the information for the environment variables defined during installati
is correct, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings forTUXDIR andJAVA_HOME.

Table 4-3 Optional Environment Variables for the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used b
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests. It must be a number between 0 and 6553
The default value is 2468.

IPCKEY The address of shared memory. The address must be a numb
greater than 32769 that is unique to this application on this
system. The default value is 55432.
4-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

nt
UNIX

1. Execute theksh command to use the Korn shell.

2. Execute theprintenv command to display the values ofTUXDIR and
JAVA_HOME, as shown in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

Changing the Environment Variables

To change the environment variable settings, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change, or enter the name of the environme
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.

7. Click OK to save the changes.

UNIX

1. Execute theksh command to use the Korn shell.

2. Execute theexport command to set the correct values for theTUXDIR and
JAVA_HOMEenvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 4-9

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

iles
Step 2: Copy the Files into a Work Directory

You need to copy the files for the CORBA/Java-to-Tuxedo Simpapp sample
application into a work directory on your local machine. The files for the
CORBA/Java-to-Tuxedo Simpapp sample application are located in the following
directories underTUXDIR:

Windows NT

$TUXDIR\samples\interop\corbaj_tux

UNIX

$TUXDIR/samples/interop/corbaj_tux

Copying the Files

The following steps describe how to execute a makefile to copy all of the example f
into a work directory.

1. Create the work directory on your machine.

2. Copy the entirecorbaj_tux directory to the working directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\corbaj_tux*.* < work_directory >

UNIX

> cp -R $TUXDIR/samples/interop/corbaj_tux/* < work_directory >

3. Change to the working directory created in step 1.

4. For UNIX, start aksh .

5. Change the permissions on all the files to give them read-access.

6. Verify that the following command is in your search path:

Windows NT

nmake

UNIX

make
4-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

the
7. Execute the following command, which copies the remaining
CORBA/Java-to-Tuxedo Simpapp sample application files to the working
directory:

Windows NT

>nmake -f makefile.nt copy

UNIX

>make -f makefile.mk copy

Files Copied to the Working Directory

This section describes the directories and files that were copied into your working
directory when you executed the makefile.

Utility Files

Table 4-4 describes the utility files for this sample application. These files reside in
root of the working directory.

Table 4-4 Utility Files in the Root of the Working Directory

File Description

Readme.txt Contains directions for building and executing the
CORBA/Java-to-Tuxedo Simpapp sample application.

runme.cmd The Windows NT batch file that contains commands to
build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

runme.ksh The UNIX Korn shell script that contains commands to
build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

makefile.nt The common makefile for the CORBA/Java-to-Tuxedo
Simpapp sample application on the Windows NT
platform. This makefile can be used directly by the Visual
C++ nmake command.

makefile.mk The makefile for the CORBA/Java-to-Tuxedo Simpapp
sample application on the UNIX platform.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence4-11

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

s of

ion.

.

CORBA/Java Client and Server Files

Table 4-5 describes the source files for the CORBA/Java client and server portion
this sample application. These files reside in thecorbaj subdirectory of the working
directory.

Tuxedo Files

Table 4-6 describes the source files for the Tuxedo portion of this sample applicat
These files reside in thetux subdirectory of the working directory.

Table 4-5 CORBA/Java Client and Server Files in the corbaj Subdirectory

File Description

SimpleClient.java CORBA/Java client application.

Simple.idl The OMG IDL that declares theSimpleFactory and
Simple interfaces.

Simple.xml The Server Description File for theSimple
CORBA/Java server object.

SimpleFactoryImpl.Java The implementation of theSimpleFactory methods.

SimpleImpl.Java The implementation of theSimple methods. Illustrates
the interoperability between the CORBA/Java server and
the Tuxedo server by providing the bridge between them

ServerImpl.Java The implementation of theServer.initialize and
Server.release methods.

Table 4-6 Tuxedo Files in the tux Subdirectory

File Description

jrepository Jolt Repository definition file.

simpserv.c Simpapp server source code.
4-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

n

uild
e

Step 3: Change the Protection Attribute on the Files

During the installation of the WebLogic Enterprise software, the sample applicatio
files are marked read-only. Before you can edit or build the files in the
CORBA/Java-to-Tuxedo Simpapp sample application, you need to change the
protection attribute of the files you copied into your work directory (including the
respectiveejb andcorbaj subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory *.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod +w / workdirectory /*.*

On UNIX, you also need to change the permission ofrunme.ksh to give execute
permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample
Application

Once you have copied the files and changed their protection attributes, you can b
and run the CORBA/Java-to-Tuxedo Simpapp sample application by executing th
runme command, which starts server processes, generates files in various
subdirectories of the working directory, and starts the sample application.

Executing the runme Command

The runme command automates the following steps:

1. Set the system environment variables.

2. Load theUBBCONFIGfile.

3. Compile the code for the CORBA/Java Server application.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence4-13

4 CORBA/Java-to-Tuxedo Simpapp Sample Application
4. Compile the code for the Jet Server application.

5. Start the server application using thetmboot command.

6. Start the client application.

7. Stop the server application using thetmshutdown command.

To build and run the EJB-to-CORBA Simpapp sample application, execute therunme

command, as follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The CORBA/Java-to-Tuxedo Simpapp sample application runs and prints the
following messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

All of the sample application output is placed in theresults directory, which is
located in thecorbaj_tux working directory. You can check in theresults directory
for the following files:

� The log file, for any compile, server boot, or server shutdown errors.

