Enterprise JavaBeans™
Specification, v1.1

Please send technical comments to: ejb-spec-comments@sun.com
Please send business comments to: ejb-marketing@sun.com

Final Release Vlada Matena & Mark Hapner

N2
We’re the det in.com™

901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax: 650 969-9131

Sun Microsystems, Inc.

Enterprise JavaBeans™ Specification ("Specification")
Version: 1.1

Status: Final Release

Release: 12/17/99

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
Allrights reserved.

NOTICE.

This Specification is protected by copyright and the information described herein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of this Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this
Specification and the information described herein will be governed by these terms and conditions and the Export Control and General
Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this Specification, you agree that you have
read, understood, and will comply with all the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Sun's intellectual property rights that are essential to practice this Specification, to internally practice this Specification solely for the
purpose of creating a clean room implementation of this Specification that: (i) includes a complete implementation of the current version of
this Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of this Specification, as defined
by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun in this
Specification) which you choose to implement, without subsetting or supersetting; (iv) implements all of the interfaces and functionality of
such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the
"java.*" or "javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements available from Sun
relating to the most recently published version of this Specification six (6) months prior to any release of the clean room implementation or
upgrade thereto; (vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any Sun source code or
binary code materials without an appropriate and separate license from Sun. This Specification contains the proprietary information of Sun
and may only be used in accordance with the license terms set forth herein. This license will terminate immediately without notice from
Sun if you fail to comply with any provision of this license. Sun may, at its sole option, terminate this license without cause upon ten (10)
days notice to you. Upon termination of this license, you must cease use of or destroy this Specification.

TRADEMARKS.

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, Jini, JavaServer Pages, Enterprise JavaBeans, Java Compatible, DK, JDBC, JavaBeans, JavaMail, Write
Once, Run Anywhere, and Java Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES.

THIS SPECIFICATION IS PROVIDED "AS I1S". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of this
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.

TO THEEXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF ORRELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

&o
Please
Recycle

RESTRICTED RIGHTS LEGEND.

Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in this license and as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR
52.227-14(ALT I11) (June 1987), as applicable.

REPORT.

You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with
the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

&o
Please
Recycle

Sun Microsystem Inc

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

T 1o [0 Tox i o] o 1R PP 15
1.1 Target QUAIENCEccoiiiiiii ettt ettt e et e e s sabe e e e e e 15
1.2 Whatis New iN EIB 1.1cooiiiiiiiieiiiee et 15
1.3 Application compatibility and interoperabilitycccccceieiiiiiiiiiiiieen. 16
1.4 ACKNOWIEAGIMENLS ...coiiiiiiiiiei ittt 17
1.5 OrganizatiOnccooiiiiiiiiiieee et a e e e e e e aaaaaea e 17
1.6 DOCUMENE CONVENTIONSuuiiiiiiiiiiaea ettt e e e e e e e e e et e e e e e e e e e e e e annnneeeeeeeeas 18
BIOAUS .ttt b e e b et e are e snee s 19
2.1 OVErall QOAIS.... ... a e e 19
2.2 GO0als fOr REIEASE 1.0......uueiiiiiiiiiiie ittt 20
2.3 GOoals for REIEASE L.1.......coiiiiieiiiie ittt 20
EJB Architecture RoIES and SCENANIOScccoiiuuiiiiiiiiiiiie ittt 21
3.1 EJB ArchiteCture ROIESooiiiiiiiiieiiie ettt 21
3.1.1 Enterprise Bean Providercccouuiiiiiiiioiiiiee e 22
3.1.2 Application Assembler.............oueiiiiiiiiii 22
.13 DEPIOYET ...ttt a e e 22
3.1.4 EJB Server ProVIAer ... 23
3.1.5 EJB Container Provider...........ccccocoiiiiiiiiiiie e 23
3.1.6 System AdMINISTIALOrccooiiiiiiiei it 24
3.2 Scenario: Development, assembly, and deploymentcccccoiiiiiiiiiiennnenn. 25
OVEBIVIBW ...tttk ettt ettt e e sh et e ekt e e sh et e smn e e e sn b et e snn et e s s 29
4.1 Enterprise Beans as COMPONENTScooiiiiiiiiiiiiiieeiaaae e ieiiieeeeee e e e e e e e eeneeeeeees 29
4.1.1 Component CharaCteristiCsoocvuveiiiiiiiiiiiiiee e 30
4.1.2 Flexible component MoOdel..........cccoviiiiiiiiiiiiiiie e 30
4.2 Enterprise JavaBeans Architecture CONtractS..........cccoevvvvieeeiiiiiinee e 31
4.2.1 Client-VIEW CONIACT.......cciiuiearriieiireesiie e st e st 31
4.2.2 COMPONENE CONIFACTuuuiiiiiiiiiine ettt e e e eee 32
4.2.3 EJDAr file woveeeeeiie e 33
4.2.4 CONLractS SUMMAIYuuuiiiiiiiiiiinieetieiiiins e seesiins e aeeasri e seeassn e ereens 33
4.3 Session and entity ODJECES.uiiiiiieiiiee e 34
4.3.1 SESSION ODJECES ..ceieiiiiiiieiiiiie et 34
4.3.2 ENtity ODJECTS. ..o 35
4.4 Standard mapping to CORBA ProtOCOISccuviiiiiiiiiieeee e 35
Client View Of @ SESSION BEAN..........cccuiiiiiiieiiie it 39
B.1 OVEBIVIBW ..ttt e e e e ettt e e e e e e e e e s e e annnbebaeeeeeeaaeeeeeaannnnes 39
LI = 1= N @] o 7= 1 1 S 40

Enterprise JavaBeans v1.1, Final Release

Table of Contents

1 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

5.2.1 Locating a session bean’s home interfaceccooeccvvvviveeeeieeeennnns 40
5.2.2 What a container provides..........cccoiiiiiiiiiiiiiiee e 41
5.3 HOME INEITACE. ... uuiieiiiie et r e e e e e e e e e e nnnes 41
5.3.1 Creating a Session ODJECT.........cccciiiiiiiiiiee e 42
5.3.2 Removing a Session 0ObJECtcccvviiiiiiie e 42
L N 1@] o= od PRSPPI 43
5.5 SesSion ODJECt IdeNTILYuueiiiiiiieieie e 43
5.6 Client view of session object’s life CyCle........cccooiiiiiiiiiii e 44
5.7 Creating and using a SeSSioN ODJECT............ccccuiiiiiiiiee e 45
5.8 ODJECT IdENLILY .oeeeeeeeiee e 46
5.8.1 Stateful SESSION DEANS.........cevvieii e 46
5.8.2 Stateless SESSION DEANSuuviiiiiieiie e 46
5.8.3 getPrimaryKey() .. .ccouiueiieeiiiiiiee ettt 47
5.9 TYPE NAITOWING c..ueeeeiieiiiieie ettt ettt e sttt e e e st e e s st e e e s s nbae e e e e neaes 47
Chapter 6 Session Bean Component CONIACT.cuiiiii it 49
L0 @ 1 =T VSR 49
ST T - | PSPPSR 50
6.3 A container’s management of its WOrking Set...........cccccccviiiiiiiiiiiiiiieiiieeeeeee 50
6.4 CoNVErsSatioNal STALE..........uueiiiiiiiiiii e e e e e et e e e eaees 51
6.4.1 Instance passivation and conversational state..............cccccccvveeeeennnnnns 51
6.4.2 The effect of transaction rollback on conversational state 53
6.5 Protocol between a session bean instance and its container...............ccccceeeens 53
6.5.1 The require@essionBeaimterfacecccccocveveeiiiiiiieenniieee e 53
6.5.2 TheSessionContexterfacecccovveriiiiiiiiiiiiie e, 54
6.5.3 The optionabessionSynchronizatiomterface..............ccccoecvveeeennee. 54
6.5.4 Business method delegationcccuuiiiiiiiiiiiii i 55
6.5.5 Session bean’s ejbCreate(...) methods..........cccoccviveeiiiiiiii i 55
6.5.6 Serializing session bean Methods...........ccccceviiiinic e, 56
6.5.7 Transaction context of session bean methodsccccoo. 56
6.6 STATEFUL Session Bean State Diagram..........cccocveveeiiiiiieennniieee e 56
6.6.1 Operations allowed in the methods of a stateful session bean class .59
6.6.2 Dealing With @XCEPLIONSvvviieiiiiiiie e 61
6.6.3 Missed ejpRemove() CallSoccuvviiiiiiiiiiieie e 61
6.6.4 Restrictions for tranSactionSceevveeeeeiiiiiiiiiire e 62
6.7 Object interaction diagrams for a STATEFUL session bean.........ccccccccvveeenn. 62
B.7. 1 NOBS.. .o e e e e e e 62
6.7.2 Creating a SesSIoN ODJECT.........cccciiiiiieiieee e 63
6.7.3 Starting a tranSaCioNuuveiiieieee i 63
6.7.4 Committing a tranSaCHioNcccvvvieeieiiee e 64
6.7.5 Passivating and activating an instance between transactions 65
6.7.6 Removing a Session ObJECtcccciveiiiiie e 66
6.8 Stateless SESSION DEANS..........uiii i 67
6.8.1 Stateless session bean state diagramcccceeeiniiieieniiiieeee e 68
6.8.2 Operations allowed in the methods of a stateless session bean class 69
6.8.3 Dealing With @XCEePLIONSeviieeiiiiiie et 71
11/24/99 2

Sun Microsystem Inc

Enterprise JavaBeans v1.1, Final Release

6.9 Object interaction diagrams for a STATELESS session beanc........... 71
6.9.1 Client-invoked Create()..........ooovuuiriiieiieee e 71
6.9.2 Business method iNVOCALIONeuveiiiiiieeiiiiiee e 72
6.9.3 Client-invoked remove()uuveeeieeieeeie e 72
6.9.4 Adding instance to the pool ... 73
6.10 The responsibilities of the bean provider ..., 74
6.10.1 Classes and INTEITACESivieeiiiiie et eea e e 74
6.10.2 SEeSSION DEAN CIASSeeiiiiiiiiiei it 75
6.10.3 ejbCreate Methods........ccuuuiiiiiiiieee e 76
6.10.4 BUSINESS MELNOAScoi i 76
6.10.5 Session bean’s remote interface ..o, 77
6.10.6 Session bean’s home INterfaceccoooiiiiiiiiiii e, 77
6.11 The responsibilities of the container providerccoccveieiiiie e 78
6.11.1 Generation of implementation ClassSescoccvceeiiiiiiiie e, 78
6.11.2 Session EJBHOME ClaSScooocevviiiiiiiieee ettt 78
6.11.3 Session EJBODJECE ClaSSouvveiiiiiiiiiieiiiee e 78
6.11.4 HAaNAIE ClaSSESuuuuiiiiiiiiee i e ittt e e e e e e e ees 79
6.11.5 EJBMetaData ClaSSuuueiiiiiieeeiiiiiiiiiiiiiieeieeeeeesessinrieneeeseeeesesennnnes 79
6.11.6 NON-reentrant INSTANCES.......cccuviiiiiiiiee e eee s 79
6.11.7 Transaction scoping, Security, EXCEPLIONSeevevrrvrereeiniiiieeeeniinn. 79
Chapter 7 Example SESSION SCENAIOcccoi it a e Lo 8
7.1 OVEIVIBW ..ttt ettt et e et ettt et et e e e e e e e e e nan bbb e e e e aeaaeeseeaannnnneeeeeeas 81
7.2 Inheritance relatioNShiPc..eeiiiiiiii e 81
7.2.1 What the session Bean provider is responsible for 83
7.2.2 Classes supplied by container provider...........cccccooveciiiiieeeeeeeeeeieinns 83
7.2.3 What the container provider is responsible for............ccccccvveeeeeeen. 83
Chapter 8 Client View Of @n ENItY........ccooiiiiiiiiiiiiie e 85.....
S TR0 @ 1= oV PSRRI 85
I N | = N @0] ¢ =11 = PR PP RRR 86
8.2.1 Locating an entity bean’s home interface............cccccveiiiieeeniiiinenn. 87
8.2.2 What a container provides..........ccuuueiiiiiiaaeiin e 87
8.3 Entity bean’s home interfaceccuuuviiiiiiiiii e 88
8.3.1 create MethOUS.........uviiiiiiiiie e e e 89
8.3.2 fiINder MEethOUS.....ccviiiee e 90
8.3.3 remoVve MEthOAScoo i 20
8.4 Entity ObJECE'S life CYCIEeveeeeei e 91
8.5 Primary key and object identity........ccccceevveeieiiiiiiiiie e 92
8.6 Entity Bean's remote iNterfacec..uueeiiiiiiiiiiii e 93
8.7 Entity bean’s handle ..o 94
8.8 Entity home handIESuevviiiiiiiiii e 95
8.9 Type narrowing of object referenCesooo i 96

3 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

Chapter 9 Entity Bean Component CONFACTcovuiiiieiiiiiiie ettt 97
0.1 CONCEPLS ..ottt 97
9.1.1 Runtime execution MOdel............ccooiiiiiiiiiiiii e 97
9.1.2 Granularity of entity DEaNSccoviiiiiiiiii e 99
9.1.3 Entity persistence (data access protocol)cooeveiviiieiineiennnnnnne 99
9.1.3.1 Bean-managed PersiStENCE.........ccuueeriiiieeeeeiiiiiiiieiieeeee e 100
9.1.3.2 Container-managed PersiStENCEcoeviiiiuiiiiiierieaaaeeeeenns 101
9.1.4 Instance life CYCIe ... 102
9.1.5 The entity bean component CoOntractcccueeeeeiiiieieiiniiiiiieeeeene. 104
9.1.5.1 Entity bean inStance’s VIeW:...........cocccuiiiiiiiiiieeeeeie 104
9.1.5.2 CONAINEI'S VIBW: ...ceiiiiiiiiiiiiiiiieee e e e et e e e e e e e e 107
9.1.6 Operations allowed in the methods of the entity bean class.............. 109
9.1.7 Caching of entity state and the ejbLoad and ejbStore methods 112
9.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute
113
9.1.8 Finder method return tyPecccuvviiieeiiee e 114
9.1.8.1 Single-object finder.........cccoovveeeeieeiiiii e 114
9.1.8.2 Multi-object fiNders.......cccccvveveeeiiiiiiiee e 114
9.1.9 Standard application exceptions for EntitieS............cccoeevcvvvvvvenenennnn. 116
9.1.9.1 CreateEXCEPLION.....uuveiiiieeeeee it e e 116
9.1.9.2 DuplicateKeYyEXCEPLIONcccuvviiiiiiieie e 116
9.1.9.3 FiNderEXCePLiON.....ccccviiiieiieeee et e e 117
9.1.9.4 ObjectNOtFOUNAEXCEPLION ...uvvviiiieeeeeeieiiiiiiiieie e e e 117
9.1.9.5 ReMOVEEXCEPLION ...uvviiiiiieee e 117
9.1.10 COMMIL OPLIONS ...vvieiieeeeeiieciietee e e e e e e e e e e e s e sanr e rrerreaaeeas 118
9.1.11 Concurrent access from multiple transactionsc.c.cccccoeevenvvnnee. 119
9.1.12 Non-reentrant and re-entrant iNStaNCeSccoccveviieeinieeiniee e 120
9.2 Responsibilities of the Enterprise Bean Providercoccccvvviveeiieee e, 121
9.2.1 Classes and interfaCes.........cccuuuiiiiiiiiaei e 121
9.2.2 Enterprise bean Classoooiiiiiiiiii e 121
9.2.3 ejbCreate MEthOdScooiiiiiiiiiie e 122
9.2.4 ejbPostCreate Methodsccciiiiiiiiiiiie e 124
9.2.5 ejbFINd MEethOdScooiiiiiiii e 124
9.2.6 BUSINESS MELNOUSceiiiiiiiiiiiie e 125
9.2.7 Entity bean’s remote interface............oocouiiiiiiee 125
9.2.8 Entity bean’s home interface ..o 126
9.2.9 Entity bean’s primary Key Class...........ooooiiiiiiiiiiiiiiieeeeeeen 127
9.3 The responsibilities of the Container Provider ... 127
9.3.1 Generation of implementation ClassSes.........cccocvveeiriiiiieiiniieee e, 127
9.3.2 Entity EJBHOME ClaSS........coiiiiiiiiiiiiiiiiiee e 128
9.3.3 Entity EJBODJECE ClaSSccovviiieeiiiiiiieeeee e 128
9.3.4 HAaNAIE ClaSS.......ccciiiiiiiiiieiieee e r e e e e e e nnnes 128
9.3.5 HOMeE HaNdIE ClaSS.......coouuiiiiiiiiiiie e 128
9.3.6 Meta-data ClasS........ccoeiiiiiiiiiiiiiee e 129
9.3.7 INStANCE’S IE-ENTIANCE ...ttt 129
9.3.8 Transaction scoping, Security, EXCEPLIONSocveeeeririieerenriiieeeeens 129
9.3.9 Implementation of object references.........cccccevviieeeiiii e 129
9.4 Entity beans with container-managed persiStenCe..........cccccevvvvveeeevniiieee e 129
9.4.1 Container-managed fieldS.......cccccceeiiiiiiiiiiiieee e 130
11/24/99 4

Sun Microsystem Inc

Enterprise JavaBeans v1.1, Final Release

9.4.2 ejbCreate, eJDPOSICIeateccceviiiiiieeiiiiiie e 131
9.4.3 EJDREMOVE......ceiiiii i 132
9.4.4 JDLOAA.coiiiiiiiiie 132
945 EJDSHOIE ..o 133
9.4.6 finder MEthOUS.........ooiiiiiiiiii e 133
9.4.7 PriMary KEY tYPE ..ooiiiiiiiiiiiiiee ettt 133

9.4.7.1 Primary key that maps to a single field in the entity bean class134
9.4.7.2 Primary key that maps to multiple fields in the entity bean class134

9.4.7.3 Special case: Unknown primary key class..........cccccccvveeen... 134
9.5 Object interaction diagramsS........cccoviiiiuiiiiiiieie e e e e 135
0.5 1 NOES ..o et 135
9.5.2 Creating an entity ObJECtcccuviiiiiiiiiee e 136
9.5.3 Passivating and activating an instance in a transaction..................... 138
9.5.4 Committing a tranNSACHONccoeviiiiiiiiieer e e e 140
9.5.5 Starting the next transaction..............cccccvvieiie e 142
9.5.6 Removing an entity 0bJECTccvviiieiiiee e 145
9.5.7 Finding an entity ObJECE........ccccveiiiiiee e 146
9.5.8 Adding and removing an instance from the pool................ccccvveeeen. 147
Chapter 10 Example entity SCENAIOoiiiiiiiiiiiiie et eeammes 149.....
O IR R @ LYY oV = VA 149
10.2 Inheritance relationShip ... 150
10.2.1 What the entity Bean Provider is responsible for...........cccccccceiinnnis 151
10.2.2 Classes supplied by Container Provider.........cccccccooiiiiiiiiiiiencieaennnn. 151
10.2.3 What the container provider is responsible for............ccccccceeeiiinies 151
Chapter 11 SUPPOIT FOr TrANSACHIONSeieiiiiiiiie it 153....
I R O 1Y = =PSRRI 153
0 O R I = 1T T 1o 1 PP UR R 153
11.1.2 Transaction MOAel..........oooiiiiiiiiiiiii e 154
11.1.3 Relationship t0 JTA and JTS......uuiiiiiiiiiaaie e 154
11.2 SAMPIE SCENAIIOS ...eeiiiieeeiiii ittt e ettt e e e e e e e e e et eeeeaaaeaeeaeaannene 155
11.2.1 Update of multiple databasescccveeeiiiiiiiiiiiiiiee e 155
11.2.2 Update of databases via multiple EJB Servers........ccccccvvvvveeeiiinnenn. 156
11.2.3 Client-managed demarCationccccoccuueeeeiniiiine e 156
11.2.4 Container-managed demarcCationcccccceeviiieeeeiiiiieee e 157
11.2.5 Bean-managed demarCationcccceeeviieeeeiiniiieee e 158
11.2.6 Interoperability with non-Java clients and servers............cccccceeeenee 158
11.3 Bean Provider's responsibilities ... 159
11.3.1 Bean-managed versus container-managed transaction demarcation. 159
11.3.1.1 Non-transactional eXeCULIONcceevriiiiieeiiiiieeeeiniiieeenns 160
11.3.2 1S0IAtiON [EVEIS.......oeiiiiiiiiiee e 160
11.3.3 Enterprise beans using bean-managed transaction demarcation....... 161
11.3.3.1 getRollbackOnly() and setRollbackOnly() method............ 166
11.3.4 Enterprise beans using container-managed transaction demarcation 167
11.3.4.1 javax.ejb.SessionSynchronization interface....................... 168
11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method 168

5 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method.............. 169
11.3.5 Declaration in deployment deSCriptorccveeeviiieiiiiiiiieenieeeeee s 169

11.4 Application Assembler’'s responsibilitiescooeciiiiiiiie e, 169
11.4.1 Transaction attribULESceeeiiiieiiiiieiie e 169

11.5 Deployer's reSpoNSIDIlItIES......c.cccciiiiiiiiiiiiiiieee e 172

11.6 Container Provider responsibilities. ... 173
11.6.1 Bean-managed transaction demarcation............cccceevvrvveeeerniiieeeennne 173
11.6.2 Container-managed transaction demarcationcccccovvvveeeennnnn. 175

11.6.2.1 NOtSUPPOIE ...ccoiiiiiieeiiiiiie et 175
11.6.2.2 REQUIIE.....eiiieiiiiiiie ettt 175
11.6.2.3 SUPPOITS ..eeveiieeeieiiiiire ettt e e e e e e e e e e e eae s 176
11.6.2.4 REQUIFESNEWcciiiiiiiiiiieiiiiiie et et e et e e sbaee e 176
11.6.2.5 MaNAALOrYoveeiiiiiiiiiei et 177
L11.6.2.8 NBVET ettt 177
11.6.2.7 Transaction attribute SUMMArY.........cccoviveeeeiiiiiiieeniiiieeeee 177
11.6.2.8 Handling of setRollbackOnly() method............ccccccoevunneen. 178
11.6.2.9 Handling of getRollbackOnly() methodccccccevrnnnen. 178
11.6.2.10 Handling of getUserTransaction() method 179
11.6.2.11 javax.ejb.SessionSynchronization callbacks....................... 179
11.6.3 Handling of methods that run with “an unspecified transaction context’179

11.7 Access from multiple clients in the same transaction context..............ccc.c...... 180
11.7.1 Transaction “diamond” scenario with an entity object..................... 180
11.7.2 Container Provider’s responsibilities..............coccciiviiiieiee e, 182
11.7.3 Bean Provider’s responsibilitiesccccccceevviiiciiiiiieeeeee i 183
11.7.4 Application Assembler and Deployer’s responsibilities 184
11.7.5 Transaction diamonds involving session objects..........ccccccceeeeiiinnns 184

Chapter 12 Exception handling ... 187...

12.1 OVerview and CONCEPLSuuvurieiiierieeeeesiisietriirerreeee e e s s s ssntnrreenrereeeeeessesnnnreneees 187
12.1.1 Application eXCEPLIONSccuuiiiiiiiieee e 187
12.1.2 Goals for exception handlingccccoiiieiiiie e 188

12.2 Bean Provider's reSponSIibIlItIeScveeeiiiiiiiiiiiieiieee e 188
12.2.1 Application EXCEPLIONSuueiiiiiieieeee e 188
12.2.2 SYSIEM @XCEPLONSevviiiiiiiiiie ettt ettt 189

12.2.2.1 javax.ejb.NoSuchEntityEXCeptionccooviuviviieeeeinaeannnn. 190

12.3 Container Provider responsibilities. ... 190
12.3.1 Exceptions from an enterprise bean’s business methods................... 190
12.3.2 Exceptions from container-invoked callbacks...........ccccccvevieinnnnnn.n. 193
12.3.3 javax.ejb.NOSUChENtItyEXCEPLION.......cccoiiiiiieiiiiiiieiiriieee e 193
12.3.4 Non-existing Session ODJECt............ciiiiiiiiiii 193
12.3.5 Exceptions from the management of container-managed transactions194
12.3.6 Release Of FESOUICESuuuuiiiiiiieeee i e e e e rr e e e e e e e 194
12.3.7 Support for deprecated use of java.rmi.RemoteException................ 194

12.4 Client's VIEW Of @XCEPLIONSuuviiiiiiiiiiie ittt 195
12.4.1 Application EXCEPLION......cciieee i i it e e e e e e e e s rnenees 195
12.4.2 java.rmi.RemMOtEEXCEPLIONccvviiie et 196

12.4.2.1 javax.transaction.TransactionRolledbackException 197

11/24/99 6

Sun Microsystem Inc

Enterprise JavaBeans v1.1, Final Release

12.4.2.2 javax.transaction.TransactionRequiredException............... 197
12.4.2.3 java.rmi.NoSuchObjectEXceptionccccceeeerriiieeennnnn. 197
12.5 System Administrator’s responsibilities ... 197
12.6 Differences from EJB 1.0cociiiiiiiiiieiiieeiiiee et 197
Chapter 13 SUPPOIt fOr DISIIDULION ...t emnes 199...
13,1 OVEIVIEW .ttt ettt etttk e e sa et e st e e st e e st et e e bn e e s rne e e nnree e e 199
13.2 Client-side objects in distributed environment ..., 200
13.3 Standard distribution ProtoCOl...........ceoiiiiiiiiiiiiiiie e 200
Chapter 14 Enterprise bean environNmMent ... 01......... 2
I R @ Y= V1= PP 201
14.2 Enterprise bean’s environment as a JNDI APl naming context 202
14.2.1 Bean Provider’s responsibilities. ... 203
14.2.1.1 Access to enterprise bean’s environment............cccccceeeeeennn. 203
14.2.1.2 Declaration of environment entries.........cccccceeviiiiviiieeeeenn. 204
14.2.2 Application Assembler’s responsibilitycccccoeeiiiiiiiiiiiiieenn. 207
14.2.3 Deployer’s reSpoNnSIDilityooiiiiiiiiiii e 207
14.2.4 Container Provider reSponsibilityccccoiiiiii 207
14.3 EJB refErENCESottt a e e 207
14.3.1 Bean Provider's responsibilities........ccccooceeeeiiiiiiie e 208
14.3.1.1 EJB reference programming interfacesccccccoveuveeeennns 208
14.3.1.2 Declaration of EJB references in deployment descriptor ... 208
14.3.2 Application Assembler’s responsibilities...........cccocoeiiiiiiniininnen. 210
14.3.3 Deployer’s responsibilityccooiiiiiiiiiiii 211
14.3.4 Container Provider’s responsibility..........cccccovieieiinie e 211
14.4 Resource manager connection factory references..........cccccoccevviiieeiiiiiieeneene 211
14.4.1 Bean Provider’s responsibilities..........cccocciieeeei e 212
14.4.1.1 Programming interfaces for resource manager connection factory
references212

14.4.1.2 Declaration of resource manager connection factory references in
deployment descriptor213

14.4.1.3 Standard resource manager connection factory types 214
14.4.2 Deployer’s reSpoNSIDilitycoooiiiiiiiiiii e 215
14.4.3 Container provider responsibility.............ccco, 215
14.4.4 System Administrator's responsibilityccccooviiiieiiiiiiieniiieen, 216
14.5 Deprecated EJBContext.getEnvironment() methodccccccoiiiiiiiin. 216
14.6 UserTransaction iINtEITACEciiviiiieiee e e e 217
Chapter 15 SECUNLY MANAGEIMENT......eiiiiiiiiiiie ettt s st e e st e e e 219......
15,1 OVEIVIEW ..ttt ettt ettt ettt ettt e ettt e s sttt e e s ettt e e s sabbne e e e s nneeeeas 219
15.2 Bean Provider's responsibilitiescccoiieiiiiie e 220
15.2.1 Invocation of other enterprise beansccccoeviiiiiiiiiiiiiiie s 220
15.2.2 RESOUICE GICCESS.....uutiiriiiiieieeeiii ittt e te e e s s e e e e e e e e e e s 221
15.2.3 Access of underlying OS r@SOUICESuuvriiiiieiaeaaeeiiiiiiiiieieeeeaaaeenns 221

7 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

15.2.4 Programming style recommendations...........cceevevniiieeeeiniieeee s 221
15.2.5 Programmatic access to caller's security context...........ccccceeeerriunneen. 221
15.2.5.1 Use of getCallerPrincipal()ccceevvurreieiiiiiieeeiiieee e 223
15.2.5.2 Use of isCallerInRole(String roleName)cccceeeeenne 224
15.2.5.3 Declaration of security roles referenced from the bean’s code225
15.3 Application Assembler’s responsibilities ... 226
15.3.1 SECUNLY FOIES ...eiiiiiieitiee et 227
15.3.2 Method PEIMISSIONScccuviiiiiiieisiiie et 228
15.3.3 Linking security role references to security rolesccccceevveene 232
15.4 Deployer’s reSponSIDIlItIES.c.eeiiiiiiiiieiiei e 232
15.4.1 Security domain and principal realm assignmentc.ccocceeeenns 233
15.4.2 Assignment Of SECUNtY FOlEScooviiiiiiiiiiiiiee e 233
15.4.3 Principal delegation..............cooiiiiiiiiiiiieeee e 233
15.4.4 Security management Of reSOUICE ACCESSuuuvierrurreeerriireeeesiieneeas 234
15.4.5 General notes on deployment descriptor processing...........cccoeeeeueeee 234
15.5 EJB Architecture Client Responsibilities ..o 234
15.6 EJB Container Provider's responsibilitiescoocvveeiiiiiiieiiniiee e 235
15.6.1 DeploymeNt t0O0ISccevieeeiiiiiiiiiiiieeee e 235
15.6.2 Security dOMaIN(S) ...cccurrrririiieeeeeeieeiiiiiie e e e e e e e s e s esirrrrrr e e e e e e e e e s e ennnes 235
15.6.3 Security MeChaniSMS........c..uviiiiiiiiiee e 235
15.6.4 Passing principals on EJB architecture calls.............cccccovvvvveeeeneennnn. 236
15.6.5 Security methods in javax.ejbEIJBCONtEXtcccvveeeveeeeeeiieiiiinnnen, 236
15.6.6 Secure access t0 reSOUICE MANAGEISccuuuieeeeieiriinieererriiian e reanins 236
15.6.7 Principal Mappingcccoiiiiiieeieee e eiciiirter e e e e e e e s s s e e e e e e e e e e e 236
15.6.8 System PrinCipal........ccccuiiiiiiiiie e 236
15.6.9 Runtime security enforcementcccuveeveeeeeeiii i 237
15.6.200 AUIELFAI ..eeieiieiiieeee e 238
15.7 System Administrator's responsibilitieS ..., 238
15.7.1 Security domain adminiStrationcccceevriiiiieenniiee e 238
15.7.2 PrinCipal MapPiNg «.occoiueeiee ettt 238
15.7.3 AUt trail FEVIBW.......eeieiiiiiiiie et a e 238
Chapter 16 DeploymMENt AESCIIPLONeiiiiiiieie ittt 239.....
L6.1 OVEIVIEW.....etiieiiie ettt ettt et et ettt etk e e et e sk e e e b e e s ab et e snre e e snbe e e snnreennneas 239
16.2 Bean Provider's reSpoNnSIibIlItIesoooiiiiiiiiii e 240
16.3 Application Assembler’s responsibility..........cccoooeeeeiiriiiin e, 242
16.4 Container Provider’s responsibilities.............oocoiiiiiiiiiii e 244
16.5 Deployment descriptor DTDc.ooooiiiiiiiiiiieiieeee e 244
16.6 Deployment descriptor @XampPlecoiueiiiiiiiiiiieiiieee e 259
Chapter 17 EJDJAr FIl© e a e 267
A R © Y= 1= PSSR 267
17.2 DeploymeNnt AESCIIPLON.cciieeeii ittt e e e e e e e e e e e s s a e e e e e e an 268
17.3 ClASS flES .. 268
17.4 ejb-client JAR il c.eueiii e 268
11/24/99 8

Sun Microsystem Inc

Enterprise JavaBeans v1.1, Final Release

17.5 Deprecated iN EIB 1.1c..ooiiiiiiiiieiiiiiee ettt 269
17.5.1 ejb-jar ManifeSt.......cccciiiiiieiie e 269
17.5.2 Serialized deployment descriptor JavaBeans™ components............ 269
Chapter 18 RUNEIME ENVIFONMENT. ...ttt 271.....
18.1 Bean Provider's responsibilitiescoooiiiiiiiiii e 271
18.1.1 APIs provided by CONtaiNer..........cccuviiiiiieieee e e e 272
18.1.2 Programming restriCtioNS..........ooocciiiiiiiiiiie e et e e e e e e s saeenes 272
18.2 Container Provider’s responsibilitycccccvveeeeii i 275
18.2.1 Java 2 Platform-based Container.............ccccuuiiiiiiiieaeeeiiiiiieeeeeeee 275
18.2.1.1 Java 2 APIS requIremMentsccceeveeiiiire e 275
18.2.1.2 EJB 1.1 reqUIrE€MENTS.......uueiiiiiiaaaiaiiiiiiiieiee e e 276
18.2.1.3 JINDI 1.2 reqUIr€mMENtS..........uuuiieiiiiaeeaeiaiiiiiiieeeeee e e e e e 276
18.2.1.4 JTA 1.0.1 reqUIr€MENtScceeeeieiiiiiiiiieiee e 277
18.2.1.5 JDBC™ 2.0 extension requirementscccccceeeeeeeeeniiinnne 277
18.2.2 JIDK™ 1.1 based CONtAINET........ccuiiiaaaiiiiiiiiiieee e eeeeeee e 277
18.2.2.1 JIDK 1.1 APIS reqUIr€mMentsceeeeeeeeeeeiiiiiiiiiiieeeeeaaaeenn 277
18.2.2.2 EJB 1.1 reqUIrEMENTS.......uueiiiiiieaaiiiiiiiiiieiee e e 279
18.2.2.3 JINDI 1.2 reqUIr€mMENtS..........uuuriiiiiaaaeaeiiiiiiiieieeee e e e e e 279
18.2.2.4 JTA 1.0.1 reqUIr€MENTSccceeeiiiiiiiiiiiieie e 279
18.2.2.5 JDBC 2.0 extension requiremMentscccuueeeeeeeeeeeeneeineinnnns 279
18.2.3 Argument passing SEMANTICSoiiiuuriiiiiiiieee e e e e e e e e e 279
Chapter 19 Responsibilities of EJB Architecture ROIES..........coooiiiiiiiiiiiiceieeee e 281
19.1 Bean Provider's responsibilitiescccoviiiiiiiie e 281
19.1.1 APl reqUIrEMENTScoouiiiiiiieiiii et 281
19.1.2 Packaging reqUIrEMENTScceieaeiaiiaiiiiiiiieeee e e e e e e et e e e e e e e e e e e enaes 281
19.2 Application Assembler’s responsibilities ... 282
19.3 EJB Container Provider's responsibilitiescc.eeveiiiiieiiiiiieeeiiiee i, 282
19.4 Deployer's reSpoNSIDIlItIESceeviiiieiii i 282
19.5 System Administrator’s responsibilities ... 282
19.6 Client Programmer’s resSponsibilitiescoooiiiiiiiiiiiiii e, 282
Chapter 20 Enterprise JavaBeans™ AP REfErenCe.........coviiiiiii i 283
package JavaX.€jD........coo i 283
package javax.ejb.deployment...........ccviiiiiiiiie e 284
Chapter 21 Related dOCUMENTS ..ottt 285....
Appendix A Features deferred to fUtUre releasescoovi i AT 28
Appendix B Frequently asked qQUESHIONSuuiiiiiiiieii e e e 289.......
B.1 Client-demarcated tranSACIONSuueeiiiiiiaaaai i e e e e eeaa e 289

9 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

2 32 1] =T] = [= SRR 290
B.3 Entities and relationShipsS.........ccoooiiiiiiiiiiiec e 291
B.4 Finder methods for entities with container-managed persistence.................... 291
T 1 0 R] N - Y - NS 291
B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction............... 291
B.7 How to obtain database CONNECLIONS............ccoiiiiiiiiiiiiiiiiee e 292
B.8 Session beans and primary KeY........oocuviiiiiiiiiiiiiee e 292
B.9 Copying of parameters required for EJB calls within the same JVM 292
Appendix C REVISION HISTOMY ...ttt et eeesnnes 293
C.1 Changes sinCe RelEasE 0.8..........cccuuvuiiiiiieei e e e 293
C.2 Changes sinCce Release 0.9..........uuiiiiiiiiiiaa et 294
C.3 Changes SiNCe Release 0.95.........uuiiiiiiiiiiie e 295
C.4 Changes SINCE 1.0coceeiiiiiiiiee e e e e e e e rr e e e e e e e e e s e e e nannnnes 296
C.5 Changes sinCe 1.1 Draft 1......cc.uuiiiiiiiiiieaaie et a e e 297
C.6 Changes SiNCE 1.1 Draft 2......ccooiuiiiiiiiiiiie e 297
C.7 Changessince EJB 1.1 Draft 3......ccooiiiiiiiiiiiiiiiee e 299
C.8 Changes since EJB 1.1 Public Draft ..., 300
C.9 Changes since EJB 1.1 Public Draft 2........ccccoeviiiiiiiiiii e 301
C.10 Changes since EJB 1.1 Public Draft 3.......ccceveeiiiiiiiiiiiiiieeeeee e, 302
C.11 Changes since EJB 1.1 Public ReIEaSEceviiiieiiiiiiiiiiiiiieeeee e 302
C.12 Changes since EJB 1.1 Public Release.........ccccoouviiiiiiiiiiii e, 303
11/24/99 10

Sun Microsystem Inc

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39

Enterprise JavaBeans v1.1, Final Release

List of Figures

Enterprise JavaBeans ArchiteCture CONLFACEScccvvviiiiiiieeee i e e s sere e e e e e e e 34
Heterogeneous EJB ENVIFONMENTuuiiiiiiiiiee e ccciiirte e e e e e e e e s e s ssirarreae e e e e e e e e e e smmme e 37

Client View of session beans deployed in @ CONtAINE............ooiiiiiiiiiiieiiea e oo 41..
Lifecycle of @ SESSION ODJECL.cciiiiiiiii i s 44

Session Bean EXample ODJECESiiiiii i mmmmenneeeeeene e s 45
Lifecycle of a STATEFUL Session bean iNStanCe...........ooooiiiiiiiiiiiieeee e 51..

OID for Creation of & SESSION OBJECTcoiiuiiiiiiiii e 63

OID for session object at start of a tranSaCON.cccciveiiieiiec e e 64

OID for session object transaction Synchronization................ccccceoiiiiiiiiiiiiiee e 65

OID for passivation and activation of a Session ODJECtcccceevviiiiiiii e 66

OID for the removal of a SESSION ODJECE ... s——— O T
Lifecycle of a STATELESS SeSSIiON DEANoovviiiiiiiiiiiiiie ettt 69

OID for creation of a STATELESS SeSSION ODJECT.........uvvviiiiiiiiiiiiiiic e 71

OID for invocation of business method on a STATELESS session Object...........cccccvveeeiieeeee i, 72
OID for removal of a STATELESS SEeSSIiON ODJECT.......ccciiiiiiiiiiiiiiiii e s 73.

OID for Container Adding Instance of a STATELESS session bean to a method-ready pool................ 73
OID for a Container Removing an Instance of a STATELESS Session bean from ready pool............... 74
Example of Inheritance Relationships Between EJB ClassSes..........ccccvvveiiiiiiieeiiiiiene e 82.........
Client view of entity beans deployed in @ CONtAINEToevviieereiiiiiiiiieer e eeeeennnes 88

Client View of Entity ObJeCt Life CYCIE ...uuuiiiiiiiii i meee e e 91
Overview of the entity bean runtime execution Model............ccccceeoiiiie e 98..

Client view of underlying data sources accessed through entity bean...........cccccovviereninnnn. 00........... 1
Life cycle of an entity bean INSLANCE.cccvviiiiiii e eecmmmmmmmmeee e 102

Multiple clients can access the same entity object using multiple instancesccccccceeeiiiiiiiiiinnnee. 119
Multiple clients can access the same entity object using single instance.............ccccccoevnee. 120...........
OID of Creation of an entity object with bean-managed persistencecccccceveeeeiiiiicvvvnnnnen. S T 13
OID of creation of an entity object with container-managed persiStenceccccvvieieeiieieeeiiniiciieeee 137
OID of passivation and reactivation of an entity bean instance with bean-managed persistence.......... 138
OID of passivation and reactivation of an entity bean instance with CMP...............cccoiiiiiei e, 139
OID of transaction commit protocol for an entity bean instance with bean-managed persistence........ 140
OID of transaction commit protocol for an entity bean instance with container-managed persistence 141
OID of start of transaction for an entity bean instance with bean-managed persistence 143
OID of start of transaction for an entity bean instance with container-managed persistence................ 144
OID of removal of an entity bean object with bean-managed persistence..........cccccevvviiieeiiiiieee e, 145
OID of removal of an entity bean object with container-managed persistence.........ccccccceevevvccvvvvennn.n. 145

OID of execution of a finder method on an entity bean instance with bean-managed persistence........ 146
OID of execution of a finder method on an entity bean instance with container-managed persistence 147
OID of a container adding an instance to the POOI ... s 148

OID of a container removing an instance from the pool............ccccco i, 148...

11 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

Figure 40 Example of the inheritance relationship between the interfaces and classes:ccccccccviiviieeinnn. 150
Figure 41 Updates to Simultaneous Databases............uueeiiiiieeiiiiiiiiiiiiiir e e e e sesscrrre e e e e s smeeeeeeseseannns 155

Figure 42 Updates to Multiple Databases in Same TranSacCtioNccoiiiiiiiiiiiiiiiiiie e 156....

Figure 43 Updates on Multiple Databases on MUItipIe SEIVEISoouuviiiiiiiieeiiie e i 157...

Figure 44 Update of Multiple Databases from Non-Transactional Client.................cccccvviveeeeee e, 158........
Figure 45 Interoperating with Non-Java Clients and/Or SEIVEIS..........couuiiiiiiiiiiieiiiiee et e 159

Figure 46 Transaction diamond scenario with entity ODJECE............eviiiiiiiiiiii e 181

Figure 47 Handling of diamonds by a multi-process CONtAINETcceveeeeiiiiiiiiiiiiieeeee e ee e 183..

Figure 48 Transaction diamond scenario with @ SesSion beanccceveiiiiiiii e 184..

Figure 49 Location of EJB ClIENt STUDS.ccoiiiiiiiiiiiiee e eeeeemmme e e 200

11/24/99 12

Sun Microsystem Inc

Enterprise JavaBeans v1.1, Final Release

List of Tables
Table 1 EJB architecture Roles in the example SCENANIOS.........cccvveiiiieee i —l O
Table 2 Operations allowed in the methods of a stateful session beanooooees 6Q......
Table 3 Operations allowed in the methods of a stateless session bean..........cccccceevvevccciiiieeniec e v 70......
Table 4 Operations allowed in the methods of an entity bean ..., 111....
Table 5 Summary of cOMMIt-tiMe OPtIONS..........uuiiiiiiiiiee e mmnes 118
Table 6 Container’s actions for methods of beans with bean-managed transactioncccccevvviineennnne 174
Table 7 Transaction attribute SUMMAIYuuviiiiiiieeiiii e e e e e e e e e s s weeenmmmma———n s 177
Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transaction
demarcation191
Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transaction
demarcation192
Table 10 Java 2 Platform Security policy for a standard EJB CONtaiNerccoeccvvvverieeeeeeeeeeienen 215........
Table 11 JDK 1.1 Security manager checks for a standard EJB Containerooooeiiiiiiieeieaeeeninend 8. 27

13 11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans v1.1, Final Release

11/24/99 14

Sun Microsystem Inc

Chapter 1

Enterprise JavaBeans v1.1, Final Release

Introduction

1.1

This is the specification of the Enterprise JavaBé&¥rarchitecture. The Enterprise JavaBeans architec-

ture is a component architecture for the development and deployment of component-based distributed
business applications. Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and multi-user secure. These applications may be written once, and then deployed on any
server platform that supports the Enterprise JavaBeans specification.

Target audience

1.2

The target audiences for this specification are the vendors of transaction processing platforms, vendors
of enterprise application tools, and other vendors who want to support the Enterprise JavaBeans™
(EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Enterprise
JavaBeans application programmer.

What is new in EJB 1.1

We have tightened the Entity bean specification, and made support for Entity beans mandatory for Con-
tainer Providers.

The other changes in the EJB 1.1 specification were made to improve the support for the development,
application assembly, and deployment of ISV-produced enterprise beans. The specification includes the
following primary changes:

* Enhanced support for the enterprise bean’s environment. The Bean Provider must specify all
the bean’s environmental dependencies using entries in a JNDI naming context.

* Added support for Application Assembly in the deployment descriptor.
* Clearly separated the responsibilities of the Bean Provider and Application Assembler.
* Removed the EJB 1.0 deployment descriptor features that describe the Deployer’s output. The

role of the deployment descriptor is to describe the information that isinpet to the
Deployer, not the Deployer@utput

15 11/24/99

Sun Microsystems Inc.

Introduction

1.3

Enterprise JavaBeans v1.1, Final Release Application compatibility and interoperability

The changes affected mainly Chapters 11, 14, 15, and 16. We minimized the impact on the server ven-
dors who implemented support for EJB 1.0 in their runtime. The only change to the runtime API of the
EJB Container is the replacement of jhea.security.ldentity class with thgava.secu-
rity.Principal interface, necessitated by changes in JDK 1.2.

We have also added a number of clarifications and corrections to the specification based on the input
that we have received from the reviewers.

Application compatibility and interoperability

EJB 1.1 attempts to provide a high degree of application compatibility for enterprise beans that were
written for the EJB 1.0 specification. Principally, the deployment descriptor of EJB 1.0 based enterprise
beans must be converted to the EJB 1.1 XML format. However, the EJB 1.0 enterprise bean code does
not have to be changed or re-compiled to run in an EJB 1.1 Container, except in the following situations:

* The bean uses thavax.jts.UserTransaction interface. The package name of the
javax.jts interface has changed javax.transaction , and there have been minor
changes to the exceptions thrown by the methods of this interface. An enterprise bean that uses
the javax.jts.UserTransaction interface needs to be modified to use the new name
javax.transaction.UserTransaction

* The bean uses thgetCallerldentity() or isCallerInRole(Identity iden-
tity) methods of thgavax.ejb.EJBContext interface. These method were depre-
cated in EJB 1.1 because the clgaga.security.ldentity is deprecated in Java 2
platform. While a Container Provider may choose to provide a backward compatible imple-
mentation of these two methods, the Container Provider is not required to do so. An enterprise
bean written to the EJB 1.0 specification needs to be modified to use the new methods to work
inall EJB 1.1. Containers.

* The bean is an entity bean with container-managed persistence. The required return value of
ejbCreate(...) is different in EJB 1.1 than in EJB 1.0. An enterprise bean with con-
tainer-managed persistence written to the EJB 1.0 specification needs to be recompiled to work
with all EJB 1.1 compliant Containers.

* The bean is an entity bean whose finders do not defin€itigerException in the meth-
ods’ throws clauses. EJB 1.1 requires that all finders defirféniderException.

* The bean is an entity bean that usesltfserTransaction interface. In EJB 1.1, an entity
bean must not use théserTransaction interface.

* The bean uses thdserTransaction interface and implements ti&essionSynchro-
nization interface at the same time. This is disallowed in EJB 1.1.

* The bean violates any of the additional semantic restrictions defined in EJB 1.1 but which were
not defined in EJB 1.0.

11/24/99

16

Sun Microsystem Inc

Acknowledgments Enterprise JavaBeans v1.1, Final Release Introduction

1.4

The client view of an enterprise bean is the same in EJB 1.0 and EJB 1.1. This means that enterprise
beans written to EJB 1.1 can seamlessly interoperate with those written to EJB 1.0, and vice versa.

Acknowledgments

1.5

Rick Cattell, Linda DeMichiel, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan Che-
ung, Hans Hrasna, Sanjeev Krishnan, Kevin Osborn, Bill Shannon, Anil Vijendran, and Larry Cable
have provided invaluable input to the design of Enterprise JavaBeans architecture.

The Enterprise JavaBeans architecture is a broad effort that includes contributions from numerous
groups at Sun and at partner companies. The ongoing specification review process has been extremely
valuable, and the many comments that we have received helped us to define the specification.

We would also like to thank all the reviewers who sent us feedback during the public review period.
Their input helped us to improve the specification.

Organization

Chapter 2, “Goals” discusses the advantages of Enterprise JavaBeans architecture.

Chapter 3, “Roles and Scenarios” discusses the responsibilities of the Bean Provider, Application
Assembler, Deployer, EJB Container and Server Providers, and System Administrators with respect to
the Enterprise JavaBeans architecture.

Chapter 4, “Fundamentals” defines the scope of the Enterprise JavaBeans specification.

Chapters 5 through 7 define Session Beans: Chapter 5 discusses the client view, Chapter 6 presents the
Session Bean component contract, and Chapter 7 outlines an example Session Bean scenario.

Chapters 8 through 10 define Entity Beans: Chapter 8 discusses the client view, Chapter 9 presents the
Entity Bean component contract, and Chapter 10 outlines an example Entity Bean scenario.

Chapters 11 through 15 discuss transactions, exceptions, distribution, environment, and security.
Chapters 16 and 17 describe the format of the ejb-jar file and its deployment descriptor.

Chapter 18 defines the runtime APIs that a compliant EJB container must provide to the enterprise bean
instances at runtime. The chapter also specifies the programming restrictions for portable enterprise
beans.

Chapter 19 summarizes the responsibilities of the individual EJB Roles.

Chapter 20 is the Enterprise JavaBeans API Reference.

Chapter 21 provides a list of related documents.

17 11/24/99

Sun Microsystems Inc.

Introduction Enterprise JavaBeans v1.1, Final Release Document conventions

1.6 Document conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

11/24/99 18

Sun Microsystem Inc

Overall goals Enterprise JavaBeans v1.1, Final Release Goals

Chapter 2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

* The Enterprise JavaBeans architecture will be the standard component architecture for build-
ing distributed object-oriented business applications in the Java™ programming language.
The Enterprise JavaBeans architecture will make it possible to build distributed applications
by combining components developed using tools from different vendors.

* The Enterprise JavaBeans architecture will make it easy to write applications: Application
developers will not have to understand low-level transaction and state management details,
multi-threading, connection pooling, and other complex low-level APIs.

* Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™” philosophy
of the Java programming language. An enterprise Bean can be developed once, and then
deployed on multiple platforms without recompilation or source code modification.

* The Enterprise JavaBeans architecture will address the development, deployment, and runtime
aspects of an enterprise application’s life cycle.

19 11/24/99

Sun Microsystems Inc.

Goals Enterprise JavaBeans v1.1, Final Release Goals for Release 1.0

* The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple
vendors to develop and deploy components that can interoperate at runtime.

* The Enterprise JavaBeans architecture will be compatible with existing server platforms. Ven-
dors will be able to extend their existing products to support Enterprise JavaBeans.

* The Enterprise JavaBeans architecture will be compatible with other Java programming lan-
guage APIs.

* The Enterprise JavaBeans architecture will provide interoperability between enterprise Beans
and non-Java programming language applications.

* The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

2.2 Goals for Release 1.0

In Release 1.0, we focused on the following:
* Defined the distinct “EJB Roles” that are assumed by the component architecture.
* Defined the client view of enterprise Beans.
* Defined the enterprise Bean developer’s view.

* Defined the responsibilities of an EJB Container provider and server provider; together these
make up a system that supports the deployment and execution of enterprise Beans.

* Defined the format of the ejb-jar file, EJB’s unit of deployment.

2.3 Goals for Release 1.1

In the EJB 1.1 Release, we focus on the following aspects:
* Provide better support for application assembly and deployment.

* Specify in greater detail the responsibilities of the individual EJB roles.

11/24/99 20

Sun Microsystem Inc

EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

amers EJB Architecture Roles and Scenarios

3.1 EJB Architecture Roles

The Enterprise JavaBeans architecture defines six distinct roles in the application development and
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture spec-
ifies the contracts that ensure that the product of each EJB Role is compatible with the product of the
other EJB architecture Roles. The EJB specification focuses on those contracts that are required to sup-
port the development and deployment of ISV-written enterprise Beans.

In some scenarios, a single party may perform several EJB architecture Roles. For example,
the Container Provider and the EJB Server Provider may be the same vendor. Or a single pro-
grammer may perform the two EJB architecture Roles of the Enterprise Bean Provider and the
Application Assembler.

The following sections define the six EJB architecture Roles.

21 11/24/99

Sun Microsystems Inc.

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles

3.1.1

Enterprise Bean Povider

3.1.2

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His or her
output is an ejb-jar file that contains one or more enterprise bean(s). The Bean Provider is responsible
for the Java classes that implement the enterprise bean’s business methods; the definition of the bean’s
remote and home interfaces; and the bean’s deployment descriptor. The deployment descriptor includes
the structural information (e.g. the name of the enterprise bean class) of the enterprise bean and declares
all the enterprise bean’s external dependencies (e.g. the names and types of the resource managers that
the enterprise bean uses).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider develops
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the Bean
Provider usually does not program transactions, concurrency, security, distribution, or other services
into the enterprise Beans. The Bean Provider relies on the EJB Container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB architecture Role of the Applica-
tion Assembler.

