
Using the idltojava Compiler

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the idltojava Compiler

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Using the idltojava Compiler iii

Contents

About This Document
What You Need to Know .. vi

e-docs Web Site ... vi

How to Print the Document... vi

Related Information.. vii

Contact Us! ... vii

Documentation Conventions ... viii

1. Overview of CORBA Java Programming
Where Do I Get the BEA idltojava Compiler?.. 1-2

How Does the BEA idltojava Compiler Differ from the Sun Microsystems, Inc.
Version? ... 1-2

What Is IDL? ... 1-3

What Is Java IDL?... 1-3

About CORBA and Java IDL.. 1-4

Accessing CORBA Objects from Java Applications 1-4

Defining and Implementing CORBA Objects ... 1-5

CORBA Object Interfaces .. 1-6

Java Language-based Implementation .. 1-7

Client Implementation ... 1-8

The FactoryFinder .. 1-9

What’s Next? ... 1-10

2. Using the idltojava Command
Syntax of the idltojava Command ... 2-2

idltojava Command Description.. 2-2

Running idltojava on Client or Joint Client/Server IDL Files........................... 2-2

iv Using the idltojava Compiler

Running m3idltojava on Server Side IDL Files .. 2-3

idltojava Command Options.. 2-3

idltojava Command Flags .. 2-4

Using #pragma in IDL Files .. 2-6

3. Java IDL Examples
Getting Started with a Simple Example of IDL .. 3-1

Callback Objects IDL Example ... 3-2

Persistent State and User Exceptions IDL Example.. 3-3

Implementation Inheritance ... 3-4

4. Java IDL Programming Concepts
Exceptions ... 4-1

Differences Between CORBA and Java Exceptions 4-2

System Exceptions.. 4-2

System Exception Structure .. 4-2

 Minor Codes... 4-3

Completion Status ... 4-3

User Exceptions.. 4-4

Minor Code Meanings.. 4-4

Initializations ... 4-7

Creating an ORB Object... 4-8

Creating an ORB for an Application... 4-8

Creating an ORB for an Applet... 4-8

 Arguments to ORB.init().. 4-9

System Properties .. 4-10

Obtaining Initial Object References ... 4-10

Stringified Object References ... 4-11

Getting References from the ORB .. 4-11

The FactoryFinder Interface .. 4-12

5. IDL-to-Java Mappings Used By the idltojava Compiler

6. The Java IDL API

Index

Using the idltojava Compiler v

About This Document

This document explains what Java IDL is and describes how to use the idltojava
compiler for developing Java-CORBA applications in the BEA WebLogic
Enterprise™ environment.

This document covers the following topics:

n Chapter 1, “Overview of CORBA Java Programming,” explains the relationship
of Java IDL to CORBA, and explains how you can use Java IDL to create Java
applications that interoperate with CORBA objects. This chapter also explains
where to get the BEA idltojava compiler, and how the BEA idltojava compiler
differs from the idltojava compiler available from Sun Microsystems, Inc.

n Chapter 2, “Using the idltojava Command,” explains how to run the idltojava
compiler and explains all the options and flags on the idltojava command.

n Chapter 3, “Java IDL Examples,” provides several code examples to illustrate
the use of the idltojava compiler. The code examples include the Java SimpApp
sample application to get you started. Other examples illustrate the use of
Persistent State and User Exceptions, Callback Objects, and Implementation
Inheritance.

n Chapter 4, “Java IDL Programming Concepts,” discusses some relavant
programming concepts, such as Exceptions, Initialization, and use of the Factory
Finder.

n Chapter 5, “IDL-to-Java Mappings Used By the idltojava Compiler,” explains
the CORBA IDL-to-Java mappings that the idltojava compiler implements.

n Chapter 6, “The Java IDL API,” provides links to the Javadoc API reference
pages that relate to Java IDL and the idltojava compiler.

vi Using the idltojava Compiler

What You Need to Know

This document is intended mainly for developers who are interested in building
distributed Java applications that can act as Common Object Request Broker
Architecture (CORBA) objects in a BEA WebLogic Enterprise application. It assumes
a familiarity with the BEA WebLogic Enterprise platform and Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
System, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the BEA WebLogic
Enterprise documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

How to Print the Document

Using the idltojava Compiler vii

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see the BEA WebLogic Enterprise Bibliography in the
WebLogic Enterprise online documentation.

For more general information about Java IDL and Java CORBA applications, refer to
the following sources:

n The Object Management Group (OMG) Web site at http://www.omg.org/

n The Sun Microsystems, Inc. Java Web site at http://java.sun.com/

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

viii Using the idltojava Compiler

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

Documentation Conventions

Using the idltojava Compiler ix

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

x Using the idltojava Compiler

Using the idltojava Compiler 1-1

CHAPTER

1 Overview of CORBA
Java Programming

BEA WebLogic Enterprise is an implementation of the Java 2 Enterprise Edition
(J2EE) platform. As such, BEA WebLogic Enterprise includes CORBA (Common
Object Request Broker Architecture) capability for standards-based interoperability
and connectivity.

The BEA WebLogic Enterprise platform allows distributed Web-enabled Java
applications to transparently invoke operations on remote network services using the
industry standard Object Management Group (OMG) Interface Definition Language
(IDL) and Internet Inter-ORBProtocol (IIOP) defined by the OMG. Run-time
components include a fully compliant Java Object Request Broker (ORB) for
distributed computing using IIOP communication.

To build Java applications that can access CORBA objects, you need the BEA
idltojava compiler, a tool that converts IDL files to Java stub and skeleton files. The
idltojava compiler is included with the BEA WebLogic Enterprise software.

This topic includes the following sections:

n Where Do I Get the BEA idltojava Compiler?

n How Does the BEA idltojava Compiler Differ from the Sun Microsystems, Inc.
Version?

n What Is IDL?

n What Is Java IDL?

n About CORBA and Java IDL

n What’s Next?

1 Overview of CORBA Java Programming

1-2 Using the idltojava Compiler

Where Do I Get the BEA idltojava Compiler?