� TheULOGfile for server application errors and exceptions.

� Theoutput file for CORBA/Java client application output and exceptions.
4-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

e

er a
e

Running the Sample Application Manually

After you have executed therunme command one time, you can subsequently run th
CORBA/Java-to-Tuxedo Simpapp sample application manually.

To run the CORBA/Java-to-Tuxedo Simpapp sample application manually:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh

2. Run the sample, as follows:

Windows NT

prompt>tmboot -y
prompt>java -DTOBJADDR=%TOBJADDR% -classpath %CLIENTCLASSPATH%
SimpleClient

UNIX

prompt>tmboot -y
prompt>java -DTOBJADDR=${TOBJADDR} -classpath
${CLIENTCLASSPATH} SimpleClient

3. The CORBA/Java-to-Tuxedo Simpapp sample application prompts you to ent
string. After you enter the string, the application returns the string in uppercas
and lowercase characters, respectively:

String?
Hello World
HELLO WORLD
hello world

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors.

� TheULOGfile for server application errors and exceptions.

� Theoutput file for CORBA/Java client application output and exceptions.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence4-15

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

.

Server Processes Started by the Sample Application

Table 4-7 describes the server processes that are started when thetmboot command is
executed to start the CORBA/Java-to-Tuxedo Simpapp sample application.

Files Generated by the Sample Application

This section describes the files that are generated in various subdirectories of the
working directory.

Table 4-7 Server Processes Started When tmboot Is Executed

Process Description

TMSYSEVT BEA Tuxedo system Event Broker.

TMFFNAME Starts the following TMFFNAME processes:

� The TMFFNAME server process with the-N option and the
-M option is the MASTERNameManager service.
The -N option says to start the NameManager Service.
The-M option says to start this name manager as a Master
This service maintains a mapping of application-supplied
names to object references.

� The TMFFNAME server process with the-N option only is
a SLAVE NameManager service.

� The TMFFNAME server with the-F option contains the
FactoryFinder object.

JavaServer JavaServer process that deploys theSimple CORBA/Java
object (the deployment of this process also includes the
SimpleFactory factory for theSimple object). The
JavaServer takes one argument,Simple.jar , which is the
module for theSimple CORBA/Java server object.

JREPSVR Jolt Repository Server, which manages the Jolt Repository.
The Jolt Repository contains service definitions for BEA
Tuxedo services.

ISL IIOP Listener/Handler.
4-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application
File Generated in the .adm Subdirectory

Table 4-8 describes the file that is generated in the.adm subdirectory.

Files Generated in the corbaj Subdirectory

Table 4-9 describes the files that are generated in thecorbaj subdirectory.

Table 4-8 File in the .adm Subdirectory

File Description

.keydb Generated by thetmloadcf command.
Contains the security encryption key database.

Table 4-9 Files Generated in the corbaj Subdirectory

File Description

Simple.java Generated by them3idltojava command for
theSimple interface. This interface contains the
Java version of the IDL interface. It extends the
org.omg.CORBA.Object class.

SimpleHelper.java Generated by them3idltojava command for
theSimple interface. This class provides
auxiliary functionality, notably thenarrow
method.

SimpleHolder.java Generated by them3idltojava command for
theSimple interface. This class holds a public
instance member of typeSimple . It provides
operations forout andinout arguments, which
CORBA has, but which do not map easily to Java's
semantics.

_SimpleImplBase.java Generated by them3idltojava command for
theSimple interface. This abstract class is the
server skeleton. It implements theSimple.java
interface. The server classSimpleImpl extends
_SimpleImplBase .
CORBA, J2EE, and Tuxedo Interoperability and Coexistence4-17

4 CORBA/Java-to-Tuxedo Simpapp Sample Application
Files Generated in the tux Subdirectory

Table 4-10 describes the files that are generated in thetux subdirectory.

Files Generated in the results Subdirectory

Table 4-11 describes the files that are generated in theresults subdirectory.

_SimpleStub.java Generated by them3idltojava command for
theSimple interface. This class is the client stub.
It implements theSimple.java interface.

SimpleFactory.java
SimpleFactoryHelper.java
SimpleFactoryHolder.java
_SimpleFactoryImplBase.java
_SimpleFactoryStub.java

Generated by them3idltojava command for
theSimpleFactory interface.

Simple.ser The server descriptor file that is generated by the
buildjavaserver command.

Simple.jar The CORBA/Java server archive file that is
generated by thebuildjavaserver command.

SimpleClient.jar The CORBA/Java client archive file that is
generated by themake or nmake command.