Application Assembler

3.1.3

The Application Assembler combines enterprise beans into larger deployable application units. The
input to the Application Assembler is one or more ejb-jar files produced by the Bean Provider(s). The

Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along with
their application assembly instructions. The Application Assembler has inserted the application assem-
bly instruction into the deployment descriptors.

The Application Assembler can also combine enterprise beans with other types of application compo-
nents (e.g. Java ServerPages™) when composing an application.

The EJB specification describes the case in which the application assembly step lafoueshe
deployment of the enterprise beans. However, the EJB architecture does not preclude the case that appli-
cation assembly is performadter the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise Beans.
The Application Assembler works with the enterprise Bean’s deployment descriptor and the enterprise
Bean'’s client-view contract. Although the Assembler must be familiar with the functionality provided by
the enterprise Beans’ remote and home interfaces, he or she does not need to have any knowledge of the
enterprise Beans’ implementation.

Deployer

The Deployer takes one or more ejb-jar files produced by a Bean Provider or Application Assembler
and deploys the enterprise beans contained in the ejb-jar files in a specific operational environment. The
operational environment includes a specific EJB Server and Container.

11/24/99

22

Sun Microsystem Inc

EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

3.14

The Deployer must resolve all the external dependencies declared by the Bean Provider (e.g. the
Deployer must ensure that all resource manager connection factories used by the enterprise beans are
present in the operational environment, and he or she must bind them to the resource manager connec-
tion factory references declared in the deployment descriptor), and must follow the application assem-
bly instructions defined by the Application Assembler. To perform his role, the Deployer uses tools
provided by the EJB Container Provider.

The Deployer’s output are enterprise beans (or an assembled application that includes enterprise beans)
that have been customized for the target operational environment, and that are deployed in a specific
EJB Container.

The Deployer is an expert at a specific operational environment and is responsible for the deployment of
enterprise Beans. For example, the Deployer is responsible for mapping the security roles defined by the
Application Assembler to the user groups and accounts that exist in the operational environment in
which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment tasks. The
deployment process is typically two-stage:

* The Deployer first generates the additional classes and interfaces that enable the container to
manage the enterprise beans at runtime. These classes are container-specific.

* The Deployer performs the actual installation of the enterprise beans and the additional
classes and interfaces into the EJB Container.

In some cases, a qualified Deployer may customize the business logic of the enterprise Beans at their

deployment. Such a Deployer would typically use the container tools to write relatively simple applica-
tion code that wraps the enterprise Bean'’s business methods.

EJB Sewer Provider

3.1.5

The EJB Server Provider is a specialist in the area of distributed transaction management, distributed
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS vendor,
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Provider

roles are the same vendor. Therefore, it does not define any interface requirements for the EJB Server
Provider.

EJB Container Provider

The EJB Container Provider (Container Provider for short) provides
* The deployment tools necessary for the deployment of enterprise beans.

* The runtime support for the deployed enterprise beans’ instances.

23 11/24/99

Sun Microsystems Inc.

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles

3.1.6

From the perspective of the enterprise beans, the Container is a part of the target operational environ-
ment. The Container runtime provides the deployed enterprise beans with transaction and security man-
agement, network distribution of clients, scalable management of resources, and other services that are
generally required as part of a manageable server platform.

The “EJB Container Provider's responsibilities” defined by the EJB architecture are meant to be
requirements for the implementation of the EJB Container and Server. Since the EJB specification does
not architect the interface between the EJB Container and Server, it is left up to the vendor how to split
the implementation of the required functionality between the EJB Container and Server.

The expertise of the Container Provider is system-level programming, possibly combined with some
application-domain expertise. The focus of a Container Provider is on the development of a scalable,
secure, transaction-enabled container that is integrated with an EJB Server. The Container Provider
insulates the enterprise Bean from the specifics of an underlying EJB Server by providing a simple,
standard API between the enterprise Bean and the container. This API is the Enterprise JavaBeans
component contract.

For Entity Beans with container-managed persistence, the entity container is responsible for persistence
of the Entity Beans installed in the container. The Container Provider’s tools are used to generate code

that moves data between the enterprise Bean’s instance variables and a database or an existing appli-
cation.

The Container Provider typically provides support for versioning the installed enterprise Bean compo-
nents. For example, the Container Provider may allow enterprise Bean classes to be upgraded without
invalidating existing clients or losing existing enterprise Bean objects.

The Container Provider typically provides tools that allow the system administrator to monitor and
manage the container and the Beans running in the container at runtime.

System Administrator

The System Administrator is responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure that includes the EJB Server and Container. The System
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans appli-
cations at runtime.

The EJB architecture does not define the contracts for system management and administration. The Sys-
tem Administrator typically uses runtime monitoring and management tools provided by the EJB Server
and Container Providers to accomplish these tasks.

11/24/99

24

Sun Microsystem Inc

Scenario: Development, assembly, and deploymentEnterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

3.2 Scenario: Development, assembly, and deployment

Aardvark Inc. specializes in application integration. Aardvark developedfifuelvarkPayrollenter-

prise bean, which is a generic payroll access component that allows Java technology-enabled applica-
tions to access the payroll modules of the leading ERP systems. Aardvark packafyesitrekPayroll
enterprise bean in a standard ejb-jar file and markets it as a customizable enterprise bean to applica-
tion developers. In the terms of the EJB architecture, Aardvark iBeren Providerof the Aardvark-
Payrollbean.

Wombat Inc. is a Web-application development company. Wombat developed an employee self-service
application. The application allows a target enterprise’s employees to access and update employee
record information. The application includes tHemployeeService EmployeeServiceAdminand
EmployeeRecortenterprise beans. ThEmployeeRecordean is a container-managed entity that
allows deployment-time integration with an enterprise’s existing human resource applications. In terms
of the EJB architecture, Wombat is tBean Providerof the EmployeeServiceEmployeeServiceAd-

min, andEmployeeRecorénterprise beans.

In addition to providing access to employee records, Wombat would like to provide employee access to
the enterprise’s payroll and pension plan systems. To provide payroll access, Wombat liceAses the
varkPayrollenterprise bean from Aardvark, and includes it as part of the Wombat application. Because
there is no available generic enterprise bean for pension plan access, Wombat decides that a suitable
pension plan enterprise bean will have to be developed at deployment time. The pension plan bean will
implement the necessary application integration logic, and it is likely that the pension plan bean will be
specific to each Wombat customer.

In order to provide a complete solution, Wombat also develops the necessary non-EJB components of
the employee self-service application, such as the Java ServerPages (JSP) that invoke the enterprise
beans and generate the HTML presentation to the clients. Both the JSP pages and enterprise beans are
customizable at deployment time because they are intended to be sold to a number of target enterprises
that are Wombat customers.

The Wombat application is packaged as a collection of JAR files. A single ejb-jar file contains all the
enterprise beans developed by Wombat and alsoAdwelvarkPayrollenterprise bean developed by
Aardvark; the other JAR files contain the non-EJB application components, such as the JSP compo-
nents. The ejb-jar file contains the application assembly instructions describing how the enterprise
beans are composed into an application. In terms of the EJB architecture, Wombat performs the role of
the Application Assembler

Acme Corporation is a server software vendor. Acme developed an EJB Server and Container. In terms
of the EJB architecture, Acme performs Bl Container ProviderandEJB Server Provideroles.

25 11/24/99

Sun Microsystems Inc.

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final ReleaseScenario: Development, assembly, and deploy-

The ABC Enterprise wants to enable its employees to access and update employee records, payroll
information, and pension plan information over the Web. The information is stored in ABC’s ERP sys-
tem. ABC buys the employee self-service application from Wombat. To host the application, ABC buys
the EJB Container and Server from Acme. ABC'’s Information Technology (IT) department, with the
help of Wombat'’s consulting services, deploys the Wombat self-service application. In terms of the EJB
architecture, ABC’s IT department and Wombat consulting services perforbepieyerrole. ABC'’s

IT department also develops th&CPensionPlarenterprise bean that provides the Wombat applica-

tion with access to ABC'’s existing pension plan application.

ABC's IT staff is responsible for configuring the Acme product and integrating it with ABC'’s existing
network infrastructure. The IT staff is responsible for the following tasks: security administration, such
as adding and removing employee accounts; adding employees to user groups such as the payroll
department; and mapping principals from digital certificates that identify employees on VPN connec-
tions from home computers to the Kerberos user accounts that are used on ABC's intranet. ABC's IT
staff also monitors the well-being of the Wombat application at runtime, and is responsible for servicing
any error conditions raised by the application. In terms of the EJB architecture, ABC's IT staff performs
the role of theSystem Administrator

11/24/99 26

Sun Microsystem Inc

Scenario: Development, assembly, and deploymentEnterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

The following diagrams illustrates the products of the various EJB architecture Roles.

Aardvark
Payroll

ejb-jar file

(a) Aardvark’s product is an ejb-jar file with an enterprise bean

(e D
Record
Service
Payroll

ServiceAdmi

JAR file
with JSP pages

ejb-jar file
k with assembly instructich/

(b) Wombat's product is an ejb-jar file with several enterprise beans assembled into
an application. Wombat's product also includes non-EJB components.

T (7 ™

HR module
Aardvark

Employeé
Record
Employee
Service ardvar ———
SemiboAdmy (ABCPensid
Plan kABC,S ERP System/

deployed enterprise beans

k ACME EJB Container /
k ACME EJB Server /

(c) Wombat'’s application is deployed in ACME'’s EJB Container at the ABC enterprise.

deployed
JSP pages

/

ABC's pension
plan application

A Web Server

27 11/24/99

Sun Microsystems Inc.

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final ReleaseScenario: Development, assembly, and deploy-

The following table summarizes the EJB architecture Roles of the organizations involved in the sce-

nario.
Table 1 EJB architecture Roles in the example scenarios

Organization EJB Architecture Roles

Aardvark Inc. Bean Provider

Wombat Inc. Bean Provider
Application Assembler

Acme Corporation EJB Container Provider
EJB Server Provider

ABC Enterprise’s IT staff| Deployer
Bean Provider (oABCPensionPlan)
System Administrator

11/24/99 28

Sun Microsystem Inc

Enterprise Beans as components Enterprise JavaBeans v1.1, Final Release Overview

Chapter 4 Ove rVIeW

This chapter provides an overview of the Enterprise JavaBeans specification.

4.1 Enterprise Beans as components

The Enterprise JavaBeans architecture is an architecture for component-based distributed computing.
Enterprise beans are components of distributed transaction-oriented enterprise applications.

29 11/24/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans v1.1, Final Release Enterprise Beans as components

4.1.1 Component characteristics

The essential characteristics of an enterprise bean are:
* An enterprise bean typically contains business logic that operates on the enterprise’s data.
* An enterprise bean’s instances are created and managed at runtime by a Container.
* An enterprise bean can be customized at deployment time by editing its environment entries.

* Various services information, such as a transaction and security attributes, are separate from
the enterprise bean class. This allows the services information to be managed by tools during
application assembly and deployment.

* Client access is mediated by the Container in which the enterprise Bean is deployed.

* If an enterprise Bean uses only the services defined by the EJB specification, the enterprise
Bean can be deployed in any compliant EJB Container. Specialized containers can provide
additional services beyond those defined by the EJB specification. An enterprise Bean that
depends on such a service can be deployed only in a container that supports that service.

* An enterprise Bean can be included in an assembled application without requiring source code
changes or recompilation of the enterprise Bean.

* The Bean Provider defines a client view of an enterprise Bean. The Bean developer can manu-
ally define the client view or it can be generated automatically by application development
tools. The client view is unaffected by the container and server in which the Bean is deployed.
This ensures that both the Beans and their clients can be deployed in multiple execution envi-
ronments without changes or recompilation.

4.1.2 Flexible component model

The enterprise Bean architecture is flexible enough to implement components such as the following:
* An object that represents a stateless service.

* An object that represents a conversational session with a particular client. Such session objects
automatically maintain their conversational state across multiple client-invoked methods.

* An entity object that represents a business object that can be shared among multiple clients.
Enterprise beans are intended to be relatively coarse-grained business objects (e.g. purchase order,
employee record). Fine-grained objects (e.g. line item on a purchase order, employee’s address) should

not be modeled as enterprise bean components.

While the state management protocol defined by the Enterprise JavaBeans architecture is simple, it pro-
vides an enterprise Bean developer great flexibility in managing a Bean'’s state.

11/24/99 30

Sun Microsystem Inc

Enterprise JavaBeans Architecture contracts Enterprise JavaBeans v1.1, Final Release Overview

4.2

A client always uses the same API for object creation, lookup, method invocation, and removal, regard-
less of how an enterprise bean is implemented or what function it provides to the client.

Enterprise JavaBeans Architecture contracts

4.2.1

This section provides an overview of the Enterprise JavaBeans architecture contracts. The contracts are
described in detail in the following chapters of this document.

Client-view contract

This is a contract between a client and a container. The client-view contract provides a uniform develop-
ment model for applications using enterprise Beans as components. This uniform model enables the use
of higher level development tools and allows greater reuse of components.

The enterprise bean client view is remotable—both local and remote programs can access an enterprise
bean using the same view of the enterprise bean.

A client of an enterprise bean can be another enterprise bean deployed in the same or different Con-
tainer. Or it can be an arbitrary Java technology-enabled program, such as an application, applet, or
servlet. The client view of an enterprise bean can also be mapped to non-Java client environments, such
as CORBA clients that are not written in the Java programming language.

The enterprise Bean Provider and the container provider cooperate to create the enterprise bean'’s client
view. The client view includes:

* Home interface

* Remote interface

* Object identity

* Metadata interface

* Handle
The enterprise beanfeoome interfacedefines the methods for the client to create, remove, and find EJB
objects of the same type (i.e. they are implemented by the same enterprise bean). The home interface is
specified by the Bean Provider; the Container creates a class that implements the home interface. The

home interface extends tfevax.ejp.EJBHome interface.

A client can locate an enterprise Bean home interface through the standard Java Naming and Directory
Interfacd™ (JNDI) API.

31 11/24/99

Sun Microsystems Inc.

Overview

Enterprise JavaBeans v1.1, Final Release Enterprise JavaBeans Architecture contracts

An EJB object is accessible via the enterprise bemmsote interface The remote interface defines the
business methods callable by the client. The remote interface is specified by the Bean Provider; the
Container creates a class that implements the remote interface. The remote interface extends the
javax.ejb.EJBObject interface. Thgavax.ejb.EJBObject interface defines the opera-
tions that allow the client to access the EJB object’s identity and create a persistent handle for the EJB

object.

Each EJB object lives in a home, and has a unique identity within its home. For session beans, the Con-
tainer is responsible for generating a new unique identifier for each session object. The identifier is not
exposed to the client. However, a client may test if two object references refer to the same session
object. For entity beans, the Bean Provider is responsible for supplying a primary key at entity object
creation timé!; the Container uses the primary key to identify the entity object within its home. A cli-
ent may obtain an entity object’s primary key via jagax.ejb.EJBObject interface. The client

may also test if two object references refer to the same entity object.

A client may also obtain the enterprise bean’s metadata interface. The metadata interface is typically
used by clients who need to perform dynamic invocation of the enterprise bean. (Dynamic invocation is
needed if the classes that provide the enterprise client view were not available at the time the client pro-
gram was compiled.)

4.2.2 Component contract

This subsection describes the contract between an enterprise Bean and its Container. The main require-
ments of the contract follow. (This is only a partial list of requirements defined by the specification.)

The requirement for the Bean Provider to implement the business methods in the enterprise
bean class. The requirement for the Container provider to delegate the client method invocation
to these methods.

The requirement for the Bean Provider to implementefieCreate , ejbPostCreate,
andejbRemove methods, and to implement tegoFind<METHOD> methods if the bean is

an entity with bean-managed persistence. The requirement for the Container provider to invoke
these methods during an EJB object creation, removal, and lookup.

The requirement for the Bean Provider to define the enterprise bean’s home and remote inter-
faces. The requirement for the Container Provider to provide classes that implement these
interfaces.

For sessions, the requirement for the Bean Provider to implement the Container callbacks
defined in the javax.ejb.SessionBean interface and optionally the

[1] In special situations, the primary key type can be specified at deployment time (see subsection 9.4.7.3).

11/24/99

32

Sun Microsystem Inc

Enterprise JavaBeans Architecture contracts Enterprise JavaBeans v1.1, Final Release Overview

javax.ejb.SessionSynchronization interfaces. The requirement for the Container
to invoke these callbacks at the appropriate times.

For entities, the requirement for the Bean Provider to implement the Container callbacks
defined in thejavax.ejb.EntityBean interface. The requirement for the Container to
invoke these callbacks at the appropriate times.

The requirement for the Container Provider to implement persistence for entity beans with
container-managed persistence.

The requirement for the Container Provider to providejtivax.ejb.SessionContext

interface to session bean instances, andjdvex.ejb.EntityContext interface to

entity bean instances. The context interface allows the instance to obtain information from the
container.

The requirement for the Container to provide to the bean instances the JNDI API context that
contains the enterprise bean’s environment.

The requirement for the Container to manage transactions, security, and exceptions on behalf
of the enterprise bean instances.

The requirement for the Bean Provider to avoid programming practices that would interfere
with the Container’s runtime management of the enterprise bean instances.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise Beans with their declar-
ative information. The ejb-jar file is intended to be processed by application assembly and deployment

tools.

The ejb-jar file is a contract used both between the Bean Provider and the Application Assembler, and
between the Application Assembler and the Deployer.

The ejb-jar file includes:

Java class files for the enterprise Beans and their remote and home interfaces.

An XML deployment descriptor. The deployment descriptor provides both the structural and
application assembly information about the enterprise beans in the ejb-jar file. The application
assembly information is optional. (Typically, only ejb-jar files with assembled applications
include this information.)

4.2.4 Contracts summary

The following figure illustrates the Enterprise JavaBeans contracts.

33 11/24/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans v1.1, Final Release Session and entity objects

Figure 1 Enterprise JavaBeans Architecture Contracts

4 N

_ client-view ,
client > Enterprise bea

instances

component

) ¢ contract
Container

- /

EJB Server

- /

deployment descriptor

Note that while the figure illustrates only a remote client running outside of the Container, the cli-
ent-view API is also applicable to clients that are enterprise Beans deployed in the same Container.

4.3 Session and entity objects

The Enterprise JavaBeans architecture defines two types of enterprise bean objects:
* A session object.

* An entity object.

4.3.1 Session objects

A typical session object has the following characteristics:

* Executes on behalf of a single client.

11/24/99 34

Sun Microsystem Inc

Standard mapping to CORBA protocols Enterprise JavaBeans v1.1, Final Release Overview

4.3.2

* Can be transaction-aware.
* Updates shared data in an underlying database.

* Does not represent directly shared data in the database, although it may access and update
such data.

* Is relatively short-lived.

* |s removed when the EJB Container crashes. The client has to re-establish a new session
object to continue computation.

A typical EJB Container provides a scalable runtime environment to execute a large number of session
objects concurrently.

Session beans are intended to be stateful. The EJB specification also defiatdess Session beas

a special case of a Session Bean. There are minor differences in the API between stateful (normal) Ses-
sion beans and stateless Session beans.

Entity objects

4.4

A typical entity object has the following characteristics:

* Provides an object view of data in the database.

* Allows shared access from multiple users.

* Can be long-lived (lives as long as the data in the database).

* The entity, its primary key, and its remote reference survive the crash of the EJB Container. If
the state of an entity was being updated by a transaction at the time the container crashed, the
entity’s state is automatically reset to the state of the last committed transaction. The crash is
not fully transparent to the client—the client may receive an exception if it calls an entity in a

container that has experienced a crash.

A typical EJB Container and Server provide a scalable runtime environment for a large number of con-
currently active entity objects.

Standard mapping to CORBA protocols

To help interoperability for EJB environments that include systems from multiple vendors, we define a
standard mapping of the Enterprise JavaBeans architecture client-view contract to the CORBA proto-
cols.

35 11/24/99

Sun Microsystems Inc.

Overview

Enterprise JavaBeans v1.1, Final Release Standard mapping to CORBA protocols

The use of the EJB architecture to CORBA mapping by the EJB Server is not a requirement for EJB 1.1
compliance. A later release of the J2EE platform is likely to require that the J2EE platform vendor
implement the EJB architecture to CORBA mapping.

The EJB-to-CORBA mapping covers:

1. Mapping of the EJB architecture remote and home interfaces to RMI-IIOP. This mapping is an
identity mapping because every remote and home interface is an RMI-IIOP interface.

2. Propagation of transaction context over IIOP.
3. Propagation of security context over IIOP.
4, Interoperable naming service.

The EJB-to-CORBA mapping not only enables on-the-wire interoperability among multiple vendors’
implementations of the EJB Container, but also enables non-Java clients to access server-side applica-
tions written as enterprise Beans through standard CORBA APIs.

The EJB-to-CORBA mapping depends on the standard CORBA Obiject Services protocols for the prop-
agation of the transaction and security context.

The CORBA mapping is defined in an accompanying document [8].

While the EJB-to-CORBA mapping defines the mapping of the EJB application interfaces and transac-
tion interoperability, the mapping must be used in conjunction with other CORBA standards to ensure
full “on-the-wire” interoperability. For example, multiple EJB servers must agree on the security proto-
col to achieve seamless interoperability.

The following figure illustrates a heterogeneous environment that includes systems from five different
vendors.

11/24/99

36

Sun Microsystem Inc

Standard mapping to CORBA protocols Enterprise JavaBeans v1.1, Final Release Overview
Figure 2 Heterogeneous EJB Environment

Enterprise

JavaBeans

client lHoP Enterprise Enterprise

JavaBeans JavaBeans

vendorl Component Component

Java IDL opP EJB lloP EJB

client | server —— ' server

vendor 2 oP

vendor 4 vendor 5

CORBA

client

vendor 3

37 11/24/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans v1.1, Final Release Standard mapping to CORBA protocols

11/24/99 38

Sun Microsystem Inc

Overview

Chapter 5

5.1

Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Client View of a Session Bean

This chapter describes the client view of a session bean. The session bean itself implements the business
logic. The bean’s container provides functionality for remote access, security, concurrency, transactions,
and so forth.

While classes implemented by the container provide the client view of the session bean, the container
itself is transparent to the client.

Overview

For a client, a session object is a hon-persistent object that implements some business logic running on
the server. One way to think of a session object is as a logical extension of the client program that runs
on the server. A session object is not shared among multiple clients.

A client accesses a session object through the session bean’s remote interface. The Java object that
implements this remote interface is called a sesEi®BObject. A session EJBODbject is a remote Java
object accessible from a client through the standard Java APIs for remote object invocation [3].

From its creation until destruction, a session object lives in a container. Transparently to the client, the
container provides security, concurrency, transactions, swapping to secondary storage, and other ser-
vices for the session object.

39 11/24/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release EJB Container

5.2

Each session object has an identity which, in genél@s notsurvive a crash and restart of the con-
tainer, although a high-end container implementation can mask container and server crashes to the cli-
ent.

The client view of a session bean is location-independent. A client running in the same JVM as the ses-
sion object uses the same API as a client running in a different JVM on the same or different machine.

A client of an session bean can be another enterprise bean deployed in the same or different Container;
or it can be an arbitrary Java program, such as an application, applet, or servlet. The client view of a ses-
sion bean can also be mapped to non-Java client environments, such as CORBA clients that are not writ-
ten in the Java programming language.

Multiple enterprise beans can be installed in a container. The container allows the clients to look up the
home interfaces of the installed enterprise beans via JNDI API. A session bean’s home interface pro-
vides methods to create and remove the session objects of a particular session bean.

The client view of an session object is the same, irrespective of the implementation of the session bean
and the container.

EJB Container

5.2.1

An EJB Container (container for short) is a system that functions as the “container” for enterprise beans.
Multiple enterprise beans can be deployed in the same container. The container is responsible for mak-
ing the home interfaces of its deployed enterprise beans available to the client through JNDI API exten-
sion. Thus, the client can look up the home interface for a specific enterprise bean using JNDI API.

Locating a session beas’home interface

A client locates a session bean’s home interface using JNDI API. For example, the home interface for
theCart session bean can be located using the following code segment:

Context initialContext = new InitialContext();

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“java:comp/env/ejb/cart”),
CartHome.class);

A client's JNDI name space may be configured to include the home interfaces of enterprise beans
installed in multiple EJB Containers located on multiple machines on a network. The actual locations of
an enterprise bean and EJB Container are, in general, transparent to the client using the enterprise bean.

The lifecycle of the distributed object implementing the home interface (the EJBHome object) is Con-
tainer-specific. A client application should be able to obtain a home interface, and then use it multiple
times, during the client application’s lifetime.

11/24/99

40

Sun Microsystem Inc

Home interface Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

A client can pass a home interface object reference to another application. The receiving application can
use the home interface in the same way that it would use a home interface object reference obtained via
JNDI APLI.

5.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans.

Figure 3 Client View of session beans deployed in a Container

container

EJBObjects ’

[O
D
n
28
o
>
o
(1)
Q
>
[EEN

/

EJBObjects ’

EJBHome

session bean 2
N)

5.3 Home interface

A Container implements the home interface of the enterprise bean installed in the container. The object
that implements a session bean’s home interface is called a session EJBHome object. The container
makes the session beans’ home interfaces available to the client through JNDI API.

41 11/24/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Home interface

The home interface allows a client to do the following:

Create a new session object.
Remove a session object.

Get the javax.ejb.EJBMetaData interface for the session bean. The
javax.ejb.EJBMetaData interface is intended to allow application assembly tools to
discover information about the session bean, and to allow loose client/server binding and cli-
ent-side scripting.

Obtain a handle for the home interface. The home handle can be serialized and written to stable
storage. Later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain back a reference of the home interface.

5.3.1 Creating a session object

5.3.2

A home interface defines one or maresate(...) methods, one for each way to create a session
object. The arguments of tleeeate methods are typically used to initialize the state of the created ses-
sion object.

The following example illustrates a home interface that defines a simgiee(...) method:

public interface CartHome extends javax.ejb.EJBHome {

Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

The following example illustrates how a client creates a new session object usiegta(...)
method of theCartHome interface:

cartHome.create(“John”, “7506");

Removing a session object

A client may remove a session object usingthmove() method on thgavax.ejb.EJBObject
interface, or theemove(Handle handle) method of thgavax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.Home.remove(Object primaryKey) method on a session results in the
javax.ejb.RemoveException

11/24/99

42

Sun Microsystem Inc

EJBObject

Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

5.4 EJBObject

5.5

A client never directly accesses instances of the session bean’s class. A client always uses the session
bean’s remote interface to access a session bean’s instance. The class that implements the session bean’s
remote interface is provided by the container; its instances are called $£H3@bject s.

A session EJBODbject supports:

* The business logic methods of the object. The session EJBObject delegates invocation of a
business method to the session bean instance.

* The methods of th@vax.ejb.EJBObject interface. These methods allow the client to:
* Get the session object's home interface.
* Get the session object’s handle.
* Test if the session object is identical with another session object.
* Remove the session object.

The implementation of the methods defined in jéneax.ejb.EJBObject interface is provided by
the container. They are not delegated to the instances of the session bean class.

Session object identity

Session objects are intended to be private resources used only by the client that created them. For this
reason, session objects, from the client's perspective, appear anonymous. In contrast to entity objects,
which expose their identity as a primary key, session objects hide their identity. As a resEiBO®-
ject.getPrimaryKey() andEJBHome.remove(Object primaryKey) methods result in
ajava.rmi.RemoteException if called on a session bean. If tiie&)BMetaData.getPrima-

ryKeyClass() method is invoked on BJBMetaData object for a Session bean, the method throws
thejava.lang.RuntimeException

Since all session objects hide their identity, there is no need to provide a finder for them. The home
interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle to per-

sistent store. When the handle is later deserialized, the session object it returns will work as long as the
session object still exists on the server. (An earlier timeout or server crash may have destroyed the ses-
sion object.)

The client code must use th@vax.rmi.PortableRemoteObject.narrow...) method to
convert the result of thgetEJBODbject() method invoked on a handle to the remote interface type.

A handle is not a capability, in the security sense, that would automatically grant its holder the right to
invoke methods on the object. When a reference to a session object is obtained from a handle, and then
a method on the session object is invoked, the container performs the usual access checks based on the
caller’s principal.

43 11/24/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Client view of session object’s life cycle

5.6 Client view of session object’s life cycle

From a client point of view, the life cycle of a session object is illustrated below

Figure 4

Lifecycle of a session object.

client’'s method on reference
generates NoSuchObjectException

does not exist release reference

an
not referenced referenced

object.remove(),
home.remove(...),
home.create(...) system exception in bean,
bean timeout,
or
Container crash

exists handle.getEJBODbject(exists
and and
not referenced referenced

release reference v

client’'s method on reference

Containe_r crash,
or bean timeout

A session object does not exist until it is created. When a client creates a session object, the client has a

reference to the newly created session object’s remote interface.

A client that has a reference to a session object can then do any of the following:
* Invoke business methods defined in the session object’'s remote interface.
* Get a reference to the session object’s home interface.
* Get a handle for the session object.

* Pass the reference as a parameter or return value within the scope of the client.

* Remove the session object. A container may also remove the session object automatically

when the session object’s lifetime expires.

11/24/99

44

Sun Microsystem Inc

Creating and using a session object Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

It is invalid to reference a session object that does not exist. Attempted invocations on a session object
that does not exist result java.rmi.NoSuchObjectException

5.7 Creating and using a session object

An example of the session bean runtime objects is illustrated by the following diagram:

Figure 5

Session Bean Example Objects

container

\

(e)
; CartBean
client \{ CartHome -

N

/

A client creates &art session object (which provides a shopping service) usioeate(...)
method of the Cart's home interface. The client then uses this session object to fill the cart with items
and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping session tempo-
rarily for a day or two, and later complete the session. The client might implement this feature by get-
ting the session object’'s handle, saving the serialized handle in persistent storage, then using it later to
reestablish access to the origiQalrt .

For the following example, we start by looking up the Cart's home interface in JNDI. We then use the
home interface to createGart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.create(...);

cart.addItem(66);

cart.addItem(22);

45 11/24/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Object identity

Next we decide to complete this shopping session at a later time so we serialize a handle to this cart ses-
sion object and store it in a file:

Handle cartHandle = cart.getHandle();
serialize cartHandle, store in a file...

Finally we deserialize the handle at a later time, re-create the reference to the cart session object, and
purchase the contents of the shopping cart:

Handle cartHandle = deserialize from a file...

Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(
cartHandle.getEJBObiject(), Cart.class);

cart.purchase();

cart.remove();

5.8 Object identity

5.8.1 Stateful session beans
A stateful session object has a unique identity that is assigned by the container at create time.
A client can determine if two object references refer to the same session object by invokislg the
dentical(EJBODbject otherEJBObject) method on one of the references.
The following example illustrates the use of ibleentical method for a stateful session object.
FooHome fooHome = ...; // obtain home of a stateful session bean
Foo fool = fooHome.create(...);
Foo foo2 = fooHome.create(...);
if (fool.isldentical(fool)) {// this test must return true
}
if (fool.isldentical(foo2)) {// this test must return false
}

5.8.2 Stateless session beans

All session objects of the same stateless session bean within the same home have the same object iden-
tity, which is assigned by the container. If a stateless session bean is deployed multiple times (each
deployment results in the creation of a distinct home), session objects from different homes will have a
different identity.

The isldentical(EJBObject otherEJBObject) method always returns true when used to
compare object references of two session objects of the same stateless session bean.

11/24/99

46

Sun Microsystem Inc

Type narrowing

5.8.3

Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean
The following example illustrates the use of isldentical method for a stateless session object.
FooHome fooHome = ...; // obtain home of a stateless session bean

Foo fool = fooHome.create();
Foo foo2 = fooHome.create();

if (fool.isldentical(fool)) {// this test returns true

}

if (fool.isldentical(foo2)) {// this test returns true

}

getPrimaryK ey()

5.9

The object identifier of a session object is, in general, opaque to the client. The regetPofma-
ryKey() on a session EJBObject reference resulfavia.rmi.RemoteException

Type narrowing

A client program that is intended to be interoperable with all compliant EJB Container implementations
must use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs using the cast operator for narrowing the remote and home interfaces are likely to fail
if the Container implementation uses RMI-IIOP as the underlying communication transport.

47 11/24/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Type narrowing

11/24/99 48

Sun Microsystem Inc

Overview

Chapter 6

6.1

Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Session Bean Component Contract

This chapter specifies the contract between a session bean and its container. It defines the life cycle of
the session bean instances.

This chapter defines the developer's view of session bean state management and the container’s respon-
sibility for managing session bean state.

Overview

A session bean instance is an instance of the session bean class. It holds the session object’s state.
By definition, a session bean instance is an extension of the client that creates it:

* |ts fields contain aconversational stateon behalf of the session object’s client. This state
describes the conversation represented by a specific client/session object pair.

* |t typically reads and updates data in a database on behalf of the client. Within a transaction,
some of this data may be cached in the instance.

* Its lifetime is controlled by the client.

49 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Goals

6.2

A container may also terminate a session bean instance’s life after a deployer-specified time-
out or as a result of the failure of the server on which the bean instance is running. For this
reason, a client should be prepared to recreate a new session object if it loses the one it is
using.

Typically, a session object’s conversational state is not written to the database. A session bean developer
simply stores it in the session bean instance’s fields and assumes its value is retained for the lifetime of
the instance.

On the other hand, the session bean must explicitly manage cached database data. A session bean

instance must write any cached database updates prior to a transaction completion, and it must refresh
its copy of any potentially stale database data at the beginning of the next transaction.

Goals

6.3

The goal of the session bean model is to make developing a session bean as simple as developing the
same functionality directly in a client.

The container manages the life cycle of the session bean instances. It notifies the instances when bean
action may be necessary, and it provides a full range of services to ensure that the session bean imple-
mentation is scalable and can support a large number of clients.

The remainder of this section describes the session bean life cycle in detail and the protocol between the
bean and its container.

A container’s management of its working set

To efficiently manage the size of its working set, a session bean container may need to temporarily
transfer the state of an idle stateful session bean instance to some form of secondary storage. The trans-
fer from the working set to secondary storage is called instpassivation The transfer back is called
activation.

A container may only passivate a session bean instance when the instentde &transaction.

To help the container manage its state, a session bean is specified at deployment as having one of the
following state management modes:

e STATELESS—the session bean instances contain no conversational state between methods;
any instance can be used for any client.

¢ STATEFUL—the session bean instances contain conversational state which must be retained
across methods and transactions.

11/24/99

50

Sun Microsystem Inc

Conversational state Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

6.4 Conversational state

The conversational state of a STATEFUL session object is defined as the session bean instance’s field
values, plus the transitive closure of the objects from the instance’s fields reached by following Java
object references.

In advanced cases, a session object’s conversational state may contain open resources, such as open
sockets and open database cursors. A container cannot retain such open resources when a session bean
instance is passivated. A developer of such a session bean must close and open the resources in the

ejbPassivate andejbActivate notifications.

6.4.1 Instance passration and corversational state

The Bean Provider is required to ensure thatefigPassivate method leaves the instance fields
ready to be serialized by the Container. The objects that are assigned to the instanteiasient
fields after theejbPassivate method completes must be one of the following:
* A serializable objeé!.
* Anull
* An enterprise bean’s remote interface reference, even if the stub class is not serializable.
* An enterprise bean’s home interface reference, even if the stub class is not serializable.

* Areference to th&essionContext object, even if it is not serializable.

* A reference to the environment naming context (that isjakia:comp/env JNDI context)
or any of its subcontexts.

¢ A reference to th&serTransaction interface.

* An object that is not directly serializable, but becomes serializable by replacing the references
to an enterprise bean’s remote and home interfaces, the referenceStstienContext
object, the references to tle@va:comp/env IJNDI context and its subcontexts, and the ref-
erences to thelserTransaction interface by serializable objects during the object’s serial-
ization.

This means, for example, that the Bean Provider must close all JDBC™ API connectejhBPas-
sivate and assign the instance’s fields storing the connectionsito .

The last bulleted item covers cases such as storing Collections of remote interfaces in the conversa-
tional state.

[2] Note that the Java programming language Serialization protocol dynamically determines whether or not an object ikeserializab
This means that it is possible to serialize an object of a serializable subclass of a non-serializable declared field type.

51 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Conversational state

The Bean Provider must assume that the content of transient fields may be lost betwejbRdse

sivate and ejbActivate notifications. Therefore, the Bean Provider should not store in a
transient field a reference to any of the following objecBessionContext object; environ-
ment JNDI naming context and any its subcontexts; home and remote interfaces; bisdiifirans-

action interface.

The restrictions on the use of transient fields ensure that Containers can use Java programming lan-
guage Serialization during passivation and activation.

The following are the requirements for the Container.

The container performs the Java programming language Serialization (or its equivalent) of the
instance’s state after it invokes thipPassivate method on the instance.

The container must be able to properly save and restore the reference to the remote and home interfaces
of the enterprise beans stored in the instance’s state even if the classes that implement the object refer-
ences are not serializable.

The container may use, for example, the object replacement technique that is part of the
java.io.ObjectOutputStream and java.io.ObjectinputStream protocol to externalize the remote and
home references.

If the session bean instance stores in its conversational state an object reference to the
javax.ejb.SessionContext interface passed to the instance in thetSessionCon-

text(...) method, the container must be able to save and restore the reference across the instance’s
passivation. The container can replace the origbassionContext object with a different and
functionally equivalenSessionContext object during activation.

If the session bean instance stores in its conversational state an object reference to the
java:comp/env JNDI context or its subcontext, the container must be able to save and restore the
object reference across the instance’s passivation. The container can replace the original object with a
different and functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object referentéserimansac-

tion interface, the container must be able to save and restore the object reference across the instance’s
passivation. The container can replace the original object with a different and functionally equivalent
object during activation.

The container may destroy a session bean instance if the instance does not meet the requirements for
serialization afteejbPassivate

While the container is not required to use the Serialization protocol for the Java programming language
to store the state of a passivated session instance, it must achieve the equivalent result. The one excep-
tion is that containers are not required to reset the valuganisient fields during activatiokd!.

Declaring the session bean’s fieldgrassient is, in general, discouraged.

(3]

This is to allow the Container to swap out an instance’s state through techniques other than the Java programmingelanguage S
alization protocol. For example, the Container’s Java Virtual Machine implementation may use a block of memory to keep the
instance’s variables, and the Container swaps the whole memory block to the disk instead of performing Java programming lan-
guage Serialization on the instance.

11/24/99

52

Sun Microsystem Inc

Protocol between a session bean instance and its containerEnterprise JavaBeans v1.1, Final Release Session Bean Consponent Contra

6.4.2

The effect of transaction ollback on corversational state

6.5

A session object’s conversational state is not transactional. It is not automatically rolled back to its ini-
tial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state and the

state of the underlying database, the bean developer (or the application development tools used by the
developer) must use tlaterCompletion notification to manually reset its state.

Protocol between a session bean instance and its container

6.5.1

Containers themselves make no actual service demands on the session bean instances. The container
makes calls on a bean instance to provide it with access to container services and to deliver notifications
issued by the container.

The required SessionBearinterface

All session beans must implement essionBean interface.

The bean’s container calls trsetSessionContext method to associate a session bean instance
with its context maintained by theontainer. Typically, a session bean instance retains its session con-
text as part of its conversational state.

The ejpRemove notification signals that the instance is in the process of being removed by the con-
tainer. In theejpRemove method, the instance typically releases the same resources that it releases in
theejbPassivate method.

The ejbPassivate notification signals the intent of the container to passivate the instance. The
ejbActivate notification signals the instance it has just been reactivated. Because containers auto-
matically maintain the conversational state of a session bean instance when it is passivated, most session
beans can ignore these notifications. Their purpose is to allow session beans to maintain those open
resources that need to be closed prior to an instance’s passivation and then reopened during an
instance’s activation.

53 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Protocol between a session bean instance and

6.5.2 The SessionContexinterface

A container provides the session bean instances wilessionContext , which gives the session
bean instance access to the instance’s context maintained by the contain8esEenContext
interface has the following methods:

* ThegetEJBObject method returns the session bean’s remote interface.
* ThegetEJBHome method returns the session bean’s home interface.

* The getCallerPrincipal method returns thgava.security.Principal that
identifies the invoker of the bean instance’s EJB object.

* The isCallerinRole method tests if the session bean instance’s caller has a particular
role.

* The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback. Only instances of a session bean with
container-managed transaction demarcation can use this method.

* The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback. Only instances of a session bean with container-managed transaction
demarcation can use this method.

* The getUserTransaction method returns th@vax.transaction.UserTrans-
action interface. The instance can use this interface to demarcate transactions and to obtain
transaction status. Only instances of a session bean with bean-managed transaction demarca-
tion can use this method.

6.5.3 The optional SessionSyntronization interface

A session bean class can optionally implement jineax.ejb.SessionSynchronization

interface. This interface provides the session bean instances with transaction synchronization notifica-
tions. The instances can use these notifications, for example, to manage database data they may cache
within transactions.

The afterBegin notification signals a session bean instance that a new transaction has begun. The
container invokes this method before the first business method within a transaction (which is not neces-
sarily at the beginning of the transaction). TdfeerBegin natification is invoked with the transac-

tion context. The instance may do any database work it requires within the scope of the transaction.

The beforeCompletion notification is issued when a session bean instance’s client has completed
work on its current transaction but prior to committing the resource managers used by the instance. At
this time, the instance should write out any database updates it has cached. The instance can cause the
transaction to roll back by invoking tisetRollbackOnly method on its session context.

11/24/99

54

Sun Microsystem Inc

Protocol between a session bean instance and its containerEnterprise JavaBeans v1.1, Final Release Session Bean Consponent Contra

TheafterCompletion notification signals that the current transaction has completed. A completion
status oftrue indicates that the transaction has committed; a statfels# indicates that a rollback

has occurred. Since a session bean instance’s conversational state is not transactional, it may need to
manually reset its state if a rollback occurred.

All container providers must suppddessionSynchronization . Itis optional only for the bean
implementor. If a bean class implemei8sssionSynchronization , the container must invoke
theafterBegin , beforeCompletion andafterCompletion notifications as required by the

specification.

Only a stateful Session bean with container-managed transaction demarcation may implement the
SessionSynchronization interface. A stateless Session bean must not implemenSése
sionSynchronization interface.

There is no need for a Session bean with bean-managed transaction to rely on the synchronization call

backs because the bean is in control of the commit—the bean knows when the transaction is about to be
committed and it knows the outcome of the transaction commit.

6.5.4 Business method delegation

The session bean’s remote interface defines the business methods callable by a client. The session
bean’s remote interface is implemented by the session EJBObject class generated by the container tools.
The session EJBODbject class delegates an invocation of a business method to the matching business
method that is implemented in the session bean class.

6.5.5 Session bearsejbCreate(...)nethods

A client creates a session bean instance using one afélade methods defined in the session bean’s
home interface. The session bean’s home interface is provided by the bean developer; its implementa-
tion is generated by the deployment tools provided by the container provider.

The container creates an instance of a session bean in three steps. First, the container calls the bean
class’newlnstance method to create a new session bean instance. Second, the container calls the
setSessionContext method to pass the context object to the instance. Third, the container calls
the instance’sjbCreate method whose signature matches the signature otithate method

invoked by the client. The input parameters sent from the client are passedjtuCiteate method.

Each session bean class must have at leasejim@@reate method. The number and signatures of a
session beansreate methods are specific to each session bean class.

Since a session bean represents a specific, private conversation between the bean and its client, its create
parameters typically contain the information the client uses to customize the bean instance for its use.

55 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release STATEFUL Session Bean State Diagram

6.5.6

Serializing session bean methods

6.5.7

A container serializes calls to each session bean instance. Most containers will support many instances
of a session bean executing concurrently; however, each instance sees only a serialized sequence of
method calls. Therefore, a session bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the mefjbBdssivate
beforeCompletion , and so on), and it must serialize these callbacks with the client-invoked busi-
ness method calls.

Clients are not allowed to make concurrent calls to a session object. If a client-invoked business method
is in progress on an instance when another client-invoked call, from the same or different client, arrives
at the same instance, the container must throvjethe rmi.RemoteException to the second cli-

ent. One implication of this rule is that it is illegal to make a “loopback” call to a session bean instance.
An example of a loopback call is when a client calls instance A, instance A calls instance B, and B calls
A. The loopback call attempt from B to A would result in the container throwing the
java.rmi.RemoteException to B.

Transaction context of session bean methods

6.6

The implementation of a business method defined in the remote interface is invoked in the scope of a
transaction determined by the transaction attribute specified in the deployment descriptor.

A session bean’afterBegin andbeforeCompletion methods are always called with the same
transaction context as the business methods executed betwegftettBegin ~ andbeforeCom-
pletion methods.

A session bean’sewlnstance, setSessionContext , ejbCreate , ejpRemove , ejbPas-

sivate , ejbActivate, andafterCompletion methods are called with an unspecified transac-
tion context. Refer to Subsection 11.6.3 for how the Container executes methods with an unspecified
transaction context.

For example, it would be wrong to perform database operations within a session leja@leate

or ejpRemove method and to assume that the operations are part of the client’s transaction. The
ejbCreate andejbRemove methods are not controlled by a transaction attribute because handling
rollbacks in these methods would greatly complicate the session instance’s state diagram.

STATEFUL Session Bean State Diagram

The following figure illustrates the life cycle of a STATEFUL session bean instance.

11/24/99

56

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Figure 6 Lifecycle of a STATEFUL Session bean instance

instance throws system
does not exception from any method

exist
create(args)

v

1. newlnstance() ejbRemove()
2. setSessionContext(sc) *

3. ejbCreate(args) timeout

chosen as LRU victim

remove(),
or timeout *
ejbPassivate()
non-tx metho passive
tx method ejbActivate()
' f
afterBegin() commit rollback method

Y \

1. beforeCompletion() afterCompletion(false)
2. afterCompletion(true)

\/i hod)ﬁ different tx method
tx method meth
ready in TX > CRROR

create() action initiated by client
newlnstance action initiated by containef

The following steps describe the life cycle of a STATEFUL session bean instance:

* A session bean instance’s life starts when a client invokeeate(...) method on the
session bean’s home interface. This causes the container to ineekastance() on the

57 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release STATEFUL Session Bean State Diagram

session bean class to create a new session bean instance. Next, the contaisetSesls
sionContext() andejbCreate(...) on the instance and returns the remote reference
of the session object to the client. The instance is now in the method ready state.

The session bean instance is now ready for client’'s business methods. Based on the transaction
attributes in the session bean’s deployment descriptor and the transaction context associated
with the client’s invocation, a business method is executed either in a transaction context or
with an unspecified transaction context (shown as tx method and non-tx method in the dia-
gram). See Chapter 11 for how the container deals with transactions.

A non-transactional method is executed while the instance is in the method ready state.

An invocation of a transactional method causes the instance to be included in a transaction.
When the session bean instance is included in a transaction, the container isafterthe

Begin() method on it. ThaafterBegin is delivered to the instance before any business
method is executed as part of the transaction. The instance becomes associated with the trans-
action and will remain associated with the transaction until the transaction completes.

Session bean methods invoked by the client in this transaction can now be delegated to the
bean instance. An error occurs if a client attempts to invoke a method on the session object and
the deployment descriptor for the method requires that the container invoke the method in a
different transaction context than the one with which the instance is currently associated or in

an unspecified transaction context.

If a transaction commit has been requested, the transaction service notifies the container of the
commit request before actually committing the transaction, and the container idsefes-a
eCompletion on the instance. WhebeforeCompletion is invoked, the instance
should write any cached updates to the database. If a transaction rollback had been requested
instead, the rollback status is reached without the container issuiafpeeCompletion

The container may not call theeforeCompletion method if the transaction has been
marked for rollback (nor does the instance write any cached updates to the database).

The transaction service then attempts to commit the transaction, resulting in either a commit or
rollback.

When the transaction completes, the container isaftesCompletion on the instance,
specifying the status of the completion (either commit or rollback). If a rollback occurred, the
bean instance may need to reset its conversational state back to the value it had at the beginning
of the transaction.

The container’s caching algorithm may decide that the bean instance should be evicted from
memory (this could be done at the end of each method, or by using an LRU policy). The con-
tainer issuegjbPassivate on the instance. After this completes, the container saves the
instance’s state to secondary storage. A session bean can be passivated only between transac-
tions, and not within a transaction.

While the instance is in the passivated state, the Container may remove the session object after
the expiration of a timeout specified by the deployer. All object references and handles for the

11/24/99

58

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

session object become invalid. If a client attempts to invoke the session object, the Container
will throw thejava.rmi.NoSuchObjectException to the client.

* If a client invokes a session object whose session bean instance has been passivated, the con-
tainer will activate the instance. To activate the session bean instance, the container restores the
instance’s state from secondary storage and isghAstivate on it.

* The session bean instance is again ready for client methods.

* When the client callsemove on the home or remote interface to remove the session object,
the container issuesjipRemove() on the bean instance. This ends the life of the session
bean instance and the associated session object. Any subsequent attempt by its client to invoke
the session object causes fhea.rmi.NoSuchObjectException to be thrown. (This
exception is a subclass g#va.rmi.RemoteException). TheejpbRemove() method
cannot be called when the instance is participating in a transaction. An attempt to remove a
session object while the object is in a transaction will cause the container to throw the
javax.ejb.RemoveException to the client. Note that a container can also invoke the
ejpRemove() method on the instance without a client callreamove the session object
after the lifetime of the EJB object has expired.

Notes:

1. The Container must call thafterBegin , beforeCompletion , andafterComple-
tion methods if the session bean class implements, directly or indirectiebsionSyn-
chronization interface. The Container does not call these methods if the session bean
class does not implement tBessionSynchronization interface.

6.6.1 Operations allowed in the methods of a stateful session bean class

Table 2 defines the methods of a stateful session bean class from which the session bean instances can
access the methods of thevax.ejb.SessionContext interface, thgava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

If a session bean instance attempts to invoke a method dd¢ssionContext interface, and that
access is not allowed in Table 2, the Container must throwjahe.lang.lllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean, and that access is
not allowed in Table 2, the behavior is undefined by the EJB architecture.

59 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract

Enterprise JavaBeans v1.1, Final Release

STATEFUL Session Bean State Diagram

Table 2

Operations allowed in the methods of a stateful session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor

setSessionContext

SessionContext methodgetEJBHome
JNDI access to java:comp/env

SessionContext methodgetEJBHome
JNDI access to java:comp/env

ejbCreate
ejbRemove
ejbActivate
ejbPassivate

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBObject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method

from remote interface

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerinRole setRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBODbject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

afterBegin
beforeCompletion

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerinRole setRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

afterCompletion

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBObject

JNDI access to java:comp/env

N/A
(a bean with bean-managed transactio

demarcation cannot implement the Seg

sionSynchronization interface)

Notes:

* The ejbCreate

, ejpbRemove , ejbPassivate

, andejbActivate

methods of a ses-

sion bean with container-managed transaction demarcation execute with an unspecified trans-
action context. Refer to Subsection 11.6.3 for how the Container executes methods with an
unspecified transaction context.

11/24/99

60

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of theSessionContext

interface should be used only in the session bean methods that execute in the context of a trans-
action. The Container must throw thava.lang.lllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing the operations in Table 2 follow:

Invoking thegetEJBObject methods is disallowed in the session bean methods in which
there is no session object identity established for the instance.

Invoking the getCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security context.

Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction context,
and to all session beans with bean-managed transaction demarcation.

Accessing resource managers and enterprise beans is disallowed in the session bean methods
for which the Container does not have a meaningful transaction context or client security con-
text.

TheUserTransaction interface is unavailable to enterprise beans with container-managed
transaction demarcation.

6.6.2 Dealing with exceptions

6.6.3

A RuntimeException thrown from any method of the session bean class (including the business
methods and the callbacks invoked by the Container) results in the transition to the “does not exist”
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the corresponding session object does not exist any more. Subsequent invo-
cations through the remote interface will resujiava.rmi.NoSuchObjectException

MissedejbRemove() calls

The Bean Provider cannot assume that the Container will always involegtRemove() method on
a session bean instance. The following scenarios reswfhiRemove() not being called on an
instance:

A crash of the EJB Container.
A system exception thrown from the instance’s method to the Container.

A timeout of client inactivity while the instance is in tipassive state. The timeout is speci-
fied by the Deployer in an EJB Container implementation specific way.

61 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Objectinteraction diagrams for a STATEFUL

If the session bean instance allocates resources igjtitereate(...) method and/or in the busi-

ness methods, and normally releases the resources @jtRemove() method, these resources will

not be automatically released in the above scenarios. The application using the session bean should pro-
vide some clean up mechanism to periodically clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the session bean

stores the shopping cart content in a database, the application should provide a program that runs peri-
odically and removes “abandoned” shopping carts from the database.

6.6.4 Restrictions for transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked busi-
ness methods. The restrictions are enforced by the container and must be observed by the client pro-
grammer.

* A session bean instance can participate in at most a single transaction at a time.

* If a session bean instance is participating in a transaction, it is an error for a client to invoke a
method on the session object such that the transaction attribute in the deployment descriptor
would cause the container to execute the method in a different transaction context or in an
unspecified transaction context. The container throws java.rmi.RemoteExcep-
tion to the client in such a case.