The WebLogic Enterprise CD-ROM includes the BEA version of the idltojava
compiler. Once you have installed BEA WebLogic Enterprise, you can find the
idltojava compiler in WLEDIR/bin.

How Does the BEA idltojava Compiler Differ
from the Sun Microsystems, Inc. Version?

The idltojava compiler provided with BEA WebLogic Enterprise includes several
enhancements, extensions, and additions that are not included in the original compiler
produced by Sun Microsystems, Inc. The BEA WebLogic Enterprise specific revisions
are summarized here. For detailed information on using the idltojava compiler
provided with BEA WebLogic Enterprise, see the topic “Using the idltojava
Command” on page 2-1.

The BEA WebLogic Enterprise idltojava compiler:

n Behavior and defaults of the flags differs from that described in the Sun
Microsystems, Inc. documentation. (See “idltojava Command Flags” on page
2-4.)

n Includes a new #pragma tag: #pragma ID <name> <Repostitory_id>

(See “Using #pragma in IDL Files” on page 2-6.)

n Includes a new #pragma tag: #pragma version <name> <m.n> (See “Using
#pragma in IDL Files” on page 2-6.)

n Extends the #pragma prefix to work on inner scope. A blank prefix reverts.

(See “Using #pragma in IDL Files” on page 2-6.)

n Allows unions with boolean discriminators.

n Allows declarations nested inside complex types.

What Is IDL?

Using the idltojava Compiler 1-3

What Is IDL?

Interface definition language (IDL) is a generic term for a language that lets a program
or object written in one language communicate with another program written in an
unknown language. In distributed object technology, new objects must be able to be
sent to any platform environment and have the ability to discover how to run in that
environment. An ORB is an example of a program that uses an interface definition
language to “broker” communication between one object program and another.

What Is Java IDL?

CORBA is the standard distributed object architecture developed by the OMG
consortium. The OMG has specified an architecture for an ORB on which object
components written by different vendors can interoperate across networks and
operating systems. The OMG-specified Interface Definition Language (IDL) is used
to define the interfaces to CORBA objects.

Sun Microsystems, Inc. defines “Java IDL” as:

The classes, libraries, and tools that make it possible to use CORBA objects
from the Java programming language. The main components of Java IDL are an
ORB, a naming service, and the idltojava compiler.

Note that Java IDL is not a particular kind of interface definition language (IDL) apart
from OMG IDL. The same IDL can be compiled with the idltojava compiler to produce
CORBA-compatible Java files, or with a C++ based compiler to produce
CORBA-compatible C++ files. The compiler that you use on the IDL is what makes

1 Overview of CORBA Java Programming

1-4 Using the idltojava Compiler

the difference. The OMG has established IDL-to-Java mappings as well as
IDL-to-C++ mappings. The language-based compilers generate code based on the
OMG CORBA mappings to their particular language.

The BEA WebLogic Enterprise system provides its own "brand" of Java IDL. In other
words, as a J2EE implementation, WebLogic Enterprise provides all of the
components you need to build Java applications capable of accessing CORBA objects.
The key components in WebLogic Enterprise are listed below in the Accessing
CORBA Objects from Java Applications section.

About CORBA and Java IDL

The following sections explain more about CORBA and Java IDL:

n Accessing CORBA Objects from Java Applications

n Defining and Implementing CORBA Objects

n Client Implementation

n The FactoryFinder

Accessing CORBA Objects from Java Applications

As a J2EE implementation, BEA WebLogic Enterprise provides all of the components
you need to build Java applications capable of accessing CORBA objects. The key
components are:

n BEA WebLogic Enterprise idltojava compiler—a tool for converting IDL
interface definitions to Java stub and skeleton files. The idltojava command
compiles standard CORBA IDL source code into Java source code. (You can
then use the javac compiler to compile that source to Java bytecodes.) For a
detailed description of the idltojava compiler, see Chapter 2, “Using the idltojava
Command.”

n BEA WebLogic Enterprise CORBA Object Request Broker (ORB)—the ORB
together with the idltojava compiler can be used to define, implement, and

About CORBA and Java IDL

Using the idltojava Compiler 1-5

access CORBA objects from Java applications. The BEA WebLogic Enterprise
system supports both transient and persistent CORBA objects. Transient objects
are those whose lifetimes are limited by their server process’s lifetime. Persistent
or stateful objects are those which can store state and reinitialize themselves
from this state each time the server is restarted. (For more on using persistent
objects, see the topic “Persistent State and User Exceptions IDL Example” on
page 3-3 and the section on Joint Client Server Applications in CORBA
Server-to-Server Communication in the BEA WebLogic Enterprise online
documentation.)

n Java Naming and Directory Interface (JNDI)—the standard naming service
available in the Java 2 Enterprise Edition (J2EE). The capability of looking up
and locating objects in BEA WebLogic Enterprise is provided by the Java
Naming and Directory Interface (JNDI), a standard J2EE naming service. JNDI
is used along with the BEA WebLogic Enterprise Bootstrap object and
FactoryFinder to resolve object references.

n Bootstrap Object and FactoryFinder—BEA WebLogic Enterprise objects that
work in conjunction with the naming service to supply local and remote object
references. The client application uses the Bootstrap object to obtain initial
object references to key objects in a BEA WebLogic Enterprise domain, one of
which is the FactoryFinder. The FactoryFinder, in turn, is used to locate factory
objects. Factories are used to create application objects.

The BEA WebLogic Enterprise Java CORBA ORB supports both transient and
persistent objects.

The BEA WebLogic Enterprise Interface Repository is not required. An interface
repository is provided for dynamically determining interfaces. See the command
idl2ir in the Commands, Processes, and MIB Reference and the Interface Repository
Interfaces chapter in the CORBA Java Programming Reference in the BEA WebLogic
Enterprise online documentation.

Defining and Implementing CORBA Objects

The goal in CORBA object development is the creation and registration of an object
server, or simply server. A server is a program which contains the implementation of
one or more object types that has been registered with the ORB. For example, you
might develop a desktop publishing server which implements a "Document" object
type, a "Paragraph" object type, and other related object types.