Table 4-9 Files Generated in the corbaj Subdirectory (Continued)

File Description

Table 4-10 File Generated in the tux Subdirectory

simpserv.exe Simpapp server object file that is generated by the
buildserver command.

simpserv.obj Simpapp server object file.
4-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application

ed

d

Table 4-11 Files Generated in the results Subdirectory

File Description

input Generated by therunme command. Contains the input that
runme gives to theSimpleClient CORBA/Java application.

output Generated by therunme command. Contains the output that is
produced whenrunme executes theSimpleClient
CORBA/Java application.

expected_output Generated by therunme command. Contains the output that is
expected when theSimpleClient CORBA/Java application
is executed by therunme command. The data in the output file
is compared with the data in theexpected_output file to
determine whether the test passed or failed.

log Generated by therunme command. Contains the output
generated by therunme command. If therunme command
fails, check this file and theULOGfile for errors.

setenv.cmd Generated by the Windows NTrunme.cmd command.
Contains the commands to set the environment variables need
to build and execute the CORBA/Java-to-Tuxedo Simpapp
sample application.

setenv.ksh Generated by the UNIXrunme.ksh command. Contains the
commands to set the environment variables needed to build an
execute theSimpapp sample.

stderr Generated by thetmboot command, which is executed by the
runme command. If the-noredirect server option is
specified in theUBBCONFIGfile, theSystem.err.println
method sends the output to thestderr file instead of to the
ULOGuser log file.

stdout Generated by thetmboot command, which is executed by the
runme command. If the-noredirec t server option is
specified in theUBBCONFIGfile, theSystem.out.println
method sends the output to thestdout file instead of to the
ULOGuser log file

tmsysevt.dat Generated by thetmboot command, which is executed by the
runme command. It contains filtering and notification rules
used by theTMSYSEVT(system event reporting) process.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence4-19

4 CORBA/Java-to-Tuxedo Simpapp Sample Application

files
Stopping the CORBA/Java-to-Tuxedo
Simpapp Sample Application

Before using another sample application, use the following procedure to stop the
CORBA/Java-to-Tuxedo Simpapp sample application and to remove unnecessary
from the work directory.

1. Stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

2. Restore the working directory to its original state:

Windows NT

prompt>nmake -f makefile.nt clean

UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean

tuxconfig Generated by thetmloadcf command, which is executed by
therunme command.

ubb TheUBBCONFIGfile for the CORBA/Java-to-Tuxedo Simpapp
sample application.

ULOG.<date > A log file that contains messages generated by thetmboot
command. If there are any compile or run-time errors, check this
file.

Table 4-11 Files Generated in the results Subdirectory (Continued)

File Description
4-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

CHAPTER

ise

o

5 EJB-to-Tuxedo
Simpapp Sample
Application

This topic includes the following sections:

� How the EJB-to-Tuxedo Simpapp Sample Application Works

� Building and Running the EJB-to-Tuxedo Simpapp Sample Application

� Stopping the EJB-to-Tuxedo Simpapp Sample Application

Note: Each sample application directory tree provided with the WebLogic Enterpr
software includes aReadme.txt file that explains how to build and run the
sample. Refer to this file in the following directory for troubleshooting
information or other last-minute information about using the EJB-to-Tuxed
Simpapp sample application.

Windows NT

$TUXDIR\samples\interop\ejb_tux

UNIX

$TUXDIR/samples/interop/ejb_tux
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-1

5 EJB-to-Tuxedo Simpapp Sample Application

ver
T,
How the EJB-to-Tuxedo Simpapp Sample
Application Works

This topic includes the following sections:

� Key Application Components

� Application Flow

� Software Prerequisites

� Example Code

The EJB-to-Tuxedo Simpapp sample application demonstrates the use of Java
Enterprise Tuxedo (JET) technology to invoke a Tuxedo service from an EJB ser
running in the WebLogic Enterprise EJB container. For more information about JE
SeeUsing Java Enterprise Tuxedo.

Key Application Components

The EJB-to-Tuxedo Simpapp sample application consists of the following main
components:

� An EJB client (SimpClient) prompts the user for a string and then invokes
methods on the EJB,upper andlower , to convert the string to all uppercase and
all lowercase text, respectively. This client then displays the results of the
conversion to the user.

� An Enterprise JavaBean (SimpBean) acts as the bridge between the WebLogic
Enterprise and Tuxedo environments. This object provides the following
methods to handle the conversion:

� Theupper method calls another method,joltNativeCall , which
instantiates aJoltService object and uses thecall method to invoke the
TOUPPER service in the Tuxedo environment. TheJoltService class is a
component of the JET Class Library.
5-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

How the EJB-to-Tuxedo Simpapp Sample Application Works

g

.

o

� The lower method uses the JavatoLowerCase method to perform the
lowercase conversion.

� The TOUPPER service in the Tuxedo environment, which converts a text strin
to all uppercase characters.

Application Flow

Figure 5-1 illustrates how the EJB-to-Tuxedo Simpapp sample application works

Figure 5-1 Overview of the EJB-to-Tuxedo Simpapp Sample Application

Software Prerequisites

In order to invoke a Tuxedo service using JET, you need to install Visual C++
version 6.0 with Service Pack 3 or later for Visual Studio.

Example Code

Listing 5-1 shows thejoltNativeCall method from the SimpBean EJB in the
EJB-to-Tuxedo Simpapp sample application. This method uses JET technology t
invoke the TOUPPER service in the Tuxedo environment. It accepts the following
parameters:

WLE Environment

SimpClient
(EJB Client)

Display Results
Get String

TuxedoEJB Server

SimpBean
EJB

TOUPPER
Service

JET
upper()
lower()
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-3

5 EJB-to-Tuxedo Simpapp Sample Application
� svcName is the name of the Tuxedo service to invoke (TOUPPER).

� data is the string that the user entered in theSimpClient client.