* If asession bean instance is participating in a transaction, it is an error for a client to invoke the
remove method on the session object’s remote or home interface object. The container must

detect such an attempt and throw fagax.ejb.RemoveException to the client. The
container should not mark the client’s transaction for rollback, thus allowing the client to
recover.

6.7 Object interaction diagrams for a STATEFUL session bean

This section contains object interaction diagrams (OID) that illustrates the interaction of the classes.

(o]
~
=

Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These are either
classes that are part of the container, or classes that were generated by the container tools. These classes
communicate with each other through protocols that are container-implementation specific. Therefore,
the communication between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather than as
a prescriptive one.

11/24/99 62

Sun Microsystem Inc

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans v1.1, Final ReleaseSession Bean Component Contract

6.7.2 Creating a session object

The following diagram illustrates the creation of a session object.

Figure 7 OID for Creation of a session object

container provided classes

client EJB EJB container session synchro-| instance transaction
Home Object context nization service

Create(argsz

setSe%sionContext()

\
ejbCreate(args)

;
\
\
\
\
\
\
\
‘ &
\
\
\
\
|
\

- Xy

6.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction.

63 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Objectinteraction diagrams for a STATEFUL

Figure 8 OID for session object at start of a transaction.

container provided classes

client EJB EJB container session sync_hro- instance transactiodatabase
Home Object context hization service

|
. . \ . .
javax.transaction.UserTransaction.begin()

| |

\ \
| | | DI

business method - \ \
| | |
| | |

If the instance was passivated itlis reactivated
| | |

1

registerSynchronization(syn(fhronizatiqn)
|
\
\

new

I
\
|
|
|
|
-
\
\ \
>I read some data

register respurce manager

business method

business method)
business method

|
\
|
|
\
|
\
\
\
\
|
|
|
\
|
|
\ afterBegin
\
|
\
\
\
|
|
|
|
\
|
\
\
|
|

XX

-
|
\

6.7.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session object.

11/24/99 64

Sun Microsystem Inc

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans v1.1, Final ReleaseSession Bean Component Contract

Figure 9 OID for session object transaction synchronization

container provided classes

client EJB EJB container session sync_hro- instance transactiodatabase
Home Object context nization service

| | |
UserTransaction.commit() ‘ ‘ >

| beforeCompletion(

\
beforeCompIetion()

write updges to DB

X

prepare

|

commit

|

| |

\ \

\ \
afterCompletion(status)

|
|
\
\
\
\
\
\
|
\
|
\ ' \
‘ afterCompIetion(statuI;)
|
|
|
|
|
|
|
\
|
\
|

6.7.5 Passvating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session bean instance. Passivation
typically happens spontaneously based on the needs of the container. Activation typically occurs when a
client calls a method.

65 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Objectinteraction diagrams for a STATEFUL

Figure 10 OID for passivation and activation of a session object

container provided classes

client EJB EJB container instance synchro-| instance secondary store
Home Object context nization
|
|
|
|
\
|
Passivation: |

write state

Activation:

read state

ejbActivate

|
\
\
|
|
\
. . \
ejbPassivate >|
\
|
|
\
|
|
\
i
\
\
|
\
|
|
|
\
i
\
\

1
1

6.7.6 Removing a session object

The following diagram illustrates the removal of a session object.

11/24/99 66

Sun Microsystem Inc

Stateless session beans Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Figure 11

OID for the removal of a session object

container provided classes

client EJB EJB containersession sync_hro— instance
Home Object context nization

>I ejpRemove()

remove()

1

6.8 Stateless session beans

Stateless session beans are session beans whose instances have no conversational state. This means tha
all bean instances are equivalent when they are not involved in serving a client-invoked method.

The term “stateless” signifies that an instance has no state for a specific client. However, the instance
variables of the instance can contain the state across client-invoked method calls. Examples of such
states include an open database connection and an object reference to an EJB object.

The home interface of a stateless session bean must haveeate method that takes no arguments
and returns the session bean’s remote interface. There can be ncretier methods in the home
interface. The session bean class must define a sifnfleecate method that takes no arguments.

Because all instances of a stateless session bean are equivalent, the container can choose to delegate a
client-invoked method to any available instance. This means, for example, that the Container may dele-
gate the requests from the same client within the same transaction to different instances, and that the
Container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client load. Due

to client “think time,” this number is typically much smaller than the number of active clients. Passiva-

tion is not needed for stateless sessions. The container creates another stateless session bean instance if
one is needed to handle an increase in client work load. If a stateless session bean is not needed to han-
dle the current client work load, the container can destroy it.

67 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Stateless session beans

6.8.1

Because stateless session beans minimize the resources needed to support a large population of clients,
depending on the implementation of the container, applications that use stateless session beans may
scale somewhat better than those using stateful session beans. However, this benefit may be offset by the
increased complexity of the client application that uses the stateless beans.

Clients use thereate andremove methods on the home interface of a stateless session bean in the
same way as on a stateful session bean. To the client, it appears as if the client controls the life cycle of
the session object. However, the container handlesrérte andremove calls without necessarily
creating and removing an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply delegates a cli-
ent’s work to any available instance that is method-ready.

A stateless session bean must not implemenjahax.ejb.SessionSynchronization inter-
face.

Stateless session bean state diagram

When a client calls a method on a stateless session object, the container selects anetbbiisready
instances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session bean instance.

11/24/99

68

Sun Microsystem Inc

Stateless session beans Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract
Figure 12 Lifecycle of a STATELESS Session bean
does not
exist

1. newlnstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

method

method() action initiated by client
ejbCreate() action initiated by container

The following steps describe the lifecyle of a session bean instance:

* A stateless session bean instance’s life starts when the container imekésstance()
on the session bean class to create a hew instance. Next, the containsetSalssion-
Context() followed by ejbCreate() on the instance. The container can perform the
instance creation at any time—there is no relationship to a client’s invocation afr¢he
ate() method.

* The session bean instance is now ready to be delegated a business method call from any client.
* When the container no longer needs the instance (usually when the container wants to reduce

the number of instances in the method-ready pool), the container invokes ejbRemove() on it.
This ends the life of the stateless session bean instance.

6.8.2 Operations allowed in the methods of a stateless session bean class

Table 3 defines the methods of a stateless session bean class in which the session bean instances can
access the methods of tievax.ejb.SessionContext interface, thgava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

69 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract

If a session bean instance attempts to invoke a method dbélssionContext

Enterprise JavaBeans v1.1, Final Release

interface, and the

access is not allowed in Table 3, the Container must throwjahe.lang.lllegalStateEx-

ception.

If a session bean instance attempts to access a resource manager or an enterprise bean and the access is

not allowed in Table 3, the behavior is undefined by the EJB architecture.

Table 3

Operations allowed in the methods of a stateless session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor

setSessionContext

SessionContext methodgetEJBHome
JNDI access to java:comp/env

SessionContext methodgetEJBHome
JNDI access to java:comp/env

ejbCreate
ejbRemove

SessionContext methodgetEJBHome
getEJBODbject

JNDI access to java:comp/env

SessionContext methodgetEJBHomg
getEJBODbject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env

business method
from remote interface

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerinRolesetRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBODbject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access

Enterprise bean access

Additional restrictions:

* The getRollbackOnly
interface should be used only in the session bean methods that execute in the context of a trans-
action. The Container must throw thava.lang.lllegalStateException

and setRollbackOnly

methods of theSessionContext

if the

methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing operations in Table 3:

* Invoking thegetEJBObject

method is disallowed in the session bean methods in which

there is no session object identity associated with the instance.

* Invoking the getCallerPrincipal
the session bean methods for which the Container does not have a client security context.

and isCallerInRole

methods is disallowed in

11/24/99

70

Stateless session beans

Sun Microsystem Inc

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans v1.1, Final Release Session Bean Component Con-

* Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction context,
and for all session beans with bean-managed transaction demarcation.

* Accessing resource managers and enterprise beans is disallowed in the session bean methods
for which the Container does not have a meaningful transaction context or client security con-
text.

* The UserTransaction interface is unavailable to session beans with container-managed
transaction demarcation.

6.8.3 Dealing with exceptions

A RuntimeException thrown from any method of the enterprise bean class (including the business
methods and the callbacks invoked by the Container) results in the transition to the “does not exist”
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the session object continues to exist. The client can continue accessing the
session object because the Container can delegate the client’s requests to another instance.

6.9 Object interaction diagrams for a STATELESS session
bean

This section contains object interaction diagrams that illustrates the interaction of the classes.

6.9.1 Client-invoked create()

The following diagram illustrates the creation of a stateless session object.

Figure 13 OID for creation of a STATELESS session object

container-provided classes

client EJB EJB container session synchro-| instance transaction
Home Object context nization service

| | |
| create() | |
new

71 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final ReleaseObject interaction diagrams for a STATELESS

6.9.2 Business method imocation

The following diagram illustrates the invocation of a business method.

Figure 14 OID for invocation of business method on a STATELESS session object

container-provided classes

client EJB EJB container session synchro- | instance transactiodatabase
Home Object context hization service

|
\
business method

L

business method

read or u%)date some data

| |
| |
\ \
| |
\ \
\ \
| |
\ \
\ \ register resource manafer
\ \
| |
\ \
| |
\ \
| |
| |

6.9.3 Client-invoked remove()

The following diagram illustrates the destruction of a stateless session object.

11/24/99 72

Sun Microsystem Inc

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans v1.1, Final Release Session Bean Component Con-

Figure 15 OID for removal of a STATELESS session object

container-provided classes

client EJB EJB containersession sync_hro— instance
Home Object context nization

remove()

6.9.4 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the method-ready
pool.

Figure 16 OID for Container Adding Instance of a STATELESS session bean to a method-ready pool

container-provided classes

EJB EJB container session synchro-| instance transaction
Home Object context nization service

| |

new |

new |

|
setSessibnContext()
|

XN

ejbCreaé‘e()
\
\

73 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the bean provider

The following diagram illustrates the sequence for a container removing an instance from the
method-ready pool.

Figure 17 OID for a Container Removing an Instance of a STATELESS Session bean from ready pool

container-provided classes

EJB EJB container session synchro-| instance transaction
Home Object context nization service

6.10 The responsibilities of the bean provider

This section describes the responsibilities of session bean provider to ensure that a session bean can be
deployed in any EJB Container.

6.10.1 Classes and interfaces

The session bean provider is responsible for providing the following class files:
* Session bean class.
* Session bean’s remote interface.

e Session bean’s home interface.

11/24/99 74

Sun Microsystem Inc

The responsibilities of the bean provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

6.10.2 Session bean class

The following are the requirements for session bean class:

The class must implement, directly or indirectly, jgnax.ejb.SessionBean interface.
The class must be definedmsblic , must not bdinal , and must not babstract

The class must havepublic constructor that takes no parameters. The Container uses this
constructor to create instances of the session bean class.

The class must not define thiealize() method.
The class may, but is not required to, implement the session bean’s remote ifterface
The class must implement the business methods amjbiiecate = methods.

If the class is a stateful session bean, it may optionally implemenjatrex.ejb.Ses-
sionSynchronization interface.

The session bean class may have superclasses and/or superinterfaces. If the session bean has
superclasses, then the business methodgjitereate methods, the methods of tises-

sionBean interface, and the methods of the optioBalssionSynchronization inter-

face may be defined in the session bean class, or in any of its superclasses.

The session bean class is allowed to implement other methods (for example helper methods
invoked internally by the business methods) in addition to the methods required by the EJB

specification.

[4]

If the session bean class does implement the remote interface, care must be taken to avoid pdésingef method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the session bean class.

75 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the bean provider

6.10.3 ejbCreatemethods

The session bean class must define one or rafn€reate(...) methods whose signatures must
follow these rules:

* The method name must bfpCreate

* The method must be declaredpamblic

* The method must not be declaredinal or static

* The return type must bmid .

* The method arguments must be legal types for RMI/IIOP.

* The throws clause may define arbitrary application exceptions, possibly including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throwdhe.rmi.RemoteExcep-

tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to
indicate non-application exceptions to the Container (see Section 12.2.2).

6.10.4 Business methods

The session bean class may define zero or more business methods whose signatures must follow these
rules:

* The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts with
the callback methods used by the EJB architecture.

* The business method must be declarepldic
* The method must not be declaredinal or static
* The argument and return value types for a method must be legal types for RMI/IIOP.
* The throws clause may define arbitrary application exceptions.
Compatibility Note: EJB 1.0 allowed the business methods to throyatiaermi.RemoteExcep-
tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-

pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to
indicate non-application exceptions to the Container (see Section 12.2.2).

11/24/99 76

Sun Microsystem Inc

The responsibilities of the bean provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

6.10.5 Session bears remote interface

The following are the requirements for the session bean’s remote interface:
* The interface must extend tfavax.ejb.EJBObject interface.

* The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and their throws clause must
include thgava.rmi.RemoteException

* The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
to the RMI/IIOP rules for the definition of remote interfaces.

* For each method defined in the remote interface, there must be a matching method in the ses-
sion bean’s class. The matching method must have:

* The same name.
* The same number and types of arguments, and the same return type.

* All the exceptions defined in the throws clause of the matching method of the session
bean class must be defined in the throws clause of the method of the remote interface.

6.10.6 Session bears home interface

The following are the requirements for the session bean’s home interface:
* The interface must extend tjavax.ejb.EJBHome interface.
* The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and that their throws clause

must include thgava.rmi.RemoteException

* The home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI/IIOP rules for the definition of remote interfaces.

* A session bean’s home interface must define one or cneage(...) methods.

* Eachcreate method must be namedreate’, and it must match one of thejbCreate
methods defined in the session bean class. The matefiidyeate method must have the
same number and types of arguments. (Note that the return type is different.)

* The return type for areate method must be the session bean’s remote interface type.

* All the exceptions defined in the throws clause okfinCreate method of the session bean
class must be defined in the throws clause of the matatriegte method of the home inter-

face.

* The throws clause must inclugevax.ejb.CreateException

77 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the container provider

6.11

The responsibilities of the container provider

6.11.1

This section describes the responsibilities of the container provider to support a session bean. The con-
tainer provider is responsible for providing the deployment tools and for managing the session bean
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we

assume that the deployment tools are provided by the container provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

Generation of implementation classes

6.11.2

The deployment tools provided by the container are responsible for the generation of additional classes
when the session bean is deployed. The tools obtain the information that they need for generation of the
additional classes by introspecting the classes and interfaces provided by the enterprise bean provider
and by examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

* A class that implements the session bean’s home interface (session EJBHome class).

* A class that implements the session bean’s remote interface (session EJBODbject class).
The deployment tools may also generate a class that mixes some container-specific code with the ses-
sion bean class. This code may, for example, help the container to manage the bean instances at runtime.
The tools can use subclassing, delegation, and code generation.
The deployment tools may also allow the generation of additional code that wraps the business methods
and is used to customize the business logic to an existing operational environment. For example, a wrap-

per for adebit function on theAccountManager bean may check that the debited amount does
not exceed a certain limit.

Session EJBHome class

6.11.3

The session EJBHome class, which is generated by the deployment tools, implements the session bean’s
home interface. This class implements the methods ofahax.ejb.EJBHome interface and the
create methods specific to the session bean.

The implementation of eacltreate(...) method invokes a matchingjbCreate(...)
method.

Session EJBObiject class

The Session EJBObject class, which is generated by the deployment tools, implements the session
bean’s remote interface. It implements the methods ofatax.ejb.EJBObject interface and the
business methods specific to the session bean.

11/24/99

78

Sun Microsystem Inc

The responsibilities of the container provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

6.11.4

The implementation of each business method must activate the instance (if the instance is in the passive
state) and invoke the matching business method on the instance.

Handle classes

6.11.5

The deployment tools are responsible for implementing the handle classes for the session bean’s home
and remote interfaces.

EJBMetaData class

6.11.6

The deployment tools are responsible for implementing the class that provides meta-data to the client
view contract. The class must be a valid RMI Value class and must implemeavtheejb.EJB-
MetaData interface.

Non-reentrant instances

6.11.7

The container must ensure that only one thread can be executing an instance at any time. If a client
request arrives for an instance while the instance is executing another request, the container must throw
thejava.rmi.RemoteException to the second request.

Note that a session object is intended to support only a single client. Therefore, it would be an
application error if two clients attempted to invoke the same session object.

One implication of this rule is that an application cannot make loopback calls to a session bean instance.

Transaction scoping, securityexceptions

The container must follow the rules with respect to transaction scoping, security checking, and excep-
tion handling, as described in Chapters 11, 15, and 12, respectively.

79 11/24/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the container provider

11/24/99 80

Sun Microsystem Inc

Overview Enterprise JavaBeans v1.1, Final Release Example Session Scenario

camerr EXAMple Session Scenario

This chapter describes an example development and deployment scenario of a session bean. We use the
scenario to explain the responsibilities of the bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be considered illustra-
tive rather than prescriptive. Container providers are free to implement the contract between a session
bean and its container in a different way, provided that it achieves an equivalent effect (from the per-
spectives of the bean provider and the client-side programmer).

7.1 Overview

Wombat Inc. has developed tBartBean session Bean. The CartBean is deployed in a container pro-
vided by the Acme Corporation.

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illustrated in the fol-
lowing diagram:

81 11/24/99

Sun Microsystems Inc.

Example Session Scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship
Figure 18 Example of Inheritance Relationships Between EJB Classes
java.rmi_Remote java.io.SeriaIizabIe
JDK
: Enterprise
EJBMetaData EJBObject EnterpriseBean JavaBeans
Z% EJBHome 4
SessionBean

enterprise bean
provider
(Wombat Inc.)

CartHome
CartBean
AcmeRemote container
id

AcmeMetaData | AcmeHome AcmeBean p(fg;ng)r
produced by
Acme tools

AcmeCartHome AcmeRemoteCart

AcmeCartMetaData AcmeCartBean

——> extends or implements interface
——p» extends implementation, code generation, or delegation

Java interface Java class

11/24/99 82

Sun Microsystem Inc

Inheritance relationship

Enterprise JavaBeans v1.1, Final Release Example Session Scenario

7.2.1 What the session Bean mvider is responsible ér

Wombat Inc. is responsible for providing the following:

Define the session Bean'’s remote interface (Cart). The remote interface defines the business
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject inter-
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface must
be defined as public.

Write the business logic in the session Bean class (CartBean). The enterprise Bean class may,
but is not required to, implement the enterprise Bean’s remote interface (Cart). The enterprise
Bean must implement the javax.ejb.SessionBean interface, and define the ejbCreate(...) meth-
ods invoked at an EJB object creation.

Define a home interface (CartHome) for the enterprise Bean. The home interface must be
defined as public, extend the javax.ejb.EJBHome interface, and follow the standard rules for
RMI-IIOP remote interfaces.

Define a deployment descriptor specifying any declarative metadata that the session Bean pro-
vider wishes to pass with the Bean to the next stage of the development/deployment workflow.

7.2.2 Classes supplied by container mvider

7.2.3

The following classes are supplied by the container provider Acme Corp:

The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.

The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.

The AcmeBean class provides additional state and methods to allow Acme’s container to manage its
session Bean instances. For example, if Acme’s container uses an LRU algorithm, then AcmeBean may
include the clock count and methods to use it.

The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData methods.

What the container provider is responsible ér

The tools provided by Acme Corporation are responsible for the following:

Generate the class (AcmeRemoteCart) that implements the session bean’s remote interface.
The tools also generate the classes that implement the communication protocol specific arti-
facts for the remote interface.

Generate the implementation of the session Bean class suitable for the Acme container (Acme-
CartBean). AcmeCartBean includes the business logic from the CartBean class mixed with the
services defined in the AcmeBean class. Acme tools can use inheritance, delegation, and code
generation to achieve a mix-in of the two classes.

83 11/24/99

Sun Microsystems Inc.

Example Session Scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

* Generate the class (AcmeCartHome) that implements the session bean’s home interface. The
tools also generate the classes that implement the communication protocol specific artifacts for
the home interface.

* Generate the class (AcmeCartMetaData) that implements the javax.ejb.EJBMetaData inter-
face for the Cart Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp imple-
mented them). Other container providers may use different mechanisms to produce their runtime
classes, and these classes will likely be different from those generated by Acme’s tools.

11/24/99 84

Sun Microsystem Inc

Overview

Chapter 8

8.1

Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Client View of an Entity

This chapter describes the client view of an entity bean. It is actually a contract fulfilled by the Con-
tainer in which the entity bean is deployed. Only the business methods are supplied by the enterprise
bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the con-
tainer, the container itself is transparent to the client.

Overview

For a client, an entity bean is a component that represents an object-oriented view of some entities
stored in a persistent storage, such as a database, or entities that are implemented by an existing enter-
prise application.

A client accesses an entity bean through the entity bean’s remote and home interfaces. The container

provides classes that implement the entity bean’s remote and home interfaces. The objects that imple-

ment the home and remote objects are remote Java objects, and are accessible from a client through the
standard Java APIs for remote object invocation [3].

85 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release EJB Container

8.2

From its creation until its destruction, an entity object lives in a container. Transparently to the client,
the container provides security, concurrency, transactions, persistence, and other services for the entity
objects that live in the container. The container is transparent to the client—there is no API that a client
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity bean is
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the container in
which the entity object has been created. The object identity is implemented by the container with the
cooperation of the enterprise bean class.

The client view of an entity bean is location independent. A client running in the same JVM as an entity
bean instance uses the same API to access the entity bean as a client running in a different JVM on the
same or different machine.

A client of an entity object can be another enterprise bean deployed in the same or different Container;
or a client can be an arbitrary Java program, such as an application, applet, or servlet. The client view of
an entity bean can also be mapped to non-Java client environments, such as CORBA clients not written
in the Java programming language.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a container,
the container provides a class that implements the entity béan'se interface. The home interface

allows the client to create, find, and remove entity objects within the enterprise bean’s home. A client
can look up the entity bean’s home interface through JNDI API; it is the responsibility of the container
to make the entity bean’s home interface available in the JNDI APl hame space.

A client view of an entity bean is the same, irrespective of the implementation of the entity bean and its

container. This ensures that a client application is portable across all container implementations in
which the entity bean might be deployed.

EJB Container

An EJB Container (Container for short) is a system that functions as a runtime container for enterprise
beans.

Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in a con-
tainer, the container providesh@me interfacethat allows the client to create, find, and remove entity
objects that belong to the entity bean. The container makes the entity beans’ home interfaces (defined by
the bean provider and implemented by the container provider) available in the JINDI APl hame space for
clients.

An EJB Server may host one or multiple EJB Containers. The containers are transparent to the client:
there is no client APl to manipulate the container, and there is no way for a client to tell in which con-
tainer an enterprise bean is installed.

11/24/99

86

Sun Microsystem Inc

EJB Container

8.2.1

Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Locating an entity beans home interface

8.2.2

A client locates an entity bean’s home interface using JNDI. For example, the home interface for the
Account entity bean can be located using the following code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)
javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“java:comp/env/ejb/accounts”),
AccountHome.class);

A client's JNDI name space may be configured to include the home interfaces of enterprise beans
deployed in multiple EJB Containers located on multiple machines on a network. The actual location of
an EJB Container is, in general, transparent to the client.

What a container provides

The following diagram illustrates the view that a container provides to the clients of the entity beans
deployed in the container.

87 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s home interface

Figure 19 Client view of entity beans deployed in a container

\

container

L)

\

EJBObjects

d

EJBHome >

client ' k entity bean 1 /

\

EJBObjects ’
EJBHome >

k entity bean 2 /

other enterprise beans

/

8.3 Entity bean’s home interface

The container provides the implementation of the home interface for each entity bean deployed in the
container. The container makes the home interface of every entity bean deployed in the container acces-
sible to the clients through JNDI API. An object that implements an entity bean’s home interface is
called anEJBHome object.

11/24/99 88

Sun Microsystem Inc

Entity bean’s home interface Enterprise JavaBeans v1.1, Final Release Client View of an Entity

8.3.1

The entity bean’s home interface allows a client to do the following:

Create new entity objects within the home.
Find existing entity objects within the home.
Remove an entity object from the home.

Get the javax.ejbh.EJBMetaData interface for the entity bean. The javax.ejb.EJBMetaData inter-
face is intended to allow application assembly tools to discover the meta-data information
about the entity bean. The meta-data information allows loose client/server binding and script-

ing.

Obtain a handle for the home interface. The home handle can be serialized and written to stable
storage; later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain a reference to the home interface.

An entity bean’s home interface must extendjthex.ejb.EJBHome interface and follow the stan-
dard rules for Java programming language remote interfaces.

createmethods

An entity bean’s home interface can define zero or ntoeate(...) methods, one for each way to
create an entity object. The arguments oftheate methods are typically used to initialize the state

of the

created entity object.

The return type of areate method is the entity bean’s remote interface.

The throws clause of everreate method includes thgava.rmi.RemoteException and the
javax.ejb.CreateException . It may include additional application-level exceptions.

The following home interface illustrates two possitrleate methods:

public interface AccountHome extends javax.ejb.EJBHome {

public Account create(String firstName, String lastName,
double initialBalance)
throws RemoteException, CreateException;
public Account create(String accountNumber,
double initialBalance)
throws RemoteException, CreateException,
LowlnitialBalanceException;

The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(*John”, “Smith”, 500.00);

89 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s home interface

8.3.2

finder methods

8.3.3

An entity bean’s home interface defines one or nforeer method®!, one for each way to find an

entity object or collection of entity objects within the home. The name of each finder method starts with
the prefix ‘find”, such asfindLargeAccounts (...). The arguments of a finder method are used by

the entity bean implementation to locate the requested entity objects. The return type of a finder method
must be the entity bean’s remote interface, or a type representing a collection of objects that implement
the entity bean’s remote interface (see Subsection 9.1.8).

The throws clause of every finder method includes jthe.rmi.RemoteException and the
javax.ejb.FinderException

The home interface of every entity bean includesfih@ByPrimaryKey(primaryKey) method

that allows a client to locate an entity object using a primary key. The name of the method is always
findByPrimaryKey it has a single argument that is the same type as the entity bean’s primary key
type, and its return type is the entity bean’s remote interface. The implementationfiofdtBgPri-
maryKey(primaryKey) method must ensure that the entity object exists.

The following example shows tliedByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {

pﬁblic Account findByPrimaryKey(String AccountNumber)
throws RemoteException, FinderException;

The following example illustrates how a client usesfit@ByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333");

remove methods

Thejavax.ejp.EJBHome interface defines several methods that allow the client to remove an entity
object.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,
RemoveException;
void remove(Object primaryKey) throws RemoteException,
RemoveException;

After an entity object has been removed, subsequent attempts to access the entity object by a client
result in thgava.rmi.NoSuchObjectException

(5]

The findByPrimaryKey(primaryKeynethod is mandatory for all Entity Beans.

11/24/99

90

Sun Microsystem Inc

Entity object’s life cycle Enterprise JavaBeans v1.1, Final Release Client View of an Entity

8.4 Entity object’s life cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The tefer-

encedin the diagram means that the client program has a reference to the entity object’'s remote inter-
face.)

Figure 20 Client View of Entity Object Life Cycle

object.businessMethod(...)
throwsNoSuchObjectException

does not exist release reference / does not exist

an an
not referenced referenced

object.remove()

- - home.create(...) or
ﬂwlgeeﬂ dlrngt delete home.remove(...)
or

home.remove(...)

exists \

and
not referenced

direct delete

home.find(...) ﬁists
and
referenced

release reference \/4

object.businessMethod(...)

create() action initiated by client
direct delete action on database from outside EUB

An entity object does not exist until it is created. Until it is created, it has no identity. After it is created,

it has identity. A client creates an entity object using the entity bean’s home interface whose class is
implemented by the container. When a client creates an entity object, the client obtains a reference to
the newly created entity object.

91 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Primary key and object identity

8.5

In an environment with legacy data, entity objects may “exist” before the container and entity bean are
deployed. In addition, an entity object may be “created” in the environment via a mechanism other than
by invoking acreate(...) method of the home interface (e.g. by inserting a database record), but
still may be accessible by a container’s clients via the finder methods. Also, an entity object may be
deleted directly using other means than tieenove() operation (e.g. by deletion of a database
record). The “direct insert” and “direct delete” transitions in the diagram represent such direct database
manipulation.
A client can get a reference to an existing entity object’s remote interface in any of the following ways:

* Receive the reference as a parameter in a method call (input parameter or result).

* Find the entity object using a finder method defined in the entity bean’s home interface.

* Obtain the reference from the entity object’s handle. (see Section 8.7)
A client that has a reference to an entity object’'s remote interface can do any of the following:

* Invoke business methods on the entity object through the remote interface.

* Obtain a reference to the enterprise Bean’s home interface.

* Pass the reference as a parameter or return value of a remote method call.

* Obtain the entity object’s primary key.

* Obtain the entity object’s handle.

* Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an entity
object that does not exist result injaga.rmi.NoSuchObjectException being thrown.

All entity objects are considergukrsistent objects The lifetime of an entity object is not limited by the
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a crash of
the Java Virtual Machine may result in a rollback of current transactions, it does not destroy previously
created entity objects nor invalidate the references to the remote and home interfaces held by clients.

Multiple clients can access the same entity object concurrently. Transactions are used to isolate the cli-
ents’ work from each other.

Primary key and object identity

Every entity object has a unigue identity within its home. If two entity objects have the same home and
the same primary key, they are considered identical.

11/24/99

92

Sun Microsystem Inc

Entity Bean’s remote interface Enterprise JavaBeans v1.1, Final Release Client View of an Entity

8.6

The Enterprise JavaBeans architecture allows a primary key class to be any class that is a legal Value
Type in RMI-IIOP, subject to the restrictions defined in Subsection 9.2.9. The primary key class may be
specific to an entity Bean class (i.e. each entity bean class may define a different class for its primary
key, but it is possible that multiple entity beans use the same primary key class).

A client that holds a reference to an entity object’'s remote interface can determine the entity object’s
identity within its home by invoking thgetPrimaryKey() method on the reference. The object

identity associated with a reference does not change over the lifetime of the reference. (That is,
getPrimaryKey() always returns the same value when called on the same entity object reference.)

A client can test whether two entity object references refer to the same entity object by usilg the
dentical(EJBObject) method. Alternatively, if a client obtains two entity object references from
the same home, it can determine if they refer to the same entity by comparing their primary keys using
theequals method.

The following code illustrates using th&dentical method to test if two object references refer to
the same entity object:

Account accl =...;
Account acc2 =...;

if (accl.isldentical(acc?)) {

accl and acc2 are the same entity object
}else {

acc2 and acc? are different entity objects

}
A client that knows the primary key of an entity object can obtain a reference to the entity object by
invoking thefindByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e use=of the
operator) for entity object references. The result of comparing two object references using the Java pro-
gramming languageObject.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not guaran-
teed to yield the same result. Therefore, a client should always ussddbatical method to deter-

mine if two entity object references refer to the same entity object.

Entity Bean’s remote interface

A client accesses an entity object through the entity bean’s remote interface. An entity bean’s remote
interface must extend thavax.ejb.EJBObject interface. A remote interface defines the business
methods that are callable by clients.

93 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s handle

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)
throws java.rmi.RemoteException,
InsufficientBalanceException;
void credit(double amount)
throws java.rmi.RemoteException;
double getBalance()
throws java.rmi.RemoteException;

The javax.ejb.EJBObject interface defines the methods that allow the client to perform the fol-
lowing operations on an entity object’s reference:

* Obtain the home interface for the entity object.
* Remove the entity object.

* Obtain the entity object’s handle.

e Obtain the entity object’s primary key.

The container provides the implementation of the methods defined jathg.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class.

Note that the entity object does not expose the methods ofatrex.ejb.EnterpriseBean

interface to the client. These methods are not intended for the client—they are used by the container to
manage the enterprise bean instances.

8.7 Entity bean’s handle

An entity object’s handle is an object that identifies the entity object on a network. A client that has a
reference to an entity object’'s remote interface can obtain the entity object’s handle by invoking the
getHandle() = method on the remote interface.

Since a handle class exterjdga.io.Serializable , a client may serialize the handle. The client
may use the serialized handle later, possibly in a different process or even system, to re-obtain a refer-
ence to the entity object identified by the handle.

The client code must use th@vax.rmi.PortableRemoteObject.narrow...) method to
convert the result of thgetEJBODbject() method invoked on a handle to the entity bean’s remote
interface type.

11/24/99 94

Sun Microsystem Inc

Entity home handles Enterprise JavaBeans v1.1, Final Release Client View of an Entity

8.8

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a program
running in one JVM must be able to obtain and serialize the handle, and another program running in a
different JVM must be able to deserialize it and re-create an object reference. An entity handle is typi-
cally implemented to be usable over a long period of time—it must be usable at least across a server
restart.

Containers that store long-lived entities will typically provide handle implementations that allow clients

to store a handle for a long time (possibly many years). Such a handle will be usable even if parts of the
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced while the
client has stored the handle. Support for this “quality of service” is not required by the EJB specifica-
tion.

An EJB Container is not required to accept a handle that was generated by another vendor’s EJB Con-
tainer.

The use of a handle is illustrated by the following example:

/I A client obtains a handle of an account entity object and
/I stores the handle in stable storage.

1l

ObjectOutputStream stream = ...;

Account account = ...;

Handle handle = account.getHandle();
stream.writeObject(handle);

/I A client can read the handle from stable storage, and use the

/I handle to resurrect an object reference to the

/I account entity object.

1l

ObjectinputStream stream = ...;

Handle handle = (Handle) stream.readObject(handle);

Account account = (Account)javax.rmi.PortableRemoteObject.narrow(
handle.getEJBODbject(), Account.class);

account.debit(100.00);

A handle is not a capability, in the security sense, that would automatically grant its holder the right to
invoke methods on the object. When a reference to a object is obtained from a handle, and then a
method on the object is invoked, the container performs the usual access checks based on the caller’s
principal.

Entity home handles

The EJB specification allows the client to obtain a handle for the home interface. The client can use the
home handle to store a reference to an entity bean’s home interface in stable storage, and re-create the
reference later. This handle functionality may be useful to a client that needs to use the home interface
in the future, but does not know the JNDI API name of the home interface.

A handle to a home interface must implementavex.ejb.HomeHandle interface.

95 11/24/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Type narrowing of object references

8.9

The client code must use th@vax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thgetEJBHome() method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a program
running in one JVM must be able to serialize the handle, and another program running in a different
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically imple-
mented to be usable over a long period of time—it must be usable at least across a server restart.

Type narrowing of object references

A client program that is intended to be interoperable with all compliant EJB Container implementations
must use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs that use the cast operator to narrow the remote and home interfaces are likely to fail if
the Container implementation uses RMI-IIOP as the underlying communication transport.

11/24/99

96

Sun Microsystem Inc

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

«aers ENtIYY Bean Component Contract

Note: Container support for entity beans is a mandatory feature in the EJB 1.1 release.

The entity bean component contract is the contract between an entity bean and its container. It defines
the life cycle of the entity bean instances and the model for method delegation of the client-invoked
business methods. The main goal of this contract is to ensure that a component is portable across all
compliant EJB Containers.

This chapter defines the enterprise Bean Provider’s view of this contract and the Container Provider’s
responsibility for managing the life cycle of the enterprise bean instances.

9.1 Concepts

9.1.1 Runtime execution model

This section describes the runtime model and the classes used in the description of the contract between
an entity bean and its container.

97 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Figure 21 Overview of the entity bean runtime execution model

\

container

EJBHome

enterprise bea)’

instances

EJBObjects

N

client enterprise bean 1/

EJBHome

enterprise bea}’

instances

EJBObjects

classes generated by
Container Provider tools

enterprise bean 2 /
/

classes provided by
Bean Provider

An enterprise bean instances an object whose class was provided by the Bean Provider.

An entity EJBObject is an object whose class was generated at deployment time by the Container Pro-
vider’s tools. The entity EJBObject class implements the entity bean’s remote interface. A client never
references an entity bean instance directly—a client always references an entity EJBObject whose class
is generated by the Container Provider’s tools.

An entity EJBHome object provides the life cycle operations (create, remove, find) for its entity
objects. The class for the entity EJBHome object is generated by the Container Provider's tools at
deployment time. The entity EJBHome object implements the entity bean’s home interface that was
defined by the Bean Provider.

11/24/99 98

Sun Microsystem Inc

Concepts

9.1.2

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Granularity of entity beans

9.1.3

This section provides guidelines to the Bean Providers for modeling of business objects as entity beans.

In general, an entity bean should represent an independent business object that has an independent iden-
tity and lifecycle, and is referenced by multiple enterprise beans and/or clients.

A dependent objecthould not be implemented as an entity bean. Instead, a dependent object is better
implemented as a Java class (or several classes) and included as part of the entity bean on which it
depends.

A dependent object can be characterized as follows. An object B is a dependent object of an object A, if
B is created by A, accessed only by A, and removed by A. This implies, for example, that if B exists when
A is being removed, B is automatically removed as well. It also implies that other programs can access
the object B only indirectly through object A. In other words, the object A fully manages the lifecycle of
the object B.

For example, a purchase order might be implemented as an entity bean, but the individual line items on
the purchase order should be implemented as helper classes, not as entity beans. An employee record
might be implemented as an entity bean, but the employee address and phone number should be imple-
mented as helper classes, not as entity beans.

The state of an entity object that has dependent objects is often stored in multiple records in multiple
database tables.

In addition, the Bean Provider must take into consideration the following factors when making a deci-
sion on the granularity of an entity object:

* Every method call to an entity object via the remote and home interface is potentially a remote
call. Even if the calling and called entity bean are collocated in the same JVM, the call must go
through the container, which must create copies of all the parameters that are passed through
the interface by value (i.e. all parameters that do not extengatteermi.Remote inter-
face). The container is also required to check security and apply the declarative transaction
attribute on the inter-component calls. The overhead of an inter-component call will likely be
prohibitive for object interactions that are too fine-grained.

* The EJB deployment descriptor does not provide a mechanism for describing object schemas
(the relationships among the fine-grained objects, and how fine-grained objects are mapped to
the underlying database). If these relationships need to be visible at deployment time, the
information describing the relationships must be passed from the Bean Provider to the
Deployer through some means outside of the EJB specification.

Entity persistence (data access ptocol)

An entity bean implements an object view of an entity stored in an underlying database, or an entity
implemented by an existing enterprise application (for example, by a mainframe program or by an ERP
application). The data access protocol for transferring the state of the entity between the entity bean
instances and the underlying database is referred to as péjsidtence

99 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract

Enterprise JavaBeans v1.1, Final Release Concepts

The entity bean component protocol allows the entity Bean Provider either to implement the entity
bean’s persistence directly in the entity bean class or in one or more helper classes provided with the
entity bean class (bean-managed persistence), or to delegate the entity bean’s persistence to the Con-
tainer Provider tools used at deployment time (container-managed persistence).

In many cases, the underlying data source may be an existing application rather than a database.

Figure 22

Client view of underlying data sources accessed through entity bean

(a) Entity bean is an object view of a record in the database

/ container \

Account
entity bea

- /

Account 100

(b) Entity bean is an object view of an existing application

/ container \

Account
entity bea

Account 100

existing
application

9.1.3.1 Bean-managed persistence

In the bean-managed persistence case, the entity Bean Provider writes database access calls (e.g. using
JDBC API technology or SQLJ) directly in the entity bean component. The data access calls are per-
formed in the ejbCreate(...) , ejpbRemove() , ejbFind<METHOD> (), ejbLoad() , and

ejbStore() methods; and/or in the business methods.

The data access calls can be coded directly into the entity bean class, or they can be encapsulated in a
data access component that is part of the entity bean.

11/24/99

100

Sun Microsystem Inc

Concepts

9.1.3.2

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

We expect that most enterprise beans will be created by application development tools which will
encapsulate data access in components. These data access components will probably not be the same
for all tools. This EJB specification does not define the architecture for data access objects or strategies.

Directly coding data access calls in the entity bean class may make it more difficult to adapt the entity
bean to work with a database that has a different schema, or with a different type of database.

If the data access calls are encapsulated in data access components, the data access components may
optionally provide deployment interfaces to allow adapting data access to different schemas or evento a
different database type. These data access component strategies are beyond the scope of the EJB speci-
fication.

Container-managed persistence

In the container-managed persistence case, the Bean Provider does not write the database access calls in
the entity bean. Instead, the Container Provider’s tools generate the database access calls at the entity
bean’s deployment time (i.e. when the entity bean is installed into a container). The entity Bean Pro-
vider must specify in the deployment descriptor the list of the instance fields for which the container
provider tools must generate access calls.

The advantage of using container-managed persistence is that the entity bean can be largely independent
from the data source in which the entity is stored. The container tools can generate classes that use
JDBC API or SQLJ to access the entity state in a relational database, or classes that implement access to
a non-relational data source, such as an IMS database, or classes that implement function calls to exist-
ing enterprise applications.

The disadvantage is that sophisticated tools must be used at deployment time to map the entity bean’s
fields to a data source. These tools and containers are typically specific to each data source.

The essential difference between an entity with bean-managed persistence and one with container-man-

aged persistence is that in the bean-managed case, the data access components are provided as part of
the entity bean, whereas in the container-managed case, the data access components are generated at
deployment time by the container tools.

101 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

9.1.4 Instance life cycle

Figure 23 Life cycle of an entity bean instance.

instance throws
does not system exception
exist from any method

| 1. unsetEntityContext()

1. newlnstance()
2. setEntityContext(ec)

ejbFind<METHOD>()

ejbCreate(args) ejbRemove()
ejbPostCreate(arg ejbActivate()
ejbLoad() ejbStore()

business method

An entity bean instance is in one of the following three states:
* It does not exist.

* Pooled state. An instance in the pooled state is not associated with any particular entity object
identity.

* Ready state. An instance in the ready state is assigned an entity object identity.
The following steps describe the life cycle of an entity bean instance:
* An entity bean instance’s life starts when the container creates the instancenasihg

stance() . The container then invokes ttsetEntityContext() method to pass the
instance a reference to thentityContext interface. TheEntityContext interface

11/24/99 102

Sun Microsystem Inc

Concepts

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

allows the instance to invoke services provided by the container and to obtain the information
about the caller of a client-invoked method.

The instance enters the pool of available instances. Each entity bean has its own pool. While
the instance is in the available pool, the instance is not associated with any particular entity
object identity. All instances in the pool are considered equivalent, and therefore any instance
can be assigned by the container to any entity object identity at the transition to the ready state.
While the instance is in the pooled state, the container may use the instance to execute any of
the entity bean’s finder methods (shown as ejbFind<METHOD>(...) in the diagram). The
instance doesot move to the ready state during the execution of a finder method.

An instance transitions from the pooled state to the ready state when the container selects that
instance to service a client call to an entity object. There are two possible transitions from the
pooled to the ready state: through the ejbCreate(...) and ejbPostCreate(...) methods, or through
the ejbActivate() method. The container invokes the ejbCreate(...) and ejbPostCreate(...) meth-
ods when the instance is assigned to an entity object during entity object creation (i.e. when the
client invokes a create method on the entity bean’s home object). The container invokes the
ejbActivate() method on an instance when an instance needs to be activated to service an invo-
cation on an existing entity object—this occurs because there is no suitable instance in the
ready state to service the client’s call.

When an entity bean instance is in the ready state, the instance is associated with a specific
entity object identity. While the instance is in the ready state, the container can invoke the ejb-
Load() and ejbStore() methods zero or more times. A business method can be invoked on the
instance zero or more times. Invocations of the ejbLoad() and ejbStore() methods can be arbi-
trarily mixed with invocations of business methods. The purpose of the ejbLoad and ejbStore
methods is to synchronize the state of the instance with the state of the entity in the underlying
data source—the container can invoke these methods whenever it determines a need to syn-
chronize the instance’s state.

The container can choose to passivate an entity bean instance within a transaction. To passivate
an instance, the container first invokes #jbStore method to allow the instance to syn-
chronize the database state with the instance’s state, and then the container inveiles the
Passivate method to return the instance to the pooled state.

Eventually, the container will transition the instance to the pooled state. There are two possible
transitions from the ready to the pooled state: through the ejbPassivate() method and through
the ejpRemove() method. The container invokes the ejbPassivate() method when the container
wants to disassociate the instance from the entity object identity without removing the entity
object. The container invokes the ejobRemove() method when the container is removing the
entity object (i.e. when the client invoked the remove() method on the entity object’s remote
interface, or one of the remove() methods on the entity bean’s home interface).

When the instance is put back into the pool, it is no longer associated with an entity object
identity. The container can assign the instance to any entity object within the same entity bean
home.

An instance in the pool can be removed by calling the unsetEntityContext() method on the
instance.

103 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Notes:

1. The EntityContext interface passed by the container to the instance isétiEntity-
Context method is an interface, not a class that contains static information. For example, the
result of theEntityContext.getPrimaryKey() method might be different each time
an instance moves from the pooled state to the ready state, and the resuljetiChaber-
Principal() andisCallerinRole(...) methods may be different in each business
method.

2. A RuntimeException thrown from any method of the entity bean class (including the

business methods and the callbacks invoked by the container) results in the transition to the
“does not exist” state. The container must not invoke any method on the instance after a
RuntimeException has been caught. From the client perspective, the corresponding entity
object continues to exist. The client can continue accessing the entity object through its remote
interface because the container can use a different entity bean instance to delegate the client's
requests. Exception handling is described further in Chapter 12.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling

approach is an example of a possible implementation, but it is not the required implementation.
Whether the container uses a pool or not has no bearing on the entity bean coding style.

9.1.5 The entity bean component contract

This section specifies the contract between an entity bean and its container. The contract specified here
assumes the use of bean-managed persistence. The differences in the contract for container-managed
persistence are defined in Section 9.4.

9.1.5.1 Entity bean instance’s view:
The following describes the entity bean instance’s view of the contract:

The entity Bean Provider is responsible for implementing the following methods in the entity bean
class:

* A public constructor that takes no arguments. The Container uses this constructor to create
instances of the entity bean class.

* public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference tdtiigyContext interface to the
entity bean instance. If the entity bean instance needs to udentitgContext interface
during its lifetime, it must remember tBmtityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Subsection 11.6.3 for
how the Container executes methods with an unspecified transaction context). An identity of
an entity object is not available during this method.

The instance can take advantage of #aEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be specific

11/24/99 104

Sun Microsystem Inc

Concepts

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

to an entity object identity because the instance might be reused during its lifetime to serve
multiple entity object identities.

public void unsetEntityContext();
A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity object is
not available during this method.

The instance can take advantage of tiresetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated by the
setEntityContext() method.)

public PrimaryKeyClass ejbCreate(...) ;

There are zef® or moreejbCreate(...) methods, whose signatures match the signa-
tures of thecreate(...) methods of the entity bean home interface. The container invokes
anejbCreate(...) method on an entity bean instance when a client invokes a matching
create(...) method to create an entity object.

The implementation of thejbCreate(...) method typically validates the client-supplied
arguments, and inserts a record representing the entity object into the database. The method
also initializes the instance’s variables. TéjpCreate(...) method must return the pri-

mary key for the created entity object.

An ejbCreate(...) method executes in the transaction context determined by the transac-
tion attribute of the matchingreate(...) method, as described in subsection 11.6.2.

public void ejbPostCreate(...);

For eachejbCreate(...) method, there is a matchirggbPostCreate(...) method

that has the same input parameters but the return valueids . The container invokes the
matchingejbPostCreate(...) method on an instance after it invokes thgCre-

ate(...) method with the same arguments. The entity object identity is available during the
ejbPostCreate(...) method. The instance may, for example, obtain the remote inter-
face of the associated entity object and pass it to another enterprise bean as a method argument.

An ejbPostCreate(...) method executes in the same transaction context as the previous
ejbCreate(...) method.

public void ejbActivate();

The container invokes this method on the instance when the container picks the instance from
the pool and assigns it to a specific entity object identity. @jbéctivate() method gives

the entity bean instance the chance to acquire additional resources that it needs while it is in the
ready state.

This method executes with an unspecified transaction context. The instance can obtain the
identity of the entity object via thgetPrimaryKey() or getEJBObject() method on

the entity context. The instance can rely on the fact that the primary key and entity object iden-
tity will remain associated with the instance until the completiorejpPassivate() or
ejbRemove()

[6] An entity enterprise Bean has efbCreate(...andejbPostCreate(..nethods if it does not define any create methods in its home
interface. Such an entity enterprise Bean does not allow the clients to create new EJB objects. The enterprise Bean restricts the cli-
ents to accessing entities that were created through direct database inserts.

105 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Note that the instance should not use &jieActivate() method to read the state of the
entity from the database; the instance should load its state onlydjptttmad() method.

public void ejbPassivate() ;

The container invokes this method on an instance when the container decides to disassociate
the instance from an entity object identity, and to put the instance back into the pool of avail-
able instances. The ejbPassivate() method gives the instance the chance to release any
resources that should not be held while the instance is in the pool. (These resources typically
had been allocated during the ejbActivate() method.)

This method executes with an unspecified transaction context. The instance can still obtain the
identity of the entity object via thgetPrimaryKey() or getEJBODbject() method of
the EntityContext interface.

Note that an instance should not use djlePassivate() method to write its state to the
database; an instance should store its state only &jliBéore() method.

public void ejpRemove() ;

The container invokes this method on an instance as a result of a client’s involéngoae
method. The instance is in the ready state wh@yRemove() is invoked and it will be
entered into the pool when the method completes.

This method executes in the transaction context determined by the transaction attribute of the
remove method that triggered thejpRemove method. The instance can still obtain the
identity of the entity object via thgetPrimaryKey() or getEJBObject() method of

the EntityContext interface.

The container synchronizes the instance’s state before it invokesjiRemove method.
This means that the state of the instance variables at the beginningejbBRemove method
is the same as it would be at the beginning of a business method.

An entity bean instance should use this method to remove the entity object’s representation in
the database.

Since the instance will be entered into the pool, the state of the instance at the end of this
method must be equivalent to the state of a passivated instance. This means that the instance
must release any resource that it would normally release &jliRassivate() method.

public void ejbLoad() ;

The container invokes this method on an instance in the ready state to inform the instance that
it must synchronize the entity state cached in its instance variables from the entity state in the
database. The instance must be prepared for the container to invoke this method at any time
that the instance is in the ready state.

If the instance is caching the entity state (or parts of the entity state), the instance must not use
the previously cached state in the subsequent business method. The instance may take advan-
tage of theejpLoad method, for example, to refresh the cached state by reading it from the
database.

This method executes in the transaction context determined by the transaction attribute of the
business method that triggered #jleLoad method.

public void ejbStore();

The container invokes this method on an instance to inform the instance that the instance must
synchronize the entity state in the database with the entity state cached in its instance variables.

11/24/99

106

Sun Microsystem Inc

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

The instance must be prepared for the container to invoke this method at any time that the
instance is in the ready state.

An instance must write any updates cached in the instance variables to the database in the
ejbStore() method.

This method executes in the same transaction context as the prejlbbiosd or ejbCre-

ate method invoked on the instance. All business methods invoked between the previous
ejpLoad orejbCreate method and thigjbStore method are also invoked in the same
transaction context.

* public primary key type or collectiogjbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the instance to
execute a matching client-invokdohd<METHOD>(...) method. The instance is in the
pooled state (i.e. it is not assigned to any particular entity object identity) when the container
selects the instance to execute #jlgFind<METHOD> method on it, and it is returned to the
pooled state when the execution of djlegFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the trans-
action attribute of the matchiriopd(...) method, as described in subsection 11.6.2.

The implementation of aejbFind<METHOD> method typically uses the method’s argu-
ments to locate the requested entity object or a collection of entity objects in the database. The
method must return a primary key or a collection of primary keys to the container (see Subsec-
tion 9.1.8).

9.1.5.2 Container’s view:

This subsection describes the container’s view of the state management contract. The container must
call the following methods:

* public void setEntityContext(ec) ;

The container invokes this method to pass a reference t&nltieyContext interface to
the entity bean instance. The container must invoke this method after it creates the instance,
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point, the
EntityContext is not associated with any entity object identity.

* public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of instances
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

* public PrimaryKeyClass ejbCreate(...) ;
public void ejbPostCreate(...) ;

The container invokes these two methods during the creation of an entity object as a result of a
client invoking acreate(...) method on the entity bean’s home interface.

The container first invokes thejbCreate(...) method whose signature matches the
create(...) method invoked by the client. ThgbCreate(...) method returns a pri-
mary key for the created entity object. The container creates an entity EJBObject reference for

107 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

the primary key. The container then invokes a matclajigPostCreate(...) method to
allow the instance to fully initialize itself. Finally, the container returns the entity object’s
remote interface (i.e. a reference to the entity EJBObject) to the client.

The container must invoke thegbCreate(...) andejbPostCreate(...) methods
in the transaction context determined by the transaction attribute of the matcteng
ate(...) method, as described in subsection 11.6.2.

public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., when the
instance is taken from the pool and assigned to an entity object identity). The container must
ensure that the primary key of the associated entity object is available to the instance if the
instance invokes thgetPrimaryKey() or getEJBObject() method on itsEnti-
tyContext interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container must
still invoke theejbLoad() method prior to a business method.

public void ejbPassivate() ;

The container invokes this method on an entity bean instance at passivation time (i.e., when the
instance is being disassociated from an entity object identity and moved into the pool). The
container must ensure that the identity of the associated entity object is still available to the
instance if the instance invokes tgetPrimaryKey() or getEJBODbject() method

on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first invoke
theejbStore() method on the instance before it invok@sPassivate() on it.

public void ejpbRemove();

The container invokes this method before it ends the life of an entity object as a result of a cli-
ent invoking aemove operation.