1 Overview of CORBA Java Programming

1-6 Using the idltojava Compiler

CORBA Object Interfaces

All CORBA objects support an IDL interface; the IDL interface defines an object type.
An interface can inherit from one or more other interfaces. IDL syntax is very similar
to that of Java or C++, and an IDL file is functionally the CORBA
language-independent equivalent to a C++ header file. IDL is mapped into each
programming language to provide access to object interfaces from that language. With
Java IDL, these IDL interfaces can be translated to Java using the idltojava compiler.
For each IDL interface, idltojava generates a Java interface and the other .java files
needed, including a client stub and a server skeleton.

An IDL interface declares a set of client-accessible operations, exceptions, and typed
attributes (values). Each operation has a signature that defines its name, parameters,
result, and exceptions. Listing 1-1 shows a simple IDL interface that describes the
BEA WebLogic Enterprise sample application called simpapp_java.

Listing 1-1 An IDL Interface for the BEA WebLogic Enterprise Java Simpapp
Sample Application

#pragma prefix "beasys.com"

interface Simple
{
 //Convert a string to lower case (return a new string)
 string to_lower(in string val);

 //Convert a string to upper case (in place)
 void to_upper(inout string val);
};

interface SimpleFactory
{
 Simple find_simple();
};

An operation may raise an exception when an error condition arises. The type of the
exception indicates the kind of error that was encountered. Clients must be prepared to
handle defined exceptions and CORBA standard exceptions for each operation in
addition to normal results.

About CORBA and Java IDL

Using the idltojava Compiler 1-7

Java Language-based Implementation

After defining the IDL interfaces, the developer can build two basic types of
applications with BEA WebLogic Enterprise:

n A remote joint client/server or client, which uses files from the idltojava
command for its client stubs (and optionally also its server skeletons).

Note: A remote joint client/server is a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a BEA WebLogic Enterprise server.
Neither the client nor the server has any of the BEA WebLogic Enterprise
administrative and infrastructure components, such as tmadmin, JNDI
registration, and ISL/ISH (hence, none of scalability and reliability attributes
of BEA WebLogic Enterprise).

n A server, which uses files from the m3idltojava command for its server
skeletons.

The client development sequence is:

1. Define IDL interfaces for the client.

2. Run the idltojava compiler on client IDL files.

3. Implement client calls (and optionally server skeletons).

4. Compile all .java files into .class files.

5. Run the client class having a public main method which calls the BEA WebLogic
Enterprise server and optionally also provides servants for its objects (when
acting as a server).

The server development sequence is:

1. Define IDL interfaces for the server.

2. Run m3idltojava on the server IDL files.

3. Implement servant objects.

4. Compile all .java files into .class files.

5. Create the XML Server Descriptor File.

6. Use the buildjavaserver command to create a JAR file.

1 Overview of CORBA Java Programming

1-8 Using the idltojava Compiler

7. Configure the JavaServer with the new JAR file in a UBBCONFIG.

8. Run tmloadcf on the ubbconfig file to generate a binary tuxconfig file.

9. Run tmboot on the configuration file (tuxconfig).

An object implementation defines the behavior for all the operations and attributes of
the interface it supports. There may be multiple implementations of an interface, each
designed to emphasize a specific time and space trade-off, for example. The
implementation defines the behavior of the interface and object creation/destruction.

Only servers can create new CORBA objects. Therefore, a factory object interface
should be defined and implemented for each object type. For example, if Document is
an object type, a DocumentFactory object type with a create method should be
defined and implemented as part of the server. (Note that “create” is not reserved; any
method name may be used.)

The following example shows how a BEA WebLogic Enterprise server registers a new
object:

org.omg.CORBA.Object docoument_oref = TP.create_object_reference(
 DocumentHelper.id(), // Repository ID
 docName, // Object ID
 null // Routing Criteria
);

The TP Framework takes cares of the actual object instantiation:

(new DocumentServant)

A destroy method may be defined and implemented on Document or the object may
be intended to persist indefinitely. (Note that “destroy” is not reserved and any name
may be used.)

The BEA Java CORBA ORB supports both transient and persistent objects. Persistent
objects must be created as callback objects with the Portable Object Adapter (POA) to
define a Persistent/User ID Object Policy.

Client Implementation

Client code is included on the CLASSPATH with idltojava-generated .java files and
the ORB library.

About CORBA and Java IDL

Using the idltojava Compiler 1-9

Clients may only create CORBA objects via the published factory interfaces that the
server provides. Likewise, a client may only delete a CORBA object if that object
publishes a destruction method. A CORBA object may be shared by many clients on
a network, so only the object server can know when the object has become garbage.

The client code only issues method requests on a CORBA object via the object’s object
reference. The object reference is an opaque structure that identifies a CORBA object’s
host machine, the port where the ISH is listening for requests, and a pointer to the
specific object in the process. Because Java IDL supports only transient objects, this
object reference becomes invalid if the BEA WebLogic Enterprise system is stopped
and restarted.

Clients typically obtain object references from:

n A factory object

For example, the client could invoke a create method on DocumentFactory
object to create a new Document. The DocumentFactory create method
would return an object refererence for Document to the client.

The use of a factory object to obtain object references is the recommended
method for Java CORBA clients in this release of BEA WebLogic Enterprise.

n A string that was specially created from an object reference

After an object reference is obtained, the client must narrow it to the appropriate type.
IDL supports inheritance; the root of its hierarchy is Object in IDL,
org.omg.CORBA.Object in Java. (org.omg.CORBA.Object is, of course, a subclass
of java.lang.Object.) Some operations, notably name lookup and unstringifying,
return an org.omg.CORBA.Object, which you narrow (using a helper class generated
by the idltojava compiler) to the derived type you want the object to be. CORBA
objects must be explicitly narrowed because the Java run time cannot always know the
exact type of a CORBA object.