Listing 5-1 The joltNativeCall() Method in the SimpBean EJB

String joltNativeCall (String svcName, String data)
{

JoltService svc;

try {
svc = new JoltService (svcName);
svc.addString("STRING", data);
svc.call (null);

} catch (ServiceException e) {
System.out.println("JoltService got "+e);
return new String("");

}

return svc.getStringDef("STRING", "no_response");
}

The joltNativeCall method performs the following operations:

� Instantiating a newJoltService object to represent the Tuxedo TOUPPER
service. TheJoltService class is part of the JET Class Library. For more
information about the JET Class Library, seeUsing Java Enterprise Tuxedo.

� Calling theaddString method on theJoltService object to set up the input
parameters to the TOUPPER service: the conversion type (“STRING”) and the
string to convert (data).

� Calling thecall method to invoke the TOUPPER service.

� Returning the results to the calling method,upper() , in theSimpBean EJB.
5-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

ple

ases,
, you
tion.
Building and Running the EJB-to-Tuxedo
Simpapp Sample Application

This section includes the following steps to build the EJB-to-Tuxedo Simpapp sam
application:

� Step 1: Verify the Settings of Environment Variables

� Step 2: Copy the Files into a Work Directory

� Step 3: Change the Protection Attribute on the Files for the EJB-to-Tuxedo
Simpapp Sample Application

� Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application

Step 1: Verify the Settings of Environment Variables

Before building and running the EJB-to-Tuxedo Simpapp sample application, you
need to ensure that certain environment variables are set on your system. In most c
these environment variables are set as part of the installation procedure. However
need to check the environment variables to ensure that they reflect correct informa

Required Environment Variables

Table 5-1 describes the environment variables that are required to run the
EJB-to-Tuxedo Simpapp sample application.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-5

5 EJB-to-Tuxedo Simpapp Sample Application

ir

s

ning

y

Optional Environment Variables

You may optionally set the following system environment variables to change the
default value before running the EJB-to-Tuxedo Simpapp samplerunme command.
See theAdministration Guidefor more information about selecting appropriate value
for these environment variables.

Table 5-2 describes the optional environment variables that you can set before run
the EJB-to-Tuxedo Simpapp sample application.

Table 5-1 Required Environment Variables for the EJB-to-Tuxedo Simpapp
Sample Application

Environment Variable Description

TUXDIR The directory path where you installed the WebLogic
Enterprise software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For
example:

Windows NT

JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME=/usr/local/JDK1.2.2

Table 5-2 Optional Environment Variables for the EJB-to-Tuxedo Simpapp
Sample Application

Environment Variable Description

HOST The host name portion of the TCP/IP network address used b
the ISL process to accept connections from CORBA. The
default value is the name of the local machine.
5-6 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

on

5.
Verifying the Environment Variables

To verify that the information for the environment variables defined during installati
is correct, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings forTUXDIR andJAVA_HOME.

UNIX

1. Execute theksh command to use the Korn shell.

2. Execute theprintenv command to display the values ofTUXDIR and
JAVA_HOME, as shown in the following example:

ksh prompt>printenv TUXDIR
ksh prompt>printenv JAVA_HOME

PORT The TCP port number at which the ISL process listens for
incoming requests. It must be a number between 0 and 6553
The default value is 2468.

IPCKEY The address of shared memory. It must be a number greater
than 32769 that is unique to this application on this system.
The default value is 55432.

Table 5-2 Optional Environment Variables for the EJB-to-Tuxedo Simpapp
Sample Application (Continued)

Environment Variable Description
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-7

5 EJB-to-Tuxedo Simpapp Sample Application

nt

o a
Changing the Environment Variables

To change the environment variable settings, complete the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. On the Environment page in the System Properties window, click the
environment variable you want to change, or enter the name of the environme
variable in the Variable field.

6. Enter the correct information for the environment variable in the Value field.

7. Click OK to save the changes.

UNIX

1. Execute theksh command to use the Korn shell.

2. Execute theexport command to set the correct values for theTUXDIR and
JAVA_HOMEenvironment variables, as in the following example:

ksh prompt>export TUXDIR= directorypath
ksh prompt>export JAVA_HOME= directorypath

Step 2: Copy the Files into a Work Directory

You need to copy the files for the EJB-to-Tuxedo Simpapp sample application int
work directory on your local machine. The files for the EJB-to-Tuxedo Simpapp
sample application are located in the following directories underTUXDIR:
5-8 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

iles

ou
Windows NT

$TUXDIR\samples\interop\ejb_tux

UNIX

$TUXDIR/samples/interop/ejb_tux

Copying the Files

The following steps describe how to execute a makefile to copy all of the example f
into a work directory.

1. Create the work directory on your machine.

2. Copy the entireejb_tux directory to the working directory created in the
previous step:

Windows NT

> copy $TUXDIR\samples\interop\ejb_tux*.* < work_directory >

UNIX

> cp -R $TUXDIR/samples/interop/ejb_tux/* < work_directory >

3. Change to the working directory created in step 1.

4. Execute the following command, which copies the remaining EJB-to-Tuxedo
Simpapp sample application files to the working directory:

Windows NT

>nmake -f makefile.nt copy

UNIX

>make -f makefile.mk copy

Files Copied to the Working Directory

This section describes the files that were copied into your working directory when y
executed the makefile.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence 5-9

5 EJB-to-Tuxedo Simpapp Sample Application

the

er for
Utility Files

Table 5-3 describes the utility files for this sample application. These files reside in
root of the working directory.