The container invokes this method in the transaction context determined by the transaction
attribute of the invokedemove method.

The container must ensure that the identity of the associated entity object is still available to
the instance in thejbRemove() method (i.e. the instance can invoke thetPrima-

ryKey() or getEJBODbject() method on it€EntityContext in the ejpRemove()

method).

The container must ensure that the instance’s state is synchronized from the state in the data-
base before invoking thejpRemove() method (i.e. if the instance is not already synchro-
nized from the state in the database, the container must irsjbkevad before it invokes
ejbRemove).

public void ejbLoad() ;

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its instance state from its state in the database. The exact times that the
container invokegjbLoad depend on the configuration of the component and the container,
and are not defined by the EJB architecture. Typically, the container wikgdlbad before

the first business method within a transaction to ensure that the instance can refresh its cached

11/24/99

108

Sun Microsystem Inc

Concepts

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

state of the entity object from the database. After the éijistoad within a transaction, the
container is not required to recognize that the state of the entity object in the database has been
changed by another transaction, and it is not required to notify the instance of this change via
anotherejbLoad call.

The container must invoke this method in the transaction context determined by the transaction
attribute of the business method that triggerecjheoad method.

* public void ejbStore() ;

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its state in the database with the state of the instance’s fields. This syn-
chronization always happens at the end of a transaction. However, the container may also
invoke this method when it passivates the instance in the middle of a transaction, or when it
needs to transfer the most recent state of the entity object to another instance for the same
entity object in the same transaction (see Subsection 11.7).

The container must invoke this method in the same transaction context as the previously
invokedejbLoad orejbCreate method.

* public primary key type or collectiogjbFind<METHOD>(...) ;

The container invokes theibFind<METHOD>(...) method on an instance when a client
invokes a matchinfind<METHOD>(...) method on the entity bean’s home interface. The
container must pick an instance that is in the pooled state (i.e. the instance is not associated
with any entity object identity) for the execution of tefpFind<METHOD>(...) method.

If there is no instance in the pooled state, the container creates one and caditiiity-

Context(...) method on the instance before dispatching the finder method.

After the ejbFind<METHOD>(...) method completes, the instance remains in the pooled
state. The container may, but is not required to, activate the objects that were located by the

finder using the transition through tpActivate() method.
The container must invoke tleggbFind<METHOD>(...) method in the transaction context
determined by the transaction attribute of the matcfimdy...) method, as described in

subsection 11.6.2.

If the ejpFind<METHOD> method is declared to return a single primary key, the container
creates an entity EJBODbject reference for the primary key and returns it to the client. If the
ejbFind<METHOD> method is declared to return a collection of primary keys, the container
creates a collection of entity EJBObject references for the primary keys returned from
ejbFind<METHOD>, and returns the collection to the client. (See Subsection 9.1.8 for infor-
mation on collections.)

9.1.6 Operations allowved in the methods of the entity bean class

Table 4 defines the methods of an entity bean class in which the enterprise bean instances can access the
methods of thgavax.ejb.EntityContext interface, thgava:comp/env environment nam-
ing context, resource managers, and other enterprise beans.

If an entity bean instance attempts to invoke a method ofghtityContext interface, and the
access is not allowed in Table 4, the Container must throwjahe.lang.lllegalStateEx-
ception.

109 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

If an entity bean instance attempts to access a resource manager or an enterprise bean, and the access is
not allowed in Table 4, the behavior is undefined by the EJB architecture.

11/24/99 110

Sun Microsystem Inc

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Table 4 Operations allowed in the methods of an entity bean

Bean method

Bean method can perform the following operations

constructor

setEntityContext
unsetEntityContext

EntityContext methodgetEJBHome
JNDI access to java:comp/env

ejbCreate

EntityContext methodgetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnly

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbPostCreate

EntityContext methodgietEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejpbRemove

EntityContext methodggetEJBHomggetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbFind

EntityContext methodgetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnly

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbActivate
ejbPassivate

EntityContext methodgietEJBHomggetEJBODbjectgetPrimaryKey
JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methodgietEJBHomggetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method
from remote interface

EntityContext methodggetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBODbjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

111 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Additional restrictions:

* The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the context of a
transaction. The Container must throw tlava.lang.lllegalStateException if
the methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

* Invoking thegetEJBObject andgetPrimaryKey methods is disallowed in the entity
bean methods in which there is no entity object identity associated with the instance.

* Invoking the getCallerPrincipal andisCallerInRole methods is disallowed in
the entity bean methods for which the Container does not have a client security context.

* Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
entity bean methods for which the Container does not have a meaningful transaction context.
These are the methods that have NMa&Supported , Never, or Supports transaction
attribute.

* Accessing resource managers and enterprise beans is disallowed in the entity bean methods for
which the Container does not have a meaningful transaction context or client security context.

9.1.7 Caching of entity state and theejpLoad andejbStore methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state between
business method invocations. An instance may choose to cache the entire entity object’s state, part of
the state, or no state at all.

The container-invokedjbLoad andejbStore methods assist the instance with the management of
the cached entity object’s state. The instance must handlejihead andejbStore methods as
follows:

* When the container invokes tleghStore method on the instance, the instance must push all
cached updates of the entity object’s state to the underlying database. The container invokes
theejbStore method at the end of a transaction, and may also invoke it at other times when
the instance is in the ready state. (For example the container may ieyloReore when
passivating an instance in the middle of a transaction, or when transferring the instance’s state
to another instance to support distributed transactions in a multi-process server.)

* When the container invokes tlegbLoad method on the instance, the instance must discard
any cached entity object’s state. The instance may, but is not required to, refresh the cached
state by reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cache the
entity object’s state:

* An instance loads the entire entity object’s state indfie.oad method and caches it until
the container invokes trgbStore method. The business methods read and write the cached

11/24/99 112

Sun Microsystem Inc

Concepts

9.1.7.1

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

entity state. ThejbStore method writes the updated parts of the entity object’s state to the
database.

* An instance loads the most frequently used part of the entity object’s state @jbbead
method and caches it until the container invokesdjixStore method. Additional parts of
the entity object’s state are loaded as needed by the business methodpSthee method
writes the updated parts of the entity object’s state to the database.

* Aninstance does not cache any entity object’s state between business methods. The business
methods access and modify the entity object’s state directly in the databasejbLad
andejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data access
calls in the entity bean class. We expect that they will rely on application development tools to provide
various data access components that encapsulate data access and provide state caching.

ejpLoad andejbStore with the NotSupported transaction attribute

The use of theejpLoad andejbStore methods for caching an entity object’s state in the instance
works well only if the Container can use transaction boundaries to drivejbth@ad andejbStore

methods. When thBlotSupported [7] transaction attribute is assigned to a remote interface method,

the corresponding enterprise bean class method executes with an unspecified transaction context (See
Subsection 11.6.3). This means that the Container does not have any well-defined transaction bound-
aries to drive thejbLoad andejbStore methods on the instance.

Therefore, theejpLoad andejbStore methods are “unreliable” for the instances that the Container
uses to dispatch the methods with an unspecified transaction context. The following are the only guaran-
tees that the Container provides for the instances that execute the methods with an unspecified transac-
tion context:

* The Container invokes at least ogfpLoad betweerejbActivate and the first business
method in the instance.

* The Container invokes at least oeghStore between the last business method on the
instance and thejbPassivate method.

Because the entity object’s state accessed betweesgilthead andejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transaction con-
text, the Bean Provider should not attempt to usedjsboad andejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation eflihead and

ejbStore methods should be a no-op (i.e. an empty method), and each business method should access
the entity object’s state directly in the database.

(7]

This applies also to theever andSupports attribute.

113 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

9.1.8 Finder method return type

9.1.8.1 Single-object finder

9.1.8.2

Some finder methods (such efpFindByPrimaryKey) are designed to return at most one entity
object. For these single-object finders, the result type ofittekMETHOD>(...) method defined in

the entity bean’s home interface is the entity bean’s remote interface. The result type of the correspond-
ing ejbFind<METHOD>(...) method defined in the entity’s implementation class is the entity
bean’s primary key type.

The following code illustrates the definition of a single-object finder.

/I Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

Account findByPrimaryKey(AccountPrimaryKey primkey)
throws FinderException, RemoteException;

}

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

5ﬁblic AccountPrimaryKey ejbFindByPrimaryKey/(
AccountPrimaryKey primkey)
throws FinderException

Multi-object finders

Some finder methods are designed to return multiple entity objects. For these multi-object finders, the
result type of thdind<METHOD>(...) method defined in the entity bean’s home interfacedsla
lectionof objects implementing the entity bean’s remote interface. The result type of the corresponding
ejbFind<METHOD>(...) implementation method defined in the entity bean’s implementation class

is a collection of objects of the entity bean’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:
e the JDK™ 1.Jjava.util.Enumeration interface
e the Java™ Z2ava.util.Collection interface
A Bean Provider that wants to ensure that the entity bean is compatible with containers and clients

based on JDKM 1.1 software must use thava.util. Enumeration interface for the finder's
result typé®l.

8

The finder will be also compatible with Java 2 platform-based Containers and Clients.

11/24/99

114

Sun Microsystem Inc

Concepts

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

A Bean Provider targeting only containers and clients based on Java 2 platform can use the

java.util.Collection interface for the finder’s result type.
The Bean Provider must ensure that the objects in jhea.util.Enumeration or
java.util.Collection returned from theejbFind<METHOD>(...) method are instances of

the entity bean’s primary key class.

The following is an example of a multi-object finder method definition compatible with containers and
clients that are based on both JDK 1.1 and Java 2 platform:

/I Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

jéva.util.Enumeration findLargeAccounts(double limit)
throws FinderException, RemoteException;

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

6Ublic java.util.Enumeration ejbFindLargeAccounts(
double limit) throws FinderException
{

}
, oo

The following is an example of a multi-object finder method definition that is compatible only with con-
tainers and clients based on Java 2:

/I Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

jéva.utiI.CoIIection findLargeAccounts(double limit)
throws FinderException, RemoteException;

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

b.ijblic java.util.Collection ejbFindLargeAccounts(
double limit) throws FinderException
{

}

115 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

9.1.9 Standard application exceptions ér Entities

The EJB specification defines the following standard application exceptions:
* javax.ejb.CreateException
* javax.ejb.DuplicateKeyException
* javax.ejb.FinderException
* javax.ejb.ObjectNotFoundException
* javax.ejb.RemoveException

This section describes the use of these exceptions by entity beans with bean-managed persistence. The
use of the exceptions by entity beans with container-managed persistence is the same, with one addi-
tional element: The responsibilities for throwing the exceptions apply to the data access methods gener-
ated by the Container Provider’s tools.

9.1.9.1 CreateException

From the client’'s perspective, @reateException (or a subclass o€reateException) indi-

cates that an application level error occurred duringcteate(...) operation. If a client receives

this exception, the client does not know, in general, whether the entity object was created but not fully
initialized, or not created at all. Also, the client does not know whether or not the transaction has been
marked for rollback. (However, the client may determine the transaction status usldgetieans-

action interface.)

The Bean Provider throws tHereateException (or subclass ofcreateException) from the
ejbCreate(...) and ejbPostCreate(...) methods to indicate an application-level error
from the create or initialization operation. Optionally, the Bean Provider may mark the transaction for
rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a CreateException is thrown, it
leaves the database in a consistent state, allowing the client to recover. For example, ejbCreate may
throw the CreateException to indicate that the some of the arguments to the create(...) methods are
invalid.

The Container treats tiereateException as any other application exception. See Section 12.3.

9.1.9.2 DuplicateKeyException

The DuplicateKeyException is a subclass o€reateException . It is thrown by theejb-
Create(...) methods to indicate to the client that the entity object cannot be created because an
entity object with the same key already exists. The unique key causing the violation may be the primary
key, or another key defined in the underlying database.

11/24/99 116

Sun Microsystem Inc

Concepts

9.1.93

9.1.94

9.1.9.5

Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Normally, the Bean Provider should not mark the transaction for rollback before throwing the excep-
tion.

When the client receives tHeuplicateKeyException , the client knows that the entity was not
created, and that the client’s transaction has not typically been marked for rollback.

FinderException

From the client’'s perspective, EinderException (or a subclass oFinderException) indi-
cates that an application level error occurred duringfitne...) operation. Typically, the client’s
transaction has not been marked for rollback because BirtlerException

The Bean Provider throws thHeinderException (or subclass ofFinderException) from the
ejbFind<METHOD>(...) methods to indicate an application-level error in the finder method. The
Bean Provider should not, typically, mark the transaction for rollback before throwirfgnderEx-
ception

The Container treats tt@nderException as any other application exception. See Section 12.3.

ObjectNotFoundException

The ObjectNotFoundException is a subclass ofinderException . It is thrown by the
ejbFind<METHOD>(...) methods to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 9.1.8) should throw this exception. Multi-object finders must
not throw this exception. Multi-object finders should return an empty collection as an indication that no
matching objects were found.

RemoveException

From the client’'s perspective, RemoveException (or a subclass oRemoveException) indi-

cates that an application level error occurred duringraove(...) operation. If a client receives this
exception, the client does not know, in general, whether the entity object was removed or not. The client
also does not know if the transaction has been marked for rollback. (However, the client may determine
the transaction status using theerTransaction interface.)

The Bean Provider throws tHRemoveException (or subclass oRemoveException) from the
ejpRemove() method to indicate an application-level error from the entity object removal operation.
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a RemoteException is thrown, it
leaves the database in a consistent state, allowing the client to recover.

The Container treats tliRemoveException as any other application exception. See Section 12.3.

117 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract

Enterprise JavaBeans v1.1, Final Release Concepts

9.1.10 Commit options

The Entity Bean protocol is designed to give the Container the flexibility to select the disposition of the

instance state at transaction commit time. This flexibility allows the Container to optimally manage the

caching of entity object’s state and the association of an entity object identity with the enterprise bean
instances.

The Container can select from the following commit-time options:

* Option A: The Container caches a “ready” instance between transactions. The Container
ensures that the instance has exclusive access to the state of the object in the persistent storage.
Therefore, the Container does not have to synchronize the instance’s state from the persistent
storage at the beginning of the next transaction.

* Option B: The Container caches a “ready” instance between transactions. In contrast to Option
A, in this option the Container does not ensure that the instance has exclusive access to the
state of the object in the persistent storage. Therefore, the Container must synchronize the
instance’s state from the persistent storage at the beginning of the next transaction.

* Option C: The Container does not cache a “ready” instance between transactions. The Con-
tainer returns the instance to the pool of available instances after a transaction has completed.

The following table provides a summary of the commit-time options.

Table 5 Summary of commit-time options
Write instance state | Instance stays Instance state
to database ready remains valid
Option A Yes Yes Yes
Option B Yes Yes No
Option C Yes No No

Note that the container synchronizes the instance’s state with the persistent storage at transaction com-
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity bean
will work correctly regardless of the commit-time option chosen by the Container. The Bean Provider
writes the entity bean in the same way.

The object interaction diagrams in subsection 9.5.4 illustrate the three alternative commit options in

detail.

11/24/99

118

Sun Microsystem Inc

Concepts Enterprise JavaBeans v1.1, Final Release

9.1.11 Concurrent access fom multiple transactions

Entity Bean Component Contract

When writing the entity bean business methods, the Bean Provider does not have to worry about concur-
rent access from multiple transactions. The Bean Provider may assume that the container will ensure
appropriate synchronization for entity objects that are accessed concurrently from multiple transactions.

The container typically uses one of the following implementation strategies to achieve proper synchro-
nization. (These strategies are illustrative, not prescriptive.)

* The container activates multiple instances of the entity bean, one for each transaction in which
the entity object is being accessed. The transaction synchronization is performed automatically
by the underlying database during the database access calls performed by the business meth-
ods; and by thejbLoad , ejbCreate ,ejbStore , andejpbRemove methods. The data-
base system provides all the necessary transaction synchronization; the container does not have
to perform any synchronization logic. The commit-time options B and C in Subsection 9.5.4
apply to this type of container.

Figure 24 Multiple clients can access the same entity object using multiple instances

- TX1
Client 1 ~
Enti

Acc

Container

/ enterprise bean instzﬁ

—
ty objec§
ount 10

Q

Account 100
inTX 2

es

Account 100

With this strategy, the type of lock acquired by ejbLoad leads to a trade-off. If ejbLoad acquires an

exclusive lock on the instance's state in the database, then throughput of read-only transactions could
be impacted. If ejbLoad acquires a shared lock and the instance is updated, then ejbStore will need to
promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently under mul-

tiple transactions.

* The container acquires exclusive access to the entity object’s state in the database. The con-
tainer activates a single instance and serializes the access from multiple transactions to this
instance. The commit-time option A in Subsection 9.5.4 applies to this type of container.

119

11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Figure 25

Multiple clients can access the same entity object using single instance

Container

4)

enterprise bean instan

Client 1
. container blocks Client 2
Client 2 ™2 until Client 1 finishes

- /

Account 100

9.1.12 Non-reentrant and re-entrant instances

An entity Bean Provider entity can specify that an entity bean is non-reentrant. If an instance of a
non-reentrant entity bean executes a client request in a given transaction context, and another request
with the same transaction context arrives for the same entity object, the container will throw the
java.rmi.RemoteException to the second request. This rule allows the Bean Provider to pro-
gram the entity bean as single-threaded, non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction context. An
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls back
A in the same transaction context. The entity bean’s method invoked by the loopback shares the current
execution context (which includes the transaction and security contexts) with the Bean's method
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the Container must reject an
attempt to re-enter the instance via the entity bean’s remote interface while the instance is executing a
business method. (This can happen, for example, if the instance has invoked another enterprise bean,
and the other enterprise bean tries to make a loopback call.) The container must reject the loopback call
and throw thgava.rmi.RemoteException to the caller. The container must allow the call if the
Bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with great caution. First, the Bean Provider must
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, in gen-
eral, tell a loopback from a concurrent call from a different client, the client programmer must be careful

to avoid code that could lead to a concurrent call in the same transaction context.

11/24/99

120

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.2

Concurrent calls in the same transaction context targeted at the same entity object are illegal and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal con-
current call and a legal loopback, application programmers are encouraged to avoid using loopbacks.
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment descriptor,
allowing the container to detect and prevent illegal concurrent calls from clients.

Responsibilities of the Enterprise Bean Provider

9.21

This section describes the responsibilities of an entity Bean Provider to ensure that the entity bean can
be deployed in any EJB Container.

The requirements are stated for the provider of an entity bean with bean-managed persistence. The dif-
ferences for entities with container-managed persistence are defined in Section 9.4.

Classes and interfaces

9.2.2

The entity Bean Provider is responsible for providing the following class files:
* Entity bean class and any dependent classes.
* Entity bean’s remote interface
* Entity bean’s home interface

* Primary key class

Enterprise bean class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, jineax.ejb.EntityBean interface.
The class must be defined@gblic and must not babstract

The class must not be definediasl

The class must define a public constructor that takes no arguments.

The class must not define tfiealize() method.

121 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

9.23

The class may, but is not required to, implement the entity bean’s remote int8kfifdbe class imple-

ments the entity bean’s remote interface, the class must provide no-op implementations of the methods
defined in thgavax.ejb.EJBODbject interface. The container will never invoke these methods on

the bean instances at runtime.

A no-op implementation of these methods is required to avoid defining the entity bean class as abstract.

The entity bean class must implement the business methods, ae{b@reate, ejbPostCre-
ate, andejbFind<METHOD> methods as described later in this section.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has superclasses,
the business methods, thfpCreate and ejbPostCreate methods, the finder methods, and the
methods of théentityBean interface may be implemented in the enterprise bean class or in any of

its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the EJB specification.

ejbCreatemethods

The entity bean class may define zero or ngjteCreate(...) methods whose signatures must fol-
low these rules:

The method name must bfpCreate

The method must be declaredpablic

The method must not be declaredinal or static

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throwdhe.rmi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

[9]

If the entity bean class does implement the remote interface, care must be taken to avoid phssing®f method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the entity bean class.

11/24/99

122

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

The entity object created by tleghCreate method must have a unique primary key. This means that
the primary key must be different from the primary keys of all the existing entity objects within the
same home. ThejbCreate method should throw thBuplicateKeyException on an attempt

to create an entity object with a duplicate primary key. However, it is legal to reuse the primary key of a
previously removed entity object.

123 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

9.2.4 ejbPostCreatemethods

For eachejbCreate(...) method, the entity bean class must define a matchjhBostCre-
ate(...) method, using the following rules:

The method name must bfpPostCreate

The method must be declaredpasblic

The method must not be declaredinal or static
The return type must bmid .

The method arguments must be the same as the arguments of the madjtitngate(...)
method.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throvatleermi.RemoteEx-

ception to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeEx-
ception to indicate non-application exceptions to the Container (see Section 12.2.2).

9.2.5 ejbFind methods

The entity bean class may also define additieji#tind<METHOD>(...) finder methods.
The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefigjdFind” (e.g. ejbFindByPrimaryKey
ejbFindLargeAccounts , ejbFindLateShipments).

A finder method must be declaredpasblic
The method must not be declaredinal or static
The method argument types must be legal types for RMI-IIOP.

The return type of a finder method must be the entity bean’s primary key type, or a collection of primary
keys (se&ectionSubsection 9.1.8).

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.FinderException

Every entity bean must define tiegbFindByPrimaryKey method. The result type for this method
must be the primary key type (i.e. thgbFindByPrimaryKey method must be a single-object
finder).

11/24/99 124

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.2.6

Compatibility Note: EJB 1.0 allowed the finder methods to throwj#ha.rmi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

Business methods

9.2.7

The entity bean class may define zero or more business methods whose signatures must follow these
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the callback
methods used by the EJB architecture.

The business method must be declarepldic

The method must not be declaredinal or static

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throyattzermi. RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-

pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

Entity bean’s remote interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend tjavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that their
argument and return value types must be valid types for RMI-IIOP, and their throws clauses must

include thgava.rmi.RemoteException

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity bean’s
class. The matching method must have:

* The same name.
* The same number and types of its arguments, and the same return type.

* All the exceptions defined in the throws clause of the matching method of the enterprise Bean
class must be defined in the throws clause of the method of the remote interface.

125 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

9.2.8 Entity bean’s home interface

The following are the requirements for the entity bean’s home interface:

The interface must extend tfavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ment and return types must be of valid types for RMI-IIOP, and that their throws clause must include the

java.rmi.RemoteException

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the home interface must be one of the following:

* A create method.

* A finder method.
Eachcreate method must be namedreate’, and it must match one of thejbCreate methods
defined in the enterprise Bean class. The matchjp@reate method must have the same number
and types of its arguments. (Note that the return type is different.)
The return type for areate method must be the entity bean’s remote interface type.
All the exceptions defined in the throws clause of the matckib@reate andejbPostCreate
methods of the enterprise Bean class must be included in the throws clause of the matehiag
method of the home interface (i.e the set of exceptions defined forélade method must be a super-
set of the union of exceptions defined for ¢fteCreate andejbPostCreate = methods)
The throws clause of@eate method must include thavax.ejb.CreateException
Eachfinder method must be namediid <METHOD>" (e.g.findLargeAccounts), and it
must match one of thejbFind<METHOD> methods defined in the entity bean class (ejlgkind-
LargeAccounts). The matchingejpFind<METHOD> method must have the same number and

types of arguments. (Note that the return type may be different.)

The return type for ind<METHOD> method must be the entity bean’s remote interface type (for a
single-object finder), or a collection thereof (for a multi-object finder).

The home interface must always include fiByPrimaryKey method, which is always a sin-
gle-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause offitFind method of the entity bean class must be
included in the throws clause of the matching method of the home interface.

The throws clause offmder method must include thavax.ejb.FinderException

11/24/99

126

Sun Microsystem Inc

The responsibilities of the Container Provider Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.2.9

Entity bean’s primary key class

9.3

The Bean Provider must specify a primary key class in the deployment descriptor.
The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of theshCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.

The responsibilities of the Container Provider

9.3.1

This section describes the responsibilities of the Container Provider to support entity beans. The Con-
tainer Provider is responsible for providing the deployment tools, and for managing entity bean
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we

assume that the deployment tools are provided by the container provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

Generation of implementation classes

The deployment tools provided by the container provider are responsible for the generation of addi-
tional classes when the entity bean is deployed. The tools obtain the information that they need for gen-
eration of the additional classes by introspecting the classes and interfaces provided by the entity Bean
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

* A class that implements the entity bean’s home interface (i.e. the entity EJBHome class).

* A class that implements the entity bean’s remote interface (i.e. the entity EJBObject class).
The deployment tools may also generate a class that mixes some container-specific code with the entity
bean class. The code may, for example, help the container to manage the entity bean instances at runt-
ime. Tools can use subclassing, delegation, and code generation.
The deployment tools may also allow generation of additional code that wraps the business methods and
that is used to customize the business logic for an existing operational environment. For example, a

wrapper for adebit function on theAccount Bean may check that the debited amount does not
exceed a certain limit, or perform security checking that is specific to the operational environment.

127 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the Container Provider

9.3.2

Entity EJBHome class

9.3.3

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s home
interface. This class implements the methods of jineax.ejb.EJBHome interface, and the
type-specificreate andfinder methods specific to the entity bean.

The implementation of eadreate(...) method invokes a matchirgjbCreate(...) method,
followed by the matchingjbPostCreate(...) method, passing thereate(...) parameters
to these matching methods.

The implementation of theemove(...) methods defined in thiavax.ejp.EJBHome interface
must activate an instance (if an instance is not already in the ready state) and inveigRbémove
method on the instance.

The implementation of each find<METHOD>(...) method invokes a matching
ejbFind<METHOD>(...) method. The implementation of tHsnd<METHOD>(...) method
must create an entity object reference for the primary key returned frogjiRnd<METHOD> and
return the entity object reference to the client. If eFind<METHOD> method returns a collection
of primary keys, the implementation of tfied<METHOD>(...) method must create a collection
of entity object references for the primary keys and return the collection to the client.

Entity EJBObject class

9.34

The entity EJBObject class, which is generated by deployment tools, implements the entity bean’s
remote interface. It implements the methods ofjthex.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of theemove(...) method (defined in thmvax.ejb.EJBObject inter-
face) must activate an instance (if an instance is not already in the ready state) and inak&éie
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

Handle class

9.3.5

The deployment tools are responsible for implementing the handle class for the entity bean. The handle
class must be serializable by the Java programming language Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a single class
for all deployed entity beans.

Home Handle class

The deployment tools responsible for implementing the home handle class for the entity bean. The han-
dle class must be serializable by the Java programming language Serialization protocol.

11/24/99

128

Sun Microsystem Inc

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.3.6

Because the home handle class is not entity bean specific, the container may, but is not required to, use a
single class for the home handles of all deployed entity beans.

Meta-data class

9.3.7

The deployment tools are responsible for implementing the class that provides meta-data information to
the client view contract. The class must be a valid RMI-IIOP Value Type, and must implement the
javax.ejb.EJBMetaData interface.

Because the meta-data class is not entity bean specific, the container may, but is not required to, use a
single class for all deployed enterprise beans.

Instance’s re-entrance

9.3.8

The container runtime must enforce the rules defined in Section 9.1.12.

Transaction scoping, securityexceptions

9.3.9

The container runtime must follow the rules on transaction scoping, security checking, and exception
handling described in Chapters 11, 15, and 12.

Implementation of object references

9.4

The container should implement the distribution protocol between the client and the container such that
the object references of the home and remote interfaces used by entity bean clients are usable for a long
period of time. Ideally, a client should be able to use an object reference across a server crash and
restart. An object reference should become invalid only when the entity object has been removed, or
after a reconfiguration of the server environment (for example, when the entity bean is moved to a dif-
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the client
code needs to have a recovery handler for the system exceptions thrown from the individual method
invocations on the home and remote interface, the client should not be forced to re-obtain the object ref-
erences.

Entity beans with container-managed persistence

The previous sections described the component contract for entity beans with bean-managed persis-
tence. The contract for an entity bean with container-managed persistence is the same as the contract for
an entity bean with bean-managed persistence (as described in the previous sections), except for the dif-
ferences described in this section.

The deployment descriptor for an entity bean indicates whether the entity bean uses bean-managed per-
sistence or container-managed persistence.

129 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

9.4.1 Container-managed fields

An entity bean with container-managed persistence relies on the Container Provider’s tools to generate
methods that perform data access on behalf of the entity bean instances. The generated methods transfer
data between the entity bean instance’s variables and the underlying resource manager at the times
defined by the EJB specification. The generated methods also implement the creation, removal, and
lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data access
must be deferred to the Container.

The Bean Provider is responsible for using tinep-field elements of the deployment descriptor to
declare the instance’s fields that the Container must load and store at the defined times. The fields must
be defined in the entity bean classgablic , and must not be definedtaansient

The container is responsible for transferring data between the entity bean’s instance variables and the
underlying data source before or after the execution oéth€reate , ejpRemove , ejbLoad , and
ejbStore methods, as described in the following subsections. The container is also responsible for
the implementation of the finder methods.

The following requirements ensure that an entity bean can be deployed in any compliant container.

* The Bean Provider must ensure that the Java programming language types assigned to the con-
tainer-managed fields are restricted to the following: Java programming language primitive
types, Java programming language serializable types, and references of enterprise beans’
remote or home interfaces.

* The Container Provider may, but is not required to, use Java programming language Serializa-
tion to store the container-managed fields in the database. If the container chooses a different
approach, the effect should be equivalent to that of Java programming language Serialization.
The Container must also be capable of persisting references to enterprise beans’ remote and
home interfaces (for example, by storing their handle or primary key).

Although the above requirements allow the Bean Provider to specify almost any arbitrary type for the
container-managed fields, we expect that in practice the Bean Provider will use relatively simple Java
programming language types, and that most Containers will be able to map these simple Java program-
ming language types to columns in a database schema to externalize the entity state in the database,
rather than use Java programming language serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fields, he
should provide mapping instructions to the Deployer. The mapping between the instance’s con-
tainer-managed fields and the schema of the underlying database manager will be then realized by the
data access classes generated by the container provider's tools. Because entity beans are typically
coarse-grained objects, the content of the container-managed fields may be stored in multiple rows, pos-
sibly spread across multiple database tables. These mapping techniques are beyond the scope of the
EJB specification, and do not have to be supported by an EJB compliant container. (The container may
simply use the Java serialization protocol in all cases).

11/24/99

130

Sun Microsystem Inc

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.4.2

Because a compliant EJB Container is not required to provide any support for mapping the con-
tainer-managed fields to a database schema, a Bean Provider of entity beans that need a particular map-
ping to an underlying database schema instead should use bean-managed persistence.

The provider of entity beans with container-managed persistence must take into account the following
limitations of the container-managed persistence protocol:

* Data aliasing problems. If container-managed fields of multiple entity beans map to the same
data item in the underlying database, the entity beans may see an inconsistent view of the data
item if the multiple entity beans are invoked in the same transaction. (That is, an update of the
data item done through a container-managed field of one entity bean may not be visible to
another entity bean in the same transaction if the other entity bean maps to the same data item.)

* Eager loading of state. The Container loads the entire entity object state into the con-
tainer-managed fields before invoking teipLoad method. This approach may not be opti-
mal for entity objects with large state if most business methods require access to only parts of
the state.

An entity bean designer who runs into the limitations of the container-managed persistence should use
bean-managed persistence instead.

ejbCreate, ejpPstCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that inserts
a record into the database in tegpCreate(...) methods. However, with container-managed per-
sistence, the container performs the database insert afegb@reate(...) method completes.

The Container must ensure that the values of the container-managed fields are set to the Java language
defaults (e.g. O for integenull for pointers) prior to invoking aejbCreate(...) method on an
instance.

The entity Bean Provider’s responsibility is to initialize the container-managed fields @jliGee-

ate(...) methods from the input arguments such that wheaja@reate(...) method returns,

the container can extract the container-managed fields from the instance and insert them into the data-
base.

TheejbCreate(...) methods must be defined to return the primary key class type. The implemen-
tation of theejbCreate(...) methods should be coded to returm@al . The returned value is
ignored by the Container.

Note: The above requirement is to allow the creation of an entity bean with bean-managed persistence
by subclassing an entity bean with container-managed persistence. The Java language rules for over-
riding methods in subclasses requires the signatures of the ejbCreate(...) methods in the subclass and
the superclass be the same.

131 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

9.4.3

The container is responsible for creating the entity object’s representation in the underlying database,
extracting the primary key fields of the newly created entity object representation in the database, and
for creating an entity EJBObject reference for the newly created entity object. The Container must
establish the primary key before it invokes #ibPostCreate(...) method. The container may
create the representation of the entity in the database immediatelgjai@reate(...) returns, or

it can defer it to a later time (for example to the time after the matchjbhBostCreate(...) has

been called, or to the end of the transaction).

Then container invokes the matchiefpPostCreate(...) method on the instance. The instance
can discover the primary key by calliggtPrimaryKey() on its entity context object.

The container must invokeibCreate , perform the database insert operation, and in@kPost-
Create in the transaction context determined by the transaction attribute of the matoieng
ate(...) method, as described in subsection 11.6.2.

The Container throws thBuplicateKeyException if the newly created entity object would have
the same primary key as one of the existing entity objects within the same home.

ejbRemove

944

The container invokes theibRemove() method on an entity bean instance with container-managed
persistence in response to a client-invokethove operation on the entity bean’s home or remote
interface.

The entity Bean Provider can use tibRemove method to implement any actions that must be done
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokegtRemove method. This means

that the state of the instance variables at the beginning o¢jtiitemove method is the same as it
would be at the beginning of a business method.

After ejpRemove returns, the container removes the entity object’s representation from the database.
The container must perforgibRemove and the database delete operation in the transaction context

determined by the transaction attribute of the invokethove method, as described in subsection
11.6.2.

ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity object’s
state in the database, the container reads the entity object’s state from the database into the con-
tainer-managed fields and then it invokesdjit oad() = method on the instance.

The entity Bean Provider can rely on the container’s having loaded the container-managed fields from
the database just before the container invokesefheoad() = method. The entity bean can use the
ejbLoad() method, for instance, to perform some computation on the values of the fields that were
read by the container (for example, uncompressing text fields).

11/24/99

132

Sun Microsystem Inc

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.4.5

ejbStore

9.4.6

When the container needs to synchronize the state of the entity object in the database with the state of
the enterprise bean instance, the container first callejth®tore() method on the instance, and
then it extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use th@Store() method to set up the values of the con-

tainer-managed fields just before the container writes them to the database. For examgjle, the
Store() method may perform compression of text before the text is stored in the database.

finder methods

94.7

The entity Bean Provider does not write the finéggsKind<METHOD>(...)) methods.

The finder methods are generated at the entity bean deployment time using the container provider's
tools. The tools can, for example, create a subclass of the entity bean class that implements the
ejbFind<METHOD>() methods, or the tools can generate the implementation of the finder methods
directly in the class that implements the entity bean’s home interface.

Note that theejpFind<METHOD> names and parameter signatures do not provide the container tools
with sufficient information for automatically generating the implementation of the finder methods for
methods other thaejbFindByPrimaryKey . Therefore, the bean provider is responsible for provid-

ing a description of each finder method. The entity bean Deployer uses container tools to generate the
implementation of the finder methods based in the description supplied by the bean provider. The Enter-
prise JavaBeans architecture does not specify the format of the finder method description.

primary k ey type

The container must be able to manipulate the primary key type. Therefore, the primary key type for an
entity bean with container-managed persistence must follow the rules in this subsection, in addition to
those specified in Subsection 9.2.9.

There are two ways to specify a primary key class for an entity bean with container-managed persis-
tence:

* Primary key that maps to a single field in the entity bean class.
* Primary key that maps to multiple fields in the entity bean class.
The second method is necessary for implementing compound keys, and the first method is convenient for

single-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

133 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

94.7.1

9.4.7.2

9.4.7.3

Primary key that maps to a single field in the entity bean class

The Bean Provider uses timgimkey-field element of the deployment descriptor to specify the
container-managed field of the entity bean class that contains the primary key. The field’s type must be
the primary key type.

Primary key that maps to multiple fields in the entity bean class
The primary key class must pablic , and must havepublic constructor with no parameters.
All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-managed
fields. (This allows the container to extract the primary key fields from an instance’s container-managed
fields, and vice versa.)

Special case: Unknown primary key class

In special situations, the entity Bean Provider may choose not to specify the primary key class for an
entity bean with container-managed persistence. This case usually happens when the entity bean does
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the primary
key fields at deployment time. The entity bean’s primary key type will usually be derived from the pri-
mary key type used by the underlying database system that stores the entity objects. The primary key
used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to subclass
the entity bean class to add additional container-managed fields (this typically happens for entity beans
that do not have a natural primary key, and the primary keys are system-generated by the underlying
database system that stores the entity objects).

In this special case, the type of the argument offth@ByPrimaryKey method must be declared as
java.lang.Object , and the return value ofejbCreate() must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deployment
descriptor as of the tygava.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider develops
an entity bean that is intended to be used with multiple back-ends that provide persistence, and when
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application program-
ming model, because the clients written prior to deployment of the entity bean may not use, in general,
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, the meth-
ods should not depend on the type of the object returned from EntityContext.getPrimaryKey(), because
the return type is determined by the Deployer after the EJB class has been written.

11/24/99

134

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.5

Object interaction diagrams

[(e]

=

This section uses object interaction diagrams to illustrate the interactions between an entity bean
instance and its container.

Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These classes are
either part of the container or are generated by the container tools. These classes communicate with
each other through protocols that are container implementation specific. Therefore, the communication
between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather than as
a prescriptive one

135 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

9.5.2 Creating an entity object

Figure 26 OID of Creation of an entity object with bean-managed persistence

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service

"

Create(argsz

|

javax.transact}ion.Usel‘lTransaction.begin() 1 :
I

\ \

\ \

\ \

\ \

|

|

|
ejberate(args)

P
| create representatiow DB
register redource mangger
new
ejbPostCreate(args)

|
\
|
I
\
\
\
\
\
\
\
\
\
\
|
\
\
\
\
\
\
\
new
\ \ j

registérSynchronization(S)}nchronizaﬁon)
\
|
\
\
i
|
|
|

| |
business methpd

’i business method

SR DU (. S

.

11/24/99 136

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Figure 27 OID of creation of an entity object with container-managed persistence

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
Home Object context nization service

javax.transact‘ion.UsellTransaction.begin() |
| | |
I
\ \

\

|

\

|

I I
\ \
\ \
create(args‘ | | |
\ \
| |
I I
\ \
\

\

ejbCréate(args)
I

extraé‘t container—manageé field

y

create entity representation in DB |
\ \ \ register resdurce manager

| | |

new | | |

—j | |

| |

ejbPostCreate(args) | |

| |

| |

new ‘
| | >*

|
\
business method \ . \
| 1 business method |

1
7
1

registérSynchronization(S))nchroniza{ion)
\
|
\
|
|
|
|
\
|

\
\ \
\ \
\ \
\ \
\ \
B
"
\ \
\ \
\ \
\ \
\ \
\ \
\ \

137 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

9.5.3 Passvating and activating an instance in a transaction

Figure 28 OID of passivation and reactivation of an entity bean instance with bean-managed persistence

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
Home Object context nization service

\
business method

|
\
>|‘ businﬁ‘)ss method

ejbStore()

write state to DB

"

\
|
|
\
|
| ejbPassivate()
|
|
|
\
|
\

business method

|
ejbActivate()

\

\
ejbLoad()

|

\

|

busines‘g method
I

read state from DB

!
\
\
\
\
\
\
\
\

busines§ method
\

business method

oy X Yy J X X

11/24/99 138

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Figure 29 OID of passivation and reactivation of an entity bean instance with CMP

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
Home Object context nization service

\
business method

|
\
>|‘ busin%ss method

\

|

»]
\ \
\

ejbStore() ’i

\
extract container-managed fields

7
:

update entity state in DB

ejbPassivate()

business method

\
ej bActivf";tte 0
\

read enﬁty state from DB |
\

\
set cont§iner-managed fields

ejbLoad()
|

busines‘§ method

ﬂ
-
1

\ \
business method

\

|

business method

|
\
\
\
\
\
\
l
\
&
\
\
\
\
\
:
\
1
\
\
\
\
\
\
\
\
\
\

139 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

9.5.4 Committing a transaction

Figure 30 OID of transaction commit protocol for an entity bean instance with bean-managed persistence

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
Home Object context nization service

| | |
javax.transaction.UserTransaction.commit() ‘ ‘ >

| beforeCompletion(

\
ejbStore()

write statgjto DB

o

prepare

J

]

|

|

\

\

\

\

\

\

\

\

| afterCompletion(staty
| -t |
\ \
|

\

|

\

|

\

|

\

|

\

|

)
~

\

| .
| | commit

|

|

Option A:] mark “no;t registered]

Option B:| mark “inValid state”
\

- \
Option C:]ejbPassivate()
Rt <4

11/24/99 140

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Figure 31 OID of transaction commit protocol for an entity bean instance with container-managed persistence

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service

| | |
javax.transaction.UserTransaction.commit() ‘ ‘ >

beforeCompletion
\ -< Comp (

|

\

|

\ \
ejbStore() [
\

\

\

\

extract container-maraged fields
_— - _»

update eli)tity state in pB
\

: prepare >I
"

\
: | commit
\

|

\

|

|

|

|

|

|

|

|

|

|

|

‘ afterCompletion(statt
| < i
|
|
|
|
\
|
|
|
|
|
|
|
|

)
~

Option A:| mark “not registered|
\

Option B: [mark “invalid state”
|

. \
Option C: ejbPassivate()
B

141 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

9.5.5 Starting the next transaction

The following diagram illustrates the protocol performed for an entity bean instance with bean-managed
persistence at the beginning of a new transaction. The three options illustrated in the diagram corre-
spond to the three commit options in the previous subsection.

11/24/99 142

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Figure 32 OID of start of transaction for an entity bean instance with bean-managed persistence

container-provided classes

client EJB EJB container instance synchro- instance transactiodatabase
Home Object context hization service

|
javax.transaction.User}Transaction.begin()
T

business method

L

Option A:{ do nothing

[
\
L
\
\
\
|

Option B:] ejbLoad()
read staté from D

register I‘ES‘OUI'CG manager

Option C:|eibActivate()

read state from D
register respurce manajer

— Y X

new

\
\
\
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
>

registerSynchronization(syn‘khronizati
I
\
\
!
|
\
\
1
|

o _ _ _

n)

business method

business method
’i business method

|
\
|
[
\
|
\
\
\
|
\
\
\
\
\
\
|
\
[ejbLoad()
\
|
\
\
\
|
\
\
|
\
\
\
|
\
\
\
|

B I B

143 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

Figure 33 OID of start of transaction for an entity bean instance with container-managed persistence
container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service
| |

javax.transaction.User‘Transaction.begin()

register resource manafygr

| |
| | |
! } L |
business method > 1 1 1
Option A1, nothing ‘ | |
| | |
| | |
) read state from DB | | |
Option B: ‘
|

ejbLoad()

Option C:| ejbActivate()

read entity state from DB

| register re§ource manapgr

>

ejbLoad()

new >*

|
| |
\ \
| | |
| | |
\ \ \
| | |
registerSynchronization(synghronization) ‘
| | >i |
\ \ \ \
1 \ \
\ \ \
| | |
\ \ \
\ | |
| | |
| | |

business method

business method

1
ﬂ

|
|

>| business method
|

11/24/99 144

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

9.5.6 Removing an entity object

Figure 34 OID of removal of an entity bean object with bean-managed persistence

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service

\
|
remove representation

i
\
|
>| in DB
| g
|
|

- remove()
>I ejpbRemove()

Figure 35 OID of removal of an entity bean object with container-managed persistence

container-provided classes

client EJB EJB container entity ~ synchro-| instance transactiodatabase
Home Object context nization service
| |
| |
remove
‘ 0 -

remove representation in DB

|
|
|
ejpbRemove() >I
\
\
|
|
|

7

145 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

9.5.7 Finding an entity object

Figure 36 OID of execution of a finder method on an entity bean instance with bean-managed persistence

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service

| | |
\ \ \
| find<METHODp(args)

\

|

eiji+d<METHOD>(args)

\
\
new

|
\
\
\
:
\
!
\
\

|
|
|
|
\
\
1 search DB
|
\
|

11/24/99 146

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Figure 37 OID of execution of a finder method on an entity bean instance with container-managed persistence

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service
	I	
\	\	
find<METHOD}(args)		
\		
\ \		
search DB		
l l l g		
l o l l		
\ \		
I I I

9.5.8 Adding and removing an instance fiom the pool

The diagrams in Subsections 9.5.2 through 9.5.7 did not show the sequences between the “does not
exist” and “pooled” state (see the diagram in Section 9.1.4).

147 11/24/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Obiject interaction diagrams

Figure 38 OID of a container adding an instance to the pool

container-provided classes

EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service
| I |
| new | |
1 »I
new | \
» | |
setEntit;‘/Context(ec) |
| ™1
\ \
\ \
| |
Figure 39 OID of a container removing an instance from the pool

container-provided classes

EJB EJB container entity synchro-| instance transactiodatabase
Home Object context nization service
| | |
\ \ \
unsetErptityContext()

>l
|
\
\
\
|

11/24/99 148

Sun Microsystem Inc

Overview

Chapter 10

10.1

Enterprise JavaBeans v1.1, Final Release Example entity scenario

Example entity scenario

This chapter describes an example development and deployment scenario for an entity bean. We use the
scenario to explain the responsibilities of the entity Bean Provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be considered illustra-
tive rather than prescriptive. Container providers are free to implement the contract between an entity

bean and its container in a different way that achieves an equivalent effect (from the perspectives of the
entity Bean Provider and the client-side programmer).

Overview

Wombat Inc. has developed tAecountBean entity bean. The AccountBean entity bean is deployed
in a container provided by the Acme Corporation.

149 11/24/99

Sun Microsystems Inc.

Example entity scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

10.2 Inheritance relationship

Figure 40 Example of the inheritance relationship between the interfaces and classes:
java.rmi_Remote java.io.SeriaIizabIe
[[& JDK
: Enterprise
EJBMetaData £)BObject EnterpérgseBean JavaBeans

EJBHome EntityBean

enterprise Bean
provider

Account (Wombat Inc.)

AccountHome

AccountBean
AcmeRemote container
provider
AcmeMetaData AcmeHome AcmeBean (Acme)

produced by

Acme tools

AcmeAccountHome AcmeRemoteAccount
AcmeAccountMetaData AcmeAccountBean

——> extends or implements interface
——p» extends implementation, code generation, or delegation

Java interface Java class

11/24/99 150

Sun Microsystem Inc

Inheritance relationship Enterprise JavaBeans v1.1, Final Release Example entity scenario

10.2.1 What the entity Bean Povider is responsible 6r

Wombat Inc. is responsible for providing the following:

* Define the entity bean’s remote interface (Account). The remote interface defines the business
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject inter-
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface must
be defined as public.

* Write the business logic in the entity bean class (AccountBean). The entity bean class may, but
is not required to, implement the entity bean’s remote interface (Account). The entity bean must
implement the methods of the javax.ejb.EntityBean interface, the ejbCreate(...) and ejbPost-
Create(...) methods invoked at an entity object creation, and the finder methods (the finders
should not have to be implemented if the entity bean uses container-managed persistence).

* Define a home interface (AccountHome) for the entity bean. The home interface defines the
entity bean’s specific create and finder methods. The home interface must be defined as public,
extend the javax.ejb.EJBHome interface, and follow the standard rules for RMI-IIOP remote
interfaces.

* Define a deployment descriptor that specifies any declarative information that the entity bean

provider wishes to pass with the entity bean to the next stage of the development/deployment
workflow.

10.2.2 Classes supplied by Container Rwider

The following classes are supplied by the container provider, Acme Corp:
* The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.
* The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.
* The AcmeBean class provides additional state and methods to allow Acme’s container to man-
age its entity bean instances. For example, if Acme’s container uses an LRU algorithm, then

AcmeBean may include the clock count and methods to use it.

* The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData
methods.

10.2.3 What the container provider is responsible 6r

The tools provided by Acme Corporation are responsible for the following:

* Generate the entity EJBOBject class (AcmeRemoteAccount) that implements the entity bean’s
remote interface. The tools also generate the classes that implement the communication proto-
col specific artifacts for the remote interface.

151 11/24/99

Sun Microsystems Inc.

Example entity scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

* Generate the implementation of the entity bean class suitable for the Acme container (AcmeAc-
countBean). AcmeAccountBean includes the business logic from the AccountBean class mixed
with the services defined in the AcmeBean class. Acme tools can use inheritance, delegation,
and code generation to achieve mix-in of the two classes.

* Generate the entity EJBHome class (AcmeAccountHome) for the entity bean. that implements
the entity bean’s home interface (AccountHome). The tools also generate the classes that
implement the communication protocol specific artifacts for the home interface.

* Generate a class (AcmeAccountMetaData) that implements the javax.ejb.EJBMetaData inter-
face for the Account Bean.

The above classes and tools are container-specific (i.e., they reflect the way Acme Corp implemented
them). Other container providers may use different mechanisms to produce their runtime classes, and
the generated classes most likely will be different from those generated by Acme’s tools.

11/24/99 152

Sun Microsystem Inc

Overview Enterprise JavaBeans v1.1, Final Release Support for Transactions

ez SUPPOI for Transactions
One of the key features of the Enterprise JavaBeans architecture is support for distributed transactions.
The Enterprise JavaBeans architecture allows an application developer to write an application that
atomically updates data in multiple databases which may be distributed across multiple sites. The sites
may use EJB Servers from different vendors.

11.1 Overview
This section provides a brief overview of transactions and illustrates a number of transaction scenarios
in EJB.
11.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free the
application programmer from dealing with the complex issues of failure recovery and multi-user pro-
gramming. If the application programmer uses transactions, the programmer divides the application’s
work into units called transactions. The transactional system ensures that a unit of work either fully
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the program-
mer to design the application as if it ran in an environment that executes units of work serially.

153 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Overview

11.1.2

Support for transactions is an essential component of the Enterprise JavaBeans architecture. The enter-
prise Bean Provider and the client application programmer are not exposed to the complexity of distrib-
uted transactions. The Bean Provider can choose between using programmatic transaction demarcation
in the enterprise bean code (this style is calbedn-managed transaction demarcadiam declarative
transaction demarcation performed automatically by the EJB Container (this style is catied
tainer-managed transaction demarcatjon

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using

the javax.transaction.UserTransaction interface. All resource manad¥ accesses
between théJserTransaction.begin and UserTransaction.commit calls are part of a
transaction.

With container-managed transaction demarcation, the Container demarcates transactions per instruc-
tions provided by the Application Assembler in the deployment descriptor. These instructions, called
transaction attributestell the container whether it should include the work performed by an enterprise
bean method in a client’s transaction, run the enterprise bean method in a new transaction started by the
Container, or run the method with “no transaction” (Refer to Subsection 11.6.3 for the description of the
“no transaction” case).

Regardless whether an enterprise bean uses bean-managed or container-managed transaction demarca-
tion, the burden of implementing transaction management is on the EJB Container and Server Provider.
The EJB Container and Server implement the necessary low-level transaction protocols, such as the
two-phase commit protocol between a transaction manager and a database system, transaction context
propagation, and distributed two-phase commit.

Transaction model

11.1.3

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot have any
child (nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transaction

processing and database management systems to incorporate support for Enterprise Java-
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java-
Beans may be enhanced to take advantage of nested transactions.

Relationship to JTA and JTS

The Java™ Transaction API (JTA) [5] is a specification of the interfaces between a transaction manager
and the other parties involved in a distributed transaction processing system: the application programs,
the resource managers, and the application server.

[10]

The termgesourceandresource managearsed in this chapter refer to the resources declared in the enterprise bean’s deployment
descriptor using theesource-ref element. These resources are considered to be “managed” by the Container.

11/24/99

154

Sun Microsystem Inc

Sample scenarios

11.2

Enterprise JavaBeans v1.1, Final Release Support for Transactions

The Java Transaction Service (JTS) [6] API is a Java programming language binding of the CORBA
Object Transaction Service (OTS) 1.1 specification. JTS provides transaction interoperability using the
standard 1IOP protocol for transaction propagation between servers. The JTS API is intended for ven-
dors who implement transaction processing infrastructure for enterprise middleware. For example, an
EJB Server vendor may use a JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB Container to support the JTS interfaces. The EJB archi-
tecture requires that the EJB Container supportjéivax.transaction.UserTransaction

interface defined in JTA, but it does not require the support for the JTA resource and application server
interfaces.

Sample scenarios

11.2.1

This section describes several scenarios that illustrate the distributed transaction capabilities of the
Enterprise JavaBeans architecture.

Update of multiple databases

The Enterprise JavaBeans architecture makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data using two database con-
nections that the Deployer configured to connect with two different databases, A and B. Then X calls
another enterprise Bean Y. Y updates data in database C. The EJB Server ensures that the updates to
databases A, B, and C are either all committed or all rolled back.

Figure 41

Updates to Simultaneous Databases

client EJB Server

=l=i=

database A database Bdatabase C

155 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Sample scenarios

The application programmer does not have to do anything to ensure transactional semantics. The enter-
prise Beans X and Y perform the database updates using the standard JDBC API. Behind the scenes, the
EJB Server enlists the database connections as part of the transaction. When the transaction commits,
the EJB Server and the database systems perform a two-phase commit protocol to ensure atomic
updates across all three databases.