The FactoryFinder

The BEA WebLogic Enterprise FactoryFinder interface and the NameManager give
you a mechanism for registering, storing, and finding objects across multiple domains
or within a single domain in BEA WebLogic Enterprise.

For more information on how the FactoryFinder relates to Java IDL, refer to the topic
“The FactoryFinder Interface” on page 4-12.

1 Overview of CORBA Java Programming

1-10 Using the idltojava Compiler

For detailed information on how to use the FactoryFinder Interface, see the
FactoryFinder Interface chapter in the CORBA Java Programming Reference in the
BEA WebLogic Enterprise online documentation.

What’s Next?

To get started using Java IDL to build BEA WebLogic Enterprise Java CORBA
applications, check out the following examples, concepts, and reference information:

n Using the idltojava Command

n Java IDL Examples

n Java IDL Programming Concepts

n IDL-to-Java Mappings Used By the idltojava Compiler

n The Java IDL API

Using the idltojava Compiler 2-1

CHAPTER

2 Using the idltojava
Command

The idltojava compiler compiles IDL files to Java source code based on IDL-to-Java
mappings defined by the OMG. For more information about the IDL-to-Java
mappings, refer to the topic “IDL-to-Java Mappings Used By the idltojava Compiler”
on page 5-1.

This topic includes the following sections:

n Syntax of the idltojava Command

n idltojava Command Description

n Running idltojava on Client or Joint Client/Server IDL Files

n Running m3idltojava on Server Side IDL Files

n idltojava Command Options

n idltojava Command Flags

n Using #pragma in IDL Files

For a quick summary of the enhancements and updates added to the BEA WebLogic
Enterprise idltojava compiler, see the topic “How Does the BEA idltojava Compiler
Differ from the Sun Microsystems, Inc. Version?” on page 1-2.

2 Using the idltojava Command

2-2 Using the idltojava Compiler

Syntax of the idltojava Command

The following is an example of the idltojava command syntax:

idltojava [idltojava Command Flags] [idltojava Command Options] filename ...

m3idltojava [idltojava Command Flags] [idltojava Command Options] filename ...

idltojava Command Description

The idltojava command compiles IDL source code into Java source code. You then
use the javac compiler to compile that source to Java bytecodes.

The command idltojava is used to translate IDL source code into generic client stubs
and generic server skeletons which can be used for callbacks. The command
m3idltojava is used to translate IDL into generic client stubs and BEA WebLogic
Enterprise server skeletons.

The IDL declarations from the named IDL files are translated to Java declarations
according to the mappings specified in the OMG IDL-to-Java mappings. (For more
information on the mappings, see “IDL-to-Java Mappings Used By the idltojava
Compiler” on page 5-1.)

Running idltojava on Client or Joint
Client/Server IDL Files

To run idltojava on client-side IDL files, use the following command:

idltojava <flags> <options> <idl-files>

Running m3idltojava on Server Side IDL Files

Using the idltojava Compiler 2-3

The idltojava command requires a C++ preprocessor, and is used to generate
deprecated names. The command idltojava generates Java code as is appropriate for
the client-side ORB.

Note: A remote joint client/server is a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a BEA WebLogic Enterprise server.
Neither the client nor the server has any of the BEA WebLogic Enterprise
administrative and infrastructure components, such as tmadmin, JNDI
registration, and ISL/ISH (hence, none of scalability and reliability attributes
of BEA WebLogic Enterprise).

Running m3idltojava on Server Side IDL
Files

To run m3idltojava on server-side IDL files, use the following command:

m3idltojava <flags> <options> <idl-files>

The server-side ORB is built to use non-deprecated names. The command
m3idltojava generates Java code using non-deprecated names as is appropriate for
the server-side ORB.

idltojava Command Options

Note: Several option descriptions have been added here that are not documented in
the original Sun Microsystems, Inc. idltojava compiler documentation (see
Table 2-1).

2 Using the idltojava Command

2-4 Using the idltojava Compiler

idltojava Command Flags

The flags can be turned on by specifying them as shown, and they can be turned off by
prefixing them with the letters no-. For example, to prevent the C preprocessor from
being run on the input IDL files, use -fno-cpp.

Table 2-2 includes descriptions of all flags.

Table 2-1 idltojava Added Options

Option Description

-j javaDirectory Specifies that generated Java files should be written to the
given directory. This directory is independent of the -p option,
if any.

-J filesFile Specifies that a list of the files generated by idltojava should
be written to filesFile.

-p package-name Specifies the name of an outer package to enclose all the
generated Java files. It has the same function as #pragma
javaPackage.

Note: You must include an outer package. The compiler
does not do this for you. If you do not have an outer
package, the idltojava compiler will still generate Java
files for you but you will get a Java compiler error
when you try to compile the *.java files.

The following options are identical to the equivalent C/C++ compiler options (cpp):

-Idirectory Specifies a directory or path to be searched for files that are
#included in IDL files. This option is passed to the
preprocessor.

-Dsymbol Specifies a symbol to be defined during preprocessing of the
IDL files. This option is passed to the preprocessor.

-Usymbol Specifies a symbol to be undefined during preprocessing of the
IDL files. This option is passed to the preprocessor.

idltojava Command Flags

Using the idltojava Compiler 2-5

Table 2-2 idltojava Command Flags

Flag Description

-flist-flags Requests that the state of all the -f flags be printed. The default value of this
flag is off.

-flist -debug-flags Provides a list of debugger flags.

-fcaseless Requests that the use of upper- and lowercase letters in keywords and
identifiers not be significant. Note that this does not mean that case is ignored,
because all uses of an identifier must have the same use of case as the initial
usage. For example, “Session” and “session” are the same identifier, but using
“session” after an initial use of “Session” results inan error because “session”
does not have the case as “Session.” CORBA uses this definition of caseless
to allow accurate mappings to case-sensitive languages. The default value of
this flag is on.

-fclient Requests the generation of the client side of the IDL files supplied. The default
value of this flag is on.

-fcpp Requests that the IDL source be run through the C/C++ preprocessor before
being compiled by the idltojava compiler. The default value of this flag is on.