EJB Files

Table 5-4 describes the files that are needed to create the EJB client and EJB serv
this sample application. These files reside in theejb subdirectory of the working
directory.

Table 5-3 Utility Files in the Root of the Working Directory

File Description

Readme.txt Contains directions for building and executing the
EJB-to-Tuxedo Simpapp sample application.

runme.cmd Windows NT batch file that contains commands to build
and execute the EJB-to-Tuxedo Simpapp sample
application.

runme.ksh UNIX Korn shell script that contains commands to build
and execute the EJB-to-Tuxedo Simpapp sample
application.

makefile.nt Common makefile for the EJB-to-Tuxedo Simpapp
sample application on the Windows NT platform. This
makefile can be used directly by the Visual C++nmake
command.

makefile.mk Makefile for the EJB-to-Tuxedo Simpapp sample
application on the UNIX platform.

Table 5-4 EJB Files in the ejb Subdirectory

File Description

SimpClient.java The EJB client application that calls methods on
theSimpBean object.
5-10 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

ion.

.

Tuxedo Files

Table 5-5 describes the source files for the Tuxedo portion of this sample applicat
These files reside in thetux subdirectory of the working directory.

SimpBean.java The Java source code for theSimpBean class.
This is an example of a stateless session bean
This bean contains the methods that are invoked
by theSimpClient class.

Simp.java The Java source code for the Remote interface
of theSimpBean class.

SimpHome.Java The Java source code for the Home interface of
theSimpBean class.

weblogic-ejb-extensions.XML The XML file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

ejb-jar.xml The standard deployment descriptor for the
SimpBean class.

Table 5-4 EJB Files in the ejb Subdirectory (Continued)

File Description

Table 5-5 Tuxedo Files in the tux Subdirectory

File Description

jrepository Jolt Repository definition file.

simpserv.c Simpapp server source code.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence5-11

5 EJB-to-Tuxedo Simpapp Sample Application

n
do

les

uild

s of
Step 3: Change the Protection Attribute on the Files for
the EJB-to-Tuxedo Simpapp Sample Application

During the installation of the WebLogic Enterprise software, the sample applicatio
files are marked read-only. Before you can edit or build the files in the EJB-to-Tuxe
Simpapp sample application, you need to change the protection attribute of the fi
you copied into your work directory (including the respectiveejb andcorbaj

subdirectories), as follows:

Windows NT

prompt>attrib /S -r drive:\workdirectory *.*

UNIX

prompt>/bin/ksh
ksh prompt>chmod +w / workdirectory /*.*

On UNIX, you also need to change the permission ofrunme.ksh to give execute
permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Step 4: Run the EJB-to-Tuxedo Simpapp Sample
Application

Once you have copied the files and changed their protection attributes, you can b
and run the EJB-to-Tuxedo Simpapp sample application by executing therunme

command, which starts server processes, generates files in various subdirectorie
the working directory, and starts the sample application.

Executing the runme Command

The runme command automates the following steps:

1. Set the system environment variables.

2. Load theUBBCONFIGfile.
5-12 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application
3. Compile the code for the EJB server object.

4. Compile the code for the Jet Server application.

5. Start the server application using thetmboot command.

6. Start the client application.

7. Stop the server application using thetmshutdown command.

To build and run the CORBA/Java Simpapp sample application, execute therunme

command, as follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The EJB-to-Tuxedo Simpapp sample application runs and prints the following
messages:

Testing simpapp
cleaned up
prepared
built
loaded ubb
booted
ran
shutdown
saved results

PASSED

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors.

� TheULOGfile for server application errors and exceptions.

� Theoutput file for EJB client application output and exceptions.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence5-13

5 EJB-to-Tuxedo Simpapp Sample Application

e

Running the Sample Application Manually

After you have executed therunme command one time, you can subsequently run th
EJB-to-Tuxedo Simpapp sample application manually.

To run the EJB-to-Tuxedo Simpapp sample application manually:

1. Verify that your environment variables are correct by entering the following
command:

Windows NT

prompt>results\setenv

UNIX

prompt>. results/setenv.ksh

2. Run the sample:

Windows NT

prompt>tmboot -y
prompt>java -classpath %CLIENTCLASSPATH% ejb.SimpClient
corbaloc:%TOBJADDR%

UNIX

prompt>tmboot -y
prompt>java -classpath ${CLIENTCLASSPATH} ejb.SimpClient
corbaloc:${TOBJADDR}

3. To run the CORBA/C++ joint client/server application, enter a string. After you
enter the string, the application returns the string in uppercase and lowercase
characters, respectively:

String?
Hello World
HELLO WORLD
hello world

All of the sample application output is placed in theresults directory. You can check
in that directory for the following files:

� The .log file, for any compile, server boot, or server shutdown errors.

� TheULOGfile for server application errors and exceptions.

� Theoutput file for EJB client application output and exceptions.
5-14 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

.

r

Server Processes Started by the Sample Application

Table 5-6 describes the server processes that are started when thetmboot command is
executed to start the EJB-to-Tuxedo Simpapp sample application.

Files Generated by the Sample Application

This section describes the files that are generated in various subdirectories of the
working directory.

Table 5-6 Server Processes Started When tmboot Is Executed

Process Description

TMSYSEVT The BEA Tuxedo system Event Broker.

TMFFNAME Starts the following TMFFNAME processes:

� The TMFFNAME server process with the-N option and the
-M option is the MASTERNameManager service.
The-N option says to start the NameManager Service.
The-M option says to start this name manager as a Master
This service maintains a mapping of application-supplied
names to object references.