11.2.2 Update of databases via multiple EJB Seers
The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in a sin-
gle transaction.
In the following figure, a client invokes the enterprise Bean X. X updates data in database A, and then
calls another enterprise Bean Y that is installed in a remote EJB Server. Y updates data in database B.
The Enterprise JavaBeans architecture makes it possible to perform the updates to databases A and B in
a single transaction.
Figure 42 Updates to Multiple Databases in Same Transaction
client EJB Server EJB Server
: ~
database A database B
When X invokes Y, the two EJB Servers cooperate to propagate the transaction context from X to Y. This
transaction context propagation is transparent to the application-level code.
At transaction commit time, the two EJB Servers use a distributed two-phase commit protocol (if the
capability exists) to ensure the atomicity of the database updates.
11.2.3 Client-managed demacation
A Java client can use thg@vax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtaingauhg.transaction.User-
Transaction interface using JNDI API as defined in the Java 2 platform, Enterprise Edition specifi-
cation [10].
11/24/99 156

Sun Microsystem Inc

Sample scenarios Enterprise JavaBeans v1.1, Final Release Support for Transactions

The EJB specification does not imply that faeax.transaction.UserTransaction is avail-
able to all Java clients. The Java 2 platform, Enterprise Edition specification specifies the client environ-
ments in which thgavax.transaction.UserTransaction interface is available.

A client program using explicit transaction demarcation may perform, via enterprise beans, atomic
updates across multiple databases residing at multiple EJB Servers, as illustrated in the following figure.

Figure 43

11.24

Updates on Multiple Databases on Multiple Servers

EJB Server

client
g '

comrﬁt\ database A
EJB Server

GO

\

database B

The application programmer demarcates the transaction wégin and commit calls. If the enter-

prise beans X and Y are configured to use a client transaction (i.e. their methods have either the
Required, Mandatory, or Supports transaction attribute), the EJB Server ensures that the updates to
databases A and B are made as part of the client’s transaction.

Container-managed demacation

Whenever a client invokes an enterprise Bean, the container interposes on the method invocation. The
interposition allows the container to control transaction demarcation declaratively throughrtec-

tion attribute set by the Application Assembler. (See [11.4.1] for a description of transaction
attributes.)

157 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Sample scenarios

For example, if an enterprise Bean method is configured witlRéguired transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, the Con-
tainer automatically initiates a transaction whenever a client invokes an enterprise bean method that
requires a transaction context. If the client request contains a transaction context, the container includes
the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise Bean
X, and the invoked method has tRequiredtransaction attribute. Because the message from the client
does not include a transaction context, the container starts a new transaction before dispatching the
remote method on X. X's work is performed in the context of the transaction. When X calls other enter-
prise Beans (Y in our example), the work performed by the other enterprise Beans is also automatically
included in the transaction (subject to the transaction attribute of the other enterprise Bean).

Figure 44 Update of Multiple Databases from Non-Transactional Client

client EJB Server

database A database B

The container automatically commits the transaction at the time X returns a reply to the client.

11.2.5 Bean-managed demazation

A session Bean can use tfawax.transaction.UserTransaction interface to programmati-
cally demarcate transactions.

11.2.6 Inter operability with non-Java clients and severs

Although the Enterprise JavaBeans architecture focuses on the Java API (and Java programming lan-
guage) for writing distributed enterprise applications, it is desirable that such applications are also
interoperable with non-Java clients and servers.

11/24/99 158

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

A container can make it possible for an enterprise Bean to be invoked from a non-Java client. For exam-
ple, the CORBA mapping of the Enterprise JavaBeans architecture [8] allows any CORBA client to
invoke any enterprise Bean object on a CORBA-enabled server using the standard CORBA API.

Figure 45

Interoperating with Non-Java Clients and/or Servers

CORBA client EJB Server

CICS

bridge >
LU 6.2

database A database B

Providing connectivity to existing server applications is also important. An EJB Server may choose to
provide access to existing enterprise applications, such as applications running under CICS on a main-
frame. For example, an EJB Server may provide a bridge that makes existing CICS programs accessible
to enterprise Beans. The bridge can make the CICS programs visible to the Java programming lan-
guage-based developer as if the CICS programs were other enterprise Beans installed in some con-
tainer on the EJB Server.

Note: It is beyond the scope of the Enterprise JavaBeans specification to define the bridging
protocols that would enable such interoperability.

11.3 Bean Provider’s responsibilities

This section describes the Bean Provider's view of transactions and defines his responsibilities.

11.3.1 Bean-managed ersus containermanaged transaction demagation

When designing an enterprise bean, the Bean Provider must decide whether the enterprise bean will
demarcate transactions programmatically in the business methods (bean-managed transaction demarca-
tion), or whether the transaction demarcation is to be performed by the Container basetransthe

tion attributesin the deployment descriptor (container-managed transaction demarcation).

159 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

A Session Bean can be designed with bean-managed transaction demarcation or with container-man-
aged transaction demarcation. (But it cannot be both at the same time.)

An Entity Bean must always be designed with container-managed transaction demarcation.
An enterprise bean instance can access resource managers in a transaction only in the enterprise bean’s

methods in which there is a transaction context available. Refer to Table 2 on page 60, Table 3 on
page 70, and Table 4 on page 111.

11.3.1.1 Non-transactional execution

11.3.2

Some enterprise beans may need to access resource managers that do not support an external transaction
coordinator. The Container cannot manage the transactions for such enterprise beans in the same way
that it can for the enterprise beans that access resource managers that support an external transaction
coordinator.

If an enterprise bean needs to access a resource manager that does not support an external transaction
coordinator, the Bean Provider should design the enterprise bean with container-managed transaction
demarcation and assign thtSupported transaction attribute to all the bean’s methods. The EJB
architecture does not specify the transactional semantics of the enterprise bean methods. See SubSec-
tion 11.6.3 for how the Container implements this case.

Isolation levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation leveldescribes the degree to which the access to a resource manager by a transaction is
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

* The API for managing an isolation level is resource-manager specific. (Therefore, the EJB
architecture does not define an API for managing isolation level.)

* If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same
or different isolation level for each resource manager. This means, for example, that if an enter-
prise bean accesses multiple resource managers in a transaction, access to each resource man-
ager may be associated with a different isolation level.

* The Bean Provider must take care when setting an isolation level. Most resource managers
require that all accesses to the resource manager within a transaction are done with the same
isolation levels. An attempt to change the isolation level in the middle of a transaction may
cause undesirable behavior, such as an implicit sync point (a commit of the changes done so
far).

* For session beans with bean-managed transaction demarcation, the Bean Provider can specify
the desirable isolation level programmatically in the enterprise bean’s methods, using the

11/24/99

160

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

resource-manager specific APIl. For example, the Bean Provider can use the
java.sgl.Connection.setTransactionlsolation(...) method to set the
appropriate isolation level for database access.

* For entity beans using container-managed persistence, transaction isolation is managed by the
data access classes that are generated by the container provider’s tools. The tools must ensure
that the management of the isolation levels performed by the data access classes will not result
in conflicting isolation level requests for a resource manager within a transaction.

* Additional care must be taken if multiple enterprise beans access the same resource manager in
the same transaction. Conflicts in the requested isolation levels must be avoided.

11.3.3 Enterprise beans using bean-managed transaction dencation

This subsection describes the requirements for the Bean Provider of an enterprise bean with bean-man-
aged transaction demarcation.

The enterprise bean with bean-managed transaction demarcation must be a Session bean.
An instance that starts a transaction must complete the transaction before it starts a new transaction.

The Bean Provider uses théserTransaction interface to demarcate transactions. All updates to

the resource managers between thiserTransaction.begin() and UserTransac-
tion.commit () methods are performed in a transaction. While an instance is in a transaction, the
instance must not attempt to use the resource-manager specific transaction demarcation API (e.g. it
must not invoke theeommit() or rollback() method on thgava.sql.Connection inter-

face).

A stateful Session Bean instance may, but is not required to, commit a started transaction before a busi-
ness method returns. If a transaction has not been completed by the end of a business method, the Con-
tainer retains the association between the transaction and the instance across multiple client calls until
the instance eventually completes the transaction.

The bean-managed transaction demarcation programming model presented to the programmer of a
stateful Session Bean is natural because it is the same as that used by a stand-alone Java application.

A stateless session bean instance must commit a transaction before a business method returns.

161 11/24/99

Sun Microsystems Inc.

Support for Transactions

Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The following example illustrates a business method that performs a transaction involving two database
connections.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {

javax.transaction.UserTransaction ut;
Javax.sgl.DataSource dsl;
javax.sgl.DataSource ds2;
java.sql.Connection conl;
Java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

InitialContext initCtx = new InitialContext();
/I obtain conl object and set it up for transactions

dsl = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabasel”);
conl = dsl.getConnection();

stmtl = conl.createStatement();

/I obtain con2 object and set it up for transactions

ds2 = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase2");

con2 = ds2.getConnection();

stmt2 = con2.createStatement();

Il

/I Now do a transaction that involves conl and con2.
1

ut = ejbContext.getUserTransaction();

/Il start the transaction
ut.begin();

/l Do some updates to both con1 and con2. The Container
/[automatically enlists conl and con2 with the transaction.
stmtl.executeQuery(...);

stmtl.executeUpdate(...);

stmt2.executeQuery(...);

stmt2.executeUpdate(...);

stmtl.executeUpdate(...);

stmt2.executeUpdate(...);

/I commit the transaction
ut.commit();

/I release connections
stmtl.close();
stmt2.close();
conl.close();
con2.close();

11/24/99

162

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

163 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The following example illustrates a stateful Session Bean that retains a transaction across three client
calls, invoked in the following ordemethod] method2 andmethod3

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
javax.sgl.DataSource dsl;
javax.sgl.DataSource ds2;
java.sgl.Connection conl;
Java.sgl.Connection con2;

public void method1(...) {
java.sqgl.Statement stmt;

InitialContext initCtx = new InitialContext();

/l obtain user transaction interface
ut = ejbContext.getUserTransaction();

/I start a transaction
ut.begin();

/l make some updates on conl

dsl = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabasel”);

conl = dsl.getConnection();

stmt = conl.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

1
/l The Container retains the transaction associated with the
/I instance to the next client call (which is method?2(...)).

}

public void method2(...) {
java.sqgl.Statement stmt;

InitialContext initCtx = new InitialContext();

/l make some updates on con2

ds2 = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase2”);

con2 = ds2.getConnection();

stmt = con2.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

/l The Container retains the transaction associated with the
/I instance to the next client call (which is method3(...)).

}

public void method3(...) {
java.sgl.Statement stmt;

/I obtain user transaction interface
ut = ejbContext.getUserTransaction();

/I make some more updates on conl and con2
stmt = conl.createStatement();

11/24/99

164

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);

/I commit the transaction
ut.commit();

/I release connections
stmt.close();
conl.close();
con2.close();

165 11/24/99

Sun Microsystems Inc.

Support for Transactions

Enterprise JavaBeans v1.1, Final Release

Bean Provider’s responsibilities

It is possible for an enterprise bean to open and close a database connection in each business method
(rather than hold the connection open until the end of transaction). In the following example, if the cli-
ent executes the sequence of methadsthod] method2 method2 method2 and method3) all the

database updates done by the multiple invocatiomaethodZ2are performed in the scope of the same
transaction, which is the transaction startech@thodland committed imethod3

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
InitialContext initCtx;

public void method1(...) {

}

java.sqgl.Statement stmt;

/I obtain user transaction interface
ut = ejbContext.getUserTransaction();

/l start a transaction
ut.begin();

public void method2(...) {

}

javax.sgl.DataSource ds;
java.sgl.Connection con;
Java.sqgl.Statement stmt;

// open connection

ds = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase”);

con = ds.getConnection();

/I make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

/I close the connection
stmt.close();
con.close();

public void method3(...) {

}

11.3.3.1 getRollbackOnly()

/I obtain user transaction interface
ut = ejpContext.getUserTransaction();

/I commit the transaction
ut.commit();

and setRollbackOnly()

method

An enterprise bean with bean-managed transaction demarcation must not mtRbéback-

Only()

andsetRollbackOnly()

methods of th&JBContext

interface.

11/24/99

166

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

An enterprise bean with bean-managed transaction demarcation has no need to use these methods,
because of the following reasons:

* An enterprise bean with bean-managed transaction demarcation can obtain the status of a
transaction by using thgetStatus() method of thejavax.transaction.User-
Transaction interface.

* An enterprise bean with bean-managed transaction demarcation can rollback a transaction
using therollback() method of thgavax.transaction.UserTrasaction inter-
face.

11.3.4 Enterprise beans using containemanaged transaction demagation

This subsection describes the requirements for the Bean Provider of an enterprise bean using con-
tainer-managed transaction demarcation.

The enterprise bean’s business methods must not use any resource-manager specific transaction man-
agement methods that would interfere with the Container’s demarcation of transaction boundaries. For
example, the enterprise bean methods must not use the following methodsja¥alssl.Con-

nection interfacexcommit() , setAutoCommit(...) , androllback()

The enterprise bean’s business methods must not attempt to obtain or ysgathéransac-
tion.UserTransaction interface.

167 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The following is an example of a business method in an enterprise bean with container-managed trans-
action demarcation. The business method updates two databases using JDBC API connections. The
Container provides transaction demarcation per the Application Assembler’s instructions.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
java.sgl.Connection conl;
Java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

/I obtain conl and con2 connection objects
conl=..;
con2 = ...,

stmtl = conl.createStatement();
stmt2 = con2.createStatement();

1

/I Perform some updates on conl and con2. The Container
/I automatically enlists conl and con2 with the container-

/l managed transaction.

stmtl.executeQuery(...);
stmtl.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmtl.executeUpdate(...);
stmt2.executeUpdate(...);

/I release connections
conl.close();
con2.close();

}
11.3.4.1 javax.ejb.SessionSynchronization interface

A stateful Session Bean with container-managed transaction demarcation can optionally implement the
javax.ejb.SessionSynchronization interface. The use of th8essionSynchroniza-
tion interface is described in Subsection 6.5.2.

11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method

An enterprise bean with container-managed transaction demarcation can usetRlodiback-

Only() method of itsEJBContext object to mark the transaction such that the transaction can never
commit. Typically, an enterprise bean marks a transaction for rollback to protect data integrity before
throwing an application exception, because application exceptions do not automatically cause the Con-
tainer to rollback the transaction.

11/24/99 168

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

For example, an AccountTransfer bean which debits one account and credits another account could
mark a transaction for rollback if it successfully performs the debit operation, but encounters a failure
during the credit operation.

11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

11.3.5

An enterprise bean with container-managed transaction demarcation can ugetRiodback-

Only() method of itsEJBContext object to test if the current transaction has been marked for roll-
back. The transaction might have been marked for rollback by the enterprise bean itself, by other
enterprise beans, or by other components (outside of the EJB specification scope) of the transaction pro-
cessing infrastructure.

Declaration in deployment descriptor

11.4

The Bean Provider of a Session Bean must usérthresaction-type element to declare whether
the Session Bean is of the bean-managed or container-managed transaction demarcation type. (See
Chapter 16 for information about the deployment descriptor.)

The transaction-type element is not supported for Entity beans because all Entity beans must use con-
tainer-managed transaction demarcation.

The Bean Provider of an enterprise bean with container-managed transaction demarcation may option-
ally specify the transaction attributes for the enterprise bean’s methods. See Subsection 11.4.1.

Application Assembler’s responsibilities

1141

This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-managed
transaction demarcation. The Application Assembler must not define transaction attributes for an enter-
prise bean with bean-managed transaction demarcation.

The Application Assembler can use ttransaction attributemechanism described below to manage
transaction demarcation for enterprise beans using container-managed transaction demarcation.

Transaction attributes

Note: The transaction attributes may be specified either by the Bean Provider or by the Application
Assembler.

A transaction attribute is a value associated with a method of an enterprise bean’s remote or home inter-
face. The transaction attribute specifies how the Container must manage transactions for a method when
a client invokes the business method via the enterprise bean home or remote interface.

169 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

The transaction attribute must be specified for the following remote and home interface methods:

* For a session bean, the transaction attributes must be specified for the methods defined in the
bean’s remote interface and all the direct and indirect superinterfaces of the remote interface,
excluding the methods of thmvax.ejb.EJBObject interface. Transaction attributes
must not be specified for the methods of a session bean’s home interface.

* For an entity bean, the transaction attributes must be specified for the methods defined in the
bean’s remote interface and all the direct and indirect superinterfaces of the remote interface,
excluding thegetEJBHome, getHandle , getPrimaryKey , andisldentical meth-
ods; and for the methods defined in the bean’s home interface and all the direct and indirect
superinterfaces of the home interface, excludinggdtEJBMetaData andgetHomeHan-
dle methods.

Providing the transaction attributes for an enterprise bean is an optional requirement for the Application
Assembler, because, for a given enterprise bean, the Application Assembler must either specify a value
of the transaction attribute fadl the methods of the remote and home interfaces for which a transaction
attribute must be specified, or the Assembler must spewfie. If the transaction attributes are not
specified for the methods of an enterprise bean, the Deployer will have to specify them.
Enterprise JavaBeans defines the following values for the transaction attribute:

* NotSupported

* Required

e Supports

* RequiresNew

* Mandatory

e Never

Refer to Subsection 11.6.2 for the specification of how the value of the transaction attribute affects the
transaction management performed by the Container.

If an enterprise bean implements tf@vax.ejb.SessionSynchronization interface, the
Application Assembler can specify only the following values for the transaction attributes of the bean’s
methodsRequired , RequiresNew , orMandatory .

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transaction. If
the bean were invoked without a transaction, the Container would not be able to send the transaction
synchronization calls.

The tools used by the Application Assembler can determine if the bean implements the
javax.ejb.SessionSynchronization interface, for example, by using the Java reflection API
on the enterprise bean'’s class.

11/24/99

170

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

The following is the description of the deployment descriptor rules that the Application Assembler uses
to specify transaction attributes for the methods of the enterprise beans’ remote and home interfaces.
(See Section 16.5 for the complete syntax of the deployment descriptor.)

The Application Assembler uses thentainer-transaction elements to define the transaction
attributes for the methods of the enterprise beans’ remote and home interfaces.céach
tainer-transaction element consists of a list of one or moneethod elements, and the
trans-attribute element. Theontainer-transaction element specifies that all the listed
methods are assigned the specified transaction attribute value. It is required that all the methods speci-
fied in a singlecontainer-transaction element be methods of the same enterprise bean.

The method element uses thejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are three legal
styles of composing thmethod element:

Style 1:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name>*</method-name>
</method>

This style is used to specify a default value of the transaction attribute for the methods for
which there is no Style 2 or Style 3 element specified. There must be at mostoane

tainer-transaction element that uses the Styleniethod element for a given enter-
prise bean.
Style 2:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name> METHOg&method-name>
</method>

This style is used for referring to a specified method of the remote or home interface of the
specified enterprise bean. If there are multiple methods with the same overloaded name, this
style refers to all the methods with the same name. There must be at mostoone
tainer-transaction element that uses the Stylen#®thod element for a given method
name. If there is also eontainer-transaction element that uses Style 1 element for

the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>
<ejb-name> EJBNAME/ejb-name>
<method-name> METHOg&method-name>
<method-params>
<method-param> PARAMETER </method-param>

<method-param> PARAMETER $method-param>
</method-params>
</method>

171 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Deployer’s responsibilities

This style is used to refer to a single method within a set of methods with an overloaded name.
The method must be one defined in the remote or home interface of the specified enterprise
bean. If there is also @ontainer-transaction element that uses the Style 2 element for

the method name, or the Style 1 element for the bean, the value specified by the Style 3 ele-
ment takes precedence.

The optionalmethod-intf element can be used to differentiate between methods with the same
name and signature that are defined in both the remote and home interfaces.

The following is an example of the specification of the transaction attributes in the deployment descrip-
tor. TheupdatePhoneNumber method of theEmployeeRecord enterprise bean is assigned the
transaction attribut®andatory ; all other methods of thEmployeeRecord bean are assigned the
attribute Required . All the methods of the enterprise beAardvarkPayroll are assigned the
attributeRequiresNew .

<ejb-jar>
ééssembly—descriptor>

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

11.5 Deployer’s responsibilities

The Deployer is responsible for ensuring that the methods of the deployed enterprise beans with con-
tainer-managed transaction demarcation have been assigned a transaction attribute. If the transaction
attributes have not been assigned previously by the Assembler, they must be assigned by the Deployer.

11/24/99 172

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

11.6

Container Provider responsibilities

116.1

This section defines the responsibilities of the Container Provider.

Every client method invocation on an enterprise Bean object via the bean’s remote and home interface is
interposed by the Container, and every connection to a resource manager used by an enterprise bean is
obtained via the Container. This managed execution environment allows the Container to affect the
enterprise bean’s transaction management.

This does not imply that the Container must interpose on every resource manager access performed by
the enterprise bean. Typically, the Container interposes only the resource manager connection factory
(e.g. a JIDBC API data source) JNDI API look up by registering the container-specific implementation
of the resource manager connection factory object. The resource manager connection factory object
allows the Container to obtain the XAResource interface as described in the JTA specification and pass
it to the transaction manager. After the set up is done, the enterprise bean communicates with the
resource manager without going through the Container.

Bean-managed transaction demaration

This subsection defines the Container’s responsibilities for the transaction management of enterprise
beans with bean-managed transaction demarcation.

Note that only Session beans can be used with bean-managed transaction demarcation. A Bean Pro-
vider is not allowed to provide an Entity bean with bean-managed transaction demarcation.

The Container must manage client invocations to an enterprise bean instance with bean-managed trans-
action demarcation as follows. When a client invokes a business method via the enterprise bean’s
remote or home interface, the Container suspends any transaction that may be associated with the client
request. If there is a transaction associated with the instance (this would happen if the instance started
the transaction in some previous business method), the Container associates the method execution with
this transaction.

The Container must make thavax.transaction.UserTransaction interface available to

the enterprise bean’s business method viajdvax.ejb.EJBContext interface and under the
environment entryava:comp/UserTransaction . When an instance uses tjavax.trans-
action.UserTransaction interface to demarcate a transaction, the Container must enlist all the
resource managers used by the instance betwedretfin() andcommit() —or rollback() —
methods with the transaction. When the instance attempts to commit the transaction, the Container is
responsible for the global coordination of the transaction cdfrihit

In the case of statefulsession bean, it is possible that the business method that started a transaction
completes without committing or rolling back the transaction. In such a case, the Container must retain
the association between the transaction and the instance across multiple client calls until the instance
commits or rolls back the transaction. When the client invokes the next business method, the Container
must invoke the business method in this transaction context.

[11]

The Container typically relies on a transaction manager that is part of the EJB Server to perform the two-phase commit across all
the enlisted resource managers.

173 11/24/99

Sun Microsystems Inc.

Support for Transactions

If a statelessession bean instance starts a transaction in a business method, it must commit the transac-
tion before the business method returns. The Container must detect the case in which a transaction was

Enterprise JavaBeans v1.1, Final Release

Container Provider responsibilities

started, but not completed, in the business method, and handle it as follows:

* Log this as an application error to alert the system administrator.

¢ Roll back the started transaction.

e Discard the instance of the session bean.

* Throw thejava.rmi.RemoteException

The actions performed by the Container for an instance with bean-managed transaction are summarized
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that is cur-
rently associated with the instance (i.e. a transaction that was started but not completed by a previous

business method).

to the client.

Table 6 Container’s actions for methods of beans with bean-managed transaction
Transaction currently Transaction associated
Client’s transaction associated with instance with the method
none none none
T1 none none
none T2 T2
T1 T2 T2
The following items describe each entry in the table:
If the client request is not associated with a transaction and the instance is not associated with a
transaction, the container invokes the instance with an unspecified transaction context.
If the client is associated with a transaction T1, and the instance is not associated with a trans-
action, the container suspends the client’s transaction association and invokes the method with
an unspecified transaction context. The container resumes the client’'s transaction association
(T1) when the method completes.
If the client request is not associated with a transaction and the instance is already associated
with a transaction T2, the container invokes the instance with the transaction that is associated
with the instance (T2). This case can never happen for a stateless Session Bean.
If the client is associated with a transaction T1, and the instance is already associated with a
transaction T2, the container suspends the client’'s transaction association and invokes the
method with the transaction context that is associated with the instance (T2). The container
resumes the client’s transaction association (T1) when the method completes. This case can
never happen for a stateless Session Bean.
11/24/99 174

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

11.6.2

The Container must allow the enterprise bean instance to serially perform several transactions in a
method.

When an instance attempts to start a transaction usingebm() method of thgavax.trans-
action.UserTransaction interface while the instance has not committed the previous transac-
tion, the Container must throw thavax.transaction.NotSupportedException in the
begin() method.

The Container must throw thava.lang.lllegalStateException if an instance of a bean
with bean-managed transaction demarcation attempts to invokesdtiRollbackOnly() or
getRollbackOnly() method of thgavax.ejb.EJBContext interface.

Container-managed transaction demagation

The Container is responsible for providing the transaction demarcation for the enterprise beans that the
Bean Provider declared with container-managed transaction demarcation. For these enterprise beans,
the Container must demarcate transactions as specified in the deployment descriptor by the Application
Assembler. (See Chapter 16 for more information about the deployment descriptor.)

The following subsections define the responsibilities of the Container for managing the invocation of an
enterprise bean business method when the method is invoked via the enterprise bean’s home or remote
interface. The Container’s responsibilities depend on the value of the transaction attribute.

11.6.2.1 NotSupported

The Container invokes an enterprise Bean method whose transaction attribute iSNs#Stgp-
ported with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before invoking the enterprise bean’s business method. The container
resumes the suspended association when the business method has completed. The suspended transac-
tion context of the client is not passed to the resource managers or other enterprise Bean objects that are
invoked from the business method.

If the business method invokes other enterprise beans, the Container passes no transaction context with
the invocation.

Refer to Subsection 11.6.3 for more details of how the Container can implement this case.

11.6.2.2 Required

The Container must invoke an enterprise Bean method whose transaction attribute Respiited
with a valid transaction context.

If a client invokes the enterprise Bean’s method while the client is associated with a transaction context,
the container invokes the enterprise Bean's method in the client’s transaction context.

175 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

If the client invokes the enterprise Bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise Bean business method. The Container automatically enlists all the resource managers
accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the Container passes the transaction context with the invocation. The Container attempts to com-
mit the transaction when the business method has completed. The container performs the commit proto-
col before the method result is sent to the client.

11.6.2.3 Supports

The Container invokes an enterprise Bean method whose transaction attribute iSspptots as
follows.

e If the client calls with a transaction context, the Container performs the same steps as
described in th&®equired case.

* If the client calls without a transaction context, the Container performs the same steps as
described in th&lotSupported case.

The Supportdransaction attribute must be used with caution. This is because of the different transac-
tional semantics provided by the two possible modes of execution. Only the enterprise beans that will
execute correctly in both modes should useStiygportgransaction attribute.

11.6.2.4 RequiresNew

The Container must invoke an enterprise Bean method whose transaction attribute is set to
RequiresNew with a new transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise Bean business method. The Container automatically enlists all the resource managers
accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the Container passes the transaction context with the invocation. The Container attempts to com-
mit the transaction when the business method has completed. The container performs the commit proto-
col before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before starting the new transaction and invoking the business method. The
container resumes the suspended transaction association after the business method and the new transac-
tion have been completed.

11/24/99

176

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

11.6.2.5 Mandatory

The Container must invoke an enterprise Bean method whose transaction attribute Masdabory
in a client’s transaction context. The client is required to call with a transaction context.

* |If the client calls with a transaction context, the Container performs the same steps as
described in th®equired case.

* If the client calls without a transaction context, the Container throwgatheex.transac-
tion.TransactionRequiredException exception.

11.6.2.6 Never

The Container invokes an enterprise Bean method whose transaction attribute iNeetto without
a transaction context defined by the EJB specification. The client is required to call without a transaction
context.

* |If the client calls with a transaction context, the Container throwgata.rmi.Remote-
Exception exception.

* If the client calls without a transaction context, the Container performs the same steps as
described in th&lotSupported case.

11.6.2.7 Transaction attribute summary

The following table provides a summary of the transaction context that the Container passes to the busi-
ness method and resource managers used by the business method, as a function of the transaction
attribute and the client’s transaction context. T1 is a transaction passed with the client request, while T2
is a transaction initiated by the Container.

Table 7 Transaction attribute summary
Transaction associated | Transaction associated
Transaction attribute Client’s transaction with business method with resource managers
none none none
NotSupported
T1 none none
_ none T2 T2
Required
T1 T1 T1
none none none
Supports
T1 T1 T1
_ none T2 T2
RequiresNew
T1 T2 T2
177 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities
Table 7 Transaction attribute summary
Transaction associated | Transaction associated
Transaction attribute Client’s transaction with business method with resource managers
none error N/A
Mandatory
T1 T1 T1
none none none
Never
T1 error N/A

If the enterprise bean’s business method invokes other enterprise beans via their home and remote inter-
faces, the transaction indicated in the column “Transaction associated with business method” will be
passed as part of the client context to the target enterprise bean.

See Subsection 11.6.3 for how the Container handles the “none” case in Table 7.

11.6.2.8 Handling ofsetRollbackOnly() method

The Container must handle tl&IBContext.setRollbackOnly() method invoked from a busi-
ness method executing with tiRequired , RequiresNew , or Mandatory transaction attribute as
follows:

* The Container must ensure that the transaction will never commit. Typically, the Container
instructs the transaction manager to mark the transaction for rollback.

* If the Container initiated the transaction immediately before dispatching the business method
to the instance (as opposed to the transaction being inherited from the caller), the Container
must note that the instance has invokedghbtRollbackOnly() method. When the busi-
ness method invocation completes, the Container must roll back rather than commit the trans-
action. If the business method has returned normally or with an application exception, the
Container must pass the method result or the application exception to the client after the Con-
tainer performed the rollback.

The Container must throw thgava.lang.lllegalStateException if the EJBCon-
text.setRollbackOnly() method is invoked from a business method executing witrSting-
ports , NotSupported , orNever transaction attribute.

11.6.2.9 Handling ofgetRollbackOnly() method

The Container must handle t&)BContext.getRollbackOnly() method invoked from a busi-
ness method executing with tRequired , RequiresNew , or Mandatory transaction attribute.

The Container must throw thgava.lang.lllegalStateException if the EJBCon-
text.getRollbackOnly() method is invoked from a business method executing wittSte-
ports , NotSupported , orNever transaction attribute.

11/24/99 178

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

11.6.2.10 Handling ofgetUserTransaction() method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to invoke
thegetUserTransaction() method of theEJBContext interface, the Container must throw the
java.lang.lllegalStateException

11.6.2.11 javax.ejb.SessionSynchronization callbacks

If a Session Bean class implements faeax.ejb.SessionSynchronization interface, the
Container must invoke thefterBegin() , beforeCompletion() , and afterComple-
tion(...) callbacks on the instance as part of the transaction commit protocol.

The Container invokes thafterBegin() method on an instance before it invokes the first business
method in a transaction.

The Container invokes thizeforeCompletion() method to give the enterprise bean instance the

last chance to cause the transaction to rollback. The instance may cause the transaction to roll back by
invoking theEJBContext.setRollbackOnly() method.

The Container invokes thafterCompletion(Boolean committed) method after the comple-

tion of the transaction commit protocol to notify the enterprise bean instance of the transaction outcome.

11.6.3 Handling of methods that run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the cases in
which the EJB architecture does not fully define the transaction semantics of an enterprise bean method
execution.

This includes the following cases:
* The execution of a method of an enterprise bean with container-managed transaction demarca-
tion for which the value of the transaction attributeNstSupported , Never, or Sup-

ports [12],

* The execution of thejbCreate , ejpRemove, ejbPassivate, and ejbActivate
methods of a session bean with container-managed transaction demarcation.

[12] For theSupports attribute, the handling described in this section applies only to the case when the client calls without a trans-
action context.

179 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

11.7

The EJB specification does not prescribe how the Container should manage the execution of a method
with an unspecified transaction context—the transaction semantics are left to the Container implemen-
tation. Some techniques for how the Container may choose to implement the execution of a method
with an unspecified transaction context are as follows (the list is not inclusive of all possible strategies):

* The Container may execute the method and access the underlying resource managers without a
transaction context.

* The Container may treat each call of an instance to a resource manager as a single transaction
(e.g. the Container may set the auto-commit option on a JDBC API connection).

* The Container may merge multiple calls of an instance to a resource manager into a single
transaction.

* The Container may merge multiple calls of an instance to multiple resource managers into a
single transaction.

* If an instance invokes methods on other enterprise beans, and the invoked methods are also
designated to run with an unspecified transaction context, the Container may merge the
resource manager calls from the multiple instances into a single transaction.

* Any combination of the above.

Since the enterprise bean does not know which technique the Container implements, the enterprise bean
must be written conservatively not to rely on any particular Container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified transaction
context may leave the resource managers accessed from the method in an unpredictable state. The EJB
architecture does not define how the application should recover the resource managers’ state after such a
failure.

Access from multiple clients in the same transaction context

This section describes a more complex distributed transaction scenario, and specifies the Container’s
behavior required for this scenario.

11.7.1 Transaction “diamond” scenario with an entity object
An entity object may be accessed by multiple clients in the same transaction. For example, program A
may start a transaction, call program B and program C in the transaction context, and then commit the
transaction. If programs B and C access the same entity object, the topology of the transaction creates a
diamond.
11/24/99 180

Sun Microsystem Inc

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release Support for Transactions

Figure 46 Transaction diamond scenario with entity object

Program C

EJB Container

X1

An example (not realistic in practice) is a client program that tries to perform two purchases at two dif-
ferent stores within the same transaction. At each store, the program that is processing the client’s pur-
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C access an
entity object through different network paths. This case is challenging because many EJB servers imple-
ment the EJB Container as a collection of multiple processes, running on the same or multiple
machines. Each client is typically connected to a single process. If clients B and C connect to different
EJB Container processes, and both B and C need to access the same entity object in the same transac-
tion, the issue is how the Container can make it possible for B and C to see a consistent state of the
entity object within the same transactf

The above example illustrates a simple diamond. We use the term diamond to refer to any distributed
transaction scenario in which an entity object is accessed in the same transaction through multiple net-
work paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent access
to an entity object in the same transaction context would be considered an application programming
error, and it would be handled in a Container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists in all
distributed transaction processing systems.

The following subsections define the responsibilities of the EJB Roles when handling distributed trans-
action topologies that may lead to a diamond involving an entity object.

[13] This diamond problem applies only to the case when B and C are in the same transaction.

181 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

11.7.2 Container Provider’s responsibilities

This Subsection specifies the EJB Container’s responsibilities with respect to the diamond case involv-
ing an entity object.

The EJB specification requires that the Container provide support for local diamonds. In a local dia-
mond, components A, B, C, and D are deployed in the same EJB Container.

The EJB specification does not require an EJB Container to support distributed diamonds. In a distrib-
uted diamond, a target entity object is accessed from multiple clients in the same transaction through
multiple network paths, and the clients (programs B and C) are not enterprise beans deployed in the
same EJB Container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the Container can detect
that a client invocation would lead to a diamond, the Container should throjathami.Remo-
teException to the client.

If the Container Provider chooses to support distributed diamonds, it should provide a consistent view
of the entity state within a transaction. The Container Provider can implement the support in several
ways. (The options that follow are illustrative, not prescriptive.)

* Always instantiate the entity bean instance for a given entity object in the same process, and
route all clients’ requests to this process. Within the process, the Container routes all the
requests within the same transaction to the same enterprise bean instance.

* Instantiate the entity bean instance for a given entity object in multiple processes, and use the
ejbStore andejbLoad methods to synchronize the state of the instances within the same
transaction. For example, the Container can iggh8tore after each business method, and
issueejbLoad before the start of the next business method. This technique ensures that the
instance used by a one client sees the updates done by other clients within the same transac-
tion.

An illustration of the second approach follows. The illustration is illustrative, not prescriptive for the
Container implementors.

11/24/99

182

Sun Microsystem Inc

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release

Support for Transactions

Figure 47

11.7.3

Handling of diamonds by a multi-process container

Multi-process EJB Container

\

(process 1
TX1
Account 100
@ [ejbLoad/ejbStore
(process 2
X1
Account 100 ejbLoad/ejbStore
Program C L instance 2

/

Program B makes a call to an entity object representing Account 100. The request is routed to an
instance in process 1. The Container invok@d oad on the instance. The instance loads the state
from the database in thejpbLoad method. The instance updates the state in the business method.
When the method completes, the Container inva{bStore . The instance writes the updated state

to the database in tlegbStore method.

Now program C makes a call to the same entity object in the same transaction. The request is routed to
a different process (2). The Container involeiisLoad on the instance. The instance loads the state

from the database in thejbLoad method. The loaded state was written by the instance in process 1.
The instance updates the state in the business method. When the method completes, the Container
invokesejbStore . The instance writes the updated state to the databasecjh8tere method.

In the above scenario, the Container presents the business methods operating on the entity object
Account 100 with a consistent view of the entity object’s state within the transaction.

Another implementation of the EJB Container might avoid calkjlf. oad andejbStore on each

business method by using a distributed lock manager.

Bean Provider’'s responsibilities

This Subsection specifies the Bean Provider’s responsibilities with respect to the diamond case involv-
ing an entity object.

183

11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

11.7.4

The diamond case is transparent to the Bean Provider—the Bean Provider does not have to code the
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond prob-
lem implemented by the Container is transparent to the bean and does not change the semantics of the
bean.

Application Assembler and Deploer’'s responsibilities

11.7.5

This Subsection specifies the Application Assembler and Deployer’s responsibilities with respect to the
diamond case involving an entity object.

The Application Assembler and Deployer should be aware that distributed diamonds might occur. In
general, the Application Assembler should try to avoid creating unnecessary distributed diamonds.

If a distributed diamond is necessary, the Deployer should advise the Container (using a Container-spe-
cific API) that an entity objects of the entity bean may be involved in distributed diamond scenarios.

Transaction diamonds irvolving session objects

While itis illegal for two clients to access the same session object, it is possible for applications that use
session beans to encounter the diamond case. For example, program A starts a transaction and then
invokes two different session objects.

Figure 48

Transaction diamond scenario with a session bean

EJB Container

\

Session read and cache
instance 1 /-l1_Account 100
Session |
instance 2
read and cache

/ Account 100

If the session bean instances cache the same data item (e.g. the current balance of Account 100) across
method invocations in the same transaction, most likely the program is going to produce incorrect
results.

The problem may exist regardless of whether the two session objects are the same or different session
beans. The problem may exist (and may be harder to discover) if there are intermediate objects between
the transaction initiator and the session objects that cache the data.

11/24/99

184

Sun Microsystem Inc

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release Support for Transactions

There are no requirements for the Container Provider because it is impossible for the Container to detect
this problem.

The Bean Provider and Application Assembler must avoid creating applications that would result in
inconsistent caching of data in the same transaction by multiple session objects.

185 11/24/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

11/24/99 186

Sun Microsystem Inc

Overview and Concepts Enterprise JavaBeans v1.1, Final Release Exception handling

ez 2XCEPLION handling

12.1 Overview and Concepts

12.1.1 Application exceptions

An application exceptions an exception defined in the throws clause of a method of the enterprise
Bean’s home and remote interfaces, other thajatleermi.RemoteException

Enterprise bean business methods use application exceptions to inform the client of abnormal applica-
tion-level conditions, such as unacceptable values of the input arguments to a business method. A client
can typically recover from an application exception. Application exceptions are not intended for report-
ing system-level problems.

For example, theAccountenterprise bean may throw an application exception to report thdelit
operation cannot be performed because of an insufficient balanceAddwuintbean should not use an
application exception to report, for example, the failure to obtain a database connection.

187 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

12.1.2

The javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Fin-

derException , and subclasses thereof, are considered to be application exceptions. These excep-
tions are used as standard application exceptions to report errors to the client fraredbe |,

remove , andfinder methods (see Subsection 9.1.9). These exceptions are covered by the rules on
application exceptions that are defined in this chapter.

Goals Por exception handling

12.2

The EJB specification for exception handling is designed to meet these high-level goals:

* An application exception thrown by an enterprise bean instance should be reported to the client
precisely(i.e. the client gets the same exception).

* An application exception thrown by an enterprise bean instance should not automatically roll-
back a client’s transaction. The client should typically be given a chance to recover a transac-
tion from an application exception.

* An unexpected exception that may have left the instance’s state variables and/or underlying
persistent data in an inconsistent state can be handled safely.

Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exception han-
dling.

12.2.1 Application exceptions

The Bean Provider defines the application exceptions in the throws clauses of the methods of the remote
and home interfaces. Because application exceptions are intended to be handled by the client, and not by
the system administrator, they should be used only for reporting business logic exceptions, not for
reporting system level problems.

The Bean Provider is responsible for throwing the appropriate application exception from the business
method to report a business logic exception to the client. Because the application exception does not
automatically result in marking the transaction for rollback, the Bean Provider must do one of the fol-
lowing to ensure data integrity before throwing an application exception from an enterprise bean
instance:

* Ensure that the instance is in a state such that a client’s attempt to continue and/or commit the
transaction does not result in loss of data integrity. For example, the instance throws an appli-
cation exception indicating that the value of an input parameter was invalid before the instance
performed any database updates.

* Mark the transaction for rollback using tl&IBContext.setRollbackOnly() method
before throwing an application exception. Marking the transaction for rollback will ensure that
the transaction can never commit.

11/24/99

188

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

12.2.2

An application exception must not be defined as a subclass gatadang.RuntimeExcep-
tion , or of thejava.rmi.RemoteException . These are reserved for system exceptions (See
next subsection).

The Bean Provider is also responsible for using the standard EJB application exceptions
(javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Find-
erException , and subclasses thereof) as described in Subsection 9.1.9.

Bean Providers may define subclasses of the standard EJB application exceptions and throw instances

of the subclasses in the entity bean methods. A subclass will typically provide more information to the
client that catches the exception.

System exceptions

This subsection describes how the Bean Provider should handle various system-level exceptions and
errors that an enterprise bean instance may encounter during the execution of a business method or a
container callback method (egjbLoad).

The enterprise bean business method and container callback methods may encounter various exceptions
or errors that prevent the method from successfully completing. Typically, this happens because the
exception or error is unexpected, or the exception is expected but the EJB Provider does not know how
to recover from it. Examples of such exceptions and errors are: failure to obtain a database connection,
JNDI API exceptions, unexpect&®emoteException from invocation of other enterprise bedf:
unexpectedRuntimeException , JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allow the
method to successfully complete, the method should throw a suitable non-application exception that is
compatible with the method’s throws clause. While the EJB specification does not prescribe the exact
usage of the exception, it encourages the Bean Provider to follow these guidelines:

* If the bean method encountergRaintimeException or error, it should simply propagate
the error from the bean method to the Container (i.e. the bean method does not have to catch
the exception).

* If the bean method performs an operation that results in a checked ex&@éﬂibat the bean
method cannot recover, the bean method should throwathex.ejb.EJBException
that wraps the original exception.

* Any other unexpected error conditions should be reported usingattae.ejb.EJBEX-
ception.

Note that thgavax.ejb.EJBException is a subclass of th@va.lang.RuntimeExcep-
tion , and therefore it does not have to be listed in the throws clauses of the business methods.

[14]

[15]

Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this subsection applies
only to the case when the business method does not wish to recover from the RemoteException.

A checked exception is one that is not a subclags/aflang.RuntimeException

189 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

The Container catches a non-application exception, logs it (which can result in alerting the System
Administrator), and throws thjgva.rmi.RemoteException (or subclass thereof) to the client.

The Bean Provider can rely on the Container to perform the following tasks when catching a non-appli-
cation exception:

* The transaction in which the bean method participated will be rolled back.
* No other method will be invoked on an instance that threw a non-application exception.

This means that the Bean Provider does not have to perform any cleanup actions before throwing a
non-application exception. It is the Container that is responsible for the cleanup.

12.2.2.1 javax.ejb.NoSuchEntityException

12.3

TheNoSuchEntityException is a subclass dEJBException . It should be thrown by the entity
bean class methods to indicate that the underlying entity has been removed from the database.

An entity bean class typically throws this exception from ¢l oad andejbStore methods, and
from the methods that implement the business methods defined in the remote interface.

Container Provider responsibilities

123.1

This section describes the responsibilities of the Container Provider for handling exceptions. The EJB
architecture specifies the Container’s behavior for the following exceptions:

* Exceptions from enterprise bean’s business methods.
* Exceptions from container-invoked callbacks on the enterprise bean.

* Exceptions from management of container-managed transaction demarcation.

Exceptions from an enteprise bean’s business methods

Business methodsre considered to be the methods defined in the enterprise bean’s remote and home
interface (including all their superinterfaces); and the following methefi&Create(...) , ejb-
PostCreate(...) , ejbRemove() , and theejpFind<METHOD> methods.

11/24/99

190

Sun Microsystem Inc

Container Provider responsibilities

Enterprise JavaBeans v1.1, Final Release

Exception

handling

Table 8 specifies how the Container must handle the exceptions thrown by the business methods for
beans with container-managed transaction demarcation. The table specifies the Container’s action as a
function of the condition under which the business method executes and the exception thrown by the
business method. The table also illustrates the exception that the client will receive and how the client
can recover from the exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transaction
demarcation
Method condition Method exception Container’s action Client's view
AppException Re-throw AppException Receives AppExceptign.
Can attempt to continue
computation in the trans
action, and eventually
commit the transaction
(the commit would fail if
Bean method runs in the the instance callesket-
context of the caller’s RollbackOnly()).
transaction [Note A].
This case may happen | all other exceptions and| Log the exception or ReceiveSransaction-
with Required , Man- errors error [Note B]. RolledBackException
datory , andSup- . o S
i Mark the transaction for | Continuing transaction is
ports attributes. rollback. fruitless.
Discard instance
[Note C].
Throw Transaction-
RolledBackException to
the client.
AppException If the instance called set-Receives AppException.
RollbackOnly(), then . .
rollback the transaction, g;?g;gt?grt] et);]eecglti%sn{ga
B thod in th ﬁgg re-throw AppExcep- transaction is not markeg
eatn Tef Ot runs '? @ : for rollback, and client
fk?nt eﬁ(% a ransact lon Otherwise, attemptto | can continue its work.
that t de' tolntglnfer S S‘.rte‘ commit the transaction,
patching thé business and then re-throw
mgthod. AppException.
This case may happen all other exceptions Log the exception or | ReceiveRemoteExcep-
with Required and error tion
RequiresNew : on -
attributes. Rollback the con- If the client executes in a
tainer-started transaction. transaction, the client’s
. . transaction is not marked
Discard instance. for rollback, and client
Throw RemoteException can continue its work.
191 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transaction
demarcation

Method condition Method exception Container’s action Client’s view

AppException Re-throw AppException. Receives AppException.

If the client executes in a|
transaction, the client’s

. transaction is not marked
Bean meth_?ddrl#ns W'th_ for rollback, and client
fi‘gnuggﬁfecx't'e ransac can continue its work.
\-mﬁ &aeSSOTSagpfjappen all other exceptions Log the exception or | ReceiveRemoteExcep-
ported , Never , and error. tion .

Supports attributes. Discard instance. If the client executes in g

transaction, the client’s

Throw RemoteException transaction is not marked

for rollback, and client

can continue its work.
Notes:
[A] The caller can be another enterprise bean or an arbitrary client program.
[B] Log the exception or errameans that the Container logs the exception or error so that the System Admin-

istrator is alerted of the problem.

[C] Discard instanceneans that the Container must not invoke any business methods or container callbacks

on the instance.

Table 9 specifies how the Container must handle the exceptions thrown by the business methods for
beans with bean-managed transaction demard&fiohe table specifies the Container’s action as a
function of the condition under which the business method executes and the exception thrown by the
business method. The table also illustrates the exception that the client will receive and how the client
can recover from the exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transaction
demarcation

Bean method condition | Bean method exception| Container action Client receives
AppException Re-throw AppException Receives AppExceptign.
all other exceptions Log the exception or | ReceiveRemoteExcep-

error. tion .

Bean is stateful or state- Mark for rollback a

less Session. transaction that has been

started, but not yet com-|
pleted, by the instance.

Discard instance.

Throw RemoteException

[16] Note that the EJB specification allows only Session beans to use bean-managed transaction demarcation.

11/24/99 192

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

12.3.2 Exceptions from containerinvoked callbacks

This subsection specifies the Container’s handling of exceptions thrown from the container-invoked
callbacks on the enterprise bean. This subsection applies to the following callback methods:

* TheejbActivate() , ejbLoad() , ejbPassivate() , ejbStore() , setEntity-
Context(EntityContext) , and unsetEntityContext() methods of theEnti-
tyBean interface.

* The ejbActivate() , ejbPassivate() , and setSessionContext(Session-
Context) methods of th&essionBean interface.

* The afterBegin(), beforeCompletion() and afterCompletion(boolean)
methods of th&essionSynchronization interface.

The Container must handle all exceptions or errors from these methods as follows:
* Log the exception or error to bring the problem to the attention of the System Administrator.
* Ifthe instance is in a transaction, mark the transaction for rollback.

* Discard the instance (i.e. the Container must not invoke any business methods or container
callbacks on the instance).

* If the exception or error happened during the processing of a client invoked method, throw the
java.rmi.RemoteException to the client. If the instance executed in the client’s trans-
action, the Container should throw tfevax.transaction.TransactionRolled-

BackException because it provides more information to the client. (The client knows that
it is fruitless to continue the transaction.)

TheNoSuchEntityException is a subclass dEJBException . Ifitis thrown by a method of an
entity bean class, the Container must handle the exception using the rul&JBaixception

To give the client a better indication of the cause of the error, the Container should throw the
java.rmi.NoSuchObjectException to the client (which is a subclass @afva.rmi.Remo-

12.3.3 javax.ejb.NoSuchEntityException
described in Sections 12.3.1 and 12.3.2.
teException).

12.3.4 Non-existing session object

If a client makes a call to a session object that has been removed, the Container should throw the
java.rmi.NoSuchObjectException to the client (which is a subclass @afva.rmi.Remo-
teException).

193 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

12.3.5 Exceptions from the management of containemanaged transactions

The container is responsible for starting and committing the container-managed transactions, as
described in Subsection 11.6.2. This subsection specifies how the Container must deal with the excep-
tions that may be thrown by the transaction start and commit operations.

If the Container fails to start or commit a container-managed transaction, the Container must throw the

java.rmi.RemoteException to the client.
However, the Container should not throw flaga.rmi.RemoteException if the Container per-
forms a transaction rollback because the instance has invokestRellbackOnly() method on

its EJBContext object. In this case, the Container must rollback the transaction and pass the business
method result or the application exception thrown by the business method to the client.

Note that some implementations of the Container may retry a failed transaction transparently to the cli-

ent and enterprise bean code. Such a Container would throvjatlermi.RemoteException
after a number of unsuccessful tries.

12.3.6 Release of esources

When the Container discards an instance because of a system exception, the Container should release all
the resources held by the instance that were acquired through the resource factories declared in the
enterprise bean environment (See Subsection 14.4).

Note: While the Container should release the connections to the resource managers that the instance
acquired through the resource factories declared in the enterprise bean environment, the Container can-
not, in general, release “unmanaged” resources that the instance may have acquired through the JDK

APIs. For example, if the instance has opened a TCP/IP connection, most Container implementations
will not be able to release the connection. The connection will be eventually released by the JVM gar-

bage collector mechanism.

12.3.7 Support for deprecated use ofava.rmi.RemoteException

The EJB 1.0 specification allowed the business methagbCreate , ejbPostCreate
ejbFind<METHOD>, ejbRemove , and the container-invoked callbacks (i.e. the methods defined in
the EntityBean , SessionBean , andSessionSynchronization interfaces) implemented in
the enterprise bean class to usejtha.rmi.RemoteException to report non-application excep-
tions to the Container.

This use of thgava.rmi.RemoteException is deprecated in EJB 1.1—enterprise beans written
for the EJB 1.1 specification should usejthex.ejb.EJBException instead.

The EJB 1.1 specification requires that a Container support the deprecated use of the
java.rmi.RemoteException . The Container should treat thjava.rmi.RemoteExcep-

tion thrown by an enterprise bean method in the same way as it is specified for the
javax.ejb.EJBException

11/24/99 194

Sun Microsystem Inc

Client’s view of exceptions Enterprise JavaBeans v1.1, Final Release Exception handling

12.4

Note: The use of th@va.rmi.RemoteException is deprecated only in the above-mentioned
methods. The methods of the remote and home interface still must usedtreni.RemoteEx-
ception as required by the EJB specification.

Client’s view of exceptions

12.4.1

This section describes the client’s view of exceptions received from an enterprise bean invocation.

A client accesses an enterprise Bean through the enterprise Bean's remote and home interfaces. Both of
these interfaces are Java RMI interfaces, and therefore the throws clauses of all their methods (including
those inherited from superinterfaces) include the mandgsstg.rmi.RemoteException. The

throws clauses may include an arbitrary number of application exceptions.

Application exception

If a client program receives an application exception from an enterprise bean invocation, the client can
continue calling the enterprise bean. An application exception does not result in the removal of the EJB
object.

If a client program receives an application exception from an enterprise bean invocation while the client
is associated with a transaction, the client can typically continue the transaction because an application
exception does not automatically causes the Container to mark the transaction for rollback.