-fignore-duplicates Specifies that duplicate definitions be ignored. This may be useful if compiling
multiple IDL files at one time. The default value of this flag is off.

-flist-options Lists the options specified on the command line. The default value of this flag
is off.

-fmap-included-files Specifies that Java files be generated for definitions included by #include
preprocessor directives. The default value for this flag is off, which specifies
that the Java files for included definitions not be generated.

-fserver Requests the generation of the server side of the IDL files supplied. The
default value of this flag is on.

-fverbose Requests that the compiler comment on the progress of the compilation. The
default value of this flag is off.

-fversion Requests that the compiler print its version and timestamp. The default value
of this flag is off.

-fwarn-pragma Requests that warning messages be issued for unknown or improperly
specified #pragmas. The default value of this flag is on.

2 Using the idltojava Command

2-6 Using the idltojava Compiler

Using #pragma in IDL Files

Note: The BEA WebLogic Enterprise idltojava compiler processes #pragma
somewhat differently from the Sun Microsystems, Inc. idltojava compiler.

RepositoryPrefix="prefix"

A default repository prefix can also be requested with the line #pragma prefix
"requested prefix" at the top-level in the IDL file itself. The line:

#pragma javaPackage "package"

wraps the default package in one called package. For example, compiling an IDL
module M normally creates a Java package M. If the module declaration is preceded by:

#pragma javaPackage browser

the compiler will create the package M inside package browser. This pragma is useful
when the definitions in one IDL module will be used in multiple products. The
command-line option -p can be used to achieve the same result. The line:

#pragma ID scoped-name "IDL:<path>:<version>"

specifies the repository ID of the identifier scoped-name. This pragma may appear
anywhere in an IDL file. If the pragma appears inside a complex type, such as structure
or union, then only as much of scoped-name need be specified to specify the element.
A scoped-name is of the form outer_name::name::inner_name. The
<path>component of the repository ID is a series of identifiers separated by forward
slashes (/). The <version> component is a decimal number MM.mm, where MM is the
major version number and mm is the minor version number.

-fwrite-files Requests that the derived Java files be written. The default value of this flag is
on. You might specify -fno-write-files if you wished to check for
errors without actually writing the files.

Table 2-2 idltojava Command Flags

Flag Description

Using the idltojava Compiler 3-1

CHAPTER

3 Java IDL Examples

This topic includes the following sections:

n Getting Started with a Simple Example of IDL

n Callback Objects IDL Example

n Persistent State and User Exceptions IDL Example

n Implementation Inheritance

Getting Started with a Simple Example of
IDL

Listing 3-1 shows the OMG IDL to describe a CORBA object whose operations
to_lower() and to_upper() each return a single string in which the letter case of the
user input is changed accordingly. (Uppercase input is changed to lowercase, and
vice-versa.)

Listing 3-1 IDL Interface for the Java Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{
 //Convert a string to lower case (return a new string)
 string to_lower(in string val);

3 Java IDL Examples

3-2 Using the idltojava Compiler

 //Convert a string to upper case (in place)
 void to_upper(inout string val);
};

interface SimpleFactory
{
 Simple find_simple();
};

If you were implementing this application from scratch, you would compile this IDL
interface with the following command:

m3idltojava Simple.idl

This would generate stubs and skeletons and several other files.

For comprehensive information on how to create the Java server and client for this
example, along with instructions on how to build and run it, see the Guide to the Java
Sample Applications in the BEA WebLogic Enterprise online documentation.

For information on the options and flags on the idltojava compiler, refer to the topic
“Using the idltojava Command” on page 2-1.

Callback Objects IDL Example

Listing 3-2 shows the OMG IDL to define the Callback, Simple, and SimpleFactory
interfaces in the BEA WebLogic Enterprise Callback sample application.

Listing 3-2 IDL Definition for the Callback Sample Application

#pragma prefix "beasys.com"

 interface Callback

 //This method prints the passed data in uppercase and lowercase
 //letters.
 {
 void print_converted(in string message);

Persistent State and User Exceptions IDL Example

Using the idltojava Compiler 3-3

 };

 interface Simple

 //Call the callback object in the joint client/server
 //application
 {
 void call_callback(in string val, in Callback
 callback_ref);
 };

 interface SimpleFactory
 {
 Simple find_simple();
 };

For a complete explanation of the Java CORBA callbacks example as well as
information on how to build and run the example, see the Developing Java Joint
Client/Server Applications chapter in CORBA Server-to-Server Communication in the
BEA WebLogic Enterprise online documentation.

Persistent State and User Exceptions IDL
Example

The SimpApp example shows support of transient object references in BEA
WebLogic Enterprise. If the object’s server process stops and restarts, the object
reference that the client is holding becomes invalid. However, Java CORBA clients
can also create persistent object references in BEA WebLogic Enterprise; that is,
references that remain valid even if the BEA WebLogic Enterprise server is stopped
and restarted.

The BEA WebLogic Enterprise system supports persistent objects by means of
callbacks and the Portable Object Adapter (POA).

3 Java IDL Examples

3-4 Using the idltojava Compiler

The POA provides transient, persistent, and other user ID policies with which to create
objects in BEA WebLogic Enterprise. You can create a persistent object reference in
BEA WebLogic Enterprise by creating a callback object with a Persistent/User ID
Object Policy.

Implementation Inheritance

Ordinarily, servant classes must inherit from the ImplBase class generated by the
idltojava compiler. This is inadequate for servant classes that need to inherit
functionality from another Java class. The Java programming language allows a class
only one superclass and the generated ImplBase class already occupies this position.
A servant class can inherit an implementation from any Java class using Tie classes.

Using the idltojava Compiler 4-1

CHAPTER

4 Java IDL Programming
Concepts

This topic includes the following sections:

n Exceptions

n Initializations

n The FactoryFinder Interface

Exceptions

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by the OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions differ slightly from Java exception
objects, but those differences are largely handled in the mapping from IDL-to-Java.