� The TMFFNAME server process with the-N option only is
a SLAVE NameManager service.

� The TMFFNAME server with the-F option contains the
FactoryFinder object.

JavaServer The Simpapp server process that implements EJB-JAR file fo
theSimpBean andSimpHome interfaces. The JavaServer has
one argument,SimpleEjb.jar , which is the EJB Java
ARchive (JAR) file that was created for the application.

JREPSVR Jolt Repository Server, which manages the Jolt Repository.
The Jolt Repository contains service definitions for BEA
Tuxedo services.

ISL The IIOP Listener/Handler.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence5-15

5 EJB-to-Tuxedo Simpapp Sample Application
File Generated in the .adm Subdirectory

Table 5-7 describes the file that is generated in the.adm subdirectory.

File Generated in the ejb Subdirectory

Table 5-10 describes the file that is generated in theejb subdirectory.

Files Generated in the tux Subdirectory

Table 5-9 describes the files that are generated in thetux subdirectory.

Table 5-7 File in the .adm Subdirectory

File Description

.keydb Generated by thetmloadcf command.
Contains the security encryption key database.

Table 5-8 File Generated in the ejb Subdirectory

File Description

ejb.jar EJB client archive file that is generated by themake or nmake
command.

Table 5-9 File Generated in the tux Subdirectory

simpserv.exe Simpapp server object file that is generated by the
buildserver command.

simpserv.obj Simpapp server object file.
5-16 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Building and Running the EJB-to-Tuxedo Simpapp Sample Application

ed

d

Files Generated in the results Subdirectory

Table 5-10 describes the files that are generated in theresults subdirectory.

Table 5-10 Files Generated in the results Subdirectory

File Description

input Generated by therunme command. Contains the input that
runme gives to theSimpClient Java application.

output Generated by therunme command. Contains the output that is
produced whenrunme executes theSimpClient Java
application.

expected_output Generated by therunme command. Contains the output that is
expected when theSimpClient Java application is executed
by therunme command. The data in theoutput file is
compared with the data in theexpected_output file to
determine whether the test passed or failed.

log Generated by therunme command. Contains the output
generated by therunme command. If therunme command
fails, check this file, and theULOGfile, for errors.

setenv.cmd Generated by the Windows NTrunme.cmd command.
Contains the commands to set the environment variables need
to build and execute the EJB-to-Tuxedo Simpapp sample
application.

setenv.ksh Generated by the UNIXrunme.ksh command. Contains the
commands to set the environment variables needed to build an
execute theSimpapp sample application.

stderr Generated by thetmboot command, which is executed by the
runme command. If the-noredirect server option is
specified in theUBBCONFIGfile, theSystem.err.println
method sends the output tostderr instead of to theULOGuser
log file.

stdout Generated by thetmboot command, which is executed by the
runme command. If the-noredirec t server option is
specified in theUBBCONFIGfile, theSystem.out.println
method sends the output to thestdout file instead of to the
ULOGuser log file.
CORBA, J2EE, and Tuxedo Interoperability and Coexistence5-17

5 EJB-to-Tuxedo Simpapp Sample Application

the
Stopping the EJB-to-Tuxedo Simpapp
Sample Application

Before using another sample application, use the following procedure to stop the
EJB-to-Tuxedo Simpapp sample application and to remove unnecessary files from
work directory:

1. Stop the application:

Windows NT

prompt>tmshutdown -y

UNIX

ksh prompt>tmshutdown -y

2. Restore the working directory to its original state:

Windows NT

prompt>nmake -f makefile.nt clean

tmsysevt.dat Generated by thetmboot command, which is executed by the
runme command. It contains filtering and notification rules
used by the TMSYSEVT (system event reporting) process.

tuxconfig Generated by thetmloadcf command, which is executed by
therunme command.

ubb TheUBBCONFIGfile for the EJB-to-Tuxedo Simpapp sample
application.

ULOG.<date > A log file that contains messages generated by thetmboot
command.

Table 5-10 Files Generated in the results Subdirectory (Continued)

File Description
5-18 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Stopping the EJB-to-Tuxedo Simpapp Sample Application
UNIX

prompt>. ./results/setenv.ksh
prompt>make -f makefile.nt clean
CORBA, J2EE, and Tuxedo Interoperability and Coexistence5-19

5 EJB-to-Tuxedo Simpapp Sample Application
5-20 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

Index

C
compiling

client applications
CORBA/C++-to-EJB Simpapp

sample application 3-14
EJB-to-CORBA/Java Simpapp

sample application 2-14
server applications

CORBA/C++-to-EJB Simpapp
sample application 3-14

CORBA/Java-to-Tuxedo Simpapp
sample application 4-13, 4-
14

EJB-to-CORBA/Java Simpapp
sample application 2-14

EJB-to-Tuxedo Simpapp sample
application 5-13

copied files
CORBA/Java-to-Tuxedo Simpapp

sample application 4-11
EJB-to-Tuxedo Simpapp sample

application 5-9
CORBA/C++-to-EJB Simpapp sample

application 3-1
changing protection on files 3-13
compiling the Java client application 3-