For example, if a client receives tli&xceedLimitExceptiompplication exception from theéebitmethod

of an Accountbean, the client may invoke tldebitmethod again, possibly with a lower debit amount
parameter. If the client executed in a transaction context, throwingeeedLimitExceptiomxception
would not automatically result in rolling back, or marking for rollback, the client’s transaction.

Although the Container does not automatically mark for rollback a transaction because of a thrown
application exception, the transaction might have been marked for rollback by the enterprise bean
instance before it threw the application exception. There are two ways to learn if a particular application
exception results in transaction rollback or not:

» Statically. Programmers can check the documentation of the enterprise bean’s remote or home
interface. The Bean Provider may have specified (although he is not required to) the applica-
tion exceptions for which the enterprise bean marks the transaction for rollback before throw-
ing the exception.

* Dynamically. Clients that are enterprise beans with container-managed transaction demarca-
tion can use thgetRollbackOnly() method of thgavax.ejb.EJBContext object
to learn if the current transaction has been marked for rollback; other clients may gga-the
Status() method of thejavax.transaction.UserTransaction interface to
obtain the transaction status.

195 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Client’s view of exceptions

12.4.2 java.rmi.RemoteException

The client receives th@va.rmi.RemoteException as an indication of a failure to invoke an
enterprise bean method or to properly complete its invocation. The exception can be thrown by the Con-
tainer or by the communication subsystem between the client and the Container.

If the client receives thgava.rmi.RemoteException exception from a method invocation, the
client, in general, does not know if the enterprise Bean's method has been completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have been
marked for rollback by the communication subsystem or target bean’s Container.

For example, the transaction would be marked for rollback if the underlying transaction service or the
target Bean'’s Container doubted the integrity of the data because the business method may have been
partially completed. Partial completion could happen, for example, when the target bean’s method
returned with a RuntimeException exception, or if the remote server crashed in the middle of executing
the business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, when the
communication subsystem on the client-side has not been able to send the request to the server.

When a client executing in a transaction context receivBemoteException from an enterprise
bean invocation, the client may use either of the following strategies to deal with the exception:

* Discontinue the transaction. If the client is the transaction originator, it may simply rollback its
transaction. If the client is not the transaction originator, it can mark the transaction for roll-
back or perform an action that will cause a rollback. For example, if the client is an enterprise
bean, the enterprise bean may throRuntimeException which will cause the Container
to rollback the transaction.

* Continue the transaction. The client may perform additional operations on the same or other
enterprise beans, and eventually attempt to commit the transaction. If the transaction was
marked for rollback at the time tHRemoteException was thrown to the client, the commit
will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction status to
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an enter-
prise bean with container-managed transaction demarcation can uEdB@ontext.getRoll-

backOnly() method to test if the transaction has been marked for rollback; a client that is an
enterprise bean with bean-managed transaction demarcation, and other client types, cabsese the
Transaction.getStatus() method to obtain the status of the transaction.

Some implementations of EJB Servers and Containers may provide more detailed exception reporting
by throwing an appropriate subclass of faga.rmi.RemoteException to the client. The fol-

lowing subsections describe the several subclasses gdthami.RemoteException that may

be thrown by the Container to give the client more information.

11/24/99

196

Sun Microsystem Inc

System Administrator’s responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

12.4.2.1 javax.transaction.TransactionRolledbackException

The javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.
If a client receives thgavax.transaction.TransactionRolledbackException , the cli-

ent knows for certain that the transaction has been marked for rollback. It would be fruitless for the cli-
ent to continue the transaction because the transaction can never commit.

12.4.2.2 javax.transaction.TransactionRequiredException

The javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.
Thejavax.transaction.TransactionRequiredException informs the client that the tar-

get enterprise bean must be invoked in a client’s transaction, and that the client invoked the enterprise
bean without a transaction context.

This error usually indicates that the application was not properly formed.

12.4.2.3 java.rmi.NoSuchObjectException

12.5

The java.rmi.NoSuchObjectException is a subclass of th@va.rmi.RemoteExcep-
tion. Itis thrown to the client if a remote business method cannot complete because the EJB object no
longer exists.

System Administrator’s responsibilities

12.6

The System Administrator is responsible for monitoring the log of the non-application exceptions and
errors logged by the Container, and for taking actions to correct the problems that caused these excep-
tions and errors.

Differences from EJB 1.0

The EJB 1.1 specification of exception handling preserved the rules defined in the EJB 1.0 specification,
with the following exceptions:

* EJB 1.0 specified that the enterprise bean business methods and container-invoked callbacks
use thgava.rmi.RemoteException to report non-application exceptions. This practice
is deprecated in EJB 1.1—the enterprise bean methods should yagdhejb.EJBEX-
ception , or other suitabl®untimeException to report non-application exceptions.

* In EJB 1.1, all non-application exceptions thrown by the instance result in the rollback of the
transaction in which the instance executed, and in discarding the instance. In EJB 1.0, the Con-

197 11/24/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans v1.1, Final Release Differences from EJB 1.0

tainer would not rollback a transaction and discard the instance if the instance threw the
java.rmi.RemoteException

* In EJB 1.1, an application exception does not cause the Container to automatically rollback a
transaction. In EJB 1.0, the Container was required to rollback a transaction when an applica-
tion exception was passed through a transaction boundary started by the Container. In EJB 1.1,
the Container performs the rollback only if the instance have invokedéteollback-

Only() method on it€JBContext object.

11/24/99 198

Sun Microsystem Inc

Overview

Chapter 13

Enterprise JavaBeans v1.1, Final Release Support for Distribution

Support for Distribution

13.1 Overview

The home and remote interfaces of the enterprise bean’s client view are defined as Java™ RMI [3] inter-
faces. This allows the Container to implement the home and remote interfadissrimited objectsA

client using the home and remote interfaces can reside on a different machine than the enterprise bean
(location transparency), and the object references of the home and remote interfaces can be passed over
the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise beans to the
legal RMI-IIOP types [7]. This makes it possible for the EJB Container implementors to use RMI-IIOP
as the object distribution protocol.

Note: The EJB 1.1 specification does not require Container vendors to use RMI-IIOP. A later release of
the J2EE platform is likely to require a J2EE platform implementor to implement the RMI-IIOP proto-
col for EJB interoperability in heterogeneous server environments.

199 11/24/99

Sun Microsystems Inc.

Support for Distribution Enterprise JavaBeans v1.1, Final Release Client-side objects in distributed environment

13.2 Client-side objects in distributed environment

When the RMI-IIOP protocol or similar distribution protocols are used, the client communicates with

the enterprise bean usisgubsfor the server-side objects. The stubs implement the home and remote
interfaces.

Figure 49 Location of EJB Client Stubs.

client address space (i.e. JVM) container address space (i.e. JVM)

5 e S
container
< EJB home stub LCEJB home obje@

remote
client

JB object enterprise Bea

EJB object stu@—z C E

- / - /

The communication stubs used on the client side are artifacts generated at enterprise Bean’s deployment
time by the EJB Container provider tools. The stubs used on the client are standard if the Container uses
RMI-1IOP as the distribution protocol; the stubs are Container-specific otherwise.

13.3 Standard distribution protocol

The standard mapping of the Enterprise JavaBeans architecture to CORBA is defined in [8].

The mapping enables the following interoperability:

A client using an ORB from one vendor can access enterprise Beans residing on an EJB Server
provided by another vendor.

Enterprise Beans in one EJB Server can access enterprise Beans in another EJB Server.

A non-Java platform CORBA client can access any enterprise Bean object.

11/24/99 200

Sun Microsystem Inc

Overview

Chapter 14

14.1

Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Enterprise bean environment

This chapter specifies the interfaces for accessing the enterprise bean environment.

Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s business
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent from the
operational environment in which the application will be deployed. Most enterprise beans must access
resource managers and external information. The key issue is how enterprise beans can locate external
information without prior knowledge of how the external information is named and organized in the tar-
get operational environment.

The enterprise bean environment mechanism attempts to address both of the above issues.

201 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Enterprise bean'’s environment as a JNDI API

This chapter is organized as follows.

* Section 14.2 defines the interfaces that specify and access the enterprise bean’s environment.
The section illustrates the use of the enterprise bean’s environment for generic customization
of the enterprise bean’s business logic.

* Section 14.3 defines the interfaces for obtaining the home interface of another enterprise bean
using anEJB specification referencé&n EJB specification reference is a special entry in the
enterprise bean’s environment.

* Section 14.4 defines the interfaces for obtaining a resource manager connection factory using a
resource manager connection factory referers@esource manager connection factory refer-
ence is a special entry in the enterprise bean’s environment.

14.2 Enterprise bean’s environment as a JNDI API naming
context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise bean’s
business logic during deployment or assembly. The enterprise bean’s environment allows the enterprise
bean to be customized without the need to access or change the enterprise bean’s source code.

The Container implements the enterprise bean’s environment, and provides it to the enterprise bean
instance through the JNDI interfaces. The enterprise bean’s environment is used as follows:

1. The enterprise bean’s business methods access the environment using the JNDI interfaces. The
Bean Provider declares in the deployment descriptor all the environment entries that the enter-
prise bean expects to be provided in its environment at runtime.

2. The Container provides an implementation of the JNDI APl naming context that stores the
enterprise bean environment. The Container also provides the tools that allow the Deployer to
create and manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the Container to create the environment entries that
are declared in the enterprise bean’s deployment descriptor. The Deployer can set and modify
the values of the environment entries.

4. The Container makes the environment naming context available to the enterprise bean
instances at runtime. The enterprise bean’s instances use the JNDI interfaces to obtain the val-
ues of the environment entries.

Each enterprise bean defines its own set of environment entries. All instances of an enterprise bean
within the same home share the same environment entries; the environment entries are not shared with
other enterprise beans. Enterprise bean instances are not allowed to modify the bean’s environment at
runtime.

11/24/99

202

Sun Microsystem Inc

Enterprise bean’s environment as a JNDI API naming contextEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

If an enterprise bean is deployed multiple times in the same Container, each deployment results in the
creation of a distinct home. The Deployer may set different values for the enterprise bean environment
entries for each home.

Terminology warning: The enterprise bean’s “environment” should not be confused with the “environ-
ment properties” defined in the JNDI API documentation.

The following subsections describe the responsibilities of each EJB Role.

14.2.1 Bean Provider’s responsibilities

This section describes the Bean Provider’s view of the enterprise bean’s environment, and defines his or
her responsibilities.

14.2.1.1 Access to enterprise bean’s environment

An enterprise bean instance locates the environment naming context using the JNDI interfaces. An
instance createsjavax.naming.InitialContext object by using the constructor with no argu-
ments, and looks up the environment naming via tingdialContext under the name
java:comp/env . The enterprise bean’s environment entries are stored directly in the environment
naming context, or in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the deployment
descriptor.

203 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Enterprise bean’s environment as a JNDI API

The following code example illustrates how an enterprise bean accesses its environment entries.

public class EmployeeServiceBean implements SessionBean {

ﬁjblic void setTaxInfo(int numberOfExemptions, ...)
throws InvalidNumberOfExemptionsException {

/l Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

/I Obtain the maximum number of tax exemptions
/I configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
/I configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

/I Use the environment entries to customize business logic.
if (numberOfExeptions > maxExemptions ||
numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

/I Get some more environment entries. These environment
/I entries are stored in subcontexts.

String vall = (String)myEnv.lookup(“foo/namel”);

Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

/I The enterprise bean can also lookup using full pathnames.

Integer val3 = (Integer)
initCtx.lookup(“java:comp/env/name3");

Integer vald = (Integer)
initCtx.lookup("java:comp/env/foo/name4");

}

14.2.1.2 Declaration of environment entries

The Bean Provider must declare all the environment entries accessed from the enterprise bean’s code.
The environment entries are declared usingetheentry elements in the deployment descriptor.

Eachenv-entry element describes a single environment entry. ilneentry element consists of

an optional description of the environment entry, the environment entry name relative to the
java:comp/env context, the expected Java type of the environment entry value (i.e. the type of the
object returned from the JNIokup method), and an optional environment entry value.

An environment entry is scoped to the session or entity bean whose declaration contains the
env-entry element. This means that the environment entry is inaccessible from other enterprise
beans at runtime, and that other enterprise beans may dafirentry elements with the same
env-entry-name without causing a name conflict.

11/24/99

204

Sun Microsystem Inc

Enterprise bean’s environment as a JNDI API naming contextEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

The environment entry values may be one of the following Java programming languagestypres: ,
Integer , Boolean , Double , Byte , Short , Long, andFloat

If the Bean Provider provides a value for an environment entry usingiieentry-value ele-

ment, the value can be changed later by the Application Assembler or Deployer. The value must be a
string that is valid for the constructor of the specified type that takes aSiniglg parameter.

205 11/24/99

Sun Microsystems Inc.

Enterprise bean environment

Enterprise JavaBeans v1.1, Final Release Enterprise bean’s environment as a JNDI API

The following example is the declaration of environment entries used bin@oyeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>valuel</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>
<env-entry>
<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>
</env-entry>

</session>
</enterprise-beans>

11/24/99

206

Sun Microsystem Inc

EJB references

Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

The Application Assembler is allowed to modify the values of the environment entries set by the Bean
Provider, and is allowed to set the values of those environment entries for which the Bean Provider has

The Deployer must ensure that the values of all the environment entries declared by an enterprise bean

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for

The description elements provided by the Bean Provider or Application Assembler help the

* Provide a deployment tool that allows the Deployer to set and modify the values of the enter-

* Implement thgava:comp/env environment naming context, and provide it to the enter-
prise bean instances at runtime. The naming context must include all the environment entries
declared by the Bean Provider, with their values supplied in the deployment descriptor or set
by the Deployer. The environment haming context must allow the Deployer to create subcon-

* The Container must ensure that the enterprise bean instances have only read access to their
environment variables. The Container must throw jtheax.naming.OperationNot-
SupportedException from all the methods of thmvax.naming.Context interface
that modify the environment naming context and its subcontexts.

14.2.2 Application Assembler’s responsibility
not specified any initial values.
14.2.3 Deployer’s responsibility
are set to meaningful values.
which no value has been specified.
Deployer with this task.
14.2.4 Container Provider responsibility
The container provider has the following responsibilities:
prise bean’s environment entries.
texts if they are needed by an enterprise bean.
14.3 EJB references

This section describes the programming and deployment descriptor interfaces that allow the Bean Pro-
vider to refer to the homes of other enterprise beans using “logical’ names EdldeferencesThe

EJB references are special entries in the enterprise bean’s environment. The Deployer binds the EJB ref-
erences to the enterprise bean’s homes in the target operational environment.

The deployment descriptor also allows the Application Assemblénkcan EJB reference declared in

one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb-jar file
in the same J2EE application unit. The link is an instruction to the tools used by the Deployer that the
EJB reference must be bound to the home of the specified target enterprise bean.

207 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release EJB references

14.3.1 Bean Provider’s responsibilities

This subsection describes the Bean Provider's view and responsibilities with respect to EJB references.

14.3.1.1 EJB reference programming interfaces

The Bean Provider must use EJB references to locate the home interfaces of other enterprise beans as
follows.

e Assign an entry in the enterprise bean’s environment to the reference. (See subsection 14.3.1.2
for information on how EJB references are declared in the deployment descriptor.)

* The EJB specification recommends, but does not require, that all references to other enterprise
beans be organized in thejb subcontext of the bean’s environment (i.e. in the
Java:comp/env/ejb JNDI context).

* Look up the home interface of the referenced enterprise bean in the enterprise bean’s environ-
ment using JNDI.

The following example illustrates how an enterprise bean uses an EJB reference to locate the home
interface of another enterprise bean.

public class EmployeeServiceBean implements SessionBean {

public void changePhoneNumber(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

/I Look up the home interface of the EmployeeRecord

/I enterprise bean in the environment.

Object result = initCtx.lookup(
"java:comp/env/ejb/EmplRecord");

/I Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

}

In the example, the Bean Provider of timployeeServiceBean enterprise bean assigned the envi-

ronment entryejo/EmplRecord as the EJB reference name to refer to the home of another enter-
prise bean.

14.3.1.2 Declaration of EJB references in deployment descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider must not
use aenv-entry element to declare it. Instead, the Bean Provider must declare all the EJB references
using theejb-ref elements of the deployment descriptor. This allows the ejb-jar consumer (i.e.
Application Assembler or Deployer) to discover all the EJB references used by the enterprise bean.

11/24/99

208

Sun Microsystem Inc

EJB references

Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Eachejb-ref element describes the interface requirements that the referencing enterprise bean has
for the referenced enterprise bean. ®je-ref element contains an optiondéscription ele-
ment; and the mandatoejb-ref-name, ejb-ref-type , home, andremote elements.

The ejb-ref-name element specifies the EJB reference name; its value is the environment entry
name used in the enterprise bean code. gberef-type element specifies the expected type of
the enterprise bean; its value must be eitetity or Session . Thehome andremote elements
specify the expected Java types of the referenced enterprise bean’s home and remote interfaces.

An EJB reference is scoped to the session or entity bean whose declaration contajhsdlie ele-

ment. This means that the EJB reference is not accessible to other enterprise beans at runtime, and that
other enterprise beans may defajp-ref elements with the samggb-ref-name without causing

a name conflict.

The following example illustrates the declaration of EJB references in the deployment descriptor.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to employee records.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
</ejb-ref>

</session>

</enterprise-beans>

209 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release EJB references

14.3.2 Application Assembler’s responsibilities

The Application Assembler can use thf-link element in the deployment descriptor to link an
EJB reference to a target enterprise bean. The link will be observed by the deployment tools.

The Application Assembler specifies the link between two enterprise beans as follows:

* The Application Assembler uses the optiorfi-link element of theejb-ref element
of the referencing enterprise bean. The value ofjbelink element is the name of the tar-
get enterprise bean. (It is the name defined indjirename element of the target enterprise
bean.) The target enterprise bean can be in the same ejb-jar file, or in another ejb-jar in the
same J2EE application unit as the referencing enterprise bean.

* The Application Assembler must ensure that the target enterprise bean is type-compatible with
the declared EJB reference. This means that the target enterprise bean must be of the type indi-
cated in theejb-ref-type element, and that the home and remote interfaces of the target
enterprise bean must be Java type-compatible with the interfaces declared in the EJB reference.

The following illustrates amjb-link in the deployment descriptor.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

</session>

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entit§$
</ente'r'brise—beans>
The Application Assembler uses tlegh-link element to indicate that the EJB reference “Empl-

Record” declared in th&mployeeService enterprise bean has been linked to @eploy-
eeRecord enterprise bean.

11/24/99 210

Sun Microsystem Inc

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

14.3.3 Deployer’s responsibility
The Deployer is responsible for the following:

* The Deployer must ensure that all the declared EJB references are bound to the homes of
enterprise beans that exist in the operational environment. The Deployer may use, for example,
the JINDILinkRef mechanism to create a symbolic link to the actual INDI hame of the target
enterprise bean’s home.

* The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the EJB reference. This means that the target enterprise bean must of the type indi-
cated in theejb-ref-type element, and that the home and remote interfaces of the target
enterprise bean must be Java type-compatible with the home and remote interfaces declared in
the EJB reference.

* If an EJB reference declaration includes #jle-link element, the Deployer must bind the
enterprise bean reference to the home of the enterprise bean specified as the link’s target.

14.3.4 Container Provider’s responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the tasks
described in the previous subsection. The deployment tools provided by the EJB Container provider
must be able to process the information supplied inejberef elements in the deployment descrip-

tor.

At the minimum, the tools must be able to:

* Preserve the application assembly information indjtelink elements by binding an EJB
reference to the home interface of the specified target enterprise bean.

* Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an EJB
reference by binding it to a specified compatible target enterprise bean.

14.4 Resource manager connection factory references

A resource manager connection factory is an object that is used to create connections to a resource man-
ager. For example, an object that implementsj#évax.sql.DataSource interface is a resource
manager connection factory f@ava.sql.Connection objects which implement connections to a
database management system.

211 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Resource manager connection factory refer-

1441

This section describes the enterprise bean programming and deployment descriptor interfaces that allow
the enterprise bean code to refer to resource factories using logical namesesii@de manager con-

nection factory reference§he resource manager connection factory references are special entries in
the enterprise bean’s environment. The Deployer binds the resource manager connection factory refer-
ences to the actual resource factories that are configured in the Container. Because these resource facto-
ries allow the Container to affect resource management, the connections acquired through the resource
manager connection factory references are calladaged resourceg.g. these resource factories allow

the Container to implement connection pooling and automatic enlistment of the connection with a trans-
action).

Bean Provider’'s responsibilities

This subsection describes the Bean Provider's view of locating resource factories and defines his
responsibilities.

14.4.1.1 Programming interfaces for resource manager connection factory references

The Bean Provider must use resource manager connection factory references to obtain connections to
resources as follows.

* Assign an entry in the enterprise bean’s environment to the resource manager connection fac-
tory reference. (See subsection 14.4.1.2 for information on how resource manager connection
factory references are declared in the deployment descriptor.)

* The EJB specification recommends, but does not require, that all resource manager connection
factory references be organized in the subcontexts of the bean’s environment, using a different
subcontext for each resource manager type. For example, all JDBC™ DataSource references
might be declared in th@ava:comp/env/jdbc subcontext, and all JIMS connection facto-
ries in thejava:comp/env/jms subcontext. Also, all JavaMail connection factories might
be declared in thgava:comp/env/mail subcontext and all URL connection factories in
the java:comp/env/url subcontext.

* Look up the resource manager connection factory object in the enterprise bean’s environment
using the JNDI interface.

* Invoke the appropriate method on the resource manager connection factory method to obtain a
connection to the resource. The factory method is specific to the resource type. It is possible to
obtain multiple connections by calling the factory object multiple times.

The Bean Provider has two choices with respect to dealing with associating a principal with the
resource manager access:

* Allow the Deployer to set up principal mapping or resource manager sign-on information. In
this case, the enterprise bean code invokes a resource manager connection factory method that
has no security-related parameters.

* Sign on to the resource manager from the bean code. In this case, the enterprise bean invokes
the appropriate resource manager connection factory method that takes the sign-on information
as method parameters.

11/24/99

212

Sun Microsystem Inc

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

The Bean Provider uses thes-auth deployment descriptor element to indicate which of the two
resource manager authentication approaches is used.

We expect that the first form (i.e. letting the Deployer set up the resource manager sign-on information)
will be the approach used by most enterprise beans.

The following code sample illustrates obtaining a JDBC connection.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {

/I obtain the initial INDI context
Context initCtx = new InitialContext();

/I perform JNDI lookup to obtain resource manager

/I connection factory

javax.sgl.DataSource ds = (javax.sql.DataSource)
initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

/I Invoke factory to obtain a connection. The security
/Il principal is not given, and therefore

/I it will be configured by the Deployer.
java.sqgl.Connection con = ds.getConnection();

14.4.1.2 Declaration of resource manager connection factory references in deployment
descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s environ-
ment, the Bean Provider must not useeaw-entry element to declare it.

Instead, the Bean Provider must declare all the resource manager connection factory references in the
deployment descriptor using thresource-ref elements. This allows the ejb-jar consumer (i.e.
Application Assembler or Deployer) to discover all the resource manager connection factory references
used by an enterprise bean.

Eachresource-ref element describes a single resource manager connection factory reference. The
resource-ref element consists of thedescription element; and the mandatory
res-ref-name ,res-type ,andres-auth elements. Thees-ref-name element contains the

name of the environment entry used in the enterprise bean’s codee3igpe element contains

the Java type of the resource manager connection factory that the enterprise bean code expects. The
res-auth element indicates whether the enterprise bean code performs resource manager sign-on
programmatically, or whether the Container signs on to the resource manager using the principal map-
ping information supplied by the Deployer. The Bean Provider indicates the sign-on responsibility by
setting the value of thes-auth element toApplication or Container

213 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Resource manager connection factory refer-

A resource manager connection factory reference is scoped to the session or entity bean whose declara-
tion contains theesource-ref element. This means that the resource manager connection factory
reference is not accessible from other enterprise beans at runtime, and that other enterprise beans may
defineresource-ref elements with the sammes-ref-name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connection fac-
tory.

Note that the indicated type is the Java type of the resource manager connection factory, not the Java
type of the resource.

The following example is the declaration of resource manager connection factory references used by the
EmployeeService enterprise bean illustrated in the previous subsection.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<resource-ref>
<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

</session>
</enterprise-beans>

14.4.1.3 Standard resource manager connection factory types

The Bean Provider must use tfevax.sql.DataSource resource manager connection factory
type for obtaining JDBC API connections, and fagax.jms.QueueConnectionFactory or
thejavax.jms.TopicConnectionFactory for obtaining JMS connections.

The Bean Provider must use tfavax.mail.Session resource manager connection factory type
for obtaining JavaMall™ API connections, and thgva.net.URL resource manager connection
factory type for obtaining URL connections.

It is recommended that the Bean Provider names JDBC APl data sources in the
java:comp/env/jdbc subcontext, and JMS connection factories in jenea:comp/env/jms

subcontext. It is also recommended that the Bean Provider names all JavaMail API connection factories
in the java:comp/env/mail subcontext, and all URL connection factories in the
java:comp/env/url subcontext.

11/24/99

214

Sun Microsystem Inc

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Note: A future EJB specification will add the “connector” mechanism that will allow an enterprise bean
to use the API described in this section to obtain resource objects that provide access to additional
back-end systems.

14.4.2 Deployer’s responsibility

The Deployer uses deployment tools to bind the resource manager connection factory references to the
actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory reference
declared in the deployment descriptor:

* Bind the resource manager connection factory reference to a resource manager connection fac-
tory that exists in the operational environment. The Deployer may use, for example, the JNDI
LinkRef mechanism to create a symbolic link to the actual JINDI APl name of the resource
manager connection factory. The resource manager connection factory type must be compati-
ble with the type declared in thes-type element.

* Provide any additional configuration information that the resource manager needs for opening
and managing the resource. The configuration mechanism is resource-manager specific, and is
beyond the scope of this specification.

e |Ifthe value of thees-auth element iContainer , the Deployer is responsible for config-
uring the sign-on information for the resource manager. This is performed in a manner specific
to the EJB Container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at the
enterprise beans application level to the security domain and principal realm of the resource manager,
the Deployer or System Administrator must define the mapping. The mapping is performed in a manner
specific to the EJB Container and resource manager; it is beyond the scope of the current EJB specifica-
tion.

14.4.3 Container provider responsibility
The EJB Container provider is responsible for the following:

* Provide the deployment tools that allow the Deployer to perform the tasks described in the pre-
vious subsection.

* Provide the implementation of the resource manager connection factory classes for the
resource managers that are configured with the EJB Container.

* If the Bean Provider set thes-auth of a resource manager connection factory reference to
Application , the Container must allow the bean to perform explicit programmatic sign-on
using the resource manager's API.

* The Container must provide tools that allow the Deployer to set up resource manager sign-on
information for the resource manager references wheseuth element is set t&€Con-
tainer . The minimum requirement is that the Deployer must be able to specify the user/pass-

215 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Deprecated EJBContext.getEnvironment()

word information for each resource manager connection factory reference declared by the
enterprise bean, and the Container must be able to use the user/password combination for user
authentication when obtaining a connection to the resource by invoking the resource manager
connection factory.

Although not required by the EJB specification, we expect that Containers will support some form of a
single sign-on mechanism that spans the application server and the resource managers. The Container
will allow the Deployer to set up the resource managers such that the EJB caller principal can be prop-
agated (directly or through principal mapping) to a resource managet, if required by the application.

While not required by the EJB specification, most EJB Container providers also provide the following
features:

* Atool to allow the System Administrator to add, remove, and configure a resource manager for
the EJB Server.

* A mechanism to pool connections to the resources for the enterprise beans and otherwise man-
age the use of resources by the Container. The pooling must be transparent to the enterprise
beans.

14.4.4 System Administrator’s responsibility
The System Administrator is typically responsible for the following:
* Add, remove, and configure resource managers in the EJB Server environment.
In some scenarios, these tasks can be performed by the Deployer.
14.5 DeprecatecEJBContext.getEnvironment() method
The environment naming contekitroduced in EJB 1.1 replaces the EJB 1.0 concepvironment
properties
An EJB 1.1 compliant Container is not required to implement support for the EJB 1.0 style environment
properties. If the Container does not implement the functionality, it should throw a RuntimeException
(or subclass thereof) from tl&)BContext.getEnvironment() method.
If an EJB 1.1 compliant Container chooses to provide support for the EJB 1.0 style environment proper-
ties (so that it can support enterprise beans written to the EJB 1.0 specification), it should implement the
support as described below.
When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they should
place the definitions of the environment properties intodfel O-properties subcontext of the
environment naming context. Thenv-entry elements should be defined as follows: the
env-entry-name element contains the name of the environment propertyeleentry-type
must bejava.lang.String , and the optionaknv-entry-value contains the environment
property value.
11/24/99 216

Sun Microsystem Inc

UserTransaction interface Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

For example, an EJB 1.0 enterprise bean with two environment propkieandbar , should declare
the followingenv-entry elements in its EJB 1.1 format deployment descriptor.

<env-entry>
env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

<env-entry>
<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bar value</env-entry-value>

</env-entry>

The Container should provide the entries declared inejhd0-properties subcontext to the
instances as gva.util.Properties object that the instances obtain by invoking Ei#BCon-
text.getEnvironment() method.

The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following example.

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
Ctx = sC;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = env.getProperty(*foo");
String barValue = env.getProperty("bar");

14.6 UserTransaction interface

Note: The requirement for the Container to publish the UserTransaction interface in the enterprise
bean’s JNDI API context was added to make the requirements on UserTransaction uniform with the
other Java 2 platform, Enterprise Edition application component types.

The Container must make théserTransaction interface available to the enterprise beans that are
allowed to use this interface (only session beans with bean-managed transaction demarcation are
allowed to use this interface) in INDI API under the nfama:comp/UserTransaction.

217 11/24/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release UserTransaction interface

The Container must not make thiserTransaction interface available to the enterprise beans that
are not allowed to use this interface. The Container should tfaeax.naming.NameNotFoun-
dException if an instance of an enterprise bean that is not allowed to usgdkeTransaction
interface attempts to look up the interface in JNDI API.

The following code example

public MySessionBean implements SessionBean {
5ﬁblic someMethod()
{
Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(
“java:comp/UserTransaction”);
utx.begin();

Uix.commit();

is functionally equivalent to

public MySessionBean implements SessionBean {
SessionContext ctx;

5ﬁblic someMethod()

UserTransaction utx = ctx.getUserTransaction();
utx.begin();

Lﬁx.commit();

11/24/99

218

Sun Microsystem Inc

Overview Enterprise JavaBeans v1.1, Final Release Security management

cameris OECUINYY Management

This chapter defines the EJB architecture support for security management.
The deployment aspect of security management has changed significantly since EJB 1.0. These changes

were made primarily to support ISV enterprise beans, which are usually written without the knowledge
of the target security domain.

15.1 Overview

We set the following goals for the security management in the EJB architecture:

* Lessen the burden of the application developer (i.e. the Bean Provider) for securing the appli-
cation by allowing greater coverage from more qualified EJB architecture roles. The EJB Con-
tainer provider provides the implementation of the security infrastructure; the Deployer and
System Administrator define the security policies.

* Allow the security policies to be set by the Application Assembler or Deployer rather than
being hard-coded by the Bean Provider at development time.

* Allow the enterprise bean applications to be portable across multiple EJB Servers that use dif-
ferent security mechanisms.

219 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

15.2

The EJB architecture encourages the Bean Provider to implement the enterprise bean class without
hard-coding the security policies and mechanisms into the business methods. In most cases, the enter-
prise bean’s business method should not contain any security-related logic. This allows the Deployer to
configure the security policies for the application in a way that is most appropriate for the operational
environment of the enterprise.

To make the Deployer’s task easier, the Application Assembler (which could be the same party as the
Bean Provider) may defirgecurity rolesfor an application composed of one or more enterprise beans.

A security role is a semantic grouping of permissions that a given type of users of the application must
have in order to successfully use the application. The Applications Assembler can define (declaratively
in the deployment descriptomethod permissiorfer each security role. A method permission is a per-
mission to invoke a specified group of methods of the enterprise beans’ home and remote interfaces.
The security roles defined by the Application Assembler present a simplified security view of the enter-
prise beans application to the Deployer—the Deployer’s view of the application’s security requirements
is the small set of security roles rather than a large number of individual methods.

The Deployer is responsible for assigning principals, or groups of principals, which are defined in the
target operational environment, to the security roles defined by the Application Assembler for the enter-
prise beans in the deployment descriptor. The Deployer is also responsible for configuring other aspects
of the security management of the enterprise beans, such as principal mapping for inter-enterprise bean
calls and principal mapping for resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with the
client call has been assigned by the Deployer to have at least one security role that is allowed to invoke
the business method.

The Container Provider is responsible for enforcing the security policies at runtime, providing the tools
for managing security at runtime, and providing the tools used by the Deployer to manage security dur-
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a simple
programmatic interface that the Bean Provider may use to access the security context from the business
methods.

The following sections define the responsibilities of the individual EJB roles with respect to security
management.

Bean Provider’s responsibilities

15.2.1

This section defines the Bean Provider’s perspective of the EJB architecture support for security, and
defines his responsibilities.

Invocation of other enteprise beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s remote or
home interface. The EJB architecture provides neither programmatic nor deployment descriptor inter-
faces for the invoking enterprise bean to control the principal passed to the invoked enterprise bean.

11/24/99

220

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

15.2.2

The management of caller principals passed on enterprise bean invocations (i.e. principal delegation) is
set up by the Deployer and System Administrator in a Container-specific way. The Bean Provider and
Application Assembler should describe all the requirements for the caller’s principal management of
inter-enterprise bean invocations as part of the description. The default principal management (in the
absence of other deployment instructions) is to propagate the caller principal from the caller to the
callee. (That is, the called enterprise bean will see the same returned valu&dBientext.get-
CallerPrincipal() as the calling enterprise bean.)

Resource access

15.2.3

Section 14.4 defines the protocol for accessing resource managers, including the requirements for secu-
rity management.

Access of underlying OS esources

15.2.4

The EJB architecture does not define the operating system principal under which enterprise bean meth-
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the underly-
ing OS resources, such as files. (See subsection 15.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers such as

relational databases rather than in resources at the operating system levels. Therefore, this rule should
not affect the portability of most enterprise beans.

Programming style ecommendations

15.2.5

The Bean Provider should neither implement security mechanisms nor hard-code security policies in
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security mecha-
nisms provided by the EJB Container, and should let the Application Assembler and Deployer define
the appropriate security policies for the application.

The Bean Provider and Application Assembler may use the deployment descriptor to convey secu-

rity-related information to the Deployer. The information helps the Deployer to set up the appropriate
security policy for the enterprise bean application.

Programmatic access to calles security context

Note: In general, security management should be enforced by the Container in a manner that is trans-
parent to the enterprise beans’ business methods. The security API described in this section should be
used only in the less frequent situations in which the enterprise bean business methods need to access
the security context information.

221 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods that
were defined in EJB 1.0) that allow the Bean Provider to access security information about the enter-
prise bean’s caller.

public interface javax.ejb.EJBContext {

I

/I The following two methods allow the EJB class
I to access security information.

I

java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

I

Il The following two EJB 1.0 methods are deprecated.
I

java.security.ldentity getCallerldentity();
boolean isCallerInRole(java.security.ldentity role);

}

The Bean Provider can invoke thetCallerPrincipal andisCallerinRole methods only in
the enterprise bean’s business methods for which the Container has a client security context, as specified
in Table 2 on page 60, Table 3 on page 70, and Table 4 on page 111. If they are invoked when no secu-

rity context exists, they should throw tfeva.lang.lllegalStateException runtime excep-
tion.

The getCallerldentity() and isCallerInRole(ldentity role) methods are depre-
cated in EJB 1.1. The Bean Provider must usegéCallerPrincipal() andisCallerIn-
Role(String roleName) methods for new enterprise beans.

An EJB 1.1 compliant container may choose to implement the two deprecated methods as follows.

* A Container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass oRuntimeException) from the getCallerl-
dentity() method.

* A Container that wants to provide support for thetCallerldentity() method should
return an instance of a subclass of fhea.security.ldentity abstract class from the

11/24/99

222

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

method. ThegetName() method invoked on the returned object must return the same value
thatgetCallerPrincipal().getName() would return.

* A Container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass ofRuntimeException) from the isCallerin-
Role(ldentity identity) method

* A Container that wants to implement tligCallerinRole(Identity identity)
method should implement it as follows:

public isCallerinRole(ldentity identity) {
return isCallerinRole(identity.getName());
}

15.2.5.1 Use ofetCallerPrincipal()

The purpose of the getCallerPrincipal() method is to allow the enterprise bean methods to obtain the
current caller principal’'s name. The methods might, for example, use the name as a key to information
in a database.

An enterprise bean can invoke thetCallerPrincipal() method to obtain gava.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obtain the
distinguished name of the caller principal using thetName() method of thejava.secu-
rity.Principal interface.

The meaning of theurrent caller the Java class that implements taea.security.Principal
interface, and the realm of the principals returned bygCallerPrincipal() method depend
on the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains. The
security infrastructure may perform one or more mapping of principals on the path from an EJB caller

to the EJB object. For example, an employee accessing his company over the Internet may be identified
by a userid and password (basic authentication), and the security infrastructure may authenticate the
principal and then map the principal to a Kerberos principal that is used on the enterprise’ s intranet
before delivering the method invocation to the EJB object. If the security infrastructure performs princi-
pal mapping, the getCallerPrincipal() method returns the principal that is the result of the mapping, not
the original caller principal. (In the previous example, getCallerPrincipal() would return the Kerberos
principal.) The management of the security infrastructure, such as principal mapping, is performed by
the System Administrator role; it is beyond the scope EJB specification.

223 11/24/99

Sun Microsystems Inc.

Security management

Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The following code sample illustrates the use ofgéCallerPrincipal() method.

public class EmployeeServiceBean implements SessionBean {

}

EJBContext ejbContext;

public void changePhoneNumber(...) {

/I Obtain the default initial INDI context.
Context initCtx = new InitialContext();

/I Look up the home interface of the EmployeeRecord

/I enterprise bean in the environment.

Object result = initCtx.lookup(
"java:comp/env/ejb/EmplRecord");

/I Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

/I obtain the caller principal.
callerPrincipal = ejpContext.getCallerPrincipal();

/I obtain the caller principal’'s name.
callerKey = callerPrincipal.getName();

/I use callerKey as primary key to EmployeeRecord finder
EmployeeRecord myEmployeeRecord =
emplRecordHome.findByPrimaryKey(callerKey);

/[update phone number
myEmployeeRecord.changePhoneNumber(...);

In the previous example, the enterprise bean obtains the principal name of the current caller and uses it
as the primary key to locate &mployeeRecord Entity object. This example assumes that applica-

tion has been deployed such that the current caller principal contains the primary key used for the iden-
tification of employees (e.g. employee number).

15.2.5.2 Use oisCallerinRole(String roleName)

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to code

the security checks that cannot be easily defined declaratively in the deployment descriptor using
method permissions. Such a check might impose a role-based limit on a request, or it might depend on
information stored in the database.

The enterprise bean code usesi@allerinRole(String roleName) method to test whether
the current caller has been assigned to a given security role. Security roles are defined by the Applica-
tion Assembler in the deployment descriptor (see Subsection 15.3.1), and are assigned to principals or

principal groups that exist in the operational environment by the Deployer.

11/24/99

224

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

The following code sample illustrates the use of ik€allerinRole(String roleName)
method.

public class PayrollBean ... {
EntityContext ejbContext;

public void updateEmployeelnfo(Emplinfo info) {
oldinfo = ... read from database;

/I The salary field can be changed only by caller's
/ who have the security role "payroll”
if (info.salary != oldInfo.salary &&
lejbContext.isCallerinRole("payroll")) {
throw new SecurityException(...);

}

15.2.5.3 Declaration of security roles referenced from the bean’s code

The Bean Provider is responsible for declaring ingkeurity-role-ref elements of the deploy-

ment descriptor all the security role names used in the enterprise bean code. Declaring the security roles
references in the code allows the Application Assembler or Deployer to link the names of the security
roles used in the code to the security roles defined for an assembled application throsghuthe

rity-role elements.

The Bean Provider must declare each security role referenced in the code usirsgcine
rity-role-ref element as follows:

* Declare the name of the security role using tble-name element. The name must be the
security role name that is used as a parameter tistballerinRole(String role-
Name) method.

* Optional: Provide a description of the security role indé@scription element.

A security role reference, including the name defined bytiheename element, is scoped to the ses-
sion or entity bean element whose declaration contairsetheity-role-ref element.

225 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

The following example illustrates how an enterprise bean’s references to security roles are declared in
the deployment descriptor.

<enterprise-beans>

2entity>
<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayroliIBean</ejb-class>

<security-role-ref>
<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.
</description>
<role-name>payroll</role-name>
</security-role-ref>

</entit.y'>

</enterprise-beans>

The deployment descriptor above indicates that the enterprise AsadnwarkPayroll makes the
security check usingCallerinRole("payroll") in its business method.

15.3 Application Assembler’s responsibilities

The Application Assembler (which could be the same party as the Bean Provider) may dafmeity
view of the enterprise beans contained in the ejb-jar file. Providing the security view in the deployment
descriptor is optional for the Bean Provider and Application Assembler.

The main reason for the Application Assembler’s providing the security view of the enterprise beans is
to simplify the Deployer’s job. In the absence of a security view of an application, the Deployer needs
detailed knowledge of the application in order to deploy the application securely For example, the
Deployer would have to know what each business method does to determine which users can call it. The
security view defined by the Application Assembler presents a more consolidated view to the Deployer,
allowing the Deployer to be less familiar with the application.

The security view consists of a set gécurity roles A security role is a semantic grouping of permis-
sions that a given type of users of an application must have in order to successfully use the application.

The Applications Assembler definesethod permissiorfer each security role. A method permission is
a permission to invoke a specified group of methods of the enterprise beans’ home and remote inter-
faces.

It is important to keep in mind that the security roles are used to define the logical security view of an
application. They should not be confused with the user groups, users, principals, and other concepts
that exist in the target enterprise’s operational environment.

11/24/99 226

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

153.1

In special cases, a qualified Deployer may change the definition of the security roles for an application,
or completely ignore them and secure the application using a different mechanism that is specific to the
operational environment.

If the Bean Provider has declared any security role references usisgcthety-role-ref ele-
ments, the Application Assembler must link all the security role references listed isethe
rity-role-ref elements to the security roles defined in gegurity-role elements. This is
described in more detail in subsection 15.3.3.

Security roles

The Application Assembler can define one or meeeurity rolesin the deployment descriptor. The
Application Assembler then assigns groups of methods of the enterprise beans’ home and remote inter-
faces to the security roles to define the security view of the application.

Because the Application Assembler does not, in general, know the security environment of the opera-
tional environment, the security roles are meant téogécal roles (or actors), each representing a type

of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environment to
the security roles defined by the Application Assembler.

Defining the security roles in the deployment descriptor is optibﬁbior the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to pass
any security deployment related instructions to the Deployer in the deployment descriptor.
The Application Assembler is responsible for the following:
* Define each security role usingecurity-role element.
* Use therole-name element to define the name of the security role.

* Optionally, use théescription element to provide a description of a security role.

The security roles defined by tlsecurity-role elements are scoped to the ejb-jar file level, and
apply to all the enterprise beans in the ejb-jar file.

[17] If the Application Assembler does not define security roles in the deployment descriptor, the Deployer will have to define security

roles at deployment time.

227 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

The following example illustrates a security role definition in a deployment descriptor.

<assembly-descriptor>
<security-role>
<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.
</description>
<role-name>employee</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.
</description>
<role-name>hr-department</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.
</description>
<role-name>payroll-department</role-name>
</security-role>

<security-role>
<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.
</description>
<role-name>admin</role-name>
</security-role>

</assé'rhbly—descriptor>

15.3.2 Method permissions

If the Application Assembler has defined security roles for the enterprise beans in the ejb-jar file, he or
she can also specify the methods of the remote and home interface that each security role is allowed to
invoke.

11/24/99 228

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Method permissions are defined in the deployment descriptor as a binary relation from the set of secu-
rity roles to the set of methods of the home and remote interfaces of the enterprise beans, including all
their superinterfaces (including the methods of ti88Home and EJBObject interfaces). The
method permissions relation includes the p&r K1) if and only if the security roleR is allowed to

invoke the methot.

The Application Assembler defines the method permissions relation in the deployment descriptor using
themethod-permission elements as follows.

e Eachmethod-permission element includes a list of one or more security roles and a list
of one or more methods. All the listed security roles are allowed to invoke all the listed meth-
ods. Each security role in the list is identified by tide-name element, and each method
(or a set of methods, as described below) is identified bynmbthod element. An optional
description can be associated witlm@thod-permission element using theescrip-
tion element.

* The method permissions relation is defined as the union of all the method permissions defined
in the individualmethod-permission elements.

* A security role or a method may appear in multipkthod-permission elements.

It is possible that some methods are not assigned to any security roles. This means that none of the secu-
rity roles defined by the Application Assembler needs access to the methods.

The method element uses thejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are three legal
styles for composing thaethod element:

Style 1:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name>*</method-name>
</method>

This style is used for referring to all of the remote and home interface methods of a specified
enterprise bean.

Style 2: :
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name> METHO&'method-name>
</method>

This style is used for referring to a specified method of the remote or home interface of the
specified enterprise bean. If there are multiple methods with the same overloaded name, this
style refers to all of the overloaded methods.

229 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Style 3:
<method>
<ejb-name> EJBNAME/ejb-name>
<method-name> METHO&method-name>
<method-params>
<method-param> PARAMETER </method-param>

<method-param> PARAMETER $method-param>
</method-params>
</method>

This style is used to refer to a specified method within a set of methods with an overloaded
name. The method must be defined in the specified enterprise bean’s remote or home interface.

The optionaimethod-intf ~ element can be used to differentiate methods with the same name and sig-
nature that are defined in both the remote and home interfaces.

11/24/99 230

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

The following example illustrates how security roles are assigned method permissions in the deploy-
ment descriptor:

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>
</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

231 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release Deployer’s responsibilities

15.3.3 Linking security r ole references to security oles

If the Application Assembler defines tisecurity-role elements in the deployment descriptor, he
or she is also responsible for linking all the security role references declared isethe
rity-role-ref elements to the security roles defined ingbeurity-role elements.

The Application Assembler links each security role reference to a security role usingeHak
element. The value of thr@le-link element must be the name of one of the security roles defined in
asecurity-role element.

A role-link element must be used even if the valugalé-name is the same as the value of the
role-link reference.

The following deployment descriptor example shows how to link the security role reference named
payroll to the security role namegxayroll-department

<enterprise-beans>

2entity>
<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayroliIBean</ejb-class>

<security-role-ref>
<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.

The role has been linked to the
payroll-department role.
</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>

</entit§$

</enterprise-beans>

15.4 Deployer’s responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. This section defines the Deployer’s responsibility with
respect to EJB architecture security management.

11/24/99 232

Sun Microsystem Inc

Deployer’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

154.1

The Deployer uses deployment tools provided by the EJB Container Provider to read the security view
of the application supplied by the Application Assembler in the deployment descriptor. The Deployer’s

job is to map the security view that was specified by the Application Assembler to the mechanisms and
policies used by the security domain in the target operational environment. The output of the Deployer’s
work includes an application security policy descriptor that is specific to the operational environment.

The format of this descriptor and the information stored in the descriptor are specific to the EJB Con-
tainer.

The following subsections describe the security related tasks performed by the Deployer.

Security domain and principal realm assignment

15.4.2

The Deployer is responsible for assigning the security domain and principal realm to an enterprise bean
application.

Multiple principal realms within the same security domain may exist, for example, to separate the

realms of employees, trading partners, and customers. Multiple security domains may exist, for exam-
ple, in application hosting scenarios.

Assignment of security bles

15.4.3

The Deployer assigns principals and/or groups of principals (such as individual users or user groups)
used for managing security in the operational environment to the security roles definedsetthe
rity-role elements of the deployment descriptor.

Typically, the Deployer does not need to change the method permissions assigned to each security role
in the deployment descriptor.

The Application Assembler linked all the security role references used in the bean’s code to the security
roles defined in theecurity-role elements. The Deployer does not assign principals and/or prin-
cipal groups to the security role references—the principals and/or principals groups assigned to a secu-
rity role apply also to all the linked security role references. For example, the Deployer of the
AardvarkPayroll enterprise bean in subsection 15.3.3 would assign principals and/or principal
groups to the security-rolpayroll-department , and the assigned principals and/or principal
groups would be implicitly assigned also to the linked securitypayeoll

The EJB architecture does not specify how an enterprise should implement its security architecture.
Therefore, the process of assigning the logical security roles defined in the application’s deployment
descriptor to the operational environment’s security concepts is specific to that operational environ-
ment. Typically, the deployment process consists of assigning to each security role one or more user
groups (or individual users) defined in the operational environment. This assignment is done on a
per-application basis. (That is, if multiple independent ejb-jar files use the same security role name,
each may be assigned differently.)

Principal delegation

The Deployer is responsible for configuring the principal delegation for inter-component calls. The
Deployer must follow any instructions supplied by the Application Assembler (for example, provided in
thedescription elements of the deployment descriptor, or in a deployment manual).

233 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release EJB Architecture Client Responsibilities

1544

The default mode is to propagate the caller principal from one component to another (i.e. the caller prin-
cipal of the first enterprise bean in a call-chain is passed to the enterprise beans down the chain). In the
absence of instructions from the Application Assembler, the Deployer should configure the enterprise
beans such that this “caller propagation” mode is used when one enterprise bean calls another. This
ensures that the returned valuegaftCallerPrincipal() will be the same for all the enterprise
beans involved in a call chain.

Security management of esouice access

1545

The Deployer’s responsibilities with respect to securing resource managers access are defined in sub-
section 14.4.2.

General notes on deployment descriptor gycessing

15.5

The Deployer can use the security view defined in the deployment descriptor by the Bean Provider and
Application Assembler merely as “hints” and may change the information whenever necessary to adapt
the security policy to the operational environment.

Since providing the security information in the deployment descriptor is optional for the Application
Assembler, the Deployer is responsible for performing any tasks that have not been done by the Appli-
cation Assembler. (For example, if the definition of security roles and method permissions is missing in
the deployment descriptor, the Deployer must define the security roles and method permissions for the
application.) It is not required that the Deployer store the output of this activity in the standard ejb-jar
file format.

EJB Architecture Client Responsibilities

This section defines the rules that the EJB architecture client program must follow to ensure that the
security context passed on the client calls, and possibly imported by the enterprise bean, do not conflict
with the EJB Server’s capabilities for association between a security context and transactions.

These rules are:

* A transactional client cannot change its principal association within a transaction. This rule
ensures that all calls from the client within a transaction are performed with the same security
context.

* A Session Bean’s client must not change its principal association for the duration of the com-
munication with the session object. This rule ensures that the server can associate a security
identity with the session instance at instance creation time, and never have to change the secu-
rity association during the session instance lifetime.

* [Iftransactional requests within a single transaction arrive from multiple clients (this could hap-
pen if there are intermediary objects or programs in the transaction call-chain), all requests
within the same transaction must be associated with the same security context.

11/24/99

234

Sun Microsystem Inc

EJB Container Provider's responsibilities Enterprise JavaBeans v1.1, Final Release Security management

15.6

EJB Container Provider’s responsibilities

156.1

This section describes the responsibilities of the EJB Container and Server Provider.

Deployment tools

15.6.2

The EJB Container Provider is responsible for providing the deployment tools that the Deployer can use
to perform the tasks defined in Section 15.4.

The deployment tools read the information from the deployment descriptor and present the information

to the Deployer. The tools guide the Deployer through the deployment process, and present him or her
with choices for mapping the security information in the deployment descriptor to the security manage-

ment mechanisms and policies used in the target operational environment.

The deployment tools’ output is stored in an EJB Container specific manner, and is available at runtime
to the EJB Container.

Security domain(s)

15.6.3

The EJB Container provides a security domain and one or more principal realms to the enterprise
beans. The EJB architecture does not specify how an EJB Server should implement a security domain,
and does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB Server. For example, the
EJB Server may store X509 certificates or it might use an external security provider such as Kerberos.

The EJB specification does not define the scope of the security domain. For example, the scope may be
defined by the boundaries of the application, EJB Server, operating system, network, or enterprise.

The EJB Server can, but is not required to, provide support for multiple security domains, and/or multi-
ple principal realms.

The case of multiple domains on the same EJB Server can happen when a large server is used for appli-

cation hosting. Each hosted application can have its own security domain to ensure security and man-
agement isolation between applications owned by multiple organizations.

Security mechanisms

The EJB Container Provider must provide the security mechanisms necessary to enforce the security
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that must be
implemented and supported by the EJB Server.

The typical security functions provided by the EJB Server include:

e Authentication of principals.

* Access authorization for EJB calls and resource manager access.

235 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release EJB Container Provider’s responsibilities

* Secure communication with remote clients (privacy, integrity, etc.).

15.6.4 Passing principals on EJB achitecture calls

The EJB Container Provider is responsible for providing the deployment tools that allow the Deployer
to configure the principal delegation for calls from one enterprise bean to another. The EJB Container is
responsible for performing the principal delegation as specified by the Deployer.