Topics in this section include:

n Differences Between CORBA and Java Exceptions

n System Exceptions

n User Exceptions

n Minor Code Meanings

4 Java IDL Programming Concepts

4-2 Using the idltojava Compiler

Differences Between CORBA and Java Exceptions

To specify an exception in IDL, the interface designer uses the raises keyword. This is
similar to the throws specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions need not
(and cannot) be specified this way.

System Exceptions

CORBA defines a set of standard system exceptions, which are generally raised by the
ORB libraries to signal systemic error conditions including:

n Server-side system exceptions, such as resource exhaustion or activation failure.

n Communication system exceptions, for example, losing contact with the object,
host down, or cannot talk to the ISL or ISH.

n Client-side system exceptions, such as invalid operand type or anything that
occurs before a request is sent or after the result comes back.

All IDL operations can throw system exceptions when invoked. The interface designer
need not specify anything to enable operations in the interface to throw system
exceptions; the capability is automatic.

This makes sense because no matter how trivial an operation’s implementation is, the
potential of an operation invocation coming from a client that is in another process, and
perhaps (likely) on another machine, means that a whole range of errors is possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, developers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java.lang.RuntimeException.

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystemExceptionName> { // descriptive of error
 unsigned long minor; // more detail about error

Exceptions

Using the idltojava Compiler 4-3

 CompletionStatus completed; // yes, no, maybe
}

System exceptions are subtypes of java.lang.RuntimeException through
org.omg.CORBA.SystemException:

java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--org.omg.CORBA.SystemException
 |
 +--BAD_PARAM
 |
 +--//etc.

 Minor Codes

All CORBA system exceptions have a minor code field, a number that provides
additional information about the nature of the failure that caused the exception. Minor
code meanings are not specified by the OMG; each ORB vendor specifies appropriate
minor codes for that implementation. For a description of minor codes thrown by the
Java ORB, see “Minor Code Meanings” on page 4-4.

Completion Status

All CORBA system exceptions have a completion status field which indicates the
status of the operation that threw the exception. The completion codes are:

n COMPLETED_YES

The object implementation has completed processing prior to the exception
being raised.

n COMPLETED_NO

The object implementation was not invoked prior to the exception being raised.

n COMPLETED_MAYBE

The status of the invocation is unknown.

4 Java IDL Programming Concepts

4-4 Using the idltojava Compiler

User Exceptions

CORBA user exceptions are subtypes of java.lang.Exception through
org.omg.CORBA.UserException:

java.lang.Exception
 |
 +--org.omg.CORBA.UserException
 |
 +-- Stocks.BadSymbol
 |
 +--//etc.

Each user-defined exception specified in IDL results in a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

Every system exception has a “minor” field that allows CORBA vendors to provide
additional information about the cause of the exception. Table 4-1 and Table 4-2 list
the minor codes of Java IDL's system exceptions and describes their significance.

Table 4-1 ORB Minor Codes and Their Meanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after location/object forward.

2 Error occurred while trying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connection is no longer alive.

6 Unable to successfully connect to the server after several attempts.

Exceptions

Using the idltojava Compiler 4-5

DATA_CONVERSION Exception Minor Codes

1 Encountered a bad hexadecimal character while doing ORB string_to_object
operation.

2 The length of the given IOR for string_to_object() is odd. It must be even.

3 The string given to string_to_object() does not start with IOR; and hence,
is a bad stringified IOR.

4 Unable to perform ORB resolve_initial_references operation due to the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the IIOP Reply message by the server.

6 When unmarshaling, the repository ID of the user exception was found to be the
incorrect length.

7 Unable to determine the local hostname using the Java APIs
InetAddress.getLocalHost().getHostName().

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions prevent
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP 1.0 message type found.

14 Error encountered while unmarshaling the user exception.

18 Internal initialization error.

INV_OBJREF Exception Minor Codes

1 An IOR with no profile was encountered.

Table 4-1 ORB Minor Codes and Their Meanings (Continued)

Code Meaning

4 Java IDL Programming Concepts

4-6 Using the idltojava Compiler

MARSHAL Exception Minor Codes

4 Error occurred while unmarshaling an object reference.

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that
is not ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

NO_IMPLEMENT Exception Minor Codes

1 Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4 Error occurred when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1 Locate request received a response indicating that the object is not known to the
locator.

2 Server ID of the server that received the request does not match the server ID baked
into the object key of the object reference that was invoked upon.

4 No skeleton was found on the server side that matches the contents of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1 Unknown user exception encountered while unmarshaling; the server returned a
user exception that does not match any expected by the client.

3 Unknown run-time exception thrown by the server implementation.

Table 4-1 ORB Minor Codes and Their Meanings (Continued)

Code Meaning

Initializations

Using the idltojava Compiler 4-7

Initializations

Before a Java client or Java joint client/server can use CORBA objects, it must
initialize itself by:

n Creating an ORB object.

n Obtaining one or more initial object references, typically using a FactoryFinder.

Table 4-2 Name Server Minor Codes and Their Meanings

Code Meaning

INITIALIZE Exception Minor Codes

150 Transient name service caught a SystemException while initializing.

151 Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100 An AlreadyBound exception was thrown in a rebind operation.

101 An AlreadyBound exception was thrown in a rebind_context operation.

102 Binding type passed to the internal binding implementation was not
BindingType.nobject or BindingType.ncontext.

103 Object reference was bound as a context, but it could not be narrowed to
CosNaming.NamingContext.

200 Implementation of the bind operation encountered a previous binding.

201 Implementation of the list operation caught a Java exception while creating the list
iterator.

202 Implementation of the new_context operation caught a Java exception while
creating the new NamingContext servant.

203 Implementation of the destroy operation caught a Java exception while
disconnecting from the ORB.

4 Java IDL Programming Concepts

4-8 Using the idltojava Compiler

Creating an ORB Object

Before it can create or invoke a CORBA object, an applet or client application must
first create an ORB object. By creating an ORB object, the applet or application
introduces itself to the ORB and obtains access to important operations that are defined
on the ORB object.