14
compiling the Java server application 3-

14
loading the UBBCONFIG file 3-14
required environment variables 3-7

runme command 3-14
setting up the work directory 3-10

CORBA/Java-to-Tuxedo Simpapp sample
application

application flow 4-3
changing protection on files 4-13
compiling the CORBA/Java server

application 4-13
compiling the JET server application 4-

14
components of 4-2
copied files 4-11
environment variables 4-7
example code 4-5
generated files 4-16
how it works 4-2
loading the UBBCONFIG file 4-13
OMG IDL code 4-3
runme command 4-13
running the application manually 4-15
server processes started 4-16
setting up the work directory 4-10
software prerequisites 4-5
source files 4-10
starting the client application 4-14, 4-15
starting the server application 4-14
stopping 4-20

customer support contact information ix
CORBA, J2EE, and Tuxedo Interoperability and Coexistence I-1

D
directory location of source files

CORBA/Java-to-Tuxedo Simpapp
sample application 4-10

EJB-to-CORBA/Java Simpapp sample
application 2-10, 3-10

EJB-to-Tuxedo Simpapp sample
application 5-9

documentation, where to find it viii

E
EJBs

third-party 1-11
EJB-to-CORBA/Java sample application 2-2
EJB-to-CORBA/Java Simpapp sample

application
changing protection on files 2-13
compiling the Java client application 2-

14
compiling the Java server application 2-

14
files for 2-10
loading the UBBCONFIG file 2-14
required environment variables 2-7
runme command 2-14
setting up the work directory 2-10
source files 2-10, 3-10

EJB-to-Tuxedo Simpapp sample application
application flow 5-3
changing protection on files 5-12
compiling the EJB server object 5-13
compiling the JET server application 5-

13
components of 5-2
copied files 5-9
environment variables 5-5
example code 5-3
generated files 5-15
how it works 5-2
loading the UBBCONFIG file 5-12

runme command 5-12
running the application manually 5-14
server processes started 5-15
setting up the work directory 5-8
software prerequisites 5-3
source files 5-9
starting the client application 5-13, 5-14
starting the server application 5-13
stopping 5-18

environment variables
changing 2-9
CORBA/C++-to-EJB Simpapp sample

application 3-7
CORBA/Java-to-Tuxedo Simpapp

sample application 4-7
EJB-to-CORBA/Java Simpapp sample

application 2-7
EJB-to-Tuxedo Simpapp sample

application 5-5
HOST 4-8, 5-6
IPCKEY 4-8, 5-7
JAVA_HOME 2-7, 3-7, 4-7, 5-6
PORT 4-8, 5-7
TUXDIR 2-7, 3-7, 4-7, 5-6
verifying 2-8

example code
CORBA/Java-to-Tuxedo Simpapp

sample application 4-5
EJB-to-Tuxedo Simpapp sample

application 5-3

F
file protections

CORBA/C++-to-EJB Simpapp sample
application 3-13

CORBA/Java-to-Tuxedo Simpapp
sample application 4-13

EJB-to-CORBA/Java Simpapp sample
application 2-13

EJB-to-Tuxedo Simpapp sample
I-2 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

application 5-12

G
generated files

CORBA/Java-to-Tuxedo Simpapp
sample application 4-16

EJB-to-Tuxedo Simpapp sample
application 5-15

H
HOST 2-7
HOST environment variable 4-8, 5-6

I
interoperability

third-party 1-11
IPCKEY 2-7
IPCKEY environment variable 4-8, 5-7
ISL process 2-16, 4-16, 5-15

J
JAVA_HOME environment variable 4-7, 5-6
JAVA_HOME parameter

CORBA/C++-to-EJB Simpapp sample
application 3-7

EJB-to-CORBA/Java Simpapp sample
application 2-7

JavaServer process 2-16, 4-16, 5-15
JREPSVR process 4-16, 5-15

M
m3idltojava compiler 2-5, 4-5

O
ORBs

third-party 1-11

P
PORT 2-7
PORT environment variable 4-8, 5-7
printing product documentation viii

R
related information viii
runme command

CORBA/Java-to-Tuxedo Simpapp
sample application 4-13

description 2-14, 3-14
EJB-to-Tuxedo Simpapp sample

application 5-12
running the application manually

CORBA/Java-to-Tuxedo Simpapp
sample application 4-15

EJB-to-Tuxedo Simpapp sample
application 5-14

S
sample applications

EJB-to-CORBA 2-2
setting up the work directory

CORBA/Java-to-Tuxedo Simpapp
sample application 4-10

EJB-to-Tuxedo Simpapp sample
application 5-8

Simpapp 2-2
SimpBean 3-7
software prerequisites 2-5

CORBA/Java-to-Tuxedo Simpapp
sample application 4-5

EJB-to-Tuxedo Simpapp sample
application 5-3

stopping
CORBA/Java-to-Tuxedo Simpapp

sample application 4-20
EJB-to-Tuxedo Simpapp sample

application 5-18
CORBA, J2EE, and Tuxedo Interoperability and Coexistence I-3

support
technical ix

Symantec Visual Cafe 2-21

T
the 2-14, 3-14
third-party interoperability 1-11
TMFFNAME process 2-16, 4-16, 5-15
tmshutdown 2-21, 4-20
TMSYSEVT process 2-16, 4-16, 5-15
TUXDIR 2-7
TUXDIR environment variable 4-7, 5-6
TUXDIR parameter