The minimal requirement is that the EJB Container must be capable of allowing the Deployer to specify
that the caller principal is propagated on calls from one enterprise bean to another (i.e. the multiple
beans in the call chain will see the same return value dgei@allerPrincipal()).

This requirement is necessary for applications that need a consistent return value of getCallerPrinci-
pal() across a chain of calls between enterprise beans.

15.6.5 Security methods injavax.ejbEJBContext
The EJB Container must provide access to the caller’'s security context information from the enterprise
beans’ instances via thgetCallerPrincipal() and isCallerInRole(String role-
Name) methods. The EJB Container must provide this context information during the execution of a
business method invoked via the enterprise bean’s remote or home interface, as defined in Table 2 on
page 60, Table 3 on page 70, and Table 4 on page 111.
The Container must ensure that all enterprise bean method invocations received through the home and
remote interface are associated with some principal. The Container must never return a null from the
getCallerPrincipal() method.

15.6.6 Secue access togsouice managers
The EJB Container Provider is responsible for providing secure access to resource managers as
described in Subsection 14.4.3.

15.6.7 Principal mapping
If the application requires that its clients are deployed in a different security domain, or if multiple
applications deployed across multiple security domains need to interoperate, the EJB Container Pro-
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are used by
the System Administrator to configure the security for the application’s environment.

15.6.8 System principal
The EJB 1.1 specification does not define the “system” principal under which the JVM running an
enterprise bean’s method executes.

11/24/99 236

Sun Microsystem Inc

EJB Container Provider's responsibilities Enterprise JavaBeans v1.1, Final Release Security management

15.6.9

Leaving the principal undefined makes it easier for the EJB Container vendors to provide the runtime
support for EJB architecture on top of their existing server infrastructures. For example, while one EJB
Container implementation can execute all instances of all enterprise beans in a single JVM, another
implementation can use a separate JVM per ejb-jar per client. Some EJB Containers may make the sys-
tem principal the same as the application-level principal; Others may use different principals, poten-
tially from different principal realms and even security domains.

Runtime security enbrcement

The EJB Container is responsible for enforcing the security policies defined by the Deployer. The
implementation of the enforcement mechanism is EJB Container implementation specific. The EJB
Container may, but does not have to, use the Java programming language security as the enforcement
mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB Container can load the
multiple instances into the same JVM and isolate them via using multiple class-loaders, or it can load
each instance into its own JVM and rely on the address space protection provided by the operation sys-
tem.

The general security enforcement requirements for the EJB Container follow:

* The EJB Container must provide enforcement of the client access control per the policy
defined by the Deployer. A caller is allowed to invoke a method if, and only if, the caller prin-
cipal is assignedat least oneof the security roles that includes the method in its method per-
missions definition. (That is, it is not meant that the caller must be assigihéle roles
associated with the method.) If the Container denies a client access to a business method, the
Container must throw thava.rmi.RemoteExcetion to the client

* The EJB Container must isolate an enterprise bean instance from other instances and other
application components running on the server. The EJB Container must ensure that other enter-
prise bean instances and other application components are allowed to access an enterprise bean
only via the enterprise bean’s remote and home interfaces.

* The EJB Container must isolate an enterprise bean instance at runtime such that the instance
does not gain unauthorized access to privileged system information. Such information includes
the internal implementation classes of the container, the various runtime state and context
maintained by the container, object references of other enterprise bean instances, or resource
managers used by other enterprise bean instances. The EJB Container must ensure that the
interactions between the enterprise beans and the container are only through the EJB archi-
tected interfaces.

* The EJB Container must ensure the security of the persistent state of the enterprise beans.

* The EJB Container must manage the mapping of principals on calls to other enterprise beans
or on access to resource managers according to the security policy defined by the Deployer.

* The Container must allow the same enterprise bean to be deployed independently multiple
times, each time with a different security pol[ﬂ:%}. The Container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.

237 11/24/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans v1.1, Final Release System Administrator’s responsibilities

15.6.10 Audit trail

The EJB Container may provide a security audit trail mechanism. A security audit trail mechanism typ-
ically logs alljava.security.Exceptian It also logs all denials of access to EJB Servers, EJB Container,
EJB remote interfaces, and EJB home interfaces.

15.7 System Administrator’s responsibilities

This section defines the security-related responsibilities of the System Administrator. Note that some
responsibilities may be carried out by the Deployer instead, or may require cooperation of the Deployer
and the System Administrator.

15.7.1 Security domain administration
The System Administrator is responsible for the administration of principals. Security domain adminis-
tration is beyond the scope of the EJB specification.
Typically, the System Administrator is responsible for creating a new user account, adding a user to a
user group, removing a user from a user group, and removing or freezing a user account.

15.7.2 Principal mapping
If the client is in a different security domain than the target enterprise bean, the system administrator is
responsible for mapping the principals used by the client to the principals defined for the enterprise
bean. The result of the mapping is available to the Deployer.
The specification of principal mapping techniques is beyond the scope of the EJB architecture.

15.7.3 Audit trail r eview

If the EJB Container provides an audit trail facility, the System Administrator is responsible for its man-
agement.

[18] The enterprise bean is installed each time using a different JNDI name.

11/24/99

238

Sun Microsystem Inc

Overview

Chapter 16

16.1

Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Deployment descriptor

This chapter defines the deployment descriptor that is part of the ejb-jar file. Section 16.1 provides an
overview of the deployment descriptor. Sections 16.2 through 16.4 describe the information in the
deployment descriptor from the perspective of the EJB roles responsible for providing the information.
Section 16.5 defines the deployment descriptor's XML DTD. Section 16.7 provides a complete exam-
ple of a deployment descriptor of an assembled application.

Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consumer. This
contract covers both the passing of enterprise beans from the Bean Provider to Application Assembler,
and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typically does
not contain application assembly instructions. An ejb-jar file produced by an Application Assembler
contains one or more enterprise beans, plus application assembly information describing how the enter-
prise beans are combined into a single application deployment unit.

The J2EE specification defines how enterprise beans and other application components contained in
multiple ejb-jar files can be assembled into an application.

239 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

The role of the deployment descriptor is to capture the declarative information (i.e information that is
not included directly in the enterprise beans’ code) that is intended for the consumer of the ejb-jar file.

There are two basic kinds of information in the deployment descriptor:

* Enterprise beans’ structurdhformation. Structural information describes the structure of an
enterprise bean and declares an enterprise bean’s external dependencies. Providing structural
information in the deployment descriptor is mandatory for the ejb-jar file producer. The struc-
tural information cannot, in general, be changed because doing so could break the enterprise
bean’s function.

* Application assemblinformation. Application assembly information describes how the enter-
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment unit.
Providing assembly information in the deployment descriptor is optional for the ejb-jar file
producer. Assembly level information can be changed without breaking the enterprise bean’s
function, although doing so may alter the behavior of an assembled application.

16.2 Bean Provider’s responsibilities

The Bean Provider is responsible for providing the structural information for each enterprise bean in the
deployment descriptor.

The Bean Provider must use tbaterprise-beans element to list all the enterprise beans in the
ejb-jar file.

The Bean Provider must provide the following information for each enterprise bean:

* Enterprise bean’s name The Bean Provider must assign a logical name to each enterprise
bean in the ejb-jar file. There is no architected relationship between this name, and the JNDI

11/24/99 240

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Deployment descriptor

API name that the Deployer will assign to the enterprise bean. The Bean Provider specifies the
enterprise bean’s name in thfp-name element.

* Enterprise bean’s class The Bean Provider must specify the fully-qualified name of the Java
class that implements the enterprise bean’s business methods. The Bean Provider specifies the
enterprise bean’s class name indjteclass element.

* Enterprise bean’s home interfacesThe Bean Provider must specify the fully-qualified name
of the enterprise bean’s home interface inhtbme element.

* Enterprise bean’s remote interfaces The Bean Provider must specify the fully-qualified
name of the enterprise bean’s remote interface inctimete element.

* Enterprise bean’s type The enterprise beans types are session and entity. The Bean Provider
must use the appropriasession orentity element to declare the enterprise bean'’s struc-
tural information.

* Re-entrancy indication. The Bean Provider must specify whether an entity bean is re-entrant
or not. Session beans are never re-entrant.

* Session bean’s state management typH the enterprise bean is a Session bean, the Bean
Provider must use theession-type element to declare whether the session bean is stateful
or stateless.

* Session bean’s transaction demarcation typdf the enterprise bean is a Session bean, the
Bean Provider must use thensaction-type element to declare whether transaction
demarcation is performed by the enterprise bean or by the Container.

* Entity bean’s persistence managementf the enterprise bean is an Entity bean, the Bean
Provider must use thgersistence-type element to declare whether persistence manage-
ment is performed by the enterprise bean or by the Container.

* Entity bean’s primary key class. If the enterprise bean is an Entity bean, the Bean Provider
specifies the fully-qualified name of the Entity bean’'s primary key class in the
prim-key-class element. The Bean Providenustspecify the primary key class for an

241 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibility

16.3

Entity with bean-managed persistence, aral/(but is not required to) specify the primary key
class for an Entity with container-managed persistence.

* Container-managed fields If the enterprise bean is an Entity bean with container-managed
persistence, the Bean Provider must specify the container-managed fields using the
cmp-fields elements.

* Environment entries. The Bean Provider must declare all the enterprise bean’s environment
entries as specified in Subsection 14.2.1.

* Resource manager connection factory referencébhe Bean Provider must declare all the
enterprise bean’s resource manager connection factory references as specified in Subsection
14.4.1.

* EJB references The Bean Provider must declare all the enterprise bean’s references to the
homes of other enterprise beans as specified in Subsection 14.3.1.

* Security role references The Bean Provider must declare all the enterprise bean’s references
to security roles as specified in Subsection 15.2.5.3.

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense, and
valid with respect to the DTD in Section 16.5. The content of the deployment descriptor must conform
to the semantics rules specified in the DTD comments and elsewhere in this specification. The deploy-
ment descriptor must refer to the DTD using the following statement:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

Application Assembler’s responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Application
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the output is
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files into a
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each output
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled application
that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a case,
the person or organization performs the responsibilities described both in this and the previous sec-
tions.

11/24/99

242

Sun Microsystem Inc

Application Assembler’s responsibility Enterprise JavaBeans v1.1, Final Release Deployment descriptor

The Application Assembler may modify the following information that was specified by the Bean Pro-

vider:

Enterprise bean’s name The Application Assembler may change the enterprise bean’s name
defined in theejb-name element.

Values of environment entries The Application Assembler may change existing and/or
define new values of environment properties.

Description fields The Application Assembler may change existing or create new
description elements.

The Application Assembler must not, in general, modify any other information listed in Section 16.2
that was provided in the input ejb-jar file.

In addition, the Application Assembler may, but is not required to, specify any of the follaygplica-
tion assemblynformation:

Binding of enterprise bean referencesThe Application Assembler may link an enterprise
bean reference to another enterprise bean in the ejb-jar file. The Application Assembler creates
the link by adding thejb-link element to the referencing bean.

Security roles The Application Assembler may define one or more security roles. The secu-
rity roles define theecommendedecurity roles for the clients of the enterprise beans. The
Application Assembler defines the security roles usingdoarity-role elements.

Method permissions The Application Assembler may define method permissions. Method
permission is a binary relation between the security roles and the methods of the remote and
home interfaces of the enterprise beans. The Application Assembler defines method permis-
sions using thenethod-permission elements.

Linking of security role references If the Application Assembler defines security roles in the
deployment descriptor, the Application Assembler must link the security role references
declared by the Bean Provider to the security roles. The Application Assembler defines these
links using theole-link element.

Transaction attributes. The Application Assembler may define the value of the transaction
attributes for the methods of the remote and home interfaces of the enterprise beans that
require container-managed transaction demarcation. All Entity beans and the Session beans
declared by the Bean Provider as transaction-{@patainer require container-managed
transaction demarcation. The Application Assembler usesdhginer-transaction

elements to declare the transaction attributes.

If an input ejb-jar file contains application assembly information, the Application Assembler is allowed
to change the application assembly information supplied in the input ejb-jar file. (This could happen
when the input ejb-jar file was produced by another Application Assembler.)

243 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibilities

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense, and
valid with respect to the DTD in Section 16.5. The content of the deployment descriptor must conform
to the semantic rules specified in the DTD comments and elsewhere in this specification. The deploy-
ment descriptor must refer to the DTD using the following statement:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

16.4 Container Provider’s responsibilities

The Container provider provides tools that read and import the information contained in the XML
deployment descriptor.

16.5 Deployment descriptor DTD

This section defines the XML DTD for the EJB 1.1 deployment descriptor. The comments in the DTD
specify additional requirements for the syntax and semantics that cannot be easily expressed by the
DTD mechanism.

The content of the XML elements is in general case sensitive. This means, for example, that
<reentrant>True</reentrant>

must be used, rather than:
<reentrant>true</reentrant>.

All valid ejb-jar deployment descriptors must contain the following DOCTYPE declaration:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1/EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

11/24/99 244

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

We plan to provide an ejb-jar file verifier that can be used by the Bean Provider and Application Assem-
bler Roles to ensure that an ejb-jar is valid. The verifier would check all the requirements for the ejb-jar
file and the deployment descriptor stated by this specification.

<l--

This is the XML DTD for the EJB 1.1 deployment descriptor.
-->

<l--
The assembly-descriptor element contains application-assembly infor-
mation.

The application-assembly information consists of the following parts:
the definition of security roles, the definition of method permis-

sions, and the definition of transaction attributes for enterprise

beans with container-managed transaction demarcation.

All the parts are optional in the sense that they are omitted if the
lists represented by them are empty.

Providing an assembly-descriptor in the deployment descriptor is
optional for the ejb-jar file producer.

Used in: ejb-jar

-->

<IELEMENT assembly-descriptor (security-role*, method-permission*,
container-transaction*)>

<l--

The cmp-field element describes a container-managed field. The field
element includes an optional description of the field, and the name of
the field.

Used in: entity
-->

<IELEMENT cmp-field (description?, field-name)>

<l--

The container-transaction element specifies how the container must
manage transaction scopes for the enterprise bean’s method invoca-
tions. The element consists of an optional description, a list of
method elements, and a transaction attribute.The transaction
attribute is to be applied to all the specified methods.

Used in: assembly-descriptor

-->

<IELEMENT container-transaction (description?, method+,
trans-attribute)>

<l--
The description element is used by the ejb-jar file producer to pro-
vide text describing the parent element.

The description element should include any information that the

ejb-jar file producer wants to provide to the consumer of the ejb-jar
file (i.e. to the Deployer). Typically, the tools used by the ejb-jar
file consumer will display the description when processing the parent

245 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

element.

Used in: cmp-field, container-transaction, ejb-jar, entity,

env-entry, ejb-ref, method, method-permission, resource-ref, secu-
rity-role, security-role-ref, and session.

-->

<IELEMENT description (#PCDATA)>

<l--
The display-name element contains a short name that is intended to be
display by tools.

Used in: ejb-jar, session, and entity

Example:

<display-name>Employee Self Service</display-name>
-->
<!IELEMENT display-name (#PCDATA)>

<l--
The ejb-class element contains the fully-qualified name of the enter-
prise bean’s class.

Used in: entity and session

Example:
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

-->

<IELEMENT ejb-class (#PCDATA)>

<I--

The optional ejb-client-jar element specifies a JAR file that con-
tains the class files necessary for a client program to access the
enterprise beans in the ejb-jar file. The Deployer should make the
ejb-client JAR file accessible to the client’s class-loader.

Used in: ejb-jar

Example:
<ejb-client-jar>employee_service_client.jar</ejb-client-jar>

-->

<IELEMENT ejb-client-jar (#PCDATA)>

<I--

The ejb-jar element is the root element of the EJB deployment descrip-

tor. It contains an optional description of the ejb-jar file, optional

display name, optional small icon file name, optional large icon file

name, mandatory structural information about all included enterprise

beans, optional application-assembly descriptor, and an optional name

of an ejb-client-jar file for the ejb-jar.

-->

<IELEMENT ejb-jar (description?, display-name?, small-icon?,
large-icon?, enterprise-beans, assembly-descriptor?,
ejb-client-jar?)>

<l--

The ejb-link element is used in the ejb-ref element to specify that an
EJB reference is linked to another enterprise bean in the ejb-jar

file.

11/24/99

246

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

The value of the ejb-link element must be the ejb-name of an enter-
prise bean in the same ejb-jar file, or in another ejb-jar file in the
same J2EE application unit.

Used in: ejb-ref

Example:
<ejb-link>EmployeeRecord</ejb-link>

>

<IELEMENT ejb-link (#PCDATA)>

<I--

The ejb-name element specifies an enterprise bean’s name. This name is
assigned by the ejb-jar file producer to name the enterprise bean in

the ejb-jar file’s deployment descriptor. The name must be unique

among the names of the enterprise beans in the same ejb-jar file.

The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without
breaking the enterprise bean’s function.

There is no architected relationship between the ejb-name in the
deployment descriptor and the JNDI name that the Deployer will assign
to the enterprise bean’s home.

The name must conform to the lexical rules for an NMTOKEN.
Used in: entity, method, and session

Example:
<ejb-name>EmployeeService</ejb-name>

-->

<IELEMENT ejb-name (#PCDATA)>

<l--

The ejb-ref element is used for the declaration of a reference to
another enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code of the
referencing enterprise bean; the expected type of the referenced
enterprise bean; the expected home and remote interfaces of the ref-
erenced enterprise bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced enter-
prise bean. It is used typically in ejb-jar files that contain an
assembled application.

Used in: entity and session
-->

<IELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-link?)>

<l--

The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the enterprise bean’s environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

247 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

>

<IELEMENT ejb-ref-name (#PCDATA)>

<I--
The ejb-ref-type element contains the expected type of the referenced
enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref
>
<IELEMENT ejb-ref-type (#PCDATA)>

<I--

The enterprise-beans element contains the declarations of one or more
enterprise beans.

->

<IELEMENT enterprise-beans (session | entity)+>

<I--

The entity element declares an entity bean. The declaration consists

of: an optional description; optional display name; optional small

icon file name; optional large icon file name; a name assigned to the
enterprise bean in the deployment descriptor; the names of the entity
bean’s home and remote interfaces; the entity bean’s implementation

class; the entity bean’s persistence management type; the entity

bean’s primary key class name; an indication of the entity bean’s
reentrancy; an optional list of container-managed fields; an optional
specification of the primary key field; an optional declaration of the
bean’s environment entries; an optional declaration of the bean's EJB
references; an optional declaration of the security role references;

and an optional declaration of the bean’s resource manager connection
factory references.

The optional primkey-field may be present in the descriptor if the
entity’s persistency-type is Container.

The other elements that are optional are “optional” in the sense that
they are omitted if the lists represented by them are empty.

At least one cmp-field element must be present in the descriptor if
the entity’s persistency-type is Container, and none must not be
present If the entity’s persistence-type is Bean.

Used in: enterprise-beans

-->

<IELEMENT entity (description?, display-name?, small-icon?,
large-icon?, ejb-name, home, remote, ejb-class,
persistence-type, prim-key-class, reentrant,
cmp-field*, primkey-field?, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<I--
The env-entry element contains the declaration of an enterprise

11/24/99

248

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

bean’s environment entries. The declaration consists of an optional
description, the name of the environment entry, and an optional value.

Used in: entity and session

-->

<IELEMENT env-entry (description?, env-entry-name, env-entry-type,
env-entry-value?)>

<l--
The env-entry-name element contains the name of an enterprise bean’s
environment entry.

Used in: env-entry

Example:
<env-entry-name>minAmount</env-entry-name>

-->

<IELEMENT env-entry-name (#PCDATA)>

<l--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the enterprise bean’s
code.

The following are the legal values of env-entry-type: java.lang.Bool-
ean, java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:
<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<IELEMENT env-entry-type (#PCDATA)>

<l--
The env-entry-value element contains the value of an enterprise
bean’s environment entry.

Used in: env-entry

Example:
<env-entry-value>100.00</env-entry-value>

-->

<IELEMENT env-entry-value (#PCDATA)>

<l--

The field-name element specifies the name of a container managed

field. The name must be a public field of the enterprise bean class or
one of its superclasses.

Used in: cmp-field

Example:
<field-name>firstName</field-Name>

-->

<IELEMENT field-name (#PCDATA)>

<l--

249 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref, entity, and session

Example:
<home>com.aardvark.payroll.PayrollHome</home>

->

<I[ELEMENT home (#PCDATA)>

<I--

The large-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is relative path within the

ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

>

<IELEMENT large-icon (#PCDATA)>

<I--

The method element is used to denote a method of an enterprise bean’s
home or remote interface, or a set of methods. The ejb-name element

must be the name of one of the enterprise beans in declared in the

deployment descriptor; the optional method-intf element allows to

distinguish between a method with the same signature that is defined

in both the home and remote interface; the method-name element speci-

fies the method name; and the optional method-params elements iden-

tify a single method among multiple methods with an overloaded method
name.

There are three possible styles of the method element syntax:

1. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used to refer to all the methods of the specified
enterprise bean’s home and remote interfaces.

2. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
</method>>

This style is used to refer to the specified method of the
specified enterprise bean. If there are multiple methods with
the same overloaded name, the element of this style refers to
all the methods with the overloaded name.

11/24/99

250

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

3. <method>
<ejb-name>EIJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>
<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>

é.method-param>PARAM-n</meth0d-param>
</method-params>
<method>

This style is used to refer to a single method within a set of

methods with an overloaded name. PARAM-1 through PARAM-n are the
fully-qualified Java types of the method’s input parameters (if

the method has no input arguments, the method-params element
contains no method-param elements). Arrays are specified by the

array element’s type, followed by one or more pair of square

brackets (e.g. int[][]).

Used in: method-permission and container-transaction
Examples:

Style 1: The following method element refers to all the methods of
the EmployeeService bean’s home and remote interfaces:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>

Style 2: The following method element refers to all the create
methods of the EmployeeService bean’s home interface:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
</method>

Style 3: The following method element refers to the
create(String firstName, String LastName) method of the
EmployeeService bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</method>

The following example illustrates a Style 3 element with
more complex parameter types. The method
foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
mypackage.MyClass[][] myclaar)
would be specified as:

251 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>foobar</method-name>
<method-params>
<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[]</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>
</method-params>
</method>

The optional method-intf element can be used when it becomes
necessary to differentiate between a method defined in the home
interface and a method with the same name and signature that is
defined in the remote interface.

For example, the method element

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</method>

can be used to differentiate the create(String, String) method
defined in the remote interface from the create(String, String)
method defined in the home interface, which would be defined as

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intt>Home</method-intf>
<method-name>create</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</method>

The method-intf element can be used with all three Styles of the
method element usage. For example, the following method element exam-
ple could be used to refer to all the methods of the EmployeeService
bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>
</method>

-->
<IELEMENT method (description?, ejb-name, method-intf?, method-name,
method-params?)>

11/24/99 252

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

<l--

The method-intf element allows a method element to differentiate

between the methods with the same name and signature that are defined
in both the remote and home interfaces.

The method-intf element must be one of the following:
<method-intf>Home</method-intf>
<method-intf>Remote</method-intf>

Used in: method
-->

<IELEMENT method-intf (#PCDATA)>

<l--

The method-name element contains a name of an enterprise bean method,
or the asterisk (*) character. The asterisk is used when the element

denotes all the methods of an enterprise bean’s remote and home inter-
faces.

Used in: method
-->

<IELEMENT method-name (#PCDATA)>

<l--
The method-param element contains the fully-qualified Java type name
of a method parameter.

Used in: method-params
-->

<IELEMENT method-param (#PCDATA)>

<l--
The method-params element contains a list of the fully-qualified Java
type names of the method parameters.

Used in: method
-->

<IELEMENT method-params (method-param*)>

<I--

The method-permission element specifies that one or more security
roles are allowed to invoke one or more enterprise bean methods. The
method-permission element consists of an optional description, a list
of security role names, and a list of method elements.

The security roles used in the method-permission element must be
defined in the security-role element of the deployment descriptor,
and the methods must be methods defined in the enterprise bean’s
remote and/or home interfaces.

Used in: assembly-descriptor
-->

<IELEMENT method-permission (description?, role-name+, method+)>

<l--
The persistence-type element specifies an entity bean’s persistence
management type.

253 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

The persistence-type element must be one of the two following:
<persistence-type>Bean</persistence-type>
<persistence-type>Container</persistence-type>

Used in: entity
-->

<IELEMENT persistence-type (#PCDATA)>

<l--
The prim-key-class element contains the fully-qualified name of an
entity bean’s primary key class.

If the definition of the primary key class is deferred to deployment
time, the prim-key-class element should specify java.lang.Object.

Used in: entity

Examples:
<prim-key-class>java.lang.String</prim-key-class>
<prim-key-class>com.wombat.empl.EmployeelD</prim-key-class>
<prim-key-class>java.lang.Object</prim-key-class>

-->
<IELEMENT prim-key-class (#PCDATA)>

<l--
The primkey-field element is used to specify the name of the primary
key field for an entity with container-managed persistence.

The primkey-field must be one of the fields declared in the cmp-field
element, and the type of the field must be the same as the primary key

type.

The primkey-field element is not used if the primary key maps to mul-
tiple container-managed fields (i.e. the key is a compound key). In
this case, the fields of the primary key class must be public, and

their names must correspond to the field names of the entity bean
class that comprise the key.

Used in: entity

Example:
<primkey-field>Employeeld</primkey-field>

->

<|[ELEMENT primkey-field (#PCDATA)>

<l--
The reentrant element specifies whether an entity bean is reentrant or
not.

The reentrant element must be one of the two following:
<reentrant>True</reentrant>
<reentrant>False</reentrant>

Used in: entity
-->
<!IELEMENT reentrant (#PCDATA)>

<l--

11/24/99

254

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

The remote element contains the fully-qualified name of the enter-
prise bean’s remote interface.

Used in: ejb-ref, entity, and session

Example:
<remote>com.wombat.empl.EmployeeService</remote>

-->

<I[ELEMENT remote (#PCDATA)>

<I--

The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the bean. In the

latter case, the Container uses information that is supplied by the

Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

-->

<IELEMENT res-auth (#PCDATA)>

<l--
The res-ref-name element specifies the name of a resource manager con-
nection factory reference.

Used in: resource-ref
-->
<IELEMENT res-ref-name (#PCDATA)>

<l--

The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be imple-
mented by the data source.

Used in: resource-ref
-->

<IELEMENT res-type (#PCDATA)>

<I--

The resource-ref element contains a declaration of enterprise bean’s
reference to an external resource. It consists of an optional descrip-
tion, the resource manager connection factory reference name, the
indication of the resource manager connection factory type expected

by the enterprise bean code, and the type of authentication (bean or
container).

Used in: entity and session

Example:
<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
-->
<IELEMENT resource-ref (description?, res-ref-name, res-type,
res-auth)>

255 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release

<l--
The role-link element is used to link a security role reference to a

Deployment descriptor DTD

defined security role. The role-link element must contain the name of

one of the security roles defined in the security-role elements.
Used in: security-role-ref

->

<IELEMENT role-link (#PCDATA)>

<l--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.
Used in: method-permission, security-role, and security-role-ref
>

<IELEMENT role-name (#PCDATA)>

<l--

The security-role element contains the definition of a security role.

The definition consists of an optional description of the security
role, and the security role name.

Used in: assembly-descriptor

Example:
<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>
-->
<!IELEMENT security-role (description?, role-name)>

<I--

The security-role-ref element contains the declaration of a security
role reference in the enterprise bean’s code. The declaration con-
sists of an optional description, the security role name used in the
code, and an optional link to a defined security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerinRole(String roleName) method.

The value of the role-link element must be the name of one of the
security roles defined in the security-role elements.

Used in: entity and session

->
<IELEMENT security-role-ref (description?, role-name, role-link?)>

<I--
The session-type element describes whether the session bean is a
stateful session, or stateless session.

The session-type element must be one of the two following:

11/24/99

256

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

<session-type>Stateful</session-type>
<session-type>Stateless</session-type>
-->
<IELEMENT session-type (#PCDATA)>

<l--

The session element declares an session bean. The declaration con-

sists of: an optional description; optional display name; optional

small icon file name; optional large icon file name; a name assigned

to the enterprise bean in the deployment description; the names of the
session bean’s home and remote interfaces; the session bean’s imple-
mentation class; the session bean’s state management type; the ses-

sion bean'’s transaction management type; an optional declaration of

the bean’s environment entries; an optional declaration of the bean’s
EJB references; an optional declaration of the security role refer-

ences; and an optional declaration of the bean’s resource manager con-
nection factory references.

The elements that are optional are “optional” in the sense that they
are omitted when if lists represented by them are empty.

Used in: enterprise-beans

-->

<IELEMENT session (description?, display-name?, small-icon?,
large-icon?, ejb-name, home, remote, ejb-class,
session-type, transaction-type, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<I--

The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is relative path within the

ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<IELEMENT small-icon (#PCDATA)>

<l--
The transaction-type element specifies an enterprise bean’s transac-
tion management type.

The transaction-type element must be one of the two following:
<transaction-type>Bean</transaction-type>
<transaction-type>Container</transaction-type>

Used in: session
-->
<!IELEMENT transaction-type (#PCDATA)>

<l--

The trans-attribute element specifies how the container must manage
the transaction boundaries when delegating a method invocation to an
enterprise bean’s business method.

257 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

The value of trans-attribute must be one of the following:
<trans-attribute>NotSupported</trans-attribute>
<trans-attribute>Supports</trans-attribute>
<trans-attribute>Required</trans-attribute>
<trans-attribute>RequiresNew</trans-attribute>
<trans-attribute>Mandatory</trans-attribute>
<trans-attribute>Never</trans-attribute>

Used in: container-transaction
-->
<!IELEMENT trans-attribute (#PCDATA)>

<I--

The ID mechanism is to allow tools that produce additional deployment
information (i.e information beyond the standard EJB deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tools-specific files to the
information in the standard deployment descriptor.

The EJB architecture does not allow the tools to add the non-standard
information into the EJB deployment descriptor.
>

<IATTLIST assembly-descriptor id ID #IMPLIED>
<IATTLIST cmp-field id ID #IMPLIED>
<IATTLIST container-transaction id ID #IMPLIED>
<IATTLIST description id ID #IMPLIED>
<IATTLIST display-name id ID #IMPLIED>
<IATTLIST ejb-class id ID #IMPLIED>
<IATTLIST ejb-client-jar id ID #IMPLIED>
<IATTLIST ejb-jar id ID #IMPLIED>

<IATTLIST ejb-link id ID #IMPLIED>

<IATTLIST ejb-name id ID #IMPLIED>
<IATTLIST ejb-ref id ID #IMPLIED>

<IATTLIST ejb-ref-name id ID #IMPLIED>
<IATTLIST ejb-ref-type id ID #IMPLIED>
<IATTLIST enterprise-beans id ID #IMPLIED>
<IATTLIST entity id ID #IMPLIED>

<IATTLIST env-entry id ID #IMPLIED>
<IATTLIST env-entry-name id ID #IMPLIED>
<IATTLIST env-entry-type id ID #IMPLIED>
<IATTLIST env-entry-value id ID #IMPLIED>
<IATTLIST field-name id ID #IMPLIED>
<IATTLIST home id ID #IMPLIED>

<IATTLIST large-icon id ID #IMPLIED>
<IATTLIST method id ID #IMPLIED>
<IATTLIST method-intf id ID #IMPLIED>
<IATTLIST method-name id ID #IMPLIED>
<IATTLIST method-param id ID #IMPLIED>
<IATTLIST method-params id ID #IMPLIED>
<IATTLIST method-permission id ID #IMPLIED>
<IATTLIST persistence-type id ID #IMPLIED>
<IATTLIST prim-key-class id ID #IMPLIED>
<IATTLIST primkey-field id ID #IMPLIED>
<IATTLIST reentrant id ID #IMPLIED>
<IATTLIST remote id ID #IMPLIED>

<IATTLIST res-auth id ID #IMPLIED>
<IATTLIST res-ref-name id ID #IMPLIED>
<IATTLIST res-type id ID #IMPLIED>

11/24/99

258

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release

16.6

<IATTLIST resource-ref id ID #IMPLIED>
<IATTLIST role-link id ID #IMPLIED>
<IATTLIST role-name id ID #IMPLIED>
<IATTLIST security-role id ID #IMPLIED>
<IATTLIST security-role-ref id ID #IMPLIED>
<IATTLIST session-type id ID #IMPLIED>
<IATTLIST session id ID #IMPLIED>
<IATTLIST small-icon id ID #IMPLIED>
<IATTLIST transaction-type id ID #IMPLIED>
<IATTLIST trans-attribute id ID #IMPLIED>

Deployment descriptor example

Deployment descriptor

The following example illustrates a sample deployment descriptor for the ejb-jar containing the

Wombat’'s assembled application described in Section 3.2.

259

11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

Note: The text in the <description> elements has been formatted by adding whitespace to appear prop-
erly indented in this document. In a real deployment descriptor document, the <description> elements
would likely contain no extra whitespace characters.

<IDOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1//EN” “http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
<ejb-jar>
<description>
This ejb-jar file contains assembled enterprise beans that are
part of employee self-service application.
</description>

<enterprise-beans>
<session>
<description>
The EmployeeService session bean implements a session
between an employee and the employee self-service
application.
</description>
<ejb-name>EmployeeService</ejb-name>
<home>com.wombat.empl.EmployeeServiceHome</home>
<remote>com.wombat.empl.EmployeeService</remote>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<env-entry>
<env-entry-name>envvarl</env-entry-name>
<env-entry-type>String</env-entry-type>
<env-entry-value>some value</env-entry-value>

</env-entry>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecords</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-link>AardvarkPayroll</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
</ejb-ref>

<resource-ref>
<description>
This is a reference to a JDBC database.

11/24/99

260

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

<session>
<description>
The EmployeeServiceAdmin session bean implements
the session used by the application’s administrator.
</description>

<ejb-name>EmployeeServiceAdmin</ejb-name>

<home>com.wombat.empl.EmployeeServiceAdminHome</home>

<remote>com.wombat.empl.EmployeeServiceAdmin</remote>

<ejb-class>com.wombat.empl.EmployeeServiceAdmin-
Bean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Bean</transaction-type>

<resource-ref>
<description>
This is a reference to a JDBC database.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

<entity>

<description>
The EmployeeRecord entity bean encapsulates access
to the employee records.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
the employee records.

</description>

<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-class>com.wombat.empl.EmployeeRecordBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>com.wombat.empl.EmployeelD</prim-key-class>
<reentrant>True</reentrant>

<cmp-field><field-name>employeelD</field-name></cmp-field>
<cmp-field><field-name>firstName</field-name></cmp-field>
<cmp-field><field-name>lastName</field-name></cmp-field>

261 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

<cmp-field><field-name>address1</field-name></cmp-field>
<cmp-field><field-name>address2</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>
<cmp-field><field-name>homePhone</field-name></cmp-field>
<cmp-field><field-name>jobTitle</field-name></cmp-field>
<cmp-field><field-name>managerlD</field-name></cmp-field>
<cmp-field><field-name>jobTitleHis-
tory</field-name></cmp-field>
</entity>

<entity>

<description>
The Payroll entity bean encapsulates access
to the payroll system.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
payroll information.

</description>

<ejb-name>AardvarkPayroll</ejb-name>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-class>com.aardvark.payroll.PayrollIBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>com.aardvark.payroll. Accoun-
tID</prim-key-class>
<reentrant>False</reentrant>

<security-role-ref>
<role-name>payroll-org</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>
</entity>
</enterprise-beans>

<assembly-descriptor>
<security-role>
<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.
</description>
<role-name>employee</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.
</description>
<role-name>hr-department</role-name>
</security-role>

<security-role>

11/24/99 262

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.
</description>
<role-name>payroll-department</role-name>
</security-role>

<security-role>
<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.
</description>
<role-name>admin</role-name>
</security-role>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>
</method>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
</method-permission>

263 11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>

<role-name=>hr-department</role-name>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>create</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>remove</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeManager</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeJobTitle</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>

</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>
</method>
</method-permission>

11/24/99 264

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Deployment descriptor

265

11/24/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

11/24/99 266

Sun Microsystem Inc

Overview Enterprise JavaBeans v1.1, Final Release Ejb-jar file

camer s E2J0O-JAT fil€

The ejb-jar file is the standard format for packaging of enterprise Beans. The ejb-jar file format is used
to package un-assembled enterprise beans (the Bean Provider's output), and to package assembled
applications (the Application Assembler’s output).

17.1 Overview

The ejb-jar file format is the contract between the Bean Provider and Application Assembler, and
between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typically do
not contain application assembly instructions. An ejb-jar file produced by an Application Assembler
(which can be the same person or organization as the Bean Provider) contains one or more enterprise
beans, plus application assembly information describing how the enterprise beans are combined into a
single application deployment unit.

267 11/24/99

Sun Microsystems Inc.

Ejb-jar file

17.2

Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Deployment descriptor

17.3

The ejb-jar file must contain the deployment descriptor in the format defined in Chapter 16. The deploy-
ment descriptor must be stored with the nAnieT A-INF/ejb-jar.xml in the ejb-jar file.

Class files

17.4

For each enterprise bean, the ejb-jar file must include the class files of the following:
* The enterprise bean class.
* The enterprise bean home and remote interface.
* The primary key class if the bean is an entity bean.

The ejb-jar file must also contain the class files for all the classes and interfaces that the enterprise bean
class, and the remote and home interfaces depend on. This includes their superclasses and superinter-
faces, and the classes and interfaces used as method parameters, results, and exceptions.

An ejb-jar file does not have to include the class files of the home and remote interfaces of an enterprise
bean that is referenced by an enterprise bean in the ejb-jar, or other classes needed by the referenced
enterprise bean, if the referenced enterprise bean or needed classes are defined in another jar file that is
named in the Class-Path attribute in the Manifest file of the referencing ejb-jar file, or the transitive clo-
sure of such Class-Path references. Note that this Class-Path mechanism only works with JDK 1.2 and
later.

ejb-client JAR file

The ejb-jar file producer can create an ejb-client JAR file for the ejb-jar file. The client-ejb JAR file con-
tains all the class files that a client program needs to use the client view of the enterprise beans that are
contained in the ejb-jar file.

The ejb-client JAR file is specified in the deployment descriptor of the ejb-jar file using the optional
ejb-client-jar element. The Deployer should ensure that the specified ejb-client JAR file is
accessible to the client program’s class-loader. Ifejlo-client-jar element is specified, the
Deployer should make the entire ejb-jar file accessible to the client’s class-loader.

The EJB specification does not specify whether the ejb-jar file should include by copy or by reference
the classes that are in the ejb-client JAR. If the by-copy approach is used, the producer simply includes
all the class files in the ejb-client JAR file also in the ejb-jar file. If the by-reference approach is used,
the ejb-jar file producer does not duplicate the content of the ejb-client JAR file in the ejb-jar file, but
instead uses a Manifest Class-Path entry in the ejb-jar file to specify that the ejb-jar file depends on the
ejb-client JAR at runtime.

11/24/99

268

Sun Microsystem Inc

Deprecated in EJB 1.1 Enterprise JavaBeans v1.1, Final Release Ejb-jar file

The use of the Class-Path entries in the JAR files is explained in the Java 2, Enterprise Edition Platform
specification [10].

17.5 Deprecated in EJB 1.1

This section describes the deployment information that was defined in EJB 1.0, and is deprecated in
EJB 1.1.

17.5.1 ejb-jar Manifest

The JAR Manifest file is no longer used by the EJB architecture to identify the enterprise beans con-
tained in an ejb-jar file.

EJB 1.0 used the Manifest file to identify the individual enterprise beans that were included in the
ejb-jar file. In EJB 1.1, the enterprise beans are identified in the deployment descriptor, so the informa-
tion in the Manifest is no longer needed.

17.5.2 Serialized deployment descriptor dvaBeans™ components

The mechanism of using serialized JavaBeans components as deployment descriptors has been replaced
by the XML-based deployment descriptor.

269 11/24/99

Sun Microsystems Inc.

Ejb-jar file Enterprise JavaBeans v1.1, Final Release Deprecated in EJB 1.1

11/24/99 270

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Runtime environment

Chapter 18

18.1

Runtime environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB Container
must make available to the enterprise bean instances at runtime. These APIs can be used by portable
enterprise beans because the APIs are guaranteed to be available in all EJB Containers.

The chapter also defines the restrictions that the EJB Container Provider can impose on the functionality

that it provides to the enterprise beans. These restrictions are necessary to enforce security and to allow
the Container to properly manage the runtime environment.

Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider.

271 11/24/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

18.1.1 APIs provided by Container
The EJB Provider can rely on the EJB Container Provider to provide the following APIs:

e JDK1.1.xorJava 2

* EJB 1.1 Standard Extension

* JDBC 2.0 Standard Extension (support for row sets only)

* JNDI 1.2 Standard Extension

* JTA 1.0.1 Standard Extension (tdserTransaction interface only)

* JavaMail 1.1 Standard Extension (for sending mail only)
The Bean Provider must take into consideration that while some Containers will provide JDK 1.1.x
APIs, other Containers may provide the Java 2 (i.e. JDK 1.2) APIs. This means that the Bean Providers

that want to deploy their enterprise beans in all Containers must restrict the APIs used by the enterprise
beans to those that are available in JDK 1.1 and the above listed standard extensions.

18.1.2 Programming restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure that the
enterprise bean igortableand can be deployed in any compliant EJB Container. The restrictions apply
to the implementation of the business methods. Section 18.2, which describes the Container’s view of
these restrictions, defines the programming environment that all EJB Containers must provide.

* An enterprise Bean must not use read/write static fields. Using read-only static fields is
allowed. Therefore, it is recommended that all static fields in the enterprise bean class be
declared afinal

This rule is required to ensure consistent runtime semantics because while some EJB Containers may
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances across
multiple JVMs.

* An enterprise Bean must not use thread synchronization primitives to synchronize execution of
multiple instances.

Same reason as above. Synchronization would not work if the EJB Container distributed enterprise
bean’s instances across multiple JVMs.

* An enterprise Bean must not use the AWT functionality to attempt to output information to a
display, or to input information from a keyboard.

11/24/99 272

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Runtime environment

Most servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system.

* An enterprise bean must not use fhea.io package to attempt to access files and directo-
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business components
should use a resource manager API, such as JDBC API, to store data.

* An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not
allow it to be a network server. Allowing the instance to become a network server would conflict with
the basic function of the enterprise bean-- to serve the EJB clients.

* The enterprise bean must not attempt to query a class to obtain information about the declared
members that are not otherwise accessible to the enterprise bean because of the security rules
of the Java language. The enterprise bean must not attempt to use the Reflection API to access
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the classes in a
manner that is normally disallowed by the Java programming language could compromise security.

* The enterprise bean must not attempt to create a class loader; obtain the current class loader;
set the context class loader; set security manager; create a new security manager; stop the
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these functions
could compromise security and decrease the Container’s ability to properly manage the runtime envi-
ronment.

* The enterprise bean must not attempt to set the socket factory used by ServerSocket, Socket, or
the stream handler factory used by URL.

These networking functions are reserved for the EJB Container. Allowing the enterprise bean to use
these functions could compromise security and decrease the Container’s ability to properly manage the
runtime environment.

* The enterprise bean must not attempt to manage threads. The enterprise bean must not attempt
to start, stop, suspend, or resume a thread; or to change a thread’s priority or name. The enter-
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage threads
would decrease the Container’s ability to properly manage the runtime environment.

* The enterprise bean must not attempt to directly read or write a file descriptor.

273 11/24/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Allowing the enterprise bean to read and write file descriptors directly could compromise security.

* The enterprise bean must not attempt to obtain the security policy information for a particular
code source.

Allowing the enterprise bean to access the security policy information would create a security hole.
* The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code would
create a security hole.

* The enterprise bean must not attempt to gain access to packages and classes that the usual rules
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this function
would create a security hole.

* The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this function
would create a security hole.

* The enterprise bean must not attempt to access or modify the security configuration objects
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these functions
could compromise security.

* The enterprise bean must not attempt to use the subclass and object substitution features of the
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

* The enterprise bean must not attempt to phés as an argument or method result. The
enterprise bean must pass the resulessionContext.getEJBObject() or Enti-
tyContext.getEJBObject() instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB Containers,
the Bean Provider should test the enterprise bean using a Container with the security settings defined in
Tables 10 and 11. The tables define the minimal functionality that a compliant EJB Container must pro-
vide to the enterprise bean instances at runtime.

11/24/99 274

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment

18.2 Container Provider’s responsibility

This section defines the Container’s responsibilities for providing the runtime environment to the enter-
prise bean instances. The requirements described here are considered to be the minimal requirements; a
Container may choose to provide additional functionality that is not required by the EJB specification.

18.2.1 Java 2 Platiorm-based Container

A Java 2 platform-based EJB Container must make the following APls available to the enterprise bean
instances at runtime:

e Java 2 APIs

e EJB1.1APIs

e JNDI1.2

* JTA 1.0.1, thdJserTransaction interface only
* JDBC™ 2.0 extension

e JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.1.1 Java 2 APIs requirements

The Container must provide the full set of Java 2 platform APIs. The Container is not allowed to subset
the Java 2 platform APIs.

The EJB Container is allowed to make certain Java 2 platform functionality unavailable to the enterprise
bean instances by using the Java 2 platform security policy mechanism. The primary reason for the Con-
tainer to make certain functions unavailable to enterprise bean instances is to protect the security and
integrity of the EJB Container environment, and to prevent the enterprise bean instances from interfer-
ing with the Container’s functions.

The following table defines the Java 2 platform security permissions that the EJB Container must be
able to grant to the enterprise bean instances at runtime. The term “grant” means that the Container
must be able to grant the permission, the term “deny” means that the Container should deny the permis-

sion.
Table 10 Java 2 Platform Security policy for a standard EJB Container
Permission name EJB Container policy
java.security.AllPermission deny

275 11/24/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

Table 10

Java 2 Platform Security policy for a standard EJB Container

Permission name EJB Container policy
java.awt. AWTPermission deny
java.io.FilePermission deny
java.net.NetPermission deny
java.util.PropertyPermission grant “read”, “*”
deny all other
java.lang.reflect.ReflectPermission deny
java.lang.RuntimePermission grant “queuePrintJob”,
deny all other
java.lang.SecurityPermission deny
java.io.SerializablePermission deny
java.net.SocketPermission granbhnect”, “*” [Note A],
deny all other
Notes:
[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality of the

Java IDL APl and RMI-IIOP packages that are part of Java 2 platform.

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table 10. Support for this is not required by the EJB specification. Enterprise
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.1.2 EJB 1.1 requirements

The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.1.3 JNDI 1.2 requirements

At the minimum, the EJB Container must provide a JNDI API name space to the enterprise bean
instances. The EJB Container must make the name space available to an instance when the instance
invokes thgavax.naming.InitialContext default (no-arg) constructor.
The EJB Container must make available at least the following objects in the name space:

* The home interfaces of other enterprise beans.

* The resource factories used by the enterprise beans.
The EJB specification does not require that all the enterprise beans deployed in a Container be presented

with the same JNDI API name space. However, all the instances of the same enterprise bean must be
presented with the same JNDI APl name space.

11/24/99

276

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment

18.2.1.4 JTA 1.0.1 requirements

The EJB Container must include the JTA 1.0.1 extension, and it must provigkevteetransac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarcation
through the javax.ejb.EJBContext interface, and also in JNDI under the name
java:comp/UserTransaction , in the cases required by the EJB specification.

The EJB Container is not required to implement the other interfaces defined in the JTA specification.
The other JTA interfaces are low-level transaction manager and resource manager integration interfaces,
and are not intended for direct use by enterprise beans.

18.2.1.5 JDBC™ 2.0 extension requirements

The EJB Container must include the JDBC 2.0 extension and provide its functionality to the enterprise
bean instances, with the exception of the low-level XA and connection pooling interfaces. These
low-level interfaces are intended for integration of a JDBC driver with an application server, not for
direct use by enterprise beans.

18.2.2 JDK™ 1.1 based Container

A JDK 1.1 based EJB Container must make the following APIs available to the enterprise bean
instances at runtime:

* JDK 1.1 or higher

e EJB1l.1APIs

e JNDI1.2

* JTA 1.0.1, thdJserTransaction interface only
* JDBC™ 2.0 extension

* JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.2.1 JDK 1.1 APIs requirements

The Container must provide the full set of JDK 1.1 APIs. The Container is not allowed to subset the
JDK 1.1 APlIs.

The EJB Container is allowed to make certain JDK 1.1 functionality unavailable to the enterprise bean
instances by using the JDK security manager mechanism. The primary reason for the Container to make
certain functions unavailable to enterprise bean instances is to protect the security and integrity of the
EJB Container environment, and to prevent the enterprise bean instances from interfering with the Con-
tainer’s functions.

277 11/24/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

The following table defines the JDK 1.1 security manager checks that the EJB Container must allow to
succeed when the check is invoked from an enterprise bean instance.

Table 11 JDK 1.1 Security manager checks for a standard EJB Container

Security manager check

EJB Container’s security manager policy

checkAccept(String, int)

throw SecurityException

checkAccess(Thread)

throw SecurityException

checkAccess(ThreadGroup)

throw SecurityException

checkAwtEventQueueAccess()

throw SecurityException

checkConnect(String, int)

allow

checkConnect(String, int, Object)

allow

checkCreateClassLoader()

throw SecurityException

checkDelete(String) throw SecurityException
checkExec(String) throw SecurityException
checkExit(int) throw SecurityException
checkLink(int) throw SecurityException
checkListen(int) throw SecurityException

checkMemberAccess(Class, int)

throw SecurityException

checkMulticast(InetAddress)

throw SecurityException

checkMulticast(InetAddress, byte)

throw SecurityException

checkPackageAccess(String)

throw SecurityException

checkPackageDefinition(String)

throw SecurityException

checkPrintJobAccess()

allow

checkPropertiesAccess()

throw SecurityException

checkPropertyAccess(String)

allow read of all properties

checkRead(FileDescriptor)

throw SecurityException

checkRead(String)

throw SecurityException

checkRead(String, Object)

throw SecurityException

checkSecurityAccess(String)

throw SecurityException

checkSetFactory()

throw SecurityException

278

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment
Table 11 JDK 1.1 Security manager checks for a standard EJB Container
Security manager check EJB Container’s security manager policy
checkSystemClipboardAccess() throw SecurityException
checkTopLevelWindow(Object) throw SecurityException
checkWrite(FileDescriptor) throw SecurityException
checkWrite(String) throw SecurityException

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table 10. Support for this is not required by the EJB specification. Enterprise
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.2.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.2.3 JNDI 1.2 requirements

Same as defined in Subsection 18.2.1.3.
18.2.2.4 JTA 1.0.1 requirements

Same as defined in Subsection 18.2.1.4.
18.2.2.5 JDBC 2.0 extension requirements

Same as defined in Subsection 18.2.1.5, with the following exception: The EJB Container is not
required to provide the support for the RowSet functionality.

This exception was made because the RowSet functionality requires the Java 2 Collections.

18.2.3 Argument passing semantics

The enterprise bean’s home and remote interfaceseanete interface$or Java RMI. The Container
must ensure the semantics for passing arguments conform to Java RMI. Non-remote objects must be
passed by value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inter-EJB
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics.

279 11/24/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

11/24/99 280

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release = Responsibilities of EJB Architecture Roles

Responsibilities of EJB Architecture Roles

Chapter 19
This chapter provides the summary of the responsibilities of each EJB architecture Role.
19.1 Bean Provider’s responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is necessary
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all compliant EJB
Containers.

19.1.1 API requirements
The enterprise beans must meet all the API requirements defined in the individual chapters of this docu-
ment.

19.1.2 Packaging requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file in the format
described in Chapter 17.

281 11/24/99

Sun Microsystems Inc.

Responsibilities of EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

19.2

The deployment descriptor must include stricturalinformation described in Section 16.2.

The deployment descriptor may optionally include any of #pplication assemblynformation as
described in Section 16.3.

Application Assembler’s responsibilities

19.3

The requirements for the Application Assembler are in defined in Section 16.3.

EJB Container Provider’s responsibilities

19.4

The EJB Container Provider is responsible for providing the deployment tools used by the Deployer to
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment tools are
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts, and for pro-
viding all the runtime services described in the individual chapters of this document.

Deployer’s responsibilities

19.5

The Deployer uses the deployment tools provided by the EJB Container provider to deploy ejb-jar files
produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more detail.

System Administrator’s responsibilities

19.6

The System Administrator is responsible for configuring the EJB Container and server, setting up secu-
rity management, integrating resource managers with the EJB Container, and runtime monitoring of
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administrator in
more detail.

Client Programmer’s responsibilities

The EJB client programmer writes applications that access enterprise beans via their home and remote
interfaces.

11/24/99

282

Sun Microsystem Inc

package javax.ejb

Chapter 20

Enterprise JavaBeans v1.1, Final Release

Enterprise JavaBeans™ API| Reference

Enterprise JavaBeans™ API| Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb

Interfaces:

public interface EJBContext
public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle

public interface HomeHandle
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization

283

11/24/99

Sun Microsystems Inc.

Enterprise JavaBeans™ API| Reference Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

Classes:

public class CreateException

public class DuplicateKeyException
public class EJBException

public class FinderException

public class ObjectNotFoundException
public class RemoveException

packagejavax.ejb.deployment

The javax.ejb.deployment package that was defined in the EJB 1.0 specification is deprecated
in EJB 1.1. The EJB 1.0 deployment descriptor format should not be used by ejb-jar file producer, and
the support for it is not required by EJB 1.1 compliant Containers.