Applets and applications create ORB instances slightly differently, because their
parameters, which must be passed in the ORB.init() call, are arranged differently.

For more information on initializing the ORB, see the CORBA ORB chapter in the
CORBA Java Programming Reference in the BEA WebLogic Enterprise online
documentation.

Creating an ORB for an Application

The following code fragment shows how an application might create an ORB:

 import org.omg.CORBA.ORB;

 public static void main(String args[])
 {
 try{
 ORB orb = ORB.init(args, null);
 // code continues

Creating an ORB for an Applet

An applet creates an ORB like this:

 import org.omg.CORBA.ORB;

 public void init() {
 try {
 ORB orb = ORB.init(this, null);
 // code continues

Some Web browsers have a built-in ORB. This can cause problems if that ORB is not
entirely compliant. In this case, special steps must be taken to initialize the Java IDL
ORB specifically. For example, because of missing classes in the installed ORB in
Netscape Communicator 4.01, an applet displayed in that browser must contain code
similar to the following in its init() method:

Initializations

Using the idltojava Compiler 4-9

 import java.util.Properties;
 import org.omg.CORBA.*;

 public class MyApplet extends java.applet.Applet {
 public void init()
 {
 // Instantiate the Java IDL ORB, passing in this applet
 // so that the ORB can retrieve the applet properties.
 Properties p = new Properties();
 p.put("org.omg.CORBA.ORBClass", "com.sun.CORBA.iiop.ORB");
 p.put("org.omg.CORBA.ORBSingletonClass","com.sun.CORBA.idl.ORBSingleton");
 System.setProperties(p);
 ORB orb = ORB.init(args, p);
 ...
 }
 }

 Arguments to ORB.init()

For both applications and applets, the arguments for the initialization method are:

n args or this

Provides the ORB access to the application’s arguments or applet’s parameters.

n null

A java.util.Properties object.

The init() operation uses these parameters, as well as the system properties, to obtain
information it needs to configure the ORB. It searches for ORB configuration
properties in the following places and order:

1. The application or applet parameters (first argument).

2. A java.util.Properties object (second argument), if one has been supplied.

3. The java.util.Properties object returned by System.getProperties().

The first value found for a particular property is the value used by the init()
operation. If a configuration property cannot be found in any of these places, the
init() operation assumes an implementation-specific value for it. For maximum
portability among ORB implementations, applets and applications should explicitly
specify configuration property values that affect their operation, rather than relying on
the assumptions of the ORB in which they are running.

4 Java IDL Programming Concepts

4-10 Using the idltojava Compiler

System Properties

BEA WebLogic Enterprise uses the Sun Microsystem, Inc. Java virtual machine,
which adds -D command-line arguments to it. Other Java virtual machines may or may
not do the same.

Currently, the following configuration properties are defined for all ORB
implementations:

n org.omg.CORBA.ORBClass

The name of a Java class that implements the org.omg.CORBA.ORB interface.
Applets and applications do not need to supply this property unless they must
have a particular ORB implementation. The value for the Java IDL ORB is
com.sun.CORBA.iiop.ORB.

n org.omg.CORBA.ORBSingletonClass

The name of a Java class that implements the org.omg.CORBA.ORB interface.
This is the object returned by a call to orb.init() with no arguments. It is used
primarily to create typecode instances than can be shared across untrusted code
(such as unsigned applets) in a secured environment.

Applet parameters should specify the full property names. The conventions for
applications differ from applets so as not to expose language-specific details in
command-line invocations.

Obtaining Initial Object References

To invoke a CORBA object, an applet or application must have a reference for it. There
are three ways to get a reference for a CORBA object:

n From a string that was specially created from an object reference

n From another object, such as a FactoryFinder

n From the bootstrap method

Initializations

Using the idltojava Compiler 4-11

Stringified Object References

The first technique, converting a stringified reference to an actual object reference, is
ORB-implementation independent. Regardless of which Java ORB an applet or
application runs on, it can convert a stringified object reference. However, it is up to
the applet or application developer to:

n Ensure that the object referred to is actually accessible from where the applet or
application is running.

n Obtain the stringified reference, perhaps from a file or a parameter.

The following fragment shows how a server converts a CORBA object reference to a
string:

org.omg.CORBA.ORB orb = // get an ORB object
org.omg.CORBA.Object obj = // create the object reference
String str = orb.object_to_string(obj);
// make the string available to the client

This code fragment shows how a client converts the stringified object reference back
to an object:

org.omg.CORBA.ORB orb = // get an ORB object
String stringifiedref = // read string
org.omg.CORBA.Object obj = orb.string_to_object(stringifiedref);

Getting References from the ORB

If you do not use a stringified reference to get an initial CORBA object, you use the
ORB itself to produce an initial object reference.

The WebLogic Enterprise Bootstrap object defines an operation called
resolve_initial_references() that is intended for bootstrapping object
references into a newly started application or applet. The operation takes a string
argument that names one of a few recognized objects; it returns a CORBA Object,
which must be narrowed to the type the applet or application knows it to be.

Using the Bootstrap object, you can obtain four different object references
(SecurityCurrent, TransactionCurrent, FactoryFinder, NotificationService,
Tobj_SimpleEventsService, NameService, and InterfaceRepository). The object of
concern to us here is the FactoryFinder.

4 Java IDL Programming Concepts

4-12 Using the idltojava Compiler

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WebLogic Enterprise domain. The FactoryFinder
object is used to obtain a specific factory object, which in turn can create the needed
objects.

For more information on how to use the Bootstrap object, see the Bootstrap Object
chapter in the CORBA Java Programming Reference in the BEA WebLogic Enterprise
online documentation.

The FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WebLogic Enterprise domain. The WebLogic
Enterprise NameManager provides the mapping of factory names to object references
for the FactoryFinder. Multiple FactoryFinders and NameManagers together provide
increased availability and reliability. Mapping across multiple domains is supported.

Note: The NameManager is not a naming service, such as the WebLogic Enterprise
CORBA Name Service, but is merely a vehicle for storing registered factories.