CORBA/C++-to-EJB Simpapp sample
application 3-7

EJB-to-CORBA/Java Simpapp sample
application 2-7

U
UBBCONFIG file

CORBA/C++-to-EJB Simpapp sample
application 3-14

EJB-to-CORBA/Java Simpapp sample
application 2-14

V
Visual C++ compiler 2-5, 4-5, 5-3
Visual Cafe 2-21
I-4 CORBA, J2EE, and Tuxedo Interoperability and Coexistence

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Interoperability Among the CORBA, J2EE, and Tuxedo Programming Models
	BEA Clients and Servers
	T-Engine Server Interoperability
	Java Enterprise Tuxedo (JET) Software
	Transactions and Security

	T-Engine Client and Server Interoperability
	Transactions and Security
	A Note About BEA Jolt
	RMI Clients and the WebLogic RMI-on-IIOP Protocol

	J-Engine and T-Engine Interoperability
	Third-party ORB Interoperability
	T-Engine Interdomain Interoperability
	WebLogic Enterprise and Tuxedo Domains Interoperability

	Overview of the Interoperability Sample Applications

	2 EJB-to-CORBA/Java Simpapp Sample Application
	How the EJB-to-CORBA/Java Simpapp Sample Application Works
	Software Prerequisites
	Implementing the Bridge Object to Invoke a CORBA/Java Object
	The OMG IDL Code for the EJB-to-CORBA/Java Simpapp Interfaces

	Building and Running the EJB-to-CORBA/Java Simpapp Sample Application
	Verifying the Settings of the Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Copying the Files for the Java Simpapp Sample Application into a Work Directory
	Files in the Work Directory
	EJB Simpapp Files
	CORBA/Java Simpapp files
	Utility Files

	Changing the Protection Attribute on the Files for the EJB-to-CORBA/Java Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application
	Processes and Files Generated by the EJB-to-CORBA/Java Simpapp Sample Application
	Processes Started
	Files Generated in the corbaj Directory
	Files Generated in the ejb_corbaj Directory
	Files Generated in the results Directory

	Stopping the EJB-to-CORBA/Java Simpapp Sample Application

	3 CORBA/C++-to-EJB Simpapp Sample Application
	How the CORBA/C++-to-EJB Simpapp Sample Application Works
	Software Prerequisites
	Implementing the Bridge Object to Invoke an EJB

	The OMG IDL Code for the CORBA/C++-to-EJB Simpapp Interfaces
	Building and Running the CORBA/C++-to-EJB Simpapp Sample Application
	Verifying the Settings of the Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Copying the Files for the CORBA/C++-to-EJB Simpapp Sample Application into a Work Directory
	Files in the Work Directory
	CORBA/C++ Client Files
	EJB Server Files
	Utility Files

	Changing the Protection Attribute on the Files for the CORBA/C++-to-EJB Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application
	Processes and Files Generated by the CORBA/C++-to-EJB Simpapp Sample Application
	Processes Started
	Files Generated in the cpp Directory
	File Generated in the cpp_ejb Directory
	Files Generated in the results Directory

	Stopping the CORBA/C++-to-EJB Simpapp Sample Application

	4 CORBA/Java-to-Tuxedo Simpapp Sample Application
	How the CORBA/Java-to-Tuxedo Simpapp Sample Application Works
	Key Application Components
	Application Flow
	OMG IDL Code for the CORBA/Java-to-Tuxedo Simpapp Interfaces
	Software Prerequisites
	Example Code

	Building and Running the CORBA/Java-to-Tuxedo Simpapp Sample Application
	Step 1: Verify the Settings of Environment Variables
	Required Environment Variables
	Optional Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Step 2: Copy the Files into a Work Directory
	Copying the Files
	Files Copied to the Working Directory
	Utility Files
	CORBA/Java Client and Server Files
	Tuxedo Files

	Step 3: Change the Protection Attribute on the Files
	Step 4: Run the CORBA/Java-to-Tuxedo Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application Manually
	Server Processes Started by the Sample Application
	Files Generated by the Sample Application
	File Generated in the .adm Subdirectory
	Files Generated in the corbaj Subdirectory
	Files Generated in the tux Subdirectory
	Files Generated in the results Subdirectory

	Stopping the CORBA/Java-to-Tuxedo Simpapp Sample Application

	5 EJB-to-Tuxedo Simpapp Sample Application
	How the EJB-to-Tuxedo Simpapp Sample Application Works
	Key Application Components
	Application Flow
	Software Prerequisites
	Example Code

	Building and Running the EJB-to-Tuxedo Simpapp Sample Application
	Step 1: Verify the Settings of Environment Variables
	Required Environment Variables
	Optional Environment Variables
	Verifying the Environment Variables
	Changing the Environment Variables

	Step 2: Copy the Files into a Work Directory
	Copying the Files
	Files Copied to the Working Directory
	Utility Files
	EJB Files
	Tuxedo Files

	Step 3: Change the Protection Attribute on the Files for the EJB-to-Tuxedo Simpapp Sample Applica...
	Step 4: Run the EJB-to-Tuxedo Simpapp Sample Application
	Executing the runme Command
	Running the Sample Application Manually
	Server Processes Started by the Sample Application
	Files Generated by the Sample Application
	File Generated in the .adm Subdirectory
	File Generated in the ejb Subdirectory
	Files Generated in the tux Subdirectory
	Files Generated in the results Subdirectory

	Stopping the EJB-to-Tuxedo Simpapp Sample Application

	Index