We intend to a tool which will help convert an EJB 1.0 deployment descriptor to the EJB 1.1
XML-based format. Thgavax.ejb.deployment package will be provided only as part of this
tool.

The Javadoc specification of the EJB interface is included in a ZIP file distributed with
this document.

11/24/99

284

Sun Microsystem Inc

package javax.ejb.deployment Enterprise JavaBeans v1.1, Final Release Related documents

sz RElIATEd documents

[1] JavaBeandittp://java.sun.com/beans

[2] Java Naming and Directory Interface (JNDifp://java.sun.com/products/jndi
[3] Java Remote Method Invocation (RMi}tp://java.sun.com/products/rmi.

[4] Java Securityhttp://java.sun.com/security.

[5] Java Transaction API (JTA)ttp://java.sun.com/products/jta

[6] Java Transaction Service (JTBfp://java.sun.com/products/jts.

[7] Javato IDL Mapping. OMG TC Documeritttp://www.omg.org/cgi-bin/doc?formal/99-07-59
[8] Enterprise JavaBeans to CORBA Mappintgp://java.sun.com/products/ejb/docs.html.
[9] OMG Object Transaction Servidettp://www.omg.org/corba/sectrans.htm#trans

[10] Java 2 Platform, Enterprise Edition, v1.2 (J2EfH)p://java.sun.com/j2ee.

285 11/24/99

Sun Microsystems Inc.

Related documents Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

11/24/99 286

Sun Microsystem Inc

package javax.ejb.deployment Enterprise JavaBeans v1.1, Final Release Features deferred to future releases

wmenaxa FEAtUres deferred to future releases

We plan to provide an SPI-level interface for attaching a resource manager (such as a JDBC driver) to
the EJB Container as a separate Connector API.

We plan to enhance the support for Entities in the next major release (EJB 2.0). We are looking into the
area of use of the UML for the design and analysis of enterprise beans applications.

We plan to provide integration of EJB with JMS as part of EJB 2.0.

287 11/24/99

Sun Microsystems Inc.

Features deferred to future releases Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

11/24/99 288

Sun Microsystem Inc

Client-demarcated transactions Enterprise JavaBeans v1.1, Final Release Frequently asked questions

weaxe Frequently asked questions

This Appendix provides the answers to a number of frequently asked questions.

B.1 Client-demarcated transactions

The EJB 1.0 specification did not explain how a client other than another enterprise bean can obtain a
thejavax.transaction.UserTransaction interface.

The Java2, Enterprise Edition specification [10] defines how a client can obtag@vtoetrans-
action.UserTransaction interface using JNDI.

289 11/24/99

Sun Microsystems Inc.

Frequently asked questions Enterprise JavaBeans v1.1, Final Release Inheritance

B.2

The following is an example of how a Java application can obtaifjatree.transaction.User-
Transaction interface.

Context ctx = new InitialContext();
UserTransaction utx =
(UserTransaction)ctx.lookup(“java:comp/UserTransaction”);

Il

/I Perform calls to enterprise beans in a transaction.
1

utx.begin();

... call one or more enterprise beans

utx.commit();

Inheritance

The current EJB specification does not specify the concepbiponent inheritancelhere are com-

plex issues that would have to be addressed in order to define component inheritance (for example, the
issue of how the primary key of the derived class relates to the primary key of the parent class, and how
component inheritance affects the parent component’s persistence).

However, the Bean Provider can take advantage of the Java programming language support for inherit-
ance as follows:

* Interface inheritancelt is possible to use the Java programming language interface inheritance
mechanism for inheritance of the home and remote interfaces. A component may derive its
home and remote interfaces from some “parent” home and remote interfaces; the component
then can be used anywhere where a component with the parent interfaces is expected. This is a
Java language feature, and its use is transparent to the EJB Container.

* Implementation class inheritanck is possible to take advantage of the Java class implemen-
tation inheritance mechanism for the enterprise bean class. For example, theleakm-
gAccountBean class can extend th&ccountBean class to inherit the implementation of
the business methods.

11/24/99

290

Sun Microsystem Inc

Entities and relationships Enterprise JavaBeans v1.1, Final Release Frequently asked questions

B.3

Entities and relationships

The current EJB architecture does not specify how one Entity bean should store an object reference of
another Entity bean. The desirable strategy is application-dependent. The enterprise bean (if the bean
uses bean-managed persistence) or the Container (if the bean uses container-managed persistence) can
use any of the following strategies for maintaining persistently a relationship between entities (the list is
not inclusive of all possible strategies):

* Object’s primary key. This is applicable if the target object’s Home is known and fixed.

* Home name and object’s primary key.

* Home object reference and object’s primary key.

* Object’s handle.

B.4 Finder methods for entities with container-managed persistence
The EJB specification does not providéoamal mechanism for the Bean Provider of a bean with con-
tainer-managed persistence to specify the criteria for the finder methods.
The current mechanism is that Bean Provider describes the finders in a description of the Entity Bean.
The current EJB specification does not provide any syntax for describing the finders.
We plan to address this issue in a future release of the specification.

B.5 JDK 1.1 orJava 2
Chapter 18 describes the issue of using JDK 1.1 versus Java 2 in detail.
In summary, the Bean Provider can produce enterprise beans that will run in both JDK 1.1 and Java 2
platform based Containers. The Container Provider can use either JDK 1.1 or Java 2 platform as the
basis for the implementation of the Container.

B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction

The correct spelling igvax.transaction.UserTransaction

The use ofavax.jts.UserTransaction is deprecated in EJB 1.1.

291 11/24/99

Sun Microsystems Inc.

Frequently asked questions Enterprise JavaBeans v1.1, Final Release How to obtain database connections

B.7

How to obtain database connections

B.8

Section 14.4 specifies how an enterprise bean should obtain connections to resources such as JDBC API
connections. The connection acquisition protocol uses resource manager connection factory references
that are part of the enterprise bean’s environment.

The following is an example of how an enterprise bean obtains a JDBC connection:

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {

/I obtain the initial INDI context

Context initCtx = new InitialContext();

/I perform JNDI lookup to obtain resource manager connection
/I factory

javax.sgl.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");
/I Invoke factory to obtain a connection. The security
/Il principal is not given, and therefore

/I it will be configured by the Deployer.
java.sgl.Connection con = ds.getConnection();

Session beans and primary key

B.9

The EJB 1.1 specification specifies the Container’'s behavior for the cases when a client attempts to
access the primary key of a session object. In summary, the Container must throw an exception on a cli-
ent’s attempt to access the primary key of a session object.

Copying of parameters required for EJB calls within the same JVM

The enterprise bean’s home and remote interfaceearete interfaceén the Java RMI sense. The Con-
tainer must ensure the Java RMI argument passing semantics. Non-remote objects must be passed by
value.

Specifically, the EJB Container is not allowed to pass local objects by reference on inter-enterprise bean
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics.

11/24/99

292

Sun Microsystem Inc

Changes since Release 0.8 Enterprise JavaBeans v1.1, Final Release Revision History

Appendix C

Revision History

C.1 Changes since Release 0.8

Removedava.ejb.BeanPermission from the API. This file was incorrectly included in the 0.8
specification.

Renamed packagesjeva.ejb andjavax.ejb.deployment . The Enterprise JavaBeans API is
packaged as a standard extension, and standard extensions should be prefixgdaxith Also
renamedava.jts tojavax.jts

Made clear that a container can support multiple EJB classes. We renamegdhejb.Con-

tainer to javax.ejb.EJBHome. Some reviewers pointed out that the use of the term “Con-
tainer” for the interface that describes the life cycle operations of an EJB class as seen by a client was
confusing.

Folded the factory and finder methods into the enterprise bban® interface This reduces the num-
ber of Java classes per EJB class and the number of round-trips between a client and the container
required to create or find an EJB object. It also simplifies the client-view API.

Removed the PINNED mode of a Session Bean. Many reviewers considered this mode to be “danger-
ous” since it could prevent the container from efficiently managing its memory resources.

293 11/24/99

Sun Microsystems Inc.

Revision History Enterprise JavaBeans v1.1, Final Release Changes since Release 0.9

Clarified the life cycle of a stateless Session Bean.
Added a chapter with the specification for exception handling.

We have renamed the contract between a component and its contatoengonent contract The pre-
viously used terncontainer contract confused several reviewers.

Added description of finder methods.

Modified the entity create protocol by breaking #jgCreate method into twoejbCreate and
ejbPostCreate . This provides a cleaner separation of the discrete steps involved in creating an
entity in a database and its associated middle-tier object.

Added more clarification to the description of the entity component protocol.

Added more information about the responsibilities of the enterprise bean provider and container pro-

vider.
RenamedsessionSynchronization.beginTransaction() to SessionSynchroniza-
tion.afterBegin() to avoid confusion witlyserTransaction.begin()

Added the specification of isolation levels for container-managed Entity Beans.

C.2 Changes since Release 0.9

Renamedavax.ejb.InstanceContext to javax.ejb.EJBContext
Fixed bugs in the javadoc of tfevax.ejb.EntityContext interface.

Combined the state diagrams for non-transactional and transactional Session Beans into a single dia-
gram.

Added the definition of the restrictions on using transaction scopes with a Session Bean (a Session Bean
can be only in a single transaction at a time).

Allowed the enterprise bean’s class to implement the enterprise bean’s remote interface. This change
was requested by reviewers to facilitate migration of existing Java code to Enterprise JavaBeans.

Removed thgavax.ejb.EJBException from the specification, and replaced its use by the stan-
dardjava.rmi.RemoteException . This change was necessary because of the previous change
that allows the enterprise bean class to implement its remote interface.

Changed some rules regarding exception handling.

11/24/99 294

Sun Microsystem Inc

Changes since Release 0.95 Enterprise JavaBeans v1.1, Final Release Revision History

C3

Renamed to thgvax.jts.CurrentTransaction interface tgavax.jts.UserTransac-

tion to avoid confusion with theorg.omg.CosTransactions.Current interface. The
javax.jts.UserTransaction interface defines the subset of operations that are “safe” to use at
the application-level, and can be supported by the majority of the transaction managers used by existing
platforms.

Added specification for TX_BEAN_MANAGED transactions.

Made the isolation levels supplied in the deployment descriptor applicable also to Session Beans and
entities with bean-managed persistence.

Renamed thelestroy() methods taremove() . This change was requested by several reviewers
who pointed out the potential for name space collisions in their implementations.

Added the create arguments to #jpPostCreate method. This simplifies the programming of an
Entity Bean that needs the create arguments inefbPostCreate method (previously, the bean
would have to save these arguments irejp€reate method).

Added restrictions on the use of per-method deployment attributes.

Added javax.ejb.EJBMetaData to the examples, and added the generation of the class that
implements this interface as a requirements for the container tools.

Added thegetRollbackOnly method to thgavax.ejb.EJBContext interface. This method

allows an instance to test if the current transaction has been marked for rollback. The test may help the
enterprise bean to avoid fruitless computation after it caught an exception.

We removed the placeholder Appendix for examples. We will provide examples on the Enterprise Java-
Beans architecture Web site rather than in this document.

Changes since Release 0.95

Allowed a container-managed field to be of any Java programming language Serializable type.

Clarified the bean provider responsibilities for tepFind<METHOD> methods Entity Beans with
container-managed persistence.

Added two rules to Subsection xxx on exception handling and transaction management. The new rules
are for the TX_BEAN_MANAGED beans.

Use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform the narrow
operations after a JNDI lookup in the code samples used in the specification. While some JNDI provid-
ers may return from thimokup(...) method the exact stub for the home interface making it possi-
ble to for the client application to use a Java cast, other providers may return a wider type that requires
an explicit narrow to the home interface type. Thaeax.rmi.PortableRemoteObject.nar-

row(...) method is the standard Java RMI way to perform the explicit narrow operation.

Changed several deployment descriptor method names.

295 11/24/99

Sun Microsystems Inc.

Revision History

C4

Enterprise JavaBeans v1.1, Final Release Changes since 1.0

Changes since 1.0

This sections lists the changes since EJB 1.0.

Specified the behavior oEJBObject.getPrimaryKey(), EJBMetaData.getPrima-

ryKeyClass(), EJBHome.remove(Object primaryKey,) and isldenti-

cal(Object other) for Session Beans. As Session Bean do not have client-accessible primary
keys, these operations result in exceptions.

Disallowed TX_BEAN_MANAGED for Entity Beans.

Disallowed use oSessionSynchronization for TX_BEAN_MANAGEE2ssions.

Allowed using java.lang.String as a primary key type.

Allowed deferring the specification of the primary key class for entities with container-managed persis-
tence to the deployment time.

Clarified that a matching ejbPostCreateeiguired for each ejbCreate.
Added requirement for hashCode and equals for the primary key class.

Deprecated the packagmvax.ejb.deployment by replacing the JavaBeans-based deployment
descriptor with an XML-based deployment descriptor.

Improved the information in the deployment descriptor by clearly separating structural information
from application assembly information, and by removing support for information that should be sup-
plied by the Deployer rather than by the ejb-jar producer (i.e. ISV). The EJB 1.0 deployment descriptor
mixed all this information together, making it hard for people to understand the division of responsibil-
ity for setting the various values, and it was not clear what values can be changed at application assem-
bly and/or deployment.

Added the requirement for the Bean Provider to specify whether the enterprise bean uses a bean-man-
aged or container-managed transaction.

AddedNever the list of possible values of the transaction attributes to allow specification of the case in
which an enterprise bean must never be called from a transactional client.

Removed the Appendix describing tfevax.transaction package. Inclusion of this package in
the EJB document is no longer needed because the JTA documentation is publicly available.

Tightened the specification of the responsibilities for transaction management.

Tighten the rules for the runtime environment that the Bean Provider can expect and the EJB Container
Provider must provide. See Chapter 18.

11/24/99

296

Sun Microsystem Inc

Changes since 1.1 Draft 1 Enterprise JavaBeans v1.1, Final Release Revision History

C.5

Changes since 1.1 Draft 1

C.6

This sections lists the changes since EJB 1.1 Draft 1.
Allow use of the Java java.util.Collection interfaces for the result of entity finder methods.
Defining the FinderException in the finder methods of the home interface is mandatory now.

Clean up of the exception specification, including minor changes from EJB 1.0 summarized in Section
12.6.

The scope of the EJB specification for managing transaction isolation levels was reduced to sessions
with bean-managed transaction demarcation. The current EJB specification does not have any API for
managing transaction isolation for beans with container-managed transaction demarcation (note that all
Entity beans fall into this category).

Eliminated thestateless-session element in the XML DTD. Now thesession element is
used to describe both the stateful and stateless session beans.

Added an optionadiescription element to thenethod element. The intention is to allow tools to
display the description of the method.

Clarified that the enterprise bean class may have superclasses, and that the business methods and the
various container callbacks can be implemented in the enterprise bean class, or in any of its super-
classes.

Fixed the example that illustrates the use of handles for session objects. Serialized handles are not guar-
anteed to be deserializable in a different system, and therefore they cannot be emailed.

Updated the Overview chapter.

Allowed deferring the specification of the primary key class for all entities (not only for those with con-
tainer-managed persistence as it was the case in Draft 1).

Allow enterprise beans to print. The Container must grant the permission to the enterprise beans to
gueue printer job.

ThesetRollbackOnly() andgetRollbackOnly() methods of th&JBContext object must

not be used by enterprise beans with bean-managed transaction demarcation. There is no need for these
beans to use these methods.

Changes since 1.1 Draft 2

Fix an error in the requirement for how a Container must deal with inter-EJB invocations when both the
calling and called bean are in the same JVM. The correct requirement is that the RMI semantics must be
ensured, and therefore the Container must not pass non-remote objects by reference.

297 11/24/99

Sun Microsystems Inc.

Revision History

Enterprise JavaBeans v1.1, Final Release Changes since 1.1 Draft 2

Clarified the requirements for serialization of the session objects.

Specified that an EJB Compliant Container may always return a null from the deprgea@all-
erldentity() method.

Added a section on distributed transaction scenarios involving access to the same entity from multiple
clients in the same transaction.

Changed the specification of the return value type oEfb€reate(...) methods for entities with
container-managed persistence. The previous specification required tefi@meate methods are
defined as returning void. The new requirement is thaefb€reate methods be defined as return-

ing the primary key class type. The implementation oféfiCreate method should return null. This
change is to allow tools, if they wish, to create an entity bean with bean-managed persistence by sub-
classing an original entity bean with container-managed persistence.

For compatibility with EJB 1.0, added the support for jhga.rmi.RemoteException to be

thrown from the enterprise bean class methods. This is needed to allow an EJB 1.1 Container to support
enterprise beans written to the EJB 1.0 specification. The use faEuhgmi.RemoteException

in the enterprise bean class methods is deprecated, and new applications should throw the
javax.ejb.EJBEXxception instead.

Removed the deprecated packmeax.ejb.deployment from the EJB interfaces. The the depre-
cated packaggvax.ejb.deployment will be distributed only with the deployment descriptor
conversion tool.

Updated the examples in the transaction chapter by removirgetheitoCommit andsetTrans-
actionlsolation calls. These calls are not typically done by the enterprise bean.

Added the<method-intf> element to allow a method element to differentiate between a method
with same signature when defined in both the remote and home interfaces.

Specified the behavior of thgetUserTransaction() , setRollbackOnly() , andgetRoll-
backOnly() methods for the cases when the methods are invoked by beans that are not allowed to use
these methods. The Container will throw jdrea.lang.lllegalException in these situations.

Specified thaPortableRemoteObject.narrow(...) must be used by a client to convert the
result ofHandle.getEJBObject() to the remote interface type.

Required portable enterprise bean clients to usBdm@ableRemoteObject.narrow(...).
Clarified the minimal lifetime for handles.

Clarified that the caller must hawat least onesecurity role (notll) associated with the method permis-
sion in order to be allowed to invoke the method.

Support for entities has been made mandatory for the Container Provider.

Added a section to the Exception chapter dealing with the release of resources held by the instance
when the instance is being discarded because of a system exception.

11/24/99

298

Sun Microsystem Inc

Changes since EJB 1.1 Draft 3 Enterprise JavaBeans v1.1, Final Release Revision History

C.7

Added theres-auth element to the deployment descriptor for the Bean Provider to indicate whether
the bean code performs an explicit sign-on to a resource manager, or whether the Bean relies on the
Container to perform sign-on based on the information supplied by Deployer.

Addedjava.io.Serializable as a superinterface gdvax.ejb.Handle . The EJB 1.0 spec
required that the implementation class implements j#va.io.Serializable interface, this
change expresses the requirement syntactically.

Added the interfacgvax.ejb.HomeHandle to provide support for handles for home objects.

Allowed a Session bean instance to be removed upon a timeout while the instance is in the passivated
state.

Add thejavax.ejb.NoSuchEntityException exception to the API. Added requirements for
throwing thejava.rmi.NoSuchObjectExcetion to the chapter on exceptions.

Changes since EJB 1.1 Draft 3

Replaced the support for environment properties with the JNDI API-based environment entries. The
EJB 1.0 style of environment properties access is deprecated in EJB 1.1.

Removed thdinalize() method from the state diagrams. Specified that an enterprise bean must not
define thdfinalize() method in the enterprise bean class. This is because it cannot be guaranteed
that the method is called at all in some Container implementations.

Made clear that the result of comparing two object reference using the Java "==" operator or the
equals() method is undefined.

Added Tables 2, 3, and 4 that specify which operations are allowed in the enterprise bean methods.
Clarified what “proper transaction context” means in the Chapter on entities.

Flattened the DTD hierarchy by removing the elements that grouped entries of the same type.

Relaxed the rules for the primary key class. An entity with bean-managed persistence can use any
RMI-1IOP Value Type as its primary key type; the primary key type of an entity with container-managed
persistence is more constrained.

Added thasStatelessSession() method to th&JBMetaData interface.

Updated the chapter in distribution to simply reference RMI-IIOP. The original chapter had been written
before RMI-IIOP was completed.

299 11/24/99

Sun Microsystems Inc.

Revision History

C.8

Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Draft

Changes since EJB 1.1 Public Draft

Added theejb-client-jar element to the deployment descriptor to allow the ejb-jar file pro-
ducer to specify a JAR file that contains the classes necessary to access the enterprise beans in the
ejb-jar file.

The value of thees-auth element was changed #pplication (it wasBean) to be consistent
with the Java 2, Enterprise Edition platform specification.

Changed the lexical rules for thenv-entry-value element so that values of the tyaring
need not be double-quoted in the deployment descriptor. See subsection 14.2.1.2.

Added the requirement for the Container to provide lthseerTransaction interface to the enter-
prise bean instances in the environment JNDI API context under the j@ragomp/User-
Transaction . See section 14.6.

Clarified that the container must never return a null frong#t€allerPrincipal() method.

Allow the stateful session bearggbCreate , ejpRemove , ejbActivate , andejbPassivate
methods to access resource managers without transaction context. This was allowed in EJB 1.0.

Cleaned up the description of transactions. Removed the confusindaeaitransaction and created

the description of how a Container may deal with the resource manager updates from a method that runs
with an unspecified transaction context into Section 11.6.3 (theltwahtransactionwas used to refer

to the cases that are now covered by this section).

Added an explanation of how ejbLoad and ejbStore work for entity bean instances that execute with an
unspecified transaction context. See subsection 9.1.7.1.

Fixed the argument type of theldentical(EJBObject) method. The spec showed it incor-
rectly agava.lang.Object . The EJB class files and javadoc have always been correct.

Disallowed the use obJserTransaction in the setSessionContext method, as specified in
Tables 2 and 3.

Specified which methods can be assigned a transaction attribute, and which methods can be included in
method-permission elements.

Clarified in Subsection 12.3.6 which “resources” the Container is responsible for releasing when an
instance is being discarded.

Augmented the restrictions on client’s security context in Section 15.5 to cover the case in which
requests in the same transaction are received from multiple intermediate objects.

Moved the description of the “transaction diamond” scenario from Subsection 9.1.13 to Subsection
11.7. Described also the transaction diamond scenario for Session Beans.

Clarified the scope of theenv-entry-name , ejb-ref-name , res-ref-name , secu-
rity-role-ref androle-name elements.

11/24/99

300

Sun Microsystem Inc

Changes since EJB 1.1 Public Draft 2 Enterprise JavaBeans v1.1, Final Release Revision History

C9

Specified that application exceptions must not be defined as a subclRsmtiineException or
RemoteException

Clarified that the container-managed persistence fields must not be defiretiast

Clarified in Subsection 9.2.3 that the entity object created byeth€reate(...) method must
have a unique primary key.

Clarified in Section 6.8 how the Container delegates requests to instances of a stateless Session bean.

Added to Section 18.1.2 the restriction that an enterprise bean must ndhjzassas a method argu-
ment or result.

In Section 6.4.1 specified that the Container must be able to preserve to an object reference of the
UserTransaction interface across passivation. Same for the object references of enterprise beans’
home interfaces.

Noted in Chapter 11 that the transaction attributes may be specified either by the Bean Provider or the
Application Assembler. The previous text suggested that only the Application Assembler was allowed
to specify the transaction attributes.

Made the terminology more consistent throughout the specification. Used thestessign bearses-

sion object session bean instanckome interfaceremote interfacesession EJBObjecand session
EJBHomeconsistently. Used similar terminology for the entity bean related terms. Note that we turned
off the change bars while making this editorial clean up.

Disallowed the use of theetRollbackOnly and getRollbackOnly method, the use of the
UserTransaction interface, resource manager access, and enterprise bean accesghicCthe

ate andejbRemove methods of the stateless session bean (see Table 3 on page 70). The Container
does not have a transaction context and client security context during the execution of these two opera-
tions of a stateless session bean.

Added support for referencing the deployment descriptor elements through XML IDs. The main reason
for this is to make it easier for tools that want to pass additional non-standard deployment information
for the enterprise beans. The tools should put the non-standard information into a separate file, and
optionally make use the ID mechanism to reference the information in the standard EJB deployment
descriptor. Tools areot allowed to extend the format of the EJB deployment descriptor.

Made a minor change to the language in Subsection 15.3.2 for the case that a method is not assigned to
any security role.

Added a paragraph stating that the Container should implement the object references of the home and

remote interfaces of Entity objects such that a client can use the references over a long period of time
(Subsection 9.3.9).

Changes since EJB 1.1 Public Draft 2

We changed the JTA requirements to refer to version JTA 1.0.1.

301 11/24/99

Sun Microsystems Inc.

Revision History

C.10

Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Draft 3

Added clarifications to subsections 9.1.5.1, 9.1.5.2, and 9.4.3 stating that the container must ensure that
the instance’s state is synchronized before it inveigRemove .

Renamed th@rimkey-class element toprim-key-class to be consistent with the rest of the
element names.

Clarified in Subsection 12.1.1 that a Bean Provider is allowed to define subclasses of the standard EJB
application exceptions.

Added the requirement (in Subsection 9.4.2) for the Container to reset the container-manager fields to
the default Java language values prior to invokijgCreate

Clarified the reason for allowing the primary key type for CMP entities to be specified at deployment
time (Subsection 9.4.7.3).

Changes since EJB 1.1 Public Draft 3

C.1l1

Made clear in Section 11.2.3 that not all EJB client environments are required to suppOdeie
Transaction interface.

Specified the name and URI to be used in the DOCTYPE PUBLIC ID in the EJB XML deployment
descriptors.

Corrected Section 5.3.2 to state thafaaax.ejb.RemoveException be thrown instead of
java.rmi.RemoteException

Fixed a few errors in Tables 2, 3, and 4.
Changed the format of the StylerBethod element of the EJB deployment descriptor. See Section

16.5. This change was necessary to disambiguate a Style 3 element for a method with no arguments
from a Style 2 element.

Changes since EJB 1.1 Public Release

Fixed an error in Subsection 15.2.5. ThetCallerPrincipal and isCallerInRole func-
tions, when called in an inappropriate context, must throwjdva.lang.lllegalStateEx-
ception , not thejavax.ejb.EJBException

Fixed the omission of a requirement in Subsection 9.4.1. The container-managed fields must be
declared apublic fields in the enterprise bean class. This requirement was present in the EJB 1.0
specification, and it was inadvertently left out when the sections on container-managed persistence were
reorganized during the EJB 1.1 specification process.

11/24/99

302

Sun Microsystem Inc

Changes since EJB 1.1 Public Release Enterprise JavaBeans v1.1, Final Release Revision History

C.12

Made it clear in 6.4.1 that an instance is allowed to retain across passivation references to enterprise
beans’ remote and home interfaces, references t@#ssionContext object, references to the
java:comp/env JNDI API context and its subcontexts, and references tdJgerTransaction

anywherein the instances conversational state (i.e. not only directly in the fields of the session bean
class). For example, it is possible to retain a Collection of remote interfaces in the conversational state.

Changed the version numbers in the DOCTYPE specification in the deployment descriptor from 1.2 to
1.1. The correct DOCTYPE specification is:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

Clarified in Sections 5.5 and 8.7 that handles are not capabilities in the security sense.

Replaced the termesource factory reference with the termresource manager con-
nection factory reference . This change makes the terminology consistent with other J2EE
specs.

Added a missing entry to Table 11 fdreckLink
Clarified in 16.5 that the DTD XML elements’ content is case sensitive.

Fixed a few typos in the text.

Changes since EJB 1.1 Public Release

Clarified in 17.3 that the enterprise bean’s dependent files could be in other jar files if the jar files are
specified in the ejb-jar file’s Class-Path.

Clarified in 16.5 that the method-intf can be used with all Style elements, specifically with
method-name being *.

Clarified in 9.1.9.4 that multi-object finders should return an empty collection if no object is found.

Allowed enterprise beans to read system properties.

303 11/24/99

Sun Microsystems Inc.

Revision History Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Release

11/24/99 304

A
activation 50, 65
All, 46
APIs
runtime 272 275
Application Assembler22
responsibilities282
transaction attribute471
transaction rolgl69
application assemb|y®43-244
application exceptiqr87
application exception See exception

B
Bean Provider22
responsibilities281
responsibility 74-77
BeanReference
Interface in package java.beans.enter-
prise 285
Interface in package java.e®85

C
cmp-fields elemen42
commit, 118
Container
Interface in package java.e85
Container ProviderR23
transaction demarcation
bean managed 73
container managed75-178
container-transaction eleme1

Index

conversational staté1
passivation51
rollback, 53
CORBA mapping35
CreateExceptionll6
CurrentTransaction
Interface in package java.ji893

D
Deployer 22
responsibilities282
deployment descriptor
application assemb]|y240
bean structure240, 240-242
DTD, 244-259
EJB reference208
ejb-link element210
ejb-ref element208
enterprise-beans eleme40
env-entry element04
environment entry204
res-auth elemen13
resource-ref elemeri213
role, 240
transaction attributed 71
XML DTD, 244-259
distributed objects199
DuplicateKeyExceptionl16

E
EJB Container Provide23
requirements78-79

305

306

responsibilities282
EJB reference207
Deployer role211
ejb-link element210
in deployment descriptp208
locate home interfag@08
EJB Role
Application Assembler22
Bean Provider22
Container Provider23
Deployer 22
EJB Server ProvideP3
System Administrator24
EJB Server Provide3
ejb-class elemenp41
ejb-client JAR file 268
EJBContext
Interface in package javax.ejpB84, 285
EJBHome41, 128
Interface in package javax.epB85
remove method42
ejb-jar file, 33, 242, 267
class files268
deployment descriptpP68
ejb-client JAR file 268
JAR Manifest 269
ejb-link element210
EJBMetaDatal29
ejb-name elemen240
EJBObject 39, 43, 128
remove method42
ejb-ref element208
ejpbRemove61l
enterprise bean component
characteristics 0f30
enterprise bean component mqdtl
enterprise bean contract
client view; 31
CORBA mapping35
home interface31
metadata interfac@2
object identity 32
remote interface32
component contract
requirements32
ejb-jar file, 33

INDEX

enterprise bean environment

JNDI interface 202
InitialContext 203

Enterprise Bean Provide22
entity bean

allowed method operation$11
bean provider-implemented methods
104-107
business method&25
class requirementg21
client view of 85-86
commit, 118
constructoy 104
create methgd9, 122
CreateExceptionl16
DuplicateKeyExceptionl16
EJB container86
ejbActivate 105
ejbCreatel105 122
ejbFind methodsl24
ejbLoad 106, 112
ejbPassivatel06
ejbPostCreatel05 124
ejbRemove 106
ejbStore 106, 112
exceptions116-117
find methods90, 107, 124
return type114-115
findByPrimaryKey 90
FinderException117
generated classeR27
getHandle methq®4
getPrimaryKey methq®3
handle 94, 128
home interface
function of 89
requirements126
home interface hand|85, 128
isldentical method93
life cycle, 9192, 102-104
locate home interfac®&7
methods
container view gf107-109
modeling business objec&9
ObjectNotFoundExceptiqril7
persistencegd9, 100 101

INDEX

container managed29-134
primary key 93, 127
reentrancy120
remote interface9d3, 125
remove method0
RemoveException17
setEntityContext104
state 102
state cachingl12
transaction demarcatiph60
container managed67
transaction synchronizatioh19
unsetEntityContextL05
entity element241
env-entry elemen204
environment entry204
Application Assembler role207
Deployer rolg 207
environment naming contex03
exception
application 187
client handling of195
data integrity 188
defined 188
subclass gf189
client view, 195
container handling ¢fL91
container-invoked callback&93
containter-managed transactjdi94
NoSuchObjectExceptioi97
RemoteExceptionl94, 196
client handling 196
system
handling of 189-190
System Administratorl97
transaction comm;tL94
transaction startL94
TransactionRequiredExceptioth97
TransactionRolledbackExceptiot97

F
findByPrimaryKey 90
FinderException117

G
getCallerldentity 222

getCallerPrincipal223 236
getEnvironment methqo@16
getHandle methq®4
getPrimaryKey methqd!7, 93

H

home elemeni41

home interfacg3l, 40, 67
client functionality 89
create methad9
EJB reference t®07
entity bean126
find methods90
findByPrimaryKey 90
handle 95
locating 87
remove method0

|

Interfaces
java.beans.enterprise.BeanRefergi2@5b
java.ejb.BeanReferencg85
java.ejb.Container285
java.jts.CurrentTransactip293
javax.ejb.EJBContex84, 285
javax.ejb.EJBHomge285
javax.ejb.SessionSynchronizatjdr68
javax.jts.UserTransactioi293

isCallerinRole 222

isCallerinRolg 224

isldentical methog46, 93

isolation level
managing in transactioi60

J

JAR Manifest file 269

Java RM| 279

JDBC, 277

JDK 1.1, 277279

JNDI, 276

JNDI interface 202
InitialContext 203

JTA, 277

M
Mandatory 170, 177

307

308

metadata interfac&2
method-permission elemei229

N

narrow methog47

Never, 170, 177
NoSuchObjectExceptiqri97
NotSupported170, 175

(0]
object identity 32
ObjectNotFoundExceptiqril7

P
passivation50, 65

conversational stat&1

SessionContext interfacg2

UserTransaction interfacb2
persistenced9

bean managed 00

entity state cachind.12

container managed01, 129-134
persistence-type eleme241
portability

programming restriction®72-274
primary key 93, 127
prim-key-class elemen241
principal 220, 221

delegation233

R
remote elemen41
remote interface32, 39, 43
entity bean93, 125
RemoteExceptionl94, 196
client handling 196
RemoveExceptionl17
Required 170, 175
RequiresNew170, 176
res-auth elemen13
resource
obtaining connection 1®12
res-auth elemenf13
resource factory211
resource factory referenczll
resource-ref elemen213

INDEX

resource-ref elemen213
RMI, 199
role-link element232
role-name elemen27
runtime

APIs, 272, 275

S
security
audit 238
bean provider
programming recommendatiqrz21
client responsibility234
current caller223
deployment descriptor processji4
deployment tools235
EJBContext222, 236
getCallerPrincipal222 223 236
isCallerinRole 222, 224
mechanism235
principal 220, 221
delegation233
passing236
principal realm233 235
role-link element232
runtime enforcemen37
security-role-ref elemen225
security domain233 235
security role 220, 226, 227
assigning233
linking, 232
method permissiqr220, 226, 229
role-name elemeng27
security view 226
security-role elemen27, 233
security-role-ref elemen225
session bean
access tp39
business method requiremerité
class requirement35
client operations gré4
client view of 39
Create 42
ejbCreate requirements6
ejbRemove call61l
exceptions61

INDEX 309

getPrimaryKey methqdt7 stateful session bean

home interface40, 41 conversational stat&1

home interface requiremeni’ lifecycle, 57

identity, 43 operations in59

provider responsibility74-77 stateless session bean. See session bean
remote interface39, 43 Supports170, 176

remote interface requiremeni®/’ System Administratgr24

remove 42, 66 responsibilities282

requirements74-77

SessionBean interfacg3 T

SessionContext interfacg4 transaction

SessionSynchronization interfaé&el attributes 154

stateful definition, 169
conversational staté1 deployment descriptp71
identity of, 46 Mandatory 177
isldentical methop46 Never, 177
lifecycle, 57 NotSupported175

operations in59
stateless67—74
exceptions71
home interfaceg67
identity of, 46
isldentical method46
lifecycle, 68
operations70
transaction demarcatipfh61
use of 67
transaction contexb6
transaction demarcatipfh60, 161
bean managed61
container managed67
transaction scop&2
session bean instance
activation 50, 65
characteristic49
creating 55
diagram of 63
passivation50, 65
serialization of calls56
session elemen241
SessionBean interfact3
SessionContext interfacs4
passivation52

SessionSynchronization interfaéel, 168

callbacks 179
session-type elemert4l

Required 175
RequiresNew176
Supports176
values 170
bean managed54, 159-169
container responsibilitied 73
committing 64
container managed54, 159-169
container responsibilitied75-178
getRollbackOnly methqdl69, 178
getUserTransaction methoti79
SessionSynchronization callbacks
179
setRollbackOnly methqd 68, 178
isolation level 160
JTA, 155
JTS 155
multiple client acces4180-185
nested154
SessionSynchronization interfad&8
starting 63
synchronizing119
unspecified transaction conteg79
UserTransaction interfac&54

transaction context

session bearb6

transaction scope

session bearb2

TransactionRequiredExceptioh97

310

TransactionRolledbackExceptiot97
transaction-type elemerg41
trans-attribute element71

type narrowing47, 96

U
UserTransaction
Interface in package javax.jt393
UserTransaction interfac&54, 161, 217
passivation52

INDEX

	Chapter 1 Introduction
	1.1 Target audience
	1.2 What is new in EJB 1.1
	1.3 Application compatibility and interoperability
	1.4 Acknowledgments
	1.5 Organization
	1.6 Document conventions

	Chapter 2 Goals
	2.1 Overall goals
	2.2 Goals for Release 1.0
	2.3 Goals for Release 1.1

	Chapter 3 EJB Architecture Roles and Scenarios
	3.1 EJB Architecture Roles
	3.1.1 Enterprise Bean Provider
	3.1.2 Application Assembler
	3.1.3 Deployer
	3.1.4 EJB Server Provider
	3.1.5 EJB Container Provider
	3.1.6 System Administrator

	3.2 Scenario: Development, assembly, and deployment

	Chapter 4 Overview
	4.1 Enterprise Beans as components
	4.1.1 Component characteristics
	4.1.2 Flexible component model

	4.2 Enterprise JavaBeans Architecture contracts
	4.2.1 Client-view contract
	4.2.2 Component contract
	4.2.3 Ejb-jar file
	4.2.4 Contracts summary

	4.3 Session and entity objects
	4.3.1 Session objects
	4.3.2 Entity objects

	4.4 Standard mapping to CORBA protocols

	Chapter 5 Client View of a Session Bean
	5.1 Overview
	5.2 EJB Container
	5.2.1 Locating a session bean’s home interface
	5.2.2 What a container provides

	5.3 Home interface
	5.3.1 Creating a session object
	5.3.2 Removing a session object

	5.4 EJBObject
	5.5 Session object identity
	5.6 Client view of session object’s life cycle
	5.7 Creating and using a session object
	5.8 Object identity
	5.8.1 Stateful session beans
	5.8.2 Stateless session beans
	5.8.3 getPrimaryKey()

	5.9 Type narrowing

	Chapter 6 Session Bean Component Contract
	6.1 Overview
	6.2 Goals
	6.3 A container’s management of its working set
	6.4 Conversational state
	6.4.1 Instance passivation and conversational state
	6.4.2 The effect of transaction rollback on conversational state

	6.5 Protocol between a session bean instance and its container
	6.5.1 The required SessionBean interface
	6.5.2 The SessionContext interface
	6.5.3 The optional SessionSynchronization interface
	6.5.4 Business method delegation
	6.5.5 Session bean’s ejbCreate(...) methods
	6.5.6 Serializing session bean methods
	6.5.7 Transaction context of session bean methods

	6.6 STATEFUL Session Bean State Diagram
	6.6.1 Operations allowed in the methods of a stateful session bean class
	6.6.2 Dealing with exceptions
	6.6.3 Missed ejbRemove() calls
	6.6.4 Restrictions for transactions

	6.7 Object interaction diagrams for a STATEFUL session bean
	6.7.1 Notes
	6.7.2 Creating a session object
	6.7.3 Starting a transaction
	6.7.4 Committing a transaction
	6.7.5 Passivating and activating an instance between transactions
	6.7.6 Removing a session object

	6.8 Stateless session beans
	6.8.1 Stateless session bean state diagram
	6.8.2 Operations allowed in the methods of a stateless session bean class
	6.8.3 Dealing with exceptions

	6.9 Object interaction diagrams for a STATELESS session bean
	6.9.1 Client-invoked create()
	6.9.2 Business method invocation
	6.9.3 Client-invoked remove()
	6.9.4 Adding instance to the pool

	6.10 The responsibilities of the bean provider
	6.10.1 Classes and interfaces
	6.10.2 Session bean class
	6.10.3 ejbCreate methods
	6.10.4 Business methods
	6.10.5 Session bean’s remote interface
	6.10.6 Session bean’s home interface

	6.11 The responsibilities of the container provider
	6.11.1 Generation of implementation classes
	6.11.2 Session EJBHome class
	6.11.3 Session EJBObject class
	6.11.4 Handle classes
	6.11.5 EJBMetaData class
	6.11.6 Non-reentrant instances
	6.11.7 Transaction scoping, security, exceptions

	Chapter 7 Example Session Scenario
	7.1 Overview
	7.2 Inheritance relationship
	7.2.1 What the session Bean provider is responsible for
	7.2.2 Classes supplied by container provider
	7.2.3 What the container provider is responsible for

	Chapter 8 Client View of an Entity
	8.1 Overview
	8.2 EJB Container
	8.2.1 Locating an entity bean’s home interface
	8.2.2 What a container provides

	8.3 Entity bean’s home interface
	8.3.1 create methods
	8.3.2 finder methods
	8.3.3 remove methods

	8.4 Entity object’s life cycle
	8.5 Primary key and object identity
	8.6 Entity Bean’s remote interface
	8.7 Entity bean’s handle
	8.8 Entity home handles
	8.9 Type narrowing of object references

	Chapter 9 Entity Bean Component Contract
	9.1 Concepts
	9.1.1 Runtime execution model
	9.1.2 Granularity of entity beans
	9.1.3 Entity persistence (data access protocol)
	9.1.3.1 Bean-managed persistence
	9.1.3.2 Container-managed persistence

	9.1.4 Instance life cycle
	9.1.5 The entity bean component contract
	9.1.5.1 Entity bean instance’s view:
	9.1.5.2 Container’s view:

	9.1.6 Operations allowed in the methods of the entity bean class
	9.1.7 Caching of entity state and the ejbLoad and ejbStore methods
	9.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute

	9.1.8 Finder method return type
	9.1.8.1 Single-object finder
	9.1.8.2 Multi-object finders

	9.1.9 Standard application exceptions for Entities
	9.1.9.1 CreateException
	9.1.9.2 DuplicateKeyException
	9.1.9.3 FinderException
	9.1.9.4 ObjectNotFoundException
	9.1.9.5 RemoveException

	9.1.10 Commit options
	9.1.11 Concurrent access from multiple transactions
	9.1.12 Non-reentrant and re-entrant instances

	9.2 Responsibilities of the Enterprise Bean Provider
	9.2.1 Classes and interfaces
	9.2.2 Enterprise bean class
	9.2.3 ejbCreate methods
	9.2.4 ejbPostCreate methods
	9.2.5 ejbFind methods
	9.2.6 Business methods
	9.2.7 Entity bean’s remote interface
	9.2.8 Entity bean’s home interface
	9.2.9 Entity bean’s primary key class

	9.3 The responsibilities of the Container Provider
	9.3.1 Generation of implementation classes
	9.3.2 Entity EJBHome class
	9.3.3 Entity EJBObject class
	9.3.4 Handle class
	9.3.5 Home Handle class
	9.3.6 Meta-data class
	9.3.7 Instance’s re-entrance
	9.3.8 Transaction scoping, security, exceptions
	9.3.9 Implementation of object references

	9.4 Entity beans with container-managed persistence
	9.4.1 Container-managed fields
	9.4.2 ejbCreate, ejbPostCreate
	9.4.3 ejbRemove
	9.4.4 ejbLoad
	9.4.5 ejbStore
	9.4.6 finder methods
	9.4.7 primary key type
	9.4.7.1 Primary key that maps to a single field in the entity bean class
	9.4.7.2 Primary key that maps to multiple fields in the entity bean class
	9.4.7.3 Special case: Unknown primary key class

	9.5 Object interaction diagrams
	9.5.1 Notes
	9.5.2 Creating an entity object
	9.5.3 Passivating and activating an instance in a transaction
	9.5.4 Committing a transaction
	9.5.5 Starting the next transaction
	9.5.6 Removing an entity object
	9.5.7 Finding an entity object
	9.5.8 Adding and removing an instance from the pool

	Chapter 10 Example entity scenario
	10.1 Overview
	10.2 Inheritance relationship
	10.2.1 What the entity Bean Provider is responsible for
	10.2.2 Classes supplied by Container Provider
	10.2.3 What the container provider is responsible for

	Chapter 11 Support for Transactions
	11.1 Overview
	11.1.1 Transactions
	11.1.2 Transaction model
	11.1.3 Relationship to JTA and JTS

	11.2 Sample scenarios
	11.2.1 Update of multiple databases
	11.2.2 Update of databases via multiple EJB Servers
	11.2.3 Client-managed demarcation
	11.2.4 Container-managed demarcation
	11.2.5 Bean-managed demarcation
	11.2.6 Interoperability with non-Java clients and servers

	11.3 Bean Provider’s responsibilities
	11.3.1 Bean-managed versus container-managed transaction demarcation
	11.3.1.1 Non-transactional execution

	11.3.2 Isolation levels
	11.3.3 Enterprise beans using bean-managed transaction demarcation
	11.3.3.1 getRollbackOnly() and setRollbackOnly() method

	11.3.4 Enterprise beans using container-managed transaction demarcation
	11.3.4.1 javax.ejb.SessionSynchronization interface
	11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method
	11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

	11.3.5 Declaration in deployment descriptor

	11.4 Application Assembler’s responsibilities
	11.4.1 Transaction attributes

	11.5 Deployer’s responsibilities
	11.6 Container Provider responsibilities
	11.6.1 Bean-managed transaction demarcation
	11.6.2 Container-managed transaction demarcation
	11.6.2.1 NotSupported
	11.6.2.2 Required
	11.6.2.3 Supports
	11.6.2.4 RequiresNew
	11.6.2.5 Mandatory
	11.6.2.6 Never
	11.6.2.7 Transaction attribute summary
	11.6.2.8 Handling of setRollbackOnly() method
	11.6.2.9 Handling of getRollbackOnly() method
	11.6.2.10 Handling of getUserTransaction() method
	11.6.2.11 javax.ejb.SessionSynchronization callbacks

	11.6.3 Handling of methods that run with “an unspecified transaction context”

	11.7 Access from multiple clients in the same transaction context
	11.7.1 Transaction “diamond” scenario with an entity object
	11.7.2 Container Provider’s responsibilities
	11.7.3 Bean Provider’s responsibilities
	11.7.4 Application Assembler and Deployer’s responsibilities
	11.7.5 Transaction diamonds involving session objects

	Chapter 12 Exception handling
	12.1 Overview and Concepts
	12.1.1 Application exceptions
	12.1.2 Goals for exception handling

	12.2 Bean Provider’s responsibilities
	12.2.1 Application exceptions
	12.2.2 System exceptions
	12.2.2.1 javax.ejb.NoSuchEntityException

	12.3 Container Provider responsibilities
	12.3.1 Exceptions from an enterprise bean’s business methods
	12.3.2 Exceptions from container-invoked callbacks
	12.3.3 javax.ejb.NoSuchEntityException
	12.3.4 Non-existing session object
	12.3.5 Exceptions from the management of container-managed transactions
	12.3.6 Release of resources
	12.3.7 Support for deprecated use of java.rmi.RemoteException

	12.4 Client’s view of exceptions
	12.4.1 Application exception
	12.4.2 java.rmi.RemoteException
	12.4.2.1 javax.transaction.TransactionRolledbackException
	12.4.2.2 javax.transaction.TransactionRequiredException
	12.4.2.3 java.rmi.NoSuchObjectException

	12.5 System Administrator’s responsibilities
	12.6 Differences from EJB 1.0

	Chapter 13 Support for Distribution
	13.1 Overview
	13.2 Client-side objects in distributed environment
	13.3 Standard distribution protocol

	Chapter 14 Enterprise bean environment
	14.1 Overview
	14.2 Enterprise bean’s environment as a JNDI API naming context
	14.2.1 Bean Provider’s responsibilities
	14.2.1.1 Access to enterprise bean’s environment
	14.2.1.2 Declaration of environment entries

	14.2.2 Application Assembler’s responsibility
	14.2.3 Deployer’s responsibility
	14.2.4 Container Provider responsibility

	14.3 EJB references
	14.3.1 Bean Provider’s responsibilities
	14.3.1.1 EJB reference programming interfaces
	14.3.1.2 Declaration of EJB references in deployment descriptor

	14.3.2 Application Assembler’s responsibilities
	14.3.3 Deployer’s responsibility
	14.3.4 Container Provider’s responsibility

	14.4 Resource manager connection factory references
	14.4.1 Bean Provider’s responsibilities
	14.4.1.1 Programming interfaces for resource manager connection factory references
	14.4.1.2 Declaration of resource manager connection factory references in deployment descriptor
	14.4.1.3 Standard resource manager connection factory types

	14.4.2 Deployer’s responsibility
	14.4.3 Container provider responsibility
	14.4.4 System Administrator’s responsibility

	14.5 Deprecated EJBContext.getEnvironment() method
	14.6 UserTransaction interface

	Chapter 15 Security management
	15.1 Overview
	15.2 Bean Provider’s responsibilities
	15.2.1 Invocation of other enterprise beans
	15.2.2 Resource access
	15.2.3 Access of underlying OS resources
	15.2.4 Programming style recommendations
	15.2.5 Programmatic access to caller’s security context
	15.2.5.1 Use of getCallerPrincipal()
	15.2.5.2 Use of isCallerInRole(String roleName)
	15.2.5.3 Declaration of security roles referenced from the bean’s code

	15.3 Application Assembler’s responsibilities
	15.3.1 Security roles
	15.3.2 Method permissions
	15.3.3 Linking security role references to security roles

	15.4 Deployer’s responsibilities
	15.4.1 Security domain and principal realm assignment
	15.4.2 Assignment of security roles
	15.4.3 Principal delegation
	15.4.4 Security management of resource access
	15.4.5 General notes on deployment descriptor processing

	15.5 EJB Architecture Client Responsibilities
	15.6 EJB Container Provider’s responsibilities
	15.6.1 Deployment tools
	15.6.2 Security domain(s)
	15.6.3 Security mechanisms
	15.6.4 Passing principals on EJB architecture calls
	15.6.5 Security methods in javax.ejbEJBContext
	15.6.6 Secure access to resource managers
	15.6.7 Principal mapping
	15.6.8 System principal
	15.6.9 Runtime security enforcement
	15.6.10 Audit trail

	15.7 System Administrator’s responsibilities
	15.7.1 Security domain administration
	15.7.2 Principal mapping
	15.7.3 Audit trail review

	Chapter 16 Deployment descriptor
	16.1 Overview
	16.2 Bean Provider’s responsibilities
	16.3 Application Assembler’s responsibility
	16.4 Container Provider’s responsibilities
	16.5 Deployment descriptor DTD
	16.6 Deployment descriptor example

	Chapter 17 Ejb-jar file
	17.1 Overview
	17.2 Deployment descriptor
	17.3 Class files
	17.4 ejb-client JAR file
	17.5 Deprecated in EJB 1.1
	17.5.1 ejb-jar Manifest
	17.5.2 Serialized deployment descriptor JavaBeans™ components

	Chapter 18 Runtime environment
	18.1 Bean Provider’s responsibilities
	18.1.1 APIs provided by Container
	18.1.2 Programming restrictions

	18.2 Container Provider’s responsibility
	18.2.1 Java 2 Platform-based Container
	18.2.1.1 Java 2 APIs requirements
	18.2.1.2 EJB 1.1 requirements
	18.2.1.3 JNDI 1.2 requirements
	18.2.1.4 JTA 1.0.1 requirements
	18.2.1.5 JDBC™ 2.0 extension requirements

	18.2.2 JDK™ 1.1 based Container
	18.2.2.1 JDK 1.1 APIs requirements
	18.2.2.2 EJB 1.1 requirements
	18.2.2.3 JNDI 1.2 requirements
	18.2.2.4 JTA 1.0.1 requirements
	18.2.2.5 JDBC 2.0 extension requirements

	18.2.3 Argument passing semantics

	Chapter 19 Responsibilities of EJB Architecture Roles
	19.1 Bean Provider’s responsibilities
	19.1.1 API requirements
	19.1.2 Packaging requirements

	19.2 Application Assembler’s responsibilities
	19.3 EJB Container Provider’s responsibilities
	19.4 Deployer’s responsibilities
	19.5 System Administrator’s responsibilities
	19.6 Client Programmer’s responsibilities

	Chapter 20 Enterprise JavaBeans™ API Reference
	package javax.ejb
	package javax.ejb.deployment

	Chapter 21 Related documents
	Appendix A Features deferred to future releases
	Appendix B Frequently asked questions
	B.1 Client-demarcated transactions
	B.2 Inheritance
	B.3 Entities and relationships
	B.4 Finder methods for entities with container-managed persistence
	B.5 JDK 1.1 or Java 2
	B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction
	B.7 How to obtain database connections
	B.8 Session beans and primary key
	B.9 Copying of parameters required for EJB calls within the same JVM

	Appendix C Revision History
	C.1 Changes since Release 0.8
	C.2 Changes since Release 0.9
	C.3 Changes since Release 0.95
	C.4 Changes since 1.0
	C.5 Changes since 1.1 Draft 1
	C.6 Changes since 1.1 Draft 2
	C.7 Changes since EJB 1.1 Draft 3
	C.8 Changes since EJB 1.1 Public Draft
	C.9 Changes since EJB 1.1 Public Draft 2
	C.10 Changes since EJB 1.1 Public Draft 3
	C.11 Changes since EJB 1.1 Public Release
	C.12 Changes since EJB 1.1 Public Release