The FactoryFinder interface and the NameManager are a mechanism for registering,
storing, and finding objects. In the WebLogic Enterprise environment, you can:

n Use the Bootstrap object to obtain an object reference to a FactoryFinder.

n Use the FactoryFinder to find the Factory object you need.

n Use the Factory object to create new instances of the needed object.

For more information about how to use the WebLogic Enterprise FactoryFinder
Interface, see the FactoryFinder Interface chapter in the CORBA Java Programming
Reference in the BEA WebLogic Enterprise online documentation.

Using the idltojava Compiler 5-1

CHAPTER

5 IDL-to-Java Mappings
Used By the idltojava
Compiler

The idltojava compiler reads an OMG IDL interface and translates or maps it to a Java
interface. The idltojava compiler also creates stub, skeleton, helper, holder, and other
files as necessary. These .java files are generated from the IDL file according to the
mapping specified in the OMG document IDL/Java Language Mapping.

For more information on the IDL-to-Java mappings, refer to the OMG Web site at
http://www.omg.org.

CORBA objects are defined in OMG IDL (Object Management Group Interface
Definition Language). Before they can be used by a Java developer, their interfaces
must be mapped to Java classes and interfaces. The idltojava compiler performs this
mapping automatically.

Table 5-1 shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its name implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods in
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the data type of its return value, the data types of the parameters
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

5 IDL-to-Java Mappings Used By the idltojava Compiler

5-2 Using the idltojava Compiler

Note: When a CORBA operation takes a type that corresponds to a Java object type
(a string, for example), it is illegal to pass a Java null as the parameter value.
Instead, pass an empty version of the designated object type (for example, an
empty string or an empty array). A Java null can be passed as a parameter only
when the type of the parameter is a CORBA object reference, in which case
the null is interpreted as a nil CORBA object reference.

Table 5-1 IDL Constructs Mapped to Java Constructs

IDL Construct Java Construct

module package

interface interface, helper class, holder class

constant public static final

boolean boolean

char, wchar char

octet byte

string, wstring java.lang.String

short, unsigned short short

long, unsigned long int

long long, unsigned long long long

float float

double double

enum, struct, union class

sequence, array array

exception class

readonly attribute method for accessing value of attribute

readwrite attribute methods for accessing and setting value of attribute

operation method

Using the idltojava Compiler 6-1

CHAPTER

6 The Java IDL API

The Java interface definition language (IDL) application programming interface (API)
includes the following packages:

n com.beasys

n com.beasys.BEAWrapper

n com.beasys.Tobj

n com.beasys.TobjS

n javax.transaction

n org.omg.CosTransactions

n org.omg.Security

n org.omg.SecurityLevel1

n org.omg.SecurityLevel2

For an overview of all application programming interface (API) information related to
BEA WebLogic Enterprise, see the BEA WebLogic Enterprise API Javadoc page in the
BEA WebLogic Enterprise online documentation.

6 The Java IDL API

6-2 Using the idltojava Compiler

Using the idltojava Compiler I-1

Index

Symbols
#pragma, using in IDL files 2-6

A
API, Java-to-IDL 6-1

B
Bootstrap object 1-5

C
CORBA

exceptions in 4-1
CORBA objects

created by clients 1-8

D
documentation, where to find it vi

E
exceptions 4-1

completion status in 4-3
minor codes in 4-3, 4-4
system 4-2
user 4-4

F
FactoryFinder 1-5
FactoryFinder interface 4-12

I
IDL

See Interface Definition Language 1-2
IDL interface 1-6
idltojava command

flags 2-4
options 2-3
syntax of 2-2
using 2-1

idltojava compiler
differences from Sun version 1-2
running on client IDL files 2-3
running on server IDL files 2-2
where to get it 1-2

implementation
client 1-8
inheritance 3-4

initialization
of Java program 4-7

interface
FactoryFinder 4-12
IDL 1-6

Interface Definition Language (IDL)
what it is 1-3

I-2 Using the idltojava Compiler

J
Java applications

access to CORBA objects 1-4
Java IDL

examples of 3-1
using 1-10
what it is 1-3

Java, implementation in 1-7
JNDI 1-5

M
mappings, IDL-to-Java 5-1
minor codes, meaning of 4-4

O
object references

obtaining 1-9, 4-10
persistent 3-3

ORB object, creating 4-8
ORB.init 4-9

P
packages, with Java-to-IDL API 6-1
persistent object references 3-3
Portable Ojbect Adapter (POA) 3-3
pragma, using in IDL files 2-6
printing product documentation vi

S
Sun Microsystems, Inc.

differences between Sun and BEA
idltojava compilers 1-2

support
technical vii

W
WLE, key components of 1-4

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of CORBA Java Programming
	Where Do I Get the BEA idltojava Compiler?
	How Does the BEA idltojava Compiler Differ from the Sun Microsystems, Inc. Version?
	What Is IDL?
	What Is Java IDL?
	About CORBA and Java IDL
	Accessing CORBA Objects from Java Applications
	Defining and Implementing CORBA Objects
	CORBA Object Interfaces
	Java Language-based Implementation

	Client Implementation
	The FactoryFinder

	What’s Next?

	2 Using the idltojava Command
	Syntax of the idltojava Command
	idltojava Command Description
	Running idltojava on Client or Joint Client/Server IDL Files
	Running m3idltojava on Server Side IDL Files
	idltojava Command Options
	idltojava Command Flags
	Using #pragma in IDL Files

	3 Java IDL Examples
	Getting Started with a Simple Example of IDL
	Callback Objects IDL Example
	Persistent State and User Exceptions IDL Example
	Implementation Inheritance

	4 Java IDL Programming Concepts
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

	Initializations
	Creating an ORB Object
	Creating an ORB for an Application
	Creating an ORB for an Applet
	Arguments to ORB.init()
	System Properties

	Obtaining Initial Object References
	Stringified Object References
	Getting References from the ORB

	The FactoryFinder Interface

	5 IDL-to-Java Mappings Used By the idltojava Compiler
	6 The Java IDL API
	Index

